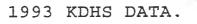
OCTOBER, 1997


UNIVERSITY OF NAIROBI

A PROJECT PAPER SUBMITTED IN PARTIAL FULFILMENT FOR THE POST-GRADUATE DIPLOMA IN POPULATION STUDIES AT THE

BERHANE WONDIMU BOGALE

BY

2 - 1 1 1399

THE SOCIO-ECONOMIC DIFFERENTIALS IN INFANT AND CHILD

MORTALITY IN KENYA : EVIDENCED FROM THE

DECLARATION

This project is my original work and has not been presented for a degree at any university.

	n/
SIGNATURE	Behl
	- AP

BERHANE WONDIMU BOGALE

This project has been submitted for examination with our approval as University supervisors.

SIGNATURE

PROF. A.B.C. OCHOLLA-AYAYO

(UNIVERSITY SUPERVISOR)

SIGNATURE

DR. B.O. K'OYUGI

(UNIVERSITY SUPERVISOR)

Population studies and Research Institute University of Nairobi. P.O.Box 30197

NAIROBI

DEDICATION

This project is dedicated to my father, late mother, brothers Dagne Wondimu and Bisenebit Endazezew, sister MuluGojjam Bayeh and intimate friend Temesgne Kebebew.

ACKNOWLEDGEMENT

I am grateful to the German Academic Exchange Service (DAAD) for the financial assistance that has enabled me to undertake a full time study for the post graduate diploma course in Population Studies.

I am greatly indebted to my supervisors/Director of Population Studies and Research Institute (PSRI) Prof. A.B.C Ocholla-Ayayo and Dr. B.O.K'Oyugi for their critical and constructive comment, guidance, advise, reading my work and correcting at various stage. Apart from this, their continuous help, special care and encouragement in the entire duration of my study at PSRI enabled me to complete this project.

I also thanks the co-operation and assistance given to me by all members of the staff of the PSRI, the Librarian of PSRI, especially to Mr. Isaac Lamba who is incharge of the computer service for his assistance in data extraction, to Miss Yamo P.A for going through my drafts for her helpful comment and typing some of the chapters.

I wish to thank also Dr. Lawrence D.E. Ikamari for his comment and expert advise. I would like also to thank Mrs. Priscilla Akwara for her contribution during the stage of the design of this study.

Last but not least many thanks go to my parents, brothers, sister and all my friends who provided constant source of emotional support and encouragement to complete this project.

BERHANE WONDIMU BOGALE

iii

ABSTRACT

The objective of this study was to estimate infant and child mortality differential with the associated socio-economic factors at macro-level in Kenya. The variables utilized are maternal education, paternal education, working status and place of residence of mothers. Data analysis was based on Kenya Demographic Health Survey (KDHS) 1993. The study used the method of Trussell variant of the Brass child survival for estimating infant and child mortality and Coale Demeny regional North model life tables.

The findings are consistent with those from earlier studies. The education level of mothers and fathers as hypothesized were found to be inversely related to infant and child mortality. Most of the decline in infant and child mortality could be accounted for by increased education of both mothers and fathers. The study reveals that infant and child mortality is highest for rural residence mothers and lowest for those who reside in urban areas. The association of working status of mothers using the categories of non working and working mothers show inconsistency in the variable.

This study recommends that in order to reduce infant and child mortality, mothers' and fathers' education need to be accelerated to secondary level and above. The government could promote survival of infants and children of working lactating mothers by providing of breast feeding places, breaks, job security and paid maternity leaves.

iv

TABLE OF CONTENTS

DECLARATION
DEDICATION
ACKNOWLEDGEMENT
ABSTRACT
TABLE OF CONTENTS
LIST OF TABLES
CHAPTER ONE: GENERAL INTRODUCTION
1.1 INTRODUCTION
1.2 STATEMENT OF THE PROBLEM
1.3 OBJECTIVE OF THE STUDY
1.4 JUSTIFICATION OF THE STUDY
1.5 SCOPE AND LIMITATIONS
CHAPTER TWO: LITERATURE REVIEW
2.1 FINDINGS IN THE WORLD
2.2 PATTERS IN KENYA
CHAPTER THREE: CONCEPTUAL FRAMEWORK OF THE STUDY
3.1 CONCEPTUAL FRAME WORK
3.2 CONCEPTUAL MODEL
3.3 CONCEPTUAL HYPOTHESIS
3.4 OPERATIONAL MODEL
3.5 OPERATIONAL HYPOTHESES
3.6 DEFINITION OF KEY CONCEPTS
CHAPTER FOUR: DATA AND METHODOLOGY
4.1 SOURCE AND QUALITY OF DATA
4.2 METHODOLOGY

CHAPTER	R FIVE: INFANT AND CHILD MORTALITY DIFFERENTIALS IN KENYA23
5.1 BR	IEF DESCRIPTION OF THE STUDY DATA
5.2 NA	TIONAL LEVEL ESTIMATION OF INFANT/CHILD MORTALITY24
SC	CIO-ECONOMIC DIFFERENTIALS
5.3 DI	FFERENTIALS BY EDUCATION OF MOTHERS
5.4 DI	FFERENTIALS BY EDUCATION OF FATHERS
5.5 DI	FFERENTIALS BY PLACE OF RESIDENCE OF MOTHERS
5.6 DI	FFERENTIALS BY WORKING STATUS OF MOTHERS
5.7 TR	ENDS IN CHILDHOOD MORTALITY
CHAPTER	R SIX: SUMMARY, CONCLUSIONS AND RECOMMENDATIONS40
6.1 SU	MMARY
6.2 CC	DNCLUSIONS41
6.3 RE	ECOMMENDATIONS42
REFEREN	NCES
APPENDI	ICES

Lin

LIST OF TABLES

TABLE 1	DATA USED IN THE STUDY23
TABLE 2	INFANT AND CHILD MORTALITY BY FIVE YEAR PERIODS
	PRECEDING THE SURVEY, KENYA 199324
TABLE 3	APPLICATION OF THE TRUSSELL VERSION OF THE BRASS
	METHOD TO DATA ON BOTH SEXES FROM THE 1993 KDHS25
TABLE 4	COEFFICIENT FOR ESTIMATION OF CHILD MORTALITY
	MULTIPLIERS, TRUSSELL VARIANT, WHEN DATA ARE
	CLASSIFIED BY AGE OF MOTHER NORTH MODEL
TABLE 5	COEFFICIENT FOR ESTIMATING THE REFERENCE PERIOD, $\texttt{t}(\texttt{x})$
	TO WHICH THE VALUES $q(x)$ ESTIMATES FROM DATA
	CLASSIFIED BY AGE REFER, NORTH MODEL
TABLE 6	APPLICATION OF THE TRUSSELL VERSION OF THE BRASS
	METHOD CONVERSION OF A COMMON INDEX USING DATA ON
	BOTH SEXES FROM THE 1993 KDHS DATA
TABLE 7	ACTUAL $P(\mathbf{x})$ VALUES FOR ALL CASES COMBINED, 1993
	KDHS
TABLE 8	THE LOWER AND UPPER VALUES OF $P(\mathbf{x})$ USED IN
	CALCULATING MEAN MORTALITY LEVEL FOR ALL COMBINED
	CASES, 1993 KDHS
TABLE 9	INTERPOLATED VALUES OF $P(\mathbf{x})$ FOR THE CONSTRUCTION OF
	THE LIFE TABLE ALL CASES COMBINED 1993 KDHS
TABLE 1	0 AN ABRIDGED LIFE TABLE FOR KENYA 1993, ALL CASES
	COMBINED NORTH MODEL
TABLE 1	1 MORTALITY ESTIMATE BY MATERNAL EDUCATION 1993

TABLE 12	MORTALITY ESTIMATE BY PATERNAL EDUCATION 199337
TABLE 13	MORTALITY ESTIMATE BY PLACE OF RESIDENCE 1993
TABLE 14	MORTALITY ESTIMATE BY WORKING STATUS OF MOTHERS 1993
	1993
TABLE 15	INFANT AND CHILD MORTALITY DIFFERENTIAL IN KENYA
	BY DIFFERENT VARIABLES40
FIGURE 1	OPERATION OF THE FIVE GROUPS OF PROXIMATE DETERMINANTS
	ON HEALTH DYNAMICS OF A POPULATION15
FIGURE 2	CONCEPTUAL MODEL OF THE STUDY16
FIGURE 3	OPERATIONAL MODEL OF THE STUDY
FIGURE 4	UNDER FIVE MORTALITY q(5) FOR BOTH SEXES IN KENYA,
	1993, NATIONAL LEVEL ESTIMATES

APPENDICES

APPENDIX 1	ESTIMATION OF INFANT AND CHILD MORTALITY AND LIFE
	TABLE BY LEVEL OF EDUCATION OF MOTHERS46
APPENDIX 2	ESTIMATION OF INFANT AND CHILD MORTALITY AND LIFE TABLE
	BY LEVEL OF EDUCATION OF FATHERS
APPENDIX 3	ESTIMATION OF INFANT AND CHILD MORTALITY AND LIFE
	TABLES BY PLACE OF RESIDENCE
APPENDIX 4	ESTIMATION OF INFANT AND CHILD MORTALITY AND LIFE
-	TABLE BY WORK STATUS54
APPENDIX 5	UNDER FIVE MORTALITY, q5 FOR BOTH SEXES IN KENYA, BY
	SOCIO-ECONOMIC VARIABLES

1.1 INTRODUCTION

In the post World War II period most developing countries have experienced a dramatic decrease in mortality. This has been brought about by the rise in the standard of living and advancement of medical technology people benefit selectively from such progress. Nevertheless, the international differences are as a result of unequal distribution of resources, skills and knowledge for the promotion of health the prevention and treatment of disease among social groups and geographical regions, often resultant from the national strategies for development and policy decision on welfare and health. The differentials also reflect variations in environmental conditions of places of residence and work.

A review of the works of Ewbank et. al. (U.N, 1986:33) indicated that Kenya is unique in sub-sahara Africa in the rich diversity of its demographic and epidemiologic data. Various researches have estimated the trends and geographic differentials, examined national-level data on cause of death or measured the importance of various diseases in clinic populations or in small study areas.

In addition to this, a number of studies have shown that there exist differentials in infant and child mortality in Kenya. These are majorly due to socio-economic, socio-cultural, environmental, demographic, biological and nutritional factors. Mortality in Kenya represent a wide range of mortality levels and levels of development.

The emphasis of this study will therefore be on socio-economic characteristics: such as rural-urban residence, mothers and fathers educational levels and working status of mothers that are observed to the national level.

1.2 STATEMENT OF THE PROBLEM

Infant and child mortality differentials in Kenya varies from one region to another due to the indirect effect of socio-economic factors. This leads to "a continuing existence of education, work status and residence inequalities in infant and child mortality."

In Kenya Mosley and Chen (1984) and Ocholla-Ayayo (1996:102) directed their investigation on socio-economic status and a few cultural factors to be responsible for high infant and child mortality. They have demonstrated how parents without education and those with low level of education have high child mortality rate.

A study carried out by Muganzi (1996:75) examined infant mortality rate and life expectancy varies from one district to another. The districts with the lowest mortality rates are Kiambu, Nyeri, Muran'ga and Nairobi while districts with the highest infant mortality rates include former South Nyanza, Kilifi, Busia, Kwale and Siaya. This he says, the estimates for the rest of the districts lie within these two extremes.

Several studies have now been done on infant and child mortality in Kenya show that there are distinct mortality differentials along regional as well as socio-economic variables (Kibet 1981, Kitchamu 1986, Elsie 1988, Ondimu 1987, Oyoo 1991, K'Oyugi 1992, Eshetu 1995, Ikamari 1996). Even though the above studies have achieved considerable goals they did not study data obtained from 1993 on the possible socio-economic factors. They relied on data obtained from census and survey of 1969, 1979 and 1984. However, Eshetu (1995) analyzed infant and child mortality using the KDHS 1993 applying only one variable on the effect of maternal education on infant and child mortality by splitting mothers education into four categories.

This study was an extension based on 1993 Kenya Demographic and Health Survey (KDHS) in infant and child mortality taking selected socio-economic factors specifically four variables.

1.3 OBJECTIVES OF THE STUDY

1.3.1 GENERAL OBJECTIVE

The study aimed at investigating infant and child mortality differentials in Kenya. It is designed to analyze variations on infant and child mortality associated with socio-economic factors.

1.3.2 SPECIFIC OBJECTIVES

- To estimate probabilities of dying from birth to ages 2, 3 and
 5 years and life expectancy at birth.
- 2) To find out the relationships between mothers education, fathers education, rural-urban residence and working status of the mothers with respect to infant_and child mortality.

1.4. JUSTIFICATION OF THE STUDY

Infant and child mortality differentials are considered as the most important components of mortality. The contribution of infant and child mortality to total loss of years of human life is substantial, the level being relatively high, particularly in developing countries because:

- It provides information for assessing inequalities among people with respect to longevity and health.
- ii) It helps to identify those under privileged segments of the population who experience higher mortality levels and programmes as a useful indicator of the state of health, standard of a society, ability to control incidence of disease and death (UN 1985, Akwara 1996).

The study would direct one's attention to the national differentials in infant and child mortality and how they are influenced by residence, education and working status of mothers. This would also help policy makers decide what steps to take in promoting equitable development.

1.5 SCOPE AND LIMITATIONS

The study covered all the areas of the provinces of Kenya except exclusion of all three districts in North Eastern province (Garrissa, Mandera and Wajir), four other Northern districts (Samburu and Turkana in Rift valley province) and in Eastern province (Isiolo and Marsabit). They were excluded from the survey because of the sparse population and semi-nomadic nature of the

people which together account for less than 4 per cent of Kenya's population.

The study is concerned with socio-economic factors of mortality. Many other variables and factors including biological, behavioral, environmental, demographic and cultural determinants of mortality could have been used with cross-tabulation, multivariate and regression analysis but due to time and resource constraints this was not done.

CHAPTER TWO

LITERATURE REVIEW

2.1 FINDINGS IN THE WORLD

A number of studies on infant mortality in a historical Europe explains, a study in eight cities in the United States shows infant mortality rates among offsprings of mothers who worked away from home during pregnancy to be about twice the rate for those who were not employed during confinement (UN, 1985).

Furthermore(UN,1985) also expresses the opinion that peasants had higher child mortality than the landless possibly because ownership of land entailed more work for the wife.

Similarly the general studies have suggested that child mortality in developing countries is associated more closely with maternal education than any other socio-economic factors (UN, 1985).

The rural/urban differentials is an indication of socioeconomic status of urban dweller and rural peoples. Since the higher the education levels, better jobs, better housing and higher socio-economic status are found in urban than rural areas these contribute lower mortality levels in town than the rural (UN, 1982).

There is general agreement among researchers in developing countries mortality is thought to be higher in rural than in urban

areas. Place of residence in this societies differential life styles, perceptions of the world, access to health care and the availability of recent medical advances have been suggested as reasons for the urban advantage (UN, 1984).

Julie Da Vanzo (1988) using the logistic regression analysis on the variables increases in income and education. Improvements in sanitation, health care, nutrition and family planning the study on infant mortality in Malaysia found that increases in mothers' education and improvements in water and sanitation are the most important household level changes that accompany regional and temporal development and contribute to the inverse relationship between the infant mortality rate and development.

A study which was done in Matlab, Bangladesh among probability sample of 1519 and 4626 urban and rural respectively used several indicators such as education of household head, mother's education, size of dwelling and health practices. They found that an inverse relationship between mortality and parents' education, father's occupation and economic status (D' Sonza S. and A. Bhuiya 1982).

Research in Rural India identified the mother's education as an important determinant of the use of medical services together with the availability of those services as already stated, it is thought that the association of child mortality with maternal education operates mainly though this mechanisms (Jains, 1985).

Caldwell (1979,1987) suggested that increased maternal education gives women the power and the action to make critical decisions relevant to their children.

According to (UN, 1986) further suggest that the limited amount of time that could be devoted to breast feeding, in addition to the more general, lack of care that working mothers could give their children may have been a factor in the higher infant and child mortality of children of those mothers.

Okojie (1993) using three data sets and three states in Nigeria has examined some of the interrelationships between maternal education and child mortality. The household studies have shown that child mortality has an inverse relationship with maternal education. Furthermore, she explained child mortality is also lower in communities where the level of female education is higher. The main reason for that was that educated mother use modern health facilities to a greater extent than less educated mothers, especially prenatal care and place of delivery.

2.2 PATTERNS IN KENYA

Mott (1979) made use of Kenya Fertility Survey of 1079 to study infant mortality in Kenya. He found that further increases in educational attainment as well as improvements in rural health services will probably substantially reduce overall infant mortality.

In addition to, Kibet (1981) made similar study the correlation of infant and child mortality with other variables of urban population, total fertility rate, population density, kilometres of road using the 1979 census. He used the probability

of dying at age 2, q(2) using Brass technique to estimate e(o), q(2) and total fertility rate. He further applied regression model for his data analysis and finds out malaria and the mother's education are the two major factors that influence infant and child mortality.

The place of residence influences the health of infant and child through many ways. For instance women residing in urban areas are more exposed to better water supplies and health facilities than in the countryside.

K'oyugi (1983) using data from 1979 census conducted mortality and morbidity in Siaya district found that mortality rate in the Siaya is heaviest during the first five years of life. His analysis found that infant and child mortality is higher in the rural than in the urban areas and argued that the $2q_o$ value for the rural area is lower than the whole districts figure possibly due to higher degree of misreporting or omissions of births and deaths of children for mothers in the rural particularly those in the age group 20-24 years. Furthermore he argued that the lower child mortality in the urban areas could be due to better sanitation, housing, shorter distances to health centres and higher income levels existing in the urban areas on the average.

The evidence of the importance of education in relation to infant and child mortality comes from the study of Kenya experience by Ondimu (1988) using data from 1984 KCPS estimate the infant and child mortality. He found that infant and child mortality is low when a mother has achieved high level of formal education compared

to when she has low or no education. Besides, the study also shows mortality is lower whose mothers are in urban residence, married in monogamous unions and currently working.

Oyoo (1991) using data from 1979 census investigated infant and child mortality in Kisumu district, found that lower infant and child mortality in urban than rural areas. The results for mortality estimates by education agrees with the general theory that mortality is inversely related to increase in mother education.

Ayehu (1993) using data from 1979 Kenya population census analyzed infant and child mortality in Nairobi considering three wards that is Mathare Valley, Harambee-Lumumba and Parklands-Spring Valley, found that the level of maternal education is inversely related with infant and child mortality in the three wards.

Eshetu (1995) using data from 1993 KDHS splitting mothers education into four categories found out that primary incomplete had the highest infant and child mortality followed by no education. But primary complete and secondary and above have the lowest infant and child mortality. The results compatible with the general theory that mortality is inversely related to increase mothers education.

As laid down by Prof. Ocholla-Ayayo (1995:94) argued that education was shown to reduce some socio-cultural factors on infant and child mortality as well as maternal morbidity and mortality. The mothers education was associated with water treatment that is boiling, storage and filtering. He concluded that the higher the

mothers education the higher the survival of infant and child. In addition to, he explained fathers' education roles can affect child survival as housing condition and general sanitation and source of water.

A study carried out by Ikamari (1996:135-143) using data from 1989 KDHS a comparative study of high mortality zone and low mortality zone that mothers and fathers education on infant and child mortality with different categories of education have nearly the same influence compared to those whose fathers and mothers with no education. Better educated women were engaged in a good jobs and likely to have highly paid salaried that provided access to goods and services to maintain and improve the health of their children. At the same time paternal education also influenced child survival through good jobs that enables to engaged in better income generating activities for household income.

Besides he studied working status of mothers indicate that mothers who work has lower infant and child mortality than the children whose mothers were not working. He revealed that infant mortality whose mothers were not working was 41 per cent higher than working mothers. In the same findings child mortality for non-working was 70 per cent higher than the working mothers. This is due to the fact that mothers who were working were more likely to feed, clothing and educate their children than not working counter parts(Ibid.).

From the above discussion of the literature review it is quite clear that socio-economic factors education, residence and working

status play an important role in the differentials of infant and child mortality. However, there are other factors that have an impact on infant and child mortality.

CHAPTER THREE

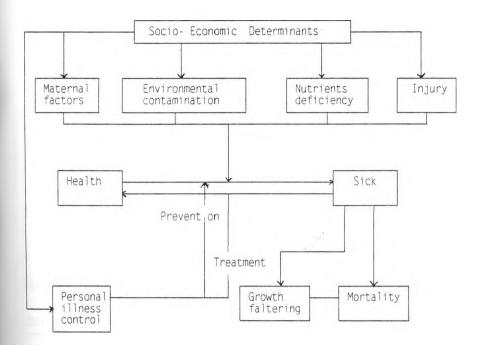
3.1 CONCEPTUAL FRAME WORK FOR THE STUDY

Several framework have been attempted by different scholars to analyze infant and child mortality. Among the various framework Mahadevan, Venkatacharya and Teklu. These models have their own limitations. Mahadevan incorporating too many determinants of mortality which makes hard to isolate the key mortality determinants (Venkatachary and Teklu, 1986 quoted in Akwara, 1994).

Venkatachary and Teklu model has ignored the socio-economic determinants(Ibd.). On this account, the study was based on the Mosley and Chen (1984) framework for the analysis of infant and child mortality. The framework is intended to conceptualize the theoretical notion to differentiate that child survival is influenced by mother's and father's education, residence and work status of mothers.

Mosley and Chen identified five grouped factors:

- Maternal factor
- Environmental contamination
- Nutrient deficiency
- Injury
- Personal illness control

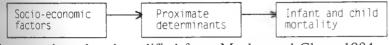

On the other hand, the effects of social, economic, cultural and geographical variables are indirect in the sense that they operate through the above-mentioned biomedical factors. Thus the biomedical variables that exert direct influences on child mortality can be called intervening variables since they intervene

between social, economic, cultural and geographical conditions and the events of death.

In addition, the socio-economic determinants must necessarily operate through these variables to affect child survival. These are grouped into three categories:

- Individual level variables
- Household level variables
- Community level variables

F.1 Operation of the five groups of proximate determinants on the health dynamics of a population are summarized in the following model by Mosley and Chen.


Source:- W. Henry Mosley Lincoln C. Chen(ed.) 1984. An Analytical Framework for the study of child survival in developing countries. In Child Survival Strategies for Research Population and Development Review. A supplement to Vol. 10. p. 29

Using the above framework the socio-economic factors which determine infant and child mortality was studied. The variables that were measured are:

- Education
- Residence
- Working status

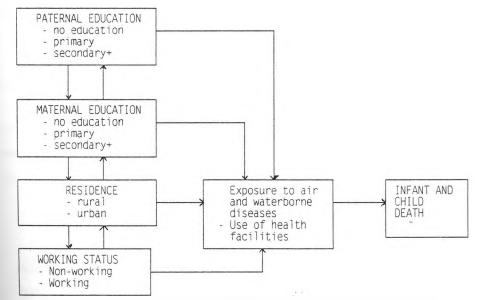
3.2 CONCEPTUAL MODEL

F.2 The conceptual model in the study is summarized as outlined below:

Source: adopted and modified from Mosley and Chen :1984

The general objective of the study aimed at investigating infant and child mortalit differentials in Kenya with the association of socio-economic factors.

Thus the Mosley and Chen (1984) analytical frame work adopted and modified was use because the social and economic factors are always operate through a common set of biologic mechanisms or proximate determinants to exert stable state with end results being high or low infa: and child mortality. Background factors will always operate through proximate determinants in ordto cause infant and child mortality. This should shed further glance at how such variables as matern education, place of residence and work status bring into use such a profound effect on infant an child mortality.


Among the socio-economic determinants which operate to influence the risk of infant a child mortality through these intermediate variables are: age at marriage; age at first sexual unic desired family size; beliefs about use of fertility control practices; knowledge of, and access methods of contraception, postpartum abstinence, terminal abstinence (Mosely, 1983:278).

3.3. CONCEPTUAL HYPOTHESIS

Socio-economic factors are likely to affect the level of infant and child mortality in Kenya.

The above are high order concepts that can be subject to empirical investigation. For the purpose of this study the framework of Mosley and Chen modified below in Fig 3. The framework needs to be operationalized. Below is an operational model that may be derived from the above theoretical framework. This was done because the other factors were excluded in the study.

3.5. OPERATIONAL MODEL

Source: Adopted from Mosley and Chen framework for the study child survival .

In the above operational framework the variables have relationship and effect on infant and child mortality. In developing countries mortality is often thought to be higher in rural than urban areas because of differentials standards of living and health conditions in general and differential availability and access to public health facilities (Rosenzweig and Schultz. 1979 quoted in UN 1985:19).

It has been pointed out that urban populations usually benefit from more and better health resource and they are also better educated than rural dwellers. In much of the literature reviewed differences in infant and child mortality favouring urban areas and better educated. Life in urban areas is conducive to child survival, either from services the area renders or because residents of urban areas experience better socioeconomic conditions. Baum and Arriaga (1981 quoted in UN, 1985:20) also show that as education increased, mortality rates dropped slightly faster for children born to urban residents. The better educated tend be concentrated in the urban areas. We would expect the effect of education on infant and child mortality to play an unseen part in maintaining urban-rural differential. In some sense the better educated and wealthier can be expected to be better nourished and to have better housing and to be more likely both to recognized illness requiring medical intervention and to have the wherewithal to afford medical attention.

The father's education should be greater in urban than rural because income returns from education are greater in urban areas. When husband and wife are both illiterate, mortality is very high, when the wife has an elementary level of education the husband's education does not seem to matter very much and when husband and wife are both very educated they belong to a privileged social class which has low mortality in comparison to the others. Ikamari (1996) observed that it was due to educated men being able to marry educated women. Further more, Ocholla-Ayayo (1991:71) pointed out traditional low level of education is also characterized by high rates

of child mortality.

According to (UN.1985:150) the well educated women the benefits that employment may produce through increased income may counteract the disadvantages of working mothers being outside the home. On the other hand as well educated women usually work in the better paid occupation they can afford to replacement to take care of their children while they are engaged in economic activities that is, there might be an interaction between education, activity status and child mortality. Apart from this mother's working during pregnancy is highly correlated with mothers employment during the child's first year of life. Mothers working away from home during the first year also appeared to place an infant at greater risk. Woodbury (1925, quoted in UN 1985:149) suggests that the limited amount of time that could be devoted to breast-feeding in addition to the more general lack of care that working mothers could give their children of those mothers.

Hence on the basis of the above operational model operational hypotheses were formulated.

3.6. OPERATIONAL HYPOTHESES

1) Maternal education is inversely related to infant and child mortality.

- 2) Paternal education has a significant effect on the infant and child mortality.
- 3) Rural/Urban residence has a significant effect on the infant and child mortality.
- 4) Working status has a significant effect on the infant and child mortality.

3.4. DEFINITION OF KEY CONCEPTS

3.4.1 Dependent Variable

Infant mortality- The probability of dying before the first birth day.

Child mortality- The probability of dying between the first and fifth birth day.

3.4.2 Independent Variable

Socio-economic factors

Education level: Measured in terms of the following: no education, primary, secondary and above residence: This is measured in terms of the following: rural and urban.

Working status: It is measured in terms of the following: Non-working and working.

Residence: This is measured in terms of the following: Rural and Urban.

CHAPTER FOUR

DATA AND METHODOLOGY

4.1 SOURCE AND QUALITY OF DATA

Demographic studies in Kenya have been done basically using various census and survey data. The first census conducted in Kenya was in 1948. The second in 1962, 1969, 1979 and 1989 the third, fourth and fifth respectively. Census in Kenya is carried out every ten years.

Mortality registration is unreliable in sub-sahara Africa countries and even when reliable death registration records include very little information. The non-existence of incomplete vital registration system in Kenya compel us to rely on census and sample survey.

Demographic surveys that have been conducted by the Central Bureau of Statistics (CBS) in the past include: The Kenya Fertility Survey (KFS 1977/78; the National Demographic Survey I (NDS I) in 1977; NDS II (1978); NDS III (1983); the Kenya Contraceptive Prevalence Survey (KCPS) (1984) and the Kenya Demographic and Health Survey (KDHS I) (1989).

The various sample surveys have provided even more detailed information not only on the number of births and deaths but also on birth histories of women use of contraception and other socio-economic and environmental related data.

The study used secondary data obtained from the Kenya Demographic and Health Survey (KDHS II) (1993) that was carried out by the National Council for Population and Development (NCPD) in collaboration with the Central Bureau of Statistics (CBS). The survey was carried out from mid-February to mid August 1993 during which time a total of 7540 ever married women and 2336 men were interviewed.

The survey not only provide planners and policy makers with data useful in making informed programme decisions but also used to evaluate Kenya's efforts to infant and child mortality. In the final analysis the picture that emerges shows significant determination have been made toward this goal.

The Kenya Demographic and Health Survey have been undertaken by NCPD. This survey findings provide the first evidence of a major decline in fertility and an increase in the use of family planning. It further reveals that the child mortality rate has declined between 1978 to 1987 and then rose in 1988-93 (KDHS 1993:84).

Thus the KDHS 1993 made it possible to apply indirect demographic methods in our analysis to estimate infant and child mortality rates. It also gives information on the impact of education, residence and working status of mothers on the infant and child mortality differentials in Kenya.

4.2 METHODOLOGY

4.2.1 OVERVIEW OF THE INDIRECT METHODS

It is very difficult to estimate data directly in survey means. Therefore, the indirect methods of estimation represent an important source of mortality estimates. These indirect methods which was developed

first by William Brass in 1964 and later by Brass and in 1964 and later by Brass and others (1968). A number of authors propose useful developments of the original method. Sullivan (1972) and Trussell (1975) expand the range of mortality and fertility models for which relationships are estimated. Of particular importance the development of methods of estimating mortality trends under conditions of changing mortality. Feeney (1976,1980) and Coale Trussell (1978) propose methods for estimating reference dates for the child mortality estimates (UN. 1992:7).

Therefore, two indirect procedures for estimating infant and child mortality were applied. The first procedure involved adjusting reported proportions of children dead for age groups of women to obtain life table. The second the Brass and Trussell techniques for converting these proportions into probabilities of dying were applied.

A brief discussion on the Brass and Trussell techniques is presented as follows.

4.2.2 BRASS METHODS

The Brass method uses a fertility of polynomial which is fitted with one parameter a ratio of mean parties to the population and a one parameter mortality schedule. The Brass method requires three information: the number of children ever born, the number of children ever born who have died (children dead) and the total female population of reproductive age usually (15-49). The probability of a child dying between birth and exact age x is g(x) given by the formula.

 $q(x) = K(i) \times D(i)$ for x = 1.2.3.5.10.15 and 20 while (i) = 1. 2. 3. 4. 5. 6 and 7

representing the age group 15-19, 20-24, 25-29, 30-34, 35-39, 40-44 and 45-49 age groups.

D(i) is the proportion dead in the i the age group

given by

D(i) = CD(i)CEB(i)

K(i) is the adjusting factor which is a function of parity

 $P(i) = \underline{CEB(i)}$

FPOP (i)

According to Brass (1964)

K(i) = a(i) + b(i)[P(1)/P(2)]

where. P1 and P2 for the first and second age groups. a(i) and b(i) are regression coefficient according to Brass.

P(i) given by

Nevertheless. Brass used models of mortality has limitations to establish the relationship between the proportion dead children. The probability of dying by an exact age of childhood under the assumption that fertility and childhood mortality have remained constant in the recent past. In the same way, cohort and period

probabilities of dying were identical and the mortality risks of children of women who do not report their child bearing experience are the same as those of children whose mothers' do.

4.2.3 TRUSSELL TECHNIQUE

The Trussell method uses a range of fertility schedules from the Coale Trussell model system and a set of regression equations for each of the Coale - Demeny regional model life table system to estimate probabilities of dying (WHO, 1981 p.142).

The Trussell multipliers presented are a more recent and more satisfactory version originally proposed by Trussell in 1975. The assumption of constant mortality is replaced by an assumption of steadily changing mortality over time (UN, 1992).

This has an advantage of describing the fertility and mortality schedule more adequately. This is done by assuming that the data from women aged over 35 years may be affected from under reporting of dead children while data for women age 15-19 reflect relatively higher infant mortality of young mothers (UN. 1983).

The formula therefore required the information below:

i) Children ever borne (CEB) classified by sex and five year age groups of mothers.

ii) The number of children dead (CD) classified by sex and five year age groups of mothers.

iii) The total number of women (FPOP) aged between 15-49 classified by 5 year age groups.

According to Trussell, we have

 $k(i) = a(i) + b(i) [P_1/P_2] + C(i) [P_2/P_3]$

where, a(i), b(i) and c(i) are regression coefficients obtained by Trussell.

As a result, the appropriate method selected among the various versions of the Brass method the study used the Trussell variant of the Brass child survival method using the Coale-Demeny regional North models life tables because the North model appear to be more consistent with the available data than the other models. The choice of the North model for Kenya, however, is supported by district indications from maternity histories (UN, 1992).

CHAPTER FIVE

INFANT AND CHILD MORTALITY DIFFERENTIALS IN KENYA

5.1 BRIEF DESCRIPTION OF THE DATA USED IN THE STUDY

The Kenya Demographic and Health Survey 1993 Data was used to analyze the socio-economic differentials on infant and child mortality.

Table 1 displays the breakdown of the total female population, children ever born (CEB) and children dead (CD) by educational level of the mothers and fathers, urban / rural residence and working status of the mother. A total of 23899 children were born and a total of 2676 children died from a female population of 7540.

Table 1

able 1								
Variables	FPOP	Percentage	Children ever born (CEB)	Children dead (CD)				
Mother's Education None Primary Secondary + Total	1297 4449 1794 7540	17.2 59 23.8 100	7458 13027 3414 23899	1088 1398 190 2676				
Father's Education None Primary Secondary + Total	649 2668 1757 5074	12.8 52.6 34.6 100	3657 12935 5858 22450	594 1531 414 2539				
Place of Residence Rural Urban Total	6379 1161 7540	84.1 15_9 100	21590 2309 23899	2447 229 2676				
Working status of Mother Not working Working Total	3783 3751 7534	50.2 49.8 100	9728 14164 23892	986 1690 2676				

Source: Primary Analysis of the KDHS 1993 data.

The table indicates that the mothers exposed to the risk of children dying were 24% with secondary and above level of education. 59% with primary level of education and 17% with no education.

The table further indicates that majority of the women (84%) resided in the rural areas whereas only 16% resided in the urban areas.

The variables children ever born (CEB) and children dead (CD) were not refined representatives of infant and child mortality. Hence further calculation of infant and child mortality is essential. As a result the data is further analyzed using the Trussell variant of the Brass Child Survival Method by the socio-economic variables to estimate the national levels of infant and child mortality.

5.2 NATIONAL LEVEL ESTIMATES OF INFANT AND CHILD MORTALITY

This study considered the estimates of infant and child mortality by socio-economic differentials at the national level. These socio-economic differentials are inferred indirectly from:

a) Educational levels of both the mothers and the fathers

This variable was split into three categories for the purposes of this study i.e.

i) No education

ii) Primary education

iii) Secondary education and above

b) Work status of the mother

This variable was classified into two categories i.e.

i) Non working

ii) Working

c) Place of residence of the mother

This variable was classified into two categories i.e:

i) Rural

ii) Urban

To estimate the national level of infant and child mortality, data limitations arise from the fact that accurate and precise information on infant and child mortality is not available for Kenya as well as other developing countries due to problems of data collection.

Nevertheless. the Indirect technique developed by Trussell variant of Brass Method was used in this study to estimate the infant and child mortality in Kenya. The classification used in this study is based on the KDHS Data of 1993.

In order to use the data, the North Model Life Tables was used in developing the methods. The parameters used are:

a) The probability of dying between the age zero(0) and one (1) is denoted by (1q0). When multiplied by 1000. it is referred to as the Infant Mortality Rate.

b) The probability of dying between the age of 1 and 5 denoted by (4q1) referred to as Child Mortality.

Table 2. Infant and Child Mortality Rate by five year periods preceding the survey, Kenya	ling the survey, Kenya	preceding	periods	year	five	by	y Rate	lity	Morta	Child	and	Infant	Table 2.	
---	------------------------	-----------	---------	------	------	----	--------	------	-------	-------	-----	--------	----------	--

Years preceding the survey	Approximate reference period	Infant Hortality Rate (1q0)	_Child Hortality (4q1)
0-4	1988-93	61.7	36.7
5-9	1983-87	63.4	28.1
10-14	1978-82	68.9	35.3

Source: 1993 KDHS (Table 7.1 P.84)

As shown in the above table 2. different mortality values were estimated using the 1993 Kenya Demographic and Health Survey Data. The table indicates that during the five year period preceding the survey (1988-1993), infant mortality rate was at 62 per 1000 infant deaths while the child mortality rate was 37 per 1000 children deaths. This implies that about 6% of the infants and 4% of the children born in Kenya do not

live to reach their first year birthday.

The infant mortality rate (1q0), child mortality rate (4q1) and the life expectancy (e_0) are obtained from the model Life Table. The life expectancy (e_0) at birth is recognized as best summary measure of mortality conditions in a country. However, the estimates of q_2 , q_3 and q_5 are taken from the computation of the data. Each of the q(,) values estimated from the reports of child survival can be considered as an estimate of infant and child mortality of a given time period preceding the survey. By using the estimation equations, an estimate can be made of the time period to which each q(,) applies (UN. 1983).

As each of these estimates applies to a different time period, they can be used to estimate mortality levels. The procedure used in this study is applying the North Model Life Tables is turning each of the q(z) estimates into an estimate of the infant and child mortality rate.

5.2.1 DATA USED IN THE COMPUTATION ANALYSIS

As aforementioned. in this study infant and child mortality will be estimated at national level by socio-economic factors. These include:-

- a) Level of education of both mothers' and fathers'
- b) Work status of mothers'
- c) Place of residence

However, before discussing differentials in Infant and child mortality by the various background factors at the national level, the procedures involved in the Trussell's variant of Brass Method will be explained.

Using the national data of all cases combined . the following results shown in table 3 are obtained.

Age group	Age group Index (1)	FPOP	Children Ever Born (CEB)	Children dead (CD)	P(1)	D(1)
15-19	1	1788	364	44	0.2036	0.1209
20-24	2	1605	2193	189	1.3664	0.1862
25-29	3	1199	3774	326	3.1476	0.0864
30-34	4	1112	5115	532	4.5998	0.1040
35-39	5	743	4513	517	6.0740	0.1146
40-44	6	653	4553	578	6.9724	0.1269
45-49	7	440	3387.	486	7.6977	0.1435

Table 3. Application of the Trussell version of the Brass Method to Data on both sexes from the 1993 KDHS data

 $\frac{P1}{P2} = 0.149005$ $\frac{P2}{P3} = 0.4341$

Multipliers Based on North Models Sex Ratio at birth = 1.05

Source: Primary Analysis of the KDHS 1993 Data

5.2.2 COMPUTATIONAL PROCEDURES

Step 1. Calculation of average Parity per woman P(i)

Average parity is the average number of children ever born in a given five year age-group i.e.

 $P(i) = CEB_{(i)}/FPOP_{(i)}$

Where:

 $P_{_{(1)}}$ is the average parity of women e.g $P_{_{(1)}}$ is for women aged 15-19. $P_{_{(2)}}$ for women aged 20-24. upto $P_{_{(7)}}$ the parity for women aged 45-49 years.

CEB denotes the number of children ever born in age-group (i).

 FPOP_{ij} is the number of women in the age-group (i) irrespective of their marital or reporting status.

For example: Parity for women in the age-group 15 - 19 and 20 - 24 years. i.e $P_{(1)}$ and $P_{(2)}$ for all cases combined is obtained as follows:

 $P_{(1)} = CEB_{(1)}/FPOP$.

= 364/1788

= 0.2036

- $P_{(2)} = CEB_{(2)}/FPOP_{(2)}$
 - = 2193/1605
 - = 1.3664

Step 2. Calculation of Proportions Dead among the children ever born

This is obtained by the ratio of the total number of children dead to the total number of children ever born for each age-group of the mothers.

 $D_{(1)} = CD_{(1)}/CEB_{(1)}$

Where:

 $CD_{(1)}$ is the number of children dead reported by those women in that age-group.

.

CEB is the total number of children ever born by these women.

For example the proportion children dead in age-group i=1. (15-19) and i=2 (20-24).

 $D_{(1)} = CD_{(1)}/CEB_{(1)}$

= 44/364

= 0.1209

In the same way, the proportion of children born in age-group i=2 is given by:

 $D_{(2)} = CD_{(2)}/CEB_{(2)}$

= 189/2193

= 0.0862

Step 3. Calculation of Multipliers

In the Trussell variant of the original Brass Method of estimating infant and child mortality. The North Model Life Table coefficient has been utilised to calculate k_{cor} .

Table 4. Coefficient for estimation of child mortality multipliers and Trussell variant when data is classified by age of mother (North Model)

Age group	Index	a(1) b(1)	c(1)		K(1)
15-19	1	1.1119	-2.9287	0.8507	1.0448
20-24	2	1.2390	-0.6865	-0.2745	1.0175
25-29	3	1.1884	0.0421	-0.5156	0.9709
30-34	4	1.2046	0 3037	-0.5656	1.0044
35-39	5	1.2586	0 4236	-0.5898	1.0657
40-44	6	1.2240	0.4222	-0.5456	1.0501
45-49	7	1.1772	0.3486	-0.4624	1.0284

Source: Indirect Technique for Demographic Analysis, Manual X. (UN. 1983:77)

The value of $k_{i,j}$ is used as an adjustment factor to the proportion of children dead and given by:

 $\kappa_{11} = a_{11} + D_{p2}^{p1} + C_{(1)} P_2 P_3$

Where: $a_{(1)}$, $b_{(1)}$ and $c_{(1)}$ are all Trussell's coefficients estimated by the regression analysis of simulated model case which is provided for each of the four different families of model life tables in the Coale-Demeny system.

In this study, the Coale-Demeny 'North Model' is used because it appears to be the most appropriate consistent model and recommended as a first choice by (UN 1992, Kichamu 1986, Ayehu 1993, Akwara 1994, and Eshetu 1995) among others.

Table 4 shows the coefficients for the seven age-groups of women from ages 15-19 through ages 45-49 (i=1.2.3. . 7)

For example: k(1) for age group 15 - 19 applying the equation to data from KDHS 1993 all cases combined where $p_1/p_2 = 0.149$ and $p_2/p_3 = 0.4341$

 $k_{(1)} = a_{(1)} + b_{(1)} (P_4/P_2) + C_{(1)} P_2/P_3$ = 1.119 + -2.9287(0.149) + 0.8507(0.4341) = 1.0448

Step 4. Calculation of the Probabilities of dying $\boldsymbol{q}_{(x)}$

Estimates of $q_{(x)}$ are obtained by the following equation:

 $q_{(x)} = k_{(x)} X D_{(1)}$

Where:

 $q_{(x)}$ takes values 1. 2. 3. 5. 10, 15. 20 respectively, as it is related in broad terms to the average age of the children of women in age-group (i). Where i= 1, 2, 3,.....7

For example

q₍₁₎ for women aged 15-19 will be:

q₍₁₎ = k₍₁₎ x D₍₁₎ = 1.0448 X 0.1209 = 0.1263 Step 5. Calculation of the Reference Period $t_{(x)}$

One of Trussell's Indirect Technique calculates the reference period. This is a situation where mortality is changing smoothly in an estimate of the number of years before the survey date to which the child mortality estimates $q_{(x)}$ in step 4 is referred to. The value of $t_{(x)}$ can be estimated by means of an equation whose coefficients were estimated from simulated cases by using linear regression given by:

 $t_{(x)} = d_{(1)} + e_{(1)} (P_1/P_2) + f_{(1)} (P_2/P_3)$

Where:

 P_1 , P_2 and P_3 are the parities of women in the age-groups 15-19, 20-24 and 25-29 respectively. While $d_{(1)}$, $e_{(1)}$ and $f_{(2)}$ are coefficients used in calculating $t_{(2)}$ and are given below in table 5.

Table 5.	Coefficients for estimating the reference period $t_{(x)}$ to which the values $q_{(x)}$	estimates from
	data classified by age refer, North model.	

Age-group	Index	Coefficients d(i)	1157		Reference Time t(x) Dat	
15-19	1	1.0921	5.4732	-1.9672	1.1	1992.2
20-24	2	1.3207	5.3751.	0.2133	2.2	1991.1
25-29	3	1.5996	2.6288	4.3701	3.9	1989.4
30-34	4	2.0779	-1.7908	9.4123	5.9	1987.4
35-39	5	2.7705	-7.3403	14.9352	8.2	1985.1
40-44	6	4.1520	-12.2448	19.2349	10.7	1982.6
45-49	7	6.9650	-13.9160	19.9542	13.6	1979.7

Source: Indirect Technique for Demographic Analysis, Manual X, (UN 1983 P. 78).

To estimate the Reference period t(x)

For example.

 $t_{(3)} = d(i) + e(i) [P_1/P_2] + f(_1) [P_2/P_3]$

= 1.5996 + (2.6268 X 0.149) + (4.3701 X 0.4341)

= 3.88805361

The estimate of $q_{(3)}$ obtained from the proportion of children dead among those ever born by women aged 25-29 would refer to a period approximately 4 years before the survey. Since the survey's field work was carried out mid-February to'mid-August 1993, the survey reference data can be taken to be 1993.25 - 15 May corresponds to day number 91 in the year which divided by the total number of days in a year is 91/365 = 0.25. Therefore, the reference date for the estimated $q_{(3)}$ is:

1993.25 - 3.9 = 1989.35

= 1989.4

The other values of $t_{(1)}$ and the reference dates calculated from them are shown in column 6 and 7 of table 5.

Step 6. Conversion to a common Index

This is an important index for the study of trends in infant and child mortality. The $q_{(x)}$ value obtained in Step 4 needs to be converted to a common index. Under Five mortality, $q_{(5)}$ will be used here as the

common index. The conversion is carried out by interpolating between the $q_{(x)}$ values of the Coale Demeny life tables presented. The table used for interpolation is the North Model and both sexes combined with a sex ratio at birth of 1.05

For example, considering the conversion of the estimated $q^{e}(1)$ to a $q^{2}(5)$ according to the North Model. The estimated value of $q^{e}(1)$ is 0.1263, according to the table this value falls between q(1) of level 12, $q^{12}(1) = 0.12744$, whose $q^{12}(5)$ equivalent is 0.21533 and that of level 13 is $q^{13}(1) = 0.11503$, whose $q^{13}(5)$ equivalent is 0.19235. Substituting the $q^{3}(1)$ and of $q^{e}(1)$ values to find h. in the interpolation factor, the results are thus:

$$h = \frac{0.1263 - 0.12744}{0.11503 - 0.12744} = -\frac{0.00114}{-0.01241}$$

= 0.09186

The estimated $q^2(5)$ equivalent for the estimated $q^2(1) = 0.1263$ is derived as follows:

q²(5) =(1-0.09186) X [(0.21533 + (0.09186)(0.19235)]

= 0.213219057

That is in the North model life tables, the $q^{c}(5)$ corresponding to a $q^{e}(1)$ of 0.1263 is 0.2132. The complete set of $q^{c}(5)$ values equivalent to the estimated q(x) values is shown in column 7 of table 6 below.

Table 6.	pplication of Trussell version of the Brass Method of conversion of a common index using data	
	n both sexes from the 1993 KDHS data	

Age-group	Index (1)	q.,	Age (x)	Time Seference	Reference Date	Common Index q.,
15-19	1	0.1263	1	1.05	1992.2	0.213
20-24	2	0.0877	2	2.21	1991.1	0.113
25-29	3	0.0839	3	3.89	1989.4	0.096
30-34	4	0.1045	4	5.90	1987.4	0.105
35-39	5	0.1221	5	8.16	1985.1	0.106
40-44	6	0.1333	6	10.68	1982.6	0.295
45-49	7	0.1476	7	13.55	1979.7	0.738

Source: primary Analysis of the 1993 KDHS Data

Step 7. Results of the Common Index

For interpretation, the common Index is plotted against the

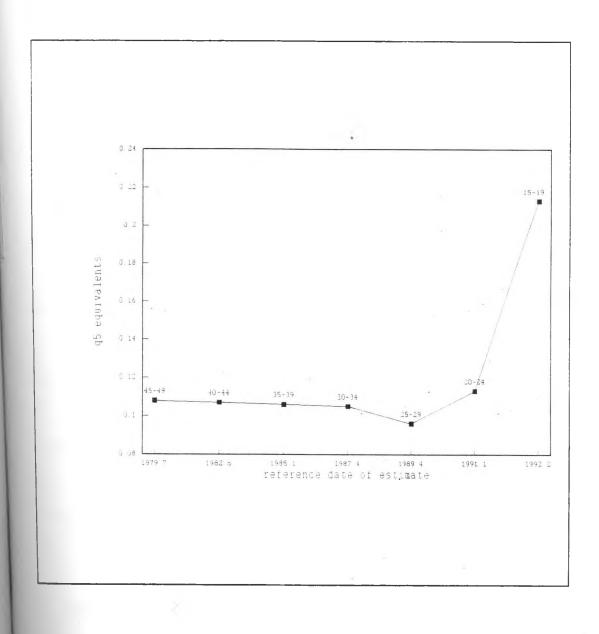


Figure 4. Under five mortality (q5), for both sexes in Kenya, 1993 National level estimates

reference date for each estimate as shown in figure 4. Figure 4 depicts that the estimated $q^2(5)$ values are fairly similar for most of the period 1979-1991 and increase after 1991. It further indicates that the estimates referring to a recent period 1991 onwards are those derived from reports of younger women in age groups 15-19 and 20-24 and hence reflect higher than average risks of their infants dying. As a result the figure fails to reflect the actual trend of under five mortality. But we can establish with a high degree of confidence that during the period 1985-1989 under five mortality was nearly 0.096 i.e one out of every ten children born could die before reaching the fifth birthday.

Furthermore, we can draw another conclusion from the estimates available that mortality in childhood in Kenya probably changed much during the 1978's.

5.2.3 Calculation of mortality levels and construction of the Life Tables

The Life Table is an important tool of demographic analysis that describes the mortality experience of a birth cohort as it is diminished through specific schedule of Age Specific Mortality. According to the UN Manual X V.2. 1983, the probability of surviving from birth to exact age x, i.e the component q(x) is denoted as l(x).

The number of survivors to age exact age x in a stationary population is denoted by l(x) with radix l(o). The Trussell version of the Brass Method of j(x) values corresponding to the model life table family being considered can be used to construct the life table.

In the construction of the life table, the computation P(x) is the probability of a person aged x surviving through the interval x to x+n years, i.e Px = 1 - q(x), where q(x) values are Trussell version of the Brass probability of a person aged x dying at age x. Hence the study makes use of the values q(2), q(3) and q(5) of which a life table for the division can be constructed.

a) Step 1. Calculation of P(x) values

P(x) is the probability of surviving at a certain age. The formula is given by:

P(x) = 1 - q(x)

For example.

P(1) = 1 -q(x)= 1 - 0.1263 = 0.8737

P(x) values for all the age-groups in the age range 15-49 are calculated using the formula above i.e P(x) = 1 - q(x).

Table 7. Actual P(x) values for all cases, 1993 KDHS

X	q(x)	P(x) = [1 - q(x)]
2	0.0877	0.9123
3	0.0839	0.9161
5	0.1045	0.8955

Table 8.

The Lower and Upper values of P(x) used in calculating Mean Mortality level for all the combined cases. 1993 KDHS

x	Actual P(x)	Lower Level	Upper Level	Lower P(x)	Upper P(x)	Implied Level
2	0.9123	17	18	0.91162	0.9246	17.05239
3	0.9161	18	19	0.91585	0.92985	18.01786
5	0.8955	19	18	0.88633	0.90354	17.53283

The implied level is calculated by the Interpolation as shown below:

Implied Level = Lower Level +
$$\frac{Actual P(x) - Lower P(x)}{Upper P(x) - Lower P(x)}$$

For example for q(2), the implied Level is thus:

 $17 + \underbrace{0.9123 - 0.91162}_{0.9246 - 0.91162} = \underbrace{0.00068}_{0.01298}$ = 17.05239

The Mean Mortality Level is calculated by dividing the implied levels of q(2), q(3) and q(5) by 3 as

follows:

Mean Mortality Level = $\frac{17.05239 + 18.01786 + 17.53283}{3}$ = 17.53436

b) Step 2. Calculation of P(x)

The Interpolation is achieved by obtaining levels from Coale and Demeny North Models for five year survivorship probabilities from Manual X. UN 1983.

The formula below is used:

For example, for all the cases combined from KDHS data 1993. When x=1, interpolated P(x) is:

= 0.92764 + <u>(0.93737 - 0.92764)</u> (17.53436 - 17) 18 - 17

= 0.932839322

Table 9. Interpolated values of P(x) for the construction of the Life tables (All cases combined 1993. KDHS)

Age (x)	Lower P(x) value	Upper P(x) value	(nterpolated P(x) value
5 10 15 20 25 30 35 40 45 50 55 50 65 70 75+	92764 .88633 .86868 .85853 .84564 .82851 .81027 .79063 .76884 .74319 .71346 .67473 .62635 .56009 .47082 .35709	93737 90354 88879 88008 86855 85307 83656 81877 79897 77531 74747 71031 66353 59829 50874 39234	932839322 895526335 879425979 870045458 857882187 841633881 824318324 80566689 784940266 760353643 731633583 693742528 646217504 580502552 491082931 367155306

c) Step 3. Construction of Life Table

Using the actual P(x) values obtained in Table 8 above, the other values of the Life table are obtained. 1) 1x

This denotes the number of survivors of a cohort of live born babies to the exact age x. The initial value of the survivors column is 1(0) also known as the Radix. It can be conveniently taken as 1000. 10 000 or 100 000. The Radix is arbitrarily assumed. P(x) is the interpolated value in table 8.

for example:

Suppose $l_0 = 100\ 000$. then $l_1 = l_0 \ X \ P(1)$

- = 100 000 X .932839322
- = 93283.9322

2) nPx

This denotes the probability of a person aged x surviving through the interval x to x+n years given by: nPx = 1

For example:

 $5P_{5} = \frac{1}{10}/1_{5}$ $= \frac{87942.598}{89522.534}$ = .982021344

3) ngx

This denotes the probability of a person aged x dying within the interval x to x+n.

nqx = 1 - nPx

For example:

 $5q_5 = 1 - .982021344$

= 0.017978656

4) ndx

This denotes the deaths experienced by the life table cohort within the interval x to x+n years and is

given by:

For example:

5) nLx

This denotes the number of person years lived by the cohort during the interval x to x+n years:

 $nLx = \frac{n}{2} \left(\frac{1}{2} + 1 \right)$

For example:

 $5L_5 = 2.5 [(89522.634) + (87942.598)]$

= 443738.08

However, for developing countries the probability of dying in the first year of life (1q0) is calculated for the estimation of the nLx column for under 1, we have:

 $L_{p} = 0.31_{o} + 0.71_{1}$ For example: $L_{p} = (0.3 \times 100 \ 000) \times [0.7 \ (93283.932)]$ = 95298.752For age 1-4 age-group. $4L_{c} = 1.31_{1} + 2.71_{5}$ For example 41. = 1.3(93283.9322) + 2.7(89552 \ 634) = 363061.224For age group 75 years.

L = L log 10 L

For example:

L₅₅ = 36715.531 (4.564849814)

= 167600.885

6) Tx

This denotes the total number of years lived by the life tables conort from age x to the end of the life span. It is derived directly from the nLx column by summation of the nLx starting with the beginning or at the terminal of the stationary population. It is thus a cumulative type of distribution of the nLx column

For example:

 $T_{r_0} = T_{r_5} + 5L_{r_0}$ = 16700.885 +214559.56 = 382160.445

 $Tx = T_{c+n}$ + nLx and $T_{-5} = L_{75}$

7) e_x

• This denotes the expectation of life remaining to persons who have attained the exact age x i.e the average period in years lived beyond age x by persons attaining exact age x. e_0 is the life expectancy at birth.

 $e_n = T_x = T_{\hat{r}_1}$

The value e_0 is of special interest. It is frequently used as a convenient summary of mortality experience depicted by the life table. The table below gives the complete Life Table for 1993 KDHS data for all cases combined.

lge-group	xpn	nPx	lx	ndx	nLx	Tx	E
050 500 0050 050 050 50 50 50	06716068 039999364 017978656 01066639 013980039 013980039 0257373144 022626489 025756441 031322931 037576441 031322931 037576441 031579554 068505285 068505285 1540082899 1540082899 1540082899 252355788	93283932 96000635 980021344 989333360 981059975 979426256 977373510 974273958 968677068 962228023 968627068 962228023 968621045 931494714 938308309 948291710 -47644211	10C 000 93283.302 89552.634 87042.598 87004.546 85788.219 84263.188 82431.328 93656.639 76035.364 7163.158 69374.253 64621.75 58050.255 19108.293 1671.531	6716 068 3731 298 1610 036 329 052 1216 327 1624 331 1731 556 1365 143 2072 662 2458 663 2372 006 3789 105 1752 503 6671 495 3671 495 3671 5 331	95298.752 363061.224 143738.08 137367.36 131991.9125 146488.35 107396.3025 197651.99 36632.4775 372996.305 36634.0275 306680.0125 267896.37 214559.56 16700.855	5825354 134 5730055 332 3366994 132 32256 078 48388 218 202256 078 48388 218 202259 238 2027 288 2021067 688 1648070 863 1291726 835 956736 8275 382160,445 16480,485	58 2535 61 14259 59 331170 55 392609 51 55923942 17 35481369 43 11883557 38 3720713 34 81641073 30 66973676 27 39530475 22 529515 18 6156864 14 80518239 11 ,19817329 7 31994072 4 56449818

Table 10. An abridged Life table for Kenya 1993 KDHS Data for all cases combined- North Model

SOCIO-ECONOMIC DIFFERENTIALS

5.3 DIFFERENTIALS BY MATERNAL EDUCATION

As shown in the table 11 below. mortality levels differ with the level of education of the mothers. Infant mortality rate in column 2 is high for those infants whose mothers had no education at all. These infants have a life expectancy at birth of 55.27 years. Likewise, the level of mortality drops for those infants whose mothers had primary level of education and have a life expectancy at birth of 57.75 years. displaying a gain of 2.48 years.

Table 11. Mortality Estimates by Maternal Education 1993

Education Level	*1q0	*4q1	*q2	*q3	*q5	e
No Education	80	51.48	82.9	106.4	155.3	55.27
Primary	69	42.05	95.3	93.1	96.8	57.75
Secondary	45.06	21.61	60.3	51.5	63.1	63.82

* Expressed per 1000

Source: Primary analysis of the KDHS 1993, Data

The infant mortality rate (1q0) for those infants whose mothers have no education is almost double that of those infants whose mothers have attained secondary education. The life expectancy at birth is 63.82 compared to 55.27 for infants born to mothers with no education. This displays a gain of 8.55 years.

Moreover, the child mortality rate 4ql as shown in column 3 is highest for infants whose mothers had no education compared to those whose mothers had secondary education and above.

Infant and child mortality decreases with the increase in the level of education of the mothers. The children with mothers of higher level of education have a better chance of survival than those whose mothers have lower level of education. These results are consistent with the analysis of Ocholla-Ayayo (1995:94). He concludes that the higher the level of education, the higher the survival of the infants and children.

The information presented confirms the hypothesis that an infant and child's probability of dying is inversely related to the mother's years of schooling.

In addition, the inverse association of mother's education to infant and child mortality has been confirmed by K'Oyugi (1983). Ondimu (1988), Oyoo (1991), Ikamari (1996) among others.

Education plays a great role where health care systems are uncommon since the knowledge of basic and curative procedures may be more readily achieved. Apart from this, the schooling undermines their belief in traditional remedies. The educated mothers are less fatalistic and able to deal with the modern world and are more aware of simple hygienic measures (Ocholla-Ayayo, 1991 p 71).

When we consider q2. q3 qnd q5 value, the patters are similar to those obtained, except the q2 value for primary education which is 95 per 1000 while that for no education is 83 per 1000. Primary level of education has a relatively higher estimate than no education by 12 per 1000. This indicates that not only education has a great influence on infant and child mortality but environmental factors, income and wealth, ethnicity and religion sometimes also play a significant role.

5.4 DIFFERENTIALS BY HUSBAND'S EDUCATION

Husband's education as a variable has great influence on infant and child mortality. The estimate is 89.81 per 1000 and 45.96 per 1000 for infant whose fathers had no education and secondary education respectively. This is approximately double that of infants those fathers had no education compared to that of those infants whose fathers had secondary level of education.

Education level	1q0*	4q1*	q2*	q3*	q5*	e,
No education	89.81	60.78	108.2	99.8	184.3	53.22
Primary	48.94	24.75	77.6	97.5	113	62.41
Secondary	45.96	22.34	49	61.3	71.3	63.56

Table 12. Mortality estimates by Husband's Education 1993

*Expressed per 1000

Source: Primary analysis of the KDHS Data 1993

It can be observed from the table above that life expectancy at birth is 53.22 for infants whose fathers had no education and 63.56 for those whose fathers had secondary level of education. This shows an increase of by 10 years with an advance on no education to secondary education.

The decline in infant and child mortality and an increase in life expectancy is achieved greatly by secondary education than primary education. This implies that secondary education is an important factor for infant mortality

A similar general tendency is also observed for q2, q3 and q5. As shown q2 for no education and secondary and above is 108.2 per 1000 and 49 per 1000 respectively.

One clear pattern noted is that infant and child mortality is low for those infant whose fathers attain higher educational level. The possible explanation to support this result is asserted by Ikamari (1996) who found that due to selective marriage, the better educated men were more likely to marry the better educated women.

However, the difference in the q3 value between no education and primary education is very small and insignificant. At the same time the life expectancy at birth for those infants whose fathers had primary level of education and those with secondary level of education are almost the same, the difference being a year.

Education is one of the socio-economic factors that affect infant and child mortality. Besides. It is indicative that what really influences infant and child mortality estimates is the educational level of both the mothers and fathers. The interplay of the characteristics imply that the educated are wealthier, can be expected to be better nourished and are more likely to have recognized that the medical interventions are essential for the survival of their children. These results are in agreement with those from the study of Ikamari (1996).

5.5 DIFFERENTIALS BY THE PLACE OF RESIDENCE

The table below reflects that infant and child mortality in column 2 and 3 is lower in urban and higher in rural areas. i.e 58.92 per 1000 and 70.28 per 1000 respectively. While the life expectancy at birth is 62.55

and 56.48 for urban and rural areas respectively, showing a difference of 6.07 years.

Place of Residence	*1q0	*4q1	*q2	*q3	*q5	e,
Urban	58.92	32.98	70	77.8	91.6	62.55
Rural	70.28	42.71	90.6	85.8	106	56.48

Table 13. Mortality estimates by Place of Residence 1993

*Expressed per 1000 Source: Primary Analysis of the KDHS 1993

The results of q2, q3 and q5 show the same pattern with high child mortality in the rural areas and low in the urban areas.

One of the major causes of all the differentials in infant and child mortality is the resource allocation in the urban and rural areas. For example in the National Development Plan (1996:158) it is reflective that there is an over concentration of essential medical personnel in urban areas with over 80% of the physicians being based in the urban areas which account for 20% of the total population.

In addition, the Plan explains that out of every projected 67% expenditure, the distribution for rural preventive health care accounted 21% of the total expenditure. This implies that medical expenditure is low for rural areas, thus the distribution of health expenditure favours the urban areas.

Based on these results a number of observations can be made. The results are consistent with the analysis of K'Oyugi (1983) and Ikamari (1996) that there is lower infant and child mortality in the urban areas as compared to the rural areas. This further suggests that the low infant and child mortality can be as a result of better sanitation, housing, shorter distances to health centres higher income levels.

5.6 DIFFERENTIAL BY WORK STATUS OF MOTHER

As shown in the table below. infant and child mortality is low for infants and children whose mothers are not working. The values of 1q0 is estimated at 65 per 1000 and 71 per 1000 for infants whose mothers were not working and those whose mothers were working respectively. Furthermore, the life expectancy at birth estimates are nearly the same for the infants with working mothers i.e 57.47 and 58.83 for infants with non-working mothers.

Table 14 Mortality estimates by Work status of the mother

Work Status	*1q0	*4q1	*q2	*q3	*q5	e
Not working Working	64.98 70.71	38.11 43.09	105.1 93.5	90.1 93.7	70 104.7	58.83 57.47
Expressed per 1000						

Source: Primary analysis of KDHS Data 1993

The values of q3 and q5 follow the same trend as that of 1q0 and 4q1. These results are consistent with the suggestion of UN (1986) that the limited amount of time that could be devoted to breast-feeding and lack of care that working mothers could give to their children may have been a factor in the higher infant and child

mortality of the infants of these mothers.

But the value for q2 is different from the results of the others. It is estimated at 94 per 1000 and 105 per 1000 respectively for those infants whose mothers were working and those whose mothers were not working.

From the observations. it is indicative that there is inconsistency in the infant and child mortality differentials for those infants whose mothers were not working and those with working mothers.

5.7. TRENDS IN CHILDHOOD MORTALITY

The common index q(5) is used to determine the trends of child mortality at national level using the variables educational level of fathers and mothers. rural/urban residence and work status of mothers.

Each variable has experienced estimated q(5) values fairly similar for most of the period 1983-1991 and increased after 1991 for majority of the variables. The estimates in the 1991 period are not wholly accurate as the reports derived the women in the age-groups 15-19 and 20-24 reflect higher than average risk of dying of infants and children born to these women (Appendix 5).

The mortality rate of the children whose mothers have secondary and above education showed a general decline compared to their counterparts born to mothers who had no education and those born to mothers with primary education. Besides, during the 1986-1991 period, under five mortality was approximately 0.0582 i.e during late 1984 slightly more than one out of every 20 children born could die before reaching the fifth birthday (Appendix 5 - Fig.5).

The most interesting observation is that in the variable- rural/urban residence, there is very small and negligible difference in the estimates during the period 1985-1989 (Appendix 5 - Fig.6).

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

6.1 SUMMARY

The objective of this study was to estimate infant and child mortality differential with the associated socio-economic variables in Kenya during the period covered by the data sources. In the underlying conceptual framework, individual level, household and community level variables as determinants operate in their own right as well as indirectly through variables that are social and economic factors. The operational model consisting of four variables used to formulate the operational hypothesis and the results used to assess the contribution of each variable in Kenya to the declines in the level of infant and child mortality.

The mortality measures used in the study was Trussell version of the Brass method to derive estimates of various values of q(x) the probability of dying between birth and exact age x - from the observed proportions of children dead. The study population consisted of education of mothers and fathers, working status of mothers and rural/urban mothers residence extracted from 1993 Kenya Demographic Health Survey (KDHS) data. The differentials of infant and child mortality by the most important parameters discussed in the previous chapter are summarized as follows.

Table 15 INFANT AND CHILD MORTALITY DIFFERENTIALS IN KENYA BY

DIFFERENT VARIABLES.

VARIABLES		PARAMETERS				
	1q0*	4q1*	q2*	q3*	_q5*	e
ALL CASES COMBINED	67-16	39.99	41.1	23 9	104 5	58-25
EDUCATION OF NOTHERS NONE PRIMARY SECONDARY-	80 69 52 45.06	51.48 42.05 21.61	82.9 95.3 50.3	106 J 73 1 51.5	155-3 96-8 63.1	55 27 55 15 63 32
EDUCATION OF FATHERS "ONE PRIMARY SECONDARY+	39-81 43-34 45-36	60 78 24 75 22,34	108 2 6 49	29 3 97 5 61 3	134-3 113 71.3	53.22 62.41 53.56
PLACE OF RESIDENCE RURAL URBAN	TO 28 58.92	42.71 32.98	<u>90</u> 6	35.3	106 91 6	56 48 52 55
WORKING STATUS OF MOTHERS NON WORKING VORKING	64 98 70 1	38 11 43.09	105.1 93.5	90_1 93.1	70 104 7	58.83 57.47

Note: Filiphessed per 1000 Source: Primary analysis of the 1993 KDHS data

6.2 CONCLUSIONS

Although the results obtained are not peculiar from earlier finding that have established; the main conclusions about these differentials are as follows:-

That education of mothers and fathers had the greatest total effect on differences in infant and child mortality.

The results got for child mortality by proportion of children dying from birth to age two for whose mothers belonging to no education and secondary education was found the level of child mortality decreased from a high of 82.9 per 1000 among whose mothers with no education to a low of 60.3 per 1000 among whose mothers with secondary and above. Life expectance at birth rises from 55.2 to 63.8 for whose mothers no education and secondary level respectively.

As hypothesized this was inversely related to infant and child mortality. This portrays child mortality decrease with increase in education level of mothers. This is consistent with the analysis of K'Oyugi (1992:115).

Our main findings. for child mortality by proportion of children dying from birth to age 2 for fathers belonging to no education and secondary was found 108.2 per 1000 and 49 per 1000 respectively. This is more than doubled contributing to the decline in their infant and child mortality. In addition, the beneficial effect of fathers' education on child survival appears to have become stronger. Therefore, further advances in education should lead to further improvements in child survival prospects. Similarly the analysis of Ikamari (1996: 135-143) found that education of fathers more influential in affecting child mortality in low-mortality. The life expectancy at birth rises from 53.2 to 63.5 for fathers belonging to no education and secondary level respectively.

As indicated that most of the decline in infant and child mortality could be accounted for increased education of both mothers and fathers playing a prime role and place of residence play a secondary role. The importance of knowledge about the influence these variables exert on infant and child mortality is essential for formulating and implementation of development policies designed to improve conditions of health.

As hypothesized rural/urban residence has a significant effect on infant and child mortality. The proportions of children dying from birth to age two were 90.6 per 1000 and 70 per 1000 for rural and urban resident mothers respectively. As was pointed out in chapter two this confirm the results of the study done in Kenya by (K'Oyugi, 1983 and Ikamari, 1996) and others.

The other variable was found to be working status of mothers. The probability of children dying from birth to age two were 105 per 1000 and 93.5 per 1000 for non working and working mothers respectively. It explained as the non working mothers increase in child mortality than the working mothers. This q2 values varies from the other results. On this account, there is inconsistency in the variable.

6.3 RECOMMENDATIONS

Several research studies have demonstrated that the education of a mothers is one of the most important determinants of infant and child weifare and survival. The overview of this study provide mothers education need to be accelerated to secondary and above level to achieve this aim. The exclusion of important factors in the modelling such as cultural, demographic and environmental factors affects the strength of the results. Thus the study recommended further investigation by considering this factors on the infant and child mortality.

The limitation of Trussell were mentioned in chapter four. Apart from this. Trussell does not give a good estimate of infant and child mortality since it assumed constant fertility and mortality in the preceding survey. Therefore, the study recommends other statistical tools and regression methods on the infant and child mortality.

Last but not least in order to ease child mortality the government should advance child survival improvements of working status for lactating mothers is paramount importance. for example providing of breast feeding places, breaks, job security and paid maternity leaves for mothers.

REFERENCE

Akwara P.S. . 1994

The impact of Breast feeding Practices on Infant and Child Mortality in Amagaro Division of Busia. Kenya M.A. Thesis University of Nairobi.

. 1996

Population Studies and Research Institute Occasional Publications Series Volume VI PSRI. University of Nairobi. p.5

Ayenu T.Y. . 1993

Levels and differentials of Infant and Child

Mortality in Nairobi- A case study of Mathare Valley. Harambee-Lumumba and Parklands- Spring Valley wards. Post graduate diploma project. University of Nairobi.

Brass, W. 1975

Methods of Estimating Fertility and Mortality from Limited and Defective Data. Population Laboratories Occasional University of North Carolina.

Brass. W. et.al. 1968

The Demography of Africa Princeton University Press.

Caldwell, J.C. 1979

"Education as a Factor in Mortality Decline. An Examination of Nigerian Data." Population Studies. London. Vol.33.No.3. pp. 395-413.

D'Sonza S and A. Bhuiya 1982.

Socio-economic Mortality Differentials in Rural area of Bangladesn. Population and Development Review 8 No.4 pp.753-769.

Elsie, Muhanda, 1988

An Analysis of Infant and Child Morality Differentials by Region in Kenya. Post Graduate Diploma Project. University of Nairobi.

Eshetu M. . 1995

The effect of Maternal Education on Infant and Child Mortality. Post Graduate Diploma Project. University of Nairobi.

Ikamari Lawrence D.E., 1996

Factors Affecting Child Survival in Kenya. PHD.Thesis. Australia National University. pp. 135-143.

Jain A. K., 1985

Determinants of Regional Variations in Infant Mortality in Rural India. Population Studies (London). Vol. 39. No. 3 pp. 407-424.

Julie D. V. 1988

Infant Mortality and Socio-economic Development. Evidence from Malaysian Household Data. Demography.

Vol. 25. No. 4.

Kenya Central Bureau of Statistics, 1979

Kenya Contraceptive Prevalence Survey, 1984.

CBS. Ministry of Planning and National Development Nairobi, Kenya.

Kenya Demographic and Health Survey, 1989.

Kenya Demographic and Health Survey, 1993

Kibet, K.M.I 1981

Mortality differentials in Kenya. M.Sc. Thesis. University of Nairobi.

Kichamu. G.A 1986

Mortality Estimation in Kenya Special Case Study of Vital Registration in Central Provinces. M.Sc. Thesis University of Nairobi.

K'Oyugi B.O. 1983

Mortality and Morbidity Situation in Siaya District. M. Sc. Thesis University of Nairobi p. 36.

1992

The Impact of Household and Community Level Environmental Factors on Infant and Child Morality in Rural Kenya PHD. Thesis University of Nairobi. p.115.

Mosley, W.H. and L.C. Chen, 1984

An Analytical Framework for the Study of Child Survival in Developing Countries. In Child Survival Strategies for Research(eqs), W.H. Mosley and L.C Chen. A Supplement to Vol. 10 of Population and Development Review. pp. 25-42.

Mott. Frank. L. 1979

Infant Mortality in Kenya Evidence from the Kenya Fertility Survey. University of Nairobi.

Muganzi Z.S. 1996

Population Studies and Research Institute Occasional Publications Series Volume V. PSRI. University of Nairobi. p.75

National Development Plan 1997-2001. 1996. p.158

Ocholla-Ayayo. A.B.C. 1991

The Spirit of a Nation. Shirikon publishers. Nairobi. Kenya p.71

_____ 1995

Population Studies and Research Institute Occasional Publications Series Volume IV. University of Nairobi p.94

_____ 1996

Population Studies and Research Institute Occasional Publications Series Volume V. University of Nairobi p.102.

Okojie 1993

Mechanisms through which maternal Education Operates to Influence Child Survival. p. 258. Ondimu K.N. 1987

The Socio-economic Determinants of Infant and Child Mortality in Kenya. Evidenced from the 1984 KCPS data. MSc. Thesis, University of Nairobi.

Oyoo N. 1991

Infant and Child Mortality differentials in Kisumu District. Post Graduate Diploma project. University of Nairobi.

United Nations

Levels and Trends of Mortality Since 1950 p.108.

New York 1982

Manual X: Indirect Techniques for Demographic Estimation. New York 1983

Socio-economic Differentials in Child Mortality in Developing Countries 1985.

Mortality and Health Policy. New York 1984

Determinants of Mortality Change and Differentials in Developing Countries. New York 1986

Step-by-step Guide to the Estimation of Child Mortality. Department of International Economics And Social Affairs. Population studies No. 107. New York, 1990.

Guidelines on Evaluating the Interrelationships among Infant and Child Mortality . Socio Economic Factors and Fertility in Africa. 1991 p.76

Child Mortality Since the 1960s a data base for Developing Countries. New York 1992 pp.6-7.

Correlation of Changing Infant and Child Mortality and Fertility in Relation to Development Programmes in Selected ECA Member. 1993 p.22.

APPENDIX 1	Estimation of	Intant	and child montality and the life table paternal Education	

A No Education

⊣ae groub	- POP	CEB		CD		Age group Index(1)	Average Parity P(i)	roportion ead([)	Multipl: K(i)	er	Age of Children	Q(x)
(5)19	18	14		1		1	0 7778	3714	3751		2	0268
20-24	53	103		15		2	1,9434	1553	6965		2	1082
15-29	37	330		35		3	3 7931	1061	9410		з	0998
30-34	119	613		109		1	5_1513	1778	1.0363		5	1843
15-39	105	671		107		5	5.3905	1595	: 1259		10	1796
-10 - 14	141	980		162		6	6.9504	1653	1.1134		- 15	1840
45-49 7P2 - 4002	126	946		164		-	5079	1734	1.0798		20	1372
Age group	Jx		۵P×		1 x	{	ndx	Lx		-		еx
1	08981191		91018	809	10	0000	3981.191	 93713 166		53227	785.70	53.2278570
1	060783019		93921	5981	91	018 809	5532.398	349137 5	2	52290	172.53	57.4504609
5	026718410		97328	1589	85	486.411	2284 061	 42171.902	5	48799	34 7"	57 0843332
10	015150701		98484	9298	33	202.35	1260 574	412860.31	5	44582	212.37	53 5827758
15	018461242		98153	8757	31	941 776	1512.747	405927_01	3	40453	352 55	49 3686188
10	024568890		97543	109	30	429.029	1976_052	397205.01	5	36394	125 54	45.2501489
15	02 6800 997		_97319	9003	-8	452 977	2102 618	 387008.34		32422	20.52	41.3269279
30	003328026		99667	1973	76	350.359	254 096	 381116.55	<u>5</u>	28552	212.19	37.3961855
35	J58965497		94103	1502	6	096 263	487 054	369263.68		24740	195 63	32, 5127087
-10	039905733		960094	1266	- 1	609 209	2857 618	350902		21048	331 95	29.3933138
15	047069383		952930	0616	68	751_591	3236.095	 335667 713	-	17539	29 95	25.5111180
60	062052449		93794	7550	65	515.496	4065 397	 317413 98	8	14182	262.24	21 6477371
55	31621886		918378	3113	61	450 099	5015 673	 294711.31	2	11008	48 24	17 9145073
60	118357932		381642	2067	56	434 426	6679 462	265473 475	5	30613	6 936	14 2344889
-15	, 15471054		324528	3945	-19	1754 964	3730.556	226948 43		54066	3 461	10 3665230
	262676599		13732	3400	41	024 408	10776 152	 179181 66		31371	5.031	64703371
					30	248 256	30248 256	135533 371		13553	3 371	1 18070034

B. Primary Education

Age group	EPOP	CEB		CD		Age group Index(1)	Average Parity P(1)		oportion ad D(i)	Multip K(1)	her	Age of children (x)	q(x)
15-19	:63	133		20			3160	1	504	3311		1		3498
20-24	E07	394		95		2	1.9606	0	956	9119		2		0776
025-29	J56	1736		190		3	3.9070	1	037	9404		3		0975
30 - 34	52"	2751		299		1	5.2201	1	087	1.0397		5		:130
35-39	392	2564		314		5	6.5408	1	225	1.1312		10		1386
20-44	378	2742		341		6	7 2540	1	244	1.1182		15	$ \rightarrow $	1391
45-49	245	2015		282		7	8.2245	1	400	1.084		20		1518
217P2 - 1162 227	P3- 3150						1							
Age aroup	- Jx		nPx		1x		ndx	_	-1		Ťx		÷х	
0	148947		95105	353	10	0000	1894 64 <u>7</u>		95154 986		624184	0 67	62.	4184067
1	024752486		97524	7513	93	078.551	2354.094	_	361813.402		614526	6.93	64.	6153632
5	011448599		98855	1400	39	189 365	1061.372		461101.615		577120	1.67	62.	2223529
10	007231774		99276	8225	87	518.116	6 63 .077		456789.243		531009	9 96	57	9140087
15	010401772		98959	8227	36	549 668	946.335		452764 463		85331 ا	0.71	53.	3176695
20	J14422430		98557	7569	85	304 634	1299.165		447149,463		440054	5,25	48.	8518195
25	016563743		98443	6256	83	644 976	1381 754		40447.165		395339	5 79	44	5301079
30	017058233		98294	1766	81	876 903	1490.865		433265.617		351294	9 62	40.	1945957
35	019386890		98061	3109	-9	972 71	1665.483		425374, 143		307968	4 01	35.	8487757
40	024246183		97575	3816		858.04	2042.552		416104.66		265430	9 26	31	50 80685
45	029982692		97001	7307	75.	357 375	2464 567		404836.863		223820	4 60	27	2288803
- 50 	042979170		95702	0829	72	445.475	3426 948		390108.075		183336	7 74	22	9932362
55	.057229817		942 77	0182	58	623 23	4367.101		370622 953		144325	9.66	13.	9135738
60	J87222323		91277	7671	- 63	836 .955	6274 365		344018.037		107263	6.71	14	9099416
65	135155915		36484	4084	. 37	243.93	3875.172		306142.945		-28618	674	. 11	0957989
-0	209507252		19049	2747	-48	307.873	11398 127		254209 697		422475	729	- 4	3913131
75			J		36	848.662	44892.376		168266.031		168266	031	3_7	4816777

		T							I
ade dronD	- ÞÜÞ	CEB	CD	Age group Index(1)	Average Parity P(1)	Propertion Dead D(1)	Multiplier K(ii	Age of children (x	נ) ם(x)
5-19	94	-4	10	1	.7872	1351	3071	1)415
20-24	446	779	50	2	1 *466	0642	7634	2	0490
15-29	÷01	:445	39	3	2 3842	0685	3952	3	1613
30-34	371	1484	106	4	4.0000	3714	9990	5	_)713
35-39	196	1096	52	5	5 5918	0566	1.0923	10	0618
۵U - ۵۵	96	539	53	6	6.6563	0829	: 0839	15	J899
15-49	53	341	34	2.4-0	6.4340	J997	1 0543	20	1051
P2 50	083* 5056 Sacr	ondary and :	0044						
100.000-0		and y and :					-		
Age group	्व× 04596411		95403589	100000	ndx			(000 00	2X
1	022338509		97766149	95403.589	4596.411	96782 512 375860,187		6092 38 9309 87	53 5609238 65.6087463
5	010411320		989588679	93272 415	971 089	463934 353		3449 69	63.0781317
10	006679828		993320171	92301 326	616 557	459965.237		9515.33	58 7154656
15	016429642		983570357	91684 769	1506.348	454657 975		9550 10	54 0935005
20	00706251		99293749	90178.421	636 886	449299 89		4892.12	49 9553227
25	.014751768		985248231	39541 535	1320 396	114405 135		5592.23	45 2928602
30	016148466	,	983851533	38220 639	1424 628	437541 625		1136.30	40.9335823
35	018359484		981640515	86796 011	1593 53	±29 996 .23		3645.17	36 5644127
10	023088963		976911036	35202 481	1967.237	421094 313		3648.94	32.2015146
35	028696714		971303285	<u>83235</u> 244	2398 578	410204 115	232	2554.63	<u>27_9034999</u>
50	J41519040		958480959	30846 666	3356.676	395841 54	191	2349_85	23.6540348
55	055354659		944645340	77489 990	4289 432	376726.37	151	6508.21	19 5703756
60)84816675		915118332	13200.558	6208 628	3504 8 1 -22	113	9781 34	15 5706715
65	131994376		368005624	66991 930	3842_558	312853 255	139	300 62	11.7820254
10	205341718		194658281	58149.372	11940.492	260895 63	476	447 37	3 19350840
			5	46208 38	46208 38	216551,74	215	551.74	4 66472544

APPENDIX 2

Estimation of Infant and Child Montality and Life tables: Mothers Education A No Education

ige group	FPOP	CEB		CD		Age group Indexii:	Average Panity P(1)		roportien ad D(:)	Multip K(1)	iier	Age of children (×	a	q(x)
15-13	ອີບີ	30		3		1 I.	5000	;	000	7585		1		1759
20-24	32	156		14		2	1.9024		3897	9243		2		08 29
25-29	142	552		62		3	3.8873		1123	9472		3		i064
30 34	235	:246		192		1	5 3021		541	1.0076		5		1553
35-39	262	1622		211		1	s 1908		1301	i.0813		10		1407
40-44	269	1378		267		5	5 9814		1422	1 068		15		1519
45-49	247	1974		339			- 9919		717	1.0425		20		1790
PICPZ # 1028	92/93- 1894	-1	No educa	tion										
Age Group	qx		nPx		lx		ndx		LX		Τx		ех	
0	08000106		91999	894	100	0000	3000.106		94399 926		552703	5_53	55	. 270355
1	0514817		94851	830	919	999 894	1736-311		349811.536		543263	5 61	59	050455
5	022 83 7235		97716	2764	372	263.583	1992.359		431335.767		508282	4 06	58	246795
10	013177418		98682	2581	352	270 724	1123 628		123544 5		465148	8 30	54	. 5496517
15	31651992		98348	0079	341	147076	1390.103		417260.123		122794	3.80	50	.2446906
20	02213965		97786	0343	327	756973	1332.211		409204_338		381068	3.68	46	0466778
25	024105798		97589	4201	309	924 762	1950 756		399746.92		340147	9 34	42	0326147
30	026550407		97344	9593	739	974.006	20 96 . 192		3 896 28.05		300173	32.4	38	0091193
35	030179189		96982	081	768	377 214	2320 192		373535.84		261210	4 37	33	9776148
40	036244947		96375	5052	-45	557 122	2702.319		366029 81		223351	8.53	29	.9577145
-15	343107654		95689	2345	-18	354 303	3097 492		351530.285		136748	8.71	25	9897549
50	057722181		94227	818	687	757_311	3968 822		333864 5		1515958	8 43	22	. 0479 598
55	07609452		92390	5479	64;	88.489	4930,049		311617 322		1182093	3 93	:8	. 2454314
60	111324735		38867	5264	598	358 J40	6663 225		282632.388		370476	612	14	5422533
65	166540886		33345	9113	531	194 715	1359 095		243825 338		587843	-24	-11	0507913
-0	250921696		-4907	B <u>303</u>	14(335 620			193866 178		344017	. 386	7	16940172
. 75			1		332	210_351	33210 351		150151 109		150151	.09	Ŀ	52116415

		8 Pr	many Education						
Age group	EPOP	CEB	CD	4ge group Index(1)	Average Parity P(1)	Proportion Dead D(1)	Multiplier K(1)	Age of children (x)	q(x)
15-19	1350	234	37	1	1 2178	0 1259	1.1012	1	1386
20-24	1005	1618	151	2	1.6100	J 0933	1 0217	2	0953
25-29	636	2259	219	3	3.5519	0.0969	9604	3	0931
30-34	593	3842	278	4	4 7926	0_0978	9893	5	1968
35-39	363	2314	282	6	6 3747	0 1219	i.0485	10	• 278
J0-J4	330	2381	282	6	2152	0.1193	1 0338	15	1233
45-49	172	1319	147		7 6686	0 1114	1.0148	20	1130
1/F2 = 1353			Primary	36	x ratio at birth -	1 05			
Age group	gx		nPx	lx.	ndx	0		Ī	ех
0	06952341		93047659	100000	6952.341	95133.361	57756	572. 77	57 7567277
1	04205303		.95794697_	93047 659	3912 936	361625 108	56805	539 41	61.049783
1 53	01 985298 9		981147010	39134.723	1680 456	441472,475	53189	913 -0	59 672746
10	011126043		988873956	37454.267	973.03	434838.785	48774	141.22	55.7713 35
15	014446507		985553492	36481.247	1249 352	429282 355	14426	502 44	51.3707028
20	019533732		980466267	85231 995	1664 897	421997 232	40133	819 59	47 087062
25	021223282		978776717	33566 998	1773.566	413401.075	35913	322_36	⊥2 975366
30	1352321		976647672	81793 432	1910 067	404191.992	31779	21 28	38 95301
35	026551022		97344897	79883.365	2120 985	394114 362	27737	29 29	34 7222338
40	032239059		967760940		2506 986	382544 435	23796	14 93	30 6011072
45	0387733		961226699	75255.394	2917-9	368982.22	19970	170.49	26.53724
50	052907 97		947092029	12337 494	3827 13	352119 395	16280	88.27	22.5068381
55	069936309		93006369	68510_264	4791.355	330572 932	12759	68 38	18.624492
60	103521295		396478704	63719 909	6596 264	30213 385	04539	15,944	14 336976
65	15+42068		843579319	37122.644	3935 163	263275.317	64329	2.056	11 261594
°0	13163098		762369011	48187 482	11450 339	212310 313	38001	6.741	- 386 2 1289
15			0	36736.643	36736 643	167736 429	16770	6 429	4_5650 994 67

		JeCo	ndary and above						
∖ge group	c.b0b	CEB	CD	Age group Index(1)	Average Parity P(1)	Propertion Dead D(1)	Multiplier K(i)	Age of children (x))(x)
5-19	378	40	4		0.1058	0.1000	L.0296		1030
0-24	518	419	24	-	0.8089	0.0573	1.0521	2	5603
5-29	421	963	- 19	2	2.2874	0.0509	1.0116	3	0515
0-34	284	1027	62	4	3 6162	0.0604	1 0443	ő)631
5-39	118	27	24	a	4 3898	0416	1,1054	10)460
0-14	54	294	27	6	5 1444	0 0918	1.0863	15	1997
5-49	14	94		- 0	1 1762	ป	1 0593	20	0
2 = 1308	b2/03 = 353	6							
		C Se	condary .	1					
ge group	QX		nPx	1x	ndx	-60	7.		۵X
	0.0450622	1	95493779	100000	4506 221	96845 645	63823	18 49	63.8231849
	. 02161146		978388539	954 93 779	2063.76	376402.964	62854	72 85	65.8207572
	01009991	2	989900087	93430 019	943,635	464791.008	59090	69.88	63 2459454
)	00651474	2	993485257	92486 384	602.525	460925.607	54442	78_88	58.8657339
5	00964832	1	990351678	91883 859	386.525	457202.983	49833	53 27	54_235 3502
)	01346847	1	98 65 3152 8	90997 334	1225.395	451922.682	45261	50.29	49.7393724
	01450894	2	985491057	997 71, 739	1302,493	145602_463	10742	27.60	45.3843008
	31587666	9	984123330	38469 246	1404.597	438834 737	36286	25.14	41.0156671
	01805290	6	981947093	37064.649	1571.77	-3139 3 82	31897	90 40	36.6370328
)	02274412	8	977255871	35492 879	1944 461	422603.243	27583	96.58	32.2646356
i	02831409	6	971685903	33548 418	2365 598	411328.095	23357	93.34	27 9573616
)	04108535	5	958914644	31182 829	3335 425	397575 537	19239	65 24	23/6991674
;	05479880	2	945201197	77847 395	4265.944	378572 115	15263	89 -1	19.6074603
)	08410539	5	915894605	73581.451	6188.597	352435 163	11478	17 59	15 5992791
5	13106279	3	368937217	67392.854	3832 695	314882.532	79538	1.83	11.8021686
)	20412005	-	95879942	58560.159	11953.303	262917 537	18049	9.30	3.20522528
			0	46606, 356	46606 856	217581 76	21758	1.16	4 66844964

APPENDIX 3								
Estimation of	Infant	and	Child		tables.	Mothers	place of	Residence
				A Ducai				

Age group	EbOb	058	Runa I	CD		Age group Index(1)	-verage Parity P(1)		oportion ad D(i)	Multipl K(1)	ier	Age of children (x)		q(x)
15-19	1542	325		37		1	0 2108	0.	1138	1.0612		Y		1208
20-24	1286	1393		:58		2	: 4720	٥.	0887	1.0217		2		0906
25-29	969	3291		291		3	3.3963	đ	0884	39709		3		1858
30-34	936	4524		178		4	4 8333	0.	1057	1.0030		5	-+	1060
35-39	545	3052		461		5	p_2822	۵.	1138	: 0637		10	_	1210
40-44	596	42 8 0		647		ó	1812	٥	1278	1.0480		:5		1339
15-49	405	3225		465		i D	9630	0	1442	1 0267		20		1481
(1°92 - 2482)	=2/P3 -		ai Reside	nce										,
Age aroup	qx		nPx		Ìχ		ndx		Lx		Tx		ex	
0	07028751		. 92971	249	10000	00	7028.751		95079.874		5648699	35	56	4869935
1	0427194		95728	0599	92971	1 249	3971.676		252381 471		5553619	3 47	59.	7348055
5	019137507		98086	2492	88999	9 563	1703.23		40739.79		530123/	3,01	59	5647677
10	011275707		98872	4292	37296	6 343	984_328_		434020.895		4860498	3_22	<u>55</u> .	6781223
.15	014598570		98540	1429	86312	2.015	1260.032		428409 995		1426477	32	51.	2846018
20	019727406		98027	2594	35051	1 983	1677 355	_	421065 278		3 998 067	33	47	0073382
25	021435318		97856	4681	33374	4 128	1787.151		412402.763		3577002	2 05	42.	9030220
30	023589487		97641	0512	81586	6_977	1924.595		403123.398		3164599	9.28	38.	7880444
35	026820852		97 3 17	9147	79662	2, 382	2136,613		392970.377		2	5.89	34.	6647416
40	032539025		96746	0974	77525	5 169	2522.613		381322 313		234:505	5 51	30	5512030
45	039101594		96089	8405	-5003	3 156	2932.743		367683.922		1987183	1.20	26.	4946611
50	053275107		94672	4892	-2077	70.413	3839 669		350753.167		1619499	28	22.	4710697
<u>55</u>	070406857		92959	3142	68230	0 854	4803.92		329144 17		1268746		18.	5949030
60	104124124		395 87	5875	63426	6 934	6604 274		00623 985		939601_	639	14	3139213
25	157207775		34279	2224	56822	2 66	3932 964		061780. 89		638977	654	11_	2451204
70	238670777		76132	9222	47889	9 696	11429 371	_	210873 803		377196	~64	7 8	7636579
15	1		0		36459	9 825	36459 325		166322.961		166322	961	4.5	6181457

∴qe group	- POP	CEB	CD	Age group Index(1)	Average Parity P(i)	Proportion Dead D(1)	Multiplier K(1)	Age of children (x)	q(x)
5-19	246	39	(-)		0.1585	3.1/95	99 93	1	1794
0 - 24	319	300	ä	1 A	3 9404	0.0100	1 0004	1	370 0
5 - 29	230	483	39	3	2 1000	3.0807	7646	3	0778
10 - 34	176	591	54		3 3580	0.0914	1 0025	5	1916
15 - 39	98	461	56	5	4 7041	0 1215	1 0659	10	1295
10-44	57	273	31	6	4 7895	0.1136	1 0508	15	1194
15-49	35	162	21		4 6286	0.1296	1 0288	20	:333

8 Unban Residence

Age group	qx	nPx	1x	ndx	Lx	Tx	≟x
0	0589275	9410725	100000	5892_75	95875_07 5	5255452.30	62 55
1	0329817	9670183	94107_25	3103.83	368048.686	6159577, 23	65.45
5	0149846	9850154	91003.43	1363.65	451608.025	_ 5791528 54	63.64
10	0090955	9909045	39639 78	816 32	670260.05	5339920 52	59 57
15	3123628	9876372	38824 46	1098.12	41377	4669660 46	52 57
20	0168932	9831068	37726.34	1481.98	434926 75	4228283.47	48.20
35	0183133	3816867	36244_36	1579 42	427273.25	3793356 72	_43.98
30	0201151	2798849	34664 94	1703 04	419067 1	3366082.96	39.76
35	0228645	9771355	32961.90	1396.38	J10067 3	2947015.86	35.52
-10	0281416	9718584	31065 02	2281.30	399621-85	2536948.57	31.30
45	0342873	9657127	19783 72	2701 28	387165.4	2137326.72	27 13
50	3478695	9521305	16082 44	3642.03	371307 13	1750161.32	23.00
55	J6349 56	9365044		4599_55	350702.93	1378854 19	19 03
50	1952753	3047247	67840.16	6463.55	323044_93	1028151.27	15-16
65	1456938	3543062	51377.21	3942.28	294530.35	105106.34	11 49
10	2234758	***65242	52434 93	11717 94	232879 8	420575_99	3.02
75	10	0	40716,99	40716 99	137696 19	. 187696.19	4 61

EST	imation of intant		Montality and life t Ion working	ables working status	or mothers				
ae group	FP0P	CEB	CD	Age group Index(1)	Average Parity P(i)	Proportion Dead D(1)	Muitiplier K(1)	Age of children (x)	g(x)
p - 19	1368	207	20		1513	0966	1.088	1	.1051
- 24	352	1078	-7	2	1 2653	0714	1 2622	2	0901
o · 29	453	1194	105	3	3 2980	0703	9956	3	3700
- 34	399	1952	204	4	4.8922	1045	1.0239	5	1070
. 39	292	1859	222		6.3664	1194	1.083	10	1293
]-44	236	1671	136	6	° 0805	1113	1.083	15	0092
g - 49	183	1467	172	7	9.0164	1172	1.0415	20	1221
+ 1140	-27P3 - 3837	A N	an warking						
e graup	ĝx.		nPx	l x	ndx	Lx.	тх		5X
	06498456		93501544	100000	6498.456	95451.08	5883	1773.71	58.8377319
	03811711	3	961882886	93501 544	3564.009	364383.352	5788	322 63	61.9061719
	01718166	9	98281833	89 937 535	1545 277	445824.482	5423	39 3 9.28	60.307849
r	01024690	14	98 97 530 95	88392 258	905.747	439696.922	4978	3114 80	56.318448
0	01352936	i5	986470634	87486.511	1183.637	434473 462	4538	3417 38	51.875630
2	013529385		981574171	36302.374	1590.202	427538,865	4100	3944 41	47 552810
	01 998359 8		980016401	84712.672	.692.864	419331_2	3676	5405 55	43.398530
3	021967865		978032134	93019.808	1823 768	410539 62	325	7074 35	39.232496
ā	024978508		975021491	31196 04	2028.156	400909 81	2846	5534 73	35.057556
5	030494133		969505 866	79167 984	2414 136	389804 03	244	5624 92	30.891629
2	036867733		963132266	76753.728	2829.736	376694_30	2055	58220.8	26.784638
1	. 050781794		949218205	73923 992	3753.993	360234.977	1675	9126 59	22.71423
	067218441		932781558	-0169 999	4716,718	339058 2	1318	3891.61	18.79566
7	100051256		399948743	65453.281	5548 683	310894 697	9798	33.417	14 969 96
2	151910450		348089549	58904 598	3948 224	272152 43	6689	38. 19	11.35631
1	23170995	51	68290048	49956374	1575 389	220843 397	396	86_289	9426559
8			-J	38380 985	38380 985	175942 892	1755	42 892	4 584116

		8. work	ing						
Age group	FP OP	CEB	CD	Age group Index(1)	Average Parity P(1)	Proportion Dead D(1)	Multiplier K(1)	Age of shildren x1	q(x)
15-19	417	157	24	1	0.3765	0.1529	0.7810	1	1194
20-24	152	1115	:12	2	1 4827	0.1004	0.9315	2	0935
25-29	-46	2280	225	3	3.0563	0 0987	0.9490	3	0937
30-34	-11	315	328	4	4 4388	0.1039	1 0073	1	1047
35-39	451	2654	295	5	5.8847	0.1112	1.0801	10	1201
10-44	112	2882	392	6	6 9113	0 1360	1.0665	15	1450
45-49	257	1920	314	-	- 4708	J.1635	1 0414	20	1703
1/92 - 1939 -	7773 - 3837		8. workina						
Age group	3X		nPx	1x	ndx	á.	T		5X
0	07071933		92928067	100000	-071.933	95049.647	574	7198 02	57 4719802
1	043096473		95 69035 26	92928 067	4004.372	360899.114	360899.114 565.		60 8228338
5	019298676		980701323	38923 195	1716.1	440325.725	529	1249 26	59 5035 892
10	011360532		988639467	37207 095	990 219	433558.677	485	0923 54	55 6253312
15	014684774		985315226	86216.376	1266.068	427916.71		7364.36	51.2357985
20	019837208		980162791	34950 308	1685.177	420538.598	398	9448.16	46.9621388
25	02155589		97844441	33265 131	1794 829	411838.582	411838.582 3568		42.8619942
30	023724043		976275956	81470 302	1932.805	J02519 J97	315	7070.98	38. 1511878
35	026974007		973025993	-9537 497	2145,445 392323 873		2754551 47		34 6321117
40	332709366		967290633	392 052	2531 445 380631 648		2362227 61		30 5228783
-15	039288086		960711913	-4860607	2941 13 366950 21		1981595.95		26 4704676
50	053483801		946516198	71919 477	3846.527 349981.		1614645 75		22 4507437
<u>55</u>	0706_1489		92932551	68072.95	4811.021	328337_198	126	4664 68	18.5780796
60	104467269		89553273	53261.929	6608.201	299787 643	9,36	327 484	14 3008051
_65	157656272		342343727	56653 128	3931 [21]	260936.337	636	539 841	11.2357404
⁻ 0	239226413		160735 868	47721 407	11418.021	210061 982	375	503.504	37075502
18			0	36303.386	36303 386	165541 521	165	541.521	4 55994714

APPENDIX 5. Under five mortality (q5) for both sexes in Kenya, by socio-economic variables

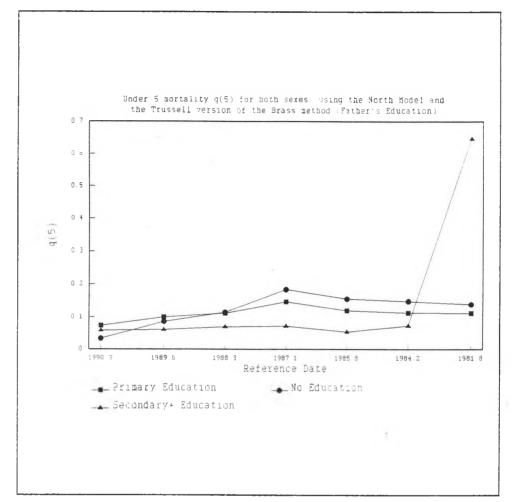
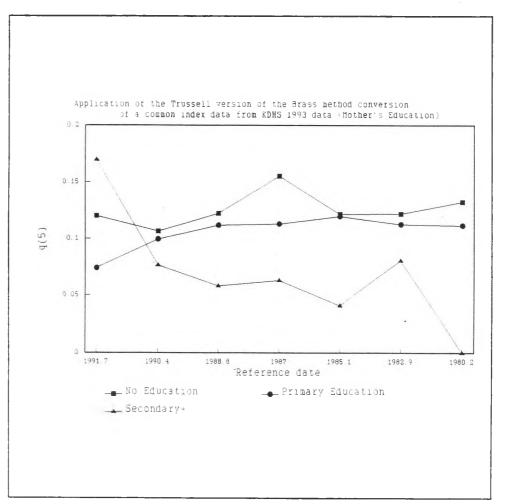
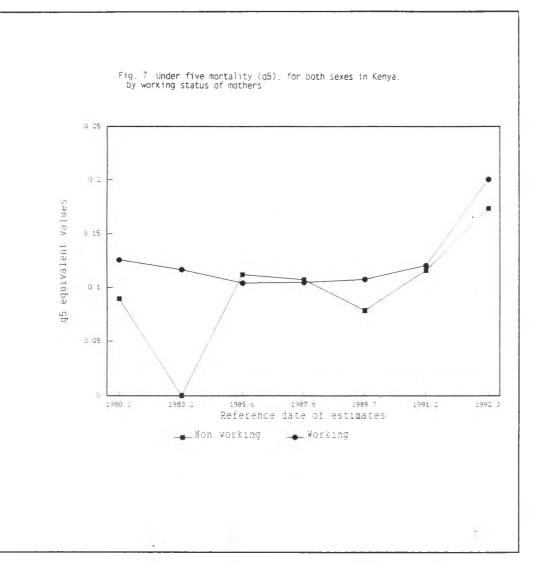




Fig 8. Under five mortality (q5), for both sexes in Kenya, by working status of mothers'

