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PROLOGUE

This project aims at getting the solution of hydromagnetic steady flow of viscous 

incompressible fluid between two parallel infinite plates using the Laplace transform method. 

The upper plate is moving with constant velocity and the lower plate is held stationary under the 

influence of inclined magnetic field.

We shall convert the boundary conditions of the fluid flow into initial conditions. The 

initial conditions are determined and the problem is solved by use of Laplace Transform.

In chapter one, we shall major in the definition of Hydromagnetic steady flow together 

with where it can be applied.

In chapter two we shall introduce the Laplace Integrals and Laplace transforms as well as 

some of their properties.

Finally in chapter three, we shall develop the equations governing the hydromagnetic 

flow and in this chapter we shall obtain these basic equations. We shall also get the solution of 

the hydromagnetic steady flow of viscous incompressible fluid between two parallel infinite 

plates using the Laplace transform and discus the results which are presented in form of a graph 

for selected Hartmann numbers.
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CHAPTER 1:

INTRODUCTION

1.1 HYDROMAGNETIC STEADY FLOW

Hydromagnetics involves the effect of externally impressed magnetic field on the onset 

of thermal instability in electrically conducting fluids. In broad terms, the subject of 

hydromagnetics is concerned with the ways in which magnetic fields can affect fluid behavior. 

These fluids include liquid metals and highly ionized gas-like substances called plasmas. When 

we consider a fluid which has the property of electrical conduction; and suppose also that 

magnetic fields are prevalent. The electrical conductivity of the fluid and the prevalence of 

magnetic fields contribute to effects of two kind: first, by motion of the electrically conducting 

fluid across the magnetic lines of force, electric currents are generated and the associated 

magnetic fields contribute to changes in the existing fields; and second, the fact that the fluid 

elements carrying currents transverse magnetic lines of force contributes to additional forces 

acting on the fluid elements. It is in this two fold interaction between the motions and the fields 

that is responsible for patterns of behavior which are often unexpected and striking.
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The basic coordinate system describing magnetofluidmechanic phenomena is shown in

FIG 1.1 Vector diagram of Magnetofluidmechanics

We consider an electrically conducting fluid having a velocity vector V. At right angels 

to this we apply a magnetic field, the field strength of which is represented by the vector Bapp. We 

assume that steady flow conditions have been attained. Because of the interaction of the two 

fields an electric field denoted by Emd is induced at right angels to both V and Bapp. This electric 

field is given by the following equation:

Eind = V x B app 1.1.1

If we assume that the conducting fluid is and remains isotropic in spite of the magnetic
A

field, fwe can denote its electrical conductivity by the scalar quantity a . Then by Ohm’s law the 

density of the current induced in the conducting fluid and denoted by Jjnd is

Jjnd ~ O' E*nd 1.1.2
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Simultaneously occurring with the induced current is the induced ponder motive force 

Find, which is given by the following vector product:

Find — Jind * Bapp 1.1.3

This force occurs because, as in an electric generator, the conducting fluid cuts the lines 

of the magnetic filed. Because the vector product of equation (1.1.3) yields a vector 

perpendicular to both J ind and Bapp, the induced force is parallel to V but opposite in direction.

To make the configuration slightly more general, we now apply also an electric filed Eapp 

at right angles to both Bapp and V, but opposite in direction to Jjnd. The current density due to this 

applied electric field we denote by Jcond and call it the direction current. The net current density J 

through the conducting field and the one that we would be measuring with a suitably placed 

ammeter is then

J — cr (Eapp + v x Bapp) — cr (Eapp + Ejnd) 1.1.4

The ponderomotive or Lorentz force associated with this current is t hen

F — J x Bapp — cr (Eapp + v x Bapp) x Bapp 1.1.5

In equation (1.1.5), Eapp > v x Bapp, we have an accelerator which may be used as a 

thrust- producing device. We note at once the potentialities of accelerating fluids by 

electromagnetic fields rather than by adding large quantities of thermal energy which would tend 

to result in the thermal deterioration of engine walls. At first this may delude the designer into
* i*-

believing that magnetodynamics circumvents the monumental problem of locating high-
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temperature-resistant solids. Unfortunately the matter is not so simple, because although the 

acceleration itself does not require high temperatures, producing a gas which is sufficiently well 

ionized to have a high conductivity susceptible to experiencing electromagnetic acceleration 

does necessitate very high temperatures. The engineer wishing to design magnetofluidmecahnic 

devices then has three alternatives. First, he might use conducting liquids. Unfortunately these 

are difficult to handle. Second, he might consider cooling his engine walls. However, high heat- 

transfer rates are not easily obtained. Third, he might displace the high -temperature gases from 

his engine walls by magnetic pressure leading to the so-called pinch effect. This scheme too is 

troublesome because of flow instabilities and practicalities associated with magnetic design, Ali 

[1963].

The study of hydromagnetics is closely related to the interaction of two branches, namely 

electromagnetic theory and fluid mechanics which in turn produces magnetohydrodynamics.

The principles of hydrodmagnetics have many applications. A very good example is the 

construction of the magnetohydrodynamics pump. In this device, a conducting fluid in a pipe is 

forced to move by the Lorentz force created when mutually perpendicular magnetic fields and 

electric currents are applied perpendicular to the pipe. Such a device has been used to circulate 

liquid sodium carrying heat from the core of a fission reactor to the heat exchanger outside.

Other related areas includes in the magnetohydrodynamics generator where the channel cross- 

section is normally circular with conducting walls.

The principles of hydromagnetic are also very important in designing controlled 

thermonuclear reactors (CRT). Much interest in hydrodynamics has arisen through strenuous 

efforts to release thermonuclear •energy by controlled reactions between nuclei of elements (such
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as deuterium) in a hot ionized gas. Success in this field would be prelude to the construction of 

economically viable commercial power stations reacting on the same principle. A plasma of 

deuterium (i.e. a mass of highly ionized deuterium) must be generated; must be heated to a 

temperature so high that a significant fraction of nuclei have thermal energies sufficient to 

penetrate each others Coulomb barriers, fuse together and release energy; and must be 

maintained for time sufficient for a sizeable number of such reactions to take place. If the energy 

liberated by them mare than repays the energy required to produce and maintain the plasma, the 

difference can be made to perform useful work. The task of confining the hot plasma to a small 

reaction space (away from any materials walls which would contaminate it, and quench the 

reactions) has always been left to some kind of “magnetic bottle”. This is a region of space 

walled in by strong magnetic fields which, as in the homopolar dynamo, will oppose by Lenz’s 

law any motion of contained plasma across them. Clearly an understanding of the inter-relation 

between the motion of particles and the behavior of the electromagnetic fields is a key factor in 

the design of the bottle and therefore in the success of the project.

Another important area is the principles of hydromagnetic are greatly applied in the direct 

conversion of energy. Here electricity is usually produced from the chemical energy of flues 

such as coal or oil in the following way. The fuel is burned and the heat generated is used to 

create high pressure steam. Thus, in turn, drives a turbine linked to a dynamo.

The efficiency of such a heat ejigine cannot, of course exceed the theoretical maximum of

the Carnot cycle i.e. ^  where Tx and T2 are the upper and lower absolute temperatures

of the cycle; in practice, it is-usually significantly less. The efficiency can be improved in theory
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by increasing 7J, but in practice the loss of strength in materials (eg the walls of the combustion

chamber) at high temperatures is a limitation. Suppose, however, that the gases are burned at 

high temperatures in a flame far from the walls. The kinetic energy of the hot ionized gas in the 

flame can be converted directly into electrical energy by applying a perpendicular magnetic 

field: for a potential gradient is created in a direction perpendicular to field and motion, and 

currents can be drawn off by electrodes embedded in the gas.

Finally the principles of hydromagenetics are very useful in the construction of the flow 

meters. When conducting fluid passes down an insulating pipe across which a steady magnetic 

field is applied, a potential gradient (proportional to the flow speed) is created and can be 

measured by process embedded in the walls of the pipe. The flow rate can therefore be 

determined without, for example, contaminating the fluid in the pipe. It’s this same technique 

that is used to measure the flow of blood.

1.2 EQUATION OF CONTINUITY

The equation of continuity for the incompressible flow in Cartesian coordinates is derived 

as follows by considering a parallelepiped fluid elemention as shown below;

A '
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Fluid flow with edges PA = Sx, PB = Sy, PC = Sz with one of the comers at P. let 

u,v,w be respectively x ,y ,z  components of velocity along faces CA'BP, CPAB' and PBC'A 

and the velocity components along faces B'P'C'A, P'A'BC', B'CA'P' will then be given as

du „ dv _ dw „ , , . ,  , ,
u + —  ox, v + —  oy, wh-----Sz. let p (x ,y ,z ,t)  be the density.

ox dy dz

Now mass of fluid flow inside parallelepiped per unit time through the face 

PCA'B = puSySz and mass of fluid going out of the parallelepiped per unit through the face

B'P'C'A = pu+ — (pu)Sx SySz.

Therefore increase in the mass of fluid per unit time because of flow across two faces is 

given by

puSySz- pu + — (pu)Su SySz = -  —  (pu)SxSySz 1. 1.6

Also the mass of the fluid going inside parallelepiped per unit time through the face 

B'CPA = pvSxSz. and mass of fluid going out of the parallelepiped per unit because of flow

through the face ABC'P' = p v+ — (p v)£t SxSz. Therefore increase in the mass of fluid

inside parallelepiped because of flow across these two faces is given by:

pvSxSz - pv+ — {pv)dy SxSz = ~ ^ [p v )S x S y S z

Similarly mass of fluid going inside parallelepiped per unit time through the face
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PBC'A = pwSxSy and mass of fluid going out of the parallelepiped pr unit time through the face

B'CA'P' = p W+- ( S z ) SxSy. Therefore increase in the fluid per unit time because of flow

across these two faces is given by:

pw SxSz- pw + —  (pw) 8z 8x8y - -  — (pw)8x8y8z

Also mass of fluid inside parallelepiped is given as p8x8y8z. Therefore increase in the 

mass of fluid inside parallelepiped per unit time

OP
dt

dxdydz

Now using principle of conservation of mass we have:

—  8x8y8z — 8x8y8z = -  
dt dt

—  (pu) + —  (pv) + —  (pw) 
dxy ’ dyK ’ d zy ’

8x8 ySz = 0

As the above expression is true of every elementary volume taken inside fluid flow, we

have:

dp d , x d , x d , x
¥ + & (p“ ) + ^ (p v )+ & (pw )= 0

Which is equation of continuity in Cartesian coordinate system. The above equation may 

be given as:
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du dp dv dp dw dp p  —  + u —  + p  — + v— + p  —  + w——
dx dx dy dy dz dz

= 0

dp dp dp dp-----1- U-----h V-----1- W-----1- p
dt dx dy dz

dw dv dw-----1----- 1-----
dx dy dz

=  0

d d d d— + u --- l-v----- \-w—
dt dx dy dz

p  + p dw dv dw-----1----- 1-----
dx dy dz

= 0

If we apply the definition of material derivative which is given by —  then the above
Dt

equation becomes

Dp
Dt + P

du dv dw---- 1---- H-----
dx dy dz

= 0

This is yet another form of equation of continuity.

But if the fluid is incompressible i.e. p -  0 then, the above equation reduces to

du dv dw . —  + — + —  = 0.
dx dy dz

1.1.7

Where u, v, and w are components of velocity of the fluid in the x, y, and z directions.

1.3 EQUATION OF MOTION

The equation of motion that describes incompressible flow in each of the three directions 

is derived by considering the flow of non viscous fluid in a Cartesian region of space. We 

consider in that flow field a fluid volume v enclosed by surface s.
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s

Let dv be an elementary volume enclosing fluid element p of density p. This mass 

pdv remains constant throughout the motion.

Now if M  is the momentum of the volume v and q is the fluid velocity of particle p,

then

M  = JJJqpdv 1. 1.8

Where integral has been out for entire volume v.

Again let p be the pressure at a point on elementary surface ds then if n is the unit 

outward normal at the surface ds we have;

- ^ p n d s  = j*JjVpr/v 1.1.9

Also if F is the external force per unit mass on volume vthen the total external force is 

given b y ;
y
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j|j’Fpdv

We also know that according to Newton’s law, rate of change of linear momentum is equal to 

applied force. Therefore we have;

^  = - J jĵ pdv+jjfFpdv
V  V

D_
Dt

\\\qpdv = -  JjjVpr/v + \\\F pdv

By product rule we have;

\ \ \ ^ P ) dv= J|{(F p-V p)dx

The above relationship will be true for any considered volume vin the flow field. Therefore;

Dt p
1.2.0

We also know from the definition of material derivative that

Dq = dq !
Dt dt

Therefore equation 1.2.0 above may also be given as;

^  + (q-V)lj = F - ~ V p  
ot p

1.2.1
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Again if

q = ui+vj + wk and F = xi +y] + zk 
Then from 1.2.0 above we have

D ui + v j + wk — xi + y j + zk 1 % dp - dp « dp ] 
i —  + j  —  + k —

J L -J P K dx dy dz) 1.2.2
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CHAPTER TWO

LAPLACE TRANSFORMS

2.1 INTRODUCTION

The Laplace transform operator L is very useful in the study of initial value

problems involving linear differential equations with constants coefficients. The approach to the 

analysis and design of our system is based upon the solution of an ordinary linear differential 

equation with constants coefficients. To solve this system by Laplace transform, we first derive 

the ordinary linear differential equations which describe the motion of the system. We then 

obtain the initial conditions and get the Laplace transform of the differential equation. We then 

manipulate these algebraic equations and solve for the desired dependent variables. Finally we 

get the inverse Laplace transform of the functions and insert the boundary conditions to 

determine the initial conditions and the problem is subsequently solved. In this chapter, we 

discuss the definition of Laplace transform and its basic properties. Thomson [1957]

Let / ( / )  be any function. The Laplace transform of / ( / )  denoted by / ,[ / ( / ) ]  is

defined by L{f ( t ) )  = £ e s,f ( t ) d t 2 . 1.1

If f x (t ) and f 2 (t ) have Laplace transforms and if c, and c2are constants,

2. 1.2
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2.2 SOME PROPERTIES OF LAPLACE TRANSFORMS

The properties are presented here without proof. Their proofs may be found in Thomson 

(1957) and in most books dealing with differential equations.

For brevity, we shall denote

* £ e 's,f ( t ) dt by c{f{ t ) )

❖  Property of linearity:

*» i

Where ck are arbitrary constants. Then

£ [ / ( , ) ]  = i
*=l *=i

*=i

Thus

T x f W
= L

f ( t , X + d X ) - f ( t , X )
d /1

_ j \ f ( s , X + dX) - f ( s , X) '
= L

dX

14



❖  Property of Similitude:- 

For any constants a , we have

= a [ f ( r y astdx

= aL{ f (a s ) }

= / ( r)e as'dr

❖  Laplace Transformation of derivatives

From intergration by parts, we can obtain

i ( /* ( ( ) )  = s " i{ / ( ( ) } - S'-‘/ ( 0 ) - S- V ' ( 0 ) - s ' - ,/ ' ( 0 ) - ^ - ! ( 0 ) - s / (- l,(0).

c { / - ( ( ) j = SV { /(< )} -J- l/ ( 0 ) - s - ,/ ' ( 0 ) - ^ - )/ , ( 0 ) - i/ ' I ( 0 ) - / - ' ( 0 ) .

Where n is a positive integer.

*** Differentiation of Laplace Transforms 

For a positive integer n,

dsn (->)■ f  f f ( t ) e - d t

= (-l)i{ < " /(0 }

15



♦> Laplace Transforms of integrals 

Where n is a positive integer.

❖  Integration of Laplace Transforms 

If

JJ i{ /(r)} rfr

Is convergent, it is the Laplace transform of / ( ' ) that is we have

❖  Given any positive r , assuming that /  (/ -  r)  = 0 for t < r, we obtain

L { f i t ~ T)}= Jf f { t - z Y s,dt 

= f  f ( u)eMuH)du

= e~ST [  f{u)e~sudu

That is

L { f ( t - x ) } = e - L { f ( t ) }
V .  .
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2.3 SOME PROPERTIES OF LAP! ACE INTEGRALS

1. If the integral defined by 2.1.1 is convergent at a point s0, it is convergent at all points s

for which Re( 5  - s 0) > 0.There are three possible cases for Laplace Integral.

I. The integral is divergent everywhere

II. The integral is convergent everywhere

III. There exist a number crc such that the Integral is convergent for Re 5 > crc 

and divergent for Re 5 > cr,. The number crc is called the abscissa of 

convergence of integral 2.1.1.

2. If Integral 2.1.1 is absolutely convergent at the point s0 -cr0+ izQ, it is absolutely and 

uniformly convergent in the half-plane s >s0.

3. If 2.1.1 is convergent at the point s0 -  cr0 + ir0 and if Q > 0 and k > 1 are the given 

constants, the integral is uniformly convergent in the domain A given the inequalities

\s -  s0\ < k ( a cr > cr0 2.1.3

4. If cr, < co integral represents an analytic function if the variables s at all points of the 

half plane Res>crf and

H r 1 fH) /(')«-<*• 2.1.4

An analytic function is a  function of a complex variable which posses a derivative 

at every point of a region.
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5. Let Z,j/| (t),Z,{/2 (t)}| be the Laplace transforms of functions f^(t) and / 2(t). If both

Laplace integrals are convergent at the point s0and

L{/;(5o+«/)} = L {/2(5o+ «/)},

Where the constants / > Oand n = 0,1,2,....... , then f  (t) = / 2 (t) almost everywhere.

6. If the integral 2.1.1 is that for some ao > 0 and t —» oo, at the point 

s0 = o"o + /r0, cr > 0, then

lime-"0' | / ( u)du = 0

That is

J T  f(u)du = 0  < 3 5  t —>00

A necessary and sufficient condition for convergence of integral 2.1.1 is that for some 

cr0 >  0 and t —> oo,

f i t )= [ f ( uY u = o ( ^ ° )

That is

lime-"0' / ( u)du = 0

18



Theorem 1: if the integral (2.1.1) has an abscissa of convergence ac <oo, we have the

limit

lim----
M'->e0 2 ni Ol/Wl

0, t <0

^ f ( u ) d u , t > 0 2.1.5

y>crc,r>  0.
Where Hence for almost all t,

w \ d 1 rr+iro esl
f ^ ’ ~~di Li'W ~ T ds'

Where the intergral is understood in the sense of the principle value. It follows from 

property 6 that

Where

/! ( /)=  [ f ( u )du ,a>0 ,  and s - G  + ir.

A constant Q exists such that | f x (f)| < Qe^] < Qen0 (cr > cr.) for all t. Hence

MAP}
s a - a 0

19



Thus if

M / w } = r / ( ^ — . and f \ ( i ) = [ f { uY u'

The Laplace transform of

u
will be

i{/(<) 1
55

the Laplace transform being absolutely convergent for 

ct><j c.

2.4 THE CONVOLUTION THEOREM

We often come across functions which are not the transforms of some known function, 

but then, they can possibly be expressed as a product of two functions, each of which is the 

transform of a known function. Let a(/) and b(t) be functions of real variable t.The convolution

of these functions is the function c(t) given by
A

v*

c { t ) -  ^a{ t -T)b{r )dr  2.1.7

20



Symbolically written as;

c(t) = a{t)*b(t) 2.1.8

The operation of obtaining the convolution is called the convolution.

Convolution are;

(1) . Commutative,

a(t)*b(t) = b(t)*a(t).  2.1.9

(2) . Associative,

(a* b)* c = a*(b* c). 2.2.0

(3) . Distributive with respect t addition.

/  '

[a (t) + 6 (t)]*c(/) = a(t)*c(t)  + b(t)*c(t).  2 .2 .

Theorem

If the integrals

£{/(<)= fy; (')«■"<*
And

21



Are absolutely convergent for Re5 > cr;,then 

Is the Laplace transform of

f ( t) = [ ( t ~ T) f2^ )d r ,  2.2.3

And the integral

Lf ( t ) = [ f ( t )e~s,dt 2.3.4

Is absolutely convergent for Res >cra.

If the convolution of functions a (t) and b (?), are continuous for 0<t<+oo, is identically zero, at 

least one of these functions is identically zero.

2.5 INVERSE LAPLACE TRANSFORMS

If the Laplace transform technique is to be useful in applications, we have to find 

the original function f ( t ) when its Laplace transform is F(s).  Thus, if

Then

/ ( ' M "  O h ) ; ' ]

22



Where L ' is known as the inverse Laplace Transform operator.

In other words, the inverse Laplace Transform of a given function F(s ) is that

function F (/)  whose Laplace Transform is F(s).

There are three main methods of getting the Inverse Laplace transform:

> Laplace Transform tables

This is the most obvious method of finding the inverse Laplace Transform of a function s. 

A copy of the table of Laplace Transforms is presented at the appendix.

> Inversion by Partial fractions

The simplest method of inverting a Laplace-transformed equation is by use of the tables. 

If the function is too complex to find in the tables, we can use the method of partial fractions. 

Use of this method results in a sum of simple fractions, each of which can be inverse 

Laplace-transformed directly from memory or with the aid of the tables. Since the inverse 

Laplace transforms, we can treat each term separately.

'F The inversion integral.

For functions which are not rational fractions, it is necessary to use the inversion integral. 

The inversion integral yields the time function directly. Its main use is for the inversion

of more advanced functions e.g.
1

(s2+a2
etc.

23



2.6 SOME PROPERTIES OF INVFRSF lA PL A C E  TRANSFORMS

❖  Linearity property.

If c, and c2 are any constants while f  (5 ) and f 2 (s) are the Laplace transforms of 

Ft(t) and F2(t) respectively, then 

{cxfi(s )+c2f 2(s)}

= ctL-' { f {s)}  + c2z r '{ /,(,)}

= clFi(t) + c2F2(t)

❖  First Shifting property 

If

r'{/(*)}-̂ (0.
Then

C ' [ f ( s - a ) } = < r F ( t )

*** Second Shifting property 

If

£ " { / ( » ) }  = r(‘).

Then

24



Change o f scale property 

Given that

Then

L-' {/(fa)}
1 „ V= - F
k

❖  Inverse Laplace Transforms o f derivatives 

If

£■'{/(*)}

Then

. - ' ( - O ’ >'F(l)

*»* Inverse Laplace Transform o f Integrals

Then,

n < )

25



•I* Multiplication by s"

Let

L~l { f  {s)} = F (t) and F ( 0 ) = 0 , 

Then,

i"  {>/(*)}

This is to say that multiplication by s has the effect of differentiating F (/) 

If

F (0 )* 0 ,

Then

r ' { s/ ( s)-F (o )}  = r ( / )

❖  Division by s 

If

£ " { /W }  = F ( ') .

Then

That is division by s (or multiplication by —) has the effect of integrating F (t) from 0 to t.

26



♦> The convolution property 

If

L''j f ,(■')} -  F,(<) and r 1 {/, (s)} = F7 (/),

Then,

L ' {/I(•s)/'2(^)} = l>F\{u)F1{ t -u)du = Fx(t)*F2(t)

1.1 COMPUTATIONS OF SOME I.API ACF. TRANSFORMS

With the above background we may now compute the Laplace Transforms of some functions 

that we are likely to come across as we solve our equation. They include:

> Laplace o f ept

L(ep,)= [e~ s,ep,dt 
This can be written as 1

= e {s-p)'dt

For s < k, the exponent on eis positive or 0, and the integral diverges. For s > k, the integral 

converges, thus

L(ep,)= [  e + ^ 'd t  

A*-p)<-e

= 0 + -

s - p  

1
s - p

27



Thus

L ------ ,ss - p
1

>p

For p = 0, we find that

£(!) = --> for s>  0 .

Since the integral

f e (s-p),dt

Exists for s> a, the Laplace transforms exists for all functions f [ t )  satisfying the inequality

\e~s‘ f  (0| < Ce{s-a)l

Where C is a constant. This is to say that /  (t) does not grow more rapidly than Ceal, or that 

f ( t )  is of exponential order, and that

l im e~s' f ( t )  = Q
t-> oo

> Laplace transform o f (sin p t) and that o f (cos p t)
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From elementary calculus,

r ax ■ , e“x (sin tnx-m  cos mx)\e sin mxdx ------------------------------- + c.
a2+m2

Therefore, the Laplace transform of (sin pt)is

L(sin/rf) = j V "  sin ptdt

Which means that;

L(sin p t) =
e 51 (~s sin p t -  p  cos p t)

s2 + p 2 Jo

For positive s, e  sl —> o at t —» oo. Since sin(/>/)and cos [pt) are bounded as t —»oo, the above 

equation now becomes:

. . 1(0-/?) 
Z,(sin pt) = 0 — \ /  

s + p

2 P 2 ,fors>  0 .
s + p

In a similar manner,

§
I  (cos pt) = —------ ,s  > 0 .2 2 S 4* p
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> Laplace transform o f cosh t and that o f sinh at 

L{coshaf}= f  e 5' cosh tdt

= j y  * £ ± ± L d tJ) o

s2 - a 2

In a similar manner we can compute that;

Ljsinhar} =
s2 - a 2
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CHAPTER 3

SOLUTION OF HYDROMAGNETIC STEADY FLOW OF VISCOUS 

INCOMPRESSIBLE FLUID BETWEEN TWO PARALLEL INFITE PLATES UNDER 

THE INFLUENCE OF INCLINED MAGNETIC FIELD

Cl INTRODUCTION

The basic concept describing magnetohydrodynamic phenomena as follows. Consider an 

electrically conducting fluid having a velocity vector V. At an angel a  with the direction of flow 

conditions have been attained. Because the interaction of two fields, an electric field denoted by 

E is induced at right angels to both V and Bsin a  , this electric field is given by

E = V x B sin a .

If we assume that a conducting fluid is isotropic, we can denote its electrical conductivity 

by the scalar quantity cr. By Ohms Law, the density of the current induced in the conducting 

fluid, J is given by J = B sin a.

The Laminar flow of an eclectically conducting fluid through a channel under uniform 

inclined magnetic field is important because of the use of MHD generator, the MHD pump and 

the electromagnetic flow meter. The general model that is normally considered in these studies 

consists of an infinitely long channel of constant cross-section with a uniform static magnetic 

field applied transverse to the axis of the channel. The walls of channel are either insulator, 

conductors depending on the intended application. For example, in the MHD generator and 

pump, the channel cross-section i,s normally circular with c conducting walls.
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There are several people who have looked at hydromagnetic steady flow

equations: Sercif [1956] studied the steady motion of electrically conducting fluid in a pipe under 

transverse magnetic field. Drake [1965] considered the flow in a channel due to periodic pressure 

gradient and solved it by method of separation of variables. Singh and Ram [ 1977] considered 

the laminar flow of an electrically conducting fluid through a channel in the presence of a 

transverse magnetic field under the influence of a periodic pressure gradient and solved it by 

Laplace transform. Ram et al [1984] considered Hall effects on heat and mass transfer flow 

through porous medium. Simonura [1991] considered magnetohydrodynamic turbulent channel 

flow under uniform transverse magnetic field. Kazuyuki [1992] discussed inertia effects in two 

dimensional MHD channel flow. Singh [1998] considered unsteady MHD flow of liquid through 

a channel under variable pressure gradient and solved it by method of Laplace transform. Singh 

[2 0 0 0 ] considered unsteady flow of liquid through a channel with pressure gradient changing 

exponentially under the influence of inclined magnetic field and solved it by method of Laplace 

transform. Kimathi [2001] solved magnetohydrodynanic flow problem by using Laplace 

Transform. Singh [2007] considered hydromagnetic steady flow of viscous incompressible fluid 

between two parallel infinite channel when upper plate is moving and lower plate is held 

stationary under the influence of inclined magnetic field by using method of solution of ordinary 

differential equations. Singh [2007]

In the present paper laminar hydromagntic steady flow of viscous incompressible fluid 

between two parallel infinite plates is considered when upper plate is moving and lower plate is
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held stationary under the influence of inclined magnetic field and the equation is solved by 

Laplace Transform. The changes in velocity profiles has been shown graphically for different 

Hartman numbers at different angels.

3.2 GOVERNING EQUATIONS

The equation of continuity for the incompressible flow is given from equation 1.1.7 as

du dv dxv n
—  +  —  +  —  =  0 .
dx dy dz

Where u, v, and w are components of velocity of the fluid in the x, y, and z directions. The 

equation of motion that describes incompressible flow in each direction is given by breaking up 

equation 1 .2 . 1  and writing it in a form that describes flow in each of the direction as:-

du du du du 1 dp ( O U d2u d 2u )
— + u —+ v —+ w — =---— + V +
dt dx dy dz p  dx ay2 d z 2 J

3.1.1

du du du du 1 dp f d 2v  d 2v h C
u to

+  F>~r U
dt dx

T V “t"
dz p  dy v dx2 d y 2 d z 2 ) P

3.1.2

and

du du du du
—  + u ------h v------1- w— =
dt dx dy  dz

1 dp  
——+ 
p  dz

{ r̂2 2̂ 2̂ 'Nd  w  d  w  d  xv

v d x 2 dy d z 2 , P
3.1.3

Where FX,F  ,FZ are components o f  JxZf s i na  in the x ,y ,z  directions, respectively.
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For simplicity we shall consider a two-dimensional flow. In two- dimensions, equation

3.1.1 becomes;

du dv  

dx dy
=  0 3.1.4

Since the plates are of infinite length, we assume that the flow is only along the x-axis and 

depends on y.

Thus,

3.1.5

Since we have assumed a steady flow, the flow variables do not depend on time. Thus, equation 

3.1.4 and 3.1.5 can be written as

1 dp (  ̂2 O U

p  dx [ax2

1 dp1 _1_ v

(  ̂2 O V
p  dy y dx2

+ -
~s2 ^o  u

+ -a V
3y2

3.1.6

3.1.7

Therefore, substitution of equation 3.1.6 into equation 3.1.7 leads to

n 1 dP0 = ------— + v
p  dx

r d2u A K
p

3.1.8

Whereas combination o f  equation 3.1.5 and 3.1.6 and 3.1.8 yields;
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3.1.9o = I ^ + 5 l
p d y  p

Since there is no component of body force in the y-direction and 

Fx = J  x 5 sin a, Fy + Fz = 0 as v = w = 0 then equations of motion 3.1.8  and 3.1,9become

n 1 &0  = ------— + v
p  dx

( \  o u
dy2

+ J x B  .— —sin a
P

3.2.0

And

__1_ dp 
p  dy

3.2.1

Equation 3.2.0 implies that pressure does not depend on y.

We know from Ohm’s law that the current J  is proportional to the force per unit charge i.e. 

J  = a  E

And

E = U x B sin a

Where U is the fluid velocity along x-axis, which is the direction of fluid flow.

Thus,

J  x B sin a  = a x B sin a  j x B sin a
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= cr [u  ■ B sin a  j B sin a  -  (B sin a ■ B sin a ) U J

Since U and B sin a  are perpendicular vectors, we have

U ■ B sin a = 0

Giving

J x B s in a  = - cjB2U sin2 a

J x B  . <j B2U . 2Hence------ sin a  = ---------- sin a
P P

Consequently the equation of motion 3.2.5 now reduces to

1 dp d2u----— + v—-
p  dx dy

0 = ----—  + v——-7- -  B2u sin2 a

We set out to get the solution of the above equation 3.2.2 using the Laplace Transforms.

3.2.2
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3.3 NON DIMENSIONLIZING

To simplify equation 3.2.2 further, we reduce the parameters in the equation by 

introducing the following non-dimensional quantities;

x t X
5a

With these quantities we shall have;

du _ du du dy' _ v du' 
dy du' dy' dy a2 dy'

Therefore,

d2u _ d du d " v dur
dy2 dy

- f y . ~ dy' a2 dy' _
dy_
dy

_d_ \^du_ 
dy' a2 dy' a

v d2u 
a 3 dy'2

Similarly,

dp _ dp dp' dx' _ pv2 dp' 
dx dp' dx dx a cbt'

And

3.2.9

dp _ dp dp dy' _ pv2 dp' 1 _ pv2 dp' 
dy dp' dy dy a2 dy a a3 dy'
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Hence, substitution of equation 3.3.0 into 3.2.6 leads to

d_l_
dy'

= 0

Whereas combination of equation 3.2.6, 3.2.8and 3.2.9yeilds

„ 1 pv dp' v du oB  v , . ,0 = ----——+ v— — - ------------- wsm a
p  a 3 dx' a 3 dy'2 p  a

3.3.1

For convenience, we shall drop the primes in equation 3.3.1 and write equation simply as:

0 = dp dlu crB2a2 . 2——+
dx dy pv

-wsm a

Or

. dp d2u <jB2a2 . 20 = -----H-----------------wsm a
dx dy2 pv 3.3.2

We may write the above equation as:

dp d2u 2 ■ 2 0 = -  —  H---- 1- - M  sin au
dx dy2 3.3.3

Where

M since = Ba — sin a  = M*
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JLI -  pv M *
Where and is known as the Hartmann number. It is directly proportional to the

where magnetic field B.

We can differentiate equation3.3.3 with respect to x to obtain

0 =
3.3.4

We can therefore see from equation 3.3.4 that

dp _ 
fix constant 3.3.5

Consequently, we can take the ordinary derivative of the equation of motion instead of partial 

derivative.

In the present case, the constant of equation 3.3.5 is zero because we are considering a situation

where the pressure gradient is zero. Therefore, we have



1.4 SOLUTION OF THE EQUATION

We now set out to solve this equation 3.3.6 by Laplace method.

In so doing we shall set out to transform the equation into purely an algebraic equation in 

terms of the Laplace transform of the required solution. Once we have solved the algebraic 

equation for this Laplace transform, the general solution to the original ODE will be obtained by 

performing an inverse Laplace transform. Then using the given boundary conditions, we shall 

find the solution.

The Laplace transform of the first derivative of f ( t )  is given by;

Integrating by parts we have;

lim
p— >co dt

JT e s'u[x,t)dt - m(x,0 )

— su (x ,s )-u (x ,0 )

= su -u

Where u = u[x,s) = l{u(x,t)\
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To find

L

, , du We let v = —  
dt

Such that;

L becomes L

Thus;

= s.Z,{v}-v(x,0)

= s [sT{m} -  w(x, 0 ) ] - w'( x, 0 )

= s2u - sm(x,0 ) - m'( x,0 )

While Laplace transform of u is u 

Therefore equation 3.3.6 now becomes;

s2u - su{0)— u'(0 )-M 2u sin2 a  = 0
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but since we do not know the values of w(0 ) and w'(0 ) we let;

w(0 ) = c, and u \ 0 ) = c2 

And equation (4) now becomes;

s2u -  c,s -  c2 -  M 2u sin2 a -  0

3.3.7

Simplifying yields;

s2u - M 2u sin2 a = c,s + c2

or

u(s2 -  M 2 sin a) = cis + c2

Therefore;

_ C.S + C-,u —----- ------ -----
s2 - M 2 sin«

_ c.s C-.u =----------------- -̂-----------------
s2- M 2 sina s2- M 2sma

3.3.8

3.3.9
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We now get the inverse Laplace transform of the above equation 3.3.9

L '{u} = m

r-l c,.s = c.L-1
s2- M 2 sin2 a]  1 ) s 2- M 2 sin2 a '

= q cosh M sin a (y )

f C2 \ -  ^  r .l M  sin a
[s2 - M 2 sin2 a  \ Msina [̂ 2 - M 2 sin2 a  J

-sinhM sin«(y)

Therefore;

Q
u= cx cosh M  sin a(y) + ------—  sinh M  sin a(y)

M sin a  3 4 0

To insert the boundary conditions we must note that the upper plate is moving with a 

constant velocity and the lower plate is held stationary under the influence of inclined magnetic 

field and therefore ; when

y = - 1 ; u = 0
y = l u = U 3A.\

The above equation now simplifies to;

0 = c, cosh M  sin a - ------— sinh M  sin a
M sin a 3.4.2
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And

U = c, cosh M sin a  + — ——  sinh M sin a 
M sin a 3.4.3

Solving the two equations 3.4.2 and 3.4.3 simultaneously we shall have;

U_ M sin a  
2 sinh M sin a

And

U
c, = -----------------

2  cosh M sin a

The above equation 3.4.0 now becomes;

u =------- —------- (cosh M sin a (y )) +------------------ (sinh M  sin a (y))
2 cosh M sin a  v ’ 2 sinh M  sin a  v

And to simplify it further we shall use the following identities;

sinh 9 cosh a  + sinh a  cosh 9 = sinh (9 + a  )

3.4.4

And

2 sinh 9 cosh 9 = sinh 29
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Therefore the equation becomes;

U sinh(M sina)cosh(A/sina(_y)) + cosh(A/sin<2 )sinha(M sin(y)) 
2cosh(M sin«)sinh(M sin«) 3.4.5

Simplifying further we get;

U sinh[(l + y)(A/ sina )l
u = -------- ~ , ----- -—r-----

sinh(2M sin a )

Therefore;

u sinh[(l + y )(A /sina)] 
U sinh(2M sina) 3.4.6

As expected.
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3.5 THE RESULTING FIGURES

The resulting figures from equation 3.4.6 above are shown below:

FIGURE 1: M=1.0
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FIGURE 2: M=1.5
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FIGURE 3: M=2.0
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3.6 DISCUSSION OF RESULTS AND CONCLUSION

The problem has been solved by the method of Laplace Transforms. Analytic expression for 

velocity of fluid particle has been obtained. Figures 1,2, and 3 are drawn for M=l, M=1.5, M=2 at the

inclinations of 15°,30°,45°,60°,75 and 90°. These results are corresponding with Figures 1, 2, and 3 

drawn for M=l, M=1.5, M=2 at the inclinations of 30°,45°,60°,aw/ 90°on the paper Singh,[2007].

It is evident from the figures that velocity profiles decrease as the strength of magnetic field is 

increased. It is also clear that with the increase of inclination of magnetic field, there is a decrease in the

velocity profile. The velocity at 90° gives us the case of fluid flow under transverse magnetic field as a 

particular case of this problem. The results obtained here can be applied to the designs and operations of 

Magnetohyrodynamic generator, magnetohydrodynamic pump, electromagnetic flow meter and crude oil 

purification.
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APPENDIX

KEY VECTOR IDENTITIES.

The following vector identities have been adapted from R. Dendy (1993),

Let A,B,C and D be vectors. The following identities hold.

A + B = B + A 

A B  = B A  

Ax B = -B x  A

A-(Bx C) = c [ Ax B) = b \ C x A)
A x^B xC ) = B (A -C )-C [A -B )

[Ax B)\Cx D) = [A-C)[B-D)-[A-D)(B-C)

KEY RESULTS FROM VECTOR CALCULUS

Operator: V ------h---- h —
dx dy dz

Gradient: Vt/> = ,

For a vector field: A (x ,y ,z ),

Divergence: V • „
dx dy dz
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Curl: V xA  =

i j k
d d d
dx dy dz

A A A

Where:

A = IAx +jAy +kA2 

V -(V x^) = 0

V x (V x i)  = v ( v ^ ) - V 2̂

For two vector fields: A (x,y ,z) and B [x,y,z)

V -(^xB ) = 5 - ( V x i ) - i - ( V x 5 )

V x ( ix 5 )  = i (V  B )-B (V  ■A') + (B -V ')A -(A -V )B
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Table of Laplace transforms

m f ( s ) so

c c
s

0

ctn c„!
^ +1

0

sin bt b
0

( ^ )

cos bt s
0

(°2 +»2)

eat 1
a

is ~ a)

sinh at a
|a|

cosh at s
|a|

t*2- * 2)

eat sin bt b
a

r( s - a ) 2 +b2

eal cos bt
( s - a )

a
(.? -  a)" + b2

tYi 1 f  *  V
2 U 3J

0

'
t 2 v y

. s j
,-J'o

0

0
,-*'o

S
0

> The transformation are valid for s > s0
< • J
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