

TOWARDS A NATIONAL SPATIAL DATA INFRASTRUCTURE (NSDI): INVENTORY AND EVALUATION OF EXISTING GEOSPATIAL DATASETS AND SYSTEMS IN KENYA

By David Nyangau Siriba F56/7283/2001 ERICANA COLUECT

A thesis submitted in partial fulfillment of the requirements for the award of the degree of Master of Science (Surveying) in the University of Nairobi

> Supervisor: DR. G. C. Mulaku

Department of Surveying, University of Nairobi P.O BOX 30197 Nairobi, Kenya

April 2004

Declaration

This thesis is my original work and has not been submitted for a degree in any other University.

Signed Date 28.04.2009

DAVID N. SIRIBA

This thesis has been submitted for examination with my approval as University supervisor.

Signed ______ Date 28 April 2004 DR. G. C. MULAKU SUPERVISOR

Abstract

In Kenya there are presently about 50 institutions with GIS installations and it has generally been noted that there are duplications of effort in the production of geospatial data. Again, cooperation among these institutions is minimal. In order to realize an effective, infrastructureenabled data sharing arrangement, NSDI in Kenya, an inventory of the available geospatial datasets and systems is needed. From such an inventory, it is possible to determine the capabilities and needs of individual institutions and also to identify specific areas for increased co-operation. A study was therefore undertaken to make such an inventory, determine parameters to use to evaluate datasets for suitability and systems for compatibility and to make the evaluations.

Parameters used to evaluate datasets for suitability and systems for compatibility together with the appropriate evaluation criteria were determined. The dataset parameters included: availability, accessibility, form, completeness, format, co-ordinate system, source scale, and positional accuracy among others, while system parameters included: the operating system, GIS software, data interchange formats, database architecture, Database Management System (DBMS), type of network traffic, data transfer rates, search/retrieve protocol and registration system for the SDI servers. In general, the evaluation of systems was not as elaborate as for datasets. Insufficiency of data collected during the survey limited a complete evaluation of datasets on the basis of coverage, currency, positional accuracy, price and logical consistency, while for systems the limitation was in the computer memory and speed, the database architecture, type of network traffic and rate of data transfer.

Based on the evaluation of datasets, it is concluded that Kenya is about halfway ready for NSDI implementation. This is because about half of the datasets were determined as suitable. The study recommends a number of issues among them: Institutions that do not have a catalogue of their datasets to begin documenting their datasets; particular scales (resolutions) be agreed upon for the development of national GIS framework data; datasets not based on the Arc datum 1960 be transformed to this datum; individual institutions to prepare specifications that will guide them in the procurement of interoperable system components; and finally, for a more complete picture, another study on the other parameters be undertaken.

Acknowledgements

Many people have in one way or another made possible the realization of the objectives of this research, and I take this opportunity to salute them all.

The first acknowledgement is due to my supervisor and Dean, Faculty of Engineering, Dr. G. C. Mulaku for his guidance, right from proposal writing to the final structuring of this research. His comments, criticism, reference material from his own collection and the financial assistance advanced to me are all appreciated. Dr. J. B. Kiema, Dr. S. M. Musyoka and Mr. J. Mwenda are equally acknowledged for their handy suggestions directly or indirectly related to this work. The chairman of the department of Surveying, the entire teaching staff, the students who asked me questions about what I was doing are all acknowledged for introducing me to the Statistical Program for Social Scientists (SPSS), one of the analysis softwares used in this research.

I am greatly indebted to the University of Nairobi who provided me with the scholarship that enabled me to undertake this course.

The over thirty people whom I interviewed will not miss my acknowledgement, because without their co-operation, the data for this research work and observations thereof would not have been possible.

Finally, I thank my parents and brothers for their encouragement throughout this period.

TABLE OF CONTENTS

Cover page	i
	ii
Abstract	
Acknowled	gementsiv
TABLE OF	CONTENTSv
LIST OF TA	ABLESvii
LIST OF FI	GURESviii
	BBREVIATIONSix
	1: INTRODUCTION
	oduction
	tement of the problem
	ectives of the study
	vanization of the thesis
CHAPTER	2: LITERATURE REVIEW
	Spatial Data Infrastructure concept
	ectives of SDI
	a and Metadata
2.3.1	Data
2.3.2	Foundation (core) datasets
2.3.3	Framework data
2.3.4	Metadata
2.3.5	Levels of metadata
2.3.6	ISO/DIS 19115 core metadata
2.3.7	Implementation of metadata
2.4 Tec	hnology
2.4.1	Catalogue implementation models
2.4.2	Standardization and interoperability
2.5 Pol	icies
2.5.1	Privacy and protection of personal data
2.5.2	Liability, integrity and quality
2.5.3	Intellectual property
2.5.4	Commercialization of information
2.6 Inst	itutional framework
2.6.1	NSDI Organization models
2.6.2	Institutional roles

2.7	People	26
2.8	The current SDI situation in Kenya, Africa and the World	27
СНА	PTER 3: METHODOLOGY	30
3.1	Sample design and sample frame	30
3.2	Determining the parameters to be used to evaluate datasets for suitability	
3.3	How to evaluate datasets	39
3.4	Determining parameters to use to evaluate systems for compatibility	40
3.5	How to evaluate systems	48
СНА	PTER 4: RESULTS AND ANALYSIS	49
4.1	The inventory	50
4.2	Demand for datasets	79
4.3	Evaluation of datasets	80
4.4	Evaluation of systems for compatibility	97
4.5	Observations from the study	100
СНА	PTER 5: CONCLUSIONS AND RECOMMENDATIONS	104
REF	ERENCES	106
APPI	ENDIX 1: SAMPLE QUESTIONNAIRE	110
APPENDIX 2: SAMPLE SERVER NODE DESCRIPTION116		

LIST OF TABLES

Table 2-1: NSDI country report summary	29
Table 3-1: Government institutions/departments surveyed	31
Table 3-2: Parastatals surveyed	31
Table 3-3: International/intergovernmental organizations surveyed	32
Table 3-4: Private-sector institutions surveyed	32
Table 3-5: Academic institutions surveyed	32
Table 3-6: Common scales and their uses	37
Table 3-7: ASPRS Class 1 horizontal Accuracy Standard for Large-Scale Maps	
Table 3-8: Evaluation criteria for datasets	40
Table 3-9: Evaluation criteria for systems	48
Table 4-1: Institutional availability of GIS hardware items	77
Table 4-2: Institutional availability of GIS and other related software	78
Table 4-3: Summary of dataset suitability	80
Table 4-4: Mean demand for geospatial data across institutions	81
Table 4-5: Dataset suitability results for foundational datasets	82
Table 4-6: Dataset suitability results for framework datasets	88
Table 4-7: Dataset suitability results for application datasets	91
Table 4-8: File formats supported by GIS software identified in the study	98

LIST OF FIGURES

Figure 2-1: Components of a Spatial Data Infrastructure	8
Figure 2-2: A typical NSDI organization structure	23
Figure 2-3: Education and skills framework for individuals working in NSDI	27
Figure 4-1: Institutions surveyed by category	49
Figure 4-2: Demand for geospatial data across institutions	79

LIST OF ABBREVIATIONS

ANSI	: American National Standards Institute
ANZLIC	:Australia and New Zealand Land Information Council
BIL	:Band Interleaved by Line, image data storage format
BSQ	:Band sequential, image data storage format
CAD	:Computer Aided Design
CEN	:Comité Europeén de Normalization (European Committee for
	Standardization)
COM	:Component Object Model
CORBA	:Component Object Request and Broker Architecture
DBMS	:Database Management System
DCW	:Digital Chart of the World
DNS	:Domain Names Service
EIS	:Environmental Information System
ERDAS	Earth Resource Data Analysis Software
ESRI	:Environmental Systems Research Institute
FDIS	:Final Draft International Standard
FGDC	:Federal Geographic Data Committee
GDI	Global Data Infrastructure
GIS	:Geospatial/Geographic Information System
GSDI	Global Spatial Data Infrastructure
ICT	Information and Communication Technologies
ILWIS	Integrated Land and Water Information System
ISDN	:Integrated Services Digital Network
ISO	:International Organization for Standardization
KARI	Kenya Agricultural Research Institute
KEBS	:Kenya Bureau of Standards
LAN	:Local Area Network
NMA	:National Mapping Agency
NSDI	:National Spatial Data Infrastructure
OGC	:Open GIS Consortium

OLE/COM	:Object Linking and Embedding COM
RSDI	:Regional Spatial Data Infrastructure
SDI	:Spatial Data Infrastructure
SFO	:Simple Feature based on OLE/COM
SQL	:Structured Query Language
TCP/IP	:Transmission Control Protocol and Internet Protocol
WAP	:Wireless Application Protocol
WG	:Working Group
WGS84	:World Geodetic System 1984
XML	:eXtensible Markup Language

CHAPTER 1: INTRODUCTION

1.1 Introduction

Information with a location element (with respect to the earth) sometimes referred to as geospatial information is very vital in the discovery, exploitation and management of earth resources. Such information is used for military applications, construction of physical infrastructures, and also in addressing natural resource mismanagement, environmental degradation, food insufficiency and poverty alleviation. Therefore relevant geospatial information is a necessary input in most decision-making processes, and as Ryttersgard (2001) asserts, as much as 80% of public decisions are spatially based.

For a long time geospatial information was presented on analogue maps. Essentially, maps served three functions: store for information, presenting information and findings and analyzing location distributions and spatial patterns (Kiema, 2001). A user of geoinformation ideally needed a map in order to plan and make any decisions, but with the information revolution, users of geoinformation now have developed new demands for digital geospatial information. These demands have to be satisfied by the producers of geospatial information, by producing geospatial information in digital form. These demands can be summarized as follows: people want to have the latest information, want as much as of pertinent information as possible, want to have quick access to information and finally, they want to efficiently process the information.

Digital geospatial information has had widespread application since the beginning of digital mapping. This has been so because digital mapping offers the following benefits: ease of revision, ease of integration, provides greater data compaction capability; access times are improved among others. Alongside the development of digital mapping, was the development of Geospatial (or Geographic) Information Systems (GIS). GIS are different from digital mapping systems both in principle and in practice. Digital mapping systems offer tools for digital drawing but lack data manipulation and data querying capabilities. GIS on the other hand offers tools for manipulation and querying.

ł

The Information and Communication Technologies (ICTs) (together with the benefits of digital mapping) have accelerated the development and establishment of GIS within Kenya and of course in the rest of the world. The accelerated development of these technologies can be attributed to the following reasons among others: increasing prominence of spatial data handling within organizations, robust, easy-to-use and relatively inexpensive tools, data growth, ubiquitous positioning and tracking and navigation capabilities of the Global Positioning System (GPS) as well as the increasing demand for geospatial information. Because of these and other reasons, there is a paradigm shift: from mapping to geoinformation management. The following quotation will probably qualify this observation.

"Two thirds of an engineer's time is spent re-entering or recreating information, managing products of plant configurations, searching for information, seeking the record of the design process of what actually occurred" (Olsen, 2001).

It has also been noted that the producers of geospatial information do not have arrangements to share information in what McLaughlin and Nichols (2001) refer to as a familiar phase that many countries go through in their GIS development. This has led to duplication of efforts. It cannot be gainsaid that achievements have been made in the use of observation data and information management systems within organizations. The main challenge that remains however is how to streamline, integrate and otherwise improve data sharing even as data proliferates and new technologies emerge. The need for streamlining, integrating, sharing information and use of standards particularly for spatial information has come up because of the need to avoid wasteful duplication of efforts, promote effective and economical management of resources. The impetuses for sharing information especially geoinformation came up as a result of the growth of data, the widespread use of GIS and networking technologies. The network or infrastructure for sharing, integrating and streamlining data can be realized within a local authority, a province, a nation, a region or the entire world. Within a nation, a region and the entire globe, such infrastructures are respectively called National, Regional and Global Spatial Data Infrastructures (NSDI, RSDI, GSDI). The idea of a data infrastructure as a mechanism for providing a more effective access to geospatial data first emerged in the early 1980s in Canada (Groot and McLaughlin 2001). Since then, many countries have established or are in the process of establishing a National Spatial Data Infrastructure (NSDI), for example, the United Kingdom (National Geospatial Data Framework), Australia (Australia Spatial Data Infrastructure) and the USA (American National Spatial Data Infrastructure). In principle, this concept has evolved from earlier data sharing and programme co-ordination efforts to one that encompasses the sources, systems, network linkages, standards and institutional issues involved in delivering spatially related data from many different sources to the widest possible groups of potential users.

1.2 Statement of the problem

"Through the workshop experience, it has become clear that data for NSDI originates from various organizations. There is therefore need of an inventory of the available data and associated information as well as the projects in progress. This would help in linkage and co-ordination of data preparation and avoid duplication of effort".

This is one of the recommendations of the first Kenyan NSDI workshop held at Survey of Kenya on 12th November 2001 (Survey of Kenya, 2001). The need to have co-coordinated geospatial information systems in Kenya was addressed as early as 1992 (KARI, 1992), and organizations, which had installed GIS units included the United Nations Environmental Programme (UNEP) headquarters in Nairobi, the Department of Resource Surveys and Remote Sensing (DRSRS), the Regional Centre for Mapping of Resources for Development (RCMRD), the Kenya Wildlife Services (KWS), with the UNEP as the pioneer organization. Though an operational Kenyan National Spatial Data Infrastructure does not exist as yet, the said NSDI workshop set the stage for its establishment.

In Kenya, there are many players in the geoinformation industry and they all have diverse interests and obligations but unfortunately they are not co-ordinated. As Kiema (2001) rightly indicated, this is mainly because the basic information for planning is lacking or is not yet compiled in a comprehensive, systematic, easily accessible manner. Partnerships between

public and private geoinformation sectors are lacking and the level of access to information and communication technologies is still very low.

The best way forward for Kenya therefore is to establish a network for sharing geospatial information and resources but in a systematic manner. The systematic phased approach ensures that the network is developed, tested, implemented and improved. In addition, it ensures that the mistakes experienced in other countries are not repeated (Mulaku, 2000). The basic steps in setting up the infrastructure are as follows (Mulaku, 2002a):

- (i) Setting up an institutional framework. This entails setting up committees and Working Groups (WG) that will define the policies which will guide the development of NSDI, for example appropriate legislation, standards, education, cost recovery, institutional agreements and relationships. This is the stage at which the structure model and the lead agency of the NSDI are agreed upon. Creation of awareness of the NSDI concept in the government and amongst the stakeholders is necessary when setting up the institutional framework.
- (ii) Doing an inventory of datasets and systems. This involves determining who has what datasets and what GIS installations and their characteristics such as state, quality and interoperability etc. The inventory of datasets and systems entails making use of existing capabilities such as ISO/DIS 19115-metadata standard to identify datasets. From the inventory it will be possible to identify and recommend advanced capabilities required to implement the full suite of infrastructure capabilities. The identified datasets need to be evaluated to determine whether they can contribute to the framework or later versions of the framework.
- (iii) Building of metadata catalogues. Metadata (data about data) are built for all the datasets already in the inventory in (ii) above. Metadata includes description of data content, where it is, the areal coverage, its accuracy, currency, restrictions on use etc.
- (iv) Setting up of a clearinghouse, which should be Internet based. A clearinghouse is a system that facilitates the discovery, evaluation and downloading of digital geospatial data. It consists of a number of interoperable metadata servers set up by

all data producers on the Internet. The clearinghouse enables one to discover who has what, a dataset's fitness for use for a given application and how to order for it.

In the first NSDI workshop, the Survey of Kenya (SoK), a department in the Ministry of Lands and Settlement was appointed as the lead agency. In connection with this, a government policy paper on information and technology expected to provide for NSDI is underway (ibid.)^{*}. The problem in this study was therefore to determine what datasets and systems are already available, and secondly, how suitable for inclusion in the NSDI and how compatible these datasets and systems are respectively.

1.3 Objectives of the study

To address these problems, the research was to be guided by the following objectives.

- Carry out an inventory of geospatial datasets and significant geoinformation systems in Kenya.
- (ii) Determine the parameters that one can use to evaluate the suitability of a data set for inclusion in a NSDI.
- (iii) Determine the parameters that can be used to evaluate the compatibility of a system with others in NSDI.
- (iv) Evaluate the data collected in (i) in view of (ii) and (iii) above.
- (v) Draw conclusions and make appropriate recommendations.

1.4 Organization of the thesis

This thesis is organized in five chapters. The introduction to this thesis is given in chapter one; chapter two presents the literature review relevant to this study. Chapter three outlines the methodology of the study while chapter four gives the results and analysis of the study. The conclusions and recommendations are given in chapter five, the final chapter.

In the same book, article (previously mentioned)

CHAPTER 2: LITERATURE REVIEW

2.1 The Spatial Data Infrastructure concept

Spatial Data Infrastructure (SDI), alternatively referred to as Geospatial Data Infrastructure (GDI), is a combination of technology, institutional arrangements, policies and people that enable the discovery, evaluation, access and application of geospatial data by all users from all sectors of the economy, plus the general citizenry (Mulaku 2002a).

The term *National Spatial Data Infrastructure* was first coined by Professor John McLaughlin of the University of New Brunswick, Canada, in his conference paper of 1991 (McLaughlin, 1991).

The challenge that users of geospatial information were not aware of the existence of data and that they had no idea whether a certain dataset could meet their application requirements, led to a situation where organizations duplicated other organizations' data collection efforts. Some geospatial data themes for an area were collected again and again at great expense, with possibilities of gaps. This was the basis for the development of the SDI concept. SDI initiatives are intended to remedy this situation. The SDI concept has evolved from earlier data sharing and programme coordination efforts to one that encompasses the sources, systems and network linkages, standards and institutional issues. SDI is a growing data resource to which data producers can contribute, it is therefore envisioned that SDI will continue to evolve and improve. SDI can also help users with various applications, for example, tracking ownership of public land, management of watershed data by a jurisdiction beyond its boundaries, a regional transportation planning project, etc. The SDI capabilities enable documentation of all types of geospatial data such as local scientific or engineering projects, and environmental monitoring.

When SDI is considered at the national level, it is called a National Spatial Data Infrastructure (NSDI), a strategic national resource. If the concept is extended across international boundaries to a region or continent, it results in a Regional Spatial Data Infrastructure (RSDI). Further extension involving the entire globe, it results in a Global Spatial Data Infrastructure

(GSDI) (Mulaku, 2002a). However, GSDI can only be realized by completing NSDI's or RSDI's around the globe (Clarke, 2001).

2.2 Objectives of SDI

SDI is based on the simple fact of taking advantage of available geospatial data as opposed to having to develop the data separately by surveys. However, the choice between the two options will require one (user) to take into account the timeliness, the cost of obtaining and the reliability of the available data. Generally, the primary objective of NSDI is to ensure that users are able *to acquire*, *at the right time*, *complete* and *consistent datasets* of the *highest quality*. The specific objectives of SDI include the following.

- (i) Improve planning and decision-making by ensuring availability of geospatial data at the right time and at affordable cost.
- (ii) Ensuring adequate, complete and consistent datasets.
- (iii) Maximizing the data producers' returns on investment.
- (iv) Reducing waste by producing data and using it many times.

The anticipated benefits of SDI (FGDC, 1995) include the following.

- Reduced expenditure on data.
- Increased ease of obtaining and using data collected by others.
- Increased number of customers for data products linked to the SDI, from professionals to the average citizenry.
- Improved recognition of programmes.

The main components of SDI as can be inferred from the definition of SDI, include the following (Douglas, 2001):

- 1. Data and Metadata
- 2. Technology
- 3. Institutional framework
- 4. Policies
- 5. People

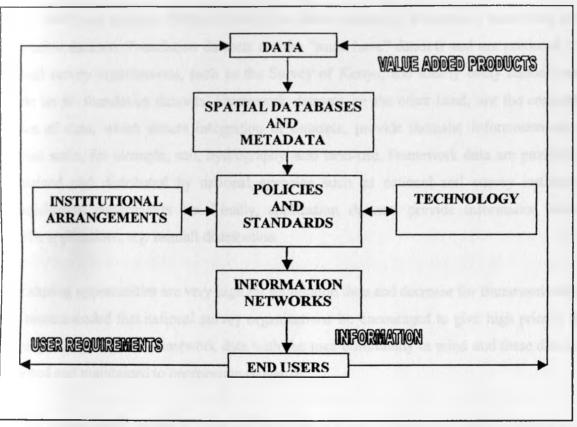


Figure 2-1: Components of a Spatial Data Infrastructure

2.3 Data and Metadata

2.3.1 Data

Data is actually the main subject of the SDI concept. A dataset within the geoinformation industry is considered as a smaller grouping of data, which though limited by some constraints such as spatial extent, or feature type is physically located within a larger dataset. Theoretically, a dataset may be as small as a single feature or feature attribute contained within a larger dataset. A hardcopy map or chart may be considered a dataset (ISO, 2001). Core and framework datasets are basic consistent sets of such digital geospatial data that provide:

- (i) A geospatial foundation to which an organization can add detail and attach attribute information.
- (ii) A base on which an organization can accurately register and compile other themes of data such as soils, vegetation or geology.

(iii) Orientation and link to results of an application to the landscape.

Groot (1997) and Mulaku (2002a) classify geospatial datasets as foundation, framework and application datasets. Foundation datasets are the "must have" datasets and are produced by national survey organizations, such as the Survey of Kenya, and ideally every nation must decide on its foundation datasets. Framework datasets on the other hand, are the common themes of data, which ensure integration of datasets, provide thematic information on a national scale, for example, soil, hydrography, and land-use. Framework data are produced, maintained and distributed by national agencies such as national soil survey institutes, meteorological departments etc. Finally, application datasets provide information about specific applications, e.g. rainfall distribution.

Data sharing opportunities are very high for foundation data and decrease for framework data. It is recommended that national survey organizations be encouraged to give high priority to defining foundation and framework data with the user community in mind and these data be produced and maintained to appropriate standards.

Overall, the practical benefit of core and framework data is appreciated when updating and sharing of geospatial data with other users. Core data enhances interoperability at different levels: across borders (between different jurisdictions), across sectors (between different sector based applications), across types (between vector and raster data) and overlaps (same features from different sources and processes). To realize such interoperability, it will require technology (technological interoperability), adoption of a common concept of core data (semantic interoperability) and of course, the political support that will help resource the necessary key implementations.

2.3.2 Foundation (core) datasets

The foundation data include the following (Mulaku, 2002a):

- Geodetic control
- Digital Elevation Models (DEM)
- Orthoimagery
- International and administrative boundaries

- Topographic maps
- Gazetteers (official geographic names)

The basic characteristics of foundation data are that they have high re-use value, with the Global Map for GSDI as the best example. Foundation data with defined content and schema specifications enhance interoperability, which in turn enhance the sharing of geospatial data thereby reducing data development costs between users.

To develop core data, various datasets provided by many users such as engineers, urban planners and others must be integrated. At the national level, common spatial data are often defined through community or national agreements on content. In general, the development of core data and indeed the SDI is a collaborative effort. The reasons for developing core data in summary are as follows.

- (i) Reducing organizational expenditure on basic geospatial data considering the insatiable need for such data.
- (ii) Some organizations cannot afford to collect and develop basic geospatial data.
- (iii) Data collected by different organizations are incompatible and information needed to solve cross-jurisdictional problems is often unavailable.

2.3.3 Framework data

In the development of framework data, consensus is required at various levels, which include community, national, regional and global. For example, in Australia, Canada, German, Japan, UK, USA, national framework data have already been selected, of course these vary from country to country. However, candidate national framework data include the following (Douglas, 2001; EIS-Africa, 2001; Mulaku, 2002a).

- Transportation
- Hydrography
- Land cover/ land use
- Cadastral data
- Soils

At national levels, framework data categories may differ, but to enhance interoperable applications across jurisdictions and across disciplines, the datasets must be defined in a common way. Such a definition is necessary because users of geospatial information will of necessity require different classification schemes. If these classification schemes are defined using a consistent set of rules, then the ability to map one classification to another and retain the meaning will be greatly increased. The ISO 19109 (Rules for application schema) is an international abstract model (standard) for defining specific application schemata i.e., developing principles for classifying geographic objects and their relationships and how to map them to an application schemata (ISO/TC 211, 2003).

Even after one conforms to the rules for classifying geographic objects, the actual definition of specific application schemata needs to be standardized within a given application domain. Therefore a methodology for creation of geographic object, attribute and relationship catalogues need to be standardized as well. ISO 19110 (Feature cataloguing methodology) is an abstract model intended to standardize the methodology for creating objects, attributes and relationship catalogue (ibid).

2.3.4 Metadata

The word *metadata* shares the same Greek origin as the word metamorphosis. 'Meta' simply means change and metadata, or data about data describes the origins of and tracks the changes to data. Metadata is the term used to describe the summary information or characteristics of a set of data. This very general definition includes an almost limitless spectrum of possibilities ranging from human-generated textual description of a resource to machine generated data.

The uses of digital geospatial information and geospatial information systems have expanded their application beyond conventional geoscience fields. What is common is that geospatial data continue to be created and stored, but often not well organized and documented. Therefore, there is need to document the data for future use, to be accessible to as a wide public domain as possible and to be evaluated for suitability for particular applications. The following are the significant reasons for documenting data (metadata).

- i. Metadata helps organize and maintain an organization's investment in data and provides documentation of existing internal geospatial data resources within an organization (inventory).
- ii. Permits structured search and comparison of held geospatial data by others (catalogue).
- iii. Provides end-users with adequate information and its use in an appropriate context thus avoiding misuse of the data (documentation).
- iv. Collection of data builds upon and enhances the data management procedures of the geospatial community.
- v. Reporting of descriptive metadata promotes the availability of geospatial data beyond the traditional geospatial community.
- vi. Data providers are able to advertise and promote the availability of their data and potentially link to online (e.g. text reports, image web mapping and e-commerce) that relate to their specific datasets.

Effective use of geospatial data is inhibited by poor knowledge of the existence of the data, poorly documented information about the datasets and data inconsistencies. Once metadata is created, geospatial data can be used by multiple software systems for different purposes.

2.3.5 Levels of metadata

Library catalogues represent an established variety of metadata that has served for decades as collection, management and resource discovery tools. A map legend is one representation of metadata containing information about the publisher of the map, spatial references, and the map scale among other items. Metadata are also those types of descriptive information applied to a digital geospatial file. In some instances, one may need less data and more description about a dataset; this simply means that metadata can exist at different levels of abstraction. These include (ISO, 2001) dataset series level (e.g. map series), dataset level (e.g. describing characteristics of a photographic image), feature type level (e.g. describing attributes and class characteristics of similar objects in a dataset) and finally, instance level (e.g. describing characteristics specific to instances of an object appearing in a database, for example a specific road). Therefore metadata should vary according to the purpose and scope

and the distinction between core (discovery), exploration and exploitation metadata, which are the levels of metadata.

Core metadata is the minimum information necessary to provided the users with an effective service and access to datasets. The 'core-metadata' level is usually sufficient for data discovery, high-level evaluation for fitness for purpose and eventual access to the data and/or data provider. Usually the "what, why, when, who, where and how" questions about a dataset are answered. Exploration metadata on the other hand, provides sufficient information to enable the inquirer to ascertain that data fit for a given purpose exists, to evaluate its properties, and to reference some of the contact for more information, while exploitation metadata includes those properties required to access, transfer, load, interpret and apply the data in the end application where it is exploited (Douglas, 2001).

Consistency in metadata content and style is recommended to ensure that comparisons can be made quickly by data users regarding the suitability for different uses. Consistency in content and style can only be realized if the user community adopts similar conventions. This is possible through standardization.

Three main metadata standards exist (or are under development) that are of broad international scope and usage (ibid). They provide detail for all levels of metadata mentioned above. The standards are:

- The content standard of Digital Geospatial Metadata of the United States of America's Federal Geographic Data Committee adopted in 1994 to support the development of NSDI.
- European's CEN (Committee Europeen de Normalization) a pre-standard adopted in 1998. (CEN-TC/287 metadata standard).
- iii) The ISO/FDIS 19115 standard on metadata, in its final stage of development.

Metadata generally provides information on sources, data quality, and spatial extent, general content, production processes and responsibilities. The stated metadata standards define

extensive sets of metadata elements; however during implementation, typically only a set of metadata elements is used; it is essential that a basic number of metadata elements is maintained for a dataset, the core metadata.

2.3.6 ISO/DIS 19115 core metadata

A metadata entity set is a set of packages, each of which contains one or more entities. According to ISO/DIS 19115, the core metadata should contain the following packages, which have mandatory (m), conditional (c) and optional (o) entities.

- (i) Dataset title (m) e.g. Exploration Licenses for Minerals
- (ii) Dataset reference date (m) e.g. 199208 (year, month).
- (iii) Dataset responsible party (o) e.g. Dept. of Primary Industries & Resources
- (iv) Geospatial location of the dataset (c) e.g. Location name
- (v) Dataset language (m) e.g. English,
- (vi) Dataset character set (c) e.g. 16 bit Universal Character Set (UCS2)
- (vii) Dataset topic category (m) e.g. Environment
- (viii) Spatial resolution (o) e.g. equivalent scale 1/5000
- (ix) Abstract describing the dataset (m) i.e. the summary
- (x) Distribution format (o) e.g. DXF
- (xi) Addition extent information for the dataset (o)
- (xii) Spatial representation (o) e.g. vector
- (xiii) Reference System (o) e.g. WGS84
- (xiv) Lineage statement (o) i.e. source data history
- (xv) On-line resource (o) e.g. http://www.pir.sa.gov.au
- (xvi) Metadata file identifier (o) e.g. XML version 1.0
- (xvii) Metadata standard name (o) e.g. ISO 19115
- (xviii) Metadata standard version (o) e.g. FDIS
- (xix) Metadata language (c) e.g. English
- (xx) Metadata character set (c) e.g. UCS2
- (xxi) Metadata point of contact (m) e.g. Dept. of Primary Industries & Resources
- (xxii) Metadata date stamp (m) e.g. 19920803 (year, month, date)

2.3.7 Implementation of metadata

Creating metadata is like library cataloguing, except that the creator needs to know more of the scientific information behind the dataset in order to properly document them. Each participating organization in the NSDI should generate its own metadata. Initially, this should be informal, unstructured documentation that does not need rigorous fully structured formal metadata. After this, the organizations should consider the use of more complex systems as they realize the benefits of metadata and as they gain greater data holdings and start to provide broader access of their data. This will start with basic audit of their data holdings that will alert them to the vast wealth of data they posses and where it is being replicated or improved across the organization.

Three forms of metadata should be recognized and supported in systems. These are: the implementation formats (within a database or software system), the export or encoding formats (a machine-readable format designed for transfer of metadata between computers) and lastly, presentation formats (format suitable for viewing by human beings). By recognizing the connections between these dispositions of metadata, one can build systems that support mission requirements, standard encoding for exchange, and permit many "report" views of the metadata to satisfy the needs and experience of different user constituencies.

The cXtensible Markup Language (XML) provides two solutions for this metadata problem. First, it includes a capable markup language with structural rules enforced through a control file to validate a document structure. Second, through a companion standard (XML Style Language, or XSL), an XML document may be used along with a style sheet to produce standardized presentations of content, allowing the user to shuffle field order, change tag names, or show only certain fields of information. Used together XML and style sheets allow for a structured exchange format and for flexible presentation. Thus, a metadata entry can be rendered in many ways from the same, single structured encoding (Douglas, 2001).

2.4 Technology

With regard to SDI, technology includes the hardware, software and networks or simply the clearing house and technical standards that make possible the discovery, evaluation, access and application of geospatial data.

The data, people, tools and processes used to build information products are collectively referred to as an information system. In cases where multiple stakeholders are involved, a more precise term used is information network (WCMC, 1996). A clearinghouse as defined by FGDC (1995) is a system of software/hardware and institutions necessary to facilitate the discovery, evaluation and access of digital geospatial data. It consists of a number of servers on the Internet that contain information about the available digital geospatial data. A clearinghouse is an example of a client-server architecture. The server machines hold metadata and clients request information about the available geospatial data by visiting the server nodes, usually through a web browser. In ideal cases, the server not only holds the metadata but also provides a link to the dataset itself. Servers are usually installed at providers, such as National Mapping Agencies (NMA) and private mapping organizations at different organization levels.

Major components of computer networks (Aaron, 1993) are generally grouped as facilities and devices. Facilities are also referred to as communication channels, links or lines. They include telephone lines, coaxial cables, microwave links, satellite channels and optical fibers. Each of these physical media of course has many interesting characteristics in terms of its ability to provide for communication. Devices used to construct a network are often referred to generically as nodes. Sometimes nodes are distinguished by their functions. Network functions include switching, routing, flow control, speed and code conversion, security, back up, failure monitoring and accountability. Data sharing and function sharing are the motivations behind the implementation of a clearinghouse.

Once an organization has documented its data, the next challenge is how to make accessible their datasets and metadata. Whereas the datasets may not be necessarily available because of copyright or for economic reasons, the metadata should be always available because in a way It advertises what geospatial datasets are available. The metadata elements are stored in and served through a user-accessible catalogue. Nowadays a catalogue is a virtual library's critical element to its navigation and use, and so it is for geospatial data. Support of a discovery and access service for geospatial information is known variously within the geospatial community as catalogue services (Open GIS Consortium, OGC), Spatial Data Directory (Australian Spatial Data Infrastructure) and Clearinghouse (US FGDC) (Douglas, 2001).

As a recapitulation, the clearinghouse is based on the principle of distributed systems. A distributed system is a computer system in which resources (in this case, the metadata catalogues) reside in separate units connected by a network, but presents to the user a uniform computing environment. In order to achieve interoperability between these independent metadata catalogues, three things must be put in place and these are (ibid)

- (i) Use of common descriptive vocabulary (common metadata standards)
- (ii) A common search and retrieval protocol
- (iii) A registration system for servers of metadata collections.

2.4.1 Catalogue implementation models

There are several models where catalogue services might be installed within or among organizations. The approaches identified by Douglas (2001) are:

- a) Consortium approach. Here a single metadata catalogue is built and operated at one location and is shared by multiple organizations with a common discipline or geographic context. This model works well where there are personnel and computer access constraints and therefore a shared service extends outreach. This is recommended for government institutions. This approach encourages collaboration between participants, however the task of managing the complexity in this model is enormous.
- b) Corporate (organizational) approach. All metadata are forwarded within an organization to a single service at which time the corporate issues of quality, publication, style and content may be evaluated. This model is well suited to

organizations that may be restricted to providing a single public access computer for security reasons.

c) Work group (departmental). The catalogue service is established at each department within an organization where the data are collected, documented and served. This approach ensures high degree of synchronization between the data and its metadata.

The corporate approach is recommended because this approach places emphasis on individual organizations. This approach also increases capacity for data sharing, improves access to information and there is more informed decision making.

The above approaches assume that access to computers and communication networks is the norm rather than the exception. However, in situations where this is not the case, the following alternative approaches can be implemented.

- d) Paper catalogues, where organizations and clientele have a limited access to computers or networks. Distribution is through public libraries and organizations interested in using spatial data in decision-making.
- e) "Mirror" catalogues, where a crawler or harvester program retrieves and indexes metadata from other sites into a regional or replicate index. This approach is handy where Internet services are present and available to the public but network bandwidth within the region in question is limited.
- f) CD-ROM or DVD approach. The CD ROM or DVD media with searchable metadata (and perhaps data) are used. This approach is suitable in environments where both data providers and clients have access to computers but not to reliable networks.

In the event that (a), (b), (c) are possible, the servers must be directly connected to the Internet and they must be interoperable. Interoperability is only achieved if two obstacles are overcome, and these are technical and semantic non-interoperability (Harrison, 2002). Technical non-interoperability is where different kinds of processing systems from different vendors do not work well together, while semantic non-interoperability is where different data providers (groups) do not define features, structures and their metadata the same way.

2.4.2 Standardization and interoperability

By definition, standards (ISO, 2003) are documented agreements containing technical specifications or other precise criteria to be used consistently as rules, guidelines or definitions of characteristics, to ensure that materials, products, processes and services are fit for their purpose. Standards can be grouped into three broad categories (Mulaku, 2002b); firstly, official standards, created and published by authorized national or international standardization bodies such as the International Organization for Standardization (ISO) and the Kenya Bureau of Standards (KEBS). Secondly, legal standards are created by national or international or international law, for example, the international law of the sea and cadastral survey standards. Finally, De-facto standards are often created by industry in promotion of commercial interests and are widely adopted by others for example, the DXF (Drawing Interchange Format).

The ISO 10163, also known as ANSI Z39.50 is the search and retrieval protocol used for metadata catalogues. This standard was initially used in the library community for accessing virtual catalogues. Apart from this particular technical standard, SDI standardization is required in the following areas among others: reference systems, data models, data dictionaries, data content, data quality, data transfer and metadata. Standards provide a standardized way of describing geoinformation, and a standardized method for accessing, transferring and updating information, all independent of any specific computer.

Foundation and framework data, systems interoperability and standardization are the key concepts in the integration of various kinds of information stored differently and in different depositories. According to Thanassis (2001), interoperability is absent in spatial data handling because of:

- i) Incompatible hardware/software products.
- ii) Inadequate data formats.
- iii) Semantic misconceptions.
- iv) Heterogeneous data models.

Heterogeneous hardware and software products today characterize the computing world and are utilized in distributed systems environments. A distributed system is a computer system in

which the resources reside in separate units connected by a network, but which present to the user a uniform computing environment (Lee and Christensen, 1999). Using component technology and well-defined standards is the only way to make this new environment work. Standards that have been defined for implementing object and component solutions include Microsoft's Common Object Model (COM/DCOM/COM+), the Object Management Group's Common Object Request Broker Architecture (CORBA) and Sun's Enterprise Java Beans (EJB) (Kirby, 1999). COM is the widely used component software; it provides reusable, client and server components. COM is not a programming language but a binary-level specification that describe how a series of components, which are possibly written in different programming languages by different vendors can communicate. The ability of disparate components to communicate is referred to as interoperability (Deitel et. al., 1999).

2.5 Policies

SDI policies include official statement of ideas on spatial data management. ANZLIC (Australian and New Zealand Land Information Council) policy statement (ANZLIC, 1999), for example, addresses issues like public access to geospatial information, data privacy and security, copyright, liability, sharing, cost recovery and quality among others. These issues are briefly discussed below.

2.5.1 Privacy and protection of personal data

With the proliferation of information systems, sometimes Geographic Information Systems (GIS) hold personal data. Personal data is any information related to an identifiable or identified person. The information may include tax, land records, data on residence etc. In some cases, this data may be incorrect or revealing a lot of private information, and the individual's right to privacy is a constitutional right. Privacy and protection of personal data is needed for an individual's social and political freedom. It includes confidentiality protection in GIS databases versus enabling public access to spatial data, personal integrity data and politically sensitive data. Policy for restrictive disposal and limited access to spatial data should be implemented. Foote (2000) suggests that the use of encryption like postal codes, to some extent addresses this issue.

2.5.2 Liability, integrity and quality

Geospatial information is sometimes used beyond their original intended purposes and this can cause either social or economic harm (ibid.). The harm could be due to errors, or due to unintended and inappropriate use. Therefore, accountability for the accuracy and reliability for such information as stored in a database, sold or issued to the public (user) must be defined. The use of disclaimers as means of clearing producers of liability in such a circumstance is only limited, therefore liability and the relationship between the data producers and users of value added information must be clearly stated, for example Videnic (2003) suggests that specifications for the reliability of the spatial datasets be expressed in a special contract.

2.5.3 Intellectual property

Intellectual property refers to creations of the mind and is divided into two categories: industrial property and copyright. Industrial property includes inventions (patents), trademarks, industrial designs among others, while copyright is an exclusive right to publication, production and sale of the rights to literary works; it includes literary and artistic works such as novels, poems and plays (WIPO, 2002). Intellectual property rights are rights to financial benefits from and control of distribution of non-tangible property that is as a result of creativity. The complexity of copyright issues is likely to hinder the popular use of geospatial information, even though it can be publicly accessed. Intellectual property rights in geoinformatics can be claimed via the following ways:

- a) Computer programs (software) are intellectual works and must therefore be copyright protected. Software piracy affects its authors, producers, end-users and others. Piracy demotivates creativity of authors and makes producers lose due to unrewarded investments in software development process and end-users have to deal with high prices.
- b) Databases can be copyright protected if they are original creations and if they represent intellectual work.
- c) Licensing say access and use of a database.
- d) Patenting hardware products. A patent is an official document giving the holder the sole right to make, use, sell or license a discovery and prevent others from imitating it.

2.5.4 Commercialization of information

Commercialization of public information is a serious issue because government organizations will have unfair competition with their private counterparts. Unfair competition will come about when such public bodies use benefits inherent in their status to compete with private agencies. The competitive advantage may be due to secure public finding, tax exemptions, legal positions and public image (McLaughlin and Nichols, 2001). Commercialization of public information should be addressed because such information has already been paid for. In commercialization, the cost recovery approaches available include:

- Free
- Partial production cost recovery (subsidized)
- Production cost recovery
- Market price (Profit making)

Overall, these and more policy issues must be addressed in the national information policy as the spatial data market expands and within it a culture of information sharing and cooperation should be encouraged.

2.6 Institutional framework

Institutional partnerships are basic to an effective SDI; in fact it is generally acknowledged (WCMC, 1996; EIS, 2001) that the greatest challenges to the development of any information system or SDI for that matter are more institutional rather than technical. Therefore, during the establishment of NSDI questions that must be addressed include:

- (i) Who is to be involved?
- (ii) How is the NSDI to be organized?
- (iii) Can any one body or organization be in "charge" or take a lead role? If so, how is real progress to be realized without continuous 'tacking' to suit the persuasions of individual organizations or groups?
- iv) What is the role of the private sector?
- v) What are the appropriate measures of success?

The main issues to be addressed under institutional framework include the NSDI organizational structure, co-ordination and capacity building. The NSDI can typically be considered as a 3-tier framework (as in figure 2-2) consisting of the executive committee, the steering committee and the Working Group (Survey of Kenya, 2002).

- (i) The Executive committee; members are the Directors of the main stakeholders. The main function of this committee is to discuss and authorize what is discussed in the Steering or Operating committee and the Working Groups (WG).
- (ii) The Operating committee. The members of this committee are heads of sections dealing with SDI issues from each stakeholder. The functions of this committee are: to assign tasks to Working Groups, conclude tasks assigned to Working Groups and report to the executive committee.
- (iii) The Sub-Committees (or Working Groups). These are technical task forces. Membership is drawn from experts in each area from each stakeholder. their main function is to make recommendations on given terms of reference to the steering committee.

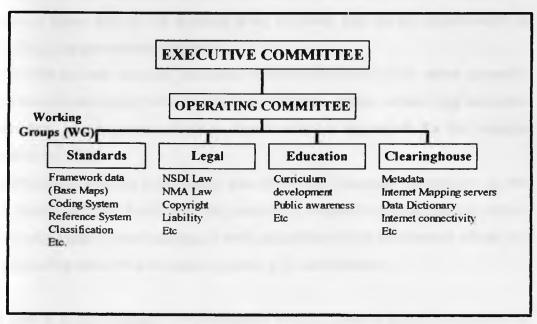


Figure 2-2: A typical NSDI organization structure

Rackham and Rhind have shown that in the development of the UK's NSDI, the National Geospatial Data Framework (NGDF), most of those involved in the board were largely from the public sector with a small number of private sector bodies (Rackham and Rhind, 1999).

2.6.1 NSDI Organization models

Free participation can only be influenced by the kind of NSDI organizational structure selected. Rackham and Rhind suggest four organization models.

- (a) NSDI as a commercial body in which those who pay fees control the agenda. This model has the advantage of involving the private sector directly and permits normal contracting of work to be carried out. However, this model restricts membership and undermines the principle of user involvement in the public domain
- (b) NSDI composed of primary data producers, for example, government departments and agencies with similar government support. The board members would pay an annual subscription and participate in creating strategic policy. Commercial members would then be drawn from the business community and would be expected to pay an annual subscription. Commercial members' contribution would be at the structural and technical rather than at the strategic level, however, this has the disadvantage of excluding non-government supporters.
- (c) NSDI with a single structure, consisting of representatives from the entire geospatial information community, who include data producers, system vendors and end-users. From this, a management board is elected which is responsible for the strategic direction of NSDI.
- (d) Identifying an existing organization that deals with geospatial information as the coordinator of NSDI. Funding in this structure is supposed to come from all parties. This would enable commissioning of work rather than relying on voluntary efforts, but this doesn't address the concerns expressed by the user fraternity.

The NSDI with a single structure is recommended because there is direct involvement by representatives from the entire geospatial information community. However, there are other equally successful NSDIs, which are not modeled on the Rackham and Rhind model, for example, the United States of America. Some of the differences are rooted in national

differences in government structure, culture and the existing role of the private sector and the status quo (ibid).

2.6.2 Institutional roles

To ensure a robust and well-maintained NSDL, innovative institutional arrangements must be made. The core data as already discussed above must be developed, maintained and integrated by organizations that produce and use data for a particular area. Besides, there is need to guarantee that geospatial units of core data can be integrated to support applications for different or large areas. To accommodate these needs, six institutional roles must be fulfilled and can be carried out by many different organizations (FGDC, 1995). The roles are:

- i. Policy establishment; to provide overall guidance for the NSDI. Policies are necessary because of the distributed nature of the responsibilities. The responsibilities include: approving standards, identifying necessary resources, obtaining funding, initiating pilot studies, concepts and implementation strategies, creating awareness, encouraging partnerships, resolving issues caused by different and competing ideas about the operation and advancement of the framework etc.
- ii. Theme expertise; to guide the development of the NSDI to meet the new trends, this is necessary because of the changing needs, which include accommodating new standards and techniques.
- iii. Framework management; to provide continuing, operational support for the framework. Some of the responsibilities include, for example, managing the production of a theme of data, creating and maintaining framework data for those areas not covered by certified data producers, developing and recommending technical standards that describe the essential characteristics of the theme data and rules and processes for data generalization, and maintaining these standards.
- iv. Area integration; to incorporate contributions of data producers into the framework for a geographic area within and among themes. An area integrator implements the technical standards, updates the framework from contributions, and provides guidance to ensure that data producers integrate their data among themes and geographical areas, among other duties.

- v. Data production: to generate data used to build and maintain the framework data to standard. The duties include: encoding required metadata, performing and reporting the results of the required data quality tests, encoding data, including feature identification codes, to framework standards and to provide data and metadata without restriction to area integrators.
- vi. Data distribution; to provide framework data to users, this is because the distributor may not be the same agency that produces or integrates the data. There may be many data distributors, but only one will be responsible for holding the official distribution copy.

2.7 People

People in SDI include the people who acquire, process, store, distribute and use geospatial information or who are involved in the running of SDI. The development of data and metadata, the setting up of the clearinghouse and technical standards, the establishment of policies and institutional arrangements require human resources, which is why capacity building in NSDI is very important. Development of human resources can be realized through short-term technical assistance and training focusing on technology transfer and further development of practical activities to ensure that operational activities continue.

Groot and McLaughlin (2001) identify three significant categories (see Figure 2-3) of specialized organization and process management skills required to facilitate the development and implementation of NSDI. Naturally, very few individuals will posses talents and interests focused in just one of the categories. Therefore the people in NSDI should have a blend of these skills or the individuals be drawn from these categories, which include:

- a) Skills in geographic information science and application development: the individuals here focus on technologies, processes, operations and dataset integration considerations necessary to acquire and build large geospatial databases, assess their overall reliability, create special-purpose geospatial models and analyses.
- b) Skills in computer science, telemetry and system development: individuals here have strong interest in the development and smooth operation of large databases and corporate information systems within an organization.

c) Skills in management and policy implementation: individuals here examine the managerial aspects of implementing new technologies, including issues such as standards and network implementation, organization and policy requirements, legal and economic consideration and information technology course evaluation.

To achieve this, will require input from other disciplines such as law, business administration, industrial engineering, telemetry and others.

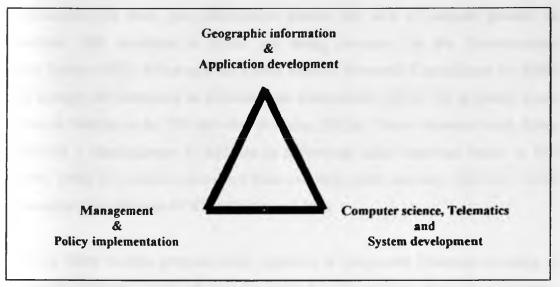


Figure 2-3: Education and skills framework for individuals working in NSDI

2.8 The current SDI situation in Kenya, Africa and the World

Globally, many countries, especially in Europe, America, Asia and Oceania are well on their way to achieving NSDIs and it is estimated that there are over 250 geospatial metadata clearinghouse nodes internationally, of which about 20% provide links to the actual data online (Mulaku, 2002a).

The successful realization of the Global Spatial Data Infrastructure hinges on the successful implementation of RSDIs and NSDIs. A GSDI initiative to co-ordinate these SDIs has so far seen six GSDI conferences being held. A global survey on the status of SDI activities indicated that only seven developing countries responded, and six African countries were actively engaged in NSDI activities (Clarke, 2001). The international conference on spatial information for sustainable development held in Nairobi, Kenya in October 2001 resulted in

the Nairobi statement on spatial information for sustainable development, which recommended the practical way forward in creating NSDIs to support sustainable development. The recommendations had national, regional and global perspectives on SDI development (FIG, 2002).

In Africa however the major constraints to SDI development as postulated by Mulaku (2002a) include: poor telecommunication infrastructure, poor mapping infrastructure, poor scientific/research skill base, poor information market and lack of national policies on geoinformation. SDI activities in Africa are being advanced by the Environmental Information System (EIS)- Africa and the United Nations Economic Commission for Africa (UNECA) through its Committee on Development Information (CODI). On a country basis, South Africa is leading in the SDI activities (Mulaku, 2002a). This is because South Africa has established a clearinghouse in addition to addressing other important issues in SDI development. Table 2-1, which is abstracted from a country report summary (UNECA, 2003), shows in summary the situation of SDI activities in Africa.

In East Africa, there is some progress being registered in Kenya and Tanzania according to UNECA country summary report, while in the report no information is given about Uganda's situation. The SDI activities in Uganda are however limited to environmental issues and the National Environmental Management Authority (NEMA) is facilitating the activities (EIS, 2001).

Of the 250 GSDI metadata clearinghouse nodes, three are from Kenya: UNEP and ILRI nodes are active, while the IGAD node is inactive. It is however worth noting that these nodes are established on international mandates and are therefore not true national nodes. In Kenya, there are about 50 institutions with GIS installations, over 70% of which are data producers. Co-operation and data sharing among the respective institutions is minimal. Towards its NSDI development, an inventory of these institutions, their geospatial datasets, and systems and partnerships is required. From such an inventory, it is possible to determine the capabilities and needs of individual institutions and also to identify specific areas for increased co-operation.

So far, two NSDI workshops have been held with the objectives of creating awareness and defining the NSDI structure. Tangible efforts include the establishment of the NSDI secretariat with Survey of Kenya as the lead agency, which has held two meeting of the standards Working Group, conducted a study for the establishing Kenyan standards for NSDI and the opening of the Kenyan NSDI web page, <u>http://kism.icconnect.co.ke</u> (Mbaria, 2003). An on-going donor funded project "*The study for the establishment of the Spatial Data Framework for the city of Nairobi*" promises to generate many large-scale datasets for the city of Nairobi, which will be an important input into the NSDI.

Element	Status	Country		
Status of NSDI	Government has established	Algeria, Botswana, Gambia Gabon, Kenya, Mali, South Africa,		
	Government has not established	Zambia		
	Concept under discussion	Могоссо		
	Government has established and under discussion	Benin, Burundi, Congo, Ethiopia, Ghana, Rwanda, Senegal, Tanzania Swaziland, Zimbabwe		
National policy on (GI) Geospatial Information	Approved and operational	Gambia, Mali, South Africa, Tanzania		
	Policy on Consultation	Gabon, Kenya		
	Draft produced	Algeria, Congo, Morocco, Rwanda Senegal, Swaziland, Zambia		
	Not considered	Ethiopia, Zimbabwe		
Status of fundamental	Data available in digital form	Morocco		
datasets	Digitization in progress	Ghana, Benin, Gambia, Kenya, Algeria		
	Data in analogue form	South Africa, Gabon, Congo, Senegal, Swaziland		
	Issue under discussion	Botswana, Burundi, Rwanda, Zambia		
	Issue not yet addressed	Ethiopia, Tanzania		
National metadata and	Use clearing house and has gateway	South Africa		
clearing house	Metadata on CD	Zambia		
	Metadata created but no access	Gabon, Congo, Ghana, Gambia, Botswana, Ethiopia		
	Agreed but not started	Mali		
	Discussion at national level	Senegal, Swaziland, Kenya, Burundi, Rwanda		
	No immediate plan	Moroco, Algeria, Tanzania		
Implementation of ITRF	Datum to ITRF	Benin, Gabon, South Africa		
and WGS84 datum	Datum aligned to IRRS	Botswana		
	Data as a paid consultancy	Algeria		
	Definition of datum under discussion	Mali, Senegal, Swaziland, Kenya, Burundi, Rwanda, Zambia, Congo, Ghana, Gambia, Ethiopia, Tanzania		

Table 2-1: NSDI country report summary

CHAPTER 3: METHODOLOGY

To achieve the objectives of this study, the data collection methods used were a survey by way of administering interviews, mailed questionnaires to some institutions (for primary data) and use of published literature (for secondary data). Though interviews were the main method of data collection employed, it is however the most expensive method per respondent because of the fatigue and travel expenses involved. The choice of this method was however based on the following reasons (Pamella and Robert, 1995):

- (i) It provides the most complete contact with respondents.
- (ii) It is easy to win respondent co-operation and hold it for a long time.
- (iii) Non-response bias is minimized.
- (iv) It is quicker than mail survey for a small geospatially concentrated sample.

For this particular survey, this method was likely to give the interviewer an opportunity to see some of the facilities talked about first hand. Mailed questionnaires were used at the request of some respondents, who were not available at the time scheduled for the interview.

The questionnaire, a sample of which is presented in Appendix 1, contained both closed and open-ended questions and was structured to capture the main information needs. The questionnaire items were grouped into six sections namely:

- a) Institutional details (e.g. name, address, physical location, website)
- b) Description (information management, core business)
- c) Information management (information requirement, quality evaluation)
- d) Partnerships (Existing networks, partnerships)
- e) Systems (e.g. GIS software)
- f) Significant geospatial datasets

3.1 Sample design and sample frame

One of the requirements in a survey research is for the research to be as least biased as possible (ibid.). This is realized if a proper sample design is done. In this particular study, no sampling was done; actually the study intended to involve almost all institutions with GIS

and or digital mapping installations. The institutions were categorized either as government, quasi-government, private or academic. The sample frame, in this case the whole population was drawn up based on the previous knowledge about some of the institutions and also from suggestions from my supervisor and some of the interviewees. The sample frame contained in Table 3-1 to Table 3-5, are the institutions that were sampled by category, indicating those that responded and those that did not.

Institution	Category	Code	Response	
		assigned	Yes	No
Survey of Kenya (SoK)	1	101	1	+
Department of Physical Planning (DPP)	1	102	1	
Ministry of Roads, Public Works and Housing (Roads)	1	103	1	
Ministry of Roads, Public Works and Housing (Building)	1	104	1	
Central Bureau of Statistics (CBS)	1	105	1	
Ministry of Water Development*	1	106	1	
Department of Resource Surveys and Remote Sensing (DRSRS)	1	107	1	
Department of Urban Development-Ministry of Local Government (MLG)	1	108	*	
Kenya Meteorological Department (KMD)	1	109	1	
Nairobi City Council (NCC)	1	110	1	1

*Partial response (at least one of the forms A or B was not returned)

Table 3-1: Government institutions/departments surveyed

Institution	Category	Code	Response	
		assigned	Yes	No
Electoral Commission of Kenya (ECK)	2	201	1	
Kenya Soil Survey (KSS)	2	202	1	
National Museums of Kenya (NMK)	2	203	1	
Kenya Wildlife Services (KWS)	2	204	1	
Kenya Power and Lighting Company (KPLC)	2	205	1	1
Kenya Forestry Research Institute (KFRI)	2	206	1	1
Telkom Kenya	2	207	1	
National Housing Corporation (NHC)	2	208	1	
Laikipia Research Programme	2	209		1
Kenya Marine and Fisheries Research Institute	2	210	1	1
Lake Basin Development Authorities (LBDA)	2	211		1

Table 3-2: Parastatals surveyed

Institution	Category	Code	Response	
		assigned	Yes	No
United Nations Environmental Programme (UNEP)	3	301	1	
International Livestock Research Institute (ILRI)	3	302	1	
World AgroForestry Centre (formerly, ICRAF)	3	303	1	
Regional Centre for Mapping of Resources for Development (RCMRD)	3	304	1	
International Centre for Insect Physiology and Ecology (ICIPE)	3	305	1	
United Nations High Commission for Refugees (UNHCR)*	3	306	1	

*Partial response (at least one of the forms A or B was not returned)

Table 3-3: International/intergovernmental organizations surveyed

Institution	Category	Code	Response	
		assigned	Yes	No
Oakar services	4	401	1	
Geomaps	4	402		1
Geometer Surveys	4	403	1	
Highland Surveyors	4	404	1	
GIBB Africa	4	405	1	
Gath Management	4	406		1
Norken (formerly, NorConsult) Engineers	4	407	1	
Eldoret Water and Sanitation co. (ELDOWAS)	4	408	1	
Wellcome Trust	4	409	1	
Ground Water Survey	4	410	1	1
Photomap International	4	411		1

Table 3-4: Private-sector institutions surveyed

Institution	Category	Code	Response	
		assigned	Yes	No
Department of Surveying, University of Nairobi (UON)	5	501	1	1
Department of Geography, University of Nairobi (UON)	5	502	1	
Kenya Institute of Surveying and Mapping (KISM)	5	503	1	
Department of Geomatic Engineering, JKUAT	5	504		1
Department of Geography, Moi University	5	505	 ✓ 	

Table 3-5: Academic institutions surveyed

3.2 Determining the parameters to be used to evaluate datasets for suitability

Any geospatial dataset can be included in the NSDI. But considering the primary objective of NSDI: to ensure that users are able to locate, acquire, at the right time, complete and consistent datasets of the highest resolution at cheaper costs, first and foremost, a dataset first needs to be evaluated to see if it meets this objective.

For a dataset to be acquired, it is necessary to know about its accessibility. Existence of a catalogue will help one know the availability of a dataset and how to locate it. The dataset's completeness can be determined by its status with regard to its stage of development, so is its completeness in terms of scope. The consistency of a dataset can be indicated by topological consistency, attribute database consistency, domain consistency, and compatibility of a geodetic datum upon which the dataset is based on. The source scale, level of abstraction, resolution and positional accuracy of a dataset give an indication of the resolution of the dataset. Price of a dataset and how to order it will be compared with the cost of any alternatives to determine which is cheaper. These parameters are highlighted below.

(i) Availability of metadata//catalogue

The support of a discovery and access service for geospatial information is known within the geospatial community as 'catalogue services' (Douglas, 2001). Catalogue services can be applied to non-digital collections of map information, small digital catalogues and integrated repositories of data and metadata. Geospatial catalogues are there to help in the identification, discovery and evaluation of information. In addition, it helps in the management of geospatial information in an organization. For proper management of a dataset therefore, it should be included in a catalogue.

(ii) Form

This is the form of representation and is either digital or analogue. The idea of making data easily accessible requires that the data be in digital form.

(iii) Accessibility

This is the most important parameter that will determine whether a dataset can be included in NSDI or not. Accessibility indicates the handling restrictions on a dataset. According to ISO/DIS 19115- ISO standard on metadata, a dataset can have the following restrictions:

- (a) Unrestricted (unclassified)- available for general disclosure.
- (b) Restricted to some- not for general disclosure.
- (c) Restricted to most (confidential)- available for someone who can be entrusted with the information.
- (d) Unavailable for external use- kept or meant to be kept private, unknown, or hidden from all but a select group of people
- (e) Top secret- of the highest secrecy

Some datasets may not be included in the NSDI, for example, those, which for some reasons of corporate policy or lack of capacity are not physically accessible to external users, for example, the telecommunication area exchange networks, which might be interfered with, if accessible by the general public. In addition, application datasets, which are so specialized, that have little bearing on infrastructure goals may be excluded (WCMC, 1996).

(iv) Completeness

Completeness is an assessment of the extent and range of a dataset with regard to coverage, classification and verification. Completeness indicates the presence or absence of features, their attributes and their relationships in a dataset as described by the scope. Completeness varies significantly with application and is usually defined as including information about selection criteria, definitions used and other relevant mapping rules. It also includes a description of deviations from the standard definitions and interpretations and/or statements on relationships of the objects represented within a dataset.

(v) Status

This is the condition of a dataset with regard to its stage of development. A dataset's status can be said to be complete, on going, underdeveloped or obsolete. Most users will always

want to have datasets that are complete or nearing completion as opposed to one that are underdeveloped or obsolete.

(vi) Currency

This parameter tells how up-to-date a dataset is. Comparing this with the frequency of update, one will be able to tell whether the dataset is up-to date or not. Currency of a dataset depends on its application.

(vii) Co-ordinate system

Consistency of positions of different geospatial datasets is a necessary condition for their integration. In normal circumstances different datasets have been spatially referenced using different techniques (different map projections, different ellipsoids). If datasets are based on different data (Plural for datum), they cannot be easily combined. In Kenya two projections are used: Cassini based on the Clarke 1858 ellipsoid and the Universal Transverse Mercator based on the Modified Clarke 1880 ellipsoid (GK, 1989), so most datasets are likely to be based on these systems. Some datasets based on the Global Positioning System (GPS) are likely to be inconsistent with others because there is no clearly defined WGS 84 reference frame in Kenya. Therefore datasets not based on the Arc Datum 1960 should be re-examined to determine their relation with this datum and also with the proposed African Reference Frame (AFREF) (McLaughlin and Nichols, 2001). AFREF is an absolute geodetic reference frame that was proposed at CODI-Geo's 1999 meeting. AFREF could be established with 2 cm precision for all countries to connect via GPS observation. This is in line with similar reference frames established in other continents, for example, the European Reference Frame (EUREF) in Europe.

(viii) Logical consistency

Logical consistency describes the fidelity of relationships in a dataset, the logical rules of structure, and the attribute rules for geospatial data. An assessment of logical consistency includes, for instance, carrying out tests in order to know whether all points are labeled, lines

intersect at nodes, lines are labeled, lines overshoot or undershoot, polygon boundaries are closed. Logical consistency can be classified (Groot and McLaughlin, 2001) as:

(a) Topological consistency: whether lines should intersect at nodes, polygons are closed, etc.

(b) Attribute database accuracy.

(c) Domain consistency: whether there is adherence to value domains, e.g. integers. If a dataset is stored digitally then the test for topological (logical) consistency can be carried out automatically using geographic information software.

(ix) Thematic accuracy / attribute accuracy

This parameter assesses the reliability of values assigned to features in a dataset in relation to their true 'real world' values. Attribute database accuracy is the correctness and accuracy of non-quantitative and quantitative attributes respectively. Ill-defined data can introduce errors in final data, for example, when incomplete definitions of object types result in object being wrongly classified. Accuracy of attributes is verified by comparing data with randomly assigned true values, for example, comparing a field in a database with a corresponding field in another database of a higher accuracy.

(x) Data type (Domain consistency)

This is a specification of the legal value domain and legal operations allowed on values in this domain. Examples of data types include: integer, real, Boolean and character string.

(xi) Format (spatial representation)

In this context the term format should be taken to mean the spatial representation of a dataset rather than the logical structure used to store information in a file. Spatial representation refers to the method used to represent geospatial information in a dataset. The representations can be vector, grid (raster), text table, tin or stereo model.

(xii) Source scale, Resolution and level of abstraction/generalization

Digital geospatial data is scale independent, that is, it can be published at any scale. Scales should be adopted appropriate to the intended uses of the products and therefore the intended level of generalization. Level of generalization is influenced by the constraints of scale. For example, houses in a group may be shown individually on a large-scale map or a single symbol may represent the houses on a small-scale map with less precise resolution. In setting map scales, consideration should be given to equivalent pixel sizes (resolution) for corresponding digital images and raster products. Table 3-6 shows common map scales and their uses.

Scale	Appropriate uses			
1:1,000,000	Global scales; equivalent to 1Km pixel size			
	Suitable for climatologically influenced data such as soil moisture,			
	vegetation, agricultural production			
1:200,000 - 250,000	Continental/regional scales; equivalent to 30m pixel size			
	Suitable for transnational boundary features such as land cover			
1:50 000	National scales; Equivalent to 5m pixel size			
	Suitable for monitoring renewable and non-renewable resources			
1:5000 - 10 000	Urban scales; equivalent to 1m pixel size			
	Suitable for urban planning			

Table 3-6: Common scales and their uses

(xiii) Positional accuracy

The goal of an accurately georeferenced geospatial data is to locate objects exactly as they are located on the ground, as related to a common co-ordinate system. Positional accuracy is usually reported at ground scale, there is therefore a relationship between map scales and positional accuracy (see table 3-7). Positional accuracy can be considered as horizontal position accuracy and vertical position accuracy. According to National Mapping Agency Standards (NMAS) horizontal positional accuracy, using the Root Mean Square Error (RMSE), is evaluated for x and y-components individually. Generally, the standard require

that 90% of well defined points that are tested fall within a specified tolerance (FGDC, 1998; Wolf, 1974);

- For map scales larger than 1:20,000, the horizontal tolerance is 1/30 inch (9mm), measured at publication scale.
- For map scales of 1:20,000 or smaller, horizontal tolerance is 1/50 inch (5mm), measured at publication scale.

On the other hand, the American Society for Photogrammetry and Remote Sensing (ASPRS) accuracy for large scale maps, provide accuracy tolerances for maps at 1:20,000 scales or larger. Accuracy is reported as Class 1, Class 2 or class 3. Class2 applies to maps compiled within limiting RMSE's twice those allowed for Class 1 maps. Similarly, class 3 accuracy applies to maps compiled within limiting RMSE's three times those allowed for class 1 maps.

Class I Planimetric Accuracy Limiting RMSE (meters)	Map Scale
0.0125	1:50
0.025	1:100
0.050	1:200
0.125	1:500
0.25	1:1.000
0.50	1:2,000
1.00	1:4,000
1.25	1:5,000
2.50	1:10.000
5.00	1:20,000

Table 3-7: ASPRS Class 1 horizontal Accuracy Standard for Large-scale maps

Equally, for vertical position accuracy, NMAS specifies the maximum allowable vertical tolerance to be one half of the contour interval, at all contour intervals. Vertical map accuracy is defined by the ASPRS Accuracy Standard as the RMSE in terms of the project's elevation datum for well-defined points only. For Class 1 maps according to ASPRS Accuracy Standard, the limiting RMSE is set at one third the contour interval. Spot elevation shall be shown on the map with a limiting RMSE of one-sixth the contour interval or less.

(xiv) Price

This is the fees and terms for retrieving a dataset. It also includes monetary units, for example, US\$ and KShs. This parameter lets the user compare costs of alternative datasets or compare the price with cost specifications if any.

(xv) How to order

These are general instructions, terms and services provided by the distributor on how to obtain a dataset.

3.3 How to evaluate datasets

The parameters that were determined in section 3.2 are used to evaluate the suitability of the datasets in the inventory. The criteria for evaluation are given in Table 3-8. A dataset after the evaluations is generally said to be:

- Very suitable: If accessible, in digital form, catalogued, complete or nearing completion, complete in coverage, in Arc Datum 1960.
- Suitable: If a dataset is available (catalogued), in digital form and accessible.
- Unsuitable: If either not available, not in digital form or not accessible.
- Very unsuitable: If neither available, nor in digital form nor accessible.

Parameter	Criteria	Recommendation		
Availability of metadata	If No catalogue or metadata (1) Unsuitable	Include dataset in catalogue and build metadata		
(Catalogue/Metadata)	If Catalogue/Mctadata (2) Suitable	Suitable		
Form	If analogue (1) Unsuitable	Dataset should be converted to digital form		
	If digital (2) Suitable	Suitable		
Accessibility	If Top secret/Unavailable for external use (1) Unsuitable	Restriction should be reviewed		
	If Restricted to most (2) Suitable	Suitable		
	If Unrestricted/restricted to some (3) Very suitable	Very suitable		
Completeness	If less than 50% (1) Unsuitable	Dataset coverage should be completed		
(coverage)	If more than 50% (2) Suitable	Suitable		
Status	If on-going /underdeveloped/obsolete (1) Unsuitable	The dataset should be completed		
	If Nearing completion/Complete (2) Suitable	Suitable		
Co-ordinate system	If not Arc Datum 1960 (1) Unsuitable	Should be transformed to Arc Datum 1960		
	If datum is Arc Datum 1960 (2) Suitable	Suitable		
Logical consistency	If no topologically consistent (1) Unsuitable	Organize the dataset to some level of topology		
(Topological	If topologically consistent (2) Suitable	Suitable		
Thematic accuracy	If not consistent (1) Unsuitable	Check accuracy of point, line, polygon labels		
(Attribute accuracy)	If Consistent (2) Suitable	Suitable		
Domain consistency (Data type)	Depends on application	Depends on application		
Format	Depends on application	Depends on application		
Source scale, Positional accuracy, Level of abstraction/generalizati	Depends on application	Depends on application		
Currency	Compare last day of update with intended use	Depends in application		
Cost	Compare value with price specifications if available	······································		
How to order	If off-line (1) Suitable			
	If on-line (2) Very suitable			

Table 3-8: Evaluation criteria for datasets

3.4 Determining parameters to use to evaluate systems for compatibility

For a NSDI to function properly, reliable and efficient computing and communication technologies must be in place. Technology in NSDI includes: computer hardware (PCs, gateways and servers), software and networks (LAN, Internet) that enable SDI linkages. Most of the devices in a communication network have many properties, which include cost; availability and compatibility just to name a few.

Considering that devices in a SDI should allow for open access to data, it is necessary that these devices (systems) are compatible. Compatibility in NSDI should be taken to mean the types of traffic (data) and links that a particular server node can handle. A node is a generic term used to refer to devices used to construct a network (Uyless, 1993). Nodes are distinguished by their functions, for example, terminals (PCs, workstations), servers, and gateways. A terminal is a source or destination of low volume traffic, usually serving a single user. A terminal usually includes a keyboard and a monitor and can also include disk drives. A PC, workstation may serve as a terminal. A server on the other hand, is a computer that provides and manages access to resources for other computers in a network. The server is said to be 'serving' others. In a network, various computers can act as print server, file server or database server. A network will typically have servers. For connections with other networks, gateways are used. A gateway is a network device that connects different equipment that don't share even the same routing protocol, that is they perform relay functions between networks. Some devices cannot handle links above certain speeds; also other devices cannot interconnect with others or participate in some network architectures because of the software they are using (and therefore the protocol they support) are not compatible (Aaron, 1993).

Compatibility of systems is only achievable if there is an open systems architecture and if they are interoperable. The Open GIS Consortium (OGC)^{*} is one of the associations that are promoting the joint definition, development and promotion of geoprocessing specifications to support interoperable solutions. Open systems co-operate with each other using standards for access, processing and transfer of data; and they are not hindered by specific architectures. System architectures simply refer to the manner in which computers are organized. Computers may be arranged as individual stand-alone machines or co-operate in networks. File server (single-tier) and client server architectures are examples of network architectures. In a file server architecture, each workstation in the network has access to a central file server where data is stored, while in a client-server architecture, some computers 'serve' others in the network (Lee and Christensen, 1999).

41

Against this background, compatibility of systems can be considered in two ways; where online communication is possible and where it is not (off-line).

In off-line (in some literature referred to as 'classical') communication, the parameters include the following:

- (i) Computer memory (RAM), e.g. 128 MB
- (ii) The Operating System (OS), e.g. Window NT, XP, UNIX
- (iii) The GIS software, e.g. ArcGIS, ILWIS, IDRISI
- (iv) Data interchange formats, e.g. DXF, TIFF
- (v) Database Management Systems (DBMS), whether it incorporates the simple feature specifications for the Structured Query Language (SQL).

It is sometimes 'folly' to think that a 'must have' computer should be the latest and the fastest. If one wants a computer for connection to the Internet (to enable SDI linkages), then one does not need the fastest computer or modem or anything very expensive. The reason for this is that Internet access speed is limited mainly by the phone line and what is going on at the server (server node), rather than how fast the processor is.

SDI can be said to make sense even when the services are 'classical' (that is ordering, delivery, payment are off-line and catalogue, visualization are on hardcopy). The ultimate realization of a SDI is one that is infrastructure-based, standards-based and full-functioned (Douglas, 2001). In such a situation, a user with a search user interface fills out a search form. The search request is passed to a gateway, which passes the query to one of the registered servers (each catalogue server manages a collection of metadata entries). Interoperable search across national/international catalogues can be achieved through use of *common descriptive vocabulary* (for metadata), a *common search and retrieve protocol* and a *registration system for servers* of metadata. In on-line/ infrastructure enabled communication, the parameters include:

The Open GIS Consortium (OGC) is an international industry consortium of private companies, government agencies and universities, which promotes interoperability by developing and publishing implementation specifications.

- (vi) Database architecture, i.e. distributed or centralized
- (vii) Registration system for servers
- (viii) Search/ Retrieve protocol adopted by server nodes
- (ix) The type of traffic the network can handle
- (x) Data transfer rates

(i) Computer memory (RAM) and disk space

Sufficient Computer memory is required to ensure compatibility. For optimal solutions appropriate computer memory and disk space should be used for particular operating systems and applications as specified. Different applications have different RAM specifications, for example, 64MB is common.

(ii) The Operating System

The operating system controls the execution of application programs and acts as an interface between software and computer hardware. Operating systems evolve because of hardware upgrades plus the emergence of new hardware. Different geospatial applications require specific operating systems, and these should generally allow for input/output management, file management, distributed computing and above all computer security. The operating system of choice should be one that is most portable, for example, Windows.

(iii) The GIS software

GIS softwares have different capabilities for different applications. Because of this they also support different file formats. If compatibility is of concern, then the proprietary formats must be used outside their native systems, or the GIS software should support at least the common file transfer formats and allow for a distributed computing environment.

(iv) Data interchange formats

The term data format refers to the logical structure used to store information in a GIS file. File formats are important in part because not every GIS software package supports all formats. If one wants to use a dataset, but it isn't available in a format that his GIS supports, then he will have to find a way to transform it, find another dataset or find a GIS that supports that format. There are many data formats. The formats are for vector, raster and attribute data (hhtp://www.gisdatadepot.com/helpdesk/format.html).

Vector formats:

- (i) Arc Export is a transfer format, either ASCII or compressed into binary used to transfer files between different versions of ARC/INFO. It is undocumented and will only work with ESRI products.
- (ii) Arc/Info "coverage" is an asset of internal binary file used by Arc/Info. This format is proprietary and is not readily usable by other programs.
- (iii) AutoCAD Drawing files (DWG) is the internal proprietary format used in AutoCAD, which is a Computer Aided Design program. AutoCAD can convert any DWG to a DXF file without loss of graphic information.
- (iv) AutoDesk's Data Interchange File (DXF) format is the most widely used vector transfer format.
- (v) Digital Line Graphs (DLG) is a transfer format used by US Geological survey (USGC).
- (vi) MapInfo Data Transfer Files (MIF/MID). This format carries three types of GIS information: position, attribute and display.
- (vii) MicroStation Design File (DGN) is the internal format used by Bentley's Microstation, a CAD program. It is well documented and standardized and can therefore be used as a transfer standard.
- (viii) Spatial Data Transfer System (SDTS) is a relatively new format developed by the US government, designed to handle all positional data. It is supposed to be the foundation of the US National Spatial Data Infrastructure.

Other formats include Topologically Integrated Geographic Encoding and Referencing Files (TIGER) and Vector Product Format (VPF) formats used by US Census bureau and US mapping agency respectively.

There are three candidate file formats for an online vector file on the World Wide Web (www): the Simple Vector Format, the web Computer Graphics Metafile (CGM) and XML-based encoding (Douglas, 2001).

Raster formats:

- (i) Arc Digitized Raster Graphics (ADRG) is used by US military to store raster images of raster maps
- (ii) Band Interleaved by Line (BIL), Band Interleaved by Pixel (BIP) and Band Sequential (BSQ) are formats produced by remote sensing systems.
- (iii) Digital Elevation Model (DEM) is a raster format used by the USGC to record elevation information.
- PC Paint Brush Exchange (PCX) is a common raster format produced by most scanners.
- (v) Tagged Image File Format (TIFF), GeoTIFF (TIFF with georeferencing information tags) and Joint Photographic Expert Group (JPEG) are common raster formats produced by scanners and PC drawing programs.

Raster data is characterized by large file sizes. The limiting Internet bandwidth will automatically require compressed files. That is why compressed raster files predominate web-based portrayals for both vector and raster data. Common web raster formats include GIF, JPEG.

(v) Database Management System (DBMS)

A DBMS is commonly understood to mean the software that manages the attribute data for a set of features. Examples include Ms Access and Oracle. Though there are various DBMS, for interoperability, a DBMS should incorporate Simple Feature (SF) specification for SQL as specified by OGC. Simple feature specification is an OGC specification for open interfaces that enable diverse systems to communicate using simple vector features composed of points, lines and polygons. Three profiles that have been released include SQL, COM-based and CORBA distributed computing platforms (ESRI, 2003).

(vi) Database architecture

Database architecture can either be centralized or distributed. In centralized database (file server) architecture, each workstation in the network has access to a central database, while in distributed (client-server) architecture; some computers store the database, which others in the network can access. For geospatial solutions distributed database architecture is recommended, because of the distributed nature of NSDI; in addition, local autonomy can be exercised, responses are much faster and a high compatibility of systems expected from the on-going standards development efforts.

(vii) Server registration system (server registry)

If a server node is to be recognized in a network it must have a unique name within the network. Therefore, all server nodes in a particular NSDI clearinghouse must be based on same registration scheme (registry). The registry is a searchable catalogue in its own right. The scheme should follow the Domain Names Service (DNS) model of the Internet.

DNS is a service that converts domain names to their corresponding numerical Internet Protocol (IP) addresses (Comer, 1995). Domain names are alphanumeric strings identifying Internet hosts based on a hierarchical naming convention. For example, in domain name *uonbi.ac.ke*, *uonbi* (university of Nairobi) is a domain within a larger domain *ac* (for academic), which is the domain of academic institutions within the major domain *ke* (for Kenya). There are two types of top-level domains: generic and country. Specific generic domains include *com* (for commercial), *org* (for non-profit organizations) and *net* (network providers). Country domains use the ISO 3166 country codes (Groot and McLaughlin, 2001). An IP address is a unique compound number, which is assigned to each computer connected to the Internet. The IP is a 32-bit number, usually expressed as a four single byte values, each in the range 0-255, separated by periods in what is called "dotted quad" notation. For example, in 127.18.53.10 IP address, part of this number addresses the host network, while the rest refers to a single computer in that network.

(viii) Search/ retrieve protocol

For an interoperable search by servers, they need to support and use a common protocol. The following are the common protocols used with digital geospatial data. The Structured Query Language (SQL) for database query; eXtensible Markup Language (XML) for the Internet; Wireless Application Protocol (WAP) for mobile phones; Unified Model Language (UML) for data models and Transmission Control Protocol and Internet Protocol (TCP/IP) for Internet traffic. The Z39.50 is the current metadata catalogue search and retrieve protocol while the OGC catalogue is the future protocol for a fully functioning SDI. Z39.50 offers a variety of search and retrieve facilities suitable for computer database systems.

(ix) Type of traffic

In this time and age, network traffic ranges from voice, text, and graphics to image data, generally referred to as multimedia. A given network should ideally support all multimedia data types. Though guided transmission media such as cables and fibre optics dominates transmission, unguided (or wireless) transmission is achieved by using electromagnetic waves. Only radio and microwaves as well as infrared and visible light are used for transmitting information. The advantage of wireless transmission is that one transmitter can reach many receivers. Depending on the wavelength used, a repeater must be installed at certain distances, for example, for microwave links, which are frequently used; a repeater is required about every 50 Km (Groot and McLaughlin, 2001).

In Kenya, most networks are based on telephone lines, in which case only voice data is transmitted. Despite this limitation however, the Integrated Services Digital Network (ISDN) has made possible the transmission of other forms of data through the analogue telephone network. ISDN is a high-speed digital telephone service that can dramatically increase the speed at which one connects to the Internet or Local Area Network (LAN). ISDN allows digitization of telephone systems and therefore accepts digital data directly with the potential to allow voice, text, fax and video signals.

(x) Data transfer rate

Analogue telephone can reach 28.8Kbps; while with ISDN Speeds of up to 155Mbps are possible (Groot and McLaughlin, 2001). If telephone speeds are still limiting, new possibilities exist within the wireless communication realm.

3.5 How to evaluate systems

Since a system is composed of various components, the evaluation should therefore consider the particular properties of these components as discussed in section 3.4. Table 3-9 highlights the evaluation criteria for the systems.

Parameter	Criteria
Computer processor and memory	Pentium III and above are recommended
Operating System (OS)	How portable the OS is.
GIS Software	Should be object or component based: e.g. COM, CORBA compliance
Data interchange formats	Vector: DXF, XML; Raster: JPEG, GIF, TIF
Data Base Management System	Should incorporate Simple Feature specification for SQL
Database architecture	Preferably, Distributed
Registration system for metadata servers	The Domain Names Service model of the Internet is recommended
Search/retrieve protocol	The protocol the server node is based on: TCP/IP, Z39.50, OGC
Type of traffic	Most types of data should be supported, i.e. voice, text, image, graphic
Data transfer rate	Different communication media allow different rates of data transfer. At least 28.8 kbps

Table 3-9: Evaluation criteria for systems

CHAPTER 4: RESULTS AND ANALYSIS

Identifying potential participants in the NSDI is an important step in the development of Kenya's NSDI. Overall, over 40 institutions were approached, of which 84% responded positively to the interviews. The respondents included 10 government departments, 8 government parastatals, 6 Research/ international institutions, 8 private and 4 academic institutions. More institutions than are listed in Tables 3-1 to 3-5 were approached for example the Kenya Pipeline Corporation (KPC) who appeared suspicious and therefore were omitted from the sample. Figure 4-1 shows the percentage representation of the institutions surveyed.

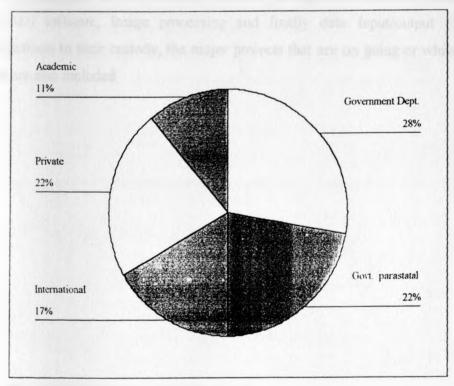


Figure 4-1: Institutions surveyed by category

The list was drawn based on previous knowledge of the institutions and suggestions from my supervisor. Although the description may have been largely determined by the sampling, it nevertheless indicates the general situation in Kenya. Government departments and parastatals represent 50%. What this in effect implies is that the success or failure of NSDI depends on

government departments and parastatals. This is because most of geospatial information is in their holding, and this is the information that should be made accessible.

4.1 The Inventory

The inventory as constituted does not contain each and every user and producer of geospatial data in Kenya, but only those that responded in the course of a two and half months survey. Again, a few changes may have occurred since the interviews, for example, the Electoral Commission of Kenya (ECK) has since installed a GIS. Generally, the inventory contains the institutions (by category), their telephone numbers, postal and e-mail addresses, physical location and website. Another section lists the kind of systems used in the institutions. The systems are categorized as GIS software, database management systems, Computer Aided Design (CAD) software, Image processing and finally data input/output devices. The geospatial datasets in their custody, the major projects that are on going or which have been undertaken are also included.

KENYA NSDI INVENTORY

Survey of Kenya (SOK)

ADDRESS: P.O BO		E MAI	802241 FAX: L: sok@gt co ke WEB	SITE:	
GIS SOFTWARE	VERSION	DATABASE ARCHITECT	URE DATA INPUT/OUPU	T DEVICES	
Workstation ArcInfo	7.1	CENTRALIZED No	DEVICE	VERSION	<u>NO.</u>
ArcGIS	8.1	DISTRIBUTED: Yes	DIGITIZING TABLE: SCANNER:	Occ graphics A0	4
Demeter		DBMS	PLOTTER:	НР	4
		Ms Access	PRINTER: INTERNET ACCESS:	HP,Epson Yes	3
IMAGE PROCESSI Photoshop suite	NG	CAD Microstation	PC OPERATING SYSTE	Yes	6
		1	WINDOWS: 95,98,20 UNIX: No	00	

ON-GOING/UNDERTAKENThe establishment of the spatial framework data for the city of Nairobi and the development of
National spatial datasets at scales of 1:250,000 and 1:50,000

TITLE	THEME	DEPARTMENT	COVERAGE	FORM	SOURCE SCALE	ACCESSIBILITY	COST (Ksh)	CATALOGUE	<u>STATUS</u>
Kenya administrative	Boundaries	Geodetic and Mapping	Kenya (whole)	Hard copy map	1:1000000	Unrestricted	500	Manual catalogue	Complete
Topographic maps	Imagery/Base maps/Earth cover	Geodetic and mapping	1:50000 and 1:250000	Hardoopy map	1:50000	Restricted to some	500	Digital catalogue	Complete
Cadastral	Planning/cadas tre	Cadastral	Kenya (whole)	Hard copy map	1:2500, 1:5000, 1:10000,1:25000	Unrestricted	200	Manual catalogue	Complete
Aenal Photographs	Imagery/Base maps/Earth cover	Geodetic and Mapping	Kenya (whole)	Hard copy	1:12500-1:50000) Restricted to some	500	Manual catalogue	Complete
Kenya Atlas	Imagery/Base maps/Earth cover	Geodetic and Mapping	Kenya (whole)	Hard copy map	Various	Unrestricted	5000	Digital catalogue	Complete
Global map	lmagery/Base maps/Earth cover	Geodetic and Mapping	Kenya (whole)	Digital map	1:1000000	Unrestricted		Digital catalogue	Complete
Iopographic maps	lmagery/Base maps/Earth cov e r	Geodetic and Mapping	Kenya (10%)	Digital map	1:50000	Restricted to some		Digital catalogue	Under- developed
Geodetic actwork	Geosciences	Geodetic	Kenya	Hardcopy map	1:1000000	Restricted to some			Complete

Department of Buildings

ADDRESS: <u>P.O.BO</u> PHYSICAL LOCA			TEL: <u>723101</u> E-MAIL:	FAX: WEBS	ITE:	
GIS SOFTWARE	VERSION	DATABASE ARC	CHITECTURE	DATA INPUT/OUPUT	DEVICES	
		CENTRALIZED:		DEVICE	VERSION	NO.
		DISTRIBUTED:	21	DIGITIZING TABLE:		
				SCANNER:		
	•	DBMS		PLOTTER:		
	•			PRINTER:		4
	•	•		INTERNET ACCESS:	-	
IMAGE PROCESS	ING	CAD		PC		
				OPERATING SYSTEM	1	
				WINDOWS:		
				UNIX:		

ON-GOING/UNDERTAKEN Topographic survey for design of government facilities PROJECT:

TITLE	THEME	DEPARTMENT	COVERAGE	FORM	SOURCE SCALE	ACCESSIBILITY	COST (Ksh)	CATALOGUE	<u>STATUS</u>
Topographic maps	Planning/cadas tre	Building		Hardcopy map	Various	Restricted to most	3	Manual catalogue	Complete

Central Bureau of Statistics (CBS)

ADDRESS: P.O BO PHYSICAL LOCAT			TEL: 333970 E-MAIL: director		<u>333030</u> TE:	
GIS SOFTWARE	VERSION	DATABASE ARC	HITECTURE	DATA INPUT/OUPUT	DEVICES	
PC Arcinfo	3.5	CENTRALIZED:	Yes	DEVICE	VERSION	NO.
MapInfo	4.0	DISTRIBUTED:		DIGITIZING TABLE:	Calcomp	8
ArcGIS	8.3	DDMA		SCANNER:	Yes	4
	0.0	DBMS		PLOTTER:	HP DesignJet 750c	3
	*			PRINTER:	Yes	
	*			INTERNET ACCESS:	Yes	
IMAGE PROCESS	ING	CAD		PC	Yes	
		-		OPERATING SYSTEM		
				WINDOWS: 3.1,3.11,95	5,98,2000,	
				UNIX:		

ON-GOING/UNDERTAKEN National Sample and Evaluation Programme (NASSEP), Kenva poverty mapping project PROJECT:

TITLE	THEME	DEPARTMENT	COVERAGE	FORM	SOURCE SCALE	ACCESSIBILITY	COST (Ksh)	CATALOGUE	STATUS
District map	Boundaries/Po pulation	Cartography	Kenya (Whole)	Digital map	1.50000,1:25000 0	Unrestricted	1500	Manual catalogue	Complete

Department of Physical planning

ADDRESS: P.O BOX 45025 NAIROBI PHYSICAL LOCATION: Ardhi house TEL:718050FAX:E-MAIL:dpp/@africaonline.co.kcWEBSITE:

GIS SOFTWARE	VERSION	DATABASE ARCH	IITECTURE	DATA INPUT/OUPUT	DEVICES	
PC Arcinfo		CENTRALIZED:	No	DEVICE	VERSION	NO.
ArcView		DISTRIBUTED:	No	DIGITIZING TABLE:		2
Mapinfo	۰	0.004		SCANNER:		2
	•	DBMS		PLOTTER:		2
AreGIS		Ms Access		PRINTER:		3
IDRISI		*		INTERNET ACCESS:	Yes	
IMAGE PROCESS	SING	CAD		PC	Yes	10
Yes		Yes		OPERATING SYSTE	M	
		21 0 0		WINDOWS: 95,98,20	00,NT	
		1		UNIX: No		

ON-GOING/UNDERTAKEN Conversion of analogue data to digital format of urban areas PROJECT:

TITLE	THEME	DEPARTMENT	COVERAGE	FORM	SOURCE SCALE	ACCESSIBILITY	COST (Ksh)	CATALOGUE	STATUS
Regional planning	Planning/cadas tre	Physical planning	Kenya (Country-wide)	Digital map	1:2500	Unrestricted		None	Complete

Department of Roads- MORPWH

ADDRESS: P.O BO PHYSICAL LOCA			TEL: <u>723101</u> E-MAIL:	FAX: WEBS	ITE:	
GIS SOFTWARE PC Arcinfo	VERSION 8.2	DATABASE ARC	CHITECTURE	DATA INPUT/OUPUT DEVICE	DEVICES VERSION	<u>NO.</u>
	•	DISTRIBUTED:	Yes	DIGITIZING TABLE: SCANNER:	(Not in use)	1
	•	Ms Access SQL		PLOTTER: PRINTER: INTERNET ACCESS:	HP 450c HP Ycs	2 2
IMAGE PROCESS	<u>SING</u>	<u>CAD</u> AutoCAD		PC OPERATING SYSTEM WINDOWS: 98,2000,1 UNIX: No		8

ON-GOING/UNDERTAKEN Kenya Road network inventory and condition survey project PROJECT:

TITLE	THEME	DEPARTMENT	COVERAGE	FORM	SOURCE SCALE	ACCESSIBILITY	COST (Ksh)	CATALOGUE	STATUS
Kenya roads Network	Transportation	Roads	Kenya	Digital document		Restricted to some	2	None	Nearing completio

Kenya map	Boundaries/Po pulation	Cartography	Kenya (Whole)	Digital map	1:50000,1:25000 0	Unrestricted	1500	Manual catalogue	Complete
Village map	Boundaries/Po pulation	Cartography	Kenya (43 districts)	Hardcopy map	1:2500,1:10000, 1:50000,1:25000 0	Restricted to some	750	Manual catalogue	Complete
Village map	Boundaries/Po pulation	Cartography	Kenya (26 districts)	Digital map	1:2500,1:100000, 1:50000,1:250000 0	Restricted to some	1500	Manual catalogue	Nearing completio n
Ministry	of water								
ADDRESS	: <u>P.O BOX 305</u>	21 NAIROBI		TEL:	716103		X:	<u>727622</u>	
PHYSICAL	L LOCATION:	Maii House		E-MAII	L: olemiso-dwd a	maji.go.kc W	EBSITE:		
CIS SOFT			ATABASE ARC			TA INPUT/OU	PUT DEV		
GIS SOFT	WARE VE	RSION D	ATABASE ARC		URE DA		PUT DEV	ICES ERSION	<u>NO.</u>
GIS SOFT ArcView	WARE <u>VEI</u>	<u>RSION</u> <u>D</u> 3.2 Cl		CHITECT	URE DA DE DIO	TA INPUT/OU VICE GITIZING TABL	PUT DEV VI E: Ye	s	<u>NO.</u>
GIS SOFT ArcView	WARE <u>VEI</u>	RSION D. 3.2 Cl 2.0 D.	ENTRALIZED:	CHITECT	URE DA DE DIC SC.	TA INPUT/OUI VICE GITIZING TABL ANNER:	PUT DEV VI LE: Ye Ye	s s	<u>NO.</u>
GIS SOFT ArcView	WARE <u>VEI</u>	RSION D. 3.2 Cl 2.0 D. D D	ENTRALIZED: ISTRIBUTED: BMS	CHITECT	URE DA DE DIO SC. PLO	TA INPUT/OU VICE GITIZING TABL ANNER: OTTER:	PUT DEV VI E: Ye Ye Ye	E <mark>RSION</mark> s s	<u>NO.</u>
GIS SOFT ArcView	WARE <u>VEI</u>	RSION D. 3.2 Cl 2.0 D M M	ENTRALIZED: ISTRIBUTED:	CHITECT	URE DA DE DIC SC PLC PR	TA INPUT/OUI VICE GITIZING TABL ANNER: OTTER: INTER:	PUT DEV VI E: Ye Ye Ye Ye	ERSION s s s s	<u>NO.</u>
<u>GIS SOFT</u> AreView ILWIS	WARE <u>VEI</u>	RSION D. 3.2 Cl 2.0 D M O	ENTRALIZED: ISTRIBUTED: BMS Is Access macle	CHITECT	URE DA DE DIC SC. PLC PRI INT	TA INPUT/OUI VICE GITIZING TABL ANNER: OTTER: INTER: FERNET ACCES	PUT DEV VI E: Ye Ye Ye SS: Ye	ERSION s s s s s	<u>NO.</u>
<u>GIS SOFT</u> AreView ILWIS	WARE <u>VEI</u>	RSION D. 3.2 Cl 2.0 D D M O C	ENTRALIZED: ISTRIBUTED: BMS Is Access tracle CAD	CHITECT	URE DA DE DIC SC. PLC PRI ENT PC	TA INPUT/OUI VICE GITIZING TABL ANNER: OTTER: INTER: FERNET ACCES	PUT DEV VI E: Ye Ye Ye SS: Ye Ye	ERSION s s s s s	<u>NO.</u>
<u>GIS SOFT</u> AreView ILWIS	WARE <u>VEI</u>	RSION D. 3.2 Cl 2.0 D D M O C	ENTRALIZED: ISTRIBUTED: BMS Is Access macle	CHITECT	URE DA DE DIC SC PLC PRI INT PC OP	TA INPUT/OU VICE GITIZING TABL ANNER: OTTER: INTER: FERNET ACCES PERATING SYS	PUT DEV VI E: Ye Ye Ye SS: Ye Yc TTEM	ERSION s s s s s s	<u>NO.</u>
<u>GIS SOFT</u> ArcView ILWIS	WARE <u>VEI</u>	RSION D. 3.2 Cl 2.0 D D M O C	ENTRALIZED: ISTRIBUTED: BMS Is Access tracle CAD	CHITECT	URE DA DE DIO SC. PLO PRJ PRJ PC OP WT	TA INPUT/OUI VICE GITIZING TABL ANNER: OTTER: INTER: FERNET ACCES	PUT DEV VI E: Ye Ye Ye SS: Ye Yc TTEM	ERSION s s s s s s	<u>NO.</u>

PROJECT:

TITLE	THEME	DEPARTMENT COVERAGE	FORM	SOURCE SCALE	ACCESSIBILITY	COST (Ksb)	CATALOGUE	<u>STATUS</u>
					1	1		

Dapartment of Resource Surveys and Remote Sensing (DRSRS)

	DDRESS: P.O BOX 47146 NAIROBI HYSICAL LOCATION: Kapiti road		TEL: <u>60901</u> E-MAIL: <u>drsrs/a</u>	_	ITE: <u>www.drsrs.n</u>	nctco.go.kc
GIS SOFTWARE	VERSION	DATABASE ARC	CHITECTURE	DATA INPUT/OUPUT	DEVICES	
PC Arcinfo	7.0	CENTRALIZED:	Yes	DEVICE	VERSION	NO.
Workstation ArcInfo	8.1	DISTRIBUTED:	Yes	DIGITIZING TABLE:	Calcomp	2
ArcView	3.2	DBMS		SCANNER:	A4	2
ArcGIS	8.10			PLOTTER.	HP 6500	1
	0.10	Ms Access		PRINTER:	Yes	
ILWIS				INTERNET ACCESS.	Yes	
IMAGE PROCESS	ING	CAD		PC	Yes	13
ERDAS				OPERATING SYSTEM	M	
				WINDOWS: 3.1,3.11,9	95,98,2000,	
				UNIX: Yes		

ON-GOING/UNDERTAKEN Land use/cover and environmental mapping through aerial photography and remote sensing PROJECT:

TITLE	THEME	DEPARTMENT	COVERAGE	FORM	SOURCE SCALE	ACCESSIBILITY	COST (Ksh)	CATALOGUE	STATUS
Wildlife Distribution maps	Biota(fauna/flo ra)	GIS section	Kenya(Rangeland districts)	Digital map	Field survey	Unrestricted	50	Digital catalogue	Complete
Landuse/cove	r Biota(fauna/flo ra)	GIS section	Kenya (All Districts)	Digital map	1:250000	Unrestricted	50	Digital catalogue	Complete

Department of Urban Development-MLG

ADDRESS: <u>P.O BOX 30004 NAIROBI</u> PHYSICAL LOCATION: <u>Cianda house</u>			TEL: <u>340972</u> E-MAIL:	FAX: WEBSITE:		
GIS SOFTWARE	VERSION	DATABASE ARC	CHITECTURE	DATA INPUT/OUPUT	DEVICES	
ArcView	3.2	CENTRALIZED:	Yes	<u>DEVICE</u>	VERSION	NO.
		DISTRIBUTED.		DIGITIZING TABLE:	Yes	2
				SCANNER:	No	
	*	DBMS		PLOTTER:	HP 750c	2
		Ms Access		PRINTER:	Yes	
				INTERNET ACCESS:	Yes	
IMAGE PROCESS	SING	CAD		PC	Yes	70
Photo Impact		AutoCAD		OPERATING SYSTEM	1	
		Microstation		WINDOWS: NT		
		LisCAD		UNIX:		

 ON-GOING/UNDERTAKEN
 Kenya Urban Transportation Infrastructure (KUTIP) project, Slum upgrading, Nairobi storm water

 PROJECT:
 drainage

 IIIILE
 THEME
 DEPARTMENT
 COVERAGE
 FORM
 SOURCE
 ACCESSIBILITY
 COST
 CATALOGUE
 STATUS

 SCALE
 (Ksh)
 (Ksh)
 (Ksh)
 (Ksh)
 (Ksh)

Local Autombes Topographic	lmagery/Base maps/Earth cover	Survey and Planning	Specific towns (26 towns)	Hardcopy map	1:2500	Unavailable for external use	~	Manual catalogue	Complete
Local Authorities Road network	Transportation	Survey and Planning	Specific towns (26 towns)	Digital map	1:2000	Unavailable for external use		*	Complete

Kenya Meteorological Department (KMD)

ADDRESS: P.O BOX 30259 NAIROBI PHYSICAL LOCATION: Dagorreti corner			TEL: 567880 E-MAIL: directo	-	<u>576955</u> ITE: <u>www.meteo.</u>	<u>po kc</u>
GIS SOFTWARE	VERSION	DATABASE ARC	CHITECTURE	DATA INPUT/OUPUT	DEVICES	
IRISI32	132.2	CENTRALIZED:	Yes	DEVICE	VERSION	NO.
		DISTRIBUTED:	Yes	DIGITIZING TABLE:	Yes	2
				SCANNER:	Yes	10
		DBMS		PLOTTER	Yes	2
		Ms Access		PRINTER:	Yes	30
	1.8.1	Oracle		INTERNET ACCESS:	Yes	50
IMAGE PROCESS	SING	CAD		PC	Yes	100
				OPERATING SYSTEM	1	
				WINDOWS: 3.1,3.11,9	5,98,2000,	
				UNIX: Yes		

ON-GOING/UNDERTAKEN PROJECT:

TITLE	THEME	DEPARTMENT	COVERAGE	FORM	SOURCE SCALE	ACCESSIBILITY	COST (Ksh)	CATALOGUE	STATUS
METEOSAT	Climatology/M eteorology/Atm osphere		Africa and part of Europe	Digital image	5 Km	Restricted to some		None	Complete
Rainfall	Climatology/M eteorology/Atm osphere		Kenya (Country-wide)	Digital document		Unrestricted	*	4	e.
NOAA	Climatology/M eteorology/Atm osphere		east Africa, horn of Africa, and part of West Africa	Digital image	l Km reolution	Restricted to some	*	Manual catalogue	Complete

Nairobi City Council (NCC)

ADDRESS: <u>P.O.BO</u> PHYSICAL LOCA			TEL: E-MAIL:	<u>220067</u> :		FAX: WEBSIT	<u>230640</u> ГЕ:	
GIS SOFTWARE	VERSION	DATABASE ARC	THITECTU	J <u>RE</u>	DATA INPUT/ DEVICE	OUPUT D	VERSION	<u>NO.</u>
		DISTRIBUTED:			DIGITIZING TA	ABLE:	A3	
		DBMS Ms Access			PLOTTER: PRINTER:		Yes	
IMAGE PROCESS Adobe suite	ing	CAD AutoCAD			INTERNET AC PC OPERATING		Yes Yes	386
		ArchiCAD Corel Draw			WINDOWS: 9 UNIX: Y	98,2000,XP Yes		

ON-GOING/UNDERTAKEN The establishment of the spatial framework data for the city of Nairobi (Digital mapping of the city of Nairobi),

TITLE	THEME	DEPARTMENT	COVERAGE	FORM	SOURCE SCALE	ACCESSIBILITY	COST CATALOGUE	STATUS
Topographical maps	Imagery/Base maps/Earth cover	City Planning	Nairobi (682 Km2)	Hardcopy map	1:2500	Restricted to some	None	
Cadastral	Cadastre/plann ing	Survey	Nairobi city	Hardcopy map	1:10000	Unrestricted		

Electoral Commission of Kenya (ECK)

ADDRESS: P.O BC PHYSICAL LOCA			TEL: <u>2220</u> E-MAIL: <u>eck@</u>	_	: <u>223998</u> SITE: <u>www.eck.or</u>	<u>ke</u>
GIS SOFTWARE	VERSION	DATABASE ARC	CHITECTURE	DATA INPUT/OUPL	T DEVICES	
ArcGIS	8.3	CENTRALIZED:		DEVICE	VERSION	NO.
		DISTRIBUTED:		DIGITIZING TABLE:	Yes	2
				SCANNER:	Yes	I
	•	DBMS		PLOTTER:	Yes	3
	•	Ms Access		PRINTER:	Yes	20
	•			INTERNET ACCESS:		
IMAGE PROCESS	SING	CAD		PC	Yes	50
				OPERATING SYSTI	EM	
		*		WINDOWS: 2000,X	P	
				UNIX:		

ON-GOING/UNDERTAKEN Review of constituency and civic wards, Registration of voters PROJECT:

TITLE	THEME	DEPARTMENT	COVERAGE	FORM	SOURCE	ACCESSIBILITY	COST	CATALOGUE STATUS
					SCALE		(Ksh)	

ADDRESS:]	P.O BOX 4 LOCATIO ARE <u>V</u> OCESSING	0658 (00100) N: <u>Museum</u> BERSION 3.5 3.2 5.5				FAX: <u>iscums.co.ke</u> WEB <u>DATA INPUT/OUPU</u> <u>DEVICE</u> DIGITIZING TABLE: SCANNER: PLOTTER: PRINTER: INTERNET ACCESS: PC <u>OPERATING SYSTE</u> WINDOWS: XP	SITE: www.museu <u>T DEVICES</u> <u>VERSION</u> A1Altek A1 HP A3 Yes Yes	ms.co.ke NO. 1 1 1 2
ADDRESS: <u>PHYSICAL</u> GIS SOFTW PC ArcInfo ArcView MapInfo	P.O BOX 4 LOCATIO ARE <u>V</u> OCESSING	0658 (00100) N: <u>Museum</u> BERSION 3.5 3.2 5.5	DATABASE ARC DATABASE ARC CENTRALIZED: DISTRIBUTED: DBMS Ms Access File maker CAD	E-MAII	.: <u>mmk@mu</u>	DATA INPUT/OUPU DEVICE DIGITIZING TABLE: SCANNER: PLOTTER: PRINTER: INTERNET ACCESS: PC	SITE: www.museu <u>T DEVICES</u> <u>VERSION</u> A1Altek A1 HP A3 Yes Yes	<u>NO.</u> 1 1 1
ADDRESS: <u>PHYSICAL</u> GIS SOFTW PC ArcInfo ArcView MapInfo	P.O BOX 4 LOCATIO ARE <u>V</u>	0658 (00100) N: <u>Museum</u> BERSION 3.5 3.2 5.5	DATABASE ARC CENTRALIZED: DISTRIBUTED: DBMS Ms Access	E-MAII	.: <u>mmk@mu</u>	DATA INPUT/OUPU DEVICE DIGITIZING TABLE: SCANNER: PLOTTER: PRINTER:	SITE: www.museu T DEVICES VERSION A1Altek A1 HP A4 HP A3	<u>NO.</u> 1 1
ADDRESS: 1 PHYSICAL GIS SOFTW PC ArcInfo ArcView	P.O BOX 4 LOCATIO	0658 (00100) N: <u>Muscum</u> ERSION 3.5 3.2 5.5	DATABASE ARC CENTRALIZED: DISTRIBUTED: DBMS Ms Access	E-MAII	.: <u>mmk@mu</u>	DATA INPUT/OUPU DEVICE DIGITIZING TABLE: SCANNER: PLOTTER:	SITE: www.museu T DEVICES VERSION A 1 Altek A 1 HP A4	<u>NO.</u> 1 1
ADDRESS: 1 PHYSICAL GIS SOFTW PC ArcInfo ArcView	P.O BOX 4 LOCATIO	0658 (00100) N: <u>Museum</u> ERSION 3.5 3.2	DAIROBI hill DATABASE ARC CENTRALIZED: DISTRIBUTED:	E-MAII	.: <u>mmk@mu</u>	DATA INPUT/OUPU DEVICE DIGITIZING TABLE: SCANNER:	SITE: <u>www.museu</u> T DEVICES <u>VERSION</u> A I Altek A I	<u>NO.</u> 1
ADDRESS: 1 PHYSICAL GIS SOFTW PC ArcInfo ArcView	P.O BOX 4 LOCATIO	0658 (00100) N: <u>Museum</u> ERSION 3.5 3.2	NAIROBI hill DATABASE ARC CENTRALIZED:	E-MAII	.: <u>mmk@mu</u>	DATA INPUT/OUPU DEVICE DIGITIZING TABLE:	SITE: <u>www.museu</u> T DEVICES <u>VERSION</u> A I Altek A I	<u>NO.</u> 1
ADDRESS: 1 PHYSICAL GIS SOFTW PC ArcInfo	P.O BOX 4 LOCATIO	0658 (00100) N: <u>Muscum</u> ERSION 3.5	NAIROBI hill DATABASE ARC CENTRALIZED:	E-MAII	.: <u>mmk@mu</u>	DATA INPUT/OUPU DEVICE	SITE: <u>www.museu</u> <u>T DEVICES</u> <u>VERSION</u>	<u>NO.</u>
ADDRESS: PHYSICAL GIS SOFTW	P.O BOX 4 LOCATIO	0658 (00100) N: <u>Muscum</u> ERSION	NAIROBI hill DATABASE ARC	E-MAII	.: <u>mmk@mu</u>	DATA INPUT/OUPU	SITE: <u>www.museu</u> T DEVICES	
ADDRESS:]	P.O BOX 4	0658 (00100)	NAIROBI					<u>ms.co.ke</u>
		-		TEL	3742161	FAX	3741424	
Kensoter database	Farming	KSS	Kenya	Digital map	t=1000000	Restricted to some	. Manual catalogue	Complet
	THEME		IENT COVERAGE		SOURCE SCALE		COST CATALOGU (Ksh)	
ON-GOING	/UNDERT/					UNIX: R), Western Kenya ccosy ate effects of deforestatio	stem project and Imp	pacts of re-
			1000/1D			WINDOWS: 98,2000		
	<u> </u>	2	CAD AutoCAD			PC OPERATING SYSTE	Yes	3
IMAGE PR	OCESSING		CAD			INTERNET ACCESS:		3
			dbase			PRINTER:	Laser jet	2
			DBMS			PLOTTER:	A0	1
736 Y 16W		0.0	2210			SCANNER:	Yes	2
ArcView		3.3	DISTRIBUTED:			DIGITIZING TABLE:		2
GIS SOFTW PC Arcinfo	VARE V	ERSION 3.5	DATABASE ARC		URE	DATA INPUT/OUPU DEVICE	T DEVICES VERSION	NO.
PHYSICAL	LOCATIO	N: Waivaki	wav	E-MAII	: <u>c:ss@ucon</u>	meet.co.ke WEE	SITE:	
ADDRESS:	POBOXI	4733 (00800)	Westlands NAIRO	TEL:	440903	FAX	4443376	
	il Surve	y (KSS)						
Kenya So					1:50000,			
Kenya So			(Country-wide)	mal,	1 250000, I 100000,			

ON-GOING/UNDERTAKEN Developing GIS database for archaelexincal and palaentological sites PROJECT:

TITLE	THEME	DEPARTMENT	COVERAGE	FORM	SOURCE	ACCESSIBILITY	COST	CATALOGUE	STATUS
					SCALE		<u>(Ksh)</u>		

Kenya Geology	Geosciences	Sites and Monument	Kenya	Digital map	1:1000000	Restricted to most	None	Nearing completio n
Arctifics	Cultural features	Sites and Monument	Kenya	Digita! map	1:50000	Restricted to some	. None	Nearing completio n

Kenya Wildlife Service

ADDRESS: POBOX 40241 NAIROBI	TEL: <u>501081</u>	FAX: <u>603792</u>
PHYSICAL LOCATION: Off-Langata road	E-MAIL: <u>kws@kws.org</u>	WEBSITE: <u>www.kws.org</u>
		DITIOUDIT DEVICES

GIS SOFTWARE	VERSION	DATABASE ARCHITECT	URE DATA INPUT/OUPUT	DEVICES	
Workstation ArcInfo	8.1	CENTRALIZED: Yes	DEVICE	VERSION	<u>NO.</u>
ArcView	3.2	DISTRIBUTED:	DIGITIZING TABLE:	Calcomp and Suma	2
ArcGIS		55540	SCANNER:	A4	1
12000		DBMS	PLOTTER:	HP 750c	1
		Ms Access	PRINTER	A4	2
			INTERNET ACCESS:	Yes	
IMAGE PROCESS	ING	CAD	PC	Yes	5
		AutoCAD	OPERATING SYSTEM	[
		*	WINDOWS: 95,98,200	0	
		-	UNIX:		

ON-GOING/UNDERTAKEN Aerial, terrestruial and marine census of animals PROJECT:

TITLE	THEME	DEPARTMENT	COVERAGE	FORM	SOURCE SCALE	ACCESSIBILITY	COST (Ksh)	CATALOGUE	STATUS
Wildlife protected areas	Biota(fauna/flo ra)	Research	Wildlife protected area (10%)	Digital map	Various	Restricted to some		Digital catalogue	Nearing completio n
Animaj counts	Biota(fauna/tlo ra)	Research	Kenya (10 Ecosystems)	Digital map	1:50000	Restricted to some	-	None	Complete

Kenya Power and Lighting Company (KPLC)

ADDRESS: P.O. BOX 30099 NAIROIBI PHYSICAL LOCATION: Parklands (Kolobot rd.)		TEL: <u>243366</u> E-MAIL:	FAX: WEBSITE: <u>www.kplc.co.ke</u>			
GIS SOFTWARE	VERSION	DATABASE ARC	CHITECTURE Yes	DATA INPUT/OUPUT DEVICE	DEVICES VERSION	<u>NO.</u>
	•	DISTRIBUTED	Yes	DIGITIZING TABLE: SCANNER:	Calcomp	3
	•	DBMS Ms Access		PLOTTER: PRINTER:	HP 1055cm	4
MAGE PROCESS	- ING	Oracle <u>CAD</u> AutoCAD		INTERNET ACCESS. PC OPERATING SYSTEM	Yes Yes 1	
		1		WINDOWS: 98,2000,N UNIX: Yes	- 17	

ON-GOING/UNDERTAKEN Electrical network and base physical network PROJECT:

TITLE	THEME	DEPARTMENT	COVERAGE	FORM	SOURCE SCALE	ACCESSIBILITY	COST (Ksh)	CATALOGUE	STATUS
Electrical network	Utilities/Com munication	IT&T	Kenya(Nairobi and Cost Regions)	Digital map	1:2500	Restricted to some	•	Digital catalogue	e C
Cadastral maps	Utilitics/Com munication	FBD Design	Ngong, Kikuyu- Ruiru Asreas	Hardbopy map	1:2500,1:2000	Unavailable for external use			Complete

Kenya Forestry Research Institute

ADDRESS: P.O BOX 20412 NAIROBI PHYSICAL LOCATION: Muguga				<u>32844</u> ITE:	
VERSION	DATABASE ARC	CHITECTURE	DATA INPUT/OUPUT	DEVICES	
	CENTRALIZED:	Yes	DEVICE	VERSION	NO.
	DISTRIBUTED:		DIGITIZING TABLE:		
			SCANNER:	A4	6
	DBMS		PLOTTER.		
	Fox pro		PRINTER		
				Yes	
NG	CAD		PC	Yes	120
	- 2-		OPERATING SYSTEM	1	
			WINDOWS	-	
			UNIX:		
	ION: <u>Muguga</u>	ION: MUQUEA <u>VERSION</u> DATABASE ARC CENTRALIZED: DISTRIBUTED: DBMS Fox pro	ION: Muguga E-MAIL: kefn@ VERSION DATABASE ARCHITECTURE CENTRALIZED: Yes DISTRIBUTED: DBMS Fox pro	ION: Muguea E-MAIL: kefri@arcc.or.ke WEBS VERSION DATABASE ARCHITECTURE CENTRALIZED: Yes DISTRIBUTED: DATA INPUT/OUPUT DEVICE DBMS Fox pro DIGITIZING TABLE: SCANNER: PBMS Fox pro PLOTTER: INTERNET ACCESS: PC NG CAD	ION: MURRIER E-MAIL: kefri@arcc.or.ke WEBSITE: VERSION DATABASE ARCHITECTURE CENTRALIZED: Yes DISTRIBUTED: DATA INPUT/OUPUT DEVICES DEVICE VERSION DISTRIBUTED: SCANNER: A4 DBMS Fox pro PLOTTER: NTERNET ACCESS: Yes Yes OPERATING SYSTEM WINDOWS:

 ON-GOING/UNDERTAKEN
 International Forestry Resources and Institutions project (IFRI), Global Forestry Information System (GFIS)

antigeneous Environ	ment Forest departn		Hardcopy 1:1000 map	0000 Restricted to some	Manual catalogue	Complete
elkom Kenya						
DORESS: POBC	<u>)X 30301 (0010</u>)) NAIROBI	TEL:	FAX		
HYSICAL LOCA	TION: Telepos	<u>la</u>	E-MAIL:	WEI	BSITE: www.telkon	<u>co.ke</u>
SIS SOFTWARE	VERSION	DATABASE AR	CHITECTURE	DATA INPUT/OUPL	T DEVICES	
		CENTRALIZED:		DEVICE	VERSION	NO.
		DISTRIBUTED:	-	DIGITIZING TABLE:		
		5510		SCANNER:		
		DBMS		PLOTTER:		
				PRINTER:		
		•		INTERNET ACCESS:	Yes	
MAGE PROCES	SING	CAD		PC	Yes	
				OPERATING SYSTI	EM	
				WINDOWS:		
				UNIX:		

ON-GOING/UNDERTAKEN To start GIS, Fibre optic network (SDH) and East Africa Digital Link PROJECT:

TITLE	THEME	DEPARTMENT	COVERAGE	FORM	SOURCE SCALE	ACCESSIBILITY	COST (Ksh)	CATALOGUE	STATUS
Exchange Area Network	Utilities/Com munication	Planning and Engineering	Kenya- Exchange Areas	Hardcopy map	1:5000, 1:2500, 1:1250	Unavailable for external use		Manual catalogue	Complete
Distribution Network (Cabinet)	Utilities/Com munication	Planning and Engineering	Kenya- cabinets	Hardcopy map	NTS (Not To Scale)	Unavailable for external use	*	Manual catalogue	Complete
Transmission and radio links	Utilities/Com munication	Planning and Engineering	Kenya	Hardcopy map	1:1000000	Unavailable for external use		Manual catalogue	Complete

National Housing Corporation (NHC)

ADDRESS: P.O BOX 30257 NAIROBI PHYSICAL LOCATION: NHC House		TEL.: <u>331205</u> E-MAI ¹ .:	FAX: WEBSITE:			
GIS SOFTWARE	VERSION	DATABASE ARC	CHITECTURE	DATA INPUT/OUPUT	DEVICES	
		CENTRALIZED.		DEVICE	VERSION	NO.
	11	DISTRIBUTED.		DIGITIZING TABLE:		
		0.01/2		SCANNER.		
		DBMS		PLOTTER:		
	-			PRINTER.		
				INTERNET ACCESS:		
IMAGE PROCESS	<u>SING</u>	CAD		PC	Yes	
				OPERATING SYSTEM	<u>I</u>	
		4		WINDOWS: 95,98,200	0	
		+		UNIX:		

ON-GOING/UNDERTAKEN PROJECT:

TITLE	THEME	DEPARTMENT	COVERAGE	FORM	SOURCE SCALE	ACCESSIBILITY	COST (Ksh)	CATALOGUE	STATUS
				0					2

United Nations Environmental Programme (UNEP)

ADDRESS: <u>P.O BOX 30552 NAIROBI</u> PHYSICAL LOCATION: <u>Gigin</u>			TEL: 62202 E-MAIL: mwar		FAX: <u>624315</u> WEBSITE: <u>www.unep.org</u>	
GIS SOFTWARE	VERSION	DATABASE ARC	HITECTURE	DATA INPUT/OUPUT	DEVICES	
ArcView	3.2	CENTRALIZED:		DEVICE	VERSION	NO.
ArcGIS	8.1	DISTRIBUTED:	Yes	DIGITIZING TABLE:		
IDRISI	132.2	DBMS		SCANNER: PLOTTER:	Calcomp HP 1055, 650c	3
	3	Ms Access SQL		PRINTER: INTERNET ACCESS:	Yes Yes	6
IMAGE PROCESS Photoshop suite Adobe suite	ING	<u>CAD</u>		PC OPERATING SYSTEM WINDOWS: 2000,XP	Yes 1	9
				UNIX:		

ON-GOING/UNDERTAKEN Eastern Africa coastal database and atlas, Mt. Kenya, Mau, Kilimanjaro trend analysis and Africa environment data production

TITLE	THEME	DEPARTMENT	COVERAGE	FOR:M	SOURCE SCALE	ACCESSIBILITY	COST (Ksh)	CATALOGUE	STATUS
Desertfication	Environment		Kenya/Africa	Digital: map	Below 1:1000000	Restricted to some		Digital catalogue	-

International Livestock Research Institute (ILRI)

ADDRESS: PO BOX 30709 (00100) NAIROBI PHYSICAL LOCATION: Naivasha road TEL:630743FAE-MAIL:pam.ochungo/@cgiar.orgWith

FAX: WEBSITE: www.ilri.org

GIS SOFTWARE	VERSION	DATABASE ARC	CHITECTURE	DATA INPUT/OUPUT	DEVICES	
PC Arcinfo	3.5	CENTRALIZED:	Yes	DEVICE	VERSION	NO.
Workstation ArcInfo	8.1	DISTRIBUTED:	Yes	DIGITIZING TABLE:	A0	1
View	3.2	DDM		SCANNER:	Yes	
	5.6	DBMS		PLOTTER:		
daplafo	- 4	Ms Access		PRINTER:	Yes	1
rcGIS	4			INTERNET ACCESS:	Yes	
MAGE PROCESSI	ING	CAD		PC	Yes	273
RDAS				OPERATING SYSTEM	1	
				WINDOWS: 98,2000,1	T	
				UNIX: Yes		

ON-GOING/UNDERTAKEN Use of GIS in Market access studies, Use of GIS in adoption of technology for farmers PROJECT:

TITLE	THEME	DEPARTMENT	COVERAGE	FORM	SOURCE SCALE	ACCESSIBILITY	COST (Ksh)	CATALOGUE	STATUS
Kenya_ECFdi stribution.shp	Farming		Кепуа	Digital map			Free	Metadata exists	**
Kenya Provin ces shp	Boundaries		Kenya	Digital map			Free	Metadata exists	•
Kenva locatio ns.shp	Boundaries		Kenya	Digital map		Unrestricted	Free	Metadata exists	•
Ken_elevation	Elevation		Kenya	Digital map	1:250000		Free	Metadata exists	•
Kenya_divisio ns2000_shp	Boundaries		Kenya	Digital map		Unrestricted	Free	Metadata exists	*
Kenya_divisio ns shp	Boundaries		Kenya	Digital map		Unrestricted	Free	Metadata exists	•
Kenya_village s shp	Society		Kenya (28815 villages)	Digital map		Unrestricted	Free	Metadata exists	
Kenya_contou . r shp	Elevation		Kenya	Digital map		Unrestricted	Free	Metadata exists	
Kenya outsid i e boundary.sh p	Boundaries		Kenya	Digital map		Unrestricted	Free	Mctadata exists	¥

Kana_sublo asses ship	c Environment		Kenya	Digital map		Unrestricted	Free	Metadata mists	*
Kensa crop/ senock shp	ir Biota(fauna/flo m)		Kenya	Digital map			Free	Metadata exists	
Kena_distri sHLshp	ct Boundaries		Kenya	Digital map			Free	Metadata exists	
West_Kenya nvers.shp	_ Inland waters		Kenya	Digital map		Unrestricted	Free	Metadata exists	×
Highland_roe ds.shp	Transportation		Kenya	Digital map		Unrestricted	Free	Metadata exists	2
Kenya_wetlan ds shp	a Environment	1	Kenya	Digital map		Unrestricted	Free	Metadata exists	2
Kenya_Roads shp	. Transportation	1	Kenya	Digital map	1:50000		Free	Mctadata exists	
Kenya_forests shp	s Environment	1	Kenya	Digital map		Unrestricted	Free	Metadata exists	•
Kenya_riverb asıns shp	Inland waters	1	Kenya	Digital map			Free	Metadata exists	•
Kenya_protec ed_areas.shp	t Environment	1	Kenya	Digital map		1	Free	Metadata exists	•
Kenya major towns.shp			Kenya	Digital map		1	Free	Metadata exists	•
Kenya_Landu se.shp	Environment	1	Kenya	Digital map		4	Free	Metadata exists	2
Kenva Lakes. shp	Inland waters	I	Kenya	Digital map			Free	Metadata exists	×
Kenva_roads WFP shp	Transportation	3	Kenya	Digital map		Unrestricted	Free	Metadata exists	×
Kenya_Rivers shp	Inland waters	1	Kenya	Digital map			Free	Metadata exists	×
	Climatology/M eteorology/Atm osphere	,	Kenya	Digital map			Free	Metadata exists	

Mis_Access2	Location		Kenya	Digital map			Free	Metadata exists	
i.com all_to uns.dep	Cultural features		Kenya	Digital map	1:50000,1:25000 0		Free	Metadata exists	
Kenna Tree_c over skp	Environment		Kenya	Digital map		Unrestricted	Free	Metadata exists	
Kenva_waterp outsi.shp	Utilities/Com munication		Kenya	Digital map		Unrestricted	Free	Metadata exists	
Kenya_Aczon es shp	Climatology/M eteorology/Atm osphere		Kenya	Digital map		- 3-	Free	Metadata exists	
Kenya_tsetsed istriba shp	Farming		Kenya	Digital map		•	Free	Metadata exists	4
Kenya Malari a zones shp	Society		Кепуа	Digital map		Unrestricted	Free	Metadata exists	-
Kenya rainsta tuons1991- 96.shp	Climatology/M eteorology/Atm osphere		Kenya	Digital map			Free	Metadata exists	
Kentraveltime		4	Kenya	Digital map			Free	Metadata exists	e
Kenya89 sublo c_cencus.shp	Society/populat		Kenya	Digital map			Free	Metadata exists	÷
Kenya_R_app endiculatus.sh			Kenya	Digital map			Free	Metadata exists	÷
Kenya_Aezon es.shp	Farming		Kenya	Digital map			Free	Metadata exists	
kenya_Camel distribution.sh			Kenya	Digital map		Unrestricted	Free	Metadata exists	-
Kenya mapsh eets_catalogu e shp	Imagery/Base maps/Earth cover		Kenya	Digital map	1:50000		Free	Metadata exists	-
	Climatology/M eteorology/Atm osphere		Kenya	Digital map		1	Free	Metadata exists	-
Kenya79loc_c ensus shp	Society/populat		Кспуа	Digital map		1	Free	Metadata exists	-

Lana Cattle Farming amony shp	Kenya	Dıgital map		1	Free	Metadata exists	-
Lana_forest_Environment suges ship	Kenya	Digital Cap		Unrestricted	Free	Metadata exists	-
Whent_produ Inland waters store.shp	Kenya	சுதும்] ஊர	1:1000000	Unrestricted	Free	Metadata exists	
Sorghum_pro Farming Juction.shp	Kenya	Dagital mmp	1:1000000	Unrestricted	Free	Metadata exists	*
Maze_produc Farming bon shp	Kenya	Digital	1:1000000	Unrestricted	Free	Metadata exists	
Kenya_Rainfa Climatology/M I_distribution_eteorology/Atm shposphere	Кепуа	Dıgital map		•	Free	Metadata exists	*
Mid_Access3 Location	Кепуа	Dıgital map		Unrestricted	Free	Metadata exists	
Mix Access1 Location	Kenya	Dıgital map		Unrestricted	Free	Metadata exists	•
Millet_produc Farming ton.shp	Kenya	Dıgitel mup	1:1000000	Unrestricted	Free	Metadata exists	
Rice_producti Farming on.shp	Kenya	Digital map	1:1000000	Unrestricted	Free	Metadata exists	

World agroforestry Centre (ICRAF)

ADDRESS: P.O. BOX 30677 (00100) NAIROBI PHYSICAL LOCATION: UN-Avenue Gigin

Basm

TEL: <u>524000</u> E-MAIL: e.soin/a cgiar org FAX: <u>524001</u> WEBSITE: <u>www.icraf.org</u>

catalogue

some

GIS SOFTWARE	VERSION	DATABASE ARCHITECTURE	DATA INPUT/OUPUT	DEVICES	
Workstation ArcInfo		CENTRALIZED Yes	DEVICE	VERSION	NO.
ArcView	3.2	DISTRIBUTED: -	DIGITIZING TABLE:	Yes	1
ArcGIS		BB1 (0	SCANNER:	A3	1
		DBMS	PLOTTER:	Yes	1
DRISI	1	Ms Access	PRINTER:	A3/A4	3
	+	•	INTERNET ACCESS:	Ycs	
MAGE PROCESSI	NG	CAD	PC	Yes	3
RDAS			OPERATING SYSTEM	М	
NVI			WINDOWS: 2000,NT.	XP	
-Cognition			UNIX:		

ON-GOI! PROJEC	NG/UNDERTA T:		Reflectance spectrography of soils in L Victoria basin, Spatial information for sustainable development and Baseline survey of land cover of S.W Uganda							
TITLE	THEME	DEPARTMENT	COVERAGE	FORM	SOURCE SCALE	ACCESSIBILITY	COST (Ksh)	CATALOGUE	STATUS	
Lake Victor	na Environment	GIS section	Lake Victoria	Digital	1:50000	Restricted to	-	Digital	Complete	

Regional Centre for Mapping of Resources for Development

Basin-33

Districts

map

ADDRESS: <u>P.O BC</u> PHYSICAL LOCA				K: <u>802767</u> BSITE: <u>www.rcmrd.c</u>	ng
GIS SOFTWARE	VERSION	DATABASE ARCHITECTURE	DATA INPUT/OUP	UT DEVICES	
PC Arcinfo	8.1	CENTRALIZED:	DEVICE	VERSION	NO.
ArcView		DISTRIBUTED:	DIGITIZING TABLE	: Yes	
ArcGIS			SCANNER:	Yes	
II WIS		DBMS	PLOTTER:	Yes	

IL WIS	14	Ms Access			
IDRISI			PRINTER:	Yes	
			INTERNET ACCESS:	Yes	
IMAGE PROCESSIN	<u>G</u>	CAD	PC	Yes	
Yes		Ycs	OPERATING SYSTEM	1	
		*	WINDOWS:		
			UNIX:		

ON-GOING/UNDERTAKEN Earl warning for food security, Development of Wind Atlas of Kenya and Landuse/land cover mapping of member states

TITLE	THEME	DEPARTMENT	COVERAGE	FORM	SOURCE SCALE	ACCESSIBILITY	COST (Ksh)	CATALOGUE	STATUS
Satellite	Imagery/Base maps/Earth cov e r	Remote sensing	Eastern and Southern Africa	Digital image	Depends on satellite and data format	Unrestricted	147	Digital catalogue	

International Centre for Insect Physiology and Ecology (ICIPE)

ADDRESS: P.O BOX 30772 NAIROBI PHYSICAL LOCATION: Kasarani			TEL: <u>86168</u> E MAIL: <u>icipe/a</u>		806330 BITE: <u>www.icipe.o</u>	ſġ
GIS SOFTWARE	VERSION	DATABASE ARC	CHITECTURE	DATA INPUT/OUPUT	DEVICES	
ArcView		CENTRALIZED-	Yes	DEVICE	VERSION	NO.
ACT		DISTRIBUTED	Yes	DIGITIZING TABLE: SCANNER:	Yes Yes	ũ.
	(7)	<u>DBMS</u>		PLOTTER:	Yes	
		Ms Access Postgress		PRINTER: INTERNET ACCESS:	Yes	
MAGE PROCESS	ING	CAD		PC OPERATING SYSTEM	Yes <u>M</u>	-
		:		WINDOWS: 3.1,3.11,9 UNIX:	95,98,2000,	

ON-GOING/UNDERTAKEN Stem borer project (East and Southern Africa) PROJECT:

TITLE	THEME	DEPARTMENT	COVERAGE	FORM	SOURCE SCALE	ACCESSIBILITY	COST (Ksh)	CATALOGUE	STATUS
Stem borer	Farming		Kenya (Country-wide)	Digital image	1:250000	Unrestricted		None	-

United Nations High Commissioner for Refugees, RSAL

ADDRESS: P. O BO PHYSICAL LOCA			TEL: E-MAII		4222748 @unhcr.ch	FAX: WEBSIT	<u>254-02-444</u> 2 E:	2052
GIS SOFTWARE	VERSION	DATABASE AR	CHITECT	URE	DATA INPL	T/OUPUT D	EVICES	
ArcView	3.2	CENTRALIZED			DEVICE		VERSION	<u>NO.</u>
Mapinfo	6.5	DISTRIBUTED	-		DIGITIZING	TABLE:		
					SCANNER:			
		DBMS			PLOTTER:			
	-	•			PRINTER-			
		•			INTERNET	ACCESS:	Yes	
MAGE PROCESS	ING	CAD			PC		Yes	
					OPERATIN	<u>G SYSTEM</u>		
					WINDOWS:			
					UNIX:			

ON-GOING/UNDERTAKEN PROJECT:

TITLE	THEME	DEPARTMENT	COVERAGE	FORM	SOURCE SCALE	ACCESSIBILITY	COST (Ksh)	CATALOGUE	STATUS
KEADMIN2 LINE ADDS and KEADMIN2		RSAL	Kenya	Digital map	1:1,000,000	Unrestricted	Free	Metadata exists	Compl ete

EENYA ADMIN 2 Dunci)	Boundarnes	RSAL	Kenya	Digital map		Unrestricted	Free	Metadata exists	Complete
	l_Boundaries S	RSAL	Kenya	Digital map	1:1,000,000	Unrestricted	Free	Metadata exists	Complete
KEADMIN									
Kanna Castours	Elevation	RSAL	Kenya	Digital map	1:1,000,000	Unrestricted	Free	Metadata exists	Complete
KEADMINS LINE ADDS and KEADMINS		RSAL	Kenya	Digital map	1:1,000,000	Unrestricted	Free	Metadata exists	Complete
	J Elevation	RSAL	Kenya	Digital map	1:1,000,000	Unrestricted	Free	Metadata exists	Complete
KECONTOU KESPOTHEI GHTS		RSAL	Кспуа	Digital map	1:1,000,000	Unrestricted	Free	Metadata exists	Complete
KEADMIN 1 LINE ADDS	Boundaries	RSAL	Kenya	Digital map	1:1,000,000	Unrestricted	Free	Metadata exists	Complete
KEADMINI KENYA ADMIN 4 (Locational)	Boundaries	RSAL	Kenya	Digital map	1:1,000,000	Unrestricted	Free	Metadata exists	Complete
KEROADS	Transportation	RSAL	Kenya	Digital map		Unrestricted	Free	Metadata exists	Complete
KEADMIN3 LINE ADDS and	Boundaries	RSAL	Kenya	Digital map	1:1,000,000	Unrestricted	Free	Metadata exists	Complete
GE_LINE and	inland waters	RSAL	Kenya	Digital map	1:1,000,000	Unrestricted	Free	Metadata exists	Complete
KEDRAINA KEGEOLOG Y	Geosciences	RSAL	Kenya	Digital map		Unrestricted	Free	Metadata exists	Complete
KERAILWA Y	Transportation	RSAL	Kenya	Digital map	1:1,000,000	Unrestricted	Free	Metadata exists	Complete
KESETTLEM ENTS	Society	RSAL	Kenya	Digital map	1:250000	Unrestricted	Free	Metadata exists	Complete
KENYA ADMIN 3 (Division)	Boundaries	RSAL	Kenya	Digital map	1:1,000,000	Unrestricted	Free	Metadata exists	Complete
KEDRAINA GE_LINE and	Inland waters	RSAL	Kenya	Digital map	1:1000000	Unrestricted	Free	Mctadata exists	Complete
KEDRAINA									

KEDRAINA

Oakar services

ADDRESS: P.O BOX 28844 (00100) NAIROBI TEL: 715276 FAX: 721852 PHYSICAL LOCATION: Hurlingham F-MAIL: tndcgwa@africaonline.co.k WEBSITE:

GIS SOFTWARE	VERSION	DATABASE ARCHITECTURE	DATA INPUT/OUPUT	DEVICES	
PC Arcinfo		CENTRALIZED: Yes	DEVICE	VERSION	NO.
Workstation ArcInfo	-	DISTRIBUTED Yes	DIGITIZING TABLE: SCANNER:	Calcomp	2
ArcView		DBMS	PLOTTER:		
ArcGIS		Ms Access SQL	PRINTER: INTERNET ACCESS:	HP, Epson Yes	4
MAGE PROCESS RDAS	ING	CAD	PC OPERATING SYSTEM	Yes	9
		*	WINDOWS: 95,98,200 UNIX:	0 server	

ON-GOIN	G/UNDERTA	AKEN							
TITLE	THEME	DEPARTMENT	COVERAGE	FORM	SOURCE	ACCESSIBILITY	COST	CATALOGUE	STATUS

SCALE

(Ksh)

Geometer surveys

ADDRESS: P.O BO PHYSICAL LOCA			TEL: <u>31148.</u> E-MAIL: geomet	-	TE:	
GIS SOFTWARE	VERSION	DATABASE ARC	HITECTURE	DATA INPUT/OUPUT	DEVICES	
ArcView	3.2	CENTRALIZED:		DEVICE	VERSION	NO.
MapInfo		DISTRIBUTED:	Yes	DIGITIZING TABLE: SCANNER:		-
		DBMS		PLOTTER:		
	а 4	Ms Access		PRINTER: INTERNET ACCESS:		3
IMAGE PROCESS Adobe suite	<u>BING</u>	CAD AutoCAD		PC OPERATING SYSTEM WINDOWS: 95,98,200 UNIX:		3

 ON-GOING/UNDERTAKEN
 Digital map of Nairobi for petroleum stations, Digital map of potential carthquake sites for Nairobi, Digital tourist map of Kanya

TITLE	THEME	DEPARTMENT	COVERAGE	FORM	SOURCE SCALE	ACCESSIBILITY	COST (Kih)	CATALOGUE	STATUS
Digital map of Nairobi	Location	Photogrammetry and Cartography	Nairobi	Digital map			-	5	Complete

Highland Surveyors

ADDRESS: PO BOX 9562 (00100) NAIROBI PHYSICAL LOCATION: Ragati rd. Upper-Hill TEL:721726FAX:712092E-MAIL:highland@africaonline.co.kWEBSITE:

GIS SOFTWARE	VERSION	DATABASE ARCHITECTURE	DATA INPUT/OUPUT	DEVICES	
ArcView	3.2	CENTRALIZED.	DEVICE	VERSION	NO.
LWIS	2.1	DISTRIBUTED: Yes	DIGITIZING TABLE:		2
		DBMS	SCANNER:	A3 and A	2
		Ms Access	PLOTTER:	HP 450c	1
			PRINTER:	HP	1
HAR BROODE		•	INTERNET ACCESS:	Yes	
MAGE PROCESS	ING	CAD	PC	Yes	7
licad		*	OPERATING SYSTEM		
			WINDOWS: 982,000		
			UNIX:		

ON-GOING/UNDERTAKEN Mapping as built right of way for Kenya Pipeline Company PROJECT:

ITTLE	THEME	DEPARTMENT	COVERAGE	FORM	SOURCE SCALE	ACCESSIBILITY	COST (Ksh)	CATALOGUE	STATUS
							1	1.0	

GIBB Africa ltd.

ADDRESS: P.O BO PHYSICAL LOCA			TEL: <u>338992</u> E-MAIL:	FAX: WEBSI	TE:	
GIS SOFTWARE	VERSION	DATABASE ARC	CHITECTURE	DATA INPUT/OUPUT	DEVICES	
PC Arcinfo	3.5	CENTRALIZED:	Yes	DEVICE	VERSION	NO.
ArcView	3.1	DISTRIBUTED:	Yes	DIGITIZING TABLE:		
Mapinfo IDRISI	1	DBMS		SCANNER: PLOTTER:	Yes Yes	•
101031		Ms Access		PRINTER: INTERNET ACCESS:	Yes No	
MAGE PROCESS	ING	CAD Yes		PC OPERATING SYSTEM WINDOWS: 95,98,2000		-
				UNIX:	,	

ON-GOING/UNDERTAKEN Sudan soil classification, Zimbabwe Road network project, Malawi small scale irrigation project PROJECT:

TITLE	THEME	DEPARTMENT	COVERAGE	<u>FORM</u>	SOURCE SCALE	ACCESSIBILITY	COST (Ksh)	CATALOGUE STATUS	2
-------	-------	------------	----------	-------------	-----------------	---------------	---------------	------------------	---

Norken ltd

ADDRESS: <u>P.O BO</u> MYSICAL LOCA			TEL: <u>33777</u> E-MAIL: <u>norcon</u>		<u>337757</u> ITE:	
IS SOFTWARE	VERSION	DATABASE ARC	CHITECTURE	DATA INPUT/OUPUT		NO
		CENTRALIZED:	Yes	DEVICE	VERSION	NO.
		DISTRIBUTED:		DIGITIZING TABLE:	Yes	1
				SCANNER:	Yes	1
	•	DBMS		PLOTTER:	Yes	1
	٠	3		PRINTER:	Yes	4
	•			INTERNET ACCESS:	Yes	
MAGE PROCESS	ING	CAD		PC	Yes	15
		AutoCAD		OPERATING SYSTEM	1	
		Gemini		WINDOWS: 95,98,200	0	
		NovaPoint		UNIX:		

0N-GOING/UNDERTAKEN Road iventory and condition survey, feasibility study of Rumuruti_Maral road PROJECT:

TITLE	THEME	DEPARTMENT	COVERAGE	FORM	SOURCE SCALE	ACCESSIBILITY	COST (Ksh)	CATALOGUE	<u>STATUS</u>
Roads	Transportation	Computer	Several Roads	Digital map	Various	•		•	5

Eldoret Water and sanitation company (ELDOWAS)

ADDRESS: <u>P.O BO</u> PHYSICAL LOCA'			TEL: FAX: 5363556 E-MAIL: eldowas@africaonline.co.ke WEBSITE:						
GIS SOFTWARE	VERSION	DATABASE ARCHITECTURE	DATA INPUT/OUPUT	DEVICES VERSION	NO.				
UC A ICM	2.1	CENTRALIZED: DISTRIBUTED:	DIGITIZING TABLE: SCANNER:	Calcomp	1				
		DBMS	PLOTTER:	HP 220	1				
	•	Ms Access dbase	PRINTER: INTERNET ACCESS:	Deskjet Yes	2				
MAGE PROCESS	<u>SING</u>	CAD AutoCAD	PC <u>OPERATING SYSTEM</u> WINDOWS: UNIX:	Yes					

ON-GOING/UNDERTAKEN PROJECT:

TITLE	THEME	DEPARTMENT	COVERAGE	FORM	SOURCE SCALE	ACCESSIBILITY	COST (Ksh)	CATALOGUE	STATUS
Eldoret Facilities Manager	Utilities/Com munication	Technical	Eldoret Municipality	Digital map	1 250000	Restricted to most	2	Manual catalogue	Complete

Wellcome Trust Research Laboratories

ADDRESS: <u>P.O.BO</u> PHYSICAL LOCAT			TEL: E-MAII	<u>715160</u> L:	FAX: WEBS	<u>711673</u> ITE:	
GIS SOFTWARE	VERSION	DATABASE AR	CHITECT	URE	DATA INPUT/OUPUT	DEVICES	
Workstation Arcinfo	1.8	CENTRALIZED:			DEVICE	VERSION	NO.
ArcView	3.2	DISTRIBUTED.			DIGITIZING TABLE:		
Mapinfo	6.0	DBMS			SCANNER:		
DRISI	3.20	DBMS			PLOTTER:	A4	1
	5.20	Ms Access			PRINTER:	Yes	20
		•			INTERNET ACCESS:	Yes	
MAGE PROCESSI	NG	CAD			PC	Yes	20
		-			OPERATING SYSTEM	1	
					WINDOWS: 982,000		
		4			UNIX:		

ON-GOI	NG/UNDERT	AKEN Mapping	Mapping all health facilities country-wide, Malaria research in Kisii, Gucha, Makueni, Bondo and Kwale						
PROJEC	T:	Kwale							
TITLE	THEME	DEPARTMENT	COVERAGE	FORM	SOURCE SCALE	ACCESSIBILITY	COST (Ksh)	CATALOGUE	STATUS

Ground Water survey

ADDRESS: POBO PHYSICAL LOCA			12 FAX: ndwater@kenyaweb.co WEBSI	<u>573659</u> TE:
GIS SOFTWARE	VERSION	DATABASE ARCHITECTURE	DATA INPUT/OUPUT	DEVICES
ArcView	3.2	CENTRALIZED:	DEVICE	VERSION
Mapinfo	5.5	DISTRIBUTED:	DIGITIZING TABLE:	Yes
ILWIS	2.1	DBMC	SCANNER:	Yes
		DBMS	PLOTTER:	
	-	*	PRINTER:	Yes
	4	*	INTERNET ACCESS:	
IMAGE PROCESS	ING	CAD	PC	Yes
			OPERATING SYSTEM	
			WINDOWS:	
			UNIX:	

<u>NO.</u> 1 1

1

ON-GOING/UNDERTAKEN Water supply projects in Kenya, Tanzania and Sudan PROJECT:

TITLE	THEME	DEPARTMENT	COVERAGE	FORM	SOURCE	ACCESSIBILITY	COST	CATALOGUE STATUS
					SCALE		<u>(Ksh)</u>	

Department of Surveying, UON

PHYSICAL LOCA	TION: <u>Harry T</u>	huku road	E-MAIL:	WEBSI	TE: www.uonbi.	<u>ic ke</u>
GIS SOFTWARE	VERSION	DATAR ASE AR	CHITECTURE	DATA INPUT/OUPUT	DEVICES	
PC Arcinfo		CENTR.ALIZED:		DEVICE	VERSION	NO.
DRISI	132.2	DISTRIBUTED:	*	DIGITIZING TABLE: SCANNER:	Calcomp	L
Arc View ArcGIS		DBMS		PLOTTER:		*
LWIS		Ms Access		PRINTER INTERNET ACCESS:	HP Yes	2
MAGE PROCESS	ING	CAD		PC OPERATING SYSTEM	Yes	5
		1		WINDOWS: 98,XP UNIX:		

ON-GOI PROJEC	NG/UNDERT T:	AKEN Teaching	and Research					
TITLE	THEME	DEPARTMENT	COWERAGE	FORM	SOURCE SCALE	ACCESSIBILITY	COST (Ksh)	CATALOGUE STATUS

Department of Geography, UON

ADDRESS: <u>P.O BO</u> PHYSICAL LOCA			TEL: E-MAIL	334244 .: ianyande	ga@yahoo.com	FAX: WEBSF	<u>336885</u> T E:	
GIS SOFTWARE	VERSION	DATAB, ASE AR	CHITECT	URE	DATA INPU	T/OUPUT I	DEVICES	
ArcView	3.2	CENTRALIZED:			DEVICE		VERSION	<u>NO.</u>
MapInfo	5.0	DISTRIBUTED:			DIGITIZING	TABLE:	A 0	1
IDRISI	4.0	DDMC			SCANNER:			
		DBMS			PLOTTER:			+
	+	Ms Access			PRINTER:		Lase, Ink Jet and do	5
	14	1			INTERNET A	ACCESS:	Yes	
IMAGE PROCESS	ING	<u>CAD</u>			PC		Yes	1
IDRISI					OPERATING	G SYSTEM		
					WINDOWS:	95,98,2000		
					UNIX:			

 ON-GOING/UNDERTAKEN PROJECT:
 Nairobi Security Project -INFRA project (NASP) and Nairobi Urban Integration Project (NURIP) INFRA-Faculty of Arts project

TITLE	<u>THEME</u>	DEPARTMENT	COWERAGE	FORM	SOURCE SCALE	ACCESSIBILITY	COST (Ksh)	CATALOGUE ST	TATUS

Kenya Institute of Surveying and Mapping (KISM)

ADDRESS: POBO			TEL: <u>86148</u> E-MAIL: <u>kism@</u>	_	803575 SITE:	
SOFTWARE	VERSION	DATABASE AR	CHITECTURE	DATA INPUT/OUPUT	DEVICES	
Warkstation ArcInfo		CENTRALIZED:		DEVICE	VERSION	NO.
ArcView		DISTRIBUTED:		DIGITIZING TABLE:		
Mapinio		DDMC		SCANNER:		÷
*	-	DBMS		PLOTTER:		
ArcGIS		Ms Access		PRINTER:		
IL WIS				INTERNET ACCESS:	14	
IMAGE PROCESSI	ING	CAD		PC	Yes	
ERDAS		AutoCAD		OPERATING SYSTE	M	
		Microstation		WINDOWS:		
				UNIX:		

 ON-GOING/UNDERTAKEN PROJECT:
 Third country trainning in GIS for Eastern and Southern Africa, Lake Nakuru mapping project, Digital data for sothern Coast

TITLE	THEME	DEPARTMENT	COVERAGE	FORM	SOURCE SCALE	ACCESSIBILITY	COST (Ksh)	CATALOGUE	STATUS
GPS transformatio s parameters preliminary)	Geosciences	Land Surveying	Mt. Kenya/Western/ Coastal	Digital document		Unrestricted	Free		
Narobi National Park	Environment	Cartography	Nairobi National Park	Digital map	1:30000	Unrestricted		None	Complete
Nakuru Natio <mark>nal Park</mark>	Environment	Cartography	Nakuru National Park	Digital map	1:25000	Unrestricted	•	None	Nearing completio

Department of Geography, Moi University

ADDRESS: <u>P.O BO</u> PHYSICAL LOCA			TEL: E-MAIL:	FAX: WEBSI	<u>32143047</u> TE:	
GIS SOFTWARE	VERSION	DATABASE ARC	HITECTURE	DATA INPUT/OUPUT	DEVICES	
ArcView	3.3	CENTRALIZED:		DEVICE	VERSION	NO.
Maplafo	4.5	DISTRIBUTED:		DIGITIZING TABLE:	Yes	
ArcGIS	8_1	DBMS		SCANNER: PLOTTER:	Ycs	1
drisi LWIS	3.20	Ms Access		PRINTER: INTERNET ACCESS:		
MAGE PROCESS	ING	<u>CAD</u> Yes		PC OPERATING SYSTEM	Yes	1
		:		WINDOWS: UNIX:		

ON-GOING/UNDERTAKEN PROJECT:

TITLE	THEME	DEPARTMENT	COVERAGE	FORM	SOURCE SCALE	ACCESSIBILITY	COST (Ksh)	CATALOGUE	STATUS
inforset	Climatology/M eteorology/Atm osphere	C 1 2		Digital map	1:50000	Restricted to most		None	*

According to institutional categories, government departments represent 28%, parastatals (22%), international/intergovernmental (17%), private (22%) and academic (11%). Additionally, from the inventory one can tell:

(i) How many and which institutions have, which data input and output facilities. For example, 92% of institutions have computers for handling geospatial data and information. Table 4-1 gives in summary the hardware items owned by the institutions (in percentages).

Facility	Number	Percentage
Computers (PC)	33	92
Digitizing table	13	36
Scanner	15	42
Plotter	16	44
Printer	33	92
Internet Access point	26	72

Table 4-1: Institutional availability of GIS hardware items

- (ii) Which GIS software, DBMS, image processing and CAD software are being used, by which organizations and if they are compatible. For example the dominant GIS software is Arc View with 67% followed by ArcGIS and Arc/Info all from ESRI. This is probably because the regional distributor for ESRI software is based in Kenya. For image processing, ERDAS, Photoshop and Adobe suite were the ones identified. Some GIS software like IDRISI and ILWIS have image-processing modules but they cannot be classified as purely image processing software. AutoCAD from AutoDesk dominates the category of CAD software, while Microsoft Access is the dominant database management software. Table 4-2 shows the software that were identified and the percentage of institutions that have them.
- (iii) Which datasets as identified in the inventory are suitable for inclusion in NSDI, and which ones can contribute to the development of core and framework datasets.

	Number	Percentage
GIS software		
PC ArcInfo	11	31
Workstation Arc Info	9	25
Arc View	24	67
MapInfo	13	36
SGD	1	3
ArcGIS	13	36
ILWIS	8	22
ACT	1	3
IDRISI	8	22
Database Management System (DBMS)		
Ms Access	25	69
Dbase	2	6
Fox pro	1	3
Oracle	3	8
Postgress	1	3
File maker	I	3
Image processing software		
ERDAS	5	14
Photoshop	2	8
Photo Impact	1	3
Adobe suite	2	6
Ulead	1	3
IDRISI	1	3
ENVI	1	3
e-Cognition	1	3
Computer Aided Design (CAD) software		
AutoCAD	11	31
Micro station	2	6
Gemini	1	3
LisCAD	1	3
Nova Point	1	3

Table 4-2: Institutional availability of GIS and other related software

(iv) Which on-going (or already undertaken) projects can contribute to the development of new datasets, and projects that are possibly duplicates of others. For example, the Kenya Urban Transportation Infrastructure Project (KUTIP) undertaken by the Department of Urban Development, Ministry of Local Government (MLG), produced geospatial datasets in digital form for 26 towns. If projects similar to the on-going digital mapping of Nairobi will be done for all other town councils, then this definitely will be duplication because the data partly exists.

4.2 Demand for datasets

The NSDI has its foundation on core and framework datasets. These are datasets, which have common-use and are of national and trans-national importance. The respondents were required to choose a number ranging from 1 to 5, with 1 indicating not fundamental and 5, extremely fundamental. Using the responses of the five categories of institutions to determine the demand for various core and framework datasets, Government departments' response (mean demand) for the geospatial framework data is presented in Figure 4-2, while Table 4-4 gives the demand of datasets across institutions.

Each of these categories has its own order of demand, which is different from the rest. This is because of the different emphases in their missions. This item was meant to determine the representative national demand for geospatial data.

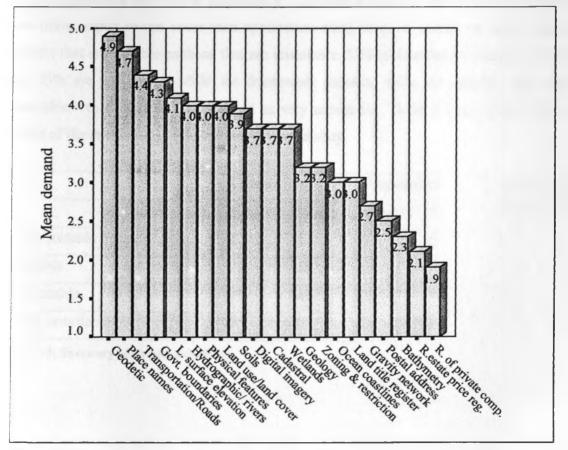


Figure 4-2: Demand for geospatial data across institutions

Government departments' demand for geospatial information has the highest number of candidate core and framework datasets, it is therefore suggested that the government departments be used to determine the true national demand. Government parastatals may have some bias considering that they are mission specific. International/regional institutions' column may indicate a regional /international demand, which may not necessarily reflect the national demand, for instance cadastral information is rated 2. Private institutions might only indicate demand for datasets that they have handled. Finally the academic institutions as expected demand almost all the datasets.

4.3 Evaluation of datasets

The datasets contained in the inventory are evaluated in the light of the criteria established in section 3.3. Out of 115 datasets identified in the survey, 38% were categorized as foundation, 21% as framework and 41% as application. Considering only the foundation and framework data (have higher re-use value than application data), there is almost an equal number of datasets that are suitable as those that are unsuitable. 52% of foundation datasets are suitable and 43% are unsuitable, while for framework datasets, 46% are suitable and 53% are unsuitable. No dataset was determined as very unsuitable. Table 4-5 to Table 4-7 give the results of the evaluations of the datasets for suitability.

	Foundat	Framew	ork	Application		
	Number	%	Number	%	Number	%
Very suitable	2	5	0	0	2	4
Suitable	23	52	11	46	17	36
Unsuitable	19	43	13	54	28	60
Very unsuitable	0	0	0	0	0	0

Table 4-3: Summary of dataset suitability

Type of dataset	Government departments	Government Parastatals	International/ Regional	Private	Academic
Geodetic	5	5	5	5	5
Land surface elevation/topographic	4	4	5	4	5
Digital imagery (orthoimagery)	4	4	4	3	5
Government boundaries/administrative boundaries (Government units)	4	4	5	4	5
Transportation/Roads	5	5	5	3	5
Cadastral /land ownership	4	4	2	4	5
Hydrographic/rivers and lakes	4	5	4	3	5
Ocean coastlines	3	3	3	2	5
Bathymetry	2	2	2	3	4
Physical features/buildings	4	5	3	3	5
Place names	5	5	5	4	5
Land use/land cover/vegetation	4	4	5	3	5
Geology	3	4	3	3	4
Real estate price register/ Land valuation	3	2	2	2	2
Land title register	2	4	2	4	2
Postal address	2	3	2	3	2
Wetlands	3	5	4	3	5
Soils	4	4	5	3	5
Register of private companies	2	2	1	3	2
Gravity network	2	2	2	4	5
Zoning and restrictions	3	3	3	4	5

Table 4-4: Mean demand for geospatial data across institutions

Table 4-5: Dataset suitability results for foundational datasets

Dataset title	Custodian	<u>Availability</u>	Form	Accessibility	Completeness	<u>Status</u>	<u>Co-ordinate</u>	Topological consistency	Source scale	Price (KSh.)	Last date of update	Format	Remark
Topographic maps	Survey of Kenya (SOK)	Suitable	Convert to digital form	Suitable	Establish % coverage	Suitable	Suitable	Build topology if possible	1:50000	500	-		Unsuitable
Geodetic network	Survey of Kenya (SOK)	Include in Catalogue and build metadata	Convert to digital form	Suitable	Establish % coverage	Suitable	Suitable	Build topology if possible	1:1000000		*	•	Unsuitable
Topographic maps	Survey of Kenya (SOK)	Suitable	Suitable	Suitable	Suitable	Unsuitable	Suitable	Build topology if possible	1:50000	*	:	-	Suitable
Global map	Survey of Kenya (SOK)	Suitable	Suitable	Suitable	Suitable	Suitable	Transform to Arc Datum 1960 if possible	Build topology if possible	1:1000000	_			Suitable
Kenya Atlas	Survey of Kenya (SOK)	Suitable	Convert to digital form	Suitable	Suitable	Suitable	Transform to Arc Datum 1960 if possible	Build topology if possible	Various	5000			Unsuitable
Aerial Photographs	Survey of Kenya (SOK)	Suitable	Convert to digital form	Suitable	Suitable	Suitable	Transform to Arc Datum 1960 if possible	Build topology if possible	1:12500- 1:50000	500			Unsuitable
Kenya administrative	Survey of Kenya (SOK)	Suitable	Convert to digital form	Suitable	Establish % coverage	Suitable	Transform to Arc Datum 1960 if possible	Build topology if possible	1:1000000	500			Unsuitable
Regional planning	Department of Physical planning	Include in Catalogue and build metadata	Suitable	Suitable	Suitable	Suitable	Transform to Arc Datum 1960 if possible	Build topology and confirm consistency	1:2500	4	1996	Vector	Unsuitable

Dataset title	<u>Custodian</u>	Availability	Form	Accessibility	Completeness	Status	<u>Co-ordinate</u> system	Topological consistency	Source scale	Price (KSh.)	Last dute	Formut	tternath
Topographic maps	Department of Buildings	Suitable	Convert to digital form	Unsuitable	Suitable	Suitable	Transform to Arc Datum 1960 if possible	Confirm consistency	Various	-	-	Vector	Unsuitable
Village map	Central Bureau of Statistics (CBS)	Suitable	Convert to digital form	Suitable	Suitable	Suitable	Suitable	Build topology if possible	1:2500,1:10 000,1:50000 ,1:250000	750	1997		Unsuitable
Village map	Central Bureau of Statistics (CBS)	Suitable	Suitable	Suitable	Suitable	Suitable	Suitable	Build topology if possible	1:2500,1:10 000,1:50000 ,1:250000	1500	1997	Vector	Very suitable
District map	Central Bureau of Statistics (CBS)	Suitable	Suitable	Suitable	Suitable	Suitable	Suitable	Build topology if possible	1:50000,1:2 50000	1500	1997	Vector	Vcry suitable
Kenya map	Central Bureau of Statistics (CBS)	Suitable	Suitable	Suitable	Establish % coverage	Suitable	Suitable	Build topology if possible	1:50000,1:2 50000	1500	1997	Vector	Suitable
Local Authorities Topographic maps	Department of Urban Development- MLG	Suitable	Convert to digital form	Unsuitable	Suitable	Suitable	Suitable	Build topology and confirm consistency	1:2500	•	1992	-	Unsuitable
Local Authorities Road network	Department of Urban Development- MLG	Include in Catalogue and build metadata	Suitable	Unsuitable	Establish % coverage	Suitable	Suitable	Build topology and confirm consistency	1:2000		•	Vector	Unsuitable
Topographical maps	Nairobi City Council (NCC)	Include in Catalogue and build metadata	Convert to digital form	Suitable	Suitable	Establish the status	Transform to Arc Datum 1960 if possible	Build topology if possible	1:2500				Unsuitable

Dataset title	Custodian	Availability	Form	Accessibility	Completeness	<u>Status</u>	<u>Co-ordinate</u> system	Topological consistency	Source scale	Price (KSh.)	Last date of update	Format	Remark
Constituency maps	Electoral Commission of Kenya (ECK)	Include in Catalogue and build metadata	Convert to digital form	Suitable	Establish % coverage	Establish the status	Transform to Arc Datum 1960 if possible	Build topology if possible	1:1000000, 1:250000, 1:100000, 1:50000,	500	TA DE DATA		Unsuitable
Kenya_contou r.shp	International Livestock Research Institute (ILRI)	Suitable	Suitable	Suitable	Establish % coverage	Establish the status	Transform to Arc Datum 1960 if possible	Build topology if possible		Free	•	Vector	Suitable
Kenya_district s98.shp	International Livestock Research Institute (ILRI)	Suitable	Suitable	Review restriction	Establish % coverage	Establish the status	Transform to Arc Datum 1960 if possible	Build topology if possible		Free	-	Vector	Unsuitable
Kenya_divisio ns.shp	International Livestock Research Institute (ILRI)	Suitable	Suitable	Suitable	Establish % coverage	Establish the status	Transform to Arc Datum 1960 if possible	Build topology if possible		Free	-	Vector	Suitable
Kenya_divisio ns2000.shp	International Livestock Research Institute (ILRI)	Suitable	Suitable	Suitable	Establish % coverage	Establish the status	Transform to Arc Datum 1960 if possible	Build topology if possible		Free	-	Vector	Suitable
Ken_elevation	International Livestock Research Institute (ILRI)	Suitable	Suitable	Review restriction	Establish % coverage	Establish the status	Transform to Arc Datum 1960 if possible	Build topology if possible	1:250000	Free	*	Raster	Unsuitable
Kenya_locatio ns.shp	International Livestock Research Institute (ILRI)	Suitable	Suitable	Suitable	Establish % coverage	Establish the status	Transform to Arc Datum 1960 if possible	Build topology if possible		Free		Vector	Suitable
Kenya_outsid e_boundary.sh p	International Livestock Research Institute (fLRI)	Suitable	Suitable	Suitable	Establish % coverage	Establish the status	Transform to Arc Datum 1960 if possible	Build topology if possible		Free	÷	Vector	Suitable

Dataset title	Custodian	<u>Availability</u>	<u>Form</u>	Accessibility	<u>Completeness</u>	<u>Status</u>	<u>Co-ordinate</u> system	Topological consistency	Source scale	Price (KSh.)	Last date	Kormat	Remark
Kenya_Provin ces.shp	International Livestock Research Institute (ILRI)	Suitable	Suitable	Review restriction	Establish % coverage	Establish the status	Transform to Arc Datum 1960 if possible	Build topology if possible		Free	-	Vector	Unsuitable
Kenya_subloc ations.shp	International Livestock Research Institute (ILR1)	Suitable	Suitable	Suitable	Establish % coverage	Establish the status	Transform to Arc Datum 1960 if possible	Build topology if possible		Free	*	Vector	Suitable
Kenya_village s.shp	International Livestock Research Institute (ILRI)	Suitable	Suitable	Suitable	Establish % coverage	Establish the status	Transform to Arc Datum 1960 if possible	Build topology if possible		Free	•	Vector	Suitable
West_Kenya_ rivers shp	International Livestock Research Institute (ILRI)	Suitable	Suitable	Suitable	Establish % coverage	Establish the status	Transform to Arc Datum 1960 if possible	Build topology if possible		Free			Suitable
Satellite imagery	Regional Centre for Mapping of Resources for Development	Suitable	Suitable	Suitable	Establish % coverage	Establish the status	Transform to Arc Datum 1960 if possible	Build topology if possible	Depends on satellite and data format		1972	Raster	Suitable
Kenya Contours	United Nations High Commissioner for Refugees, RSAL	Suitable	Suitable	Suitable	Establish % coverage	Suitable	Transform to Arc Datum 1960 if possible	Build topology if possible	1:1,000,000	Free	1993	Vector	Suitable
KEADMIN4_ LINE_ADDS and KEADMIN4_	United Nations High Commissioner for Refugees, RSAL	Suitable	Suitable	Suitable	Establish % coverage	Suitable	Transform to Arc Datum 1960 if possible	Build topology if possible	1:1,000,000	Free	1996	Vector	Suitable
KEADMIN5_ LINE_ADDS and KEADMIN5_	United Nations High Commissioner for Refugees, RSAL	Suitable	Suitable	Suitable	Establish % coverage	Suitable	Transform to Arc Datum 1960 if possible	Build topology if possible	1:1,000,000	Free	1996	Vector	Suitable

Dataset title	<u>Custodian</u>	Availability	Form	Accessibility	Completeness	<u>Status</u>	<u>Co-ordinate</u> system	Topological consistency	Source scale	Price (KSh.)	Last date	Format	Remark
KECONTOU RS_LINE and KECONTOU	United Nations High Commissioner for Refugees, RSAL	Suitable	Suitable	Suitable	Establish % coverage	Suitable	Transform to Arc Datum 1960 if possible	Build topology if possible	1:1,000,000	Free	1993	Vector	Suitable
KESPOTHEI GHTS	United Nations High Commissioner for Refugees, RSAL	Suitable	Suitable	Suitable	Establish % coverage	Suitable	Transform to Arc Datum 1960 if possible	Build topology if possible	1:1,000,000	Free	1993	Vector	Suitable
KENYA ADMIN 2 (District)	United Nations High Commissioner for Refugees, RSAL	Suitable	Suitable	Suitable	Establish % coverage	Suitable	Transform to Arc Datum 1960 if possible	Build topology if possible		Free	1996	Vector	Suitable
KENYA ADMIN 3 (Division)	United Nations High Commissioner for Refugees, RSAL	Suitable	Suitable	Suitable	Establish % coverage	Suitable	Transform to Arc Datum 1960 if possible	Build topology if possible	1:1,000,000	Free	1996	Vector	Suitable
KENYA ADMIN 4 (Locational)	United Nations High Commissioner for Refugees, RSAL	Suitable	Suitable	Suitable	Establish % coverage	Suitable	Transform to Arc Datum 1960 if possible	Build topology if possible	1:1,000,000	Free	1996	Vector	Suitable
KEADMIN1_ LINE_ADDS and KEADMIN1_	United Nations High Commissioner for Refugees, RSAL	Suitable	Suitable	Suiteble	Establish % coverage	Suitable	Transform to Arc Datum 1960 if possible	Build topology if possible	1:1,000,000	Free	1996	Vector	Suitable
KEADMIN2_ LINE_ADDS and KEADMIN2_	United Nations High Commissioner for Refugees, RSAL	Suitable	Suitable	Suitable	Establish % coverage	Suitable	Transform to Arc Datum 1960 if possible	Build topology if possible	1:1,000,000	Free	1996	Vector	Suitable
KEADMIN3_ LINE_ADDS and KEADMIN3_	United Nations High Commissioner for Refugees, RSAL	Suitable	Suitable	Suitable	Establish % coverage	Suitable	Transform to Arc Datum 1960 if possible	Build topology if possible	1:1,000,000	Free	1996	Vector	Suitable

Dataset title	Custodian	<u>Availability</u>	Form	Accessibility	Completeness	<u>Status</u>	Co-ordinate System	Topological consistency	Source scale	Price (KSh.)	Lust dute	Format	Remark
Digital map of Nairobi	Geometer surveys	Include in Catalogue and build metadata	Suitable	Review restriction	Establish % coverage	Suitable	Suitable	Build topology if possible		*	2001	Vector	Unsuitable
GPS transformatio n parameters (preliminary)	Kenya Institute of Surveying and Mapping (KISM)	Include in Catalogue and build metadata	Suitable	Suitable	Establish % coverage	Establish the status	Transform to Arc Datum 1960 if possible	Build topology if possible		Free			Unsuitable
Nairobi National Park	Kenya Institute of Surveying and Mapping (KISM)	Include in Catalogue and build metadata	Suitable	Suitable	Establish % coverage	Suitable	Suitable	Build topology if possible	1:30000	•	1996	Vector	Unsuitable
Nakuru National Park	Kenya Institute of Surveying and Mapping (KISM)	Include in Catalogue and build metadata	Suitable	Suitable	Establish % cuvelage	Suitable	Suitable	Build topology if possible	1:25000		1999	Tin & Vector	Unsuitable

Table 4-6: Dataset suitability results for framework datasets

Dataset title	<u>Custodian</u>	<u>Availability</u>	Form	Accessibility	<u>Completeness</u>	<u>Status</u>	<u>Co-ordinate</u> system	Topological consistency	Source scale	Price (KSh.)	Last date of update	Format	Remark
Cadastral	Survey of Kenya (SOK)	Suitable	Convert to digital form	Suitable	Suitable	Suitable	Transform to Arc Datum 1960 if possible	Build topology if possible	1:2500, 1:5000, 1:10000,1:2 5000	200			Unsuitable
Kenya roads Network	Department of Roads- MORPWH	Include in Catalogue and build metadata	Suitable	Suitable	Establish % coverage	Suitable	Transform to Arc Datum 1960 if possible	Build topology if possible		+	2001	Vector	Unsuitable
Landuse/cover	Dapartment of Resource Surveys and Remote Sensing	Suitable	Suitable	Suitable	Suitable	Suitable	Transform to Arc Datum 1960 if possible	Build topology if possible	1:250000	50	1977	Vector	Suitable
Cadastral	Nairobi City Council (NCC)	Include in Catalogue and build metadata	Convert to digital form	Suitable	Ectablish % coverage	Establish the status	Transform to Arc Datum 1960 if possible	Build topology if possible	1:10000				Unsuitable
Kenya Geology	National Museums of Kenya (NMK)	Include in Catalogue and build metadata	Suitable	Unsuitable	Suitable	Suitable	Transform to Arc Datum 1960 if possible	Build topology if possible	1:1000000	f.	2002	Vector	Unsuitable
Highland_roa ds.shp	International Livestock Research Institute (ILRI)	Suitable	Suitable	Suitable	Establish % coverage	Establish the status	Transform to Arc Datum 1960 if possible	Build topology if possible		Free	×.	Vector	Suitable
Kenya_forests .shp	International Livestock Research Institute (ILRI)	Suitable	Suitable	Suitable	Establish % coverage	Establish the status	Transform to Arc Datum 1960 if possible	Build topology if possible		Free	1	Vector	Suitable
Kenya_Lakes. shp	International Livestock Research Institute (ILRI)	Suitable	Suitable	Review restriction	Establish % coverage	Establish the status	Transform to Arc Datum 1960 if possible	Build topology if possible		Free	Q.	Vector	Unsuitable

Dataset title	Custodian	Availability	Form	Accessibility	<u>Completeness</u>	<u>Status</u>	<u>Co-ordinate</u> system	Topological consistency	Source scale	Price (KSh.)	Last date	Lormat	Bemurk
Kenya_Landu se.shp	International Livestock Research Institute (ILRI)	Suitable	Suitable	Review restriction	Establish % coverage	Establish the status	Transform to Arc Datum 1960 if possible	Build topology if possible		Free		Vector	Unsuitable
Kenya_major _towns.shp	International Livestock Research Institute (ILRI)	Suitable	Suitable	Review restriction	Establish % coverage	Establish the status	Transform to Arc Datum 1960 if possible	Build topology if possible		Free	•	Vector	Unsuitable
Kenya_protect ed_areas.shp	International Livestock Research Institute (ILRI)	Suitable	Suitable	Review restriction	Establish % coverage	Establish the status	Transform to Arc Datum 1960 if possible	Build topology if possible		Free		Vector	Unsuitable
Kenya_riverb asins shp	International Livestock Research Institute (ILRI)	Suitable	Suitable	Review restriction	Establish % coverage	Establish the status	Transform to Arc Datum 1960 if possible	Build topology if possible		Free	*	Vector	Unsuitable
Kenya_Rivers .shp	International Livestock Research Institute (ILRI)	Suitable	Suitable	Review restriction	Establish % coverage	Establish the status	Transform to Arc Datum 1960 if possible	Build topology if possible		Free		Vector	Unsuitable
Kenya_Roads shp	International Livestock Research Institute (ILRI)	Suitable	Suitable	Review restriction	Establish % coverage	Establish the status	Transform to Arc Datum 1960 if possible	Build topology if possible	1:50000	Free	•	Vector	Unsuitable
Kenya_roads WFP.shp	International Livestock Research Institute (ILRI)	Suitable	Suitable	Suitable	Establish % coverage	Establish the status	Transform to Arc Datum 1960 if possible	Build topology if possible		Free	*	Vector	Suitable
Kenya_wetlan ds.shp	International Livestock Research Institute (ILRI)	Suitable	Suitable	Suitable	Establish % coverage	Establish the status	Transform to Arc Datum 1960 if possible	Build topology if possible		Free	*	Vector	Suitable

<u>Dataset title</u>	Custodian	Availability	Form	Accessibility	Completeness	<u>Status</u>	Co-ordinate system	Topological consistency	Source scale	Price (KSh.)	Last date of update	Format	Remark
Kenya_all_to wns.shp	International Livestock Research Institute (ILRI)	Suitable	Suitable	Review restriction	Establish % coverage	Establish the status	Transform to Arc Datum 1960 if possible	Build topology if possible	1:50000,1:2 50000	Free	*	Vector	Unsuitable
Lake Victoria Basin	World agroforestry Centre (ICRAF)	Suitable	Suitable	Suitable	Establish % coverage	Suitable	Transform to Arc Datum 1960 if possible	Build topology if possible	1:50000	-	2003	Vector	Suitable
KEDRAINA GE_LINE and KEDRAINA	United Nations High Commissioner for Refugees, RSAL	Suitable	Suitable	Suitable	Establish % coverage	Suitable	Transform to Arc Datum 1960 if possible	Build topology if possible	1:1,000,000	Free	1993	Vector	Suitable
KEGEOLOG Y	United Nations High Commissioner for Refugees, RSAL	Suitabl e	Suitable	Suitable	Establish % coverage	Suitable	Transform to Arc Datum 1960 if possible	Build topology if possible		Free	19990629	Vector	Suitable
KERAILWA Y	United Nations High Commissioner for Refugees, RSAL	Suitable	Suitable	Suitable	Establish % coverage	Suitable	Transform to Arc Datum 1960 if possible	Build topology if possible	1:1,000,000	Free	1993	Vector	Suitable
KEDRAINA GE_LINE and KEDRAINA	United Nations High Commissioner for Refugees, RSAL	Suitable	Suitable	Suitable	Establish % coverage	Suitable	Transform to Arc Datum 1960 if possible	Build topology if possible	1:1000000	Free	1993	Vector	Suitable
KEROADS	United Nations High Commissioner for Refugees, RSAL	Suitable	Suitable	Suitable	Establish % coverage	Suitable	Transform to Arc Datum 1960 if possible	Build topology if possible		Free	1993	Vector	Suitable
Roads	Norken ltd	Include in Catalogue and build metadata	Suitable	Review restriction	Suitable	Establish the status	Transform to Arc Datum 1960 if possible	Build topology if possible	Various	Ţ	1		Unsuitable

Table 4-7: Dataset suitability results for application datasets

Dataset title	Custodian	<u>Availability</u>	Form	Accessibility	<u>Completeness</u>	<u>Status</u>	<u>Co-ordinate</u> system	<u>Topological</u> <u>consistency</u>	Source scale	Price (KSh.)	Last date of update	<u>Format</u>	Remark
Wildlife Distribution maps	Dapartment of Resource Surveys and Remote Sensing	Suitable	Suitable	Suitable	Suitable	Suitable	Suitable	Build topology if possible	Field survey	50	1977	Vector	Very suitable
NOAA	Kenya Meteorologica I Department (KMD)	Suitable	Suitable	Suitable	Establish % coverage	Suitable	Transform to Arc Datum 1960 if possible	Build topology if possible	1 Km reolution	*	1989	Raster	Suitable
METEOSAT	Kenya Meteorologies 1 Department (KMD)	Include in Untalogue and build metadata	Suitable	Suitable	Establish % covelage	Suitable	Transform to Are Datum 1960 if possible	Build topology if possible	5 Km		1990	Raster	Unsuitable
Rainfall	Kenya Meteorologica I Department (KMD)	Include in Catalogue and build metadata	Suitable	Suitable	Suitable	Establish the status	Transform to Arc Datum 1960 if possible	Build topology if possible		•		Textual	Unsuitable
Kensoter database	Kenya Soil Survey (KSS)	Suitable	Suitable	Suitable	Suitable	Suitable	Transform to Arc Datum 1960 if possible	Build topology and confirm consistency	1:1000000	*	1971	Vector	Suitable
Arcsites	National Museums of Kenya (NMK)	Include in Catalogue and build metadata	Suitable	Suitable	Suitable	Suitable	Suitable	Build topology if possible	1:50000	•	2000	Vector	Unsuitable
Animal counts	Kenya Wildlife Service	Include in Catalogue and build metadata	Suitable	Suitable	Suitable	Suitable	Suitable	Confirm consistency	1:50000	-	1990	Vector	Unsuitable
Wildlife protected areas	Kenya Wildlife Service	Suitable	Suitable	Suitable	Suitable	Suitable	Suitable	Build topology if possible	Various		1994	Vector	Very suitable

Dataset title	Custodian	<u>Availability</u>	Form	Accessibility	<u>Completeness</u>	s <u>Status</u>	<u>Co-ordinate</u> system	Topological consistency		Price (KSh.)	Last date of update		Remark
Cadastral maps	Kenya Power and Lighting Company (KPLC)	Include in Catalogue and build metadata	Convert to digital form	Unsuitable	Suitable	Suitable	Transform to Are Datum 1960 if possible	Build topology if possible	1:2500,1:20 00				Unsuitable
Electrical network	Kenya Power and Lighting Company (KPLC)	Suitable	Suitable	Suitable	Suitable	Establish the status	Transform to Arc Datum 1960 if possible	Build topology if possible	1:2500		*	Vector	Suitable
Indigeneous forests	Kenya Forestry Research Institute	Suitable	Convert to digital form	Suitable	Establish % coverage	Suitable	Transform to Arc Datum 1960 if possible	Build topology if possible	1:1000000	*	1992	*	Unsuitable
Exchange Area Network	Telkom Kenya	Suitable	Convert to digital form	Unsuitable	Establish % coverage	Suitable	Transform to Arc Datum 1960 if possible	Build topology if possible	1:5000, 1:2500, 1:1250		5	ć	Unsuitable
Distribution Network (Cabinet)	Telkom Kenya	Suitable	Convert to digital form	Unsuitable	Suitable	Suitable	Transform to Arc Datum 1960 if possible	Build topology if possible	NTS (Not To Scale)	•			Unsuitable
Transmission and radio links	Telkom Kenya	Suitable	Convert to digital form	Unsuitable	Establish % coverage	Suitable	Transform to Arc Datum 1960 if possible	Build topology if possible	1:1000000	+	1973	-	Unsuitable
Desertfication	United Nations Environmenta 1 Programme (UNEP)	Suitable	Suitable	Suitable	Establish % coverage	Establish the status	Transform to Arc Datum 1960 if possible	Build topology if possible	Below 1:1000000		÷	-	Suitable
Kenya_crop/li vestock.shp	International Livestock Research Institute (ILRI)	Suitable	Suitable	Review restriction	Establish % coverage	Establish the status	Transform to Arc Datum 1960 if possible	Build topology if possible		Free		Vector	Unsuitable

Dataset title	Custodian	Availability	Form	Accessibility	<u>Completeness</u>	s <u>Status</u>	<u>Co-ordinate</u> system	Topological consistency	Price (KSh.)	1 Last date of update		Remark
Kenya_ECFdi stribution shp	International Livestock Research Institute (ILRI)	Suitable	Suitable	Review restriction	Establish % coverage	Establish the status	Transform to Arc Datum 1960 if possible	Build topology if possible	Free		Vector	Unsuitable
Kenya_forest_ tanges shp	International Eivestock Research Institute (11-181)	Suitable	Suitable	Suitable	Establish % coverage	Establish the status	Transform to Arc Datum 1960 if possible	Build topology if possible	Free	*	Vector	Suitable
Kenya_Malari a_zones.shp	International Livestock Research Institute (ILRI)	Suitable	Suitable	Suitable	Establish % coverage	Establish the status	Transform to Arc Datum 1960 if possible	Build topology if possible	Free	4	Vector	Suitable
Kenya_R_app endiculatus.sh p	International Livestock Research Institute (ILRI)	Suitable	Suitable	Review restriction	Establish % coverage	Establish the status	Transform to Arc Datum 1960 if possible	Build topology if possible	Free	•	Vector	Unsuitable
Kenya_Rainfa Il_distribution shp	International Livestock Research Institute (ILRI)	Suitable	Suitable	Review restriction	Establish % coverage	Establish the status	Transform to Arc Datum 1960 if possible	Build topology if possible	Free	*	Vector	Unsuitable
Kentraveltime	International Livestock Research Institute (ILRI)	Suitable	Suitable	Review restriction	Establish % coverage	Establish the status	Transform to Arc Datum 1960 if possible	Build topology if possible	Free	4	Raster	Unsuitable
Kenya_rainsta tions1890- 1985.shp	International Livestock Research Institute (ILRI)	Suitable	Suitable	Review restriction	Establish % coverage	Establish the status	Transform to Arc Datum 1960 if possible	Build topology if possible	Free		Vector	Unsuitable
Kenya_rainsta tions1991- 96.shp	International Livestock Research Institute (ILRI)	Suitable	Suitable	Review restriction	Establish % coverage	Establish the status	Transform to Arc Datum 1960 if possible	Build topology if possible	Free	-1	Vector	Unsuitable

Dataset title	Custodian	<u>Availability</u>	Form	Accessibility	<u>Completeness</u>	<u>Status</u>	<u>Co-ordinate</u> <u>system</u>	Topological consistency	Source scale	Price (KSh.)	Last date	Format	Remark
Kenya_Tree_c over.shp	International Livestock Research Institute (ILRI)	Suitable	Suitable	Suitable	Establish % coverage	Establish the status	Transform to Arc Datum 1960 if possible	Build topology if possible		Free	*	Raster	Suitable
Kenya_tsetsed istribn.shp	International Livestock Research Institute (ILRI)	Suitable	Suitable	Review restriction	Establish % coverage	Establish the status	Transform to Arc Datum 1960 if possible	Build topology if possible		Free	*	Vector	Unsuitable
Kenya_Aczon	International Livestock Research Institute (ILRI)	Suitable	Suitable	Review restriction	Establish % coverage	Establish the status	Transform to Arg Datum 1960 if possible	Build topology if possible		Free	•	Vector	Unsuitable
Kenya_waterp oints1.shp	International Livestock Research Institute (ILRI)	Suitable	Suitable	Suitable	Establish % coverage	Establish the status	Transform to Arc Datum 1960 if possible	Build topology if possible		Free	*	Vector	Suitable
Kenya79loc_c cnsus.shp	International Livestock Research Institute (ILRI)	Suitable	Suitable	Review restriction	Establish % coverage	Establish the status	Transform to Arc Datum 1960 if possible	Build topology if possible		Free	*	Vector	Unsuitable
Kenya89sublo c_cencus.shp	International Livestock Research Institute (ILRI)	Suitable	Suitable	Review restriction	Establish % coverage	Establish the status	Transform to Arc Datum 1960 if possible	Build topology if possible		Free	•	Vector	Unsuitable
Maize_produc tion.shp	International Livestock Research Institute (ILRI)	Suitable	Suitable	Suitable	Establish % coverage	Establish the status	Transform to Arc Datum 1960 if possible	Build topology if possible	1:1000000	Free	+	Vector	Suitable
Millet_produc tion.shp	International Livestock Research Institute (ILRI)	Suitable	Suitable	Suitable	Establish % coverage	Establish the status	Transform to Arc Datum 1960 if possible	Build topology if possible	1:1000000	Free		Vector	Suitable

Dataset title	<u>Custodian</u>	<u>Availability</u>	Form	Accessibility	Completeness	<u>Status</u>	<u>Co-ordinate</u> system	Topological	Source scale	Price (KSh.)	Lasi date of update	Format	Remark
Mkt_Access I	International Livestock Research Institute (ILRI)	Suitable	Suitable	Suitable	Establish % coverage	Establish the status	Transform to Arc Datum 1960 if possible	Build topology if possible		Free		Raster	Suitable
Mkt_Access2	International Livestock Research Institute (II R1)	Suitable	Suitable	Review restriction	Establish % coverage	Establish the status	Transform to Are Datum 1960 if possible	Build topology if possible		Free	*	Vector	Unsuitable
Mkt_Access3	International Livestock Research Institute (ILRI)	Suitable	Suitable	Suitable	Establish % coverage	Establish the status	Transform to Arc Datum 1960 if possible	Build topology if possible		Free	•	Raster	Suitable
Kenya_Aezon es.shp	International Livestock Research Institute (ILRI)	Suitable	Suitable	Review restriction	Establish % coverage	Establish the status	Transform to Arc Datum 1960 if possible	Build topology if possible		Free	·	Vector	Unsuitable
Rice_producti on.shp	International Livestock Research Institute (ILRI)	Suitable	Suitable	Suitable	Establish % coverage	Establish the status	Transform to Arc Datum 1960 if possible	Build topology if possible	1:1000000	Free	•	Vector	Suitable
Sorghum_pro duction.shp	International Livestock Research Institute (ILRI)	Suitable	Suitable	Suitable	Establish % coverage	Establish the status	Transform to Arc Datum 1960 if possible	Build topology if possible	1:1000000	Free	*	Vector	Suitable
Wheat_produ ction.shp	International Livestock Research Institute (ILRI)	Suitable	Suitable	Suitable	Establish % coverage	Establish the status	Transform to Arc Datum 1960 if possible	Build topology if possible	1:1000000	Free	*	Vector	Suitable
kenya_Camel distribution sh p	International Livestock Research Institute (ILRI)	Suitable	Suitable	Suitable	Establish % coverage	Establish the status	Transform to Arc Datum 1960 if possible	Build topology if possible		Free	*	Vector	Suitable

Dataset title	Custodian	<u>Availability</u>	Form	Accessibility	Completeness	<u>Status</u>	<u>Co-ordinate</u> <u>system</u>	Topological consistency	Source scale	Price (K.Sh.)	Last date of update	Format	Remark
Kenya_Cattle _density.shp	International Livestock Research Institute (ILRI)	Suitable	Suitable	Review restriction	Establish % coverage	Establish the status	Transform to Arc Datum 1960 if possible	Build topology if possible		Free		Vector	Unsuitable
Kenya_climat e_surface.shp	International Livestock Research Institute (ILRI)	Suitable	Suitable	Review restriction	Establish % coverage	Establish the status	Transform to Arc Datum 1960 if possible	Build topology if possible		Free		Vector	Unsuitable
Kenya_mapsh eets_catalogue .shp	International Livestock Research Institute (ILRI)	Suitable	Suitable	Review restriction	Suitable	Establish the status	Transform to Arc Datum 1960 if possible	Build topology if possible	1:50000	Free	*	Vector	Unsuitable
Stem borer	International Centre for Insect Physiology and Ecology	Include in Catalogue and build metadata	Suitable	Suitable	Establish % coverage	Establish the status	Transform to Arc Datum 1960 if possible	Build topology if possible	1:250000	*	2003	4	Unsuitable
KESETTLEM ENTS	United Nations High Commissioner for Refugees, RSAL	Suitable	Suitable	Suitable	Suitable	Suitable	Transform to Arc Datum 1960 if possible	Build topology if possible	1:250000	Free	20001107	Vector	Suitable
Eldoret Facilities Manager	Eldoret Water and sanitation company (ELDOWAS)	Suitable	Suitable	Unsuitable	Establish % coverage	Suitable	Suitable	Build topology if possible	1:250000	•	*	Vector	Unsuitable
Inforsat	Department of Geography, Moi University	Include in Catalogue and build metadata	Suitable	Unsuitable	Suitable	Establish the status	Transform to Arc Datum 1960 if possible	Build topology and confirm consistency	1:50000	÷.	2000	Vector	Unsuitable

4.4 Evaluation of systems for compatibility

(i) Computer n.emory and speed.

Computers offer platforms for manipulation and processing of digital data. Since the invention of digital computers, a lot of developments in computer speed and memory have been realized. The responses indicated that 95% of the institutions in the sample have computers ranging from 386 to Pentium IV. However, details of computer memory and speed were not given. This is probably because the purchase of the computers was based on various specifications, which were not availed at the time of the interview.

(ii) Operating System.

The dominant operating system identified in the survey was Windows 95/98/2000 with a 91 % represent UNIX with 11 %, Macintosh with 9 %. The main concern with operating systems is their portability, i.e., the ability of the operating system to run on different computer models from different vendors. UNIX portability has not been fully realized because of the proliferation of many UNIX varieties (Groot and McLaughlin, 2001), and this is probably the reason why Windows appear to challenge UNIX's popularity.

(iii) Database Management System.

Ms access, a relational database management system was dominant with a 70%, while Fox pro, an object-oriented database management system has a 3% representation.

(iv) The GIS software.

The main issue with GIS software is their compatibility. Compatibility of these systems can be determined by Knowing:

- The data formats the software support.
- If software is compliant to any object/component specification.

Table 4-8 gives the GIS software identified in the study, the formats they support, and compliance with any object/component specification (obtained from the respective software documentation).

GIS software		ita fo																							taba stem			ageme S)	nt	Object/ Component compliant specification
	Ve	ctor I	orma	ats								Ra	ster f	orma	ats									Dal	abas	e			Query	1
	ArcView shp	ArcInto coverage	Mapinfo (MIF)	AreGIS geodatabase	IDRIS vet	DXF	CGM	XML	.DWG (AutoCAD)	. DGN (MicroStation)	Intergraph	Erdas ERD/LAN/GIS	TIF/GeoTIF	JPEG	TGA	Arcinfo Grid/Arc Raster	GIF	BMP	BIL	ARDG	BSQ	PCX	Idrisi .rst	Ms Access	db III/IV	Ascii	Lotus	Ms Excel	SQL	
Arc View (3.2)	X	x				x	x		x	x		x	x	х		x	-	x	x	x	x				x				x	
Arc View (3.3)	x	x				x			x	х		x	x	x		x		x							x				x	
Arc Info		x													_	x														
Arc Info		x														x	_						_						++	
ArcGIS (8.1)		х		х		x								х																SFO1.1
AcGIS (8.3)		x		x		x								х											_	_				
MapInfo (4 5)																											_			
MapInfo (5.0)																														
MapInfo (5.5)	x	x	x			x				х	x			х	x		x		x					x	x	x				
MapInfo (6.0)																														
IDRISI32		x			x	x						x	x					x						x	x					COM compliant
ILWIS (2.1)																	х								x					
ILWIS (3.1)	X	x				X						x	х	x			x						x		x					COM compliant
SGD						x			x																					

Table 4-8: File formats supported by GIS software identified in the study

^{*} SFO1.1 : Simple Feature Access for OLE/COM 1.0, an OGC specification

(vi) Internet access point (server node)

About 72 % of the institutions in the sample frame have access to the Internet. This means that communication (data sharing) between the institutions is possible. But for a fully functional, standard-based NSDI to be realized, these institutions must have server nodes (depending on the model as discussed in section 2.6.1). For the server node to be considered to belong to a particular network (clearinghouse) and therefore compatible, two issues that must be addressed are:

- The search/retrieval protocol (implemented in the server software)
- The server registration system

Of the 250 GSDI metadata clearinghouse nodes, three are from Kenya: UNEP and ILRI, nodes, which are active and the IGAD node, which is inactive. An example of server node information is in appendix 2.

(vii) Data transfer rates and type of traffic the network supports

The connections to the Internet are largely through the analogue telephone system. Definitely this medium has some restrictions on the bandwidth and rate of data transfer. However, with the Integrated Services Digital Network (ISDN), higher transfer rates are possible. Additionally, the ISDN has made it possible to transmit other forms of data (text, graphic and image) apart from voice, except that the limiting bandwidth will mean that compressed file formats are used. During the survey, another medium of data communication identified is the microwave link between the Kenya Metcorological Department (KMD) and the Department of Resource Surveys and Remote Sensing (DRSRS). This medium offers faster rates, and broader bandwidth.

As opposed to an elaborate evaluate of datasets, which can be evaluated singly against all the parameters, on the other hand, only system components can be evaluated independently. In this respect, for systems, only the GIS software were evaluated in a more elaborate way. For the other system parameters: the operating system, the Database management system and Internet access, only the percentage of institutions that have/use them were determined, while the computer memory and speed, the database architecture, type of network traffic and rate of

data transfer, the data that was collected during the survey was not sufficient to allow for a more elaborate evaluation.

In general, the evaluation of systems was not as elaborate as for datasets. Insufficiency of data collected during the survey as well limited a complete evaluation of datasets on the basis of coverage, currency, positional accuracy, price and logical consistency, while for systems the limitation was in the computer memory and speed, the database architecture, type of network traffic and rate of data transfer.

4.5 Observations from the study

During the study the following observations were made:

- (i) Most respondents did not understand what the definition of a geospatial dataset is and it was only after they were given the definition that they were able to state datasets that they held, this was especially so for those institutions that do not have a catalogue of their geospatial datasets.
- (ii) 26% of the datasets are accessible while the rest are unavailable for external use and for some others, their access restrictions were not specified. Therefore for those datasets that were indicated as unavailable for external use, the restrictions should be reviewed. For example, datasets in the custody of the Department of Urban Development, Ministry of Local government.
- (iii) The Survey of Kenya in an on-going programme of developing national spatial datasets is converting all its smaller scale (1:50,000 and 1:250,000) topographic maps to digital form. This can be considered duplication of effort given that the Central Bureau of Statistics (CBS) has digitized some of these maps. For large-scale applications (>1:10,000), most of the available datasets may not be suitable because their source scales range from 1:50,000 to 1:1,000,000. The on-going project for the establishment of the spatial data framework for the city of Nairob is one instance of large-scale data framework and the first of a kind. Therefore for the other towns, the datasets in digital form for 26 towns held by the Departmen of Urban Development should be used to develop the foundational and framework

datasets for these towns, without doing a new survey like the case of Nairobi; otherwice this is a sure case of duplication. Another case of possible duplication is by the Department of Physical Planning in the Ministry of Lands, which in its ongoing programme is converting analogue data to digital format, for urban areas.

- (iv) Though a greater percentage (84%) of datasets are in digital form, they were prepared for the purpose of producing (publishing) topographic maps, and therefore most of them could contain a lot of feature symbols. Therefore, for these datasets to be used widely, they need to be prepared into GIS framework, that is by representing features with their feature primitives (points, lines and polygons) and to ensure that they are topologically consistent.
- (v) Most respondents could only respond that datasets were topologically and thematically consistent without providing consistency check report. Institutions should therefore be encouraged to carry out logical consistency checks automatically and include the results in the metadata.
- (vi) Most datasets are in vector format and referenced using plane co-ordinates. The co-ordinate systems identified include UTM, Cassini and local. However, not all datasets in UTM are based on the modified Clarke 1880, others are based on the WGSS4 ellipsoid. In these circumstances positions are likely to differ by as much as 300m. Transforming all datasets to Arc Datum 1960 should clear this mixture.
- (vii) Price was only given for 8% of the datasets. It is suspected that geospatial data are sold and bought to an extent that some institutions have taken advantage of the ignorance of their customers about the actual prices of digital data to charge exorbitant prices. It is therefore recommended that a study be undertaken to determine price specification for geospatial data and products.
- (viii) It was observed that most datasets unless modified (on the basis of need) by the organizations, their currency would be taken as the date they were originally prepared as basic datasets or extracted from the basic datasets. In this regard, currency (last day of up-date) was indicated for only 36% of the datasets.
- (ix) ArcGIS 8.1, ILWIS 3.1 and IDRISI32 132.2 GIS software were found to be suitable on the basis that they are COM compliant (based on Microsoft component

technology), and therefore expected to offer higher interoperability, in addition to supporting the common file formats, e.g. DXF and TIFF.

- (x) Windows was identified as the dominant operating system with a 91% representation, UNIX (11%) and Macintosh 9%. On this basis, it can be argued that Windows is more portable (ability to run on different computer models from different vendors) than the rest. In fact Groot and McLaughlin have indicated that UNIX's portability has not been fully realized because of the proliferation of many UNIX varieties (Groot and McLaughlin, 2001).
- (xi) Off-line and on-line data sharing are possible given that 72% of the institutions have access to the Internet. Infrastructure-enabled data sharing is however not possible as yet because only three metadata servers exist, the UNEP and ILRI, which however are established on international mandate.
- (xii) The connection to the Internet is largely through the analogue telephone system, where data transfer rates of up to 28kbps are achievable. But with ISDN higher rates are possible and to transmit multimedia data. To accommodate large data files, larger bandwidths are required. For example, the microwave link between the Kenya Meteorological Department (KMD) and the Department of Resource Surveys and Remote Sensing (DRSRS), rates of up to 1Mbps are realized. It is therefore recommended that data transfer rates be at least 28kbps.
- (xiii) 92% of the institutions use computers to handle their geospatial data and information, although the respondents did not give information about the speed and memory. Therefore individual organizations should prepare specifications that will guide the procurement of systems that are interoperable with others in the NSDI
- (xiv) The government in its National Development Plan has incorporated in its policy paper on Information and Communication Technologies (ICT), an action plan to establish a National Spatial Data Infrastructure (NSDI) for an efficient management geospatial information (National Development Plan, 2002-2008). Towards the Government's policy paper on ICT, a national communications secretariat has been established and has received over 50 submissions for

102

consideration. So far, the secretariat is working on a draft, which is not available to the public as yet.

- (xv) Most institutions (80%) indicated their willingness to co-operate by indicating what their contributions towards the realization of the NSDI would be. The contributions include: provision of framework data, setting up of standards, to provide data portals and links to facilitate exchange of data. However, some private sector organizations showed some unwillingness to indicate what datasets they are holding. This was even to the extent that one private-sector institution did not respond at all by indicating that some questionnaire items were asking for company information that they are not allowed to give out and that some questionnaire items were irrelevant. The willingness of private-sector institutions to co-operate can only be boosted if they can see what their stake in NSDI is. Interoperable data, a dedicated and regularly updated network, more collaborations and specifications of core and framework geospatial datasets are some of the expectations about the NSDI. These expectations show that there are more than enough potential users.
- (xvi) Generally, the human capacity to run NSDI seems not sufficient. This is because 86% of the institutions indicated that they need either more staff with geospatial expertise or more training for existing staff or both.
- (xvii) More government institutions are aware and are involved in NSDI development than private-sector institutions.

CHAPTER 5: CONCLUSIONS AND RECOMMENDATIONS

The study had the following objectives to meet:

- (i) Carry out an inventory of existing geospatial datasets and significant geoinformation systems in Kenya.
- Determine the parameters that one can use to evaluate the suitability of a data set for inclusion in a NSDI.
- (iii) Determine the parameters that can be used to evaluate the compatibility of a system with others in NSDI.
- (iv) Evaluate the data collected in (i) in view of (ii) and (iii) above.
- (v) Draw conclusions and make appropriate recommendations.

Based on the evaluated datasets, it is concluded that Kenya is about halfway towards its NSDI implementation. This is because about half of the datasets were evaluated as suitable. Whereas almost all categories of foundation datasets (as discussed) in section 2.3.2) were identified, none was identified as consisting purely of a gazetteer. Therefore an official gazetteer should be prepared. Overall, about 57% of foundation datasets were determined as suitable; therefore the parameters that are wanting in the other datasets should be addressed. The framework datasets identified fall in 8 framework data categories: transportation, hydrography (rivers and lakes), land use/land cover, cadastral, soils, geology, zoning and restrictions and wetlands. These are recommended as the candidate national framework datasets, because of insufficiency of data on systems collected during the survey.

From the study, the following recommendations are made.

• The datasets whose coverage were not supplied, coverage should be determined so that gaps and duplications in coverage can be determined, in addition, logical consistency should also be determined, in order to guarantee consistent GIS framework data. This can be achieved easily if institutions that do not have catalogues for their datasets as yet, would start to document all their geospatial datasets.

- Particular organizations should be mandated to develop particular national framework catasets at particular scales (resolution) and if necessary, be allowed to outsource catasets from other organizations.
- Though majority of the organizations have Internet connections, it was however observed that these institutions are concentrated in urban areas. Therefore for these institutions to establish infrastructure-enabled data sharing, they should be encouraged to prepare specifications that will guide them in the procurement of interoperable system components.
- Government institutions should take a leading role in NSDI development, this is because private-sector institutions, it appears that they can co-operate if only they see what their stake in NSDI is.
- Some cultural and attitude changes must be accepted in the institutions in order to ensure the success of NSDI are as recommended below.
 - a) Academic institutions
 - Liaise with industry.
 - Broaden curriculum.
 - Equip GIS Labs.
 - Structure and standardize GIS training.
 - Consider offering geospatial training to practicing professionals.
 - b) Government
 - Consider and guide policy framework for NSDI.
 - Reduce bureaucracy.

c) Private sector

- Interact more with other organizations
- Arrange for GIS fora
- Open up
- Be transparent

Finally, for a more complete picture, another study on other components, for example, on policies e.g. pricing), on people (e.g. certification of NSDI personnel) should be undertaken.

REFERENCES

- Aaron, K. (1993): Telecommunications network design algorithms, McGraw hill Inc., New York, 368 pp.
- ANZLIC (Australia New Zealand Land Information Council) (1999): Policy Statement on Spatial Data management: Towards the Australian Spatial Data Infrastructure.
- Clarke, D. (2001): Global spatial information issues and challenges and opportunities for Developing Nations, Proceedings of the 20th International Cartographic Conference, Beijing, China, August 2001, pp.44-51.
- Comer, D. E. (1995): Intenetworking with TCP/IP: principles, protocols and architecture, vol.1, 3rd ed., Prentice Hall Inc., New Jersey, 431 pp.
- Deitel, H. M., Deitel, P. J. and Nieto, T. R. (1999): Visual Basic 6: How to Program, Pearson Education Inc., Dheli, 1015 pp.
- Douglas, D. N. (2001): Developing Spatial Data Infrastructure: The SDI cookbook, Version 1.1, May 2001.
- EIS-AFRICA (2001): Environmental Information Systems Development in Sub-Saharan Africa: approaches, lessons and challenges, 186 pp.

ESRI (1996): ArcView GIS, users guide, Geographical information for everyone

ESRI (2003): ESRI's continued commitment to standards and interoperability in *ArcUser*, April-June 2003, pp. 32-37.

FGDC (Federal Geographic Data Committee)(1995): Development of a National Digital Geospatial Data Framework, USGC: Washington. [http://www.fgdc.gov/framework.html].

- FGDC (Federal Geographic Data Committee)(1998): Geospatial Positioning Accuracy Standards, pp. 19-25
- FIG (International Federation of Surveyors) (2002): The Nairobi statement on Spatial Information for sustainable development, *FIG publication*, No. 30, Feb. 2002

Foote, K. E. and Margaret, L. (2000): Legal issues relating to GIS, website of the Department of Geography, University of Texas at Austin, USA. [http://www.ncgia.ucsb.edu/giscc/units.html]

- Groot_ R. (1997): Spatial Data Infrastructure (SDI) for sustainable land management, *ITC Journal* 1997-4/4 pp. 287-293.
- Groer R. and McLaughlin, J. D. (2001): Geospatial Data Infrastructure: concepts, cases and good practice, Oxford, New York, 286 pp.
- Harrison, J. (2002): Interoperability enhances planning and responses, *GeoWorld*, May 2002 pp. 38-41.
- ISO (2001): Geospatial Information: Metadata, Draft International Standard, the International Organization for Standardization, 141pp.
- ISO, (2003): International Organization for Standardization, [http://www.iso.org]
- ISO/TC 211 (2003): International Organization for Standardization -Technical Committee 211, [http://www.isotc211.org]
- KARI (1992): Applications of Geographic Information System (GIS), for efficient data storage and handling in Kenya, Proceedings of a symposium organized by Kenya Agricultural Research Institute, 5-6 March 1992, Nairobi Hilton Hotel, Kenya, 125 pp.
- Kiema, J. B. K. (2001): Multisource Data Fusion and Image Compression in Urban Remote Sensing, *Ph.D. dissertation*, the University of Karlsruhe, Germany, 130 pp.
- Kirby_ M. (1999): The role of standards and components, Castek.
- Lance, K. (2001): Where to begin, General steps for establishing a National Spatial Data Infrastructure, USGC/EROS Data Centre, Kenya SDI Workshop
- Laure. D., Vauglin, F., Jacobson, A. and Claude, L. (1999): Quality management, data quality and users, metadata for geographical information. CERCO Working Group (WG) on Quality.
- Lee, M. and Christensen, C. (1999): MCSD: Visual Basic 6 Distributed Applications strudy guide, 1st ed., BPB publications, New Dheli, 710 pp.
- Mbaria, C. (2003): Utility of Spatial Database, a presentation at a seminar for the study for the establishment of the Spatial Data Framework for the city of Nairobi, AJCAD, Kenya on 5th August 2003.
- McLæughlin, J. D. (1991) Towards National Spatial Data Infrastructure, Proceedings of time 1991 Canadian Conference on GIS, Ottawa, Canada, pp 1-5.
- McLaughlin, J. and Nichols, S. (2001): The Future Orientation of Geoinformation Activities in Africa, *a position paper*, Development Information Services Division

(DISD), United Nations Economic Commission for Africa (UNECA), September, 2001. [http://www.uneca.net].

- Mulaku, G. C. (2000): Setting up a land information system: A systematic approach in South African Journal of Surveying and Geo-information, vol. 1, No. 5&6, August &December 2000.
- Mulaku, G. C. (2002a): The concept of Spatial Data Infrastructure: An African Perspective, in *Geospatial Today*. May –June 2002, pp. 13-19.
- Mulaku, G. C. (2002b): Land Information Systems lecture notes, unpublished, Department of Surveying, University of Nairobi.
- National Development Plan 2002-2008 (2002): Effective management for sustainable economic growth and poverty eradication, Government printer, Nairobi.
- Olsen, D. (2001): Mechanical Engineering, a publication of the American Society of Mechanical Engineering (ASME), July 2001.
- Pamella, L. A. and Robert, B. S. (1995): The survey Research Handbook 2nd edition, Richard D. Irwin, Inc., McGraw-Hill, 370 pp.
- Rackham, L. and Rhind, D. (1998): Establishing the UK National Geospatial Data Framework (NGDF), *paper presented at SDI*, Ottawa, Canada, June 1998. [http://www.ngdf.org.uk]
- Ryttersgard, J. (2001): Spatial Data Infrastructures: developing trends and challenges. International Conference on Spatial Information for sustainable development, Nairobi, Kenya.
- GK (Government of Kenya) (1989): Laws of Kenya-Survey Act (Cap. 299), Revised edition 1989, Government Printer, Nairobi.
- Survey of Kenya (2001): Proceeding of the 1st Kenya National Spatial Data Infrastructure Workshop November 2001 Nairobi, Kenya.
- Survey of Kenya (2002): Proceeding of the 2nd Kenya National Spatial Data Infrastructure Workshop April 2002, Nairobi, Kenya. [http://kism.iconnect.co.ke/NSDI/structure]
- Thanassis, H., George H., Marinos K., Margarita K., George P., Loannis P., Timos S., Lysandros, T. Michalis Z., (2000): Interoperability and definition of a national standard for geospatial data, *ITC Journal* Vol. 2 issue 2- 2002 pp. 120-128.

- UNECA (United Nations Economic Commission for Africa)(2003): Emphasis on SDI developments, Country Report Summary, CODI3, Addis Ababa, May 10-16, 2003. [http://www.castro.com.ar/novedades/country%20Report%20Report%20summary.ppt]
- Uyless, B. (1993): Computer networks: Protocols, standards and interfaces, 2nd edition, Prentice-Hall, New Dheli, 436 pp.
- Videnic, M. (2003): Legal issues abound regarding spatial data in *GeoWorld*, February 2003, pp. 42-43.
- WCMC (World Conservation Monitoring Centre)(1996): Guide to information Management in the context of the convention on Biological Diversity. United Nations Environmental Programme, Nairobi, Kenya, 67 pp.
- WCMC (World Conservation Monitoring Centre)(1997): Guide to national institutional sourvey in the context of the convention on Biological Diversity. United Nations Environmental Programme, Nairobi, Kenya, 38 pp.
- WIPO (world International Property Organization) (2002), WIPO Intellectual Property Handbook: Policy, law and use, WIPO publication No. 489(E).
- Wolf, P. R. (1974) Elements of Photogrammetry, with air photo interpretation and remote sensing, McGrawHill Inc., Japan, 562 pp.

APPENDIX 1: SAMPLE QUESTIONNAIRE

SAMPLE QUESTI	ONNAIRE				
Form A					
INSTITUTIONAL I	DETAILS				
Name of organizati	on				
Full address					
Telephone Number	(s)			Fax	
Physical location		Website		E-mail	
Contact person		Designation	n		
DESCRIPTION					
1. When was you	ar organization s	et up?			
2. What is the to	tal number of en	nployees in your	organization?		
3. What is the n	umber of staff wo	orking with spati	al data?		
4. Who are the use	rs of your organiza	tion's products?			
		bes your organizati			
Government	Private	Profit	Semi-governmenta	l Non-go	vernmental
Non-profit	Local Authority	Charity	Other (specify)		
6. At what level de	oes your organizati	ion operate?			
International	Regional	National	Local	Community	Other (specify)
7. What is the cor	e business of your o	organization?			
Trade	Co-ordination	Policy	Research	Industry	Law
Education	Regulation	Service	Administration	Consultancy	Lobbying
Environmental prot	ection	Resource managem	ent	Other (specify)	

8. State major programmes/projects that you have undertaken or are on going.

INFORMATION MANAGEMENT

9. Indicate how you consider the following types of data to be fundamental for any of your applications.

Choose a number ranging from 1 to 5, with 1 indicating not fundamental and 5, extremely fundamental

TYPE OF DATA	1	2	3	4	
Geodetic					
Land surface elevation/topographic					-
Digital imagery (orthoimagery)					_
Government boundaries/administrative boundaries (Government units)					
Transportation/Roads					
Cadastral /land ownership		-			
Hydrographic/rivers and lakes				-	
Ocean coastlines					
Bathymetry					
Physical features/buildings					
Place names					
Land use/land cover/vegetation					
Geology					
Real estate price register/ Land valuation					
Land title register					
Postal address					
Wetlands					
Soils					
Register of private companies					L
Gravity network				_	
Zoning and restrictions					

Do you use any specifications (standards) for the following items? If so, indicate the specifications.

10.

	Yes	No	Specification
Data collection and compilation			
Content specification			
Geospatial data format			
Data coding			
Data exchange			
Map design			
Map symbology			
Spatial referencing			
Geospatial metadata			
Catalogue			
Fee schedule for products and services			
Qualification and certification of personnel			
Quality evaluation	1		

11. Indicate with a tick ($\sqrt{}$) in the following, which quality elements you <u>use</u> and those that you <u>test</u> your data for.

Quality element	Use	Test
Non-quantitative quality ciement		
Purpose		
Usage		-
Lineage		
Source		
Process step		
Producer organization		
User guide Duantitative guality elements		
Completeness		
• Onission		
Commission		
Ogical consistency		_
Topological consistency		
Domain, Geometric, semantic consistence		
User guide ositional accuracy		
		=
Absolute accuracy		
Relative accuracy		
Relative horizontal accuracy		
Relative vertical accuracy		
Raster data positional accuracy		
User guide		
mporal accuracy		-
Last updated		
ematic accuracy		
		-
Quantitative and qualitative Classification correctness		
Accuracy of spelling		
I.kelv misclassification.		

12. Do you deliver your products with quality results?

PARTNERSHIPS

- 13. Please provide details of the most important networks/ steering committees or groups with which your organization is involved. In addition indicate the kind of involvement (whether coordination, facilitation, participation or support)
- 14. Estimate how many organizations regularly provide and receive data from your organization, specifying whether it is through formal agreements or informal arrangements.

	Number	Arrangement
Provide		
Receive		

- 15. Please state any partnerships, which are being planned in the near future.
- 16. How could your organization contribute most effectively to NSDI?
- 17. What could you expect from such a network?
- 18. Are more staff needed with geospatial expertise, or do existing staff need more training (or both).
- 19. Have you experienced changes in workforce of geospatial personnel in your organization?
- 20. What changes do you expect (in approach and attitude) at the following levels to enhance the use of spatial data by decision makers and the public?
 - I. Your organization
 - II. Educational institutions
 - III. Private sector organizations
 - IV. Telecommunications
 - V. Government
 - VI. Non-Government groups
 - VII. Foreign aid agencies

SYSTEMS Indicate whether the following facilities are used in your organization and also state their number

	Yes	Type/Version	Number
Communications			
Telephone			
Fax			
local Area Network			
Email accounts			
Internet access points			
Other (specify)			
Computers (speed and memory)			
PC-386 MHz or lower			
Pentium I			
Pentium II			
Pentium III			
Pentium Iv			
UNIX workstation			
Other (specify)			
Operating system			
DOS			
Windows 3.1/3.11/95/98/2000/NT			
UNIX			
Macintosh			
Other (specify)			
Database			
Centralized		-	
Distributed			
Other(specify)			
Geographic Information System Software			
PC ARC/INFO			
Workstation ARC/INFO			
Arc View			
Mapinfo			
ArcGIS			
ILWIS			
IDRISI			
Other (specify)			
Database Management System			
Access			
Oracle			
Other (specify)			
Related software			
Image processing			
CAD software			
Other (specify)			
Data input/output			-
Digitizing tables			
Scanners			
Plotters			1
Printers Other (specify)			

Form B (DATASETS)

(One copy of this form per dataset is to be filled depending on the number of datasets within a given organization)

A dataset may be a smaller grouping of data, which though limited by some constraint such as spatial extent, or feature type is physically located within a larger dataset. A hardcopy map or chart is considered a dataset

Title of dataset	Department
Contact person	Designation
Telephone number	

DESCRIPTION

1.

- DESCRIPTION
 - State where required or underline the most appropriate item pertaining to this dataset.

Parameter/Characteristic	State or underlin	ne the most approp	riate	
Торіс	Farming		Biota (fauna/flora)	Boundaries
	Climatology/Meteo	rology/Atmosphere	Economy	Elevation
	Environment		Geosciences	Health
	Imagery/Base maps	Earth cover	Intelligence/Military	Inland waters
	Location		Oceans	Planning/Cadastre
	Society		Cultural features	Transportation
	Utilities/ communic	ation		
	Area name	Area in Km ²		
Coverage				
Form	Digital image	Hardcopy image	Digital document	Hardcopy document
	Digital map	Hardcopy map	Digital model	Hardcopy model
	Digital profile	Hardcopy profile	Digital table	Hardcopy table
	Digital video	Hardcopy video	Audio-visual	Mixture
Source scale				
Role of organization	Resource provider	Custodian	Owner	User Distributor
A	Originator Unrestricted	Point of contact Restricted to some	Principal investigator Restricted to most	Processor Publisher Unavailable for external use
Accessibility	Top secret	Resercted to some	Restricted to most	Unavailable for external use
Kind of restriction	Сорутідht	Patent right	Patent pending	Trademark
	License	Intellectual property	Other restrictions?	
Terms of accessibility	Free	Free to most	Free to some	Charged
Charge methodology	Cost recovery	Cost plus overhead	Market value	Not defined
Cost			<u></u>	
Media (if accessible)	Hard copy	Floppy disk	CD-ROM	Online
	Private network	DVD	Satellite	Telephone link
Original source	Remotely sensed da	ata Paper map	Digital maps	Field survey
Last update		· · · · · · · · · · · · · · · · · · ·		
Positional accuracy				
Vertical accuracy				
Resolution				
Precision				
Topology	Only geometry	Full planar graph 3	D topology Abs	tract
Completeness				
Status	Complete Near	ing completion	Under-developed	Early stages of development
Life expectancy	Everlasting	>10 Year	s :	>5 Years
	>1 Year	>Less that	n six months	Immediate future only

Year development began		
Frequency of update	Continually Daily Weekly Fortnightly Monthly	
	Quarterly Biannually annually as needed irregular	
	not planned unknown	
Catalogue	Manual catalogue Digital catalogue None	
Forman Representation	Vector Raster Textual Tin Stereo model Video	
Geocording system	Plane co-ordinates Geodetic Coordinates Street addresses Land Parcel address	ses
Projection	UTM Cassini None Other (specify)	
Reference ellipsoid		
Datum		
Original purpose		
ises in has been put to		
nwise/Improper uses		
imitations in the dataset		
itandairds used		

2.

Does the age of the dataset limit its usefulness? If so elaborate.

3. Do you need newer versions of the same data?

4. Has the dataset been documented for external use?

5. Where access is provided, describe the recommended access procedure.

Why do you use GIS?

7.

6.

State any other significant geospatial information that you manage or use.

APPENDIX 2: SAMPLE SERVER NODE DESCRIPTION

Server Descript	ion			
Title:	International Livestoc	ernational Livestock Research Institute		
	ILRI	I		
Abstract:	extensive range of sp livestock health and p infrastructure. The dai layers. So far, the m ongoing and data laye	er the last ten years, research at the International Livestock Research Institute (ILRI) has gemerated an ensive range of spatial data layers. A number of these layers are related to livestock distribution and stock health and production. Others cover more general topics such as population density, climate and astructure. The database published here is a result of a major effort to collect and catalogue these GIS ers. So far, the main focus has been on collecting all that is available for Kenya. But the work is oing and data layers for other countries within Africa as well as coverage with a continental or global ent will be forthcoming.		
Cost:	free			
Active Status:	Тгие			
	and Political Boundari Geologic and Geophy	riculture and Farming, Atmospheric and Climatic Data, Biologic and Ecologic Information. Administrativ d Political Boundaries, Earth Surface Characteristics and Land Cover, Elevation and Derived: Products ologic and Geophysical Information, Health and Disease, Cultural and Demographic Imformation ansportation Networks and Models, Base Maps, Scanned Maps and Charts		
Server Host Inf	ormation			
Host Name:	www.ilri.cgiar.org			
Host IP:	64.95.130.4			
Port:	210			
DB Name:	ilri			
Software Implementation	CNIDR zserver v2.07i	IDR zserver v2.07i-NT		
S oftware Version:	2.07i-NT	07i-NT		
Platform:	Windows 2000			
Website URL:	http://www.ilri.cgiar.c	prg/gis		
Server Latitude:	1.2 Decimal Degrees			
Server Longitude:	36.5 Decimal Degrees			
Data Coverage:	Кепуа			
	eographic Extent of	Data Served		
Max latitude				
5.5				
min longitude		max longitude		
33.8		42		
nin latitude				
4.8				
Server Contact	Information			
lame:	Russ Kruska			
rganization:	International Live	International Livestock Research Institute		
ddress:	P.O. Box 30709			
ity:	Nairobi			
tate:	Nairobi			
ostal Code:	0000			
ountry:	Kenya			
mail address:	r.kruska@cgiar.or	ra		
ser Support Hou		M E.Africa Standard Time		
elephone:	+254 2 630743			
		+254 2 631499		