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ABSTRACT

The main objective of this study was to assess the performance of some existing 

rainfall-runoff linear systems models and a conceptual model using data from the 

Nyando catchment. In order to estimate the optimum parameters for the various models, 

split samples of data were used; one sample for calibration and the other for verification.

The data used comprised daily areal average rainfall, daily average runoff and 

daily average evaporation. Regression analysis method was used to estimate missing 

rainfall and runoff data while seasonal mean method was used to estimate missing 

evaporation records.

Homogeneity of the data was tested using the mass curve method. Results of 

homogeneity test indicated that data from the catchment are generally homogeneous as 

shown by the high R* efficiency values.

The performance of each of three rainfall-runoff linear systems models, the 

Simple Linear Model (SLM), the Linear Perturbation Model (LPM) and the Linearly 

Varying Gain Factor Model (LVGFM), and a conceptual model called the Soil Moisture 

Accounting and Routing (SMAR) model, was assessed using data from the Nyando 

catchment. The linear systems models were applied in both non-parametric and also 

under the constraint of the gamma function impulse responses. Optimum parameters 

were obtained by the method of Ordinary Least Squares (OLS) and by Rosenbrock’s 

search technique for non-parametric and parametric modes respectively.

Results obtained in the simulation mode indicate that there is a good agreement 

between the actual and estimated stream flow when the conceptual SMAR model is 

used. For the SLM there is a marked difference between actual and estimated stream 

flow especially in the case of low and high flow seasons, respectively. The performance 

of the other models falls somewhere in between the performance of these two models.

The conceptual SMAR model appears to be more superior to the linear systems 

models with a higher R* efficiency (71%) than those of the linear systems models. 

Among the linear systems models, the LVGFM performs best on the Nyando catchment 

at R‘  efficiency of about 69 %, followed by the LPM at R" efficiency of 55 % and the SLM 

at R‘  efficiency of 47 % in this order.

From these results, the SMAR model may be considered the best model for the 

Nyando catchment among all the models that were considered in this study. Among the 

linear systems models considered, the LVGFM is the best model for the catchment 

followed by the LPM and the SLM in this order.
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CHAPTER 1

1.0 INTRODUCTION

Sustainable water resources management depends on reliable hydrological forecasts 

that can be used for important and sometimes sensitive decision-making support. The basic 

management process is to collect and assess facts so that informed decisions can be made 

on future strategy and on which actions to be taken based on the assessment of the 

available facts. To predict future conditions and allow for strategic planning, some form of a 

model is always required. Modern managers and designers of hydrological resource 

projects are thus accepting models as interactive decision support tools. This is probably 

because model forecasts permit decisions to be made with more confidence and hence 

allow for a more efficient use of water resources (Falconer, 1992). This makes model 

forecasts a major factor in economic development since water is a major player in any 

economic activity.

The use of computers in all aspects of hydrology has lead to increased emphasis on 

catchment modeling; where a catchment model is defined as a set of mathematical 

abstractions describing relevant phases of the hydrologic cycle with the sole objective of 

simulating the conversion of rainfall into runoff (Ponce, 1989). One of the major uses of a 

model is in deciding what action to take based on the model’s predictions. For instance, the 

extent of losses due to hydrological catastrophes such as floods or droughts after a decision 

has been made based on a model forecast as opposed to what would have happened if the 

decision were not made at all; justify the usefulness of a forecast. Such forecasts would 

necessarily have to come from a hydrological model that is capable of simulating the 

catchment characteristics as accurately as possible. Water resources managers would use 

such model outputs as the main decision support tools. Thus hydrological models have a 

major role to play in all aspects of hydrological resource management.

Hydrological models are probably the most powerful tools available for clarifying the 

significant processes occurring in a natural hydrological system and for predicting the 

effects of any changes to the system. There is need, therefore, to model hydrological 

systems in order to solve the problems of decision making in both the design and operation 

stage of water resource projects. Hydrological forecasts therefore have a vital economic 

value.

The basic model inputs are rainfall, evaporation and runoff. Rainfall is the major 

source of most of the water resources in a catchment and it is therefore taken as the main
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modal input while runoff is taken as the model output. Rainfall is the main source of runoff, 

evaporation, infiltration as well as the ground water. The level of runoff in the rivers is a 

determining factor in the development of many hydrological projects. The proportion of 

rainfall that finally transforms to runoff determines this level. This proportion is always a 

function of the catchment’s physical properties, which determine the level of abstractions 

such as evaporation, infiltration and percolation. Since runoff comes from rainfall, it is 

important to use a rainfall-runoff model to forecast future discharge from a catchment. In 

such a model rainfall data is used as the input in order to forecast the future discharge from 

a river.

Changes in the state of a river are related to weather changes occurring over the 

catchment area. Changes in hydrological processes are normally found to be less abrupt 

and always lagging behind those of underlying meteorological factors. The relatively slow 

response of hydrological processes to the changes in meteorological processes is what 

makes it possible to model runoff (WMO 1975). The purpose of river flow forecasting 

models is to enable us to provide reliable information for water resources management. 

Such forecasts may be useful in areas such as:

(i) Issuing of flood warnings that help in planning for the evacuation of 

populations threatened by rising water levels

(ii) Management of water storage reservoirs more effectively and efficiently

(iii) Simulation of possible discharge series from the catchment during the design 

of various hydrological structures

(iv) Prediction of effects of proposed works on a catchment on the flow regime at 

the catchment outlet.

Early warnings about high water levels make it possible for measures to be taken in order to 

strengthen the embankments, protect bridges, evacuate populations and their property from 

the flood area.

The success of many hydrological projects is highly dependent on reliability of 

forecasts available to operators of these projects. These forecasts’ reliability will always 

depend on the forecasting model. The forecasting model should be easy to operate. Data 

required for the model should also be affordable and easily available. The rainfall-runoff 

models are easy to operate and their data requirements are affordable. Projects such as 

hydropower generation, irrigation schemes, fresh water supply, flood control, water quality 

control, water based recreation, fish and wildlife management require proper planning and
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management in order for them to succeed. The planning and management of such projects 

relies on timely forecasts derived from detailed analyses of surface water flow. In addition, 

forward planning in case of floods or drought in a given catchment requires accurate and 

reliable forecasts. Such forecasts are derived from a good model that best responds to the 

basin hydrometeorologic characteristics.

Since no single model structure is capable of producing consistently accurate 

forecasts for a wide range of catchments and climatic conditions, there is need to compare 

performance of various available rainfall-runoff models for suitability to the catchment in 

question. This is important especially where the models are developed using data from a 

catchment that is different from the one under study. Most models have the potential for 

success or failure depending on the matching of the chosen model to the catchment under 

study. Since models are only a representation of reality, each type of model has its own 

limitations and approximations. Comparing the performance of different existing rainfall- 

runoff models using data from the Nyando catchment in Lake Victoria Basin, will help in 

choosing the best model, out of the existing ones, that best fits the catchment behaviour in 

transforming input to output. This model will be useful in issuing forecasts for flood 

warnings, rational regulation of runoff, construction and operation of hydraulic structures 

such as bridges, culverts and spillways of dams.

Realizing that most hydrological models have been developed and applied in 

temperate zones, there is need to evaluate the performance of these models in tropical 

regions in order to select the one that best fits our needs (Adegu, 1999). This is normally 

done through recalibration of these models using data from the tropical regions.

1.1 Statement of The Problem

Nyando River is used as a source of food, domestic water, irrigation water and 

industrial water for sugar factories such as Miwani, Muhoroni and Chemelil, which are all 

located within the catchment. The growing population has increased the demand for water, 

food, and land for settlement. The demand for food and shelter has forced the people living 

in the catchment to farm and settle within the flood plains of Kano, which are found in the 

lower reaches of River Nyando. This means that more and more people are becoming 

vulnerable to the frequent flood events in the Kano plain which are known to cause a lot of 

agony to the area residents. When the floods occur, people are displaced from their homes
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and there is loss of life for both human and livestock either through drowning or as a result 

of water borne diseases.

Living in this area becomes total chaos because during these floods, villages, farms 

and roads get completely inundated, thus disrupting farming activities as well as the 

transportation network. The timing of these floods and the subsequent evacuation of the 

inhabitants and their properties are quite difficult without an early warning system. Prior 

planning with the help of a reliable model output that is easily applicable, would go a long 

way in alleviating such calamities. Besides, the residents need water both for irrigation and 

domestic purposes. To achieve a rational use of this water, drawn mainly from river Nyando, 

it is important that a model, which is capable of forecasting changes in the flow regime of 

the Nyando River, the main watercourse in the catchment, be identified.

1.2 Justification
In view of the above problems in the area, there is need to develop a comprehensive 

hydrological modelling system for timely warning of floods and efficient management of the 

available water resources in the catchment. A model that can simulate flood discharge on 

the lower reaches of the Nyando catchment, using rainfall from the upper reaches as input, 

and with a lead time of at least one day would be useful in saving many lives of people and 

livestock living in the flood plains of the Nyando catchment. It would be particularly helpful in 

making decisions related to flood protection measures within the catchment as well as the 

rational use of water for irrigation. The output of this study will form a basis for an early 

warning system for floods in Nyando. The rational use of water from river Nyando would 

also be improved.

1.3 Objectives

The main objective of this study is to identify a suitable rainfall-runoff model, from 

among some existing models, for use in the Nyando catchment. The specific objectives are:

(i) Determine the best calibration parameter values for the Nyando catchment 

using some of the existing linear systems models particularly the Simple 

Linear Model (SLM), the Linear Perturbation Model (LPM), the Linearly 

Varying Gain Factor Model (LVGFM), and a conceptual model particularly the 

Soil Moisture Accounting and Routing (SMAR) model using rainfall, 

evaporation and runoff data from the Nyando Catchment.
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(ii) Assess the optimum performance of each of the linear systems models by 

comparing their outputs among themselves as well as comparing their 

performance to that of a conceptual model.

(iii) Find out and recommend, based on their performance, the most appropriate 

model for use in decision-making support such as in flood forecasting and 

warning in the Nyando Basin.

In the next section, a review of some of the relevant work that has been done in this

field is presented.

1.4 Literature Review

Many attempts have been made to synthesize the unit hydrograph from rainfall 

records. This has been done using the instantaneous unit hydrograph (IUH) to formulate 

mathematical expressions for the shape of the unit hydrograph (Shaw, 1988). The 

instantaneous unit hydrograph is defined as the runoff caused by a unit volume of rainfall 

input generated instantaneously and uniformly over the whole catchment (Mutua, 1979). 

Nash (1957) postulated that the transformation by a catchment of an effective rainfall into 

surface runoff could be modeled by routing that rainfall down a cascade of equal linear 

reservoirs. Essentially the synthesis of the instantaneous unit hydrograph (IUH) is the basis 

of hydrological modelling and has given rise to many hydrological models.

The complex interactions of hydrological processes have made the development of a 

successful rainfall-runoff model a real daunting task. However, the challenge has been 

considered and there now exist in literature many rainfall-runoff models. Few of these can 

be applied indiscriminately beyond the conditions for which they were developed and none 

are totally satisfactory since in almost all cases, modelled runoff deviates from observed 

runoff (Ward and Robinson, 1990).

During the UNDP/WMO (1974) study of the Lake Victoria Basin, the available 

measured runoff data were found to be insufficient. Rainfall data were however, sufficiently 

available. It was then found necessary to generate runoff using the available rainfall data. 

Sugawara and Murayama (1956) rainfall-runoff model was used for the purpose of 

generating synthetic runoff records from the available rainfall data. This model was 

specifically applied in the Nyando catchment and the results were found to be acceptable. 

The model consists of linear cylindrical vessels in series and/or parallel analogous to basin 

runoff. This model utilises annual, seasonal, monthly, daily, hourly or smaller time scales of
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rainfall as input to generate corresponding mean runoffs. For the case of Nyando 

catchment, monthly rainfall was used to generate the corresponding runoffs for the period 

1981 to 1968. The objective of the model was to fill in missing runoff records and this was 

successfully achieved.

Adegu (1999) used the satellite Cold Cloud Duration (CCD) data to simulate rainfall 

data, which he then used to develop a rainfall-runoff model for the Nyando basin. Adegu 

used TAMSAT model to produce quantitative precipitation estimates. These estimates were 

then applied to the PITMAN model to simulate runoff. The results revealed that TAMSAT 

rainfall estimates and PITMAN model have a lot of potential in the Nyando catchment 

subject to availability of good quality data. Events of short and medium duration could be 

predicted using this model. It should be noted that Adegu used only one type of model 

(conceptual) to simulate runoff. However Adegu did not assess how well black box models 

would have performed with CCD data.

Lake Victoria Environmental Management Project (LVEMP 2002) commissioned a 

study over the whole of Lake Victoria Basin whose main objective was to provide advice 

and assistance to the Water Quality and Ecosystem Management component of LVEMP in 

the three East African countries over a period of 18 months from 1st August, 2000. The 

study incorporated many task forces. Among these was the Meteorology/Hydrology task 

force, which was charged with the task of coming up with a time series of all inflows and 

outflows into and out of the lake for the period 1950 to 2000. This was not an easy task as 

there were a lot of gaps in the discharge data unlike in the rainfall data records. The task 

force recommended the application of rainfall-runoff modelling in order to fill in the missing 

river discharge data records using the available rainfall records.

For this purpose the task force opted to use the Sacramento model to try and 

generate river discharge records from rainfall data. Though the model was found suitable, it 

was soon abandoned due to both technical and administrative problems. Among other 

technical problems, the model was found to be difficult to apply, as it requires characteristic 

values for at least sixteen parameters. The amount of work involved in calibrating the model 

was found to be enormous. The task force thus recommended the application of the NAM 

and SMAP models, which were found to be user-friendlier than the Sacramento model. The 

models were able to generate acceptable river discharge data records. Where rainfall 

records were found missing, the task force used correlation analysis and double mass curve 

method to fill in the missing rainfall data records. Here a double mass curve was evaluated
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for the subject station, and the reference station and a trend line fitted to the curve. The 

equation of the trend line was used to fill in as many gaps as possible in the subject station 

records. The main emphasis of the project was water quality. Little attention was paid to 

flood related problems, which are a perennial nuisance in the basin.

Mutua (1979) used Wiener-Hopf theory of optimum dynamic linear systems to 

develop a rainfall-runoff model for Nzoia river catchment. The model is based on stable unit 

hydrographs of the Nzoia catchment determined from coincident records of rainfall as input 

and runoff as output. Mutua (1979) used two-hourly and eight-hourly unit rainfall 

hydrograph to develop the model. The two-hourly unit rainfall hydrograph model was 

applied to the upper catchment while the eight-hourly unit rainfall model was applied to the 

whole catchment. Mutua (1979) developed a criterion for selecting storms, which could 

effectively be monitored by the automatic rain gauges in the upper sub-catchment. These 

were used to determine the two-hour unit hydrograph. Mutua (1979) found that two-hourly 

stream flows could be simulated if the number of automatic gauges could be increased in 

the lower sub-catchment. The eight-hourly unit hydrograph simulated responses compared 

well with observed stream flow. The upper sub-catchment, with two-hourly unit hydrograph 

rainfall was found to give unrealistic and unstable runoff response functions. This was 

possibly due to sparse distribution of existing self-recording rain gauge stations. Mutua 

(1979) thus used the diurnal distribution patterns of rainfall in the basin to synthesize eight- 

hourly unit hydrograph for the whole catchment.

Nzoia is known to be a homogeneous catchment in terms of slope. It has a slope that 

is almost uniform in most areas as opposed to Nyando where we encounter plains on the 

western parts and hills on the eastern parts. This makes Nzoia suitable for modelling using 

lumped models. The same may not be said of the Nyando Basin.

In his study of the upper Athi river catchment, Opere (1991) developed a simple 

model for the catchment based on the response of discharge to the catchment rainfall 

values. The model divides the catchment into sub areas centred on lines of constant time of 

travel of water to the outlet. Opere (1991) used areally averaged rainfall to plot isochrones 

using cross-correlation and coherence functions. The functions were used to derive the 

mean kernel function for the simple model. Opere (1991) found that the maximum response 

was centred within 1 to 5 days. Using separate data Opere (1991) confirmed that the model 

performed well within limits of experimental errors. Since the model is based on average 

response to the catchment rainfall values, Opere (1991) suggested use of hourly data to
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improve the mode!. Opere’s work was focused on Athi river catchment where no serious 

flooding problems have been reported. This may not be very helpful to the Nyando 

residents.

Mutulu (1984) studied both Yala and Sondu catchments concurrently. Mutulu (1984) 

used daily areal average rainfall and runoff series for Yala and Sondu basin to develop a 

transfer function model. This model was found to reproduce the main features of the 

observed hydrographs quite well. Mutulu (1984) suggested a possibility of using 

multivariate input transfer functions to improve the model further. The shortcomings of this 

model are mainly the fact that it requires both rainfall and runoff data for previous days in 

order to predict the future. Mutulu’s model was limited to up to two days lead-time forecasts. 

The model used few years of data and large departures were observed especially during 

flood events; 20 and 30 years of data could improve the performance of this model.

Kato (1982) has used Wiener-Hopf theory to develop a rainfall-runoff model for Ruvu 

River basin in Tanzania. Kato (1982) found that stream fiow and rainfall have almost similar 

statistical properties indicating a close similarity between rainfall and stream fiow series. 

Three different unit response functions corresponding to the three sub catchments were 

computed. Different rainy seasons were chosen to assess the accuracy of these unit 

response functions.

The estimated stream flow was found to be closer to the actual stream fiow for 

smaller sub-catchments. For large sub-catchments, there were marked deviations from the 

actual observations especially when rainfall was extremely heavy. These obvious 

discrepancies in the model output results could be taken as indicators that the model could 

be limited to the size of catchment. This appears to be especially the case when one uses 

a linear approach to estimate stream flow using rainfall as input. Kato (1982) thus 

suggested that the rainfall intensity be classified on the basis of light, moderate and heavy 

rainfall. This would lead to the development of three unit response functions on the basis of 

rainfall intensity; light, moderate and heavy.

Wanjohi (1999) has studied water quality and flow modelling over the Nyando basin. 

The water quality model was found to have potential for operational use as a decision 

support tool for water management in the area. It can be used, as a low-cost alternative 

tool to indicate what pollution control measures should be taken. DUFLOW package was 

used to design the flow and quality of the model. Flood protection measures were 

simulated for the lower parts of Nyando that included dykes, by pass and wetland clearing.
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Construction of a by-pass and dykes were found to be satisfactory alternatives as flood 

protection measures.

1.4.1 Overview of Hydrological Modelling

A hydrological model is a simplified representation of a real hydrological system. 

Models, being representations of hydrological systems, are generally less complex than the 

real hydrological systems and therefore cannot always represent all the minute details of the 

system. They are, nevertheless, necessary tools of studying the real hydrological systems, 

whose output results provide us with new information about the processes taking place in 

the real system; thus helping us to acquire detailed knowledge about system. Models are 

also essential tools in performing complex analysis as well as in making informed decisions 

based on their output results.

Hydrological models may be classified into two main groups, namely, material and 

formal models. A material model is a simplified physical representation of the prototype, 

simpler in structure but with properties resembling those of the prototype. On the other hand 

a formal model is a mathematical abstraction of an idealized situation that preserves the 

important structural properties of the prototype. Formal models are also referred to as 

mathematical models. They are a formulation of the past hydrological events that can be 

integrated into the future (Ponce, 1989). In terms of cost of application, material models are 

more costly than mathematical models. Mathematical models are readily available, highly 

flexible and comparatively inexpensive. They are therefore preferred over the material 

models, which are not readily available.

Mathematical catchment models may further be classified into two main groups, 

namely, Deterministic and Stochastic models. Deterministic models seek to simulate the 

physical processes in the catchment involved in the transformation of rainfall into runoff. 

These models imply a cause and effect relationship between chosen parameter values 

where results are obtained from the solution of certain prescribed equations.

River flow at the outlet of a catchment depends on various independent variables 

such as rainfall, evaporation, types of soils and vegetation cover among others. The 

process of linking such variables and the river flow is deterministic in nature. Thus the 

classical approach would be to develop a deterministic model based on the physics of 

transformation. This approach, however, fails in hydrological forecasting due to the 

complexity of the boundary conditions (Nash and Sutclife, 1970).
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Stochastic models on the other hand take into account the chance of occurrence or 

probability distribution of the hydrological variables. Hence a stochastic model accounts for 

randomness such as the magnitude and timing of various processes in the hydrological 

cycle. This is not the case in deterministic models. For purposes of river flow forecasting, 

deterministic models are normally preferred. These are themselves divided into two main 

categories namely the black box and conceptual models.

Hydrologists have long recognized the complexity of the problem and hence resorted 

to the use of simplified hydrological models. Such simplified models may be described as 

conceptual or empirical models depending on whether they are or are not capable of 

physical interpretation.

Kachroo (1992) observed that while it is desirable that a model should represent as 

closely as possible the actual physical processes occurring within the catchments, it is 

essential that the model should also represent accurately the transformation of the input into 

an out-put. The primary utility of a model is reflected in the extent to which it satisfies this 

practical objective. This is the model efficiency and is one of the principle requirements from 

a model. The second requirement is that of model consistency. In this requirement the level 

of accuracy and the estimates of parameter values should persist through different samples 

of data. The third requirement is that of model versatility. This requires that the model 

should be accurate and consistent when subjected to diverse applications involving model 

evaluation criteria not directly based on the objective function used to calibrate the model.

Over and above these requirements the model should also be simple to calibrate, 

simple to operate and still give acceptable results for the intended applications.

1.4.1.1 Linear Systems Models

These are models, which are formulated in terms of linear equations and processes. 

They may also be described as empirical black box models since they mathematically 

describe the rainfall-runoff relation without regard to the physical processes that relate them. 

These models rely less on the physics of transformation of rainfall into runoff. They depend 

more on the observation of factual relations in the existing records of the catchments. 

Though simple in nature, empirical black box modelling approach may, and sometimes does 

give results as good as those of models that are considered to be more superior in terms of 

representing the physical processes governing the transformation of rainfall into runoff.
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Reporting on the 'Workshop on Mathematical Models in Hydrology’, held in Pisa, 

Italy, in 1974, Clarke (1977) noted that 'simple black box models remain competitive with 

supposedly physical-based, large-number-parameter models’. He went on to state that the 

validity of this conclusion lies on how intrinsically good the models are, the adequacy of the 

available data and the extent to which the assumptions of the models are met in the 

catchments under study. Traditional methods of curve fitting, multiple regression and unit 

hydrographs are examples widely used in empirical hydrology (Liang, 1995).

Many of the empirical black box models owe their origin to the Sherman (1932) non- 

parametric unit hydrograph method for modelling the storm-runoff component of the 

discharge hydrograph. The unit hydrograph represents the response of a catchment to a 

unit volume of rainfall of a defined duration. Thus empirical black box models may be 

considered to be operating on the principles of linearity where a linear system is defined 

(Dooge, 1973) as one that satisfies the property of superposition. This means that the 

system’s response characteristics are additive; where additive means that the sum of the 

output caused by a sum of inputs is equal to the sum of outputs produced by each of the 

inputs individually. The system should also be time-invariant; where its parameters do not 

change with time. For such a system the form of output depends only on the form of input 

and not on the time at which the input is applied. These models require only synchronous 

rainfall and runoff data as input and output respectively.

In this study the performance of three linear systems models were compared for data 

collected from the Nyando river catchment. The linear rainfall-runoff models, which were 

used, are the Simple Linear Model (SLM), the Linearly Varying Gain Factor Model (LVGFM) 

and the Linear Perturbation Mode! (LPM).

1.4.1.2 Conceptual Models

Conceptual models are generally a simplified representation of the physical 

processes in a hydrological system. They are normally based on mathematical descriptions, 

which simulate complex processes by relying on a few key conceptual parameters. The 

models attempt to simulate the dominant physical mechanisms and processes responsible 

for the conversion of rainfall to runoff in a simple yet practical way where they describe, in a 

simplified way, the movement of water in a basin in both space and time and also account 

for the storage (Maidment, 1993) They are developed by purely rational consideration 

involving the interplay of inductive and deductive reasoning.



The parameters of a conceptual model are either physically measurable or can be 

interpreted in physical terms. The effects of some physical changes of the river basin 

systems are reflected in certain parameters, which could be changed without the need to 

recalibrate the model. This may be particularly important for a river basin such as Nyando 

where the land use is changing rapidly due to urbanization or other factors such as increase 

in population leading to increased demand for land for settlement and farming activities.

Some conceptual models are based on the unit hydrograph theory. The essence of 

the unit hydrograph theory is the assumption of linearity in the relation between the storm 

and the effective runoff (Mutua, 1979).

These models attempt to explain the physical processes involved in transforming 

rainfall into discharge. They require additional data such as evaporation unlike the linear 

systems black box models where only rainfall and runoff data are required. Conceptual 

models can often be complex in structure, having many parameters each with a physical 

interpretation. Most of these parameters are calibrated by optimization methods based on 

the optimum matching of the model output to the observed stream flow records (Kachroo, 

1992).

The generation of runoff by these models is expressed by a series of prescribed 

operations. The model structure involves complex systems of equations that are based on 

theoretical concepts governing the hydrological processes in a basin. However it should be 

noted that the complexity of a conceptual model is not an indicator of the model’s efficiency 

in terms of its ability to match the model output with the observed discharge. Previous 

studies have shown that less complex models sometimes perform better than the more 

complex ones (Loague and Freeze 1985).

This group of models is more scientifically based than the black box models. One of 

the most widely used conceptual models is the Soil Moisture Accounting and Routing 

(SMAR) model. Unlike the systems analysis type of models, the SMAR model takes into 

account the effects of evaporation in determining the volumes of runoff. Unlike rainfall the 

effects of evaporation are not immediate. Over a period of time evaporation creates a soil 

moisture deficit and thus controls the generation of runoff from a subsequent storm. A 

conceptual model takes care of the delayed effects of evaporation.



CHAPTER 2

2.0 STUDY AREA, ITS PHYSICAL CHARACTERISTICS AND CLIMATE

The study area is located in the western side of Kenya and includes the whole of that 

area drained by the Nyando River and its tributaries. This forms the Nyando River 

catchment, which is drained into Lake Victoria. It is found within the Lake Victoria Drainage 

Basin, which is classified as the hydrological drainage area No.1 in Kenya. It covers an area 

of about 3580 square kilometres.

The Nyando River catchment spans across four districts namely Kericho, Kisumu, 

Nandi and Uasin Gishu. River Nyando is the principal watercourse in the catchment with two 

main tributaries namely: the Nyando itself originating from Mau and Londiani forests in 

Kericho area, and Ainomotua originating from the northern side of the Nandi escarpment. 

The area of interest is found within latitudes 0° l '  N and 0° 2b' S and longitudes 34°34/ E and 

35°43/ E as shown in Figures 2.1 and 2.2.

2.1 Nyando Basin Sub-Catchments

The Nyando river Basin has three main sub-catchments that represent the complete 

hydrological regime of the study area. These are:

(i) The Nyando sub-catchment,

(ii) The Ainamotua sub-catchment,

(iii) The Cheronget -  Kabletach -  Asawo sub-catchment.

2.1.1 Nyando Sub-Catchment

This is the largest sub-catchment and is found on the upper side of the confluence of 

Nyando and Ainamotua as shown in Figure 2.2. It covers an area of about 1680 square 

kilometres, constituting about 47 % of the total area of the Nyando River catchment. It lies 

south of the equator and is separated from Ainomotua sub-catchment by the Tinderet 

volcanic dome. It generally slopes from east to west at an average slope of about 1.38 %. 

The Nyando tributary, which is the principal watercourse in the sub-catchment, originates 

from the Western Mau forest at an elevation of about 3000 m above sea level. It flows for 

about 100 km from the head reaches before joining Ainomotua just over 50 km upstream of 

the river mouth to form the main River Nyando. In the 100 km stretch, many smaller streams 

join the Nyando tributary.
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2.1.2 Ainomotua Sub-Catchment
This is the second largest sub-catchment and covers an area of about 947 square 

kilometres, which comprises about 26.5 % of the total Basin area. The equator divides it 

into two roughly equal portions as shown in Figure 2.2. It generally slopes westwards at an 

average slope of about 2.36 %. The Ainomotua tributary is the principal watercourse in the 

sub-catchment. Though smaller in area, the sub-catchment is the largest contributor of 

water to the main River Nyando: contributing about 50 % of the water annually.

The Ainomotua tributary originates from the slopes of Tinderet and Timboroa forests 

at an elevation of about 3000 m above sea level. Many smaller tributaries join it before it 

joins the Nyando tributary to form the main River Nyando.
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Figure 2.1: Location of Nyando Catchment within Kenya and rain gauge stations.

(Source: Adegu, 1999)

2.1.3 Cheronget- Kabletach -  Asawo Sub-Catchment
This sub-catchment lies in the southern portion of the Nyando river Basin. It covers 

an area of about 767 square kilometres, which is about 21.4 % of the total area of the 

catchment. It is therefore the smallest of the three sub-catchments as shown in Figure 2.2. 

This sub-catchment is unique from the other two in that it slopes from southeast to 

northwest and is swampy in the lower reaches. The Cheronget, Kabletach and Asawo
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streams drain it. These are the main streams in the sub-catchment, which are actually 

tributaries of the main Nyando. The contribution of these streams to the main river is very 

small. This may probably be attributed to the fact that most of their flow is lost in the Miruka 

swamp. Thus the main Nyando River may be considered as principally formed by the 

Nyando and Ainomotua tributaries.

Figure 2.2: The Nyando Basin sub catchments, Rainfall and River gauging stations. 
(Source: UNDP/WMO 1974)

River Nyando spans a total length of about 150 km from the source on the Eastern 

end of the basin to the mouth on the western end of the basin. The highest point in the 

basin is about 3000 m above sea level at the Mau and Tinderet forests and the lowest is 

1134 m above sea level at Lake Victoria level. The upper reaches of the Nyando basin 

have a higher average gradient than the lower reaches. The low potential gradient in the 

lower reaches of the Nyando river basin brings about impeded flow leading to the frequent
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flooding experienced in the Kano plain. The flooding problem is not an issue on the upper 

reaches of the basin owing to the large potential gradient. However, high potential gradient 

is a possible factor contributing to soil erosion in the upper reaches of the basin. The 

eroded soil brings about siltation in the lower reaches of the river. This worsens an already 

serious flooding problem.

2.2 Physiographic and Hydrometeorologic Characteristics of The Basin

The quality and quantity of runoff generated in a drainage basin are affected by the 

hydrologic input to the basin and the basin’s physical, vegetative and climatic features. Not 

all the water that occurs in a basin as rainfall transforms to runoff. Rainfall striking the 

ground may go into storage on the surface or in the soil and into the ground water reservoir. 

It is therefore important for the hydrologist to have a good understanding of the topography, 

geology, soils and land use patterns of the drainage basin under study. In this section a 

brief discussion of landform, geology, soils, land use and climate of the Nyando catchment 

is presented.

2.2.1 Landform

The landform varies from low plains near the lakeshore to plateaus and mountains to 

the east. This comprises the Kano plain on the western side and the Londiani Mountains on 

the eastern side. Land elevation varies from 1134 m above sea level on the lakeshore to 

over 3000 m above sea level at the summit of Londiani Mountains. The basin generally 

slopes from east towards west with relatively flat areas as you approach Lake Victoria 

(LBDA, 1987).

The general shape of the landscape, the steepness of the slopes and the total relief 

affect the way rainfall reaches the streams in any drainage basin. It should be expected that 

the steeper the slopes, the quicker will the runoff reach the main river draining the basin. As 

in most stream channel profiles, river Nyando exhibits the characteristic of decreasing slope 

proceeding in a downward direction (WMO/FAO, 1963). The relatively flat gradient of the 

lower reaches of river Nyando results in slowed rate of flow of the river.

Nyando basin is generally pear-shaped ovoid, which is a typical shape of many river 

basins (LVEMP, 2002). A catchment shape is known to affect the catchment response, 

which refers to the relative concentration and timing of runoff. Long narrow basins would be 

expected to have attenuated catchment response, whereas rotund basins would be
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expected to have a highly peaked catchment response. Pear-shaped ovoid catchments, as 

is the case for the Nyando, are expected to exhibit a middle ground situation.

2.2.2 Geology And Soils

Most of the physical characteristics of a basin are influenced by geology. Geological 

factors also largely determine the storage time during which water is held between the 

rainfall and the eventual runoff as stream flow.

Nyando River Basin has the same geology as that of the main Lake Victoria basin. 

Geological formations in the basin vary from recent quaternary sediments to old rocks of 

Archean age. The most common formation is tertiary volcanic rock occurring in most of the 

eastern parts and extends to parts of the lakeshore area. The Bukoban system of 

Precambrian age covers Kisii and the surrounding areas including the Nyando river basin.

Rocks of Archean age of the Kavirondian and Nyanzian system are also common in 

the basin. The structural framework of rock material determines the rate at which water 

moves through the rock. It also determines the direction of movement of water and therefore 

mixing of waters from different aquifers (Opere, 1998)

The characteristics of the soils and rocks largely determine the storage system into 

which rainwater will enter. The soils in the Nyando basin are predominantly clays but vary 

greatly in texture, composition and structure. Soils derived from the quaternary volcanic 

rocks, which are generally fertile, are found in the higher rainfall areas on the eastern side of 

the catchment. Those soils derived from very ancient granite are reasonably fertile and fend 

to be in areas of low rainfall within the catchment. Potential runoff largely depends on 

rainfall intensity on one-hand and soil characteristics on the other. Soil characteristics play 

an important role in determining flood peaks. The more impervious soils like the black 

cotton soil produce high surface runoff. The structural framework of a given type of soil 

determines the rate at which water moves through the soil (Opere, 1998)

The lower reaches of the Nyando basin comprise generally medium to heavy clay 

soils. These soils are known to have impeded drainage and to exhibit poor structure. This is 

probably why the lower reaches of the basin are swampy. Soils in the upper reaches are 

well drained as opposed to soils in the lower reaches.

Runoff is one of the most difficult parameters to determine due to the many factors 

affecting its calculations. These include infiltration, drainage, permeability of soil and its 

structure. The soil type influences vegetative cover which in turn tends to retard overland
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A diagram showing the expected variation throughout the year of rainfall, evaporation 

and discharge usually expresses the hydrological climate of a catchment most easily 

(Kachroo, et al 1992). This has been done for the Nyando catchment and the hydrological 

diagram is presented in Figure 2.3.

Figure 2.3: Hydrological diagram showing the seasonal mean variation of daily rainfall, 

discharge and evaporation over the Nyando catchment.

Figure 2.3 presents the daily seasonal hydrological diagram for the Nyando 

catchment. The figure presents the flow regime of river Nyando from January to December. 

The figure shows that there are two high flow seasons. The first one is centered in May and 

the other in August. The peak flows are observed to coincide with the two main rainfall 

seasons. It is clear from the figure that the flow regime follows the pattern of rainfall but 

always lagging behind by a few days.

The figure also shows how seasonal daily evaporation varies within the year. It is 

observed from the figure that the highest rate of evaporation occurs in March and the lowest 

in July. Interestingly the highest rate of evaporation occurs one month before the highest 

peak rainfall in April while the lowest occurs one month before the next peak rainfall in 

August. On average, it is observed that the rate of evaporation is high throughout the year. 

The seasonal variation of evaporation is not significantly pronounced, as it is with rainfall.
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Rainfall is normally used as the descriptor of climate within the tropics. The variation of 

rainfall from January through December is usually considered a sufficient descriptor of 

tropical climate. Other meteorological variables do not exhibit significant variation 

throughout the year. The climate of the Nyando catchment therefore may most easily be 

described by a rainfall graph showing the expected variation from January to December. For 

this purpose monthly averaged rainfall graphs were plotted from seven selected stations 

within the catchment. These stations include: a station from each sub-catchment, the station 

at the highest, and the other at the lowest, elevation, and the station with the highest, and 

the other with the lowest, normal annual rainfall. Table 2.1 shows the average monthly 

rainfall from which the graphs were drawn.

Table 2.1: Monthly average rainfall at 7 typical rain
M o n t h A h e r o K i p k u r e r e T a m b a c h K i p k o r e c h L u m b w a N a n d i  H K o r u M e a n

J a n 7 1 . 5 3 8 . 1 3 1 . 6 7 9 . 3 5 8 . 3 8 0 . 4 8 3 . 0 6 3 . 2

F e b 8 4 . 1 4 0 . 7 3 1 . 1 7 0 . 2 4 9 . 8 6 7 . 7 8 1 . 5 6 0 . 7

M a r 1 3 0 . 5 7 2 . 9 8 0 . 2 1 3 7 . 4 9 4 . 8 1 4 3 . 4 1 5 3 . 2 1 1 6 . 0

A p r 1 8 1 . 5 1 5 7 . 0 1 5 8 . 1 2 4 3 . 1 1 7 8 . 8 2 0 5 . 6 2 2 3 . 8 1 9 2 . 6

M a y 1 3 8 . 0 1 3 1 . 9 1 3 1 . 0 2 3 0 . 4 1 5 9 . 8 1 8 4 . 8 1 6 2 . 7 1 6 2 . 6

J u n 7 3 . 7 1 0 7 . 4 8 0 . 9 1 5 5 . 8 1 1 6 . 0 1 3 9 . 5 1 0 8 . 5 1 1 1 . 7

J u l 6 5 . 3 1 7 7 . 5 1 0 8 . 0 1 3 4 . 3 1 7 1 . 3 1 6 0 . 9 1 1 0 . 2 1 3 2 . 5

A u g 9 0 . 9 1 8 3 . 5 1 1 1 . 2 1 8 0 . 3 1 6 2 . 8 1 7 5 . 0 1 0 3 . 8 1 4 3 . 9

S e p t 6 7 . 6 8 8 . 0 3 8 . 8 1 3 7 . 4 9 8 . 5 1 3 9 . 2 8 9 . 6 9 4 . 2

O c t 9 6 . 0 8 9 . 7 9 4 . 0 1 4 7 . 4 7 3 . 5 1 2 9 . 9 1 0 4 . 4 1 0 5 . 0

N o v 1 0 3 . 9 7 3 . 7 1 1 3 . 4 1 3 6 . 7 8 7 . 2 1 4 6 . 9 1 1 3 . 4 1 1 0 . 7

D e c 9 0 . 2 3 6 . 6 3 7 . 1 6 0 . 7 4 8 . 0 7 1 . 8 7 3 . 7 5 9 . 7

all stations within the Nyando catchment.

Figure 2.4 shows average monthly rainfall graphs at seven selected rainfall stations in 

the Nyando catchment. From the figure we see that there are two major peaks for each 

station. The first major peak is centered in April and normally occurs in March-April-May 

(MAM) season. The second major peak is centered in August and normally occurs in July- 

August-September (JAS) season. A weak peak, centered in November is also recognizable 

and normally occurs in October-November-December (OND) season. From the graphs, it is 

observed that rainfall in the Nyando basin exhibits a trimodal pattern.

We can therefore safely say that there is rainfall in the Nyando catchment throughout 

the year with April being the wettest month and February the driest. Most of this rain falls in 

two distinct seasons as shown in Figure 2.3
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Figure 2.4: Average monthly rainfall at seven typical rainfall stations in the Nyando 
catchment.

. i
Figure 2.5: Annual rainfall distribution in mm over the Nyando catchment.

(Source: LB DA 1986)

The first peak shows the long rains season and the second peak shows the short rains 

season. The average annual rainfall in the catchment is about 1400 mm.

There is no distinct dry period and thus we can regard this as a moderately humid 

catchment. Effects caused by evaporation are thus minimum and may be ignored when
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deciding on the best model to apply on the catchment.

From the study of the normal annual map of the Nyando river basin (Figure 2.5) it is 

observed that over the higher reaches of Ainomotua sub-catchment the normal annua! 

rainfall varies from about 1400 mm to over 1800 mm. Going downstream the rainfall 

decreases gradually to below 1300 mm annually around the region of confluence between 

the Nyando and the Ainomotua.

Rainfall then decreases north of the Nyando-Sondu divide towards lake Victoria west of 

Londiani forest to well below 1100 mm per annum around the lakeshores. Low annual 

rainfall of about 1200 mm to 1300 mm is experienced over the area downstream of Nyando- 

Ainomotua confluence. Over the central parts of the Nyando catchment the normal annual 

rainfall varies from about 1400 mm to about 1500 mm. Rainfall then increases northwards 

and southwards towards the Nyando escarpment and the Nyando-Sondu divide respectively 

reaching normal annual values of well above 1800 mm. Rainfall is also observed to 

decrease from the central parts of Nyando catchments going either to the west towards 

Londiani forest with annual values falling to below 1200 mm (UNDP/ WMO, 1974).
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CHAPTER 3

3.0 DATA MANAGEMENT
The success of any research is mainly dependent on the handling and quality of data. It 

is therefore important to devote sometime to establish the suitability of data before carrying 

out any research. This chapter presents a brief description of data and methods used in 

determining the suitability of data for this study.

3.1 Database and Type
The data sets required for this study are: daily rainfall, evaporation and runoff. A brief 

discussion of availability, quality, statistics and management of these data sets is presented 

in this section.

3.1.1 Rainfall Data
Rainfall data sets are normally obtained by measurements using rain gauges. The 

data sets can be assembled using hourly, daily, monthly or yearly intervals. For the purpose 

of this study, daily interval data was used, which are the point rain gauge measurements 

accumulated over a period of one day.

Daily rainfall data sets for the Nyando catchment were available form the Kenya 

Meteorological Department (KMD). They were available in many rain-gauging stations within 

the catchment; more than those that were used in this study. Out of the large number of 

stations, 20 were initially selected. After preliminary analysis, 18 stations were selected out 

of these. These were the stations that had long spells of continuous and few missing data 

records relative to the other stations. The stations were selected in such a way that they 

were representative over the area in the sense that they covered the entire catchment as 

well as sub-areas with different rainfall characteristics such as high-altitude areas with high 

rainfall and low plains with low rainfall. The selected stations are located upstream of Ogillo; 

river gauging station number 1GD03.

The number of years with data varied from station to station, but all the 18 selected 

stations had data sets for the period 1968 to 2000. Table 3.1 below shows the 18 stations, 

their location, year of records and the percentage of missing data from 1980 to 2000, the 

period considered for the purpose of this study.

It is observed from the table that except for gauging stations G1 and G4, all the other 

stations have less than ten percent of the missing data records. Station G1 may not be used
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as a source of data owing the large number of missing data records. Twenty eight percent of 

missing data is way above the allowed value of ten percent and below.

The rain gauge station-coding used in this study is only for the purpose of convenience.

Table 3.1: Rainfall stations used for the purpose of this study: their location, years of records 

and the percentage of missing data. The station coding, Gi, is used here only for the

purpose of convenience,

S ta t io n

N o .

S t a t io n

C o d e

S t a t i o n  N a m e L a t i t u d e L o n g i t u d e Y e a r s  o f  r e c o r d s M is s in g  

D a t a  ( % )

8 9 3 5 0 0 1 G 1 S o n g h o r ,  K a a b i r i r 2 '  N 3 5 °  1 8 '  E  ~ 1 9 6 2 - 2 0 0 0 2 8 . 6  %

8 9 3 5 0 3 3 G 2 N a n d i  H i l l s  S a v a n i 3 ' N 3 5 ° 6 '  E 1 9 6 0 - 2 0 0 0 8 . 0  %

8 9 3 5 1 4 8 G 3 K i p k u r e r e  F o r e s t 5 '  N 3 5 ° 2 5 '  E 1 9 6 0 - 2 0 0 0 6 . 4  %

8 9 3 5 1 5 9 G 4 A i n a b k o i  F o r e s t 5 '  N " 3 5 ° 5 ; E 1 9 6 2 - 2 0 0 0 1 0 . 2  %

8 9 3 5 1 6 1 G 5 N a n d i  H i l l s  T e a  E s t . 5 '  N ” 3 5 ° 9 '  E  “ 1 9 6 2 - 2 0 0 0 1 . 0  %

9 0 3 4 0 8 6 G 6 A h e r o  I r r i g a t i o n 9 ' S 3 4 ° 5 6 ' E 1 9 6 0 - 2 0 0 0 1 . 9  %

9 0 3 5 0 2 0 G 7 K i p k e l i o n  R a i l w a y 1 2 '  S 3 5 ° 2 8 '  E 1 9 6 0 - 2 0 0 0 7 . 6  %

9 0 3 5 0 7 5 G 8 K a i s u g u  H o u s e 2 0 '  S 3 5 ° 2 3 ' E  “ 1 9 6 2 - 2 0 0 0 3 . 7  %

9 0 3 5 1 4 8 G 9 K o r u  B i b l e  S c h o o l 1 2 ' S 3 5 ° 1 6 '  E  “ 1 9 6 2 - 2 0 0 0 4 . 3  %

9 0 3 5 1 5 1 G 1 0 L o n d i a n i  E n t o m o l o g y 8 ; S 3 5 ° 3 5 '  E  “ 1 9 6 2 - 2 0 0 0 3 . 6  %

9 0 3 5 1 5 5 G 1 1 L o n d i a n i  F o r e s t  S t n 3 ' S 3 5 ° 3 7 '  E 1 9 6 2 - 2 0 0 0 3 . 7  %

9 0 3 5 1 8 8 G 1 2 T i n g a  M o n a s t r y 1 2 ' S 3 5 ° 2 7 '  E 1 9 6 4 - 2 0 0 0 4 . 4  %

9 0 3 5 2 0 1 G 1 3 K i p k o r e c h  E s t a t e 1 9 '  S _ 3 5 ° 2 0 '  E 1 9 6 8 - 2 0 0 0 8 . 4  %

9 0 3 5 2 2 0 G 1 4 K o r u  H o m a l i n e  c o . 1 0 ' S ~ 3 5 °  1 7 1 E 1 9 6 2 - 2 0 0 0 3 . 2  %

9 0 3 5 2 2 6 G 1 5 L o n d i a n i  F o r e s t 5 ' S 3 5 ° 2 1 '  E 1 9 6 0 - 2 0 0 0 8 . 4  %

9 0 3 5 2 4 0 G 1 6 K e r e s o i  f o r e s t 1 7 ' S 3 5 U3 2 ' E 1 9 6 1  - 2 0 0 0 3 . 6  %

9 0 3 5 2 5 6 G 1 7 M a l a g a t  F o r e s t 5 ' S 3 5 ° 3 2 '  E 1 9 6 2 - 2 0 0 0 6 . 5  %

9 0 3 5 2 6 3 G 1 8 T i n d e r e t  T e a  E s t . H i ' S 3 5 ° 2 1 '  E 1 9 6 4 - 2 0 0 0 4 . 6  %

3.1.2 Runoff Data
Runoff measurements usually require an elaborate stream flow level gauging 

procedure. Measurement and interpretation of stream flow level is one of the chief 

occupations of hydrologists concerned with the study and control of surface water. The 

gauging procedures are time consuming besides being costly to implement

Daily stream flow data sets for River Nyando were available from the Department of 

Water Resources Management, which operates a network of about 24 water-level recording 

stations within the catchment. Of the 24 stations, only three are located on the main river. 

These are 1GD01, 1GD03 and 1GD04. Station 1GD01, which is located at the catchment 

outlet, is no longer functional. Gauging station number 1GD03 was chosen to be the source 

of runoff data. For the purpose of filling in missing records, runoff data sets from stations 

1GD04, 1GD07, 1GC04, 1GC05 and 1GD07 were used. All these stations had data sets for 

different time periods but they all had data from 1969 to 1990. Station 1GD03 had data up
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to 1997 and had few missing data records relative to other stations.

Station 1GD03 was chosen because of its strategic location. It is on the upper side 

of the flood plains as well as being almost at the outlet of the catchment. There is an area of 

about 2625 square kilometres upstream of the station. This represents about 74 % of the 

Nyando catchment area, which is drained through this station. The station was also found to 

have continuous daily discharge data from 1983 to1995 with only 118 days of missing 

records. This is only about 1.8 % of the available records. This was deemed to be adequate 

for the calibration and verification of the model.

3.1.3 Evaporation Data

Daily evaporation data were available from Kenya Meteorological Department. There 

were no evaporation records available from within the catchment since evaporation is only 

recorded at synoptic meteorological stations. There was none within the catchment. 

Evaporation data sets were therefore obtained from Kisumu and Kericho stations both of 

which are found outside the Nyando catchment. The number of years with data varied 

between the stations, but both stations had data records for the period 1983 to 1995

3.1.4 Limitations of Data

Data availability and adequacy were the main limitations. Due to economic 

constraints in third world countries such as Kenya most hydrological data are hard to find in 

adequate quantities. Missing data sets were therefore common occurrences. Suitable 

methods had to be found to fill in these missing data sets. Filling in the missing data for both 

rainfall and runoff was a difficult task because of the number of stations involved especially 

in the case of rainfall data. Runoff data sets were scattered and limited while evaporation 

data were only available at stations neighbouring the catchment namely Kisumu and 

Kericho Meteorological stations. Daily evaporation data sets were also not computerized. 

The task of keying in these data was enormous and time consuming.

3.1.5 Conversion of Daily Data To UCG Format

Before the data sets were fitted to the model they were converted to the University 

College Galway (UCG) format since the model could not take them in their original format. 

This is a standard format acceptable to the Galway Flow Forecasting System (GFFS) 

program.
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3.2 Estimation of Missing Data

Continuity of data is a vital requirement in any research. Incomplete records of 

hydrological data sometimes occur possibly due to operator error or equipment malfunction. 

In such cases, it is often necessary to fill in the missing records using estimated values. This 

section deals with some of the methods used to estimate missing data records.

Like many other parts of the developing world, there are problems in Kenya in 

sustaining operational equipment for stream flow and rainfall measurements. Further, the 

personnel to take readings are either too few or unreliable (Opere 1998). These factors 

often lead to missing records where automatic recorders are unavailable. The estimation of 

missing records therefore, is a fundamental step and forms an integral part of this study.

Missing data may be estimated by many methods, which include the arithmetic 

mean, auto-correlation, regression analysis, isopleth’s analysis, normal ratio, inverse 

distance, and seasonal mean, among other methods. In this study regression analysis 

method was used to estimate the missing records of rainfall and runoff while seasonal mean 

method was used to estimate missing evaporation records. Regression method was used 

because it involves more than one station in filling in the missing data records. This ensures 

that the estimated value of the missing record is more representative. This was more suited 

to the rainfall and runoff data since more than one linearly correlated stations were 

available. Where only the station with the missing data is available, like in the case of 

evaporation data, a seasonal mean value gives a better estimate of the missing data record.

3.2.1 Linear Correlation, Regression Analysis And Double Mass Curve Method

Correlation and regression procedures are widely used in hydrology and other 

sciences. The premise of the method is that one variable is often conditioned by the value of 

another or several other variables.

Before applying this method, it was important to first compute the linear correlation 

coefficients (rx y) between pairs of stations. The correlation coefficient is a value between -1 

and +1 that indicates the strength of linear relationship between two quantitative variables. 

A linear correlation coefficient of +1 indicates a perfect positive relationship, a value of 0 

indicates no relationship, and a value of -1 indicates a perfect negative relationship. If a 

data set were such that all of the x,y pairs plotted form a straight line, then rxy would be 

equal to +1 or -1 exactly. For +1 the plot would be upward sloping indicating that data set x 

is the same as data set y while for -1  the plot would be downward sloping indicating that

26



data set x is the negative of data set y.

The avaiiabie data was used to compute correlation coefficients between the 

selected stations. This was done for the purpose of identifying the level of the linear 

relationship between the selected stations. Values of rx>y close to +1 imply a near perfect 

linear direct relationship while those close to zero suggest lack of a strong linear 

relationship.

The stations that had highly correlated data to those of the station with the missing 

data records were selected for the purpose of filling in the missing records.

The sample linear correlation coefficient (rx,y) was computed from Equation 3.1.

Cov(x, y )
sxsy

In Equation 3.1, rx,y refers to the linear correlation coefficient and ranges from -1 to 1, 

Cov(xy) refers to the covariance shared by the two variables x and y, 5X and 5y refer to the 

standard deviations of array x and array y  respectively.

The sample covariance was estimated from Equation 3.2.

x-y ~ n — 1 -3.2.

Where n refers to the number of data points in the sample. The results of (rx>y) for the 18 

rainfall stations are presented in Table 5.1 in Section 5.

From this table it was possible to identify stations that had significantly linearly related 

data to those of the station with missing data. From the linearly related stations reference 

base stations were identified to fill in the missing records. The base stations were taken to 

be those that had data corresponding to the missing data records. These are the stations 

that had values of rx y > 0.5 in relation to the station with missing records.

The threshold value of rxy >0.5 was taken on the basis that values beyond 0.5 are 

closer to 1, the value that signifies perfect relationship. Values below 0.5 are closer to zero, 

the no relation value. A value of rx,y near or equal to 0 implies little or no linear relationship 

between x and y. On the other hand the closer rXiY comes to 1 or -1, the stronger the linear 

relationship between x and y. Positive values of rx>y imply a positive linear direct relationship 

between y and x; that is y increases as x increases. Negative values of rKy imply a indirect 

linear relationship between y and x; that is y decreases as x increases (McClave and
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Sincich, 2000). Values beyond 0.5 may therefore be considered significant while those 

below 0.5 may be considered insignificant.

By associating stations that show significant correlation of rXiY> 0.5, the missing data 

records were estimated through linear regression. We define a mathematical relation 

between data from the subject station and other correlated stations by Equation 3.3.

y  = a  +  Y j a l x i -------------------------------------3.3.
i=i

Where y refers to the data series from station with missing data, x, refers to the data series 

from reference stations, a,- refers to the coefficient of correlation of respective stations and it 

determines the contribution of x,- to the value of y, and a refers to the y-intercept or the constant 

of the equation.

This is a multiple regression equation, which can be used to predict values of y  using 

known values of x from more than one reference station. Details of this may be found in any 

standard statistics textbook such as (McClave and Sincich, 2000, Frank and Althoen, 1994, 

Thiessen, 1997 and Moore, 1974, among others). By choosing the station that is most 

correlated v/ith the station with the missing data Equation 3.3 may be reduced to a simple 

linear regression one of the form:

y  = a  + px ----------------------------------------------------3.4.

Where y refers to the expected value of the missing data, a  refers to the y-intercept of the 

regression equation, p  refers to the slope of the regression equation and x refers to the

corresponding data from the station with high correlation.

In this study, both multiple and linear regression methods were used. The linear 

regression was used where only one station showed a strong linear relationship compared 

with the other stations. Multiple regression was used where more than one station showed 

correlation coefficients of about the same value. The multiple regression method was limited 

to three variables in order to avoid over-fitting the model. Equations 3.3 and 3.4 were used 

to estimate the missing data records by regression analysis.

Alternatively where only one station was to be used, a double mass curve was 

evaluated for the reference station, the station with corresponding data sets, and the subject 

station, the station with missing data sets. It has been found that the use of double mass



curves gives very reliable correlation relationships between adjacent stations (LVEMP, 

2002). When a trend line is fitted to the mass curve, its equation may be used to fill in as 

many gaps as possible in the subject station using corresponding data from the reference 

station. The major shortcoming to this method is that only one station is used to fill in the 

missing records. If the stations are “too far apart” the results may not be representative. Too 

far apart here refers to the case where the subject station is in a different rainfall zone from 

the reference station. The method is also based on inter-station correlation because the 

gradient of the trend line of the mass curve is a measure of the linear relationship between 

the two stations.

The double mass curve method was used extensively in this study especially where 

two adjacent stations showed a high degree of correlation. It is important to note that both 

the regression method and the double mass curve method rely heavily on the linear 

correlation analysis as a way of identifying the related stations. Equation 3.5 was used to 

estimate the missing data records by double mass curve method.

y -ax  + b------------------------------------------- 3.5.

Where y refers to the missing record series, x refers to the corresponding record series in 

reference station, a refers to the gradient of the trend line and b refers to the intercept of 

trend line.

If the equation is adjusted so that b = 0 we get:

y = P x -----------------------------------------------------------3.6.

Where P refers to the gradient of the trend line through the origin.

Equation 3.6 may be interpreted to mean that data set y  is P times the corresponding data 

set in array x. Therefore to fill in the missing data records in y, corresponding data records in 

xwere multiplied by P before being used in y.

3.2.2 Evaporation Data

Methods used to estimate evaporation records include: the water budget, the energy 

budget, the mass transfer techniques, and use of evaporation pans. Of all these methods, 

the pan method is the least expensive and is also known to provide good estimates of 

evaporation records (Ward and Robinson, 1990).
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The methods used to fill in missing evaporation records are in principle the same as 

those used to fill in the rainfall data records. However there are practical differences caused 

mainly by the unique nature of evaporation records as described below.

(i) There are fewer evaporation stations since evaporation is only recorded at 

agro meteorological or synoptic stations. These are few and far apart.

(ii) The use of correlation between adjacent stations is usually not relevant since 

the stations are very far apart. It would therefore be inappropriate to use 

correlation to extend the records.

(iii) There is no well-defined method of choosing evaporation for wet, average and 

dry years. Although the potential evaporation may vary significantly from one 

day to the other, annua! evaporation varies only a little.

In addition to the above, little is known about the local spatial variability of 

evaporation although it is known to be higher at the equator than at the poles. It is however 

less variable than either rainfall or runoff. In this case, a station network of much lesser 

density is required for a correct assessment of the evaporation. For genera! purpose and 

preliminary estimation of evaporation, a density of one station per 5000 square kilometres is 

considered sufficient (Ponce, 1989). Evaporation data from Kisumu Meteorological station 

were applied to the Nyando catchment since the station and the catchment are in the same 

climatic zone. Kericho records were only used for comparison purposes.

Missing evaporation records are normally estimated using the seasonal mean 

method. The seasonal mean is defined as the mean of the evaporation values on date d of 

the calibration period. Equation 3.7 gives the seasonal mean value.

1 ^
y d = 7  z ^ y d,,

■ L r=l
3.7.

In Equation 3.7 yd,r refers to the observed evaporation on the date d in year r, L refers to 

the number of years in the calibration period and yd refers to the seasonal mean value of 

evaporation on date d .

The mean of all the measurements on a day such as 1st January were used to fill in 

all the gaps that appeared on 1st January of any year during the period under consideration.
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3.3 Estimation of Areal Rainfall
Since the rainfall measurements obtained from rainfall stations are essentially point 

measurements, there is need to estimate the total rainfall over an area from the original 

point measurements. From the many point measurements over the catchment area, the 

total quantity of water falling over the catchment is evaluated. This is expressed as a mean 

depth (mm) over the catchment area. This value is called Areal Rainfall. It is a value 

representing the catchment rainfall and is usually referred to as lumped input where the 

entire catchment is considered as a single unit with uniform properties. The lumped input 

concept offers a pragmatic approach in which initiative, skill and experience can be used to 

assess model behaviour. Areal rainfall is a better representation of the catchment rainfall 

than point observations. It is therefore used in many hydrological studies.

There are many ways of deriving the areal rainfall over a catchment from rain gauge 

measurements. They include: Arithmetic mean method, thiessen polygon method, isohyetal 

method, isopercentile method, Chidley and Keys method, hypsometric method, among 

others (Shaw 1988). Details of how each method works may be obtained from Shaw (1988) 

or any of the engineering hydrology books available. The choice of a particular method 

solely depends on the characteristics of the catchment. In this study arithmetic mean 

method was used to derive daily average areal rainfall. The method was chosen because it 

is easy to apply and the results obtained are sufficiently accurate.

3.3.1 Arithmetic Mean Method
The arithmetic mean method was used to areally average the rainfall records in this 

research on account of the spatial homogeneity of the records. This is the simplest method 

of calculating areal rainfall. Though the method does not take care of irregular distribution of 

rainfall throughout the catchment, as does the isohyetal method, it gives sufficiently 

accurate results when estimating rainfall for long periods such as months, seasons and 

years (WMO, 1975). The simultaneous point measurements of daily rainfall for a selected 

duration at all the representative gauges are summed and the total divided by the number of 

gauges used. The rainfall stations used in the calculation are usually those inside the 

catchment area, but neighbouring gauges outside the boundary may be included if it is 

considered that the measurements are representative of the nearby parts of the catchment. 

In this study only gauges inside the catchment were used. Equation 3.8 gives the areal 

rainfall.
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3.8.

Where n refers to the number of rain gauge stations in the catchment, x, refers to the daily 

rainfall recorded by / h rain gauge and x refers to the areal rainfall.

3.4 Data Quality Control

In this section methods used to check the quality of data used in this study are 

presented. Data quality is a crucial component in any research. It is therefore important to 

subject data to various quality control checks before carrying out any research in order to 

establish their quality. One of the basic quality control checks is visual examination of raw 

and plotted data in order to identify erroneous data. Other methods include basic statistical 

analysis and homogeneity tests.

3.4.1 Identification Of Spurious Data From The Time Series Plots
Due to the large amount of data involved, it was not easy to visually examine the raw 

data for the purpose of identifying erroneous ones. A time series for daily data was therefore 

plotted per year for each of the eighteen rainfall stations in order to identify outliers and 

erroneous data. From the time series it was suspected that some stations had some 

erroneous record values. Since not all outlier values are erroneous, values were declared 

erroneous if they were not comparable to corresponding values in the neighbouring stations. 

The erroneous values were deleted and then estimated using Equation 3.3 whose details 

are given in section 3.2.1.

The same was done for flow gauging station number 1GD03 as well as for the two 

evaporation stations.

3.4.2 Basic Statistical Analysis

Many statistical analyses assume that the sample of data set used for any study has 

a frequency distribution close to normal. It is therefore important to have a good knowledge 

of the nature of the distribution of the data set before carrying out any study.

Basic statistical analysis was thus carried out on annual rainfall, runoff and 

evaporation data in order to establish the frequency distribution and variability of data in the 

catchment. Measures of central tendency and variability were computed for rainfall, runoff
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and evaporation records from a!! the selected stations. This gave a preliminary idea of the 

temporal and spatial variability of data from the selected stations

3.4.2.1 Rainfall Data
Basic statistical analysis was carried out for each of the selected stations in order to 

establish the mean, standard deviation, standard error, and coefficients of variation, 

skewness and kurtosis. This was done on annual rainfall data and therefore annual values 

had to be calculated. Results of annual data statistics are presented in Table 5.4 and in 

Figure 5.1 in Section 5.2.1.

3A2.2 Runoff Data
Basic statistical analysis was carried out on data from the 8 flow gauging stations that 

were chosen. The results are presented in Table 5.5 and in Figure 5.2 in Section 5.2.2.

3.4.2.S Evaporation Data
Two evaporation stations were selected. Basic statistical analysis was carried out for 

each of them; the results are presented in Table 5.6 and in Figure 5.3 in Section 5.2.3.

3.4.3 Test For The Consistency Of Data
Many statistical analyses assume that data being used is homogeneous. This means 

that the data is a sample from a single population. Data from different populations are 

considered inconsistent and may not produce satisfactory results when used in a research. 

Establishment of the consistency of data is therefore a vital part of any research if the 

research is to be meaningful. This section presents the methods used to test data 

consistency and where inconsistency was found, the methods that were applied for the 

correction.

3.4.3.1 Rainfall Data

One of the main sources of error in rainfall records is the location of the gauge in 

relation to obstructing objects such as trees and buildings. In an attempt to avoid such 

errors, gauges are normally relocated. The movement of the gauges affects the consistency 

of the records from the gauge, where records before and after the gauge relocation are 

statistically different. The errors may also result from a marked change in the environment of



the neighbourhood of the gauge location due to calamities such as earthquakes, landslides, 

fires, etc.

Another’ source of inconsistency in records is usually a change in observational 

procedure such as a change from an old gauge to a modern one. Data measured using the 

modern gauges are usually statistically different from those measured using the old gauge. 

Statistically the two sets of data come from two different populations. Inconsistent data are 

not homogeneous and as such they cannot be subjected to any study as a single data set. 

There is need, therefore to ensure that data are homogeneous before carrying out any 

study using the data as the input.

Mass and double mass curve analyses are the two most popular methods in 

hydrology used for testing and correcting data for any inconsistency (Ogallo, 1981). Other 

methods that have been used to test the inconsistency of data include: the Von Neuman 

ratio test, cumulative deviations test, the likelihood ratio test and the runs test (Ward, 1990). 

The mass curve analysis method was used in this study for the purpose of testing data 

inconsistency. The method is easy to use and gives satisfactory results. The method 

involves plotting cumulative values of actual records (y-axis) in a station at each time step 

(x-axis). In this study daily values of rainfall were plotted at time steps of one day.

A single straight-line graph is always obtained for homogeneous records suggesting 

that each of the recorded data values comes from the same parent population. This means 

that there has not been any change in measurement technique, gauge location or the 

environment of the location of the gauge. If data is heterogeneous, there will always be a 

marked deviation from the original straight line leading to the appearance of two or more 

distinct straight lines. A break in the slope of the original line signifies inconsistency. This is 

an indication of heterogeneity, which is normally detected from the significant and persistent 

deviations of some points from the straight line beginning at a particular instant. These 

deviations start from a particular year when a change in the observational procedure 

occurred, leading to the appearance of two obvious straight lines in the plotted data starting 

from two different positions. Using the ratio of the gradients of the two straight lines 

obtained, the inconsistency can be corrected so that the data now appears to have come 

from the same parent population. Adjusting the records prior to the break in slope to reflect 

the new situation performs the correction. To do this, rainfall records prior to the break are 

multiplied by the ratio of the slopes after and before the break. Details on how the method is 

applied can be obtained from Ogallo (1981, 1987) and WMO (1970, 1980).
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In this study daily rainfall data from each of the eighteen selected stations was 

subjected to homogeneity test through mass curve method before areal average was 

calculated.

First all the erroneous data were cleaned out and replaced with their corresponding 

estimated data at each station. A daily mass curve was then plotted for each station for the 

period 1985 to 1993. The procedure involved plotting cumulative daily rainfall values (y-axis) 

at time steps of one day (x-axis). A trend line was then fitted for each mass curve and its R2 

value evaluated. This is a value that measures the extent to which the plotted data sets are 

related.

The results of double mass curve plots, from some selected stations, are presented 

in Table 5.7 and in Figure 5.4 in Section 5.3.1. A mass curve for areal average daily rainfall 

data was also plotted. The aim was to test whether the daily average areal rainfall data was 

also homogeneous. The results are presented in Figure 5.5.

3.4.S.2 Runoff Data
Unlike rainfall, runoff data are continuous. Determinants of data quality are therefore 

slightly different from those of rainfall data. The main determinants of the quality of stream 

flow data are accuracy of measurement, continuity of data and the length of record at the 

gauging station. Quality control of discharge data is done in order to remove outliers and 

erroneous data. Visual inspection of a time series is deemed sufficient for this process. 

Station 1GD03 had data from 1969 to 1997. Though it has also had the problem of missing 

data, it has nearly continuous data for a period of eight years, 1983 to 1990 and only 118 

days with missing data for a period of thirteen years. This is only about 1.8 % of missing 

data between 1983 and 1995. Basic statistical analysis also showed that station number 

1GD03 had better quality data than all the other flow gauging stations.

The data from station 1GD03 were subjected to the requisite quality control checks in 

order to remove outliers and erroneous data. They included plotting a time series of raw 

data. Where outliers and erroneous data were found, they were deleted and then estimated 

using Equation 3.6 whose details are given in Section 3.2.1.

A mass curve of daily discharge from gauging station 1GD03 was then plotted for the 

purpose of testing the consistency of daily runoff data. The results are presented in Figure 

5.6 in Section 5.3.1. A trend line was then fitted to the mass curve and was observed to 

agree with the daily average discharge data.
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3.4.3.S Evaporation Data

One of the sources of errors in evaporation records is the location of the evaporation 

pan in relation to obstructing objects such as trees and building structures. To avoid the 

errors introduced by the shielding effects of these obstacles, pans are normally relocated. 

This brings about inconsistency in data records before and after relocation.

Another source of error is the day-to-day weather variations, such as sunny, windy 

and cloudy weathers, which greatly affect the rate of evaporation. Evaporation records are 

also affected by the surface over which evaporation takes place. It has been observed that 

evaporation from a particular surface is directly related to the opportunity for evaporation 

(availability of water for evaporation) provided by that surface (Viessman and Lewis, 1994). 

For an open surface of water, the evaporation opportunity is 100 percent, while for soils it 

varies from a high of 100 percent when the soil is highly saturated to almost zero percent at 

stages of very low moisture content. Other types of surface provide diverse degrees of 

evaporation opportunity and these normally vary widely with time. It should therefore be 

expected that changes in land cover brought about by diverse land use methods are likely 

to bring about inconsistency in evaporation records where evaporation records before and 

after the changes are statistically different.

To establish consistency of evaporation data, a single mass curve was plotted for 

both Kisumu and Kericho stations. Cumulative daily mean values of evaporation were 

plotted. The results of the Kisumu station are presented in Figures 5.7 in Section 5.3.1.

The quality controlled daily areal average rainfall; daily average discharge and 

evaporation data were then split into two independent sets. It is common practice in rainfall- 

runoff modeling to split the available data into two independent periods, namely the 

calibration and the verification periods. The calibration period is devoted to estimating the 

appropriate values of the model parameters and weighting series. The verification period is 

used to obtain an unbiased indication of the consistency in performance, which can be 

expected from the model when it is applied to data other than those used for calibration.



CHAPTER 4

4.0 METHODS OF ANALYSIS

In this section a brief discussion of hypothesis, test of hypothesis, and model efficiency 

criteria are presented.

4.1 Hypothesis

Nyando catchment can be modelled using input-output linear systems models. In 

particular the Simple Linear Model (SLM), the Linearly Varying Gain Factor Model (LVGFM) 

and the Linear Perturbation Model (LPM) are capable of modelling the catchment at 

different levels of accuracy. A conceptual model and in particular the Soil Moisture 

Accounting and Routing (SMAR) model would be expected to perform even better than the 

linear systems models given that it includes evaporation as an extra mode! input in addition 

to the fact that it is more physically based than the linear systems models.

This study looks at the performance of each of the three linear systems models and 

the conceptual model on data from Nyando catchment under the above stated hypothesis. 

The rainfall-runoff models, which were used, are the SLM, the LVGFM, the LPM and the 

SMAR model from among many others. Details of these models are discussed in the 

following subsections.

4.1.1 Linear Systems Models

Linear systems models are those models that are formulated in terms of linear 

equations and processes. In nature however, physical processes are generally non-linear. 

But linear models are often substituted in the interest of mathematical expediency in order 

to simplify the otherwise complicated physical processes. The simplicity of the linear 

systems models is a definite advantage although it is usually achieved at the cost of a 

certain loss of detail in the real process.

These models presume that rainfall is the cause of runoff. The models make no 

attempt to account for the physical nature of transformation of rainfall into runoff. The data 

requirements for calibration are only rainfall as input and runoff as output. Thereafter rainfall 

is used to forecast runoff. Though simple in nature, these models have been shown to 

perform equally well as the higher order physically based models. They have the advantage 

that their data requirements are readily available.
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Linearity of these models is based on the fact that output depends only on input and 

not the time at which the input is applied. For a linear system in which the cause precedes 

the effect and in which no input or output occurs prior to time t = 0, the relationship of input- 

output and impulse response is expressed by the convolution integral:

y{t) = |x(/)/z(r -  t)cIt ----------------------------4.1.
o

Where h(t) refers to the unit impulse response function or instantaneous unit 

hydrograph (IUH) ordinate at time t , x(t) refers to the input at time t , y(t) refers to the 

output after time t, r  refers to the time into the past so that t - r  occurs before t. It varies 

between the past and present time so that: t = 0 is in the past and t = r  (t - r  = 0) is in the 

present.

The impulse response function h(t) represents the relative effect of antecedent 

rainfall intensity on the discharge rate at any instant. It describes the characteristic of the 

catchment in terms of how it responds to rainfall. It is expected that h(t) values should 

decrease monotonically towards zero as we approach the memory length. The integral 

gives a continuous weighting of previous rainfall intensities by the ordinates of the 

instantaneous unit hydrograph (iUH).

When the input function is expressed as a series of pulses or mean values over 

successive short time intervals T, the response to a unit pulse of duration T may be a more 

convenient expression of the operation of the system than the impulse response. Equation

4.2 gives the input-output relationship expression in terms of the pulse response
m

y t =  'E xt-j+ihj --------------------------------------------------------------------------------------------------------4 - 2 -
M

Where m refers to the Memory length of the system; the interval between the occurrence of 

rainfall and the time when its effect on the stream flow finally ceases or simply the number 

of pulse response ordinates, y, refers to the / h output series and hj refers to the / h ordinate of 

pulse response.

Equation 4.3 can use the impulse response function to obtain the pulse response 

function for any specified duration T.
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-4.3.
* t-T

Where h(t) refers to the impulse response function, h(T,t) refers to the pulse response 

function for duration T.

In this study the performance of three linear systems models and one conceptual 

model were assessed for the data collected from Nyando river catchment. These models 

are the Simple Linear Model (SLM), the Linear Perturbation Model (LPM), the Linearly 

Varying Gain Factor Mode! (LVGFM) and the Soil Moisture Accounting and Routing (SMAR) 

model from among many others.

4.11.1 The Simple Linear Mode! (SLM)

The intrinsic hypothesis cf the primitive SLM, introduced by Nash and Foley (1982), 

is the assumption of a simple linear time-invariant relationship between the total input Xi, the 

areal mean rainfall, and the total output yi, the discharge recorded at the gauging station.

The SLM is the simplest of all the linear systems models and usually serves as a 

convenient starting point in rainfall-runoff modeling. Nash and Sutcliffe (1982) introduced 

the model as a basis of efficiency comparison with other more elaborate models. It was 

never meant to be a substantive model in its own right. However, although the mode! is 

considered primitive, it performs quite satisfactorily in catchments that exhibit near perfect 

linear relationship between total rainfall and total discharge. These are catchments where a 

plot of cumulative rainfall and discharge data series shows that there is near perfect linear 

relationship between the two series. SLM would therefore be expected to yield results that 

are as good as those from models that are considered more substantive in such 

catchments.

From the model’s postulates of a linear, time invariant relationship between the total 

rainfall and the total discharge, it is considered as a quick means of assessing the extent of 

linearity existing in the rainfall-runoff relationship in a catchment. By analyzing the 

deficiencies of SLM on a particular catchment, it is possible to apply a more realistic and 

elaborate mode! that is more responsive to the catchment’s hydrologic characteristics. This 

is usually done following the principle of progressive modification from the simple to the 

more complex as suggested by Nash and Sutcliffe (1970). This study aims at identifying a 

suitable model for the Nyando catchment following this principle.
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The convolution summation relation of the form shown below expresses the SLM in 

its discrete form (Kachroo and Liang, 1991):
m

y, = T .x-M hj +e‘ ---------------------------------------- 4 A
1=1

Where hj refers to the / h ordinate of the pulse response function, e, refers to the / h forecast 

error term, x, refers to the / h rainfall input series, y\ refers to the / h runoff output series and m 

refers to the memory length of the system which implies that the effect of any input x lasts 

only through m intervals of duration T.

Daily areal averaged rainfall and daily runoff data were used to calibrate the model. 

The runoff data are the daily averaged river flow depths recorded at the outlet of the 

catchment.

The SLM is normally considered a convenient starting point in rainfall runoff 

modeling. It is therefore included in the Galway Flow Forecasting System (GFFS) for use as 

a naive model for the purpose of efficiency comparison with other models. This is a windows 

based software package for flow forecasting developed at the University College Galway. 

Any model that does not perform better than SLM may hardly be considered as a serious 

rainfall-runoff model.

The model was applied, after calibration, on quality-controlled data from Nyando river 

catchment. The efficiency of the model was tested using the Nash and Sutcliffe criterion 

given in Equation 4.44 whose details are given in Section 4.4.1.

4.1.1.2 The Linear Perturbation Model (LPM)

This model lays more emphasis on the observed seasonal behaviour inherent in the 

observed rainfall and discharge data series. It is based on the assumption that there is 

normally a linear relationship between departures from the seasonal expectations of input 

data series (X- Xd) and departures from the seasonal expectations of output series (Y- Yd). It 

actually attempts to accommodate the fact that rainfall-runoff relationship is time dependent 

in the long term due to the seasonal behaviour of both rainfall and runoff.

Nash and Barsi (1983) originally proposed the LPM as a ‘Hybrid Model’ for flow 

forecasting on large seasonal catchments. The model attempts to incorporate and utilise the 

seasonal information of the actual observed rainfall and discharge time series in input- 

output models.
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For the discrete system with recorded data sampled at one day interval or averaged 

over one day interval, the discrete LPM works on the assumption that, during a year in 

which the rainfall is identical to its seasonal expectation, Xd, the corresponding discharge is 

also identical to its seasonal expectation Yd. However, in all the other years, when the 

rainfall and the discharge values depart from their respective seasonal expectations, these 

departure series, (X- Xd) and (Y- Yd), are assumed to be related by a linear time-invariant 

system.

The model input consists of two parts namely: the series of the seasonal 

expectations of daily rainfall (SX,), which is transformed to the series of the seasonal 

expectations of daily discharge (sQj) through an undefined relation. The second part is the 

remainder of the input (X/i=XrsXi), which is routed through a linear system. The total output 

of the LPM is then the arithmetic sum of the seasonal expectations of the discharge (sQj) 

and the output (X'pXrsX,) of the linear system. This is illustrated in Figure 4.1 (Kachroo et al, 

1988).

Figure 4.1: Schematic representation of the Linear Perturbation Model (LPM).

Source: (Kachroo et al, 1988)

This model is considered suitable for catchments that exhibit marked seasonal 

variations as it involves the assumption of a linear relationship between departures from 

seasonal expectations of both input and output series. The relation between the departure 

series of the LPM has the convolution summation of the form:
m

f i ' I X j A + e . ---------------------------- -4 -5'

In Equation 4.5, Q, refers to Y i- Yd, the departure series of outflow, Yj, from its own seasonal 

mean Yd, Rf refers to Xi - Xd, the departure series of inflow (or rainfall) X;, from its seasonal 

mean Xd, m refers to the memory length with j = 1, 2, 3 ... m, hj refers to the Ith ordinate of
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fire discrete pulse response relating the departure series of input and output, ef refers to the 

/h output error term, d refers to a particular day of the year so that d = 1,2...365 and n 

refers to the number of output ordinates so that / = 1, 2, 3, ..., n.

On a catchment with highly seasonal variation of discharge, subtraction of seasonal 

means from the original series removes much of the dependence on linearity. The emphasis 

is now shifted to the seasonal variation through the assumption of a linear relationship 

between departures from the seasonal means. This assumption is less restrictive than the 

same assumption about the total actual input and output values (Kachroo and Liang, 1991). 

For a catchment that exhibits less seasonal behaviour, the performance of LPM would be of 

the same order of efficiency as that of the SLM.

The model was applied, after calibration, to quality-controlled data from Nyando river 

catchment. The efficiency of the model was tested using the Nash and Sutcliffe criterion 

given in Equation 4.44. Equation 4.47 was used to test for the efficiency of this model 

against the SLM. Details of these equations are given in Section 4.4.1.

4.1.1.3 Linearly Varying Gain Factor Model (LVGFM)

This model was first proposed by Ahsan and O’Connor (1994) for the single input to 

single output case. It is based on the variation of the gain factor with the selected index of 
the prevailing catchment wetness index. It may also be regarded as a wetness-index-based

model.

Surface runoff is directly related to effective rainfall, which is inversely related to the 

hydrologic abstractions. During rainy periods, infiltration plays a major role in abstracting 

total rainfall. Actual infiltration rates and amounts vary widely both in time and in space, 

being highly dependent on the initial level of the soil moisture. For any given storm, the 

initial level of the soil moisture is referred to as the antecedent moisture.

Catchments with low initial moisture levels are said to be dry and are not conducive 

for high runoff response. Conversely, catchments with high initial moisture levels are said to 

be wet and are likely to produce large quantities of runoff. Direct runoff is therefore a 

function of antecedent moisture. The average moisture level in a catchment varies daily, 

being replenished by rainfall and depleted by evaporation and percolation. I he main 

assumption of the LVGFM model is that the amount of rainfall that transforms to runoff is a 

function of the state of the soil moisture.
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Depending on the soil moisture index, all the rainfall or part of it may be transformed 

to runoff. This model is an improvement of the SLM. It is reasonable to expect that the 

wetter the catchment, the higher the proportion of rainfall that transforms into runoff. Since 

SLM does not accommodate this concept, it should be expected that the model would over 

estimate the low magnitude flows and under estimate the flows of relatively high 

magnitudes.

The gain factor is defined as the ratio of the total output flow volume to the total input 

rainfall volume, during the calibration period, when both are expressed in the same units. 

The gain factor accounts for the change in the proportion of rainfall that transforms into 

runoff with the change in the soil moisture content. It can be more than or less than unity 

depending on whether the output is more or less than unity. The gain factor is a measure of 

the proportion of rainfall that on average transforms into runoff. This value is in reality not 

constant. It varies with the magnitude of the soil moisture content, which may not be a 

simple function of time and which may explicitly depend on the input and the output of the 

system. The proportion of rainfall that transforms to runoff therefore varies with the wetness 

index. The higher the wetness index the more the rainfall that transforms to runoff. The SLM 

does not account for the variation of the gain factor. This is a major deficiency of the SLM 

and a model that accommodates the variation of the gain factor would therefore be 

preferred. One such model is the linearly varying gain factor model, LVGFM, which seeks to 

address the constant gain factor deficiency of the SLM by incorporating a response function 

which varies gradually with the catchment wetness, both in scale G, the gain factor, and in 

shape. The SLM is used as the auxiliary model of the LVGFM to generate the catchment 

wetness index, zt. It is prudent to expect this model to give better results than the SLM.

Using a time varying gain factor G, the model output has the structure of the form:
m

y, = G,Yjwjxi-j+1 -------------------------------------------------------------------------- 4 - 6 -

j=i
m

With =1

Where x, refers to the magnitude of the pulsed input during the Ith time interval, y, refers to 

the magnitude of the pulsed output at the end of the rh time interval; G, refers to the 

magnitude of the gain factor at the end of the time interval. This is the time varying 

coefficient of runoff that accounts for the short-term time dependence of runoff, which is due
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to the -effect of variable soil moisture conditions. w} refers to the \th ordinate of the non- 

pararnetric discrete weighting function, m  refers to the memory length of the system and e,- 

refers to the f h output error term.

In its simplest form, G, is linearly related to an index of the soil moisture state z, by 

the equation:

G; = a + bZj--------------------------------------------------- 4.7a.

Where a and b are constants with the upper limit of G; restricted to unity. With parameter a 

in Equation 4.7a above set to a = 0, we get:

G; = bZj-------------------------------------------------------4.7b.

Where b is a parameter of the LVGFM, to be determined. The value of z, is obtained from 

the outputs of the primitive SLM, operating as the auxiliary model, by the equation:

z,- =■ya
y

r l ' - v
y  i

■J+l
------------- 4.8.

Where yai refers to the simulated output of an optimally calibrated discrete SLM,/?. refers

to the estimate of the standardized pulse response of the auxiliary SLM, Gs refers to the 

estimate of the standardized gain factor of the auxiliary SLM, y  refers to the mean 

discharge in the calibration period and ma refers to the assumed memory length of the 

auxiliary SLM.

Input 
x(t) •

Input 
x(t)

Multiplier
Figure 4.2: Schematic representation of the structure of the Linearly Varying Gain Factor 

Model, LVGFM. Source: (Ahsan and O’Connor, 1994).

►
Auxiliary 

Linear System Ya(t) Linear/Nonlinear
Memoryless

Transformation

Conservative y’(t)Linear System Outputviti
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The parameters of the LVGFM can now be estimated by the direct linear least 

squares regression method as described elsewhere in this chapter. Figure 4.2 shows a 

representation of LVGFM

The efficiency of the model was tested using the Nash and Sutcliffe criterion given in 

equation 4.44. Equation 4.47 was used to test the efficiency of this mode! against that of the 

SLM.

4.3 Conceptual Soil Moisture Accounting and Routing (SMAR) Mode!

Conceptual models are based on simplified descriptions of water movement in a 

catchment both in time and space, on its surface and through its sub-surface, accounting for 

the water storage and movement in discrete but relatively short time intervals. This involves 

complex systems of equations based on theoretical or physical concepts governing the 

hydrologic processes of a particular catchment (Opere, 1991).

The SMAR model is a lumped quasi-physical conceptual rainfall-evaporation-runoff 

model, with quite distinct water-balance and routing components that influence discharge in 

a catchment. This is achieved through a series of steps, which represent some of the known 

physical processes in a hydrological system.

The Soil Moisture Accounting and Routing (SMAR) model is a development of the 

‘Layers’ conceptual rainfall-runoff model introduced by O’Connell et ai. (1973), its water- 

balance component being based on the ‘Layers Water Balance Model’ proposed in 1969 by 

Nash and Sutcliffe (1970). Using a number of empirical and assumed relations which are 

considered to be at least physically plausible, the non-linear water balance component, the 

soil moisture accounting, ensures satisfaction of the continuity equation over each time-step 

by preserving the balance between the rainfall, the evaporation, the generated runoff and 

the changes in the various elements (layers) of soil moisture storage.

The routing component, on the other hand, simulates the attenuation and the 

diffusive effects of the catchment by routing the various generated runoff components, the 

outputs from the water balance component, through linear time-invariant storage elements. 

For each time-step, the combined output of the two routing elements adopted here, the one 

for generated ‘surface runoff’ and the other for generated ‘groundwater runoff, becomes the 

simulated discharge forecast produced by the SMAR model (Liang, 1992). This linear 

operation is expressed by the equation of the form:
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4.9.
m

>\ = T jxH * hj +
j =i

Where p  refers to the pulse response ordinates, which uniquely express the transformation 

of the system. This is to be solved for Nyando. y, refers to the estimated discharge, x, refers 

to the generated runoff, e, refers to the output error term and m refers to the memory length 

of the system.

The optimum response series h, can be determined directly by the method of ordinary 

least squares for the given series of x and y. Equation 4.9 may then be reformulated as:
m

y ^ G ^ x . - j ^ j + e , ------------------------------------- 4.10.
M

Where u, refers to the standardized pulse response series whose sum is 1 and G refers to 

the gain factor and is equal to the sum of the ordinates /?/

The version of the SMAR used in the present study has nine parameters, five of 

which control the overall operation of the water-budget component, while the remaining four 

parameters control the operation of the routing component. The SMAR is calibrated to the 

observed data using the user’s choice optimisation procedure to minimise the selected 

measure of error between the observed and the model estimated discharges. In the context 

of the SMAR model, the selected measure of model error used for this study was a 

weighted combination of the sum of squares of the discharge forecast errors and the 

corresponding index of volumetric fit, the ratio of the total volume of the estimated discharge 

hydrograph to that of the corresponding observed hydrograph. As the Nash-Sutcliffe (1970) 

model efficiency criterion R2 is based on the sum of squares of model forecast errors only, it 

follows that the R2 value obtained for the SMAR model calibrated using the weighted 

measure of error will generally be less than that for which the index of volumetric fit is 

neglected in the calibration process, as is the case for the linear models used in this study.

This should be borne in mind when comparing the R2 model efficiency values 

of various other models considered in this study with that of the SMAR model. The SMAR 

model is considered suitable for catchments where the number of rainy days is small and 

the rate of potential evaporation is high. Semi-arid catchments, where linear models are 

known to perform poorly, are good examples.
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♦

Total estimated Discharge
J

Parameter Description
Z The combined water storage depth capacity of the layers (mm)
T A parameter (less than unity) that converts the given evaporation 

series to the model-estimated potential evaporation series.
C The evaporation decay parameter, facilitating lower evaporation rates 

from the deeper soil moisture storage layers
H The generated ‘d irect runoff’ coefficient
Y The maximum infiltration capacity depth (mm)
n The shape parameter of the Nash gamma function ‘surface runofF 

routing element; a routing parameter
nK The scale (lag) parameter of the Nash gamma function ‘surface runofF 

routing element; a routing parameter
9 The weighting parameter, determining the amount of generated 

‘groundwater" used as input to the ‘groundwater’ routing element.
Kg The storage coefficient of the ‘groundwater’ (linear reservoir) routing 

element; a routing parameter

Figure4.3: Schematic representation of the Liang (1992) version of the SMAR Model and a 
summary description of its parameters; after Shamseldin et al. (1999).
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For a humid catchment with a high number of rainy days, a low rate of evaporation and soil 

moisture almost at field capacity, the SMAR model does not have a particular advantage 

over the linear systems models (Opere, 1998).

4.4 Test of Hypothesis
Linear systems models are many and varied. It would therefore be difficult to test and 

compare the performance of all of them. Only the three models described above were 

selected for this study. Their hypothesis was tested as follows:

To test the linearity of the models, input data was applied at different time intervals 

and their respective outputs compared. If the models are truly linear the outputs of different 

models were expected to be of the same order.

The three models selected were calibrated using data from the Nyando catchment. 

The efficiency of each model was judged on two levels, namely:

(i) The level of its accuracy where simulated outputs were compared with observed 

output. This is the calibration phase.

(ii) The consistency of the level of the model accuracy when subjected to different 

samples of data. This is the verification phase.

The efficiency of each mode! was judged through the sum of squares of differences 

between the observed and simulated discharges. This is the Nash and Sutcliffe criterion. 

The model with the least sum was judged most efficient. It would therefore be used to 

forecast the floods in the catchment. The forecasts would therefore be used to plan for 

evacuation and supply of medicine ahead of the actual flooding as well as to plan for a more 

rational use of the water from river Nyando. This is expected tc reduce the number of 

casualties in the area besides increasing productivity through rational use of the water.

4.4.1 Models’ Calibration

The essential ingredients of any model are variables and parameters. Variables are the 

physical quantities such as rainfall, discharge or evaporation. Parameters are the quantities 

that control the behaviour of the variables.

Model calibration is the process by which the values of model parameters are identified 

for use in a particular application. It involves the solution of the impulse response, h(t), 

series of the hydrologic system. This is a value that gives a relation between the 

characteristics of a catchment and the response in the storm runoff to a predetermined input
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rainfall. Values of pulse response functions are unique to a particular catchment. Two or 

more catchments would have same values of pulse response functions only if they share 

similar hydrometeorologic characteristics. Hence it is important to calibrate a given model 

afresh for use in a new catchment. The process consists of the use of rainfall-runoff data 

and a procedure to identify the model parameters that provide the best agreement between 

simulated and recorded discharge values.

Calibration of a model is the demonstration that the model is capable of producing field 

observations, which are then taken to be the calibration values. Calibration thus involves 

solving the model equation for the unknown values of pulse response functions using the 

known values of the input and output from past records in order to see how well the model 

reproduces some known observations from a catchment. This is like tuning the mode! to fit 

the conditions of a particular catchment. Calibration is done using data from the catchment 

to be modelled. The model calibration is normally carried out for a period when there is 

simultaneous and continuous data for rainfall, discharge, and evaporation in the case of a 

conceptual model, for at least six years. The success of model calibration depends upon 

good quality data.

Since all models are approximations to reality, there is need to calibrate the models for a 

particular catchment using data from within the catchment. This is done by empirically 

searching for the pulse response function that best relates the rainfall to the runoff. The 

process of searching for the optimum pulse response function may be referred to as solving 

the model. The pulse response converts the rainfall into runoff through the convolution 

equations: 4.4, 4.5, 4.6 and 4.10 whose details are given in section 4.2.1, 4.2.2, 4.2.3 and

4.3 respectively. The time interval is taken to be one day rather than continuous since in 

almost all forecasting applications data are available at daily intervals.

T 0 . . .  0 V " e, '
Ja X 2 X 1 . . .  0 h i e2

y m
—'

X „ , X m - x V +

y m+1 X m + 1 e m +1

. X n 1 * • * " ^ n —m + 1  _ . e n .

■4.11.
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Where m refers to the memory length and n refers to the number of observations of y.

During model calibration, values are adjusted within a predetermined range of 

uncertainties until the model produces results that best approximate the set of observed 

values. This is achieved through split sampling where about two thirds of the data are used 

for calibration and then testing the model consistency by its ability to reproduce the 

remaining data.

In calibrating single-input linear models, equations 4.4, 4.5, and 4.6 are written out for 

each output ordinates y, to yn to yield n linear equations in matrix form as shown in Equation 

4.11. Same calibration and verification periods were used for each model.

The above formulation assumes that x values over the memory length prior to xi are 

all zero. The useful values of y begin at ym, after the end of the memory length; ym is the 

transition value from zero values to nonzero values. Equation 4.11 can be written in vector 

form as:

Y = X H  + E ------------------------------------------------4.12.

Where Y refers to the column vector of the output series (n, 1), X refers to the matrix of the 

input series (n, m), H  refers to the column vector of pulse response ordinates or the 

parameter (m, 1), and E refers to the column vector of the model errors (n, 1).

In identifying the operation of the system, the known values of input and output from past 

records are used to determine H  where

H -  (hih2h3...hm)T------------------------------------ 4.13.

Only after H has been determined, will the operation of the system be assessed. 

Values used to determine H are not part of the values used to determine the operation of 

the system up to the mth value.

The objective here is to minimise the sum of squares of model output errors. In this 

case the optimum value of H_7 is determined directly by the method of ordinary least 

squares as;

H  = ( x r x)~ l X t Y ------------------------------------------------- 4.14.

The ordinary least squares method provides the only solution that satisfies the 

condition of the minimum sum of squares of model residuals.

The model calibration and verification periods are as indicated in Table 4.1,
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Table 4.1: Calibration and verification periods of the models for the Nyando
catchment.

Calibration period Verification period
Full years Starting date Full years Starting date

4 1 January 1985 2 1 January 1988

4.4.1.1 Least Squares Calibration of The Discrete Form of The SLM
The model was calibrated using daily data by ordinary least squares method as 

described in the preceding section. The memory length (m), i.e., the number of pulse 

response ordinates, was chosen by trial and error.

In practice it is simpler to calibrate the SLM using discrete formulation. This is 

necessitated by the fact that real life rainfall and discharge data are obtained in discrete 

form. The relation between discrete rainfall input Xj and runoff output yi is given in terms of a 

discrete pulse response series Uj, by the following discrete convolution summation equation
m

y ,  =  Y j u j x ‘-j+y + e i -------------------------------------------- 4-15-
/=1

Where m refers to the memory length of the system and e, refers to the model error term.

If we have N number of rainfall-runoff data pairs for calibrations, Equation 4.11 can 

be written out for each of the output ordinates yi from the data point, m, onwards giving rise 

to a vector matrix equation of the form:

Y = Xu + e-----------------------------------------------------------4.16.

Where u refers to the column vector (m,1) having the pulse response ordinates as its 

elements i.e., u = (u1u2...um)T, Y refers to the matrix (ymym+i...yn-m+i)T, e refers to the matrix 

(emem+1...en_m+1)T, and X refers to the matrix (N+m, N-m+1).

When the data for the calibration period are considerably larger than the memory 

length of a system, Equation 4.11 represents an over-determined system of linear 

equations. Thus the vector, u, of the pulse response ordinates can be estimated by the 

linear least-squares regression technique by minimising an objective function, J, of the form:

N (  m A 2
J  = Z  T, - Z ! i-j+ \ 4.17.

/=! v 1=1 y
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Here the first term in the brackets represents the observed flow while the second one 

represents the estimated flow. This is thus an expression of the error between the observed 

and the estimated flows. The objective is to minimise this error so that the estimated flow is 

as close to the observed flow as possible. This is done by intuitive adjustment of the values 

of U j. The smaller the value of Equation 4.17, the more confident we are that the estimates 

are good. The values of Uj for which Equation 4.17 assumes its minimum value, are the 

least squares estimates of the catchment parameters responsible for the conversion of 

rainfall to runoff. The process of determining these values is the model calibration. In 

Equation 4.17, uj are the pulse response ordinates. Minimising of J with respect to Uj results 

in the following least squares estimate of u

u = ( x T x)~ l X T y ------------------------------------------4.18.

Where u refers to the estimated vector of pulse response ordinates given by:

£ = (h 1h2...hm)T

The estimated gain factor corresponding to the SLM pulse response ordinates calibrated by 

the above described least squares method is given by:
m

G. -  I " , -------------------------------------------------------- -4-19.
/=1

The standardised pulse response ordinates of the calibrated SLM can subsequently 

be obtained from

h = ~ --------------------------------------------------------------------- 4.20.

Using this calibrated SLM, the simulation mode flow forecasts, yaj, for a time instant /, can 

be obtained from

y a,i = =G^ L hj x i-j^ ------------------------------------------------------ 4 2 1  •

M M

With the wetness index series defined by Equation 4.8

Where y refers to the simulated outflow of the SLM at the / h series obtained from
s  a ,i

Equation 4.21 and y  refers to the Mean flow during the calibration period.
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4.4.1.2 Calibration o f The LPM

To calibrate the LPM, at least six years of continuous daily data is required for the 

process. From the model’s basic assumption that perturbations from the expected input 

values are linearly related to the perturbations from the expected output values, the model 

was calibrated as follows (Kachroo et al, 1991):

The first step was to calculate the seasonal expectation of rainfall Xd and the 

corresponding seasonal expectation of runoff Yd for the period of calibration. The following 

equations were used to obtain the seasonal mean values:

i 14 L

4L r=1
L

L* r=\

-4.22.

4.23.

Where xd refers to the expected rainfall values on date d, yd refers to the expected 

discharge values on date d, xdr refers to the observed rainfall values on date d, year r, ydr

refers to the observed discharge values on date d, year r and L refers to the number of 

years in the calibration period.

It was observed that as L becomes large, the estimates of yd and xd become 

smoothly varying functions of date. However since L is limited to the calibration period, the 

values exhibit fluctuation and there is therefore need to smooth out these fluctuations. The 

smoothing may be smoothed by the method of Fourier analysis (Bird and May, 1979). 

Equation 4.24 does this through obtaining the Fourier series representations of yd and xd.

y d ao + ' Z Aj cos
j = 1

2njd
\ n )

+ B j  sin 2njd 
\ , n  ) -4.24.

The seasonal mean values were smoothed by the method of Fourier analysis through 

the removal of small sample fluctuations. This was done through writing a Fourier series 

representation (Equation 4.24) of the seasonal mean values obtained from Equations 4.22 

and 4.23.

Where a0 is the mean of yd given by Equation 4.25.

a„
i n

-4 .25.
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Aj and Sy are the Fourier coefficients given by Equations 4.26 and 4.27.

n d -1  V  n  )

■4.27.

j  is the order of the harmonic while p is the maximum number of harmonics and n is equal to 

365 for daily series.

The relative values of these coefficients represent the location of the harmonic on the 

time scale. Equation 4.28 gives the variance of unsmoothed seasonal values accounted for 

by each harmonic.

This value may be expressed as a percentage, Py_ of the total variance of yd series 

about its mean a0. Cj represents the relative importance of each component harmonic. A 

total of 182 harmonics would be required to represent yd at all points. However adequate 

smoothing is normally achieved by using only the first four harmonics. The estimated 

Fourier coefficients are presented in Tables 5.8 and 5.9 in Section 5.3.3.

In the second step the smoothed seasonal values were subtracted from the 

corresponding rainfall and runoff series for the period of calibration to yield the time series of 

perturbations.

The third step was to estimate the pulse response function for the Nyando catchment 

using the method of least squares as described earlier in this section.

Equation 4.29 is the vector matrix used for the purpose of calibration.

Where Q refers to the column vector, (n, 1), of output series ( Q i = Y r X d) ,  R  refers to the, 

matrix, (n, m), of the input series (R j = X r X d ), H  refers to the matrix, (m, 1), of pulse 

response ordinates. This is the one to be solved where H =  (h1h2h3...hm) T and E refers to 

the column vector, (n, 1), of model error terms.

H is determined directly by the method of least squares through Equation 4.30.

1
-4.28.

Q -  RH + E ■4.29.

-4 .30.
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4.4.1.3 Calibration o f The LVGFM

Calibration of LVGFM requires substituting for G,- from Equation 4.7b into Equation 

4.6 to obtain the following relation
m

T, = E W7rI-7+l + C -------------------------------------------------4 -31
M

Where w' = bwj -------------------------------------------------------------4.32a.

H-j+1 Z/X j.j+i -------------------------------------------------------- 4.32b.

z, refers to the catchment wetness index and is obtained from Equation 4.8.

Equations 4.32a can be solved directly for w) elements, where j = 1,2,3...m by the 

least squares regression method the same way pulse response functions were determined 

for SLM. In vector matrix form the equation may be written as

y = Rw + e ---------------------------------------------------------------4.33.

Where y refers to the matrix (ymym+i- -yN)T, v /  refers to the matrix (w/1w/2...w/nn)T, e refers to 

the matrix (emem+i...e N)T and R refers to the matrix (m, M-m+1).

A least squares estimate of W is given by

w7 = (RTR)'1RTy-------------------------------------------------------------4.34.

An estimate of b of the parameter b may be obtained as follows:

Writing bw = w' ------------------------------------------------------------4.35

, m m ^ m m

implies that b ^  w, = ^  w\ and therefore b = ^  w' since ^  wt. = 1.
(=1 i=1 i=l 1=1

Thus b is simply equal to the sum of all elements of w7. Using this estimate, the 

corresponding estimated weighting function ordinates are given by Equation 4.36.

Where /=  1,2,...m

Simulated flow y, at the time instant / may thus be obtained using equations 4.37.
m

y- = --------------------------------------------- 4 -37a or
j=i
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•4.37b.y,=b
j=i

4.4.1.4 Calibration of The SMAR Model

The calibration procedure of the SMAR model involves successive choices of 

combinations of the five water balance parameters H, T, Y, C, or Z in order to determine the 

dominant parameters for the Nyando catchment. These parameters are to be optimised, 

where H refers to the generated ‘direct runoff coefficient, T refers to a parameter (less than 

unity) that converts the given evaporation series to the model-estimated potential 

evaporation series, Y refers to the maximum infiltration capacity depth (mm), which is 

obtained by integrating the instantaneous infiltration rate over the storm period, C refers to 

the evaporation decay parameter, facilitating lower evaporation rates from the deeper soil 

moisture storage layers and Z refers to the combined water storage depth capacity of the 

layers (mm).

These parameters cannot be evaluated effectively together because the operations 

of several of them are similar in their determination of the volumes of effective rainfall. For 

instance H and Y, C and Z, C and T, and T and Z are similar in their effects on the volume 

of effective rainfall. Therefore in any application the model consisting of a subset of these 

elements must be chosen.

Consider a case where we set H = 0. The proportional runoff component will be 

removed from the model. By setting C = 1.0, the layers are replaced by a single storage 

capacity Z, all of which is available for evaporation at the potential rate. The effect of T is 

removed if it is set at T = 1.0. Similarly the effect of Y is removed if it is set at a value 

exceeding the observed daily maximum rainfall during the period of record. Z becomes 

inoperative if it is set to a sufficiently large value.

Further, not all these parameters would be important in any one application as was 

found out in previous studies by O’Connell et al (1970), Mandeville et al (1970) and 

Gallagher (1986). The parameters to be retained depend on the characteristics of the 

catchment being studied.

After estimating the above parameters, the series of generated runoff (x) was then 

calculated. The pulse response function was then estimated by the method of ordinary least
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squares, i.e. G and Uj. Computed discharge (j)) was then computed before finally 

determining the value of the objective function, F, where

F = f(H, T, Y, C, Z and G, u,) or

F = i ( y ,  - y f -------------------------------------------- 4.38.
M

The search was continued to find the values of H, T, C, Y and Z , which together with 

the best value of u would minimise F. Since the calculation of y involves the calculation of a 

pulse response function by ordinary least squares, this operation has to be repeated each 

time F is calculated (Kachroo, 1992).

To guarantee that the total volume of generated runoff is equal to the total volume of 

observed discharge for the period of calibration, the constraint:
n n

------------------------------------------------4.39
M  j - i

was im posed w h e re  x . re fers  to  the  e ffective rainfall or g en era ted  runoff, y, refers to  the

observed discharge and n refers to the length of calibration period.

Optimisation of F was carried out with G constrained to unity using the method of 

constrained least squares. This method of calibration eliminates the possibility of 

interference between the operations of the water balance and the routing components of the 

model.

For a sub-model consisting of two-water-balance parameters, the volumetric 

constraint can be imposed by drawing a contour diagram of the objective function surface F 

as a function of the water balance parameter values. On this diagram the ratio of the 

estimated to the observed discharge volumes can also be plotted. The overall optimum 

parameter values correspond to the point of minimum value of the objective function surface 

on the line of the unit volumetric ratio (Kachroo, 1992).

The model calibration and verification periods are the same as those of the linear 

systems models. The Rosenbrock optimisation technique was used to estimate the 

parameters of the water balance components and the pulse response function of the routing 

component was estimated by the method of constrained least squares.

First each parameter was optimised individually in order to determine the percentage 

of the initial variance accounted for by each parameter. While one parameter was being
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optimised the rest were set to their inoperative values. This was repeated for each of the 

parameters H, T, Y, C, and Z in trials 1 to 5 as shown in Table 5.15. In trials 6 to 11 two 

water-balance parameters were taken together while the rest were set to their inoperative 

values. In trials 12 to 16 three water-balance parameters were taken together while the rest 

were set to their inoperative values.

The results of the sub model forms used and the parameter values obtained over the 

calibration and verification periods for the Nyando catchment are given in Chapter 5, Table

4.4.1.4.1 General Linear Routing Component

After selecting a suitable model configuration for the water balance component, 

together with the optimum values of the parameters, it was then necessary to establish a 

linear relationship between the perturbations of the simulated runoff from its mean and the 

perturbations of the observed discharge from its corresponding mean. To distinguish this 

from the LPM, we refer to it as the general linear model.

If x and y  are linearly related, then the corresponding perturbations are also linearly 

related because the mean of the generated runoff is equal to the mean of the observed 

discharge during the calibration period (Kachroo, 1992). The advantage of seeking a 

relationship between perturbations instead of the original series is that the method of 

ordinary least squares can be used instead of the constrained least squares without 

significantly relaxing the volumetric constraint.

The linear routing component was applied under the shape of the gamma function 

impulse response given by Equation 4.40.

This relates an input in blocks of duration T, to an output expressed as a series of ordinates 

at the same interval. Equation 4.41 gives the corresponding pulse response.

5.15.

-4.40.

h(T,t)=[s(t)-S(t-T)]/T ■4.41.

Where
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The corresponding impulse response was obtained from h(T, t) by Equation 4.42.

! i t
■4.42.

The results are presented in Table 5.1 / in the next chapter.

4.5 iVlode! Verification

This refers to the process of measuring the accuracy of the calibrated model during 

calibration. Once the model has been calibrated, a different set of data is normally used to 

test the model’s accuracy in predicting runoff using rainfall data. This is done using 

concurrent rainfall and runoff data where simulated runoff values are compared with the 

corresponding observed values. It is actually an attempt to demonstrate the accuracy of the 

calibrated model. If the results lie within acceptable limits, the data and the model are 

accepted and the model is verified. If the simulated results lie outside the acceptable limits, 

the basic assumpticns and the data used should be thoroughly checked to establish the 

source of the problem.

In order to determine the range of uncertainties, it is advisable to present observed data 

against simulated data on a scatter plot. The observed data is presented on the horizontal 

axis and the simulated data on the vertical axis. The mean absolute error should be 

calculated and taken as the mean error within which the uncertainty should lie.

4,5.1 iVlodei Efficiency Criteria

The criteria by which the performance of each model is judged are presented in this 

section. The efficiency criteria that express the accuracy of each model are generally linked 

with the objective function used in calibration for optimizing its parameters.

A commonly used objective function is the sum of squares of differences, F, between 

the observed and estimated discharges, where the summation is taken over the whole 

calibration period (Kachroo, 1992).

Where F represents the sum of squares of differences or the index of disagreement, y  

represents the measured or observed output and j> represents the mode! output estimates.

^ 2 > - i 0 2 ■ 4.43.
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The quantity F is an index of residual error that reflects the extent to which a model is 

successful in reproducing the observed discharges. It is thus useful as an appropriate 

preliminary criterion for expressing model accuracy. It can also be used to compare various 

hydrological forecasting models on the same catchment provided they have the same 

length of data record. The lower the values of F, the better the performance of the model as 

this indicates small differences between estimated and observed series.

Nash and Sutcliffe (1970) corrected the shortcomings of Equation 4.43 by defining 

model efficiency R2 that is analogous to the coefficient of determination in linear regression. 

By so doing different models could be compared even in different catchments. They defined 

the efficiency R2 as the proportion of the initial variance accounted for by F.

R 2 =  F ° ~ F ----- ------------- ---- -------------------------4.44.

Where initial variance, F0, was defined as

F ^ Z i y - y f ---------------------------------------------------- 4-45-

Where y  = , the mean of y in the calibration period, N refers to the number of data

points, F0 refers to the no model value of F or initial sum of squares of error from a primitive 

model such as long-term mean values.

The Efficiency criterion, R2, is the proportionate reduction of the initial variance by 

means of substantive input-output transformation model. This is a measure of the 

percentage improvement of the applied substantive model from the naive or no model 

situation. In this case it is the applied model that is considered substantive. In application to 

the calibration period, these quantities, i.e., F0 and F, are all obtained with reference to the 

calibration period so that R2 is identical to the coefficient of determination and varies 

between zero and one.

In the verification period, F0 is calculated as the sum of squares of deviations within 

the verification period from the mean of calibration period. In this case R2 compares the sum 

of squares of model errors with the sum of squares of errors that would occur when the only 

forecast available for the verification period were the mean value of the discharge during the 

calibration period. Garrick et al (1978) suggested that a model’s performance should be 

judged against the best estimates that could be obtained in the absence of any model
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or in the event of using a naive model.

The sum of squares of residual errors associated with the forecasts of a particular 

model, expressed as a proportion of the corresponding sum of squares of errors associated 

with a chosen naive model, is an indication of the efficiency of that model 

relative to the particular naive model. This is what is measured by the R2 value.

Equation 4.44 may take on negative values in the verification period especially when 

the model under test produces output forecasts which are worse estimators than is the 

mean of the recorded output over the calibration period (Kacharoo, 1992).

To compare the relative accuracies of different models using the same data, R2 criterion 

provides a convenient index of comparison of the corresponding sums of squares of model 

residual errors. A similar criterion may be used to express the proportion of the initial 

variance unaccounted for by model 1, the less substantive one, which is subsequently 

accounted for by model 2 the more substantive one. Such a criterion may be expressed in 

the form.

, 2

1
-4.46.

Which simplifies to

r 2 = Fx- F 2 -4.47.

where the subscripts refer to models 1 and 2 respectively. Thus r2 is the measure of the 

proportion of improvement of the more substantive model over the less substantive one.

Another measure of the degree of model performance is the volumetric agreement 

between observed flows and the model estimated flows in a given period, say calibration or 

verification periods. This is calculated as the ratio of the observed mean discharge to the 

estimated mean discharge series. This ratio is called the index of volumetric fit (IVF). It 

serves as a quick guide as to whether the model overestimates or underestimates the flow. 

It is defined by the following equation:

S r ,
IVF = i=i -4.48.

2> -/=1

Where j>;. refers to the estimated discharge series, y t refers to the observed discharge 

series and T refers to the period under consideration.



A value of 1VF = 1 represents a perfect volumetric agreement between the estimated, 

j),and the observed y . , discharges, where observed and estimated discharge volumes are

equal. A value of !VF < 1 represents underestimation of the total volume of discharge in the 

period T. A value of !VF > 1 represents overestimation of the total volume of discharge in 

the period T.

For the cases where IVF *  1, an improved forecast may be achieved through the use 

of an appropriate updating procedure. The updating procedure used in this study is 

described in detail in Section 4.3.2.

The mean square error (MSE) between the observed and the estimated flows is also 

considered a viable measure of the performance of a model. Equation 4.49 defines the 

MSE.

MSE = \ r Z f c - A -----------------------------------4 -4 9 .
L* ieD

Where y  refers to the simulated model fiow, y, refers to the observed flow and D refers to 

the duration of interest.

The relative performance of a model in fitting the data of two different samples may 

be evaluated through the comparison of the MSE calculated for each split sample. It is 

considered a good measure of model performance especially when comparing different 

models on the same catchment. The smaller the value of MSE, the closer the mode! 

estimated values are to the observed values.

In order to achieve the specific objectives, daily data analysed to establish their 

quality before applying them to the various models. Once the data quality control was 

carried out, various models were ran to establish the one that best fits the Nyando 

catchment.

4.5.2 Updating Model Forecasts

Model updating refers to the process of modifying the output from a model just before 

issuing a forecast. This is done by making corrections to the output in accordance with the 

behaviour of errors occurring in the previous forecasts up to the time at which the present 

forecast is being made. The persistence of forecast residuals is an indication of a possible 

mode! inadequacy. It may be difficult to see how to improve the model structure in order to
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remove the persistence. !n such cases, there is need to resort to updating procedures, 

where errors are used to improve the forecasts.

The validity of any updating procedure depends on the existence of some degree of 

persistence in the substantive model residuals. Analysis of this persistence is used as a 

means of suggesting the appropriate updating procedure.

When a model is used for real-time forecasting, there is need to incorporate an 

appropriate updating procedure. The model is then said to operate in updated or operational 

mode. In this mode the model transforms the inputs to outputs after updating (Kachroo, 

1992). The performance of models in updated mode may then be compared. The 

comparison procedure is the same as that used when the models are in simulation mode.

In an ideal situation the model should resemble the actual system so that the 

residuals in the calibration period should be a series of unrelated quantities whose 

expectation is zero with a small variance. In reality, however, persistence in residuals is 

normally observed. This results from either inadequacies from the model structure, incorrect 

estimation of the mode! parameters, errors in the data or absence of any consistent 

relationship in the data.

The nature of the persistence provides the basis for setting up an updating procedure 

whereby the output from the model can be modified prior to issuing the forecasts by making 

corresponding allowances for the persistence of the observed errors in the recently 

computed output values. Analysis of the mode! residuals obtained in the calibration for 

evidence of persistence provides the basis for the updating procedure. One of the 

commonly used updating procedures is the auto regressive updating component.

Though the results in simulation mode were satisfactory for all the models during 

calibration, there was need to update the models in order to improve the output accuracies 

during verification period.

4.5.2.1 Autoregressive Updating Component

Let the series of the residuals et follow an autoregressive (AR) scheme of order p, 

such that

e t 1 + ^ 2 e r-2 + -  +  <!>pe t - P + a t ----------------------------------

Where a f is white noise of mean zero and variance u a2.

■4.50.



Multiplying the equation by the general term e,_j and taking expectations results in an 

equation in autocovariances. Division by the variance of et series results in an equation in 

the autocorrelation coefficients of the form:

Pj -  ‘fixPj-x +<!>2pj-2 + — + </>pPj-p j = ”1.2,3...,p ---------- 4.51.

For each value of j, varying from 1 to a maximum of p, there is one such equation. Hence 

the maximum number of equations will be p. These are collectively known as Yule-Walker 

equations (Box and Jenkins, 1976).

If the population quantities {pk} are replaced by the sample autocorrelation 

coefficients, rk , in the ordinary way, then these equations can be solved for p unknowns 

\j>p\. These values are then inserted into Equation 4.50. If Qkj denotes the j th coefficient in 

an autoregressive process of order k  then Qkk is the last coefficient in the equation:

Pj =</>k\Pj-\ + fiiaPj-2 + ■■■’+</,k(k-i)Pj-k+\ +AkPj-k J = 1,2,3,...,k------- 4.52.

The quantity Qkk regarded as a function of lag k, is called the partial autocorrelation 

function. It has a cut off after p unlike the autoregressive process, which has an infinite 

autocorrelation function. Hence Qkk provides an indication of the appropriate order of the 

autoregressive models.

Having fitted the autoregressive model to the residuals, the correction of the next 

forecast, based on the observed error of the most recent past forecast, is given by:

P =fae,-i + k et-i + - M Pet -p ------------------------- 4.53.

The updated forecast then becomes:

Q = y t + et ------------------------------------------------------ 4.54.

Where j), refers to the non-updated model output and et refers to the estimated error 

correction based on the previous error observations.

In practice forecasts are required over a lead-time L of several days defined by:
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0 , t o  = y , t o t o t o ■4.55.

where y t ( l )  refers to the un-updated model output of lead-time L and et{L) the lead-time 

error correction.

The lead-time L error correction et(L) can be expressed as a weighting of previous 

observations. It may be written as

et {L) = <f>l (L)e,_L + j>2(L)et_L_x + ...,+j>p(L)et_L_p+1----------- 4.56.

Where the coefficients ® .( i)  are known as minimum mean square error forecast weights. 

Equation 5.57 can calculate them from the lead-one forecasts weights.

® , t o  = A (L -(1) + k M -  1)------- *• 57.

Most models imply some dependence of the output forecast value on input quantities 

between the time of making the forecast and the time for which the forecast is made. This is 

the lead-time of the forecast. Mode! updating enables the model to be used as a real-time 

forecasting tool where the updating is actually an empirical correction to each of the 

simulation mode forecasts. Therefore if the simulation mode forecast is not good, it is 

expected that even the updated forecast may not be all that good. This is so because 

updating does not actually improve the structure of the model from the scientific point of 

view. It only improves the output through the empirical correction.
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CHAPTER 5

5.0 RESULTS AND DISCUSSIONS

In this chapter, the results obtained from the various methods used in this study, are 

presented.

5.1 Estimation of Missing Data

Estimation of the missing data records formed a vital part of this study. Results that 

were obtained from the estimation of missing rainfall, runoff and evaporation records are 

hereby presented.

5.1.1 Rainfall Data

Before attempting to fill in any missing data, it was necessary to first establish the 

linear relationship between the stations. This was done by calculation of the linear 

correlation coefficients, rx y_ between the rainfall stations that were selected for this study. 

The equation used to compute the inter-stations linear correlation coefficients; rx y was 

presented in Section 3.2.1. The purpose of generating these values was to find out whether 

data from a certain station were related to data from other stations. To do this, coding of the 

stations was necessary so that the data could fit the table. The results of the correlation 

coefficients are presented in Table 5.1.

The results indicate that most rainfall stations are reasonably linearly correlated to 

each other since rxy> 0.5 for most of the stations. This threshold was taken on the basis 

that values beyond 0.5 are closer to 1, the value that signifies perfect positive relationship. 

Values below 0.5 are closer to zero, the no relationship value. For the purpose of this study, 

values beyond 0.5 may therefore be considered significant while those below 0.5 may be 

considered insignificant.

Except for station G1, whose rxy values range from -0 .3  to 0.5, all other stations 

exhibited values of linear correlation with rx>y> 0.5. The low values of rxy for station G1 

indicate lack of a reasonable linear relationship between data from this station and data 

from the rest of the stations. This station was also found to have abnormally high values of 

rainfall when compared to corresponding values at other stations. This was a clear 

indication that data from this station was inconsistent with data from the other stations. On 

the basis of the unusually high values of data and the very low linear correlation coefficient
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values, it was decided that station G1 should not be included in the calculation of areal 

average rainfall over the Nyando catchment.

From the high values of iinear correlation coefficients, it was possible to fill in the 

missing records at the subject station using data from related stations by multiple or linear 

regression method using the stations that showed a high degree of linear relationship. The 

subject station stands for the station with missing data records. The equations applied for 

the purpose of filling in the missing data records are presented in Section 3.2.1. For the 

linear regression method, the related station was taken to be the one that exhibited an 

unusually high value of rx>y, compared to other stations, between itself and the subject 

station. Values of rx,y that are greater than 0.5 for each station are bolded as can be 

observed from the table. The bolded values indicate the stations that are highly correlated 

and could be used to fill in the missing records in the subject station. The choice of three 

stations for regression purposes was based on the fact that fitting too many stations does 

not normally improve the outcome in any significant way. As stated earlier the rain gauge 

coding used here is purely for the purpose of convenience.

Table 5.1: Linear inter-station correlation coefficients (rxy ) for annual rainfall between 

rainfall gauging Stations within the Nyando catchment. Bolded value those that are equal or

greater than 0.6. Coding of the stations was only for the purpose of calculating rx>y .

G 1 G 2 G 3 G 4 G 5 G 6 G 7 G 8 G 9 G 1 0 G 1 1 G 1 2 G 1 3 G 1 4 G 1 5 G 1 6 G 1 7 G 1

1 .0

0 .3 1 . 0

- .2 0 .6 1 . 0

0 .2 0 . 3 0 .7 1 . 0

0 .4 0 .7 0 . 3 - . 1 1 . 0

0 .3 0 . 0 - .1 - . 3 0 .6 1 . 0

- .2 0 . 5 0 . 4 - . 1 0 . 4 0 . 1 1 . 0

- .3 0 .6 0 .7 0 . 1 0 . 5 0 . 3 0 . 4 1 . 0

0 .2 0 .7 0 . 4 0 . 3 0 .9 0 .6 0 .6 0 .6 1 . 0

- .2 0 .9 0 .8 - . 1 0 .6 0 . 0 0 .6 0 .6 0 .6 1 . 0

0 .0 0 .6 0 . 3 0 .6 0 . 5 0 . 1 0 .6 0 . 3 0 . 5 0 .7 1 . 0

0.1 0 .8 0 .8 0 . 3 0 . 4 - . 2 0 . 4 0 . 5 0 . 4 0 .7 0 . 5 1 . 0

0 .1 0 .9 0 .6 - . 3 0 .7 0 . 1 0 . 4 0 .6 0 .8 0 .7 0 . 2 0 .6 1 . 0

0 .3 0 . 5 0 . 0 0 . 3 0 .7 0 . 5 - . 1 0 . 5 0 .6 0 . 3 0 . 2 0 . 0 0 . 5 1 . 0

0 .1 0 .9 0 .7 0 .6 0 .7 0 . 0 0 .7 0 . 5 0 .7 0 .9 0 .8 0 .8 0 .7 0 . 2 1 . 0

-.1 0 .9 0 .8 0 . 5 0 . 4 - . 3 0 . 5 0 . 6 0 . 5 0 .8 0 . 4 0 .9 0 .8 0 . 2 0 .8 1 . 0

0 .3 0 .8 0 .7 0 . 5 0 . 5 - . 2 0 . 2 0 . 4 0 . 5 0 .7 0 . 3 0 .9 0 .8 0 . 2 0 .7 0 .9 1 . 0

0 .5 0 .7 0 . 4 0 . 3 0 . 6 0 . 2 0 . 4 0 . 3 0 . 5 0 .6 0 .6 0 . 4 0 . 5 0 . 3 0 .7 0 . 4 0 . 4 1 . 0
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5.1.2 Runoff Data

Just like for the rainfall data, the missing runoff records were estimated by the regression 

method. The results of the application of the correlation equation are presented in 

Tables 5.2 and 5.3.

From the results in Table 5.2, it is observed that station 1GD03, Nyando downstream, 

shows a highly reasonable degree of linear relationship with all the other stations except 

Kibos, station 1HA01. Data from this station seem not to a good linear relationship with data 

from the other stations as shown by the low values of rx>y. Data from this station may 

therefore not be used to fill in missing records in any of the other stations. Any one of the 

rest of the stations could therefore be used to fill in missing data records in station 1GD03 

using linear regression method, as presented in Section 3.2.1, provided the station has data 

corresponding to the missing records.

Table 5.3 shows stations that are significantly correlated with 1GD03. The first row 

shows the gauging stations whose rx,y values are equal or greater than 0.5. The second row 

shows values of rx>y between 1GD03 and the rest of the stations except 1HAQ1. The third 

row shows the percentage R2 values of double mass curves between 1GD03 and the other 

correlated stations as given by the trend line.

Table 5.2: Linear inter-station correlation coefficients (rx>y ) for daily average discharge 

between gauging station 1GD03 and some selected stations within the Nyando catchment.

1GD03 1GD04 1GB11 1GC04 1GC05 1GD07 1GG01 1HA01
1GD03 1.0
1GD04 0.6 1.0
1GB11 0.6 0.3 1.0
1GC04 0.7 0.5 0.5 1.0
1GC05 0.7 0.4 0.4 0.6 1.0
1GD07 0.7 0.2 0.4 0.5 0.7 1.0
1GG01 0.5 0.9 0.2 0.3 0. 0.1 1.0
1HA01 0.2 0.4 0.0 0.1 0.1 0.1 0.4 1.0

Table 5.3: Significance of stations’ relationship with station 1GD03 as given by rx>y

and R2 %.

1GD03 1GD04 1GB11 1GCG4 1GC05 1GD07 1GG01
rxy 1.0 0.6 0.6 0.7 0.7 0.7 0.5
R^% 100 94.11 99.78 99.91 99.44 98.72 79.80
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The high values of Rz indicate that the trend line is a good fit to the observations. The 

respective equations of the trend lines could therefore be used to fill in the missing records 

in 1GD03. The Rz values indicate that station 1GC04 is the one most likely station to be 

used for the purpose of filling in the missing data records in station 1GD03 since it has the 

highest value of R  ̂ (99.91) as well as the highest value of rx,y (0.7). If corresponding data is 

not available, station 1GB11 may be used as it has the second highest value of Rz (99.7 %). 

However the correlation coefficient value for 1GB11 is lower (0.6) than that of other stations 

except stations 1GG01 and 1HA01. Hence station 1GC05 may be preferred on account of 

the high correlation coefficient value (0.7) and the R^ value (99.44 %) respectively. The ideal 

procedure would be to use a station that shows the highest values of R2 and to move to a 

lower one only when the corresponding data is missing. The reality on the ground was that 

station 1GD07 was the preferred station because the recorded values of data from this 

station, with a mean of 9.62 cumecs, were closer in magnitude to those of station 1GD03, 

with a mean of 17.49 cumecs, than those from any other station. All the other stations had 

much lower values of the mean than 1GD07.

5.1.3 Evaporation Data

The missing evaporation data records were estimated by seasonal mean method. 

This was done using the seasonal daily mean evaporation. The mean of all the daily 

evaporation measurements on a day such as 1st January were used to fill in all the gaps that 

appeared on 1st January of any year. This was done using data from the same station. In 

this case it was done using daily evaporation data from Kisumu Meteorological station.

5.2 Data Descriptive Statistics

The quality of data in research occupies a central place in any scientific research. 

This is because the quality of data will always determine the degree of accuracy and 

therefore reliability of the results. It is therefore important to devote more time in establishing 

the quality of data before commencing any analysis. This section gives a brief overview of 

descriptive statistics of rainfall, runoff and evaporation data

5.2.1 Rainfail Data

The summary of the basic statistics of rainfall data is presented in Table 5.4. The 

basic statistics are intended to give a preliminary idea of the frequency distribution and
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the variability of data from various rainfall-gauging stations within the Nyando catchment.

From these results, the mean annual rainfall was observed to vary from about 1100 

mm to 1700 mm with a majority of stations recording between about 1150 mm and 1550 

mm p.a. Thus the catchment may be considered as one that on average experiences 

moderately heavy rainfall.

Standard deviation is a measure of how data sets are distributed about their mean 

value. A small standard deviation means that the data sets are bunched closely about their 

mean value while a large standard deviation means that the data sets are spread over 

considerable distances away from their mean value. The standard deviation basically 

measures distances by which individual values in a frequency distribution depart from their 

mean value. A sample with a large standard deviation is more spread out from the mean 

value than that with a smaller one. Within a single sample, the standard deviation measures 

the number of data sets that lie within 1, 2 or 3 standard deviations (Freund, 1987).

From Figure 5.1, it is observed that there are moderately low values of standard 

deviations, except for station G1 which has an unusually large value of standard deviation, 

ranging from about 125 mm to about 340 mm. This is an equivalent of about ten to twenty 

percent of the mean; an indication that most of the observations are fairly well clustered 

around the mean annua! rainfall values.

It is observed from Figure 5.1 that station number G1 has a standard deviation of 

about forty percent. This is a much higher value of standard deviation than those found at 

the other stations. It indicates that data from this station are more spread out from the mean 

value compared to the data from the other stations. Values from this station may indeed be 

considered as inconsistent with values from the other stations. It was also found out that 

data from this station showed very low correlation in relation to data from the other stations. 

This further justifies the exclusion of this station from the calculations of the mean areal 

rainfall over the Nyando catchment.

The coefficient of variation is a measure of relative dispersion of data sets. It 

measures dispersion relative to the size of data unlike the standard deviation. It measures 

the extent to which individual data points scatter around the mean value. A coefficient of 

variation value of about 10 to 20 % suggests a low degree of dispersion whereas a 

coefficient of variation value of about 70 to 80 % means that individual values scatter fairly 

widely around the mean value of the frequency distribution (Thiessen, 1997).
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The coefficients of variation in most stations, as observed in Table 5.4, are below 0.2 

or twenty percent except for station G1. These fairly low values of coefficients of variation 

indicate low variability of rainfall data. They may be interpreted to mean that the annual 

mean can be relied on as a measure of central tendency. Most observations may therefore 

be considered as clustered around the mean.

Table 5.4: Summary of basic statistics of annual rainfall data over the Nyando catchment. 

The coding of stations was only for the purpose of convenience.
Station
No.

Station Name Code Mean Standard
error

Standard
deviation

Coefficient 
o f variation

Skewness Kurtosis

8935001 Songhor G1 1958.4 403.7 1211.2 0.61 0.8 -0.7
8935033 Savani G2 1542.5 114.5 343.5 0.22 -0.2 0.5
8935148 Kipkurere G3 1169.6 92.9 278.8 0.24 -0.1 -0.9
8935159 Ainabkoi G4 1349.5 79.7 239.1 0.18 -0.1 -1.1
8935161 Nandi Hills G5 1350.3 85.4 256.3 0.19 -0.2 0.2
9034086 Ahero G6 1171.3 42.5 127.4 0.11 0.4 -0.7
9035020 Kipkelion G7 1076.3 49.1 147.2 0.14 0.8 0.1
9035075 Kaisugu G8 1712.9 85.0 254.9 0.15 -0.2 -0.1
9035148 Koru G9 1295.7 63.4 190.2 0.15 -0.1 -0.2
9035151 Entomology G10 1086.2 76.1 228.4 0.21 0.8 -0.7
9035155 Londiani G11 1094.6 68.5 205.5 0.19 1.3 1.7
9035188 Tinga G12 1274.9 47.7 143.2 0.11 -1.0 0.9
9035201 Kipkorech G13 1672.0 r 94.7 284.1 0.17 -0.4 0.1
9035220 Homaline co. G14 1344.6 82.8 248.4 0.18 -0.1 -0.4
9035226 Londiani Forest G15 1096.1 58.2 174.7 0.16 0.6 -0.2
9035240 Keresoi G16 1425.8 94.6 283.7 0.20 -0.5 1.0
9035256 Malagat G17 1152.2 64.3 192.8 0.17 -1.1 0.3
9035263 Tinderet G18 1589.3 75.7 227.1 0.14 0.8 1.1

Skewness is a measure of the degree of departure of a frequency distribution from 

symmetry. A frequency distribution that is not symmetrical is said to be skewed. The extent 

of departure from symmetry is normally measured using Pearson’s coefficient of skewness 

given by:

_  3{mean -  median)
„  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . O.  IS  tan darddeviation

For a symmetrical distribution, Pearson’s coefficient of skewness value is zero. The greater 

the departure from symmetry of a frequency distribution, the higher the absolute values of 

Skp (Moore, 1974).

Except for station G1, with a skewness coefficient value of 1.3, all other stations have 

a skewness coefficient values within twice their standard error. The standard error of
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skewness coefficient is app rox im ated  using th e  relation ( 6 ) w h ere  N  is th e  n u m ber of

observations. Values of skewness coefficients are considered statistically significant if they 

are greater than twice their standard errors (Ogallo, 1977).

2 50  0

z

2
j<3Z2<
Z!

2 0 0 0  4 -

S T A T I O N

□  M E A N

a s  T D. DEV

Figure 5.1: Bar graph of mean annual rainfall depth and standard deviation (mm) over the
Nyando catchment

From Table 5.4, the values of skewness coefficients vary from -1.0 to 1.3. These are 

low values and very close to zero, which is the value for perfect symmetry. The values lie 

within twice their standard errors and they can therefore be considered insignificant. The low 

values may therefore be considered an indication that rainfall data is approximately 

symmetrically distributed about the mean value for all the rain gauge stations.

Kurtosis is a measure of the general peakedness or flatness of a frequency 

distribution where a kurtosis coefficient value of about 1 is considered normal (Frank, 1994). 

Values of kurtosis coefficients are considered statistically significant if they are greater than 

twice their standard errors. The standard error of kurtosis coefficient is approximated using

the relation
24

\ N ;
, where N  is the number of observations (Ogallo, 1977).

From Table 5.4, it is observed that the values of kurtosis coefficients vary from -1.1 

to 1.7. They all lie within twice their standard error and may therefore be considered
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insignificant. They are fairly close to one, the value that signifies normal peakedness of the 

frequency distributions and are therefore an indication that the distribution curves for these 

data are close to normal.

Since skewness and kurtosis are both measures of normality of a frequency 

distribution, we may conclude that rainfall data over the Nyando catchment generally follows 

a normal distribution.

5.2.2 Runoff Data

The results of the descriptive statistics of runoff data are presented in Table 5.5. it is 

observed from the table that the mean discharge from the catchment as gauged from 

1GD03 is about 17cumecs.

Unlike in the case of rainfall, there is more variability in the runoff data as seen from 

the unusually high values of the coefficient of variation. Ali the values are above 20 % 

except for station 1GD04. This suggests a higher degree of dispersion of the flow data than 

that of the rainfall data.

The skewness coefficient values are all positive. Except for stations 1GD03, 1GD04 

and 1GC04, with skewness coefficient values within twice their standard errors (1.36), the 

other stations show skewness coefficient values beyond twice their standard errors. Values 

of skewness coefficient within twice their standard errors may be considered insignificant 

while those beyond twice their standard errors are significant. The flow data over the 

Nyando catchment may therefore be considered as positively skewed. This means that 

there are more flow values that are less than the mean flow value.

Except for stations 1GD03, 1GD04 and 1GC04 with kurtosis coefficient values within 

twice their standard errors (2.72), the other stations show kurtosis coefficient values beyond 

twice their standard errors. This shows that the frequency distribution of the flow data is 

more peaked than that of the rainfall data.

Most outstanding is station 1HA01 where the coefficient of variation, skewness and 

kurtosis are unusually high compared to the rest of the stations. This shows that data sets 

from this station have more variability than those from the other stations as shown by the 

high value of the coefficient of variation (2.0). The frequency distribution is also not 

symmetrical. It is positively skewed as shown by the high value of skeweness coefficient 

(5.5). The distribution of this data is also highly peaked as shown by the unusually high
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value of kurtosis (32.1). Hence data from this station may not be compatible with data from 

the other stations.

Table 5.5: Basic statistics for daily average discharge data for some selected flow-gauging

stations within the Nyando catchment.
Station
num ber

Mean Standard error Standard
deviation

Coefficient 
of variation

Skewness Kurtosis

1GD03 1 7 .4 9 0 .3 4 8 .7 1 0 .5 0 0 .7 9 0 .9 2
1GD04 4 .6 4 0 .1 5 3 .9 0 .0 8 4 1 .3 2 1 .2 3
1GB11 7 .8 3 0 .0 7 1 .8 3 0 .2 3 1 .9 9 5 .3 5
1GC04 0 .3 9 0 .0 1 0 .2 0 0 .5 1 0 .7 3 1 .5 2
1GC05 1 .0 3 0 .0 4 0 .9 1 0 .8 8 1 .7 5 3 .8 8
1GD07 9 .6 2 0 .2 8 7 .1 6 0 .7 4 1 .8 9 4 .8 9
1GG01 2 .0 5 0 .1 1 2 . 8 9 1 .4 1 2 .1 1 3 .3 2
1HA0I 1 .2 1 0 .1 0 2 .4 2 2 .0 0 5 .5 3 2 .0 9

Figure 5.2: Bar graph of daily average discharge and standard deviation (cumecs) for some 

selected flow-gauging stations within the Nyando catchment.

Thus the majority of the runoff data are less than the mean discharge value. This is 

unlike the case of rainfall data where the skewness values range from slightly negative to 

slightly positive values indicating a possible symmetrical distribution of the annual rainfall on 

average.

Figure 5.2 shows that there are high values of standard deviations ranging from 

about 0.2 to about 8.7 cumecs. This is equivalent to about twenty to sixty percent of the 

mean. This is an indication that discharge observations are scattered far apart from the 

mean discharge value. This is unlike the case for rainfall data. However station 1GD03 has 

the lowest value of the coefficient of variation; a possible indication that data from this
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station may be considered to be more clustered around the mean value than is the case for 

the rest of the stations.

5.2.3 Evaporation Data

The results of the descriptive statistics of evaporation data are presented in Table 

5.6. From the results we observe that the mean daily evaporation is about 6.3 mm for 

Kisumu and 3.8 mm for Kericho. There are low standard deviations as observed in Figure 

5.3. These are 0.88 mm for Kisumu and 0.74 mm for Kericho. These values are equivalent 

to about ten percent and fifteen percent of the mean value for Kisumu and Kericho 

respectively. The low values are an indication that most of the evaporation data are 

clustered around the mean value. Coefficients of variation are below 0.2 i.e., 20 % for both 

stations indicating low variability of evaporation data.

M E A N  E V A P O R A T I O N  A N D  S T D  D E V I A T I O N

Figure 5.3: Bar graph of mean daily evaporation and standard deviation (mm) for Kisumu

and Kericho stations

Table 5.6: Basic statistics for daily average evaporation data for Kericho and Kisumu

meteorological stations.
S t a t io n

N a m e

M a x im u m M i n i m u m M e a n S t a n d a r d

d e v i a t io n

C o e f f i c i e n t  

o f  v a r i a t i o n

s k e w n e s s K u r t o s i s

K is u m u 1 0 .4 4 .7 6 .3 0 .8 8 0 .1 4 1 .0 2 1 .8 7

K e r ic h o 5 .9 1 .7 3 .8 0 .7 4 0 .1 9 - 0 .5 1 0 .3 6

5.3 Test For Consistency of Data
Consistency of data is important in any research for the results to be meaningful. It 

was therefore important to test the consistency of data and make corrections where
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necessary. Mass curve method was used to test for the consistency of daily rainfall, runoff 

and evaporation data respectively, over the Nyando catchment. The method was described 

in detail in Section 3.4.2.

5.3.1 Rainfall And Runoff Data

Results of rainfall data consistency testing are presented in Table 5.7 and in Figures

5.4 and 5.5.

The results from this method show that in general only a single line could be fitted in 

all the rainfall and runoff records. When trend lines were fitted to each of the mass curves it 

was observed that the percentage values were quite high, indicating that the trend line 

was a very good fit to the observed data. This means that observed data were quite close to 

the single straight line and therefore data were quite consistent.

From table 5.7, it is observed that out of the eighteen rain gauge stations available, 

seventeen stations exhibited percentage of R2 values greater than 99 %. These are very 

high values and on this basis we can conclude that daily rainfall data over the Nyando 

catchment were generally homogeneous.

Figure 5.4 presents mass curves of some selected rain gauge stations in the 

catchment. The selection criterion for these stations was such that the mass curves of the 

station with the highest, the station with the medium as well as the station with the lowest R2 

percentage values of the trend lines should be represented. These mass curve plots, as 

observed in the figure, show that the plotted values are clustered along a single straight line; 

in this case the trend line. There were no marked deviations of any of the plotted values 

from the straight line. This shows that the stations had highly homogeneous data since 

plotted data are clustered close to the trend line.

From visual inspection of the mass curves, the data appears not to have any 

inconsistency. This is corroborated by the high values of R2 as presented in Table 5.7. The 

rainfall data over the Nyando catchment may therefore be declared homogeneous on 

account of the very good fit of the trend line to the observations in all cases.

Figure 5.5 shows the mass curve for daily average areal rainfall over the Nyando 

catchment and Figure 5.6 shows the mass curve for daily average discharge at gauging 

station 1GD03 respectively.

Visual inspection of the plotted daily values gives the impression that the values are 

fairly well clustered along a single straight line, as there are no obvious deviations from the
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single straight line. This is a possible indication that the daily average areal rainfall and the 

daily average discharge data have no inconsistency and could therefore be considered of 

acceptable quality.

Table 5.7: Results of test of consistency for rainfall data over Nyando catchment as

given by R2 %.

S t a t io n  N o S t a t i o n  N a m e C o n s i s t e n c y  { ( % ) )

8 9 3 5 0 0 1 S o n g h o r ,  K a a b i r i r 9 7 . 0 6

8 9 3 5 0 3 3 N a n d i  H i l l s  S a v a n i 9 9 . 6 8

8 9 3 5 1 4 8 K i p k u r e r e  F o r e s t  S t n . 9 9 . 5 2

8 9 3 5 1 5 9 A i n a b k o i  F o r e s t  S t n 9 9 . 3 6

8 9 3 5 1 6 1 N a n d i  H i l l s  T e a  E s t . 9 9 . 6 4

9 0 3 4 0 8 6 A h e r o  I r r i g a t i o n  S t n . 9 9 . 7 6

9 0 3 5 0 2 0 K i p k e l i o n  R a i l w a y  S t n . 9 9 . 7 1

9 0 3 5 0 7 5 K a i s u g u  H o u s e 9 9 . 6 8

9 0 3 5 1 4 8 K o r u  B i b l e  S c h o o l 9 9 . 6 1

9 0 3 5 1 5 1 L o n d i a n i  E n t o m o l o g y 9 9 . 7 2

9 0 3 5 1 5 5 L o n d i a n i  F o r e s t  S t n 9 9 . 7 2

9 0 3 5 1 8 8 T i n g a  M o n a s t r y 9 9 . 7 8

9 0 3 5 2 0 1 K i p k o r e c h  E s t a t e 9 9 . 7 9

9 0 3 5 2 2 0 K o r u  H o m a l i n e  c o . 9 9 . 4 9

9 0 3 5 2 2 6 L o n d i a n i  F o r e s t 9 9 . 7 8

9 0 3 5 2 4 0 K e r e s o i  f o r e s t 9 9 . 6 5

9 0 3 5 2 5 6 M a l a g a t  F o r e s t  S t n 9 9 . 6 9

9 0 3 5 2 6 3 T i n d e r e t  T e a  E s t . 9 9 . 7 8

Trend lines were then fitted for each mass curve and the R2 values evaluated. The 

high values of R2, 99.8 % for daily areal average rainfall and 97.7 % for daily average 

discharge, corroborate the visual impression that the observations are usually clustered 

along a single straight line. Both sets of data may, therefore, be declared homogeneous on 

the basis of the high values of R2, which indicates a very good fit of the trend line to the daily 

data observations. Closer examination of the figure shows that there are alternate high and 

low flow cycles that coincide with wet and dry cycles respectively. The sections of the 

plotted curve above and below the trend lines for both the daily average areal rainfall and 

daily average discharge data curves indicate these cycles. The cycles seem to repeat after 

every two to three years.
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Figures 5.4 (a -  c): Examples of mass curves from some selected rain gauge stations within

the Nyando catchment.
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Figure 5.5: Mass curve for daily average areal rainfall to establish consistency of 

input data over the Nyando catchment.
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Figure 5.6: Mass curve for daily average discharge to establish consistency of runoff 

data over the Nyando catchment for discharge values measured at flow

gauging station 1GD03.
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5.3.2 Evaporation Data
Figure 5.6 presents the results of evaporation mass curve for Kisumu, which was 

taken as the representative station for the Nyando catchment. The selection of Kisumu was 

influenced by the fact that it is in the same rainfall zone as the Nyando. Further, evaporation 

is not known to exhibit significant spatial variation and one station can adequately serve 

5000 square kilometres (Ponce, 1989). This is much more than the size of the Nyando 

catchment, which is about 3580 square kilometers. Hence a single evaporation station 

would be adequate for the catchment.

25000

Kisumu station.

The plotted daily values are clustered very close to the single straight line. Indeed it is 

difficult to visually detect any deviation from the straight line. The trend line was then fitted 

and R2 evaluated. It was observed that the curve fits so well that it is difficulty to distinguish 

the trend line from the plotted daily values. This impression is corroborated by the very high 

value of R2 (99.92 %). Evaporation data may therefore be declared homogeneous on the 

basis of these results.

5.3.3 Estimation of Fourier Series Coefficients
The Fourier series representation given in Equation 4.24 is used to remove any small 

sample fluctuations from seasonal mean values obtained from Equations 4.22 and 4.23.
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! ables 5.8 and 5.9 show the results obtained from the estimation of Fourier series for the 

Linear Perturbation Model (LPM).

From these tables we observe that the first four harmonics have accounted for about 

51% of the rainfall and about 68 % of the stream flow series as given by the respective 

values of P j.  The P j values indicate that there is a higher seasonal variation in runoff than in 

rainfall data series.

Table 5.8: Fourier coefficients for smoothing the seasonal mean input and output series for 

the Nyando catchment. Aj and Bj are the Fourier coefficients; Pj is the f "  percentage of the

total variance of the yd and xd series about its mean a0.

Rainfall series Stream flow  series
Number of Fourier coefficient Number of Fourier coefficient
harmonic A ______ A ______ Pi (%) harmonic A Bj Pi (%)
1 -1.80 0.99 28.7 1 -13.53 4.13 32.8
2 -1.08 -0.52 10.3 2 -4.23 -7.30 11.6
3 0.74 -0.62 6.6 3 9.75 0.89 15.6
4 -0.22 0.83 5.6 4 -5.34 4.76 8.4
5 -0.43 0.51 3.1 5 -0.90 -2.27 1.0
6 -0.06 0.06 0.1 6 1.58 -1.93 1.0
7 0.36 0.38 1.9 7 -0.79 5.10 4.4
8 -0.06 -0.16 0.2 8 -0.86 -1.68 0.6

Table 5.9: Proportion of the variance of the unsmoothed seasonal input and output

series accounted for by each of the first four harmonics and by their sum for

the Nyando catchment.

Series Harmonics Sum o f 1st 4 harmonics
1st 2nd 3rd 4th

Input % variance 28.7 10.3 6.6 5.6 51.2
Output % variance 32.8 11.6 15.7 8.4 68.5

Figures 5.8 (a and b) shows the smoothed and unsmoothed daily seasonal expectations 

of output (stream flow) series and input (rainfall) series over the Nyando catchment. The 

smoothing has been done by the first four harmonics. The graphs reveal that Nyando has a 

trimodal pattern of rainfall with the major peak, the long rains, centred in April followed by 

another one in august. A minor peak centred in October-November is also visible. The
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stream flow follows the same pattern but lags behind rainfall by a few days as seen from the 

graphs.

It is also observed that there is a definite descending pattern in the proportion of 

variance accounted for by successive harmonics. In the case of stream flow series, 

harmonics after the fourth one could only account for about 32 % of the total variance of the 

stream flow series while in the rainfall series it would account for about 49 % which is 

obviously less than what is accounted for by the first four harmonics. This justifies the use of 

the first four harmonics for the purpose of smoothing.

5.4 Model Applications
After the models were calibrated and verified, they were then fitted on daily data from 

the Nyando catchment. Each of the four models was applied to the Nyando catchment using 

split record evaluation. The models that were used in this study are the Simple Linear Model 

(SLM), the Linear Perturbation Model (LPM), the Linearly Varying Gain Factor Model 

(LVGFM) and the Soil Moisture Accounting and Routing (SMAR) model. Details of these 

models and the methodologies were presented in Chapter 4. The model performance 

criteria used in each of the linear systems models case include the coefficient of efficiency 

(R2), the index of volumetric fit (IVF) and the mean square error (MSE) while (R2) and 

volume ratio were used for the conceptual SMAR model.

In terms of complexity, the SLM is the simplest mode! followed by the LPM, LVGFM 

and the SMAR model respectively. For SLM, LPM and the LVGFM, which are all linear 

systems models, the ordinary least squares solution was used for the estimation of pulse 

response function. In the case of the SMAR model, which is a conceptual model, the 

parameters were estimated using the simplex search method as embodied in the Galway 

Flow Forecasting Software (GFFS) package. This is a software package developed at the 

Department of Engineering Flydrology, National University of Ireland, Galway (O’Connor et 

al, 2001). It comprises a suit of models for simulation, updating and real-time forecasting 

applications. The software program uses hydrological data of daily interval only, stored in 

files written in standard UCG format.

The relative performance of each of the model was evaluated against the model 

efficiency criteria set out in section 4.5.1. The individual model performance was assessed 

against the performance of other models as a way of establishing the model that is most 

suited for the Nyando catchment. The GFFS software package was used in the application
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of each model. The results obtained with each individual model and their comparisons are 

presented in this section.
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Figure 5.8a: Graph of seasonal daily discharge (output) showing the smoothing by the first

four harmonics.
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Figure 5.8b: Graph of seasonal daily rainfall (input) showing the smoothing by the first four

harmonics.

5.4.1 The No Model Situation
As a basis for comparison, it was found necessary to start with a situation where no 

model is available. This is the seasonal model situation where, in the absence of any model,
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Figure 5.9a: Unsmoothed and smoothed seasonal mean daily rainfall for the Nyando

catchment.
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Figure 5.9b: Unsmoothed and smoothed seasonal mean daily discharge for the

Nyando catchment.
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Figure 5.9c: Unsmoothed and smoothed seasonal mean daily evaporation for the

Nyando catchment.
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This may be taken as a preliminary indication thai linear systems models may not 
perform as well as the conceptual model since they do not include evaporation as one of the 
model components; yet evaporation seems to have a more significant influence over the 
flow regime than rainfall in this catchment.

Generally there is lack of strong seasonality in the catchment as there is no clearly 
distinct dry period, perhaps due to the trimodal pattern of rainfall over the region. There is at 
least some rainfall throughout the year possibly due to the influence of Lake Victoria to the 
rainfall around this region, it is observed from Figure 5.9a that except for December through 
February, the smoothed seasonal daily rainfall is always above 2 mm. Nyando may 
therefore be considered as a moderately wet catchment. The effect of the land and sea 
breeze, brought about by the presence of Lake Victoria to the proximity of this catchment,

, brings about rainfall all the year round over most parts of the catchment. This most probably 
explains the absence of a strong seasonal variation in the catchment. It is therefore 
expected that LPM, which is normally expected to perform well in seasonal catchments, 
may not perform well for the Nyando catchment.

5.4.2 Simple Linear Model (SLM)

The synchronous rainfall-runoff daily data series of the calibration period were 
I processed by the ordinary least squares method using Equation 4.20, which was described 

in detail in Section 4.1.1, to obtain the optimum SLM pulse response ordinates. The 
resulting pulse response function was fitted to the corresponding rainfall series to obtain the 
estimates of runoff series for both calibration and verification periods. The model was 
calibrated on daily data by ordinary least squares method. The memory length (m), the 
number of pulse response ordinates, was chosen by trial and error. After several trials, it 
was found that the efficiency of the model increased significantly with memory length up to a 
memory length of about 20 days that gave the best results in terms of efficiency for both 
calibration and verification periods. Beyond this value there was no marked improvement in 
the efficiencies in both calibration and verification periods that would warrant increasing the 
chosen memory length beyond 20 days.

The procedure was to try out memory lengths in steps of 5 days in order to determine 
ihow the efficiency changes with increasing memory length. The results of fitting the SLM on 
daily data from the Nyando catchment are presented in three formats.
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Table 5.10: Summary of results obtained with the SLM for different memory lengths 
in simulation mode. is the measure of model efficiency; IVF is the index of
volumetric ratio and MSE is the mean square error.

Memory 
length (days)

Model Performance

Calibra'tion Period Verification Period
R2 (%) IVF MSE (103) R2 (%) IVF MSE (103)

1 10.6 0.75 6.66 -6.3 0.53 9.74

4 32.2 1.02 4.24 20.7 0.72 7.11
5 35.2 1.07 4.00 24.0 0.76 7.02
6 37.6 1.10 4.05 25.7 0.78 7.05

9 42.8 1.19 3.74 28.1 0.84 6.99
10 44.7 1.21 3.39 27.5 0.86 7.05
11 45.1 1.22 3.35 28.1 0.87 7.02

15 46.7 1.26 3.26 28.9 0.89 7.08

19 46.9 1.26 3.20 28.8 0.89 7.07
20 47.0 1.26 3.21 28.8 0.89 7.08
21 47.0 1.26 3.21 29.0 0.89 7.05

25 47.6 1.28 3.13 29.7 0.91 7.07

Table 5.11: Summary of results obtained with the SLM in simulation mode at the chosen
memory length of 20 days.

Test period Model Performance
Non param etric mode Parametric mode
MSE IVR R2 (%) ~R2(%)

Calibration 3.49 1.26 47.0 42.9
Verification 7.71 0.89 28.8 28.8

These are: a table of summary of result in terms of R2, MSE and IVF as presented in 
Tables 5.10 and 5.11, which give model performance results in simulation mode for various 
memory lengths, pulse response ordinates as presented in Figure 5.10, and graphs of 
estimated and observed discharges as given in Figure 5.11.

From Table 5.10, it is observed that of the various values of chosen memory length, 9 
days comes out as a possible memory length over the Nyando catchment, barring any 
instabilities. For this value of memory length, the efficiency during verification is 28.1 %,
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which is higher than that at 10 days before starting to rise again. The mean square error is 
also less on this day than on the eighth and tenth days respectively. This was also 
confirmed by the comparison of standardized pulse response ordinates with the standard 
error. The 9th ordinate was found to be the first ordinate where the standard error exceeded 
the estimated value of the pulse response ordinate. This effectively means that the effect of 
rainfall on the discharge ends on the 9th day. However, possibly due to some form of 
instability, another memory length is observed around the twentieth day. It is observed from 
Table 5.10 that increasing values of m beyond 20 days may not bring about any significant 
improvements in efficiency during calibration and verification periods, respectively. It was 
therefore decided that 20 days be used as the chosen memory length for the Nyando 
catchment on the basis of the high values of R2 obtained at this memory length.

Table 5.11 gives a summary of results from the simple linear model, SLM, in both 
parametric and non-parametric form, for the chosen memory length of 20 days while Figures 
5.10a and 5.10b give the results in graphical form. From the table, it is observed that the 
model efficiencies in non-parametric mode are about 47 % and 29 % for calibration and 
verification periods, respectively. In parametric mode, the model efficiencies are about 43 % 
and 29 % in the calibration and verification periods respectively. This indicates a decline in 
the performance during calibration in parametric mode while no change is observed in the 
verification period. Considering that the SLM is classified as a preliminary model, these 
efficiencies may be considered a fairly good performance in the absence of any other 
model. These results indicate that the SLM would serve as a fair flow-forecasting tool for the 
Nyando Basin in the absence of any other model or in very exceptional cases. This 
conclusion is taken on the basis that performance values of SLM are comparatively better 
than those of the no model situation.

There is a slight discrepancy in the volume match as given by the index of volumetric 
fit (IVF) values. The values differ slightly from the desired value of unity in both calibration 

and verification periods. The value of 1.26 in the calibration period suggests that the model 
tends to overestimate the flow volume during the calibration period while underestimating 
the flow volume, as given by the value of 0.89, during the verification period.

The mean square error values are about 3.2 and 7.1 in calibration and verification 
periods respectively. This is about 7.4 % and 26.7 % of the mean values during the 
calibration and verification periods, respectively. Since this is basically a measure of



standard deviation, we may conclude that the estimated values do not deviate much from 

the observed values.

The efficiency of the model is below 50 % for both calibration and verification periods. 

It is therefore possible that the linear hypothesis alone may not be adequate for modeling 

rainfall-runoff transformation over the Nyando Basin. There may be need, therefore, to try 

out other models that attempt to capture what the SLM fails to capture. This is the temporal 

variation of the gain factor as well as the seasonal variation of rainfall and runoff. The 

temporal variation of the gain factor, which is determined by the temporal variation of 

rainfall, may be accounted for by incorporating a variable gain factor term through the 

LVGFM while seasonal variation may be accounted for by a seasonal component through 

the LPM. The gain factor, the ratio that measures the volume of rainfall that transforms to 

runoff, increases with time as rainfall continues.

Figure 5.10 presents the pulse response ordinates in both the constrained and 

unconstrained form. It is observed from the figure that the unconstrained pulse response 

ordinate estimates generally decrease in value from left to right. Flowever they are not 

especially satisfactory in shape. It is observed that the first ordinate is negative and there is 

lack of a clear recession as one moves to the right.

The figure also shows that there is a tendency to oscillate every four days or so. This 

is a contradiction of a hydrologic system that implies high damping, stability and absence of 

feedback. From the shape of the pulse response function curve, it may be concluded that 

there is some form of storage in the catchment, which is responsible for the feedback.
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Figure 5.10a: Graphical representation of the pulse response ordinates over the Nyando

catchment for Non-parametric form of SLM.
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Figure 5.10b: Graphical representation of the pulse response ordinates over the Nyando

catchment for parametric form of SLM.

This form of storage may be associated with the availability of soil moisture brought 

about by either the availability of rainfall throughout the year, the low gradient that slows 

down the flow velocity or vegetation cover that slows down loss of soil moisture through 

evaporation. All these factors combine to bring in a form of instability as is evident from the 

lack of a clear recession in the unconstrained pulse response ordinates.

The undesirable features of this unit hydrograph could possibly be eliminated through 

imposition of constraints on the shape of the response functions in order to eliminate the 

fluctuations in the estimated pulse response through smoothing. There is a clear recession 

when the shape is constrained as shown by the parametric simple linear model (PSLM) 

hydrograph. Imposing the constraint on the shape of the derived pulse response ordinates 

normally produces little loss in model efficiency as shown in Table 5.11.

Figures 5.11 (a - f)  show rainfall together with observed and estimated discharges for 

the years 1985 to 1990. It is observed from these figures that the SLM captures the extreme 

flows very well, as displayed by the peaks and troughs in these graphs. It is evident from 

these graphs that the peak observed flow coincides with the estimated peak flow. Troughs 

of the observed flow also coincide with the troughs of the estimated flow.

However, it is also observed from the figure that the model overestimates discharge 

during low flow while underestimating it during high flow seasons. For instance the 

maximum observed discharge is about 358 cumecs. This corresponds to the estimated 

discharge of about 125 cumecs in May 1988 as seen in Figure 5.11 d.
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The maximum estimated discharge is observed from the figure to be about 127 
cumecs corresponding to the observed discharge value of about 274 cumecs. These values 
occur at the beginning of May 1988 as shown in Figure 5.11d.

The minimum observed discharge is about 1 cummec and corresponds to the 
estimated discharge of about 5 cumecs. These values occur at the beginning of March 1985 
as shown in Figure 5.11a.

The minimum estimated discharge as observed from the figure is about -5  cumecs 
corresponding to the estimated discharge of about 3 cumecs. These values are found at the 
beginning of February 1988 as shown in Figure 5.11 d during extreme flows.
The difference between the observed and the estimated discharge values is generally not 
notable except during the high and low flow seasons as shown in Figures 5.11 (a -  b).

it is also observed from the figure that except for the years 1986 and 1987, Figures 
5.11b and 5.11c, which are documented as El Nino years, where the estimated discharge 
is, on average, more than the observed discharge, the estimated discharge in the high flow 
season of March-Aprii-May is less than the observed discharge. The observed discharge 
graph overlies the estimated discharge graph during the high flow season of March-April- 
May as observed in the figure. This is an indication that the model tends to under estimate 
the flow in this season. The graphs of the estimated and observed discharges have a good 
match for rest of the seasons except for 1988 as seen in Figure 5.11 d, where observed 
discharges are notably higher than the estimated discharges during the high flow seasons.

There is also a general overestimate of flow during low flow seasons except for 1989 
and 1990 as observed in Figures 5.11e and 5.11f where there is no marked difference 
between observed and estimated discharges. This is a definite model shortcoming and may 
be attributed to the model’s inability to capture changes brought about by changes in soil 
moisture content due to seasonal and temporal variation of rainfall. This suggests a possible 
need to incorporate a seasonal factor into the model. It could also be attributed to the 
model’s rigidity in the treatment of the soil moisture state of the catchment. The soil moisture 
state increases during the storm and also during the wet season. This affects the amount of 
rainfall transformed to runoff. It is expected that the higher the soil moisture content, the 
lower the rate of infiltration. This is expected to result in a higher proportion of rainfall being 
transformed to runoff especially during wet seasons than is predicted by the model. The 
SLM does not account for this temporal variation of soil moisture content leading to the
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observed discrepancies. The optimized gain factor was found to be about 0.2, which 
suggests that only a small fraction of the average rainfall is transformed to runoff.
Other models such as LPM and I..VGFM attempt to address the discrepancies observed in 

the SLM.

5.4.3 Linear Perturbation Model (LPM)
The synchronous rainfall-runoff daily data series of the calibration period were 

processed by the ordinary least squares method using Equation 4.30, whose details were 
given in Section 4.4.1.2 to obtain the optimum LPM pulse response ordinates. These were 
subsequently fitted to the daily rainfall departure series using Equation 4.5, described in 
Section 4.2.2, to simulate flows for both calibration and verification periods. 20 days were 
taken as the chosen memory length for the same reasons described earlier as well as the 
need to have a uniform memory length.

The final estimated runoff series of LPM was calculated by adding the expected 
seasonal mean runoff to the estimated runoff perturbation series. The difference between 
observed and simulated runoff were squared and then summed so that R'1 could be 
calculated using Equation 4.44.

The results for the model’s performance in simulation and parametric modes are 
presented in three formats. These are: a table of summary of results in terms of Rz, MSE, 
IVF and r2 as presented in Table 5.12, pulse response ordinates as presented in Figure 5.12 

(a and b), and hydrographs of estimated and observed discharges as given in Figure 5.13 
(a -  f).

The r2 is a value that is used to assess a given model’s improvement over that of the 
SLM. It gives the value of the proportion of the variance accounted for by the more 
substantive model, which is not accounted for by the SLM. From the table of the summary of 
results, it is observed that for a memory length of 20 days, the model efficiencies in non- 
parametric mode are about 55 % and 25 % during the calibration and verification periods 
respectively. In parametric mode the efficiencies are about 59 % and 20 % in calibration and 
verification periods respectively. This indicates a fairly notable improvement during 
calibration and a fairly notable decline during verification periods.

Comparison of the results of the non-parametric LPM with those of the SLM shows 
that in the calibration period there is some marked improvement in efficiency, of about 15 % 
in non-parametric and about 29 % in parametric modes respectively, over the SLM during
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the calibration period as shown by the r2 values which indicate the proportion of the 
remaining variance unaccounted for by the SLM but subsequently accounted for by the 
LPM. There is, however a marked decline in efficiency, of about 5 % in non-parametric and 
about 12 % in parametric modes respectively during the verification period as shown by the 
negative lvalues.

Table 5.12: Summary of the results obtained with the LPM in simulation and parametric 

modes. R2 is the measure of model efficiency; IVF is the index of volumetric ratio and MSE 
is the mean square error.

Test period Mode! Performance
Non parametric mode Parametric mode
MSE R (%) IVF r2 (%) R2 (%) r" (%)

Calibration 2.95 55.0 1.00 15.1 59.2 28.5
Verification 7.71 24.7 0.72 -5.4 20.3 -11.9

When compared with the results of SLM, the LPM is observed to be fairly better than 
the SLM for the Nyando catchment during the calibration period as shown by the positive r2 
value. However, the LPM performs worse than the SLM during the verification period as 
indicated by the negative r2 value, which stands at -5.4 % in non-parametric and about 
-11.9 % in parametric modes respectively.

The seasonal component of LPM seems to account for a larger percentage of the 
initial variance during the calibration period than the SLM. The seasonal component 
accounts for about 15 % of the initial variance during calibration but fails to account for 5 % 
of initial variance during verification, which was unaccounted for by the SLM. Even though 

the SLM performed fairly well for the catchment, the combination of the seasonal and the 
linear component of LPM appear to have improved the results significantly during the 
calibration period. During the verification period however, there is virtually no difference 
between the results of SLM and LPM both of which may be considered poor. The poor 
performance of LPM during verification may be due to the fact that Nyando catchmet does 
not exhibit highly seasonal variations. LPM is known to perform well in catchments that 
exhibit highly seasonal variations in rainfall. This is possibly why the results of LPM and 
those of the SLM are of the same order of efficiency.

The IVF is 1.0 during the calibration period. This is the ideal value and is an indication that 
the volume of the computed output is about the same as the volume of the observed output.

94



During verification the IVF is 0.72. Unlike in the calibration period, the IVF is almost always 

expected to be less than unity during verification period. This is because the seasonal 

discharge series obtained in calibration is used to obtain the perturbation series in the 

verification period.

Ordinates (1 Aimestep) Catchment: NYANDO 
Model: LPM
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Figure 5.12a: Graphical representation of non-parametric form of the pulse response 

ordinates over the Nyando catchment for LPM
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Figure 5.12b: Graphical representation of parametric form of the pulse response 

ordinates over the Nyando catchment for LPM.
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Figures 5.13 (a -  f): Graphical representation of rainfall, observed and estimated discharges 

over the Nyando catchment for the LPM for the years 1985 to 1990.



The resulting sum of perturbations is not necessarily equal to zero as is the case during the 
calibration period. The results here indicate that the IVF deviates significantly from unity 
during verification period. Such deviations from unity would possibly be brought about by 
inadequate estimation of the daily seasonal mean series.

Figures 5.12 (a -  f) present the constrained and unconstrained pulse response 
ordinate estimates obtained with the LPM. On average the unconstrained ordinates, as 
shown in Figure 5.12a, exhibit a general decrease in size from left to right, which when 
smoothed take on an exponential shape as expected during the recessional phase.

Just like in the case of SLM, the pulse response ordinates lack a clear recession in 
non-parametric mode. It is difficult to visually decide which of the two is better than the other 
as both of them exhibit more or less the same shape. Lack of a clear recession is a 
demonstration that there could be some feedback resulting from some kind of storage as 
discussed in the previous section. The lack of a clear recession indicates the problem of 
instability in estimation is equally severe in both SLM and LPM. It was therefore found 
necessary to impulse constraints on the shape of pulse responses. There was a clear 
recession when the shape was constrained as shown by the parametric linear perturbation 
model (PLPM) hydrograph.

Figures 5.13 (a -  f) shows the rainfall together with the observed and estimated 
discharges for the years 1985 to 1990. It is observed from these figures that LPM follows 
the same pattern as the one followed by the SLM where it overestimates discharge during 
low flow and underestimates it during high flow seasons. Flowever the deviations between 
the observed and estimated discharge values are generally smaller than those of SLM.
It is observed from the figure that the highest observed discharge value is about 358 
cumecs and corresponds to the estimated discharge value of about 150 cumecs. This is a 
slight improvement over the SLM. Both these values are somewhere at the beginning of 
May 1988 as shown in Figure 5.13d. The maximum estimated discharge is observed from 
the figure to be about 274 cumecs corresponding to the observed discharge of about 146 
cumecs.

The minimum observed discharge is about 1 cummec and corresponds to the 
estimated discharge of about -22 cumecs. Though the deviations from the observed values 
are still large, they are observed to be smaller than those obtained with the SLM, an 
indication that simulated flows from the LPM match the observed flows much better than 
those from the SLM.
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Optimised gain factor for the Nyando catchment was found to be about 0.28 for a memory 
length of 20 days. This is slightly bigger than that of the SLM, an indication that a slightly 
bigger proportion of rainfall would be converted to runoff when LPM is used than when SLM 

is used.

5.4.4 Linearly Varying Gain Factor Model (LVGFM)
Before the application of the LVGFM, it was necessary to first fit the auxiliary SLM to 

the rainfall-runoff data from the Nyando Catchment in order to determine the catchment 
wetness index z, from Equation 4.8. Using the simulated runoff from the auxiliary SLM, the 
LVGFM was then applied to daily data from the Nyando catchment by following the 
calibration procedure explained earlier. The memory length of the LVGFM weighting 
function was taken to be the same as that used for fitting the auxiliary SLM.

The model performance results in simulation mode are presented in three formats. 
These are: a table of summary of results as presented in Table 5.13, the pulse response 
ordinates as presented in Figures 5.14 (a -  f), and the hydrographs of estimated and 
observed discharges as given in Figure 5.15.

The results of R2 percentage of all the linear systems models are displayed in Table 
5.14 for the purpose of comparing the performance of these models amongst themselves.

Table 5.13: Summary of the results of application of the LVGFM in simulation mode. R2 is 
the measure of model efficiency; IVF is the index of volumetric ratio and MSE is the mean 
square error.

Test period Model Performance
MSE R2 (%) IVF _____

Calibration 1.83 68.7 0.94 40.9
Verification 7.8 27.9 0.60 -1.3

From the table, it is observed that the R2 efficiency is about 69 % and 28 % during 
calibration and verification periods respectively. There is a much better efficiency during 
calibration than those shown by either SLM or the LPM. This is clearly indicated by the r2 
value of about 41 %. This means that there is about 41 % improvement of the LVGFM over 
the SLM. This improvement could possibly be attributed to the model’s ability to incorporate 
a variable gain factor as opposed to the SLM, which assumes a constant gain factor. This



suggests that LVGFM is a potential model for the Nyando catchment. In the verification 

period however there is a decline in performance over the SLM. This is clearly observed in 

the last column of the table. It appears that the SLM performs better than the other linear 

systems models during the verification period.

The Index of Volumetric Fit (IVF) values are 0.94 and 0.60 during calibration and 

verification periods respectively. The large deviation during the verification period reflects 

the model’s tendency to estimate less volume than the observed volume during the 

verification period.

The mean square errors during calibration are less than those of the other two 

models. This suggests an improvement over the SLM and LPM respectively during the 

calibration period. However the mean square error during the verification is slightly higher 

than in the case of the other two models suggesting a decline in performance.

Figure 5.14 presents the pulse response ordinates as given by the LVGFM. It is 

observed from the figure that the pulse response ordinate estimates are not especially 

satisfactory in shape. They present a worse picture than any of the other two models as the 

decrease in magnitude of pulse response ordinates is not notable. In terms of lack of 

recession, these ordinates are worse than those of the other models. There is however no 

negative ordinate as was evident with the other models during translation time.

Figure 5.15 shows rainfall together with the observed and estimated discharges for the 

years 1985 to 1990. It is observed from these figures that LVGFM fits the data much better 

than either the SLM or the LPM.

O rd in ate s  
(1 /tim e s te p )

Catchment: N YA N D O
Model: LVGFM R e sp o n s e  function H (1 ,1 ,k ) :

Figure 5.14: Graphical representation of the pulse response ordinates over the Nyando

catchment for the LVGFM.
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Figures 5.15 (a -  f): Graphical representation of rainfall and, observed and estimated

discharges over the Nyando catchment from LVGFM for the years 1985 to 1990.
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t is observed from the figure that the maximum observed discharge value is about 358 
:umecs and it corresponds to the estimated value of about 282 cumecs. The maximum 
estimated discharge as observed from the figure is about 282 cumecs corresponding to the 
naximum observed discharge value of about 358 cumecs. These values occur at the 
>eginning of May 1988 as shown in Figure 5.15d.

Table 5.14: Comparison of results of the SLM model with the corresponding results of
the LPM and the LVGFM

Calibration v c i i n v a u v i i
Model SLM LPM LV G FM SLM LPM V G F LM

” R 2 (%) 47.0 55.0 68.7 28.8 24.7 27.9
r 2 (%) - 15.1 40 .9 - -5.1 -1 .3

The minimum observed discharge is about 1 cummec and corresponds to the 
estimated discharge of about 0.5 cumecs. The minimum estimated discharge as observed 
rom the figure is about 0 cumecs corresponding to the observed discharge of about 1 
:umec. These values are all found at the beginning of February 1988 as shown in Figure 
>.15d. These resuits show that the LVGFM estimated values are much closer to the 
ibserved values than in any of the other two models; further suggesting that this model 
:ould be more suited for the Nyando catchment than the other two.

The results of SLM and their comparison with those of LPM and LVGFM as 
iresented in Table 5.14 confirm that the linear hypothesis alone is not adequate for 
nodeling the rainfall-runoff transformation for the Nyando catchment. It is observed from the 
able that the efficiencies of the other models are notably higher than that of SLM during 
;alibration. The r2 values show that there is an improvement of about 15 % and 41 % during 
:alibration for the LPM and LVGFM respectively.

These results show that the LVGFM performs better than the other two models 
luring calibration when applied to the Nyando catchment. This suggests that other factors 
>esides the linear hypothesis should be considered during modeling. In this case the 
'ariable gain factor parameter introduced by the LVGFM and the seasonal component 
>arameter introduced by the LPM. Flowever the SLM seems to perform better than the other 
nodels during the verification periods as shown by the negative r2 values.
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5.4.5 Sol! Moisture Accounting and Routing (SMAR) Model
After the calibration of the SMAR model, it was applied to the Nyando catchment. 

The calibration and verification periods are the same as those used for the linear systems 
models. The final estimated discharge series of SMAR model was then calculated. The 
difference between observed and simulated runoff were squared and then summed and 
then R̂  was calculated using Equation 4.44. Results of fitting the SMAR model are 
presented in Tables 5.15 and 5.16,. which give the results of fitting the various model forms 
for both the calibration and verification periods for the Nyando catchment and in Figures 

5.16 and 5.17 (a — f).
A comparison of the results of the SMAR model with the corresponding results of the 

SLM, LPM and LVGFM was carried out and the results are presented in Table 5.17.
In the applications of this model, the memory length was chosen as 20 days, same 

as that of the linear systems models, and the warm up period, the time allowed for the 
model to adapt to the new environment, as 60 days.

The application was done in various configurations depending on the water balance 
parameters considered. Each of these configurations was considered as a sub-model.
These sub-models fall into three categories depending on the number of the water balance 
parameters they contain. These include those with one parameter only, two parameters only 
and those with three parameters only while the other parameters are set at their initial 

values.
The corresponding results are given in terms of the performance index (R )̂, the 

unconstrained objective function value (F) and the ratio of the mean estimated to the mean 
observed flow (IVF) in both calibration and verification periods as shown in the table.

It may be observed from the table that in the first five trials of one parameter model, 
each of the five water balance parameters accounts for over 70 % of the initial variance (F0) 
during calibration and over 41 % of the initial variance during verification periods 
respectively. The objective function value in all the five cases :s about 0.31 during the 
calibration period and about 0.9 during the verification period. This value is close to the 
desired value of zero especially during calibration. It was further observed that the volume 
ratio (ratio of the estimated to the observed mean discharge or IVF) in all the five cases was 
about unity, ranging from about 1.00 to 1.03 during calibration and between about 0.6 and 
0.7 during verification periods respectively. This ratio shows a close match between the 
observed and estimated discharge during calibration. However there is a discrepancy
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between the observed and estimated discharge during the verification period. The estimated 
discharge is always less than the observed discharge. This is an indication that the mode! 
tends to underestimate flow during the verification period.

It is clear from these results that the water balance parameters C, Z, Y, H and T, 
when taken individually, are of almost equal importance in their contributions to the model 
performance.

Table 5.15: Test results of various SMAR model configurations during the calibration and 
verification periods over the Nyando catchment. C is the parameter that controls potential 
evaporation; Z is the total storage capacity in the soil layers; Y is the parameter hat 
represents the maximum infiltration capacity; H is the parameter that represents the 
available soil moisture content of the first five layers and T is the parameter that represents 

the estimated pan evaporation.

Tria l M odel O p tim u m  pa ram e te r va lues C a lib ra tio n V e rific a tio n

C Z Y H T IVF F/day R '% IVF F/day Rz%

1 C 0.8 1.00 0.31 71.1 0.67 0.87 43.3

2 Z 36 1.02 0.31 71.0 0.69 0.88 42.5

3 Y 50 1.02 0.31 70.8 0.63 0.90 41.2

4 H 0.6 1.03 0.32 70.7 0.63 0.90 41.2

5 T 0.8 1.03 0.31 71.6 0.71 0.88 42.7

6 CH 0.8 0.6 1.00 0.31 71.2 0.69 0.86 44.0

7 ZH 36 0.6 1.03 0.34 68.6 0.66 0.91 40.7

8 CZ 0.8 36 1.01 0.35 67.9 0.64 0.96 37.0

9 CY 0.8 50 1.00 0.34 68.6 0.58 0.94 38.4

10 ZT 36 0.8 1.02 0.31 71.5 0.62 0.94 38.6

11 ZY 36 50 1.03 0.34 68.6 0.67 0.91 40.6

12 CHT 0.8 0.6 0.8 0.98 0.32 70.44 0.56 0.93 39.3

13 CYT 0.8 50 0.8 1.01 0.31 71.0 0.70 0.87 43.1

14 ZYT 36 50 0.8 1.02 0.32 70.7 0.63 0.90 41.0

15 ZHT 36 0.6 0.8 1.09 0.33 69.1 0.70 0.90 41.2

From the table we observe that in the first five trials of one parameter each, the three 
most sensitive parameters for the Nyando catchment taken individually are C, T and Z 
which account for about 71.1 % during calibration and 43.3 % during verification periods,
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71.6 % during calibration and 42.7 % during verification periods and 71.0 % during 
calibration and 42.5% during verification periods respectively, of the initial variance.

Considering that the error margins are small, the difference between the parameters 
is negligible. What this means on the ground is that the rate of evaporation (parameters C 
and T) may have a bigger influence on the flow regime over the Nyando catchment more 
than any other model component. The soil moisture content (parameter Z) is also an 
important factor in the catchment

In the next six trials, two parameters sub-models were tested. The CH combination 
gave a model efficiency of 71.2 % during calibration and 44.0 % during verification periods 
respectively compared with ZT with a model efficiency of 71.5 % during calibration and 38.6 
% during verification periods respectively. Although ZT combination has a slightly better 
efficiency during the calibration period, the CH combination was preferred due to the higher 
efficiency during the verification period. The efficiency of CH combination during verification 
period was the highest as observed from the table.

Addition of a third parameter in trials 11 to 16 does not improve the results in any 
notable way. Indeed the introduction of a third term generally lowers the efficiency of the 
model in both the calibration and verification periods as observed from the table. The best 
three-parameter sub model combination is CTY with efficiency values of 71.0 % during 
calibration and 43.1 % during verification periods respectively. This is less than that of CH 
combination or that of the single parameter C sub-model. It seems therefore, that there are 
no further improvements in efficiency obtained by the addition of a third water balance 
parameter. Apparently the extra complexity introduced by the third term does not translate 
into an improvement in efficiency. It was therefore decided that the evaporation decay (C) 
and direct runoff (H) parameters of the water balance component be chosen for the Nyando 

catchment. This resulted in the adoption of the CH combination sub-model.
The results of the chosen model configuration and the optimum water balance 

parameter values are presented in Table 5.16. It was observed from the table that the 
unconstrained value of the objective function was about 0.31 mnTday'1. The model 
efficiency was about 71.2 % during the calibration and 44.0 % during the verification periods 
respectively. There is a marked improvement of the SMAR mode! over the SLM as shown 
by the r2 values; about 46 % and 21 % in calibration and verification periods respectively. 

This improvement, which is obviously larger than that of either the LPM or the LVGFM,
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could possibly be attributed to the model’s ability to incorporate evaporation as an extra 
model component.

The volume ratio is about 1.00, which is a perfect fit during calibration and 0.69 during 
verification periods respectively. The corresponding water balance parameters are C = 0.8 
and H = 0.6.

Figure 5.16 presents the unit hydrograph ordinates for the SMAR model. It is 
observed from the figure that the pulse response ordinate estimates form a smooth 
exponential decay curve. The shape is quite satisfactory as it shows a clearly stable 
recession. The dear recession suggests the absence of feed back unlike in the case of the 
linear systems models. This is what is expected in a hydrological system as it implies high 
damping and stability.

Table 5.16: The chosen mode! configuration optimum parameters under volumetric 
constraint and the results of the SMAR Model. R2 is the measure of model efficiency; IVF is 
the index of volumetric ratio and MSE is the mean square error.

M o d e l  p a r a m e te r s C a l ib r e -t io n V e r i f i c a t io n
Configuration C H IVF F/day FT (%) ^  (%) IVF F/day FT (%) T  (%)
CH 0.8 0.6 1.00 0.31 71.2 45.7 0.69 0.86 44.0 21.3

Figures 5.18 (a -  f) show rainfall together with the observed and the SMAR model’s 
estimated discharges for the years 1985 to 1990. It is observed from these figures that the 
SMAR model fits the data much better than the linear systems models. The extremes are 
captured very well especially in 1988, as seen in Figure 5.18d, where the graph of the 
estimated discharge follows that of observed discharge very closely. There is no obvious 
overestimation or under estimation as was observed in the case of the linear systems 
models.

The maximum observed discharge value is about 358 cumecs. This corresponds to 
the estimated discharge value of about 210 cumecs. The maximum estimated discharge is 
observed to be about 274 cumecs and corresponds to the observed discharge of about 160 
cumecs. These values are observed in May 1988 as seen in Figure 5.16d.

The minimum observed discharge is about 1 cumec and corresponds to the 
estimated discharge of about 0.35 cumecs. The minimum estimated discharge as observed
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from the figure is about 0.2 cumecs corresponding to the observed discharge of about 2 
cumecs.

By and large, the application of the SMAR model has improved the efficiency 
compared to the SLM and LPM. The model efficiencies increased from about 47 % to 71 % 
for the SLM and from about 55 % to 71 % for the LPM in calibration.

The improvement over the LVGFM is not notable in calibration. The improvement 
was from about 69 % to 71 %. in verification however, there is a marked improvement; from 
about 28 % to 44 %. The results of the LVGFM and those of the SMAR model do not differ 
much during calibration. This is an indication that the two models are equally good in 
simulating flow during calibration over the Nyando catchment. However the SMAR model 
may be considered superior on account of its better performance than the LVGFM during 
the verification period. In both calibration and verification, it shows a marked over the SLM.

Although the maximum estimated discharge corresponding to the maximum 
observed discharge is less than that of LVGFM, the SMAR model may still be considered to 
ce superior to the LVGFM model since it has a higher efficiency than the LVGFM during the 
calibration and verification periods respectively. For example the observed discharge on the 
3ra of May 1988 is about 135 cumecs while the corresponding SMAR model estimated 
discharge on the same day is about 136 cumecs, a close estimate. The deviations between 
[he observed and the estimated discharge values are generally not quite serious with this 
model compared to those of linear systems models suggesting further that the model has a 
nigher potential than the linear systems models to become the model of choice for the 
Nyando catchment.

Table 5.17: Comparison of the results of the SMAR model with the corresponding results
of the SLM, LPM and LVGFM in simulation mode.

Calibration Verification
Model SLM LPM LVGFM SMAR SLM LPM LVGFM SMAR
R 2 (%) 47.0 55.0 68.7 71.2 28.8 24.7 27.9 44.0
r 2 (%) - 15.1 40.9 45.7 - -5.1 -1.3 21.3

It was observed from these results that the conceptual SMAR model performed 
consistently well for both calibration and verification periods. St performed much better than 
the linear systems models; showing a marked improvement in both calibration and
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verification periods, respectively, unlike the linear systems models whose performance were 

lower than that of SLM in verification. It would seem therefore that this model is more 

suitable for the Nyando catchment than the linear systems models. In the absence of the 

SMAR model, LVGFM, which does almost as well as the SMAR model during calibration, 

may be applied. However it should be noted that the model does worse during verification 

than the SMAR model.

Catchm ent: N Y A N D O
Ordinates (1 /tim estep) Model: SM AR

Unit hydrograph ordinates (S M A R  Model)

Figure 5.16: Graphical representation of the pulse response ordinates, estimated by the 

method of constrained least squares, over the Nyando catchment for the SMAR model.

A comparison of the results of the SMAR model with those of the linear systems 

models, as presented in Table 5.17, show a substantial improvement in the SMAR model 

performance over that of all the considered linear systems models in both calibration and 

verification periods.

This is shown by the r2 values, which show an improvement of about 46 % and 21 % 

over the SLM in calibration and verification periods respectively. These values are higher 

than those observed with the linear models, especially in verification where the substantive 

linear models performed worse than the SLM as indicated by the negative values of r2.

In terms of efficiency, the SMAR model is the best for the Nyando catchment followed 

closely by the LVGFM, then the LPM and the SLM respectively. It should also be noted that, 

whereas the efficiencies of the linear systems models are given in unconstrained mode, the 

efficiency of the conceptual SMAR model is given in constrained mode.
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(a) (b)

(c) (d)

(e) (f)

Figures 5.17 (a - f ) :  Graphical representation of rainfall, observed and estimated discharges 

for the period 1985 to 1990 over the Nyando catchment for the SMAR model.
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This means that the conceptual model would have performed even better if it were 
not constrained.

The ultimate success of any forecasting model depends on its ability to produce good 
results in simulation mode. So far the results have been given in simulation mode. The 

efficiencies of the models in this mode suggest that an improvement in the forecasts would 
be necessary in order to raise the level of forecasting efficiency before applying the models 
to real time forecasting. These improvements may possibly be achieved through updating of 
these forecasts. In the next section the performance of the linear systems models in 

updated mode is considered.

5.5 Autoregressive (AR) Updating Results

The autoregressive updating procedure was discussed in detail in Section 4.5.2.1. 

This procedure was used in an attempt to improve the forecasts using error corrections in 

AR. The efficiencies in simulation mode were far from being perfect since even for the best 

model for the catchment, the SMAR model, the efficiency was only about 70 % in the 

calibration and only about 40 % in the verification periods. There was need, therefore, to 

attempt to improve these efficiencies. One of the commonly used methods in forecasting 

improvements is the autoregressive (AR) updating where errors in the most recent forecast 

are used to correct the future model forecasts.

Table 5.18 presents the results of the third order autoregressive (AR) updating. This 

order was adopted since it gave the best efficiency values compared to the other orders. 

Orders lower than or higher than the third resulted in lower efficiencies than those of the 

third order.

Table 5.18: Summary of results of the AR updating. Cal stands for the calibration period and

Ver stands for the verification period.

del N o n -u p d a te d FT %  u p d a te d

u.>

Rz % IVF 1day lead 2day lead 3day lead 1day lead 2day lead 3day lead

Cal Ver Cal Ver Cal Ver Cal Ver Cal Ver Cal Ver Cal Ver Cal Ver

A 47.0 28.8 1.26 0.89 73.1 42.0 67.0 27.5 63.3 21.7 1.00 1.01 1.00 1.02 1.00 1.02

A 55.0 24.7 1.00 0.72 71.4 37.9 66.5 24.9 62.9 20.3 1.00 1.01 1.00 1.02 1.00 1.02

3 F M 68.7 27.9 0.94 0.60 79.0 39.9 77.8 30.0 75.1 26.5 1.00 1.02 1.00 1.04 1.00 1.05
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It is observed from the table that a lead-time of one day provides the highest 
efficiency in all the three models. The efficiency decreases progressively as one moves 
towards lead-times of more than one day both in calibration and verification periods. The 
longer the lead-time, the more the details that the model tends to “forget”. Hence, the 
decrease in efficiency of the model performance. The same scenario is also observed in the 
case of the index of volumetric fit (IVF). The values show that the models tend to 

overestimate flow during verification as shown by values of IVF that are greater than unity. 
In this study up to three day lead-time was considered since subsequent lead times gave 
progressively decreasing efficiencies. Lead-times of more than three days resulted in 
efficiencies that are less than sixty percent for both SLM and LPM.

Comparing the simulation and updated mode efficiencies, it is observed that there is 
a marked improvement in updated mode efficiencies over the simulated ones both in 
calibration and verification periods. The most notable improvement is that of SLM where the 
efficiency improved from 47.0 % to 73.1 % during calibration and from 28.8 % to 42.0 % 
during verification periods respectively. This is about 55.5 % and 45.8 % improvement 
during calibration and verification periods respectively.

In the case of the LPM the efficiency improved from 55.0 % to 71.4 % during 
calibration and from 24.7 % to 37.9 % during verification periods respectively. This is about 
29.8 % and 53.4 % improvement during calibration and verification periods respectively.

For the LVGFM, the efficiency improved from 68.7 % to 79.0 % during calibration and 
from 27.9 % to 39.9 % during verification periods respectively. This is equivalent to about
15.0 % and 43.0 % improvement during calibration and verification periods respectively. The 
improved forecasting efficiency is mainly due to the fact that the updating procedure largely 

eliminates the final forecasting errors.
Only the results of one-day lead-time are discussed in comparison to the simulation 

mode results since this is the lead-time that has the highest efficiency. Moving from one day 
lead time through to three days lead time, the efficiency decreases progressively from about 
73 % to 63 % for SLM during calibration and from about 42 % to 22 % during verification. 

For the LPM, the efficiency decreases from about 71 % to 63 % during calibration and from 
about 38 % to 20 % during verification, in the case of LVGFM, the decrease in efficiency is 
from only about 79 % to 75 % during calibration and from about 40 % to 27 % during 
verification.



Figures 5.18 (a -  c) present examples of results of estimated and observed 
discharge in updated mode for lead times of one and two days. The first row represents 
results of the simple linear model (SLM), the second row represents results of the linear 
perturbation model (LPM) and the third row represents results of the linearly varying gain 
factor model (LVGFM). It is observed from this figure that the maximum estimated discharge 
for SLM in updated mode is about 316 cumecs and 219 cumecs at one and two days lead 
times respectively. The maximum estimated discharge for LPM in this mode is about 334 
cumecs and 232 cumecs at one and two days lead times respectively. The corresponding 
estimates for LVGFM are about 377 cumecs and 302 cumecs at one and two days lead 
times respectively.

It is clear from these observations that the deviations from the observed discharge 
are smaller compared to those observed in simulation mode. The smallest deviation occurs 
in one-day lead-time. Though the deviations increase proportionately with increase in the 
lead-time they are still smaller than those observed in simulation mode. Hence the updating 
seems to have improved the forecasts quite significantly, as they are closer to what is 
observed. These results show that the three models gave better forecasts in updated mode 
for all the lead times considered than the simulation mode forecasts.

In terms of the index of volumetric fit (IVF), it is observed that the value is 1.00 
during the calibration and about 1.01 during the verification in all the time leads. These 
values show a significant improvement, a close match between the volumes of estimated 
and observed discharge, from the simulation mode values irrespective of the lead-time. 
These improvements are corroborated by the improved efficiency given by the R2 values.

Overall, the updating resulted in improved forecasting efficiency over that of 
simulation mode in all the models both in calibration and verification periods. During 
calibration, SLM had the highest improvement of about 56 % while LVGFM had the least 
improvement of about 15 %. On the other hand, LPM had the highest improvement of about 
53 % while LVGFM had the least improvement of about 43 % during verification. It is quite 
evident from these results that on average, the improvement during verification was high in 
all the models raging from about 43 % to 53 %. This contrasts with the improvement during 
calibration that ranges from about 15 % to 56 % with the only significant improvement being 

that of SLM.
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Figures 5.18 (a -  f): Updated forecasts for the SLM, LPM and the LVGFM over the Nyando 

catchment at lead times of one and two days respectively.
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From these results, we may conclude that generally the individual model’s forecasts 
in updated mode are better than the forecasts in simulation mode. It is therefore worthy to 
update the models since all the one-day lead forecast efficiencies are over 70 % during the 
calibration as it is observed from the table. It is also observed that SLM seems to be the one 
most responsive to the updating process. In updated mode, the efficiencies of SLM are 
actually superior to those of LPM in all the lead times both in calibration and verification as 

observed in Table 5.19.
It is observed from Table 5.19 that though the model performance progressively 

decreases with the length of lead-time, it generally remains high at above 50 % even at the 
lead-time of about six days. Of particular interest are forecasts of LVGFM, which remain at 
over 70 % throughout the six days time lead. This suggests that this model could be used to 
forecast flow and consequently flood episodes in the Nyando catchment with a lead-time of 
up to six days. This would give adequate time for possible evacuation of the affected 
communities or any other corrective measures.

Table 5.19: Summary of AR updating R2 results in calibration.

Model R2 % model performance
1day lead 2day lead 3day lead 4day lead 5day lead 6day lead

SLM 73.1 67.0 63.3 59.6 57.1 53.1
LPM 71.4 66.5 62.9 58.6 56.9 52.8
LVGFM 79.0 77.8 75.1 72.0 71.3 70.1



CHAPTER S
6.0 SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

The aim of this study was to assess a model, from among some existing ones that 
could be used to forecast flow over the Nyando catchment. This was done through the 
assessment of performance level of various models on data collected from the Nyando 
catchment. A brief highlight of the results and conclusions obtained from this study are 

presented in this chapter.

6.1 Summary And Conclusions
The data used in this study were generally of high quality as was revealed by the 

homogeneity test results presented in Tables 5.3 and 5.7, and in Figures 5.4,5.5 and 5.6. 
From the results of the study, all the rainfall, river flow and evaporation stations had highly 
homogeneous data. Each mass curve fitted on a single straight line suggesting that each of 
the three sets of data came from the same parent population. The trend line in all cases was 
a very good fit to the data with R  ̂values of over 99% for both rainfall and evaporation data 
while that of runoff was about 98%. These values indicated a very good fit of the trend line 
on all the data sets that were used. On the basis of these very high values of R̂ , data over 
the Nyando catchment was declared homogeneous.

When the models described in Chapter 4 of this study were applied to quality 
controlled data collected from the Nyando catchment, the results obtained indicated that of 
the four models applied to the Nyando catchment in simulation mode, the SMAR model 
showed the highest R̂  efficiency values, about 71 % in calibration and about 44 % in 
verification periods respectively as shown in Tables 5.16 and 5.17. It was closely followed 
by the LVGFM with R̂  efficiency values of about 69 % in calibration and 28 % in verification 
periods respectively as shown in Tables 5.13 and 5.14. The SLM gave the lowest Rz 
efficiency value of about 47 % in calibration while the LPM gave the lowest Rz efficiency 
value, about 25 % in verification period. This is shown in Table 5.17. Thus the conceptual 
SMAR model, with the highest efficiency values, 71 % and 44 %, in both calibration and 
verification periods, is apparently superior to the linear systems models that were tested 
over the Nyando catchment. Compared with the linear systems models, the conceptual 
SMAR model performed consistently better than the linear systems models in both 
calibration and verification periods. This confirmed the assumption that conceptual models,

114



"7

linear systems models.
Among the linear systems models, the LVGFM performed better than the other two 

models with value of about 69 % followed by the LPM at value of about 55 % and 
SLM at R  ̂ value of about 47 % in that order during calibration. The SLM, as indicated by 
the results of the model application in Table 5.17, is the most inferior of all the models 
applied to the Nyando catchment in simulation mode during calibration period. During 
verification period however, the results show that the LPM is inferior to all the other models.

Comparing the results obtained by the LVGFM and those of the SMAR model, the 
best two models for the Nyando catchment during calibration, we see that they are more or 
less the same during the calibration period. Flowever, the SMAR model performs much 
better than the LVGFM during verification period. The SMAR model is thus superior to the 
LVGFM when both are applied to the Nyando catchment.

In the updated mode, the LVGFM is the best model among the linear systems 
models, with output efficiency R̂  values close to 80 % in calibration and 40 % in verification. 
The LPM is found to be inferior to the other linear systems models both in calibration and 
verification as shown in Table 5.18. However, the SLM with efficiency of about 73 % in 
calibration and 42% in verification is observed to out perform the LVGFM in verification.

In conclusion this study has identified two important models for the Nyando 
catchmnet; one linear and the other conceptual. The two models, the conceptual Soil 
Moisture Accounting and Routing (SMAR) model and the linear systems analysis Linearly 
Varying Gain Factor Model (LVGFM), can give good forecasts of the flow for the Nyando 
River using rainfall as input. This can be useful for planning and rational use of water supply 
from Nyando River. In addition the models can be used as tools for early warning systems 
for the perennial flooding problem in Nyando.

6.2 Suggestions For Further Study

The results of this study are far from perfect. This suggests that there is need to carry 
out further investigations with a view to improving the model efficiencies further. Among the 
areas that require further investigations for this purpose are listed below:

(i) The daily averaged rainfall needs to be recalculated with a view to getting more 
representative values. The assumption that simple arithmetic mean method was
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adequate for the Nyando catchment may not have been correct. More substantive 
methods such as Thiessen Polygon or Isohyetal methods should be tried.

(ii) The discharge data should be investigated further with a view to improving the 
quality. Some discharge records are too low and do not look realistic. Such values 
should be investigated further and possibly be replaced with estimated values. 
The available records show that gauging station 1GD04, with a daily average 
discharge of about 5 cumecs, has data records that are smaller in value than 
upstream stations such as 1GD07, which has a daily average discharge of about 
10 cumecs. This is quite unusual as the downstream stations are expected to 
record higher values than those of upstream stations, unless there is some kind of 
a sink in between. 1GD04 is very near 1GD03 and the daily average discharge 
would therefore be expected to be closer to 17 cumecs, the daily average 
discharge at 1GD03. This is not the case and this anomaly calls for urgent 
investigation.

(iii) The results of unconstrained pulse ordinates show some form of instability in the 
Nyando catchment. The causes of these apparent instabilities should be 
investigated further with a view to further improving the models’ performance 
efficiency.
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