HE CHARACTERISTICS OF BONUS-ISSUING FIRMS IN ENYA: AN EMPIRICAL STUDY.

UNIVERSITY OF NAMEL

BY

AGUTU EVELYNE ACHIENG. REGISTRATION No. D/61/P/7898/97

management research paper submitted to the Department of Accounting, Faculty of mmerce, University of Nairobi, in partial fulfilment of the requirements for the degree of sters of Business Administration.

JUNE 2000.

UNIVERSITY OF NAIROBI LIBRARY 0282734 3

i

AGUTU EVERLYNE ACHIENG.

s research paper has been submitted for examination with my approval as the versity supervisor.

hAulter 3rd Aug 2001

OTIENO ODHIAMBO LUTHER.

DECLARATION.

search paper is my original work and has not been presented for a degree in any other sity.

AGUTU EVELYNE ACHIENG.

CONTENTS

Page

eclaration	ii
ontents	iii
cknowledgement	v
edication	vi
bstract	vii

HAPTER I: THE PROBLEM

1.1	Background to the Problem	1
1.2	Statement of the Problem	4
1.3	Objectives of the Study	5
1.4	Importance of the Study	6
1.5	Assumptions	6
1.6	Limitations to the study	7
1.7	Organisation of the Study	8
HAI	TER II: LITERATURE REVIEW	9
HAI	TER III: METHODOLOGY-DATA COLLECTION	
3.1	The Population and the Sample	20
3.2	Data Collection	20
3.3	The Model	21
3.4	Measurement of variables	25
3.5	Methods of analysis	25

HAPTER IV: RESULTS AND INTERPRETATIONS.

11	Findings and implications.	 27
4.1	r multigs and implications	 21

APTER V: CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER RESEARCH.

Conclusions	5	38
Recommend	dations for further research	39
FERENCES:		40

PENDICES.

pendix I		41
pendix 2		47
pendix 3		48
pendix 4		49
pendix 5		56
pendix 6		61
pendix 7		68
pendix 8		72
pendix 9		78
pendix 10	 ÷	83
pendix 11		87

BLES.

Table1	 28
Table 2	 28
Table 3	 30
Table 4	 33
Table5	 35

ACKNOWLEDGEMENT

titude first and foremost goes to my supervisor, Mr. Otieno Luther Odhiambo, for me through this project from its conception to its completion. Through his agement I realised that it is not because things are difficult that we do not dare, but s because we do not dare that they are difficult.

titude also goes to my boss, The Head of the Levy Inspectorate, Kenya Bureau of rds, Mr. S.O. Odongo who realised how much time I needed to put into my studies prefore allowed me to reschedule my office work accordingly so as to accommodate am also grateful to him for his constant encouragement and support during the times got thick'.

I thank my parents and siblings, my friends and colleagues [both in the office and in for their support and encouragement during my studies. It may not be possible to Il of them individually but their contribution towards the successful completion of dies is highly appreciated.

v

DEDICATION

hose who knew and believed that I would make it through it all and therefore gave stant encouragement towards that end, and to all those who thought and believed that I not. Both of you triggered a determination I had forgotten I had.

ABSRACT.

s such as that conducted by Grinblatt et al., (1984), have proven that Stock dividends fore than mere cosmetic changes. They appeal to investors because of their ological value, tax benefits and because they signal prospects of higher profits in the This study, by refining the Lev and Lakonishok's (1987) study, empirically igates the characteristics of the stock dividend firms quoted at the Nairobi Stock nge. It also documents a model for predicting the likelihood of a firm to issue stock nds.

study applies Discriminant Analysis to construct the predictive model. The eteristics of the firms are derived from the group means. Classification of the firms group is based on the number of times a firm has made the distributions. Those that never made the issue between 1991 to 1999 are classified in group 0, the ones that ssued once in group 1, twice in group 2 and thrice in group 3.

nodel when expressed in a quadratic function correctly predicts 82% of the firms into true groups. The results, based on an examination of fourteen financial statement d variables, also indicate that the firms that have never made the distributions have dividend payout ratios, dividend yield, return on investments and a higher percentage ital reserves in the total reserves. This is so because these variables are reduced in size event of an issue. The firms that have made the issues twice or more times have the st changes in cash from operations, earnings, growth in earnings, shareholders' funds that reserves as well as the lowest returns on investments. Re-capitalisation increases event thus increasing the earnings realised and consequently, the growth in gs.

equency in the issues is related to the firm size. Financial and industrial sectors have ghest concentration of the distributions. Some of the characteristics so established

n the Lev and Lakonishok's (1987) findings.

idy proves that only two (total reserves and dividend yield) out of the fourteen es are significant for prediction purposes. This means that managers may be using antitative considerations in deciding whether or not to issue bonus shares and thus ing that there exists a gap between finance theory and practice in the issue of Stock nds in Kenya.

TER I: THE PROBLEM. ckground to the Problem.

mes companies find themselves in need of more funds for investment into profitable or for expansion purposes. In seeking such funds, it is prudent that Finance rs first opt for the cheapest source (this presupposes that they need to be cost us in their search for the funds). There are internal as well as external sources of internal sources include retained earnings while external sources include debt and

king Order Theory (Myers, 1984), indicates that internal sources are the cheaper of funds. According to Myers, managers will first resort to using retained earnings noing investments rather than debt or equity, after which they will prefer debt rather nity as external financing. The use of retained earnings is advantageous because it is ost of financing compared to the issuing of new shares. Moreover the management control of the firm. Stock Dividends (also known as a "bonus" issue) fall within the on of the cheaper source of funds for investment. They are a way of raising al equity capital in a cost-effective way.

ividends merely represent a distribution of additional 'fully paid' shares to the shareholders. The new shares are issued in proportion to the shareholders' current s. Since the stock dividends neither cause expense decreases nor increases in the power, the total net worth remains unchanged. Simply and squarely put, there occurs an increase in the number of units through which ownership may be acquired nsed with, causing the value of each unit to decrease. Block and Hirt (1992) put it ock dividends result in the investor having more paper to tell him/her what he/she knew.

bunting terms it involves a transfer on the books, of an amount equal to the market of the distributed shares, from the reserves to the paid up capital. The bookkeeping involves debiting (reducing) the reserve account and crediting (increasing) the share account, with the amount involved (McMenamin, 1999). A capitalisation in this is a correction of an imbalance between the nominal value of the share capital and the alue of accumulated reserves (which together make up the total shareholders' funds). owever prudent that the distributions should only be made when managers do not the balance of retained earnings to constrain future cash dividend payments. This is e the inability to pay cash dividends may cause anxiety among the shareholders.

att et al., (1984) report that the Generally Accepted Accounting Principles (GAAPs), I in the U.S.A. classifies stock dividends as distributions of upto 20% or less of the on shares already outstanding. Beyond 25% they are treated as splits and do not affect d earnings. Grinblatt et al., (1984) further indicate that for distributions between 20% %, the accounting principles grant discretion to the manager but are usually treated as lividends. However, the accounting requirements vary in the 25% to 100% range.

Ind Lakonishok (1987) established that the characteristics of firms issuing stock and differ markedly from those of stock split firms. Grinblatt, Masulis and Titman also noted that the market interprets announcements about stock dividends and stock differently. Both studies used these findings to arrive at the inference that stock and stock splits are different.

an economic standpoint, stock dividends and stock splits are very similar though for different purposes. Neither stock splits nor stock dividends involve cash payment eholders. Baker (1958) indicates that the difference between stock dividends and plits lies in the accounting treatment. A split has the effect of increasing the number tanding shares through a proportional decrease in the par value of the share but s no change in the total Capital Account or Surplus Account. The common stock is merely apportioned among the increased shares outstanding after the split up. ividends on the other hand require the transfer of a portion of earned surplus to the Account leaving unaltered the par or stated value of each share. Stock splits are y used after a sharp price increment to reduce the price, while stocks dividends are hes used to keep the stock price relatively constrained. With respect to the income nt, there is no change in the total shilling amount before and after stock dividends or blits.

es differ in their treatment of stock dividends. In some countries there are ons on the payment of stock dividends. In India for instance there is a maximum nit imposed on the bonus shares. The limit is 1:1 (Pandey, 1997). That is, a single hare for one paid-up share held by the existing shareholder. Within the ratio ceiling, eria are to be satisfied: These are the residual reserve and the profitability criteria.

sidual reserve criterion requires that the reserve remaining after the amount sed for bonus issue should be at least equal to 40 per cent of the increased paid-up This means that there needs to be an increase or growth in the reserves before issue can be made. In computing the minimum residual reserve, the redemption and capital reserve on account of assets revaluation are excluded while investment acce reserve is included. The profitability criterion on the other hand requires that 30 t of the previous three years' average pre-tax profit be at least equal to 10 per cent of reased paid-up capital (Pandey, 1997). The other condition is that bonus shares be issued in addition to, and not in lieu of, cash dividends.

re no restrictions in Kenya on the ratio of the bonus payable as yet. The ratios vary 2 by Kenya National Mills (announced on 11th March 1998), 5:1 by Unga Limited need also on 11th March 1998) 4:1by Dunlop (announced on 9th June 1998), to

on but a few. However, the Capital Markets Authority (henceforth abbreviated as has to approve an issue before it is declared. Other rules by the CMA on isation include; the restriction of the number of bonus shares that can be issued to the er authorised at the NSE. According to the CMA (Amendment) Rules, (1994), Legal No. 232, the board or shareholders must have approved capitalisation. This means e applicant must furnish the CMA with certified copies of the resolutions passed by ard or shareholders as required under the Companies Act, authorising the issue of the mares.

e case of bonus issues capitalised from reserves, the applicant must identify the es from which the bonus shares are to be capitalised and show a three-year schedule movements in the relevant reserve accounts. In a case where any of the reserves are d following a revaluation of the assets, the applicant must submit a copy of the nt appraisal report and a certificate from the auditors that the reserves are sufficient to the capitalisation of the bonus issues (The CMA [Amendment] Rules, 1994, Legal No. 232).

Statement of the Problem.

their tax benefit, prospects of higher future profits and psychological value (Pandey, stock dividends are an appealing phenomenon to investors. In practice it is observed mmediately after the announcement of a bonus issue, the market price of the my's share changes depending on the investors' expectations (Kaen, 1995). Empirical s support the fact that statistically significant abnormal returns accompany stock nds on the announcement date. McNichols and Dravid (1990) for instance established e issuance of stock dividends is followed by significant earnings increases. D, Barclays Bank (Kenya) Ltd made an issue, immediately after which announcement vas an increment in the stock price, indicating expectations of higher earnings and uently, the significance of the issues. All this goes to prove that Stock dividends are a to investors about the management's expectations and confidence about the firm's nance. They form the premise upon which the investors can draw inferences for nent decision purposes. It is therefore important for investors and managers to e their understanding of the stock dividend phenomenon so as to arrive at sound ns. Investors for instance can capitalise on these distributions.

udy, as an endeavour to give more insight into the stock dividend phenomenon in addresses two research questions: firstly, do the Lev and Lakonishok's (1987) s hold in the Kenyan context? And secondly, is it possible to predict the likelihood of istributions? Investors in Kenya lack a tool useful in predicting the companies that the bonus. This study therefore sets out to establish such a model.

bjectives of the Study.

jective of this study was to compare the financial statement-derived variables of the nies that have issued the bonus with those that have hitherto never made an issue. haracteristics of the stock dividend firms in Kenya were arrived at based on these risons.

udy also aimed at establishing whether or not there is sector concentration of the and possibly formulating a model, useful in predicting the issues, for the companies at the Nairobi Stock Exchange.

1.4. Importance of the Study.

The findings of this study is of importance to the prospective investors in the decision making process, and to the corporate managers who recommend the bonus issues. The model provides

investors and managers with information necessary in facilitating their decision making process. For instance, in making inferences about the increased probability of a near-term cash dividend at the announcement of the stock dividends.

The results of the study can also assist investment managers in making informed decisions on stock selection. Studies have indicated that there occurs mis-pricing of stocks due to inability to predict such corporate actions as bonus issues. The bonus issue prediction model will therefore assist in enhancing efficiency in the pricing mechanism of stocks.

1.5. Assumptions.

For the purposes of this study, the following assumptions shall apply:

- (i) That the coefficients used in the model are accurate and therefore represent the reality about the firms' operations. The coefficients are assumed accurate having been certified so by the auditors.
- (ii) That the limitations of the uses of accounting numbers do not apply and therefore ratios can be used for estimation and prediction purposes.
- (iii) That the variables used in the model are the only determinants of the likelihood of

an issue. Other factors (non-quantifiable) such as the tendency of some directors to authorise the issues are held constant.

- (iv) Accounting method choice is an important factor affecting reported financial statement numbers, for example, LIFO (last in first out) results in higher cost of goods sold than do other methods during inflationary periods. This study assumes that there is no effect on financial statement numbers of alternative accounting methods.
- (v) Where ratio analysis is done from financial statement variables unadjusted for inflation, distortions may arise causing difficulties in comparisons for example the value of the fixed assets will be overstated. For the purposes of this study, the assumption is made that there is no inflation and hence the value of money remains constant.

1.6. Limitations of the Study.

The assumptions made above form some of the limitations of the study. Without them the findings of this study are inaccurate (the validity of the model developed should therefore be assessed based on these assumptions). For instance, the assumption that the quantifiable factors are the only influencing factors in the issuance of stock dividends does not in the least represent the reality. The study therefore fails to incorporate the Baker and Phillip's (1993) findings that the dominant motive for paying the stock dividends is to maintain the firm's historical practice.

Notice should also be made of the fact that the control sample consisted of the 11 firms that have hitherto never made any stock dividend distributions while the test sample had 39 firms. This variance in sizes of the samples may cause biases in the analysis.

1.7 Organisation of the Study.

This paper has the following organisation. Section I presents the background to the problem, statement of the problem, the importance, objectives, limitations and assumptions of the study as well as a brief review of the empirical literature on stock

dividends and the hypotheses put forward to explain their issuance. Section II contains the methodology used in the analysis of the data while Section III presents the findings and their interpretations. Section IV presents the conclusion and the suggestions on areas that need further research.

2.1. LITREATURE REVIEW.

Financial planning, analysis and decision-making are all based on the information derived from financial statements. Financial statement information is of importance especially in improving the quality and speed of the decisions to be made. The availability of competing information sources and the potential of the information to reduce uncertainty both influence whether this improvement is expected to occur (Foster, 1986). From the investors' point of view, predicting the future is what financial statement analysis is all about, while from the management's point of view financial statement analysis is useful both as a way to anticipate future conditions and more importantly as a starting point for planning actions that will influence the future courses of events.

Studies on the uses of financial statements, (for instance, Otieno, 1987, and Beaver, 1966), assume that such statements contain useful information. Based on this assumption, these statements have been used for various purposes, some of which include; forecasting firm performance, estimating or predicting firm specific variables such as risk and dividend yield, predicting corporate failure, and assessing the credit worthiness of firms. Other objectives of financial statements include providing information on the changes in economic resources and variables, as well as providing information on the obligations and performance of the firm.

Financial statements are preferred over other competing sources of information on a firm's operations on various grounds (Foster, 1986). These include:

- (i) the fact that financial statements focus directly on the variables of interest,
- (ii) that these statements are certified by auditors and hence are reliable,

- (iii) that the statements can be produced at a comparatively low cost, particularly from the users point of view,
- (iv) And lastly, that financial statement information is a more timely information source.

Analysts have focused on the predictive capability as well as the diagnostic role of the accounting numbers derived from the financial statements and used them extensively as a tool in financial analysis. These numbers are believed to form a critical background on the item(s) of the user's interests. However, there are mixed views on the power of ratios in their use for prediction purposes. Otieno (1987) reports that Beaver (1966), in his support of the power of ratios in predictions (due to their informational content), focused his study on whether ratios discriminate between failed and non-failed firms. Beaver (1966) examined the predictive power of thirty different ratios and established that ratios can be used to predict corporate failure as early as five years prior to the failure.

On the contrary, Johnson (1970) held that ratios do not contain information about alternative strategies and the investing economic conditions, such as mergers and deferrals, confronting management and investors.

Ratios have also been used to determine; the extent to which a firm has used its long term solvency by borrowing funds; the operating efficiency and performance of the firm; the extent to which the firm is utilising its assets in generating sales revenue and the ability of the firm to meet its current obligations. Other practical applications of the ratios have been in credit and security analysis. Security analysis focuses on the long-term profitability of the firm. Credit analysis on the other hand employs the use of current/quick-asset ratio to establish the firm's ability to pay its debts and the debt/equity ratio to determine the firm's survival in the long run.

Altman (1968) focused on credit analysis. He combined a set of ratios to form a single measure important in predicting corporate bankruptcy. His study was based on 66 firms, half of which went bankrupt. He established 5 ratios as being efficient in predicting corporate bankruptcy. These include: net working capital to total assets, retained earnings to total assets, earnings before interests and taxes (henceforth abbreviated as EBIT) to total assets, market value of total equity to book value of debt and sales to total assets. He established the function:

$Z = 0.012X_1 + 0.014X_2 + 0.033X_3 + 0.006X_4 + 0.999X_5$

Where; X_1 to X_5 represent the ratios; net working capital to total assets, retained earnings to total assets, EBIT to total assets, market value of total equity to book value of debt and sales to total assets respectively, and the Z is the discriminant function score of the firm.

To derive meaning from the ratios, it is important to compare a firm's ratios with those of its benchmarks. Ratios would be meaningless without a reference point. Comparisons can be indicative of the extent to which a firm deviates from the norm (where the norm is the reference point, which in this case is the company used as the benchmark, or the industry average). Caution should be taken in using the ratios since there are limitations to their use. These limitations include:

- (i) The lack of an appropriate basis of comparison (the industry average may not be an appropriate reference point in the case where the companies use different accounting principles).
- (ii) the fact that interpretations are rendered inaccurate due to price changes,

UNIVERSITY OF NAIRULA

or expected increases in earnings.

Woolridge (1983) established a relationship between stock dividend size and the investors' return. His conclusion was that stock dividends but not stock splits might be effective as a signalling device. He concluded so because stock dividend announcements, in his study of the daily returns around 317 stock dividends, were usually accompanied by earnings announcements or cash dividend payments. McNichols and Dravid (1990), also established a correlation that point out that the management's choice of split factor signals private information about future earnings and that investors revise their beliefs about the firm accordingly.

The attention and the reputation hypotheses are both offshoots of the signalling hypothesis. The attention hypothesis indicates that stock dividends trigger the reassessments of the firm's future cash flows, and hence attracting attention. Under-priced firms find such reassessments in their interests while overpriced firms do not. Under this hypothesis, there will be a price impact on the announcement date that reflects the average under-pricing of firms that choose to split their shares.

The reputation hypothesis (Ross, 1977) on the other hand postulates that the loss of reputation is one of the indirect costs associated with false signalling. Firms therefore reveal their information truthfully because it is prohibitively costly for low-value firms to mimic the financial decisions of high value firms. Heinkel (1984) indicates that firms maintain their reputation so as to have the opportunity to signal favourable information in the future.

The weakness of the reputation or the attention hypothesis is that they do not explain why firms use stock dividends and splits to convey information rather than straightforward press releases (Lev and Lakonishok, 1987). The use of stock dividends and splits for this purpose is that they are less likely to reveal useful information to competitors and that managers may be held liable for damages to stockholders should the information that is directly communicated to the market be incorrect. Stock dividends and splits being more ambiguous announcements, will not subject the firm and its management to such risks.

Grinblatt et al (1984) confirmed all the four hypotheses in their study. This confirmation thus disputes the notion about stock dividends and stock splits being mere cosmetic changes. In their examination of the valuation effects of stock dividends and stock splits, they established that, on average, there are post-announcement abnormal returns particularly around the ex-dates of stock dividends and stock splits. They explain that this upward revision of the firm's value cannot be attributed to any other contemporaneous announcements, but may be partially due to forecasts of imminent increases in cash dividends. However, a sub-sample of stocks that paid no dividends in the three years prior to the announcement displayed similar price behaviour. They thus concluded that some of the information content of stock dividends appeared to be directly associated with the firms' future cash flows. Based on their confirmation, the endeavour to establish a bonusforecasting model is therefore further justified.

Baker and Phillips (1993) points out another hypothesis they term " the 'Cash Substitution' hypothesis", which indicates that managers can conserve cash by issuing a stock dividend as a temporary substitute for either existing or contemplated cash dividends. No study, empirical or otherwise, has hitherto confirmed this position. In fact Baker and Phillips (1993) point out critiques from such scholars as Elgers and Murrey (1985) who in their study established that a poor cash position is not a factor in the decision to issue stock dividends.

Baker and Phillips (1993) also confirm that the dominant motive for paying stock dividends is to maintain the firm's historical practice. Their view is that most managers continue to pay the bonuses because they are apprehensive about the stockholder's reaction to changing the firm's historical stock dividend practice. They believe that shareholders expect stock dividends to continue once initiated.

Of all the aforementioned hypotheses, the signalling and the trading range hypotheses are most popular having been validated by studies.

More relevant to this study however is the Lev and Lakonishok (1987) study. Lev and Lakonishok (1987) investigated the reasons why firms split their stocks or distribute stock dividends and why the market acts favourably to these distributions. By comparing the operational performance, indicated mainly by growth rate in earnings and dividends, and other characteristics of firms that have split their stock and distributed stock dividends with those of a control group of non-distributing, albeit similar firms, they revealed systematic differences in firm performance and levels of stock prices. They conclude that stock dividends are therefore not just small stock splits. The two are different and hence intended for different purposes.

On comparison between issuing and no-issuing firms, they revealed that stock dividends are distributed by firms that only marginally out-perform similar non- distributing firms. Their evidence of relatively low prices of stock dividend paying firms and relatively small increments of stock prices led them to dismiss the other researchers' findings that stock dividends are intended to adjust stock prices to "normal levels".

The Lev and Lakonishok (1987) findings further indicate that stock dividend firms did enjoy a somewhat higher pre announcement earnings growth than control firms; yet the differences between the test and control firms for stock dividend cases were much smaller compared to those of the stock splits cases. For many sub - periods of stock dividend cases, the earnings differences between test and control were not statistically significant, for instance, the differences in the median earnings growth rates for each of the four quarters preceding the announcement were not statistically significant. The dividend growth in pre announcement period and the earnings behaviour hardly showed any differences between the test and the control sample. Infact, they note that most times, the dividend growth was higher for the control samples than for the stock dividend test sample. Stock dividend firms experienced, on average, a decline in their dividend yield relative to control firms in the three years prior to the stock dividend announcement. This study is a test of the validity of the Lev and Lakonishok's (1987) study, and hence is an attempt to confirm or dismiss their findings within the Kenyan context.

10

CHAPTER III: METHODOLOGY-DATA COLLECTION. 3.1. The Population and Sample.

The population consisted of all the firms (52) quoted on the Nairobi Stock Exchange for the period 1991 to 1999. The reason for the choice of this period was due to the availability of data. All the firms that have issued the bonus made up the test sample. These total to 39 between 1991 and 1999. Another sample, the control sample, was also constructed which consisted of firms that have not yet issued any bonuses. These were 11 by 1999.

3.2. Data Collection.

This was done by extracting the figures of the relevant items from the financial statements of the firms under the study for the period 1991 to 1999. The financial statements were obtained from the Nairobi Stock Exchange as well as from the various firms. The items extracted include; earnings, growth in earnings, reserve revenue, shareholders' funds, changes in cash from operations, earning power (ROI), firm size (asset base), the dividend yield, the dividend pay-out ratio, the percentage of capital reserves in total reserves, growth in capital reserves, growth in long term borrowing, growth in assets, and yearly changes in dividends.

The data available on the firms that have issued the stock dividends was for the period 1993 to 1999. However, the years 1991 and 1992 were included solely for the reason that events leading to the issue of a bonus may commence two or so years prior to the issue. This fact is reflected in the CMA rules (as mentioned in the introduction) which requires that a three-year schedule of the movements in the reserves from which bonus shares are capitalised be shown.

3.3. The Model-

The multivariate model used comprised of the aforementioned fourteen variables expressed in linear form thus:

$F = b_1 X_1 + b_2 X_2 + b_3 X_3 + b_4 X_4 + b_5 X_5 + b_6 X_6 + b_7 X_7 + b_8 X_8 + b_9 X_9 + b_{10} X_{10} + b_{11} X_{11} + b_{12} X_{12} + b_{13} X_{13} + b_{14} X_{14}.$

Where:

F is the bonus, (and is represented by 0 for the firms that have never distributed the stock dividends, 1 for a single issue, 2 for twice and 3 for cases of more than two issues).

X₁ is the earnings (as a measure of profitability),

X₂ is the growth rate in earnings,

X₃ is the reserve revenue,

X₄ is the shareholders' funds,

X₅ is the measure of changes in cash from operations,

X₆ is the earning power (ROI),

X7 is the particular firm's size (asset base),

X₈ is the dividend yield,

X₉ is the dividend payout ratio,

X₁₀ is the percentage of capital reserves in total reserves,

X₁₁ is the growth in capital reserves,

 X_{12} is the growth in long term borrowing,

X₁₃ is the growth in assets, and

X₁₄ is the yearly changes in dividends.

The above variables were selected based on the fact that they influence the issue of stock dividends. The paid-up share capital and retained earnings together make up the

shareholders' equity.

Shareholders' equity is the owners' claims to the net assets of a business entity. Retained Earnings are the total amount of a company's net incomes less its net losses and dividends declared since its inception. Earnings/accumulated profits arise from the use in the business of funds entrusted to the company, and represent a surplus accruing to the shareholders out of which dividends may be paid to them, and which if so not distributed, is ultimately attributable to the common shareholders. These earnings indicate the financial performance as well as the growth prospects of the company. Retained earnings therefore represent undistributed profits while the paid-up share capital is the amount of funds directly contributed by the shareholders. Stock dividends increase the paid-up capital. Net income increases the retained earnings while net losses and dividends decrease it. Where retained earnings become large relative to total shareholders' equity, stock dividends will be issued.

Dividends (the distributed earnings) represent the return to the investor who puts his/her money at risk in the corporation. They are a function of the level of earnings. A high earning power therefore implies that the earnings will increase, thus increasing the likelihood of a bonus issue. The earnings power for the purposes of this study is represented by the Return on Investments (henceforth abbreviated as ROI). ROI measures the efficiency of operations and is computed as EBIT divided by the capital employed. ROI is based on the earnings before interests and taxes because it indicates the profits as far as operations are concerned.

When investors evaluate whether or not to buy a stock at a given price per share, they take into consideration how much return they expect to receive in the form of dividends. A statistic useful in comparing the dividend paying performance of the different investment opportunities is the Dividend Yield [henceforth abbreviated as DY]. Dividend

Yield is computed as the dividend per share divided by the market value per share and evaluates the shareholders' returns in relation to the market value of the share. It also measures the payment that stockholders receive from their investments. Where dividends are constant and stock prices increase, dividend yield will decrease. Using the dividend yield, the payout ratio can be computed. One minus the dividend payout ratio gives the retention ratio. The Dividend Payout Ratio (henceforth abbreviated as DPR) indicates the percentage of earnings paid out in the form of dividends. The retention ratio when multiplied by the Return on Equity (ROE) gives the growth in owners' equity as a result of the retention policy.

8

An increase in cash also supports the issue of a bonus because then, the bonus can be followed by a payment of cash dividends thus maintaining the increased share price at that level. Where cash is low, stock dividends may still be issued. Cash flow per share of common stock is an important measure of the company's ability to pay dividends as well as its liabilities.

The other variable that affects the issue of stock dividends is capital reserves. Capital reserves result from the revaluation of assets. The assets of a business are the properties or economic resources owned by the business. Revaluation of Assets, if added to the reserves, leads to growth in capital reserves. An increase or decrease in the asset base can therefore affect the company's performance, growth and consequently the reserves, and hence the chances of a bonus issue.

Accumulated profits contribute to the company's reserves. Reserves may arise in three ways (Lee, 1984):

 By the contribution of capital moneys by shareholders over and above the nominal amount of their shares.

- (ii) By the accumulated profits, initially in the profit and loss account.
- (iii) And as aforementioned, by an upward revaluation of assets, with a countervailing adjustment to the owners' equity.

All reserves are represented in the books by credit balances and appear in the balance sheet as amounts added to the share capital to produce a subtotal of owners' equity. Reserves are alternatively classified as capital reserves and revenue reserves. A capital reserve is one which as a matter of legal requirements, prudence, or business policy, cannot or will not be distributed in dividends to shareholders through the profit and loss account. A revenue account on the other hand is one that is free for distribution. Capital reserves comprise of (i) and (ii) above. Accumulated profits may become capital by law or through company policy.

The principal revenue reserve is the profit and loss account, whose credit balance at any time represent net profits (less losses) after tax accrued since the inception of the company, and not distributed in dividends or otherwise appropriated. Examples of capital reserves are the share premium account and the capital redemption reserve fund. The share premium account can be capitalised by for instance, using the balance to pay up non-issued shares for distribution to the members as bonus shares.

When redeemable preference shares are redeemed, the 1948 Companies Act section 58 requires replacement of the par value of the shares by the proceeds of a fresh issue of shares of any class but not debentures. Or alternatively, by the transfer of an equivalent amount of distributable profits from the profit and loss account, or other revenue reserve, to the credit of a capital reserve. The profits so dealt with are forever undistributable except on liquidation or in a capital reduction scheme. The balance may be capitalised by a bonus issue of shares.

3.4. Measurement of Variables.

Growth in: assets, long term borrowing, capital reserves, and earnings as well as the proportion of capital reserves in the total reserves, yearly changes in dividends, dividend yield and ROI, were measured in percentages. The earnings, reserve revenue, shareholders' funds, and the firm size [asset base], were measured in millions of Kenya shillings. Dividend payout was measured in ratios. Averages were computed for each of the variables for the years 1993 to 1999 to smoothen out variations over the period.

3.5. Methods of Analysis.

Various researchers (indicated in the literature review) have focused on two approaches in their investigation of stock dividends: surveying of managers and the use of market data. This study applied the latter.

Tests were run to establish the nature of correlations among the fourteen variables. Kendall's and Spearman's correlation coefficients were established, the results of which are appended hereunder (appendix 4). To establish the characteristics of the stock dividend paying firms in Kenya, refinements were done on the Lev and Lakonishok's (1987) study so that some of the variables they used were discarded and others incorporated. This was especially so for modelling purposes.

The applicable independent variables in the study included; growth in earnings [GEARN], dividend yield [DY], Return on Investments [ROI], yearly changes in dividends [YCDIV], growth in total assets [GTASS], dividend payout ratio [DPR], percentage of capital reserves in total reserves [CATR], earnings [EARN], changes in cash from operations [CCASHOP], total reserves [TRES], shareholders' funds [SHRF] and total assets [TASS].

With the fifty two firms grouped under; 0 for the firms which have never issued the bonus, 1 for the firms that have made a single issue, 2 for twice, and 3 for more than twice, discriminant analysis was done. This was:

- To establish a linear discriminant function, so that the discriminant scores exhibit the property of maximising the ratio of between- and within-groups variability.
- [ii] To examine whether the discrimination established by the function can be generalised to the population, that is, establish whether there is a significant difference between the means of the independent variables taken together.

211

With the classification altered to; 0 for firms that have never made any issue, 1 for a single issue and 2 for more than once, discriminant analysis was repeated. In addition, multiple regression analysis was run to further test the model. The structure of discriminant analysis is similar to that of multiple regression analysis except that the dependent variable Y is in this case dichotomous instead of quantitative.

CHAPTER IV: RESULTS AND INTERPRETATIONS.

4.1. Findings and Implications.

The list of firms used in the analysis is contained in appendix 2. The list of firms as well as the dates the distributions were announced are contained in appendix 3. The summary of statistics for the comparison between the groups as well as the results from the correlation tests is contained in appendix 4.

Pearson's, Kendall's and Spearman's correlation coefficients established strong [near perfect] positive correlations between shareholders' funds, total assets, total reserves, earnings, changes in cash from operations and growth in earnings while indicating low [near perfect] negative correlations between most of the rest of the variables. These correlations meant that some of the variables [growth in total assets and growth in long-term borrowing] be omitted. Twelve variables were therefore used in the analysis.

The means/averages of the various variables are contained in appendix 5. For the entire sample the mean of the growth in earnings for the 51 observations was -22.4 millions, indicating that on average earnings have been on the decline between the years 1993 to 1999. The mean dividend yield was 7.1%, and the average return on investments was 13.8% while earnings averaged 222.6 millions of shillings. The yearly changes in dividends, growth in total assets, dividend payout ratio, the percentage of capital reserves in the total reserves, changes in cash from operations, total reserves, shareholders' funds and total assets averaged 24.4%, 25.6%, 45.16, 51.2%, 434.8, 1145 millions, 141.1 millions, and 5095.1 millions respectively.

											T	
Class	CART	CCAS HOP	DPR	DY	EARN	GEARN	GTASS	ROI	SHRF	TASS	TRES	YCDIV
0	65.2	205.3	52.2	9.6	164.8	-47.9	27.8	16.8	902.3	1607.05	608.00	19.9
1	49.2	428.7	44.7	6.3	172.1	25.6	27.03	14.8	1347.9	3280.9	1083.9	24.0
2	48.1	208.2	42.4	6.8	232.6	-148.8	19.4	14.7	1240.6	7438.6	1055.0	20.8
3	44.1	1170.6	40.2	6.4	516.3	31.8	24.2	6.8	2780.9	1156.4	2301.1	37.6
Total	51.8	443.7	45.3	7.1	229.6	-21.1	25.5	14.1	1431.2	4821.2	1144.4	24.4

TABLE 1: GROUP MEANS.

TABLE 2: GROUP STANDARD DEVIATIONS

Class	CATR	CCAS HOP	DPR	DY	EARN	GEARN	GTASS	ROI	SHRF	TASS	TRES	YCDIV
0	23.1	318.3	40.1	5.58	406.9	181.6	20.5	15.0	1682.8	3494.2	1015.2	45.7
1	26.9	625.7	24.8	2.76	252.5	89.6	32.5	13.1	1588.5	5637.2	1382.5	33.45
2	26.8	202.2	21.26	4.18	483.2	559.5	12.05	9.5	1751.7	17270.7	1490.4	13.87
3.	28.86	1715.7	13.56	1.66	647.0	10.16	13.2	2.97	2153.8	1517.4	1880.1	21.24
Total	26.6	813.7	26.8	3.84	407.5	256.98	24.8	12.2	1764.3	10240	1457	32.4

Based on the results of the group averages (as tabled above and also contained in appendix 6), the following characteristics can be inferred; the firms that have hitherto never made a bonus issue [group 0 firms] have higher mean of the percentage of capital reserves in the total reserves, dividend pay-out ratio, dividend yield and return on investments. This is in line with the expectations because in the event that a firm does not issue stock dividends, it should follow of logical necessity that these variables will grow [because they are reduced in the event of a bonus issue].

The firms that have issued stock dividends more than twice [Group 3 firms] have very high changes in cash from operations, earnings, growth in earnings, shareholders' funds, total assets, total reserves, and yearly changes in dividends, while they have the lowest return on investments. This low return on investments is due to the fact that profits cannot be realised in the immediate post investment time. Through reinvestment, the asset base expands while profits almost stagnate especially in the short run. Earnings being a function of the extent of investment, it follows that group 3 firms should register higher earnings. The high changes in cash from operations could be an indicator that these firms issue the bonus shares during the periods when they fall low on cash hence the issuance of stock dividends is for cash conservation purposes. This reason for the payment of bonus shares support the Lev and Lakonishok's [1987] as well as Eisemann and Moses' [1978] position as to why firms make such distributions, to conserve cash probably for reinvestment.

That group 3 firms have high earnings and growth in earnings stems from their reinvestment decisions and is in order with the Lev-Lakonishok's [1987] findings that stock dividend firms enjoy a somewhat higher earnings growth than those that have never made an issue. It can also be inferred from the findings that such firms issue the bonus shares to make implicit statements about their expected earnings growth. The high values of the shareholders' funds and the total assets indicate that group 3 firms are mainly big in size.

The results indicate therefore that the bigger the firms [the bigger the asset base] the more the number of issues. The growth in total assets has been more or less uniform among all the firms studied. Class 0 and Class 2 firms both registered a decline in their earnings growth whereas Class 3 firms, not surprisingly, had the highest. The total reserves is related to the frequencies in the issues such that the higher the total reserves the more the number of times a company has declared the distributions.

In all, the group 1 firms have means that are closest to the overall means thus making the group the mean group.

Put into	Group		ue Group			
groups	count	0	1	2	3	
0	11	8	5	I	1	
I	23	2	12	5	2	
2	9	l	2	3	0	
3	7	0	4	0	4	
Total N	50	11	23	9	7	
N correct	50	8	12	3	4	
Proportion	1.000	0.727	0.522	0.333	0.571	

TABLE 3: SUMMARY OF CLASSIFICATION (BYDISCRIMINANT ANALYSIS)

7

T

Τ

Г

N = 50 N correct = 27 Proportion correct = 0.540

Table 3 above indicates the classification summary of the discriminant analysis with the firms grouped under 0 [for the firms that have never made the distributions], 1 [for a single distribution], 2 [for twice], and 3 [for more than twice].

The discriminant analysis on groups defined by CLASS established the following function coefficients [the coefficients are hereby abbreviated as indicated on page 25];

[I] Function 1:

CLASS 0 = -12.989 - 0.002 EARN - 0.008 TRES + 0.164 CATR + 0.006 SHRF - 0.001 CCASHOP + 0.001 ROI + 0.1GTASS + 0.829 DY + 0.069 DPR + 0.021 YCDIV.

The variables GEARN and TASS had 0 as coefficients and hence were omitted from the function.

[II] Function 2:

CLASS 1 = -7.7 -0.006 EARN + 0.001 GEARN -0.006TRES + 0.125 CATR + 0.005 SHRF + 0.071 ROI + 0.095 GTASS + 0.389 DY + 0.051 DPR + 0.025 YCDIV.

The variables CCASHOP and TASS having 0 as their coefficients were omitted from the function.

[III] Function 3:

CLAS 2 = -7.88 -0.003 EARN - 0.003 GEARN - 0.003 TRES + 0.117 CATR + 0.002 SHRF - 0.002 CCASHOP + 0.087 ROI + 0.077 GTASS + 0.468 DY + 0.05 DPR + 0.019 YCDIV. The variable TASS had a 0 value and hence was omitted from the function.

[IV] Function 4:

CLASS 3= -7.895 + 0.001EARN + 0.001 GEARN - 0.001 TRES + 0.12 CATR + 0.001SHRF + 0.001 CCASHOP -0.011 ROI + 0.086 GTASS 0.371 DY + 0.046 DPR + 0.043 YCDIV.

54% of the firms were correctly put in their true groups with 72.7%, 52.2%, 33.3%, and 57.1% of the firms in groups 0, 1, 2 and 3 respectively being classified in their true groups. The variable TASS was not important in the classification in this case and was therefore omitted.

Some of the firms that were wrongly predicted include: George Williamson Kenya Ltd, Standard Chartered Bank, BAT Kenya Ltd, and E.A. Breweries Ltd which were predicted to fall under group 3 where as they are group 1 firms. Limuru Tea Co. Ltd was predicted to be a group 2 firm whereas it belongs to group 0. Sasini Tea and Coffee Ltd, CMC Holdings, Diamond Trust Bank Ltd, and Carbacid Investments Ltd were predicted to belong to group 1 though are group 2 firms.

TABLE 4: SUMMARY OF CLASSIFICATION [DISCRIMINANT ANALYSIS]

Put into groups	Group	True group			
		0	t	2	
0	11	8	5	2	
]	23	3	15	6	
2	16	0	3	8	
Total N	50	11	23	16	
N correct	50	8	15	8	
Proportion	1.000	0.727	0.652	0.5000	

Г

N = 50 N correct = 31 Proportion correct = 0.620.

With groups 2 and 3 combined to form one group so that the firms that have issued bonuses more than twice all fall under group 2, 72.7%, 65.2%, and 50% of group 1,2, and 3 firms respectively were correctly predicted into their true groups. In overall, 62% of the 50 firms used in the analysis were correctly predicted. The variable TASS was once more omitted from all the three functions while the variable SHRF was found to be highly correlated with other predictors. The functions in this case are as follows:

[1] Function 1:

CLASS 0 = -13.208 - 0.002EARN + 0.001 GEARN - 0.008 TRES + 0.168 CATR + 0.006 SHRF - 0.001 CCASHOP - 0.007 ROI + 0.103 GTASS + 0.838 DY + 0.071 DPR + 0.023 YCDIV.

[II] Function 2:

CLASS 1 = -7.872 - 0.006 EARN + 0.001 GEARN - 0.006 TRES + 0.128 CATR + 0.005 SHRF + 0.072 ROI + 0.098 GTASS + 0.397 DY + 0.052 DPR + 0.025 YCDIV.

In this function, CCASHOP had the coefficient 0 and therefore was omitted.

[II] Function 3:

CLASS 2 = -7.475 - 0.001EARN - 0.001 GEARN - 0.002 TRES + 0.121 CATR + 0.002 SHRF + 0.043 ROI + 0.083 GTASS + 0.433 DY + 0.05 DPR + 0.031 YCDIV.

Put into	Group		True Group	
group	count	0	1	2
0	12	12	1	1
1	23	0	21	6
2	16	́О]	9
Total N	51	12	23	16
N correct	51	12	21	9
Proportion	1.00	1.000	0.913	0.563

TABLE 5: SUMMARY OF CLASSIFICATIONS (QUADRATIC).

N = 51 N correct = 42 Proportion correct = 0.824

The variables were expressed in a quadratic function to further test the model. With the firms grouped under 0, 1, and 2, yearly changes in dividends and total assets were dropped for being highly correlated with other predictors in the group 0. Total reserves and shareholders' funds were revealed to be highly correlated with other predictors in all the groups 1, 2 and 3 firms. Earnings, growth in earnings, total reserves, the percentage of capital reserves in the total reserves, Shareholders' funds, changes in cash from operations, return on investments, growth in total assets, dividend yield, and dividend pay-out ratio were therefore used in the prediction. Group 1, 2 and 3 firms were respectively, 100% 91.3% and 56.3% correctly predicted by the model. In all, 82.4% of the firms used in the analysis were correctly put in their true groups.

UNIVERSITY OF NATHUE

Except for the first case, the firms that have made more than two issues of the bonus since 1993 are difficult to predict into their true groups. This may be because combining groups 2 and 3 into the same group causes variations within the group and consequently causing difficulty in the dichotomy. Sasini Tea and Coffee Ltd, Diamond Trust Bank Ltd, Jubilee Insurance Co. Ltd, Pan African Insurance Co. Ltd, NIC Bank and Carbacid Investments Ltd were once more predicted to fall under group 1 though are group 2 firms. The Standard Newspapers Ltd was predicted to belong to 0 but is a group 1 firm, while I.C.D.C Investments Co. was predicted to belong to 0 while it is in group 2.

Regression analysis shows that the shareholders' funds is highly correlated with other predictor variables. The regression equation thus established was:

Class = 1.93 + 0.00036 EARN - 0.000422 gEARN + 0.00110 Tres - 0.00769 CaTR[-0.96] [1.71][-1.68] [4.98] [0.32] - 0.000869 ShrF + 0.000031 CcashOp + 0.0061 Rol + 0.000004 Tass -[0.51] [-1.46] [0.14] [0.15] 0.00407 gTAss - 0.0606 DY - 0.00339 DPR + 0.001146 ycDIV. [-0.88] [-1.83] [-0.69] [0.40]

s = 0.6883 R-sq = 33.8% R-sq [adj] = 12.4%

33.8% of the total is the percentage of the variation in the actual class that may be predicted by changes in the values of the independent variables [X's].

Car and General [K] Ltd [class 2], Kenya Airways Ltd [class 0], Housing Finance of Kenya [class 2] and Kenya Commercial Bank [class 2] exhibited unusual observations with earnings of -25, 1386, 180 and 1513 millions of shillings and standard deviations of 0.66, 0.62, 0.29 and 0.67 respectively. Housing Finance of Kenya had a large standard residual of

2.11. The Durbin-Watson statistic of 1.78 indicated the absence of serial correlation.

That total assets was omitted from all the functions is an indicator that the firm size is not a major factor for consideration in predicting the likelihood of a company to issue the distributions (the firm size does not influence a firm's re-investment decision). The only variables proven significant in the regression analysis are Total Reserves and Dividend Yield with t-values of 1.71 and -1.83 and p-values of 0.095 and 0.076 respectively. The rest of the variables incorporated in the model are not significant in explaining the class variations. The significance of total reserves as a variable in the analysis stems from the fact that it is the variable out of which a capitalisation for a bonus issue is made. An issue therefore directly reduces the total reserves. The dividend yield on the other hand indicates the dividend paying performance of the firm.

CHAPTER V: CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER RESEARCH.

5.1. Conclusions.

This study has examined the characteristics of the bonus-issuing firms quoted at the Nairobi Stock Exchange. It has established that, on average, those firms that have hitherto never issued stock dividends have higher dividend payout ratios, dividend yield, return on investments and a higher percentage of capital reserves in the total reserves. Those firms that have made the issues more than twice have the highest changes in cash from operations, earnings, growth in earnings, shareholders' funds and total reserves but also have the lowest return on investments.

Lastly, the frequencies in the issues are related to the firm size (the higher the total assets the more the issues the firm has made). On examination of the concentration of stock dividends in the various sectors, by comparing across industries the frequencies of such distributions, industry concentration could be detected in the financial and industrial sectors. Since 1991, the Agriculture sector has had 7 distributions, Commercial sector 11, Financial sector 25, and Industrial sector, 20 distributions. This may be an indicator that the financial and industrial sectors are high growth sectors.

Out of the 14 variables that influence the decision to make the distribution of bonus shares, only two are significant thus indicating that the managers use variables other than the quantifiable ones to arrive at their decision concerning stock dividends. This space between finance theory and practice questions these managers' use of financial data, and consequently their integrity in their financial planning, analysis and decision making processes. The important question is: what do they base their decisions on whether or not to distribute bonus shares when it is so evident that they are ignorant of the capability of

accounting information to provide background to their analyses. The issue of stock dividends in Kenya is therefore a matter of historical practice (reference to the precedence) as opposed to the firm dynamics.

5.2. Recommendations for Further Research.

The results of this study raise a number of issues that could be addressed in future research. Firstly, prior studies have implied that the distributions of stock dividends are unexpected, at least from the shareholders' point of view. However with a predictive model (indicating that the issues can now be expected), it would be worthwhile to test whether the reaction of the stock prices at the announcement of the issues would be the same (whether the prices would increase).

The study also established that those firms that have issued the stock dividends more than twice have low ROI, (there is an inverse relationship between the number of issues of the stock dividends and the investors' returns on their investments). Woolridge [1983], in his study, established a positive relationship between the stock dividend size and the investors' announcement day returns. It may also be necessary to test the validity of this relationship in the Kenyan context.

Lastly, research should be carried out to explain why some firms were in all the cases predicted in wrong groups. What is it they have in common that makes them difficult to predict into their true groups?

ķ

REFERENCES

Altman, E. I., "Financial Ratios, Discrminant Analysis And Prediction of Corporate Bankruptcy", *The Journal of Finance*, September 1968, pp 589-609.

Altman, E. I., Avery R. B., Eisenbeis, R.A., and Sinkey, J.F., *Application Of Classification Techniques In Business Banking And Finance*. Greenwich, Conn. JIA Press, 1981.

Baker, A. C, Evaluation of Stock Dividends, *Harvard Business Review*, 36 July – August, 1958

Baker H. K and Gallagher P. L "Management's View of stock splits" *Financial Management Journal*, summer 1980.

Baker H. K., and Phillips A. L., "Why companies issue Stock Dividends", *Advances in Business Financial Management: A Collection of Readings*, (edition 2), Dryden Press, Fort Worth, 1996.

Block B. S and Hirt G. A Foundations of Financial Management 6th Edition, Irwin, Boston, 1992.

Brealey R and Myers S., Principles of Corporate Finance New York: Mc Graw-Hill, 1981.

Brigham F. E. & Gapenski L. C. Intermediate Financial Management (3rd Edition), Dryden Press, Orlando, 1985

Dale G. B and peppers L. C Business Fluctuations: Forecasting Techniques and

Applications (2nd Edition) Prentice-Hall international, New Jersey, 1993.

Easterbook F H; "Two Agency-Cost Explanations Of Dividends" *The American Economic Review*, September 1984 Vol. 74 No. 4

Eisemann P. and Moses E. A "Stock Dividends' Management's View" *Financial Analysts Journal* July - August 1978.

Elgers P. T., and Murray D, "Financial Characteristics Related to Managements' Stock Dividends and Stock Split Decisions", *Journal of Finance and Accounting*, Winter 1985.

Fama, E. F., Fisher, L., Jensen, C. M., and Roll, R., "The Adjustment Of Stock Prices To New Information", *International Economic Review*, February 1969, pp 1-21.

Foster, T. W. and Vickrey, D.,"The Information Content Of Stock Dividends Announcements", *The Accounting Review*, April 1978, pp 360-370.

Grinblatt M.S, Masulis R.W, Titman S. "The Valuation effects of Splits and Stock Dividends, *Journal of Financial Economics*, 13 (1984).

Johnson J, Econometric Methods (3rd Edition) McGraw-Hill, Singapore 1991.

Kaen F. R. Corporate Finance, Blackwell. Cambridge, 1995.

Lakonishok J and Lev B; "Stock Splits And Stock Dividends: Why, Who and When" *Journal of Finance*, 42 (September 1987), pp 913-32.

Lee, G.A., Modern Financial Accounting, 3rd edition, Van Nostrand Reinhold co. Ltd,

Berkshire, 1984.

McNichols M., and Dravid J., "Stock Dividends, Stock Splits and signalling" *Journal of Finance* Vol. XLV.No. 3, July 1990

McMenamin, J. Financial Management; An Introduction, Routledge, London, 1999.

Miller, M., and Modigliani, F., "Dividend Policy, Growth, and the Valuation of Shares", *Journal of Business*, October 1961, 34, 411-33.

Otieno, O. L., Ratios-Strengths and Weaknesses, The Accountant, July/September 1987.

Pandey I. M; Financial Management, (7th Ed) Vikas, Delhi 1997.

Ross, S. S., "The Determination Of Financial Structure: The Incentive Signalling Approach", *Bell Journal Of Economics*, Spring 1977, 8, 23-40.

The CMA (Amendment) Rules, 1994, Legal Notice No. 232.

Woolridge J.R "Stock Dividends as Signals", *Journal of Financial Research* Vol. VI No. 1 spring 1983.

APPENDIX L

The Application of Discriminant Analysis.

Discriminant analysis is a statistical tool that can help group observations into two or more groupings e.g. in the selection of accounts, it can help decide which prospective accounts to accept or reject on the basis of certain relevant variables. This type of analysis is similar to regression analysis but assumes that the observations come from two different universes i.e. good and bad accounts in the case of accounts selection.

Example:

In the case of the selection of accounts, two characteristics of trade credit applicants may be considered: the quick, or acid test, ratio and the ratio of net worth to total assets. For purposes of experiment, open book credit is extended to all new credit applicants for a sample period. The quick ratio of each account, its net-worth-to-total-assets ratio as well as whether it defaults payment is recorded. If the account defaults, it is classified as a bad account; if it pays in a reasonable period of time, it is classified as a good account. The next step then is to determine a linear discriminant analysis with two independent variables and to determine the predictive value of these variables for the behaviour of the dependent variable, whether the account is good or bad.

The quick ratios and net worth/total assets ratios for each account is plotted on a scatter diagram as follows:

The circles represent bad accounts and the squares represent good accounts. Using the two independent variables, the linear boundary line that best discriminates between good and bad accounts can then be found. The parameters or weights of the following discriminant function need be found:

$f_1 = a_i (X_1) + a_2 (X_2)$

Where X_1 is the quick ratio of the firm, X_2 is its net-worth-to-total-assets ratio, and a_1 and a_2 are the parameters or weights to be computed. The aim is to obtain parameter values such that the average or mean value of f_g for the above equation for good accounts will be significantly larger than the average value of f_b for bad accounts. This notion is illustrated in the diagram below, where the discriminant function value is along the horizontal axis, and the probability of occurrence is along the vertical.

UNIVERSITY OF MARK WWER KABETE LIBRARY

In the figure, two universes of credit applicants are shown: good to the right and bad to the left. The average value, f_b , for bad accounts is much lower than the average value, f_g , for good accounts, but the two universes overlap. The smaller the overlap, the better the ability of the Discriminant Analysis to predict good and bad accounts i.e., it is desirable that the averages or means of the two distributions, f_b and f_g , be as apart as possible.

The coefficients; a_1 and a_2 in the disciminant function can be computed mathematically from the sample data by;

$$a_{1} = \frac{Szzdx - Sxzdz}{SzzSxx - Sxz^{2}}$$
$$a_{2} = \frac{Sxxdz - Sxzdx}{SzzSxx - Sxzdx}$$

$$SzzSxx - Sxz^2$$

Where Sxx and Szz represent the variances of variables X_1 and X_2 , respectively, and Sxz is the covariance of the variables X_1 and X_2 . The difference between the average of X_{1s} for good accounts and the average for X_{1s} for bad accounts is represented by dx. Similarly, dz represents the difference between the average of the X_{2s} for good accounts and the $X_{2s, for}$ bad accounts.

Solving for a_1 and a_2 , the parameters of the linear discriminant function is obtained. The ratio a_1/a_2 determines the slope of the discriminant boundary line. The minimum cut-off value of the function is then determined. The idea is to refuse credit to those accounts with values of f below the cut-off value and extend credit to those with f values above the cut-off value. In theory this involves finding the discriminant function value denoted by f* in the second diagram. Using this value for cut-off purposes will minimise the prediction of good accounts when they are bad and the prediction of bad accounts when they are good. To determine the cut-off value in practice, one would begin by calculating the f₁, for each account given the parameters in the equation:

$$f_i = a_1 (X_1) + a_2 (X_2)$$

(SOURCE: Altman, E.I., 1968).

APPENDIX 2: QUATED FIRMS AND VARIABLE VALUES.

ALL		ДА	<u>Z: U</u>	UALLE			AIN	<u>YA</u>	LAD			U.S.		
apany	Ind	Class	Earn	gEarn	TRes	CaTR	ShrF	CcashOp	Rol	TAss	e e	DY	DPR	ycDI\
Bond Kenya Ltd.	Α	1	266.3	243.1	3999.3	74.81	4444	745.0	15.31	5811	35.55	4.55	70.39	2.
-4- I 10	Α	0	17.3	-156.4	135.1	67.11	120	70.4	24.98	167	31.19	21.95	31.89	89.
Williamson Kenya Ltd	Α	1	91.9	147.8	1011.7	64. 65	1080	161.6	11.26	1384	24.67	3.46	37.83	72.
· [#d	Α	1	130.6	54.9	1337.5	50.94	1483	255.7	10.95	1753	37.65	2.70	34.69	24.
-bonia Tea Company Ltd*	Α	1	28.0	65.5	324.3	67.76	340	44.8	10.70	402	20.59	3.52	21.46	67.
Tea Company Ltd.	Α	0	16.0	56.5	18.4	40.00	22	19.0	56.97	41	23.10	12.81	85.65	56.
mieta Ranching Ltd	Α	0	15.3	-509.5	553.5	92.24	616	\$0.8	2.94	594	77.39	5.17	-16.49	13.
Vipingo Plantations	Α	1	56.8	17.7	160.2	51.91	435	66.1	13.84	765	5.78	3.86	30.37	36.
ni Tea & Coffee Ltd.	Α	2	113.2	45.1	1238.5	56.28	1393	190.9	21.49	1521	44.44	8.52	78.50	21.
Baumann & Co Ltd	С	1	15.0	-9.7	277.2	35.28	296	13.5	5.07	405	17.24	6.81	19.58	11.
& General (K) Ltd	С	2	-24.5	-1640.5	367.3	107.78	467	47.9	5.46	804	-0.56	0.21	54.64	-3.
MC Holdings	С	2	107.0	43.6	860.2	33.87	927	117.0	8.39	2717	17.00	5.78	21.52	10.
mess Kenya Ltd	С	0	32.7	19.7	219.3	61.64	243	73.9	11.30	668	19.10	8.45	57.59	12.
utchings Biemer Ltd	С	1	2.9	-36.0	41.6	13.90	49	6.2	-0.17	66	163.84	9.67	12.42	-16.
enva Airways Ltd. *	С	0	1385.6	-6.8	3592.9	80.49	5901	1032.3	12.05	12085	22.18	5.89	15.15	-33.
mbro Motors (E.A) Ltd	С	0	139.9	-105.3	800.6	10.19	984	581.8	13.69	907	46.01	10.51	51.13	12.
ushalls E.A Ltd	С	1	9.8	-27.5	866.6	94.83	912	101.4	8.07	1797	11.32	8.52	28.89	11.
ation Printers and Publishers Ltd	С	2	157.5	45.2	776.0	39.10	850	310.3	22.15	1291	22.22	6.28	24.13	23.
and Dry Cleaners Ltd	С	0	-2.2	-109.3	37.2	79.32	46	0.6	0.93	72	14.14	5.93	44.21	-13.
e Standard Newspaper Ltd	С	1	0.1	-195.8	18.4	73.98	67	24.9	5.28	254	18.74	2.56	3.46	-42.
rs (Serena Ltd)	С	0	54.8	16.2	347.5	74.54	541	201.5	16.65	963	-1.79	7.02	114.26	-31.
chumi Super Markets Ltd	С	1	244.7	13.8	370.5	48.26	604	507.0	28.53	1020	15.07	11.73	81.90	7.
uclays Bank of Kenya Ltd	F	2	1881.4	35.0	3194.4	17.71	4319	4916.1	6.50	44871	19.48	8.79	54.86	33.
FC Bank Ltd.	F	1	166.0	44.8	487.0	27.61	814	299.5	6.11	4465	23.28	2.88	24.48	34.
iy Trust Ltd *	F	1	21.9	88.2	100.5	7.31	120	6.8	22.17	142	22.19	5.34	34.48	26.
amond Trust Bank Ltd	F	2	81.4	38.9	627.7	44.40	896	392.3	3.16	6406	11.72	3.19	23.22	14.
ousing Finance Company Of Kenya	F	2	180.1	35.4	519.4	55.36	1074	420.8	4.41	7160	20.12	6.29	47.70	31.
C.D.C Investments Co.	F	2	83.1	26.9	295.8	46.29	387	75.9	17.82	489	13.35	10.97	71.57	19.
bilee Insurance Company Ltd	F	2	8 6. 7	18.9	1987.4	80.39	2126	92.3	4.76	2861	22.01	4.80	51.28	14.
mya Commercial Bank Ltd.	F	2	1512.9	34.3	4915.3	21.69	5792	632.9	5.00	53205	21.31	9.11	36.55	25.
ational Bank Of Kenya Ltd	F	0	-125.0	-87.1	1205.4	21.77	1940	-11.0	1.99	18791	16.45	8.38	38.39	
C Bank Ltd	P	2	235.4	39.0	657.8	18.74	840	388.4	7.54	5166	18.52	5.49	32.65	38.
African Insurance Co. Ltd.	F	2	41.3	33.5	1214.6	36.38	1292	34.3	3.91	1857	18.41	6.15	42.00	16.
andard Chartered Bank	F	1	864.9	31.2	1609.9	36.58	2280	2762.1	5.16	26520	13.52	8.03	63.00	29.
thi River Mining Ltd.	I	0	25.3	-19.6	293.3	83.13	63 0	69.5	9.21	1043	14.15	1.66	39.99	-27.
mburi Cement Ltd.	1	2	464.3	44.0	5929.3	82.46	6792	1120.2	12.57	5396	53.95	4.72	37.94	54.
VT Kenya Ltd	I	1	636.4	28.2	2420.9	48.41	3035	1114.8	23.51	2384	12.91	9.11	69.25	14.
OC Kenya Ltd	1	1	84.3	27.6	650.4	68.36	729	150.2	15.33	518	15.37	6.30	55.45	24.
arbacid Investments Ltd.	1	2	50.9	50.2	366.5	64.18	397	90.4	18.69	438	23.30	3.69	30.66	47.
mwn Berger Ltd.	[0	38.7	178.7	300.3	71.20	396	51.8	16.56	835	32.88	10.95	116.11	88
unlop Kenya Ltd.	i -	2	11.5	17.2	47.9	18.91	57	16.3	30.18	78	22.22	13.64	40.92	28.
A Breweries Ltd.*	I.	1	515.4	72.8	5741.0	29.45	6710	1323.8	11.44	11003	13.17	10.07	98.27	25.
A Cables Ltd.	I	1	57.2	17.3	143.1	44.18	231	72.8	34.08	289	11.68	6.92	59.83	20.
A Packaging Industies Ltd.*	[l	34.5	-157.5	284.7	29.40	321	80.7	15.40	685	69.45	4.91	23.04	
A Portland Cement Ltd.*	I	l	-21.0	55.0	553.2	0.00	793	267.3	4.52	3734	12.93	2.59	20.36	91.
restone East Africa (1969) Ltd.	I	1	632.4	0.4	487.9	66.17	1394	863.6	60.63	2064	25.04	9.12	67.33	7.
^{taya} Natoinal Mills Ltd*	I	1	-92.9	-54.4	1598.5	92.33	1777	291.3	4.87	3394	13.12	6.58	43.00	25.
^{tnya} Oil Co. Lid	1	0	89.4	108.4	389.8	57.05	426	106.7	19.84	302	27.75	14.94	34.54	51.
inya Power & Lighting Co. Ltd.	I	2	725.3	16.7	2605.0	17.99	3023	1221.7	7.66	13662	17.14	8.55	14.81	74.
^{ral} Kenya Ltd.	I	1	236.2	58.5	554.0	17.99	738	460.0	22.20	2895	18.62	9.06	64.21	45.
Group Ltd	I	1	-22.6	102.2	1891.3	86 765		241.8	5.50	3708	20.01	6.94	64.21	78.

Shares Issue									1		1						L		1				
Code	Sector			999		L	19			L	19	1				996				99 <u>5</u>			19
		Rate	AnnD	RegC	PayD	Rate	AnnD	RegC	PayD	Rate	AnnD	RegC	PayD	Rate	AnnD	RegC	PayD	Rate	AnnD	RegC	PavD	Rate	AnnD
Bbond	Agri.						L						L	L					-	1.			
Easg	Agri.	<u> </u>	ļ						L	L		L		<u> </u>			L					Ļ	1
GWK	Agri.			<u> </u>	<u> </u>			·	<u> </u>					<u> </u>								1:1	8th July
Kakuzi	Agri.	<u> </u>		<u> </u>			1										<u> </u>	1:2	18th M	16th Ju	30th Ju		+
Kapch	Agri.		<u> </u>	<u> </u>						<u> </u>			<u> </u>					+				1:1	8th July
Liea	Agri.								<u> </u>					÷			L			ł			
Peieta	Agri.	<u> </u>	<u> </u>	<u> </u>						<u> </u>		<u> </u>					<u> </u>	<u> </u>		ļ			
Rea	Agri.					1:14	19th Jan	8th Feb			÷												
Sasini	Agri.					1:2	13th Feb	12th Ma					1								ļ	2:1	11th Ma
Baum	Comm	<u> </u>	<u> </u>	<u> </u>						1:2	11th Fe	<u>31st M</u>	<u>87</u>					1					
C&G	Comm			<u> </u>					1	<u> </u>	<u> </u>			1:10	15th J	23rd Au	24th S					1:5	15th Fe
CMC	Comm					1:1	19th Jan	27th Feb				<u> </u>		<u> </u>				1:10	11th Ja	17th Fe	17th M	ar	
S Express	Comm		<u> </u>										<u> </u>										
Hutch	Comm	<u> </u>	<u> </u>									<u> </u>		+				4:1	26th No	v		ļ	
KQ	Comm																						
Lonhro	Comm									ļ		ļ			2:1								
Marsh	Comm		<u> </u>			1:2																1:2	5th Aug
NMG	Comm					1:1	3rd April	4th June		1:2		<u> </u>	-			<u> </u>	<u> </u>	1:4	23rd M	<u>6th Jun</u>		ļ	
Pearl	Comm									<u> </u>		<u> </u>	-					<u> </u>					
Snews	Comm					1:2	27th Mar	20th Apr	0										<u> </u>				
TPS	Comm		<u> </u>							<u> </u>		<u> </u>		<u> </u>		L		L					
Uchumi	Comm									L	<u> </u>		1		9th Oc							<u> </u>	
BBK	Financial					1:5	19th Feb	20th Ma	1		ļ			1:5	28th F	28th Ma	<i>a</i>			1		1:4	10th Ma
CFC	Financial																	22:3	27th Fe	291b M	28th A		
CTrust	Financial																	<u> </u>				1;5	6th May
DTB	Financial										<u> </u>		<u> </u>					1:4	9th Ma	<u> 30th Ju</u>	21st Ju		18th Fe
HFCK	Financial					1:4	12th Mar	11th Jun	30th Ju					1:3	<u>61</u> b M	9th Apri	1			ļ		1:2	18th Ma
ICDC	Financial									1:2	Hth July		1					1:5		ļ		1:5	7th Oct
Jubilee	Financial				<u> </u>	1:5	8th April		20th Ju	1ê				1:1		29th M		<u>in</u>	+			1:4	28th Ma
KCB	Financial											<u> </u>		1:3	<u>5th M</u>	23rd Ap	nit						
NBK	Financial			L											<u> </u>		I						-
NIC	Financial		2nd							1:4	7th Mar		7th Au		13th F	3rd May		<u> </u>				1:1_	10th Ma
	Financial	1:2	7ub	30th	Nov					<u>3</u> :10	23rd M	29th Ju	6th Au	F	<u> </u>			3:7	10th M	23rd Ju	14th Ju		
SCB	Financial														<u> </u>			<u> </u>				1:1	2nd Au
Athi	Indistrial																L						
Bamb.	Indistrial									1:2	19th Fe	4th AD	6th M	1:1	16th F	11th Ma	r.	1:1	8th Ma	120b M	30th Ju		
BOC	Indistrial														1			1:5	1			1:4	20th Jan
BAT	Indiatrial											-		-				<u> </u>	+			1:1	14th Fe
	Indistrial										+			1:1	24th O	22nd N	13 <u>th</u>	Dec					
Berger	Indistrial					4.1	0.1		<u> </u>	4.1	101.0	A1.1 -	1				<u> </u>	<u> </u>	+			-	
Dun	Indistrial					4:1	Sth June	· -		4:1	18th Oc	JILL O	c t										
	Indistrial												-			<u> </u>		1:4	23rd Ja	24th M	Ist Apt		
EAPac	Indistrial															<u> </u>		1	+			1:5	18th No
Port	[ndistria]					1.0	201 2 1	104.34	<i>(</i> 1) 1	<u> </u>				2:1	16th Fe		26th A	pril					$ \longrightarrow $
	Indistrial		\vdash			1:2	<u>20th Peb</u>	18th Ma	6th Ap									<u> </u>	+				
EAB	Indiatrial							-	0.01					 			-				· · · ·	1:4	14th Sep
Knmill	Indistrial					3:2	IIth Mar	30th Apr	25th M	av									-				
	Indistrial																						
	Indistrial												1										
	Indistrial					1:2	7th Oct	19th Nov		2:1	15th Jan	6th Feb						1:1	19th D	23rd Fe	30th At	line	
	Indistrial		\vdash							L			-	1:1	11th	10th M	31st M	BIN'					
Unga	Indistrial					5:1	11th Mar	30th Apr	25th M	81	1			i.									1

APPENDIX 3: ISSUE DATES AND THE RATIOS OF ISSUES.

APPENDIX 4: CORRELATION COEFFICIENTS

19 May 80 SPSS for MS WINDOWS Release 6.0

- - Correlation Coefficients - -

	CATR	CCASHOP	DPR	DY	EARN	GEARN
YCDIV		.0614 (50) P= .672	(50)	(50)	(50)	(50)

(Coefficient / (Cases) / 2-tailed Significance)

" . " is printed if a coefficient cannot be computed

	GTASS	ROI	SHRF	TASS	TRES	YCDIV
CATR	(51)	0487 (51) P=.734		2995 (51) P= .033	.0153 (51) P= .915	
CCASHOP	(51)	1 ,	.5574 (51) P=.000	.6952 (51) P= .000	.5106 (51) P= .000	.0614 (50) P= .672
DPR		.4142 (51) P= .003		.0069 (51) P= .962	.1274 (51) P= .373	.0844 (50) P=.560
DY		(51)		.0720 (51) P= .616	0247 (51) P= .864	.2889 (50) P=.042
EARN	(51)	(51)	.7114 (51) P= .000	(51)	.6400 (51) P= .000	(50)
GEARN	.0127 (51) P= .929	.1597 (51) P= .263	.1629 (51) P= .253	.0880 (51) P= .539	.1677 (51) P= .239	.2611 (50) P= .067
GTASS	1.0000 (52) P= .	(51)	0346 (51) P= .810	(51)		(50)
ROI	(51)	(51)	(51)	(51)	1853 (51) P= .193	(50)

(Coefficient / (Cases) / 2-tailed Significance)

KE	NDALL	CORRE	LATIO	N COEF	FICIE	N T S
CCASHOP	.0792 N(51) Sig .412					
DPR	.0847 N(51) Sig .380	.1522 N(51) Sig .115				
DY	1639 N(51) Sig .090	N(51)	.3186 N(51) Sig .001			
EARN	1906 N(51) Sig .048	.6878 N(51) Sig .000		.1043 N(51) Sig .280		
GEARN	1216 N(51) Sig .208		1616 N(51) Sig .094		-2282 N(51) Sig .018	
GTASS	0337 N(51) Sig .727	0118 N(51) Sig .903	1240 N(51) Sig .199	.0510 N(51) Sig .598	.0902 N(51) Sig .350	
ROI	0494 N(51) Sig .609	.0729 N(51) Sig .450	.2919 N(51) Sig .003	.2894 N(51) Sig .003	.1718 N(51) Sig .075	.1624 N(51) Sig .093
SHRF	0306» N(51) Sig .751	.5984 N(51) Sig .000	.1193 N(51) Sig .217	0165 N(51) Sig .865	.4620 N(51) Sig .000	.1420 N(51) Sig .142
TASS	0902 N(51) Sig .350	.6031 N(51) Sig .000	.0361 N(51) Sig .709		.4541 N(51) Sig .000	.1247 N(51) Sig .197
TRES	.0165 N(51) Sig .865	N(51)		N(51)	-4353 N(51) Sig .000	
	CATR	CCASHOP	DPR	DY	EARN	GEARN

		001101				
	GTASS	ROI	SHRF	TASS	TRES	YCDIV
SHRF	0346	1605	1.0000	.6099	.9850	.0213
	(51)	(51)	(51)	(51)	(51)	(50)
	P= .810	P= .261	P= .	P=.000	P=.000	P= .883
TASS	1085	2517	.6099	1.0000	.5759	.0631
	(51)	(51)	(51)	(51)	(51)	(50)
	P=.448	₽≖ .075	P= .000	P= .	P= .000	P= .664
TRES	0121	1853	.9850	.5759	1.0000	.0633
	(51)	(51)	(51)	(51)	(51)	(50)
	P= .933	P= .193	P= .000	P= .000	P= .	P= .662
YCDIV .	(50)	.1078 (50) P= .456	.0213 (50) P= .883	.0631 (50) P= .664	.0633 (50) P= .662	1.0000 (50) P= .

- - Correlation Coefficients - -

(Coefficient / (Cases) / 2-tailed Significance)

19 May 80 S	SPSS for MS W	INDOWS Rele	ase 6.0			
K	ENDALL	CORRE	LATIO	NCOEF	FICIE	N T S
YCDIV	N(50)	N(50)	N(50)	.0890 N(50) Sig .362	N(50)	N(50)
	CATR	CCASHOP	DPR	DY	EARN	GEARN
ROI	.1090 N(51) Sig .259					
SHRF	0086 N(51) Sig .929	N(51)				
TASS		2612 N(51) Sig .007	N(51)			
TRES	N(51)	1420 N(51) Sig .142		N(51)		
YCDIV		N(50)	N(50)	.0939 N(50) Sig .336	N(50)	
	GTASS	ROI	SHRF	TASS	TRES	

SPE	ARMAN	CORRE	LATIO	NCOEF	FICIE	N T S
CCASHOP	1077 N(51) Sig .452					
DPR	.1361 N(51) Sig .341	.2243 N(51) Sig .114				
DY	2638 N(51) Sig .061	.1062 N(51) Sig .458	.4491 N(51) Sig .001			
EARN	2463 N(51) Sig .081	.8243 N(51) Sig .000	.2196 N(51) Sig .122	.1704 N(51) Sig .232		
GEARN		.2710 N(51) Sig .054	.2439 N(51) Sig .085	0374 N(51) Sig .795	.3307 N(51) Sig .018	
GTASS	0569 N(51) Sig .692	0271 N(51) Sig .850	1670 N(51) Sig .242	.0868 N(51) Sig .545	.1357 N(51) Sig .342	.1964 N(51) Sig .167
ROI ·	0369 N(51) Sig .797	.1157 N(51) Sig .419	.4166 N(51) Sig .002	.4099 N(51) Sig .003	.2719 N(51) Sig .054	.2417 N(51) Sig .087
SHRF	.0459 N(51) Sig .749	.7669 N(51) Sig .000	.1542 N(51) Sig .280	0604 N(51) Sig .674	.6071 N(51) Sig .000	.2284 N(51) Sig .107
TASS	, ,	.7535 N(51) Sig .000	.0803 N(51) Sig .576	1123 N(51) Sig .433	.5662 N(51) Sig .000	.2120 N(51) Sig .135
TRES	.0405 N(51) Sig .778	.7381 N(51) Sig .000	.1236 N(51) Sig .388	0354 N(51) Sig .805	.5801 N(51) Sig .000	.2720 N(51) Sig .053
	CATR	CCASHOP	DPR	DY	EARN	GEARN

	SPEARMAN	CORRI	ELATIO	N C O E	FFICIE	NTS
YCDIV	N(50)	N(50)	N(50)	N(50)	.0856 N(50) Sig .554	N(50)
	CATR	CCASHOP	DPR	DY	EARN	GEARN
ROI	.1684 N(51) Sig .237					
SHRF	0230 N(51) Sig .873	N(51)				
TASS	N(51)	3439 N(51) Sig .013	N(51)			
TRES	.0081 N(51) Sig .955	N(51)	.9700 N(51) Sig .000	N(51)		
YCDIV	N(50)	N(50)	-0869 N(50) Sig .549	N(50)	N(50)	
	GTASS	ROI	SHRF	TASS	TRES	

APPENDIX 5: VARIABLES STATISTICS.

19 May 80 SPSS for MS WINDOWS Release 6.0

Number of valid observations (listwise) = 50.00 Variable GEARN S.E. Mean 35.646 Variance 64803.888 S.E. Kurt .656 S.E. Skew .333 Minimum -1640.5
 Mean
 -22.409

 std Dev
 254.566

 Kurtosis
 33.984

 Skewness
 -5.450
 Skewness
 Range
 1883.632

 Maximum
 243.1
 Valid observations - 51 Missing observations - 1 Variable CLASS
 Mean
 1.192

 Std Dev
 .971

 Kurtosis
 -.582

 Skewness
 .532

 S.E. Mean
 .135

 Variance
 .943

 S.E. Kurt
 .650

 S.E. Skew
 .330
 3.000 Range Minimum .00 Maxımum Valid observations - 52 Missing observations - 0 Variable DY

 S.E. Mean
 .532

 Variance
 14.460

 S.E. Kurt
 .656

 S.E. Skew
 .333

 Minimum
 21

 Mean
 7.158

 Std Dev
 3.803

 Kurtosis
 3.438

 Skewness
 1.251

 Range
 21.747

 Range
 21.747

 Maximum
 21.95
 Minimum .21 Valid observations - 51 Missing observations - 1 Variable ROI
 Mean
 13.854

 Std Dev
 12.213

 Kurtosis
 5.697

 Skewness
 2.104

 Range
 60.001
 S.E. Mean 1.710 Variance 149.165 S.E. Kurt .656 S.E. Skew .333 -.17 5.697 2.104 60.801 .333 Range Maximum Minimum -.17 60.63 Valid observations -51 Missing observations - 1

19 May 80	SPSS for MS WIND	OWS Release	6.0		
Number of	valid observatio	ns (listwise	e) = 50.0	00	
variable	YCDIV				
Mean Std Dev Kurtosis Skewness Range Maximum	24.456 32.367 .127 .070 135.417 91.7		S.E. Mean Variance S.E. Kurt S.E. Skew Minimum	4.577 1047.609 .662 .337 -43.8	
valid obse	ervations -	50	Missing observa	ations -	2
					-
Variable	GTASS				
Mean Std Dev Kurtosis Skewness Range Maximum	25.640 24.477 20.059 3.939 165.624 163.84		S.E. Mean Variance S.E. Kurt S.E. Skew Minimum	3.394 599.106 .650 .330 -1.79	
Valid obs	ervations -	52	Missing observe	ations -	0
Variable	DPR	~			_
Mean Std Dev Kurtosis Skewness Range Maximum	45.162 26.545 .745 .625 132.597 116.11		S.E. Mean Variance S.E. Kurt S.E. Skew Minimum	3.717 704.638 .656 .333 -16.49	
Valid obs	ervations -	51	Missing observ	ations -	1
	CATR				-
Mean Std Dev Kurtosis Skewness Range Maximum	51.198 26.657 936 .032 107.782 107.78		S.E. Mean Variance S.E. Kurt S.E. Skew Minimum	3.733 710.585 .656 .333 .00	
Valid obs	ervations -	51	Missing observ	ations -	1

9 May 80 SPSS for MS WINDOWS Release 6.0 Jumber of valid observations (listwise) = 50.00 /ariable EARN
 Mean
 222.623

 5td Dev
 406.435

 Kurtosis
 7.177

 Skewness
 2.655

 Range
 2006.362
 S.E. Mean56.912Variance165189.369S.E. Kurt.656S.E. Skew.333Minimum-125.0 Range 2006.362 Maximum 1881.4 /alid observations - 51 Missing observations - 1 _ _ _ ~ _ _ . Variable CCASHOP
 Mean
 434.826

 Std Dev
 808.047

 Kurtosis
 19.811

 Skewness
 4.073

 Range
 4927.103

 Maximum
 4916.1
 S.E. Mean 113.149 Variance 652940.176 S.E. Kurt .656 S.E. Skew Minimum .333 Minimum -11.0 Valid observations - 51 Missing observations -1 Variable TRES
 Mean
 1145.606

 Std Dev
 1442.409

 Kurtosis
 3.678

 Skewness
 2.033

 Range
 5910.932
 S.E. Mean 201.978 Variance 2080543.452 S.E. Kurt .656 S.E. Skew .333 Range Maximum Minimum 18.4 5929.3 Valid observations - 51 Missing observations - 1 - -Variable SHRF
 Mean
 1441.149

 Std Dev
 1748.035

 Kurtosis
 2.976

 Skewness
 1.926

 Range
 6769.277

 Maximum
 6792
 S.E. Mean 244.774 Variance 3055627.820 S.E. Kurt .656 S.E. Skew .333 Minimum 22 Minimum 22 Valid observations - 51 Missing observations - 1

 Number of valid observations (listwise) =
 50.00

 Variable TASS
 Mean
 5095.069
 S.E. Mean
 1445.657

 Mean
 5095.069
 Variance
 106586114.66

 Std Dev
 10324.055
 Variance
 106586114.66

 Kurtosis
 12.944
 S.E. Kurt
 .656

 Skewness
 3.503
 S.E. Skew
 .333

 Range
 53163.043
 Minimum
 41

 Maximum
 53205
 51
 Missing observations

ositional Index

Variable	Page	Variable	Page	Variable	Page	Variable	Page	
CLASS	11	CATR	12	TASS	14	YCDIV	12	
EARN	13	SHRF	13	GTASS	12			
GEARN	11	CCASHOP	13	DY	11			
TRES	13	ROI	11	DPR	12			

APPENDIX 6:DISCRIMINANT ANALYSIS (FIRMS CLASSIFIED INTO 4 GROUPS).

19 May 80 SPSS for MS WINDOWS Release 6.0

----- DISCRIMINANT ANALYSIS -----

On groups defined by CLASS

52 (Unweighted) cases were processed.
2 of these were excluded from the analysis.
0 had missing or out-of-range group codes.
2 had at least one missing discriminating variable.
50 (Unweighted) cases will be used in the analysis.

х.

Number of cases by group

CLASS 0 1 2 3	Number Unweighted 11 23 9 7	cases Weighted 11.0 23.0 9.0 7.0	Label
Total	50	50.0	

Group means

CLASS	CATR	CCASHOP	DPR	DY
0 1 2 3	65.17385 49.16852 48.05732 44.14592	205.29880 428.74583 208.19593 1170.55698	52.18350 44.69153 42.41263 40.17786	9.56994 6.31458 6.81920 6.39760
Total	51.78651	443.74206	45.29765	7.13321
CLASS	EARN	GEARN	GTASS	ROI
0 1 2 3	164.79157 172.11354 232.55741 516.34290	-47.95377 25.57500 -148.79111 31.79575	27.82784 27.03283 19.44443 24.23429	16.82962 14.77161 14.70560 6.76589
Total	229.57471	-21.11632	25.45003	14.09169

CLASS	SHRF	TASS	TRES	YCDIV
0	902.29210	1607.05327	607.98897	19.93724
1	1347.92244	3280.91676	1083.89300	24.03938
2	1240.59383	7438.56422	1055.02251	20.80337
3	2780.86846	11567.44154	2301.13451	37.62489
Total	1431.17706	4821.15680	1144.41124	24.45640

roup standard deviations

CLASS	CATR	CCASHOP	DPR	DY
0 1 2 3	23.13723 26.88002 26.78021 28.85741	318.33682 625.73983 202.22112 1715.70774	40.14186 24.82942 21.26069 13.56373	5.58451 2.76028 4.18303 1.66462
Total	26.59059	813.71274	26.79670	3.83725
CLASS	EARN	GEARN	GTASS	ROI
0 1 2 3	406.89781 252.51405 483.21622 647.03752	181.60507 89.64704 559.50119 . 10.16173	20.50813 32.51043 12.04887 13.19411	15.01158 13.17124 9.48351 2.96959
Total	407.48655	256.98135	24.79258	12.21795
CLASS	SHRF	TASS	TRES	YCDIV
0 1 2 3	1682.78840 1588.52944 1751.69441 2153.76954	3494.23420 5637.19554 17270.66146 15177.41571	1015.23209 1382.51704 1490.44267 1880.07059	45.71833 33.45378 13.87062 21.24450
Total	1764.31660	10239.96232	1457.02753	32.36678

pooled within-groups covariance matrix with 46 degrees of freedom

	CATR	CCASHOP	DPR	DY
CATR CCASHOP DPR DY EARN GEARN GTASS ROI SHRF TASS TRES YCDIV	695.2833 -3965.5491 30.4552 -31.9991 -2135.2968 -2424.6517 -120.4000 -40.9186 4002.0890 -62640.5286 3597.9542 -130.4176	600359.9106 4321.2731 507.7987 251361.0493 12085.4500 -1909.0076 184.9390 671928.4794 5618810.8213 484349.3991 -162.7567	747.7540 30.1706 832.9033 1174.0378 -218.4015 134.5177 7888.8771 15665.7923 7028.5454 93.4622	13.8282 236.6596 267.7235 10.4019 20.1707 213.5841 4859.8409 263.1087 41.9299
	EARN	GEARN	GTASS	ROI
EARN GEARN GTASS ROI SHRF TASS TRES YCDIV	161703.9249 12980.0605 -765.1666 261.8393 483852.4750 3474960.5702 347838.6150 -1172.4258	65468.7225 -88.1382 598.7990 62442.7235 297412.7321 53443.7567 2096.6702	644.8730 -38.2099 -1123.4370 -19886.3437 8.0873 -120.2777	148.7496 -1690.1184 -21062.7329 -1860.9846 63.6207
	SHRF	TASS	TRES	YCDIV
SHRF TASS TRES YCDIV	2961150.8831 10053315.1425 2387584.2080 -2131.1895	99772648.0374 7702228.3700 6818.9246	1985567.0362 206.1748	1081.9610

Pooled within-groups correlation matrix

	CATR	CCASHOP	DPR	DY	EARN	GEARN
CATR CCASHOP DPR DY EARN GEARN GTASS ROI SHRF TASS TRES YCDIV	1.00000 19410 .04224 32634 20138 35938 17981 12724 .08820 23783 .09684 15037	1.00000 .20395 .17624 .80674 .06096 09702 .01957 .50395 .72599 .44362 00639	1.00000 .29670 .07575 .16780 31451 .40334 .16765 .05735 .18241 .10391	1.00000 .15826 .28138 .11015 .44474 .03338 .13084 .05021 .34280	1.00000 .12615 07493 .05339 .69923 .86513 .61387 08864	1.00000 01356 .19188 .14182 .11637 .14823 .24912
						waa a waalaa

	GTASS	ROI	SHRF	TASS	TRES	YCDIV
GTASS ROI SHRF TASS TRES YCDIV	1.00000 12337 02571 07840 .00023 14399	1.00000 08053 17289 10829 .15859	1.00000 .58489 .98466 03765	1.00000 .54723 .02075	1.00000	1.00000

wilks' Lambda (U-statistic) and univariate F-ratio with 3 and 46 degrees of freedom

Variable	Wilks' Lambda	F	Significance
CATR	.92314	1.2766	.2935
CCASHOP	.85120	2.6805	.0578
DPR	.97759	.3515	.7883
DY	.88163	2.0587	.1188
EARN	.91423	1.4385	.2438
GEARN	.93066	1.1424	.3420
GTASS	.98490	.2351	.8715
ROI	.93545	1.0581	.3761
SHRF	.89304	1.8365	.1538
TASS	.89326	1.8323	.1545
TRES	.87803	2.1299	.1093
YCDIV	.96956	.4814	.6968

covariance matrix for group 0,

	CATR	CCASHOP	DPR	DY
CATR	535.3314	101000 0001		
CCASHOP DPR	-1282.0624 -249.0468	$101338.3331 \\ -2965.0411$	1611.3692	
DY	-53.3295	-304.9080	24.8865	31.1868
EARN	1389.8012	116865.4052	-4813.9829	-460.5379
GEARN	-1145.2448	2825.9401	5215.8347	172.9522
GTASS	-27.3834 -164.0987	9.5589 -680.0010	-472.5489 242.0200	9.6161 44.7190
SHRF	6768.5455	490357.4615	-21895.1386	-2592.6436
TASS	17950.0946	980851.0790	-39317.8741	-5299.0969
TRES	3269.5659	300355.0753	-14284.0729	-1425.8615
YCDIV	-300.7317	-6125.7391	365.3648	209.9324

	EARN	GEARN	GTASS	ROI
EARN GEARN GTASS ROI SHRF TASS TRES YCDIV	165565.8309 7103.4075 -657.9453 -657.1532 679690.0356 1413117.0106 407918.5740 -7190.4729	32980.4001 -2591.7842 1048.6730 11352.3552 52546.2386 577.0070 1464.9344	420.5836 -50.6991 -1000.1420 -6736.8465 682.4129 296.8423	225.3477 -4374.2901 -7804.1860 -2852.3665 342.2124
	SHRF	TASS	TRES	YCDIV
SHRF TASS TRES YCDIV	2831776.7950 5844487.2099 1702534.6201 -33702.9579	12209672.6241 3490877.0553 -68143.8346	1030696.1976 -19251.2182	2090.1659

ovariance matrix for group 1,

	CATR	CCASHOP	DPR	DY
CATR	722.5356			
CCASHOP	-1418.9918	391550.3293		
DPR	69.2436	9053.1540	616.5003	
DY	-2.5145	662.0152	43.2220	7.6192
EARN	-760.9052	143018.0531	3981.6954	318.2039
GEARN	-37.1359	10980.8024	1025.5309	-11.2751
GTASS	-262.2603	-3968.2402	-268.5951	11.7568
ROI	9.8740	790.0482	155.9776	12.9453
SHRF	5686.1378	582803.7592	27550.0865	1196.2596
TASS	-15918.1757	3245177.2300	54767.0342	2988.9344
TRES	5521.7538	448739.6288	22497.4065	885.3232
YCDIV	-35.3108	609.7501	110.1987	-19.2419
	EARN	GEARN	GTASS	ROI
EARN	63763.3434			
GEARN	4333.2353	8036.5917		
GTASS	-1419.5686	-561.6909	1056.9278	
ROI	1354.1505	76.3600	-88.4297	173.4817
SHRF	215502.9118	64582.8251	-9495.0685	-359.4144
TASS	986752.4944	96498.6804	-31330.5289	-14009.8407
TRES	156701.0308	57605.4092	-7243.6866	-1743.9396
YCDIV	-618.4771	1877.4499	-439.3276	-59.3846

	SHRF	TASS	TRES	YCDIV
SHRF	2523425.7704			
TASS	4528530.8808	31777973.5488		
TRES	2176565.9045	3591594.8715	1911353.3733	
CDIV	4442.2025	24014.8946	3567.1334	1119.1556

ovariance matrix for group 2,

	CATR	CCASHOP	DPR	DY
CATR	717.1794			
CCASHOP	-2160.2346	40893.3802		
OPR	189.3059	-1344.0687	452.0171	
YC	-83.1570	-14.1920	26.9828	17.4977
EARN	-5414.1378	80819.0417	-1243.9180	448.9152
JEARN	-12427.4020	33979.9995	-2618.7548	1358.2154
STASS	-126.0316	308.8742	70.9544	23.7014
ROI	-70.9722	-924.5022	53.3479	25.1087
SHRF	-16670.4398	302357.1644	-2940.5147	1077.5208
TASS	-176503.1826	2921355.6212	-55172.7288	11696.0829
FRES	-14367.3456	253971.7359	-2447.6910	968.1386
CDIV	-153.2248	202.1901	-48.4004	21.1388
	EARN	GEARN	GTASS	ROI
EARN	233497.9198			
GEARN	53579.3015	313041.5812		
STASS	676.8112	4225.5066	145.1752	
ROI	-1686.0622	1912.9566	62.6247	89.9370
SHRF	833894.1308	162759.3210	3600.0774	-7157.8176
FASS	8269293.0232	1374855.1714	8460.2757	-73800.7806
FRES	708554.6044	144860.2968	3466.8477	-5807.9867
YCDIV	1048.2875	5077.6585	89.4966	69.5173
	SHRF	TASS	TRES	YCDIV
SHRF	3068433.2916			
FASS	29664492.3283	298275747.3850		
TRES	2608459.4589	25091441.6176	2221419.3625	
CDIV	1980.6754	24934.5249	1893.9699	192.3941

	CATR	CCASHOP	DPR	DY
CATR	832.7503			
CCASHOP	-20182.4893	2943653.0454		
DPR	142.2669	6668.6896	183.9748	
DY	-36.3480	1992.8371	-4.6274	2.7710
EARN	-8678.1084	1100167.4521	1467.9047	816.6520
GEARN	25.7792	2375.6081	39.2914	-5.3191
GTASS	• 252.2357	-513.2747	3.4123	-10.9896
ROI	18.2136	887.0270	-15.1124	8343
SHRF	20779.8545	1794099.2369	-123.0088	135.5710
TASS	-216456.6563	25648673.8262	58385.3773	19536.4050
TRES	21045.0697	1228745.9809	-1534.5991	-143.4343
YCDIV	-164.8762	6456.4268	-231.9259	13.9434
	EARN	GEARN	GTASS	ROI
EARN	410/57 5500			
GEARN	418657.5539 347.1867	102 0000		
GTASS	-467.0319	103.2608	174 0045	
ROI	385.5549	69.4387	174.0845	0 0105
SHRF	674682.7311	12.4086	32.2981	8.8185
TASS	9642352.8433	5990.8348	23069.0341	5194.5190
TRES	467588.5061	5618.4921 4406.8938	-37635.6527	1296.4811 4624.8232
YCDIV	3865.5562	-21.2805	20862.3687 74.6730	4624.8232
ICDIV	3003.3302	-21.2805	14.6/30	42.4002
	SHRF	TASS	TRES	YCDIV
SHRF	4638723.2320			
TASS	11177334.4090	230353947.7211		
TRES	4008566.9657	6607852.3924	3534665.4296	
YCDIV	20903.5004	44550.8328	18061.2548	451.3286

Total covariance matrix with 49 degrees of freedom

	CATR	CCASHOP	DPR	DY
CATR CCASHOP DPR DY EARN GEARN GTASS ROI	707.0595 -5052.9203 57.5941 -20.6928 -2443.7013 -2384.5384 -102.3869 -23.4448	662128.4208 3285.6101 289.2443 269490.0871 23470.9840 -1796.9583 -764.9283	718.0631 33.0274 486.7927 1076.3438 -197.7331 135.3536	14.7245 178.5047 220.5135 10.9317 20.9066
	CATR	CCASHOP	DPR	DY
SHRF TASS TRES YCDIV	927.2372 -75728.5347 638.5674 -147.3734	808070.9474 6044921.6850 607805.6639 1617.3819	5725.8465 3855.3037 4987.5821 73.1773	-187.6558 2536.0548 -139.5811 35.8777
	EARN	GEARN	GTASS	ROI
EARN GEARN GTASS ROI SHRF TASS TRES YCDIV	166045.2877 13414.0228 -848.6866 -112.1270 519354.2601 3628301.9781 383314.2952 -486.2037	66039.4136 69.2661 490.7727 74652.8586 254426.3218 62916.8783 2171.5941	614.6719 -33.3088 -1423.0094 -25587.6627 -426.0038 -113.8934	149.2783 -3372.2836 -29005.3843 -3316.7053 42.6215
	SHRF	TASS	TRES	YCDIV
SHRF TASS TRES YCDIV	3112813.0477 11088754.0338 2533619.9943 1219.0754	104856828.3889 8733287.1439 20898.6581	2122929.2182 2985.6199	1047.6086

67

APPENDIX 7: DISCRIMINANT ANALYSIS (II).

19 May 80 SPSS for MS WINDOWS Release 6.0

---- DISCRIMINANT ANALYSIS ------

On groups defined by CLASS

Analysis number 1

Direct method: all variables passing the tolerance test are entered.

Canonical Discriminant Functions

		_
Maximum	number of functions	3
Minimum	cumulative percent of variance	100.00
Maximum	significance of Wilks' Lambda	1.0000

Prior probabilities

Group Prior Label

0	.22000
1	.46000
2	.18000
3	.14000

Total 1.00000

Classification function coefficients (Fisher's linear discriminant functions)

CLASS =	0	1	2	3
CATR	.1640812	.1251779	.1172317	.1201333
CCASHOP	0010856	.0004587	0015726	.0011670
DPR	.0694173	.0505491	.0504096	.0461966
DY	.8285907	.3891945	.4683444	.3706393
EARN	0018138	0055591	0027517	.0010478
GEARN	.0004412	.0012331	0025092	.0007641
GTASS	.0999025	.0954018	.0767697	.0857959
ROI	.0012756	.0711813	.0867632	0109715
SHRF	.0062832	.0046186	.0024312	.0010703
TASS	.0002035	.0002408	.0003399	.0000679
TRES	0081222	0055066	0031514	0013258
YCDIV	.0207861	.0245627	.0191773	.0428472
(Constant)	-14.5026296	-8.4819063	-9.5943350	-9.8613313

Canonical Discriminant Functions

Fcn	Eigenvalue			Canonical Corr			Chi-square	df	Sig
1 ±	60.60	57 07	53 03		-	.375753	40.132 18.692		.2920
1* 2*	. 6869		84.91	.6381		.846279	6.843		.7402
_	.1816					.0402/5	0.045	10	. / 102

* Marks the 3 canonical discriminant functions remaining in the analysis.

Standardized canonical discriminant function coefficients

	Func 1	Func 2	Func 3
CATR CCASHOP	.50372	.39424	.17178
DPR	.26914	.11859	.08444
DY	.77152	.24668	.52713
EARN	02808	.31251	2.27421
GEARN	07280	.54797	39091
GTASS	.11321	.28658	23483
ROI	11134	60507	77375
SHRF	2.94602	1.82868	-3.66540
TASS	.31979	-1.17381	82555
TRES	-3.26900	-1.81563	3.17665
YCDIV	22535	.22667	.25803

19 May 80 SPSS for MS WINDOWS Release 6.0

Structure matrix:

Pooled within-groups correlations between discriminating variables and canonical discriminant functions (Variables ordered by size of correlation within function)

	Func 1	Func 2	Func 3
CCASHOP	40028*	.33717	.38305
DY	.39669*	.16094	.31026
TRES	39345*	.12612	.38726
CATR	.33004*	.15232	.06022
YCDIV	17249*	.12922	.17184
DPR	.16992*	.09234	03559
GEARN	14768	.37618*	25812
GTASS	.04067	.18005*	13542
TASS	30007	12336	.53786*
EARN	24259	.10080	.52458*
SHRF	34935	.16845	.38145*
ROI	.25842	10659	32615*

* denotes largest absolute correlation between each variable and any discriminant function.

Unstandardized canonical discriminant function coefficients

	Func 1	Func 2	Func 3
CATR	.0191035	.0149515	6.51448433E-03
CCASHOP	-9.30751882E-04	1.08110375E-03	-6.10816498E-04
DPR	9.84223519E-03	4.33668543E-03	3.08792115E-03
DY	.2074737	.0663360	.1417528
EARN	-6.98350180E-05	7.77154626E-04	5.65548439E-03
GEARN	-2.84538133E-04	2.14161052E-03	-1.52776711E-03
GTASS	4.45794212E-03	.0112850	-9.24729657E-03
ROI	-9.12877196E-03	0496110	0634412
SHRF	1.71200418E-03	1.06269248E-03	-2.13005740E-03
TASS	3.20154427E-05	-1.17514828E-04	-8.26493345E-05
TRES	-2.31991740E-03	-1.28849931E-03	2.25438075E-03
YCDIV	-6.85109133E-03	6.89099553E-03	7.84447884E-03
(Constant)	-2.2589038	-1.2932377	7434565

19 May 80 SPSS for MS WINDOWS Release 6.0

 ~ 10

Canonical discriminant functions evaluated at group means (group centroids)

Group	Func 1	Func 2	Func 3
0	1.31583	.39276	.22592
1	26888	.09481	41495
2	.04811	-1.13320	.25413
3	-1.24614	.52825	.68166

Test of Equality of Group Covariance Matrices Using Box's M

The ranks and natural logarithms of determinants printed are those of the group covariance matrices.

Group Label		Log Determinant
0	< 11	(Too few cases to be non-singular)
1	12	97.039107
2	< 9	(Too few cases to be non-singular)
3	< 7	(Too few cases to be non-singular)
Pooled within-groups covariance matrix	12	108.777028

No test can be performed without at least two non-singular group covariance matrices.

APPENDIX 8: DISCRIMINANT ANALYSIS (III).

Worksheet size: 100000 cells

MTB > # Opening worksheet from file: C:\AGUTUPRO\MBAPR.XLS MTB > # File was last modified on 5/19/80 MTB > Name c16 = 'FITS1' MTB > Discriminant 'Class' 'Earn'-'ycDIV'; SUBC> Brief 4; SUBC> Fits 'FITS1'.

Discriminant Analysis

"cachOn

442 74

205 30

120 75

200 20

1170 56

After subtracting group means, is highly correlated with other predictors ShrF Linear Method for Response: Class Predictors: Earn gEarn TRes CaTR ShrF CcashOp RoI TAss gTAss DY DPR y V Group 0 2 3 1 9 7 Count 11 23 50 cases used 2 cases contain missing values Summary of Classification Put intoTrue Group.... 0 2 3 Group 1 8 5 1 1 0 2 12 5 2 1 0 3 2 1 2 3 4 0 4 0 Total N 11 23 9 7 3 4 N Correct 8 12 0.727 Proport. 0.522 0.333 0.571 N = 50 N Correct = 27Prop. Correct = 0.540Squared Distance Between Groups 2 3 0 1 0 0.00000 3.01081 3.93649 6.78978 3.010810.000002.056172.345483.936492.056170.000004.618306.789782.345484.618300.00000 1 2 3 Linear Discriminant Function for Group 0 1 2 3 Constant -12.989 -7.705 -7.880 -7.895 0.001 -0.002 -0.006 -0.003 Earn qEarn 0.000 0.001 -0.003 0.001 -0.008 -0.006 -0.003 TRes -0.001 CaTR 0.164 0.125 0.117 0.120 0.002 ShrF 0.005 0.001 0.006 CcashOp -0.001 0.000 -0.002 0.001 RoI 0.001 0.071 0.087 -0.011 0.000 TAss 0.000 0.000 0.000 0.100 0.095 0.077 gTAss 0.086 0.468 DY 0.829 0.389 0.371 DPR 0.069 0.051 0.050 0.046 72 YCDIV 0.021 0.025 0.019 0.043 Variable Pooled Means for Group Mean 0 2 1 229.57 164.79 172.11 Earn 232.56 516.34 -21.116 -47.954 25.575 -148.791 31.796 qEarn 48.057 1240 608.0 1083.9 1055.0 2301.1 1144.4 TRes 51.787 65.174 49.169 CaTR 44.146 ShrF 1431.2 902.3 1347.9 1240.6 2780.9

ROI TASS gTASS DY DPR yCDIV	4821.2 25.450 7.1332 45.298	1607.1 3 27.828 2 9.5699 6 52.183 4	280.9 7.033 .3146 4.692	14.706 7438.6 19.444 6.8192 42.413 20.803	6.766 11567.4 24.234 6.3976 40.178 37.625				
Variable	Pooled	Stdev for	Group						
Earn	Stdev 402.1	0 406.9	1 252.5	2 483.2	3 647.0				
gEarn	255.9	181.6	89.6	559.5	10.2				
TRes	1409	1015	1383	1490	1880				
CaTR	26.37		26.88	26.78	28.86				
ShrF	1721	1683	1589	1752	2154				
CcashOp	774.8		625.7	202.2	1715.7				
ROI TAss	12.20 9989	15.01 3494	13.17 5637	9.48 17271	2.97 15177				
gTAss	25.39		32.51	12.05	13.19				
DY	3.719		2.760	4.183	1.665				
DPR	27.35	40.14	24.83	21.26	13.56)			
YCDIV	32.89	45.72	33.45	13.87	21.24				
Pooled Cov	variance Ma Earn	trix gEarn	TRes		CaTR	ShrF	Ccas	shOp	RoI
Earn	161704	900111	1100			0	0001	<u>F</u>	
gEarn	12980	65469							
TRes	347839	53444	1985567						
CaTR	-2135	-2425	3598		695	C 3 3 5 1			
ShrF CcashOp	483852 251361	62443 12085	2387584 484349			61151	600	0360	
ROI	262	599	-1861		-41	-1690	000	185	149
TASS	3474960	297413	7702228		2641 100	53315		3811	-21063
gTAss	-765	- 8 8	8		-120	-1123	-1	L909	-38
DY DPR	237	268	263		-32	214 7889	,	508 1321	20 135
ycDIV	833 -1172	1174 2097	7029 206		30 -130	-2131		-163	64
1			200						
	TASS	gTAss	DY	•	DPR	YCDIV			
TASS	99772648	645							
gTAss DY	-19886 4860	645 10	14						
DPR	15666	-218	30		748				
YCDIV	6819	-120	42		93	1082			
Covariance	e Matrix fo	or Group 0							
_	Earn	gEarn	i T	Res	CaTR		ShrF	Ccas	hOp
Earn	165566	22000							
gEarn TRes	7103 407919	32980 577		696					
CaTR	1390	-1145		270	535				
ShrF	679690	11352			6769	283	1777		
CcashOp	116865	2826		355	-1282		0357		338
ROI	-657	1049		852	-164		4374		680 851
TAss gTAss	1413117 -658	52546 -2592		682	17950 -27		1000	900	10
DY	-461	173		426	-53		2593	-	305
DPR	-4814	5216		284	-249		1895		965
YCDIV	-7190	1465	-19	251	-301	- 3	3703	- 6	126
	RoI	TAss	gT	Ass	DY		DPR	yc	DIV
ROI	225	100000000							
TASS qTASS	-7804 -51	12209672 -6737		421					
DY	-51	-5299		421	31				
DPR	242	-39318		473	25		1611		
YCDIV	342	-68144		297	210		365	2	090
Covariance	e Matrix fo Earn	or Group 1 gEarn		Res	CaTR		ShrF	Ccas	hOp

Earn	03/03					
gEarn	4333	8037 57605	1911353			
TRes CaTR	156701 -761	-37	5522	723		
ShrF	215503	64583	2176566	5686	2523426	
CcashOp	143018	10981	448740	-1419	582804	391550
ROI	1354	76	-1744	10	-359	790
TASS	986753	96499	3591595	-15918	4528531	3245177
gTAss	-1420	-562	-7244	-262	-9495	-3968
DY	318	-11	885	- 3	1196	662
DPR	3982	1026	22497	69 -35	27550 4442	9053 610
YCDIV	-618	1877	3567	- 3 0	4442	010
	RoI	TASS	gTAss	DY	DPR	YCDIV
RoI	173		5			
TASS	-14010	31777974				
gTAss	- 8 8	-31331	1057			
DY	13	2989	12	8	5 • 7	
DPR	156	54767	-269	43	617	
YCDIV	-59	24015	-439	-19	110	1119
Covariance	Matrix fo	or Group 2				
0010110000	Earn	qEarn	TRes	CaTR	ShrF	CcashOp
Earn	233498	J				*
gEarn	53579	313042				
TRes	708555	144860	2221420			
CaTR	-5414	-12427	-14367	717		
ShrF	833894	162759	2608460	-16670	3068433	
CcashOp	80819	33980	253972	-2160	302357	40893
ROI	-1686	1913	-5808	-71	-7158	-925
TASS	8269293	1374855	25091442	-176503 -126	29664492 3600	2921355 309
gTAss DY	677 449	4226 1358	3467 968	-126	1078	-14
DI	447	1330	200	-03	10/0	-14
DDD	-1244		- 2449		- 29/1	-1344
DPR	-1244	-2619	-2448	189	-2941	-1344 202
DPR YCDIV	-1244 1048		-2448 1894		-2941 1981	-1344 202
YCDIV	1048 RoI	-2619		189		
ycDIV RoI	1048 RoI 90	-2619 5078 TAss	1894	189 -153	1981	202
ycDIV RoI TAss	1048 RoI 90 -73801	-2619 5078 TAss 298275744	1894 gTAss	189 -153	1981	202
ycDIV RoI TAss gTAss	1048 RoI 90 -73801 63	-2619 5078 TAss 298275744 8460	1894 gTAss 145	189 -153 DY	1981	202
ycDIV RoI TAss gTAss DY	1048 RoI 90 -73801 63 25	-2619 5078 TAss 298275744 8460 11696	1894 gTAss 145 24	189 -153 DY 17	1981 DPR	202
ycDIV RoI TAss gTAss DY DPR	1048 RoI 90 -73801 63 25 53	-2619 5078 TAss 298275744 8460 11696 -55173	1894 gTAss 145 24 71	189 -153 DY 17 27	1981 DPR 452	202
ycDIV RoI TAss gTAss DY DPR ycDIV	1048 RoI 90 -73801 63 25 53 70	-2619 5078 TAss 298275744 8460 11696 -55173 24935	1894 gTAss 145 24	189 -153 DY 17	1981 DPR	202 ycDIV
ycDIV RoI TAss gTAss DY DPR	1048 RoI 90 -73801 63 25 53 70	-2619 5078 TAss 298275744 8460 11696 -55173 24935 or Group 3	1894 gTAss 145 24 71 89	189 -153 DY 17 27 21	1981 DPR 452 -48	202 ycDIV 192
ycDIV RoI TAss gTAss DY DPR ycDIV Covariance	1048 RoI 90 -73801 63 25 53 70 Matrix fo Earn	-2619 5078 TAss 298275744 8460 11696 -55173 24935	1894 gTAss 145 24 71	189 -153 DY 17 27	1981 DPR 452	202 ycDIV
ycDIV RoI TAss gTAss DY DPR ycDIV Covariance Earn	1048 RoI 90 -73801 63 25 53 70 Matrix fo Earn 418658	-2619 5078 TAss 298275744 8460 11696 -55173 24935 or Group 3 gEarn	1894 gTAss 145 24 71 89	189 -153 DY 17 27 21	1981 DPR 452 -48	202 ycDIV 192
ycDIV RoI TAss gTAss DY DPR ycDIV Covariance Earn gEarn	1048 RoI 90 -73801 63 25 53 70 Matrix fo Earn 418658 347	-2619 5078 TAss 298275744 8460 11696 -55173 24935 or Group 3 gEarn 103	1894 gTAss 145 24 71 89 TRes	189 -153 DY 17 27 21	1981 DPR 452 -48	202 ycDIV 192
ycDIV RoI TAss gTAss DY DPR ycDIV Covariance Earn gEarn TRes	1048 RoI 90 -73801 63 25 53 70 Matrix fo Earn 418658 347 467589	-2619 5078 TAss 298275744 8460 11696 -55173 24935 or Group 3 gEarn 103 4407	1894 gTAss 145 24 71 89 TRes 3534666	189 -153 DY 17 27 21 CaTR	1981 DPR 452 -48	202 ycDIV 192
ycDIV RoI TAss gTAss DY DPR ycDIV Covariance Earn gEarn TRes CaTR	1048 RoI 90 -73801 63 25 53 70 Matrix fo Earn 418658 347 467589 -8678	-2619 5078 TAss 298275744 8460 11696 -55173 24935 or Group 3 gEarn 103 4407 26	1894 gTAss 145 24 71 89 TRes 3534666 21045	189 -153 DY 17 27 21 CaTR 833	1981 DPR 452 -48 ShrF	202 ycDIV 192
ycDIV RoI TAss gTAss DY DPR ycDIV Covariance Earn gEarn TRes CaTR ShrF	1048 RoI 90 -73801 63 25 53 70 Matrix fo Earn 418658 347 467589 -8678 674683	-2619 5078 TAss 298275744 8460 11696 -55173 24935 or Group 3 gEarn 103 4407 26 5991	1894 gTAss 145 24 71 89 TRes 3534666 21045 4008567	189 -153 DY 17 27 21 CaTR 833 20780	1981 DPR 452 -48 ShrF 4638723	202 ycDIV 192
ycDIV RoI TAss gTAss DY DPR ycDIV Covariance Earn gEarn TRes CaTR	1048 RoI 90 -73801 63 25 53 70 Matrix fo Earn 418658 347 467589 -8678	-2619 5078 TAss 298275744 8460 11696 -55173 24935 or Group 3 gEarn 103 4407 26	1894 gTAss 145 24 71 89 TRes 3534666 21045	189 -153 DY 17 27 21 CaTR 833	1981 DPR 452 -48 ShrF	202 ycDIV 192 CcashOp
ycDIV RoI TAss gTAss DY DPR ycDIV Covariance Earn gEarn TRes CaTR ShrF CcashOp	1048 RoI 90 -73801 63 25 53 70 Matrix fo Earn 418658 347 467589 -8678 674683 1100168	-2619 5078 TAss 298275744 8460 11696 -55173 24935 or Group 3 gEarn 103 4407 26 5991 2376	1894 gTAss 145 24 71 89 TRes 3534666 21045 4008567 1228746	189 -153 DY 17 27 21 CaTR 833 20780 -20182	1981 DPR 452 -48 ShrF 4638723 1794099	202 ycDIV 192 CcashOp 2943653
ycDIV RoI TAss gTAss DY DPR ycDIV Covariance Earn gEarn TRes CaTR ShrF CcashOp RoI	1048 RoI 90 -73801 63 25 53 70 Matrix fo Earn 418658 347 467589 -8678 674683 1100168 386	-2619 5078 TAss 298275744 8460 11696 -55173 24935 or Group 3 gEarn 103 4407 26 5991 2376 12 5618 69	1894 gTAss 145 24 71 89 TRes 3534666 21045 4008567 1228746 4625	189 -153 DY 17 27 21 CaTR 833 20780 -20182 18 -216457 252	1981 DPR 452 -48 ShrF 4638723 1794099 5195 11177334 23069	202 ycDIV 192 CcashOp 2943653 887 25648674 -513
ycDIV RoI TAss gTAss DY DPR ycDIV Covariance Earn gEarn TRes CaTR ShrF CcashOp RoI TAss gTAss DY	1048 RoI 90 -73801 63 25 53 70 Matrix fo Earn 418658 347 467589 -8678 674683 1100168 386 9642353 -467 817	-2619 5078 TAss 298275744 8460 11696 -55173 24935 or Group 3 gEarn 103 4407 26 5991 2376 12 5618 69 -5	1894 gTAss 145 24 71 89 TRes 3534666 21045 4008567 1228746 4625 6607852 20862 -143	189 -153 DY 17 27 21 CaTR 833 20780 -20182 18 -216457 252 -36	1981 DPR 452 -48 ShrF 4638723 1794099 5195 11177334 23069 136	202 ycDIV 192 CcashOp 2943653 887 25648674 -513 1993
ycDIV RoI TAss gTAss DY DPR ycDIV Covariance Earn gEarn TRes CaTR ShrF CcashOp RoI TAss gTAss DY DPR	1048 RoI 90 -73801 63 25 53 70 Matrix fo Earn 418658 347 467589 -8678 674683 1100168 386 9642353 -467 817 1468	-2619 5078 TAss 298275744 8460 11696 -55173 24935 or Group 3 gEarn 103 4407 26 5991 2376 12 5618 69 -5 39	1894 gTAss 145 24 71 89 TRes 3534666 21045 4008567 1228746 4625 6607852 20862 -143 -1535	189 -153 DY 17 27 21 CaTR 833 20780 -20182 18 -216457 252 -36 142	1981 DPR 452 -48 ShrF 4638723 1794099 5195 11177334 23069 136 -123	202 ycDIV 192 CcashOp 2943653 887 25648674 -513 1993 6669
ycDIV RoI TAss gTAss DY DPR ycDIV Covariance Earn gEarn TRes CaTR ShrF CcashOp RoI TAss gTAss DY	1048 RoI 90 -73801 63 25 53 70 Matrix fo Earn 418658 347 467589 -8678 674683 1100168 386 9642353 -467 817	-2619 5078 TAss 298275744 8460 11696 -55173 24935 or Group 3 gEarn 103 4407 26 5991 2376 12 5618 69 -5	1894 gTAss 145 24 71 89 TRes 3534666 21045 4008567 1228746 4625 6607852 20862 -143	189 -153 DY 17 27 21 CaTR 833 20780 -20182 18 -216457 252 -36	1981 DPR 452 -48 ShrF 4638723 1794099 5195 11177334 23069 136	202 ycDIV 192 CcashOp 2943653 887 25648674 -513 1993
ycDIV RoI TAss gTAss DY DPR ycDIV Covariance Earn gEarn TRes CaTR ShrF CcashOp RoI TAss gTAss DY DPR	1048 RoI 90 -73801 63 25 53 70 Matrix fo Earn 418658 347 467589 -8678 674683 1100168 386 9642353 -467 817 1468	-2619 5078 TAss 298275744 8460 11696 -55173 24935 or Group 3 gEarn 103 4407 26 5991 2376 12 5618 69 -5 39 -21	1894 gTAss 145 24 71 89 TRes 3534666 21045 4008567 1228746 4625 6607852 20862 -143 -1535 18061	189 -153 DY 17 27 21 CaTR 833 20780 -20182 18 -216457 252 -36 142	1981 DPR 452 -48 ShrF 4638723 1794099 5195 11177334 23069 136 -123	202 ycDIV 192 CcashOp 2943653 887 25648674 -513 1993 6669
ycDIV RoI TAss gTAss DY DPR ycDIV Covariance Earn gEarn TRes CaTR ShrF CcashOp RoI TAss gTAss DY DPR ycDIV	1048 RoI 90 -73801 63 25 53 70 Matrix fo Earn 418658 347 467589 -8678 674683 1100168 386 9642353 -467 817 1468 3866 RoI 9	-2619 5078 TAss 298275744 8460 11696 -55173 24935 or Group 3 gEarn 103 4407 26 5991 2376 12 5618 69 -5 39	1894 gTAss 145 24 71 89 TRes 3534666 21045 4008567 1228746 4625 6607852 20862 -143 -1535	189 -153 DY 17 27 21 CaTR 833 20780 -20182 18 -216457 252 -36 142 -165	1981 DPR 452 -48 ShrF 4638723 1794099 5195 11177334 23069 136 -123 20903	202 ycDIV 192 CcashOp 2943653 887 25648674 -513 1993 6669 6456
ycDIV RoI TAss gTAss DY DPR ycDIV Covariance Earn gEarn TRes CaTR ShrF CcashOp RoI TAss gTAss DY DPR ycDIV ROI TAss	1048 RoI 90 -73801 63 25 53 70 Matrix fo Earn 418658 347 467589 -8678 674683 1100168 386 9642353 -467 817 1468 3866 RoI 91296	-2619 5078 TAss 298275744 8460 11696 -55173 24935 or Group 3 gEarn 103 4407 26 5991 2376 12 5618 69 -5 39 -21 TAss 230353952	1894 gTAss 145 24 71 89 TRes 3534666 21045 4008567 1228746 4625 6607852 20862 -143 -1535 18061 gTAss	189 -153 DY 17 27 21 CaTR 833 20780 -20182 18 -216457 252 -36 142 -165	1981 DPR 452 -48 ShrF 4638723 1794099 5195 11177334 23069 136 -123 20903	202 ycDIV 192 CcashOp 2943653 887 25648674 -513 1993 6669 6456
ycDIV RoI TAss gTAss DY DPR ycDIV Covariance Earn gEarn TRes CaTR ShrF CcashOp RoI TAss gTAss DY DPR ycDIV ROI TAss gTAss gTAss	1048 RoI 90 -73801 63 25 53 70 Matrix for Earn 418658 347 467589 -8678 674683 1100168 386 9642353 -467 817 1468 3866 RoI 91296 32	-2619 5078 TAss 298275744 8460 11696 -55173 24935 or Group 3 gEarn 103 4407 26 5991 2376 12 5618 69 -5 39 -21 TAss 230353952 -37636	1894 gTAss 145 24 71 89 TRes 3534666 21045 4008567 1228746 4625 6607852 20862 -143 -1535 18061 gTAss 174	189 -153 DY 17 27 21 CaTR 833 20780 -20182 18 -216457 252 -36 142 -165 DY	1981 DPR 452 -48 ShrF 4638723 1794099 5195 11177334 23069 136 -123 20903	202 ycDIV 192 CcashOp 2943653 887 25648674 -513 1993 6669 6456
ycDIV RoI TAss gTAss DY DPR ycDIV Covariance Earn gEarn TRes CaTR ShrF CcashOp RoI TAss gTAss DY DPR ycDIV ROI TAss gTAss DY	1048 RoI 90 -73801 63 25 53 70 Matrix for Earn 418658 347 467589 -8678 674683 1100168 386 9642353 -467 817 1468 3866 ROI 9 1296 32 -1	-2619 5078 TAss 298275744 8460 11696 -55173 24935 or Group 3 gEarn 103 4407 26 5991 2376 12 5618 69 -5 39 -21 TAss 230353952 -37636 19536	1894 gTAss 145 24 71 89 TRes 3534666 21045 4008567 1228746 4625 6607852 20862 -143 -1535 18061 gTAss 174 -11	189 -153 DY 17 27 21 CaTR 833 20780 -20182 18 -216457 252 -36 142 -165 DY	1981 DPR 452 -48 ShrF 4638723 1794099 5195 11177334 23069 136 -123 20903 DPR	202 ycDIV 192 CcashOp 2943653 887 25648674 -513 1993 6669 6456
ycDIV RoI TAss gTAss DY DPR ycDIV Covariance Earn gEarn TRes CaTR ShrF CcashOp RoI TAss gTAss DY DPR ycDIV ROI TAss gTAss DY DPR ycDIV	1048 RoI 90 -73801 63 25 53 70 Matrix fo Earn 418658 347 467589 -8678 674683 1100168 9642353 -467 817 1468 3866 ROI 9 1296 32 -1 -15	-2619 5078 TAss 298275744 8460 11696 -55173 24935 or Group 3 gEarn 103 4407 26 5991 2376 12 5618 69 -5 39 -21 TAss 230353952 -37636 19536 58385	1894 gTAss 145 24 71 89 TRes 3534666 21045 4008567 1228746 4625 6607852 20862 -143 -1535 18061 gTAss 174 -11 3	189 -153 DY 17 27 21 CaTR 833 20780 -20182 18 -216457 252 -36 142 -165 DY	1981 DPR 452 -48 ShrF 4638723 1794099 5195 11177334 23069 136 -123 20903 DPR 184	202 ycDIV 192 CcashOp 2943653 887 25648674 -513 1993 6669 6456 ycDIV
ycDIV RoI TAss gTAss DY DPR ycDIV Covariance Earn gEarn TRes CaTR ShrF CcashOp RoI TAss gTAss DY DPR ycDIV ROI TAss gTAss DY	1048 RoI 90 -73801 63 25 53 70 Matrix for Earn 418658 347 467589 -8678 674683 1100168 386 9642353 -467 817 1468 3866 ROI 9 1296 32 -1	-2619 5078 TAss 298275744 8460 11696 -55173 24935 or Group 3 gEarn 103 4407 26 5991 2376 12 5618 69 -5 39 -21 TAss 230353952 -37636 19536	1894 gTAss 145 24 71 89 TRes 3534666 21045 4008567 1228746 4625 6607852 20862 -143 -1535 18061 gTAss 174 -11	189 -153 DY 17 27 21 CaTR 833 20780 -20182 18 -216457 252 -36 142 -165 DY	1981 DPR 452 -48 ShrF 4638723 1794099 5195 11177334 23069 136 -123 20903 DPR	202 ycDIV 192 CcashOp 2943653 887 25648674 -513 1993 6669 6456

Summary of Classified Observations

Observation	True	Pred	Group	Sqrd	Distnc	Probability
1	Group	Group	0		17 20	0.015
1	1	1	0 1		17.39 10.21	0.555
			2		14.72	0.058
			3		11.01	0.372
2	0	0	0		19.90	0.986
			1		31.01	0.004
			2		29.18	0.010
			2 3 0		33.89	0.001
3 **	1	3			11.808	0.035
			1		6.998 10.120	0.392 0.082
			1 2 3 0		6.546	0.491
4	1	1	0		9.219	0.021
					2.831	0.508
			1 2		5.452	0.137
_	_	_	3		3.670	0.334
5	1	1	0		9.924	0.066
			1 2		6.088 8.520	0.452 0.134
					6.618	0.347
6 **	0	2	3 0		17.66	0.175
			1		16.46	0.319
			2		15.55	0.503
			3 0		26.03	0.003
7	0	0	0		13.07	0.373
			1 2 3		13.66 13.87	0.277 0.249
			2		15.69	0.101
8	1	1	0		5.958	0.104
		-	ĩ		2.564	0.570
			2		4.389	0.229
			3		6.125	0.096
9 **	2	1	0		3.995	0.353
			1 2		3.723	0.404
			∠ 3		5.290 7.611	0.185 0.058
10	1	1	0		6.038	0.128
	_	_	1		3.888	0.374
			2		4.146	0.329
	-	-	3		5.474	0.169
11	2	2	0		46.29	0.012
			1 2		47.44 37.47	0.007 0.979
			3		49.64	0.002
12 **	2	1	0		7.644	0.043
			1		3.261	0.386
			2 3 0		3.386	0.363
1 3	0	0	3		4.500	0.208
13	0	0	1		1.635 3.558	0.577 0.220
			2		4.222	0.158
			2 3 0		6.745	0.045
14 **	1	0	0		31.88	0.593
			1		32.98	0.341
			1 2 3		37.70	0.032
15	0	0	3		37.64	0.033 0.960
CI	0	0	0 1		34.35 41.71	0.024
			2		45.36	0.004
			3		43.12	0.012
16 **	0	1	0		8.100	0.179
			1 2		6.332	0.434
					7.764	0.212
17 **	г	0	3		8.147	0.175 0.624
1/ ° °	1	0	0 1		5.987 8.435	0.183
			2		8.950	0.142
			1			

18 **	2	1	0	8.476	0.031
			1 2 3	3.131 4.021 5.086	0.479 0.307 0.180
19	0	0	0 1	4.649 7.338	0.641 0.167
	1.0	- 0-	2	7.584	0.148
20 **	1	2	0 1 2	10.938 8.601 8.589	0.128 0.410 0.413
21	O	0	3	12.826	0.050
			1 2	14.27 14.97	0.145 0.102
22 **	1	0	3 0 1	20.79 2.983 5.900	0.006 0.695 0.162
			23	6.418	0.125
23	3	3	0	45.58 38.38	0.000 0.005
2.4			1 2 3	43.14 27.62	0.000
24	1	1	0 1 2	9.279 3.488 5.876	0.032 0.570 0.173
25	í	1	3 0	5.338 12.143	0.226
			1 2	4.913 5.547	0.527
26 **	.2	1	3 0	8.827 9.601 4.280	0.075 0.043 0.617
			1 2 3	6.452	0.208
27 **	З	0	0 1	6.940 7.661	0.518 0.361
28 **	2	0	2 3 0	10.651 12.034 2.299	0.081 0.041
28 **	2	0	1 2	2.299 5.208 4.971	0.652 0.152 0.171
29 **	3	1	3 0	8.832	0.025 0.143
			1 2	4.125 5.239	0.375 0.215
30	2	2	3 0 1	4.809 54.37 53.10	0.267 0.001 0.001
			1 2 3	39.25	0.997
32	3	3	0	8.428 3.670	0.033 0.351
33 **	3	1	2 3 0	4.429 3.529 6.501	0.240 0.377 0.073
55	3		1 2	3.210	0.376 0.304
34 **	1	3	3 0	4.051 18.24	0.247 0.036
			1 2	14.22 18.29	0.267 0.035 0.662
35 **	0	1	3 0 1	12.41 7.897 6.305	0.862 0.254 0.563
			2 3	8.824 12.666	0.160 0.023

36	3	3	0	30.80	0.001
	-		1	21.68	0.101
			2	27.80	0.005
37 **	1	3	3 0	17.32 12.937	0.893 0.118
	68°	0	1	12.022	0.187
			2	14.184	0.063
38	٩	1	3	9.580	0.632
30	1	1	0 1	2.955 2.261	0.275 0.388
			2	3.439	0.216
			3	4.584	0.122
39 **	2	1	0	8.381 3.838	0.058 0.561
			1 2	5.807	0.209
			3	6.203	0.172
40	0	0	0	17.36	0.925
			1 2	23.18 26.10	0.050 0.012
			3	25.98	0.012
41	2	2	0	8.206	0.274
			1	8.346	0.255
			2 3	7.184 13.978	0.456 0.015
42 **	1	3	0	28.91	0.011
			1	22.66	0.242
			2	25.48	0.059
43 **	1	2	3 0	20.58 7.576	0.688 0.080
10	*	63	1	4.154	0.444
			2	4.096	0.457
44	3	1	3	10.549	0.018
44	1	1	0 1	12.999 8.492	0.055 0.523
			2	9.055	0.395
		_	3	14.430	0.027
45	1	1	0 1	26.33 16.00	0.003 0.502
			2	19.01	0.111
			3	16.53	0.384
46 **	1	0	0	20.43	0.538
			1 2	21.27 23.72	0.354 0.104
			3	30.35	0.004
47	1	1	0	8.656	0.291
			1 2	7.714 9.981	0.466 0.150
			3	10.956	0.092
48	0	0	0	4.675	0.850
			1	9.588 10.168	0.073
			2 3	11.947	0.055 0.022
50	3	3	0	20.235	0.002
			1	14.706	0.028
			2 3	14.457 7.659	0.031 0.939
51	1	1	0	6.145	0.121
			1	3.679	0.414
			2	4.414	0.287
52 **	1	0	3 0	5.361 11.38	0.179 0.436
	-	~	1	11.48	0.414
			2	16.05	0.042
5			3	14.17	0.108

MTB >

WERSITY DE AMERICAN

77

APPENDIX 9: DISCRIMINANT ANALYSIS (FIRMS GROUPED INTO 3 CLASSES).

Worksheet size: 100000 cells

MTB > # Opening worksheet from file: C:\AGUTUPRO\MBAPR2.XLS MTB > # File was last modified on 5/20/80 MTB > Discriminant 'Class' 'Earn'-'ycDIV'; SUBC> Brief 4.

Discriminant Analysis

After subtracting group means, ShrF is highly correlated with other predictors Linear Method for Response: Class Predictors: Earn gEarn TRes CaTR ShrF CcashOp RoI TAss gTAss DY DPR V 0 2 Group 1 Count 11 23 16 50 cases used 1 cases contain missing values Summary of ClassificationTrue Group.... Put into Group 0 2 1 5 0 8 2 1 3 15 6 2 0 3 Я 23 Total N 11 16 N Correct 8 15 8 Proport. 0.727 0.652 0.500 N = 50 N Correct = 31 Prop. Correct = 0.620Squared Distance Between Groups 0 1 2 2.97324 0.00000 4.05510 0 2.97324 0.00000 1.06765 1 2 4.05510 1.06765 0.00000 Linear Discriminant Function for Group 0 1 2 -13.208 -7.872 -7.475 Constant Earn -0.002 -0.006 -0.001 gEarn 0.001 0.001 -0.001 TRes -0.008 -0.006 -0.002 CaTR 0.168 0.128 0.121 ShrF 0.006 0.005 0.002 CcashOp -0.001 0.000 -0.000 0.072 ROI -0.007 0.043 0.000 0.000 TASS 0.000 qTAss 0.103 0.098 0.083 0.838 0.397 0.433 DY DPR 0.071 0.052 0.050 YCDIV 0.023 0.025 0.031 Variable Pooled Means for Group Mean 0 1 2 229.57 164.79 172.11 Earn 356.71 qEarn -21.116 -47.954 25.575 -69.784 608.0 1144.4 1083.9 TRes 1600.2 51.787 65.174 46.346 CaTR 49.169 1431.2 902.3 ShrF 1347.9 1914.5 CcashOp 443.74 205.30 428.75 629.23

DPR YCDIV			4.692 4.039	41.4 28.16						
Variable	Pooled Stdev	Stdev for 0	Group 1		2					
Earn	406.2	406.9	252.5	559.						
gEarn	258.5	181.6	89.6	419.	0					
TRes	1440	1015	1383	173						
CaTR	26.11	23.14	26.88	26.8	3					
ShrF	1760	1683	1589	202						
CcashOp	815.6		625.7	1201.	0					
ROI	12.28		13.17	8.2	5					
TASS	9954	3494	5637	1599	1					
gTAss	25.16	20.51	32.51	12.3	7					
DY	3.681	5.585	2.760	3.23	8					
DPR	27.06	40.14	24.83	17.7	8					
YCDIV	32.90	45.72	33.45	18.9	1					
Pooled Cov	variance Ma		(D)	_			Char	0.00	aboa	Det
Earn	Earn 165010	gEarn	TRes	5	CaTR		ShrF	CCa	shOp	RoI
gEarn	16997	66808								
TRes	370064	71159	2073409	a						
CaTR	-2183	-2432	3113		682					
ShrF	510177	84417	2497581		3412	30	96903			
CcashOp	268893	26388	57451(-4197		81814	66	5175	
RoI	68	466	-2650		-37		-2679		-459	151
TASS	3499188	353550	7969386		62661		72201		2145	-23361
gTAss	-635	-14	508		-119		-481		1482	-41
DY	222	256	213	3	-31		155		463	20
DPR	762	1115	6646	5	31		7433		4049	133
YCDIV	-748	2307	1958	3	-133		85		1197	51
(T)	TASS	gTAss	D	Ľ	DPR		YCDIV			
	99078016	())								
gTAss DY	-17806 4611	633 10	14	4						
DPR	14559	-215	3(732					
YCDIV	12492	-111	4(88		1083			
Covariance	Matrix fo	r Group 0								
	Earn	gEarn	1	rRes	С	aTR		ShrF	Cc	ashOp
Earn	165566	-								-
gEarn	7103	32980								
TRes	407919	577	1030	0696						
CaTR	1390	-1145		3270		535				
ShrF	679690	11352	1702			769		1777		
CcashOp	116865	2826		0355		282		0357	1	01338
RoI TAss	-657	1049		2852		164		4374	0	-680
gTAss	1413117 -658	52546 -2592	3490)877 682	1 /	950 -27		4487 1000	9	80851 10
DY	-461	173	_ 1	L426		-53		2593		-305
DPR	-4814	5216		1284		249		1895		-2965
YCDIV	-7190	1465		9251		301		3703		-6126
	RoI	TAss	~~	ſAss		DY		DPR		ycDIV
RoI	225	IASS	g.	100		D1		DEK		YCDIV
TASS	-7804	12209672								
qTAss	-51	-6737		421						
DY	45	-5299		10		31				
DPR	242	-39318	-	473		25		1611		
YCDIV	342	-68144		297		210		365		2090
Covariance	Matrix fo:	r Group 1								
	Earn	gÈarn	Г	TRes	С	aTR		ShrF	Cca	ashOp
Earn	63763	_								-
gEarn	4333	8037								
TRes	156701	57605	1911							
CaTR	-761	- 37	5	5522		723				

	213303	10001	440740	-1419	582804	391550
р	143018	10981	448740	-1419 10	-359	790
	1354	76	-1744		4528531	3245177
	986753	96499	3591595	-15918	-9495	-3968
	-1420	-562	-7244	-262		- 3968
	318	-11	885	- 3	1196	9053
	3982	1026	22497	69	27550	
	-618	1877	3567	-35	4442	610
	R0I 173	TAss	gTAss	DY	DPR	YCDIV
1	-14010	31777974				
1	- 88	-31331	1057			
	13	2989	12	8		
	156	54767	~269	43	617	
	- 5 9	24015	-439	-19	110	1119
ance	Matrix for	r Group 2				
l	Earn	gĒarn	TRes	CaTR	ShrF	CcashOp
	313135	-				
	42167	175557				
	657759	138092	3006232			
	-6650	-6803	-524	720		
	829357	162217	3498436	-2160	4114754	
p	554860	64693	941742	-10213	1268001	1442383
*	-1336	649	-3845	-22	-4950	-2144
	8574806	931229	17375818	-184957	21961392	12860562
	531	2508	11761	29	13084	1169
	535	702	321	- 58	458	683
	-243	-1487	-2650	160	-2521	1386
	3358	3497	13737	-165	16219	6940
	RoI 68	TAss	gTAss	DY	DPR	YCDIV
	-47447	255696976				
	-4/44/	-5351	153			
	14	13596	8	10		
	27	-8493	36	13	316	
	19	49350	99	15	-128	357
y of	Classified	d Observatio	ons			
atior	n True	Pred	Group Sard	Distnc Pro	obability	

ation	True	Pred	Group	Sqrd Distno	Probability
1	Group	Group	0	17 00	0.022
T	1	1	-	17.09	
			1 2	10.18	
2	0	0	2	11.93 20.28	
2	0	0	1	31.37	
		1.0	2	30.49	
3	1	1	0	11.417	
5	1	1	1	6.917	
			2	7.311	
4	1	1	õ	9.083	
-	-	-	1	2.826	
			2	3.525	
5	1	1	0	9.785	
_			1	6.145	
			2	6.597	
6 **	0	1	0	17.14	
			1	15.19	0.610
			2	17.87	0.159
7	0	0	0	13.34	0.394
			1	13.92	
			2	13.80	0.312
8	1	1	0	6.068	
			1	2.587	
			2	4.078	
9 **	2	1	0	4.077	0.364

10 **	1	2	2 0 1 2	5.233 6.133 3.956	0.204 0.135 0.401
11	2	2	2 0 1 2	3.660 45.93 46.26	0.465 0.058 0.049
12	2	2	2 0 1 2	40.45 7.762 3.322	0.893 0.045 0.415
13	0	0	0	2.792 1.669 3.557	0.540 0.599 0.233
14 ••	1	0	1 2 0 1 2	4.221 32.44 33.70	0.167 0.617 0.329
15	0	0	0 1	37.33 34.69 42.52	0.054 0.972 0.019
16 **	0	1	2 0 1	44.06 8.180 6.469	0.009 0.192 0.452
17 **	1	0	2 0 1	6.942 6.107 8.569	0.356 0.648 0.189
18 **	2	1	2 0 1	8.866 8.611 3.190	0.163 0.034 0.511
19	0	0	2 0 1 2	3.420 4.746 7.427	0.455 0.666 0.174
20	1	1	0 1	7.611 11.146 8.544	0.159 0.139 0.511
21	0	0	2 0 1	9.299 11.09 14.10	0.350 0.772 0.171
22 **	1	0	2 0 1	16.31 3.034 5.835	0.057 0.720 0.177
23	2	2	2 0 1	6.933 41.29 35.30	0.103 0.008 0.154
24	1	1	2 0 1	31.92 9.300 3.553	0.838 0.034 0.605
25	1	1	2 0 1 2	4.583 12.404 4.879	0.361 0.014 0.611
26 **	2	1	2 0 1 2	5.858 9.750 4.367	0.375 0.044 0.646
27 **	2	0	0 1	5.836 7.057 7.809	0.310 0.532 0.365
28 **	2	0	2 0 1	10.329 2.333 5.122	0.104 0.687 0.170
29	2	2	2 0 1	5.475 6.022 4.206	0.143 0.160 0.397
30	2	2	2 0 1	3.983 53.96 51.75	0.443 0.003 0.009
32	2	2	2 0 1	42.33 8.391 3.728	0.988 0.038 0.386
33	2	2	2 0	2.928 6.550	0.576 0.078

APPENDIX 10: DISCRIMINANT ANALYSIS (OUADRATIC).

MTB > # Opening worksheet from file: C:\AGUTUPRO\MBAPR2.XLS MTB > # File was last modified on 5/20/80 MTB > Name c16 = 'FITS1' MTB > Discriminant 'Class' 'Earn'-'ycDIV'; SUBC> Quadratic; SUBC> Brief 4; SUBC> Fits 'FITS1'.

Discriminant Analysis

* ERROR * ycDIV is highly correlated with other predictors in group 0 Calculations for discriminant analysis cannot be done.

MTB > Name c17 = 'FITS2'
MTB > Discriminant 'Class' 'Earn'-'DPR';
SUBC> Quadratic;
SUBC> Brief 4;
SUBC> Fits 'FITS2'.

Discriminant Analysis

* ERROR * TAss is highly correlated with other predictors in group 0 Calculations for discriminant analysis cannot be done.

```
MTB > Name c18 = 'FITS3'
MTB > Discriminant 'Class' 'Earn'-'RoI' 'gTAss'-'DPR';
SUBC> Quadratic;
SUBC> Brief 4;
SUBC> Fits 'FITS3'.
```

Discriminant Analysis

is highly correlated with other predictors in group is highly correlated with other predictors in group is highly correlated with other predictors in group TRes 0 ShrF 0 TRes 1 ShrF is highly correlated with other predictors in group 1 TRes is highly correlated with other predictors in group 2 ShrF is highly correlated with other predictors in group 2 Quadratic Method for Response: Class Predictors: Earn gEarn TRes CaTR ShrF CcashOp RoI gTAss DY DPR Group 0 1 2 Count 12 23 16 Summary of Classification Put into True Group.... Group 0 2 1 0 12 1 1 1 0 21 6 2. 0 1 9 Total N 12 23 16 N Correct 12 21 9 Proport. 1.000 0.913 0.563 N = 51 N Correct = 42 Prop. Correct = 0.824From Generalized Squared Distance to Group Group 0 1 2 75.48 Ω 83.25 98.46 1 135.40 77.68 80.01

83

```
2 222.30 84.70 78.95
```

Earn gEarn TRes CaTR ShrF CcashOp RoI gTAss DY DPR	Mean 222.62 22.409 1145.6 51.198 1441.1 434.83 13.854 25.274 7.1577 45.162	657.8 61.557 988.7 187.28 15.593 26.880	1 172.11 25.575 1083.9 49.169 1347.9 428.75 14.772 27.033 6.3146 44.692	2 356.71 -69.784 1600.2 46.346 1914.5 629.23 11.232 21.540 6.6347 41.435		1 -	
Variable Earn gEarn TRes CaTR ShrF CcashOp RoI gTAss DY DPR	Pooled Stdev 404.0 255.8 1427 26.52 1747 807.6 12.33 24.95 3.646 26.84	0 396.9 173.5 983 25.37 1632 309.9 14.94 19.83	for Group 1 252.5 89.6 1383 26.88 1589 625.7 13.17 32.51 2.760 24.83	2 559.6 419.0 1734 26.83 2028 1201.0 8.25 12.37 3.238 17.78			
Pooled Cova	Earn	Matrix gEarn	TRes	CaTR	ShrF	CcashOp	RoI
Earn gEarn TRes CaTR ShrF CcashOp RoI gTAss DY DPR	$163176 \\ 16860 \\ 359048 \\ -1897 \\ 493807 \\ 264488 \\ 148 \\ -559 \\ 224 \\ 823 \\ \end{array}$	69230 -2349 81883 26000 467	2037027 2553 2457383 560074 -2764 368 195 6350	704 2481 -3930 -24 -107 -30 41	3052938 761242 -2917 -697 128 7004	652211 -388 -1404 458 4022	152 -37 20 134
gTAss	gTAss 622	DY	DPR				
DY DPR	10 -207	13 29	721				
Covariance Earn		for Group gEarn		CaTR	ShrF	CcashOp	RoI
gEarn TRes CaTR ShrF CcashOp RoI gTAss DY DPR	7402 356410 2312 592848 111464 -239 -323 -390 -4043	30110 -1422 -900 6940 3274 1002 -2319 161 4787	966733 812 1599403 262284 -3332 54 -1355 -13672	644 2401 -383 -96 16 -44 -177	2664032 427082 -5260 -1893 -2460 -21097	96024 -351 214 -256 -2447	223 -32 42 237
gTAss	gTAss 393	DY	DPR				
DY DPR	10 -417	28 24	1481				
Covariance Earn	Matrix Earn 63763	for Group gEarn	1 TRes	CaTR	ShrF	CcashOp	RoI
gEarn TRes CaTR	4333 156701 -761	8037 57605 -37	1911353 5522	723			

ShrF CcashOp ROI gTAss DY DPR	215503 143018 1354 -1420 318 3982	64583 10981 -562 -11 1026	2176566 448740 -1744 -7244 885 22497	5686 -1419 10 -262 -3 69	2523426 582804 -359 -9495 1196 27550	391550 790 -3968 662 9053	173 -88 13 156
gTAss	gTAss 1057 12	DY	DPR				
DY DPR	-269	8 4 3	617				
Covariance	Matrix Earn	for Group gEarn	2 TRes	CaTR	ShrF	CcashOp	RoI
Earn	313135	3	11(00	cuin	Uniti	ceabilop	
gEarn TRes	42167 657759	175557 138092	3006232				
CaTR	-6650	-6803	-524	720			
ShrF	829357	162217	3498436	-2160	4114754		
CcashOp	554860	64693	941742	-10213	1268001	1442383	6.0
RoI gTAss	-1336 531	649 2508	-3845 11761	-22 29	-4950 13084	-2144 1169	68 36
DY	535	702	321	-58	458	683	14
DPR	-243	-1487	-2650	160	-2521	1386	27
	qTAss	DY	DPR				
gTAss	153						
DY	8	10					
DPR	36	13	316				

Summary of Classified Observations

Observati	ion True Group		Group	Sqrd Distnc	Probability
1	Group 1		0	2376.30	0.000
			1	90.09	1.000
2	C	0	2 0	140.02 85.35	0.000 1.000
2	0	0	1	199.24	0.000
			2	516.42	0.000
3	1	. 1	0	220.19	0.000
			1	82.54	0.756
			2	84.80	0.244
4	1	. 1	0	237.52	0.000
			1	81.81	0.994
_			2	91.88	0.006
5	1	. 1	0	99.57	0.000
			1	80.96	1.000
C	0		2	98.16	0.000
6	0	0	0	85.50	1.000
			1 2	117.50 251.38	0.000
7	0	0	0	85.56	1.000
,	0	0	1	127.32	0.000
			2	1070.01	0.000
8	1	1	0	94.74	0.001
	-	-		81.45	0.999
			1 2 0	110.31	0.000
9	** 2	1	0	182.62	0.000
			1	88.76	0.708
			1 2	90.53	0.292
10	1	1	0	100.39	0.000
			1	84.05	1.000
			2	101.96	0.000
11	2	2	0	490.37	0.000
			1	929.17	0.000
10	~	0	2	93.01	1.000
12	2	2	0	149.48	0.000
			1	85.20	0.164

36	2	2	2 0 1	96.10 4452.40 123.03	0.005 0.000 0.000
37	1	1	2 0 1	92.64 446.02 86.42	1.000 0.000 1.000
38	1	1	2 0 1 2	166.00 122.37 82.60 87.57	0.000 0.000 0.923 0.077
39 **	2	1	0 1 2	99.98 80.71 87.21	0.000 0.963 0.037
40	0	0	0 1 2	85.52 143.09 101.51	1.000 0.000 0.000
41	2	2	0 1 2	105.10 119.74 88.77	0.000 0.000 1.000
42	1	1	0 1 2	3544.47 93.94 490.32	0.000 1.000 0.000
43	1	1	0 1 2	84.62 84.35 190.97	0.466 0.534 0.000
44	1	1	0 1 2	122.79 87.43 308.17	0.000 1.000 0.000
45	1	1	0 1 2 0	98.06 87.95 144.42	0.006 0.994 0.000
46	1	1	0 1 2 0	257.00 96.91 353.22	0.000 1.000 0.000
47	1	1	0 1 2 0	595.98 86.52 106.70	$0.000 \\ 1.000 \\ 0.000$
48	0	0	1 2	84.57 134.46 214.96	1.000 0.000 0.000
49	2	2	0 1 2	531.71 134.45 86.05	0.000 0.000 1.000
50	1	1	0 1 2	88.03 82.49 120.04	0.059 0.941 0.000
51	1	1	0 1 2	499.64 90.01 96.64	0.000 0.965 0.035

MTB >

APPENDIX 11: REGRESSION ANALYSIS.

Worksheet size: 100000 cells

MTB > # Opening worksheet from file: C:\AGUTUPRO\MBAPR2.XLS MTB > # File was last modified on 5/20/80 MTB > Name cl6 = 'FITS1' MTB > Regress 'Class' 12 'Earn'-'ycDIV'; Fits 'FITS1'; SUBC> Constant; SUBC> VIF; SUBC> SUBC> DW: SUBC> Pure; XLOF. SUBC>

Regression Analysis

* NOTE * ShrF is highly correlated with other predictor variables

The regression equation is Class = 1.93 + 0.00036 Earn -0.000422 gEarn + 0.00110 TRes - 0.00769 CaTR -0.000869 ShrF +0.000031 CcashOp + 0.0061 RoI +0.000004 TAss - 0.00407 gTAss - 0.0606 DY - 0.00339 DPR + 0.00146 ycDIV

50 cases used 1 cases contain missing values

Predicto: Constant Earn gEarn TRes CaTR ShrF CcashOp RoI TAss gTAss DY DPR yCDIV	r Co 1.92 0.0003 -0.00042 0.00109 -0.0076 0.00006 0.00006 0.00006 -0.004 -0.004 -0.003 0.0019	280 0.3 359 0.001 224 0.0004 973 0.0004 590 0.004 587 0.0004 587 0.0004 508 0.004 508 0.004 508 0.004 508 0.004 508 0.004 508 0.004 508 0.004 508 0.004 508 0.004 508 0.004 509 0.004	1397 5409 1580 5950 2297 1181 2833 4605 3318 4901	t-ratio 4.89 0.32 -0.96 1.71 -1.68 -1.46 0.14 0.15 0.15 -0.88 -1.83 -0.69 0.40	p 0.000 0.751 0.343 0.095 0.102 0.153 0.893 0.610 0.879 0.382 0.076 0.493 0.688	VIF 21.8 1.3 90.2 1.5 114.0 3.6 2.2 8.7 1.3 1.7 1.8 1.4	
s = 0.68	83 R	-sq = 33.8%	R -	sq(adj) =	12.4%		
Analysis	of Varia	nce					
SOURCE Regressi Error Total	DF 0n 12 37 49	SS 8.9696 17.5304 26.5000		MS 7475 4738	F 1.58	p 0.141	
SOURCE Earn gEarn TRes CaTR ShrF CcashOp RoI TAss gTAss DY DPR yCDIV	DF 1 1 1 1 1 1 1 1 1 1 1 1	SEQ SS 0.9273 0.1563 0.8653 2.5122 1.2370 0.0033 0.1743 0.0364 0.7277 1.9562 0.2961 0.0774					
Unusual Obs. 11 15 27	Observati Earn -25 1386 180	ons Class 2.0000 0.0000 2.0000	Fit 1.6187 0.2370 0.6798	0.62	579 0 237 -0	idual S .3813 .2370 .3202	t.Resid 1.88 X -0.81 X 2.11R

87

R denotes an obs. with a large st. resid. X denotes an obs. whose X value gives it large influence.

Durbin-Watson statistic = 1.78

No evidence of lack of fit (P > 0.1) Cannot do pure error test

MTB >