LONG RUN PORTFOLIO RETURNS ON BONDS AND STOCKS IN THE KENYAN MARKET

A RESEARCH PROJECT PRESENTED IN PARTIAL, FUL FIL MENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTERS IN BUSINESS ADMINISTRATION (MBA), SCHOOL OF BUSINESS UNIVERSITY OF NAIROBI

[^0]
DECLARATION

I, Stephen Wanyonyi Luketero hereby certify that;

1. Except where due acknowledgement has been made, this project work is mine alone.
2. The project has not been submitted in whole or in part to qualify for any other academic award.

Stephen Wanyonyi Luketero

D61/9201/05

I, Mr. Otieno Luther Odhiambo hereby certify that this project has been presented for examination with my approval as the University of Nairobi supervisor.
signed... Aqueln ... Date..1/!!!/2008
Mr. Otieno Luther Odhiambo

Lecturer, School of Business,

University of Nairobi

DEDICATION

This project is dedicated to my beloved wife Olipha Bikeri and our children.

ACKNOWLEDGEMENT

My most sincere gratitude goes to Mr. Otieno Luther Odhiambo, Lecturer School of Business, University of Nairobi for his candid and endurance in supervising me. The many hours we spend together enabled me achieve many valuable results. He pointed out fallacious mistakes which I could have otherwise made.

May I also thank my wife and our children for their patience during the period of writing this project work.

LIST OF ABBREVIATIONS

No.	FULL NAME	SHORT NAME
1	Nairobi Stock exchange	NSE
2	Emerging Stock Markets	ESMs
3	Developed Stock Markets	DSMs
4	Main Investments Market Segment	MIMS
5	Alternative Investment Market Segment	AIMS
6	Fixed Income Securities Segment	FISMS
7	Futures and Options Market Segment	FOMS
8	Central Bank of Kenya	CBK
9	Yield To Maturity	YTM
10	Kenya National Bureau of statistics	KNBS
11	Stock Returns	stockr
12	Bond Returns	Bondr
13	Standard Deviation	Stdev
14	Consumer Price Index	CPI
15	r	Correlation
16	R^{2}	Coefficient
		Determination

LIST OF TABLES

Table No.
4.1 Monthly Equity Premium Page 4.2 Annual Equity Premium 36 4.3 Returns on Bonds 39 4.4 Returns on Stocks Overall correlations between stocks returns and bonds returns 50 4.5 Annual correlations between stocks returns and bonds returns p-value 50 4.6 Paired sampled Test statistic 41 4.7 Regression 50 4.8 Regression Coefficients 54 4.9 55 4.10 50

LIST OF FIGURES

Figure No.
2.1 Normal Yield Curve Page 2.2 Flat Yield Curve 22 2.3 Inverted Yield Curve 23 2.4 The Theoretical Spot Rate Curve 24 2.5 The credit spread Curve 25 4.1 Average Returns on stocks and Bonds 29 4.2 Annual real returns on stocks and bonds 42 4.3 Returns on BAMB.stock 43 4.4 Returns on CMC.stock 44 4.5 Returns on BBK.stock 45 4.6 Returns on BAT.stock 46 4.7 Returns on NICB.stock 47 4.8 Returns on BBONI).stock 4849

TABLE OF CONTENTS

DECLARATION ii
DEDICATION iii
ACKNOWLEDGEMENTS iv
LIST OF ABBREVIATIONS v
LIST OF TABLES vi
LIST OF FIGURES vii
ABSTRACT xii
1.0 CHAPTER 1 INTRODUCTION 1
1.1 Background 1
1.1.1 Fixed rate coupon 3
1.1.2 Floating rate coupon 3
1.1.3 Zero coupon bonds 3
1.1.4 Par value 4
1.1.5 Discount price 4
1.1.6 Premium price 4
1.1.7 Emerging stock markets 5
1.1.8 Sectored Return 5
1.1.9 The Nairobi Stock Exchange 5
1.2 Statement of the Problem 6
1.3 Objective of the study 8
1.4 Hypothesis Testing 8
1.5 Justification of the study 8
1.5.1 Investors 8
1.5.2 Actuaries/Asset managers/Fund managers 8
1.5.3 Policy makers 8
1.5.4 Financial Intermediaries 9
1.5.5 Financial Analysts 9
1.5.6 World Bank/International Bodies 9
1.5.7 Academics 9
2.0 CHAPTER 2 LITERATURE REVIEW 10
2.1 The CBK and setting treasury bills rates 12
2.2 Treasury bill rates and Crowding Effects 13
2.2.1 Factors Affecting T-bill rates 13
2.3 Bonds 13
2.3.1 Bond Issuers 14
2.3.2 Priority 14
2.3.3 Coupon rate 14
2.3.4 Redemption Features 15
2.4 Bond valuation 16
2.4.1 Coupon rate and length of time until maturity 16
2.4.2 Call and Put Provisions 16
2.4.3 Tax Status 17
2.4.4 Marketability 17
2.4.5 Risk of Default 17
2.5 Valuation and Bond Pricing 17
2.5.1 Pricing Zero Coupon Bonds 19
2.5.2 Pricing Bonds between payment periods 19
2.5.3 Price - Yield Relationship 19
2.5.4 Calculating Yield to Maturity 20
2.6 Term Structure of Interest Rates 21
2.6.1 Definitions 21
2.6.2 Curves of Term Structure of Interest Rates 22
2.6.2.1 Normal Yield Curve 22
2.6.2.2 Flat Yield Curve 23
2.6.2.3 Inverted Yield Curve 23
2.7 The Theoretical Spot Rate Curve 24
2.8 Determinants of Term Structure of Interest Rates 25
2.8.1 The Premium 25
2.8.2 Segmentation of the financial markets 26
2.8.3 Expectations of Market 26
2.8.4 Maturity Period 26
2.8.5 Coupon Effect 26
2.9 Theories of Term Structure of Interest Rates 26
2.9.1 The Unbiased Expectations Theory 27
2.9.2 The Market Segmentation theory 27
2.9.3 The Liquidity preference Theory 27
2.9.4 The Preferred habitat Theory 28
2.10 The Credit Spread 28
2.11 Determinants of Stock Prices 29
2.11.1 New Information 30
2.11.2 Uncertainty 30
2.11.3 Psychological Factors-Fear and Greed 30
2.11.4 Supply and Demand 31
2.12 Efficient Markets 31
2.12.1 Assumptions that imply an Efficient Market 31
2.13 Inflation 31
3.0 CHAPTER THREE: RESEARCH METHODOLOGY 33
3.1 Population 33
3.2 Sampling Design 33
3.3 Data Collection 33
3.4 The variables and their measurements 34
3.5 Return on Equities 34
3.6 Returns on 91 (or 182) day Treasury bill 35
3.7 Inflation 35
3.8 Risk 35
3.9 Data Analysis 35
4.0 CHAPTER FOUR: DATA ANALYSIS 36
4.1 Correlation 36
4.2 Regression 54
5.0 CHAPTER FIVE: SUMMARY OF FINDINGS 56
5.1 Summary of Findings and Conclusions 56
5.2 Limitations of the study 56
5.3 Recommendations 57
5.4 Suggestions for further Research 57
REFEREN(ES 58APPENDIX 1 Monthly returns on stocks in PercentagesAPPENDIX 2 Monthly returns on bonds in Percentages

ABSTRACT
This study seeks to investigate long-run real returns on stocks and bonds in the Kenyan market. Empirical evidence suggests that long-run real return on stocks is higher than long-run real return on bonds.

In this project we examine returns on bonds and stocks at the NSE for the period 1999 to 2006. To be able to compute real returns we incorporate inflation for the same period of time. To able to achieve results we perform correlation between the real returns on stocks and bonds.

Furthermore we regress real returns on stocks against returns on bonds, inflation and real returns on bonds. This gives us a regression model relating the given variables. We also test the significance level at 95% Confidence Interval.

CHAPTER 1.0: INTRODUCTION

1.1 Background

The most important uncertainty that investors face is the rate of return that they can expect over the long run (Peter L. Bernstein). Investors are interested in earning good returns from the investments they make hence they are faced with two decisions to make: firstly portfolio mix and secondly long run investments. Investment is about sacrificing current shilling for future shilling. The sacrifice is certain since it takes place now but however returns usually come later hence accompanied by risk. In making a decision to invest, investors are expected to analyze the state of the economy and its potential effects on the security returns. The investors would also assess the industry performance since stock prices would be influenced by industry conditions that affect lirm performance . Investors would in reality buy those securities that would preserve the capital invested or those that could lead to capital appreciation (Reilly et al 2006).

The interest rate on debt securities will depend on a number of factors. Some aspects will relate to the supply of securities (i.e. if the government reduces the securities available by net repayments of stock, the yields on the stocks are likely to be lower than would be the case if the government were a net issuer of securities) while other aspects will be influenced by the demand side (i.e. the levels of liquidity available to buyers of securities such as private individuals, corporate bodies. institutions and foreign governments). Insestors which lend their assets can expect. in theory, to receive a payment to compensate them for the loss of purchasing power in their cash while it is lent, plus some premium for actually giving someone else the use of the money. A.J.FROST and D.P.HAGER (1990). Furthermore, the longer the money is lent, the greater the risks to the lender and hence lending for longer periods could be expected to be at higher rates of interest than for shorter periods.

Markowitz (1952) asserts that investors seek both maximum expected returns for a given level of risk and minimum risk for a given level of expected return. Expected return is the measure of potential reward associated with a portfolio and standard deviation is a measure
of a portfolio risk. This study seeks to investigate the long run returns on bonds and stocks at the Nairobi Stock Exchange (NSE). We analyze returns over the period 1996-2006. In the case of NSE there has been phenomenon investor enthusiasm to buy shares traded at the market. From period 2002-2007 the main NSE index rose by 817% in dollar terms according to Standards and Poor's, a leading investment research firm, making it be among the world's best performing markets.

Africa Research Bulletin (2008) explains that Kenyan investors are stocks frenzy such that they even sell their cattle to buy the shares. Investors must first determine and if possible measure their predictive ability. They should actively seek above-average returns only where they have a predictive capability. Where they don't passive approach is the appropriate way to go Farrell Jr. (1993).

The equity market consists of ordinary shares and preference shares. The debt market consists of treasury bonds, corporate bonds, commercial paper, municıpal bonds, assets backed securities and mortgage backed securities. In this study we tend to analyze bonds and stocks. Treasury bonds and stocks are competing assets particularly when their prices are not at equilibrium. A wise investor chooses one or both assets not only according to his/her goals and the amount of capital available but also according to his own tolerance for risk. Correct choice ensures that investors are able to reduce their risk and enhance their returns by taking into account the market forces and taking rightful decisions.

Bonds are capital investments that attract institutional investors and require astronomical amounts of capital for trade. Retail investors are more attracted to investing in equities and unit trusts. Treasury bills are the least risking and most marketable of all of the securities, Elton and Gruber (1995). In Kenya, Treasury bonds are medium to long term government securities sold by central bank of Kenya on behalf of treasury. An investor earns a return during the period of the security and payment of the face value is made on maturity date. Currently T /bonds on offer are for maturity periods ranging from 1 (one) year and above. The minimum amount one can purchase has a face value of kshs 50,000 after which any
additional amounts must be in multiple of kshs 50,000 . T/bonds may be offered with any of the following types of returns according to the terms.

1.1.1 Fixed rate Coupon

Entitles investors to a fixed sum of interest that applies constantly throughout the bond life.

1.1.2 Floating rate coupon

Investors earn a floating sum of interest which is pegged to the 91 days treasury bills average rate. Since treasury bills rates are influenced by market forces, different rates are applied through out the bond life. Therefore the relevant Treasury bill rate at the beginning of each interest period plus a fixed premium is applied. In most cases interest on bonds are paid every six months so investors will receive two payments in a year.

1.1.3 Zero coupon bonds

This is a bond with only the payment (redemption) and is sold at a discount to its face value as in treasury bills.

The question whose answer an investor would wish to know is: how can an investor tell how much interest a treasury bond will earn? Investors can use the following formula to determine amount of interest.
$\frac{f r}{100 n}=I$
Where $\mathrm{f}=$ face value of bonds
$r=$ Interest (coupon) rate per year
$\mathrm{n}=$ No of interest payments in a year
$\mathrm{I}=$ Amount of interest payments

Another question that ponders an investor is how he/she can determine the yield rate (price) at which to purchase treasury bonds. The face value of a bond is not necessarily how much it costs. A bond may cost same, more or less than the face value depending on the market. Investors are required to determine the desired rate of return (i.e. yield rate) in percentage terms. Once they settle on a desired yield rate they can use the following formula to get the price for every kshs 100 .
$P=\frac{I_{1}}{(1+r)^{1}}+\frac{I_{2}}{(1+r)^{2}}+\ldots .+\frac{I_{n}+f v}{(1+r)^{n}}$

Where
$\mathrm{P}=$ the price for every kshs 100 of Treasury bond
$r=$ desired rate of return (interest rate per year)
$\mathrm{n}=$ number of interest periods in bond life
$1=$ Interest amount per coupon (day count convention 364)
$f v=$ face value

There are three types of prices:

1.1.4 Par value

When an investor desires a yield rate which is same as the coupon rate they are expected to pay a par price of kshs 100 for every kshs 100 i.e. cost will be equal to face value of quantity desired.

1.1.5 Discount price

Investors who desire a yield rate higher than coupon rate are expected to pay a discount price which is less than every kshs 100 i.e. cost will be lower than face value

1.1.6 Premium price

Investors who desire a yield rate lower than coupon rate are expected to pay a premium price which is more than face value i.e. cost will be higher than face value.
For ease of calculating prices, the Central Bank includes a yield table in the prospectus for the treasury bonds on offer. Investors may apply a price to any face value of treasury bonds desired to determine cost. See formula bellow;

$$
\frac{F P}{100}=C
$$

Where
$F=$ face value,
$\mathrm{P}=$ Price and
$\mathrm{C}=$ cost of Treasury bond
The difference between coupon rate and yield rate is explained as follows: "coupon rate is interest amount paid on face value of Treasury bond while yield rate is the return for the life of the bond".

1.1.7 Emerging stock markets

There is evidence that emerging stock markets (ESMs) are segmented from world capital markets, and as a result local information has increased importance in these markets Harvey (1995b0. A consequence of the segmented nature of these markets is that ESMs returns are only weakly correlated with the returns from developed stock markets (DSMs). This allows an international investor to enhance the mean-variance efficiency of their portfolio Errunza (1977); Divecha et al (1992). The diversification benefits, however, will be greatest when the factors driving return variation are uncorrelated across markets.

Since the 1980s, there have been substantial changes in political and economic environments in many regions such as China, Eastern Europe, Latin America and Russia. As a result, emerging markets now represent a feasible investment alternative for international investors and the last decade has witnessed massive capital flows in and out of emerging stock markets.

1.1.8 Sectored Return

The analysis of sectored characteristics does indicate that there are significant differences between sectors in terms of their risk-return relationships Muriuki J.(2003). The portfolio return characteristics do not only differ across sectors but also from one period to the other. The existence of risk-return difference is a manifestation of the inherent differences in the impact of market conditions on different sectors. Prior research has already suggested that interest rates, inflation rates are possible influences on industry returns Gibson, (1992), Whittington, Saporta and Singh, (1997). This study will employ inflation to be able to determine real returns.

1.1.9 The Nairobi Stock Exchange

The Nairobi Stock Exchange was established in 1954. The introduction of the trading floor has led to a substantial increase in trading volumes and upward movement in the various indexes. The NSE has been instrumental in enabling the public and private sectors in

Kenya to raise large amounts of capital for expansion of new businesses (NSE manual, 2005).

The NSE thus represents the financial markets in Kenya. It has 19 registered brokers and has about 55 firms listed on the exchange. It deals in ordinary shares and fixed income securities such as preference shares and most recently treasury bonds. The NSE also has some of its shares cross-listed with other stock exchanges in South Africa, Uganda and Tanzania. Both operational and informational efficiencies are key in ensuring that the NSE fulfils its mandate as the capital markets intermediary for Kenya and the world over (NSE Handbook, 2005), hence, the fundamental reforms of the market structure were undertaken in year 2000. These reforms saw the market recognized into the following four independent market classes:
I. The Main Investment Market Segment (MIMS)
II. The Alternative Market Investment Segment (AIMS)
III. Fixed Income Securities Market Seyment (FISMS)
IV. Futures and Options Market Segment (FOMS).

1.2 Statement of the Problem

Research findings due to Ibbotson et al 1990 and Peter L. Bernstein in the developed markets, especially United States (U.S). Britain and Japan, suggest that in the long run stocks are fundamentally less risky than bonds. During the period 1952 to 1979, almost all the variation in bond returns can be accounted for by news about future inflation. When the data for the 1980s also was included, in addition to inflation news, news about future risk premiums for holding bonds were equally important in accounting for variations in bond returns. Shiller and Beltratti, (1992) using annual data from the U.S during the period 19481989 showed small positive co-movement between stocks and bond returns. Stock and bond returns tend to move in opposite drections when expected future inflation varies (Campbell and Ammer, 1993). Only a few of such studies have been done in other countries (especially in the developing markets) as compared to what has been done in the developed markets.

Domestic macro-economic factors influences stock price movements in the stock market exchange, such as extreme variations in exchange rates and high inflation, can have significant effects on stock price indices (Choudry, 2001 as quoted by Jennifer and Bruce, 2001). Kwon, Chung S (1997) used three time series regression models to find out whether principal economic indicators such as industrial production, inflation, interest rates, yield of corporate and government bonds, trade balance, dividend yield, foreign exchange, oil price, and money supply are significant explanatory factors of stock market in Korea. They concluded that inflation and interest rate-related variables are not significant factors to the Korean stock market.

In Kenya many studies have been conducted on the stock market touching on various aspects. Among them is Regina (2006) who analyzed the effect of treasury bills on stock market returns. Also Nyamute (1998) analyzed the movement and /or changes in four of the major economic indicators (interest rates, money supply, inflation rate and exchange rates). However Nyamute (1998) and Regina (2006) did not compute real returns on stocks and bonds, and hence did not compute long run returns. To date there has not been any study on long run returns on stocks and bonds in the Kenyan market.

The search for the answers to questions about long-run rates of returns usually begins with the Ibbotson Associates database, which provides monthly rates of return from the end of 1925 to present. In Kenya the bearish nature of the stock market before 2002 has been blamed on the excessive borrowing by the Kenya government. Jiwayi (2004), writing for G21 notes, "Kenyans have paid and continue to pay a very high price, both in budgetary and economic costs, for the financial indiscipline of the 1990) which was characterized by high fiscal deficits, excessive domestic borrowing....". Government borrowing is expressed in many ways one of which is the sale of treasury bonds through open market operations.

Proponents of the stock market as an indicator of economic activity explain that investors are observant of economic trends and factors impacting the performance of corporation, MacEwan (1990). Investors are expected to self off their shares in anticipation of harsh
economic conditions and hold on to their shares in anticipation of economic boom, Pearce (1985)

The main purpose of this study is to examine and compare returns between stocks and bonds at the Nairobi Stock Exchange (NSE) for the period 1996 to 2006, and determine whether the long run real returns on stocks are higher than long run real returns on bonds.

1.3 Objective of the study

The key objective is to investigate the long run returns on stocks and bonds in the Kenyan market. This will lead us to correlate real returns on stocks and bonds. Finally we try to develop a model to forecast stock/bond real returns.

1.4 Hypothesis Testing

The following hypothesis shall be tested:

$$
H_{0}: \mu_{1}=\mu_{2}
$$

The mean real long run returns on stocks is the same as mean real long run returns on bonds.
$H_{1}: \mu_{1} \neq \mu_{2}$
The mean real long run returns on stocks and bonds are not the same.

1.5 Justification of the Study

The study will be of use to the following parties:

1.5.1 Investors

Based on the findings of the study, investors will henceforth be able to make informed decisions and judgments as to which portfolio or combination of portfolios to hold.

1.5.2 Actuaries/Asset managers/Fund managers

Portfolio managers and fund mangers can use this study to counter check their investment plans and make appropriate recommendations to clients so as to reap maximum gains.

1.5.3 Policy makers

The findings of the study will be valuable to policy makers especially those in government authorities in terms of streamlining their fiscal and monetary policies. These parties will gain a deeper appreciation of the impact of their decisions on the industry returns of the business communities.

1.5.4 Financial Intermediaries

Financial intermediaries will appreciate the information contained within this document and utilize it for purpose of planning their financial strategies and the development of financial products that will meet the requirement of their corporate and private customers in the future. The balance between the value of investment in T-bills and the amount of funds to leave available in order to extend credit to the economy is a decision that needs to be made based on an understanding of the national implications and not just monetary gains.

1.5.5 Financial Analysts

The study will provide guidance on how best to construct long run investment portfolios hased on bonds and stocks.

1.5.6 World Bank/International Bodies

The study may also be useful for international organizations such as the World Bank and foreign governments who are interested in the emerging and developing capital markets of the economies of various countries.

1.5.7 Academics

Research will add to the body of knowledge not only in finance but in other discıplines such as statistics, actuarial science etc. Moreover the study will act as a foundation for further research related to this area of long run returns.

CHAPTER 2.0: LITERATURE REVIEW

The most important uncertainty that investors face is the rate of return that they can expect over the long run. The search for the answers to questions about the long run rates of return usually begins with the Ibbotson Associates database, which provides monthly rates of return from the end of 1925 to the present. The search for the markets' basic return-a long term rate of return independent of changes in valuation- combined Siegel annual returns data and Ibbotson quarterly return data with information on stock prices, earnings, and dividends since 1871 furnished by professor Robert Shiller for the early years and Standard and Poor's for recent years.

Remember Keynes had this to say "Even for institutions such as charitable foundations and cducational endowments that aim to be around into perpetuity, the time required to assure them of 10 percent, or even the old fashioned 8 percent, requires more endurance than most human trustees can manage. Indeed, this kind of long run will exceed the life expectancies of most people mature enough to be invited to join such boards of trustees" as quoted by Peter L. Bernstein, 1997.

The Kenyan Stock and bond markets have seen radical transformations since their inceptions. The change pervades many dimensions: size, trading value, diversity and complexity of instruments e.g. electronic trading and the number of market players/ participants.

Regulation of markets is not an end in itself but a means to ensure proper functioning of the markets to facilitate their development. Capital markets in Kenya are divided into equity and debt markets. Equity and debt markets are sub-divided into prımary and secondary markets. Derivative market is yet to be introduced due to inappropriate market infrastructure. The Equity market consists of ordinary shares and preference shares. The debt market consists of treasury paper, municipal bonds, assets backed securities and mortgage backed securities. Of these only the first three are practiced in to Kenyan capital market.

Kenya has 52 companies, 8 corporate bonds and 68 government bonds. Treasury bills and stocks are competing assets particularly when their prices are not at equilibrium. The Kenyan Capital Market offers the following investment products:
$>$ Stocks and shares (equities) bonds and
> Collective investment schemes (Unit trust and mutual funds)
A wise investor chooses one or more of the above investment assets not only according to his/her goals and the amount of capital available, but also according to his own tolerance for risk. Correct choice ensures that investors are able to reduce their risk and enhance returns by recognizing the underlying direction of the markets and taking positions accordingly. Investors are always in search of assets whose returns are commensurate with risk, Markowitz (1952). Bonds are capital investments that attract institutional investors and require astronomical amounts of capital to trade.

Retail investors are more attracted to investing in equities and unit trusts. Treasury bills are the least risky and most marketable of all of the securities Elton and Gruber (1995). Treasury bills are issued by the Kenya government so as to raise money. They are sold at a discount from their face value i.e. it is a pure discount security issued by the government with a maximum term to maturity of one year. Upon maturity, the investor receives the face value. The difference between the face value and the price at which it was sold is treated as the rate of return for the investor. Treasury bill interest rate is generally used to test various hypotheses about the effect of such economic variables as the rate of inflation or the money supply on the gencral level of short term interest rates, cook and Laweyer (1983).

Collection and presentation of capital market data was pioneered by Cowles (1938) and Macaulay (1938). In 1996 Fisher and Lovie constructed stock market total returns from period-end to period-end. Ibbotson and Singuefield (1976) extended this work to assets, enabling a comparative study. In the case of bonds and bills, Homer (1963) provides an exhaustive compilation of yield data from around the world. U.S market values were addressed by Ibbotson and Fall (1979), with work extended later to the entire world by Ibbotson, Siegel and Love (1985).

The interest rate and inflation rate have long been recognized as important to the performance of the stock market and bonds. Darrat and Dickens (1999) noted in their study that interest rates lead stock returns. The June 2004 study by CFA institutes show that stocks in the US averaged greater returns during periods of expansive monetary policy and smaller returns were realized when the policy on interest rates was restrictive. The study found that markets performed poorly, resulting in lower than average returns and higher than average risk. Conversely, periods of expansive monetary policy- when interest rates are falling, generally coincide with strong performance including longer than average returns and less risk.

In theory in the long term the investor should receive a rate of return to at least compensate for the changes in money values due to inflation. In stable low-inflationary conditions the redemption yield on fixed-interest securities may be loosely based on a continuation of current inflation levels, plus some risk premium against an upward move in inflation levels.

The CBK management of the country's monetary policy has a strong bearing on the stock market. If there is excessive money in the economy, interest rates may be low, but the excess money pumped into the economy may fuel future inflation and could overheat the economy. Conversely, tight monetary conditions may be accompanied by high interesi rates. The government's ability to control the money supply will depend on the way in which it sells or repays securties and how it borrows. The bank injects money to the economy when it buys T-bills and drams money when it sells it. As the law of supply and demand dictates the cost of loanable funds (interest rates) adjusts itself to the desired ievel, CBK home page (2005). Thus the bank controls the amount of cash in the economy by selling T/bills to relieve a cash surplus or buying T/bills when the system needs cash.

2.1 The CBK and setting treasury bills rates

Many factors determine interest rates. The CBK controls interest rates charged by Commercial banks through the sale and purchase of treasury bills. The CBK sets the T-bill
rate hence it plays an important role in setting very short term interest rates within the economy.

2.2 Treasury bill rates and Crowding Effects

An investor buys T-bills on a discount and receives payment of face value on maturity date. In Kenya T-bills on offer are for maturity periods of 91 days (three moths) and 182 days (six months). Minimum face values $=$ kshs. $1,000,000$ and thereafter additional values in multiples of kshs. 50,000 this makes T-bill unalfordable to most individual investors. As a result, the major purchasers of T-bills tend to be financial institutions, Mukherjee (1999). When banks invest their money in the purchase of T-bills they reduce the amount of money available to the economy for expansion and development. The crowding out effect is an economic theory explaining an increase in interest rates due to rising government borrowing in the money market, Shenk (2000), Girmens and Guillard (2002). The problem occurs when government debt 'crowds out' in private companies and individuals from the lending market. The government issues T-bills at high interest rates so as to make them attractive and competitive to potential investors, Ahmed and Miller (1999).

2.2.1 Factors Affecting T-bill rates

- Demand for risk free fixed income securities in general Stanton (2000)
- Government deficit reduces supply of treasury securities.
- During business expansion period T-bills rates rise, while they fall during recess, Roses and Peter (1994).
- CBK's monetary policy actions including issuc of short term T-bills, federal reserve bank of San Francisco (2005)
- When inflation increases and decreases results to increase and decrease on T-bills respectively, American Instıtute of Economics research (2000).

2.3 Bonds

Bonds are simply contracts between a lender and borrower by which the borrower promises to repay a loan with interest. However bonds can take on many additional features and or options that can determine the way in which prices and yields are calculated. The classification of a bond depends on its type of
> Issues
$>$ Priority
> Coupon rate and

- Redemption features

2.3.1 Bond Issuers

The major determiner of a bond's quality, the issuer is one of the most important characteristics of a bond. There are significant differences between bonds issued by corporations and those issued by a state government/municipality, or national government. In general, securities issued by the government have the lowest risk of default while corporate bonds are considered more risky. However, like corporate bonds, government bonds carry various levels of risks: because all national governments are different, so are the bonds they issue.

International bonds are issued within a market that is foreign to the issuer's home market. They may be denominated in the currency of the issuer or receiver. A Eurobond refers to any bond that is denominated in a currency other than that of the country in which it is issued. A foreign bond is denominated in the currency of the country in to which a foreign entity issues the bond. An example of such a bond is the Samurai bond, which is a yen denominated bond issued in Japan by an Amencan company. A global bond is structured so that it can be offered in both foreign and Eurobond markets. Essentially, global bonds are similar to Eurobonds but can be offered within the country whose currency is used to denominate the bond. As an example, a global bond denominated in yen could be sold to Japan or any other country throughout the Eurobond market.

2.3.2 Priority

The priority of the bond is a determiner of the probability that the issuer will pay you back your money. The prority indicates your place in line should the company default on payments. If one holds an unsubordinated (senior) security and the company defaults, one would be first in line to receive payment from the liquidation of their assets. On the other hand, if one owned a subordinated (junior) debt security, one would get paid out only after the senior debt holders have received their share.

2.3.3 Coupon rate

Bond issues may choose from a variety of types of coupons, or interest payments. Straight, plain vanilla or fixed -rate bonds pay an absolute coupon rate over a specific period of
time. Upon maturity, the last coupon payment is made along with the par value of the bond. Floating rate debt instruments or floaters pay a coupon rate that varies according to the movement of the underlying bench mark.

These types of coupons could, however be set to be a fixed percentage above, below, or equal to the benchmark itself. Floaters typically follow benchmarks such as the 3 months or 6 months T-bill rate or Libor (London Inter-Bank Offer Rate). Zero Coupon or accrual bonds do not pay a coupon. Instead, these types of bonds are issued at a deep discount and pay the full face value at maturity

2.3.4 Redemption Features

Both investors and issuers are exposed to interest rate risk since they are locked into their receiving or paying a set of coupon rate over a specified period of time. For this reason some bonds offer additional benefits to investors or some flexibility for issuers. Callable or a redeemable bond feature gives the bond issuer the right but not the obligation to redeem their issue of bonds before the bonds maturity- the issucrs, however must pay the bond holders a premium. The optimal time for issuers to call their bonds is when the prevailing interest rate is lower than the coupon rate they are paying on the bonds. After calling its bonds, the company could refinance its debt by reissuing bonds at a lower coupon rate. Convertible bonds give bondholders the right but not the obligation to convert their bonds into a predetermined number of shares at predetermined dates prior to the bonds maturity. (Obviously this only applies to corporate bonds). Puttable bonds give bondholders the right but not the obligation to sell their bond back to the issuer at a predetermined price and date. These bonds generally protect investors from interest rates risk. If the prevailing bond prices are lower than the exercise par of the bond, resulting from interest rates being higher than the bonds coupon rate, it is optimal for investors to sell their bond back to the issuer and re invests their money at a higher interest rate. Face value is the par value of a bond. A bond or a debenture is generally issued at par value. Interest is paid on the face value. Interest Rate is fixed and usually known to the bondholder. It is tax deductible and is the coupon rate referred to earlier.

Maturity: A bond /debenture is issued for a specified period of time. It is repaid on maturity.

Redemption value: The Value which a bondholder will get on maturity. A bond may be redeemable at par or at a premium (more than par value) or at discount (less than par value).
Market value; A bond may be traded in a stock exchange. The price at which it is currently sold or bought is the market value. Market price may be different from par value or redemption value.

2.4 Bond valuation

The determinant attributes of a bond in bond valuator are

- Length in time until maturity
- Coupon rate
- Call and put provisions
- Tax status
- Marketability
- Likelihood of default

2.4.1 Coupon rate and length of time until maturity

These attributes determine the size and the timing of the cash flows that are promised to the bondholder by issuer. If the market for treasury securthes is viewed as being efficient, then the yield-to-maturity on treasury security that is similar to the bond under evaluation can form a starting point for analyzing a bond.

2.4.2 Call and put provisions

Most corporate bonds have a call provision that enables the issuer to redeem the bonds before maturity usually for a price higher than par value. This price is called the call price and a difference between it and the par value of the bond is known as the call premium An issuer will often find it financially adrantageous to call the existing bonds if yields drop. Substantially after the bonds were initially sold because the issuer will be able to replace them with the lower yielding securities that are less costly.
Bonds with put provisions allow the investor to return the bond to the issuer before maturity and receive the par value in return. The put provision is beneficial to the investors and costly to issuers, since it allows investors to receive the par value of the bond after the waiting period has elapsed (unlike call provisions, the put provision will typically allow the
put to be exercised only for a brief time at the end of the waiting period, not for rest of the honds' life). If the interest rates rise, an investor can turn in the bond and use the proceeds to invest in a higher yielding bond, thereby forcing the issuer to issue a new bond at a higher rate. Consequently, put provisions are likely to be used when interest rates rise whereas call provisions are likely to be used when interest rates fall. Since the put provisions are potentially beneficial to investors the result is that puttable bonds will have lower yields than non puttable bonds.

2.4.3 Tax Status

Any low coupon taxable bonds selling at a discount provides return in two forms: coupon payment and gains from price appreciation. In the United States both are taxable as ordinary income, but taxes on the later may be deferred until the bond either is sold or matures if the bond was initially sold at par.

2.4.4 Marketability

This refers to the ability of an investor to sell an asset quickly without having to make a substantial price concession. An example of an illiquid asset would be a collectible such as an artwork. Because most bonds are bought and sold in dealers markets, one measure of bonds marketability is the bid-ask spread that the dealers are quoting on the bond.
Bonds that are actively traded should have a lower yield to maturity and a higher intrinsic value than bonds that are inactive, everything else being equal

2.4.5 Risk of Default

When an investor purchases a bond, he faces the risk that the issuer will default or fan to make the interest payments when they fall due or even the face value at maturity. Government bonds do not normally default on payments therefore the default risk is low. A loss making company might suspend the interest payments meaning the default risk becomes high. The higher the risk, the higher the interest rates required to compensate investors for holding such a security:

2.5 Valuation and bond pricing

Bonds can be priced at a premium, discount or at par. If the bond's price is greater than par value, it sells at a premium because its' interest rate is higher than current prevailing rates. If price is less than par value, it sells at a discount because its' interest rate is lower than
current prevailing interest rates. Required yield or required rate of return is the interest rate that a security needs to offer in order to encourage investors to purchase it.

Bondprice $=\frac{C}{1+i}+\frac{c}{(1+i)^{2}}+\ldots \ldots \ldots \ldots \ldots \ldots+\frac{c}{(1+i)^{n}}+\frac{M}{(1+i)^{n}}$
$c=$ coupon payment
$n=$ number of payments
$i=$ int erests rates or required yield
$M=$ value at maturity or par value

The succession of coupon payments to be received in the future is referred to as an ordinary annuity:

The present value PV is given by
$P V=P M T\left(\frac{1-(1+i)^{-n}}{i}\right)$
Where
PV $=$ Present value
PMT = Coupon payment
$i=$ Interest rates
$n=$ Number of periods

By incorporating the annuity model into the bond pricing formula, which requires us to include also the present value of the par value received at maturity, we arrive at the following formula

Bondprice $=c \frac{\left(1-\frac{1}{(1+i)^{n}}\right)}{i}+\frac{M}{(1+i)^{n}}$
If we incorporate the frequency (f) of coupon payments

For bonds paying annual coupons, F would have a value of 1 . Should a bond pay quarterly payments, F would equal 4 , if the bond paid semi-annual coupons, f would equal 2.

2.5.1 Pricing Zero Coupon bonds

For zero coupon bonds, there is no coupon payment until maturity. Because of this, the present value of annuity formula is unnecessary. Simply calculate the present value of the par value at maturity.

2.5.2 Pricing Bonds between payment periods

To price a bond between payment periods, we must use the approprate day-current convention. Day count is a way of measuring the appropriate interest rate for a specific period of time. Actual day count is used mainly for treasury securities. This method counts the exact number of days until the next payment. Accrued interest is the fraction of the coupon payment the bond seller earns for holding the bond for a period of time between bond payments. The bond prices' inclusion of any interest accrued since the last payment pcriod determines whether the bonds' price is dirty or clean. Dirty bond prices include any accued interest that has accumulated since the last coupon payment while clean bond prices do not. The amount of the coupon payment that the budget should receive is the coupon payment minus accrued interest.

2.5.3 Price - Yield Relationship

The general definition of yield is the return an investor will receive by holding a bond to Maturity so if you want to know what your bond investment will earn, you should know how to calculate yield.

The current yield calculates the percentage return that the annual coupon payment provides the investor. In other words, this yield calculates what percentage the actual dollar coupon payment is of the price the investors pays for the bond.

Current yield $=$ Annual dollar Interest Paid $\times 100 \%$ Market Price

This formula does not include any capital gains or loses the investors would make if the bond were bought at a discount or premium. Hence we use the following modified current yield formula

Adjusted current yield $=\left[\begin{array}{l}\text { Annual coupon x } 100 \% \\ \text { Market Price }\end{array}\right]+\left[\begin{array}{l}\frac{100}{\text { years to maturity }}\end{array}\right]$

For a zero coupon bond, which has only one coupon payment, the yield calculation would be

Yield $=\left[\frac{\text { Future value }}{\text { Purchase value }}\right]^{1 / n}-1$

Where $\mathrm{n}=$ years left until maturity

2.5.4 Calculating yield to maturity (YM)

The YTM can be considered as the resulting rate the investor receives if he or she invested all of his or her cash flows (coupon payments) at a constant rate until the bond matures. YIM is the return the investor will receive from his or her entire investment. It is the return you get by receiving the present values to the coupon payments, the par value, and capital gains in relation to the price you pay.

Bond price=Cash flow $x \frac{1-\left[\begin{array}{c}1 \\ (1+i)^{n}\end{array}\right]}{i}+\left[\frac{\text { Maturity }}{\text { value }} x \frac{1}{(1+i)^{n}}\right]$

Where $\mathrm{I}=\mathrm{YTM}$

2.6 Term Structure of Interest Rates

2.6.1 Definitions

The term structure of interest rates represents the relationships between the maturities and the yields of bonds. While short term interest rates are influenced by monetary policy longer interest rates mainly reflect market player expectation for future macroeconomic development.

A Finance manager should be interested in the term structure of interest rates because of two major reasons:

1. For model building i.e. so as to be able to develop a model in order to realize and identify the various assumptions made concerning the behavior of interest rate over time.
II. Policy formulation i.e. to select the interest rate to manipulate in order to influence the microeconomic performance of the six different theories of the form structure of interest rates. It is therefore possible to select a given theory, which will be applicable to a particular firm depending on the social economic structure of the firm.

Constructed by graphing the yeld to maturities and the respective maturity dates of benchmark fixed income securities, the term structure of interest rates (yield curve) is a measure of the market's expectations of future interest rates given the current market conditions.

Securities, issued by the government. are considered risk-free, and as such, their yields are often used as the benchmarks for fixed-income securities with the same maturities. The
term structure of interest rates is graphed as though each coupon payment of a non-callable fixed-income security were a zero coupon bond that matures on the coupon payment date. The exact shape of the curve can be different at any point in time. So if the normal yield curve changes shape, it tells investors that they may need to change their outlook on the economy. The yield curve is drawn on the assumption that all the factors are held constant and the only factor, which affects rate, is the time to maturity of the loan.

2.6.2 Curves of Term Structure of Interest Rates

There are three main patterns created by the term structure of interest rates:

2.6.2.1. Normal Yield Curve

As its name indicates, this is the yield shape that forms during normal market conditions, wherein investors generally believe that there will be no significant changes in the economy, such as in inflation rates, and that the economy will continue to grow at a normal rate. During such conditions, investors expect higher yields for fixed income instruments with long-term securities to offer higher yields than short-term fixed income securities. This is a normal expectation of the market because short-term instruments generally hold less risk than long-term instruments: the further into the future the bond's maturity, the more time and therefore uncertainty the bondholder faces before being patd back the principal. To invest in one instrument for a longer period of tume, an investor needs to be compensated for undertaking the additional risk. As general current interest rates increase, the price of a bond will decrease. and its yield will increase.

Figure 2.1

2.6.2.2. Flat Yield Curve

These curves indicate that the market environment is sending mixed signals to investors, who are interpreting interest rate movements in various ways. During such an environment, it is difficult for the market to determine whether interest rates will move significantly in either direction further into the future. A flat yield curve usually occurs when the market is making a transition that emits different but simultaneous indicators of what interest rates will do: there may be some signals that short-term interest rates will rise and other signals that long-term interest rates will fall. This condition will create a curve that is flatter than its normal positive slope. When the yield curve is flat, investors can maximize their risk/return tradeoff by choosing fixed-income securities with the least risk, or highest credit quality. In the rare instances wherein long-term interest rates decline, a flat curve can sometimes lead to an inverted curve.

Figure 2.2

2.6.2.3 Inverted Yield Curve

These yield curves are rare, and they form during extraordinary market conditions wherein the expectations are completely the inverse of those demonstrated by the normal yield curve. In such abnormal market environments, bonds with maturity dates further into the future are expected to offer lower yields than bonds with shorter maturities. The inverted yield curve indicates that the market currently expects interest rates to decline as time moves further into the future, which in turn means the market expects yields of long-term
bonds to decline. Note that as interest rates decrease, bond prices increase and yields decline.

Figure 2.3

2.7 The Theoretical Spot Rate Curve

When the yield to maturity was calculated, we assumed that the coupons were reinvested at an interest rate equal to the coupon rate; therefore, the bond was priced at par as though prevailing interest rates were equal to the bond's coupon rate. The spot rate curve addresses this assumption and accounts for the fact that many treasuries offer varying coupons and would therefore not accurately represent similar non-callable fixed-income securities. If for instance you compared a 10 -year bond paying a 7% coupon with a 10 -year Treasury bond that currently has a coupon of 4%, your comparison would not mean much. Both of the bonds have the same term to maturity, but the 4% coupon of the Treasury bond paying 7%. The spot-rate curve, offers a more accurate measure as it adjusts the yield curve so it reflects any variations in the interest rate of the plotted benchmark. The interest rate taken from the plot is known as the spot rate.

Figure2.4

The spot-rate curve is created by plotting the yields of zero-coupon treasury bills and their corresponding maturities. The spot rate given by each $_$ero-coupon security and the spotrate curve are used together for determining the value of each zero-coupon component of a non-callable fixed income security.

Since T-bills issued by the government do not have maturities greater than one year, the bootstrapping method is used to fill in interest rates for zero-coupon securities greater than one. Bootstrapping is a complicated and involving process; however, it is important to remember that the bootstrapping method equates a T-bill's value to the value of all zerocoupon components that form the security.

2.8 Determinants of Term Structure of Interest Rates

The following are the key determinants of the term structure of interest rates.

2.8.1 The Premium

This is the yield inducement to borrow on long term basis. The presence or absence of the term premium will determine whether the investor will invest in the long-term bond or not. This inducement is based on the principle that on average the yields from long-term bonds are higher. This principle maintains that investors pay a price premium (resulting in lower yields) on short maturitics to avoid the higher interest rate risk prevalent in longer maturities, thus an upward sloping curve is considered normal

2.8.2 Segmentation of the financial markets

Any change in supply and demand in one market will cause a change in the shape of the yield curve and hence the rate of interest, the segmentation principle asserts that the yield curve is composed of a series of somewhat independent maturity segments. For example commercial banks predominantly purchase short maturities; savings and loan associations mainly demand intermediate maturities and pension funds purchase long term bonds.

2.8.3 Expectations of Market

If the market believes that interest rates will rise then the yield curve will be upward sloping all the other things kept constant and vice versa. In the first case the investors are willing to buy the long term bonds that yield no more than the short term bonds. If the interest rates are expected to decline, they will invest in long term securities providing a lower yield than short term securities because they can do better with short term strategy. If the investors expect rates to fall the yield curve will slope downward.

2.8.4 Maturity Period

The longer the maturity period of a financial debt instrument the greater the change in the price that accompanies the shift in interest.

2.8.5 Coupon Effect

If the coupon rate to a particular bond is low. The yield will be high and vice versa. This is because the effect is either reflected in the coupon or in the interest rate.

2.9 Theories of Term Structure of Interest Rates

The term structure of interest rates is defined as the static relationship between the term (period) to maturity and the yield to maturity for a sampled bond at a given point in time. It is the relationship between bonds of different terms. When plotted against their terms, the interest yield curves are produced. Using this yield curve, future prediction can be made in the management of monetary policy. There are basically four theories:
I. The Unbiased Expectations theory
II. The Market Segmentation Theory
III. The Liquidity Preference Theory
IV. The Preferred Habitat Theory

They have been put forward to explain the term structure of interest rates:

2.9.1 The Unbiased Expectations theory

It holds that the forward rates represent the average opinion of what the expected future spot rate for the period in question will be. Thus a set of spot rates that is rising can be explained by arguing that the market place (i.e. the general opinion of investors) believes that the spot rate will be increasing in future. Conversely, asset of decreasing spot rates is explained by arguing that the market place expects spot rates to fall in future.

It also states that the shape of the yield curve depends on the market expectations about the future interest rates. If interest rates are expected to rise in the future, then the yield curve will be upward slopping and vice versa.

2.9.2 The Market Segmentation Theory

The theory rests on the assumption that there is market segmentation. Various investors and borrowers are thought to be restricted by law, preference, or custom to certain maturities. Perhaps there is market for short term securities, another for intermediate securities, another for intermediate securitics and a third for long term securitics.

According to the market segmentation theory therefore, spot rates are determined by supply and demand conditions in the market. Furthermore, in restrictive terms, investors and horrowers will not leave their market and enter a different one when the current rates suggest to them that there is a substantrally higher expected return available by making such a move.

2.9.3 The Liquidity Preference theory

This theory starts with the notion that investors are primarily interested in purchasing short tern securities. That is, even though some investors may have longer holding periods, there is a tendency for them to prefer short tern securities. These investors realize that they may need their funds earlier than anticipated and recognize that they face less 'price risk' (i.e. interest rate risk) if they invest in short term securities. They have to be offered a liquidity prenium to encourage them to hold longer term bonds.

The longer the period they are deprived off their liquidity the higher the premium they expect to be paid. Hence the shape of the yield curve in this case will be upward slopping and the normal shape of the yield curve which is drawn upward slopping by this theory.

2.9.4 The Preferred Habitat Theory

According to this theory, investors and borrowers have segment of the market in which they prefer to operate, similar to the Market Segmentation Theory. However, they are unwilling to leave their desired maturity segments if there are significant differences in yields between the various segments. These yield differences are determined by supply and demand for funds within the segments.

This theory states that the market for short term and long term debt instruments can be separated and they are different. The shape of the yield curve in each of these markets depends on the supply and demand forces in each market. Whenever these two markets meet there will be a disturbance in the yield curves and this disturbance is called wiggle.

2.10 The Credit Spread

The credit spread, or quality spread, is the additional yield an investor receives for acquiring a corporate bond instead of a similar federal instrument. As illustrated in the graph below, the spread is demonstrated as the yield curve of the corporate bond and is ploted with the term structure of interest rates. Remember that the term structure of interest rates is a gauge of the direction of interest rates and the general state of the economy. Corporate fixed-income securities have more risk of default than federal securities and, as a result, the prices of corporate securities are usually lower, while corporate bonds have a higher yield.

Figure 2.5

When inflation rates are increasing (or the economy is contracting) the credit spread between corporate and Treasury securities widens. This is because investors must be offered additional compensation (in the form of a higher coupon rate) for acquiring the higher risk associated with corporate bonds. When interest rates are declining (or the economy is expanding), the credit spread between Federal and corporate fixed-income securities generally narrows. The lower interest rates give companies an opportunity to borrow money at lower rates, which allows them to expand their operations and also their cash flows. When interest rates are declining, the economy is expanding in the long run, so the risk associated with investing in a long-term
corporate bond is also generally lower. Now you have a general understanding of the concepts and uses of the yield curve. The yield curve is graphed using government securities, which are used as benchmarks for fixed income investments. The yield curve, in conjunction with the credit spread, is used for pricing corporate bonds. Now that you have a hetter understanding of the relationship between interest rates, bond prices and yields, we are ready to examine the degree to which bond prices change with respect to a change in interest rates

2.11 Determinants of stock prices

The price of a share of stock, like any other financial assets equals the present value of the expected stream of future cash payments to the owner. The cash payments available to a shareholder are uncertain and subject to the earnings of the firm. This uncertainty contrasts sharply with cash payments to bondholders, the value of which is fixed by contractual obligation.

Over time firms pay rising/increasing dividends which occur for two reasons. First, firms rarely pay out all their eamings as dividends so that the difference called retained earnings is "blown" back or reinvested. This, in turn, often produces greater future earnings and hence higher prospective dividends. Second, the earnings of a firm will rise as the price of its output rises with inflation.

The value of publicly traded shares is liquidity. Publicly traded companies are worth more than private one simply because there is greater access to buyers and sellers and market efficiency can better determine share price. Among the determinants of stock prices are:

2.11.1 New Information

The market will price a stock based on all information that the public is aware of. Rumor mongering and especially with current technology (mobile and mail) etc plays a big role in flow of information. Also leakage of insider information to those close to company management leads to change in buying and selling of stocks in the market.

2.11.2 Uncertainty

The market is nervous about the future of the company hence expected stock price volatility.

2.11.3 Psychological factors - fear and greed

Human characteristics are also factors in how share prices move. Greed often causes stock 10 go higher than they deserve to go. New information can cause frenzy in the market that makes investors lose sight of rational valuation and simply buy the stock for fear of being left behind.

Fcar motivated by negative information can cause every one to rush for exit at once and take a stock, or entire market, dramatically lower very quickly. Most of the selling pressure
that prevails during market crashes is out of fear, not a rational thought process based on information.

2.11.4 Supply and Demand

Established companies trade huge stocks daily in tock markets, while most stocks investors are interested in do not have such huge volumes hence less liquidity.
If a large shareholders wants to sell a large number of shares into a market with weak liquidity that shareholder can dramatically move share price. The flip side is also true when a large buy order comes in to a market that lacks sellers.

2.12 Efficient Markets

An efficient market is one which security prices adjust rapidly to the arrival of new information, and therefore current prices reflect all information about the security.

2.12.1 Assumptions that imply an efficient capital market

- A large number of competing profit maximizing participants analyze and value Securities each independently of one another
- Information regarding the security come into the market in a random manner
- The competing investors attempt to adjust security prices to reflect new information The efficient market hypothesis implies that it is not generally possible to make above average returns in the stock market by trading (including market timing), except through luck or obtaining and trading on inside information.

2.13 Inflation

Inflation is defined as a persistent increase in general price levels in an economy over time Brealey et al, (1991). Inflation cffectively reduces the purchasing power of a currency, Low or moderate level of inflation in a country can have a positive effect on the business sector in that they can act as an incentive to production. High level of inflation however can harm a company's profitability by affecting the cost of inputs as well as reducing final demand for its output.

Inflation is likely to influence stock prices directly through changes in the price level and through the policies designed to control it. Deflation should have a negative impact on
share prices. Inflation also influences the risk free rate thus determining the value of future cash flows.

Inflation is expected to have an impact on the stocks and bond returns. Kaul (1990) notes research evidence from major economies (U.S, Canada, U.K and Germany) show a very significant negative relationship between stock returns and changes in the expected inflation. Inflation is taken as "bad news" for the stock and bond market; that is, when inflation rises, stock prices should fall since inflation erodes people's wealth, hence reduces their propensity to invest, Kanniainen and Kurikka (1984). Hasbrouck (1984) also arrived at the negativity relationship conclusion between stock returns and inflation in his study of the relationship between stock returns, inflation and economic activity

The relationship between inflation and the returns in the stock market was examined by Jaffee and Mandelker (1976), with a view of investigating the effectiveness of stocks as a hedge against inflation and found that there existed a significant negative relationship between the returns on the market portfolio of stocks and inflation.

However, Kwon, Chung S (1997) in his empirical study of the effects of macroeconomic variables on stock returns in developing markets contradicts this finding and states that the inflation-and interest rate-related variables are not significant factors to the Korean stock market. Pattison (1971) also found the relationship between inflation rates and aggregate equity prices to be significantly positive.

CHAPTER 3.0: RESEARCH METHODOLOGY

This chapter deals with the research design used to conduct the study. It covers the population of the study, the sample selected and the date collection process.

3.1 Population

The study uses all the fifty-five (55) companies listed in the Nairobi Stock Exchange and all the treasury and corporate bonds.. Study period covers the year 1996 to the year 2006. Inflation for the period year 1996 to year 2006 is also considered to enable us compute real returns per annum on equities and stocks. This period was considered adequate enough for long term securities performance and hence returns differential if it exists between stocks and treasury bonds

For clear analysis of the impact of inflation on long term equity returns and long term bond returns, we divide the securities into various categories thus the companies that make up the NSE-20 share index, and the companies that make up the various market segments namely: Finance and Investment, Agricultural, Commercial and Services, and Industrial and Allied.

Any company that was one that listed in the stock exchange qualify for the study hence we limit ourselves only to quoted securities to avoid non-availability of data, share prices and dividend payment information from among private companies

3.2 Sampling Design

The sample will consist of sccurities that constitute the NSE-20 share index. The bonds issued for the period under study will be considered. We capture stock prices for the companies from the NSE with attention/emphasis to the firms that make up the NSE-20 index. We assume the information given on the NSE-20 index is accurate and representative. The sample is further broken down into various market segments in order to get a clear understanding of the impact of inflation.

3.3 Data Collection

Sccondary data from NSE includes share prices (adjusted for rights issues, stock splits and stock dividends if any) and bond prices. For securities selected, weekly opening and
closing share prices and dividend (interim \& final) information will be collected and used to compute weekly and monthly returns.

For bonds, yield data is to be collected from Central Bank of Kenya (CBK) database available on their website where as data on inflation is to be sourced from Kenya National Bureau of Statistics (KNBS). The monetizing power of CBK makes government bonds practically free from default. For this reason we restrict our compilation of historical yield and return data to government bonds and bills. Annual returns are formed by linking (compounding) the monthly returns. No transactions costs are assumed.

3.4 The variables and their measurements

The assets under consideration are long term equities and long term treasury bonds. We need to compile their real returns per annum (\%) and standard deviation.

3.5 Return on Equities

Annual return $R_{\text {" }}$ of asset is given by the formula
$R_{n i}=\frac{P_{i i_{1}}-P_{i i_{n}}+D}{P_{i i_{n}}} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots=1,2,3, \ldots n$
Where
$R_{u}=$ Return of stock at period t
$P_{i t}=$ Price of stock at period t
$P_{h}=$ Price of stock at period t-1
$D_{u}=$ Dividend paid using the period on stock

The formula above is to be used in calculating return on stocks that constitute the NSE-20 share index on a weekly basis. The weekly returns are to be averaged to come up with monthly returns. The yearly average return is also to calculated through compounding. The weekly treasury bills interest rates released will them enable us computer weekly returns on t-bulls and stocks. These will then compare with yearly real returns.

3.6 Returns on 91 (or 182) day Treasury bill

Treasury bill is issued on a discount basis. All are issued in entry form i.e. the buyer receives a receipt at the time of the purchase and treasury bills face value at the tume of maturity. The return denoted $r_{t b}$ on treasury bills is calculated from the following equation.
$\mathrm{PP}_{t h}=\frac{M V}{\left(1+r_{t b}\right)^{n}}$
Where
$\mathrm{PP}_{\mathrm{tb}}=$ Purchase price of the treasury bills
$\mathrm{MV}=$ Maturity value or face value of treasury bills
$\mathrm{r}_{\mathrm{b}}=$ the return on treasury bills
$\mathrm{n}=$ the period to maturity

3.7 Inflation

Inflation per annum (\%) is to be obtained from data on yearly Economics Reviews from the Ministry of Planning and national development al the Kenya National Bureau of Statistics library.

3.8 Risk

Stocks be are fundamentally less risky than bonds, not only because their returns have been consistently higher than those of bonds over the long run but also because less uncertainty surrounds the long term retain investors can expect on the basis of past history. Stock returns may be riskier or more volatile than treasury bills. Since government bonds are risk free we calculate variability in return on stocks treasury bonds. We compute the standard deviation of the observations. Standard deviation denoted s is the square root of variance denoted s^{2} where
$s^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\{R i-R\}^{2}$

CHAPTER 4.0: DATA ANALYSIS

4.1 Correlation

Bivariate Correlation analysis differs from non-parametric measures of association and regression analysis in two important ways. First, parametric correlation requires two continuous variables measured on an interval or ratio scale. Second, the coefficient does not distinguish between independent and dependent variables. It treats the variables symmetrically since the coefficient $r_{x v}$ has the same interpretation as $r_{1 x}$. We generally write r instead of $r_{x y}$ or $r_{y x}$ and $-1 \leq r \leq+1$.

In this case we assume bond and stock returns data are normally distributed in a joint manner. The amount of common variance in bonds and stocks returns may be summarized by r^{2}, the coefficient of determination. The area of overlap represents the percentage of the total relationship accounted for by one variable or the other. So 2.6% of the variance in bonds returns is explained by stock returns and vice versa.

The table below shows the monthly equity premium for the period 1999 to 2006. The results show relatively many negative values for the earlier period of 1999 to third quarter of 2002 indicating that bond returns were higher than stock returns within the period. However from the last quarter of 2002 to 2006 there are relatively many positive values of equity premium largely due to the fact that stock returns are higher than bond returns.

Table 4.1: Monthly Equity Premium

yar	month	stockr	bondr	premium	stock_stdev	CPI	bonds_stdev
1999	1	-1.511701356	0.859765	-2.37147	1.124146296	-0.4	0.048879
1999	2	3.24621456	0.862176	2.384038	0.648381368	1.5	0.050654
1999	3	-6.659101541	0.856353	-7.51545	0.716403917	3.0	0.052085
1999	4	0.513660725	0.862647	-0.34899	0.703545018	3.8	0.049115
1999	5	-1.981862386	0.865824	-2.84769	0.715845106	5.7	0.054828
1999	6	0.66243939	0.867	-0.20456	0.463066391	5.0	0.048571
1999	7	-0.74936859	1.300706	-2.05007	0.299077393	5.2	0.045948
1999	8	-12.43667717	1.287053	-13.7237	1.308154805	6.6	0.045616
1999	9	-1.943948075	1.324368	-3.26832	0.910225399	8.4	0.155915

1999	10	-1.907766672	1.284789	-3.19256	4.763401798	9.5	0.05107
1999	11	-3.527908179	1.312	-4.83991	0.450148553	10.7	0.069461
1999	12	0.886009586	1.304263	-0.41825	0.554278289	10.5	0.068905
2000	1	0.835059271	1.497967	-0.66291	0.299485587	9.6	0.195021
2000	2	-2.606636441	1.497967	-4.1046	1.235274079	7.5	0.195988
2000	3	-4.158883849	1.497967	-5.65685	1.275657966	5.9	0.197477
2000	4	-4.136413779	1.497967	-5.63438	0.389702947	7.2	0.256627
2000	5	-7.333856272	1.497967	-8.83182	0.801355274	8.6	0.188239
2000	6	-1.401637052	1.497967	-2.8996	0.369665793	11.2	0.199141
2000	7	-0.117994949	1.497967	-1.61596	0.708666029	11.5	0.084245
2000	8	-1.13745842	1.497967	-2.63543	0.588642711	11.3	0.083239
2000	9	2.287512309	1.497967	0.789545	0.613758094	11.6	0.080397
2000	10	5.41620205	1.497967	3.918235	0.703441472	11.3	0.07951
2000	11	-0.599237361	1.497967	-2.0972	0.726222462	11.6	0.079068
2000	12	-2.640947875	1.497967	-4.13892	0.671185309	11.8	0.078272
2001	1	-0.82487624	1.286121	-2.111	0.4216941	12.0	0.020805
2001	2	2.343619646	1.285	1.05862	0.78202264	10.2	0.032705
2001	3	-6.040053896	1286394	-7.32645	0.650656533	9.5	0.036437
2001	4	-3.629441842	1.296439	-4.92588	0.65214623	9.1	0.030721
2001	5	-2.616254893	1.283388	-3.89964	0.656168971	6.9	0.038331
2001	6	1.139127406	1.268394	-0.12927	0.488226971	4.6	0.145712
2001	7	-1.986373569	1.09991	-3.08628	0.925905772	4.3	0.025309
2001	8	-7.660791849	1.10406	-8.76485	0.422597357	4.0	0.040652
2001	9	-6.426844356	1.108776	-7.53562	1.314597951	3.1	0.041856
2001	10	3.229018224	1.104269	2.12475	0.8191744	3.2	0.042176
2001	11	-4.308405377	1.098731	-5.40714	1.051817539	2.1	0.040989
2001	12	-7.673264388	1.103636	-8.7769	1.717903854	1.6	0.036158
2002	1	-3.616327	1.03461	-4.65094	0.589606987	0.5	0.176313
2002	2	-0.66752194	1.048555	-1.71608	0.339844069	1.2	0.176041
2002	3	-5.302821599	1.039561	-6.34238	1.292605141	2.0	0.18068
2002	4	-4.537717732	1.044727	-5.58244	0.478742711	0.9	0.182965
2002	5	-1.202818911	1.032152	-2.23497	0.489387711	1.7	0.174922
2002	6	0.976005435	1047936	-0.07193	0.348834501	2.8	0.192891
2002	7	2.737443134	0.937727	1.799716	0.584845703	2.1	0.195862
2002	8	-7.109575745	0.741964	-7.85154	0.903638031	1.8	0.639928
2002	9	-2.658497163	0.941847	-3.60034	0.717296836	1.8	0.198227
2002	10	7.305303124	0.937504	6.3678	1.067849524	1.9	0.202171
2002	11	11.11092078	0.941932	10.16899	1.329387946	2.6	0.197181
2002	12	35.05545602	0.936684	34.11877	15.34098596	4.2	0.198961

2003	1	17.63982076	0.8563	16.78352	2.272445801	2.0	0.213224
2003	2	1.647953602	0.863345	0.784609	0.585485008	7.4	0.213834
2003	3	5.706610147	0.864827	4.841783	0.855911475	10.1	0.221968
2003	4	16.52265762	0.86075	15.66191	0.888213102	11.6	0.213484
2003	5	11.9922727	0.963747	11.02853	2.334682202	14.9	1.050994
2003	6	-3.750217539	0.860451	-4.61067	3.103409826	13.7	0.21616
2003	7	5.648297683	0.585494	5.062804	0.535957095	10.9	0.456857
2003	8	13.1272968	0.596445	12.53085	1.441228277	8.3	0.457344
2003	9	11.83104186	0.947143	10.8839	0.55113825	7.9	3.701183
2003	10	2.220191359	0.59211	1.628081	0.535023924	9.1	0.454864
2003.	11	15.311221	0.638192	14.67303	1.524076149	9.0	0.685615
2003	12	1.912250507	0.624249	1.288002	1.069177786	8.3	0.444005
2004	1	13.96891704	0.90824	13.06068	1.081957784	9.1	0.282419
2004	2	3.921372457	0.90824	3.013132	0.814359176	9.9	0.282419
2004	3	-18.79574488	0.90824	-19.704	0.665917441	8.3	0.282419
2004	4	-1.191780337	0.90824	-2.10002	2.050895608	7.6	0.282419
2004	5	-4.864140119	0.90824	-5.77238	0.838783389	4.7	0.282419
2004	6	-1.12825919	0.90824	-2.0365	0.52099373	5.9	0.282419
2004	7	3.113867931	0.90824	2.205628	0.606255848	8.5	0.282419
2004	8	-2.374430087	0.90824	-3.28267	0.430359095	15.8	0.282419
2004	9	0.854112612	0.90824	-0.05413	0.478060209	19.0	0.282419
2004	10	3.013644258	0.90824	2.105404	0.473793301	18.3	0.282419
2004	11	5.052878286	0.90824	4.144638	0.549295899	16.6	0.282419
2004	12	-2.401426322	0.90824	-3.30967	0.597055932	16.3	0.282419
2005	1	5.52612127	0.770267	4.755855	0.621465157	14.9	0.326019
2005	2	4.50417716	0.770267	3.73391	0.488091575	13.9	0.326019
2005	3	-1.863985058	0.7709	-2.63489	0.720657787	14.1	0.326305
2005	4	1.633235478	0.770267	0.862969	0.331593777	16.0	0.326019
2005	5	7.758397958	0.770267	6.988131	0.590479888	14.8	0.326019
2005	6	10.57962968	0.770267	9.809363	0.554249676	11.9	0.326019
2005	7	-0.081238536	0.770508	-0.85175	0.926916012	11.8	0.325163
2005	8	-1.266336905	0.770808	-2.03715	0.433137148	6.9	0.325272
2005	9	-0,807435184	0.770808	-1.57824	0.462280062	4.3	0.325272
2005.	10	2.432225678	0.770808	1.661417	0.491873685	3.7	0.325272
2005.	11	-0.322882476	0.771042	-1.09392	1.391614922	6.0	0.325368
2005	12	-4.065433411	0.770808	-4.83624	1.073993217	7.6	0.325272
2006	1	6.622284313	0.788972	5.833312	0.934052804	15.4	0.315449
2006	2	-1.86794951	0.788972	-2.65692	0.214129201	18.9	0.315449
2006	3	5.706561815	0.788972	4.91759	5.258593528	19.1	0.315449

2006	4	0.284555593	0.788972	-0.50442	4.34997565	14.9	0.315449
2006	5	8.61463142	0.788972	7.825659	0.874084149	13.1	0.315449
2006	6	-0.823065136	0.788972	-1.61204	0.671667065	10.9	0.315449
2006	7	-0.353887262	0.788972	-1.14286	0.34422253	10.1	0.315449
2006	8	7.680682943	0.788972	6.891711	2.831013258	11.5	0.315449
2006	9	6.685632049	0.788972	5.89666	1.196831383	13.8	0.315449
2006	10	7.17832167	0.788972	6.389349	0.836210599	15.7	0.315449
2006	11	6.402804079	0.788972	5.613832	1.4270006	14.6	0.315449
2006	12	0.570090755	0.788972	-0.21888	1.010068937	15.6	0.315449

By compounding the monthly returns and incorporating inflation it results into the following table showing the annual equity premium. It appears that the equity premium for the earlier period is negative giving an indication that real return on bonds was higher than real returns on stocks. In 2003, for example there was highest equity premium of 88.7478% due to investor confidence in the stock market after the successful 2002 presidential election. The 2001 equity premium was lowest due to fear by market participants about the uncertainty of expected presidential election slated for 2002 . The equity premium increases significantly between 2004 and 2006 an indication of shift in investors from bond market to stock market. This explains the fact that Kenyan investors are rigid since they tend to move in one direction as to whether they invest in bonds or stocks.

Table 4.2: Annual Equity Premium

year	CP1	Real Returns stocks	Real Returns Bonds	Equity premium	Annual stock returns	Stock Stdev	Annual Bonds returns	Bonds Stdev
1999	5.8	-18.751	7.2344	-25.9854	-7.20	4.8483	12.986944	0.229969
200	10.0	-33.599	8.0205	-41.6195	-13.64	2.0041	17.975607	0.303329
1281	5.8	-44.829	8.5679	-53.3969	-33.27	2.6720	14.325119	0.094782
12002	6.4	-1.458	5.3134	-6.7714	11.31	5.6107	11.685197	0.089098
1203	9.8	88.185	-0.5628	88.7478	107.80	10.8688	9.253052	0.149210
mos	11.6	-6.325	-0.7249	-5.6001	16.90	5.3664	10.898880	0.001884
I ms	10.3	5.818	-1.0644	6.8824	26.43	5.2180	9.247017	0.000304
205	14.5	21.774	-4.9877	26.7617	50.73	6.0541	9.467667	0.000538
1207	8.92	23.483	-8.9228	32.4058	41.33	8.4280		

Table4.3: Returns on bonds

YEAR	Statistic	$\begin{aligned} & \text { RETURN PER } \\ & \text { ANNUM (\%) } \end{aligned}$	INFLATION PER ANNUM (\%)	REAL RETURN PER ANNUM (\%)
1999	Mean	12.98694	5.8	7.2344
	Std dev.	0.229969	3.529614	
2000	Mean	17.97561	10.0	8.0205
	Std dev.	0.303329	2.091261	
2001	Mean	14.32512	5.8	8.5679
	Std dev.	0.094782	3.498957	
2002	Mean	11.6852	6.4	5.3134
	Std dev.	0.089098	0.981245	
2003	Mean	9.253052	9.8	-0.5628
	Std dev.	0.149210	3.318391	
2004	Mean	10.89888	11.6	-0.7249
	Std dev.	0.001884	5.13006	
2005	Mean	9.247017	10.3	-1.0644
	Std dev.	0.000304	4.505859	
2006	Mean	9.467667	14.5	-4.9877
	Std dev.	0.000538	2.817753	

Table4.4: Returns on stocks

YEAR	Statistic	RETURN PER ANNUM (\%)	INFLATION PER ANNUM (\%)	REAL RETURN PER ANNUM (\%)
1999	Mean	-0.5999	5.8	-6.352
	Std dev.	4.8483	3.529614	
2000	Mean	-1.1370	10.0	-11.092
	Std dev.	2.6041	2.091261	
2001	Mean	-2.7727	5.8	-8.530
	Std dev.	2.7720	3.498957	
2002	Mean	0.9428	6.4	-5.429
	Std dev.	5.6107	0.981245	
2003	Mean	8.9834	9.8	-0.832
	Std dev.	10.8688	3.318391	
2004	Mean	1.4082	11.6	-10.216
	Std dev.	5.3664	5.13006	
2005	Mean	2.2024	10.3	-8.109
	Std dev.	5.2180	4.505859	
2006	Mean	4.2274	14.5	-8.9228
	Std dev.	6.0541	2.817753	

From the results in table 4.3 and table 4.4 above we can be able to come up with the following figure below. The results show that annual real returns on stocks are higher than annual real returns on bonds in the long run.

Graph 4.1: Average Returns on Stocks and Bonds

$\cdot 15.0000$
-20.0000

Graph 4.2: Annual real returns on stocks and bonds

Date

From graphs 4.1 and 4.211 appears that the stocks and bonds returns and real returns are moving in opposite direction thus when real returns on bonds is high then real returns on stocks is low. In the second half of the period real returns on stocks appear to be much higher than real return on bonds explaining Markowitz's fact that real returns on stocks is usually higher than real returns on bonds in the long due to high risk involved in investing in stocks.

For graphs on individual returns on a few selected stocks they are as shown in graphs 4.3, 4.4, 4.5, 4.6, 4.7 and 4.8.

Graph 4.3 Returns on BAMB. Stock

BAMBr

Graph 4.4: Returns on CMC. Stock

CMCr

60

40

20

0

- CMCI
-40

Graph 4.5: Returns on BBK stock

BBKr

50

40

30

20

10

0
-10

-BBKI
-20

Graph 4.6: Returns on BAT stock

BATr

40

30

20

10

0

Graph 4.7: Returns on NICB stock

Graph 4.8: Returns on BBOND stock

BBONDr

Bamern

The table below gives the stocks and bonds standard deviation for 96 month period. It is found that the correlation between real return for stocks and bonds is -0.328 showing that it is significant at 0.01 levels. The standard deviation of stocks real returns is higher than that of bonds for each consecutive period indicating that inflation impacts positively on stocks returns much higher than bonds returns. The equity premium increases significantly between 2004 and 2006 an indication of shift in investors from bond market to stock market.

Table 4.5: Overall correlations between stock returns and bond returns
Correlations

STOCKR	Pearson Correlation	STOCKR	BONDR
	Sig. (2- tailed)		-.328
N	96	900	
BONDRPearson Correlation	-.328	1.000	
	Sig (2 tailed)	.001	
	N	96	96

" Correlation is significant at the 0.01 level (2-tailed)

The table below gives the annual correlations between returns on stocks and bonds together with the Consumer Price Index. The results are generated from appendix 1 and appendix 2.

Table 4.6 Annual correlations between stocks returns and bonds returns

id	stocks	bonds	CPI				correlation, r	R^{2}	Stdev CPI
1	13.2967	0.859765	-0.4	Jan-99	1999	Jan			
2	-4.0663	0.862176	1.5	Feb-99	1999	Feb			
3	-2.3000	0.856353	3.0	Mar-99	1999	Mar			
4	-1.2984	0.862647	3.8	Apr-99	1999	Apr			
5	-2.3324	0.865824	5.7	May-99	1999	May			
6	0.7238	0.867	5.0	Jun-99	1999	Jun			
7	1.3881	1.300706	5.2	Jul-99	1999	Jul			
8	-3.2651	1.287053	6.6	Aug-99	1999	Aug			
9	-5.9592	1.324368	8.4	Sep-99	1999	Sep			
10	-0.8797	1.284789	9.5	Oct-99	1999	Oct			
11	-2.7529	1.312	10.7	Nov-99	1999	Nov			

12	0.3024	1.304263	10.5	Dec-99	1999	Dec	-0.28224	0.07966	3.529614
14	0.7395	12.98694	9.6	Jan-00	2000				
15	-1.6935	1.497967	7.5	Feb-00	2000	Feb			
16	-0.2600	1.497967	5.9	Mar-00	2000	Mar			
17	-3.8721	1.497967	7.2	Apr-00	2000	Apr			
18	-3.3142	1.497967	8.6	May-00	2000	May			
19	-3.0106	1.497967	11.2	Jun-00	2000	Jun			
20	-0.9656	1.497967	11.5	Jul-00	2000	jul			
21	-0.6323	1.497967	11.3	Aug-00	2000	Aug			
22	1.2145	1.497967	11.6	Sep-00	2000	Sep			
23	1.6130	1.497967	11.3	Oct-00	2000	Oct			
24	0.4786	1.497967	11.6	Nov-00	2000	Nov			
25	-3.9413	1.497967	11.8	Dec-00	2000	Dec	0.294858	0.086941	
27	-2.3162	1.497967	12.0	Jan-01	2001	Jan			
28	-0.3735	17.97561	10.2	Feb-01	2001	Feb			
29	-2.5527	1.286121	9.5	Mar-01	2001	Mar			
30	-4.6588	1.285	9.1	Apr-01	2001	Apr			
31	-5.1670	1.286394	6.9	May-01	2001	May			
32	-2.2432	1.296439	4.6	Jun-01	2001	Jun			
33	0.7205	1.283388	4.3	Jul-01	2001	jul			
34	-3.7987	1.268394	4.0	Aug-01	2001	Aug			
35	-8.5812	1.09991	3.1	Sep-01	2001	Sep			
36	-2.1545	1.10406	3.2	Oct-01	2001	Oct			
37	1.1010	1.108776	2.1	Nov-01	2001	Nov			
38	-3.5317	1.104269	1.6	Dec-01	2001	Dec	0.288314	0.083125	
40	-1.3660	1.098731	0.5	Jan-02	2002	Jan			
41	-1.1338	1.103636	1.2	Feb-02	2002	Feb			
42	-2.6286	14.32512	2.0	Mar-02	2002	Mar			
43	-4.5241	1.03461	0.9	Apr-02	2002	Apr			
44	-1.6441	1.048555	1.7	May-02	2002	May			
45	1.0004	1.039561	2.8	Jun-02	2002	Jun			
46	2.8506	1.044727	2.1	Jul-02	2002	Jul			
47	-2.0497	1.032152	1.8	Aug-02	2002	Aug			
48	-2.1944	1.047936	1.8	Sep-02	2002	Sep			
49	1.9766	0.937727	1.9	Oct-02	2002	Oct			
50	16.8498	0.741964	2.6	Nov-02	2002	Nov			
51	4.2238	0.941847	4.2	Dec-02	2002	Dec	-0.22294	0.049703	
53	31.9255	0.937504	2.0	Jan-03	2003	Jan			
54	2.0183	0.941932	7.4	Feb-03	2003	Feb			
55	4.9546	0.936684	10.1	Mar-03	2003	Mar			

56	7.0183	11.6852	11.6	Apr-03	2003	Apr			3.318391
57	27.9467	0.8563	14.9	May-03	2003	May			
58	-3.3728	0.863345	13.7	Jun-03	2003	Jun			
59	-2.8175	0.864827	10.9	Jul-03	2003	Jul			
60	7.1911	0.86075	8.3	Aug-03	2003	Aug			
61	10.6856	0.963747	7.9	Sep-03	2003	Sep			
62	9.7075	0.860451	9.1	Oct-03	2003	Oct			
63	2.2204	0.585494	9.0	Nov-03	2003	Nov			
64	7.9564	0.596445	8.3	Dec-03	2003	Dec	-0.0431	0.001858	
66	9.9459	0.947143	9.1	Jan-04	2004	Jan			
67	8.4847	0.59211	9.9	Feb-04	2004	Feb			
68	-3.3021	0.638192	8.3	Mar-04	2004	Mar			
69	-10.6523	0.624249	7.6	Apr-04	2004	Apr			
70	-1.0206	9.253052	4.7	May-04	2004	May			
71	2.0460	0.90824	5.9	Jun-04	2004	Jun			
72	0.2632	0.90824	8.5	Jul-04	2004	Jul			
73	2.2320	0.90824	15.8	Aug-04	2004	Aug			
74	-0.9539	0.90824	19.0	Sep-04	2004	Sep			
75	2.2950	0.90824	18.3	Oct-04	2004	Oct			
76	4.1328	0.90824	16.6	Nov-04	2004	Nov			
77	3.4282	0.90824	16.3	Dec-04	2004	Dec	-0.12161	0.01479	
79	3.3093	0.90824	14.9	Jan-05	2005	Jan			
80	4.9611	0.90824	13.9	Feb-05	2005	Feb			
81	0.5434	0.90824	14.1	Mar-05	2005	Mar			
82	-0.7844	0.90824	16.0	Apr-05	2005	Apr			
83	5.1679	0.90824	14.8	May-05	2005	May			
84	14.9164	10.89888	11.9	Jun-05	2005	Jun			
85	9.6193	0.770267	11.8	Jul-05	2005	Jul			
86	-2.3979	0.770267	6.9	Aug-05	2005	Aug			
87	-3.0700	0.7709	4.3	Sep-05	2005	Sep			
88	2.0432	0.770267	3.7	Oct-05	2005	Oct			
89	1.3936	0.770267	6.0	Nov-05	2005	Nov			
90	-0.9157	0.770267	7.6	Dec-05	2005	Dec	0.728513	0.530731	
92	4.6878	0.770508	15.4	Jan-06	2006	Jan			
93	-0.4635	0.770808	18.9	Feb-06	2006	Feb			
94	-2.8927	0.770808	19.1	Mar-06	2006	Mar			
95	3.3777	0.770808	14.9	Apr-06	2006	Apr			
96	8.8993	0.771042	13.1	May-06	2006	May			
97	-0.2869	0.770808	10.9	Jun-06	2006	Jun			
98	1.1833	9.247017	10.1	Jul-06	2006	Jul			

99	4.3426	0.788972	11.5	Aug-06	2006	Aug			
100	9.2442	0.788972	13.8	Sep-06	2006	Sep			
101	6.2213	0.788972	15.7	Oct-06	2006	Oct			
102	18.6297	0.788972	14.6	Nov-06	2006	Nov			
103	-2.2138	0.788972	15.6	Dec-06	2006	Dec	-0.15681	0.02459	$2.81775:$
105	10.5904	0.788972	9.7	Jan-07	2007	Jan			
106	-6.0384	0.788972	6.8	Feb-07	2007	Feb			
107	-13.4729	0.788972	5.9	Mar-07	2007	Mar			
108	3.4438	0.788972	5.7	Apr-07	2007	Apr			
		0.788972	6.3	May-07	2007	May			
		0.788972	11.1	Jun-07	2007	Jun			
		0.788972	13.6	Jul-07	2007	Jul			
		9.467667	12.4	1900	Aug				

The correlation between stock returns and average bond returns in 1999 is -0.282 and therefore the coefficient of determination r^{2} is 0.08 . That is 8% of stock returns can be explained by movements in average bond returns in 1999. This implies that stock movements could not be explained by bond returns in that year.

Table 4.7: p-value

Year	N	Correlation Coefficient	p-value
1999	12	-0.282	
2000	12	-0.279	0.380
2001	12		
2002	12	0.327	0.299
2003	12	-0.109	0.737
2004	12	0.147	0.650
2005	12		
2006	12	-0.766	0.004

From table 4.7 it can be seen that correlation between stock returns and bond returns on the average is negative. To be able to explain the bond/stock return relationship more compactly we compare them on biannual basis as shown in the table below.

Table 4.8 Paired Sampled Test Statistic

Period	$\mathrm{d}=$ stock return bond return	Standard error	95% (Confidence Interval)	P-value
$1999-2000$	-3.00	0.75	-4.55 to -1.44	0.001
$2001-2002$	-1.18	1.81	-4.92 to -2.56	0.52
$2003-2004$	3.28	1.71	-0.25 to -6.82	0.067
$2005-2006$	2.17	0.85	0.41 to 3.92	0.018

For the period 1999 to 2002 it appears that bond returns were higher than stock returns. The difference between the two was significant at 95% confidence Interval especially for the 1999-2000 periods. The opposite is experienced for the 2003-2006 where stock returns were higher than bond returns. There was a significant difference of 0.018 at 95% C.I for the 2005-2006 period.

The analysis above indicates that there is negative co-movement between stock returns and bond returns. It can be noticed that that there is little association between real returns on stocks and bonds on short term basis. However, in the long run period of 96 months the correlation is -0.328 indicating insignificant relationship. This is largely explained by the fact that bond returns are more targely affected by inflation than returns on stocks.

4.2 Regression

Regression is a process by which we obtain a functional relationship between the two variables under consideration. The regression equation to be employed is
$r_{s}=\alpha+\beta_{1} I_{s}+\beta_{2} \operatorname{Re} a l \operatorname{Return}+\beta_{2} r_{b}$

Where $r_{s}=$ real return on stocks
$I_{\mathrm{s}}=$ Inflation index
$r_{b}=$ return on bonds.
The equation above with appropriate values of $\alpha, \beta_{1}, \beta_{2}$ and β_{3} may be used to predict the values of the stock returns given values of inflation, real return and inflation. The following table gives values of coefficient of determination.

Table 4.9: Regression

Model Terms	Adjusted R^{2}	R^{2}
CPI	0.022	0.032
Bond Returns	0.098	0.107
Real Returns on Bonds	0.027	0.038
Real Returns on Stocks	0.602	0.606
CPI - Real Return of Stocks	1	1
CPI - Real Return of Bonds	0.109	0.128

From the above table and on the basis of regression coefficients table below, we may come up with the following regression equation.
Table 4.10: Regression Coefficients
$\left.\begin{array}{|r|r|r|r|r|r|r|}\hline & & \begin{array}{r}\text { Unstandar } \\ \text { dized } \\ \text { Coefficient }\end{array} & & \begin{array}{r}\text { Standardiz } \\ \text { ed }\end{array} & & \text { Sig } \\ \text { Coefficient }\end{array}\right)$
a Dependent Variable: STOCKR
$\dot{r}=7.91(\pm 3.06)-8.15(\pm 2.63) C P I-8.35(\pm 2.61)$ R.RBonds,
Where R.RBonds denotes real return on bonds. Thus the return on stocks can be explained by CPI real return on bonds.

CHAPTER 5.0: SUMMARY OF FINDINGS AND RECOMMENDATIONS

5.1 Summary of Findings and Conclusions

Stocks and bonds are the two main investment vehicles at the NSE and that is why a lot of research has to be carried out about them. The movement of the real returns for the two is important to investors so that they can be able to make fair judgment about investment plan to execute. The relationship of the two also enhances investor's predictability. The study is about the correlation between real returns on stocks and bonds for the period 1999 to march 2007.

In the study the use of Karl Pearson's correlation and a student's t-Test for the two samples assuming unequal variance are employed. It is concluded that there is significant difference between the real return on stocks and real return on bonds. It appears like returns on bonds are higher than rcturns on stocks in the short run. However the reverse is true for a longer period of time. This conforms to other studies as reviewed in the literature review. The coefficient of determination explains the movement in one variable and can be explained by movements in the other in percentage terms.

The period of study is not sufficient enough to be able to make outstanding conclusions about a long term scenario. The trading of bonds in the secondary market started way back in 1.996 and data on it is not readily available. Thus I had to rely on a few bond results that were available. At 2-tailed significance level the overall correlation between bonds return and stocks return is -0.328 indicating a high degree of association between the two. This only explains the fact that stocks and bonds trade in the opposite direction, a fact explained by rigidity due to Kenyan investors who tend to move together in one direction.

5.2 Limitations of the study

Among a few limitations are that the bond market is still bear though the number of bonds trading in the secondary market is growing significantly. There are a few corporate bonds trading in the Kenyan market hence making it difficult to make comparisons. The other limitation was that floating bonds traded up to 2003 and there after fixed bonds were introduced. The terms of such bonds trading in the market are different hence affect
expected returns. Also information on bonds trading in the secondary market is not readily available. In the study inflation is the only macro-economic factor used hence the need for more research to establish other factors that affect bond returns and stock returns besides inflation.

5.3 Recommendations

There is need for either the Capital Markets Authority and/or the Nairobi Stock Exchange to keep and provide data on bonds trading to researchers with ease. There is need for investors to access information easily about what trades at the NSE. The purpose of this study was to establish a relationship between real stock returns and real bond returns. It appears like there is a significant relationship between the two, hence real returns in one can explain the other and conversely.

5.4 Suggestions for Further Research

Further research should be carried out especially on a longer period to establish the comovements between real stock returns and real bond returns. In the findings it was established that presidential elections could have had an impact hence the need to carry out such event studies.

REFERENCES

Ahmed and Miller (1999). "Crowding-out and Crowding-In Effects of the components of Government Expenditure." Working Paper 19992002, University of Connecticut.
A.J,FROST and D.P.HAGER: Debt Securities, 1990.

Akgiray, V. (1989). "Conditional Heteroskedasticity in Time Series of Stock Returns: Evidence and Applied Financial Economics, Vol. 3 (1993): 119-126.

Africa Research Bulletin: Economic Financial and Technical Series 44(2) 17298C-17299a.doi:10.1111/.1467-634 (2008).

Bradley R. A., Myers (1991) Principles of Corporate Finance, $4^{\text {th }}$ Edition.

Brigham E. F. and Gapenski L. C. (2000) Financial Management: Theory and Practice, $8^{\text {h }}$ Edition; Dryden Press.

Baillie and De(iennaro (1990). "Stock returns and volatility" Journal of Financial \& Quantitative Analysis, Vol. 25, NO. 2.

Banerjee, A; J. J. Dolado, J. W. Galbraith, and D. F. Hendry (1993). "Co-integration, Error Correction and the Econometric Analysis of NonStationary Data" Oxford: Oxford University Press.

Bollerslev, T., R. Y. Chou, K. F. Kroner (1992), "ARCH Modeling in Finance: A Review of the Theory and Empirical Evidence," Journal of Econometrics, Vol. 52, pp. 5-59.

Bollerslev, Tim (1986). "Generalized Autoregressive Conditional Heteroskedasticity." Journal of econometrics 31:pp. 307-327.

Bollerslev, T., R. Y. Chou, K. F. Kroner (1992), "ARCH Modeling in Finance:" Journal of Econometrics, 52 (April): pp. 5-59.

Burmeister, E., K. D. Wall and J. D. Hamilton (1986). "Estimation of unobserved monthly inflation Using Kalman Filtering". Journal of Business and Economic Statistics, Vol. 4, No. 2, pp. 147-160.

Campbell, J.Y, and Ammer. J, (1993). "What moves the Stock and Bond Markets? A variance decomposition for long term Asset Returns". Journal of Finance 48, pp.3-37

Central Bank of Kenya (2006). Statistical Bulletin, June
Chen and Ingersoll (1983). "Exact Pricing in Linear Factor Models with Finitely Many Assets", Journal of Finance, Vol.38, pp. 985-988.

Chen, Nai, Roll, R and Ross, S (1986). "Economic Forces and the Stock Market", Journal of Business, Vol.59, pp. 383-403.

Chris Chatfield: The Analysis of Time Series, An Introduction, Fifth Edition.

Comincioli and Wesleyan (1996). "The stock market as a leading indicator: An application of Granger Causality". "The University Avenue Undergraduate Journal, Sample Issue

Cootner P. H (1978), Stock Market Indexes: Fallacies and Illusions in Modern Developments in Investments Management $2^{\text {nd }}$ Edition, Dryden Press, pp 94-100

Cowles, Alfred. "Common Stock Indices 1871-1937", Bloomington, Indiana: Principia Press, 1938.

Cowles, A. and Associates (1939). "Common Stock Indices" Principia Press Inc, Bloomington, Indiana.

Darrat, A. F. and Brocato, J. (1994)." Stock Market Efficiency and The Federal Budget Deficit: Another Anomaly? The Financial Review, 29, 49-75.

Darrat, A. F. and Dickens R. N. (1999). "On the interrelationship among Real, Monetary, and Financial variables" Applied Financial Economics, 9, 289-293.

Debondt, W. and R. Thaler (1985). "Does the Stock Market Overreact? Journal of Finance, 40, pp. 793-808.

DeRosa, David F. Managing Foreign Exchange Risk, Chicago: Probus Publishing Co., 1991

Douglas Pearce (1983). "Stock Prices and the Economy" Federal Reserve Bank of Kansas City, Economic Review, November pp. 7-22.

Dr. Econ (2005). "What makes Treasury bill rates rise and fall? What effect does the economy have on T-Bill rates?" Federal Reserve Bank of San Francisco, Educational resources.

Edwin J. Elton, Martin J. Gruber Modern Portfolio Theory and Investment Analysis $5^{\text {th }}$ Edition.

Elton, E., and M. Gruber (1995). "Modern Portfolio Theory and Investment Analysis", fifth Edition, New York. John Wiley and Sons.

Engle, R. F. and V. K. Ng (1993). "Measuring and Testing the Impact of News and volatility", journal of Finance, 48, 1749-1778.

Engle, Robert F. (1982). "Autoregressive Conditional Heteroskedasticity with estimates of the variance of U.K. inflation" Econometrica 50:9871008.

Evans, J. L., and S. H. Archer (1968). "Diversification and the reduction of Dispersion: an Empirical analysis," Journal of Finance 23, (December)

Fama, Eugene F. (1965). The behavior of Stock Market Prices," Journal of Business, 38 (January): 34-105.

Fama, Eugene F, and Kenneth R. French (1988). "Dividend Yields and Expected Stock Returns." Journal of Financial Economics, vol. 22, No. 1:3-25.

Fama, E and Kenneth R. French (1990). Stock Returns, expected returns, and real activity, Journal of Finance, Vol.45, 1990, pp1089-1108. Journal of Financial Economics, vol. 22, No. 1:3-25.

Fama, E and Kenneth R. French (1993). The Common Risk Factors in the Returns on Stocks and Bonds, Journal of Financial Economics, vol. 33, 1993, pp 3-56.

Farrell Jr. J. L., "Systematic Portfolio Management: Evaluation, Current Practice and Future Direction", Financial Analyst Journal (SeptemberOctober 1993) 12-16.

Federal Reserve Bank of San Francisco (2005). "What makes Treasury Bill rates Rise and Fall? What effect does the Economy have on T-Bill rates?"

Fisher, Lawrence, and James H. Lorie. "Rates of Return on Investment in Common Stock." Journal of Business, January 1964

Frank K. Reilly, Keith C. Brown (1997) Investment Analysis and Portfolio Management $5^{\text {th }}$ Edition, Dryden Press.

French, Kenneth, William Schwert, and Robert Stambough (1987). "Expected Returns and Volatility" Journal of Financial Economics, 19, pp. 3-29.

Geske, R., and Roll R. (1983). "The Fiscal and Monetary Linkage between Stock Returns and inflation" Journal of Finance, 38, 1-33.

Guillaume Girmens and Michel Guillard (2002). "Privatization and Investment: Crowding-out Effect vs. Financial Diversification" Working paper, EPEE, Universite d'Evry-Val d'Essonne, France.

Homer, Sidney. A History of Interest Rates, New Brunswick, NJ: Rutgers University Press, 1963.

Ibbotson Associates: stocks, Bonds, Bills, and inflation: 1991 yearbook. Chicago

Ibbotson, Roger G., and Carol L. Fall. "The United States Market Wealth Portfolio." Journal of Portfolio Management, Fall 1979.
lbbotson, Roger G., Laurence B. Siegel, and Kathryn S. Love. World Wealth: Market Values and Returns." Journal of Portfolio Management, Fall 1985.

Ibbotson and sinquefield, :Stocks, Bonds, Bills, and Inflation: Year-byYear Historical Returns (1926-1974)". Journal of Business, January 1976.

http://uww/centralbank.go.ke/about/cbkbrief.html

http://uww.Investopedia.com
http:/ideas.respect.org
Jaffe, J. and Mandewer, G., (1976), "The Fisher Effect for Risky assets:
an Empirical Investigation", Journal of Finance, 31, pp.447-458
James C. Van Horne, Financial Management and Policy.
Jennifer. P and Bruce. H, (2001), "Integration and the Asymmetric Transmission of volatility: A Study of Equity Markets in Sub-Saharan Africa" Birkbeck, University of London.

Jiwaji, A. (2004). "The Definition of Staying Power". G21 Africa.
Kendall, Maurice G. (1953)). "The Analysis of Time Series, Part I: Prices". Journal of the Royal Statistical Society, vol. 96, pp. 11-25.

Kerandi, A. M. (1993). "Testing the predictive ability of the dividend valuation model on ordinary shares". Unpublished MBA Paper University of Nairobi.

Koskie, Jennifer Lych, and Roni Michaely, 2000., Prices, liquidity and the information content of trades, \backslash Review of Financial Studies 13, 659696.

Kopcke and Kimball (1999). "Inflation Indexed Bonds - The Dog that Didn't Bark" New England Economic Review, January - February 1999.

Koutmos and Gregory (1992) "Asymmetric Volatility and Risk Trade off in Foreign Stock Markets", Journal of Multinational Financial Management, 2, pp. 27-42.

Kwon, Chung S. (1997), Effect of Macroeconomic Variables on Stock Market Returns in Developing Markets, Multinational Business Review.

Lawrence D. Schall \& Charles W. Haley, Introduction to Financial Management.

Lintner, J. (1965). "The Valuation of Risk Assets and the Selection of Risky Investments in Stock Portfolios and Capital Budgets", Review of Economics and Statistics, 47: 13-37.

Lubrano, M. (1998). "Smooth Transition GARCH Models: A Bayesian Perspective" Papers 9866, Catholique de Louvain - Center for Operations research and Economics.

Macaulay, Fredrick R. The Movements of Interest Rates, Bond Yields, and Stock Prices. New York: National Bureau of Economic Research, 1938.

MacEwan, A. (1990). "Debt and Disorder: International Economic Instability and U.S. Imperial Decline" Monthly Review Press, New York.

Macharia, G. (2002). "Forecasting Ability of Valuation Ratios. NSE". Unpublished MBA Paper University of Nairobi.

Maestas and Gleditsch (1998). "Sensitivity of GARCH Estimates: Effects of Model Specification on Estimates of Macropartisan Volatility" Department of Political Science, University of Colorado.

Markowitz (1952). "Portfolio Selection." Journal of Finance. 7:1, pp.7799.

Mishkini F. S. and Eakins S. G. Financial Markets and Institutions $4^{\text {th }}$ Edition.

Mukherjee, M. (1999). "Declining Cost of Cash will Revive Economy". Nation Newspapers Limited, Nation on the Web, business Week, Tuesday, February $9^{\text {th }}$.

Muriuki J.M (2003), Portfolio returns characteristics of different market sectors at the NSE, MBA Thesis University of Nairobi.

Ngai Hang Chan: Time Series Applications to Finance, Willey Series in Probability and Statistics.

Njaramba, A. M. (1990). "Association between Extraordinary items and Stock Prices and the Use of Extraordinary items to smooth Income in Publicly Quoted Companies in Kenya" Unpublished MBA Paper University of Nairobi.

Nyamute M N (1998), The relationship between the NSE Index and major macroeconomic variables: Inflation rate, Money supply, Treasury bill rate and exchange rate, MBA Thesis University of Nairobi.

Pandey, I. M., (1991). "Financial Management". 8 ${ }^{\text {th }}$ Edition, Vikas Publishing House Pvt Ltd, Jangpura, New Delhi.

Pearce, D. K. and Roley (1985). "Stock prices and economic news". Journal of Business 58: 49-67.

Peter L. Bernstein: What Rate of Return Can You Reasonably Expect... Or What bCan the Long Run Tell Us about the Short Run?

Regina K.M: Analysing the effect of treasury bill rates on stock market returns using GARCH, 2006.

Reilly F.K and K.C.Brown (2003): "Investment Analysis and Portfolio Management". The Dryden Press Fifth Edition.

Rioba, G. O. (2003). "Predictability of Ordinary Stock Returns at the NSE in Kenya". Unpublished MBA Paper University of Nairobi.

Roger G. Ibbotson and Laurence B. Siegel: The World Bond Market: Market Values, Yields, and Returns.

Sharpe, W. (1976). "Capital asset prices: A theory of capital market equilibrium under conditions of risk" Journal of Finance, 19, 425-442.

Sharpe W. F., Alexander G. J., Bailey J. V. (2004) Investments, $6^{\text {th }}$ Edition, Prentice Hall of India Private Ltd. New Delhi.

Shepherd, N. (1996). "Statistical Aspects of ARCH and Stochastic Volatility, in Time series Models in Econometrics, Finance and other Fields", ed. by D. Cox, D. Hinkley, and O. Barndor. Neelsen, pp. I-55, London. Chapman \& Hall.

Shiller, R., and A. Beltratti, (1992), 'Stock prices and Bond Yields: Can Their Co-Movements Be Explained In Terms Of Present Value Models?", Journal of Monetary Economics 30, pp25-46

Sims, Christopher (1980). "Money Income and Causality". American Economic Review, September, pp. 540-552.

Stanton (2000). "How does the Fed Funds Rate Affect Treasury Bills?" An article in the street.com Stock Portfolios and Capital Budgets." Review of Economics and Statistics. 47:1, 13-37.

Stocks, Bonds, Bills, and Inflation: 1991 Yearbook. Chicago: Ibbotson Associates, 1991.

White, Halbert. (1980). "A Heteroskedasticity-consistent Covariance Matrix Estimate and a Direct Test for Heteroskedasticity" Econometrica 48:817-38.

Monthly stocks returns in percentages. See next page

			Bat	Kr	odondr	сmcr	DTKr	Br	ssr	FIRESTI	Kakuzir	ксв	KENAIRI	NICEI	NMGI	SASINIT	KPLCr	scakr	Gwkr	Totalr	SERENAT	Average	Stae
	Annual Average	9.62	0.60	2.15	3.56	-5.52	106	212	256	6.6	8.53	170		4.50	6.42	17.68	116	6.51	0.37	828		4.2115	
		8.00	2.35	-1.03	0.24	1.16	3.51	5.45	6.64	8.19	6.65	-7.30		1.84	6.98	-7.28	5.28	6.75	17.26	-4.04		3.3691	
		1.55	0.17	-3.28	1.22	128	3.80	5.70	13.24	7.26	-671	1.91	9.30	5.13	11.60	1.01	19.03	395	4.42	-4.51		2.3392	
		3.83	-0.83.	-0.15	-0.71	1.89	-8.36	1.66	-4.45	-4.63	-2.47	2.15	11.59	-5.71	. 0.01	-7.68	405	-1.89	0.47	7.26		-2.7730	
		116	2.42	5.96	-0.34	1.34	10.45	1.61	2.36	-2.86	2.24	-4.44	3.33	2.02	4.53	-126	2.08	-4.39	2.90	-7.14		-1.3843	
		2.70	-9.21	-6.36	0.35	3.15	1.52	0.52	0.91	2.92	2.92	1.21	9.30	0.09	1.33	1.75	5.35	1.02	2.97	-3.31		-0.4163	
		2.53	0.60	-2.32	2.38	1.11	8.07	6.11	14.67	-1.46	0.78	3.54.	-4.27	-0.72	0.18	5.46	14.74	2.56	2.31	6.45		1.2572	
		2.91	0.85 .	1.25	0.37	1.13	2.44	2.73	5.69	10.48	0.73	27.74	11.88	2.72	1.40	9.44	7.49	1.50	0.37	-2.07		2.5411	
		1.39	-0.99	-1.96	0.20	0.36	-3.08	2.42	3.19	3.32	1.58	3.31	-7.17	1.24	4.06	2.14	7.40	1.02	3.88	-3.31		0.9988	2.4472
1997	Annual A verage	26.72	17.32	14.69	-10.87	4.34	7.86	127	-4.06	5.86	1.30	15.18	16.42	9.90	262	12.70	62.83	13.54	272	26.95		11.9626	
		19.87	0.00	4.25	-2.52	7.90	-1.11	6.52	9.81	6.28	1.18	9.45	. 8.44	7.08	130	3.11	53.95	4.94	2.18	-1.90		5.0220	
		13.92	-14.25	-6.33	-3.90	12.11	-8.22	6.82	11.36	-1.26	1.93	3.58	-0.75	-1.31	0.31	13.24	1.97	-14.99	-0.56	-16.37		0.1426	
		11.46	-2.74	-4.59	-14.60	-5.60	-10.82	160	-6.09	-16.12	0.07	4.54	-5.24	2.86	24.86	2.95	2.99	-6.77	-3.63	-4.43		-2.1875	
		7.78	-0.27	8.50	0.82	-6.51	7.23	2.20	8.43	10.89	0.55	3.31	3.84	6.29	19.90	0.34	16.88	3.05	-1.33	5.48		4.2379	
		-1.10	1.20	1.04	-0.93	8.92	0.78	2.00	-1.21	016	003	11.65	-0.56	7.12	-0.11	3.15	18.82	1.98	0.35	1.41	7.08	1.8587	
		0.71	2.36	2.41	2.20	1875	1.39	1.42	2.90	5.52	2.60	1.51	-313	3.87	365	5.30	2.66	4.10	024	-3.11	3.37	1.6678	
		446	-3.56	2.17	2.41	8.49	3.86	. 4.72	. 500	7.54	1049	9.12	-0.73	-12.89	3.91	0.36	4.93	447	5.03	5.18	2.00	-2.4357	
		4.88	799	010	-240	5.96	11.56	3.84	263	. 8.37	3099	1.71	-2.16	462	5.95	17.00	1.80	1.37	41.87	-3.63	2.64	2.8191	
		-1785	5.37	0.88	0.75	10.09	612	-889	789	-823	-387	1255	602	771	2.81	2.30	16.40	3.59	18.34	6.98	4.56	-3.6422	
		7.42	1.91	2.37	125	4.35	4.18	2.56	1.11	3.64	12.68	9.21	455	0.22	0.55	2.84	16.28	2.65	-6.42	5.75	11.00	-4.5770	
		-0.03	379	6.79	-7.58	8.00	-5.04	-0.71	0.51	2.14	26.93	377	2.27	165	157	0.88	0.73	3.62	-28.27	0.81	0.83	-2.5695	
		5.28	-1.66	1.36	-3.52	1.59	-3.16	-0.32	-3.10	-1.19	0.47	0.60	-0.75	1.53	5.30	3.76	13.15	-0.22	2.54	-1.29	-3.30	0.8537	4.6710
1998	Annual Average	23.66	0.58	5.22	16.36	28.53	480	2.66	3.70	11.82	5.07	13.65	16.99	4.65	1.38	2.75	14.41	9.97	8.54	14.30	12.93	10.0984	
		8.67	0.57	4.22	-0.07	3.82	2.29	-1.27.	-5.21	7.82	20.65	-4.73	-9 73	-0.35	2.28	10.00	3.47	-6.29	26.87	1.94	2.04	1.8708	
		3.96	-5.34	1.87	-7.64	-50.29	-0.67	3.56	-8.61	7.83	9.84	-9.47	-3.42	2.28	3.84	11.96	-1.75	-8.30	13.34	-9.69	0.15	-2.5709	
		-14.71	-6.95	-11.32	1.42	-11.17	-8.33	-3.69	-7.42	-9.10	-0.50	-4.47	3.11	-1423	39.93	-0.14	-11.49	2.36	18.24	-15.94	-12.47	-4.0322	
		3.85	0.23	1.20	1.03	14.25	786	11.54	18.99	4.47	5.85	3.00	197	-924	3.79	-5.49	1.82	-2.97	-1.70	-9.98	7.55	-4.2462	
		9.05	0.77	9.97	8.85	0.09	31.3	1951	15.02	1.43	7.99	3.05	127	5.87	20.69	5.87	9.80	8.61	2.70	-0.91	4.71	5.2447	
		-5.34	-0.06	5.27	8.02	1.13	-8.19	5.13	11.17	1.62	10.70	0.69	15.12	1.61	6.32	2.70	-0.81	5.71	-15.71	0.74	3.18	-1.2157	
		12.29	5.55	1.21	613	005	-3.81	287	0.63	2.18	-0.03	3.77	-328	-7.05	5.49	2.72	481	-2.69	-0.08	0.02	104	-0.1201	
		1.15	3.96	-0.31	0.67	124	3.77	518	0.66	866	1.84	-1.59	-10.57	1391	3.39	-2.18	-3.88	1.38	-0 13	-3.61	-14.17	-2.8647	
		-2.76	8.73	-0.18	2.48	-1.02	1.81	7.11	2.59	-1.33	5.18	11.27	290	1.54	9.83	0.31	146	421	166	-7.22	280	-1.5933	
		7.86	284	133	13.37	139	4.34	-0.11	0.59	-5.51	-1.88.	0.74	1.82	-12.02	8.46	-6.47	-8.32	198	1.85	-5.12	134	-1.6981	
		14.93	17.43	17.60	5.80	-3.24	1.10	17.77	-6.77	1.38	0.79	-5.25	291	9.87	6.36	1.69	-0.49	15.16	1.24	10.39	8.29	5.6781	
		-0.42	2.36	2.13	1.82	-4.28	-0.34	1.88	-5.53	0.15	3.62	-2.23	0.53	-3.22								-0.2709	4.4672
1999	AnnualAverage	26.82	18.48	605	7.03	0.39	13.93	4.48	25.46	22.05	1.95	1509	12.36	21.12	7.57	3.93	14.60	5.45	4.33	35.58	1928	13.2967	
		-13.56	-6.09.	0.12	-0.05	1314	9.31	0.97	7.81	0.78	0.73	-1.78	-9.71	8.50	1.82	-9.57	4.34	2.69	-3.02	1455	-1222	-4.0663	
		7.25	16.19	-8.68	0.72	4.62	-0.77	10.40	-11.74	-9.55	-142	-15.47	1.16	1.16	-0.44	9.35	-6.15	1.40	1.41	1.97	-1.02	2.3000	
		-454	906	5.07	1.98	-4.78	-176	8.27	-2.20	1.71	1283	13.40	1.66	290	1.11	4.47	3.52	2.22	075 .	4.20	2.81	1.2984	
		15.40	6.31	0.08	0.76	-2.15	5.14	448	20.13	0.83	455	4.09	3.00	2.42	4.47	2.71	2.14	2.58	0.79	213	076	-2.3324	
		768	1.70	0.83	0.04	4.65	0.09	0.41	-3.55	-1.43	313	1.26	292	1.62	168	2.20	-1.67	752	073	0.58	222	0.7238	
		10.28	-1384	7.06	0.27	4.01	0.22	2.63	2.22	1.49	1.33	6.94	11.14	2.09	2.09	0.57	-0.40	9.15	-2.05	5.48	4.25	1.3881	
		3.73	4.71	5.89	-17.26	2.29	3.76	4.57	-4.60	3.67	-0.45	-1141	-13.82	6.55	-12.19	1.60	2.52	4.93	1.00	3.32	2.09	-3.2651	
		6.97	6.59	-7.72	1783	0.83	-9.10	-0.61	17.48	1496	1180	11.02	-4.87	0.78	5.72	2.44	-9.64	1.15	17.68	-316	989	-5.9592	
		6.17	059	1.29		098	12.39.	393.	7.91	1.87	644	2.61	1.28	3.96	0.48	262	-6.72	3.76	-1.75	-5.74	3.49	-0.8797	
		0.28	7.52	-1.07		0.35	1.82	12.99	1.09	0.42	-1.58	10.41	16.93	2.86	3.46	14.26	12.30	4.25	-7.05	2.87	0.40	-2.7529	
		004	2.36	0.65	0.62	0.00	7.82	4.49	2.69	10.27	10.22	1.29	10.44	-605	2.40	5.29	12.47	-647	-12.36	0.19	0.24	0.3024	
		-0.47	1.75	-1.03	-2.37	-1.10	1.75	1.93	-2.91	0.46	-3.51	-4.01	0.85	0.60	-2.01	-3.49	-1.86	1.78	-3.07	2.41	2.31	-0.5999	4.8483
2000		0.73	2.53	-0.13	0.51	2.08	2.15	407	5.25	4.34	671	3.90	2.26	0.47	3.10	2.21	2.96	3.32	0.89	0.71	0.19	0.7395	

	Annual Average		1757	5 sc		, 8	20	53	0.65	15.92	25.76	5.09	3.41	456	-1.31	804	2.38	19.75	452	4.91	1.78	-0.2600	
		0.15	-614	2.88	12.27	25.74	2.87	1.11	1.50	1.22	052	-0.90	6.14	0.06	. 15.51	10.60	11.42	3.91.	2.18	6.02	2.25	-3.8721	
		5.64	468	1.61	-3.02	9.81	17.64	200	0.43	5.21	3.73	-4.02	3.29	0.46	1.77	11.93	16.30	-8.36	9.28	0.73	0.98	-3.3142	
		2.93	5.19	3.37	-1.80	-10.34	3.56	690	-2.63	6.63	-287	040	3.31	-362,	-0.70	1.47	24.42	368	5.69	1.44	0.83	-3.0106	
		4.59	363	0.28	-0.78	-3.97	-376	486	417	1.83	3.16	6.83	-6.13	-10.13	097	3.92	1.56	7.25	-5.29	7.87	-0.33	-0.9656	
		5.31	5.59	-0.77.	-212	164	-4.14	6.68	-6.87	8.30	-013	-695	1.33	10.14	3.45	1.24	4.73	5.79	13.12	4.47	4.16	-0,6323	
		0.51	949	3.84	1025	-174.	-17 97	8.75	-0.47	306	-5.26	543	13.85	-1.48	2.36	-0.91	-7.84	3.95	3.83	-0.79	0.16	1.2145	
		3.55	2.75	4.90	8.65	-1.46	-1.06	2.18	1.19	2.05	4.66	781	4.43	7.05	217	0.88	12.46	0.06	26.35	0.44	-1.76	1.6130	
		-0.48	1.06	-7.70	8.27	0.01	-5 53	3.95	755	-0.37	-4.48	3.80	2.85	$\cdot 10.01$	0.63	1.51	11.51	-7.41	10.39	1.03	0.82	0.4786	
		1.52	-10.39	-16.67	3.08	-2.08	-5.92	8.99	-0.46	-2.34	1.19	-14.87	2.16	14.05	085	0.43	-1.75	-10.36	2.98	-2.16	-1.00	-3.9413	
		2.13	1.12	-0.96	-0.32	-4.97	-4.34	0.55	-0.29	-2.08	-3.54	-2.29	1.17	-2.76	-2.85	-1.86	-5.52	2.07	0.62	1.23	0.16	-1.1370	2.0041
2001	Annual Average	2.05	3.05	5.88	0.68	-1286	063	055	21.08	5.19	2.64	10.47	168	896	-1.95	6.79	-6.91	7.28	2.73	-9.89	2.05	-2.3162	
		2.60	3.61	0.22	-0.73	3.81	-5.78	1.50	-6.58	-14.93	-2.67	2.58	1.19	5.32	2.76	9.25	19.02	6.09	1.58	-10.31	2.24	-0.3735	
		-13.78	4.05	3.95	5.01	1088	-1.11	3.46	1.50	-15.30	-9 64	20.77	-12.45	-7.50	-4.00	2.47	-5.45	5.22	5.05	9.51	3.12	-2.5527	
		3.44	-2.20	2.19	3.78	-14 42	-0.99	1.23	0.00	-6.26	-14.94	104	-2.27	-12.13	-14.58	9.04	-12.79	8.35	-2.22	9.50	026	-4.6588	
		094	-5.77	-1180	-0.08	-15.04	-5.02	-2.75	2.36	-6.81	-0.67	-1328	167	-5.34	-10.96	5.35	24.68	3.78	1.19	0.97	005	-5.1670	
		-0.46	1.18	10.24	2.08	4.20	-10.40	. 0.27	-0.54	1.45	-0.20	-16.74	10.22	0.46	-17.23	-6.39	-3.51	4.04	2.08	-11.12	-0.49	-2.2432	
		3.41	1.65	3.15	1.09	3.43	-0.59	-2.28	-4.46	1.36	-1.09	1.80	-0.35	453	15.32	-3.28	2.82	1.77	0.63	2.72	1.16	0.7205	
		3.49	-11.57	0.89	1.76	9.91	0.59	5.72	19.06	1.07	-10.78	069	9.01	-1.68	201	-5.68	-10.16	-4.03	2.68	-8.73	2.43	-3.7987	
		9.42	-5.00	-8.90	-656	-4.09	-2.69	1.72	-31.64	-2.17	-2.84		-210	-1300	-5.46	-12.91	-15.10	-11.68	-5.60	-17.42	. 8.17	-8.5812	
		-6.73	8.06	3.21	-4.58	-17.59	-17.02	0.94	0.62	-0.38	3.93		-6.36	-3.21	-4.51	-12.74,	22.53	7.28	-2.31	-13.18	1.10	2.1545	
		-10.59	-0.26	-0.43	1.88	8.07	1.58	-2 36	3.21	3.93	4.55	-3.38	350	1932	9.08	-5.17	-29.19	-0.03	0.22	16.78	7.73	1.1010	
		-11.63	1.35	0.23	-10.19	5.54	262	-690	4.27	-2.34	-150		0.54	1.32	9.14	-10.44	5.66	-0.10	-27.39	4.61	4.55	3.5317	
		-5.21	-1.63	0.59	-1.41	-4.02	-3.62	0.05	.7.13	-4.04	-3.21	-2.86	-1.23	-1.35	-3.55	-5.92	-5.28	0.94	-2.23	-4.73	0.39	-2.7727	2.6720
2002	AnnualAverage	-4.03.	-2.59	5.33 .	-18.62	1.98	2.78	0.59	3.28	0.67	122		2.06	0.47	1.11	2.30	-7.08	6.12	-11.08	5.31	1.90	-1.3660	
		3.64	2.87	10.69	4.55	-2.70	-1.39	0.59	0.00	7.09	0.00	-2.86	-0.85	5.95	3.08	-8.88	-10.47	4.62	-15.51	-8.21	151	-1.1338	
		-0 17	7.77	0.11	064	9.87	-1108	2.92	000	0.29	545	7.27	-375	2.97	30.34	3.07	-19.69	-7.96	-3.24	-8.48	224	-2.6286	
		218	3.17	-15.96	279	21.28	5.95	-0.36	0.00	-5.86	-11.86	-3.62	1.92	- 1260	6.74	-0.04	-26.11	-7.84	-7.46	-9.82	-0,95	-4.5241	
		074	0.62	7.67	-7.72	16.36	12.53	-0.83	0.00	1.03	0.91	-19.59	0.36	9.12	4.66	-2.74	5.60	2.23	5.44	-14.76	-029	-1.6441	
		729	2.55	6.29	1.25	13.90	6.45	8.49	0.00	15.85	-4.89	-14.68	2.46	6.91	-0.01	-0.91	3.62	6.53	2.74	25.33	3.30	1.0004	
		15.14	10.06	2.21	-1.52	-17.78	0.36	-4.37	0.00	-1.03	-6.32	0.51	-0.69	8.86	-2.10	-5.12	-7.70	4.77	-4.92	70.06	270	2.8506	
		16.46	-6.37	-1.39	-1.34	6.64	0.34	2.42	0.00	-0.77	-25.53	0.18	7.07	1.41	9.05	-0.99	-15.71	-0.60	-20.10	-0.20	2.56	-2.0497	
		-5.96	1.74	-5.08	-9.54	32.07	8.28	11.94	0.00	-9.65	-21.03	-13.57	-7.05	6.83	4.23	0.28	7.97	3.03	-20.16	9.56	2.13	-2.1944	
		7.05	0.43	-0.85	8.89	15.84	12.65	3.83	0.00	-0.54	-0.54	15.21	3.79	-1.26	1.44	-4.82	2.96	6.70	1.50	-7.89	0.53	1.9766	
		24.05	17.54	13.19	-4.26	30.18	119	7.70	0.00	16.50	6.06	2528	-6.11	27.89	17.37	3.48	78.06	6.54	55.62	25.47	12.72	16.8498	
		30.28	-6.75	4.18	7.63	-6 42	-5.03	11.27	1.76	290	0.11	-4.81	3.02	-4.92	32.28	1.88	9.57	1.23	3.59	7.04	082	4.2238	
		7.09	0.76	2.20	-4.35	8.46	1.50	3.68	0.13	2.04	-6.98	-2.29	-2.00	1.15	8.24	-2.00	-1.11	1.61	-2.50	2.68	0.57	0.9428	5.6107
2003	Annual Average	24.61	13.08	15.30	26.90	7.63	19.08	16.34	-1.67	21.51	9.68	117.32	12.87	35.05	24.72	33.06	128.53	12.19	39.63	31.25	51.43	31.9255	
		2.13	6.15	2.47	17.45	4.63	5.82	5.28	8.85	1.88	1.37	7.94	-9.02	7.84	2.28	2.52	1.70	6.05	7.26	3.15	-16.92	2.0183	
		17.54	10.31	15.00	-293	1.73	21.04	21.24	1.26	3.51	4.78	13.30	-0.65	1.24	-2.39	-0.76	9.86	4.52	4.35	4.43	10.51	4.9546	
		8.52	2.65	13.68	8.03	12.71	19.76	17.62	2.25	-7.33	3.46	34.25	-2.91	8.27	3.37	-1.53	5.42	15.35	9.45	7.65	4.25	7.0183	
		23.68	35.33	781	3.43	48.81	49.61	8.81	3.67	3900	57.281	48.83	16.77	34.79	14.33	29.97	39.63	11.49	46.80	17.31	21.58	27,9467	
			-6.44	-1.62	14.42	12.59	102	119	0.00	441	13.83	-10.26	4.00	-10 78	-0.54	-0.48	-12.14	-1.29	-12.80	0.40	-21.55	-3.3728	
			16.85	-7.59	3.41	10.35	-17.21	11.57	2.28	-10.67	-7.51	-11.82	1.33	8.34	4.43	9.05	6.20	226	-4.05	2.20	3.85	-2.8175	
		9.58	18.87	995	1.88	18.39	10.39	19.30	646	4.92	9.38	1.43	371	13.62	15.46	3.64		8.79	2.85	2.78	1198	7.1911	
		18.11	30.56	15.05	-3.17	28.54	17.89	13.67	753	0.80	1.91	11.27	15.58	1.29	3529	. 6.72		20.43	-4.11	6.87	5.19	10.6856	
		124	10.50	16.74	-0.90	21.02	10.81	11.76	0.00	3.19	1.64	486	8.45	25.60	9.26	20.43	8.70	24.80	0.94	2.88	16.57	9.7075	
		-1.43	12.30	8.45	-2.90	7.45	290	11.22	2.25	2.53	9.38	3.00	1.55	564	2.56	1.35	5.29	3.47	0.42	1.07	-1.09	2.2204	
		16.75	29.55	29.25	-0.91	17.18	938	8.06	-4.85	3.47	2.79	536	3.66	7.49	6.71	-10.49	20.02	1886	0.37	0.77	2.00	7.9564	
		11.40	14.98	10.37	3.74	12.95	12.06	11.97	2.34	3.46	5.43	17.23	3.07	9.72	9.24	4.55	18.11	10.20	7.37	5.72	5.74	8.9834	10.8688
2004		5.05	588	775	-11.93	29.99	25.92	9.64	000	$1.70 \mid$	-040	24.38	6.72	17.97	2.82	-0.79	68.67	6.13	3.08	7.31	-4.81\|	9.9459	

	Annual Average		उ०	5.43	3369	18.36	27.59	20.60	2.11	30.39	-0.72	-1.03	-1372	25.17	18.92	0.06	1400	6.46	8.72	1.64	10.43	13.07	-3.3021	
			-13.47	3187	13.12	8.49	18.03	-4.30	6.92	2.89	13.06	-2.70	20.32	2.49	6.18	-18.82	12.12	3.99	-16.27	1.45	12.99	6.45	10.6523	
			-8.02	5.06	2.29	3.22	-0.71	0.91	-478	-14.54	-3.50	-10.59	-2.91	7.10	1.64	9.20	4.56	-6.60	2.43	5.06	6.89	3.12	-1.0206	
			5.95	158	-6.54	486	13.65	6.90	053	5.92	-0.20	28.79	258	7.69	2.80	-2.51	11.35	1.10	-6.28	4.18	3.88	5.20	2.0460	
			-0.77	-1.26	-4.57	13.67	-5.16	0.05	4.22	0.42	0.02	5.99	3.25	1.31	3.05	1.05	-7.79	-4.89	-2.30	0.72	0.65	8.42	0.2632	
			1.89	-4.15	1.52	5.65	-2.23	-4.00	9.37	0.00	16.50	0.75	1.86	1.69	-0.58	2.02	0.49	2.25	0.42	1.24	1.88	18.36	2.2320	
			6.15	0.01	-4.59	4.37	1.96	932	3.99	0.00	-10.02	-0.75	-8.78	8.95	-2.75	-2.56	7.76	0.01	-8.11	0.47	-2.96	2.90	-0.9539	
			4.59	326	6.88	9.82	-2.75	5.40	-5.21	0.00	5.82	239	2.46	15.51	1.15	-0.12	7.63	-8.39	3.53	-2.37	-3.13	-0.58	2.2950	
			8.20	2.05	0.89	4.62	5.82	0.82	624	-813	10.00	9.98	654	5.42	3.66	2.59	4.84	1.96	057	11.66	-202	694	4.1328	
			-0.06	-0.96	-4.72	-0.25	1.59	0.66 .	19.38	-1.97	-2.49	1847	6.63	-1.24.	4.81	1.68	16.83	-0.45	-9.37	2.62	1.69	1571	3.4282	
			-1.58	-1.84	-1.90	2.89	-1.79	0.60	3.12	-0.22	0.65	4.36	2.37	6.68	1.38	-0.06	2.97	6.54	-2.11	1.38	0.68	4.02	1.4082	5.3664
2005	Annual Average		0.22	629	2.88	-0.51	-7.84	6.10	3.53	272	1.98	729	380	10.72	0.78	2.07	2.93	2.58	0.93	4.99	11.87	2.86	3.3093	
			3.33	9.10	6.91	10.94	-6.79	2.86	1.02	16.91	6.66	1616	1.15	6.68	2.88	1.97	15.07	286	2.62	10.10	-3.69	180	4.9611	
			-1.14	-1.53	-6.30	1196	-084	15.82	-0.57	0.00	-8.21	-5 54	-8.65	13.10	-3.14	14.75	-6.38	-3.44	-6.51	460	3.99	6.86	0.5434	
			230	-10.75	-0.64	-7.58	-4.18	047	5.41	-1.53	-5.61	-254.	-0.26	898	-2.66	5.12	7.90	-1.95	-0.59	-4.72	3.04	4.87	-0.7844	
			458	5.11	6.85	6.14	2.16	5.89	13.44	4.90	13.24	5.43	614	13.24	2.42	9.15	9.81	-0.11	6.81	2.21	-0.43	1.02	5.1679	
			14.43	-0.33	7.24	7.53	9.67	-3.60	15.52	40.58	34.51	14.34	2.94	64.57	3.45	6.46	-7.29	18.83	1.08	19.19	6.37	42.85	14.9164	
			17.17	2.42	5.47	3.74	3.62	0.13	5.43	12.03	12.38	2755	10.82	47.20	8.97	-222	20.71	14.21	5.25	-4.50	4.17	12.82	9.6193	
			-0.84	-3.73	-2.81	-4.25	2.47	-0.69	0.06	-882	2.24	-20.25	5.48	3.08	-1.48	2.01	5.45	17.26	2.37	-7.23	9.00	942	-2.3979	
			2.43	1.58	4.23	-14.76	307	1.25	5.13 .	1.96	-0.86	-746	0.34	6.24	-4.44	-6.25	-11.16	-0.86	2.96	-6.42	1.59	1.33	-3.0700	
			4.85	0.72	3.19	1.75	-004	-0.01	5.17	1.31	-3.91	4.66	1266	12.83	1.04	1.34	4.32	1488	173.	-9.45	8.66	347	2.0432	
			3.56	0.36	1.41	1.22	3.64	0.50	-4.90	1.28	22.00	2.51	9.40	-6.14	-1.85	2.23	2.42	-8.45	0.70	-0.69	-7.70	6.35	13936	
			9.72	-3.15	1.53	-6.74	2.83	13.89	-18.84	0.07	-8.94	-0.12	12.11	1.09	1.15	1.33	-8.33	-1.98	-0.26	083	-10.38	-396	-0.9157	
			4.26	0.24	1.79	0.16	-0.88	2.85	0.82	5.12	5.46												2.2024	5.2180
2006	AnnualAverage		-9.82	-0.43	10.21	-0.92	3.34	22.18	25.30	11.70	1.53	-3.14	4.79	10.31	2.70	2.73	5.49	0.02	1.46	-2.37	19.74	-0.08	4.6878	
			-0.08	-1.09	-1.12	0.29	-5.02	9.03	-3.19	2.17	-7.81	-5.41	-0.98	5.09	1.16	2.20	3.79	-533	-0.05	-2.04	-0.88	0.00	-0.4635	
			-0.74	2.07	7.58	-0.52	-0.99	1.87	0.29	0.63	-6.31	13.53	-0.14	-0.40	-3.60	4.18	. 7.82	-3.02	-0.31	-5.20	2.02	3.38	-2.8927	
			2.12	1.18	-0.91	-0.94	8.61	8.02	0.19	17.75	-4.40	5.99	1.76	13.03	2.80	3.45	362	7.04	0.83	-2.08	-3.36	2208	3.3777	
			2.03	0.05	0.15	-4.46	2.24	5.29	6.44	44.54	9.76	6.62	29.52	18.28	19.41	1.66	9.00	16.28	0.33	-7.02	8.89	9.08	8.8993	
			-0.08	-13.11	5.06	-4.69	14.41	2.71	-0.25	5.20	-8.97	0.06	5.29	-7.16	10.22	0.17	2.81	4.52	2.58	-7.70	-9.47	3.18	-0.2869	
			1.77	10.75	2.42	-0.18	15.48	922	-1.51	0.61	-6.66	-1089	3.14	1.29	5.13	0.50	2.02	4.32	5.44	1.16	4.48	0.58	1.1833	
			8.03	-0.08	748	5.96	16.32	28.17	1.02	3.91	-9.79	1.13	-4.52	1.34	21.84	0.19	5.90	9.94	1.29	0.58	-0.21	. 11.62	4.3426	
			17.33	-1.79	8.63	-4.90	32.24	8.78	3.24	2.91	2.85	6.40	18.19	7.70	8.35	5.78	46.28	37.02	5.66	-2.30	-1.63	-10.05	9.2442	
			-1.27	233	17.71	-0.63	6.25	1.75	4.86	0.66	6.35	8.76	5.13	4.31	4.15	10.69	42.59	8.06	9.90	-3.54	-1.48	2.18	6.2213	
			16.27	0.35	43.59	3.45	27.15	1.50	-3.92	18.39	69.50	2.29	10.06	-7.43	2.94	40.38	98.00	8.00	15.52	34.61	-5.18	288	18.6297	
			-3.56	-0.19	-7.09	-2.77	2.40	-7.20	-3.65	-11.18	-12.63	2.07	0.32	-1.83	-4.23	-6.51	10.61	-2.68	-1.76	12.56	-3.03	023	-2.2138	
			2.67	-0,35	6.55	-0.86	10.20	7.30	2.35	6.65	2.78	-1.32	6.05	3.50	5.91	4.75	16.67	6.29	3.41	1.39	-0.26	0.88	4.2274	6.0541
2007	Annual Average		7.02	15.45	9.50	6.64	34.40	16.35	5.33	11.95	3.67	9.35	18.85	2.33	17.37	5.41	4.59	12.45	12.48	12.68	5.34	531	10.5904	
			-1.57	0.55	682.	3.87	-21.32	872	399	5.14	-2723	-610	-7.51	-6.71	137	-9.06	.9.36	-8.53	-7.54	10.15	-9.94	242	-6.0384	
			-7.28	-16.63	14.26	. 1286	-11.11	790	7.86	-10.20	- 2301	-681	-1109	19.37	-20.22	16.70	-20.02	-28.63	-14.84	-5.86	6.47	832	-13.4729	
			3.45	-0.23	6.081	-0.95	10.72	4.77	0.84	4.34	0.55	0.61	6.12	-0.92	5.79	3.11	17.09	4.87	2.71	3.89	-2.33	-1.61	3.4438	8.4280

RETURNS IN PERCENTAGE
BOND RETURNS 1999

ONE YEAR BONDS

1\%rTBd 5/1/99(91 0ay TB)	09	0892	0892	0892	0892	0892
IyrTEd 2/99[91 Day MA. TB+0 25\%]	0.84	0813	2813	0813	0.84	0843
IvrTBd 3/99/91 Day MA. TB+0 25\%)	0.8:3	0.813	0.813	0813	0813	0.814
1yrTBd 5/2/99/91 Day TB)	09	0.9	09	09	0875	09
IyrTBd 1/99(91 Day MA, TB+0 25\%)	0813	0813	0785	0814	0813	0813
TWO YEAR BONDS						
2vrTBd 2/98(91 Day MA, TB $+025 \%$)	0.833	0533	0.833	0833	0833	0.85
2yrThed 2/99(91 Day MA, T8+0 25\%)	0813	0813	0813	0813	0813	0813
2ytTBd 3/58(91 Day MA. T8+0 50\%)	0833	0.833	0833	0833	0833	0833
2\%rTBd 2/98(91 Day MA, T840 50\%)	0833	0833	0833	0831	0833	0833
2yrTBd 5/2/99191 DayTB	09	09	09	09	09	09
2yrTBd 5/1/99191 Day TB	09	09	0.9	0.9	0919	0.9
2yrTBa 1/28(91 Day MA. TB+0 50\%)	0933	0.933	0938	0933	093:	0933
2vrTBd 1/99(91 Day MA, TB+0 50\%)	0933	0933	0933	0933	0968	0933
2yrTBd 5/9B(9] Dav MA. TE+0 50\%)	0.933	0909	0933	0933	097	0933

1206	1.206	1.206	1206	1214	1206	12.604
2273	1349	1273	1.273	1399	1.408	12.937
1273	1.273	1273	1.365	1282	1433	12.778
1282	1282	1306	1.282	1265	1.363	13155
1349	1 349	1.349	1.365	1.402	1349	13.014
137	1.331	1.37	1.294	137	13	13.15
1349	1349	1349	1.399	1433	1.34	13047
1375	1344	1328	1344	137	1.361	1312
1294	1294	1.294	1.294	1332	137	12.874
1282	1282	1.282	1282	1282	1.282	13.092
1.282	1282	1.261	1.206	1206	1206	12.862
137	1.294	1944	1.294	1.294	1344	14141
1294	1.294	1294	1313	1294	1.294	13416
1294	1294	1.294	1.294	1294	1294	13.375

THREE YEAR BONDS

3yrTBd 5/2/99(91 Day TB)
3yrTBd 5/1/99191 Day TB:
3yTTRd 2/98/9! Day MA. $18+0$ 2 2% | 3yrTBd 3/98/91 Day MA T8+12 25\%1

3yrted a/98(9) Oay MA $18+025 \% 1$

0813	0813	0813	0813	0814	0813
0813	0813	0813	0898	0813	0923
0813	0813	0813	0813	0859	0813

| 0.85976471 | 0.86217647 | 0.85635294 | 0.86264706 | 0.86582353 | 0.867 | 1.30 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | | BOND RETURNS 2000 | |

ONE VEAR BONDS

1yt TBd FR 1/2000191 Dav MA, TB+0. 25\%1 lyr TBd FR 1/99191 Day MA. T8+0 25\%) lyr TBd FR 2/2000(91 Dav MA. TB+0 25\%) Iyr TEd FR 2/99191 Day MA. TB+0 25%) 1yr TBd FR 3/2000(91 Day MA. TB+0 25\%) lyr TBd FR 3/99/91 Day MA, TB+0.25\%) 1yr T8d FR 4/2000(91 Day MA. TB+0.25\%) Iyr TBa FR 4/9si91 Day MAA, 1B+0.25\%
Ivr TBafR 5/2000t91 Day MA. TB+0 25\%) 1yr TBdFR 6/2000(91 Day MA, TB+0.25\%) lyr TBd/s/7/2000191 Day, TB+0 25\%) lyr TBd/5/1/99|91 Day TB+0 25\%) IYr TBd/S/1/99(91 Day TB) lyr TBd/5/2/99(91 Day TR+0 25\%) lyr TBd/2/99(91 Day TB) 1yr Tgd/5/3/99(91 Day TB+0 25\%)

$1 \mathrm{yr}-\mathrm{Bd} / 5 / 5 / 2000(91$ Day TB +0 25)
$1 y{ }^{\top}{ }^{\top} \mathrm{Bd} / 5 / 6 / 2000193$ Day $T B+0.251$
iyr T8d/5/7/2000(91 Oay TB*0) 75)
Iyr Ted/5/3/99(91 Day ${ }^{\top}$ Bi
Iyr TBd/5/4/2000/91 Day T8-0.25)

TWO YEAR BONDS

2yr T8d fR 1/2000/91 Day MA TB+0.501
2yr TBd FR 1/98(91 Day MA T8 +0 50)
$2 y r$ TBd FR 1/99(91 Day MA TB*0 50)
2yr TBd FR $2 / 2000191$ Dav MA TB+0 50)
2yr 8d fR 2/98(91 Day MA P8+0 50)
2yr iBd FR 2/99(91 Day MA T日 +0 50)
2yr TBdFR 3/2000/91 Day MA T8+0501
2yr TBd FR 3/99191 Day MA TB+0.50)
2yr TBa FR a/2000(9] Day MA TB +0507
yr TBd FR a/98(91 Day MA TB+0) 50)
2yr TBd FR A/99191 Day MA TB*0.501
2yr TBd fR 5/98\{91 Day MA TB+0 50]
$2 y r$ TBd FR 6/2000(91 Day MA TB+0.25)
2yr TBd/5/1/99/91DayTB

1331	134	1407	135	1332	1.331
1331	1331	1331	1331	1407	1331
1.331	1331	1407	1331	1331	1331
1331	1331	1331	1407	$133:$	1331
1331	1342	1331	1331	1332	1331
1331	1407	1331	1331	1407	1.331
1331	134	1331	1407	1331	1331
1331	1407	1331	1362	1332	1331
1331	1401	1331	1407	134	1331
$: 331$	1407	1407	1331	1332	1.331
1331	1331	1.331	1407	$133:$	1331
1.331	134	1331	1407	1.407	1.331
131	1326	1692	1692	1338	131

	1206	1.206	1.206	1.206	1206	603
	1206	1.314	$: 206$	1331	1206	6263
$12 / 3$	1273	1.273	1273	1273	1273	12517
1273	1273	1.283	1.292	1274	1273	12741
1273	1273	1264	1273	1407	1273	12.687
070588	1.28705263	1.32436842	1.28478947	1.312	1.30426316	12.9869443

AUG
SEP
OCT
NOV
DEC
Return per annum($\%$)

0822	0841	09	0822	0822	0822	12947
0822	0 841	0853	0822	0.822	0.822	12854
0841	0872	0841	0866	0869	0841	13014
0841	0871	0843	0872	0841	0841	13015
0.841	0841	0.871	0.801	0841	0841	12965
- 84.	0841	0841	0872	0841	0.841	12.905
085	0.872	0.841	0841	C841	0.841	12.958
0841	0.841	0.85	0871	0.866	0841	12.985
0841	0866	0.841	0872	0.841	0.801	12.991
0872	0871	0841	0841	O 872	0841	1293
0841	0.85	0841	0866	0871	0.841	12.933
0.846	0.846	0.846	0.846	0846	0.846	13.046
0.825	0.825	0.825	0.825	0.825	0.825	15113
0846	0855	0846	0863	0846	0875	15409
$\square 825$	0825	0.825	0851	0825	0.825	15.324
0846	0.855	0846	0846	0875	0.846	15354
0825	0851	0825	0851	0825	0825	15.275
0855	0863	0.84E	0875	0863	0.855	15498
0863	0846	0.875	0855	0846	0846	15.385
0878	0888	0922	0888	0919	0919	15.688
0825	0825	0851	0825	0825	0825	15192
0846	0855	0846	0.846	0875	0.846	15.368

0888	0919	0888	0888	0888	0.888	13449
0913	0919	0888	0888	0.888	0888	13.446
0886	0888	0919	0878	0919	0919	13473
0888	0888	0888	0922	0888	0888	13424
0922	0913	0.919	0.885	0919	0888	13.446
0.919	0.919	0.913	0.888	0888	0.888	13.553
0878	0888	0919	0919	0888	0.888	13451
0.919	0922	0.888	0.878	0919	0.922	13.541
0913	0888	0.922	0919	0888	- 888	13565
0878	0913	0.919	0919	0878	0888	13.533
0871	0872	0.861	0861	0.872	0.873	13272
D 61	0861	0.871	0872	0861	0872	13094
0841	0841	0.841	0.841	0871	0.841	1298
0825	0836	0.825	0.825	0.825	0.825	15113

2yr TSdis：1／99491 Day TB＋050）	： 733	1705	1802	1733	1733	1733
2yr T80／s／2／99（9］Day TB＋0．50\％）	＋ 733	1733	1733	1733	1802	1733
2yr TBds／2／99（9］Day TH）	： 6992	1.692	］ 743	1692	1.59	2 692
2vr T8d／5／3／99（91 Day T8＋0 50）	2.733	1733	1802	1.733	1.65	2733
$2 \mathrm{yr} \mathrm{TBd/s} / \mathrm{3} / 99$（91 Day TB）	1692	1692	1692	1802	1.692	1692
2yr TBd／5 4／2000（91 Day 4B＋0 50）	1． 733	1705	1733	1733	1705	1733
$2 \mathrm{Yr} \mathrm{TBd/s} / 4 / 2000191$ Day TB／	1.698	1.698	1．698	1.698	1.698	1698
2yr TBd／s／5／2000（91 Day T日 +0.50 ）	1733	1733	1705	1733	1533	3733
2Y\％T日d／s／5／2000（91 Day T日 +0 50）	1733	1733	1703	1733	1733	1733
2\％1 TBd／s／7／2000（91 Day TE＊0．25）	：173	1713	1713	1713	1743	1713
THREE YEAR BONDS						
	126	1.269	1.291	1343	1229	1.26
3 yr TBd 1／99（91 Day MA， $18+0$ 65\％）	125	1.231	1.169	1.287	1.26	1． 289
3 yr TBd 1／99（91 Day TB）	1.692	168	］ 692	1.692	1.592	1.592
3 yr TBd 2／99（91 Day MA， $18+0$ 65\％）	1343	1.343	1343	］ 343	1343	1343
3 yr TBd 2／99（91 Day TB）	1692	1723	2.692	1.675	1692	1692
	1343	1343	1.343	1723	1343	1343
$3 y \mathrm{TBd/s} 1 / 99$（91 Day T81	1.692	1692	1592	1 692	1723	1692
3 Vr TBd／s／2／99（91 Day8＋0．65\％）	1343	1375	134.3	1343	1343	1343
$3{ }^{3} \mathrm{r}$ TBd／s／2／99（91 DayTB）	1692	1692	1756	1675	1692	1723
$3 \mathrm{vr} 78 \mathrm{~d} / \mathrm{s} / 3 / 99191$ Day ${ }^{\text {¢ }} \mathrm{B}+0.65 \%$ ）	1343	1343	1343	1343	1343	1343

0867	0883	0.867	0.95	0867	0.931	15804
0867	0867	0.931	0.895	0.867	0.867	15.761
0.825	0853	0.825	0.825	0.825	0.825	15079
0.867	0867	0.867	0.881	0.867	0.867	156
0825	0825	0.825	0.825	0.825	0.825	15.212
0867	0881	0.867	0.867	0.881	0.867	15.572
0831	0.831	0.831	0831	0.831	0.831	15.174
0867	0.857	0.937	0.937	$086 ?$	0931	15.664
0867	0931	0.881	0867	0.881	0.867	15.662
0864	0.846	0.862	0.846	0.857	0.846	15429
126	1288	1.291	1 26	1288	12 E	15299
126	1299	1.26	1.288	1.25	126	15.123
0.825	0837	0825	0.825	0.825	0.825	15102
0.874	0874	0874	0.885	0.874	0.874	13313
0825	0825	0856	0.834	0825	0825	15156
0.874	0.99	0.874	0.89	0.874	0874	13.814
0.825	0.834	0.825	0.856	0.825	0.825	15.173
0874	0.874	0.874	0.874	0874	0874	13.334
0825	0825	0825	0825	0834	0825	15.189
0874	089	0.874	0.874	089	0874	13334

3yr $\mathrm{rBd} / \mathrm{s} / 3 / 99(91$ DayTB)
$3 y$ TBd/5/4/2000/91 DayTB)
3yr T8d/s/5/2000(9] Day TB+0 65\%)
$3 y t$ TBd/s/E/2000(91 Day TB+0 65 (\%)
$3 y$ TBd/s/7/2000/91 Day TB+065\%1
1.692
1.692
1.343
1343
1.713

1692
1723

Average Government Floating Bond returns
$149796721 \quad 1.49796721 \quad 1.49796721$

ONE YEAR BONDS

1yr TBdFR 1/2000(91 Day MA TB+0.25)
Iyr TBAFR $1 / 99(9]$ Day MA. TB +0.25)
IYI TBdFR 2/2000 91 Oay MA, TB+0 25)
IY TBd FR 2/2001;91 Day MA. TB+0.25)
Iy TBd FR $2 / 99 / 91$ Day MA, TB +025)
$2 y$ TEdFR 3/2000(91 Day MA, TB+0.25)
1yr TBdFR 3/2001/91 Day MA, TB+0.25)
1yr TBdFR 3/99/91 Day MA TB+0.25i
IVr TBdFR $4 / 2000 / 91$ Day MA, TB +0251
ivf TBdFR 4/2001(91 Day MA, TB +0 25)
14\% TBA FR 4/99(91 Day MA TB +0 25)
1vr TBdFR 5/2000(91 Day MA, TB+0 25)
TVI T日d CR $6 / 2000(91$ Day MA. TB +0.25$)$
Jus TBd FR $7 / 2000 / 91$ Oay MA, $78+0.25$)
1V1 TBdFR 8/2000(91 Day MA $18+025$)
${ }^{1} \mathrm{y} 1 \mathrm{TBd} / \mathrm{s} / 1 / 99 / 91$ Day T8+0.25
IYr $\mathrm{FBd} / \mathrm{s} / 2 / 99(92$ Day $\mathrm{TB}+025$:
Iyr T8d/s/3/2001(91 Day TB +0 25)
lyr rBd/s/3/99191 Day T8+0.251
1yr TBd/5/4/2000(91 Day TB+0 25)
Iyr TBd/s/4/2001(91 Day TB+0.25)
IVr TBd/s/5/2000(91 Day TB+0.25)
1y TBd/s/ B/2000(91 Day TB+0.25)
1 y TBd/s/7/2000(91 Day TB+0.25)
3yr TBd/s/8/2001(91 Day TB+0 25)
1yr TBd/s/9/2001(9] Day TB+0 25)

TWO YEAR BONDS

2yr TBdFR I/2000 191 Dav MA. TB+0 50\%
2vr TBdFR 1/98 [9] Day MA, TA+0 50\%]
2 yI TBd FR $1 / 99 / 91$ Day MA, $\mathrm{TB}+0.50 \% 1$
2yr TBd FR 2/2000 (91 Day MA, TB+0 50\%)
2yr TBdFR 2/99 191 Day MA, TB+0 50\%!
2yr TBd FR 3/2000 (91 Dav MA. TB+0 50\%)
2 Vr TBd FR $3 / 98$ '91 Day MA TB+0 50\%
2yr TBdFR 3/99(91 Day MA , TB+0.50\%)
2yr TBdFR 4/2000 (91 Day MA TB+0 50\%\}
2yr TBdFR 4/98 (91 Day MA, $18+0$ 50\%)
2yr T8 f fr 4/99 191 Day MA, TB+0.50\%

1274	1274	1293	1301
1.274	1.333	1.255	1348
1274	1301	1243	1274
1.274	1.274	1215	1274
$: 348$	1293	1274	1293
$: .274$	1255	1333	1274
$: 274$	1.274	1274	1301
1274	1301	1274	1274
1348	1274	1274	1333
1274	1293	1255	1293
1274	1274	1274	1333
1274	1215	1301	1274
1274	1274	1274	1373
1274	1233	1259	1293

2293	1302	12	1319
$\because 293$	1308	1293	1293
2.293	1.293	1319	1.293
1293	1293	1293	1302
1293	1293	1328	1293
1293	1293	1302	1293
1.293	1293	1319	1293
1293	1302	1293	1308
$: 293$	1293	1308	1293
$: 293$	12	1293	1319
1293	129	1293	1329

1692	1692	0.825	0.825	0.834	0825	0825	0.825	15.125
1723	1692	0.825	0.856	0.825	0.834	0.856	0.825	15.187
1.343	1343	0874	0.874	0874	0.874	0.874	0.89	13998
1343	1343	0874	0.89	0.874	089	0874	09	13329
1687	1713	0846	0.846	0846	0846	0846	0.846	13.7553

$\begin{array}{lllllllllll}1.49796721 & 1.49796721 & 1.49796721 & 1.49796721 & 1.49796721 & 1.49796721 & 1.49796721 & 1.49796721 & 17.97560656\end{array}$ BONDS RETURNS 2001

JuN
Jul
AUG SEP OCT NOV DEC

Return per annum(\%)

1.215	1270	114	1158	1118	1.123	1128	1.028	14.326
1.243	1317	1.079	1.038	1.04	1.043	1022	1.079	14.071
1293	1270	1.079	1079	1.123	1.079	1079	1.079	14177
1333	1301	1079	1118	1.079	1.079	1079	1.079	14184
1274	1270	1079	1079	1079	1118	1079	1.079	14.269
1293	1348	1079	1158	1.079	1.079	1123	1079	14374
1270	1255	1079	1.043	1.079	1.079	1079	1079	1409
1215	1293	1079	1079	1.079	1.079	1079	1079	14105
1274	: 274	1079	1118	1185	1079	1079	1123	14.44
1270	1.215	1079	1079	1043	1.079	1079	1079	14042
1270	1274	1079	1.158	1079	1158	1118	1.079	24374
1301	1.203	1079	1158	1079	1.079	1.079	1079	14161
1255	1.293	1074	1079	1118	1,123	1158	1123	14.383
1293	1274	1079	1128	1.079	1.043	1022	1.079	14.131
1293	1278	1.075	1079	1022	1158	1079	1079	14292
1225	1251	1093	1033	1.149	1093	1161	1.093	14.21
1251	1269	1093	1093	1.033	1.140	1042	1.093	13.975
1251	01234	1.093	1093	1104	1093	1.093	1.093	12.9884
1.31	1.251	1093	1.033	1093	1093	1093	1.144	14088
1.282	1.269	1093	1093	1093	1.149	1093	1.093	14.216
1.254	1.251	1.251	1.251	1.251	1.251	1.251	1.251	15012
1221	1269	1093	1.093	1149	1.033	1. 093	1093	14089
1.31	1251	1093	1.093	1.144	1093	1161	1093	14273
1269	1.251	1093	1.093	1.033	1093	1.033	1 104	14.014
1.31	1.221	2093	1161	1 149	1.093	1.093	1.093	14.187
. 269	1.282	1093	1093	1.093	1.033	1.093	1.093	14045

1328	1293	1135	1.056	1.153	2.141	1072	1156	14448
1293	1293	1109	1.134	1.183	1049	1131	1.069	14448
1308	1.293	1041	1.072	1.056	1.032	1.153	1.062	14.215
12	1302	11	1135	1.1	11	1072	1.1	14.29
1293	1293	11	1153	1109	1056	11	1.1	14.411
1293	1293	11	1049	11.5	1109	11	1135	14.41
12	1293	11	1056	1.183	1.141	1131	11	14.402
] 293	1.2	11	17	1134	1.135	1072	1.134	14364
12	1293	: 1	11	1.153	1183	1.141	1183	14.54
1293	1319	: 1	1135	11	: 109	1056	11	14317
:293	1793		1.1	1134	1153	1131	1156	14567

2yr TBdFR S/2000 (91 Day MA. T8 $00.50 \% 1$ zyr TBA FR 5/98 (91 Day MA. YB $+0.50 \%$) 2 yr TBd FR 6/2000 (91 Day MA, TB+0 50\%) 2 yr TBd FR 7/2000 (91 Day MA, TB +0 50\%) $2 y \mathrm{~T}$ TBo/s/9/2001 (91 0ay TB+0.50\%) 2yr T8d/s/1/99;91 Day TB+0 50\% 2yr TBd/5/2/99191 Day TB+050\%\% 2yr TBa/s/3/2001 (91 Day TB+0 50\%) 2yr TBd/s/3/99/91 Day $78+0$ 50\%) 2yr TBd/s/3/99191 Day T8+0 50\%1 2yr T日d/5/4/2000 (91 Day TB+0 50\%) 2 yr TBd/s/4/2001 (91 Day TB+0 50\%) $2 y r$ TBd/s/5/2000 (9] Day TB+0 50\%) 2 Vr TBd/s/6/2000 (91 Day TB+0 50\%)

2yr TBd/s/7/2000 (91 Day TB $+050 \%$)
$2 y r$ TBd/s/8/2001 [9] Day TB+0 50\%)

THREE YEAR BONDS

$3 y$ TRA 1/2000 (91 Day MA, TB + 065%)
$3 y \mathrm{TBC1} 1 / 99191$ DayMA, TB+0.65 \%
$3 y r{ }^{\top} B \mathrm{Be} 2 / 99(91$ Day MA. TB+0 65%
3 Yr TBd/s/ 2/99 (91 Dav TB $+065 \%$)
$3 y r 780 / \mathrm{s} / 2 / 99$ (91 Lay TB+0 65%)
syr 1Bd/s/ 3/2001 \{9] Day TB+065 \%
3 yr TBd/5/3/99 (91 Day TB+0.65 \% /
$3 y \mathrm{TBd} / 5 / 4 / 2000$ (91 Day TB+0 65 \%)
3yr TBa/s/ 4/2001(91 DayTE+0 $65 \% 1$
3yt TBd/s/5/2000 (91 Day TB 4065%)

1293	1293	1308	1293
1293	1293	1293	1.302
1293	1288	1272	$: 31$
1293	1321	1293	1321
1293	1217	1277	1321
1293	1351	1233	1293
1293	1293	1293	1293
2.293	1293	1.293	1293
$: 293$	1293	1293	1233
1293	1293	1233	1293
1293	1233	1321	1321
1293	1293	1293	
1293	1293	1293	1293
1292	1293	1293	

1305	1333	1336	1246
1305	1305	1336	1305
1305	1343	1305	1305
1305	1305	1336	1336
1305	1246	1336	1343
1305	1305	1305	1336
1305	1305	1336	1305
1305	1.246	1305	1305
1305	1305	1336	1343
1305	1305	1336	1336

1.2	1.293	1.1	1056	1.109	1.134	1.049	1.153	14.281
1.293	12	1.1	1.1	1141	1.183	1135	1.131	14464
1272	1272	1079	1.079	1079	1079	1.079	1.079	14181
1356	1293	11	11	1209	1183	1069	1.1	14538
1293	1293	11	1141	11	1135	1049	1.069	14288
1293	1321	1135	11	1153	11	1134	11	14511
1293	1293	11	11	11	1.131	1056	11	14.345
1293	1233	1	1056	11	1.109	2.01	2183	14.256
1293	1293	1 :	1069	1135	11	1.1	1.049	14279
1217	1293	1.1	1156	1049	1.134	1135	1.1	14296
1293	1.293	11	1.1	1.109	1153	1131	1.1	14.479
1271	1321	11	1135	11	1056	1069	1156	14.408
1.293	1233	1.1	11	1.049	1.	1.056	1.1	14.067
1.293	1293	1141	11	1141	1134	1.109	1.1	9311
1.272	1333	1079	1079	1079	1.079	1079	1.079	14.226
1293	1293	:	1.1	1156	1134	1.131	1.1	14475
1336	1343	1113	1082	1.172	1057	117	1.074	14.567
1305	1105	1113	1112	1111	1113	1113	1113	14539
1305	1305	1113	1113	1:13	1113	1113	1.057	1449
1305	1305	1113	1.17	1113	1.074	1113	1113	14.588
1305	1305	1113	1082	1113	1057	1113	1113	14.431
1246	1305	1113	1113	1.113	1.082	1.113	1.113	14449
1336	1305	1113	1.172	1.057	1.082	1.113	1.113	14542
1305	1336	1.113	1172	1113	1074	1172	1057	14.503
1305	1336	1113	1113	1113	1082	1.057	1.113	14521
1305	1305	1113	1082	1.113	1.057	1113	1.17	14.54

3yr TBd/5/8/2001 (91 Day TB+0.69\%)
3yr TBd/5/9/2001 (91 Day TB+0 65%)

Average Government Floating Bond Retums

1.28612121
$1.285 \quad 1.28639394$

JAN FEE
NAR

1 yr TBd FR 1/2001. (91 Day MA. TB+0.25)
1 y TBd FR 2/2001 (91 Day MA, TB+0.25)
1 y TBd FR 3/2001 (91 Day MA, TB+0.25)
1 yr TBd FR 6/2001 (91 Day MA TB+0.25)
1 yr FBd FR 4/2001 (91 Day MA TB+0 25)
1 yr YBd/s/1/2002 (91 Day TB)
1 yr JBd/s/3/2001 (91 Day TB)
1 yr TBd/s/4/2001 (94 Day TB)
1 yr TBd/s/5/2001 (91 Day TB)
1 yf TBd/s/6/2001 (91 Day TB)
1 yr TBd/s/7/2001 (91 Day TB)

TWO YEAR BONDS

2 yr Tgd/S/FR 1/2000 (91 Day MA. TB + 0.50%)
2 yT TBd/SIFR 1/200.1 (9 * Day MA, TB + 0.50\%)
2 y TBd/SFR 2/2000 (91 Day MA TB +0 50\%)
2 yr TBd/SiFR 2/2001 (91 Day MA. TB $+0.50 \%$)
2 yI TBd/SIFR 3/2000 (91 Day MA TB $+050 \%$)
2 y TBd/S/FR 4/2000 (91 Day MA TB $+050 \%$)
2 yr TBd/S/FR $4 / 99$ (91 Day MA TB $+050 \%$)
2 ys TBd/S/FR 5/2000 (91 Day MA TB $+0.50 \%$)
2 yr TBd/S/FR 6/2000 (91 Day MA TB +0 50\%)
2 y: TBd/S/FR 7/2000 (91 Day MA. TB $+0.50 \%$)
2 үr TBd/S/1/2002 (91 Day MA. TB)
2 yr TBd/s/3/2001 (91 Day MA TB)
2 yf TBd/S/4/2000 (91 Day MA TB)
2 yr TBd/Si4/2001 (91 Day MA TB)
2 yr TBd/Si5/2000 (91 Day MA, TB)
2 yr TBd/S/5/2001 (91 Day MA TB)
2 yr TBd/S/6/2000 (91 Day MA. TB)
2 yr TBd/Si6/2001 (91 Day MA TB)
2 yr TBd/S/7/2000 (91 Day MA TB)
2 ys TBd/S/G/2001 (91 Day MA. TB)

THREE YEAR BONDS

$$
\begin{aligned}
& 3 \text { yr TBd 1/2000 (91 Day MA TB }+0625 \%) \\
& 3 \text { yr TBd } 1 / 2001 \text { (} 91 \text { Day MA TB }+0625 \% \text {) } \\
& 3 \text { yr TBd } 1 / 99 \text { (} 91 \text { Day MA TB }+065 \% \text {) } \\
& 3 \text { yr TBd } 2 / 2000 \text { (} 91 \text { Day MA, TB }+065 \% \\
& 3 \text { yr TBd } 2 / 2001 \text { (94 Day MA TB }+0.625 \%) \\
& 3 \text { yr TBd } 2 / 99(91 \text { Day MA, TB }+0.65 \%)
\end{aligned}
$$

0.925	0.943	0934	0925	0944	0.925
0.925	0.925	0943	0925	0.925	098
0.925	0.925	0953	0925	0925	0978
0925	0.925	0925	0925	0.944	0953
0.925	0925	0944	0925	0.925	0925
0904	0904	0924	0904	0.902	0904
0904	0904	0904	0904	0923	0941
0904	0933	0904	0904	0904	0904
0904	0904	0904	0933	0904	090.4
0904	0904	0904	0904	0913	0904
0.904	0933	0904	0904	0951	0923

0.919	0.919	0919	0974	0928	0919
0.999	0919	0892	0.892	0919	0864
0.919	0.919	0.873	0.919	0.9	0.919
0.919	0919	0919	0919	0919	0955
0919	0.955	0.892	0.873	0919	0919
0919	0919	0919	0892	0.919	C919
0873	0919	0928	0919	0.892	0919
0956	0919	0919	0919	0.928	0919
0999	0919	0993	0919	0919	0919
0919	0.919	0983	0919	0.983	0956
0859	0904	0973	0904	0913	0904
0.904	0.904	0939	0904	0958	C 904
0904	0.904	0904	0973	0904	C 859
0.913	0904	0859	0.904	0.939	0.904
0.904	0904	0.913	0.904	0.913	0.859
0.904	0.904	0939	0504	085	0904
0.939	0.904	0.913	0904	0.904	0973
0.904	0.904	0913	0.913	0.859	0904
0904	0904	0859	0904	0904	0913
0.904	0973	0.904	0939	0.900	0973

093	0905	093	0976	0859	101
093	094	093	0.93	0905	093
0932	0991	0932	1124	0932	0932
0932	0955	0412	0932	095	0432
093	093	093	0905	093	093
0.932	0932	0991	0932	0932	0932

1.113	1.057	1.113	1.172	1082		13405
1079	1079	1.079	1.079	1.079	1.079	14.257
1113	1113	1.074	1113	1113	1.113	14647
1113	1.17	1113	1113	1.113	1.113	14.709

94045	1.1040597	1.10877612	1.10426866	1.09873134	1.10363636	14.3251193

AUG
SEP
OCT
NOV
DEC
Return per annum(\%)

0703	0721	0703	0667	0703	0603	9696
2703	0703	0703	0714	0703	0.703	9.852
3703	0714	0603	0703	0703	0595	9652
$) 703$	0703	0703	0.703	0603	0.703	9.715
) 703	0603	0714	0703	0.764	0703	9.759
$) 719$	0.75	0719	0.719	0719	0719	9.787
) 719	0719	0719	0631	0719	0719	9706
) 719	0719	0758	c 719	0737	0719	9824
3719	0719	0719	0719	077	0719	9.818
1719	0631	0719	063:	0719	0719	9572
19719	0715	0719	0719	0631	0119	9.745
i) $/ 24$	0.724	0720	0724	0724	0724	9.922
1) 124	0.724	0.724	0.724	0724	0.724	¢ 749
12.724	0735	0.724	0.724	0.724	0.724	9804
11724	0724	0724	0753	0724	0.724	9923
9724	0724	0743	0.724	0724	0724	9841
13720	0720	0724	0.724	0724	0.724	9831
1) 724	0724	0.724	0.769	0724	0.724	9.839
1) 724	0720	0724	0724	0724	0.724	9904
1) 724	0733	0.713	0.724	0738	0724	9.944
1) 122	0724	0.837	0733	0724	0724	10145
11651	0719	0729	0.719	0758	0719	9752
1) 719	073	0 719	0.719	0719	0719	9838
11719	0719	0.719	0719	0.719	0719	5.762
1) 719	0.719	0.651	0.719	0.719	0719	9669
-1) 719	0729	0.719	0.729	0.719	0.651	9.663
1) 719	0719	0.719	0.719	0.719	0.719	9.719
1) 651	0719	0.719	0.651	0.719	0719	9.715
$1) 719$	0719	0.729	0.719	0.719	0719	9721
(1) 719	0651	0719	0651	0719	0719	9566
1) 719	0729	0719	0.719	0651	0719	9.853
1735	C65	0735	0751	0735	0735	9951
:735	0.35	0735	065	0735	0735	989
: 137	0808	0737	0.737	0737	0737	10.336
) 737	0737	0737	0737	0737	0737	10.059
± 735	0735	065	077	0735	0.735	9.915
1737	0737	0751	0737	0737	0.737	10.08 ?

3 yr TBd 3/2000 (91 Day MA TB + 0.55\%)
3 yI TEd 3/2001 (91 Day MA T日 $+0.625 \%$)
0.932

$$
0932
$$

3 yr YRd 4/2000 (91 Day MA. TB $+0.65 \%$)
3 yr red/S/1/2002 (91 Day TB)
3 yr TBd/S/1/2002 (91 Day T8)
3 yr TBd/S/2/99 (91 Day TB)
3 yr TBd/S/3/2001 (91 Day TB)
3 yr TBd/S/3/99 (91 Day TB)
3 yr TBd/S/4/2000 (91 Day TB)
3 yr TBd/S/4/2001 (91 Day TB)
3 yr TBd/Si5/2000 (91 Day TB)
3 yr T日d/S/5/2009 (91 Day TB)
3 yr TBd/S/6/2000 (51 Day TB)
3 yr TBd/S/6/2001 (91 Day TB)
3 yr TBd/Si7/2000 (91 Day TB)
3 yr TBd/Si8/2001 (91 Day TB)
3 yr TEd/S/9/2001 (9 1 Day TB)

FIVE YEAR EONDS

5 yr TBd 1/2001 (91 Day TB $+0.75 \%$)

SIX YEAR BONDS

6 yr TBd $1 / 2001$ (91 Day TB $+0,80 \%$)
6 yr TBd 1/2002 (91 Day TB $+0.80 \%$)
6 y JBd FR $1 / 2001$ (91 Day MA TB $+0.50 \%$)

Average Government Floating Bond Returns
0.957

0.975	0.975	0875	0.975	0.975	0975
0.975	0975	1078	0975	1043	0975
0.919	0919	0919	0919	0919	0.919

$\begin{array}{lllllll}0.91591379 & 0.92163793 & 0.91601724 & 0.92113793 & 0.92172414 & 0.92639655\end{array}$

ONE YEAR BONDS
1 yr TBd FXT $1 / 2001$ (FXd a1 14.5\%)
1 yr TBd FXT 9/2002 (Fxd a1 13\%)
18 months TBd/S/FXT 1/2001 (Fxd at 145\%)
1 months TBD/S/FXT $2 / 2001$ (Fxd at 145%)

TWO YEAR BONDS

2 yr TBd/SJFXT 1/2001 (Fxd al 145%)
2 ys TBd/SJFXT 1/2001 (Fxd al 14.75\%)
2 y' T8d/S/FXT 1/2002 (Fxd at 13\%)
$2 y$ TBd/S/FXT $2 / 2001$ (Fxd at 1425%)
2 yr TBd/S/FXT $2 / 2001$ (Fxd at $145 \% 1$
2 Vf TBd/S/FXT $2 / 2002$ (Fxd at 13\%)

THREE YEAR BONDS

3 ye TBd FXT 1/2002 (FXd at 13%)
3 y' T8d FXT 1/2002 (Fxd al 14.25%;
3 yr TBd FXT $1 / 2002$ (Fxd al 14.5%)
3 yr TBd FXT $2 / 2002$ (Fxd al 13%)
3 yr TBd FXT $2 / 2002$ (Fxd at 13.75\%)

0.93	093	093	0.905	0.93	0.93
0.932	0832	2932	0993	0.932	1.124
0904	0973	0904	0748	0904	0.904
0.904	0904	0973	0 904	0904	C 904
0904	0.904	0973	0904	0904	0.973
0.904	0904	0.904	0973	0748	0.904
0.904	0.904	0748	0904	0.973	0904
0.904	0973	0904	0904	0948	C 904
0.973	0.904	0.748	0904	0973	0904
0904	0904	0904	0973	0904	0904
0904	0748	0895	0904	0973	0.904
0904	0.904	0904	0748	0.904	C.748
074 D	0973	0904	- 904	0904	0973
0973	0904	0881	0973	0904	0904
0904	0904	C. 748	0304	0.904	C 904
0.904	0904	0904	0748	0973	C 904

0.967
0.967
0.967
0.967
0.967

0975
0.919

1208	1.208	1.208	1292	1.126	1.245
1.083	1.083	1.083	1.278	1.083	1.352
1208	1.228	1.233	1.208	1.236	1208
1.208	1.255	1.208	119	1.19	1.208

1.208	1.393	1.308	1.208	1126	1.208
1229	1.229	1229	1256	1229	1.229
1083	1083	1083	1139	1083	1083
1188	1188	1.258	1188	1218	1188
1208	1208	1228	1208	1179	1.208
1083	1083	1096	1083	1096	1083

1083	1083	1083	1083	1146	1083
1188	1188	1188	1.188	1.188	1.188
1.208	1208	1.208	1.208	1.208	1.208
1083	1083	1152	1083	1096	1.083
1146	1146	1146	1.146	1.146	1.146

FOUR YEAR BONDS

2737	0737	0.737	0.737	0737	0.737	10.326
0735	0.724	0.785	0735	0.65	0735	9.919
0737	0737	0.737	0.748	0737	0.737	10.276
2.718	0719	0719	0719	0.719	0719	9653
5600	0719	0747	0719	0719	0.719	9.724
0719	0734	0.719	0.719	0.719	0.719	9.891
(1) 719	0719	0.719	0.719	0.719	0.719	9.651
0719	0719	0.719	0.319	0.719	0.719	9.651
6119	0719	0.734	0.608	0747	0719	9783
6119	0719	0.719	0.719	0719	0719	9.72
0.747	0747	0.729	0734	0719	0.719	9.878
(1) 17	0.719	0.719	0719	0719	0719	9.642
1517	[734	0719	0719	0734	0719	9.456
114	0734	0719	0608	0719	0719	9624
714	0719	0734	0719	0719	0719	9868
315	0719	0734	0719	0608	0719	9486
315	0719	0719	0719	0719	0719	9651

0.782	0.782	0.782	0.782	0.782	0.782	10.494

0779	0.79	0.8	0.79	0848	0.79	10558
0779	079	0863	079	0.79	079	10834
0714	0724	0724	0724	0779	0724	9913

0.72098276	0.72398624	0.72748276	10.71658621	0.72281034	0.72	9.85377586

1208	1.237	1.208	1.208	1208	1.208	14.564
1.083	1.083	1.083	1.083	1.083	1.083	13.46
1208	1.208	1.208	1.208	1.208	1.208	14.569
1.208	1.208	1.208	1.218	1.208	1.208	14.517
1208	1208	1.255	1208	1208	1.208	14.746
1229	1229	1.229	1.229	1.255	1.229	14801
1.083	1083	1083	1083	1.083	1.083	13052
1188	1157	1.188	122	1188	1188	14357
1208	1208	1.208	1.208	1.208	1.208	14487
1083	1128	1.083	1.083	1.083	1.083	13.067

1.064	1083	1083	1.083	1083	1.083	13.04
1.68	1188	1.188	1.188	1.188	1188	14256
1.206	-6375	1.208	1.208	1.208	1.208	6913
1083	1165	1.083	1.093	1122	1083	13.209
1.46	1146	1.146	1.146	1.146	1.146	13.752

5 yI TBd FXT 1/2002 (FXd at 14. 5%
$1167 \quad 116$ $1167 \quad 1167$
six Year bonds

Average Government Fixed Bond Returns

$\begin{array}{llllll}1.15336842 & 1.17547368 & 1.17321053 & 1.17147368 & 1.14157895 & 1.16947368\end{array}$

ONE YEAR BONDS

1 yr TBdFR 6/2001 (91 Day MA TB $~+0.25 \%$) 1 yr TBdZC 1/2003
1 yf TBdZC $2 / 2003$
$1 \mathrm{yr} \mathrm{TBd/s} / 1 / 2002$ (91 Day TB)
1 yr TBd/s/2i2002 (91 Day TB)
1 yr TBd/s/2/2002 (91 Day TB)
1 yr TBd/s/3/2001 (91 Day TB)
1 yr TBd/s/4/2001 (91 Day TB)
1 y/ TBd/s/7/2001 (91 Day TB)

TWO YEAR BONDS

2 yr TBd FR 1/200 (91 Day MA. TB + 0.50\%)
2 yr TBd FR $2 / 2001$ (91 Day MA, TB $+0.50 \%$)
2 yr TBd FR7/2000 (91 Day MA. TB $+050 \%$)
2 yr TBdis/1/2002 (91 Day TB)
2 yr TEd/s/2/2002 (91 Day TB)
2 yr TEd/5/3/2001 (91 Day TB)
2 yr TEd/s/4/2001 (91 Day TB)
2 yr TBdis/5/2001 (91 Day TB)
2 yr TBd/s/6/2001 (91 Day FB)
2 yr TBd/s/7/2000 (94 Day TB)
2 yr TBa/s/9/2001 (91 Day TB)

THREE YEAR BONDS

3 y TEd 2/1999 (91 Day MA TB + 0 625\%)
3 yr TEd 2/2000 (91 Day MA TB + 0.625\%)
3 yr TBd 2/2001 (91 Day MA TB $+0625 \%$)
3 yr TEd 3/2000 (91 Day MA TB + 0.65\%)
3 yr TBd 3/2001 (91 Day MA TB + 0625%)
3 yr TEd 4/2000 (91 Day MA T9 + 065%)
3 yr TBd 5/2000 (91 Day MA T8 + 0.65\%)
3 yr TEd FR 1/2001 (91 Day MA, TB + 0.50\%)
3 yr TBd FR 1/2001 (91 Day MA. TB $~+0.625 \%)$
3 yr TBd FR 2/2001 (91 Day MA, TB * 0.50\%)
3 yr TBd FR 2/2001 (91 Day MA. TB + 0.625\%)
3 ye TBdFR 3/2001 (91 Day MA TB + 0.50\%)
3 yr TBd FR 3/2001 (94 Day MA. T8 + 0.625\%)
3 yr TBd/s/1/2002 (91 Day TB)
3 yr TBd/s/90/2001 (91 Day TB)
3 yr TBd/s/11/2001 (91 Day TB)
3 yr T日d/s/2/2002 (91 Day TB)

| 1.15236842 | 0.76084241 | 1.15473684 | 1.15705263 | 1.15784211 | 1.15336842 | 13.5207895 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0.937727 | 0.741964 | 0.941847 | 0.9375035 | 0.9419315 | 0.936684 | 11.685197 |

yus
$A \cup G$

SEP
OCT
$0195 \quad 0: 82$
0348

1. 182
$0705 \quad 605$
4.23

4165

0.128	0.105	4.928
0.16	0.128	5
0.128	0.128	5.039
0128	0.128	4.986
016	0.128	5056
0105	0.128	4976

014	0.171	0.169
014	0.14	0.124
014	074	0112
0113	0128	0118
0128	0138	0178
0128	0118	0128
0128	0113	0128
0.113	0128	0.113
C128	0.159	0113
0.113	0178	0.128
0128	0128	0113

0.15	0.216	0.216	0.167	0.15	0.15	5.095
0.15	0.166	0.15	0.247	0.15	0.15	5.059
0.15	0.15	0.15	0.15	0.15	1.012	5.884
0.15	0.167	0.216	0.15	0.15	0.15	5.079
0.153	0.153	0.183	0.153	0.216	0.676	5.59
0.216	0.15	0.166	0.167	0.15	0.674	5.63
0.153	0.153	0.153	0.153	0.153	0.676	5.497
0.153	0.167	0.216	0.168	0.153	0.676	5.589
014	0.109	0.181	0.14	0.14	0.14	4.828
0.15	0.15	0.216	0.15	0.15	0.15	5.012
0.171	0.171	0.168	0.157	0.166	0.14	4.951
0.15	0.15	0.15	0.15	0.216	0.216	5.078
0.14	0.14	0.14	0.14	0.14	0.14	4.818
015	0.15	0.15	0.15	0.15	0.15	5.007
0128	0.159	0.157	0.128	0.191	0.128	5.194
0157	0.128	0.161	0.128	0.128	0.128	4.945
0128	0.191	0.128	0.157	0.161	0.128	5.188
0128	0.157	0.128	0.128	0.128	0.128	5092

$$
\begin{aligned}
& 3 \text { yr TBd/s/3/2001 (91 Day TB) } \\
& 3 \text { yr TBd/s/3/2002 (91 Day TB) } \\
& 3 \text { yr TBd/s/3/99 (91 Day TB) } \\
& 3 \text { yr TBd/s/4/2000 (91 Day TB) } \\
& 3 \text { yr TEd/s/4/2001 (91 Day TB) } \\
& 3 \text { yr TBd/s/5/2000 (91 Day TB) } \\
& 3 \text { yr TBd/5/5/2001 (91 Day TB) } \\
& 3 \text { yr TBd/s/6/2000 (91 Day TB) } \\
& 3 \text { yr TBd/s/6/2001 (91 Day TB) } \\
& 3 \text { yr TBd/5/6/2001 (91 Day TB) } \\
& 3 \text { yr TBd/s/7/2000 (91 Day TB) } \\
& 3 \text { yr TBd/s/7/2001 (91 Day TB) } \\
& 3 \text { yr TBd/s/8/2001 (91 Day TB। } \\
& 3 \text { yr TBd/s/9/2001 (91 Day TB) }
\end{aligned}
$$

FOUR YEAR BONDS

4 yr TBd FR 1/2004 (9* Day TB + 070%)

FIVE YEAR BONDS

5 yr TBd FR $1 / 2001$ (91 Day TB + 075\%
5 yr TBd/s/1/2002 (91 Day TB)

SIX YEAR BONDS

6 yr TEd/1/2001 (91 Day TB $+0.80 \%$)
6 yr TEd/1/2002 (91 Day TB $+0.80 \%$)
6 yr TBd FR 1/2001 (9* Day MA, TB + 0.50\%)
6 yr TEd FR 1/2001 (97 Day MA TE + 0.80\%)

Average Government Floating Bond Returns

0.896	0.896	0.896	0.932	0.932	0.943
0.979	0.979	0.979	1.04	0979	1016
1.083	1072	1.072	1072	1.072	1072
0896	0.896	0.896	0.896	0.896	0.896
1.208	1.311	1.208	1.137	1208	1.253
1.208	1.208	1.273	1.208	1131	1.208

TWO YEAR BONDS

2 yr TBd FXD 1/2002 (Fxd al 12\%)
2 yr TEd FXD 1/2002 (Fxd at 13\%)
$2 \mathrm{yr} \mathrm{TEd} \mathrm{FXD} \mathrm{1/2003} \mathrm{(Fxd} \mathrm{at} 11.25 \%$)
2 yr TBd FXO 212002 (Fxd at 1125%)
2 yI TEA FXD 3/2002 (Fxd at 1
2 yr TBd FXD 1/2001 (Fxd at 14 75\%)
2 yr TEd FXD 2/2001 (Fxd at 14.25%)
2 yr TBd FXD 2/2001 (Fxd at 14.25\%)
)

Three year bonds

0.206	0.128	0.157	0154	0.128	0.128	5159
0095	0.189	0128	0128	0161	0.191	5.04
0128	0128	0128	$0: 28$	0128	-128	5.087
0128	0157	0157	0157	0.161	0.128	5106
0195	0128	0128	0191	0.128	0.191	5093
						4.319
0.128	0.968	0.128	0.195	0.128	0.128	6.003
						4242
0.128	0128	0.068	0.128	0128	0.128	5003
0.128	0128	0191	0.195	0.128	0.128	5156
						4 249
0191	0128	0.128	0.128	0.068	0128	4. 989
0 128	0068	0.128	0.128	0128	0.128	4896
0.128	0.128	0.094	0128	0.191	0195	5.097

0219
0187
0187
5797

0.22	0.191	0.252	0.191	0.242	0191	5.815
0.128	0.128	0.154	0.128	0.159	0128	4953

0.765	0.765	0.765	0.765	0.765	0.765	9.18
0.765	0.765	0.765	0.765	0.765	0.765	9.18
0.663	0.663	0.663	0.663	0.663	0.663	7.955
0.668	0.668	0.668	0.668	0.668	0.668	8.016

$\begin{array}{lllllll}0.18690741 & 0.20207407 & 0.19268519 & 0.19437037 & 0.18914815 & 0.24981481 & 5.39815254\end{array}$

0896	0.896	0.896	0.896	0.896	0.896	10.871
0.979	0.979	1.005	0.979	0.979	0.979	11872
1072	1072	1.072	1.072	1.072	1.072	12.875
0.896	0.896	0.896	0.896	0.896	0.896	10.752
1208	1208	1.238	1.208	1.208	1.208	14.603
1.208	1.208	1.208	9.208	1.238	1.208	14.514

1	1.028	1.028	1	1.029	1.031	12098
1.083	1.114	1.083	1.083	1.083	1.083	13057
0958	0.958	0.958	0.928	0.958	0.958	11456
0938	0.907	0.938	0.938	0912	0.938	11107
0.938	0.923	0.938	0.966	0.938	0.938	11348
1229	1.229	1.229	1229	1.229	1.229	14748
1188	1.88	1172	1188	1.224	1.188	14304
1188	1.188	1.157	1.188	1188	1188	14.21
1083	1055	1.083	1.083	1.055	1083	12979

> 3 yr TBd FXD $4 / 2002$ (Fxd al 13\%)
> 3 yr TBd FXD $1 / 2003$ (Fxd al 12%)
> 3 yr TBd FXD $2 / 2002$ (Fxd at 13%)
> 3 yr TBd FXD $2 / 2002$ (Fxd al 1225%)
> 3 yr TBd FXD $2 / 2003$ (Fxd at 5.25%)
> 3 yr TBd FXD $3 / 2002$ (Fxd al 12.25%)
> 3 yr TBd FXD $3 / 2002$ (Fxd al 13% (F)
> 3 yf TBd FXD $3 / 2003$ (Fxd at 4%)
> 3 yr TBd FXD $1 / 2002$ (Fxd at 14.25%)
> 3 yf TBd FXD $2 / 2001$ (Fxd at 13%)
> 3 yr TBd FXD $2 / 2002$ (Fxd al 13%)
> 3 yr TBd FXD $2 / 2002$ (Fxd at 1375%)

1.083	1083	1083	1083	1083	1083
1	1	1.046	1043	1018	1018
1.083	1083	1111	1083	1083	1083
1021	1021	1089	1021	1052	1021
0438	0.438	0.453	0462	0438	0438
1.021	0.974	1021	0.998	1024	1089
1.083	1083	1.161	1083	1114	1083
0333	0.333	0.348	0.333	0.343	0333
1.188	1.888	1.107	1188	1188	1188
1.083	1.083	1.083	1122	1083	1083
1083	1083	1.122	1122	1122	1.122
1.146	1.146	1.207	1.146	1.205	1146

FOUR YEAR BONDS

4 yr TBd FXD $1 / 2002$ (Fxd at 13\%)
4 yr TEd FXD $1 / 2002$ (Fxd at 1375%)
4 yr TBd FXD $1 / 2003$ (Fxd at 12.5%)
4 yr TBd FXD 212002 (Fxd al 13.25\%)
4 yr TBd FXD 2/2003 (Fxd at 9.5\%)
4 yr TBd FXD 3/2003 (Fxd at 9.5\%)
4 yr TBd FXD 1/2002 (Fxed at 14\%)

1083	1.083	1.113	1.083	1.083	1.083
1.146	1.146	1183	1169	1246	2.45
3.042	1.066	1.142	1074	1042	1074
1.104	118	1104	1081	1.104	1.104
0.792	0792	0792	0.792	0759	0792
0.792	0.824	0792	0.792	0761	0823
1.167	1167	1.167	1137	1089	1.167

FIVE YEAR BONDS

5 yr TBd FXD $1 / 2002$ (Fxd al 13\%)

5 yr TBd FXD 1/2002 (Fxa al 14%)
5 yr TBd FXD 1/2003 (Fxd al 13.50\%)
5 yr TBd FXD 2/2002 (Fxd al 14\%)
5 yr TBd FXD $2 / 2003$ (Fxd al 11 50\%
5 yr TBd FXD 3/2002 (Fxd al 13 50\%)
5 yr TBd FXD 3/2003 (Fxd al 5 50\%)
5 yr TGd FXD 1/2002 (Fxd al 1450%)
116
1.125

1767
0.95 B
1125
$0458 \quad 0458$
1208

1083	1083	1.144	1.083	1.083	1.083
1188	1.88	1188	1188	1213	1.88

SEVEN YEAR BONDS
7 yr TBd FXD $1 / 2003$ (Fxd at 1375%)
7 yr T8d FXD 2/2003 (Fxd al 13.75\%)

EIGHT YEAR BONDS
8 yr TBd FXD 2/2003 (Fxd at 7%)
8 yr TBd FXD 1/2003 (Fxd al 12.50\%)

NINE YEAR GONOS
9 yr TBd FXO 2/2003 (Fnd at 1275%)
9 y\% TGd FXD 12003 (Fxd al 1275%)

1146	1.146	1.177	7.146	1.146	1.146
1146	1.146	1.146	1.177	1.146	1.146

05030

0.583	0583	0553	0.583	0.558	0.583
1042	1042	1073	1042	1073	1042

1.063	1063	1.093	1063	1.063	1.063
1063	1063	1124	1063	1003	1063

0708
] 78
708

1083	1083	1.115	1083	1083	1083	13028
112	1.033	38417	1.031	1031	1	49757
1083	1.119	1.083	1115	1083	1.083	13.092
1087	1021	1.047	1021	1021	1.021	12443
0438	0.438	0.438	0.438	0498	0.438	5.355
1021	1.021	1.08	1.021	1021	1.021	12309
1083	1123	1083	1083	1083	1.083	13145
0333	0414	0333	0364	0333	0.333	4133
1188	1188	1188	1.218	1188	1.188	14205
1.122	1.083	1.083	1.083	1.083	1.082	13.073
1.122	1122	1.122	1122	1122	1.122	13386
1146	1.177	1.146	122	1146	1.146	13.977

1.083	1.099	1.083	1.083	1.083	1.083	13042
1.146	1177	1146	1146	1.146	1146	13843
1042	1.042	0.933	1068	1042	1.042	12509
109	1104	1104	1104	1104	1.104	13287
0.828	0.792	0.756	0.792	0.792	0.792	9.471
0.792	0.792	0.807	0.775	0.792	0.792	9534
1198	1167	1.195	1167	1.226	1.167	14014

1083	1114	1083	1052	1083	1.083	13046
1167	1.156	1.167	1.23	1167	1167	2462
1125	1156	1.125	1.125	1141	1.125	13611
1.167	1198	1.167	1.167	1.167	1167	14.098
0.958	0958	0.958	0.958	0958	0958	0958
125	1169	1.125	1185	1131	1125	13626
0458	0487	0.49	0492	0458	0.458	5669
1208	1208	127	1208	1208	1.208	14.579

1083	1.099	1.083	1083	1.083	1.083	13.073
1.188	1.183	1.188	1213	1.188	1.188	14.301

1146	1.177	1146	1.177	1.146	1.146	13895
1.146	1.146	1146	1.146	1175	1.146	13832

0.583	0.612	0.583	0.598	5.874	0.583	12.276
1042	1042	1068	1042	1042	1042	12592

1063	1.094	1.063	1063	1063	1063	12317
1063	1.063	1.063	1094	1.063	1063	12788
0708	074	0708	0735	0708	0708	8713

1 yf TBd FXD 1/2002 (FXX at 10.75% 1y| TBA FXD 2/2002 (FXd at 10.75%)
two year bonds
2y TBd FXT 1/2001 (Fxd al 1475%
yr TBd FXT 1/2002 (Fxd al 13\%) 2 yI TBd FXT 2/2001 (Fxd at 13\%) 2 yI TBd FXT $2 / 2002$ (fXX al 13\%) yI TBd FXD 1/2003 (FXd at 1125% 2 yi TBd FXD $1 / 2002$ (Fxd at 12\%) 2 yI TBd FXD 2/2002 (Fxd at 11.25% 2 yr TBd FXD $3 / 2002$ (Fxd al 11.50% 2 yI TBd FXD $2 / 2004$ (FXd at 4.25% (
yI TBd FXD 1 (2004 (Fxd al 4.0°

three year bonds

yl TBd FXD $1 / 2003$ (FXd al 1200% 3 YI TBd FXD $2 / 2003$ (FXd at 5.25% ${ }^{3}$ yr TBa FXD $2 / 2002$ (Fxd at 12.25\% 3 yr TBd FXD 1/2002 (Fxd al 13\%) 3 yr TBd FXD $3 / 2002$ (Fxd at 12.25\%
ys TBd FXD $3 / 2003$ (Fxd al 4%
3 yr Tad FXT $1 / 2002$ (Fxd at 14.25\%)
3 yr TEd FXT $2 / 2002$ (FXd at 13.75\%)
3 yI TBd FXD $4 / 2003$ (Fxd al 400%

FOUR YEAR bonds
4 yr TBd FXD 1/2002 (Fxd al 13.75%)
yc TSd FX: $1 / 2002$ (Fxd at 14\%)
4yT TBd FXD 2/2002 (Fxd at 13.25\%)
4 yf TBd FXD 3/2003 (FXd at 9.5\%)
A Yr TBd FXD 22003 (Fxd al 9 5\%)
yr TBd FXD $1 / 2003$ (FXX al 12.5%)
4 yr TBd FXD 1/2004 (FXd al 5.00%)

IVE YEAR BONDS
5 yi TBd FXD 2/2002 (FXd al 14\%)
5 yt TBd FXD $1 / 2002$ (F Xd at 14\%)
5 yr Tad FXD $3 / 2003$ (FXd al 5.50%
yt TBd FXD 3/2002 (FXd al 13.50%
yr TBd FXT 1/2002 (Fxd at 14 50\%)
5 yr TSd FXD $2 / 2003$ (Fxd at 1150%
5 yr TBd FXD 1/2003 (Fxd at 13.50%)
$\begin{array}{lllllllllllll}1.01884615 & 1.02288462 & 1.03394231 & 1.02313462 & 1.22428846 & 1.02619231 & 1.02473077 & 1.02998077 & 1.74225 & 1.02823077 & 1.12640385 & 1.01996154 & 13.3208462\end{array}$

1	1	:	1	1	1	1	1	1	1	1	1	12
04375	04375	04375	04375	04375	04375	04775	0.4375	04375	0.3375	04375	0.4375	525
1021	: 021	1021	1021	1021	1023	1027	1021	1.021	1.021	1021	1021	12.252
1083	1083	1083	1083	1083	1083	1083	1083	1083	1083	1083	1083	12.995
1021	1.021	1021	1021	1023	1.021	1021	1.021	1023	1.021	1.021	1023	12252
0333	0333	0333	0333	0333	0.333	0333	0333	0333	0333	0333	0333	3.996
11875	11875	11875	11875	11875	11875	11875	3.1875	11875	11875	11875	1.1875	1425
1196	1196	1196	1196	1146	1146	1146	1.146	${ }^{1.146}$	1.146	1196	${ }^{1} 196$	13.752
0333	0.333	0333	0333	0333	0333	0333	0.333	0333	0.333	0333	0.333	3.996

1146	1196	1195	1146	1145	1146	1146	1.146	1146	1.146	1.146	1.146	13.752
1167	1.167	1.167	1.167	$1: 67$	1.167	1.167	1167	1.167	1.167	1.167	1167	14004
1109	1304	1.104	$1: 04$	1104	1.104	1109	1.104	1104	1.104	1104	1.104	13298
0.792	0792	0792	0.792	0792	0792	0792	0792	0792	0792	0792	0792	9504
0192	0792	0792	0792	0792	0792	0792	0792	0792	0.792	0792	0792	9504
:092	:042	1092	1042	1042	1042	1042	1042	1042	1.042	1042	3042	12504
0417	0417	0417	3497	0417	0417	0412	0417	0417	04.7	0417	0.417	5.004

1167	1.167	1167	1167	1167	1167	1167	1167	1167	1167	1167	1167	14004
1263	1167	1267	1167	1167	1167	1167	1167	1.167	1.167	1167	1267	14004
0458	0458	- 1058	0.458	0458	0458	0458	0.458	0458	0.458	0458	${ }^{1.458}$	5496
:125	1225	1125	1175	1:25	1125	1125	1125	1125	1.125	1125	1125	135
1208	1208	1208	1208	+208	1208	1208	1208	1208	1208	1208	1208	19496
0958	0958	0998	0958	0958	0958	0.958	-958	0958	0.958	0958	0958	11996

SIX YEAR BONDS

6 yr TBd FXD 1/2002 (Fxd al 14.25%)
6 yr TBd FXD $1 / 2003$ (Fxd al 14.00%)
6 yr TBd FXD $2 / 2003$ (Fxd at 11.50%)
6 ys TBa FXD $3 / 2003$ (Fxd at 6.00%)
6 yr TBd FXD $1 / 2004$ (Fxd al 6.50%)

11875	$1: 875$	11875	11875	11875
1167	1.167	1167	1.167	1157
0.958	0958	0958	0958	0.958
05	05	05	05	05
0542	0542	0542	0542	0542

SEVEN YEAR BONDS

7 yr TBd FXD 2/2003 (Fxd al 13.75\%)
7 yr TBd FXD 1/2003 (Fxd al 13.75%)

7 yr TBd FXD 1/2004 (Fxd al 6.75\%)

EIGHT YEAR BONDS
8 yr TBd FXD $2 / 2003$ (Fxd at 7.00%)
8 yr TBd FXD $1 / 2003$ (Fxd at 12.50%)
8 yr TBd FXD $1 / 2004$ (Fxd at 750%)

NINE YEAR GONDS

9 yr TBd FXD 2/2003 (FXd at 12.75\%)	10625	70625	70625	10625	10625
9 yr TBd FXD $1 / 2003$ (FXd at 12.75\%)	10675	10625	10675	10675	

TEN YEAR BONDS

11875	1.1875	11875	11875	11875	1.1875	1.1875	14.25
1167	1.167	1167	1.167	1167	1167	1.167	14.004
0958	0958	0458	0958	0958	0958	0958	11496
05	05	05	05	05	05	0.5	6
0542	0542	0542	0542	0542	0542	0542	6.504
1146	1146	1 146	1146	1146	1145	1.146	13.752
1246	1146	1146	1.146	1.146	1:46	1.146	13752
05625	0.5625	0.5625	05625	05625	0.5625	0.5625	5.75
0.583	0583	0.583	0.583	0583	0.583	0583	6996
1042	1.042	1092	1.042	1.042	1042	1.042	12504
0525	0625	0625	0625	0625	0.625	0.625	7.5
10525	30625	10625	10625	10625	1.0625	10625	1275
10625	10625	: 0675	10625	10625	10625	1.0625	12.75
0708	0708	0.708	0708	0708	0708	0.708	8496

Average Government Fixed Bond Returns

0.90824

ONE YEAR BONDS

1 yf TBd FXD $1 / 2004$ (Fxd at 3.75\%)

03125	03125	03125	0.3125
0896	0896	0934	0896

TWO YEAR BONDS

2 yt TBd FXT 1/2002 (Fxd a! 13\%)
2 yr TBd FXT 2/2002 (Fxd at 13\%)
2 yr TBd FXT 1/2004 (Fxd a! 5.25%)
2 yr TBd FXD 1/2003 (Fxd at 11.25\%)
2 yr TBd FXO 1/2002 (FXd at 12%)
2 yr TBd FXO 2/2002 (Fxd at 11.25%)
2 yr TBd FXD 3/2002 (Fxd al 11 25\%)
2 yr TBd FXO 2/2004 (Fxd al 4.00\%)
2 yr TBd FXD 1/2004 (Fxd al 4.25\%)
2 yr TBd FXD 4/2004 (Fxd al 4.50\%)
2 yr TBd FXD 3/2004 (Fxd at 4.25\%)
2 yr TBd FXD 1/2005 (Fxd at 10.875\%)

THREE YEAR BONDS

3 y TBd FXD 1/2003 (Fxd al 12.00%)
3 yr TEd FXD $2 / 2003$ (Fxd at 5.25%)
3 y. TBd FXD 2/2002 (Fxd al 12.25\%)
3 yt TBd FXD $2 / 2004$ (Fxd at 400%)
3 yr TBd FXD 3/2003 (Fxd al 4.00\%)
3 yr TBd FXT 1/2002 (FxG at 1425%)
3 ys TBd FXT 2/2002 (Fxd at 13.75\%)
3 yr TEd FXD $1 / 2002$ (Fxd at 13.00%)
3 yr TBd FXD 3/2002 (Fxd at 12.25\%)
3 yf TBd FXD 4/2003 (Fxd al 4.00\%)
3 yr TBd FXD 1/2004 (Fxd al 4.00%)
3 yr TBd FXD 1/2005 (Fxd al 4.00\%)

FOUR YEAR BONDS

4 yt TBd FXD 1/2002 (Fxd al 13.75\%)
4 yr Tgd FXt 1/2002 (Fxd al 4.25\%)
4 yr TBd FXD 2/2002 (Fxd al 13.25%)
4 yT TBdFXD 3/2003 (Fxd al 4.50%)
4 yr TBd FXD $2 / 2003$ (Fxd at 550%)
4 yr TBd FXD 1/2003 (Fxd at 12.50\%)
4 yr TBd FXD $2 / 2004$ iFxd at 4.00% \}
4 yr TBd FXD 1'2004 (Fxd al 500%)

FIVE YEAR BONDS

5 yf TBa FXO 2/2002 (Fxd al 1.4\%)
5 yr TBd FXD 1/2002 (Fxd al 14\%)

1:67
1157

1167
1367
1.67

1167

1104	1.104	1104	1104	1104	1104	1104	1.104	13.248
0.90824	0.90824	0.90824	0.90824	0.90824	0.90824	0.90824	0.90824	10.89888

BOND RETURNS 2005

MAY JUN Ju

AUG
SEP
OCT
NOV
DEC
Return per annum $(\%)$

03225	0.3125	0.345	0.345	0.345	0.345	0.345	0.345	3.945
0.896	0.895	0.878	0.896	0.895	0.896	0.91	0.896	10.786

1083	1083	1083	1083	1083	1083	1083	1083	12.996
1083	1083	1083	1083	1.083	1.083	1083	1.083	12996
04375	0.4375	D 4375	04375	134375	04375	C 4375	04375	5.25
09375	09375	09375	0.9375	09375	09375	0.9375	0.9375	11.25
1	1		1	1	1	1	1	12
c 9.375	09375	09375	09375	09375	09.375	09375	09375	1125
09375	09375	0.9375	0.9375	09375	09375	0.9375	09375	11.25
0333	0.333	0333	0333	0.333	0.333	0333	0333	3.996
0354	0.354	0354	0.354	0.354	0354	0354	0.354	4.298
0335	0.375	0.375	0.375	0.375	0.375	0375	0.375	4.5
0354	0.354	0354	0354	0354	0354	0354	0354	4.248
0906	0.906	0906	0906	0906	0.906	0906	0506	10.872

1	1	1	1	1	1	1	1	12
04375	04375	04375	04375	04375	04375	04375	0.4375	5.25
1021	1023	1021	3021	1021	1021	1021	1.021	12252
0333	0333	0333	0333	0333	0.333	-333	0333	3.996
0333	0.333	0333	0333	0.333	0.333	0.333	0333	3996
11875	1.1875	1.1875	11875	11875	1.1875	1.1875	11875	14.25
1.146	1146	1146	1.146	1.146	1.146	1.146	1146	13.752
1083	1083	1.083	1083	1.083	1083	1.083	1083	12.996
1.027	1021	1021	1.021	1.021	1.021	1.021	1021	12.252
0333	0333	0333	0333	0.333	0.333	0.333	0333	3996
0333	0333	D 333	0.333	0.333	0.333	0.333	0.333	3.996
0.333	0333	0333	0.333	0.333	0.333	0333	0333	3996

1:46	1: $\triangle 6$	1146	1146	1.146	1146	1146	1246	13752
0 354	0354	0354	0354	0354	0.354	0354	-35a	4248
1104	1104	1104	1104	1204	1.104	1.104	1.104	13.248
0.375	0.375	0.375	0.375	0.375	0.375	0375	0375	45
0792	0792	0792	0792	075 ?	0792	0792	0.792	9504
1042	1042	1002	1.042	1042	1042	1042	1042	12504
0333	0333	0333	0333	0333	0.333	0333	0.333	3996
0417	Q 417	0417	0417	0417	0437	0417	0417	5004
1167	1367	3157	1167	7167	1167	1167	1.167	14004
1167	1.167	1167	: 167	1267	1167	1267	1167	14004

5 yr TBd FXD 3/2003 (Fxd at 5.50%)
5 yr TBd FXD 3/2002 (Fxd at 13.50%)
5 yr TBd FXT $1 / 2002$ (FXd at 14.50%)
5 yr TBd FXD $2 / 2003$ (Fxd at 11.50%)
5 yr TBd FXD $1 / 2003$ (Fxd at 13.50%)
5 yr TBd FXD 1/2004 (Fxd at 6.00%)
5 yr TBd FXD 1/2005 (Fxd at 6.00%)

SIX YEAR BONDS

6 yr TBd FXD 1/2002 (Fxd at 14.25%)
6 yr TBd FXD 1/2003 (Fxd al 14.00\%)
6 yr TEd FXD 2/2003 (FXd at 11.50%)
6 yr TEd FXD 3/2003 (Fxd at 600%)
6 yr TEd FXD 2/2004 (FXd at 675%)
6 yr TEd FXD 1/2004 (Fxd at 650%)

SEVEN YEAR BONDS

7 yr TEd FXD 2/2003 (Fxd at 6.50%)
7 yr TEd FXD $1 / 2003$ (Fxd ai 13.75%)
7 yr TBd FXD 2/2004 (Fxd al 7.00%)
7 yr TBd FXD $1 / 2004$ (Fxd al 6.75%)

EIGHT YEAR BONDS

Byr TBd FXD 2/2003 (Fxd at 7\%)	0583	0.583	0.583	0583	0.583
8 yr TEd FXD 1/2003 (Fxd at 12.50\%)	1042	1.042	1.042	1.042	1042
8 yr TBd FXD 1/2004 (Fxd at 750%)	0525	[0625	0625	0825	[5225

NINE YEAR BONDS

9 yr TBd FXD 2/2003 (Fxd at 12.75%)
9 yr TBd FXD $1 / 2003$ (Fxd al 1275%)

TEN YEAR BONOS

10 yr TBd FXD 2/2003 (Fxd at 8.50%)
0708
0.708
0708

0708
0708
10 yr TBd FXD 1/2003 (Fxd al 13.25\%)
1104
1104
1104
1104
1104

11875
1167
0958
0.5

05535
0542
0.542
2.146
0.583

05625

9 yr TBd FXD $1 / 2003$ (Fxd al 12.75%)

10625	10625	10625	10625	10625
10625	10625	10625	10625	10625

0458	0.458	0.458	0.458	0.458	0458	0458	5.496
1.125	1.125	1.125	1125	1.125	1.125	1.125	13.5
1208	1208	1.208	1.208	1.208	1208	1208	14.496
0.958	0.958	0958	0.958	0958	0958	0.958	11.496
1125	1.125	1125	1125	1125	1.125	1.125	135
05	05	05	05	05	05	0.5	6
05	05		0.5	05	05	0.5	5

1.1875	11875	11875	11875	11875	11875	1.1875	14.25
1:67	1167	1367	1167	1167	1167	1167	14004
0958	0958	0958	0958	0958	0958	0.958	11496
0.5	0.5	05	05	0.5	05	0.5	6
Q 5625	05625	05625	05525	05525	0.5625	05625	6.75
0502	0542	0542	0542	0.542	0542	0.542	6.504
0542	0542	0.542	0542	0.542	0.542	0.542	6.504
1.146	1146	1.345	1.145	1.146	1146	1.146	13.752
0.583	0.583	0.583	0.583	0.583	0.583	$\square .583$	6.996
05625	05625	05625	05625	05625	05625	0.5625	675
0.583	0583	0583	0.583	0583	0583	0.583	6.996
1.042	1.042	1042	1.042	1.042	1.042	1.042	12.504
0525	0625	0625	0825	0.625	0.625	0.625	7.5
10625	10625	1.0625	10625	1.0525	2.0625	10625	12.75
10625	10525	1,0525	10525	10525	1.0625	10525	12.75
0.708	0708	0708	0.708	0.708	0708	0.708	8.496
1104	1104	1104	1104	1104	1104	1.104	13248

ONE YEAR BONDS

1 yf TBd FXD $1 / 2004$ (Fxd at 375%)

0.4375	0.4375	04375	04375	04375
0313	0333	0333	0333	0333
0375	0375	0375	0375	0375
0.354	0354	0354	0354	0354
0906	0906	0906	0306	0906
0.333	0333	0333	0333	0.333
0906	0.906	0306	0.906	0906

1	1	1	1	1
1021	1021	1021	1021	1.021
1021	1.021	1021	1021	1021
04375	04375	04375	0.4375	04375
0333	0.333	0333	0333	0333
1083	1083	1083	1.083	1083
1021	1.021	1021	1021	1.021
0.333	0.333	0.333	0333	0.333
0.396	0396	0.396	0396	0396
0.969	0.969	0969	0969	0969
0969	0.969	0.969	0969	0.969

FOUR YEAR BONDS
4 yr TEd FXD 1/2002 (Fxd at 13.75\%)
4 yr TBd FXT 1/2002 (Fxd al 1400\%)
4 yr T8d FXD $2 / 2002$ (Fxd al 13.75\%)
4 yr TBd 5×0 3i2003 (Fxd al 4.50%)
4 yr TBd FXO $2 / 2003$ (Fxd at 9.50%)
4 yr T8d FXD 1/2003 (Fxd al 1250%)
4 yr TBd FXD $2 / 2004$ (FXd at 6.00%)
$4 \mathrm{yr}^{\top}$ Bo FXD $1 / 2004$ (Fxd al 5.00%)
4 yr TBo FXD 1/2005 (Fxd a! 12.25\%)

FIVE YEAR BONDS

5 yr TBd FXD 2/2002 (Fxd at 14.00\%)
5 yr TBd FXD 1/2002 (Fxd at 1400%)
5 yr TBd FXD 3/2003 (Fxd at 5.50\%)
5 yr TBa FXD 3i2002 (Fxd at 1350%)
5 yr TBd FXT $1 / 2002$ (Fxd at 14.50%)
5 yr TBa FXD 212003 (Fxd at 11.50%)
5 yr TBd FXD 1/2003 (Fxd at 13.50%)
5 yr TBd FXD 1/2004 (Fxd at 600%)
5 yr TBa FXD $1 / 2005$ ($F x d$ al 13.50%)

1146	1.146	1146	1146	1146
1167	1167	1167	1167	1167
1146	1146	1146	1146	1196
0375	C. 375	0375	10375	0375
0797	0798	0797	0) 792	0792
: 042	: 0.42	1042	1042	1042
05	05	05	0.5	05
$04: 7$	0417	0417	0417	0417
1021	1021	1021	1021	1021
1.167	1187	1167	1.167	1.167
1167	-197	1167	1167	1167
0.458	0458	0458	045月	0458
1.125	1125	1125	1125	1125
1208	1208	1208	1208	1208
0958	0958	0958	0958	0958
1125	1125	1125	1125	1125
05	05	05	05	0.5
1125	1125	1125	1125	1125

0.4375	0.0375	0.4375	0.4375	04375	0.3375	04375	5.25
0.333	0333	0333	0.333	0333	0333	0.333	3.996
0375	0375	0.375	0.375	0.375	0375	0.375	4.5
0.354	0354	0354	0354	0354	0354	0.354	4.248
0.906	0.906	0.906	0.906	0.906	0906	0.906	10872
0.333	0333	0.333	0.333	0.333	0333	0.333	3.996
0.906	0.906	0.906	0.906	0.906	0906	0906	10.872

1	1	1	1	1	1	1	12
1.021	1021	1021	1021	1022	1.021	1021	12.252
1021	1021	1021	1.021	1021	1021	1.021	12.252
04375	0.4375	04375	04375	04375	04375	04375	5.25
- 333	0333	0.333	0333	0333	0333	0333	3996
1083	1083	1.083	1.083	1083	1.083	1083	12996
1021	1021	1.021	1021	1.021	1021	1021	12252
0333	0.333	0333	0.333	0.333	0333	0.333	3.996
0396	0396	0396	0.396	0.396	0.396	0396	4.752
0.969	0969	0969	0969	0969	0.969	0.969	11.628
0.969	0969	0969	0.969	0.969	0.969	0.969	11628
1146	1.146	1146	1.145	1.145	1.146	1.146	13.752
1167	1167	1167	1.167	1167	1167	1167	14004
1146	1146	1145	1106	1146	1146	1.146	13752
0375	0375	0375	0375	0375	0375	0375	4.5
0792	0792	0797	0792	0.792	0792	0792	9504
1.042	1042	1042	1.042	2042	1.042	1042	12504
0.5	05	0.5	05	05	05	0.5	6
0417	0417	0417	0417	0.417	0417	0417	5004
1021	1027	1021	1.021	1.021	1.021	1021	12.252
1.167	1.167	1.267	1.157	1.167	1.167	1.167	14.004
1167	1167	1167	1167	1167	1167	1.167	14004
0458	0458	0458	0.458	0.458	0458	0.458	5.496
1125	1125	1125	1125	1125	$1: 25$	1125	13.5
1.208	1208	1208	1208	1.208	1.208	1208	14496
0.958	0958	0958	0.958	0958	0958	0958	11496
1125	1125	1125	1.125	2.125	1125	1125	23.5
05	05	05	0.5	D5	05	0.5	6
1225	1125	1325	1125	1.125	1.125	1125	13.5

SIXYEAR BONDS

6 yr TBd FXO 1/2002 (Fxd at 14.25\%)	11875	118.75	11875	11875
6 yr TEd FXO 1:2003 (Fxd al 1400%)	: 167	1:67	1167	1167
$6 \mathrm{yr} \mathrm{TBd} \mathrm{FXD} 2 / 2003$ (Fxd at 11.50\%)	0958	C 958	0958	0958
E yr TRd FXD 3/2003 (Fxd at 6.00\%)	05	05	05	45
6 yr TBd FXD 212004 (Fxd al 6.75\%)	0.5625	05625	05625	05625
6 yr TEd FXD 1/2004 (Fxd at 6.50%)	0.542	0542	0542	0542

SEVEN YEAR BONDS

$7 \mathrm{yr} \mathrm{TBd} \mathrm{FXD} 2 / 2003$ (Fxd at 6.50\%)	0.542	0542	0542	0.542
7 yr TBd FXD 1/2003 (Fxd al 13.75\%)	! 146	1:46	1.146	1146
7 yr TEd FXO 2/2004 (Fxd al 7.00\%)	0.583	0583	0.583	0583
7 yr TBd FXD 1/2004 (Fxd ai 675%)	- 5625	0 5625	05625	05625

EIGHT YEAR BONDS

8 yr TEd FXD $2 / 2003$ (Fxd at 700%)
8 yr TBd FXD 1/2003 (Fxd at 12.50%

0583	0583	0583	0583
1042	1042	1042	1042
0583	0583	0583	0583

NINE YEAR BONDS

9 yr TBd FXD $2 / 2003$ (Fxd at 950%)
9 yr T8d FXD $1 / 2003$ (Fxd at 12.75%)

0792	0792	0792	0792
1.0625	10625	10625	10625

TEN YEAR BONDS

$10 \mathrm{yt} \mathrm{TBd} \mathrm{FXD} \mathrm{2/2003} \mathrm{(Fxd} \mathrm{at} \mathrm{8.50} \mathrm{\%)}$	0708	0708	0.708	0.708
10 yI TBd FXD 1/2003 (Fxd at 13.25\%)	1104	1104	1104	1104

11875	11875	11875	11875	1.1875	1.1875	1.1875	11875	14.25
1167	1167	1167	1167	1.167	1.167	1.167	116 ?	14004
095.4	C 958	0958	0958	0958	0958	0958	[958	11996
05	05	05	05	0.5	0.5	0.5	0.5	6
05625	0.5625	05625	05625	05625	05625	05625	05625	6.75
0.542	0542	0542	0542	0.542	0542	0542	0542	6.504
0.542	0542	0.542	0542	0542	0.542	0542	0542	E. 504
1146	$1: 46$	1146	1.146	1145	1.146	1146	1146	13.752
0.583	0.583	0583	0.583	0.583	0.583	0.583	0.583	6.996
- 5625	[56.25	0.5625	0.5625	0.5625	0.5625	0.5625	0.5625	675

0583	$C 583$	0583	0583	0583	0.583	0583	0.583	6.996
1042	1042	1.042	1042	1.042	1.042	1.042	1042	12504
0583	0583	0583	0583	0583	0583	0.583	0583	5.996

0792	0.792	0792	0792	0792	0792	0792	0792	9.504
10625	1.0625	10625	1.0625	1.0625	10625	1.0625	10625	12.75

0.708	0.708	0708	0.708	0.708	0.708	0.708	0.708	8.496
1104	1104	1104	1.104	1.104	1.104	1104	1.104	13.248

[^0]: November, 2008

