ROAD TRAFFIC ACCIDENTS AND CONFLICTS
 ON SOME T - JUNCTIONS IN NAIROBI

Peter Kimori Maranga

A thesis submitted in part fulfilment for the degree of Master of Science in Civil Engineering in the University of Nairobi.

DECLARATION

This thesis is my original work and has not been presented for a degree in any other university.

This thesis has been submitted for examination with our knowledge as University Supervisors.

ACKNOWLEDGEMENTS

The author is greatly indebted to Dr. George S.Agoki and Professor Francis J. Gichaga for being instrumental in recognising the need for this research and accepting the proposal. From then on they did assist in making the recessary arrangements for the acquisition of data, literature and relevant information. They continued to challenge and above all, were patient with the author. Finally, the author is grate ful for their labour through the text and facilitating the final product of this study.

Many thanks go to Tom Granberg, Project manager Finnconsult and Engineer Nathaniel Gekonge, Superintending Engineer Road Safety Unit (Ministry of Transport and Communication (MOTC)) for their sincere assistance in providing stationery, computer facilities and manpower for data collection. Many thanks also go to the organisations who assisted directly or indirectly towards the development of this study. These include the Embassy of Finland, Nairobi City Commission, the Kenya Police (Nairobi area), Bhundia Consulting Engineers and the MOTC.

Speciai thanks go to my wife Callen Kemunto and Henry Morang'a for their encouragement, assistance in sorting the data and stenciling the drawings. The author does appreciate with thanks the work done by Mrs. Margaret Kalo and Mrs. E. Ngare in typing this work with a lot of patience within a short period.

Finally, to those who consciously or otherwise
helped in the realization of this final product go sincere thanks.

SUMMARY

The study was based on accidents and conflicts on some selected T-junctions in Nairobi. The objectives of the study were:

```
- to study accidents and conflicts on selected
    T-junctions with a view to understanding the.
    problems of the junctions.
```

- to develop models which relate conflicts to
traffic flow.
- to evaluate the vehicle types which contribute the largest number of conflicts.

Accidents data were collected from most police stations in Nairobi from which T-junctions were identified as one of the most accident prone areas. Six T-junctions were selected for the study. Conflict (which are near accident situations) studies were carried out on these sites. The other data collected included vehicular flow. Conflict studies showed that matatus (public transport vehicles) initiated more conflicts than any other vehicle type. A further study was therefore made on the matatu operation in Nairobi.

Data analysis involved relating accidents to conflicts, conflicts to vehicular flow and evaluating the vehicle type that initiated the largest number of conflicts. No
specific model was obtained relating accidents to conflicts, however plots of vehicle movements just before they were involved in the accidents were very similar to those of conflicts for the junctions studied.

Conflicts were found to be closely related to traffic flow. For all the sites, four models (curves) were fitted on the obtained data. These models were linear, power, cubic and logistic curves. The best model was selected based on its predictive accuracy. The cubic model was the best suited in predicting conflicts. This model was for Jogoo Road-Outer Ring Road junction. The model was:

$$
C=-3.82+6.46 \times 10^{-3} Q-9.746 \times 10^{-7} Q^{2}-4.596 \times 10^{-11} Q^{3}
$$

This equation was significant at 5% level with. coefficient of determination (r^{2}) 0.944 and standard error (Exy) 0.32.

Matatu operation costs and revenues were reduced to costs incurred and revenue per day. These were compared. The results showed that most new matatus especially the twenty five seater matatus rarely made profits. This was seen as a possible explanation why matatus tend to overload and operate at high speeds so that they may offset the financial pressure on them.

The following conclusions were obtained from the study:

- conflicts and accidents showed similar patterns on each T-junction, however no simple relationship was established.
- conflicts and vehicular flow at the studied junctions were closely related and may be predicted by models.
- public transport vehicles especially matatus contributed the largest number of conflicts per vehicle type.
- matatu operators are compelled to overload, operate at high speed and ignore some traffic regulations in order to meet their financial obligations. This in some situations results in matatus initiating and/or cuasing considerable accidents and conflicts.

Conflict studies have proved to be a powerful tool for evaluating safety problems. This kind of study should be extended to other road sections and junctions. Since matatu operators are compelled by their financial obligation to use their vehicles intensively, it is recommended that a study be made to evaluate ways of reducing this pressure.
- viii -

CONTENTS

Page
DECLARATION (ii)
ACKNOWLEDGEMENTS (iii)
SUMMARY (v!
CHAPTER
1 Introduction 1
2 Literature review 3
2.1 World trends in road traffic accidents 3
2.2 Research in transportation safety 4
2.3 Research in Kenya 17
2.4 Appraisal of previous research 18
2.5 Study objectives 21
3 Theory 22
3.1 General 22
3.2 Model development 22
3.3 Other analysis 28
3.4 Statistical analysis 30
4 Data collection and analysis 34
4.1 General 34
4.2 Selection of sites 35
4.3 Study sites and data collection 37
4.4 Data analysis 51
4.5 Matatu Operation 90
5 Discussion 108
5.1 Accidents and conflicts 108
5.2 Conflicts and traffic flow 111

CONTENTS

Page
5.3 Matatu operation 121
6. Conclusions 125
7. Recommendations 127
REFERENCES 129
APPENDICES 134

CONTENTS

List of Figures Page
2. 2.1 Scaterdiagram of accidents and
Series Conflicts 10
2.2 Limit of the severity of conflicts 11
2.3 (a) Frequency of Traffic
Situations in regard to their severity. 13
(b) Traffic situations classifica- tion. 13
2.4 Comparison of the relative safety of two sites. 15
2.5 Fatalities and vehicle ownership rates for developing countries 1968 and 1971. 19
4. 4.l Map of Nairobi showing the location of studied sites. 40
4.2 Plan and Profile of site 1. 42
4.3 Plan and Profile of site 2. 42
4.4 Plan and Profile of site 3 44
4.5 Plan of site 4 44
4.6 Plan of site 5 46
4.7 Plan of site 6 46
4.8 Accident summary for site 1 53
4.9 Conflicts summary for site 1 54
4.10 Accident summary for site 2 55
4.11 Conflicts summary for site 2 56
4.12 Accidents summary for site 3 58
4.13 Conflicts sümmary for site 3 59
4.14 Accidents summary for site 4 60
4.15 Conflicts summary for site 4 61
4.16 Accidents summary for site 5 63
4.17 Conflicts summary for site 5 64
4.18 Accidents summary for site 6 65
4.19' Conflicts summary for site 6 66
4.20 Developed models for site 1 6^{4}
4.21 Developed models for site 2 71
4.22 Developed models for site 3 73
4.23 Developed models for site 4 7 b
4.24 Developed models for site 5 77
4.25 Developed models Eor site 6 78
4.26 Developed models for a general case in Nairobi 81
4.27 to 4.33 (a) Conflict and percentage composition per vehicle type (site 1 to 6) 83-89
4.27 to 4.33 (b) Percnetage of conflictingvehicles relative to total trafficflow (all sites)83-89
4.34 Prices of Twenty Five Seater Matatu 97
4.35 Prices of Eighteen Seater Matatu 97
4.36 Depreciation of Eighteen and Twenty Five Septer Matatu 99
List of Tables Page
4.1 Accident rating by severity 38
4.2 (a) Selected Study Junctions 39
4.2 (b) Characteristic of the Studied Junction 47
4.3 Number of people interviewed in the Matatu Study 91
4.4 Minimum stipulated amount per day 92
4.5 Summary of Matatu operation cost (25 seater) l0l
4.6 Summary of Matatu Operation cost (18 seater) 102
4.7 Summary of Matatu Revenue/costs per day
(a) Twenty Five Seater 104
(b) Eighteen Seater 105
5.1 Comparison of models fitted on site 1 112
5.2 Comparison of models fitted on site 2 114
5.3 Comparison of models fitted on site 3 115
5.4 Comparison Oi models fitted on site 4 116
5.5 Comparison of models fitted on site 5 117
5.6 Comparison of models fitted on site 6 118
5.7 Comparison of models for the general case 120

CHAPTER 1

INTRODUCTION

Research into transportation safety started recently in the late 1950s, this was necessitated by the increased number of Road Traffic Accidents (RTAs) which were claiming a large number of lives in most countries of the world as motorization was increasing. The high number of the fatal accidents could also be associated with the increased travel and also the increased length of high quality roads which encouraged drivers to operate at high speeds. Road traffic accidents were recorded as early as the last century when Britain recorded two fatalities in 1896(1). These turned into thousands of deaths and injuries as motorization increased. The high number has prompted many researchers and several governments to carry out research to reduce these RTA deaths.

Conflicts (potential accidents) may be seen as un-accomplished accidents. They present accident. conditions, they are more common than accidents and hence better to study. This study compares accidents and conflicts on some selected T-junction in Nairobi. Conflicts have also been related to the traffic flow on the selected T-junctions and models developed for these sites.

In Kenya matatus serve as a mode of public transport.
It is claimed that this type of vehicle contribute to a

```
- 2 -
large number of accidents on the Kenyan roads. A study on this type of vehicles has been done in order to understand their operation and financial obligations. This may assist to support or refute the claim that matatus contribute to a large number of accidents.
```


CHAPTER 2

LITERATURE REVIEW

Abstract

2.1 World Trends in RTAs

The issue in highway safety has been the increased loss of life. Since 1913 the number of highway deaths in America steadily rose from 6,000 to 55,000 in $1968(2)$. In Great Britain over a period of ten years(1954 - 63) the total deaths due to RTAs was $61,452,735,376$ seriously injured while 2,278,606 were slightly injured(2). In 1931-2, 818 people were killed in Austria. By 1966-7 the deaths had nearly quadruoled (i.e. 3,200). In Kenya the general trend of RTAs has been upwards all the time. In 1953, 150 deaths were registered on the Kenyan roads, by 1983 the deaths had reached 1515.

The amount of travel has greatly increased. The mileage of high-standard highways increased and the safety quality of vehicles also increased. As a result the rate of fatalities has tended to decrease. In America the fatality rate dropped from 18.20 deaths per 100 million vehicle-miles in 1925 to 5.67 deaths per 100 million vehicle-miles in 1968. In Kenya the situation looks pathetic because the RTA deaths per 100 million vehicle-kilometres seem to be rising. In 1953 there were 0.1366 deaths per 10 million vehicle-kilometres yet in 1979 this figure had risen to $0.2328(4)$. When compared to the the U.S. figures the Kenya figures are lighter.

2.2 Research in Transportation Safety

Research in highway safety has been recommended for years, although the kind of research that is necessary has varied widely. One of the more popular concepts is that in-depth accident investigation as in aircraft accidents should lead to better understanding of the cause of the accidents which would lead to corrective actions.

The inadequacies of these concepts are: no single cause will emerge - several contributing factors will always be present, determining the condition of the driver or vehicle prior to the accident and "eye-witnesses" rarely agree on what happened. Although contributing factors to accidents are known, it is the effect of eliminating a factor that are not predictable(3).

Since higher levelsof safety require a large amount of resources, research to improve the allocation of these resources effectively is needed. Capability for predictinc RTA reduction and occurrenœ will greatly enhance both the results achieved and the level of resources required. Currently conflict studies are used to evaluate the safety of a situation on the road.

2.2.1 Accident Studies

In the mid 1930 s highway safety became an emotioncharged social problem in America. This is because about

36,000 persons lost their lives on the American roads annually(2). In various countries research has been going on to predict the accident trends and evaluate preventive measures.

Smeed(5) in 1938 compared the data for road fatalities, vehicles and population from 20 countries, the majority of which were European and he derived a relationship given by the formula

$$
\begin{equation*}
F / V=0.0003(\mathrm{~V} / \mathrm{P})^{-2 / 3} \tag{2.1}
\end{equation*}
$$

```
where F = Road fatality
V = Number of vehicles
P = Population
```

In Norway intensive research and campaign in the late 1960 s, led to substantial reduction in RTAs. A large number of safety measures were introduced together with general change of attitude towards traffic safety. These measures introduced in the late 1970 s were aimed at all road users. Some of these measures are:-

- traffic management in urban areas,
- mandatory use of safety belts,
- low speed limit,
- intensified police survaillance.
- public information and,
- use of frash-helmets for motor-cyclists.

These measures led to a drop from 560 fatalities in 1970 to less than 360 in 1980. At the same time the number of those injured in RTAs per million vehiclekilometres dropped by $40 \%(6)$.

In Denmark, low speed limits were introduced, this not only improved the fuel consumption, but it also , reduced the number of RTAs. As early as 1935 the Danish society for prevention of accidents promoted a general campaign and training activity directed especially to children who were taught a number of basic rules. Road rescue services do exist in Denmark which save several lives (7).

The Federal Republic of Germany (FRG) is guided by the conviction that road safety cannot be improved through stricter laws and heavy fines or penalties, but can be improved through mass education with scientifically backed measures (13).

2.2.2. Conflict Studies

The concept of atraffic conflict was initiated in the early 1960 s and it raised a lot of interest in many countries. This was an opening of a tool for safety evaluation and the diagnosis of locall safety problems. This tool was useful where accident data were either scarce, unsatisfactory or unavailable(8).

At an International Conference held in Oslo (1977) to calibrate the Traffic Conflict Technique (TCT) (8), it was agreed that, situations where braking or swerving begins 1.5 seconds or less before a potential collision be defined to be conflicts. This is applicable in urban areas where the speed limit is $50 \mathrm{~km} / \mathrm{h}$. The time-to-collision varies with speed limit, where the speed limit is $100 \mathrm{~km} / \mathrm{h}, 3$ seconds is used as the time to record a conflict. Potential conflicts were mainly defined as wrong manoeuvres.

Conflicts or incident studies have been used to evaluate safety problems in several developed countries. These include U.S.A., Sweden, Finland, France, Germany and the United Kingdom. In research and training of shipping and aerial systems, conflict techniques have been used as the most important source of information (8).

Currently the Midwest Research Institute (MRI) in the U.S.A. is conducting a research project aimed at evaluating the relationship between specific types of conflicts and analogous accident types for specific intersection conditions.

In Israel a comparison of conflicts was made with traffic and pedestrian counts (V,P) and it showed that out of 245 conflicts (76 with pedestrians) the following
explained 60% of the cases.

$$
\begin{equation*}
C=1.3+0.35 V+0.013 P \quad(r=0.75) \tag{2.2}
\end{equation*}
$$

where $\quad C=$ number of conficts
$V=$ number of vehicles
$P=$ number of pedestrians

```

In this study it was noted that \(71 \%\) of the conflicts occurred on roads with priority junctions(10).

Hakket(10) notes that "accident severity varies with circumstances. Serious accidents are associated with high speeds with low-traffic volumes, high pedestrian flow and night-time alcohol consumptions. Slight injury and non-injury accidents are associated with high traffic volumes, low speeds (rush-hours) condition. Since conflicts can be regarded as a very light form of traffic disturbance or accidents, it would be reasonable to assume that they are differently related to accidents of varying severities".

Gưttinger (11) in Netherlands did observation over a long time on serious conflicts between child pedestrians and vehicles. Güttinger compared conflicts with accidents and was able to derive a relationship:
\[
\begin{equation*}
A=0.43776+0.36713 \mathrm{c} \tag{2.3}
\end{equation*}
\]
with \(r=0.8153\)
\[
\text { where } A=\text { Accidents }
\]
\[
C=\text { Serious conflicts. }
\]

Fig.2.l shows the scatter diagram of the data.

In Sweden, the National Road Administration has developed graphs which give the limits of the severity of conflicts relative to velocity and time(Fig.2.2)(12).

Early studies by Spicer(16) (1971-2) at two relatively high accident rate sites showed good rank correlation between serious conflicts and three year accident records classified both by time and day. Overall correlation was \(r=0.76\).
\[
\begin{equation*}
A=0.47 \mathrm{C} \tag{2.4}
\end{equation*}
\]
where \(A=\) Accidents
\[
C=\text { Conflicts (Slight }+ \text { Serious) }
\]

Spicer (et al 1980) did a six-month study of one particular \(T\)-junction and the results showed that daily counts of slight conflicts were closely related to flow levels ( \(r=0.91\) ). The relation of flow with serious conflicts was much weaker with \(r=0.48\).

Spearman(l7) showed that serious conflicts were a good indicator of accidents, his coefficients ranged


Fig 2.1 SCATERDIAGRAM OF ACCIDENTS AND SERIOUS CONFLICTS

\section*{Source:-}

Guttinger V.A. Conflicts Observations in theory and observation. Paper presented at the international calibration of traffic conflices Techniques (Oslo 1977).


Fig. 2.2 LIMIT OF THE SEVERITY. OF CONFLICTS

TO-VALUE: This ls the lime in seconds which would have clapsed from the exad I ime one of two roadusers in a conflist siluation inltiated either a deceleration or a veering molion and the lime the two pertles invoived had reached the envisioned point of colliston had both of them continued at the same same velocity and on the same course.

\section*{Source:}

Mattssom M. The development and use of Traffic Conflict Technique on the Swedish National Road Network.
between 0.87 and 0.97 statistically significant at l\% level.

In France, the risk matrix was shown to greatly improve the correspondence between conflicts and injury accidents, although a precise relation between these two could not be established.

Erke(13) of West Germany compared accidents and conflicts by calculating accident-conflict ratio for different types of junctions observed for one year. The ratio was multiplied by \(10^{5}\). For ten non-signalised intersections he found a correlation \(r=0.93\). The expression obtained was
\[
\begin{equation*}
\frac{\text { Accidents }}{\text { Conflicts }} \times 10^{5}=\mathrm{C} \tag{2.5}
\end{equation*}
\]
where \(C=\) constant.

Currently Sweden and Finland are at the forefront in the conflict studies. These studies are used to evaluate unsafe situations. In Finland, if a site is improved by a particular measure the change in safety level is evaluated by comparing before and after conflict data. This is because accidents are rare and random. Kulmala(14) has shown that serious accidents are rarer than slight injury accident as shown in Fig.2.3 (a) and(b).


Fig. 2.3(a) THE FREQUENCY OF TRAFFIC SITUATIONS IN REGARD TO THEIR SEVERITY.


Fig. 2.3(b)TRAFFIC SITUATION CLASSIFICATION

Kulmala Risto. Traffic conflict studies in Finland. Paper presented at a seminar on short term and area wiade Evalugtion of safety measures in Amsterdam, Netherlanás (1982).

Kulmala believes that conflicts and accidents are closely related. That is why it is assumed that the probability to result in an accident is approximately constant in regard to road and traffic conditions. He measured traffic conflict risk (instead of accident risk) as follows:
\[
\begin{equation*}
R=\frac{A}{E}=\frac{A}{C} \times \frac{C}{E} \tag{2.6}
\end{equation*}
\]
where \(A=\) number of accidents (conflicts) in time \(T\) \(E=\) Exposure to accidents/conflicts of the studied type in time \(T\).

C = number of conflicts
\(\mathrm{R}=\) Risk

Oppe(15) had the same findings as Kulmala that accidents are rarer than conflicts which are in turn less frequent than encounters or traffic situations (Fig.2.3). When Oppe compared the relative safety of two sites, using the ratio of conflicts, he found location 2 more dangerous (Fig.2.4) than location 1.

Recently completed work of Swan and Horwarth(16) of Nottingham University (1983) has provided further evidence of the relationship of serious conflicts to accidents. Their result indicatesthat the relationship varied with type of junction used in the study (8 unsignalised \(T\)-junctionis were studied), a correlation


Fig. 2.4 COMPARISION OF THE RELATIVE SAFETY OF TWO SITES

Source:
Oppe S. Joint international study for the calibration of traffic conflict
Technique (Netherlands). Oslo
of 0.87 was obtained between serious conflicts per vehicle and accidents per vehicle. Total inflow was found to have no significant correlation with accidents and serious conflicts.

\section*{Uses of conflict studies}

As defined earlier, a traffic conflict does occur. when a vehicle's action or manoeuvre threatens another vehicle/road user with the possibility of a collision. The study of conflicts has found wide application, some of which are listed below:
- Accident data are too scarce for detailed analysis and the information stored in the accident report often misses the relevant cue to reconstruct what exactly happened. Since conflicts are more common they turn out to be alternatives for they present accident conditions.

Conflict: studies can be used to evaluate quickly the applied safety measures and an indication of relatively new problems. This can be done by comparing the before and after studies.
- Conflict studies canbe used to predict accidents, that have the same characteristics, as a surrogate measure since they occur more frequently.
```

For newly designed intersections, conflicts may
be used to evaluate their safety. A junction with
high conflict rates is obviously dangerous.
Conflicts may be used to gauge the level of service at a junction. A"conflict-free" junction may be classified as an efficient junction

```

Conflicts can be used as a diagnostic tool in the identification of hazardous road sections (dangerous road locations or black spots).

It should be noted that conflicts are a much richer source of data, they offer the possibility of gaining more understanding of the road system and provide insight as to how and why counter measures work or do not work.

\subsection*{2.3 Research in Kenya}

Kenya like most developing countries has not been giving much emphasis on road safety research. However, in the late seventies the Kenyan government started showing concern over the increasing RTAs.

Transport and Road Research Laboratory (TRRL) has studied fatalities of road accidents, vehicle ownership. and population and is convinced that there is a relation between RTAs vehicle ownership and population(19).

The equation and Kenya's position are shown in Fig.2.5 As can be seen Kenya's RTAs fatality rate has been above average compared to other developing countries.

Road safety research is carried out by the Road Safety Unit overseen by the National Road Safety Council. Studies done under the Nairobi Demonstration Project (NDP) showed that priority junctions in Nairobi accounted for about \(48 \%\) of the total accidents in Nairobi(18). These findings happen to be the same as those found in Israel.

\subsection*{2.4 Appraisal of Previous Research \\ Road traffic accidents do not occur by chance.} Each accident has a traceable cause. By studying a large number of accidents, it is possible to predict that under certain circumstances an accident is likely to occur.

Previous research has mainly been concerned with accidents relative to travel or deaths relative to travel. Remedial measures are far from being reached. This is because some of the measures are quite expensive to implement or take a long time before their results could be obtained. For example, to correct the human element requires a long time and well co-ordinated programmes. Most remedial measures are directed towards the engineering elements which are easy to study and implement. These measures are directed to the road and vehicles.


Fig. 2.5 FATALITY AND VEHICLE OWNERSHIP RATES FOR DEVELOPING COUNTRIES 1968 and 1971

Conflict studies present a very promising method of studying the safety of a road section. This study is also a powerful tool for evaluating quickly safety measures which are taken on the road. Attempts have been made to relate accidents to conflicts. In some cases there has been success. It is clear that if ever a clear relation between accidents and conflicts is to be found then this will be a major breakthrough because studies will be centred on conflicts which are more common. Such a study may require a long time of carefully done studies. Conflicts and accidents are caused by vehicles, but so far no attempts have been made to relate conflicts with vehicular flow. Relating conflicts to traffic flow introduces another dimension related to the design of roads, roundabouts and junctions in general. No conflict studies have been carried out in Kenya.

It is said that most of the accidents in Kenya are caused by matatus. According to the Traffic Act 1986 amendment, a matatu is defined as a Public Service Vehicle (PSV) having a seating capacity of twenty five people or less excluding the driver(25). However, no significant research has been done to show how true this claim isthat matatus are accident prone or what compels matatu operators to use their vehicles the way they do.

Clearly there is a need for further research to provide a frame of reference for defining the cause
of RTAs, relation between accidents and conflicts, relation between conflicts and traffic flow at junctions and also show why matatus contribute to more accidents as it is claimed.

\subsection*{2.5 Study Objectives}

Priority junctions have shown high accident rating both in Nairobi, (Kenya) with \(48 \%\) and Israel which had \(71 \%\) accidents. This prompted this study to be based on simple unsignalised \(T\)-junctions. The objectives of the study are:-
- To study accidents and conflicts at selected T-junctions with a view to understanding the problems of the junctions.

To analyse conflict data on the selected \(T\)-junctions with the aim of relating them to the vehicular flow.

To evaluate the vehicles which contribute the largest number of conflicts.
- To study matatu operation with a view to justifying or refuting the claim that matatus contribute to more accidents than any other vehicles.

\section*{CHAPTER 3 .}

\section*{THEORY}

\subsection*{3.1 General}

This chapter derives mathematical models to be used in the data analysis. Preliminary data analysis indicated certain trends which seemed to suggest particular mathematical formulae. For the conflict data analysis the models which may be used are polynomials,the power and the logistic functions. The exponential models may be used to calculate depreciation rates of vehicles. Further, statistical methods are stated that are to show the goodness of fit, significance levels of the model relationships etc.

\subsection*{3.2 Model Development}
3.2.1 Linear Model (23)

This model will be used for data fitting and for comparing the observed and predicted data for linear functions. \(y\) varies with \(x\) such that,
\[
y \propto x
\]
also dy \(\propto \mathrm{dx}\)
\[
\frac{d y}{d x}=m
\]
\[
\text { where } \mathrm{m}=\text { constant }
\]
\[
d y=m d x
\]
by integration
\[
\begin{align*}
\int d y & =m \int d x \\
y & =m x+c \tag{3.1}
\end{align*}
\]
where \(m\) and \(c\) are constants for the line
\(y=m x+c, m\) is the gradient and \(c\) is the \(y\) - intercept. Using \(m\) and \(c\) as regression constants then
\(m=\frac{n \sum y x-\Sigma y \cdot \Sigma x}{n \sum x^{2}-(\Sigma x)^{2}}\)
\(c=\frac{\sum y-m \sum x}{n}=\bar{y}-m \bar{x}\).

For perfect prediction and fit of models, \(m\) is unity and \(c\) is zero. In the above equation
\(n\) is the number of paired variables.

\subsection*{3.2.2 Cubic Models (22)}

The cubic model is a curve with two bends. The third derivative of a cubic function varies linearly with the variable \(x\).
\[
\begin{gathered}
\frac{d^{3} \frac{y}{d} x^{3} \propto x}{d^{3} y \propto x d x^{3}} \\
\iint d^{3} y=\iiint A x d x^{3}
\end{gathered}
\]

By continuous integration
\[
\begin{equation*}
y=A_{0}+A_{1} x+\frac{A_{2}}{2} x^{2}+\frac{A_{3}}{6} x^{3} \tag{3.2}
\end{equation*}
\]

This can be written as
\[
y=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}
\]

The constants \(a_{0}, a_{1}, a_{2}\) and \(a_{3}\) may be solved by elimination method of the following equations
\[
\begin{aligned}
& \Sigma y=a_{0} n+a_{1} \Sigma x+a_{2} \Sigma x^{2}+a_{3} \Sigma x^{3} \\
& \Sigma y x=a_{0} \Sigma x+a_{1} \Sigma x^{2}+a_{2} \Sigma x^{3}+a_{3} \Sigma x^{4} \\
& \Sigma y x^{2}=a_{0} \Sigma x^{2}+a_{1} \Sigma x^{3}+a_{2} \Sigma x^{4}+a_{3} \Sigma x^{5} \\
& -y x^{3}=a_{0} \Sigma x^{3}+a_{1} \Sigma x^{4}+a_{2} \Sigma x^{5}+a_{3} \Sigma x^{6}
\end{aligned}
\]

\subsection*{3.2.3. Power Model (21)}

This model assumes that the variable \(y\) increases in a power form with \(x\). The derivative of \(y\) increases with x as follows
\[
\begin{aligned}
& \frac{d y}{d x}=\frac{b y}{x} \\
& \frac{d y}{y}=\frac{b d z}{x}
\end{aligned}
\]

\section*{by integrating}
\[
\begin{align*}
& \int \frac{d y}{y}=b \int \frac{d x}{x} \\
& \ln y=b \ln x+k \\
& \operatorname{let} k=\ln a . \\
& \ln y=b \ln x+\ln a \\
& y=a x^{b} . \tag{3.3}
\end{align*}
\]

Equation (3.3) is the power model.

\subsection*{3.2.4 Logistic Model(21)}

This model assumes that there is a limit, \(L\), when the variable \(y\) stops increasing. The model is S-shaped where \(y\) has the initial value of zero when \(x\) is minus infinity.

The derivative of \(y\) increases as \(x\) increasesas follows
\[
\begin{aligned}
& \frac{d y}{d x}=b y\left(1-\frac{y}{L}\right) \\
& d y=b y d x-\frac{b y^{2} d x}{L}
\end{aligned}
\]
\[
\begin{align*}
& \frac{L d y}{Y(I-Y)}=b d x \\
& \int \frac{L d y}{y(L-y)}=b \int d x \\
& =\int\left(\frac{d y}{y}+\frac{d y}{L-y}\right)=b \int d x \\
& =\operatorname{Ln} y-\ln (L-y)=b x+A \\
& b x+A=\ln \left(\frac{y}{L-y}\right)=-\ln \frac{(L-y)}{y} \\
& \mathrm{e}^{-(b x+A)} \quad=\left(\frac{I-Y}{Y}\right) \\
& \bar{e}^{-b x} e^{-A}=\left(\frac{L-y}{y}\right) \\
& \text { let } a=e^{-A} \\
& \frac{L-y}{y}=a e^{-b x} \\
& L-y=y \cdot a e^{-b x} \\
& y=\frac{L}{1+a e^{-b x}} \tag{3.4}
\end{align*}
\]

Equation 3.4 is the logistic model.
3.2.5. Exponential Model (21)

Depreciation is a decay function whose rate is proportional to the existing values. This can be mass (for radioactive substances), price etc. If \(A\) is time in years and \(P\) is the price, then the variables are \(P\) and \(A\).
\[
\begin{aligned}
-\frac{d p}{d A} & =P \\
-\frac{d P}{d A} & =b P
\end{aligned}
\]
\[
\frac{-d P}{P}=b \cdot d A
\]
\[
-\int \frac{d P}{P}=b \int d A
\]
\[
-\ln P=b A+c
\]
\[
\ln P=-(b A+c)
\]
\[
P=e^{-(b A+c)}
\]
\[
=e^{-b A} \cdot e^{-c}
\]
let \(e^{-c}=a\)
\[
\begin{equation*}
p \quad=a e^{-b A} \tag{3.5}
\end{equation*}
\]

Equation 3.5 is the general exponential model. This model may be used to explain the value of a vehicle relative to age.

The depreciation rate is calculated by differentiating equation 3.5 .
\[
\begin{aligned}
P & =a e^{-b A} \\
\frac{d P}{d A} & =a \times \frac{d\left(e^{-b A}\right)}{d A}+e^{-b A} \times \frac{d a}{d A} \\
\frac{d P}{d A} & =-a b e^{-b A} .
\end{aligned}
\]

This is the depreciation rate at a time A in years. To calculate the depreciation per day
\[
\begin{equation*}
\frac{d P}{d A_{d}}=\left(\frac{-a b e^{-b A}}{365}\right) \tag{3.6}
\end{equation*}
\]

\subsection*{3.3 Other Analysis}

\subsection*{3.3.1 Data-smoothing}

Where preliminary data analysis indicates that the unsmoothed data are widely scattered, data smoothing can be done using the moving averages, step smoothing, etc. For this study it was anticipated that step smoothing was to be used to minimise the scatter and lessen interference with the data. Step smoothing is calculated by calculating representative values for each increase of traffic flow. The table below is used to explain this method.
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline No. of conflicts & \(x_{1}\) & \(x_{2}\) & \(x_{3}\) & \(x_{4}\) & \(x_{5}\) & \(x_{n}\) \\
\hline Traffic flow (veh/h & \(a_{1}\) & \(q_{2}\) & \(q_{3}\) & \(q_{4}\) & \(q_{5}\) & \(q_{n}\) \\
\hline
\end{tabular}

The srepresentative number of conflicts for traffic flow between \(q_{2}\) and \(q_{4}\) veh/h, that is at a flow of \(\frac{1}{3}\left(q_{2}+q_{3}+q_{4}\right)\) veh/h is given by;
\[
\begin{aligned}
& =\frac{\text { Total number of conflicts }}{\text { frequency }} \\
& =\frac{x_{2}+x_{3}+x_{4}}{3}
\end{aligned}
\]

\subsection*{3.3.2 Conflicts per Vehicle}

Conflicts were recorded depending on which vehicle initiated the conflict. It is anticipated that to measure the relative safety of each class of vehicle, conflicts per vehicle type will be a good measure.

Conflict per vehicle type may be calculated as follows;

Conflict per vehicle type

All conflicts initiated by a parti= cular vehicle type

Total number of those vehicles

A vehicle class which initiates a high number of conflicts will tend to have a high number of conflicts per vehicle. Since conflicts tend to accidents it may be seen as a measure of safety.

The proportion of the vehicle type relative to the total vehicular flow may be calculated as follows:
\begin{tabular}{rl} 
Percentage proportion \(=\) & \(\frac{\text { Total number of vehicle type }}{} \times 100 \%\) \\
All vehicles flowing through \\
of vehicle type & the junction.
\end{tabular}

\subsection*{3.4. Statistical Analysis}
3.4.1 Simple Linear Regression (23)

Simple linear regression may be used to compare observed and predicted data. These form a pair of variables \(Y\) and \(x\). Assuming the estimated regression line is
\[
\begin{aligned}
& y_{i}=a+b x_{i} \quad(i=1,2,3 \ldots n) \\
& a \text { and } b \text { are constants. }
\end{aligned}
\]
each pair of observation satisfies the relation
\[
y_{i}=a+b x_{i}+e
\]
where e is the residual.
the sum of squares of the errors (SSE) about the regression line. Values \(a\) and \(b\) can be calculated by
\[
\begin{aligned}
& \operatorname{SSE}=\sum_{i=1}^{n} e_{i}^{2}=\sum_{i=1}^{n}\left(y_{i}-a-b x_{i}\right)^{2} \\
& \frac{\partial}{\partial a}(S S E)=-2 \sum_{i=1}^{n}(y-a-b x) \\
& \frac{\partial}{\partial a}(S S E)=-2 \sum_{i=1}^{n}\left(y_{i}-a-b x\right) x
\end{aligned}
\]

Setting the derivatives to zero (to minimize errors) and rearranging the terms
\[
\begin{align*}
& b=n \sum_{i=1}^{n} x_{i} Y_{i}-\left(\sum x_{i}\right)\left(\sum_{i=1}^{n} y_{i}\right) \\
& \left.n \sum_{i=1}^{n} x_{i}^{2}-\sum_{i=1}^{n} x_{i}\right)^{2}  \tag{3.7}\\
& a_{i}=\frac{\sum_{i=1}^{n} y_{i}-b \sum_{i=1}^{n} x_{i}}{n} \tag{3.8}
\end{align*}
\]

For \(a\) simple linear regression the value of \(b\)
tells how well the model predicts the data. Perfect
prediction by any formula or model would result in a regression line whose slope is one \((b=1)\). In such a case the value of \(a=0\). Correlation coefficient \((r)\) and the coefficient of determination \(\left(x^{2}\right)\) will all be unity.
3.4.2 Confidence Limits and Tests of Siqnificance(23)

Apart from merely estimating the linear relationship between \(x\) and \(y\) for purposes of prediction, it may be desirable to draw certain references about the general quality of the estimated regression line. Standard Error is used to estimate error of scatter about a line. For computation of standard error ( \(\mathrm{E}_{\mathrm{Yx}}\) ) the formula used is
\[
\begin{equation*}
\left.E_{Y x}=i \frac{\Sigma y^{2}-a(\Sigma y)-b(\Sigma x y)}{n-2}\right) \tag{3.9}
\end{equation*}
\]

It is anticipated that the student \(t\) distribution will be used to test the significance of the models. This distribution is mainiy used for observation, \(n<30\)
\[
\begin{equation*}
t=\frac{r(n-2)^{\frac{1}{2}}}{\left(1-r^{2}\right)^{\frac{1}{2}}} \tag{3.10}
\end{equation*}
\]
where; \(r\) is the correlation coefficient \(r^{2}\) is the coefficient of determination.

The calculated value of \(t\) is compared with the value in \(t\)-distribution tables (appendi xi). Degree of freedom is given by \(n-1\), if the calculated value is greater than the value in the table, then the model is significant and reliable for prediction.

Correlation coefficient is a measure of scatter between two variables \(x\) and \(y\). This value varies between zero and one. Value of \(r=1\) implies no scatter about a given line or curve with standard error \(E_{x y}=0\). The coefficient of determination, \(r^{2}\), explains what percentage of the data has been explained. Values of \(r\) and \(r^{2}\) are given by
\[
\begin{align*}
& r=\frac{n(\Sigma x y)-(\Sigma x)(\Sigma y)}{\left[\left[n\left(\Sigma x^{2}\right)-(\Sigma x)^{2}\right]\left[n\left(\Sigma y^{2}\right)-(\Sigma y)^{2}\right]\right]^{\frac{1}{2}}}  \tag{3.11.}\\
& r^{2}=\left[\frac{\left[n(\Sigma x y)-(\Sigma x)(\Sigma y ;]^{2}\right.}{\left[n\left(\Sigma x^{2}\right)-(\Sigma x)^{2}\right]\left[n\left(\Sigma y^{2}\right)-(\Sigma y)^{2}\right]}\right]
\end{align*}
\]

\section*{CHAPTER 4}

\section*{DATA COLLECTION AND ANALYSIS}

\subsection*{4.1 General}

This study is concerned with road traffic accidents and conflicts on selected \(T\)-junctions in Nairobi. The nature of conflicts and accidents in the area of T-junctions especially in Kenya is very limited and it is desirable to develop models which would relate traffic flow to conflicts. For this study \(T\)-junctions were selected within Nairobi.

The study objectives were as follows:

To study accidents and conflicts at selected \(T\)-junctions with a view to understanding the problems of the junctions.

To analyse conflict data on the selected T-junctions with the aim of relating them to vehicular flow.

To evaluate the vehicles which contribute the largest number of conflicts.

To study matatu operation with a view to justifying or refuting the claim that matatus contribute more accidents than any other vehicles.

\subsection*{4.2 Selection of Sites}

The initial stages involved data collection to facilitate the identification of the dangerous road locations ("black spots"). The Kenya Police, Nairobi area records about 3 500-4 000 RTAs annually of which 3000 are injury and 300 are fatal. It was anticipated that a total of 6000 accidents were to be handled for the years 1984 and 1985, however a total of 3700 accidents were traced.

The data collection involved visiting each police station and reading through injury accident files with a view to getting the relevant details of each accident (summary sheet Appendix Form 5 ). Accidents which occurred when the driver was under the influence of alcohol were excluded. This was because when drivers are drunk, their concentration on the road is drastically reduced hence they may not reflect their skills or the problem related to the road.

The basic information required for each accident was:
- particular location of the accident and sketch. - time and day of occurrence of the accident, - weather conditions, - kind of vehicles involved in the accident, - number of casualties (injury and deaths) and their ages,
- road conditions,
- lighting conditions.

It was noted that after the accident data collection not all the anticipated data were available. The situation was worse at the Kilimani and Industrial Area Police Stations where only \(30 \%\) of the expected files were available.

The main problems encountered during the data collection were:-
- Lack of the required files. Some files were in courts, others had been misplaced.
- The information in some files was contradictory, inaccurate or incomplete.
- Some sketches showing where the accidents occurred were missing.
- The police form for filling details of accidents (Form P41 - Appendix 3 ) was missing in most
cases from the police files.
- Most police stations visited lacked an orderly method of storing files. This situation complicated the data collection.

After all the available data on RTAs in Nairobi was collected, preliminary data analysis was done by calculating the number of accidents perquarter kilometre for two years (1984 and 1985) on each road section. Dangerous
road sections were identified as areas with ten or more RTAs per quarter kilometre. Table 4.1 shows the sections which qualified on this criterion ( \(85 \%\) of all sections ana junctions). Most junctions qualified as dangerous locations of which \(T\)-junctions were selected for this study because they were the most common junctions and were accident prone. Nearly 48\% of accidents in Nairobi occurred at T-junctions. The criterion used to select the \(T\)-junctions which were studied was that no major alterations should have been done on these junctions to improve or reduce their safety level during the study period (1984-7). Table 4.1 shows the accident rating of the road sections and junctions in Nairobi. Table 4.2 shows the accident rating of the selected \(T\)-junctions for the study. Fig 4.1 shows the distribution and the location of the study roads and sites.

\subsection*{4.3 Study Sites and Data Collection}

\subsection*{4.3.1 Study Sites}

Six \(T\)-junctions were selected for accident and conflict study. These sites include:

Site 1.' Jogoo Road - Outer Ring Road Junction
This site is near Loonholm residential estate about 13 kilometres from the Nairobi city centre. Both Outer Ring and Jogoo roads are single carriageway two-lane roads at this section. The T-junction is flared without kerbs. The pavement edges have failed thereby reducing

Table 4.1 ACCIDENT RATING BY SEVERITY


TABLE 4.2(a) Selected Study Junctions
\begin{tabular}{|c|l|c|}
\hline Site & \multicolumn{1}{|c|}{ T-Junction } & No. of RTAs in two years \\
1 & Jogoo-Outer Ring & 10 \\
2 & Mumias - Outer ring & 14 \\
3 & Juja - 1st Avenue Eastleigh & 16 \\
5 & Mumias - Rabai & 13 \\
\hline Langata - Muthaiti & 13 \\
\hline
\end{tabular}

All these junctions are simple \(T\)-junctions which are un-signalised.

the width of the carriageway. The terrain of the surrounding area is relatively flat thus the visibility is good (> 80 m ). The \(T\)-junction serves traffic from and to Umoja,Doonholm, Embakasi, Kariobangi, Dandora estates and Jomo Kenyatta International Airport as well as Thika. Fig. 4.2 shows the plan and profile of this site. The gradient of the approach minor road is \(1 \%\). The pavement surface of the major and minor roads are good.

Site 2. Mumias Road - Outer Ring Road Junction
This junction is located between Kariobangi South and Outer Ring Road residential estates. The site is about 17 kilometres from the Nairobi city centre following Jogoo-Outer Ring roads. The gradient is steep (about 6\%) from the railway bridge sloping towards the junction. This junction serves Kariobangi, Outer Ring Dandora, Umoja and Buru Buru residential estates. Due to a zone of light industries in Dandora, there is a. large number of trucks on the Outer Ring road.

The pavement surface at the junction was noted to be in good condition during the study period with kerbs at the edges. There were well maintained open drains.

Site 3. Juja Road - lst Avenue Eastleigh Road Junction
This site is next to St. Teresa Church about
6 kilometres from the city centre along Juja road. It is a simple unsignalised \(T\)-junction with relatively flat terrain. The minor road has an approach gradient of

OPEN DRAIN
\(30 \phi\) CULVERT
\(+1 \%\)

Fig. 4.2 PLAN AND PROFILE ALONG A - A OF SITE 1


ROAD SURFACE

about lz. Road-side fencing and kiosks rave seriously interfered with the visibility at the junction area because they are within the road reserve.

The junction is characterised by high pedestrian flow especially in the morning and evening. These are residents from the densely populated Mathare valley who walk to and from the city centre. The shoulders of the junction are poorly maintained with inadequate pedestrian facilities. The access roà opposite lst Avenue was closed (fig.4.4).

Site 4 - Mumias Road - Rabai Road Jurctions

This T-junction is between Buru Buru phase IV and Makadara residential estates. It is about 13 kilometres from the city centre following Jogno Road. This junction serves residential areas mainly Buru Buru, Ofafa Jericho and Unuru.

There is a petrol station rear the junction area whereby during peak hours vehicles from Mumias road prefer diverting through instead of using the junction (Fig.4.5). This reduces traffic volume at the junction.

The visibility at this junction is good (> 200m) because the terrain is flat and the road reserve is wide (30m). The approach gradients of the major and minor roads are small (about 1\%). No illegal development had been done on the rogt reserve.

\(\stackrel{A}{\xrightarrow{3 \%}}\)


Site 5 - Langata Road - Muthaiti Road Junction
This junction is near Nyayo National stadium along Langata road about 6 kilometres from the city centre. Langata road was first opened to traffic in 1965. During the study the pavement surface and the kerbs were noted to be in good condition. Visibility around the junction area was excellent (> 200m) because of the wide road reserve ( 60 m ) and flat terrain (fig. 4.6 ).

Langata and Muthaiti roads are single carriageway two-lane roads. They have a high traffic flow (upto 2,100 veh/h) especially Langata road which serves Nairobi West, Langata, Madaraka, Ongata Rongai, Ngei and Onyonka Estates.

Site 6 - Ngong Road - Mugo Kibiru Road Junction
This \(T\)-junction is about 6 kilometres from the aity centre along Ngong Road. The pavement surface at this site was good with well maintained shoulders. Ngong Road is a 10 metre wide road with one metre cyclist lane on either side of the road. It is a single carriageway two-lane road with a 60 m road reserve.

The traffic flow at this junction was between 400-1800 veh/h. The junction serves the densely populated Kibera, Kawangware and Riruta residential estates as well as Ngong, Kikuyu and Uthiru towns. It was noted that during peak hours some vehicles especially matatus from


Fig. 4.6 LANGATA ROAD - MUTHAITI ROAD JUNCTION
Scale 1:500


Fig. 4.7 NGONG ROAD MUGO KIBIRU ROAD JUNCTION

Kibera use Kabarnet road. Fig. 4.7 shows the layout of this junction. The gradient of the roads especially at the junction area is almost zero.

Table 4.2 (b) - Characteristics of the six T-junctions studied.
\begin{tabular}{|c|l|l|l|l|c|}
\hline Site & \begin{tabular}{l} 
Range of Traffic \\
flow veh/hour
\end{tabular} & \begin{tabular}{c} 
Visibllity \\
range
\end{tabular} & \begin{tabular}{c} 
Pavement \\
Surface
\end{tabular} & \begin{tabular}{c} 
Gradients \\
Major Minor
\end{tabular} & Remarks \\
\hline 1 & 6001700 & 80 m & Good & \(1 \%\) & \begin{tabular}{l} 
Bus stop near \\
the junction
\end{tabular} \\
\hline 2 & \(400-1700\) & 100 m & Good & \(6 \%\) & \begin{tabular}{c} 
Steep gradied \\
on major road
\end{tabular} \\
\hline 3 & \(400-1800\) & \begin{tabular}{l} 
Interfered \\
with
\end{tabular} & Good & \(1 \%\) & \begin{tabular}{l} 
high pedestrian \\
flow upto 2000 \\
people/hour
\end{tabular} \\
\hline 4 & \(150-1800\) & \(>200 \mathrm{~m}\) & Good & \(1 \%\) & - \\
\hline 5. & \(800-2100\) & \(>200 \mathrm{~m}\) & Good & \(1 \%\) & \begin{tabular}{l} 
Traffic signals \\
on the near by \\
junction affect \\
flow
\end{tabular} \\
\hline 6. & \(400-1700\) & \(>200 \mathrm{~m}\) & Good & & \begin{tabular}{l} 
-
\end{tabular} \\
\hline
\end{tabular}

\subsection*{4.3.2 Data Collection}

Data collected was mainly on accidents and conflicts. Accident data were collected from Police files as explained in section 4.1. These data were used to identify the sites for the study of vehicle conflicts. Accident potential (referred to as conflicts for this study) data were collected from the six \(T\)-junctions in Nairobi (Table 4.2). These were junctions which proved most accident prone and no improvements had been done on them during the study period (1984-87).

Conflicts were divided into three categories depending on the reaction time available for the road users (driver, pedestrians) to adjust their speeds well enough before the potential collision. These conflicts were defined as follows.

Potential Conflicts
Potential conflict situations were defined to be situations where the participants adjust their speeds well enough before the potential collision. Potential conflicts should not be confused.with situations where a driver responds to traffic signs e.g. field or situations like traffic jams, otherwise disobeying such signs may be seen as potential conflicts (traffic violations). The definition is quite subjective.

\section*{Slight Conflicts}

Slight conflicts are situations where braking or swerving begins 1.5 seconds or less before a potential collision. In this case braking and/or swerving are controlled.

\section*{Serious Conflicts}

They are situations where emergency braking and/or violent swerving are applied to avoid collision resulting in a very near accident situation. The braking and/or swerving which is uncontrolled begins about 1.5 seconds or less before a potential collision. Time to a collision
varies with the speed limit. the 1.5 seconds used above applies to the urban areas where the speed limit is \(50 \mathrm{~km} / \mathrm{h}\).

Conflict data were filled in forms (Appendix 4) where a T-junction had been drawn on a grid system. This was to facilitate locating the conflict points. Vehicle conflicts were divided into six types depending on the vehicle manoeuvres and direction of approach of the conflicting vehicles (Appendix 4). Vehicles causing conflicts were classified depending on which vehicle initiated the conflict or made the wrong manoeuvre. The main information recorded on the vehicle-vehicle conflict form included, time when the conflict occurred, severity of the conflict, proximity i.e. distance between conflicting vehicles when evasive. or braking action started (nose to tail), location on the grid and the vehicles involved in the conflicts.

Vehicle-pedestrian conflicts were studied. These conflicts were classified into three groups depending on the type of conflict, severity and the grid location (appendix 5). Classified vehicle counts were done in all the six junctions. Pedestrian counts were done at the same time. The study was done at the following. times, \(6.45 \mathrm{a} . \mathrm{m}\). to \(9.00 \mathrm{a} . \mathrm{m}, 11.30 \mathrm{a} . \mathrm{m}\) to \(1.30 \mathrm{p} . \mathrm{m}\). and 3.30 p.m. to 6.30 p.m. (at times to 7.00 p.m.). This gave a total of 9 hrs per day. Each site was studied
for two working days of the week. This gave representative traffic situations.

\subsection*{4.3.3 Methodology}

Conflict and traffic count data were collected by a total of eight people. Conflict data were observed by two people but one of them doing the recording. It was arranged in such way that two people observed conflicts to avoid the possibility of a conflict being skipped when recording is going on. In some situations the two observers assisted each other in identifying the severity of the conflict. Traffic flow was recorded by three people each recording traffic from one leg. Each enumerator handled ten bays of the manual counter to record the classified counts (Appendix 6).

The training of enumerators and conflict observers was done for five days. The first and second day involved training the group using notes prepared which defined their observation taks. Conflict observers were thoroughly trained and they were poeple who knew traffic regulations well. The third and fourth days were used to do some trial studies to check if the group understood their duties. The fifth day was used as a test for the group, they did the study without further assistance. After it was clear that the group new their duties well, especially conflict observers, the study was started. Throughout the study conflict observers were assisted and supervised.

\section*{4.4}

Data Analysis
4.4.1 Accident and Conflict Data

When accident and conflict data were analysed it was not possible to obtain a relation between accident and conflict. This could be because the observation period for conflicts was short relative to the accident observation period. However accident and conflict data for the \(T\)-junctions in Table 4.2 were plotted showing movements of vehicles before they were involved in the accidents or conflicts. Using these plots it was possible to diagnose the problem on a \(T\)-junction.

The following abreviations have been used in figures 4.8 to 4.19 .
1. Police Code
NIAR None injury accident

IAR Injury accident
2. Casualties
F Fatal

SL slight injury
S Serious injury
3. Participants
\begin{tabular}{ll} 
S & Saloon car \\
B & Bus \\
PC & Pedal cyclist \\
P & Pick-up \\
MA & Matatu \\
L & Lorries
\end{tabular}

\subsection*{4.4.1.1 Jogoo-Road - Outer Ring Road Junction}

Fig. 4.8 and 4.9 show accident and conflict plots respectively on this junction. These figures suggest that most of the accidents or conflicts are between traffic on the minor leg and those on the major road (Outer Ring). This suggests that drivers from Jogoo road are pushing their way into the main road without stopping as it is required by the traffic sign (STOP).

Some conflicts and accidents at this jucntion occurred because drivers were overtaking at the junction area. This could be because there was no road marking at the junction to direct drivers. It was noted during the conflict study that drivers rarely used the flared section of the junction when turning into the minor road. This was either because the pavement edges had failed or because a section, of the flared part had been turned-illegally into a stopping bay by matatus.
4.4.1.2 Mumias Road - Outer Ring Road Junction

Most of the accidents (71\%) and conflicts (80\%) at this junction involved vehicles from the railway bridge side (fig.4.10-4.11). The slope from the bridge section towards the junction was about \(6 \%\) (Fig.4.3). This slope encouraged drivers to accelerate down the slope while drivers at the junction underestimate the speeds of the on-coming vehicles. Also from the accident and conflict plots it is clear that overtaking at the junction created problems to some drivers.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{} \\
\hline \multicolumn{6}{|c|}{-} \\
\hline \multicolumn{6}{|c|}{ACCIDENT SUMMARY TABLE} \\
\hline NUMBER ON FIGURE. & POLICE CODE & DATE & time & CASUALTIES & PARTICIPANTS \\
\hline 1 & (AR(F)/110/85 & 7-7-85 & 9.55 F.M & 1.F & L/S \\
\hline 2 & NAR/25/84 & 1-6-84 & \(8.65 \mathrm{~F}: \mathrm{M}\) & - & S/s \\
\hline 3 & IAR/107/85 & 14-7-85 & 6.15 F.M & 1. SL & \(\mathrm{Ma} / \mathrm{P}\) \\
\hline 4 & NIAR/12/84 & 13.11-84 & 10.30 PM & - & S/S \\
\hline 5 & NIAK/93/84 & 6-10-36 & 5.00 PM & - & L/L \\
\hline 6 & |AR / 150/85 & 27-9-85 & 10.00 A M & 2.SL & S/s \\
\hline 7 & IAR/67/85 & 30-4.85 & 11.30 PM & 1.SL & S/s \\
\hline 8 & IAR/108/85 & 7-8-85 & 10.30 A M & 2.SL & \(\mathrm{Ma} / \mathrm{L}\) \\
\hline 9 & NIAR/78/84 & 10-9-8.8 & 2.30 PM & & S/L \\
\hline
\end{tabular}

Fig. 4.8 ACCIDENT SUMMARY FOR JOGOO -OUTER RING JUNCTION



Fig. 4.10 ACCIDENT SHMMARY FOR MUMIAS-OUTER RING ROAD JUNCTION


\subsection*{4.4.1.3 Juja Road - 1st Avenue Eastleigh Road Junction}

Accident and conflict plots (Fig. 4.12 - 13) suggest that vehicles from the minor road forced their way into the major road. It was noted during the conflict study that at times matatu conductors actually stop traffic on the main road so that their vehicles from the minor road may have a right of way. This is a problem of capacity at the junction, this forced some vehicles especially matatus to use the shoulders thereby interfering with the pedestrian facilities.

The two bus-bays next to the junction increased the number of conflicts considerably. The pedestrian flow at this junction was very high (up to 2000 people/hour). They were forced to walk on the road because the road reserve had been seriously interfered with by the erection of illegal "kiosks", hence increasing their chances of being involved in accidents.

\subsection*{4.4.1.4 Mumias Road - Rabai Road Junction}

Accident and conflict plots (Fig.4.14-15) suggest that drivers from the minor leg enter the main road without giving the vehicles on the main road (whichhave the right of way) a chance to pass. Over \(60 \%\) of the accidents at this junction occurred between 6.30 p.m. and 9.00 p.m. This suggeststhat there is a problem of lighting at this junction. Also from the accident/


Fig. 4.12 SUMMARY OF ACCIDENT ON JUJA ROAD - 1st AVENUE EASTLEIGH JUNCFION

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{} \\
\hline \multicolumn{6}{|c|}{,} \\
\hline \multicolumn{6}{|c|}{ACCIDENT SUMMARY TABLE} \\
\hline NUMBER ON FIGURE & POLICE CODE & DATE & TIME & CASUALTIES & PARTICIPANTS \\
\hline 1 & | AR/24/85 & 12-2-1985 & 6.45 pm & 2 SL & S/S \\
\hline 2 & | AR/89/85 & 8-6-1985 & 4.15 am & 1 SL & MA/S/PC \\
\hline 3 & | AR/182/85 & 20-11-1985 & 1.00 am & \(15 / 4 \mathrm{SL}\) & MA/MA \\
\hline 4 & NIAR/82/84 & 16-9-1984 & 4. 15 pm & & S/s \\
\hline 5 & |AR|112/84 & 15-11-1984 & 2.00 pm & 15 & B/PC \\
\hline 6 & NAIR/33/85 & 14-9-1985 & 800 pm & & \(\mathrm{p} / \mathrm{s}\) \\
\hline 7 & NIAR/21/85 & 18-6-1985 & 3.00 pm & & B/P \\
\hline 8 & |AR/151/85 & 27-3-1985 & 8.00 am & 1 SL & \(\mathrm{s} / \mathrm{s}\) \\
\hline 9 & |AR/91/85 & 10-6-1985 & 12.35 am & 15.15 L & M \(/\) /B \\
\hline 10 & |AR|117/85 & 20-7-1985 & 8.30 pm & 2 SL & S/S \\
\hline 11 & NIAR/33/85 & 14-9-1985 & 8.00 pm & & S/P \\
\hline 12 & IAR/30/85 & 19-2-1985 & 8.00 pm & 2 SL & MA/S \\
\hline 13 & | AR/119/85 & 20-7-1985 & 7.30 pm & 15 L & MA/S \\
\hline
\end{tabular}

Fig. 4.14 SUMMARY OF ACCIDENT ON MUMIAS-RABAI ROAD JUNCTION

conflict plot, overtaking at the junction area is common and has led to some of the accidents.

\subsection*{4.4.1.5 Langata Road - Muthaiti Road Junction}

This junction area had the highest traffic flow compared to all the sites studied. The plots of Fig. \(4.16-17\) clearly show that drivers from the minor leg (Muthaiti road) force their way into the main road even when there is inadequate headway. This results in conflicts or accidents. The traffic lights at Uhuru Highway - Lusaka Road round-about (about 200 m away) created some gap for traffic from the Muthaiti junction, which improved the flow at this junction. Apparently conflicts at this junction occur because the junction is operating beyond its capacity.

\subsection*{4.4.1.6 Ngong Road - Mugo Kibiru Road Junction}

Accident and conflict plots at this jucntion
(Fig.4.18-19) suggest that drivers from the minor leg either do not have enough headway to allow them into the main stream or they ignore traffic on the main road. Overtaking around the junction is also a factor which contributed to some accidents and conflicts. However, all accidents except one at this junction were slight injury accidents.


Fig. 4.16 SUMMARY OF ACCIDENTS ON LANGATA ROADMUTHAITI ROAD ŁNCTION



Fig. 4.18 SUMMARY OF ACCIDENTS ON NGONG ROAD-MUGO KIBIRU ROAD JUNCTION


\subsection*{4.4.2.1 Conflicts Versus Traffic Flow}

Conflict data were plotted against traffic flow. The unsmoothed data had a wide scatter. To facilitate the development of models these data were smoothed. Smoothing was done by calculating representative conflicts for every increase of 100 vehicles per hour. The general trend showed that conflicts increased with traffic flow up to a certain limit.

Four models were fitted to check which one fitted closely to the observed data for all the six sites. These models include:
- Power curve model
\(\left.\begin{array}{ll}- & \text { Linear } \\ - & \text { Cubic }\end{array}\right\}\) Polynomial curve models
- Logistic curve model

Figures 4.20-26 show the obtained models, the predicted data and the correlation factors. Regression analysis on the predicted ( P ) versus the observed (0) data was done and it is presented with the figures. Data from all the six sites studied were compiled and a general model for Nairobi was developed (Figure 4.26).

The following symbols have been used in Figures 4.20-4.26.
```

$C_{p}=$ Predicted conflicts
$C_{0}=$ Observed conflicts
r $=$ Correlation coefficient
$r^{2}=$ Coefficient of determination
$E_{x y}=$ Standard error
S.L = Significance level
C $=$ Conflicts
Q = Vehicular traffic flow (vehicles/hour)
$a_{1}, a_{2}, a_{3}, b=$ Constants

```
Total Conflicts Versus Total Vehicular
traffic flow

Jogoo Road Outer Ring Road Junction
Total traffic flow at this junction ranged between 600-1700 vehicles per hour. Most of the traffic was composed of cars and vans. The models developed related total conflicts ( \(C\) ) and total vehicular traffic (Q) in the \(T\)-junction.

The fitted models have a good predicting power because their gradients and \(Y\)-intercepts were near unity and zero respectively. The power and the cubic models slightly under predicted the data as shown in Fig.4.20. Error analysis showed that the linear model had the largest errors \(\left(E_{x y}=175.85\right)\) followed by the power models. Regression analysis showed that all the models (except the linear) had a good coefficient of determination




Fig. 4. 20 TOTAL CONFLICTS VERSUS TOTAL TRAFFIC FLOW ON JOGOO ROAD-OUTER RING ROAD JUNCTION
\(\left(r^{2}\right)\) ranging between 0.931 and 0.945 . All the models were significant at the 5 z significance level.

For this site the cubic model is the best model which may be used to predict conflicts. The equation is
\[
C=-3.82+6.46 \times 10^{-3} Q-9.736 \times 10^{-7} Q^{2}-4.596 \times 10^{-11} Q^{3}
\]

\section*{Mumias Road - Outer Ring Road Junction}

The total traffic flow at this junction ranged
between 400-1700 vehicles per hour. The observed conflicts showed a wider scatter compared to Jogoo Road - Outer Ring Road junction. the models developed (Fig.4.21) showed good prediction. The gradients and \(Y\)-intercept of the observed versus predicted graphs were close to one and zero respectively. Correiation values (whicr. indicate scatter) for the preaicted data \(\left(r^{2}\right)\) ranged between 0.806 and 0.82. All the models were significant at \(5 \%\) significance level. The error analysis showed that there was no significant difference between the four models developed. Comparing the gradients, \(Y\)-intercepts, coefficient of determination and errors of the four models, the power model is the best to be used for predicting conflicts. The equation is
\[
\begin{equation*}
C=9.895 \times 10^{-11} \times Q^{1.181} \tag{4.2}
\end{equation*}
\]




Fig. 4. 21 TOTAL CONFLICTS VERSUS TOTAL TRAFFIC FLOW ON MUMIAS ROAD - OUTER RING ROAD JUNCTION

Juja Road - 1st Avenue Eastleigh Road Junction
At this junction traffic flow ranged between 400-1800 vehicles per hour. The four models were fitted to relate conflicts to traffic flow (Fig.4.22). The scatter of the data was not wide as is evident from the values of the correlation coefficient ( \(r=0.910\) - 0.939). The coefficient of determination indicates that all the models fitted were able to explain at least \(84 \%\) of the observed data. The cubic model being the best was able to explain up to \(88.2 \%\) of the data.

When the prediction of the models were compared i.e. comparing the gradients and intercepts of the predicted ( \(P\) ) versus observed ( 0 ) graphs the linear model had the best with gradient \(m=1.00\), followed by the power, cubic then the logistic model Fig. 4.22. These models were all significant at \(5 \%\) level. For this site the model which may be used to predict conflicts is;
\[
\begin{equation*}
C=0.00782 Q-5.362 \tag{4.3}
\end{equation*}
\]

Mumias Road - Rabai Road Junctions
This junction had a high traffic flow in the morning and evening traffic peaks. The traffic flow ranged between \(150-1800\) vehicles per hour. The scatter of the conflict observation on the graph was not wide as


Fig. 4. 22 TOTAL CONFLICTS VERSUS TOTAL‘TRAFFIC FLOW ON JUJA ROAD - 1st AVENUE EASTLEIGH ROAD JUNCTION
is evident from the value of the correlation coefficient (r ranged between 0.938 and 0.96 ) (Fig.4.23).

The predictive power of the models was low compared to sitesl, 2 and 3. The best model was the cubic model. The linear model had a large error compared to the other three models (Fig.4.23). All the models except the linear were over-estimating the predicted conflicts because the lines testing the power of the models were having their gradient less than one. For this site all the models were significant at 5\% level. The best model which may be used for predicting the conflictsis the cubic model
\[
\begin{equation*}
C=1.65-5.197 \times 10^{-3} Q+5.78 \times 10^{-6} Q^{2}-2.152 \times 10^{-12} Q^{3} \tag{4;4}
\end{equation*}
\]

\section*{Langata Road - Muthaiti Road Junction}

The scatter of the observed data showed that conflicts at this junction rose to a maximum and then started falling. This junction which had the highest traffic flow, compared to all the sites studied was influenced by the traffic light signals at the nearby Lusaka Road - Uhuru Highway roundabout. During the study it was noted that the traffic lights which were about 200m away influenced the flow at this junction greatly.





Fig 4.23 TOTAL CONFLICTS VERSUS TOTAL TRAFFIC FLOW ON MUMIAS ROAD - RABAI ROAD JUNCTION

The traffic lights created a big headway on the Langata Road, thus allowing vehiclesfrom Muthaiti Road to join Langata Road easily.

The scatter of the observed data was not wide (except for linear) as is evident from the value of the correlation coefficient (r ranged between 0.925 and 0.947 , the linear model had \(r=0.111\), Fig.4.24). Comparing the predicted and observed values, the cubic model has the best gradient (1.134) and intercept (-0.199). This shows a good fit. The linear model had a poorer prediction with a negative gradient (-1.0). For this site the cubic model may be used to predict conflicts;
\[
C=18.944+0.02715 Q-8.6159 \times 10^{-6} Q^{2}+7.86 \times 10^{-14} Q^{3}
\]

\section*{Ngong Road - Muqo Kibiru Road Junction}

Traffic flow at this junction ranged between 400-1700 vehicles per hour. The observed data showed a relatively narrow scatter (Fig.4.25) with correlation coefficients ranging between 0.734 and 0.822 . The models developed were all significant at \(5 \%\) level.

The prediction of the models were tested by comparing the observed and predicted data. The logistic curve was found to be the best with gradient \(=1.02\)





Fig. 4.24 TOTAL CONFLICTS VERSUS TOTAL TRAFFIC FLOW ON LANGATA ROAD - MUTHAITI ROAD JUNCTION





Fig. 4. 25 TOTAL CONFLICTS VERSUS TOTAL TRAFFIC FLOW ON NGONG ROAD - MUGO KIBIRU ROAD JUNCTION
and intercept \(=0.006\), followed by the power model. For this site the logistic equation may be used to predict conflicts. The equation is:
\[
\begin{equation*}
C=\frac{9}{1+29.873^{-0.00226 Q}} \tag{4.6}
\end{equation*}
\]

General Mode 1 for All the Sites
The general model for Nairobi (all the sites) was obtained by averaging the observed data for all the six sites. All the sites combined had a traffic flow between 150 and 2100 vehicles per hour. The plotted data showed a wide scatter. This could be because of the different environmental and social set up of the different sites. For example, Mumias Road-Outer Ring Road Junction had a steep slope at one side, Langata Road - Muthaiti Road junction the traffic lights were near-by, for Juja Road 1st Avenue Eastleigh Road the pedestrian flow was very high yet their facilities had been interfered with. All these factors on these junctions could have contributed to data being scattered.

Among the models developed the cubic model predicted the data most consistently followed by the logistic, model (Fig.4.26). The predicted versus observed graph of the cubic model showed a gradient 1.33 and intercept of -1.06 . However the coefficient of determination \(r^{2}=0.555\) was fairly low with significance level
at \(5 \%\). The linear and power models had a low prediction power. For the general case in Nairobi the cubic model may be used. Its equation is:-
\[
\begin{equation*}
C=3.015+9.639 \times 10^{-3} Q-3.405 \times 10^{-6} Q^{2}+1.075 \times 10^{-11_{Q}} \tag{4.7}
\end{equation*}
\]

\subsection*{4.4.2.2 Vehicles involved in Conflicts}

Vehicles which initiated conflicts were isolated and classified according to their types i.e. Cars, Pick-ups and Vans, Buses, Lorries and Matatus. Conflicts per vehicle type, percentage of vehicle type initiating conflicts relative to the overall traffic flow and percentage of vehicle type relative to the overall traffic stream were calculated and results plotted as histograms (Fig. 4.27 to 4.33).

All the sites showed that public transport vehicles were fewer compared to other vehicle types. Saloon cars were the majority of the vehicles as is evident from Fig. 4.32 which is a general.case for the six sites.

Conflictsper vehicle type was calculated as follows:
\[
\text { Conflicts per vehicle type }=\frac{\text { All Conflicts Initiated by that }}{\text { Vehicle type }}
\]


Fig. 4.26 TOTAL CONFLICTS VERSUS TOTAL TRAFFIC FLOW ON

Percentage of the vehicle type in the traffic stream was calculated as follows:
Percentage of vehicle type \(=\frac{\text { Total number of vehicle type }}{\text { Total number of vehicle in }}\)
(Vehicle composition)
traffic flow

Percentage of vehicle type initiating conflicts relative to the overall traffic flow was calculated as follows:
Percentäge of vehicle type \(=\frac{\)\begin{tabular}{l}
\text { Number of vehicle type } \\
\text { initiating conflicts }
\end{tabular}}{\text { initiating conflicts }} \begin{tabular}{l} 
Overall traffic flow on the \\
junction
\end{tabular}

The following colours were used to draw the histogram of fig. 4.27 to 4.33 and they represent:
\[
\begin{aligned}
\text { Blue }= & \text { Conflicts per vehicle type } \\
\text { Green }= & \text { Percentage composition of vehicle type } \\
& \text { relative to the total traffic flow on the } \\
& \text { function. } \\
\text { Pink }= & \text { Percentage of vehicle type initiating } \\
& \text { conflicts relative to the overall traffic } \\
& \text { flow on the junction. }
\end{aligned}
\]

Using conflicts per vehicle type as a measure of . the relative safety of a vehicle type it may be inferred from Figures 4.27 to 4.33 that public transport vehicles are quite unsafe. For example, using Fig. 4.33 which



Fig. \(4.27(b)\) Percentage of conflicting vehicles relatipe to totai traffic flow.


Fig. 4.28 (a) Conflicts and Percentage Composition per vehicle type,site 2.


Fig.4.28(b) Percentage of conflicting
vehicles relatiye to total traffic flow.





Fig. 4.31 (a) Conflicts and Percentage Composition per vehicle.type,site 5 .




Fig.4.32 (b) Percentage of conflicting vehicles relative to total traffic flow.



P/Vans
Buses
Lorries Matatu
Fig.4.33(b) Pereentage of conflicting vehicles relafive to totial traffic flow.
represents a general case for all the six junctions studied, it is about seven times safer to travel by a saloon car than by matatu. A car has the added advantage of being comfortable, faster and convenient. From this study it may also be inferredthat buses are two and half times safer than matatus (Fig.4.33).

The percentage of public transport vehicles in the traffic stream is quite small and yet they lead in the number of conflicts they initiate (this case applies to matatus mostly). Thisprompted a further study on matatu operation.

\subsection*{4.5 Matatu Operation}

Matatus had been operating in Nairobi since the 1950s as "illegal" Public Service Vehicles (PSV). In 1973 they were legalised and exempted from Transport* Licensing Board (TLB) and PSV licensing by a Presidential Decree (26). This classified their operation as private taxis. However, this exemption was mis-used by matatu operators and it led to frequent accidents because the matatus used were unroad worthy. The period 1973-84 recorded the greatest growth in matatus in Kenya. In Nairobi alone the number rose from about 400 to 1700 (27). The 1984 amendment of the Traffic Act classified' matatus as PSVs and hence were required to undergo an annual police supervised vehicle inspection. This has left relatively newer matatus on the road.

The analysis of the conflict data indicated that conflicts per matatu were relatively high compared to other types of vehicles. This prompted a further study on their operation within Nairobi. Because of the time constraint a small sample (40 Matatus) was taken to study the situation. The sample however gave satisfactory trends. The study involved interviewing drivers, conductors, touts, matatus owners, Matatu Vehicle Owners Association (MVOA), financing firms, insurance firms and vehicle dealers. The number of those interviewed is shown in table 4.3 Table 4.3 The number of people interviewed.
\begin{tabular}{|l|c|c|c|c|c|c|c|}
\hline & \begin{tabular}{l} 
MVOA \\
H/Q
\end{tabular} & \begin{tabular}{l} 
Matatu \\
Owners
\end{tabular} & \begin{tabular}{l} 
Drivers + \\
Conductors
\end{tabular} & \begin{tabular}{l} 
Finan- \\
cing \\
Firms
\end{tabular} & \begin{tabular}{l} 
Insurance \\
Companies
\end{tabular} & \begin{tabular}{c} 
Vehicle \\
Valuers
\end{tabular} & \begin{tabular}{c} 
Vehicle \\
dealers
\end{tabular} \\
\hline \begin{tabular}{l} 
Number \\
Inter- \\
viewed
\end{tabular} & 3 & 10 & 40 & & & & \\
\hline
\end{tabular}

\subsection*{4.5.1 The Existing Situation in the Matatu Industry}

Matatu owners are brought together by their central bodies; MVOA and Matatu Association of Kenya MAK. MVOA is divided into branches which run their affairs independently especially financial affairs. The central body of MVOA only controls the branches in making collective resolutions in general meetings.

Each branch organises their parking and waiting bays in the city centre. Membership per matatu fee is paid once in the
life time of a matatu and it varies from Kshs. 1000 to Kshs. 1600 per year depending on the branch. There is a daily subscription of twenty shillings.

Most matatu owners are not engaged in the running of the matatus, instead they leave them to drivers and conductors who man them. Data collected indicated that there was a minimum stipulated amount the driving crew had to collect by the end of the day. Targeted amounts varied depending on the capacity and route followed by the vehicles. Table 4.4 shows these average values which excludes fuel cost, driving crew allowance and salaries.

Table 4.4 Minimum stipulated amount per day
\begin{tabular}{|l|c|c|c|c|c|}
\hline \begin{tabular}{l} 
Route \\
Followed
\end{tabular} & \begin{tabular}{c} 
Parklands \\
12
\end{tabular} & \begin{tabular}{c} 
Uthiru/Kangemi \\
\(22 / 23\)
\end{tabular} & \begin{tabular}{c} 
Dandora \\
\(40 / 32\)
\end{tabular} & \begin{tabular}{c} 
Kibera \\
8
\end{tabular} & \begin{tabular}{c} 
Kawangware \\
46
\end{tabular} \\
\hline \begin{tabular}{l} 
Nissans \\
(or vans) \\
18 passe- \\
ngers(Kshs)
\end{tabular} & 700 & 600 & - & - & 800 \\
\hline \begin{tabular}{l} 
Mini- \\
Buses \\
25 passe- \\
ngers(Kshs)
\end{tabular} & - & 1500 & 1400 & 1500 & 1700 \\
\hline
\end{tabular}

It was found out that \(95 \%\) of the driving crew was paid on a daily basis. This system was mainly preferred by the crew because they could change to another vehicle any time they sowished or whenever the previcus vehicle was grounded either by mechanical problems or an accident.

This method of payment guaranteed their income. It was also found out that some drivers (5\%) were paid depending on the number of return trips they made per day. For a minibus payment was up to ten shillings per return trip hence the more trips a driver makes per day the more money he earns.

Financing institutions insist on buying of a new vehicle' which must be comprehensively insured during the loan period. For the purchase of amatatu,financiers insist that buyers raise \(50 \%\) of the loan so that the balance is paid within 18-24 months. The interest ratep.a is normally 18\%. Before a prospective buyer is financed his background is investigated to check if there is an alternative source of income which can subsidise the repayment in case the matatu business fails. Slowly financiers are tightening the financing terms of matatus in order to move away from the whole business. This is because for the last four years (1984-88) the prices of vehicles have almost doubled, hence repayment of the loans is increasingly becoming a problem.

Initially matatus were insured by individual insurance companies but because of their high accident rates, insurance companies started refusing insuring matatus. This necessitated the formation of the Kenya Motor Insurance Pool (KMIP) to save the matatu industry.

The pool insures public service vehicles and transport vehicles. Currently most insurance companies are agents of the KMIP hence they do not pay for accidents claims directly. All claims are forwarded to the KMIP.

There are three types of motor insurance and are categorised as follows:
- Third party insurance is aimed at covering passengers and properties damaged. This policy does not cover the vehicle itself, calculation of this policy is based on historic data of claims.

Third party (fire and theft) covers passengers, properties damaged and the vehicle against fire and theft only (not accidents). Its calculation is as follows

Policy \(=\) Third party policy \(+7.5 \%\) the value of vehicle.
- Comprehensive insurance covers the vehicle, passengers and properties damaged. The calculation is based on the following formula.
\[
\begin{aligned}
\text { Comprehensive policy }= & \text { Third party policy }+15 \% \\
& \text { the value of vehicle. }
\end{aligned}
\]

\subsection*{4.5.2 Matatu Operation Costs}

Matatus are PSVs owned by individual enterpreneurs. Their mainteinance varies from owner to owner. However they have a striking similarity in that they are intensively used. This is to ascertain that more trips are made per day either to make more profits or to break even.

Matatu operation costs were studied so that it could be possible to understand why matatus are used intensively to the extent that a new matatu rarely exceeds four years running on the road. Because of a constrain in the availability of resources, it was only matatus operating within Nairobi which were studied.

Matatus were divided into two major classes depending on their seating capacity. There were those with a seating capacity of eighteen and those with a seating capacity of twenty five. During the study it was noted that matatus especially those with a seating capacity of twenty five (mini-buses) were grossly overloaded up to seventy passengers). This greatly reduced the life and stability of these vehicles.

The twenty five seater matatus are usually bought new but most of the eighteen seater matatus which are mainly Nissans are bought from tour companies. In this study matatus were studied in two phases; when the vehicle was under the loan repayment period i.e. the first one and half years and when there was no loan repayments.

The depreciation rate of matatus is quite high because of the intensive use to which they are put. Components which have the highest rate of wear and tear re brakes, tyres and the gear box. Engine overhaul was quite common. Matatu depreciation rates were calculated by plotting the advertised prices against their ages (28). These prices assumed the willing seller willing buyer principle. Such a situation takes into account the market value of the vehicle relative to new vehicles. Regression analysis was done on the plotted data to produce a model of the variation of prices with ages of vehicles (Fig.4.34 and 4.35). The curves are the obtained models and are given by the following equations:
```

For the Twenty five seater matatu (minibus)

```
(Fig. 4.34)
\[
\begin{aligned}
& \mathrm{P}=3.5356 \times 10^{5} \mathrm{e}^{-0.1367 A} \\
& \mathrm{r}^{2}=0.861
\end{aligned}
\]

For the eighteen seater matatu (Fig.4.35)
\[
\begin{align*}
& \mathrm{P}=2.5929 \times 10^{5} \mathrm{e}^{-0.1294 \mathrm{~A}}  \tag{4.2}\\
& \mathrm{r}^{2}=0.821
\end{align*}
\]


Fig. 4. 34 PRICES OF TWENTY FIVE SEATER MATATU

where
\[
\begin{aligned}
& \mathrm{P}=\text { price in shillings in } 1988 \\
& \mathrm{~A}=\text { age of matatu in years } \\
& \mathrm{r}^{2}=\text { coefficient of determination }
\end{aligned}
\]

These models were differentiated to calculate the average depreciation per given time.
\[
\left.\frac{d p}{d t}=\frac{p_{2}-p_{1}}{t_{1}-t_{2}}\right)=\frac{\Delta p}{\Delta t}
\]

Equation 4.3 is the slope at a point along the curves. This also representsthe depreciation per time \(\Delta t\). For this study \(\Delta t\) was taken as 0.25 years. Therefore depreciation per day was obtained by dividing \(\frac{d p}{d t}\) by 90 days.

Depreciation per day \(=\left(\frac{d p}{d t} \times \frac{1}{90}\right)\). This was
plotted against age (Fig.4.36). From the curves of Figure 4.36 it is possible to obtain the average depreciation per day of a matatu given its age and carrying capacity. For example, considering a four year old matatu, using Fig. 4.36 atwenty-five seater depreciates at Kshs. 80.00 per day while an eighteen-seater matatu of the same age depreciates at Kshs.60.000 per day. Fig. 4.36 was used to obtain the depreciation values which werefilled in Tables 4.5 and 4.6.


Fig. 4.36 DEPRECIATION OF EIGHTEEN AND TWENTY FIVE SEATER-MATATU

Operation costs were reduced to costs per day so that they could be compared with the daily fares collected. Tables 4.5 and 4.6 show all the reduced costs and revenues per day. The figures in bracket are costs paid once in the life time of a matatu (that is fixed cost) for example, MVOA membership fee. These costs were not reduced to per day because it was not possible to predict how long the matatu could stay operating as a matatu. MVOA membership fee is paid per matatu. If one person has more than one matatu be has to register each matatu separately.

In Tables 4.5 and 4.6 a theoretical matatu has been added which only carries the required or insured passengers. It is assumed that this matatu is not paying any loan. From these tables it is clear that such a matatu will never make any profit. This suggests that matatu operators are actually forced by circumstances to overload so they may realise some profits.

\subsection*{4.5.3 Findings}

Matatus operating within Nairobi cover about 300 kilometres per day. This implies that matatus move at high speeds and take risks in some situations because the traffic concentration is quite high. Matatus have been noted for stopping anywhere along the road to pick passengers at the same time ignoring other motorists. The frequent stops and take-off introduce high wear and tear rates for the orakes, tyres and the vehicle in general.

Fitle 4.5: Sumary of Matatu operation costs (Twenty-five seater)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{6}{|c|}{VEHICLE UNOER LOAN PERIOD} & \multicolumn{6}{|c|}{loan completed} & \multirow[t]{2}{*}{Useing lega! capacity} \\
\hline & KXX & KYp & KYG & KXV & Kx2 & KXY & KHL & KH2 & KHN & KTL & KHA & KXA & \\
\hline Age (years) & 1.75 & 0.7 & 1.6 & 2.6 & 1.8 & 1.5 & 4.6 & 3.5 & 4.1 & 8 & 4.5 & 3.1 & \\
\hline \multicolumn{14}{|l|}{: COSTS} \\
\hline Purchase price & (592ge0 & (400068 & 550606 & (520600 & 526908 & (560808) & 410008 & 426006 & 450698 & - & 458800 & 460800 & - \\
\hline Deposit & (148600) & 2520日句 & 180060 & (208008 & 240008 & (286080) & - & - & - & - & -' & 1150698 & \\
\hline Instalment per & 750 & 656 & 750 & 533.3 & 529 & 616.67 & - & - & - & - & & (15098) & \\
\hline day & & & & & & & & & & & & & \\
\hline Insurance & 252.85 & 252.65 & 252.65 & 249.32 & 252.85 & 252.85 & 49.32 & 49.32 & 109.6 & 45.60 & 42.60 & 49.32 & 49.32 \\
\hline Road License & 3.56 & 3.56 & 3.56 & 3.562 & 3.56 & 3.562 & 3.56 & 3.56 & 5.56 & 3.56 & 3.56 & 3.56 & 3.56 \\
\hline RUOA(a) Meabership & & & & & & & & & & & & & \\
\hline (b) Subscr- & 26 & 28 & 26 & 28 & 20 & 26 & 28 & 26 & 26 & 26 & 20 & 28 & 20 \\
\hline iption & & & & & & & & & & & & & \\
\hline Payment period & 22 & 26 & 22 & 28 & 18 & 18 & 18 & - & - & - & - & - & - \\
\hline (Eonths) & & & & & & & & & & & & & \\
\hline Fuel costs & 496 & 486 & 406 & 498 & 450 & 400 & 450 & 400 & 408 & 480 & 450 & 426 & 406 \\
\hline Tyres & 250 & 226 & 226 & 486 & 229 & 150 & 166.7 & 220 & 120.53. & 150 & 160.7 & 166.7 & 28 \\
\hline Salary & 210 & 246 & 210 & 286 & 199 & 218 & 210 & 298 & 226 & 180 & 210 & 198 & 206 \\
\hline Allowance & 108 & 96 & 165 & 110 & 110 & 90 & 110 & 195 & 136 & 88 & 85 & 106 & 168 \\
\hline Hisc. Expenses & 208 & 106 & 260 & 206 & 120 & 150 & 160 & 108 & 216 & 296 & 160 & 120 & 120 \\
\hline lidintenance & 197.48 & 71.43 & 150 & 180 & 165 & 111.43 & 271.42 & 194 & 133.33 & 250 & 178 & 166 & 120 \\
\hline Overhaul & - & - & - & - & - & - & - & 18.26 & 25.6 & 34.72 & - & - & - \\
\hline Axle differentia & 1 - & - & - & - & - & - & - & - & - & - & - & - & - \\
\hline Gear Box & 1- & - & - & - & - & - & - & 27.48 & 22.75 & 18.96 & - & - - & - \\
\hline Morking hours/ day & 12 & 14 & 14 & 16 & 15 & 13.5 & 12 & 12.5 & 13 & 12.5 & 16 & 14 & 12 \\
\hline depre./day & 82.6 & 36.6 & 41.0 & 36.6 & 36.8 & 68.8 & 60.8 & 36.6 & 98.8 & 41.0 & & & \\
\hline Total & 2495.81 & 2195.64 & 2465.61 & 2150.72 & 2160.61 & 2164.34 & 1522.58 & 1515.54 & 1773.37 & 1372.84 & 1329.88 & 1823.58 & 1232.88 \\
\hline  & ==z=z== & z=z===z & =z= \(=\) \% & =avz= & z=r=z= & =zz= \(=\) \% & =zz=z= & zzz= \(=\) = & :zzะ:z= & =zz= & = \(=\) = \(=\) = & z \(2 \times \pm=3\) & :zzzzะz= \\
\hline \multicolumn{14}{|l|}{7. Revenue} \\
\hline Mh, per day & 2566 & 2668 & 2898 & 2686 & 2496 & 2566 & 2450 & 2658 & 2390 & 2186 & 2208 & 2688 & \\
\hline fin, per day & 1888 & 2188 & 2080 & 1808 & 2608 & 1708 & 1806 & 1608 & 1890 & 1486 & 1788 & 1788 & \\
\hline Working day/ bet & 7 & & 6 & 6 & 7 & 6 & 7 & 6 & 6 & 5 & 6 & 7 & \\
\hline Trip/day & & & 13 & 12 & & & & 14 & 12 & 10 & 11 & 12 & \\
\hline Istance & 14 & 18 & 18 & 12 & 18 & 12 & 12 & 14
8 & 12 & 18
8 & 118 & 12 & 10 \\
\hline houte followed & 48 & 22 & 22 & 46 & 22 & 46 & 12
46 & 8 & 18
22 & 8 & 8 & 42 & 12
46 \\
\hline Thaured people & 25 & 25 & 25 & 25 & 25 & 25 & 25 & 25 & 25 & 25 & 25 & 25 & 25 \\
\hline Cipacity & 75 & 78 & 65 & 63 & 65 & 70 & 65 & 65 & 68 & 50 & 40 & 56 & - \\
\hline dre collection & 2150 & 2358 & 2480 & 2200 & 2206 & 2100 & 2109 & 2125 & 2654 & 1758 & 2156 & 2300 & 1125 \\
\hline
\end{tabular}

Table 4.6: Sunary of matatu operation costs (eighteen spater)


Table 4.5 and 4.6 indicate that tyres are changed after an average of two months, brakes are adjusted and oil changed every week.

Table 4.7 presents a summary of matatu operation costs and revenues per day. From this table it is clear that some matatus never make profits at all. For some the profit margin is quite small (less than 200 shillings per day). When matatus are repaying back loans to the financing firms, they rarely make profits. To break even financially matatus have to be used intensively and overloaded. In case such matatus are involved in major accidents or major overhauls (which is likely because of the way they are used) then it becomes absolutely impossible for the vehicle to be brought to the road because the owner might not have enough money as reserve for such unfortunate events. This explains why drivers prefer being paid on a daily basis so that their income is guaranteed and can move to the next moving matatu. That is also why financing firms have tc ascertain alternative sourcesof income for matatu owners and are additionally tightening their terms on loans for matatus.

The study has shown (Table 4.7 ) that matatus repaying loans to financing institutions rarely break even financially. This is more common with the twenty five seater matatus because all these vehicles are bought with the initial

TABLE 4.7 ：SLMMARY OF MATATU REVENUE／COSI PER JAY
（a）TWENTY FIVE SEATER MATATC
\begin{tabular}{|c|c|c|c|c|}
\hline Registration Number & Revenue per day（Ksh．） & Operation cos：s per day．（Kshs． & ミニこítsiLosses （Kshs） & \\
\hline KXT & 2150.00 & 2495.01 & －345．01 & \\
\hline KYP & 2350.00 & 2195.04 & 154.96 & Under \\
\hline KYG & 2400.00 & 2405.61 & － 65.61 & the loan repayment \\
\hline KXV & 2200.00 & 2150.78 & 49.28 & pe \\
\hline KXZ & 2200.00 & 2160.61 & 39.39 & \\
\hline KXY & 2100.00 & 2164．34 & －64．34 & \\
\hline KXA & 2300.00 & 1823.58 & ＋76．42 & \\
\hline KWL & 2100.00 & 1522.58 & 577.42 & \\
\hline KWZ & 2125.00 & 1515.54 & 609.46 & Loan \\
\hline KWM & 2050.00 & 1773.37 & 276.63 & completed \\
\hline KTL & 2750.00 & 1372.34 & 377.16 & \\
\hline Kh＇A & 2150.00 & 1329.86 & 820．14 & \\
\hline \[
\begin{aligned}
& \text { Using } \\
& \text { Legal capacity }
\end{aligned}
\] & 1125.00 & 1232.88 & －105．88 & \\
\hline
\end{tabular}
（ The negative value means that the parEicular matatu is making a loss．）
（The theoretical matatu is assumed not to overload and there is no loan repayment considered．In case loan repayment could be considerec tíen the loss could be large．）

Table 4.7 (b) EIGHTEEN SEATER MATATU
\begin{tabular}{|l|c|c|c|}
\hline \begin{tabular}{l} 
Registration \\
Number
\end{tabular} & \begin{tabular}{c} 
Revenue \\
per day (Kshs.)
\end{tabular} & \begin{tabular}{c} 
Operation costs \\
per day.(K.shs.)
\end{tabular} & \begin{tabular}{c} 
Profits/Losses \\
(Kshs.)
\end{tabular} \\
\hline KYA & 1625.00 & 1751.08 & -126.08 \\
KTQ & 1260.00 & 1227.81 & 32.19 \\
KVH & 1220.00 & 1017.20 & 202.80 \\
KTM & 1225.00 & 1181.33 & 43.67 \\
KWV & 1150.00 & 884.53 & 265.47 \\
KTJ & 1075.00 & 1052.81 & 22.19 \\
KYU & 1525.00 & 918.33 & 606.67 \\
KVW & 1350.00 & 914.9 & 385.1 \\
KWZ & 1350.00 & 947.23 & 402.77 \\
KTW & 1300.00 & 1246.99 & 53.01 \\
\hline
\end{tabular}
(Generally it is only possible to overload by a maximum of two passengers. This is because of the way the body is designed.)
purpose of serving as matatus. If such vehicles manage to repay all their loans before they cause an accident or before they are repossessed by the financiers then some profits may be realised. This also depends on their condition because if they were poorly maintained when loans were being repaid then the law enforcing authority may not allow such matatus to go through inspection units or even use the public roads.

Table 4.7 shows that the eighteen seater matatus make profits (up to 600 shillings per day). This is because such vehicles are bought from tour operators as second-hand vehicles and hence owners have no loans to repay. If such loans exist their repayment is low and their insurance is third party policy. Even for such vehicles which make profits, to do so they must be overloaded and run at high speeds.

Operating. overloaded matatus at high speeds and also the taking of big risks by drivers increases the accident and conflict chances for matatus. This explains why individual insurance companies stopped selling insurance policies for matatus. The KMIP always makes losses despite the high premiums and each year it calls upon individual insurance companies to contribute so as to offset the accident claims. This also explains why insurance policies are quite expensive.

Matatu owners rarely realise that they are making losses because costs like, insurance, road licence, deposit for acquiring matatus comes once in a year. Some costs like depreciation, accident costs and overhaul are generally not considered. Hence they are convinced that the business is profitable.

\section*{CHAPTER 5}

\section*{DISCUSSION}

This study was carried out in Nairobi and was concerned with road traffic conflicts and accidents on selected T-junctions in Nairobi. The study was undertaken to evaluate the problems and at times indicate solutions of \(T\)-junctions using conflict and accident data. It was also anticipated that models were to be developed relating conflicts to traffic flow.

During the data analysis it was found that matatus initiated more conflicts than any other vehicle type. This prompted a further study on their operation costs. Section 5.1 discusses the accident data for the various junctions studied while section 5.2 discusses the results of the conflict study and matatu operations are diseussed in section 5.3 .

\subsection*{5.1 Accidents and Conflicts}

When accident and conflict data were analysed it was not possible to develop a model relating conflicts to accidents. This could be because the observation period for conflicts was short. Movements of vehicles before they were involved in accident or conflicts were plotted, for most sites the accident plots were the same as conflict plots. Using these plots it was
possiole to identify problems of particular sites. Following are some of the identified problems of particular \(T\)-junctions.

\subsection*{5.1.1 Joqoo Road - Outer Ring Road Junction}

The main problems of this junction were that matatus stopped to pick passengers at the junction, overtaking at the junction area, traffic from the minor road pushed into the main road without necessarily getting adequate headway and road markings were lacking.

The solution to the problems at this junction should include clear road marking, channelization at the junction, the present position of the bus bay should be relocated and reflectors erected near the junction. The possibility of using signalised traffic light should be considered, this will segregate the traffic flow from each leg of the junction.
5.1.2 Mumias Road - Outer Ring Road Junction

The steep gradient from the railway bridge side (Fig.4.3) seems to encourage the occurrence of accidents and conflicts at the junction. The solution to such a problem may be to relocate the junction or reduce the approach gradient to the junction.
5.1.3 Juja Road lst Avenue Eastleigh Road Junction This junction had a high vehicular and pedestrian flow. Traffic from the minor road was pushing too hard into the main road thus initiating conflicts, also as noted earlier the road reserve had been seriously interfered with by erection of illegal structures.

Some solutions to the problem of this junction include channelization of the junction, use of traffic lights, removing any structures erected within the road reserve and providing pedestrian facilities such as zebra crossings, side fencing etc.

\subsection*{5.1.4 Mumias Road - Rabai Road Junction}

Some of the problems at this junction are associated with the nature of the human element, with some drivers overtaking at the junction area and some stopping at the junction area to pick passengers. Accident data suggests that lighting could be a problem at this junction because over \(50 \%\) of the accidents occured between 6.30-9.00 p.m. Erecting reflectorised studs at the junction may help in improving visibility at night.

\subsection*{5.1.5 Langata Road - iMuthaiti Road Junction}

From the accident and conflict plots shown in Fig. 4.16 and 4.17 it is clear that traffic from the minor leg is forcing its way into the major road. This clearly suggests that the junction is operating beyond
its capacity. The solution to such a problem is to channelize the junction and use traffic lights which must be synchronised with those on the Uhuru highway roundabout.
5.1.6 Ngong Road - Mugo Kibiru Road Junction

The main problem at this junction is related to the human element. During the conflict stuay it was noted that some drivers especially matatu and bus drivers forced their way into the main flow even though the traffic flow along the main road was not high. However, this was the only junction with very few serious and slight conflicts, most of them were potential conflicts.

\subsection*{5.2 Conflicts and traffic flow}

This section discusses the various models developed to predict conflicts given the traffic flow at a T-junction. The models developed for each site are compared to check which one explained the observed conflicts closely. On this basis the best model was selected and recommended for that site or traffic situation.

The following symbols have been used throughout Section 5.2.1:
\(m \quad=\) gradient of observed versus predicted data graphs.
c \(\quad=\) intercept of observed versus predicted data graphs
\(r\) = correlation coefficient
\(r^{2}=\) coefficient of determination
\(E_{x y}=\) standard error
S.L \(=\) significance level
5.2.1 Total Conflicts versus Total Traffic Flow

Jogoo Road - Outer Ring Road-Junction
Traffic flow at this junction ranged from 600 to 1700 vehicles per hour. Results of the models fitted are shown in Fig. 4.20 whose summary is on Table 5.1.

Table 5.1 Comparison of models fitted on site 1
\begin{tabular}{|l|l|l|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ Model } & m & c & r & \(r^{2}\) & \(\mathrm{E}_{\mathrm{XY}}\) & S.L. (\%) \\
\hline Power & 1.015 & 0.068 & 0.972 & 0.945 & 1.04 & 5 \\
Cubic & 1.09 & 0.127 & 0.972 & 0.944 & 0.32 & 5 \\
Logistic & 1.223 & -0.993 & 0.965 & 0.931 & 0.72 & 5 \\
Linear & 0.948 & 0.284 & 0.939 & 0.882 & 175.85 & 5 \\
\hline
\end{tabular}

Table 5.1 shows that all the models developed predict well since their gradients and intercepts are close to unity and zero respectively. The power curve is a better model because its values are close to ideal values
followed by cubic, linear and the logistic models. The coefficients of determination show that all the models are equally good because their values are not significantly different ( \(x=0.88-0.945\) ).

The error analysis suggests that the cubic predicted data had the smallest standard error than logistic, then power models. The error on the linear model was quite large. However, all the models were significant at 5\% level.

For this site, within a total traffic' flow ranging between 600 and \(1700 \mathrm{veh} / \mathrm{h}\), the cubic curve may be used to predict conflicts. This is equation 4.1 .

\section*{Mumias Road - Outer Ring Road Junction}

The summary of the analysis on this site which had a traffic flow between 400-1700 vehicles per hour is as follows in Table 5.2.

Table 5.2 Summary of models fitted in site 2
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline \multicolumn{1}{|c|}{ Model } & \multicolumn{1}{|c|}{\(m\)} & \multicolumn{1}{c|}{\(c\)} & \(r\) & \(r^{2}\) & \(E_{x y}\) & \(S . L(\%)\) \\
\hline Power & 1.036 & 0.0036 & 0.820 & 0.672 & 1.51 & 5 \\
Cubic & 0.870 & 0.566 & 0.80 & 0.649 & 1.59 & 5 \\
Logistic & 0.95 & 0.167 & 0.819 & 0.670 & 1.52 & 5 \\
Linear & 0.739 & 1.39 & 0.818 & 0.67 & 1.53 & 5 \\
\hline
\end{tabular}

The gradient and the intercept of the observed versus predicted data for the power model suggests that it predicts better than the logistic which is followed by the cubic then the linear models. Statistical analysis showed that the models were not significantly different because the values of \(r, r^{2}\) and \(E_{x y}\) were similar for all the models as shown in Table 5.2. For this site equation 4.2 may be used to predict conflicts within a traffic flow of 400 to 1700 vehicles per hour.

Table 5.3 summarises the conflicts data analysis for this site.

Table 5.3 Summary of fitted models for site 3
\begin{tabular}{|l|l|c|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ Models } & m & c & r & \(\mathrm{r}^{2}\) & \(\mathrm{E}_{\mathrm{XY}}\) & \(\mathrm{S} . \mathrm{L}(\%)\) \\
\hline Power & 0.963 & 0.502 & 0.91 & 0.828 & 1.32 & 5 \\
Cubic & 1.26 & -0.738 & 0.939 & 0.882 & 0.92 & 5 \\
Logistic & 2.297 & -0.084 & 0.924 & 0.848 & 23.01 & 5 \\
Linear & 1.00 & 0.008 & 0.899 & 0.81 & 1.48 & 5 \\
\hline
\end{tabular}

The fitting of the logistic curve looks poor judging from the steep gradient ( \(m=2.297\) ). Errors on the predicted data in respect of the observed data seem to be large \(\left(E_{X Y}=23.01\right)\). This suggests that the logistic model should not be used at this site.

Linear and power models predict the conflicts fairly well judging from the gradients and intercepts (linear best with \(m=1, c=0.008\) ). Coefficient of determination show that the models are not significantly different (ranged between \(r^{2}=0.828\) to 0.882 ) and all the models were significant at \(5 \%\) level. Within a traffic flow of 400 to 1800 vehicles/hour, equation 4.3 may be used to predict conflicts.

Mumias Road - Rabal Road Junction
Table 5.4 Comparison of models fitted on site 4.
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline Model & \(m\) & \(c\) & \(r\) & \(r^{2}\) & \(E_{x y}\) & S.L. (\%) \\
\hline Power & 0.339 & 0.466 & 0.938 & 0.88 & 0.591 & 5 \\
Cubic & 0.739 & 0.113 & 0.935 & 0.917 & 0.403 & 5 \\
Logistic & 0.677 & 0.295 & 0.960 & 0.921 & 0.39 & 5 \\
Linear & 1.40 & -0.65 & 0.883 & 0.780 & 1.17 & 5 \\
\hline
\end{tabular}

Table 5.4 summarizesthe conflict data analysis. The gradient ard intercept of the observed versus predicted data suggest that the models poorly predict the conflicts. The cubic function is slightly better with slope of 0.729 and irtercept 0.13 . Values of \(r, r^{2}\) and \(E_{x y}\) for all the models were not significantly different.

For this site the cubic model (equation 4.4) may be used as a better model for prediction within a traffic flow of 150 to 1800 vehicles/hour.

Langata Road - Muthaiti Road Junction

Table 5.5 Comparison of fitted models for site 5
\begin{tabular}{|l|r|r|r|r|r|l|}
\hline \multicolumn{1}{|c|}{ Model } & \(m\) & \(c\) & \(r\) & \(r^{2}\) & \(E_{x y}\) & S.L(\%) \\
\hline Power & 4.37 & -2.80 & 0.94 & 0.884 & 0.142 & 5 \\
Cubic & 1.13 & -0.199 & 0.947 & 0.896 & 0.34 & 5 \\
Logistic & 2.46 & 1.241 & 0.925 & 0.856 & 0.015 & 5 \\
Linear & -1.0 & 2.85 & -0.111 & 0.013 & 1.02 & \begin{tabular}{l} 
Not signi- \\
ficant
\end{tabular} \\
\hline
\end{tabular}

This junction had the highest traffic flow ranging between 800 to 2100 vehicles per hour. It was noted that with a flow of up to 1050 vehicles per hour, there were no conflicts recorded at this site (Fig.4.24). This implies that the junction was safer compared to the other sites studied. This could be due to the influence of the traffic lights (about 200 m away) on the Uhuru highway Lusaka road roundabout.

At this junction conflicts rose to a maximum and then started decreasing. Table 5.5 summarizes the data anlysis.. From this table the cubic model gave the best prediction with slope 1.13 and intercept -0.199 , other models especially the linear predicted very poorly. All the models except the linear were significant at \(5 \%\) level. Equation 4.5 may be used to predict conflict for this"site.

\section*{Ngong Road-Mugo Kibiru Road Junction}

Table 5.6 Comparison of Models fitted on site 6.
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline \multicolumn{1}{|c|}{ Model } & m & c & r & \(\mathrm{r}^{2}\) & \(\mathrm{E}_{\mathrm{xy}}\) & \(\mathrm{S} . \mathrm{L}(\%)\) \\
\hline Power & 1.215 & -0.40 & 0.739 & 0.546 & 1.49 & 5 \\
Cubic & 0.692 & 0.389 & 0.734 & 0.539 & 1.09 & 5 \\
Logistic & 1.012 & -0.006 & 0.739 & 0.548 & 1.06 & 5 \\
Linear & 1.22 & -0.54 & 0.822 & 0.676 & 1.12 & 5 \\
\hline
\end{tabular}

Table 5.6 summarizes conflict data analysis for this site. Traffic flow ranged from 400 to 1700 vehicles per hour. The prediction of the logistic curve is better than the other models judging from the slope (1.02) and intercept (-0.006). Coefficients of determination, standard errors and correlation coefficients were not significantly different for each model. However, for this site the coefficient of determination was low (about 0.54) for all the models compared to the other sites studied. This shows that the observed data had a wide scatter. All the models developed were significant at \(5 \%\) level. The logistic model (equation 4.6 ) may be used to predict conflict at this site.

General case for all the \(T\)-junctions studied
All the conflicts of the same traffic flow for all the six \(T\)-junctions studied were added and then averaged. This gave the representative conflicts for particular traffic flow. The obtained data showed wide scatter may be because sites of different social, topographic and environmental set up were combined together. For example Mumias Road - Outer Ring koad junction had a steep gradient from one side. Ngong Road - Mugo Kibiru Road junction was on a flat area and traffic light at Uhuru highway - Langata Road roundabout had an influence on the traffic flow on the adjacent Langata Road - Muthaiti Road junction.

The general case showed that traffic flow ranged between 150 to 2100 vehicles per hour. Conflicts rose to about seven and then started decreasing. The decrease could be because as the traffic flow rose, vehicles no longer had the chance of overtaking hence reducing the chances of initiating conflicts.

Table 5.7 compares the models fitted on the generalized case. Among the four models fitted the cubic model predicts conflicts best with gradient 1.33 and intercept -1.06. For all the models the coefficient of determination ( \(r\) ) was low (ranged between 0.51 to 0.745 ) showing that the scatter of the observed data was wide.

Comparing the four fitted models (Table 5.7) using their gradient, intercept, coefficient of determination, standard error and level of significance the cubic model is the best to predict conflicts for a general case in Nairobi.

Table 5.7 Comparison of models fitted on general case
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline Model & \multicolumn{1}{|c|}{\(m\)} & \(c\) & \(r\) & \(r^{2}\) & Exy & S.L. (\%) \\
\hline Power & 0.669 & 0.88 & 0.589 & 0.347 & 2.47 & 5 \\
Cubic & 1.33 & -1.063 & 0.745 & 0.555 & 1.33 & 5 \\
Logistic & 0.896 & 0.896 & 0.267 & 0.267 & 2.77 & 25 \\
Linear & 7.64 & -21.17 & 0.424 & 0.424 & 2.14 & 5 \\
\hline
\end{tabular}

The cubic model which may be used to predict conflicts for a general case in Nairobi is (significant at 5\% level) shown as equation 4.7.

These models may be refined further such that given the same conditions as, gradients, pedestrian flow, sight distance, etc, they may be applied to other placed to predict conflicts on simple unsignalized \(T\)-junctions.

\subsection*{5.3 Matatu Operation}

Table 4.7 summarizesthe operation costs and revenues of matatus-per day. From this table it is evident that matatus which are repaying loans to financial institutions do not make profits or if they do the profit margin is small (ranges Kshs. 100 to 300 ). During the loan repayment period (normally 18-24 months) the particular matatus are comprehensively insured. Comprehensive insurance of a new twenty five seater matatu is Kshs.93,000 per year. If such a matatu is repaying back a loan at the rate of Kshs.18,000 per month, such matatu owners find it impossible to make profits, and thus matatu owners encourage their drivers to drive at high speeds,to overload, and ignore traffic regulations. These incentives may be in form of paying the drivers per day, giving them good allowances, paying them per trip or even stipulating a minimum required amount of revenue per day. These conditions definitely encourage drivers to use the vehiclesintensively (many times carelessly, stopping abruptly anywhere on the road in total disregard of other motoristsetc.). when a matatu completes repaying the loan it may be almost unroadworthy.

Completion of loan repayment is a big relief to matatu owners because, apart from the loan, the vehicle may be insured under third party policy which is Kshs. 30,000 and 18,000 for twenty five and eighteen
seater matatus respectively. However, by this time the vehicle maintenance costs will be very high because the matatu was being used intensively previously. Also in most cases the vehicle will be unroadworthy such that it may not be allowed to operate legally. Drivers and conductors interviewed said that an average of Kshs.100-200 was used per day to bribe their way through the police. This was entered as miscellineous costs in Tables 4.5 and 4.6 .

Table 4.5 shows that most of the eighteen seater matatus which are mainly Nissan Urvans make profits. This is because such vehicles are bought as secondhand vehicles from tour operating companies and hence have no loans to repay. However, it is clear that such profits are realised after the vehicles have been used intensively. From Table 4.6 the only Nissan Urvan, Kyp, which was bought new was making a loss because it was repaying a loan and it was comprehensively insured. However if the lumpsum paid at the time of purchase of some of the Eighteen seater matatu is discounted during the useful service life the profit margin reflected will be reduced.

In case an unfortunate event happens like an accident or engine-knock for a vehicle repaying a loan then it is obvious that such a vehicle could not have made enough profits to meet repair costs. In such a
case if the owner does not have an alternative source of income then the vehicle will be grounded whereas the financier requires the loan repaid. This explains clearly why financing companies will always insist that one should have a security before he is financed. For the same reasons drivers and conductors insist on being paid per day.

When pressure to repay between new and old vehicles are compared, it seems that there is more pressure on new vehicles. This forces the owners to operate their vehicles intensively to break even financially. However, such cost pressures have side-effects in that they tend to make the vehicles accident prone. This seems to support Agoki's (29) findings that new vehicles are more accident prone than older vehicles. The proneness of matatus to accidents is made even clearer by the fact that insurance companies stopped insuring matatus because of their high claims.

Indirectly or directly financing companies, insurance companies and matatu drivers know that the business is risky. However, this fact is not clear to matatu owners who see a lot of money passing through their hands although the net profits are often elusive. Some matatu owners work hoping that the matatu might complete loan repayment while in good condition, which turns out not to be the case. It is possible that people enter the
matatu business without knowing exactly what goes on in the business. What they know is that large sums of money are handled per day upto Kshs. 2,800 and hope that the vehicle will be on the road throughout the year without having problems.

From Tables 4.5 and 4.6 it can be noted that matatu drivers work for between 14 - 16 hrs a day, this compounded by the noise encountered introduces fatigue and drastically reduces the concentration of the drivers.

Clearly for matatu operators or owners to realise profits the vehicles have to be used intensively. This explains why matatus were recorded as initiating the largest number of conflicts which are related to accidents. This confirms that matatus are actually accident prone vehicles by the way they are run.

The study seems to suggest that matatus should be eliminated from the road, but taking into account the role these vehicles play as a means of public transport, other alternatives of reducing the cost pressure should be considered. These include studying the possibility of reducing tax on such vehicles, increasing the loan repayment period, etc. Assuming that greed for money will not prevail this may reduce the intensive use of matatus, and hence improve safety on the roads.

\section*{CHAPTER 6}

\section*{CONCLUSIONS}

This study was undertaken with the following objectives in mind:-
- To study accidents and conflicts at selected T-junctions with a view to understanding the problems of the junctions.
- To analyse conflict data on the selected T-junctions with the veiw of relating them to vehicular flow.
- To evaluate the vehicles which contribute the largest number of conflicts.
- To study matatu operation with a view to justifying or refuting the claim that matatus contribute to more accidents than any other vehicle types because of the desire to make money.

The following conclusions have been arrived at from the study:
1. Accidents and conflicts (Fig.4.8 to 4.19) showed similar patterns on each \(T\)-junction. However, no simple relationship could be established between accidents and conflicts.
2. Conflicts and vehicular flow at the junctions studied were closely related. Among all the four models fitted the cubic model predictedconflicts well in most sites.

The site which had the best fitting of the model was Jogoo Road - Outer Ring Road junction. This model was cubic i.e.
\(C=3.82+6.46 \times 10^{-3} Q-9.746 \times 10^{-7} Q^{2}-4.596 \times 10^{-11} Q^{3}\).

This equation was significant at 5 \% level, with coefficient of determination ( \(r^{2}\) ) 0.944 and standard error (Exy) 0.32.
3. Public transport vehicles especially matatus contributed the largest number of conflicts per vehicle type on the \(T\)-junctions studied.
4. Matatu operators are compelled to overload, operate at high speed and ignore some traffic regulations in order to meet their financial obligations. This in some situations results in matatus initiating and/or causing considerable conflicts and accidents.

\section*{CHAPTER 7}

\section*{RECOMMENDATIONS}
1. Conflict studies should be done for longer periods (at least for one year) in order to facilitate the development of a model relating conflicts to accidents.
2. In this thesis only a small sample of matatus in Nairobi was studied in order to explain their operations. However, to present a more complete picture, matatus operating between towns (country side matatus) should also be studied.
3. In this study it was shown that most matatus especially new ones do not make profits because of the heavy financial obligations they have. Considering the very important role they play, ways of reducing the financial pressure should be studied. These may include, reducing the tax or custom duty on vehicles which will operate as matatus, increasing the loan repayment period etc. This may ultimately reduce conflicts and/or accidents on the road hence lowering the insurance premiums.
4. The possibility of eliminating matatus so that they may be substituted by buses especially in the city should be studied because buses have a larger capacity and a/ower conflict and RTA involvement.
5. Conflict studies should be extended to other types of junctions and road sections for example, round-abouts, cross roads,etc.

\section*{REFERENCES}
1. NORMAN, L.G.: Road Traffic Accidents: Epidemiology, Control and Prevention, Public Health Papers No. 12. 1965.
2. Kesearch on Road 'Iraffic. Great Britain Road Research Laboratory. 2nd Edition 1965 (Her Najesty's Stationary Office, page 146.
3. J.O. ASALOR and E.A. ONIBERE (Vol.1) Accident reduction factor and its application in optimising road safety programmes (pg 200). Paper presented at the first international conference on Road traffic accidents in developing countries. (Benin Nigeria August 1986).
4. National Road Safety Council of Kenya. Long term road safety programme 1984-194 (Feb. 1984). Winistry of Transport and Communications Pulication pg.5).
5. JACOBS, G.D., M.N. BARDSLEY and I. SAVER. Road Accidents Data Collection and Analysis in Developing Countries. Transport and Road Research Laboratory Report LR 6761974 (page 15).
6. LAURIDEN H. Norwegian. Traffic Safety Effort Aimed at Developing Countries. A paper presented at the First African Road Safety Congress (FARSC) Nairobi. Augunt 1984.
7. ULLA ENGEL AND THOMSEN L. The use of trafficbeheviour studies in Dermark. Jarish council of Road Safery Research. (Paper presented at the Internationai calibration of Traffic conflict techniques at Capenhagen 1983).
8. AAMUSSEM E. Introductory speech at Joint International study for the calibration of traffic conflict Techniques ar Capenhagen (ray 1983).
9. VIGLETZ J. and GiAUZ w.D. Traffic conflict techniques of the United States of America. Midwest Research Institute. (Paper presented at the International calibration study of Traffic Confiict Techniques, May 1983).
10. HAKKET A.S. Review of traffic conflict technique applications in Israel. Paper presented at the International Calibration study of traffic conflict techniques. (Capenhagen May 1983).
11.

GUTIINGER V.A. Conflicts Observations in theory and Observations. "Advisie", Consultancy firm for Government and Managenent; Netherlands. Paper Presented at the Incernational Calibration of traffic conflicts tecmiques. (Capenhagen Vay 1983).
12. MATTSSOM iv. The Development and Usage of traffic conflict technique on the Swedish National Road Network. (Paper presented at the International Calibration Study of Traffic confiict Techniques - Capenhagen May 1983).
13. ERKE H. The traffic conflict technique of the Federal Republic of Germany. Paper Presented at the International calibration of traffic conflicts techniques (íay 1983).
14. KULMAiA Risto. Traffic conflict stuaies in Finland. Paper presented at Seminar on shortterm and area-wide Evaluation of safety measures in Amsterdam, Netnerlands. (May 1983).
15. OFPE S. نoint International study for the calibration of traffic conflict techniques (Netherlands). Paper presented at the International Calibration of traffic conflict techniques. (ivay 1983).
16.

SPICER B.K. A pilot study of traffic conflicts at a rural dual carriageway intersection. TRRL Report LK4io (TRREI971)
17. SPEARMAN AND SPICER B.R. A study of traffic conflicts at six intersections. Crowthorne (Berkshire) Transport and Road Research Lab (TRAL) 1973 Rep. 551.
18. NAIROBI DEMONSTRATION PROJECT. (BY KIMORI P.M.) Progress report June 1987. (Ministry of Transport and Communication report, 1987).
19. M.O.T.C. National Road Safety Council of Kenya Long-term Road Safety Programme 1984-1993 Feb.1984) (pg 21).
20. HORWARTH, C.I. How drivers respond to pedestrians and vice versa - close encounters of the fourth kind. Human factor in transportation research volume 2. pg. 56. In Academic Press London, 1981.
21. RAIFS AND SOUTHERLAND. Analysis and Differential Equations Option 3 (Kenya) Kenya advance mathematics Project pg. 31-37, (1974).
22. R.R. Sokal and F.J. Rohlf. Introduction to Biostatistic. Published by F.H. Freeman and Crmpany (San Francisco) - 1973 pp. 260-79.
23. ALAN JEFFREY. Mathematics for Engineers (Low priced Edition Fourth Edition 1976 pg. 56-59).
24. KIMORI P.iv. Evaluation of Public Transport in Nairobi. in.Sc. part one report 1986. Nairobi University - Kenya, 1986.
25. LAWS OF KENYA (1986 amendment), The traffic act cap 403. Government Printer Nairobi.
26. S. KAPILA and D. LAMBA, The Viatatu mode of Public Transport in Metropolitan Nairobi. Viazingira Institute October 1982.
27. NGARI W.A. Nairobi City Council Matatus as a means of Public Transport, Nairobi transport report, 1986.
28. Daily News Papers (The STANDARD, THE DAILY NATION, KENYA TIMES) between June 1987 and January 1988.
29. AGOKI G.S. Characteristics of Road Traffic Accidents in Kenya. Ph.D. Thesis, University of Nairobi, 1988.

Students \(t\) Critical Points

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \[
\text { d.f. } \mathrm{Pr}
\] & . 25 & 10 & . 0.5 & .025 & .010 & .005 & .001 \\
\hline 1 & \(1.0 \times 0)\) & 3.078 & 6.314 & 12.706 & 31.821 & 633.657 & 318.11 \\
\hline 2 & . 816 & 1.856 & 2.920 & 4.303 & 6.965 & 9.925 & 22.326 \\
\hline 3 & . 76.5 & 1.638 & 2.353 & 3.182 & 4.541 & 5.841 & 10.213 \\
\hline 4 & . 741 & 1.533 & 2.132 & 2.776 & 3.747 & 4.604 & 7.173 \\
\hline 5 & . 727 & 1.476 & 2015 & 2.571 & 3.365 & 4.032 & 5893 \\
\hline 6 & . 718 & 1.440 & 1.943 & 2.447 & 3.143 & 3.707 & \$.208 \\
\hline 7 & . 711 & 1.415 & 1.895 & 2.365 & 2.998 & 3.499 & 4.785 \\
\hline 8 & . 706 & 1.397 & 1.860 & 2.306 & 2.896 & 3.355 & 4.501 \\
\hline . 9 & .70.3 & 1.38.3 & 1.8 .33 & 2.262 & 2.821 & 3.250 & 4.297 \\
\hline 10 & . 700 & 1.372 & 1.812 & 2.228 & 2.76 .4 & 3.169 & 4.144 \\
\hline 11 & . 697 & 1.363 & 1.796 & 2.201 & 2.718 & 3.106 & 4.025 \\
\hline 12 & . 695 & 1.356 & 1.782 & 2.179 & 2.681 & 3.055 & 3.930 \\
\hline 13 & . 694 & 1.350 & 1.771 & 2.160 & 2.650 & 3.012 & 3.852 \\
\hline 14 & . 692 & 1.345 & 1.761 & 2.145 & 2.624 & \(2.97 \%\) & 3.787 \\
\hline 15 & .691 & 1.341 & 1.75 .3 & 2.131 & 2.602 & 2.947 & 3.733 \\
\hline 16 & . 690 & 1.337 & 1.746 & 2.120 & 2.583 & 2.921 & 3.686 \\
\hline 17 & . 689 & 1.333 & 1.740 & 2.110 & 2.567 & 2.898 & 3.646 \\
\hline 18 & . 688 & 1.330 & 1.734 & 2.101 & 2.552 & 2.878 & 3.610 , \\
\hline 19 & . 688 & 1.328 & 1.729 & 2.093 & 2.539 & 2.861 & 3.579 \\
\hline 20 & . 687 & 1.325 & 1725 & 2.086 & 2.528 & 2.84 .5 & 3.552 \\
\hline 21 & . 686 & 1.323 & 1.721 & 2.080 & 2.518 & 2.831 & 3.527 \\
\hline 22 & . 686 & 1.321 & 1.717 & 2.074 & 2.508 & 2.819 & 3.505 \\
\hline 23 & . 685 & 1.319 & 1.714 & 2.069 & \(2.5(0)\) & 2.807 & 3.485 \\
\hline 24 & . 685 & 1.318 & 1.711 & 2.064 & 2.492 & 2.797 & 3.467 \\
\hline 25 & . 684 & 1.316 & 1.708 & 2.060 & 2.485 & 2.787 & 3.450 \\
\hline 26 & . 684 & 1.315 & 1.706 & 2.056 & 2.479 & 2.779 & 3.435 \\
\hline 27 & . 684 & 1.314 & 1.703 & 2.052 & 2.473 & 2.771 & 3.421 \\
\hline 28 & . 683 & 1.313 & 1.701 & 2.048 & 2.467 & 2.763 & 3.408 \\
\hline 29 & . 683 & 1.311 & 1.699 & 2.045 & 2.462 & 2.756 & 3.396 \\
\hline 30 & . 683 & 1.310 & 1.697 & 2.042 & 2.457 & 2.750 & 3.385 \\
\hline 40 & . 681 & 1.303 & 1.684 & 2.021 & 2.423 & 2.704 & 13.307 \\
\hline 60 & . 679 & - 1.296 & 1.671 & 2.000 & 2.390 & 2.660 & 3.232 \\
\hline 120 & . 677 & 1.289 & 1.658 & 1.980 & 2.358 & 2.617 & 3.160 \\
\hline \(\infty\) & . 674 & 1.282 & 1.645 & 1.960 & 2.326 & 2.576 & 3.090 \\
\hline
\end{tabular}

VEHICLE PEOESTRAN CONFLICT STUDY
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multicolumn{2}{|l|}{Conflict type} \\
\hline & 1 & \[
\xrightarrow{--\stackrel{p}{\longrightarrow}=}
\]
\[
2
\] \\
\hline  & \[
3
\] & 4 Others \\
\hline Date .-....-- Day .-..-- Site ------- Counter & -- & \\
\hline
\end{tabular}



Description of site
(vissibility, to pography)-
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Time & Type of conflict & \begin{tabular}{l}
Severity \\
s-serious \\
m-slight \\
P -Potential
\end{tabular} & Proximity. 1- \(\leqslant 1\) ćar lengh \(2 \rightarrow 1 \leq 3\). \(3 \rightarrow>2\) & Location (grid) & \begin{tabular}{l}
Comments. \\
eg Vehicle initiating conflict and type of vehicle involved.
\end{tabular} & Grade. \\
\hline
\end{tabular}


\begin{tabular}{|c|c|c|}
\hline mal informetion on spou of vericles. & Tick relevant whilca & nater \\
\hline [1] [2] [] \({ }^{\text {country }}\) & [1] [2] [3) x dax & [1] (2] [1]tamat \\
\hline [:1 [2] (3) & [1] [2] [3]inuciational bua & [1] [2] [3] Tenter \\
\hline [z] [2] (1] 0 cher wren bua & [1] (2] [3mint & \\
\hline
\end{tabular}



\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Date: 16-18-1987} & \multicolumn{2}{|l|}{Day: Friday} \\
\hline Tine & Serious & Slight & Potential & Total \\
\hline 7.15 & 0 & 2 & 6 & 8 \\
\hline 7.36 & 1 & 7 & 12 & 20 \\
\hline 7.45 & 1 & 3 & 3 & 7 \\
\hline 8.68 & 0 & 2 & 7 & 9 \\
\hline 8.15 & 1 & 0 & 2 & 3 \\
\hline 8.38 & 1 & 1 & 2 & 4 \\
\hline 8.45 & 1 & 2 & 2 & 4 \\
\hline 9.108 & 1 & 0 & 1 & 1 \\
\hline 9.15 & 1 & 0 & 3 & 3 \\
\hline 9.38 & 0 & 1 & 0 & 1 \\
\hline 9.45 & \(B\) & 1 & 1 & 1 \\
\hline 10.68 & \(\theta\) & \(\square\) & 0 & 0 \\
\hline 10.15 & 0 & 1 & \(\square\) & 0 \\
\hline 10.36 & 0 & 6 & 1 & 1 \\
\hline 10.45 & 0 & 0 & 2 & 2 \\
\hline 11.68 & \(\theta\) & 0 & 2 & 2 \\
\hline 12.68 & 0 & 0 & 1 & 1 \\
\hline 12.15 & 0 & 0 & 1 & 0 \\
\hline 12.30 & 0 & 1 & 1 & 2 \\
\hline 12.45 & 0 & 0 & 1 & 1 \\
\hline 1.88 & 6 & 1 & 2 & 3 \\
\hline 1.15 & 0 & 1 & 2 & 3 \\
\hline 1.30 & 6 & \(b\) & 1 & 1 \\
\hline 4.15 & 0 & 1 & 2 & 3 \\
\hline 4.38 & 0 & 0 & 2 & 2 \\
\hline 4.45 & 0 & 1 & 3 & 4 \\
\hline 5.08 & \(\theta\) & 2 & 3 & 5 \\
\hline 5.15 & 6 & 1 & 6 & 7 \\
\hline 5.38 & 0 & 0 & 4 & 4 \\
\hline 5.45 & 0 & 1 & 3 & 4 \\
\hline 6.08 & 0 & 2 & 1 & 3 \\
\hline 6.15 & 6 & 0 & 6 & 0 \\
\hline 6.38 & 1 & 0 & 2 & 3 \\
\hline 6.45 & \(\square\) & 1 & 3 & 4 \\
\hline 7.06 & 0 & 0 & 0 & 0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Date: 19-16-1987} & \multicolumn{2}{|l|}{. Day: Monday} \\
\hline Tine & Serious & Slight & Potential & Total \\
\hline 7.38 & 0 & 2 & 5 & 7 \\
\hline 7.45 & 0 & 1 & 7 & 7 \\
\hline 8.88 & 6 & 4 & \(10^{\circ}\) & 14 \\
\hline 8.15 & 1 & 1 & 4 & 5 \\
\hline 8.38 & 0 & 0 & 3 & 3 \\
\hline 8.45 & 0 & 1 & 3 & 4 \\
\hline 9.98 & 0 & \(\theta\) & 1 & 1 \\
\hline 9.15 & 0 & 0 & 2 & 2 \\
\hline 9.38 & 0 & 1 & 2 & 3 \\
\hline 9.45 & 0 & 1 & 0 & 1 \\
\hline 10.08 & 6 & \(B\) & 1 & 1 \\
\hline 10.15 & \(\theta\) & 1 & 2 & 2 \\
\hline 18.30 & 0 & 0 & 3 & 3 \\
\hline 10.45 & 1 & 1 & 2 & 3 \\
\hline 11.80 & 0 & \(\theta\) & 2 & 2 \\
\hline 12.15 & 0 & 0 & 5 & 5 \\
\hline 12.30 & 0 & 2 & 3 & 5 \\
\hline 12.45 & 0 & 6 & 2 & 2 \\
\hline 1.80 & 1 & 1 & 1 & \(?\) \\
\hline 1.15 & 0 &  & 2 & 2 \\
\hline 1.36 & 8 & \(\theta\) & 4 & 4 \\
\hline 4.36 & 1 & \(\theta\) & 6 & 7 \\
\hline 4.45 & 8 & 0 & 3 & 3 \\
\hline 5.06 & 0 & 0 & 2 & 2 \\
\hline - 5.15 & 0 & 1 & 0 & 1 \\
\hline 5.38 & 0 & 0 & 1 & 0 \\
\hline 5.45 & 8 & 0 & 1 & 1 \\
\hline 6.08 & 1 & 0 & 2 & 2 \\
\hline 6.15 & 0 & 0 & 3 & 3 \\
\hline 6.30 & 1 & 1 & 0 & 1 \\
\hline 6.45 & 1 & \(\theta\) & 2 & 3 \\
\hline 7.68 & 1 & 0 & 0 & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Date: 21-16-1987} & \multicolumn{2}{|l|}{Day: Wednesday} \\
\hline Tine & Serious & Slight & Potential & Total \\
\hline 7.30 & 0 & 8 & 1 & 1 \\
\hline 7.45 & 0 & 2 & 6 & 8 \\
\hline 8.66 & 0 & 0 & 8 & 8 \\
\hline 8.15 & 0 & 2 & 4 & 6 \\
\hline 8.30 & 0 & 0 & 2 & 2 \\
\hline 8.45 & 0 & 3 & 2 & 5 \\
\hline 9.66 & 0 & 1 & 1 & 2 \\
\hline 9.15 & 0 & \(\theta\) & 1 & 1 \\
\hline 9.45 & 0 & 0 & 1 & 1 \\
\hline 19.66 & \(\theta\) & \(\square\) & 1 & 0 \\
\hline 18.15 & \(\theta\) & 1 & \(\theta\) & 1 \\
\hline 10.30 & \(\theta\) & 1 & 6 & 1 \\
\hline 18.45 & 0 & 0 & 0 & 0 \\
\hline 11.98 & 0 & 1 & 3 & 4 \\
\hline 12.15 & 0 & 0 & 7 & 7 \\
\hline 12.30 & 0 & 0 & 2 & 2 \\
\hline 12.45 & 0 & 0 & 1 & 1 \\
\hline 1.00 & 0 & 0 & 0 & 0 \\
\hline 1.15 & 0 & 6 & 1 & 1 \\
\hline 1.30 & 6 & 8 & 0 & 1 \\
\hline 3.45 & 1 & 1 & 1 & 1 \\
\hline 4.08 & 0 & 0 & 2 & 2 \\
\hline 4.15 & 0 & 0 & 1 & 1 \\
\hline 4.30 & 6 & 1 & 0 & 1 \\
\hline 4.45 & 0 & 1 & 1 & 2 \\
\hline 5.00 & 1 & 0 & 3 & 3 \\
\hline 5.15 & 0 & 6 & 6 & 6 \\
\hline 5.36 & 0 & 2 & 1 & 2 \\
\hline 5.45 & 0 & 0 & 2 & 2 \\
\hline 6.00 & 0 & 1 & 0 & 0 \\
\hline 6.15 & 0 & 0 & 0 & 0 \\
\hline 6.30 & 0 & 1 & 1 & 2 \\
\hline 6.45 & 1 & 0 & 2 & 3 \\
\hline 7.08 & 0 & 1 & 0 & 1 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Fate： \(36-1 \mathrm{Cl} 1987\)} & \multicolumn{2}{|l|}{Dav：Manday} \\
\hline Time & Seriuus & Slight & Potential & Tatal \\
\hline 7. 月月 & \(a\) & B & 1 & 1 \\
\hline 7.15 & B & 1 & 6 & 7 \\
\hline 7.3 P & 6 & 3 & 4 & 7 \\
\hline 7.45 & 6 & \％ & 3 & 1 \\
\hline  & ， & ค & 1 & 1 \\
\hline 8.15 & \％ & f & 1 & 1 \\
\hline 8.36 & \(\beta\) & 0 & 0 & f \\
\hline 8.45 & 0 & 0 & a & A \\
\hline 9．明 & 9 & 0 & － & \％ \\
\hline 11.15 & A & 1 & 月 & 1 \\
\hline 11.30 & i & 1 & 2 & ？ \\
\hline 11.45 & \％ & 4 & 1 & P1 \\
\hline 12．月月 & 1 & \％ & B & A \\
\hline 12.15 & ค & a & 7 & H \\
\hline 12．38 & A & 0 & 1 & 月 \\
\hline 12.45 & \％ & 6 & 0 & \％ \\
\hline 1.99 & B & 1 & 1 & \％ \\
\hline 1.15 & 6 & 0 & 1 & 1 \\
\hline 1.39 & f & \％ & 1 & Q \\
\hline 3.45 & \(\beta\) & 1 & 1 & 1 \\
\hline 4.69 & 4 & \(\square\) & 0 & \％ \\
\hline 4.15 & \％ & 1 & a & 4 \\
\hline 4.30 & 0 & 1 & 6 & \(\beta\) \\
\hline 4.4 .5 & \(\beta\) & 0 & 1 & 1 \\
\hline 5． 同 \(^{\text {a }}\) & \＄ & 1 & 1 & 1 \\
\hline 5.15 & 月 & 9 & 1 & 1 \\
\hline 5.30 & 月 & B & 1 & 1 \\
\hline 5.45 & \(\square\) & 1 & 4 & 1 \\
\hline 3．9月 & \(\beta\) & 0 & ？ & \(?\) \\
\hline 6.15 & 8 & 1 & B & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Date：27－17－1987} & \multicolumn{2}{|l|}{Day：Tuesday} \\
\hline Tine & Serious & Slight & Putential & Total \\
\hline 7.190 & 1 & 1 & 0 & 3 \\
\hline 7.15 & A & 0 & 5 & 5 \\
\hline 7.30 & 0 & 1 & 4 & 5 \\
\hline 7.45 & 1 & 0 & 1 & 8 \\
\hline 8.89 & 4 & 0 & 1. & 1 \\
\hline 8.15 & 3 & 1 & 6 & 0 \\
\hline 9.3 1 & 3 & 1 & 0 & ？ \\
\hline 8.45 & 0 & 1 & 1 & \(\square\) \\
\hline 9．所 & 0 & 0 & 0 & 8 \\
\hline 11.15 & 0 & 0 & 3 & 1 \\
\hline 11.3 n & A & 1 & 0 & 3 \\
\hline 11.45 & 1 & 日 & 0 & 1 \\
\hline 12．9．7 & 1 & 0 & 0 & 6 \\
\hline 12.15 & \％ & 0 & 0 & 1 \\
\hline 12.39 & 9 & 0 & 1 & \％ \\
\hline 12.45 & 月 & 1 & 0 & 1 \\
\hline 1.97 & 1 & 0 & 1 & 1 \\
\hline 1.15 & \(\theta\) & 0 & \(\square\) & 6 \\
\hline 1.30 & 6 & 0 & 1 & 0 \\
\hline 3.45 & 1 & 1 & 0 & 1 \\
\hline 4.0 碝 & 0 & 1 & 1 & 1 \\
\hline 4.15 & 0 & \(B\) & 1 & 1 \\
\hline 4.31 & \％ & 1 & 0 & 1 \\
\hline 4.45 & 0 & 0 & 2 & 2 \\
\hline 5.618 & 0 & 角 & \(\theta\) & 0 \\
\hline 5.15 & 6 & 月 & 0 & 1 \\
\hline 5.37 & 1 & 1 & 0 & 2 \\
\hline 5.45 & 0 & 1 & 1 & 1 \\
\hline 6.18 & 0 & 1 & 1 & 2 \\
\hline 6.15 & \(B\) & A & 2 & 2 \\
\hline 6.45 & \％ & 1 & 1 & 1 \\
\hline 7.6 A & 0 & \(\theta\) & 2 & 2 \\
\hline
\end{tabular}

Appendix 7

COMFLICTS DATA: LANGATA ROAD-MUTHAITI ROAD JUNCTION
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Date: 29-10-19879} & \multicolumn{2}{|l|}{Day: Thursday} \\
\hline Tine & Serious & Slight & Potential & Total \\
\hline 7.68 & 0 & 0 & 1 & 1 \\
\hline 7.15 & 0 & 0 & 0 & 1 \\
\hline 7.38 & 1 & 0 & 0 & \(\theta\) \\
\hline 7.45 & 0 & 1 & 0 & 1 \\
\hline 8.80 & 0 & 0 & 2 & 2 \\
\hline 8.15 & 0 & 2 & 2 & 4 \\
\hline 8.38 & 1 & 0 & 1 & 2 \\
\hline 8.45 & 0 & 1 & 0 & 0 \\
\hline 9.80 & 6 & 0 & 1 & 1 \\
\hline 11.15 & 6 & 0 & 1 & 1 \\
\hline 11.38 & 0 & 1 & 1 & 2 \\
\hline 11.45 & 0 & 0 & 1 & 1 \\
\hline 12.68 & \(\square\) & 0 & 0 & 6 \\
\hline 12.15 & 0 & 0 & 0 & 0 \\
\hline 12.38 & 0 & 0 & 0 & 6 \\
\hline 12.45 & 0 & 1 & 1 & 1 \\
\hline 1.06 & 0 & 1 & 0 & 1 \\
\hline 1.15 & 1 & 1 & 1 & 0 \\
\hline 1.36 & 0 & 0 & 0 & 6 \\
\hline 3.45 & 1 & 0 & 0 & 0 \\
\hline 4.188 & 0 & 6 & 0 & 1 \\
\hline 4.15 & 0 & \(B\) & 3 & 3 \\
\hline 4.38 & 0 & 1 & 2 & 3 \\
\hline 4.45 & 0 & 6 & 3 & 3 \\
\hline 5.98 & 1 & 1 & 3 & 4 \\
\hline 5.15 & 0 & 3 & 3 & 6 \\
\hline 5.30 & 0 & 6 & 1 & 1 \\
\hline 5.45 & \(\theta\) & 0 & \(B\) & 8 \\
\hline 6.08 & 1 & 1 & \(\theta\) & 1 \\
\hline 6.15 & 0 & 2 & 0 & 2 \\
\hline 6.38 & 0 & 0 & 6 & 0 \\
\hline 6.45 & \(\theta\) & 1 & 1 & 1 \\
\hline 7.88 & 0 & 1 & 0 & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Date: 36-10-1987} & \multicolumn{2}{|l|}{- Day: Friday} \\
\hline Tine & Serious & Slight & Potential & Total \\
\hline 7.06 & 0 & 1 & 3 & 4 \\
\hline 7.15 & 0 & 3 & 2 & 5 \\
\hline 7.38 & 0 & 0 & 2 & 2 \\
\hline 7.45 & 1 & 6 & 3 & 3 \\
\hline 8.86 & 1 & 1 & 1 & 2 \\
\hline 8.15 & 1 & 4 & 3 & 7 \\
\hline 8.30 & 0 & 1 & 1 & 2 \\
\hline 8.45 & 1 & 0 & 1 & 2 \\
\hline 9.60 & 1 & 0 & 1 & 1 \\
\hline 11.15 & 0 & 1 & 0 & 0 \\
\hline 11.30 & 6 & 1 & 0 & 1 \\
\hline 11.45 & 0 & 1 & 0 & 1 \\
\hline 12.80 & 0 & 1 & 0 & 1 \\
\hline 12.15 & 0 & 1 & 2 & 2 \\
\hline 12.36 & 0 & 2 & 3 & 4 \\
\hline 12.45 & 1 & 8 & 0 & 1 \\
\hline 1.80 & 1 & 1 & 2 & 3 \\
\hline 1.15 & 0 & 1 & 0 & 1 \\
\hline 1.30 & 1 & 3 & 1 & 4 \\
\hline 3.45 & 1 & 1 & 1 & 1 \\
\hline 4.60 & 1 & 1 & 0 & 2 \\
\hline 4.15 & 8 & 1 & 1 & 2 \\
\hline 4.36 & 1 & 0 & 2 & 3 \\
\hline 4.45 & 0 & 1 & 1 & 1 \\
\hline 5.60 & 0 & 2 & 2 & 4 \\
\hline 5.15 & 6 & 1 & 1 & 2 \\
\hline 5.38 & 1 & 4 & 1 & 5 \\
\hline 5.45 & \(\square\) & 1 & 3 & 4 \\
\hline 6.08 & 0 & 3 & 1 & 4 \\
\hline 6.15 & 0 & 0 & 1 & 1 \\
\hline 6.30 & 1 & \(\theta\) & 1 & 1 \\
\hline
\end{tabular}
```

- 144 -

```

Appendix 7

COHFLICTS DATA: NGONG ROAD-HUGO KIBIRU ROAD JUNCTION
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Date:} & \multicolumn{2}{|r|}{Day:} & \\
\hline Tise & Seriou5 & Slight & |Potential| & Total \\
\hline 7.60 & 0 & 1 & 2 & 3 \\
\hline 7.15 & 1 & 1 & 4 & 6 \\
\hline 7.30 & 0 & 3 & 2 & 5 \\
\hline 7.45 & 0 & 1 & 4 & 5 \\
\hline 8.08 & 0 & 1 & 0 & 1 \\
\hline 8.15 & 0 & 0 & 0 & 1 \\
\hline 8.38 & 1 & 1 & 1 & 2 \\
\hline 8.45 & 6 & 1 & 0 & 0 \\
\hline 9.80 & 0 & 0 & 1 & 1 \\
\hline 11.15 & 0 & 1 & 0 & 6 \\
\hline 11.38 & 0 & 1 & 2 & 3 \\
\hline 11.45 & 0 & 0 & 1 & 1 \\
\hline 12.88 & 0 & 1 & 0 & 1 \\
\hline 12.15 & 0 & 0 & 2 & 0 \\
\hline 12.30 & 1 & 1 & 0 & 1 \\
\hline 12.45 & 6 & 0 & 6 & 1 \\
\hline 1.00 & 6 & 0 & 0 & 0. \\
\hline 1.15 & \(\theta\) & 0 & 2 & 2 \\
\hline 1.38 & 0 & 0 & 0 & 0 \\
\hline 3.45 & 0 & 0 & 0 & 0 \\
\hline 4.18 & 6 & 0 & 6 & 6 \\
\hline 4.15 & 0 & 0 & 1 & 1 \\
\hline 4.30 & 0 & 0 & 0 & 0 \\
\hline 4.45 & \(\square\) & 0 & 1 & 1 \\
\hline 5.80 & 6 & 0 & 1 & 1 \\
\hline 5.15 & 0 & 1 & 2 & 3 \\
\hline 5.30 & 6 & 0 & 1 & 1 \\
\hline 5.45 & 0 & 0 & 6 & 6 \\
\hline 6.00 & 1 & 1 & 2 & 4 \\
\hline 6.15 & 0 & 0 & 0 & 0 \\
\hline 6.38 & 8 & 0 & 1 & 1 \\
\hline 6.45 & \(\theta\) & 1 & 1 & 2 \\
\hline 7.60 & 6 & 0 & 6 & 1 \\
\hline
\end{tabular}

Observed and predicted conflicts using the developed nodels
\begin{tabular}{|c|c|c|c|c|c|}
\hline flow & observed & Pred & dicted & confli & cts \\
\hline (veh/h) & conflicts & linear & Power & cubic & logistic \\
\hline 656 & 1 & 8.48 & 1.21 & 6.688 & 1.50 \\
\hline 756 & 2.15 & 1.29 & 1.66 & 1.511 & 2.11 \\
\hline 856 & 2.27 & 2.18 & 2.18 & 2.35 & 2.787 \\
\hline 956 & 3.29 & 3.97 & 2.92 & 3.22 & 3.585 \\
\hline 1856 & 5.57 & 3.87 & 3.62 & 4.01 & 4.24 \\
\hline 1156 & 5.21 & 4.67 & 4.42 & 4.82 & 5.8 \\
\hline 1256 & 5.16 & 5.56 & 5.86 & 5.86 & 5.92 \\
\hline 1356 & 7.6 & 6.42 & 6.39 & 6.57 & 6.59 \\
\hline 1458 & 9.6 & 7.25 & 7.59 & 7.43 & 7.16 \\
\hline 1650 & 8.33 & 8.11 & 8.79 & 8.39 & - \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline flow & observed & & edicted & confl & icts \\
\hline (veh/h & conflicts & linear & Power & Cubic & Logistic \\
\hline 450 & 1.75 & \% & 1.35 & 0.06 & 1.44 \\
\hline 558 & 1.48 & 0.42 & 1.71 & 0.92 & 1.73 \\
\hline 658 & 1.73 & 1.86 & 2.88 & 1.81 & 2.86 \\
\hline 758 & 1.75 & 1.58 & 2.45 & 2.61 & 2.43 \\
\hline 859 & 4.88 & 2.18 & 2.85 & 3.33 & 2.84 \\
\hline 959 & 3.33 & 2.71 & 3.25 & 3.94 & 3.28 \\
\hline 185] & 3.68 & 3.34 & 3.66 & 4.46 & 3.76 \\
\hline 1150 & 5.58 & 3.88 & 4.88 & 4.89 & 4.25 \\
\hline 1258 & 6.68 & 4.41 & 4.50 & 5.23 & 4.74 \\
\hline 1358 & - & - & - & - & - \\
\hline 1458 & 3.68 & 5.65 & 5.36 & 5.38 & 5.71 \\
\hline 1550 & 7.56 & 6.19 & 5.88 & 5.76 & 6.16 \\
\hline 1650 & 6.88 & 6.81 & 6.24 & 5.68 & 6.57 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|r|}{Juja Road - 1st Avenue Eastleigh Road} \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
flow \\
(veh/h)
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
observed \\
conflicts
\end{tabular}} & \multicolumn{4}{|l|}{Predicted conflicts} \\
\hline & & linear & Power & cubic & logistic \\
\hline 758 & 1.0 & 8.495 & 1.861 & 1.50 & 1.86 \\
\hline 858 & 1.5 & 1.3 & 1.48 & 1.66 & 1.47 \\
\hline 956 & 2.33 & 2.86 & 1.93 & 1.99 & 1.96 \\
\hline 1958 & 3.88 & 2.87 & 2.53 & 2.44 & 2.51 \\
\hline 1158 & 2.88 & 3.68 & 3.15 & 3.83 & 3.26 \\
\hline 1250 & 5.08 & 4.42 & 3.93 & 3.85 & 4.68 \\
\hline 135\% & 3.49 & 5.28 & 4.73 & 4.73 & 4.75 \\
\hline 1450 & 6.86 & 5.98 & 5.71 & 5.76 & 5.52 \\
\hline 1558 & 9.86 & 6.75 & 6.73 & 7.67 & 6.24 \\
\hline 1658 & 7.88 & 7.33 & 7.88 & 5.68 & 6.98 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|r|}{Munias Ruad - Rabai Road Junction} \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
flow \\
(veh/h
\end{tabular}} & \multirow[t]{2}{*}{observed conflicts} & \multicolumn{4}{|r|}{Predicted conflicts} \\
\hline & & linear & Pomer & Cubic & Logistic \\
\hline 258 & 0.10 & - & 0.181 & 0.52 & 8.13 \\
\hline 350 & 0.23 & - & 0.22 & 0.27 & 0.19 \\
\hline 456 & 0.63 & 0.86 & 0.35 & 0.16 & 8.28 \\
\hline 556 & 0.57 & 0.46 & 8.56 & 0.15 & 8.88 \\
\hline 750 & 0.75 & 1.29 & 1.74 & 8.45 & 0.88 \\
\hline 856 & 1.68 & 1.71 & 1.37 & 0.88 & 1.14 \\
\hline 956 & 0.58 & 2.11 & 1.77 & 1.28 & 1.56 \\
\hline 1856 & 2.68 & 2.55 & 2.14 & 1.76 & 2.89 \\
\hline 1158 & 4.88 & 2.94 & 2.57 & 2.48 & 2.68 \\
\hline 1250 & 5.08 & 3.38 & 3.69 & 3.33 & 3.39 \\
\hline 1358 & - & - & 3.62 & 4.28 & 4.08 \\
\hline 1458 & 6.88 & 4.22 & 4.22 & 5.19 & 4.65 \\
\hline
\end{tabular}

2
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|r|}{Langata Road - Muthaiti Road Junction} \\
\hline \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{observed conflicts} & \multicolumn{4}{|l|}{Predicted conflicts} \\
\hline & & linear & Power & cubic & logistic \\
\hline 1815 & 0.25 & 1.47 & 8.716 & 8.87 & 0.68 \\
\hline 1150 & 0.56 & 1.44 & 8.81 & 0.89 & 0.82 \\
\hline 1258 & 1.75 & 1.41 & 8.92 & 1.53 & 6.98 \\
\hline 1351 & 1.88 & 1.38 & 1.62 & 2.81 & 1.15 \\
\hline 1458 & 2.33 & 1.33 & 1.13 & 2.31 & 1.35 \\
\hline 1556 & 2.75 & 1.39 & 1.24 & 2.44 & 1.56 \\
\hline 1650 & 2.75 & 1.27 & 1.36 & 2.46 & 1.79 \\
\hline 175 & 2.68 & 1.24 & 1.48 & 2.69 & - \\
\hline 1856 & 1.68 & 1.28 & 1.6 & 1.76 & - \\
\hline 1956 & 1.75 & 1.18 & 1.73 & 1.25 & - \\
\hline 2958 & 0 & 1.16 & 1.85 & 6.47 & - \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{Ngong Road - Kugo Kibiru Road Junction} \\
\hline flow & observed & \multicolumn{4}{|r|}{Predicted conflicts} \\
\hline (veh/h & conflicts & linear & Power & Cubic & Logistic \\
\hline 856 & 1.55 & 1.81 & 1.69 & 1.62 & 1.68 \\
\hline 958 & 2.33 & 2.88 & 2.06 & 2.85 & 2.11 \\
\hline 185 & 2.67 & 2.48 & 2.33 & 2.49 & 2.38 \\
\hline 115 & - & - & - & & - \\
\hline 1258 & 1.59 & 3.23 & 3.95 & 3.38 & 3.25 \\
\hline 1350 & 5.68 & 5.61 & 3.44 & 3.83 & 3.73 \\
\hline 1456 & 3.68 & 4.60 & 3.84 & 4.38 & 4.23 \\
\hline 1558 & 4.98 & 4.39 & 4.25 & 4.76 & 4.74 \\
\hline 1656 & 6.98 & 4.75 & 4.68 & 5.23 & 5.23 \\
\hline 1756 & 5.13 & 5.12 & 4.98 & 5.47 & 5.49 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{General for all T-Junctions Studied} \\
\hline \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{observed conflicts} & \multicolumn{4}{|l|}{Predicted conflicts} \\
\hline & & linear & Power & cubic & logistic \\
\hline 250 & 8.1 & 2.83 & 6.271 & - & 0.616 \\
\hline 359 & 0.23 & 2.85 & 8.434 & - & 8.697 \\
\hline 459 & 1.19 & 2.87 & 8.641 & 8.61 & 0.788 \\
\hline 558 & 0.99 & 2.89 & 8.838 & 1.27 & 8.980 \\
\hline 658 & 1.16 & 3.62 & 1.881 & 1.82 & 0.61 \\
\hline 759 & 0.98 & 3.85 & 1.322 & 2.38 & 1.16 \\
\hline 850 & 1.96 & 3.67 & 1.60 & 2.7 & 1.31 \\
\hline 958 & 2.66 & 3.69 & 1.87 & 3.68 & 1.45 \\
\hline 1650 & 2.75 & 3.12 & 2.182 & 3.36 & 1.67 \\
\hline 1150 & 2.64 & 3.15 & 2.48 & 3.58 & 1.86 \\
\hline 1258 & 3.89 & 3.17 & 2.81 & 3.74 & 2.16 \\
\hline 1358 & 4.76 & 3.19 & 3.15 & 3.82 & 2.31 \\
\hline 1458 & 4.79 & 3.27 & 3.49 & 3.83 & 2.57 \\
\hline 1558 & 5.89 & 3.23 & 3.85 & 3.88 & 2.83 \\
\hline 1650 & 6.82 & 3.25 & 4.20 & 3.65 & 3.11 \\
\hline 1758 & 3.57 & 3.28 & 4.61 & 3.46 & 3.43 \\
\hline 1856 & 1.86 & 3.29 & 4.99 & 3.23 & 3.71 \\
\hline 1950 & 1.75 & 3.33 & 5.41 & 2.88 & 4.85 \\
\hline
\end{tabular}

Percentage of vehicle type relative to total traffic flow

Appendix 9 Conflicts per vehicle type
\begin{tabular}{|c|c|c|c|c|c|}
\hline Site & Cars & P/vans & Buses & Lorries & Matatus \\
\hline 1 & 41.2 & 26.4 & 3.3 & 19.3 & 9.8 \\
2 & 39.3 & 29.8 & 4.23 & 19.47 & 7.23 \\
3 & 36.18 & 26.11 & 8.47 & 8.96 & 14.76 \\
4 & 66.96 & 19.83 & 3.65 & 2.33 & 8.09 \\
5 & 61.93 & 25.74 & 1.85 & 5.89 & 4.59 \\
6 & 62.68 & 22.89 & 6.86 & 3.73 & 3.84 \\
Av. & 51.37 & 25.80 & 4.73 & 9.95 & 8.84 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Site & Cars & P/vans & Buses & Lorries & Matatu \\
\hline 1 & 0.0678 & 0.813 & 0.022 & 0.010 & 0.027 \\
2 & 0.007 & 0.008 & 0.036 & 0.006 & 0.072 \\
3 & 0.004 & 0.085 & 0.018 & 0.006 & 0.026 \\
4 & 0.005 & 0.088 & 0.026 & 0.025 & 0.048 \\
5 & 0.062 & 0.003 & 0.083 & 0.006 & 0.029 \\
6 & 0.001 & 0.02 & 0.019 & 0.086 & 0.032 \\
Av. & 0.005 & 0.005 & 0.027 & 0.010 & 0.039 \\
\hline
\end{tabular}

Percentage by proportions of vehicles causing accidents
\begin{tabular}{|c|c|c|c|c|c|}
\hline Site & Cars & P/van5 & Buses & Lorries & Matatus \\
\hline 1 & 0.32 & 0.34 & 0.67 & 0.19 & 0.27 \\
2 & 0.27 & 0.26 & 0.19 & 0.15 & 0.25 \\
3 & 0.067 & 0.65 & 0.06 & 0.03 & 0.25 \\
4 & 0.21 & 0.87 & 0.05 & 0.04 & 0.02 \\
5 & 0.06 & 0.83 & 0.05 & 0.084 & 0.84 \\
6 & 0.08 & 0.04 & 0.13 & 0.02 & 0.12 \\
Av. & 0.16 & 0.13 & 0.09 & 0.07 & 0.19 \\
\hline
\end{tabular}







```

