AN INVESTIGATION INTO THE RELATIONSHIP BETWEEN MATHEMATICAL ABILITY AND

 MATHEMATICAL ACHIEVEMENT OF8TANDARD SEVEN CEILDREN

OF

KENYA

THIS THESIS BAS BEEN ACCEPTED FOR
 UNIVERSITY LIBRARY.

BY
RAPHAEL JACOB ACHOLLA KAPIYO

A THESIS SUBMITTED IN PARTIAL FULFILMENT
FOR THE

DEGREE OF MASTER OF ARTS (EDUCATION)

IN THE

UNIVERSITY OF NAIROBI

DECLARATION

"This thesis is my original work and has not been presented for a degree in any other University".

"The thesis has been submitted for examination with my approval as a University Supervisor".

DR. S. DESAI
LECTURER
DEPARTMENT OF EDUCATIONAL PSYCHOLOGY KENYATTA UNIVERSITY COLLEGE NAIROBI.

DEDICATION

This thesis is dedicated with alot of reapect and appreoiation to my parente MR. CORNEL APIYO IMBO AND MRS BIRGITTA DIANG'A APIYO whose efforts to educate me have resulted in this work.

ACENOWLEDGEMENT8

```
To start and bring this thenis to completion involvod the help and patience of nany people and the institution in various ways.
```

My greatest appreciation goen to Dr. 8. Desai who was my upervisor and inspiring friend. Alot of thanks also goes to Miss 8. Bali, Associate Professor George S. Eshiwani and Dr. J. B. Marange for their eincere eseistance with the work.

I am moat gratelul to Konyatta Univeraity College lor the Postgraduate Boholarahip awerd and researoh grant.

Thanks to the Municipal Education Officer and District Basic Education Ofilcer Kisumu, the Headmastern, Headmistresses, teachers and pupil of the schoolv visited during the research period for whatever parts they played in this etudy.

[^0]
(v)

Abstract

Thanks to Orace W. Ragol for her keennon and diligence in typing the thoais and Mr. A. Dwalo Bojana for roading through the work.

Lastly my heartiest thanks go to my wifo Jacintha Anyango and my daughters Maurine Akinyi and Linda Anondi for onduring in a mont underntanding manor with the oonditions of life during the courae.

CONTENTS

PAOE
ACKNOWLEDGEMENTB (v1)
LIST OF TABLES: ($(\pm x)$
ABSTRACT: (xi)
CHAPTER ONE: INTRODUCTION
1.1. The Research Problem: 1
1.2. Resenrch Questions: 7
1.3. Important Variables in the 8tudy: 8
1.4. Bignificance of the Cboice of Variables: 9
1.B. Significance of the Study: 10
CHAPTER TWO: REVIEW OF LITERATURE
2.1. Introduction: 12
2.2. Mathematical Ability 12
2.3. Relationship Between Ability and Achievoment in Mathematice: 23
2.4. Mathematioal Achievement and Language: 33
2.6. Mathematical Achievement and 8ex of Pup11: 38
2.6.1. Sex Differencen-Peychoanalytiv Viewpoint: 46
2.6.2. Sex Differences and Attitude Toward Mathematics: 80
2.6. Hypothoces: E7
2.7. Basio Asoumption 60

CHAPTER THREE: METHODS AND INBTRUIENTS

3.1. Introduotion: 61
3.2. The Sample: 61
3.2.1. Selection of Subjecte: 67
3.3. Variables 8elected for the 8tudy: 68
3.3.1. Mathematical Achievement: 69
3.3.2. Mathomatical Ability: 70
3.3.3. Mathematical Vocabulary: 72
3.3.4. English Language Proifolency: 72
3.4. Data Colleotion and Inatrumonte: 74
3.4.1. Tent Adminietration: 74
3.4.2. Scoring of Test: 76
3.4.3. Analyeis of Date: 76
CHAPTER FOUR: RESULTS AND DISCUBSION
4.1. Introduction: 78
4.2. Statistical Procedures: 78
4.3. Results and Interpretation: 79
4.3.1. Relationship between Achievement and Ability in Mathemation and Language Factors: 79
4.3.2. Relationship between Type of Schools and Tent Performance: 83
4.3.3. Rolationship botweon Box. of Pupil and Tent Porformance: 09
4.3.4. Factors Responsible for the Variation in Mathematical Achievement: 103
4.3.5. Summary of Pindings: 108
4.4. Discussion: 108
CHAPTER FIVE: LIMITATIONS, IMPLICATIONS, RECOMMENDATIONS
5.1. Limitations of the Study: 127
5.2. Implications of the Study: 128
5.3. Recommendations: 129
5.3.1. Improvement of Learning Facilities and Environment in Medium and Low Cost Schools: 130
5.3.2. Mathematical Vocabulary: 130
5.3.3. Special Emphasis on Development of Spatial Ability: 131
5.4. Directions for Future Research: 132
5.5. Conclusion: 134
APPENDICES 137
REFERENCES: 188

LIET OF TABLES

TABLE
1.1. Mean and Standard Deviation of Performance in C, P.E.
1978 and 1980 Mathematics Paper for Male and Female
Pupila (National) : 62.1. Differences between Female and Male Achievement:47
3.1. Distribution of Pupils attending Low Cost, Medium Cost and High Cost Schools by their Sex, Age, Repeater, After-School Coaching in Mathematics and After-8chool Coaching in Englieh: 66
4.1. Intercorrelation of Mathematical Achiovement teat acores with Mathematical Ability, Mathematical Vocabulary and English Language Proficiency Test -cores for all pupils ($N=634$): 81
4.2. Mean and Standard Deviation of Mathematical Achiove- ment Test, Mathematical Ability Test, Mathematical Vocabulary and English Language Proficiency Tost for Low Cost, Medium Cost and High Cost Schools: 85
4.3. Summary of One-Way ANOVA for Mathematical Achlevement Testa: 86
4.4. Summary of One-Way ANOVA for Arithmetic Reasoning Test: 87
4.8. summary of One-Way anova for Computation Tect. 87
4.6. Summary of One-Way ANOVA for Whole Number Comprehension Test: 88
4.7. Summary of One-Way ANOVA for Hidden Figures Test: 88
4.8. Sumary of One-Way ANOVA for Foarm Board Test: 89
4.9. Summery of One-Way ANOVA for Five Dots Teat: 80
4.10 Sumary of One-Way ANOVA for Problem Solving Tostl 00
4.11. Summary of One-Way ANOVA for Mathematical Ability $\quad 80$

4.13. Summary of One-Way ANOVA for English Language
Proficiency Test: 91
4.14. Mean Differences in Test Scores for Low Cost
and High Cost Schools: 94
4.15. Mean Differences in Test Scoren for Medium and
High Cost Schools: 98
4.16. Mean Differences in Test Scores for Low Cost and
Medium Cost Schoole: 96
4.17. Mean Differences on Mathematical Achievement
Test, Mathematical Ability Test, Mathematical
Vocabulary Test and English Proficiency Toat
for Male and Female Pupila: 101
4.16. Summary of Stop-Wise Multiple Regrossion Analyois on Mathematical Achievement Test: 105

Abstract

This thosia invocigated the rolntionship betweon Mathenatical Ability and Mathematical Achievement in etanderd seven pupils of Kenya. It further invertigated performanoo differencen anong pupile attending differont types ot achools and also between male and tonale pupils in mathometic.

The study was prompted by the very little research work done in this ares in Kenys, and wher some wort wem done $u l$ rosdy, the roeulta wex not conolusiv. The etudy examined lour main research questions:

1. How significant is the relationship between Mathematical Achievemont and Mathomatioal Ability, Mathematical Achievemant and Mathemetical Vocabulery, and Mathomatical Achievment and English Lenguage Proflciency.
2. Do the cores of pupil attending the Low costs Modium cost and Hich cost chools differ significantly in Mathomatical Achievement, Mathomatioal Ability, Mathomatioal Vooebulary and English Language Prollelency tente?

(xil)

3. Do the coros of male and fomale pupils differ aicoificantly in Mathomatical Achiovomat, Mathenatical Ability, Mathematical Vocabulary and English Language Proficioncy testa?
4. Which factor account for the variation in performanco on Mathematical Achievemont tolet?

The subjects for this tudy conaisted of a total of 634 stenderd seven pupila 1 rom 16 primary achools in Konya. The chools were of throe types, Low Cost, Modium Cost and Hich Cost, all drawn from Kisumu town within a radius of 10 kilometres, Kisumu town is in Kisumu District in Nyenza Province, Kenya, In each school, under normal clessroom conditions, the selected pupils were given tests on Mathematical Achievement, Mathematical Ability, Mathomatical Vocabulary and Englich Language Proficiency. A questionnaire to provide information on pupils' ago, clase repetition and afternchool coaching In Mathematica and English was also given to the pupils.

The reaults of correlation analyais rovealed very utrong relationship botwoen Mathematical Achiovomont and Mathematical Ability, implying that what the pupile echieved in Mathomatica was a reault of thois lovel of

Abstract

ability in Mathomatica. Strong oorralationa wore also Iound between Mathomatical Aohievomont and Mathoantical Vocabulary and betwoon Mathemetioal Aohievoment and Englich Language Proficiency.

A comparison of the scores of pupils attending Low Cost, Medium Cost and High Cost primary schools by the One-Way ANOVA technique revealed otatistically significant differoncen at $p<001$ in favour of pupile in High Cont schools.

Significant sex differences were found in Mathematical Ability, Mathematical Achiovement and Mathomatical Vocabulary in favour of male pupils but not in English Language Proficioncy. This clearly chowed that the fonale pupils have a problom in Mathomatics.

Step-wise multiple regression analysie revealed that 62% of the variation in pupiln' Mathematical Achiovement wan accounted for by their level of Mathematical Ability, Mathematical Vocabulary, English Language Proitcioncy, Sex of pupil, Clane ropetition, Type of school and After-school Coaching in Figilah and Mathonation.

(xIv)

It was concluded that differences in pupil performance in the tents reflected differencen in the schools the pupils attended. Further research is therefore required to qualitatively and quantitatively determine which factorn within the echool environment are responsible for the differonces in pupil performance.

It is therefore recommended that if the potential of our youth has to be realized fully, then equal opportunity 1n education muet be provided for all, and tae way to do this is to get the obools to be as equivalent in otandard as possible.

CHAPTER ONE

INTRODUCTION

1.1 The Research Problem

Abstract

5 The major purpose of this study wes to investigate the relationship between Mathematical Ability and Mathomatical Achievement of etanderd seven pupils of Kenya.

The education of children is one of the most important priority areae in which the parents and the government show keen interest. Much of what the pupils learn in school is carefully planned to meet the needs of the people and this in rellected in the government' major goal (objectives). The Kenya education Syeten like other countrien is a stage wise process. The procese etarts with pre-primary shool stage through to Primary achool stage, Secondary and High school stage then to the University. Each stage of education level takes apecified mount of time, and ther is given prescription of subject matter in the shool syllabus which one is expected to cover within given stage. In other words the pupila are expected to have mastered the required conteat and aoquired the denired bitils opeoisiod in the National Eduoationel Objeotivee.

Currontly and for some yeari back the main atages of formal education in Kenya are Pre-primary (Nureory and Kindergarten) (2 yoara), Primary (7 yeara), Secondary (4 yeare), and H1gh School (2 years), and University (3-5 years). At the lower etages of formal education pupile are only exposed to a variety of subjects. At the secondary level, they etart epecializing in their favourite subjecte. In Primary Education the aubjecte covered include Englien Language (Grammar and Composition), Mathematica, History and Civice, Geography, Science, Religion, Arte and Crafte and Munic. At the ond of the primary education, that is after eeven yeara, ell these eubjecte, with the exception of arte and craft, roligion and music are oxaminod through a National Examination. The National Examination is known an Certificate of Primary Education (C.P.E.). Succose or fallure in this Examination determines whether a pupil proceede for Secondary Education in a Government Institution, Private or Harambee achool or eimply drops out if unable to join any of these.

One critical isaue in the Primary Education set up in Konya if that the Primary Schools'maintenance varios a great deal in torme of echool equipmont, teaching etaff, oto. The range 10 from the very poorly maintained echoole to the very well maintained High Cost schoole. Most of the pooriy

```
maintalned schoole are found in the rural areas while the
woll maintained ones are lound in the urban areas. In between
there exist schools that vary in etrength of maintenance.
All the pupils attending these verious schools are exposed
to and are expected to cover the content of each subject
in the primary schools syllabus. This exercise is the
school's and it: teschers' responsibility. Bv the end
of primary education all the pupils take the Certificate
of Primary Education (C.P.E.) Examination. Selection Ior
secondary edqeation is done on the besls of their periormance
In the C.P.E.
```

A careful analyele show that when the results of pupile from all the choole are compared, pattern emerges In the performance of pupils attending the difierent types of schools. Such patterns were shown in the studies of Somerset (1974) and King (1974), and observation shows that they have persiated upto today. Precisely the pattern indicates that pupils who attend the High Cost chools always on the average perform better than those who attend the Low Cost choole. The differential performance by pupile attending the different school typen would imply that pupils in certain types of schoole are superior intolleotualiy to the ones in the other type of choole. Whether much a oane in true or not requires inventigation.

Abstract

Although at the individual schools, end of term tosts are taken by pupils and there is a Mock Examination Just before the National Examination, the resulta of the end of term tenta and Mock Examination are never considered for any decision making purposes at antional level. However, the disparity in pupil performance and the pattern revealed for pupile attending different school types generate concorn and warrant investigation. Mont important would be to determine whether what the pupils achieve in the National Examination ia a reilection of their potential ability. This is in an attompt to entablish whether the potential of the pupils have been realized in out Education System. An investigation of this kind would appear quite diffioult Eince it would involve scrutinizing pupil performance in the variou subjecte, in an attempt to identify the nature, cause and where such differences occur. It would also involve identification of pupils' specific abilities in relation to their achiovomente.

To be able to carry out a study whereby pupile' achivoment would be analysed in relation to pupile' ability and other related factors, mathomatics an a subject was chosen because:

1. It in one of the most important aubjecta in tho Primary 8chools Syllabus and one which is
tested on its own as paper at C.P.E.
Examinationa.
2. Mathematice is abbject where there are apecifio

Mathematical Ability factora which determine pupile's performances in it. Such Mathematical Ability factor: have been isolated (Werdelinn, 1958; Krutotaki1, 1976; Eahiwani, 1974; oto.)
3. It is a ubject where sharp differences in performance has coneintently been registered betweon males and fomale (Maccoby, 1966;

Sherman, 1974; 1978; Eahiwani, 1074; Omar Bhoikh, 1978; oto.)

In this etudy the main concern was to determine (a) the relationship between pupils' Mathematical Ability and Mathematical Achievement* (b) performance differences among pupila (c) sex-differences in Mathematical Performance and (d) factora responaible for the viriation in Mathomatical Achievement.

Mathematical Ability refers to a composite of factors that is, Spatial Ability, Mathematical Reasoning Ability, Computation and Numeration Ability and Problem Solving Abilityr These factors determine the level of performance in Mathematice.

Mathematical Achievement refers to the mathematical akille a pupil has developed through his/her general experience during primary education baced on the primery echool mathematice syllabus.
Detailed oparationalisation of these terms and others will be found in chapter three of this thesis.

Thin was in an attempt to identify the cause of the dieparity in performance between pupils attending dilferent typen of echools. Though the dieperity in performence of pupile attending the difierent typer of shools heve been known to exist, very ilttle research has been done. The

Kenya National Examination Council compiled renulta of Item analysia of performance on examination question for different categories of schools, and results on sex differences in performance. Table 1.1 below show the performance of bpys and sirla in C.P.E. 1979 and 1980 Mathomatice Paper.

TABLE 1.1

MEAN AND 8TANDARD' DEVIATION OF PERFORMANCE IN C.P.E. 1979 AND 1980 MATHEMATICS PAPER FOR MALE AND FEMALE PUPILS (NATIONAL)

	1979				1980			
	BOY8		GIRLS		BOYS		GIRLS	
	MEAN	8.D	MEAN	8.D	MEAN	S.D	MEAN	S.D.
Rural	52.5	15.4	46.1	12.9	52.7	16.4	45.8	13.1
Urben	56.8	17.1	50.6	16.8	85.8	16.8	80.1	16.8

From the table differonces are seen to exist between performance of boye and girle, and betweon rural and urban

The results were got oflicial from the Kenya National Examination Couno11, Computer 8hoets for C.P.E. 1979 and 1980 reaulte。
pupils. The differences have been consistent over the yeara. Clearly the sex difference in mathomatical performance and the environmental influences due to attending different school types, some loceted in urban and nome in rural areas deserved further research. One of the influencesof the environment or pupil home background on performance has to do with language used in the schools for instruction and at home. In Kenya, English Language 1s used as a medium of instruction in the echools though It is aecond language for all the pupila. According to Vygotaky' (1962) finding that language is important for concept formation, it in clear that the language used for instruction in mathematics would influence learaing and performance in mathematice. Therefore it was important to determine pupils' level of English Language Proficiency and establish its relationship with Mathematical Achievement. On the other hand mathematica has been viewed to be a specialized language (Aiken, 1972) implying it has unique vocabulary and terma. An explanation of variation in pupil Mathematical Achievement would require an underatand1ag and established level of knowledge of Mathomatioal Vocabulary.
1.2 Research Questions

The atudy attempted to provide solution to the following questionc:

1. How does Matheantical Ability rolate to Mathematicel Achievement?
2. Do pupils from the different types of echoole differ in their Mathomatical Ability, Mathematical Achievement, Mathematical Vocabulary and Proficiency in English Language?
3. Do male and fomale pupile differ in thoir Mathomatical Ability, Mathomatical Achiovoment, Mathematical Vocabulary and Proiloionoy in Englich Language?
4. Which factore are responsible or account for the variation in Mathematical Achiovomont?
1.3 Important Variables in the Study

> A study of this kind is subject to very many intervening variables. Where aseesement is involved it is expected thet a number of factory would influence the outcome. However in this study attempt was made to control as much as posible the intervening variables.

Abstract

The main veriables for the etudy were Mathemntical Achievement, Mathemetical Ability, Mathematicel Vocabulary, Engliah Language Proilciency, Type of school and Sex of pupil. In addition to thee variables, lactora which could implicitly have an influence on the etudy such as age of the pupil, clas repetition, after-school coaching In Mathematics and English were considered. The dependent variable waa Mathematical Achievement while Mathematical Ability, Mathematical Vocabulary, English Language Proficiency, Type of chool and B ox of pupil were the Independent variables.


```
The factor within each school type, like teachers, school amenitios, teaching aids, et cetre, were all considered under the variable Type of Bchool, such that difference in the shool typer would account for uch variation.
```

1.4 8ignificance of the Cholce of Variables

All the variables mentioned above were expected to provide information regarding the performance differences among pupils attending different school typen.

That was mainly becaue the dependent variable which was Mathematical Achievement was deemed to be aignificantly Influenced by the independent variablen.
1.5 Significance of the Study

Through its nature and purpose such a study would be expected to provide more information in the relative atatus of the schools. That kind of information could asiset in curriculum organization and when it comes to ratifying certain important decisions on the organization of the primary chools. The applicability of the findinga of such a etudy might not be restricted to the primary education level alone, it could be applicable to all levels of education where the situation and organization are similar to the one which provoked the study.

The fact that much importance is attached to school performance especially when it comes to eelection for further education and future careers is unquestionable. This would imply that chool performance is determinant of future success. This is why it is important to determine whether what a pupil achieve日 is a reflection of his ability. Ae a goal for National Development it muct be asoertalned that pupil potential is fully realised,

The finding by ILO (1972), that echool performance bore the greateat direct relationship to occupational
achievement would eerve to elucidate the fact. Therefore a atudy focusing on factors that influence abject achievement could be viewed as one way of trying to alleviate any shortcominga within the education mystem and the evaluation program.

Finally the importance of medium of instruction
must not be underestimated. The fact that Englieh Language
in a second language to many pupils and teachers would require that certain mearures be taken if it is found to Influence the toaching/learning progress.

CHAPTER TWO

REVIEW OF LITERATURE

2.1 Introduction

In this chapter attempt is made to review literature that is related to the study. The main areas covered in the review include Mathematical Ability, Achievement and Ability in Mathematics, Mathematics and Language, and Mathematics and Sex. Though much of the reference was expected from Kenya or East Africa, sarcity of literature related to the study has led to reviewing more studies elsewhere.
2.2 Mathematical Ability

The review of literature on Mathematical Ability covered two major approaches of study, that is, Theoretical approach and Empirical approach. The Theoretical approach involved general definition of Mathematical Ability and what it was thought to be. The Empirical approach involved carrying out tests and analysis, mainly factor analysis, to be able to identify factors that composed Mathematical Ability. A number of researches have been done in the pant on Mathematical Ability and here only a few important ones will be reviewed. From the reviews, Mathematical Ability will be defined operationally, and then important factors to
Mathematical Ability identified. Tests based on the important factore which were used in the past by several researchera will be adapted for this study.

\author{
Mathematics is a subject where there is a belief that to be able to perform well one ought to have an ability in it. Like mathematics, there is a similar belief for Music and Fine Art. The view here, has been that there exist specific abilities inked with performance in certain subjects which make some people to be better than others at those subjects. Gosinn (1963, p. 125)
 thought that ability was a hypathetical construct. He argued that,
 ```
although we cannot really see an
 'ability' or locate it in the cell
 structure of the brain or muscles, we can infer its
 presence or lack of presence in an individual
 from his performance. The usefulness of
 an ability construct stems from the fact
 that it makes possible the prediction of
 actual performances in similar but not
 exactly identical gituations. Thus the whole
 notion of human abilities implies a set of
 responses that are buried deep within the
 individual the manifestation of an
 ability requires a situation in which that
 ability 1s appropriate.

```
}

Gosiln' arguement tied quite closely with

Beldwin' (1988, p. 197) statemont that ability refered to;

> .... that characteristic of an individual which permits him to behave adaptively, that is to cause the same result even though from time to time the circumstances vary.

\begin{abstract}
While an exhaustive definition of general ability has never been found, most definitions centre on arguements similar to the ones presented above.
\end{abstract}
```

 Performance in any given task calls for an ability
 specific to the task, and high or low performance will
bo viewed to imply high or low ability in the given task.
This 1ssue has led people to have the feeling that they
are more able in some and not in other subjects. In
Mathematics the feeling of being able or unable is
widespread. It is not uncommon to hear a student explain
his poor performance in mathematics due to not having the
ability or a 'mathematical mind', a term used by a
Russian paychologist, Krutetski1. Krutetski1 (1969) referred
to children who are gifted in mathematice as having a
'mathematical frame of mind'. According to Krutetskii
such children found mathematical meanings in many aspects
O1 reality and tended to categorime thinge in terms of
mathematica and logic.

```

An earlier study by Carlton (1959) entablishod that
there were several different types of mathematical minds.

\begin{abstract}
Carlton did a survey of the educational philosophien of fourteen eminent mathematicians and found from the writinga of these famous men the following mathematical minds. One type of mind was said to be logical and formal, whereas another to be slow. The distinction between these types of mathematical minds was dealt with most extensively by Poincare (1952), who maintained that geometers were more intuitive, and analyste more logical in their thinking. Though the explanation did not bring out the fact clearly, right from the early days Kathematical Ability had been known to exist as a composite of factors. Operationalizing Mathematical Ability was the most difilcult problem and for sometime people have struggled to provide a nuitable definition.
\end{abstract}

Rogers (1918) split Mathematical Ability into two aspects, reproductive and productive. To h1m, the reproductive aspect was related to the function of memory while the productive aspect was related to the function of thought. Rogers however could not go beyond that.

Betz (1922) defined Mathematical Ability as the ablilty to have a clear awareness of the interaal connections in mathematical material. His definition was quite general.

\begin{abstract}
Hamley (1935) viewed Mathematical Ability as a
compound of general intelligence, visual imagery, ability
to perceive number and space configurations and to retain
such configurations as patterns. Each of those could be
ubdivided into simpler components.
\end{abstract}

> Although the definitions seemed to vary they were based on the skille required in solving any Mathematical task.

Blackwell (1940) carried a factorial study of Mathematical Ability and interpreted it in two forms. One form was for selective thinking in the realm of quantitative o relationships (quantitative thinking) and for deductive reasoning. The other form was the ability to apply general principles to particualr cases in the realm of numbers, aymbols and geometric forms.

Meinander (1950) viewed Mathematical Ability as a complex quality including intelligence, memory, interest and volitional factors.

Revesz (1952) examined two basic forms of Mathematical Ability, applicative and productive. Applicative form referred to the ability to find mathematical relationehips

\begin{abstract}
quickly without preliminary triale, and to apply the appropriate information in analogous instances. Productive form referred to the ability to reveal relationahips that do not follow immediately from the available information.
\end{abstract}

In the early fifties \(M\). K. Barakat reported his factorial study of Mathematical Ability. He studied 300 pupile in four grammar schoola with a variety of teats. He succeeded in deriving and identifying six factors known as, G(General), S(Spatial, N(Numerical), M(Memory) and the so called mathematical factors, which in his opinion playod a deifnite part in mathematical thinking. He also attempted to show that the mathematical factor was the ability to manipulate mathematical schemes and relations.

> Lee (1955) viewed Mathematical Ability as "ability to succeed in mathematics" and defined it as the ability to understand (grasp) the basic concepts of mathematica and to manipulate them.

\footnotetext{
Werdelin (1958, p. 13) studied Mathematical Ability through factor analysis and came up with a definition Of what he called school Mathematical Ability, He deifned It as the ability to understand the nature of mathematical and similar problemg, symbols, methods and proofs, to learn them, to retain them in memory and to produce them;
}
```

to combine them with other problems, symbols, methods and
prools and to use thom whon solving mathematical (and aimilar)
tagks.

```

Burt (1967, p. 126) emphasized that "Mathematical Ability has almost always been regarded as a distinct ability or gift". To him Mathematical Ability was undoubtedly a composite, with the essential constituent including an ability to form, retain and use associations between numerical or at least non-verbal symbols.

Although the definitions so far reviewed were theoretical and seemed to vary, they were based on the skils required in solving a mathematical task. From the review of literature presented it was clear that efforts were concentrated in operationalizing Mathematical Ability in an attempt to identify its main lactors. The two main methods used in the researches were factor analysis and logical analysis. Aiken (1973) presented a summary of the ifndinga of different researchers on the factore that compose Mathematical Ability. Through various factor analytic inveatigations the representative Mathematical Ability factors obtained were;
```

Deductive (general) reasoning - (Blackwell,
1940; Kline, 1960; Very, 1967;
Werdel1n, 1958, 1986; Wooldridge,
1864).

```
    Inductive reasoning - (Werdelin, 1958)
    Numericel ability - (K1ine, 1960; Very, 1967;
    Wooldridge, 1864, Werdelin, 1958, 1966).
    Spatial - perceptual ability - (Blackwell, 1940;
    Kline, 1960, Very, 1967, Werdelin, 1966).
Verbal comprehension - (Blackwell, 1940; Kl1no, 1960,
    Very, 1967; Werdelin, 1958, 1966,
    Wooldridge, 1964).

On the other hand based on logical analysis,
Krutetski1 (1966) 1solated the components of Mathematical Ability, He did this through his observations and impressions of the responses of Russian school children to Mathematical problems. The basic components of Mathematical Ability he Sound were;
(a) formalized perception of mathematicel material.
(b) generalization of mathematical material,
(c) 'curtailment' of thought,
(d) striving for economy of mental forces
(e) flexibility of thought
(f) mathematical memory, and
(g) spatial concepts.

Comparing the factors and components of Mathematical Ability, only spatial ability appeared to be the common one. It would be expected that the factors and components of Mathematical Ability should mean the same thing since both were measures of Mathematical Ability. Studies to show the relationship between the factors and componente of Mathematical Ability have not been done. However, the main problem would be on the measurement of the factors or the components of Mathematical Ability. Due to the subjectivity that might arise from observations and impressions, the method of assessment adopted in logical analysis, the tendency has been to use the factors rather than the components when assessing the level of Mathematical Ability.

\footnotetext{
Over the last ten or so years, further attempts to operationalize Mathematical Ability has been minimal. However, Wileon, et al. (1968) in carrying out the National Longitudinal Study of Mathematical Ability, Viewed
}

\section*{Mathematical Ability as composed of;}
(a) Mathematical Reasoning Ability
(b) Spatial - Porcoptual (Visualization) Ability
(c) Numerical (Computatational) Ability.
(d) Problem Solving Ability.

Wilson combined inductive and deductive reasoning abilities to form Mathematical Reaconing Ability, and replaced verbal comprehension ability with problem solving ability. He also carried out his study through factor analysis and found the four factors already mentioned to compose Mathematical Ability. His group, "School Mathematics Study Group" also constructed tests based on each of the factors of Mathematical Ability and validated them. The tests have been used by Eshiwani (1974, 1980) and Wamani (1980) in studying the Mathematical Ability of School Children. These factors of Mathematical Ability have been operationalized as follows:
(a) Mathematical Reasoning Ability was defined the ability to discern information through some logic and abstraction and use it to process mathomatical tasks. It involved tho use of induction and deduction in solution to mathematical problems and the ability to process
```

logical propositions quickly.
The important testa for thim factor
were found to be, Arithmetic Reasoning Test and
Five Dots Test. (Thurstone, 1938; Wilston, et
a1., 1954; Hills, 1960).

```
(b) Spatial - Perceptual (Visualization) Abilitywas defined as the ability to perceive spatial patterns or to maintain orientation with respect to objects in space; the ability to keep one or more definite configurations In mind so as to make identification inspite of perceptual distractions. It aleo involved the ability to perceive objects rapidly despite confusing background, and also rapid perception of similarities:. In general spatial - perceptual ability was viewed as the ability to perceive, interpret or mentally rearrange objects as spatially related.

The important tests were Hidden Figures Test and Foarm Board Test (Gottschaldt, 1926; Witkin, 1950, Guilford, et al., 1952; Bennett, et al., 1952 Jackson, 1956; Michael, et al.. 1957; Gardner, ot al., 1960; Kagan and Moss, 1962).
(c) Numerical (Computational) Ability was defined an the ability to manipulate and compute with figures. It involved keenness and accuracy in handling numerical operations. The important tests were found to be computational or Numerical Operations Test and Whole Number Comprehension Test. The speed element was found to be very important in these tests (Thuratone, 1938; Michael, et. al., 1957).
(d) Problem Solving Ability - Was defined as the ability to diagnose and dissect into mathematical tasks, see through their solution and solve the problem.

The important test was Problem Solving Test (Wilson, et al., 1954).

\author{
With the factors of Mathematical Ability isolated and operationalized, attempts have been made to examine the relationship between Mathematical Ability and Mathematical Achievement. This study adopted Wilson, et al. (1968) factors and tests.
}
2.3 Relationship Between Ability and Achievement in Mathematicm.

\begin{abstract}
Ability factors it was found logical by the researchers to construct tests to measure each of the factors. The cores on these factored tests could then be used to predict performance in specific mathematics courses and also assist in the planning of instructional treatments most suitable for students having specilic patterns of ability (Aiken, 1973). It could also prove the view that Mathematical Achievement was influenced by a composite of specific abilities in Mathematics (Guiliord, Hoepiner and Peterson, 1965; Hil1s, 1957). Mathematical Achievement was taken to refer to the skills acquired in Mathematics as a result of inetruction and experience at achool.
\end{abstract}
As observation made in some studies indicated children who excel in Mathematics tended to score high on tests of general intelligence (Duncan, 1961; Kennedy and Walsh, 1965; Geng and Mehl, 1969). The studes attempted to establish whether general intelligence or Mathematical Ability was more important to Mathematical Achievement. Evans (1965) in a separate study found that above average intelligence was necessary but not sufficient for high performance on tests of Mathematical Ability and Mathematical Creativity. This implied that Mathematical Ability was unique in itself. Fox (1976) supported this idea by saying that, knowing that a sudent had an Intelligence Quotient

\begin{abstract}
(IQ) of 160 was not adequate information for deciding whether or not the student was ready for a college course In science or mathematics. There was need to know the pupils pattern of ability, his level of achievement and interest. IQ just showed the learning potential of a pupil.
\end{abstract}

\author{
Predicting pupils' Mathematical Achievement has been a very tricky problem at every level of education yet a very important one. Basically it entails identifying factors that relate Bignificantly with Mathematical Achievement.
}

\begin{abstract}
Wick (1965) carried out a correlation study between Mathematical Achievement and scores of factored tests of Mathematical \(A b i l i t y\) and his results indicated very low correlations. His main concern was to identify factors associated with success in first year college mathematics. Though the result appeared opposite of what would be expected it was possible that there were other factors influencing the outcome. Aiken (1973) reported that results from many other investigations had shown that previous mathematics grades were the best predictors of Mathematical Achievement.
\end{abstract}

\footnotetext{
Considering the fact that the subjects for this study were of primary level of education, reviews of studiea at a
}
similar level would be most desirable. Dayo Adejumo (1977) carried out a predictive atudy on Mathematical Achievement of mome Nigerian Children. He ueed Modified Halls Matricen (MHM), a test of Mathematical Reasoning Ability. With 180 subjects of 7 and 8 years old, the predictive power of the MHM for Mathematical Ability of young children in Nigerian schools was found to be satisfactory and acceptable. The high correlations found between MHM and Mathematical Achlevement showed that MHM could be used to detect children with possible deliciencies in logical operations and computational ability.

Studies on the relationship between ability and achievement in mathematics were geared at predicting future achievement in mathematica. The studies have normally used only single factors of Mathematical Ability.

Sherman (1979) attempted to predict mathematics periormance in high school girls and boys. She used ninthgrade (standard) scores for 157 females and 148 males for cognitive testa (Test of Academic Progress, Quick Word Test, (Space Relations, Test for Differential Aptitude) and Elght Fennema Sherman Mathematics Attitude scales to predict Mathematics Performance. Using multiple regression, ninthgrade scorea eignificantly prodicted mathematics periormance

1 - 3 years later. Spatial visualization significantly predicted geometry grade for girls but not for boys. She also found that aside from Mathematical Achievement, Spatial Visualization was the only other variable with significant weight in predicting mathematical problem solving scores for girls over a three year period. Apart from the other findings it noted the importance of spatial ability as a factor of Mathematical Ability.

Guay and McDaniel (1977) had earlier studied the relationship between Mathematical Achievement and Spatial Ability among elementary school children. In their study, four Spatial Ability Tests were administered to 90 children enrolled in grade (standard) 2 through grade (standard) 7. Two tests measured simple spatial ability, that is, visualizing two dimensional configurations, the other two measured complex spatial ability, that is visualizing and mentally rotating three dimensional configurations. Scores on the Iowa Test of Basic Skills were used to classify children as High and Low Achievers. The results indicated that High Mathematical Achievers scored significantly higher than Low Mathematical Achievers in all the four Spatial Teste (p < OB). Additionally malos corod agnificantly higher than fomalou in the two tests measuring complex spatial ability ( p < O5). The findings suggested that among elementary school children,

\title{
high Mathematical Achievers have greater Spatial Ability than Low Mathematical Achiever.
}

E1 Abd (1971) carried out a study on the relationship between ability and achievement in mathematics of college students in East Africa. He gave out 13 tests based on the four factors of Mathematical Ability, that is, Mathematical Reasoning Ability, Spatial Ability, Computation Ability and Problem Solving Ability to the students. He analysed the relationship between the 13 tests and their performance in Mathematics and English tests. He also analysed the group factors of Mathematical Ability and did a factor analysis of the Mathematical Ability tests. His findings were as follows:
(a) He found significant correlations between Tests of Arithmetic Reasoning and marks from teachers examination in English and Mathematics.
(b) From the analysis of the group factors of Mathematical Ability he found numerical factor and Mathematical Reasoning factor to be the factors which related to Mathematical Achievement.
(c) A factor analysis of the thirteen tests and the mathematics examination marks were found to relate to the Numerical Facility Factor, the Deductive Reasoning Factor and Spatial Vigualim zation Factor.

El Abd's finding showed that there was always some connection between the factors of Mathematical Ability and Mathematical Achievement.

\author{
Eshiwani (1974) attempted to predict the performance of some Form Two male and female Kenyan students studying a Unit on Probability. His tests were based on:
}
(a) Computation Ability
(b) Mathematical Reasoning Ability
(c) Comprehension of Mathematical Terms
(d) Comprehension of Scientific Terms
(e) Attitude toward Mathematics.

His findings were as follows:

Mathematical Ability (Five Dots Test) and Mathematical Reasoning Ability (Arithmetic Reasoning Test) were found to be statistically significant predictors of achivement for boys ( p (.CE) while comprehension of Mathematical Terms and Mathematical Resoning Ability were found to be statistically significant predictors for girls (p <.O5).

\begin{abstract}
Further attempt to establish the relationship between Mathematical Achievement and other factor: of Mathematical Ability has been through the following studies. Westbrook, ot, al. ( 1965 ), and Leton and Kim (1966) correlated various intellectual abilities and Mathematical Achievement. Factor analysis (at ages 4, 5 and 6 in the Westbrook et, al.'s study and at grade (standard) 9 in Leton and KIms study) revealed numerical reasoning and ability to discern verbal meaning to be highly correlated with achievement in Mathematice. Success in solving word problems in Mathematics was found to depend upon skills in reading and computation, but the relative contribution of these skills was not clear.

Martin (1963) found that each of the factors of reading comprehension, computation, abstract verbal reasoning and arithmetic concepts was correlated with problem solving as measured by the Arithmetic problem solving test of the \(f\) Iowa Test of Basic Skills given to fourth and eighth graders. The partial correlation between reading and problem solving with computation held constant (about .50) was higher at both grade levels than the partial correlation between computation and problem solving with reading held constant (about .40). As Martin suggested, the relationship between problem solving ability and its underlying akilla particularly higher order verbal akills was probably more complex than has been upposed.
\end{abstract}

In a synthesis of two factor analytic studies of problem solving in Mathematics by Werdelin (1966) the two factor matrices were rotated to a congruent structure. He found that the loadings on the five factors isolated in each study were virtually identical tests of problem solving and they loaded strongly on a general reasoning factor and to a lesser extent on a deductive reasoning and numerical factor. The other factors, space and verbal comprehension were unrelated to problem solving.

Still on the same issue of problem solving ability Thompson (1967) reported that the effects of readability and mental ability on arithmetic problem aolving performanco were interactive. Although ease of reading was associated with higher performance at both high and low levels of mental ability, the effect was much greater with subjects of low mental ability. Thompson concluded that there was a close relationship between problem solving ability and mental ability. On memory and cognitive structure Bentley (1966) stated that tests of intelligence and achievement favoured memory and cognitive structure.

Concerned about pupil Mathematical Achievement Davison (1963) prepared a review with a view toward developing a "reasoning" test for predicting achievement in modern

\begin{abstract}
mathematics classes, but which would not predict achievement in conventional classes. A number of hypotheses were developed and specific set of studies prepared. Some of and reported these studies were carried out, by Davison (September 1, 1963; September 30, 1963), \(\approx=\quad\) He found considerable support for using the Hidden Figures Test as differential predictor of Mathematical Achievement and evidence that the test could be handled in grades 8 and 11.
\end{abstract}

The review presented here shows that while researchers have tried to study the relationship between ability and achievement in mathematics, very fow have conaidered all the lactors of Mathomatical Ability together. Wick (1965) who did this found very low correlations between factored tests of Mathematical Ability and Mathematical Achievement. In studies where single factors of Mathematical Ability were considered the results revealed strong correlations with Mathematical Achievement and this did not depend on the level of education of the subjects.

\footnotetext{
Though Mathematical Ability has been found to relate to Mathematical Achievement, the influence of Language used in instruction must not be underestimated.
}
2.4 Mathematical Achievement and Language:

The language used for communication and for instruction in schools forms an important part of the process of education. Where the language used is a second language to the pupils and to some teachers it becomes a very sensitive 1ssue. It would therefore be important to determine the level of proficiency in the language of the pupils and how it would influence their performance in the subject matter areas. The importance of language to learning was inferred from the finding of Vygotsky (1962). He found that language was very important for concept formation.

Mathematics being a subject conceived of as only concerned with numbers and their calculations could be assumed to have nothing to do with language. The connection between Language and Mathematics has been researched.

Trying to get the connection between language and learning of mathematics, Skemp (1977) referred to the qualities of some of the great mathematicians and reported that mathematicians were often poor practitioners with words. His views over language and mathematics were similar to earlier views that verbal and mathematical Intelligence would not go together, and that many mathematicians had been noted for thelr verbal fluency
(krutetski1, 1969; Smith, 1964).

\begin{abstract}
According to Aiken (1972, p. 359) "it is generally recognized that not only do linguistic abilities affect performance in mathematics but that mathematics itself is specialized language." Aiken also quoted that several Investigations on intermediate grades (children) have yelded correlations between Reading Ability and Mathematical Achievement \(r\) anging between \(r=.40\) and \(r=.86\). Though reading ability is a different case, it showed the range of factorg that could influence Mathematical Achievement.
\end{abstract}

> Aiken's study supported earlier finding by Rose and Rose (1961) which also observed that childhood training in precise language was essential for performing well in mathematics.
```

 Wrigley (1958) in his study of factors that influence
 success in mathematics, concluded that "high general
Intelligence was the first requirement for success in
mathematics and that the positive correlations between
measures of verbal and Mathematical Abilities could be
explained by the joint relationship of these two variables
to general intelligence"

```

Aiken (1972) argued differently on the finding saying that general intelligence could account for a substantial portion of the variability shared by Verbal and Mathematical Ability, but a significant degree of overlap between the first two variables remained unexplained.

Linville (1970) in a short study with 408 fourth grade students from 12 schools, attempted to find the connection between syntactic structures, vocabulary level, and Mathematical Achievement. The analysis of viariance of the resulta revealed significant main offocte in favour of both the difficult and simple vocabulary teste. He concluded that both syntactic structure and vocabulary levels, with vocabulary level being more cructal, were important variables in solving verbal arithmetic problems. He also found that regardless of treatment condition, pupils of higher general ability and/or higher reading ability made significant higher scores on the arithmetic problems than pupils of lower ability.

\section*{In their observation Olander and Ehmer (1971)} suggested that understanding of mathematical terms on the part of the elementary school pupils was highly interfered with by difficult vocabulary and syntax. Right from the early times this fact had been realized, thus according to Hansen (1944), knowledge of vocabulary was important in
solving mathematical problems and consequently should be a goal of mathematical instruction.

Retzer (1969) in a study with grade (standard) 8 found that teaching certain concepts of logic not only had differential effects on eighth graders'abilities to verbalize mathematical generalizations, but that students with high verbalization abilities could better transfer learned mathematical generalizations. However, those results could partly be accounted for by other intellectual abilities related to verbalization ability.

While the view maintained by a number of researchere was that language positively influenced Mathematical Achievement, Ahlfor et al.,(1962) Wirtz (1971) maintained that language was frequently an obstacle rather than \(a n^{2} t=\), help in understanding mathematics. Their explanation was that perhaps children with higher verbal abilities would learn mathematics more easily if the verbal aspects were emphasized. On the other hand, students with poor verbal(language)backgrounds and abilities could ind a non-verbal approach more rewarding.

\footnotetext{
Still on mathematical learning and language, Madden (1966), Ausubel and Robinson (1969), Cooper (1971) and other
}
```

educational researchers pointed out that mathematics
itself was a special formalized language and should therefore
bo taught as such. Munroe (1963) referred to the language
of mathematics .. as "Mathese" and indicated that it
could be easier for the student to understand eccidental
mathese than other languages. Munroe also noted that
because of the inconsistency of notation in mathematics
and variations in the interpretations of symbols (especially
x and y), it was impossible to construct a complete
Mathese - to - English dictionary. Furthermore the
majority of mathematicians were apparently not interested in
attemnting to devise or agree upon a completely incon-
sistent descriptive set of mathematical notations.

```
```

 Although there was no one-to-one correspondence
 between the concepts and rules of mathematics and those of
native languages, there were many similarities between
verbal and mathematical languages.

```
    The importance of language development to
Mathematical Ability had been considered by many psychologists
foremost among whom were Plaget (1954), Bruner (1966)
and Galperin (See Lovel, 1971). Piaget maintained that
growth in Linguistic ability followed the development of
concrete operational thought rather than preceod \(1 t\),

\begin{abstract}
although language was important in the completion of such cognitive structures. In contrast Bruner and his associates (1966) maintained that the
development of adequate terminology was essential to cognitive growth. It had been noted that one area of difficulty in problem solving was that of translating the verbal information into symbolic manipulative form. These confirmed the importance of language to learning mathematics.
\end{abstract}

\begin{abstract}
The review has brought imporeant points about language and mathematics performance. The vocabulary and terminology in mathematics are very important for learning and understanding of mathematics. The symbols used for representation of ideas in mathematics in addition to proficiency in the language are very important too.
\end{abstract}
2.5 Mathematical Achievement and Sex of Pupil.
A considerable amount of data attest to the dislike
for mathematics and as a result under-achievement in mathe-
matics by women. This pattern was evident among school
children and continued into adulthood and employment where
women were under-represented in mathematics-related
fields (Ernest, l976). Dougherty (l975) reported that
this phenomenon had generaliy been explained on the basis of
women's mathematics anxiety, "an unspecified fear based
women' mathematics anxiety, "an unspecified lear based
on a projected feeling of inadequacy vis-a-vis some contemplated experience with mathematics" (p. 1)

While no completely satisfactory explanations have been proposed for discrepancies in Mathematical Achievement between males and females, several factors appear related. Studies of attitudes towards mathematics have indicated a reciprocal and mutually reinforcing relationship between attitudes and achievement. It has been observed and data suggest that parental attitudes Influence children's attitude and that parents perceive mathomatics as more appropriate for boys than for girls (Fennema and Sherman, 1977). Starting in the early grades and continuing through high school, fathers were perceived as the family authority in mathematics and females therefore started being socialized to the image that mathematics was for males (Ernest, 1976). The process often extended to the schools, where teachers and guidance personnel foetered Por the attitude that females were less capable in mathematics (Casserly, 1975; Dutton, 1962).

\footnotetext{
Generally, the existence of sex differences in

Mathomatical Ability had led to considerable apeculation concerning the relative roles of heredity and environment In determining these abilities.
}

\begin{abstract}
Research results showed that on the average, girls tended to score higher than boys on tests of verbal fluency, arithmetic fundamentals, and rote memory whereas boys were superior in spatial ability, arithmetic reasoning and problem solving (Aiken, 1971; Werdelin, 1961). But Aiken (1973) added that sex differences in abilities were less pronounced in the early grades and there was a general differentiation of abilities with age and experience.
\end{abstract}

\author{
Sherman (1967) trying to explain the importance of spatial ability said that this ability could partially explain the commonly observed sex differences in mathomatical performance. Women typically scored lower than men on tests of spatial ability and also showed less interest and proficiency than did men in mathematically based tasks. Evidence supporting Sherman's hypothesis had been reported in several recent studies (Burnett, Lans and Draft, 1979; Hyde, Geiringer and Yen, 1975). Sherman had also suggested that the observed sex differences in spatial skills were to a great extent culturally determined, a contention that had recelved both support (Garai and Scheinfield, 1968) and contradiction (Maccoby and Jacklin, 1974) from subsequent research. Based on data from twin studies Vardenberg (1968) concluded that spatial ability seemed to be less influenced by educational and cultural factors
}
than did verbal ability.

In a later study, Fennema and Sherman (1978) attomptod to establish sex differences in Mathematical Achievement and related factors. The relationships were investigated between mathematical learning, verbal ability, spatial visualization and eight affective variables. Subjects were 1320 sixth through eighth graders. No sex-related differences over all schools were found for any cognitive variable. Females were significantly less confident of themselves in mathematics, and males stereotyped mathematics as a male domain higher than did females. Fennema and Sherman synthesized the results with those obtained at high school level and found sex related differences in high school areas but not in the same middle schools areas. Where significant differences in achievement were found at both levels, they were accompanied by significant differonces In many affective variables. The correlations between Mathematical Achievement and Spatial Visualization in the high school study were .45 for females and 51 formales. In the middle school study the correlations ranged irom .51 to .60 between the various variables and spatial visualization with little differences between males and females.
performed better than females on tests of Mathematical Achievement and Spatial Ability. The sex differences were reported to occur starting in early adolesconce and continuing into adulthood. In Smith's (1964) analysis of spatial ability studies, he concluded that spatial ability was positively related to high level mathematical conceptualization that 18 , people who could solve high level mathematics generally had greater spatial ability than people who could not solve those problems. Smith's assertion offered an explanation of why sex differences favouring males were often found concurrently on tests of Mathematical Achievement.
According to Maccoby (1966) sex differences upto the
elementary school age were slight but the trend was for
the differences, if found, to be in favour of girls. On
number concept among pre-school children Maccoby's review
on Mathematical Ability showed no sex differences on
performance on number conservation tasks or on numeration.
During the early school years as well, no sex differences
were found in the mastery of numerical operation and
mathematical concepts.

In the age range from nine to thirteen, Maccoby's reviow found that sex differences, when found were usually

\begin{abstract}
in favour of boys. After the age of thirteen, the regult of most atudies became more consistent in their findings and boys were almost invariably found to bo uporior. However, Maccoby pointed out that the situation regarding variability between performance of boys and girls varied considerably from study to study. Figures between two-thirds of a standard deviation to less than a fifth of a standard deviation to no significant difference between viariability of girls and boys performances were also quoted by Maccoby. He then concluded that there was little sex difference in variability prior to adulthood.

Making their ifnal comments on the study they conducted to establish sex differences in spatial ability, Maccoby and Jacklin (1974) stated that;
> "it was resonable to expect that if the deficit In spatial ability of females resulted from lack of training, they could begin differina in underlying 'ability', however males could profit more from training than females. At present the issue was simply unresolved" (pp 128-129).
\end{abstract}

In a similar study to investigate the relationship between Mathematical Achievement and Spatial Abilities among elementary school children, Guay and McDaniel (1977) found that with regard to sex differences in spatial abilities the data suggested that among elementary Bchool children, malon

\begin{abstract}
had higher level spatial ability than females, and males and females had similar low level spatial ability. The scores on the spatial tests requiring low level spatial abllity were observed independent of the subject's sex. In contrast, male performance on the high level spatial tasks was found to be significantly better than females. The gignificant sex differences were not found to be a function of any variation. These observations were consistent with literature review by (Maccoby and Jackiln, 1974) Indicating sex differences favouring males but inconsistent with that portion of the reviews suggesting that sex differences become evident only during early adolescence.
\end{abstract}

In a study by Eshiwani (1974) to establish 11 there were any sex differences in the learning of mathematics among Kenyan high school students, the major purpose was to determine whether there was a significant difference In achievement and retention in mathematics among boys and girls in high schools in Kenya. He used a sample of form two girls and boys. In general he found that the boys achieved higherthan girls and had a more positive attitude towards mathematics than girls and that boys scorod highor on tests of mathematical reasoning, computation and comprehension of mathomatical and scientific torms.

\begin{abstract}
The results of the regression analysis showed that arithmetic reasoning was a valid predictive variable for boys as woll as for girls. However, for girls it soomod that comprehension of mathematical terms and computation ability were important factors in mathematical performance and also valid for use in prediction of future Mathematical Achievement.
\end{abstract}

\author{
On the other hand Wamani (1980) in his study of Mathomatical Ability among the primary school children In Nyeri, Kenya had contradictory findings that there were no sex differences in Mathematical Ability. Wamani's study contradicted a number of other studies which had noted sex differences in Mathematical abilities.
}
2.5.1 Sex Differences - Psychoanalytic Viewpoint
About three decades ago, Plank and Plank (1954) interpreted the existence of sex differences in mathematical performance from a psychoanalytic view point. They called it the "masculine identification hypothesis." These writers claimed that, since a high level of controlled aggression was necessary for mathematical activity, mathematics was primarily a masculine enterprise. It was maintained that, since mathematics was "masculine", womon who liked matho-
```

matics tended to identify with a strong male figure.

```

\begin{abstract}
A sprinkling of both negative and postive results had also been obtained in studies designed to test the masculine identification hypothesis. Lambert (1960) found no correlation between mathematical proficiency and masculinity of interest in either sex. In actual fact, the female mathematics majors in Lambert's study showed up as more ""feminine" on the MMPI than non-mathematics majors. But Elton and Rose (1967) reported that colloge girls who were average in English but high in mathematics on the American College Tests had higher theoretical and lower aesthetic interests (that 1s, more 'masculine' interests) than girls who were high in English but average in mathematical achlevement. Consequently these writers concluded that
"masculine role" was an important factor to consider in
predicting differences in ability in English and Mathematics.
\end{abstract}

\footnotetext{
In a more recent study on sex related differences In mathematics by Fennema and Carpenter (1981) where a sample of \(70,000,9-, 13-\), and 17 year olds were used, the two authors used assessment exercises measuring achievement which were categorized by mathematical content and
}
```

cognitive level. Five content areas were assessed;
number and numeration, variables and relations,
geometry, measurement and other topics. Each content
area was assessed at four cognitive levels; knowledge,
skill, understanding and application. The scores for the
sets of items representing the four cognitive levels are
summarized in table 2.1. On each cluster of items the
percentage of correct responses of males was subtracted
from the percentage of correct responses of lemales.
A positive score indicated that females scored higher than
males, whereas a negative score indicated the reverse.

```
TABLE 2.1

DIFFERENCES BETWEEN FEMALE AND MALE ACHIEVEMENT
\begin{tabular}{|llll|}
\hline \multicolumn{1}{|c|}{\begin{tabular}{l} 
DIFFERENCES
\end{tabular}} & \begin{tabular}{l} 
BETWEEN FEMALE AND MALE AVERAGE \\
\\
PERCENT CORRECT
\end{tabular} & \\
COGNITIVE LEVEL & AGE 9 & AGE 13 & AGE 17 \\
\hline Knowledge & 1.41 & -0.17 & -2.16 \\
Skill & 0.40 & 1.11 & -2.54 \\
Understanding & -0.07 & -0.29 & -3.61 \\
Application & -0.37 & -0.60 & -5.04 \\
\hline
\end{tabular}

\begin{abstract}
The results of the study showed that no clear pattern of differences in achievement was apparent at ages 9 or 13. The average scores for females on tho knowledge and skills exercises tended to be slightly in favour of males. At age 17, males' average performance exceeded that of females at every cognitive level.
\end{abstract}

When they compared achlevement of 17 - year old females and males who reported that they had been enrolled In the same mathematics courses, the results indicated that achievement differences still existed when courge background was taken into account. For each course background category, male achievement exceeded that of females. It was also noted that the magnitude of the difference increased consistently in relation to the amount of mathematics courses taken. Another consistent trend observable in the 17 year old achievement results was that achievement differences between females and males increased with the cognitive level. There were smaller differences at the lower cognitive levels and larger differences at the higher levels.

Another observation was that within specific content areas, different patterns of performance
numeration skills at ages 9 and 13. Males scored higher on multi-step word problems in this content area at all ages. A different pattern of results was found on geometry and measurement exercises. At ages 9 and 13, there was a consistent pattern of lower averages for females on geometry and measurement exercises over all cognitive levels. For measurement these differences were often substantial. To them a positive explanation for females' relatively poor performance on geometry and measurement exercises was that a substantial number of those exercises could have involved spatial visualization skills. As had been shown earlier, from about adolescence, females, performed at lower levels than males on items that measured the skill (Maccoby and Jacklin, 1974). As they noted, several geometry exercises in the assessment appeared to require a direct application of spatial visualization skills, and spatial visualization could have played a part in the solution of many other geometry and measurement exercises.

In a way of summary of the study, they found that the assessment results indicated that, on a nationwide basis, there was little difference between males and fomales in overall Mathematical Achievement at ages 9 and 13.

\begin{abstract}
At age 17 however, females were not achieving at the game level in mathematics as were males. Even whon fomalos and malen reported that they had been enrolled in the samo courses, males' performance was higher than that of females, and that the differences were greatest on the more complex tasks.
\end{abstract}
2.5.2 Sex differences and Attitude toward Mathematics
```

 Parkar (1974) carried out a study involving 219
 students from six classes in two different schools.
Although the study did not take sex as a major variable,
comparisons were made between boys and girls on achlevement
and attitudes toward mathematics.

```

The study used intact Form One classes which were randomly assigned to two groups, a control group and an experimental group. The control group were taught the contents of School Mathematics of East Africa (SMEA) book I through the traditional chalk-talk, teacher-dominated approach while the experimental group learnt the contents of SMEA book one through what Parkar labelled "Programmed Work Cards". Three attitude scales were used in this study.

\section*{These were:}
1. Attitude towards mathematics as a process.
2. Attitudes about difficulties of learning mathematics.
3. Attitudes towards the place of mathematics in society.

Three tests assessing achievement of the groups were given at the end of first, second and third terms of the school year. A summary of the findings were: Girls performed significantly better than boys in both the groups on the first tests of achievement. In the second test, girls werestill significantly better than boys in the experimental group but not in the control group. In the third slight differences favoured the boys doing significatnly better than girls in both groups.

Only two attitudes toward mathematics scales were given to the pupils during the course of the study, one at the beginning and one at the end of the study. For the experimental group, girls had slightly more favourable attltudes on all the three scales, as well as on the total attitude scale. In the control group boys had more favourable attitudes on the "Place of Mathematics in Society Scale".
and on the overall scores on the attitude scales. However none of the differences were significant for either group.

In a study by Sheikh (1976) on sex differences \({ }^{\circ}\) he studied some factors involved in the learning of mathematics among secondary Form three students in Kenya. The factors he considered for the study were, attitude towards mathematics, reading ability, motivation, educational and vocational aspirations. For his study he had about 600 subjects and gave out 17 tests. On cognitive abilities he had achievement tests testing the following abilities in mathematics: Knowledge, Comprehension, Application and Analysis.

The results of the study showed that the soxes differed significantly in their performance in mathematics. In general boys showed superiority at the higher cognitive levels while the differences between girls and boys were not significant at the lower level subtosts on knowledge and comprehension. Overall boys did significatnly better than girls. This has been supported by a more recent atudy mentioned earlier of Fennema and Carponter (1081). Sheikh felt that the poor performance of girls at the higher cognitive levels of thinking, that is application and analysis, was attributable to their lack of suitable background experiences which are necessary for higher order

\section*{cognitive processes.}

Another finding of the study was that girls had significantly more unfavourable attitudes toward mathematics on two of the three subscales used. Thus girls enjoy mathematics far less than boys. Boys intend for advanced level mathematics more than girls, and also aspire for technical jobs as opposed to girls. Finally evidence from regression analysis suggested that for boys, educational aspiration was the best non-cognitive variable for prediction on their achievement in Mathematics. This study confirmed the results of some of the earlier studies. One of the very \(\quad \alpha\) studies on Mathematical Achievement was an international project which involved 12 different countries (Australia, Belgium, England, Finland, France, Germany, Israel, Japan, The Netherlands, Scotland, Sweden and United States and) edited by Husen (1967). In the study, a number of factors that influenced Mathematical Achievement were investigated. One of the important factors studied was, sex differences in Mathematical Achievement. In the words of the authors, the aims of atudying sex differences were to determine:
..... the way in which cultural views of the role of men and women influenced not only the taking of mathematics courses but also achievement of boys and girls. --- whether sex differences were reflected in verbal as compared to computational problem. --------and to understand how sex roles were related to interest in mathematics, plans to take further mathematics (Husen, 1967) p. 204.

In a way of summary, the findings of this large study were:

On total mathematics scores, significant differences were found in favour of boys in all four target populations. Boys showed greater variability in their achievement.

\author{
On verbal problems, clear differences in favour of boys were found in all populations with the exception of Israel, U.S.A. and Sweden.
}

> On interest in mathematics, boys showed significantly greater interests than girls in all populations.
```

On a test on difficulty in learning mathematics, very few significant differences were found. The only significant case of girls finding mathematics easier than boys was Israel. In Finland and Netherlands boys found mathematics easier than girls.

```

\begin{abstract}
Studying single-sex schools, boys were significantly botter than girls in all populations on achievement in mathematics. No significant differences between boys and girls on interest was found in mathematics. Only in Australia and Israel were girls superior to boys in the single sex schools.
\end{abstract}

Summarising a number of researches, Hochchild (1973) explained that,

> "the sexes differ in the way they think (Maccoby, 1966), perceived (Bieri, et, al., 1958) aspire (Horner, l968; Turner, 1964), experience anxiety (Sinnick, 1956), day dream (Singer, 1958) and play competitive games (Vesugi and Vinachke, l963). Men tend to have an exploitative strategy, women an accomddative one, which even win some games" p. 253.

From the review it can be seen that the 1ssue of sex differences in mathematical performance is not yet resolved. The explanations for sex differences in mathematics have involved social, psychoanalytic, affective domains of human life.

In summary tho indings of the studios reviowed indiontod that Mathematical Ability was composed of specific ability factors, that is, Mathematical Reasoning Ability, Sputial (Visualization) Ability, Numerical (Computational) Ability
```

and Problem Solving Ability. These factors were also
defined in operational terms.

```

Studies attempting to relate factors of Mathematical Ability to Mathematical Achiovement were also reported. These studies were reported on different levels of education, that 18 elementary school level, high school levol and college level. Most of the studies concentrated on the relationship between spatial ability and mathematical performance. In general positive relationships were found between individual factors of Mathematical Ability and Mathematical Achievement, though in some cases low correlations were reported.

The importance of language used for instruction in Mathematics and Vocabulary of Mathematical terms to learning mathematics was also shown.

Sex differences in mathematics were found consistently In many aspects of mathematics. The explanations for such differences were hypothesized to originate from the females' negative attitudes and female role identification. Generally the issue on sex differences was not fully resolved.

\begin{abstract}
Regarding the Kenyan primary School pupils, mainly the ones in standard seven who iace the C.P.E. oxamination it would be important to ind some information about their performance and factors influencing their performance. According to this review, Mathematics would be an important subject for such a study. The focus for this study derived from the fact that in Kenya pupils attend different school types and have English Language as medium of instruction which is their second language. Further, was the consistent sex differences found in mathematical performance of the pupils. The most important is the fact that standard seven level of education is basically tho terminal level of primary education. Success in C.P.E. examinations is crucial to consideration for secondary education.
\end{abstract}

In this study therefore, four hypotheses were advanced. The hypotheses were stated in null form.
2. 6 Hypotheses

\section*{Null Hypothesis I}
(1) There is no significant relationship between scores on Mathematical Achievemont test and scores on Mathematical Ability toste
of the pupils.
(1i) There is no significant relationship between scores on Mathematical Achievement tests and scores on Mathematical Vocabulary test of the pupils.
(iif) There is no significant relationship between scores on Mathematical Achievement test and English Language Proficiency test of the pupils.

\section*{Null Hypothesis II}
```

There is no signtficant difference between scores of pupils attending Low Cost, Medium cost and High-Cost schools in;

```
(1) Mathematical Achievement Test
(ii) Arithmetic Reasoning Test
(iii) Computation Test
(iv) Whole Number Comprehension Test
(v) Hidden Figures Test
(vi) Foarm Board Test
```

 (vii) Five Dots Test
 (viii) Problem Solving Test
(1x) Mathematical Ability Total
(x) Mathematical Vocabulary Test
(xi) English Language Proficiency Test

```
Null Hypothesis III
    There is no significant difference between the
scores of male and female pupils in;
            (1) Mathematical Achievement Test
            (ii) Arithmetic Reasoning Test
            (1i1) Computation Test
            (1v) Whole Number Comprehension Test
            (v) Hidden Figures Test
            (vi) Foarm Board Test
            (vii) Five Dots Test
            (viii) Problem Solving Test
            (1x) Mathematical Ability Total
            (x) Mathematical Vocabulary Test
            (xi) English Language Proficiency Test

\footnotetext{
Null Hypothesis IV
}

The variation in Mathematical Achievement test scores will not be fullyaccounted for by the Mathematical Ability, Mathematical Vocabulary, English Language Proficiency, Type of school, Sex of pupil, Age, Class repetition, After-school coaching in Mathematics and After-school coaching in English.

Basic Assumption

This study assumed that there existed individual differences in Mathematical Ability. Ability in Mathomatics was therefore normally distributed among the pupils, following individual differences. Having reviewed researches related to this study, chapter three will present the methodology of the study. This will involve sampling of subjects, and data collection (testing) procedures.

\section*{CHAPTER THRES}

\section*{IETHODS AND INSTRUNENTS}
3.1 Introduction

\begin{abstract}
In this chapter attempt is made to describe the sample chosen for the study, procedures and instruments used in gathering data to test the hypothoses.
\end{abstract}
3.2 The 8ample

The number of primary chools in Kenya are in the tens of thousande. To be able to get ample which would be representative and meaningiul was difficult and beyond the cope of this study. In thin etudy, the sample of schools were drawn from Kisumu town and its periphery within a radius of 10 kilometres. This region contained a total of 45 primary chools. The importance of chooning thin area was mainly because it conainted of achools which dietinctly differed from one another in terms of general costa and maintenance. This phenomenon was found common With Primary Schools in other parts of the Republic of Kenya. Basically the mohools found in this area wore of three types, that is Low Cost, Modium Cost, and High Cost sohools. The three types of sohoole are desoribed below.

\section*{Low-Coot Primery Bchoole}

These were the echoole mainiy found in peri-urban and rural arean. They were partly maintained by the government, though much of the funds came from contributions by the focal people of the area. The chool buildings were quite poor (most of them semi-permanent) and not well maintained. The schoola lacked alot of echool equipment and stationery. Enrolment of pupils per clase was very high about 80. The majority of teachore wore untrained. The pupile paid no school fees except at timen some contributions towards schools funds.

\section*{Modium-Cont Primary 8chools.}

These were the Municipal Schools. The choole were funded and maintained by the Municipality through goverament grant. The buildinge were permanent with amenities such as light and water. The shools had some equipment and Etationery. The enrolment of pupils per class was on the average 40. The teaching etalf were all trained though not particularly with high grades. There were also some cubordinate atall. The shool leen were reduced to nohool sunds.
```

H1gh-Cont Primary Schools.

```
```

 These schools were found within the urban areas.
 Thoy were private community maintained schools. The
communities that funded such schools included Ismelia,
Hindu, Goan, etc. The school buildings were permanent
with all the amenities in well kept compound. The schools
had all the necessary equipment and stationery, text books,
etc. The enrolment of pupile per class was on the average
30. The teaching etaff were all highly qualified. The
schools wore also fully otaffed with both teaching otaff
and subordinate ataff. School foes wore pald in these
school=.
The study involved a ample of 634 pupile.in etandard seven from some fifteen primary echools. The selection of the echools according to type wan done by the stratifiedrandom sampling technique. Five Low Cont, Six Modium Cont and Four High-Cost schools were nampled. The type of schools sampled varied in number. This was because these schools were not equal in numbers in the area chosen for atudy and the intention was to have fair representation. In every chool the pupila varied in sex, age, olase ropetition and aftor-achool coaching in Mathematical and in English.

```

Table 3.1 prosents the dietribution of pupile attending Low Cost, Medium Cost and High Cost chools by their eex, age, class repetition, after-school coaching in Mathomatios, and 1n Eaglish.

\section*{TABLE 3.1}

DISTRIBUTION OF PUPILS ATTENDING LOW COST, MEDIUM CO8T, AND HIGH-COST BCHOOLS BY THEIR BEX, AGE, REPEATER, AFTER8CHOOL COACHING IN MATHEMATICS AND AFTER-8CHOOL COACHING IN ENGLISH.
\begin{tabular}{|c|c|c|c|}
\hline & InW cost 8CHOOL8 & MEDIUM COST SCHOOLS & HIGH COST SCHOOLS \\
\hline N & 242(38.1\%) & 284(41.7\%) & 128(20.2\%) \\
\hline \multicolumn{4}{|l|}{SEX} \\
\hline Malen & 161(66.6\%) & 131 (49.4\%) & 70(54.7\%) \\
\hline Femalea & 81 (33.5\%) & 134(50.6\%) & 88(46.3\%) \\
\hline AGE & & & \\
\hline \multicolumn{4}{|l|}{11.5-13.0} \\
\hline Years & 22(9.1\%) & 70(26.4\%) & 81 (63.3\%) \\
\hline \multicolumn{4}{|l|}{13.1-14.6} \\
\hline Years & 71 (29.3\%) & 108(39.6\%) & \(38(29.7 \%)\) \\
\hline \multicolumn{4}{|l|}{14.6-16.0} \\
\hline Years & 71 (29.3\%) & 68(25.7\%) & 8(8.2\%) \\
\hline 16.1--+++ & - & & \\
\hline Years & 78 (32.2\%) & 22 (8.3\%) & 1 (0.8\%) \\
\hline \multicolumn{4}{|l|}{If REPEATER} \\
\hline Yes & 181(74.8\%) & 179(67.6\%) & 43 (33.6\%) \\
\hline No & 61(25.2\%) & 86(32.5\%) & 85(66.4\%) \\
\hline \multicolumn{4}{|l|}{If COACHING IN MATHS} \\
\hline Yes & 113(46.7\%) & 190(71.7\%) & 80(62.5\%) \\
\hline No & 129(58.3\%) & 78(28.3\%) & 48(37.5\%) \\
\hline \multicolumn{4}{|l|}{if COACHING IN ENGLISH} \\
\hline Yes & 104(42.6\%) & 161(60.8\%) & 78(00.9\%) \\
\hline No & 138(57.4\%) & 104(30.2\%) & 80(30.1\%) \\
\hline
\end{tabular}

The anolyais of the pupile' age showed that their ages ranged from 11 to 21 years. About 40 percont of the sample wore above \(14 \frac{1}{1}\) years of age, 16 percont wore above 16 years of age. The modal age way 14 years inctoad of the expected \(13 \not++(6+7)\) yearn, aince children were enrolled at about 6 years of age in standard one and they take 7 years in primary education. The majority of the pupils were males (57\%) an compared to females (43\%). About two in evory three pupila wore repeaters. Repetition was considered in any clans duriag the primary school and could be more than once.

Taking children to private tutore for after-school coaching (private tutoring) in their weaker subject areas was a widespread practice among manyparents. Normally parents hired a teacher or teachers to drill their children during after-school times and weekende at certain payments. This practice was normally at its peak when pupila wore in standard seven. The idea was to get the child to pass C.P.E., a gateway to secondary education. It was found that 60 percent of the pupils went for after-achool coaching in Mathomatics and 54 porcent in English.
3.2.1 Selection of 8ubjects.

Pormicaion to carry out the romearch was granted by Kenyan Office of the President in Fobruary, '1981. The decision to obtain a eample from schools in Kisumu District was prompted by the investigator's considerable familiarity with many areas in tho dietrict. This decision was useful because the time and funde available to collect the data wore limited.

The primary schoole have three terms with approximately one month holiday betweon the terms. Each term is approximately three months. The testing of the subjects was carried out in the firet term between February and March, 1981. Subjects for the study ware selected by the etratis1edrandom ampling technique. The testing took one day per school. The number of pupils in etandard sevon in these schools varied. The mean clase elze was 42 with a etandard deviation of about 4 and a range from 30 to 51. 40 percent of the chools had between 30 to 40 pupils per class and 60 percent of schools had between 41 to 61 pupile per class. Since all the echools had more than one etandard eovon olase, only one class was coneldered and its cholce was random.
3.3 Variables Selected for the 8tudy

The dependent variable for this study was Mathomatioal Achievement. Mathematical Achievement was viewed broadly to be related to different environmental and ability variables. The main independent variables for the study were Mathematical Ability, Mathematical Vocabulary, English Language Proficiency, Type of chool, and Bex of pupil. The independent variables were chosen on the assumption that they influence Mathometical Achiovement. Under normal circumstances what one achieves is presumed to depend on his ability in that area. Given the onvirommental variatione other factore could become aignificant in influencing what one achievee. It was also viewed that the language used in instruction and testing for what one knows, and knowledge of key terme in a particular discipline such as Mathematicscan influence his performance in that discipline. The language used for instruction was particulary important in this study because foo many pupils English Language was their eecond languege. Sex differences in Mathematical performance had been observed and deserved Iurther crutiny. Finally, based on differences anong the type of echools it was possible thatio pupils' Mathomatioal Achievement would be influenoed.
```

Th1a was becauce it wes posalble that the teaching and learn-
Ing experiencen diflered with the schoole and therefore for
the pupils. The variables are disoussed in detall in the
following section.

```

\subsection*{3.3.1 Mathematical Achievement.}

Mathematical Achievement was the dependent variable for the study. To assess the level of echievement in Mathomaticin for tho pupils, a Mathomatical Achievoment Test was set by the researcher and pretested. The roliability coefficient was 0.78. The test was based on the Konya Primary Mathematics Syllabus and was set to standard seven level. The questions were based on C.P.E. format with similar level of difficulty. The main nkille tested for were knowledge of facts, underitanding comprohension, application and analyais. Tho topice covered in the toet 1noluded:
(a) Sets
(b) Number and Numeral
(c) Operation and Properties
(d) Geometry and Moasurement
(o) Fraotione and Dooimals
(2) Intogern
(:) ThEの 5ロ
g) Mathematical Statereats (Algebra), and
(h) Statistion.

The number of test iteme testing each skill was carefully prepared through test blue print. There were a total of 24 items, 18 of which were multiple choice items while Eix were problem type. For each multiple choice item one mark was awarded for a correct response. For the problem type items, two marks were awarded for correct atatement and correct answer, and elther of the two awarded one mark. No mark was awarded for both wrong atatement and wrong answer. A maximum of 30 marks and a minimum of zero marke wore posisible. The test was for 46 minutes.

\subsection*{3.3.2 Mathematical Ab1lity}

\begin{abstract}
As already mentioned, what one achieves in a given subject discipline was viewed to be a reflection of his potential capacity in that area. For Mathematics, there was Mathematical Ability. Mathematical Ability was found to be composed of the following factors:
\end{abstract}
(a) Mathematical Reamoning Ability
(b) Bpatial - Percoptual (Viaualisation) Ability
(c) Numerical (Computational) Ability
(d) Problem Solving Ability.
```

Each of these factora as diacussed in Chapter Two were testable through the following teste:

```
```

 (1) Arithmetic Remsoning Tect (15)
 (11) Five Dot= Tent (19)
 (1i1) Hidden Figuren Tost (8)
 (1v) Foarm Board Test (12)
 (v) Computation Test (1B)
 (vi) Whole Number Comprehonsion Test (12)
 (vi1) Problom Solving Test (10)
 and validated
 The teste were constructed, by the School Mathematice
 Study Group (SMSG, 1968),
The tests were
also ghown to have reliability coefficients between 0.68 and
0.84. The total number of items in these tests were }8
and each correct response to an 1tem was awarded one mark,
and incorrect response no mark. In all the tests the items
were multiple choice type except in computation test where
actual answers had to be f1lled in a epace provided.
A maximum of Bl marke were tenable with a minimum of gero,
Each test was timed. The t1me in minutes for each test was

```

\footnotetext{
*In bracket are the number of test itom in each test.
}

Arithmetic Reasoning (15), Five Dots (20), Hidden Figures (10), Foarm Board (15), Computation (15), Whole Number Comprohonoion (15) and Problon Solving (10).

\subsection*{3.3.3 Mathematical Vocabulary}

This was the ability to underatand and comprehend the meaning of certain mathematioal terms in common use in the Kenya Primary Mathematios Syllabus.

Mathematical Vocabulary test was conatructed by the researcher based on the common mathematical terme and vocabulary in Primary Mathematics Syllabus. It was pretented and the reliability coefficient was found to be 0.61. The main task in this test was to provide meaning and application of some mathemetical terms. It was viewed that knowledge of Mathematical Vocabulary would aid in the underatanding of verbal problems in mathematics. There were 8 iteme in the tent, each awarded ode mark. The tent was for 10 minutes.
3.3.4 English Language Proficiency.

The language used for instruction and its use in examinatipas and tests for ascesoing the pupils' progrese

\begin{abstract}
In mathematica is an important aspect of the learning process. To understand what was taught and what a question demands require some proficiency in the language used. It might therefore be positble to explain in some weys the veriation 1n Mathematical Achievement by level of proficiency in English Language.
\end{abstract}

Proficiency in English Language constituted the ability to make correct eentence conetructions in English, give correct meaning to English words, correct word simile and an sbility to discern oorroot information form s given pancage.

The English Language Proilciency Test was constructed and pretested by the researcher with the help of a language specialist.

The reliability coefficient of the test
was 0.67. The test items were on grammar, vocabulary, smilar words (synonyms) and comprehension. There were a total of 20 test itemg. A correct responge to an 1 tem earned one mark and incorrect response no mark. A maximum of 20 marke with minimum of zero mark were ponsible.

The test was lor 20 minutes. The level of performance on this test reflected the degree of understanding of Engileh Language.

The importance of this tect lay in detecting how performance in Mathematice was influenced by proficiency in English Language. This was because for the majority of the pupils, their mother tongue was not English so the degree of competence in the language varied from one pupil to another, depending on the language adopted in the home and apeed of learning the language.

The other variables, sex of pupils and type of school had been dealt with in the previous section..
3.4 Data Collection and Instrumenta.
3.4.1 Test Administration

A testing programme was sent to the school headmasters in advance showing the tests timetable and requirements. To take the teste, the pupila were required to have a pencil, rubber and rough paper. Below is the list of the tests taken by the pupils in that order:
(a) Mathematical Ability Tost (Soven sub-tenta)
(i) Arithmetic Ressoning Test
(ii) Computation Test
(iii) Whole Number Comprehension Test
(iv) Hidden Figures Test
(v) Foarm Board Test
(vi) Five Dots Test
(vii) Problem Solving Test
(b) Mathematical Achievement Test
(c) Mathematical Vocabulary Test
(d) Engliah Language Proficiency Test.

Each of the tests had an anwer sheet where pupils were expected to write the answers. The items involved multiple choice and structured type questions. A detailed pupil identification questionnaire was attached to the answer sheet of Mathematical Ability Test. The questionnaire required information mainly on pupil'a age, sex, class repetition and after-achool coaching in Mathematica and or English. The classes were kept intact.

Since the pupila had normally had a testing experience, 1t was assumed that it was not a surprise to thom.

\section*{The inøtructionø given before the tents were as follows:}
```

You are golng to take a test
The tests are for research puposes
The test will not rellect on your
examination results. Feel free and do
your level best. You have a specific
time for each test. Work last but
try to be accurate. Choose the answer
you think 1s correct and put a tick
or a crose and where indicsted, provide
thesolution.

```

The whole testing programe took one dey per chool.

\subsection*{3.4.2 Scoring of Test}

\begin{abstract}
The main research instruments for this study were the tests. After the tont administration the coring was done by the researcher. The marks for each test were then summed up. The total scores for the tests for the pupils were then analysed using diflerent techniques of statiotical analymis.
\end{abstract}

\subsection*{3.4.3 Analyain of Data}
```

The statietical techniques deemed appropriate for this analysie were correlation analyais (matrix), t-teat, one way anclyaia of verianoe (ANOVA), and step-wise multiple regrecsion analyeis.

```

\title{
Such an analyaia would be very complex and tedious 11 done manually, so the services of a computer wore utilized. A statistical package for social science (SP8s) was used to set a programme for the computer.
}

\footnotetext{
With the data ready, the next chapter presents the results of data analyais and then a discussion of the findinge.
}

\section*{CHAPTER FOUR}

\section*{RESULTS AND DISCUSSION}

\subsection*{4.1 Introduction}

> This chapter presents the results of data analysis. The results are also interpreted and discussed to provide possible explanation for the findings of the study.
4.2 Statistical Procedures

To analyse the data the services of a computer were used. All the analyses were performed using the statistical Package for Social Sciences (SPSS) version 600 program (Nie, et. al., 1975).

The statistical tools used in dataenalysis were the
Pearson Product- Moment Correlation, t-test, one way analysis of variance, and step-wise multiple regression analysis. To test the hypotheses, each of the statistical methods was used, An answer to the question "Is there any relationship between the scores of pupils in Mathematical Achievement test and Mathematical Ability tests?" was provided by the use of Pearson Product-moment Correlation method.
```

This method gave an indication of the strength and direction
ol the relationship between the two variables. To test if
pupils attending Low Cost, Medium Cost, and H1gh Cost Schools
differed significantly in their test scores, one way analysis
of variance (ANOVA) was used. Similarly sex - differences
In the performance of pupils on the tests were determined
by the t-test method. Finally to determine the factors
which explained the variation in Mathematical Achievement,
step-wise multiple regression analysis was used.

```
4.2 Results and Interpretation.
    In this section statements of hypotheses in null form
will be presented. These will be followed by the results
of data analysis based on the hypotheses and on the inter-
pretation of the results.

\subsection*{4.3.1 Relationship between Achievement and Ability in Mathematics and Language Factors.}

\section*{Null Hpothesis I}
(1) There is no significant relationship between scores on Mathematical Achievement test and scores on Mathematical Ability tests of the pupils.
(ii) There is no significant relationship between scores on Mathematical Achlevoment tost and scores on Mathematical Vocabulary test of the pup11s.
(ii1) There is no significant relationship between scores on Mathematical Achievement test and English Language Proficiency test of the pupils.

TABLE 4.1

INTERCORRELATIONS OF MATHEMATICAL ACHIEVEMENT TEST SCORES

WITH MATHEMATICAL ABILITY, MATHEMATICAL VOCABULARY AND

ENGLISH LANGUAGE PROFICIENCY TESTS SCORES FOR ALL PUPILS \((N=634)\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
\hline 1. & Mathematical Achievement & . \(49^{* *}\) & . 60 ** & . 63 ** & . \(18^{*}\) & . \(48^{* *}\) & . 49 * & . \(55^{* *}\) & . \(73^{\text {** }}\) & . \(56{ }^{* *}\) & . \(40^{* *}\) \\
\hline 2. & Arithmetic Roasoning & & . \(38^{* *}\) & . \(43^{* *}\) & .15 & .35** & . \(40 *\) & . \(42^{* *}\) & . \(63^{* *}\) & . \(36^{* *}\) & \(.33^{* *}\) \\
\hline 3. & Computation & & & . \(52^{* *}\) & \(.17^{*}\) & \(.32^{* *}\) & . \(37{ }^{*}\) & . \(48^{\text {** }}\) & . \(67^{* *}\) & . \(10^{* *}\) & . \(35^{\text {+ }}\) \\
\hline 4. & Whole Number Comprehension & & & & . \(18^{*}\) & \(.42^{* *}\) & . 46 & . \(52^{* *}\) & . \(73^{* *}\) & . \(46{ }^{* *}\) & \(.44^{* *}\) \\
\hline 5. & Hidden Figures & & & & & \(.30{ }^{\text {** }}\) & \(.27^{*}\) & . \(17^{*}\) & . \(43^{* *}\) & . 11 & . \(18^{*}\) \\
\hline 6. & Foarm Board & & & & - & & . \(42 *\) & . \(42^{* *}\) & . \(68^{* *}\) & . 32 ** & \(.34^{* *}\) \\
\hline 7. & Five Dots & & & & & & & . \(44^{\text {\#* }}\) & . \(78^{*}\) & . \(40^{*}\) & \(.40^{* *}\) \\
\hline 8. & Problem Solving & & & & & & & & . \(69{ }^{* *}\) & . \(42^{* *}\) & \(.48^{* *}\) \\
\hline 9. & Mathematical Ability Total & & & & & & & & & . \(54^{* *}\) & . \(54^{\text {*** }}\) \\
\hline 10 & Mathematical Vocabulary & & & & & & & & - & & \(.46^{\text {+ }}\) \\
\hline 11 & \begin{tabular}{l}
English \\
Language Proficioncy
\end{tabular} & & & & & & & \(c^{7}=\) & & & \(\cdots\) \\
\hline
\end{tabular}
\(\mathrm{p}<.05\) P < . 01

The results of correlation analysis for all the pupils presented in table 4.1 indicate significant relationship botween Mathomatical Achievement test scores and Mathomatical Ability test scores at a significancelevel of \(p<. O 1\), except with hidden figures test scores where the correlation was significant at \(p<.05\). These result suggest that the higher the scores in Mathematical Ability tests, the higher the scores in Mathematical Achievementest. The implication here was that the pupils' Mathematical Achievement was influenced by their ability in mathematics such that what a pupil achiovod In mathematics wasaresult of his Mathematical Ability.

\footnotetext{
The relationship between Mathematical Achievement test scores and Mathematical Vocabulary test scores was also found to be significant at p<.Ol. Significant relationship was also found between Mathematical Achievement test scores and English Language Proficiency test scores. This showed that higher scores in Mathematical Achievement test were associated with higher scores in Mathematical Vocabulary test and also with higher scores in English Language Proficiency test. In other words the result suggests that knowledge of Mathematical Vocabulary and the level of proficiency in English Language is important and influences pupil Mathematical Achievement.
}

\begin{abstract}
From the results presented on table 4.1, the null hypothesis \(I\) was rejectod. The result provod that performanco In Mathematical Achievement test was linked with pupils Ability in Mathematics, his knowledge in Mathematical Vocabulary and his level of proficiency in English Language.
\end{abstract}
4.3.2 Relationship between type of school and test performance.

\author{
This section deals with the following question, "Does attending a given school type cause a difference in the performance of pupils in the tests". Below is the null hypothesis related to the question.
}

\section*{Null Hypothesis II}

There is no significant difference between scores of pupils attending Low Cost, Medium Cost and High Cost schools 1n;
(1) Mathematical Achievement Test
(1i) Arithmetic Reasoning Test
(1i1) Computation Test
(iv) Whole Number Comprehonsion Test.
(v) Hidden Figures Test.
```

 (v1) Foarm Board Test
 (vii) Five Dots Test
 (viii) Problem Solving Test
(ix) Mathematical Ability Total
(x) Mathematical Vocabulary Test
(xi) English Language Proficiency Test.

```
    To test this hypothesis the mean scores for pupils
attending the three school types were compared using the
One-Way Analysis of Variance (ANOVA) technique. Table 4.2
presents the mean and standard deviation of test scores for
pupils attending the three school types.

MEAN AND STANDARD DEVIATION OF MATHEMATICAL ACHIEVEMENT TEST, MATHEMATICAL ABILITY TEST, MATHEMATICAL VOCABULARY TEST AND ENGLISH LANGUAGE PROFICIENCY TEST FOR LOW-COST, MEDIUM COST AND HIGH COST SCHOOLS


An observation of the mean test scores for these three school types show that the mean test scores for pupils In High-Cost schools were higher as compared to the other two school types. Between Low Cost and Medium Cost schools the differences could not be clearly discerned. As already indicated above One-Way ANOVA technique was used to establish the differences. The tables below show the summary of the One-Way ANOVA technique for the tests.

TABLE 4.3

SUMMARY OF ONE-WAY ANOVA FOR MATHEMATICAL ACHIEVMENT TEST
\begin{tabular}{|lcccccc|}
\hline \multicolumn{1}{|c}{ SOURCE } & SS & MS & df & \(F\) & \(p\) \\
\hline \begin{tabular}{l} 
Between School \\
types
\end{tabular} & 3867.4 & 1933.7 & 2 & 64.1 & .001 \\
\begin{tabular}{l} 
Within a School \\
type
\end{tabular} & 19057.8 & 30.2 & 632 & & \\
Total & 22925.2 & & 634 & & \\
\hline
\end{tabular}

TABLE 4.4
SUMMARY OF ONE-WAY ANOVA FOR ARITHMETIC REASONING TEST
\begin{tabular}{|lccccc|}
\hline \multicolumn{1}{|c}{ SOURCE } & SS & MS & df & F & P \\
\hline \begin{tabular}{l} 
Between schools \\
types
\end{tabular} & 215.4 & 107.7 & 2 & 23.1 & .001 \\
\begin{tabular}{l} 
Within a school \\
type
\end{tabular} & 2946.8 & 4.7 & 632 & & \\
Total & 3162.2 & & 634 & & \\
\hline
\end{tabular}

TABLE 4.5
SUMMARY OF ONE-WAY ANOVA FOR COMPUTATION
\begin{tabular}{|llcccc|}
\hline \multicolumn{1}{|c}{ SOURCE } & SS & MS & df & F & P \\
\hline \begin{tabular}{l} 
Between schools \\
types
\end{tabular} & 330.8 & 165.4 & 2 & 35.6 & .001 \\
\begin{tabular}{l} 
Within a school \\
type
\end{tabular} & 2936.5 & 4.6 & 632 & & \\
Total & 3267.4 & & 634 & & \\
\hline
\end{tabular}

TABLE 4.6
SUMMARY OF ONE-WAY ANOVA FOR WHOLE NUMBER COMPREHENSION TEST
\begin{tabular}{|ccccccc|}
\hline SOURCE & SS & MS & df & F & P \\
\hline Between school types & 412.2 & 206.1 & 2 & 44.9 & .001 \\
Within a school type & 2898.5 & 4.6 & 632 & & \\
Total & 3310.7 & & 634 & & \\
\hline
\end{tabular}

TABLE 4.7
SUMMARY OF ONE-WAY ANOVA FOR HIDDEN FIGURES TEST
\begin{tabular}{|c|c|c|c|c|c|}
\hline SOURCE & SS & MS & df & F & P \\
\hline Between school types & 42.6 & 21.3 & 2 & 5.99 & . 001 \\
\hline Within a school : : type & 2246.3 & 3.55 & 632 & & \\
\hline Total & 2288.9 & & 634 & & \\
\hline
\end{tabular}

\section*{TABLE 4.8}

\section*{SUMMARY OF ONE-WAY ANOVA FOR FOARM BOARD TEST}
\begin{tabular}{|lccccc|}
\hline SOURCE & SS & MS & df & \(F\) & \(P\) \\
\hline \begin{tabular}{l} 
Between school \\
types
\end{tabular} & 255.4 & 127.7 & 2 & 19.6 & .001 \\
\begin{tabular}{l} 
Within a school \\
type
\end{tabular} & 4127.0 & 6.5 & 632 & & \\
Total & 4382.4 & & 634 & & \\
\hline
\end{tabular}

\section*{TABLE 4.9}

SUMMARY OF ONE-WAY ANOVA FOR FIVE DOTS TEST
\begin{tabular}{|c|c|c|c|c|c|}
\hline SOURCE & SS & MS & df & F & P \\
\hline Between school types & 744.1 & 372.0 & 2 & 24.5 & . 001 \\
\hline Within a school type & 9580.4 & 15.2 & 632 & & \\
\hline Total & 10324.5 & & 634 & & \\
\hline
\end{tabular}

SUMMARY OF ONE-WAY ANOVA FOR PROBLEM SOLVING TEST
\begin{tabular}{|lccccc|}
\hline \multicolumn{1}{|c|}{ SOURCE } & SS & MS & df & \(F\) & \(p\) \\
\hline Between school types & 306.5 & 153.2 & 2 & 45.0 & .001 \\
\begin{tabular}{l} 
Within a school \\
type
\end{tabular} & 2152.3 & 3.4 & 632 & & \\
Total & 2458.8 & & 634 & & \\
\hline
\end{tabular}

TABLE 4.11

SUMMARY OF ONE-WAY ANOVA FOR MATHEMATICAL ABILITY - TOTAL
\begin{tabular}{|lclllll|}
\hline & SOURCE & SS & MS & di & F & P \\
\hline Between school types & 13815.0 & 6907.5 & 2 & 56.9 & .001 \\
\begin{tabular}{l} 
Within a school \\
type
\end{tabular} & 76735.2 & 121.4 & 632 & & \\
Total & 90550.2 & & 634 & \\
\hline
\end{tabular}

TABLE 4.12

SUMMARY OF ONE-WAY ANOVA FOR MATHEMATICAL VOCABULARY TEST
\begin{tabular}{|lrrrrr|}
\hline \multicolumn{1}{|c}{ SOURCE } & SS & MS & df & F & P \\
\hline Between schools types & 207.5 & 103.7 & 2 & 31.7 & .001 \\
Within a school type & 2069.5 & 3.3 & 632 & & \\
Total & 2277.0 & & 634 & & \\
\hline
\end{tabular}

TABLE 4.13

SUMMARY OF ONE-WAY ANOVA FOR ENGLISH LANGUAGE PROFICIENCY TEST
\begin{tabular}{|lllllll|}
\hline \multicolumn{1}{|c|}{ SOURCE } & SS & MS & \(d f\) & \(F\) & \(P\) \\
\hline \begin{tabular}{l} 
Between school types \\
Within a school \\
type
\end{tabular} & 2388.7 & 1194.3 & 2 & 125.0 & .001 \\
Total & 6040.8 & 9.6 & 632 & \\
\hline
\end{tabular}

The resultsof One-Way ANOVA show that tho scores of tho pupils attonding the throe school typon difforod aignificantly at \(p<.001\). The differences wero clearly in favour of the pupils attending High Cost schools. This was by judging from the fact that on the average the pupils of High Cost schools consistently scored higher marks in Mathematical Achievement test, Mathematical Ability tests, Mathematical Vocabulary test and English Language Proficiency test as compared to the pupils of Medium Cost and Low Cost schools. This result led to the rejection of the hypothesis of no differences between the scores of pupils attending the three school types. On further scrutiny of this finding, t-test was applied to two school types at a time. The results of this test presented in tables \(4.14,4.15\) and 4.16 show that between pupils in High Cost and Medium Cost schools, and between pupils of High Cost and Low Cost schools, in all the tests, the differences in the scores were statistically significant at \(p<-001\), in favour of pupuls in High Cost schools. This result justified the fact that all the differences found earlier were in favour of pupils in High Cost schools. However, between pupils of Low Cost and Medium Cost schools significant differences were found only in some tests. There were differences in Computation tost ( \(p<.001\) ) and Whole Numbor Comprohonsion tost ( \(p<.02\) ).

\begin{abstract}
Both these two tests were a part of Mathematical Ability tests. Other tests were Mathematical Achievoment tests ( \(\mathrm{P}<.001\) ) and English Language Proficiency test (p<.001). Interesting enough the differences in Mathematical Achievement test scores and in the two Mathematical
Ability test scores were in favour of pupils of Low Cost
schools while for English Language Proficiency test the
differences were in favour of pupils in Medium Cost schools.
This implies that pupils in Medium Cost schools had on the
average a higher level of proficiency in English Langunge
over pupils from Low Cost schools, while pupils in Low Cost
schools were better in Mathematics. This could be explained
by considering the fact that proficiency in English
Language is not as important to Mathematical Achievement
as Vocabulary of Mathematical terms. Knowledge of
Mathematical terminology has been shown to influence
Mathematical performance (Aiken, 1971; Eshiwani, 1974).
On the other hand since Medium Cost schools were found in the
urban areas, it is possible that the pupils attending the
schools were more used to communicating in English as they
did not have a common mother tongue and therefore were
proficient in English Language use as opposed to pupils in
Low Cost schools who are in the rural areas and normally
have a common mother tongue.
\end{abstract}
, TABLE 4.14
MEAN DIFFERENCES IN TEST SCORES FOR LOW \(\operatorname{cost~AND~HIGH~}\) COST SCHOOLS.
\begin{tabular}{|c|c|c|c|}
\hline TESTS & MEAN SCORE FOR LOW COST & MEAN SCORES FOR HIGH COST & t-TEST \\
\hline Mathematical Achievement. & 12.9 & 17.9 & P<. 001 \\
\hline Arithmotic Roasoning & 3.9 & 7.1 & P2.001 \\
\hline Computation & 12.6 & 13.9 & \(\mathrm{p}<.001\) \\
\hline Whole Number Comprehension & 5.3 & 7.0 & p<. 001 \\
\hline Hidden Figures & 3.1 & 3.6 & \(\mathrm{p}<.001\) \\
\hline Foarm Board & 2.9 & 4.6 & p<. 001 \\
\hline Five Dots & 6.0 & 8.7 & p<.001 \\
\hline Problem Solving & 4.4 & 6.2 & \(\mathrm{p}<.001\) \\
\hline Mathematical Ability Total & 40.3 & 51.0 & P<.001 \\
\hline Mathematical Vocabulary & 4.6 & 6.0 & p < 001 \\
\hline English Language Proficiency & 8.1 & 13.5 & p \(<.001\) \\
\hline
\end{tabular}

MEAN DIFFERENCES IN TEST SCORES FOR MEDIUM AND HIGH COST SCHOOLS


\section*{TABLE 4.16}

MEAN DIFferences in test scores for low cost and medium cost SCHOOLS
\begin{tabular}{|lccc|}
\hline \multicolumn{1}{|c|}{ TEST } & & \\
\hline & \(\begin{array}{l}\text { MEAN SCORE } \\
\text { FOR LOW } \\
\text { COST }\end{array}\) & \(\begin{array}{c}\text { MEAN SCORES } \\
\text { FOR MEDIUM }\end{array}\) & t-TEST
\end{tabular}\(]\)

\begin{abstract}
In general when the scores in Mathematical Ability tosts woro summod up, no significant difforonco was found between pupils in Low-Cost and Medium-Cost schools. No significant difference was found in the scores on Mathematical Vocabulary test as well. Significant differences only occurred in Mathematical Achievement test scores and English Language Proficiency test scores.
\end{abstract}
It is therefore clear from this analysis that the performance of pupils attending High Cost schools was better than that of pupils attending Medium-Cost and LowCost schools in the areas they were tested in. The situation was found to be slightly different when pupils from LowCost and Medium-Cost schools were compared. While in some areas no difference was registered in other areas the pupils' scores were found to differ. In general the pupils in High Cost schools can be viewed to have developed their abilities in mathematics to a high level and therefore had a higher potential in mathematics. Their level of proficiency in English Language and knowledge of Mathematical terms were also higher as compared to the other pupils, and as a result they achieved higher in mathematics. On the other hand it must be made clear that pupils attending High-Cost schools were from homes where parents were oducated and wore professionals. So tho childrun grow up in very stimulating environments, which is not the case for

\begin{abstract}
pupils attending Low-Cost and Medium-Cost schools. At tho samo timo it should be understood that ability tostm are very difficult to construct such that the ones used here though constructed by professionals could not tap fully a pupil's ability in mathematics. It is possible thereforethat the ability tests to some degree acted as achievement test, thus ability tests could be viewed as influenced by the environmental factors.
\end{abstract}

\begin{abstract}
The results also showed that the pupils in Low Cost and Medium Cost schools had equivalent ability in Mathematics and knowledge of Mathematical terms, although pupils in MediumCost schools were better than those in Low-Cost schools in proficiency in English Language. Pupils in Low Cost schools performed better than pupils in Medium-Cost schools in Mathematics. An important point to note here is how the pupils get to these types of schools. As Medium-Cost and HighCost schools are found in the urban areas, it is possible that through the Hursery Schools the first selection of the top pupils are taken by the High Cost schools and the rest ind their ways in the Medium Cost schools. In the rural areas since It is only Low-Cost schools that are around, basically all pupils go to that type of schools. It therefore seems as if In the urban areas High-Cost schools have the top echelon of talent of pupils, while Medium-Cost schools have the lower talent of pupils.
\end{abstract}

\begin{abstract}
In the Low-Cost schools pupils of all levels of talent are found, and tho only problom is with the developmont of these talents. Therefore in a case where pupils attonding Low-Cost and Medium-Cost schools are compared in very strict terms, pupils of Low-Cost schools are most likely to be found smarter. This could explain why pupils in Medium-Cost schools had a higher level of proficiency in English Language than pupils of Low-Cost schools, when pupils of Low-Cost schools turnod out bottor than pupils of Modium Cost schools in Mathomatical Achievoment. This was likely because pupils in Medium Cost schools both outside and within the school communicate more in English as compared to pupils in Low-Cost schools.
\end{abstract}
4.3.3 Relationship betweon sex of pupil and test performance.

The question to be answered here is "Do male and fomale pupils differ in their scores on the test?" Below is the statement of null hypothesis based on the question.

\section*{Null Hypothesis III}

There is no significant difference between the scores of male and female pupils in
(1) Mathomatical Achievoment Test
```

 (11) Arithmetic Reasoning
 (i1i) Computation Test
 (iv) Whole Number Comprehension Test
 (v) Hidden Figures Test
 (vi) Foarm Board Test
 (vii) Five Dots Test
 (viii) Problem Solving Test
(1x) Mathematical Ability Total
(x) Mathematical Vocabulary Test
(xi) English Language Proficiency Test

```

Table 4.17 presents results of \(t\)-test to prove the hypothesis.

TABLE 4.17

MEAN DIFFERENCES ON MATIEMATICAL ACIIIEVEMENT TEST, MATHEMATICAL ABILITY TESTS, MATHEMATICAL VOCAUULARY TEST AND ENGLISH LANGUAGE PROFICIENCY TEST FOR MALE AND FEMALE PUPILS
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline TESTS & \multicolumn{2}{|r|}{MALES
\[
(N=362)
\]} & \multicolumn{2}{|r|}{FEMALES
\[
(N=272)
\]} & \multicolumn{2}{|l|}{\(t-\operatorname{TSS} 7^{\circ}\)} \\
\hline & ME: AN & S.D & MLI AN & S.D. & T VAL.Un: & 1 \\
\hline ment & 14.7 & 5.9 & 11.4 & 5.7 & 7.10 & . 001 \\
\hline Arithmetic Reasoning & 6.3 & 2.2 & 5.6 & 2.2 & 3.89 & . 001 \\
\hline Computation & 12.9 & 2.0 & 12.1 & 2.5 & 4.86 & . 001 \\
\hline Whole Number Comprehension & 5.9 & 2.2 & 4.9 & 2.3 & 5.60 & . 001 \\
\hline Hidden Figures & 3.3 & 2.0 & 3.0 & 1.7 & 2.03 & . 05 \\
\hline Foarm Board & 3.9 & 2.7 & 2.8 & 2.5 & 4.90 & . 001 \\
\hline Five Dots & 7.0 & 4.2 & 5.9 & 3.8 & 3.32 & . 001 \\
\hline Problem Solving & 5.1 & 1.9 & 4.4 & 2.0 & 4.40 & . 001 \\
\hline Mathematical Ability Total & 44.3 & 11.2 & 38.6 & 12.1 & 6.11 & .001 \\
\hline Mathematical Vocabulary & 5.1 & 1.9 & 4.6 & 1.8 & 3. 46 & . 001 \\
\hline English Language Proficiency & 10.1 & 3.7 & 9.7 & 3.6 & 1.33 & ns \\
\hline
\end{tabular}

Thooretical value considered for \(t=1.56, t\) values groater than thim significant at levels p<.05.

\begin{abstract}
The results of the \({ }^{t-}\) test for mean score differences In the tests for male and female pupils indicate significant differences at \(p<001\) except in the test of English Language Proficiency. All the differences were in favour of the male pupils. The male pupils consistently scored higher marks in all the Mathematical Ability tests, Mathematical Achievement test and Mathematical Vocabulary test. These results suggest that male pupils were better than the Pemale pupils in mathematics.

\author{
The finding that no significant differences existed between male and female pupils in the test on proficiency In English Language suggests that sex of pupil did not influence their level of proficiency in English Language. All the pupils male or female had an equal chance of scoring high marks in this test. On the average the male and female pupils had similar lovel of proficiency in English Language.
}
\end{abstract}

Although significant correlationswere found between Mathematical Achievement test and English Language Proficiency test (See page8), this did not help much when it came to oxplalnIng sex differences found in Mathematical Achievoment tom \(t\) acores, Mathematical Ability tests scores and Mathomatical Vocabulary test scores.
```

This was mainly so bocauso both males and fomales wero
found to be equivalont in their lovel of English Langumfo
Proficiency. In a way lovel of proficioncy in English
Language is not a significant factor in Mathematical
Performance. Actually if proficiency in English Language
was significant to Mathematical Performance then the male
pupils would still perform better in it as they did in
Mathematical Performance. However, the fact that the Mathomntical
Vocabulary of girls was lower than that of boys confirms tho
importance of Mathematical Vocabulary to Mathematical Performanco
This implies that proflciency in English Language did not have a
significant influence on Mathematical Performance.

```
4.3.4 Factors responsible for the variation in Mathematical Achievement.

The proposition here sought to establish which factors
are responsible for the variation in Mathematical Achievement test scores.

Null Hypothesis IV

The variation in Mathematical Achievement test scores
will not be fully accounted for by the Variables, Mathematical Ability, Mathematical Vocabulary, English Language Proficiency, Type of School, Sex of Pupil, Age, Class Repetition, Aftur-School Coaching in Mathomatics, and Aftor-School Conching in Enkllwh, taken singly or taken all of them together.
```

 The statistical procedure used in testing this
 hypothosis was the stop-wise multiple rogrossion analysis.
This method identified which factor or factors were important
to Mathematical Achievement. The factors found to be reponsiblei
for the variation in Mathematical Achievement test scores would
be the best predictors of Mathematical Achievement. Table 4.18 18
a summary of the step-wise Multiple Regression Analysis. The
table presents the results in order of the factors entered in
the regression equation. The Multiple R and }\mp@subsup{R}{}{2}\mathrm{ give tho
proportion of variance accounted for by tho factor in quowtion
or a joint effect of two or more lactors in the order thoy aro
entered in the regression equation.

```

TABLE 4.18

SUMMARY OF STEP-WISE MUITTIPLE REGRESSION ANALYSIS on mathematical achievement test.
\begin{tabular}{|l|c|c|c|}
\hline \begin{tabular}{l} 
FACTORS IN THE ORDER \\
ENTERED
\end{tabular} & MULTIPLE R & \(R^{2}\) & BETA \\
\hline \begin{tabular}{l} 
Whole Number Compre- \\
hengion Test
\end{tabular} & .62883 & .39543 & .20767 \\
Computation Test & .70350 & .49491 & .21168 \\
\begin{tabular}{l} 
Mathematical Vocabu- \\
lary Test
\end{tabular} & .73877 & .54578 & .16861 \\
Yoarm Board Test & .75780 & .57426 & .11921 \\
Arithmetic Reasoning \\
Test & .76760 & .58921 & .09963 \\
Sex of Pupil & .77238 & .59657 & -.08494 \\
English Language \\
Proficiency Test & .77795 & .60520 & .09362 \\
Coaching in English & .78127 & .61038 & .08000 \\
\hline Five Dots Test & .78389 & .61449 & .07647 \\
Problem Solving Test & .78588 & .61761 & .07389 \\
Hidden Figures & .78613 & .61800 & -.02064 \\
Coaching Maths & .78633 & .61832 & -.01690 \\
Type of School & .78646 & .61852 & -.02319 \\
Pupil's Age & .78661 & .61876 & .02044 \\
If Repeater & .7864 & .00745 \\
\hline
\end{tabular}

\begin{abstract}
Rosults of step-wise multiple regression analysis indicate that all the factors considered together accounted for 61.9 percent of the variation in Mathematical

Achlevemont test scores. The ilrst important single factor was Whole Number Comprehension test (39.5\%). Subsequently the next significant factors acting jointly in order of preceeding factorg were Computation test, Mathematical Vocabulary test, Foarm Board test, Arithmetic Reasoning test, Sex of pupil, English Language Proficiency test and After-School Coaching in English. All these eight lactors wore found together to account for 61 percent of the variation in Mathematical Achievemont. The remaining factors including Five Dots test, Problem Solving test, Hidden Figures test, After-School Coaching in Mathematics, Pupil's Age and Class Repetition did not appear to have any significant contribution to periormance in Mathematical Achievement test. While this was so, 1 should be noted that about 38 percent of the variation in Mathematical Achievement test was still unaccounted for.
\end{abstract}
4.3.5 Summary of Findings

By way of summary the analysis carried out here
revealed the following results:
1. Mathematical Achievement test scores were found to correlate significantly with Mathematical Ability test scores, Mathematical Vocabulary test scores and English Language Proficiency test scores.
2. Concerning the comparision of pupils attending the different school types onewway ANOVA results indicated statistically significant differences in performance between theso pupils, with the differences boing in favour of pupily in High-Cost schools. An important point to mention here is that pupils attending Low-Cost and Medium-Cost schools were found to differ significantly only in some tests but not in others.
3. When Male and Female pupils were compared in thoir performance in the tests by use of t-tests, statistically significant differences wore revealed In all the tests except for a test on English Language Proficiency. This result showed that on the average Male and Female pupils have the same lovol of proficiency in English Language.
4.

\author{
Finally it was found that \(61.9 \%\) of the variation in Mathematical Achievement toit coreswas oxplainable by all the factors considered in the study. Out of these factors some had significant loading in Mathematical Achievement test scores than others. Effectively 61\% of the variation was accounted for by the first eight factorsin table 4.18. Clearly in this study 38\% of the variation in Mathematical Achievement teat scores were as yet unaccounted for.
}
4.4 Discussion

\begin{abstract}
The statistical techniques used in the analysis of
data were very useful in proving the hypothesis and hence the findings. The main focus for this study was on pupil's

Mathematical Achievement. It would be reasonable to expect that what a pupil achieves in Mathematics after a given period of instruction would depend on a number of cognitive and environmental factors. In this context, the school influences on pupil Mathematical Achievement were investigated in an attempt to Identify areas where pupils attending different types of choole would differ or be aimilar.
\end{abstract}

\footnotetext{
Studies in Mathematical Ability have revealed that Mathematical Ab1lity 1s composed of single factors which torether In cortain amounts reside in, Human brain (Werdeiln, 1958). It would therefore be reasonable to expect a very close link between pupil Mathematical Achievement and Pupil Mathematical Ability (A1ken, 1973). Wick (1965) attempted to establish the the relationship between the factored tests of Mathematical Ability and Mathematical Periormance. His results indicated very low correlations showing that there was no correlation betwoon Ability and Mathematical Achievement. The iindingsoi thig gtudy demonstrated that the relationship between pupil Mathematical Ability and Pupil Mathematical Achievement was significant. Ability 18 a potential and therefore this strong relationship between pupil Ability and Achievement in Mathematics clearly shows that the pupils did achieve to their potential in Mathematics. It did not matter which type of school a pupil went to, or whether a pupil was male or female, what he or ghe achieved in mathematics was a reflection of \(h i s / h e r\) potential in Mathematics. As all pupils were not expected to score the same, any differences among the pupils would be attributed to individual differences. This 1a based on the assumption that a potential in Mathematich 1. normally distributed mong the pupils.
}

\begin{abstract}
When dealing with Mathematical Achievement of pupils the influence of the terms specific to Mathematics, that is Mathematical Vocabulary, need to be considered. Likewise in situation where the medium of instruction is a second language to the pupils and in most cases to the teachers as well, the effects of proficiency in English Language on pupil Mathematical Achievement must be looked into. The results of the relationship between pupil Mathamatical Achievement and Mathematical Vocabulary were in all cases found to be significant. Similar result was found for the relationship between Mathematical Achievement and Proficiency in English Language. These findings show that sound knowledge in Mathematiaal terms is important in aiding the understanding of the subject and therefore little knowledge of these terms could possibly contribute to poor performance in Mathematical Achievement tests. Along the same lines the degree of proficiency in the language used for instruction appears important. Although significant correlations were found between Mathematical Achievement tests and English Language Proficiency test, it was also found that vocabulary in mathematical terms was more important to Mathematical Performance. Competence in the language here should be biased to Mathematics since mathematics is composed of special terminology. Nevertheless the importante of the proficiency in English Language cannot be underestimated. The etrong relationship between Mathematical Achievement tests scores
\end{abstract}
```

and English Language Proficiency test core found in
this etudy confirme the importance. For pupilm in Primary
Schools who learn the English Language and are taught other
gubjects through English medium, it would be important to
have a sound understanding of the English Language if they
have to achieve well in the other subjects. It is possible
that a low competence in English Language could handicap
the level of performance and the amount of work one could do
In a given subject. At the same time a high level of
competency in English Language would serve as an advantage
and an aid in understanding whatever is required in the course,
given that the pupil is of average intelligence. The
importance of Language to learning was realized when Vygotsky
(1962) Iound that Language was important in concept formation.
On Mathematics Aiken (1972) found that apart from being a
Language on its own there was a close relationship between
Mathematics and Language used in instruction. Hence the
evidence revealed from the findings of this study points out
that pupils who had relatively high scores on Mathematical
Vocabulary test and English Language Proficiency test tended
to have high scores on Mathematical Achievement test.
However,Mathematical Vocabulary appeared more Important
than English Language Proficiency.

```

\begin{abstract}
Although aignificant correlations were registered between Mathematical Achievement and Mathematical Ability; Mathematical Achievement and Mathematical Vocabulary; Mathematical Achievement and English Language Proficiency over all the pupils, this finding did not provide enough information on how the school types, Low-Cost, Medium-Cost, and High-Cost schools compared and how the male and female pupils compared in terms of the magnitude of the test -cores. An important objective in this study was to etablish whether attending a given type of school would have an influence on the pupils performance in Mathematics.
\end{abstract}
The study considered the three types of schools and carried out tests to establish 11 the pupils attending the three school types differed significantly in their performance In the tests. The results showed that the scores on all the tests, differed significantly among pupils attending the three types of school. Pupils in High-Cost schools had the highest scores compared to pupils in Medium-Cost and LowCost schools. But the cores of pupiln in Low-Cont and Medium-Cost schools when compared only differed oignificantly in some tests. The direct implication here was that pupils attending \(H i g h-C o s t ~ c h o o l s\) were better than the other pupily in Low-Cost and Medium-Cost schools. This fact though generally observed in the past examination results it has never
been established and as to which areas the differences occur has never been established ss well. Somerset (1974) found that pupila in High-Cost schools tended to achieve higher than pupile in Low-Cost chools particulariy in Mathematics. His explanation to thisferesulted from an item analysis of C.P.E. 1971 Mathematics Paper where he found that most of the questions in the paper tended to favour pupils from High-Cost schools. Similarly summary of examination results compiled every year by the Examination Council consistently show high average scores in Mathematice from High-Cost schools. It should be noted that the terms Low-Cost, Medium-Cost and High-Cost schools do not necessarily refer to cost incurred by parents but more on cost of facilities in the school. The ares which has not been investigated by the researchers in this field is the one concerned with identifying the cause of the differences, and whether the pupil performanceswere true reflection of pupils' ab111ty.

The innding of atatietically ignificant differences in scores of pupils from Low-Cost, Medium-Cost and HighCost schools particularly in all the seven Mathematical Ability tests was striking. On the average pupils from H1gh-Coet schools had higher scores. It would be expected that pupil potential in Mathematics would remain relatively
```

constant over the whole range of school types, but the
results indicated that pupils attending High-Cost schools
had their Mathematical Ability more developed than the othera.
This result contradicts the view hold by many researchere in
this field that ability is an innate potential which develors
naturally with time but has a ceiling which varied from
One individual to another.

```

This fact presumes that
1. Mathematical Ability is normaliy distributed.
2. After seven years of schooling the level of development of ability in the three school types may reach the same point.

However, this is not so in this study. Although the subjects of this study were from a random sample of schools, the differences among the pupils occurred because;
1. The school enviroments did not provide the learning conditions to enable development of ability to full potential for some pupile. Given the fact that the echools differed in the quality of staff, school equipment, clase amenities, teacher-pupil ratio, conditions of radmission;i, age at enrolment, seating arrange-
```

ment, etc.

```

\section*{2. Some pupile were pre-selected from nureery echools for the best chool.}

\begin{abstract}
Though the pupils attending these schools could have natural similarity in their abilities the environment through which they operate was bound to have an influence. Regarding Mathematical Ability of shool children, Krutetskil (1976) and Werllelin (1958) obeerved that the development of Mathematical Ability was influenced by classroom instruction, Mathematical games and out of class experiences involving mathematically related tasks. An interpretation of this view would imply that pupil potential in Mathematics would only be realized fully if the conditiona within gchool environment are favourable, otherwise this potential will remain dormant. Thus pupils who attended schools which did not have all the necessary requirements lacked some of the experiences which would help them develop their Mathematical Ability and therefore they underachieved. In actual fact this latent ability would remain dormant completely untila favourable atmosphere avails 1tself. Wamani (1980) had similar findings although his subjects were of etandard 3 - 5
\end{abstract} level.

\begin{abstract}
The results indicating that pupils from High-Cost echools on the average performed better than pupila in LowCost and Medium-Cost chools in all the testa deserve some scrutiny. An explanation of these differences would call for a critical analysis of the quality of the schools, the learning environment, pupils home background (Socioeconomic status). Facts from studies on intelligence indicate that the intelligence quotient (IQ) is normaliy distributed among people. This would imply that 11 admission into these three chool types is not based on a test of mental ability then no significant differences would be expected among the scores of pupils. The resultsof this study haverevealed significant differences in the scores of pupils in these categories of schools. A similar result was found by Wamani (1980) who observed that some schools in Nyeri Distirct consistently out scored others overy year in C.P.E. results. An explanation to such differences could be sought in terms of school characteristics and pupil home background. The majority of the pupils who attend High-Cont chools are from homes where parents are literate, well to do and are ready to pay fees for the oducation of their children. Such parents value education and therefore provide their children with books, proper study places and also take keen interest on the progress of their children.
\end{abstract}

\begin{abstract}
The echools where they take their children are the ones which are fully established and provide enough of what is required for proper learning. In these schools, admission 1. granted under very strict conditions. The pupils must have passed through a prominent nursery school and must be about six years of age. The school itself is equiped with highly qualified staff, teaching aids, books and stationery and wellplanned classrooms with proper seating arrangement.

The teacher-pupil ratio is on the average one ta 35 . This kind of environment is very suitable for any learning process and the pupils are able to develop as fast as they possibly can. Such an atmosphere would itseli be very motivating to the pupils as well as the teachers.
\end{abstract}

\footnotetext{
On the other extreme the pupils attending Low-Cost achools come from very poor home backgrounds where many parents are \(1111 t e r a t e\) or semi-literate. These parents are predominantly agrarian and show very little interest in the education of their children. All that these parents do is to allow their children to go to school but with frequent interruption when their services are required at home. Much to do with the education of the children is between the pupils and the chool. With no proper study places at home, the pupils have no motivation to study. On the other hand the echool is very poorly equipped, very few books, majority of staff unqualified, tc.
}
```

The classrooms are congested on the average 50 pupils per
class and on very fow desks. The pupilm on admission to
the school need not have paseed through a nursery
school and the pupil's age at admiseion 10 not taken
seriously. Thus adding to the fact that these pupils
also attend school on and off, by the time they come
to standard seven they are of varied ages. An analysis
of our study sample presented on table 3.1 revealed that by
Etandard seven 93% of pupils in H1gh-Cont schools were of
age less than 14.5 years while in Medium-Cost schools 66% and
Low-Cost schools 38% were below that age. Much of the age
range in Low-Cost schools is also contributed by the fact
that so many pupils repeat classes, often more than once.
In table 3.1 it is also shown that in High-Cost schools,
33.6% of the pupils had repeated at least a class, compared
to 68% 1n Medium-Cost schools and 75% in Low-Cost schoola.

```

Generally if congiderations are given to the school and the pupils home background then what clearly comes out 1s that some pupils are at an advantage over otheri. This Iact in very clear from the wharp differences that exist between the school types and the home backgrounds of pupils attending the schools.
```

These two mein lactore considered bere are bound to alfect
and influence what the pupila achieve in the various subjects.
Even by considering the language lor communication, the
pupila 1rom the rich backgrounds through experience at home
and in the nursery school will have attained some degree of
proficiency in English as opposed to the other pupila
who wil1 be in the process of learning the language. Thin
could actually allect how they underatand the subjects.
Moreover teaching methods vary with level ol training.
The main struggle by the school typee 1: Ior academic
excellence 1n the National Examinetion (C.P.E.) which is
the determinant of an upward mobility 1n education (ILO, 1972),
that 1g, proceeding to secondary education.

```

Although the child from the rich home has better chances of success, there is no guarantee to the success. Many parents especially the literate ones pay extra fees for private after-school coaching of their children. The 11gures presented on table 3.1.show that on the average 62\% of pupils in High-Cost schools go for after-school coaching as compared to 37 percent in Medium-Cost and \(43 \%\) in Low-Cost schools. Though the relationship between After-school coaching in Mathematica and Mathematical Achiovement was not sought, it is however a clear indication that the literate parenta do undergtand what education means and have atrong need for their children to proceed on
```

with their education. In such a aituation it would not be
a Eimple matter to establich the view held by the poor
perents as concerns education because they have certain
limitations. In a way the arguments presented here suggest
with alot of caution that if two pupils with the same
potential are educated under these varied conditions one
would achieve higher than the other. This however,
would not mean that he/she is better than the other since
1f educated under similar conditions they could achieve
the same. The differences registered in the scores of pupils
in the school types are therefore not a reflection on
differences in pupils' potential but rather a reflection
on the quality differences in the learning environment and
experience the schools provide.

```
Another area dealt with in this study was on the performance differences of male and female pupils in Mathematica. The reault indicated that male pupile performed better than female pupile in Mathematical Ability Teata, Mathematical Achievement Tests and Mathematical Vocabulary Teste. But in English Language Proficiency there were no such differences. This result is similar to the earlier research findings by many researchers which also revealed such sex differences. The fect that differences still occurred in Mathematical performance even when the level ot proilciency in Engliah Language was olmilar botwoen male

\begin{abstract}
and female pupils served to strengthen the beliel in sex differences in Mathematics. Attempt to explain the sex differences in Mathematical performance has been made by many researchers. Explanations have covered a variety of areas involving personality, masculine interest and scientific career interest (Aiken, 1970; Astin, 1974;

Maritim, 1970; Carey, 1958; Milton, 1957). Other explanations have centered on attitudes toward mathematics (Eshiwani, 1974; Sheikh, 1976). By considering the methods of teaching Mathematics Eshiwani (1974) also found that when females are taught Mathematics through programmed instruction they tended to have scores comparable to the males. The issue Of sex-differences in general has also been tackled by researchers such as Macरoby (1974), Fennema (1978, 1981).
\end{abstract}

In this study, the correlation analysis showed that for all pupils the relationship between Mathematical Achievement test scores and Mathematical Ability test scores were significant. This indicated that whatever the male and female pupils achieved in Mathematics was a result of their ability. The school environments in which both the female and male students were operating were quite similar. Both the sexes were almost in the same proportion in each of the school types aeo table 3.1.
```

 Maritim (1979) explained such gap in school performance
 between boys and girls to lie in their differences in
academic self perception. His explanation appeared to be
closely linked with the one of attitude towards mathematici.
Here the females view themselves as being incapable of dolaB
mathematics and therefore form a very negative attitude
towards the subject. This study as already mentioned found
that even in Mathematical Ability tests the boys still
performed better. It would therefore appear that withouk
even making serious attempts the majority of femalen pave
learat to give up at the slightest difficulty encoun|arid
in solving a Mathematical problem. Therefore howevar much
Lle males excel females in mathematics it should not be
viewed as an indication of inferiority on females. The
guidance provided by roles and norms could also have an
Influence on the female pupil performance in mathsmatica.
The types of roles expected of females do not rigidly
require mathematics as a preडrequisite as do those of maies 0ry
such grounds the females give up and work hard in subjecteg
related to their future roles such as Domestic Sciance ar: d
the Arts Subjects.

```
```

 Along with the above explanation importance must be
 ettsched to the temchers as well an single sex or co-education-
nal schools. The attitudes held against the girls as
concerns Mathomatice by the teachers are bound to influence
the kind of interaction between the female pupils and the
teacherm. Maritim (1979) lound that where girls had low
academic self perception of their abilities, in correspond-
Ing areas the teachers had low perception of girls'abilities.
The extent of this association could be atrengthened by the
sex of the mathematica teacher. The kind of interaction
between a mal* teacher and a female pupil might be different
from that between a female teacher and a female pupil. At
the same time the kind of classroom situation where the
pupils sit to be taught might have some influence
depending on whether the school is co-educational or single
sex. When girls sit in class with boys, there is a possibility
of girls giving up to the boys on Mathematics and therefore
achieving lower than them. Observations show that girls
learaing in single sex schools are almost comparable to
boyE in Mathematical Performance (Eshiwani, 1974).

```

Another important point in explaining the differencen 1f to do with the tage of development. According to Brown (1957) and Rabban (1950), roles become more clear with age and this ende the eigour in doing subjecta that are thought

\begin{abstract}
to be male dominant by females. At puberty the girl becomes fully aware of herself an fominine person with definite feminine role to adopt. It this role appeara to include rejection of Mathematics and to a lesser but potent extent scientific intereste then she will react accordingly. The majority of pupils considered in this study were over 13 years of age which is puberty stage. Wamani (1980) found in his atudy that no sex differences in performance in Mathematics were observed from pupils of 11 years and below. Similar results have been reported in the past. These reasons provided here aggeat that there is alternative explanation to the sex differences in Mathematical Performance. Therefore it would not be resonable to view such differences as lemales being inferior to males in Mathematics.
\end{abstract}

Mathematical Achievement in this tudy was viewed to depend on a number of factors. Thif meant that any variation in Mathematical Achieverent could be explained in terms of the independent contribution of the factors considered. The factors that had significant contribution were Computation Ability, Mathematical Vocabulary, Spatial Ability, Arithmetic Reasoning Ability, Sex of pupil and Proficiency in English Language. These factorn as already mentioned earlier account \({ }^{e d}\) for \(81 \%\) of the variation 1a

Mathematical Achiovement.

\begin{abstract}
The other factors did contribute but not elgnificantly; therefore any prediction equetion would be composed of the factora mentioned above. This finding indicate that a sound knowledge in Computation, Mathomatical Vocabulary, Spatial
Orientation, Arithmetic Reasoning and Proficiency in English
Language would make a pupil excel in addition to sex of
pupil. The differences registered among High-Cost, Medium-
Cost and Low-Cost schools could be explained in terms of sound
development of such skills. It would appear therefore that
these skilla are far more developed in High-Cont schools
than in the other schools, wo that they consistently have
high achievement in mathematics. It is possible the other
pupils from Low-Cost and Medium-Cost schools could equally
develop the skills 12 given the opportunity.
\end{abstract}

\footnotetext{
- This discussion thus far presented can be summarised by pointing out that even though pupils in High Cost schools had better performance in all areas tested than pupile in Low-Cost and Medium-Cost chools, this was more to the chools than to the pupils. The three chool types differed in many aspects which considered together could influence and promote whatever the pupils achieved. The poor maintenance in Low Cost and to some extent in Medium-Cont echools as compared to the well established High-Cont schoola could account for the differences in performance by the pupils.
}

\begin{abstract}
To that extent pupile 1n Low-Cont and Modium-Cont could be viewed to have the potential which 1 not developed to the full. The results of sex difierences in Mathematical periormance and not significantly in other areas 1n an Indication that there could be other reasons for it, not. necessarily question ol 1anbility: Further research 1s required 1 n this erea.
\end{abstract}

\footnotetext{
In summary, the discussion of the indings revealed the lollowing points.
}
1. Pupil performance was found to be influenced by the quality of teaching and learning environment. Both these depend on the level of training of the teachers and the facilities and equipment necessary for teaching and learning in the chool.
2. Although achievement in Mathematics wes found to depend on pupils' ability in Mathematics, it was also found that Mathematical Vocabulary was very important for the level of Achievement 1n Mathematios.
3. The ability to manipulate epace was not well

\section*{developed in the pupils. The possible resson was that pupils lacked enough experionce with tanks involving space.}
4. Although some explanations for sex differencea in Mathematical performance have been provided, they are not conclusive, so further research is atill required.

Based on these points, few recommendations will be made.

The next chapter will discuss the limitations, implications and recommendations of the study. It will also discuse the directions for future research and then conclusion.

\section*{CHAPTER FIVE}

\author{
LIMITATIONS, IMPLICATIONS, RECOMAENDATIONS
}

\author{
This chapter will present the limitations of the atudy, implications, recommendations and directions for future research.
}
5.1 Limitations of the study
```

In any social research there will undoubtedly be errora of various kinds in the data. There will also be the inevitable sampling errors which cannot be avoided easily.

```
```

 One of the limitations in this study was the genera-
 lization of the results to other settings. The main
point here was to do with the size of the sample considered
as compared to the alze of the population of all standard
seven children .In Kenya, which was in the tune of hundreds
of thousands. If wuch a comparison was made then the
study would not hold its worth. However, the results of such
a study served as an indication to the atate of events.

```
```

 It was noted that a study relating to school
 achievement: would need to cover all the curriculum aream
to be able to discover factors influencing nchool mohievement.

```
```

This study by nature and purpose, restricted itself to
mathematics. However, it was recogaized that a wider etudy
covering all the arean would provide more concrete information
on the determinants of school achievement.

```
Implications of the study.
    The implications of the present results are fairly
straightforward. The past researchers (King, 1974;
Somerset, 1974) argued that the pupile' succese and failure
1n C.P.E. depended on the quality of the chool and the
quality of the teachers. The main reason behind their
argument was that the rural children were the victime of
poor environment and poor teaching. These indinge
appeared quite realistic and acceptable. In addition
this present atudy went further to investigate how pupila'
achievement in mathematics related to their ability in
mathematics and the nature of the differences that occurred
mong pupils attending the different schools. The result
implied that poor environment and poor teaching retarded
the development of pupile' abilities thus resulting in
poor achivement.

Although there had been vory few researchers probing into the qualities of staff and facilities in the schools in
```

relation to etudent performance, it still appeared convincing
that what the school had to offer to the pupils in terme of
teaching and facilitien to aid in learning and development
of neceseary mkills did make a aignificant difference.
It was clear from some studien, that teaching methods were
very crucial to higher achievements in the related aubjects
(Eshiwani, 1974). As a(ready mentioned, being in a school
of high quality was to a great extent influenced by pupils'
home background. This did imply that the pupil's bome background.
was elgnificant to his/her performance at school.

```

\begin{abstract}
As for sex differences in Mathematical Performance many research ilndings have revealed that male students performed better than female otudents. Although girls on the average never do as well as boys in mathematics, it is possible that the problem ie a psychological, social and cultural one and is not of a lack of ability or potential in mathematics. However, the poor performance in mathematics by females still deservesscrutiny to establish where it originates from, itm causes and how it develops.
\end{abstract}
6.3 Recommendetions

From the findinge of this study the following recommendations are made.

\subsection*{5.3.1 Improvement of Learning Facilities and Enviromment 1n Modium and Low-Cost 8 chools.}

\begin{abstract}
Many schools were found to have the majority of the teaching staff unqualified. In these schools most of the school equipment was lacking as well. Since better learaing requires conducive atmosphere with exposure to the necessary skills using best teaching methods, it would be important to uplift the schools by increasing the number of qualified teaching staff and the necessary school equipment including text books. It is a fact that teacher efficiency depends upon the training and the teaching aid-equipments. It is viewed that if the schools could have all the necessary school equipment, qualified teaching stafl and improved tuition blocke to provide for conducive learning atmosphere, then the pupile could probably develop fully their abilities and echieve at higher levele.
\end{abstract}

\subsection*{5.3.2 Mathematical Vocabulary}

The results of this study revealed that knowledge of the common mathematical terms was very important in the learaing of mathematics. It is therefore recommended that When teachers are trained on the methodology of teaching
```

mathematics, special emphasit should be laid on the common
but Important Mathematical Vocabulary and terms, Tbis would
bo 1mportant sinoo 1n tenching mathemetics, 11 the pup11s
have to be clesr in theis minds about what is taught,
then the mathemstical concepts munt be explained
clearly. Formation of concepts can be further strengthened
by using mathematical models, by giving wider opportunities
of using and applying the concepts. Preficiency With mathemat1-
cal terms Was Iound to bear signil1cant relat1ongbip with
Mathemst10al Achievement.

```

\section*{E.3.3 Special Emphasim on Dovelopment of 8patial Ability.}

\begin{abstract}
This was the only one of the compositos of Mathematical Ability which had inaignificant corrolation with Mathematical Achievement, This ability involved manipulation of space, indluding Three-Dimensional experience, Geometrical Constructions, Mathematical Models, Tangrams and other practical
experiences involving space. It appeared that this aspect of mathematics has been given very little attention.

It 1s therefore recommended that special emphaels should be put on apace underntanding and orientation (Geometry).

Teachers should be wall tralned to be aware of this
important aspect of mathemstics and the best method of
teaching \(1 t\).
\end{abstract}
B.4 Direction for Future Research.

\begin{abstract}
Educational problemg of learning and teaching are very complex and more information, further evidence and new In@lght from research programmen are alwaya welcome to holp educationists and peychologiats to set better understanding. School performance is aflected by many factors that interact with one another. It is difilcult in any given research like this to identify all the factors, but data are now avallable only on 1solated factore that have been shown to affect achievement test performance. The combination of thene isolated factors shed some light on our underetanding of echool performance and Mathomatical Achievoment in particular.
\end{abstract}

\begin{abstract}
Further research is required to reveal the possible interactional effects between Mathematical Ability, Mathematical Vocabulary, English Language Proficiency and Type of School. The present data did not provide information about the actual experiences and activities that the children are exposed to in the classroom as well as out of the claseroom, teacher-pupil interactions and methods of teaching adopted by the different teacheri in the three categorien of schools. This study only established the score differences among the pupile which was result of whatever experiences, activitien and methods of teaching.
\end{abstract}

\begin{abstract}
In actual fact there would be a need to carry out atudies to provide more information on main fectors within the school environment which contribute aignificantly to Mathematical Achlevoment and are responsible for the differences.
\end{abstract}

Sex differences in almost every aspect of human behaviour have been consistently observed, and the most widely accepted explanation for this is that boys and girls are exposed to different experiences during mocialization (Maccoby, 1966). Croan cultural evidence reveals that socialization influences how a child acts, feels and thinks (Whiting and Whiting, 1968). On chool achievement task. it has been demonstrated that boys and girls tend to achieve higher cores on task that are stereotypically and culturally perceived an appropriate to their sex differences in performance and that the sex-typed socialization practices constrain the child's development of sense of competency in apecific areas of study he/she perceive are not appropriate to his/her sex. More research is therefore needed to reveal more reasons for sex differences. It would also be important to determine at what age and stage such sex differences in mathematics appear. Even in the teaching process, the teacher-pupil interaction especially between male teachers and female pupils, and female teachers and male pupils whould be

\begin{abstract}
Investigated. The eex differences in mathematics need to be identified at their oarliest stage so that programs to minimize them can be developed.
\end{abstract}
5.5 Conclusion

When human beings are subjected to different learning environments, the experiences of these environments lead to the development of different cognitive skills and personality characterintics. In our mociety today, the -chools hold the responaiblity of aurturing talent in the pupils and helping them in the procese of instruction to develop certain desirable akills. It is on the level of competence in the required skills that decisions are made about the pupils for the next stage of formal education. The quality of the cognitive skills and personality : characteristice, and their desirability must be related to the neede of the society.

\footnotetext{
Although the main function of the school is to help develop talent of the pupils through curricular demands, it also creates inequality through the screening process such as achievement testi (C.P.E.) that are developed to halt mase access to the fow available positions in the society.
}

\begin{abstract}
The latter function can cause very eerious damage to some pupils especially 11 the schools are not equivalent is etandard, that is teaching and learning environment. This fact is clear from the fact that even though there are individusl differences among pupils, if in the process of nurturing talent , which is normally accomplished through classroom instruction and curriculum contents some pupils are exposed to better learning facilities, wider experiences, better instruction, etc, than others, then obviously they have to lead in the echievement testa and get access to the fewer placen.

Although it is admitted that chool performance is a multi-dimensional concept, that is, there are multiple contributing iactors that interact to unknown degree, the present data have shed some light on the aignificant influence of the type of school a pupil attends. This suggests that when considering pupil performance, the type of echool be was attending must not be ignored especially in a atuation where there is a high variation of the chools.
\end{abstract}

\section*{Educators are always keen on knowing the factore} affecting the pupile' achievement so that \(1 f\) they can be identified then they can attempt to minimize the variance 1n pupils' achievoment and optimize the available resourcon.
```

Along with the other factorg, we have the evidence that
lactore within the school environment contribute
sigaificantly to pupile' achievement.

```

In conclusion, this Study has shown that the quality of a chool makes a difference in pupils performanaso if the variance in school achievement among pupils has to be minimized then the chools have to be of equivalent level of maintenance. In addition to this, significant differences 1n performance betweon malon and fomales in certain eubjoot areas would call for further research where they oocur for -1ther sex.

\section*{A P PENDIXA}
1. research clearance letter
2. RESEARCH PERMIT
3. A LETTER FROM MUNICIPAL EDUCATION OFFICER , KISUMU
4. LETTER TO PRIMARY SCHOOL HEADS
3. PROGRAM FOR THE ADMINISTRATION OF THE TEST BATTERIES.

\title{
OFFICE OF THE PRESIDENT
}

\section*{CABINET AFFAIRS}
P.O. Box 30510

NAIROBI, KENYA
and dale

\author{
Mr. Raphael J. A. Kapiyo,
} Kenyatta University Collage, NAIROBI.

\section*{Dear Six.}

\section*{RESEARCH CLEARANCE}

Your application for authority to conduct research on g "An investigation into the relationship between Mathematical Ability and Mathematical Achievement of Primary Seven", has been received and it is being processede.

In meantime you are hereby authorised to go to Klaus District for your preliminary inquiry.
for: PRPMANENI SECRETARY/CABINT NLAITS ce.

The Permipnent Secretary, Ministry of Basic Education NAIROBI.

The Secretary,
National Council for science and Technology NAIROBI.

\section*{NOTE}
1. Ouvernment Onlicern will not be interviewed willuut priur appointment
2. No sucestionnalio will bo yped unlean it han beon ajpriveal

RPPUNLIC © OP KIBNYA

\section*{RESEARCH CLEARANCE PERMIT}

Paop 2
Thin is to chritiy that: -


KAPIYO
RAPHAEA. N.A

has been permitted to conduct research in
\(\qquad\)
KISIMU
NYZANZA
\(\qquad\) District, Province, on tho tumic "AN INVESTICATION INTO THE HELATIONSHIP BETWEEN MATHEMATICAL AILITY. AND MATHEMATICAL ACHZVELGORT



Paos 3
Research Permir No. ...OR., 13/.001/.120. 3.8.4/.7., Date of issue .... 3014 MARCH 1281


-

Tow r eu Gur Rand O. O. Bax sos

lith February, 198.1.

Hoarimanters/mistresses, Municinal Primary Schools, KISUMU.

\section*{RE: MR. R.J.A. KAPIYO:}

The parer wishes to carry out research relating to his Studies at the University of Nairobi.

Kindly afford him available facilities to do this at your sphogl.


MUNICIPAL EDUCATION OFFICER

VJO/jaw.

\section*{KENYATTA UNIVERSITY COLLEGE (DEPARTMENT OF EDUCATIONAL PSYCHOLOGY)}

\author{
P.O. BOX 43844, \\ NAIROBI.
}

\section*{TO}

I am writing to inform you that \(I\) have been granted the authority to carry out a research study in Kenya by the President's Office. Your school has randomly been chosen as one of the sites for the study. This is a scientific educational research to be carried out in my personal capacity, with the support of Kenyatta University College, Department of Educational Psychology, Nairobi. The study is designed to investigate into the relationship between Mathematical Ability and Mathematical Achievement of Standard Seven pupils of Kenya. It is hoped that the results of the study may be of help to teachers, parents, pupils and curriculum planners of Kenyan primary schools.

The main purpose for writing this letter is to inform you that I will visit your school any time starting from February to March, 1981. During this visit which is expected to take two consecutive days, several tests will be administered to Standard Seven pupils. Your cooperation will be of utmost importance.

Thanking you in advance for your attention to this matter.

Yours sincerely,


RALPHAEL J.A. KAPIYO

\section*{KENYATTA UNIVERSITY COLLEGE}
(DEPARTMENT OF EDUCATIONAL PSYCHOLOGY)

\section*{PROGRAM FOR THE ADMINISTRATION OF THE TEST BATTERIES}

It is expected that if all is to go well then all the testing will take a whole working day as is indicated below, otherwise we proceed for half day the next day.

Important instructions for the tests will be read aloud and written on the blackboard before the test. For example: The pupils will be required to have a pencil and rubber before the test.

Time Schedule:
 LUNCH BREAK
2.10 p.m. - \(2.30 \mathrm{p.mi:} \mathrm{MATHEMATICAL} \mathrm{VOCABULARY} \mathrm{TEST}\). \(2.40 \mathrm{p.m}\). - \(4.00 \mathrm{p.m.:} \mathrm{ENGLISH}\) LANGUAGE PROFICIENCY TEST. If the above cannot be accomplished in one day then we shall proceed to the next day.

\section*{A P PENDIXB}
1. Mathematical ability tests
(a)
(1) ARITHMETIC REASONING TEST
(11) COMPUTATION TEST
(111) WHOLE NUMBER COMPREHENSION TEST
(iv) HIDDEN FIGURES TEST
(v) FOARM BOARD TEST
(vi) FIVE DOTS TEST
(vii) PROBLEM SOLVING TEST
(b) STUDENT IDENTIFICATION QUESTIONNAIRE
2. MATHEMATICAL ACHIEVEMENT TEST
3. MATHEMATICAL VOCABULARY TEST
4. ENGLISH LANGUAGE PROFICIENCY TEST.

INSTRUCTIONS

This section consists of prablems in arithmetic. However, you do not have to find the answer to aach problem. You only have to tell how the answer cosuld to found.

\section*{EXAISPLE 0.}

Jane's father was 26 years old when she was bom. Jane is 8 years old. How old is her father now?
(:
(A) Subtract
(B) Divide
(C) Add
(D) Multipiy

Jane's father is now 34 years old. But, you are not asked to find this. You are asked how to find tbis. Sínce his age is found by adding 28 and 8, choice (C) should be circled.

\section*{EXAMPLE 00}

Desks are priced at Shs. 40/- each. If bought in lotr of 4 , the total price is reduced by Shs. 20/-- kjhaw much \(1: 0 u 1\) d 4 desks cost?
(A) Divide arid add
(B) Multiply and multiply
(C) Subtract and divide
(D) Multiply and subtract

One way to solve the problem would be to multiply Shs. \(40 /-\) by 4 and subtract 20 from the product. So you should circle choice. (D).

Although some problems may be worked in more than ono way only one of the ways will be given among the answer choloes.

You should only guess if you can rulo out some of the cholcea. "DO NOT suoss wildiy.

You will have 15 minutes for this section. If you finish before time is called, checin you work.

T 1 'For each quastion choose the correct answer from those given and mark the correct answer on the answer sheet.with an \(X\). DO NOT WRITE ON THIS QUESTION PAPER.
1. There are 4 quarts in a gallon and 4 cups in a quart. How many cups are there in a gallon?

A) add.
B) Subtract
C) Multiply
\(+a r d a b(i)\)
D) Divide.

Bivll (E)
いい (2)
2. An electric planer is set to remove .02 of a centimetre each time a piece of wood is passed through it. If a boand is put, through 7 timea,
thit how much wood will have been removed?
A) Multiply
B) Subtract
C) Divide
0. 3.19M \(\times 3\)
D) Add.

There are 54 children at a small holiday camp. If there are 33 boys attending the camp, how many campers are girls?
A) Add
vinlutur bas khitytik
(a)

B) Multiply
C) Subtract



A man wants to seed a lawn around his new home. His lot is 120 metre by 90 mutre ( \(10,800 \mathrm{gq}\). metre). His house is centered on the lot and occuples 2,785 square metre. How many square metre of ground may be put Into lawn?
A)
Add
C) Multiply
B) Divide
D) Subtract
5. A wholesale fruit dealer sells oranges at Shs. 7 ner kilo and lemons it 3 Shs. per kilo. One day he sold 79 kilos of each type of fruit. How much money was taken in?

i) Add and divide
B) Idd and multiply
C) Multiply and subtract
D) Divide and divide
6. A cyclist in an intemational bicycle race has covered an average of 9 kilometres every 20 minutes. If he can maintain the same average speed, how long will it take him to cycle the remaining 84 kilometres of the race?
A) Divide and multiply
B) Subtract and divide
C) Add and subtract
D) Divide and add.

Jemethis I: ir math (r.
7. A grocer selle oranges for 60 cents a dozen. The oranges cost him 30 cents a dozon. How much profit is there on each orange?
A) Subtract and multiply
B) Divide and subtract
C) Add and divide
D) Subtract and divide
ot. it lir: in.ivet 1 a
8. A boy works in a shop after school for e total of 10 hours a week. He also works 8 hours on Saturdays. How much is he being paid per hour, if he makes Shs. 20/70 per week?
A) Multiply and subtract
B) Add and divide
C) Add and divide
D) Add and multiply
whe inos bivili. ia
whivi! bon tonatail (b

ebivite ban rah (!
9. A housewife took a jo' which pays Shs. 65/00 per week. After Daying taxes she is left with \(76 \%\) of her salary, and each week she spends a total of shs. 56/00 on lunches and bus fares. How much does her job increase the fanily income?
A) Divile and subtract
B) Subtract and multiply
C) Add and divide
D) Multiply and subtract

10 A rectangular underground reservoir is 15 metre deep and contains \(2,000,000\) iftres of water, when it is full. The short rains filled the reservoir, but a drought in January caused the water level to drop 8 metre. Approximately how many iltres of water were consumed durine the drought?

A) Subtract and divide
B) Add and subtract
C) Divido and multiply
D) Subtract and multipiy.
11. A certain part of beef costs Shs. \(7 / 50\) per kilogramme. How much beef could a mother serve to each of 5 children, if she could only afford to spend Shs. 20/00 for the beef?
A) Divide and divide
I) Multiply and add
C) Subtract and multiply
D) "Divide and multiply.
12. A coat marked Shs. 40/-was sold for Shs. 23/95 during a sale. What was the per cent reduction?
A) Divide and add
B) Subtract and divide
C) Multiply and subtract
D) Add and divide

\section*{148}
13. At the beginning of a month, a car rental organization rented 37 cars. During the month, 32 or these cams were retumed. If, at the and of the month, 43 of their cars rire being rented, how many nuw rontals had been made?
A) Subtract and divide
B) Subtract and subtract
C) Add and subtract
D) Multiply and add.
14. A corporation duoubled its assets by selling 1,000 shares of stock at Shs. 75/- per share. What were the corooration's total assets after the stock had been sold?
A) Multiply and divide
B) Add and multiply
C) Add and subtract
D) Multiply and multiply.
15. A certain mother generally squeezes \(1 \frac{1}{2}\) oranges for a glass of orange juice. The average cost of the oranges she bought during one year was 40 cents per orange. Approximately how much did it cost the family for the 827 glasses of juice that thoy drank during the year?
A) Multiply and subtract
B) Add and divide
C) Multiply and multiply
D) Divide and multiply.

STOP
IF YOU EINISH BEEORE TIME IS CALLED? CHECK YOUR WORK.

This scale is intended to measure ability to add subtract, multiply and divide whole numbers and to add or subtract simplo fractions.
-. INSTRUCTIONS

There are 15 questions in this section. Write the answer to each of the questions on the answor sheet. DO NOT WRITE ON THE QUESTION SHEET. ROUGH PAPER FOR HORKING IS PROVIDED.

You will havo 15 minutes for this section

DO NOT TURN THIS PAGE UNTIL YOU ARE ASKED TO DO SO.

\section*{150}

PLEASE DO NOT WRITE ON THIS PAOER

2. \(7 \times 4=\)
\(4 . .24 \div 6=\) \(\qquad\)
5. 103
\(\begin{array}{r}7 \\ +\quad 7 \\ \hline\end{array}\)
-
- 378 63
8. \(\begin{array}{r}56 \\ \times \quad 3 \\ \hline\end{array}\) \(\begin{array}{r}+504 \\ \hline\end{array}\)
9. 32

12
\(\times \quad 1\)
\(10 \begin{array}{r}72 \\ -\quad 65 \\ \hline\end{array}\)

11834
\begin{tabular}{l}
-49 \\
\hline
\end{tabular}
\(12 \begin{array}{r}600 \\ -\quad 123 \\ \hline\end{array}\)
2) \(\overline{412}\)
14. \(\quad 1 / 4+2 / 4=\)
15. \(1-1 / 3=\)








 SnE゙デッ：






\section*{WHOLE NLBBER COMFREHEVSION}

All the questions in this section mist be ansuered on the answer shete that you will be given by your teacher. Mark with an "X" the correct arswer. D NOT WRITE ATYTHING gN THE QUESTION PAPER.

In this part there are 12 questions on numbers and how we write thess.

Here is an example to show how you should mark your card.

\section*{Example 0.}

Subtract 807 from 1,725
(A) 819
(B) 918
(C) 928
(D) 1,018
(E) 1,622

The answer is \(B\). See how bubble \(B\) has been Marked win \(x\) for Ex. 0 .

For these problems, you w111 mark all of your answers on the answer Shecit. Be careful that you park the correct answer for each question.

You ere to work as many questions as you can. Do not spend too much time on any one question. You should only guess if you cen rule out some of the choices. DO HOT guess wildly.
miles. How should this number be sails:
(A) nisety-one million
(B) nine million one hundred thousand
(C) minety-one thousand
(D) ninety-one b11110n
(E) Blnety-one hundred thousands
2. Which of the following shows the correct meaning of k07s
(A) ( \(1 \times\) ten \()+(7 \times\) one \()\)
(B) \(\{4 \times\) one \()+(7 \times\) ten \()\)
(C) \((4+0+7) \times(\) one hundred)
(D) \((4 \times\) one \()+(0 \times\) ter \()+(7 \times\) ten \(\times\) ten \()\)
(E) \((4 \times \operatorname{ten} \times \operatorname{ten})+(0 \times\) ten \()+(7 \times\) one \()\)
3. 400
\(-199\)
201
In this subtraction problems, we must borrow or regroup. Which statement below shows hew to do it for this problem?
(A) \(400=(3\) hundreds \()+(9\) tens \()+(9\) ones \()\)
(B) \(400=(3\) hundreds \()+(9\) tens \()+(10\) ones \()\)
(C) \(400=(3\) hundreds \()+(10\) tens \()+(9\) ones \()\)
(D) \(400=(3\) hundreds \()+(10\) ers \()+(10\) tens \()\)
(E) \(400=(5\) hundreds \()-(9\) tens \()-(10\) ones \()\)
4. In the blackboard Joe read the warning:

A MISPLACED DECIYAL POINT MEANS A LARCE MISTARE\&
How does a misplaced decimal point change a number?
(A) One place too far to the right makes the nimber 10 times too large
(פ) One place too far to the rlght subtracts. 1 from the number
(C) One place too far to the loft subtracts 1 fros the number
(D) One place too far to the left makes the number one-half as large
\((E)\) One place tco far to the left maices the numer 10 times too large

A bank clerk reports that he has 10,000 One hundred shillings notes. Sov much money does he here?
\((A) S h, 1,000\)
(B)Sh, 10,000
(c) \(5,100,000\)
(L) Sn_ \(, 000,000\)
(E) Sh \(10,000,000\)
6. In Cirsleland, people write:
(5)
when they mean 58, and they write:

when they mean 334. mat number do they mean when they write the following?

(A) 2359
(B) 3529
(C) 5239
(D) 9325
(e.) \(532^{\circ}\)

(B)
(D)


'E)


For exarple:
\(6=\Delta \Delta \Delta\), ang \(25-\nabla \Delta \Delta \Delta\), end \(123-8 \nabla \nabla \Delta \Delta\)
How would 324 be written?
( A\() ~ \nabla 88 \nabla \nabla \nabla \nabla \Delta\)
(B) \(\nabla \& \nabla \nabla \Delta \Delta\)
(c) \(: ~ \triangle 8 \& \nabla \nabla \Delta \Delta\)
(D) \(\Delta_{\Delta} \Delta \nabla \nabla \& \nabla 8\)
(E) \(8888 \nabla \nabla \Delta \Delta\)

v9
Which of the following is equad to 37 tens?
(a) \(\frac{37}{1000}\)
(B) 1.378


(D) 370

COJ, 「的: A:
(E) 3700


which arrow pointe to the tenthe' place?
(A) \(F\)
(B) 6
(C) \(i\)
(D) 5
\(-1 \quad=\)
11. If a new system of mumpris notation used the following symbols
\(\triangle\) stand for zero stand for five
stand for eight atande for two

Which is the correct answer to the example?
\(\square \triangle O\)
\(-\bigcirc \diamond \Delta\)
(A) \(\square \diamond \bigcirc\)
(B)


(c)



(D)



(E)



12. If the two middle digits of 6348 ware interchanged, the number would be
(A) 200 lesa
(B) 90 less
(C) unohanusd
(D) 90 moro
(E) 100 more

STOP. If you finish before time is called, check your work on this part. Do not go back to any previous part. Do not ' tum this page until you are asked to do so.

\section*{RDDD FICURES}

\section*{IMATRUCTIONS}

In this eeotion you heve a patterp on the left. On the right there are SIve figuras. You have to find whioh one of thece flye 81 gures can be found In the patram on the left.

Look at the ample quaction below.
Example 0


An. Example 0 © B D E
The correct answer is \(A\) as figure \(A\) is the oniy figure hidden in the pattern. The sigure below show how pleure A is hiden in the pattere.


You see that there ere some extra Isnes passing through thie sigure. These extra lines are to make the figures harder to find.

Here is a samplo question for you to try.


ABA Example 0 I \(\quad\) K \(\quad\) I \(\quad\) Q

There will be only ane figure in each pattern. It will always be the same size and shape. It will not be turned around or turned over.

For the section you wll mark all of your answers on the anawer sheet.

Be careful that you mark in the correct letter for each question. Your answer sheet has five choices given co each question. Choose only one answer and mark this uaing an \(X\) on the anower sheet.

Work as quickly and as accurately as you can. You should only suces if you cen rule out ame of the choices. Do not guesd wildlye

You will have 10 minuteg.


\({ }_{3} \Delta\)




4

s. \(V\)

-四

\(\cdot \angle A\)
\(<\nabla\) A
-

" \(\Delta\)


FORM BOARD
1 1 1 2020
II rasucucis
In this section you an to toll which two pieces cain be put together to Complete= ere accuse at the lat of the nov. Loci at Branle \(\sigma\).


(3)

(5)
r. . are to decide which two of the live pieces cans bo put together to of from the square.

We val to do this problem is to form the square as follows:

in: \(=\) you know which pieces make the square check the circles under the pieces frit art wad. So e how st has bean done is Example 0 .

Usu will haws 15 mine fer for the Test.


\title{
，4． \\ 4 4 5 \\ \(\square\) \\ （A） \\ （B） \\ （C） \\ （D） \\ （5）
}
Re
\(\triangle \quad D\)
\(\square\)

（A）
（B）
（C）
（D）
（E）
8

N


（A）
©
（b）
©
I
\(\square \square\)

（4）
（B）
（c）
（1）
©
\(20 \square\).
\(\nabla\)
\(\nabla\)
\(\square\)
\(\sqrt{7}\)

（a）
©
（C）
（D）
©
\(\square\)

『 \(\square\)凸 \(\square\)

（A）
（B）
（C）
（D）
Co OI 20 Tis xioc sacis．
I. \(\mathrm{q}_{-}\)jtions in this aection are based on Sive dote in a Fw. :aere 1s one inch botweon each dot. Each dot is named \(w_{\text {H }}\) e sapital letter as show below.
\(P \quad ? \quad\) R
\(\$\)
!

He ag: ee to give each dot many names. Since dot \(S\) is 2 ir:hes to the right of dot \(Q\), we wll say another name for dc: \(s\) 1s Q2. The 2 is written to the right of \(Q\) er dot \(S\) is to the pisht of dot \(Q\). Another name for dot \(S\) 10 Rl beosuse dot 3 1s 1 inoh to the right of dot R.
uf n we write an equal algn between two names, we ay we he two names for the same dot. \(S=Q 2\) or \(Q 2=S\) are \(t\) : \(\quad\) statements because \(Q 2\) and \(S\) are names of the same dr.. \(P 3=Q\) 1s a false statement because \(P 3\) and \(Q\) are ar - names of the same dot.

A =ther way of naming dot \(S\) is 1T. Here the 1 is \(w\).tten to the left of \(T\) as dot \(S\) is to the left of 1 : s . We could write \(\mathrm{S}=1 \mathrm{~T}\). Twn mare namen for dot \(S\) are \(O S\) and \(S O\) (the \(O\) is a zero) because the dot \(\omega\) en is sero inches from dot 3 is dot \(S\) itsolf.

TH Te are seven names for dot \(S\). They are \(S, O S, S O\), \(R\) :, Q2, P3 and 1T. See if you can think of seven names fl- dot R.

S looks like a dot name tut it is not because there is 00 d. 2 inches to the right of dot \(S\).

A ine cuestions in this sec:ion are ajcut dot names. You. read ine expisnatior et any time during irutest.


EX. 0.
02= \(\qquad\) \(A B C D E\)
(A) \(P\)
(B) \(Q\)
(C) \(R\)
(D) S
(E) T

The correct answer is \(S\), which is choice (D). See how D has been
Try the next two examples.
EX. 0 . A BEDE EX. 000 .
\(\mathrm{Q}=\mathrm{S}\)
(A) 0
(B) 1
(C) 2
(D) 3
(B) 4
(A) 0
(B) 1
(C) 2
(D) 3
(E) 4

For this section, you will mark all of your answers on
Your first answer is numbered 13.
Work as quickly and as accurately as you can. You should \(g\) orin if you can rule out sung of the choices: Do not guess



By using the symbols ( ) more names can be given to \(A\) dot. For example, (P1) 2 names the dot whioh is 2 inches ilehtiof illo dot Pl. Dot PI is \(Q\). Thus, (PI)2 is another name tor wot S.

The name \(3((P 1) 2)\) names a dot, inches left of (P1)?. We have Just shown that \((P 1) 2=S . P\) is 3 inches to tho lel't of 3. Thus, \(3((P 1) 2)=8\). Now anawr the following questionn.
26. (2T)1 \(=\) \(\qquad\)
(A) \(P\)
(B) \(Q\)
(C) \(R\)
(D) s
(E) \(\mathrm{T}^{\mathrm{i}}\)
29. If \(T=(\times 1) 2\), tholl \(x\) m \(\qquad\)
(A) \(P\)
(B) \(Q\)
(C) \(R\)
(D) S
(E) T
27. If \(2(Q 3)=x\); then \(x=\)
(A) \(P\)
(B) \(Q\)
(C) \(R\)
(D) \(s\)
(E) 2
28. \(((P 1) 1) 2=\)
32. If (ns)2-3, thon in
(A) 0
(A) \(P\)
(B) 1
(B) \(Q\)
(C) 2
(C) \(R=d^{6}\)
(D) 3
(D) S
(E) \(T\)
(E) 4

STOP. If you finish before time is called, ohock your work' In thfe section. Do not go back to the earlier pections.

\section*{PROBLEM SOLVING}

INSTRUCTIONS

In this section there are 10 problems about several types of mathematics. For each question choose the correct answer from those given and mark the correct letter on the answer sheet with an "X". DO NOT WRITE aN THIS QUESTION PAPER.

You will have 20 minutes for this section.

DO NOT TURN THIS PAGE UNTIL YOU ARE TOLD TO DO SO.
1. Tom's mother cooked 48 potatces.

She also cooked 64 bananas.
She cooked how many fewer potatoes than bananas?
A. 112
B. 48
C. 26

D 14
E. 16.
2. Ann has Shs. 30 to spend for books.

Each book costs Shs. 5.
How many books cen Ann buy?
A. \(n-30-5\)
B. \(\Omega-30 \div 5\)
C. \(n=5 \times 30\)
D. \(n=30+5\).
3. Dimiel bought a bag of 20 new marbles.
the now has 75 marbles.
How manly martles did Daniel have before he
 bought the new ones?




D. \(n-75-20\).

\section*{}
4. Suppose you have a marble game.
 How many ways can it go?

5. look at the chart at the below.

Some numbers are needed to complete it.
What would you write instead of the question mark
(?) in tho ring?

A. 3
B. 4
C. 10
D. 13
E. My answer is not given.
\begin{tabular}{ll}
2 & \((1) ;\) \\
\(1 i\) & \((!1)\) \\
irf & \((9)\) \\
\(v i\) & \((1)\) \\
\(v\) & \((1)\)
\end{tabular}
U.

\#. '. The following diagram e are pictures of loops of cord. Which one cannot be pulled or twisted (without outing) wo form a circular loop without
- knot 1

1

(A) \(I\)
(B) II
(c) III
(D) IV
(E) \(\quad v\)

98.


The picture to the left shows the number 3425. What number is shown by the picture on the right?
(A) 9999
(B) 9730
(C) 9269
(D) 973
(B) 269

\section*{\(=5\)}
9. .

The picture belois ahowis that somethln; hilpp llo.l to a lilpe wroup. How wat the groun at than laft chankod to become tisg group it, the riefts

(A) 4 was atded to it.
(B) 4 mis aubtrected trom it.
(C) It vas muleiplied by \(\frac{1}{4}\).
(D). It was divided by \(\frac{1}{4}\).
(E) It wes not changed.


In the rigure ebove, the 11me ET Is drem to the seales
1 Cm. to 100 Melie. What is the dietance represented by 8
(A) 200 metire
(B) 173 watre
(C) 150 Walie
(D) 125 Metre
(B) 100 wetre.

\section*{A STUDY OF THE RELATIONSHIP BETWEEN \\ MATHEMATICAL ABILITY AND MATHEMATICAL \\ ACHIEVEMENT IN PRIMARY SEVEN CHILDREN OF KENYA}

\section*{ANSWER SHEET}

\section*{INSTRUCTIONS:}

For each test there is a separate question paper. Please do not write anything on the question paper.

Now complete the information requested below and do not start answering any question until you are told to do so.

For each question choose the correct answer and mark it with an \(X\) on this answer sheet. MARK ONLY ONE ANSWER.

For test of COMPUTATION you write down the answer in the space provided.
1. What is your name?

Surname
Other names
2. What is the name of your school?
3. Are you a boy or a girl? (tick) A. Boy...B. Girl
4. When were you born?
5. How old are you?
6. Have you repeated any class

If yes then which class \(\qquad\)
7. Do you go for after class coaching in Mathematics or

English

\section*{IITKTH ARITHMETIC REASONING}
Aว faviar

 STOP AND WAIT FOR NEXT TEST

COMPUTATION (Write answers since there is no multiple choice).

\[
170 \text { (2) }
\]

\section*{WHOLE NUMBER COMPREHENSION}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 1. & A & & B & C & D & & \\
\hline 2. & A & & B & C & D & & \\
\hline 3. & A & & B & \(\underline{L}\) & D & & \\
\hline 4. & A & & B & c & D & & \\
\hline 5. & A & & B & C & D & . & 1 \\
\hline 6. & A & & B & C & D & - \({ }^{3}\) & \\
\hline 7. & A & & B & C & D & & \\
\hline 8. & A & & B & C & D & & \\
\hline 9. & A & & B & C & D & - \({ }^{1}\) & \\
\hline 10. & A & & B & c & D & . \(?\) & \\
\hline 11. & A & & B & C & D & & \\
\hline 12. & A & & B & C & D & & \\
\hline & & STOP & AND & WAIT FOR & NEXT TEST & - & \\
\hline & \(\bigcirc\) & & & HIDDEN & EIGURES & . 9 & \\
\hline 1. & A & & B & C & D & & E \\
\hline 2. & L & & M & N & P & & Q \\
\hline 3. & A & & B & C & D & . 015 & E \\
\hline 4. & L & & M & N & P & , 11 & Q \\
\hline 5. & A & & B & C & D & & E \\
\hline 6. & L & & M & N & \(P\) & & Q \\
\hline 7. & A & & B & C & D & & E \\
\hline 8. & L. & 17 & M & N & \(P\) & & Q \\
\hline
\end{tabular}

STOP AND WAIT FOR THE NEXT TEST FORM BORAD



\section*{172}

\section*{mathematical achievement test (45 minutes)}

\section*{DO ALL THE QUESTIONS}

Read the following questions oarefully then choose the corrext answer to the problem. (Tick on the answer sheet)
1. \(98 \times 98+99 \times 102\) equals
A. 19,790
B. 20,800
C. 19,880
D. 10,800
2. \(125 \times 998 \times 8\) equals
A. 99800
B. 998000
C. 9980000
D. None of the above
3. The expression 5 * 2 will not represent a whole number if * is replaced by
A. +
C. \(\quad-\)
D. x

\section*{173.}
A. 3
B. 6
C. 11
D. 21
6. If prepresents whole number, then solution set of
\(4 p<16\) is
A. \(0,1,2,3\)
B. \(0,1,2,3,4\).
C. \(1,2,3,4\)
D. \(\quad 8,6,7, \ldots\)
6. If \(X\) represents whole number, then the replacement
for \(X\) whch satisfies \(3 X-6+6=33\) is
A. 3
B. 7
C. 11
D. 15
7. If \(X=1\) and \(Y=2\), then \(2(2 X+5 Y)\) equals
A. 14
B. 18
C. 24
D. 146
8. II \(X=2\), then \((3 x)^{3}\) equale
A. 24
B. B4
C. 108
D. 216
9. \(7 \times 10^{3}+4 \times 10+5 \times 10^{2}+6 \times 10^{4}\) equal:
A. 590
B. 6764
C. \(\mathbf{7 4 5 6}\)
D. None of the above.
10. \(25.012-9.08\) equals
A. 18.832
B. 16.004
C. \(\quad 16.040\)
D. 16.932
11. Which one of the following represents the greatest number?
A. 2.3466
B. 2.3447
C. 2.3395
D. 2.346

\section*{175}
12. \(1 / 8\) expressed as percent 1s?
A. 2.8\%
B. \(12.8 \%\)
C. 37.5\%
D. 50\%
13. The ratio of the speed of a bicycle to the speed of motor cycle 1s 3:5. If the motor cycle is travelling at a seed of 45 miles per hour, then the speed of the bicycle in' miles per hour is
A. 15
B. 27
C. 30
D. 38
14. Which one of the following products 1s equal to \(7 / 15 \times 8 / 13 \div 2 / 5\) ?
A. \(7 / 15 \times 13 / 8 \times 5 / 2\)
B. \(7 / 15 \times 8 / 13 \times 5 / 2\)
C. \(7 / 16 \times 8 / 13 \times 2 / 5\)
D \(\quad 7 / 15 \times 13 / 8 \times 2 / 8\)
15. \(2 / 3 \times 4 / 5 \times 10 / 16\)
A. \(1 / 3\)
B. \(2 / 3\)
C. \(3 / 2\)
D. \(3 / 1\)
16.


In the above diagram, \(x^{0}\) equals
A. 40
C. 100
D. 130
17. \({ }^{6} 6+{ }_{4}+{ }^{-}=\)
A. \(\quad 7\)
B. \(\quad{ }^{-}\)
c. \({ }^{+} 3\)
D. \({ }^{+} 7\)
18. \(\quad-2 x+5 x-4=\)
A. \({ }_{40}\)
B. \({ }^{+}\)
c. \(\quad{ }^{-}\)
D. \(\quad 40\)

\section*{In the following ten questions, 1.e. Non. 31-40}
work out the solution in the apace provided in the newor
shoet.
19. Susan 1s younger than Priscilla. Valleria older than Priscilla. Ralphaol is younger than Busan, who is second oldest?

20
If the diameter of a circie is 8 , then 3 times the radius of the circle is?
21. Juma worked for 3 hours and 35 minutes in the morning and 1 hour and 55 minutes in the afternoon. How long did he work altogether?
22. A bus has 75 seats. There are five seats in each row. How many rows of seats are there in tho bus?
38. A mectangular piece of paper measures 321 om by 26.3 cm.
A. What is the perimeter of the paper?
B. Write down the perimeter in millimetres.
24. The temperature of a frozen mase of 1 ce was - \(20^{\circ} \mathrm{C}\). The ice was warmed until there was a rise of \(32^{\circ} \mathrm{C}\). What was the reading on the seale of the thermometer?
mathelatical vocabulary test (10 mins.)
```

In this test, read the following questions carefully
and then choose the correct answer to the question from
the four choices given.

```
1. The total distance all the way round a figure is callod \(\qquad\)
A. Circumference
B. D1amoter
C. Perimeter
D. Square.
2. If two etraight lines are at right angles, one of them is said to be ---------------- to the other
A. Horizontal
B. Vortical
C. Perpendicular
D. Parallel
3. The number: 2, 3, 5, 7, 11, 13, 17, 19 are all examples of -------------------- number.
A. Odd
B. Ivor
C. Prime
D. Irrational

C. They are tangent to the other
D. They can meet whon produced.
8. The sum of five and six is eleven. What name is Siven to live and ©1x?
A. Suma
B. Multiplos
C. Addends
D. Factore
```

Read the iastructions which appear before oach set of
five quentions very carefully before you angwor the
questions.
Which of the words, or group of words is needed to complete
each of the following sentences.

```
2. When I have completed my C.P.I., I something nice.
A. Shall buy
B. W111 bought
C. Buy
D. Shall bought
2. I will not pay ------e-e you deliver the goods.
A. Although
B. Because
C. Until
D. Lest
3. If you can come to shool early you ------------- be able to meet him before the clase commences.
A. Shall
B. Would
C. May
D. Can


\section*{freedom}
A. Lead
B. Led
C. Leading
D. Leaded.

Choose the word which is nearest in meaning to the
word underlined in the sentences that follow.
B. Your failure is the result of laziness
A. Reward
B. Fault
C. Consequence
D. Cause
6. We must preserve our old customs.
A. Keep
B. Continue
C. Forget
D. Remember
7. He observed him lift the load onto his head.
A. Spied
B. Watched
C. Saw
D. Noticed.
```

From the 1ollowing lists of vords numbered A, B, C,
and D pick out the two words in oach that are
nemrent 1n memalar and write as mhown in the exemple.

```

\section*{Example:}
A. Imagine
B. Fancy
C. Bellove
D. Think

Answer: \(A=B\)
8.
A. Teach
B. Inform
C. Instruct
D Show
9.
A. Grumble
B. Abuse
C. Complain
D. Tell
Use one word instead of the words underlined in the
Sentencen below. Write your one word anewer in the
apace provided in the answer sheet.
10. Her dress is able to be seen throuph.
11. His friend 1s a grown up person.
the quention thet follow.

\section*{A STORY}

Mr. Onyango once found himself with a hyena, a goat and a bundle of aweet potatoes. He lived in the little town of Oboch. He decided to cross the Miriu river in his boat and take the three thing to his father-in-law as presents. His little boat could only take himself and one article at time. He realized that he could not leave the goat with the sweet potatoes. The goat would cest them up! He also realized that the hyena would kill the goat if the two were left together. In the end Mr, Onyango did manage to solve the problem. On the first and the last tripe he took the same goat across the river.
12. Which of these tripa would have been impossible?
A. Mr. Onyango takes the goat across the river.
B. Mr. Onyango takes the goat and sweet potatoes across the river.
C. Mr. Onyango comes back alone.
D. Mr. Onypago takes the Hyeane acrose the river.
13. Which of these trips did Mr. Onyango do twice?
A. Taking the goat acrose the river
B. Taking the hyona acrose the river
C. Taking sweet potatoes acrose the river.
D. Bringing sweot potatoes back.
14. Which of these actions would have been unwise
A. To leave the hyena and sweet potatoes together.
B. To leave the goat and hyena together.
C. To take one article across the river.
D. To bring back an article from across the river.
15. Which of these statements is TRUE of Mr. Onyango's boat?
A. It could carry the goat and the aweet potatoes in one trip.
B. It could carry the goat, the hyena and the sweot potatoes in one trip.
C. It could carry the hyena and sweet potatoes in one trip.
D. It could only carry one article at a time.
16. Which of the following statements is TRUE about Mr. myango's number of trips?
A. Mr. Onyango could carry all hin three articles in one trip.
B. Mr. Onyango had to make three trips altogether.
C. Mr. Onyango made four trips altogethor.
(d) Mr. Onyango mede a total of seven trips.
```

In each of the quentions study the underlined sentence.
Then choose from the four sentences underneath it, the one
sentence which means the game as the underlined sentence and
which 1% also correct English.

```
17. "What shall wo do this afternoon?" Mary asked hor friend.
A. Mary asked her friend what they should do that afternoon.
B. Mary asked her friend what shall we do this afternoon.
C. Mary asked her friend what hould they do this afternoon.
D. Mary asked her iriond what we should do this afternoon.
18. Moses went to the shamba to get some maize
A. Getting some maize, Moses wont to the chamba.
B. While going to the chamba, Mosen got some madze.
C. As he was going to the shamba, Moses got some maize.
D. Moses went to the shamba because she needed some maize.
19. Unless he Ifinds h1e bicycle, he will be puniehed.
A. He will be punished if he finds his bicycle.
B. If he found his bicycle, he would be punished.
C. He will not be punished if he finds his bicycle.
9. He will not be punished and will not ind his bicycle.

20 However hard she works, nobody praises her.
A. She works hard, but nobody praises her.
B. No matter how they praise her, she works hard.
C. She doegn't work hard because nobody praises her
0. Even 11 she works hard, nobody praises her.
"The reliability and validity of MHM for predicting Mathematical Achievement among Nigerian Children". Educational and Pgychological Measurement. 1977.
2. Ahlfors, L.V. ot al
3. Ahman, Stanley J. \& Glock, Mariuin D.
4. Aiken, L. R. J. \& Dreger, R. M.
5. Aiken, L. R. \(\qquad\)
6. \(\qquad\)
7.
"On Mathematica Curriculum of the High School." Mathomatica Teacher, 1962, 58, pp. 191-198.

Evaluating Pupil Growth Principles of Test and Measurement, Allyn \& Bacon Inc. Boston 1967 (4th Edition), pp. 183-320.
```

"The Effect of Attituden on
Performance in Mathematics"
Journal of Educational
Psychology, 1961, 52.

```
"Personality Correlates of Attitude toward Mathematics". Journal of Educational Research. 1963, Vol. 56, pp. 476-480.
"Attitude toward Mathematics" Review of Educational Research. Vol. 40, 1970, pp. 551-596.
"Ability and Creativity in Mathematicg" Review of Educational Research. Vol. 43, No. 405 - 432.
8. Aiken, L. R.
"Language Factore in Learning Mathomatics". Review of Educational Research. Vol. 42, No. 3, 1972.
8.
"Intellective Variables and
Mathematical Achievement:
Directions for Research"
Journal of Scheol Psychology.
No. \(918-1 ;\) pp. 201-209.
The Nature of Abilities"
In E. F. (ED.), Education Talant
Minneapolis: Univergity of
Minnesola Press, 1960.
11. Ausubel, D.P. \& Robinson, F. G.
12. Avital, S.M. \& Shettleworth, S.J.

School Learning: An Introduction to Educational Psychology, New York: Holt, Rinehart \& Winston, 1969.

Objectives for Mathematics
Learning: Some Ideas for the Teacher. The Ontario Institute for Studies in Education, Bulletin No. 3, 1968.
"The role of an Ability Construct in a Theory of Behaviour" in Miclelland, D. C., Baldwin, A.L., Bronfembremer, \(U\). and Strodtbeck, F.C.: Talent and Society D. Van Nostrand Co., Princeton, N. J., 1958 p. 197.
\begin{tabular}{l} 
"Factors underlying the Mathema- \\
tical Ability of grammar school \\
pupils" British Journal of \\
Educational PBychology, No. 21, \\
\hline \(1951, ~ p p .239-240\).
\end{tabular}
15. Barakat, M. K.
16. Behr, M. J.
17. Bell, A. W. \&

Wheeler, D. H. (ed)
18. Bentley, J. C.
19. Betz (1922)

20 Blackwell, A.M.
21. Bloom, B. S. et al
"A Factorial Study of Mathematical Ability", The British Journal of Psychology. Statistical Section, No. 4, 1951, pp. 137 - 156.
'A Study of Interactions between "Structure or Intellect". Factors and two Methods of Presenting Concepts of Modulus Seven Arithmatic? (Doctoral Dissertation, Florida State University) Anna Arbor, Mich Univeraity Microilime 1967. No. 67 - 14, 440.
"Examinations and Assessment" Mathematics Teaching Pamphlet, No. 14, 1966.
"Creativity and Academic Achievement". Journal of Educational Research, 1966.

In Krutetski1, V.A. The Psychology of Mathematical Ability, The University of Chicago Press, Chicago and London, 1976.
"A Comparative Investigation into the Factors involved in Mathematical Ability of boys and girls Parts I \& II, British Journal of Educational Psychology No. 10, 1940, pp. 143-153, pp. 212-222.

Taxonomy of Educational Objectivea The Classification of Educational Goals. Handbook I Cognitive Domain. London: Longmans, 1956.

21 Brown, B.
22. Bruner, J.s.

Toward a Theory of Instruction
Cambridge, Mass: Belkuap Preas, 1066.

Studies in Cognitive Growth
New York: Wiley, 1966.
"Sex Differences in Development of Spatial and Linguistic Skills." In C. Ounstead and D. C. Taylor (Eds) Gender Differences: Onotegny and Significance. London Churchill.

25 Burnett, S.A. \&
Lane, D. M.
26. Burt, C.
"Effects of Academic Instruction on Spatial Visualization" Intelligence, Vol. 4, No. 3, 1980, pp. 233-242.
"The Structure of the Mind in Wiseman, \(S\) (ed.) Intelligence and Ability:
Selected Readings (Second Edition), Penguin Books, 1967.pp. 126 - 130.
27. Canisia, Sister M. \(\begin{aligned} & \text { "Mathematical Ability as related to } \\ & \\ & \\ & \text { Reasoning and use of Symbols" } \\ & \text { Educational and Psychological }\end{aligned}\)
29. Carlton, L. V.
"An Analysis of the Educational
Concepts of Fourteen Outstanding
Mathematininm, l790-1940, in the
Areas of Mental Growth and Develop-
ment, Creative Thinking, and
Symbolism and Meaning."
(Doctoral Dissertation, North
Western University Microfilms,
l959, No. \(59-4782\).

30 C asserly, P.
An Assessment of Factors Affecting Female Participants in Advanced Placement Programs in Mathematics, and Physics, National Science Foundation, Washington D.C. 1975.
31. Cleveland, G. A. \& A Study of Certain Psychological Bowsworth, D.L. and Sociological Characteristica as Related to Arithmetic Achievement, Arithmetic Teacher, 1967.
32. Clemen, R. H.

> "An Analysis of Certain Component: of Mathematical Ability and an Attempt to Predict Mathematical Achievement in a Specific Situation" (Doctoral Dissertation, Indiana University) Ann Arbor, Mich. University Microfilms 1959 .
33. Cooper, F.F.
"Math as a Second Language" The Instructor. 1971, 81 (Oct.) pp. 76 - 77.
34. Dougherty, K. "Math, Anxiety: Causes and Curen," Unpublished Manuscript, Wosleyan University, 1975.
35. Duncan, E. R. "Indentification and Education of Gifted in Mathematics" in G.Z.F. Beneday \& J. A. Lawenys (Eds.): The Yearbook of Education, 1961 New York: Harcourt, Brace World 1961, pp. 393-399.
36. Dutton, W.
37. Drenth, P.J.
38. Dye, N. W. \& Vory, P. 8.

39 Educational Research Unit:

Attitude change of Prospective Elementary School Teachers toward Arithmetic", Arithmetic Teacher, No. 9, 1962, pp. 418-424.
"Prediction of School Performance: School Grades or Psychological Teete?", In Okatcha, F.M. (Ed.):
Modern Psychology and Cultural
Adaptation, Swahili Language Consultants and Publishers, Nairobi, Kenya, 1977.

> Growth Changes in Factional Structures by Age and Sex" \(\frac{\text { Genetic Monograph. } 1968 \text { Vol. } 73}{\text { pp. } 55-88 .}\)

Home Background as a determinant of Success in a Papua New Guinean High School", E. R. U. Report No. 11 University of Papua New Guinea, 1974.
"Mathematical Ability of East African Students". Makerere University College 1971.
"Different Dimensions of Spatial Ability Studies in Science Education" Journal of Science Education. pp. 45-66.
"Traditional Sex Attitudes and Discrepant Ablitty Moasures in College Women, Journal of Counselline Psychology No. \(141967 \mathrm{pp} .538-543\).

Mathematics and Sex, Santa Barbara University of Carlifornia, 1976.
44. Eshiwani, G. S.
"The sffectiveness of Programmed Instruction, Conventional Classroom Approach, and Integrated Programmea in the Teaching of Probability to High School Students in Kenya." Ph. D. 1974, Stanford University, U. S. A.
45.
46. \(\qquad\) "Sex Differences in the Learning of Mathematics among Kenyan High School Students" Staff Seminar Series, 1974-1975, pp. 11 - 27.
47. \(\qquad\) "A Study of the Mathematical Abllity of Kenyan Primary School Children", Bureau of Educational Research, Kenyatta University College, 1980.
48. Evans, Err.
"Measuring the Ability of Students to Respond in Creative Mathematical Situations at the late Elementary and Junior High School Level:"
(Doctoral Dissertation University of Michigan) Ann Arbor Mich.: Universtty Microfilms 1965. No. 65 5302.
49. Ewbank, W. A.
"Mental Arithmetic a Neglected Topic", Mathematics in School Vol. 6 , No. \(1,1977\).
49. Fennema, E.
"Mathematics Learning and the Soxes: A Review"; Journal of Research in Mathematics Education 5, NO. 3, 1974, pp. 126-139. Training to enhance Mathematical Achievement in Women, Cognitive Therapy and Research. Vol. 4, No. 1 1980, p. 91 - 97.

50 Fennema, E. S. \& Sherman, J.

51 Fennema, E. 2 Carpenter, T. P.

52 Ferguson, G. A.
53. Ferguson, G. A.
54. Fiscian, C. E.
55. Garai, J. E. \&

Scheinfeld, A.
"Sex Differences in Mental and Behavioral Traits". Genetic Psychology Monographs, 1968, 77, pp. 169-299.

Uber dia Boziohungen Zwiachan Intelligent and Specialbo lahigungon. (Relationship between Intelligence and Spacial Abilities. 1969.

The Effectiveness of Self-Instructional
56. Gent, U, \& Meh, J.
"Sex-related differences in Mathematics Achievement, Spatial Visualization and Socio-Cultural Factors". American Educational Research Journal, 1977,14,51-71.
"Sex related differences in Mathematics; results from National Assessment", "The Mathematics Teacher Vol. 74, No. 7, Oct. 1981, p. 554.
"Learning and Human Ability" in Wiseman, \(S\) (ed) Intelligence and Ability: Selected Readings (Second edition), Penguin Books, 1967,pp. 314320.

Statistical Analysis in Psychology \& Education, Third Edition, McGraw Hill Book Company, New York, 1971.
> "Educational Selection and Placement: some present Problems and Future Prospects." In Okatcha, F.M. (Ed): Modern Psychology and Cultural Adaptation, Swahili Language Consultants and Publishers, Nairobi, Kenya, 1977.
57. Genshaft, J. L. \& Hist, M. L.
\begin{tabular}{l} 
The Effectiveness of Self-Instructional \\
Training to enhance Mathematical \\
Achievement in Women, Cognitive \\
Therapy and Research. Vol. 4. No. 1 \\
\hline 1980, p. \(91-97\).
\end{tabular}
58. Goslin, D. A.

The Search for Ability Standardized Testing in Social Perspective, Risre- Sage Foundation. New York. 1963.
59. Guay, R. B. \& McDaniel, E.D.
"The Relationship between Mathematica Achievement and Spatial Abilities among Elementary School Children." Journal of Research in Mathematics Education, Vol. 8, No. 3, 1977, pp. 211-215.
60. Guildford, J.P.:

Hoepfner, R. \&
Peterson, H.
Hoepfner, R. \&
Peterson, H.
61. Guildford, J.P.
62. Hambley (1935)
63. Hansen, C. W.
-
"Predicting Achievement in the Ninthgrade Mathematics from Measures of Intellectual - aptitude factors", Educational and Psychological Measurement, No. 25, 1965, pp. 659-682.

The Nature of Human Intelligence" New York McGraw Hill, 1969.

In Krutetski1, V.A. The Psychology of Mathematical Abilities, The University of Chicago Press, Chicago and London, 1976.
```

"Factors Associated with Successful Achievements in Problem Solving in Sex Grade Arithmetic" Journal of Ed. Research 1944. Vol. 38, pp: 111-138.

```
"Factor analysed Abilities and Success in College Mathematics", Educational and Psychological Measurement Vol. 17, 1957, pp. 615-622.
65. Hochschild, A. R.
66. Hollingworth, L. S.;

67 House, P. A.; Knoblanch, S.F.
68. Husen, T. (ed.)
69. Hyde, J. S.,

Geiringer, E. R. \& Yen, W. M.

A Review of Sex Role Research in Changing Woman inChanging Society' Ed. by Joan Huber Chicago and London: University of Chicago Prese, 197a, pp. 253.

Children above 180 IQ. World Book Co. New York, 1942.

> "On meeting the needs of the Mathematically talented: A Call to Action" The Mathematics Teacher, Vol. 70 , No. 3,1977 .

International Study of Achievement In Mathematics: A Comparison of Twelve Countries, Volume II, John Wiley \& Sons, New York, 1967.
"On the Empitrical Relation between Spatial Ability and Sex Differences in Other aspects of Cognitive Performance". Multivariate Behavioural Research, 1975, 10, pp. 289-309.
70. International Labour Office (ILO)

Employment Incomes and Equality. A Strategy for Increasing Productive Employment in Kenya, Geneva, 1972.
"Girls and Mathematics: A Response". Mathematics Teaching No, 90, 1980.
72. Johnson, D. A. \& Rising, \(G\). R.
73. Jones, J.
"The Concept of Proportionality as a Predictor of Success at the University of Papaua New Guinea", Education Research Unit, Uaiversity of Papua New Guinea, Report No. 61973
73. Kakonge, Esther W.M.
"Abilities of Upper Primary School Children in Three Scientific Concepte namely 3-0 Perception Spatial Relationships and Time." M. Ed. (P.T.E.) 1980.
74. Keating, D.P. \& Fox
75. Kennedy, W. A. \& Walsh, J.
76. Kilpatrick, J.

Intellectual Talent: Research and Development, 1976.

A Factor Analysis of Mathematics Giftedness Psychological Reports, 1965.
"Problem Solving in Mathematics." Review of Educational Research Vol. 39, No. 4, pp. 523-534.
"A Cross-Cultural Study of the Development of Conservation of Mass Weight and Volume in Kenyan Children." Ph. D. Thesis, Alberta University, Edmonton, 1973.
78. King, K.
"Primary Schools in Kenya: Some Critical Constraints on their Effectiveness" In Court, D and Ghai, D.P. Education Soclety and Development: New Perspectives from Kenya, Nairob1: Oxford University Press, 1974, pp. 123-147.
79. Klein, W. E.
"A Synthesis of two factor analysos of Intermediate - Algebra."
(Doctoral Dissertation, Princeton University) Ann Arbor, Mich: University Microfilms, 1960.
\begin{tabular}{|c|c|c|}
\hline 80 & Krutetakil, V. A. & \begin{tabular}{l}
The Paychology of Mathematical Ability in School Childron, \\
Translated from Russian by Joan Teller) Edited by Jeremy Kilpatrick and Izaak Wirmzup, The University of Chicaro Prous, Chicago and London 1076.
\end{tabular} \\
\hline 81 & Lambert, P. & Mathematical Ability and Masculinity", Arithmetic Teacher, 1960, pp. 19-21. \\
\hline 82. & Lamon, W. E. (ed) & Learning and the Nature of Mathematics, Science Research Associates, Inc., Chicago, 1972. \\
\hline 83. & Lee (1955) & In Krutetski1, V.A. The Psychology of Mathematical Abilities. The University of Chicago Press, Chicago and London, 1976. \\
\hline 84. & Leton, D.A. \& Kim, S. & "Analysis of Mathematical Ability required for success in ninth grade Mathematics." Cooperative Research Project No. CRP - S - 343 Honolulu: Education Research and Development Centre, University of Hawail, 1966 (Eric: Ed OlO 420). \\
\hline 85. & Lewin, M. & Understanding Psychological Research. John Wiley and Sons New York, 1979. \\
\hline 86. & Linville, W.J. & "The Effecte of Syntax and Vocabulary upon the Difficulty of Verbal Arithmotic Problomm with Fourth Grade Students." (Doctoral Dissertation Indiana University). Ann Arbor Michigan University Microfilms, 1970 New York LDA 30A: 4310; April 1970. \\
\hline
\end{tabular}
87. Lovel, K.
88. \(\qquad\)
89. Lovell, K. \&

Buttersworth, I.B.
90. Lyda, W. J. \& Duncan, F.M.

91 Maccobby, E.E.
92. Maccoby E.E. and Jacklia
93. Mandu, J. P. S.

The Growth of Basic Mathematics and Mathematics and Scientific Concepts In Children, University of London Press Ltd., 1971, pp. 11 - 24.
"Intellectual Growth and Understanding Mathematics". Mathematics Education Roports, Eric Information Analysia Contro for Science and Mathematice Education, February 1971, Eric Document No. ED 049069.
"Abilities Underlying the Understanding of Proportionality", Mathematics Teacher, No. 39. p. 59.
"Quantitative Vocabulary and Problom Solving." Arithmetic Teacher, 1967, 14, pp. 289-291.

Sex Differences in Intellectual Functioning: The Development of Sex Difference, Maccobby E.E. (Ed.) Stanford University Press, Stanford 1966.

The Psychology of Sex Differences, Stanford, Califf Stanford University Press, 1974.

\footnotetext{
"An Investigation in the Effectiveness of the Cuisenaire-Gatteno Approach to the Teaching of Mathematics in Standard 3 (Third Grade) in Kenya." M. Ed. Thesis 1977 - University of Nairobi.
}
\begin{tabular}{|c|c|c|}
\hline 94. & McGannon T. H. & \begin{tabular}{l}
"A Comaprison of two Methods of Teaching Calculus with Special Inquiry into Creativity. \\
(Doctoral Dissertation, North Western University) Ann Arbor, Mich: University Microf11ms, 1971 No. 71 - 1817.
\end{tabular} \\
\hline 95. & Madden, R. & "New Directionsin the Measurement of Mathematical Ability", Arithmetic Teacher, 1966, 13, pp. 375-379. \\
\hline 96. & Maritim, E.K. & "The Academic Self-Concept and the Teacher's Perception: their Relationships to Pupils Grade Attainment in Rural Kenya." Ph. Ed. Thesis, Havard University, 1979. \\
\hline 97. & Martin, M. D. & \begin{tabular}{l}
"Reading Comprehension, Abstract \\
Verbal Reasoning, and Computation an Factors in Arithmetic Problem Solving". Doctor's Thesis. Iowa City: State University of Iowa, 1963.
\end{tabular} \\
\hline 98. &  & "The Relationship Between Self Concept and Academic Achievement in Kenyan Pupils", Ph. D. 1973. Stanford University. \\
\hline 99. & Moinader,(1950) & In Krutetgki1, V. A. The Psychology of Mathematical Ability.. The University of Chicago Press, Chicago and London., 1976. \\
\hline 100. & Milton, G. A. & 'The fiffects of Sex Role Identification upon Problem Solving Skills"Journal of Abnormal and Social Psychology 1957, Vol. \(55 \mathrm{pp} .208-212\). \\
\hline 101 & Morrison, A. \& Mcintyre & Schools and Socialization. Penguin Books Ltd., England 1971. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 102 & Munroo, M. E. & \begin{tabular}{l}
The Language of Mathematics. \\
Ann Arbor, Mich: University of Michigan Press, 1963.
\end{tabular} \\
\hline 103. & Nie, N. H. Hull, C.H. Stein Bremmer, K. \& Bent, D.H. & SPSS: Statistical Package for the Social Sciences. McGraw-Hill, Nev, York: 1975. \\
\hline 104. & Nsereko-Gyagenda, T. & \begin{tabular}{l}
"An Investigation of Eleven Mental Abilities in Ugandan Children." \\
Ph. D. Thesis,Makerere University 1970.
\end{tabular} \\
\hline 105 & Okatcha, F.M. (Ed.) & \begin{tabular}{l}
Modern Psychology and Cultural \\
Adaptation. Swahili Language \\
Consultants and Publishers, Nairobi, 1977.
\end{tabular} \\
\hline 106. & Olander, H.T. \& Ehmer, C.L. & \begin{tabular}{l}
What Pupils Know About Vocabulary in Mathematics 1930 and 1965. \\
Elementary Schools. 1971 Vol. 71 pp. 361-367.
\end{tabular} \\
\hline 107 & Parkar K. D. & \begin{tabular}{l}
"The Impact of the Programmed Works on the Quality of Teaching Mathemafice in the Secondary Schools of Kenya." \\
M. Ed. 1974 University of Nairobi.
\end{tabular} \\
\hline 108. & Piagets, J. & The Child's Conception of Numbor. Humanities Press, Now York, 1952. \\
\hline 109. & & The Construction of Reality in the Child. New York; Basic Books, 1954. \\
\hline
\end{tabular}
110. Plank, E.N. \&
Plank, R.
111. Poincare, H,
"Emotional Components of Arithmetical Learning Autobigrpahies" Psychoanalytic Studies of the Child No. \(\theta\), 1954, pp. 272-298.
"Mathematical Creation". In B. Ghiselin (Ed.), The Creative Process New York: New American Library, 1952.

Mathematical Models in Psychology in Introduction, Penguin Books Ltd., England, 1971.
"Effects of Precise Verbalization of Discovered Mathematical Generalizationa on Transfer, "Final Report. EDRS Acc. No. Ed 040349 Oct. 1969.

In Krutetskii, V.A.
The Paychology of Mathematical Ab111ty The University of Chicago Press, Chicago and London, 1976.

A Limited Sex Difference in Spatial Test Scores with Preadolescent Sample.Child Development 51 (2), 601 - 602, 1980.

In Krutetskil, V.A. The Psychology of Mathematical Ab111ty in School Children, The University of of Chicago Press, Chicago and London. 1976.
117. Romberg, T.A.
"Current Research in Mathematice Education", Review of Educatical Research, Vol. 39. No. 4. 1969 pp. 473 - 491.
\begin{tabular}{|c|c|c|}
\hline 118 & Rowntree, D. & Assessing Students, How Shall We Know Them? Harper and Row Publishors, London, 1977. \\
\hline 119. & Rose, A.W. \& Rose, H. C. & "Intelligence, Sibling Position and Socio-Cultural Background as Factors in Arithmetic Performance," Arithmetic Teacher. 1961, Vol, 8, pp. 50-56. \\
\hline 120 & Sheikh, Omar T. & "Sex Differences: A Study of Some Factors Involved in the Learning of Mathematics among Secondary Form 3 Students in Kenya." M. Ed. 1976, University of Nairobi. \\
\hline 121 & Sherman, J. & "Predicting Mathematics Performance in High School Girls and Boys," Journal of Educational Psychology, Vol. 71, No. 2, pp. 242 - 249 . \\
\hline 122 & & \begin{tabular}{l}
"Mathematics, Spatial Visualization and Related Factors: Changes in Girls and Boys, Grades 8 - 11" \\
Journal of Educational Psychology, \\
Vol. 72, No. 4, 1980, pp. 476-482.
\end{tabular} \\
\hline 123. & Shihundu, J.A. & \begin{tabular}{l}
"An Investigation into Mathematical \\
Concept Development Among Kenyan \\
Primary School Children'; M. Ed. \\
Thesis, University of Nairobi, 1977.
\end{tabular} \\
\hline 124. & Skemp, R, R. - & The Psychology- Learning Mathematicn, Penguin Books, England Ltd., 1971. \\
\hline 125. & Smith, I.M. & Spatial Ability. London: University of London Press. San Diago, Calf R.R. Knapp, 1964. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline & Smith, W.R. & "The Achievement of Eighth GradeStudents in Arithmetic with Respect to Selected Patterna of Teachor Preparation." Doctor's Thonin. Norman: University of OKland, 1964. \\
\hline 127. & Snow' R. E. & "Intelligence for the year 2001", Editorial Intelligence, Vol. 4 No. ( 1980, pp. 185 - 199. \\
\hline 128. & Somerset, H.C.A. & \begin{tabular}{l}
Predicting Success in School \\
Certificate: A Uganda Case Study, \\
Makerere Institute of Social \\
Research, East African Publishing House, 1968.
\end{tabular} \\
\hline 129. & & \begin{tabular}{l}
"Who goes to Secondary School? \\
Relevance Reliability and Equity in \\
Secondary School Selection" In \\
Court, D. and Ghai, D.P. \\
Education Society and Development; \\
New Perspectives form Kenya. Nairobi: Oxford University Press, 1974.
\end{tabular} \\
\hline 130 & Stanley, J., Keating, D., \& Fox, 1 . & Mathematical Talent: Discovery, Description and Development , Baltimore, Md John Fopkins Univeristy 1974. \\
\hline 131. & Spearman, C. & The Abilities of Man, London: Macmillan, 1927. \\
\hline 132. & Straker, A. & "Identification of Mathematically Gifted Pupils", Mathematics in School Vol. 9, No. 4, 1980. \\
\hline 133 & Terman, L.M. \& Associates & Genetic Studies of Geninus, Stanford University Press, Stanford Calif, 1925. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 134. & The School Council; & \begin{tabular}{l}
Mathematics in Primary Schoola, \\
Curriculum Bulletin No. I \\
Stationery Office, 1909.
\end{tabular} \\
\hline 135. & Thompson, E.N. & \begin{tabular}{l}
"Readability and Accessory Remarks: \\
Factors in Problem Solving in \\
Arithmetic." Doctor's Thesis Stanford. Standford University 1967.
\end{tabular} \\
\hline 136. & Treacy, J.P. & \begin{tabular}{l}
The Relationship of Reading Skills to the Ability to Solve Arithmetic Problems. \\
Journal of Educational Research. 1944, Vol. 38, pp. 86-96.
\end{tabular} \\
\hline 137. & Turner, R. L. & Problem Solving Proficiency Among Elementary School Teachers. Cooperative Research Project. Institute of. Educational Research, Ind. University 1964. \\
\hline 138. & Vandenberg, S.G. & \begin{tabular}{l}
"Primary Mental Abilities on General Intelligence? \\
Evidence from twin studies" \\
In J. M. Thounday and Parkes (Eds), \\
Genetic and Environmental \\
Influences on Behaviour. \\
New York: Plenum Press, 1968.
\end{tabular} \\
\hline 139. & Very, P. S. & "Differential Factor Structures in Mathematical Ability", Genetic Psychology Monographa, No. 75, 1967, pp. 169 - 207. \\
\hline 140. & Vernon, P. E. & The Structure of Human Abilities (2 eds), London: Methuen, 1961. \\
\hline
\end{tabular}
141. Vygotsky, L. S. Thought and Language, Cambridge, Massachusetts, Mit Press, 1962 pp. \(55-58\).
142. Wamani, W. T.
143. Werdelin, I.

The Mathematical Ability: Experimental and Factorial Studies, Lund: Gleerups, 1958.
"A Synthesis of Two-Factor Analysis of Problem Solving", Mathematics Didckumentry. No. 8, 1966.
145. \(\qquad\) The Geometrical Ability and the Space Factor in Boys and Girls Lund Sweden. University of Lund, 1961.
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{6}{*}{146.} & \multirow[t]{6}{*}{Westbrook, H.R. et al} & \multirow[t]{2}{*}{Intellectual Processom Rolated to Mathomatics Achiovomont at} \\
\hline & & \\
\hline & & Grade Levels 4, 5 and 6. \\
\hline & & Cooperative Research Project \\
\hline & & No. CRP-S-046 University of \\
\hline & & Ghana, 1965. \\
\hline
\end{tabular}
```

147. Whiting, B. \&
Whiting, J.
```
\begin{tabular}{|c|c|c|}
\hline 148. & Wheatley, C.L. \& Wheatley, G.H. & "Developing Spatial Ability", Mathematics in School Vol. 8, \\
\hline & & No. 1, 1979. \\
\hline 148. & Wick, M. E. & "Study of the Factors Associated with Success in First Year College Mathematics." Mathematics Teacher, 1965, 58, pp. 642-648. \\
\hline 150. & \begin{tabular}{l}
Wilson, J. W.; \\
Cahen, L.S. \& \\
Begle, E.G. (Eds)
\end{tabular} & National Longitudinal Study of Mathomatical Ability (NLSMA) Reports, School Mathomatics Study Group, No. 1 Part A,X Population Test Batteries, 1968. \\
\hline 151. & ```
Wilson, J.W.;
Begle, G.E. (Eds)
& Cohen, L. S.
``` & NLSMA Reports (School Mathematics Group) No. 7, 1969. \\
\hline 152. & Witkin, H. A. & \[
\begin{aligned}
& \text { "Individual Differences in } \\
& \text { Ease of Perception of } \\
& \text { Embedded Figures" } \\
& \text { Journal of Personality, } 1950 \text {, } \\
& \text { 19.., pp. } 1-15 .
\end{aligned}
\] \\
\hline 153. & Wine, J. & "Test Anxiety and Direction of Attention. Psychological Bulletir: Vol. 76, 1971, pp. 92-104. \\
\hline 154. & Woolridge, E.T. & "Factorial Study of Changes in Ability Patterns of Students in College Algebra." (Doctoral Dissertation, University of Nebraska) Ann Arbor, Mich: University Microfilms, 1964. \\
\hline 155. & Wrigley, J. & \begin{tabular}{l}
"Factorial Nature of Ability in Elementary Mathematics", \\
British Journal of Educational Psychology. No. 28, 1958, pp. \(67-78\).
\end{tabular} \\
\hline
\end{tabular}```

[^0]: I would like to exprone my gratitude to my postgraduate colleagues in the Univernity in general and in particular those in the Department of Educational Psychology for their moral upport and sealetmbo in various ways.

