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NOTATIONS AND MEANINGS

c  : Subset of

Gl(n,F) : The set of all linear groups of invertible matrices with entries in F 
ad : Adjoint representation

gl(V) : The set of linear transformation of a vector space V to itself

A, Sl(n +1). y e a]ge|:)ra 0f Speciai ijnear group in ( n+1) variables 
 ̂„ = Sp(2n) : The Lie algebra of the symplectic group in 2n variables

= 0(2n + \ ) ; The Lie algebra of the special orthogonal group in (2n+l) variables,

A. = 0{2n) ; The Lie algebra of the special orthogonal group in 2n variables,

Rad(L) : Radical of Lie algebra L.

© : Direct sum 
U : Union 
=>: Imply 
e : belong to
* : Not equal (different from)
*: Isomorphic to

i

v



ACKNOWLEDGEMENT

I wish to express my profound gratitude to my supervisor Mr Claudio Achola for his advice, 
guidance, and encouragement throughout the writing and the submission of this work.

I am thankful to the Government of Rwanda for providing me the scholarship for Msc study and 
late Prof John Owino within the School of mathematics for providing me the admission.

I extend my gratitude also to KIST (Kigali Institute of Science and Technology) for according 
me the study leave.

I would like to express my sincere appreciation to my Lecturers: Prof Khalagai, Dr Were,

Dr Muriuki, Dr Moindi, Prof Pocharial, Mr james, all members of the School of Mathematics 
especially Dr Nyandwi, Dr Patrick Weke and Dr Nzimbi, and to my colleagues Ntihabose Leon, 
Kayiranga Epimark, Karangwa Eugene who contributed directly or indirectly to the present 
work.

Finally I am indebted to my family for their unfailing support throughout my school days.

Above all thanks to God for bringing me this far.

I

VI



ABSTRACT

Lie algebra over a field F (F= C )is a vector space L over F equipped with a skew symmetric 
bilinear operation called the Lie bracket, which satisfied the Jacobi identity.

Lie algebras, have Jordan decomposition into semisimple and nilpotent parts, with representation 
theory of nilpotent Lie algebras being intractable in general. The finite dimensional 
representation and classification of semisimple Lie algebras are completely understood, after 
work of Elie Cartan.

A classification of semisimple Lie algebras L is analyzed by choosing a Cartan subalgebra which 
is essentially a generic maximal subalgebra H of L on which the Lie bracket is zero (abelian). 
The representation of L is decomposed into weight spaces which are eigen spaces for the action 
of H (root space decomposition). From which the analysis of representation is easily understood 
by the possible weights which can occur (root system).

The classification of semisimple Lie algebras by Dynkin gives the four classical Lie algebras and 
five exceptional simple Lie algebras over the finite algebraically field of characteristic zero.
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CHAPTER I: GENERAL INTRODUCTION

1.1. Literature review
But, in the further development of a branch of 
Mathematics, the human mind, encouraged by the 
success of its solution, becomes conscious of its 
independence. It evolves from its self alone, often 
without, by means of logical combination, 
generalization, specialization, by separating and 
collecting ideas in fortune new ways, new and 
fruitful problems, and appears then itself as the real 
questioner.

“David Hilbert, Mathematical problem”

The theory of Lie algebras has been developed significantly over the last two centuries, due 
largely to the efforts of Lie, Killing, Engel, Cartan, Weyl, Iwasawa and Harish Chandra.

Our work is based on the classification of complex semisimple Lie algebras.

In 1866 Sophus Lie began to read more and more mathematics and the library of University of 
Christiania (Norway) showed clearly that his interests were steadily twining in the direction of 
Mathematics. It was during the year 1867 that Lie had first brilliant new mathematical idea. It 
came to him in the middle of the night, and filled with excitement, he rushed to see his friend, 
woke him up and shouted “I have found it, it is quite simple”. Earlier, Lie had problems of 
career choice; he could not decide what subject to pursue. This was not the end of Lie’s problems 
of course, but now he knew the career he wanted and it would be fair to say that from that 
moment on Lie became a Mathematician. The type of mathematics that Lie would study become 
more clearly defined during 1868 when he avidly read papers on geometry by Plucker and 
Poncelet.

In 1869, Crelle’s Journal accepted Lie’s paper based on the inspiration which had struck him in 
1867.

Between 1873and 1881 Lie and Slow prepared an edition of Abel’s complete works which was 
not published when Abel died. Lie had started examining partial differential equations, hoping 
that he could find a theory which was analogous to the Galois theory of equations. He wrote “the 
theory of differential equations is the most important discipline in modem Mathematics”. He 
examined his contact transformations considering how they affected a process due to Jacobi of 
generating further solutions of differential equations from a given one. This led to combining the 
transformations in a way that Lie called an infinitesimal group, but which is not a group with the 
usually definition, rather what is today called Lie algebra.'; /
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Ini 884, Killing, introduced Lie algebras in Program Schrift published by the Lyceum Hosianium 
in Brawnsberg. His aim was to systematically study all space forms, that is, geometries with 
specific properties relating to infinitesimal notions. In his program schrift he translated this 
geometrical aim into the problem of classifying all finite dimensional real Lie algebras. At this 
stage Killing was not aware of Lie’s work and therefore his definition of Lie algebra was made 
quite independently of Lie.[12]

Between 1888 and 1890, the classification theorems were presented by Killing in his paper Die 
Zusammensetzung Der Stetigen.

In 1885, Killing with Engel discussed the semisimple Lie algebras, which theory they knew 
about . Killing in a letter of 12 April 1886 conjectured that the only simple algebras were those 
related to the special linear group and orthogonal group. In the same letter he conjectured other 
theorems about Lie algebras.

Killing on 27 April 1887, come up with the definition of a semisimple Lie algebra (his definition 
that such an algebra had no abelian ideals is equivalent to the definition that such an algebra has 
no soluble ideal).

On 23'd May, Killing discovered that his conjecture about simple algebras was not correct, for he 
had discovered the group G, and by 18 October he had discovered the complete list of simple Lie 
algebras.

Elie Cartan (1869-1951) revised and completed the work of Killing on the classification of 
Semisimple Lie algebras over C and extended it to give a classification of their representations. 
He also classified the semisimple Lie algebras over the real numbers, and he used this to classify 
symmetric spaces.

Weyl (1885-1955) proved that the finite dimensional representations of Semisimple Lie algebras 
and Lie groups are semisimple (completely reducible).

Noether (1982-1935), Hass (1898-1979), Brauer (1901-1977) and Albert (1905-1972) found a 
classification of Semisimple algebras over number fields, which gives a classification of the 
classical algebraic group over the same field.

Chevalley (1909-1984), proved the existence of the simple Lie’ algebras and of their 
representations without using the classification. He was one of the initiators of the systematic 
study of algebraic groups over arbitrary fields.

Iwasawa (1917-1998) found the Iwasawa decomposition which is fundamental for the structure 
of real semisimple Lie groups.

Harish -Chandra (1923-1983) independently of Chevalley, also showed the existence of the 
simple lie algebras and of their representations without using the classification.[24]
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In this work, we study the classification of semisimple Lie algebras, by classifying all possible 
root systems .The amazing results due to Killing with some repair work by Elie Cartan, is that 
with only five exceptions, the root system of the classical algebras exhaust all possibilities. We 
will be limited to the classification of Complex semisimple Lie algebras.

1.2. Objectives of the study
This work aims to summarize the major concepts related to the study of semisimple Lie algebras 
and their classifications.

Specifically, we will:

• analyze the main properties of semisimple Lie algebras.

• apply these properties to the classification of semisimple Lie algebras

• Give applications of these properties.

1.3. Methodology
The approach of classification of semisimple Lie algebra L is as follows:

• Find the maximal abelian subalgebra H consisting of elements that are diagonalizable in 
every representation.

• Restrict the adjoint representation of L to H and show that L is the direct sum of weight 
spaces with respect to H (Root space decomposition).

• Prove the general results about the set of weights (Root systems).

• Show that the isomorphism type of L is completely determined by its roots.

• Classify such root systems.

• Show that an isomorphism of the root systems of two complex semisimple Lie algebras 
lifts to an isomorphism of these algebras themselves.

The reference material comes from the books, journals and material from the World Wide Web. 
We use the traditional mathematical definition theorem-proof sequence.-

1.4. Significance
This work is a part of continuing efforts by Algebraists and Physicists aimed at a fuller 
understanding of the relationship between group theory and Lie algebras.

Hence, the significance of semi simplicity comes firstly from the decomposition which states that 
every finite dimensional Lie algebras is the semi direct product of solvable ideal(its radical) and 
a semisimple algebras. Semisimple Lie algebras have a very elegant classification; over an
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algebraically closed field are completely classified by their root system, which are in turn 
classified by Dynkin diagrams.

Further, the representation theory of semisimple Lie algebras is much cleaner than for general 
Lie algebras. For example, the Jordan decomposition in semisimple Lie algebra coincides with 
the Jordan decomposition in its representation, this is not the case for Lie algebras in general.

1.5. Definitions of key terms
The following are definitions of some key concepts of algebra used in this study.

Definition 1: (Group)

A group consists of a set G and a binary operation “.’’defined on G for which the following 
conditions are satisfied:

/) (a.b).c = a.(b.c) for all a,b,c e G  (associativity)
ii) Thereisa e Gsuch that \ .a -  a. 1 = a for all a e G(identity)
iii) Givena e G,thereisb e Gsuch that a.b = b.a = 1 (inverse)

Definition 2: (Ring)

A set 3i of elements for which addition (+) and multiplication (.) are defined is called a ring if 
the following axioms are satisfied.

The set M is an abelian group under addition.

i) For any two elements a and b of M the product a.b is defined and is an element of R 
(closure).

ii) For any elements a, b and c of R , a.(b.c)=(a.b).c (associative law). ,

iii) For any three elements a, b and c of l! , a.(b+c)=a.b+a.c and (b+c).a=b.a+c.a 
(Distributive law)

Definition 3: (Field)

This a ring® , such that the elements of K different from 0 , forms an abelian group under 
multiplication.

Definition 4: (Vector space)

A set V of elements is called a vector space over a field F if it satisfies the following properties:

i) The set V is an abelian group under addition

4



ii) For any vector v in V and for any c in F , is defined cvin V (Field elements are called 
scalars and elements of V are called vectors)

iii) If vis a vector, c and d are scalars then (c + d)v = cv+dv (distributive law)

iv) If u and v are vectors in V and c is a scalars then c(u + v) = cu + cv (distributive law).

v) If vis a vector in V  ̂ c and d are scalars, then (cd)v = c(dv)

vi) lv = v for any v in V .
Definition 5 :( Linear Transformation)

Let V and W be vector spaces over a field F. A map T : V -» W is said to be linear if satisfies 

T(Au + fiv) = AT(u) +/3T(v) for all u,v in V and A,/? in F  

Definition 6: (Algebra)

An algebra^ over a fieldF is a vector space A over /'’with additional operation called 
multiplication of vectors which associates to each pair of vectors u,v e A a vector uv 6 ^ such 
that is associative, is distributive with respect over the addition and a(uv) = (au)v = u{ccv) for 
each scalar a  in F .
If there is a vector 1 e A such that lv = vl = v Vv e A then A is called a linear algebra with unity 
over F . If uv = vu, Vm, v e A then it is said to be commutative.

Definition?: (Ideal)

A subset 1 c  /?[*,, *2,..... ,xn] is an ideal if it satisfies:

0 0 6 /
d) I f  f ,  g e l ,  then f  + g e l
iii) I f  f  6 /  and h e ^?[x,,x2,.... ,x„] then hf and fh e I

Definition 8: (Bilinear form)

A bilinear form on a vector space V is a function B : V x V -» F that assigns to each pair of 
ordered vectors v ,w eV  a scalar B(v, w) e F such that:
i) B(av + u,w) = aB(v,w) +B(u,w)
ii) B(v,u + aw) = B(v,u) + a(Bv,w) Vw,v, we V and a  e F.
A bilinear form is non degenerate if Vv^0,3vv6F such that B(u,w) * 0.Otherwise it is called 
degenerate. A bilinear form B is symmetric if B(u,v) = B(v,u) Vu,v e V .

5



Definition 9: (Matrix)

An n x m Matrix over F is a  rectangular array with nm elements of F  of n rows and m columns

given as: Mmm

au a]2....a 

a2\ a22

“ n\ a n2 — “ nm

A square matrix is one for which n - m .

The trace of a square matrix M written Tr (M) is defined to be the sum of the diagonal elements 
ofM .T hesetof nxn  invertible matrices is denoted byGl{n,F).

Gl(n,F) is a group.
Definition 10: (Finite matrix group)

A finite group G <z GI(n,F) is called finite matrix group.

Definition 11: (Representation of a group)

A representation of a group G is homomorphism from G into Gl(n,F) for some //,//is the 
degree of the representation.

1.6. Frame work of the study
The content of the work is organized as follows:

General introduction given in Chapter 1, describes the origin and the development of Lie 
algebras.

/
Chapter II presents the general concepts and basic notions of Lie algebras.

In Chapter III, the standard results on Semisimple Lie algebras are proved. The Killing form is 
introduced and used to describe the Cartan subalgebra in the next chapter.

Chapter IV of this work gives the classification of Semisimple Lie algebras.

The last chapter contains conclusion, comments and current research.

/
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CHAPTER II: BASIC CONCEPTS OF LIE ALGEBRAS

In this chapter we present the basic notions of Lie algebras.

ILL Preliminaries |4, 13|

II.1.1.Definition (Lie algebra)
A finite dimensional Lie algebra is a finite dimensional vector space L over a field F together 
with amap[.,.]:Z,xZ,— such that:

i) [.,.] is bilinear : [x + v,^] = [x,>,] + [v,^]

V x ,y ,ve  L,
and [ax,y] = a[x,y] Vx,_y e L and a e F,
[x,y + w] = [x,_y] + [x,w] Vx,y ,w e  L and 
[x,;By] = p[x,y] Vx,_y e L and f  e F

ii) [.,.] is skew symmetric: [x,x] = 0 for allx e L.

iii) the Jacobi identity holds: [x,[y,z]] + [y,[z,x]] + [z,[x,y]\ = 0 forall x,y,z in L

Note that the first and the second property in definition (II. 1.1), together imply 
[x, y] = H>, x] for all x , y e L :

(2.1)
0 = [x + y, x + y] = [x, x] + [x, y] + [y, x] + [y, y ] = [x, y] + [y, x]

Examples
a) Any vector space L with the [x,^] = 0 for all x ,y  e L

/
is an abelian Lie algebra.

b) Let V be a vector space and L the ring of all linear transformations. Then define 
[x,y] = x y - y x  fora l lx ^ e  L.O b v i o u s l y , i s  bilinear , and[x,x] = 0.

For the Jacobi identity we have:

[x, [y, z]] + [y,[z, x]] + [z, [x, y]] = [x, yz -  zy] + [y, zx -  xz] + [z, x^ -  yx] = 
xyz -  xzy + yzx -  yxz + zxy -  zyx -  yzx + zyx -  zxy + xzy -  xyz + yxz = Q

So indeed this gives us a Lie algebra which we will call the general linear Lie algebra

gKV).

7



11.1.2. Def inition (Lie algebra homomorphism)
Let Z,, and L2 be Lie algebras; a linear map <p: Z,, —» Z,2 is called a Lie algebra homomorphism

if<p([.v,y]) = [<;p(x),(p(y)] for all x ,y  e Z,, . If a Lie algebra homomorphism (p is a bijection, then 
<p is called a Lie algebra isomorphism.

A Lie algebra isomorphism (p: L —» L is called a Lie algebra automorphism. If L is a Lie algebra 
then we define for <p\L-+ gl(L) then [(p{x),(p{y)\ = (p{x)(p(y) -  <p(y)<p(x)

See example (II. 1.2).

11.1.3. Definition (adjoint representation “ad”)
Let L be Lie algebra, for x e L, we define a linear map adx : L —> L by adx(y) = [x ,y ] (2.2)

Thus ad(i.e the map x —» adx) in fact is a linear map from L into the space of linear operators 
from L to L .The ad function is useful in the sense that it makes things more readable instead 

of writing [*, [-*,[*, [*,[>']]]]] we W'U now simply write (adx)5(y)

We have the following:

11.1.4. Lemma
If L is a Lie algebra, then ad is a Lie algebra homomorphism from L to gl(L)

Proof

Let L be a Lie algebra, and let x , y e L   ̂ ^en we have, for every 2 e Z- (by Jacobi identity) 
ad[xy](z) = [[x,y],z] = -|>,|>,x|] = [x,[y,z]\+[y,[z,x]\ = [x,[y,z]]-[y,[x,z]]
= adxady (z) -  adyadx (z) = [adx, ady](z) '

So indeed afx,y\ ~ [adx,ady] §0 acj js a homomorphism.

11.1.5. Definition (derivation)
A derivation d is a Lie algebra homomorphism satisfying “ ([■*>Xl) = [rZ(A:),(y)] + [A:,rZ(>’)]

11.1.6. Lemma
If L is a Lie algebra and x e Ldhen adx is a derivation,i.e adx([y,z]) = [y,adx(z)\ + [adx(y),z]

/
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Proof

Letx e L ,  and observe the action of adx on [y,z] for y ,z e L 

“dx([y,z}) = [x,[y,z]\ = [y,[x,z]]-[z,[x,y]\ = [y,adx{z)\-[z ,adfy)\
= [y>adx(z)]+[adx(y),z]. (2-4)

11.1.7. Defln ition (Subalgebra)
A subspace K o f  L is called a subalgebra if [*,>>] e K whenever x ,y  e K. In particular K is a 
Lie algebra in its own right.

11.1.8. Definition (center, normalizer)
The center and normalizer of Lie algebra L are denoted and defined respectively:

Z(L) = {Z e L | [x,Z] = 0 for all x e L)
N f K )  = { x e L \ [ x ,K ] c K }

Where K is a subalgebra of L .

11.2. Representation
Let L be a Lie algebra over the field F, and V a vector space over F.

11.2.1. Definition (representation)
A representation of L in V is a map: (p: L —> End(V) : such that

c) cp is linear, and

d) <p{[x,y]) = (p{x)(p(y)-(p(y)(p{x) for x,y e L .

If V is a finite dimensional, the above is equivalent to saying that (p is a homomorphism of 
L into gl(V). A well known representation is the adjoint representation of Lie algebra 
(P'-L-* gl(L) 

x -> adx

11.3.Ideals
We note that we defined gl(V) as the set of linear transformation of a vector space V to itself, 
viewed as a Lie algebra.

11.3.1. Definition (linear Lie algebra)
A Lie algebra/, is called a linear Lie algebra if it is isomorphic to a subalgebra of g/(L)for 
some vector space V . ••

9



The notion of ideals in rings extends to ideals in Lie algebras.

11.3.2. Definition (ideal)
A subspace /  of a Lie algebra L is called an ideal if [jc,y] e /  f o r x e  L and y e  l .

Example:

Let L be Lie algebra. Obviously, {0} and L are ideals .A more interesting example is the center 
o f !  : Z(L) = {z e Ll\x,z~\ = 0 for all x e L) (2.5)

Indeed if we let y e L and z e Z(L),then [y ,z] -  0 e Z(L).

11.3.3. Lemma
If / and J  are both ideals ofL,  then I+ J  = {x +y\ x e I ,y  e J} '\s an ideal and so 

U>J] = (Ei[Xt,yl]\xl e I , y l eJ}

Proof

Let I and J  be ideals of Lie algebra L . If it is straight forward that I +J is an ideal of L , so we 
focus on [/,./]. Let y e L  and z e [ /,J]  soz = [a,,/>,] + ....+ [a,,bl],with at e I and bi e J .

Then by bilinearity, [y,z] = [y,[al,bl]] +....+ [yt[a„bl]] (2.6)

By Jacobi identity, we have for every term of this equation

[y,[<*i,bi]] = [a,[y,b]]+[b,[a,y]] = [ai,[y,bi]]+[[y,ai],bi] (2.7)

And both of these terms are of the form [a,6] witha € / and b e  J  .So indeed [y,z\ e [I,J], as 
desired.

The ideal I+ J  above is called the sum of /  and J  .

II.3.4.Definitions
• Abelian Lie algebra

A Lie algebra Lis called abelian if [L,L] = 0 (i.e [.x,^] = 0 V.x,>> e L yin this case we say that 
Lie algebra L is called abelian if and only ifZ(L) = L .

•  Simple Lie algebra

A Lie algebra L is said to be simple if [L,L] * 0 and L has no ideals except {0} and L its self 
(i.e. If it is non abelian and has no proper ideals).
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If we consider ad as a map from L into the space of linear operators on L , we see that its kernel 
is equal to the center ofL : Ker(ad) = {* e L | adx(y) = 0 for all y  e L} = Z(L) (2.8)

So, if L is a simple Lie algebra, Ker(ad) = {0}, hence ad is an isomorphism of Lto gl(L), so 
any simple Lie algebra is a linear Lie algebra.

Example
Let V be a vector space over F of dimension n. Recall that the trace of a matrix M is the sum of 
its diagonal elements, commonly denoted by Tr(M), and independent of the choice of basis.

Then we let sl(V)(orsln(F)ifV  = F")denote the set of endomorphism of V having trace zero.

Remark

Since Tr(x +y)-Tr(x)  + Tr(y)and Tr(xy)-Tr(yx) ̂  We know that s/(L)js a subalgebra of 
gl(V). It is called the special linear algebra and the dimension of sl{V) js n2 -1

11.3.5 .Classical Lie algebras and exceptional simple Lie algebras
Over a field of characteristic 0 there exist four families of classical Lie algebras and five 
exceptional simple Lie algebras. The accompanying proofs [13].

The four families of classical Lie algebras are:

*) The Lie algebra of the special linear Lie algebra in ( n+1) variables: Aa(n > 1): also 
denoted sKn + 0 , and most commonly represented of (" + l)x (" +1) matrices with

trace 0. This Lie algebra has dimension!" + 1)" - 1.

*0 The Lie algebra of the symplectic Lie algebra in 2n variables: Cn(n > 3 ): also denoted

by Sp(2n).

If we let V be a vector space of dimension 2n, and denotes its elements as row vectors, 
we define the non degenerate bilinear form g on V by defining the matrix G:

G =
0

0
, then its dimension is n(2n +1) (2.9)

iii) The Lie algebra of the special orthogonal Lie in 2n+l variables is:
denoted 0(2n +1). its dimension is "(2" +1).

iv) The Lie algebra of the special orthogonal Lie algebra in 2n variables:
denoted 0(2/;). The dimension of 0(2/;) js /;(2 /;-l).

B„(fl -  2), also 
(2.10)

D„(n > 4) 5 also 

(2. 11)

/
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Remark:

We note that we could also define Bn and C„ for n ^ 1 and A. for n > 3 but to avoid repetitions 

(because A = Bx =CX,B2= C2 and A3 = Z)3) we usually use the numbering above.

The exceptional Lie algebras are denoted by G2 (of dimension 14), A (of dimension 52),

A  (of dimension 78), A  (of dimension 133) and A  (of dimension 248).

II.4. Solvability and nilpotency |6|

11.4.1. Definition (solvability)
Let L be a Lie algebra. We define a sequence of ideals of L by:
Z,(0) = L,L[l) = [L,L],L(2) = [L(1),L(I)] = [[L,L],[L,L]],L0) = [Lm ,Li2)],. (2.12)

Lis called solvable if F n) =0 for some". So, from the definition we immediately see that 
Abelian Lie algebras are always solvable, and Simple Lie algebras are never solvable.

11.4.2. Defintion (nilpotency)
Let L be a Lie algebra .We define a sequence of ideals of ^by: 
L° = L,L' =[L,L],L2 =[L,L'] = [L,[L,L]\,L2 =[L,L2], (2.13)

L is called nilpotent if L" = 0 for some n .

Example

We let L be a Lie algebra over the field F generated by a,b and c , such that
[a,6] = [a,c] = a and [Z>,c] = 0 .This Lie algebra satisfies the Jacobi identity since
[fl,[ft,c]] + [b,[c,a]] + [c.[a,b]\ = 0 -  [6, a] + [c,a\ = - ( -a)  + (-a) = 0 (2.14)
Furthermore, \.L,L\ -  aF 5 So [[L,L\,[L,L\] = 0 antj L js solvable. However, ^ is not nilpotent
because for example [ b , [ b , [ b ,«]]]]] is non zero for any arbitrary number b's jn front.

From the definitions above, we note that
• Every nilpotent Lie algebra (ideal) is solvable; since[L,L] c= L _

• A solvable Lie algebra (ideal), however is not necessary nilpotent.

11.4.3. Definition (radical and nilradical) [10|
The radical of L t denoted by Rad(L) , is the largest solvable ideal of L .
Similarly, we define the nilradical of L } denoted by NilRad(L) ; as the largest nilpotent ideal

o f ^ .
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Example

Consider L =The set of2x 2 upper triangular matrices.
U  b'

L =
0 c

r<°> — /L = L ,L[> = [L,L]-[x,y] \ / x ,ye L .  Then for x = 

We have:

 ̂u
0 w

and y =
k l 
0 m

L(l) = [x,y] = x y -  yx =
(u v \ fk r 'k r ru v \
,0 vv. v° m, ,0 vv,

( uk ul + vwC
0 mw

ku kv + Iw 
0 mw

0 (ul + vm) -  (kv + Iw) 
0 0

Z, = [Z, ,Z, ] = [s,/]Vw,v e L . Hence for s _ 

We have

l}2) = [5,/] = st - t s  =

0 n} (0 c
and t =

0 0 0 0

'0 '0  c> 0 CN'0 n "0 0N

,0 0, ,0 0, ,0 0, ,0 0,
So L{2) = 0 and L is solvable. The Rad(L) = L.
It is straight forward to see that a Lie algebra has unique radical.

Suppose land J  are solvable ideals of Lie algebra^, then:

• 'Y(l  n  y) is solvable ( because J  is solvable)

(I + J ) /  (Z + J)  J  r .
• / t is solvable (because — :— *77----~ ), so Z + J is solvable/ l  1 ( Z n J ) 7

11.4.4 Definition (semisimple Lie algebra)
A Lie algebra L is said to be semisimple if Rad(L) = 0(j e if it does not contain any non zero 
abelian ideal).

II.4.5.Theorem [6]

Let L be a Lie algebra. Then Z ad ( I ) ' s sem' s'mP*e-

/
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Proof

Let ^be the natural map of ^-onto ~ —7777. If I  is a solvable ideal of _ then <P '( /)Rad{L) Rad(L)

must be a solvable ideal of L t and we have Rad(L) cz (p ' (/).  Moreover, by maximally of 
Rad(L) we have^ *(I)c Rad(L) hence Rad(L) = <p ' (/).  This shows t h a t = 0,

Hence ^ is semisimple.

II.4.6.Theorem |13)
L is semisimple if and only if it is isomorphic to a direct sum of simple Lie algebras.

We end this chapter by giving the following figure:

Fig 1: Relationship of solvability, nilpotency, abelian, semisimple and simple Lie algebras.

Lie Algebras

Solvable

Nilpotent

Abelian

Semisimple

Simple

From the above we deduce the following:

The sum of two solvable ideals is a solvable ideal.

A Lie algebra L is simple if L is non abelian and has no proper nonzero ideal and is semisimple 
if it has no nonzero solvable ideals. Every simple Lie algebra is semisimple and every 
semisimple Lie algebra has Ocenter.
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We have the sequence:

^ ~ ^  ^  /T  ^ WithTsolvable and / 't semisimple.

In particular, there is no nonzero Lie algebra that is both solvable and semisimple.
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CHAPTER III: SEMISIMPLE LIE ALGEBRAS

In this chapter we prove the standard results on semisimple Lie algebras and introduce the 
Killing form used to describe the Cartan subalgebra.

111.1. Definitions
111.1.1. Definition (L-module)

Let L, be a Lie algebra, a vector space V , endowed with an operation 

L x V - > V

(x,v)->*v or just xv is called an L -module if the following conditions are satisfied:

i) {ax + by).v -  a(x.v) + b(y.v)

ii) x.(av + bw) = a(x.v) + b{x.w)

iii) [xy].v = x.y.v- y.x.v (x,y e L;v,weV-,a,b e F) ^  ^

111.1.2. Definition (L-module homomorphism)

Let V and W be L -  mod ules,
A linear map (p:V —» W such that (p{x.v) = x.(p{v) ,Vx e L,v e V is called L, -module 
homomorphism.
111.1.3. Definition (completely reducible L-module)

An L-module is said to be irreducible if it has only precisely two L-modules (itself and 0)

An L-module is completely reducible if L is a direct sum of irreducible L-submodules. (i.e. each 
L-submodule W of V has a complement ^ '(  an L-submodule such that f  = W © H7')).

III.2. Properties semisimple Lie algebras

III.2.1. Complete reducibility [13]
A consequence of semisimplicity is a theorem due to Weyl:

[Every finite dimensional representation is completely reducible].

While in other contexts complete reducibility is equivalent to being semisimple, for Lie algebras 
the two notions are different.

Lie algebras whose finite dimensional representations are all completely reducible, are called 
reductive Lie algebras. The linear Lie algebra gKn) is not semisimple, but its finite dimensional
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representations are completely reducible. Here semisimple means that the Lie algebras is 
semisimple (a sum of semisimple Lie algebras), not that its representations are semisimple (sum 
of simple representations).

111.2.2. Centerless
Since the center of a Lie algebra L js an abelian ideal, if ^ is semisimple, then its center is zero. 
We note that every ideal, quotient and product of a semisimple Lie algebra is again semisimple.

111.2.3. Linear
The adjoint representation : Z. —> End(L) js injective, and so a semisimple Lie algebra is also a 
linear Lie algebra under the adjoint representation.

111.2.4. Jordan decomposition [23]
Any endomorphism * of a finite dimensional vector space over an algebraically closed field can 
be decomposed uniquely into a diagonalizable (or semisimple) and nilpotent parts.

x = s + n ' where 5 is the semisimple and //nilpotent parts and sand n commute with each
other. Moreover each of sand n js a polynomial in * . This is a consequence of Jordan 
decomposition.
If* 6 ^ , then the image of * under the adjoint map decomposes as: ad(x) = ad(s) + ad{n). The 
elements sand n are uniquely determined by * .
For any representationp  o f  L,p(x) = p(s) +p(n) is the Jordan decomposition of p(x)in the 
endomorphism ring of the representation space.

Generalization

With these properties, semisimple Lie algebras admit certain generalizations:

Firstly, many statements that are true for semisimple Lie algebras are true more generally for 
reductive Lie algebras. Abstractly, a reductive Lie algebra is one whose adjoint representation is 
completely reducible, while concretely, a reductive Lie algebra is a direct sum of a semi simple 
Lie algebra and an abelian Lie algebra.

Examples

The following are examples of semisimple Lie algebras:

An : SI(n), the special linear group
Sl(n,c) = {jc e gl(n,c)/TrX = 0} n > 2

/
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Cn : Sp(2n),the symplectic Lie algebra
Sp(2n) = {xe gl(n,c) lXTJ nn +JnnX  = 0} n > 1

'  0 O  

0
Where J n„ =n,n

S(On): the special orthogonal Lie a lgebra 

S(On) = {* e g/(n,c)/X + X T = 0} n > 3

This family is divided into two families:

(3.2)

B„ : SO(2n +1) and Dn = SO(2n)

(3.3)

These families together with the five exceptional Lie algebras G2,FA,Eb,E1 and Ê  are in fact the 
only semisimple Lie algebras over the complex field.

III.3. Engel’s theorem
Engel’s theorem connects nilpotency of Lie algebras with ordinary nilpotency of operators on 

a vector space.

111.3.1. Theorem (first form)
Let V be a vector space, let Lbe a sub Lie algebra of the general linear Lie algebra gl(V), 
consisting of nilpotent as linear operators. Then L is nilpotent Lie algebra.

111.3.2.  Theorem (second form)
If L is a Lie algebra such that all operators adx, with x in L, are nilpotent, then L is nilpotent.

The proof follows from the following proposition:

“Let the Lie algebra Tact on the non zero vector spaceV by nilpotent operators, then the null 
space N = {v £ V ! Xv = 0 for  V x in L}is not zero.”

Proofs [10,13].

111.4. Killing form [23]
The Killing form is a symmetric bilinear form that plays a basic role in the theory of Lie 
algebras.

III.4.I. Definition
Consider a Lie algebra L over a field F . Every endomorphism (adx)(adx) of L with the help of 
the Lie bracket, as adx(y) = [.v,>>]. Suppose L is of finite dimension, th^ trace of the composition
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of two such endomorphism defines a symmetric bilinear form B(x,y) = Tr(adxady), with the 
values in F, is the Killing form on L (where Tr means trace).

111.4.2. Properties |23, 13]
1. The Killing form B is bilinear and symmetric

2. The Killing form is an invariant form, in the sense that it has the associativity property: 
B([x,y],z) = B(x,[y,z]) where [,] is the Lie bracket.

3. If L is a simple Lie algebra, then any invariant symmetric bilinear form on L is a scalar 
multiple of the Killing form.

4. The Killing form is also invariant under automorphism s of the Lie algebra L,  that is
5 (^(x),5(y)) = B(x,y) for s in Aut(L)

5. The Cartan criterion states that Lie algebra is semisimple if and only if the Killing form is 
non degenerate.

6. The Killing form of nilpotent Lie algebra is identically zero.

7. If I and J are two ideals on Lie algebra Lwith zero intersection, then 1 and .1 are 
orthogonal subspaces with respect to the Killing form.

8. If a given Lie algebra L is a direct sum of its ideals ....... ,/„,then the Killing form
of L is the direct sum of the Killing form of the individual summands.

Example (Computation of the Killing form)
Let us compute the Killing form of SI(2,F) where (x,h,y) are the standard basis with

x =
0 1
0 0

h =
0 -1

O') (0 0^
y  =

V o

adh(x) = hx -  xh =

adh(y) = hy -  yh =

adh(h) = hh -h h  = 0 
f2 0 0 ^

adh = 0 0  0
0 0 - 2

'1 0 ' ' 0 r ' 0 f fl o'
,0 -l ,0 0, ,0 0, ,0 -l
'1 0 'f° 0" ' 0 o'(\ 0 '
,0 - l u 0 , ,1 0 , -K

0 2 
0 0

= 2x

0 0 
- 2  .0 =.-2y ‘

V' V
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adx(x) = xx -  xx = 0 
^0

adx(h) = xh -  hx = 

adx(y) = xy -  yx =

V
0 0A 0 -1

' \  0 
,o - i

v 0 1

A 0 0
(0 -1
0 0

0 1
0 0

0 - 2

(o lYo 0s]
0 0A 0

(o oYo i
0A 0 0

1 0 
0 0

0 0
0 -1

0 0 

= h

= -2x
vu ” J 

0 ^

adx =
(0 - 2  0  ̂
0 0 1 
0 0 0

ady(x) = y x -  xy = 0 o Y o  1

0A 0 0
o lYo o
0 0A 1 0

(0 o' 1 O') (-1  O')
0 0

= -h

ady(h) = y h -h y  =
V1

ady(y) = yy -  yy = 0 
' 0  0 0  ̂

ady = - 1 0 0
0 2 0

0 OY1 0
0A 0 -1

\ '1 0 "
'oo

'1 0 " ' 1 o N '0  O'

/ 0 1 J  - l -1  0; ,2 0,
= 2y

\ v

Let B(a,b) = Tr(ada. adb) , where a = a,x + a2h + a2y and b = /?,x + P2h + /33y

Tr (adx adx) Tr(adxadh) Tr {adx ady) 'PC
B(a,b) = [ai a2 ay Tr(adh adx) Tr(adhadh) Tr(adhady) A

Tr(adyadx) Tr(adyadh) Tr(adyadh) A . (3.4)

'0 0 4' 'PC
B{a,b) = \at a 2 a3 0 8 0 Pi

4 0 0 A .

III.5. Cartan’s criterions [10]

111.5.1. Theorem (First criterion)
This describes the solvability in terms of the Killing form.

A Lie algebra L is solvable if and only if its Killing form B vanishes identically on the derived 
Lie algebra L .
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111.5.2. Proposition
Let L be a sub Lie algebra of g/(L)with the property that Tr(xy) = 0 for allx,yin L, then the 
derived Lie algebra L' is nilpotent.

Proof [10]

III.5.3. Theorem (Second criterion) [13]
This describes the basic connection between semi simplicity and the Killing form.

"A Lie algebra L is semi simple if and only if its dimension is non zero and its Killing form B is 
non degenerate.”

Recall that B is non degenerate: if for some x0 in L, the value K (x0, y) = 0 for all yin L,then x0 = 0

III.5.4. Corollary [10]
A Lie algebra L is semisimple if and only if it is direct sum of simple Lie algebras.

III.6. Representation of Sl(2,C) = A,
Our purpose is to describe all representation of 57(2)in order to have something concrete to look 
at and also we will use the results in studying the structure and the representation of semisimple 
Lie algebras.

III.6.1. Weights and maximal vectors

Let L denotes Sl(2, F) whose standard basis consists ofx =
"0

0

\ f
,h =

0 -1

Then:

[hx] = hx -  xh -

[hy] = h y -y h  =

0

-1
0

[xy] = x y -y x  =
0 0

Yo p "0 r f\0 N
Ao 0, ,0 ,0
Y° oNr00"(\ °1Ai o, 0, - l
y° oN'0 0N'0 r
A1 0, 0, ,0 0 /

0 2 

0 0
= 2x

0 0
- 2  0

= -2y

0 -1
= h

0 }  (0 0^
= 1 0

(3.5)

Let V denotes an arbitrary L -module. Since h is semi simple, /; acts diagonally on V .This 
yields a decomposition of V as a direct sum of eigenspaces Vx = {v e V / h.v = Av},A e K .

Whenever VA * 0, we call A a weight of hinV and we call Vx a weight space.
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III.6.2. Lemmas 
Lemma 1.

Ifv eVx,thenx.veVx+2 andy.veVx_2.

Proof

We are given Vx = {v e V / hv = Av}. We use the commutation relations, i.e. we note that

[hx] acts as h x -x h  thus we have:

h.(x.v) = [It,x].v + x.h.v = 2x.v + A.x.v = (A + 2)jc.v and also 
h.(y.v) = [h, y].v + y.h.v = -2y.v + y.Av = (A - 2 )y.v

Hence x.v € VU2 and .y.v 6 Vx_2. (3.6)

Remark

Since dim V is finite, and the sum V = [J  Vx is direct, there must exist Vx * 0, such that Vx+2 = 0
AeF

For such A, any non zero vector in Vx will be called a maximal vector of weight space. 

Assume now that V is an irreducibleZ,-modi//e, choose a maximal vector,

f  \ \
say v0 e Vx,setv^ = 0,vf = -  y ‘.v0(i > 0).

Lemma 2

i) h.V j = (A — 2i)vj
ii) y.v,=(i + l)vM (3.7)
iii) x.v, = (A -i + l)vM (i > 0)

Proof

i) From Lemma 1, we have /i.(y.v(.) = [h,y].vi + y.hvj = -2 iy-.v. + y.Av = (A -  2/)>>.v(. 

The result h.vi = (A-2i)vifollows.

/

22



ii) By definition

( 1  \
v, =

A )
y.v„(i £ o)

/
v,+l =

v,+i =

v0' + l)!y 
v.

y +iv0 = /!(/ + !)y -y-vo =V '• J 0 + 1)

d + 0
T => .̂V,. = (/ + l)v,/+!

(3.9)

iii) Use induction on /', the case i = 0 being clear (since V_, = 0,by convention) 

Hence ix.vi = x.y.vM(bydefinition)

ix-y = [*,jO:vw + yJc.vH = hv._x + y.x.vhx = ((A -  2 (/ -  l))v,._, + (A- i  + 2 )y.vh2 
= (A -  2i + 2)v,_, + (/ — 1)(A -  /+ 2)v(._, (fry( //))
JTe ge t: /x.v(. = /'(T -  / + l)v( ,

Then divide both sides by /and the result follows. (3.10)
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CHAPTER IV: CLASSIFICATION OF SEMISIMPLE LIE ALGEBRAS

In this chapter we develop the structure theory of general semisimple Lie algebras over the 
complex field and bring the complete classification of Semisimple Lie algebras.

IV.1. Maximal toral subalgebra

IV.1.1. Definitions 
Semisimple elements

Let L be a finite dimensional semisimple Lie algebra over C An element x e L  is called 
semisimple, if its Jordan decomposition isx = x + 0, that is the nilpotent part is equal to zero. 
This means that x acts diagonalisably on every L -module.

Maximal toral subalgebra

Let L be a finite dimensional semisimple Lie algebra over C . A toral subalgebra T is a 
subalgebra consisting of semisimple elements.

A toral subalgebra T q L is called maximal toral subalgebra if Lhas no toral subalgebra 
properly containing T .

Every finite dimensional semisimple Lie algebra over C has a maximal toral subalgebra.

IV.1.2. Lemma (Maximal toral Subalgebra is abelian) [13]

Let Lbe a finite dimensional semisimple Lie algebra over C . Every maximal toral subalgebra 
T o f L is abelian.

Cartan subalgebra

Let fb e  a finite dimensional semisimple Lie algebra over C . A maximal abelian toral 
subalgebra is called Cartan subalgebra by the above lemma every such L has Cartan subalgebra 
since every maximal toral subalgebra is abelian.

Example

For Sl(3 ,F)  (F= C ) where (hi,h2,xi,x2,xi y l , y 2,y 3) is the standard basis with? ’
'1 0 oN "0 0 o N '0 1 oN "0 0 0N

fh = 0 -1 0 h2 = 0 1 0 *1 = 0 0 0 *2 = 0 0 1

,0 0 0, ,0 0 - l ,0 0 0, ,0 0 0,
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'0 0 r "0 0 o ' "0 0 o ' '0 0 o '

*3 = 0 0 0 T , = 1 0 0 = 0 0 0 y 3 = 0 0 0

,0 0 0, ,0 0 0, ,0 1 0, ,1 0 0,

We note that the span of {h ^x^y f  is a subalgebra of Sl(3,F) which is isomorphic to 
57(2,Z7), (it is seen by ignoring the third row and the third column in each matrix).
The two dimensional subspace H of Sl(3,F) spanned by and h2 is a cartan subalgebra 
of 5/(3, F)

Hence / /  = «/?,+ (3h-,
a 0 0
0 - a  + P 0
0 0 P

IV.1.3. Theorem (Cartan subalgebras are self centralizing) [13]

Let H be cartan subalgebra of a finite dimensional semisimple Lie algebra L over C .

Then C, (H) = H where Q ( //) is  the centralizer of H in L.

IV.2. Root space decomposition [1|

1V.2.1. Definition
Let H be a Cartan subalgebra and O c  //* be the set of non zero weights. Note that the zero map 
( h —> 0) is a weight and L0 = H by the theorem above, the space/, is the direct sum of the
weight spaces for H .Where //* is the dual space to the Cartan subalgebra H (the weight space).
L = H ® U La , this decomposition is called the root space decomposition of L with respect to

aeO
H, where La = {x e L/[x,h] = (ha).x for all h e H) and <2 ranges over H .

/
The set ^  is called the set of roots of L with respect to H and La for oc e <I> U {0} are called the 
root spaces. Since L is finite dimensional ‘t ’ is finite.

IV.2.2. Properties of <t> .
Suppose that a ,P  e {0} then:

i) -  A»+/?

ii) l f a  + p * 0 ,B (L a,Lfi) = {0\

iii) The restriction of B to A is non degenerate.

/
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Proof

Let x e Laand y e L p then

[[x>ylh] = [[x,h],y] + [*,[/*, y]] = (ha)[x,y] + {hp)[x,y]
= (h(a + fi))[x,y],thus [x,y] e La+p

This proves (i).

For (ii) we conclude from « + (3 * 0 ?that there is some h e H  with h(a + /?) * 0.

Then (ha)B (x,y) = B([x,h\,y) = B(x,[h,y]) = -{h f)B {x ,y ),and thus h(a + fJ).B(x,y) = 0 

Therefore, B(x,y) = 0 .

For (iii), suppose that z  e E0 and B(z,x0) -  0 for all jc0 e L0 .Since every x e L can be written as 

x = xo + with xa e La we immediately get B(z,x) = 0 for all x e L
ae<t>

From (ii) contracting the non degeneracy of B on L. (4.1)

IV.3. Root system |11
Let E be a finite dimensional vector space over ® with a positive definite symmetric bilinear 
form (~ ~ ) : Ex E -» K (positive definite means that (.x | jc) > 0//~ and only i f  x * 0)

IV.3.1. Definitions 
Reflection

For v e E, the map S v : E —> E

x —> x -  2
c,v)
v,v is called a reflection along v- It is linear, interchanges

v and -  v and f1Xes the hyper plane orthogonal tov . As an abbreviation, we use

U lv  =2
v,v

for x, v e E,note that ( -  | - )  is only linear in the first component.

We have S f x ) -  x ~ \x I v)v-The group of reflections generated by S^is called the Weyl group 
and is denoted by W .

/
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Root system

A subset A c  £  is called a root systen%

1. A is finite , span (A) = £  and 0 g A

2. If a e A, then so is - a
3. If «  e A, then the only scalar multiples of« in A are a  and -  a

4. I f a  6 A, then Su permutes the elements of A.

5. If a,/3 eA ,then(a,j3)e  Z.

6. Any A satisfying these five above properties is said to be a reduced root system whereas
any A for property 3 is not satisfied is called unreduced (non reduced) root system. In 
this work we deal with reduced root system.

IV.3.2. Properties of root system [6|

Let Abe a root system in the vector space E with inner product (■>).

1. if a  € A, then - a  e A

2. If a  in A is reduced, then the only members of A U {0} proportional to 
a are ± a,±2a and 0,±2 a can not occur if A is reduced.

3. If a  € A and /? e A U {0},then 2  ̂ e {0,±l,±2,±3,±4}a/7r/ ± 4only occurs in a non
\a\

reduced system for (5 = ±2a.

4. If a and are non proportional members of A such that \a \A P [  Then 2 ^ - ^ e { 0 , l} .
\P\

5. If or,/? £ A with > 0, then a — /3 js a root or zero.

If (<*>/?)< 0, then a+  P is a root or zero.

6. If &,P 6 A and neither a  + P,nor a -  J3 in A U {0}, then (cc,0) = 0.

We say that a root or 6 A cz £  js simple if a  > Oanda does not decompose as & -  P\ + A  with 
both P\ and P2 positive roots. The set of positive roots is denoted byTI.

I
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IV.3.3. Bases for root system [7]
Let A be a root system in a vector space E.

A subset B £  A js called a base of A 5 if

1. B is a vector space basis of E, and

2. Every a e A can be written as « = with kp e 2 such that the non zero coefficients
/?€ B

kp are either positive all or all negative 
Remark

For a fixed baseB, we call a  positive if all its non zero coefficients with respect to Bare 
positive and negative otherwise.
We denote the subset of A0f positive roots by A+ and the subset of negative roots by A". Some 
coefficients can be equal to zero, only the non-zero ones need to have the same sign.

For any base B , the set -  B is also a base.
Example of base, root and positive root

Consider Sl(3,F) and evaluate the commutation relations, we have:
[h],x]\ = 2xx [h\,y\] = - 2 y t [h2,x2] = 2x2 [x2,y2\ = -2y2 [x2,y2] = h, [xx,yx] = hx [hx,h2] = 0 

\h2,xx\ = - x x [h2,y x] = y x [hx,x2] = - x 2 [h],y 2\ = y2 [h2,y2] = - l y 2 [hx,xJ] = xi [hx,y i] = - y 25 ’ 5 9 9 9
[ ^ 2 , ^ ]  =  -^3 [ ^ 2 » > '3 ]  =  “ ^ 3  [ W l ]  =  ^  [ X2 , y 2 \  =  P  [ W 3 ]  =  /)l + f l 2 [ * | . * 2 ]  =  * 3  [3 ;p >;2 ]  =  - 3 ;3

» 5 5 ,  5 ,

[■̂ 1 ’ 3^21 ® [-*2’ .F |]  =  0  [-^1 5^3  ] — 0  [3^! 5 _V3 ] =  ^  [-*2’ A s] =  0  [^2,3*3 ] =  ^  [* 2  ’ T s ] =  Tl [-*̂ 3 5 Â 2 ] =  -̂ 1 > 5 5 5 5 5 5
[xi,y3] = - y 2>[x3,yi] = - x2 (4.2)
By (IV.2.1):

[hx,z] = a xz
r, 1 (4.3)[h2,z ] = a 2z

Where z is a root vector corresponding the root a ,  (z is simultaneous eigen vector for 
adhx and adh2).
The commutations relations above tell us what roots for 57(3,F) are.
They are six roots:

a (2, - 1), ( - 1,2) ,( 1,1) ,( - 2,1) ,(1,- 2) ( - 1, - 1)
Z xi x2 x2 x4 xs xb

The first root a = (2,-1) comes from [hx,xx\ = 2xx and [/i,,x2] = - x 2 where a  ,= 2, a , = - 1.
The second a = (-1, 2) comes from [h2,xx] = - x x and [/i,,x2] = 2*2 where or,= - l , a 2 = 2.
Others are obtained by the same process. The roots above plus //, and /?, form a basis for 
*S7(3,F ) . These six roots form a root system conventionally called A ,. '
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The roots a, - ( 2, - 1) and a 2 = ( - 1,2) are called the positive root since they have the property
that all of the roots can be expressed as a linear combination of or, and a2 with integer 
coefficients.
This is verified by the following computation:
«■ = (2, - l ) , a 2 = ( - l ,2) ,a ,+ a 2 = (1,1), -a ,  = ( -2,1 ) , - a 2 = (1,-2) and - a , - a 2 = ( - 1, - 1)

IV.3.4. Isomorphism of root systems
Let A| c  £j and A, c  E2 be two root systems. An isomorphism between the two root systems 
A, and A2 js bijective linear map: T  : A, -» A, such that:

/)A,T = A2
ii) For any a,/3 e A,, we have < a, ft >=< cAF, >

IV.3.5. Cartan Matrix

IV.3.5.1. Proposition
With / = dimE, there are / simple roots {ax,a 2,....... ,a,} = n which are linearly independent.
If/? is a root and is decomposed by P = axa x +a2a 2 +.........a,a, then all ^Ohave the same
sign and all a, are integers.

IV.5.2. Definition (Cartan matrix)

Let A be a reduced root system in an dimension vector space E and let n  = {ax,a 2,....at \
denotes the simple roots in a fixed ordering.

< cc (X >
The l by l matrix A = (4/) given by = 2— r V — is called the Cartan matrix of A and 11.

F , |

This matrix depends on the ordering of the simple roots but distinct orderings lead 

to Cartan matrices which are conjugate by a permutation matrix.

IV.3.5.3. Properties of Cartan matrices [7]

The Cartan matrix A = (Aij)o f A and TI has the following properties:

1. 4  is in Z for all i , j
2. 4  = 2 for all i

3. 4  < Q for i * j

4. 4  = Oif and only if 4 , = ®
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5. There exists a diagonal matrix ^w ith positive diagonal entries such that DAD 'is 
symmetric positive definite.

An arbitrary square matrix A satisfying the above properties is called Cartan matrix.

Two Cartan matrices are isomorphic if they are conjugate by a permutation matrix.

IV.3.5.4. Theorem

Let Y[andY\' be two sets of simple roots in A. There exists one and only one element s e W 
such that s(IT) = IT

IV.3.5.4. Corollary

Let Abe an abstract root system and let A+ and A+ be two positive systems, with corresponding 
simple systems n and LI'. The Cartan matrices of n and IT' are isomorphic.

Proof

By the above theorem, we obtain an s e 1T(A) such thatf! = s(LI) We fix an enumeration of
IT = {a,,«2,...... ,a,} and choose an enumeration of n ' = {/?,,/?2,..... ,/?,} such that Pj = s(aj) for
all j  e {1-.2,.... ,/},

So we have:

2
{P.’Pj) (sa„sa j

\Pif k « , r
(4.4)

Since s is orthogonal and the resulting Cartan matrices are equal after a permutation of indices, 
which means that they are isomorphic.

IV.4.Complete classification of semisimple Lie algebras

IV.4.1.Coxeter graphs and Dynkin diagrams
In this section, we will classify all possible root systems; we will use the axioms in definition 
(IV.3.1)

Lemma (finiteness lemma)

Let A be a root system in a finite dimensional real vector space E equipped with a positive 
symmetric bilinear form:

( - 1 -) :  Ex E -> A. Let a ,P  e A with P £ {«,-«}, then < 6 ,p > .< P ,a > e  {0,1,2,3} .
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Proof

By (4) of (IV.3.1) the product is an integer. We have(* I y f  = (* I x ) .(y  I >0cos2 9 . if 0 \ s the 
angle between two non zero vectors x , y  e  £.Thus < x *y > ■< y>x  ^  4cos2 0  and this must be an
integer. If cos2 0  = 1,then #is an integer multiple of ^and so c c a n d p  are linearly dependant 
which is impossible because of our assumption and (2).

We immediately conclude that there are only very few possibilities for < a  \ P  > .  < P  \ a  >,the

, we assume that (P  IP )   ̂(a  Ia )- (4.5)angle 6  and the ratio

Tablet. The following table gives the different cases o f  < a \ P  > •<  P \a >■> which can occur

Fig 2. The relative positions corresponding to & ar}d  P  are illustrated below



Any root system of rank two is equivalent to one of four shown in the figure 2 below

Proposition

Fig 3:

(0 A ®  A

A£ a  L P

Any ratio |« |: \P\ permissible

All vectors of the same norm,

n
Angle between adjacent vectors = — .

a

Ratio \P\: |«| = V2

n
Angle between adjacent vectors = —

Ratio \P\: \a\ = V3

n
Angle between adjacent vectors -  —

t
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From the above figure we have figure 3, which illustrates the base of the rot system.

Fig 3. In the following diagram we have colored a base of the root system in black and in red.

Hence both (a , P ) a n d  ( a  +  /?,-/?) are bases.

IV.4.2.Definition (Coxeter graph)
Let Abe a root system in a real vector space E and let B = (b,,b2,...., bn) be a base ofA. The 
Coxeter graph of B is an undirected graph with n vertices, one for every element b, and with

(bi’bj)-(b],b^  edges between vertexes b, an d  b) for all 1 < i  <  j  < n .

IV.4.3.Dynkin diagrams
The last step in reducing the problem of classification to the essential minimum are Dynkin 
diagrams. We associate to a reduced root system A with simple roots n  and Cartan matrix A 
the following graph:

• Each simple root a , is represented by a vertex, and we attach to that vertex a weight 

proportional to|<*,-| . We will omit to write the weights if they are the same.

• We connect two given vertices corresponding to two distinct simple roots 
a i a n d  a  J b y  AiJAJt edges. The resulting graph is called the Dynkin diagram offl .[7]

Definition (irreducible root system)

A root system Ajs called irreducible, if it cannot be written as the disjoint union 

A, U A2 such that ( « | /?) = 0 whenever a  e A, a n d  A2.

A root system is irreducible if and only if its Dynkin diagram is connected.
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If two root systems are isomorphic then they have the same Dynkin diagram. In particular, the 
Dynkin diagram does not depend on the choice of base. So Dynkin diagrams are the same as 
isomorphism types of root systems.

It follows from that proposition that a Dynkin diagram is connected if and only if A is irreducible. 

Table 2: Example root system, Cartan matrix and Dynkin diagram

IV.4.4.Classification
Now we give an outline of the classification of Cartan matrices. We will work simultaneously 
with Cartan matrices and their associated Dynkin diagrams.

First we observe two operations on the Dynkin diagrams and their counterparts on Cartan 
matrices.

1. Remove the ith vertex and all attached edges from an abstract Dynkin diagram. The 
counterpart operation on an abstract cartan matrix is removing the ith row and column 
from the matrix.

2. If the ith and j th vertices are connected by a single edge, their weights are equal. Collapse 
the two vertices to a single one removing the connected edge, retaining all other edges.

The counterpart operation collapses the ith and j th row and column replacing the 2by2 
matrix from the ith and j lh indices:

f

V

2

-1 bylbyl matrix

Using the properties of Cartan matrices plus operation (1) we get the following: 

IV.4.4.1. Proposition
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Let A be a Cartan matrix. If i * j ,  then

<4

2. 4  e {0,-1-2-3}
(4.6)

An important step which uses the above proposition in the classification is the following. 

IV.4.4.2. Proposition

The Dynkin diagram associated to the (by( Cartan matrix A has the following properties:

1. There are at most (pairs of vertices * < j  with at least one edge connecting them.

2. There no loops

3. There at most three edges attached to one vertex.

Using these tools we obtain the following classification of irreducible Dynkin diagrams in five 
steps.

Note that reducible Dynkin diagrams are not connected and therefore they are obtained by 
putting irreducible ones side by side.

Step 1: None of the following configuration occurs

Otherwise we use operation in (IV.4.2.2) to collapse all the single line part in the center to a 
single vertex leading to a violation of (1V.4.2.2).

Step 2: We do a raw classification of the maximal number of lines connecting two vertices.

• There is a triple line. By (IV.4.2.2) the only possibility is :

(G?)U>  = Q

/
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• There is a double line, but no triple line .The graph in the middle of the figure in step (1) 
shows that only one pair of vertices connected by two edges exists.

(B, ( ’,/• ') . q  o _ _ _ _ _ q .................o

a . a P+\ a,

• There are only single lines. 

In this situation we have^ :

We call 8  triple point. If there is no triple point, then the absence of loops implies 

that the diagram is

(A); O--------- O..................O----------O

If there is a triple point there is only one because of the third diagram in the figure in 

step 1.

So the other possibility is:

Step 3: Now we address the problem of possible weights going through the three point of the 

previous step in the reverse order:

• If the ith and j th vertices are connected by a single line then = = -1 which implies

that the weights vv, and w/ 0f these vertices are equal. Thus in the case M) and(D,E) all 
weights are equal, and we may take then to be 1. In this situation we omit writing the 
weights in the diagram.
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• In the case ( B , C , F )  wehave^p,p+i = ~2 and 4 p+lp -~ 1  the defining property (5)

I I2 I I 2of Cartan matrices leads to |ap+1| = 2 \ap\ . Take «* = \ f o r k  < p  We get 

a k = 2 /or A: > p  +1 >

• In the case (G2) we get |«,|* = 1 and |«2|"= 3

Step 4: The remaining steps deal with special situations. In this step we cover the case 

(B, C and F).

In this case only these diagrams are possible.

(B)  :

(C ) :

Step 5: In the caseCAA the only possibilities are

( D) :

(E ):

Where P e  {3,4,5}

/
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These steps lead to the following connected Dynkin diagrams:

Where n refers to the number of the vertices of the Dynkin diagram. The restrictions of n in the 
first four items are made to avoid identical diagrams.

A n for n>\: — 0 o— 0 
1 1 1  1

Bn for n >2:Q Q.. . 0— 0
1 2 1 1

C „ for n >3 : 0-- 0-0. . . . 0 = 0
1 1 1 2

t
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CHAPTER V: CONCLUSION, COMMENTS AND CURRENT RESEARCH

V.l. Conclusion and comments
In this work we have got a classification of reduced abstract Dynkin diagrams (respectively 
Cartan matrices), now which gives us a classification of reduced abstract root systems.

To achieve this we have followed the following diagram:

From this we know all resulting diagrams that can possibly occur.

During the classification of semisimple Lie algebras the notions of indices, roots, edges and 
vertices are important.

For any base B = {al,a 2,....,a j for a root systemO, the Dynkin diagram for O is a graph having 

vertices v,,v2,...vr . Between two vertices, we place no edge, one edge, two edges.or three edges. 
If the roots a t and or, are orthogonal, then we put no edge between v( and v. . In the case 

a, and or, are not orthogonal, we put one edge betweenv( and v;.; if a( and a ; have the same 

length, two edges if the longer ofa, and (Xj is longer than.the shorter;-and three edges if the 

longer of a, awr/a; is V3 longer than the shorter. \  , ;
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root systems G2,F4, Eb En and E% which define five exceptional simple complex Lie algebras of 
dim 14, 52, 78, 133 and 248.

Isomorphism following from Dynkin diagrams gives:
D2 * A, © A2 => 50(4) = 5/(2) © 5/(2) = 50(3) 0  50(3)
A3 * C 2 => 5/(3) = 50(6)
B2 » C2 => 50(5) = 5/7(4).
I wish to recommend other researchers including myself to the following topics related to this 
work:

^  Classification of semisimple Lie algebras over a non algebraically closed field, where 
the classification deals with a real Lie algebra with a given complexification, this can 
be done by Satake diagrams which are Dynkin diagrams with additional data.

^  Classification of semisimple Lie algebras by using the extend and affine Dynkin 
diagrams.

V.2. Current researches related to the present study

Work activities associated with Lie algebras especially on the classification of semisimple Lie 
algebras have been carried out and findings (results) of the studies on the Lie algebras are still 
important.
Dynkin established fundamental results about the structure of simple subalgebras of arbitrary 
semisimple Lie algebras. Modem representation theory makes significant use of Dynkin’s results 
due to a fundamental relationship between representations and subalgebras of a given Lie 
algebra.

The work of Dimitrov, N.Snyder, E. Dan Cohen and Ivan Penkovmc (2000) has been based on 
the structure theory for the classical simple finitely Lie algebras: Sl(<x>),So(<xf)and Sp(co) |ias 
contributed to obtain a complete structure theory of these Lie algebras including a generalization 
of Dynkin’s results. Now there are significant simplification in the infinite case which make the 
results elementary and attractive.

Also their work have been also based on : Cartan, Borel and Parabolic subalgebras of semisimple 
algebras; The Lie algebras Sl(co),So(po)and Sp(x>) ancj their general cartan subalgebras.

A.M. Cohen, F.G.M.T Cypres, J.Draisma(2001) in Special elements in Lie algebras they have 
deduced: from the classification of semisimple Lie algebras, the classification of finite 
dimensional modular simple Lie algebras is complete for algebraically closed field of 
characteristic greater than 3 and the complete classification of the simple modular Lie algebras 
has been announced by Premet and Strade. It provides a nice way of distinguishing the classical 
Lie algebras from the others by means of extremal demerits. An element »■* of a Lie algebra L
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defined over a field K is called extremal if the image of L under the square of left multiplication

by *(in form ula^ -X(L )^  Kx). By the two collections of simple Lie algebras, the classical 
algebras and the Cartan type algebra are distinguished by the adjoint action of an extremal 
element * of L .

In (2003) Cohen and Iwanys worked on the classification of Lie algebra £ generated by non

sandwich extremal elements (iftfd2-* = 0) they got the connection with the classical Lie algebras. 
But the problem: to find nice presentation for the simple classical Lie algebras involving their 
extremal elements remained unsolved.

D.A. Roozemond (2005) Lie algebras generated by extremal elements (Master’s thesis), he 
studied from the classification of semisimple Lie algebras Lie algebras generated by extremal 
elements by considering the general case for a Lie algebra generated by n extremal elements.

He found for a particular case that a Lie algebra generated by four elements is isomorphic to A  
two families of classical Lie algebras can be generated by extremal elements. For him the 
problems: To generate every simple Lie algebra by extremal elements and to analyze Lie 
algebras generated by six extremal elements, or focus on Lie algebras over fields of non zero 
characteristic were not solved and are still open.

Karim Baur (2006) Richardson elements for classical elements, Journal of algebras 297: 168-185 
from the classification of semisimple Lie algebras they studied Parabolic subalgebras of 
semisimple Lie algebras and describe a normal form for Richardson elements in the classical 
case.
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