

UNIVERSITY OF NAIROBI SCHOOL OF COMPUTING AND INFORMATICS

Automated Route Selection: Short Term Traffic Decision Support For Nairobi¹¹

BY

Okioga Edgar Nyamweya P56/P/8066/03

Supervisor

Dr. Peter. W. Wagacha

June 2006

Submitted in partial fulfillment of the requirements of the Master of Science in Information Systems

Declaration

This Project is my original work and to the best of my knowledge has not been presented for a degree in any other university.

Signed

Date Okioga, Edgar Nyamweya P56/8066/03

This project has been submitted in partial fulfilment of requirements for the Degree of Masters of Science in Information systems of the University of Nairobi with my approval as the University supervisor.

Signed

Date Dr. Peter. W. Wagacha Project Supervisor

Signed

Date Mr. Eric. Ayienga Second Supervisor

Acknowledgements

I wish to thank the following for the successful completion of this project. Firstly God, for His immense blessings, mercies and opportunity provided. Respect, gratitude and honour to my dearest wife and best friend Mogoi our daughter Rasoa for their continuous support, encouragement and prayers throughout my MSc studies. My parents and sisters for their moral support and words of wisdom: never ending in encouraging me to follow my goals.

A special note of appreciation to Dr. Eric Aligula for sharing with me KIPPRA data. Much gratitude to Dr. Peter Wagacha and Mr. Eric Ayienga of University of Nairobi, for their advice, critique, guidance and opinions which have shaped this research from an idea to a product.

I would also like to thank the entire MSc 7 group for their support and cooperation. I have no words to explain the role played by the Zebra group comprising of myself, James Kimuyu, Achoka Luduba, James Omwenga and Florence Mwende for the many hours they gave to the study group during my stay at Chiromo.

Last but not least, my appreciation to the entire academic staff of the School of Computing and Informatics for the knowledge they have imparted to me in the course of my studies in the School I would also like to acknowledge the non-academic staff.

Thank you all.

Abstract

The city of Nairobi is currently grappling with the problem of rapidly increasing traffic, and its management. We have developed a prototype decision support system for short term traffic prediction and subsequent shortest path analysis for this City. We investigated on the use of artificial neural networks in time series predication and the application of the optimal A* search algorithm for the shortest path between two points. A geographical information system was used to visualize both the road network and optimal paths.

Topographical maps of Naurobi were digitised and a GIS topology build to support the A* search routine. For purposes of simulation, historical traffic data collected from Kenya Institute of Public Policy Research and Analysis was formatted, analysed and pre-processed using a sliding window time series and modelled using a feed forward back propagation artificial neural network.

The resulting network was used to predict one step-ahead traffic speeds. With the traffic speed and other road network parameters such as lane width and surface type just to mention, these values were then used to calculate the time taken to traverse a node or a link. In essence the actual length of the road was modified to a virtual length, while the speed determined from the ANN. The resulting time value was used to process the A* search routine resulting to an optimal path visualised on a GIS interface. For purposes of objectivity, the Dijkstra search routine was deployed to compare and contrast the two search routines (A* and Dijikstra) from a naïve perspective. A one week survey of existing road traffic speeds was conducted using a probe car fitted with a GPS. The average speed recorded for Nairobi was approximately 25km/hr.

A.I techniques can be deployed within the framework of GIS based decision support systems to fundamentally predict short term traffic congestion, simulate scenarios to enhance traffic management and help in creating policy for long term sustainability of infrastructure.

The A* search is effective for small networks as seen in Nairobi However, care needs to be taken in developing the heuristic component. If it is small, the A* decomposes to a greedy search and performs similarly to the Dijkstra's algorithm. Other factors need to be considered as identified in this research in fine tuning the A* search in terms of road characteristics and traffic influence for instance surface condition, location, width and gradient.

A critical generic component of a DSS is a visualization system or graphical user interface. As demonstrated in this report, GIS is critical in traffic management as a visual data mining tool. By visualizing the results of the search module, a user is able to asses the maturity of our road network and identify suitable routes to expand or build mechanisms to control traffic. The speed survey carried out identifies roundabouts as most critical bottle necks.

In conclusion, the city of Nairobi needs to deploy a traffic and route management system as proposed by this research. This will cut down the response time of emergency services and also warn people on identified routes of oncoming emergency vehicles and personnel thus create space. It goes without saying that data is not ready accessible in Kenya as experienced by the researchers. It is important for the government and academic institutions to partner in research and surveys to ensure that data collected is readily available for future research and analysis.

We have reported our encouraging findings here.

Table of Contents

1	Introduction	1
1.1	Background	2
1.2	Project Overview and background	
1.3	Historical Background	2
1.3.1	Urban Growth	
1.3.2	Nairobi Road Network	
1.3.3	Nairobi Traffic Volumes and Composition	5
1.3.3.1	Vehicle Population	
1.3.3.2	Transportation Studies	
1.4	Problem definition	
1.5	Proposed Solution	
1.6	Project Objectives	
1.7	Project Hypothesis and Theory	
1.7.1	Theoretical underpinning	
1.8	Project Justification	
1.8.1	Nairobi Congestion causes and solutions from pundit journalistic view	
1.9	Project Motivation	
1.10	Project Assumptions	
1.11	Report Summary	
1.11	Report Summary	
2	Literature Review	
2.1	Introduction	
2.2	Traffic Forecasting	
2.2.1	Forecasting Models	
2.2.2	Types of Data Used	
2.2.3	Traffic Volume (Flow)	
2.2.3.1	Importance of "flow/volume" in highway transport studies	
2.2.3.2	Type of volume counts and their uses	
2.2.3.3	Greenshield's Model	
2.2.4	Time Series Data	
2.2.4.1	Importance of Time Series data	
2.3	Artificial Neural Networks	
2.3.1	Neural Network Description	
2.3.1.1	What is an artificial neural network	
2.3.1.2	Types of artificial Neural Networks	
2.3.1.2.1	Supervised Learning Artificial Neural Networks	
2.3.1.2.2	Unsupervised Learning Artificial Neural Networks	
2.3.1.2.3	Network Topologies for Artificial Neural Networks	
2.3.1.3	When to not use a neural network	
2.3.1.4	Fundamentals of Neural Networks	
2.3.1.5	Processing unit	
2.3.1.6	ANN attributes	
2.3.1.7	Identifying applications to be used by ANN	
2.3.1.7.1	Technical features	
2.3.1.7.2	Practical requirements	
2.3.1.8	Pre-processing and post processing	
2.3.1.9	Cross validation testing	
2.3.2	Neural Network Application Areas	
	rectal rectwork application Alcas	

2.3.3.1	Advantage of Artificial of Neural Networks	
	Disadvantage of artificial neural networks	
2.3.4	Forecasting using Neural Networks	
2.3.5	Feed forward Multilayer Back propagation Neural Network	
2.3.5.1	Time Series and Artificial Neural Networks: MLP	43
2.3.5.2	Data Preprocessing in Artificial Neural Networks	
2.4	Shortest Path Problem	
2.4.1	Dijkstra's Search Algorithm	
2.4.2	A* Search Algorithm	
2.4.2.1	Reasons for using the A*	
2.4.3	Other Search Algorithms	
2.5	Decision Support Systems	
2.5.1	Description of a Decision Support System	
2.5.2	Components of a Decisions Support System	
2.5.3	Intelligent Adaptive Decision Support System	
2.5.4	Successful Decision Support Systems Applications	
2.6	Geographical Information Systems	
2.6.1	Design of GIS databases	
2.6.1.1	Transportation Network Data Model	50
2.6.1.2	Topological rules for lines	51
2.6.1.3	Process of Image to vector conversion	
2.6.1.4	Attribute enhancements	
2.6.1.5	Process of vector lines in Arcview	
2.6.1.5	Digitizing Process	
2.6.2	Geographic Information Systems and Decision Support Systems	52
2.0.2	Discussion	
3	Methodology	
3.1	Questionnaires	
3.2	Speed Survey	
3.3	Data analysis	
3.4	System investigation	
3.5	Literature Review	
21		
3.6	Is the project tractable?	
3.6 3.7		
	Is the project tractable? Project Data KIPPRA Traffic Count	
3.7	Is the project tractable? Project Data	
3.7 3.7.1.1	Is the project tractable? Project Data KIPPRA Traffic Count	59 60 60 60
3.7 3.7.1.1 3.7.1.2	Is the project tractable? Project Data KIPPRA Traffic Count KIPPRA traffic Survey methodology	59 60 60 60 60 61
3.7 3.7.1.1 3.7.1.2 3.7.1.3	Is the project tractable? Project Data KIPPRA Traffic Count KIPPRA traffic Survey methodology Application of Greenshield Model to Nairobi Traffic A* search Data requirements	59 60 60 60 60 61 63
3.7 3.7.1.1 3.7.1.2 3.7.1.3 3.7.2	Is the project tractable? Project Data KIPPRA Traffic Count KIPPRA traffic Survey methodology Application of Greenshield Model to Nairobi Traffic A* search Data requirements Digitize GIS Data	59 60 60 60 60 61 63 63 66
3.7 3.7.1.1 3.7.1.2 3.7.1.3 3.7.2 3.7.3	Is the project tractable? Project Data KIPPRA Traffic Count KIPPRA traffic Survey methodology Application of Greenshield Model to Nairobi Traffic A* search Data requirements Digitize GIS Data Evaluation of Nairobi Network	59 60 60 60 61 63 63 66 66
3.7 3.7.1.1 3.7.1.2 3.7.1.3 3.7.2 3.7.3 3.7.4	Is the project tractable? Project Data KIPPRA Traffic Count KIPPRA traffic Survey methodology Application of Greenshield Model to Nairobi Traffic A* search Data requirements Digitize GIS Data Evaluation of Nairobi Network Digitizing the road network	59 60 60 60 61 63 63 66 66 66 68
3.7 3.7.1.1 3.7.1.2 3.7.1.3 3.7.2 3.7.3 3.7.4 3.7.4.1	Is the project tractable? Project Data KIPPRA Traffic Count KIPPRA traffic Survey methodology Application of Greenshield Model to Nairobi Traffic A* search Data requirements Digitize GIS Data Evaluation of Nairobi Network Digitizing the road network Database Design and Data Preparation	59 60 60 60 61 63 63 66 66 66 68 71
3.7 3.7.1.1 3.7.1.2 3.7.1.3 3.7.2 3.7.3 3.7.4 3.7.4 3.7.4.1 3.8	Is the project tractable? Project Data KIPPRA Traffic Count KIPPRA traffic Survey methodology Application of Greenshield Model to Nairobi Traffic A* search Data requirements Digitize GIS Data Evaluation of Nairobi Network Digitizing the road network Database Design and Data Preparation	59 60 60 60 61 63 63 66 66 66 68 71 72
3.7 3.7.1.1 3.7.1.2 3.7.1.3 3.7.2 3.7.3 3.7.4 3.7.4.1 3.8 3.8.1	Is the project tractable? Project Data KIPPRA Traffic Count KIPPRA traffic Survey methodology Application of Greenshield Model to Nairobi Traffic A* search Data requirements Digitize GIS Data Evaluation of Nairobi Network Digitizing the road network Database Design and Data Preparation Database Design and Data Preparation	59 60 60 61 63 63 66 66 66 68 71 71 72 72 76
3.7 3.7.1.1 3.7.1.2 3.7.1.3 3.7.2 3.7.3 3.7.4 3.7.4 3.7.4.1 3.8 3.8.1 3.9	Is the project tractable? Project Data KIPPRA Traffic Count KIPPRA traffic Survey methodology Application of Greenshield Model to Nairobi Traffic A* search Data requirements Digitize GIS Data Evaluation of Nairobi Network Digitizing the road network Database Design and Data Preparation System Decomposition Diagram System Data Flow Diagrams	59 60 60 60 61 63 63 66 66 66 68 71 72 72 76 81
3.7 3.7.1.1 3.7.1.2 3.7.1.3 3.7.2 3.7.3 3.7.4 3.7.4 3.7.4.1 3.8 3.8.1 3.9 3.10	Is the project tractable? Project Data KIPPRA Traffic Count KIPPRA traffic Survey methodology Application of Greenshield Model to Nairobi Traffic A* search Data requirements Digitize GIS Data Evaluation of Nairobi Network Digitizing the road network Database Design and Data Preparation Database Design and Data Preparation System Decomposition Diagram System Data Flow Diagrams Data Selection	59 60 60 60 61 63 63 66 66 66 68 71 72 72 76 81 98
3.7 3.7.1.1 3.7.1.2 3.7.1.3 3.7.2 3.7.3 3.7.4 3.7.4 3.7.4.1 3.8 3.8.1 3.9 3.10 3.10.1	Is the project tractable? Project Data KIPPRA Traffic Count KIPPRA traffic Survey methodology Application of Greenshield Model to Nairobi Traffic A* search Data requirements Digitize GIS Data Evaluation of Nairobi Network Digitizing the road network Database Design and Data Preparation Database Design and Data Preparation System Decomposition Diagram System Data Flow Diagrams Data Selection Data Preprocessing	59 60 60 60 61 63 66 66 66 68 71 72 72 76 81 98 98
3.7 3.7.1.1 3.7.1.2 3.7.1.3 3.7.2 3.7.3 3.7.4 3.7.4 3.7.4.1 3.8 3.8.1 3.9 3.10 3.10.1 3.10.2	Is the project tractable? Project Data KIPPRA Traffic Count KIPPRA traffic Survey methodology Application of Greenshield Model to Nairobi Traffic A* search Data requirements Digitize GIS Data Evaluation of Nairobi Network Digitizing the road network Database Design and Data Preparation Database Design and Data Preparation System Decomposition Diagram System Data Flow Diagrams Data Selection	59 60 60 61 63 63 66 66 68 71 72 72 76 81 81 98 98 98

3.10.4.2	Disadvantages of using back propagation and Artificial Neural Network	
3.10.5	Neural Network Training	
3.10.5.1	Saving Weights to SQL Server Database	
3.10.5.2	Recalling a neural network for prediction purposes from SQL Server Database	
3.10.6	Neural Network Source Code Validation and Testing	
3.10.7	Neural Network Training Result from IRIS data set.	
3.10.8	A* Search Design	
3.10.9	A* Search Testing	
4	System Implementation	114
4.1	Hardware Platform used	
4.2	Software used	114
4.3	Implementation Process	
4.4	Decision Support Implementation	
4.5	Testing	
4.5.1	Validation of Neural Network Results to Realities on the ground	
4.5.2	Motorists' use of the technology	
4.6	Frequency of Training: Neural Network Calibration	
5	Results and Findings	118
5.1	Neural Network Analysis of the Result	
5.2	A* and Dijkstra Search algorithm analysis of results	
6	Discussion	128
6.1	Overview	128
6.2	Conclusion	128
6.3	Limitations of Prototype	129
6.4	Suggestions for future work	
6.4.1	Data Collection methodology	130
6.4.2	Transport network modeling	131
6.4.3	Traffic congestion prediction	131
6.4.4	Dynamic routing and search strategies	
6.4.5	Traffic simulation	132
6.5	Government Maturity	
6.5.1	Social Investments as a result of effective and efficient traffic management	
6.5.2	New markets available for route management services as proposed by this solution	
6.6	Closing remarks	134
6	Reference and Bibliography	128

List of Appendices

Appendix A:	User Manual	
	Sample Data	
Appendix C:	Sample Database Creation Scripts	C1-C2
Appendix D:	Sample Neural Network Source Code	D1-D2
Appendix E:	Sample A* Search Source Code	E1
Appendix F:	Samples GIS Dangle Detection Code	
Appendix G:	Probe Car Sample	
	Traffic Survey Locations.	
Appendix I:	Traffic Impedance Questionnaire	

List of Figures

Figure 2.1 Prediction horizon showing predictive strengths of various methods	
Figure 2 2 Predict time and determine shortest path adopted from [YK00]	
Figure 2 3 Type of Traffic Counts	
Figure 2 4 Learning Algorithms	
Figure 2 5 Processing Unit	
Figure 2 6 Artificial Neural Network computing Project life Cycle	
Figure 2 7 Supervised learning model	
Figure 2 8 Complete Process flow for training ANN using Lags.	
Figure 29 Sampling of a time series	
Figure 2 10 Neural Network Training on Time Series adopted from C05]	
Figure 2 11 Decisions in Neural Network Modeling adopted from [C05]	
Figure 2 12 Data Preprocessing by normalization	
Figure 2 13 GIS Development Process	53
Figure 3 1 KIPPRA data collection sites	
Figure 3 2 Speed Flow Relationship for Nairobi	
Figure 3 3 Speed Flow relationship of nairobi	
Figure 3 4	
Figure 3 5 A* parameter compensators	
Figure 3 6 Parameter formula relationship	
Figure 3 7 Section of Nairobi Road Network	
Figure 3 8 Missing arcs	
Figure 3 9 Dangle link detection	
Figure 3 10 Building a complete Road network	
Figure 3 11 GIS Development Process	
Figure 3 12 System's Complete Database Design Entity Relation Diagram	
Figure 3 13 Actual implemented Database on SQL Server.	
Figure 3 14 Neural Network Association with Road network Figure 3 15 Complete Neural Network ERD	
Figure 3 16 Route Analysis ERD	
Figure 3 17 Traffic Data Management ERD	
Figure 3 18 System Sequence Diagram: RDBMS Role	
Figure 3 19 Database Design Process	
Figure 3 20 Main System Decomposition Diagram	
Figure 3 21 Route analysis Decomposition Diagram	
Figure 3 22 Traffic Speed Prediction Decomposition Diagram	
Figure 3 23 Road link and node status management Decomposition diagram	
Figure 3 24 Traffic Data Management Subsystem Decomposition Diagram	
Figure 3 25 System Design Context Diagram	
Figure 3 26 Level 1 Data Flow Diagram	
Figure 3 27 Level 1.1 Data Flow Diagram	
Figure 3 28 Level 1.2 Data Flow Diagram	
Figure 3 29 Level 2.1 Data Flow Diagram	
Figure 3 30 Level 2.2 Data Flow Diagram	
Figure 3 31 Level 2.3Data Flow Diagram	
Figure 3 32 Level 2.4 Data Flow Diagram	
Figure 3 33 Level 2.5 Data Flow Diagram	
Figure 3 34 Level 2.6 Data Flow Diagram	
Figure 3 35 Level 3.1 Data Flow Diagram	

Figure 3 36 Level 3.2 Data Flow Diagram	
Figure 3 37 Level 4.1 Data Flow Diagram	
Figure 3 38 Level 4.2 Data Flow Diagram	
Figure 3 39 Level 4.3 Data Flow Diagram	
Figure 3 40 Level 4.4 Data Flow Diagram	
Figure 3 41 System interaction Diagram of the various systems and technologies	
Figure 3 42 Neural Network Design	100
Figure 3 43 Process Flow in training a Neural Network.	101
Figure 3 44 Training result for node Waiyaki way next to the Mall Shopping	102
Figure 3 45 Training and validation RMSE	103
Figure 3 46 Training Process at a node	
Figure 3 47 Node 469 Ready for prediction.	107
Figure 3 48 Prediction table entries	
Figure 3 49 Folder Icon to click complete the process of prediction	108
Figure 3 50 Prediction data ready to update the road network node	108
Figure 3 51 network Design Process	
Figure 3 52 Run results from node 67 (KPC Staff Quarters) to 197 (Kariobangi, Kamunde road	i)112
Figure 3 53 Run results from node 67 (KPA Staff Quarters) to 404 (Huruma Road, Huruma)	
Figure 3 54 Shortest static path optimizing travel distance not time	113
Figure 4 1 Network Coverage of the System: minor and	115
Figure 4 2 Node 531 (Former West View Hotel Westlands) Test Results	
Figure 4 3 Node 694 (Waiyaki Way, Forest Road, Limuru Road Intersection parklands) Test Res	
Figure 4 4 Node 958 (Museum Hill Center) Test Result	
Figure 4 5 Node 1769 (Development House next to Railway Station) Test Result	
Figure 4 6 Garmin eTrex Hand Held GPS	
Figure 4 7 Speed Survey Map of 22 March 2006 – Embakassi to Gigiri	
Figure 4 8 Speed Values and 3 Minute Moving for 22nd march 2006	
Figure 4 9 Speed Survey Map of 23 March 2006 – Embakassi to Gigiri	
Figure 4 10 Speed Values of 23 March 2006 with 3 minute moving Average	
Figure 4 11 Speed Survey Map of 27 March 2006 - Gigiri to Embakassi	
Figure 4 12 Speed Values and 3 Minute Moving Average for 27 March 2006	
Figure 4 13 Speed Survey Map of 28 March 2006 – Gigiri to Embakassi	
Figure 4 14 Speed values and 3 minute moving average for 28 march 2006	
Figure 4 15 System Run Scenario	124
Figure 5 1 Random Points (black) selected to carry out shortest path analysis	
Figure 6 1 The progression of data sharing and e-government	
Figure 6 2 Traffic prediction value Chain	

List of Tables

Table 1 1 Population of Kenya, Nairobi and other nearby districts.	4
Table 1 2 Network Operation Characteristics	
Table 1 3 Transport planning studies	6
Table 1 4 Urban Transport Strategy Matrix	
Table 1 7 Selected Public Opinion on Road Congestion	11
Table 2 1 Past researches and data used in traffic prediction using neural networks	
Table 2 2 Equivalent passenger units from KIPPRA data	22
Table 2 3.1 Typical plots of speed density, speed flow and	24
Table 2 4 Various Kinds of Neural Networks available [S02].	31
Table 3 1 Sample KIPPRA Data Set	61
Table 3 1 Sample KIPPRA Data Set Table 3 2 Jam density values	62
Table 3 1 Sample KIPPRA Data Set Table 3 2 Jam density values Table 3 3 Implementation in SQL Server	62
Table 3 2 Jam density values	62 65
Table 3 2 Jam density values Table 3 3 Implementation in SQL Server	62 65 66
Table 3 2 Jam density values Table 3 3 Implementation in SQL Server Table 3 4 Code to randomize the security status of a node. Table 3 5 Nairobi Road network Analysis Table 3 6 Sequence in saving weights to SQL Server	62 65 66 67 105
Table 3 2 Jam density values Table 3 3 Implementation in SQL Server Table 3 4 Code to randomize the security status of a node.	62 65 66 67 105

Table 5 1 Node 1944 (Haile Selassie) Results	
Table 5 2 node 1769 (Hali Selassie Moi Avenue Intersection) Results	
Table 5 3 node 928 (Kipande Road Globe Cinema Round About)Results	
Table 5 4 Node 560 (Pangani Road Round About Intersection) Results	
Table 5 5 Node 72 (Outer Ring Road, Thika Road Round About) Results	

List of Abbreviations

A.I	Artificial Intelligence
KIPPRA	Kenya Institute for Public Policy Research and Analysis
FNN	Forward feed Neural Network
MLP	
NN	
A*	A Star Search Algorithm
	Structured Query Language
VB.NET	
MAPE	
DSS	Decision Support System
GIS	Geographical Information Management System
CBD	
TLB.	
WAN	
LAN	Local Area Network

".Driving from Buruburu to the city centre and back, a round trip of 14 kilometers costs Ksh 300 against a standard rate of Ksh 80. If 300,000 vehicles are involved, the loss is Ksh 66,000,000 daily. In one month, the loss is Ksh 1,980,000,000 and in eight months the loss is Ksh 19,808,000,000'.."

¹ Moses Chetambe, Webuye in an article appearing in the Daily Nation

"....but the worst was yet in come. The city is granding to a balt, and Kenyans are gitting increasingly frustrated. For the poor country to spend 30 per cent of its foreign reserves importang ail, then burn the lot in traffic hold-ups, something must be investign arrang."

1.1 Background

1.2 Project Overview and background

A driver has to manage constantly changing road impedance (constraints) factors such as congestion, rough road, accidents which can alter the route of choice during travel impacting travel time, speed, and journey comfort to say the least. Optimal route selection (minimum cost, maximum speed, minimum time, and minimum risk e.t.c) by an individual driver on Nairobi road using historical and real-time information will need to account not only for the current impedance conditions but also for future traffic conditions which consequently impact the optimum route to follow.

A driver alerted with traffic forecasts in real-time is more likely bound to select routes with maximum utility of time, speed or opportunity to avoid any form of congestion resulting to decreased vehicle operating costs, pollution, road rage, incidents or a heightened level of risk exposure as in the case of transporting hazardous products though heavily human populated areas.

This project was a research into the prediction of traffic congestion and consequently automated real time optimization of route selection to maximize vehicle movement and minimize adverse impacts within the city of Nairobi. By utilizing machine learning techniques and geographical information systems, a prototype computer application was developed automate and optimize short term routing route selection with the goal of managing congestion in Nairobi central business district.

> ..."It gets worse when it rooms. I seen the mildest of driver les has the arbitisty to halt truffic on the road. And when the persodent is on the more, everyone clue has to stop and gave way." I

1.3 Historical Background

Kenya has been categorized as a low income country with gross national income (GNI) per capita of dollars 765 or less in 2005 UNDP [HDR05]. Nairobi the capital of Kenya, serves as the seat of the government. It houses parliament, and all government ministries, diplomatic offices, 2Peter Kenne at an attick on the Daily Nature -2the United Nations Environmental programme, Kenyatta National Hospital (the biggest referral hospital in East Africa) and the University of Natrobi just to mention. Natrobi has served as one of East Africa's important centers for commerce, industry, and tourism for many years. Histonically, Natrobi's transport and communication network was developed to link the city to nearby countries, through toad (national trunk roads), rail (Kenya Railways), and air (Jomo Kenyatta International Atroort and Wilson Airport).

Nairobi is the headquarters of the national rail parastatal and is situated along the Great North Road that links the landlocked Uganda, Sudan, Rwanda, Burundi and other countries to the port of Mombasa. Uganda and South Sudan, in particular rely heavily on this transport corridor for international trade and relief aid to the later. This road link passes right through Nairobi. Plans are under way to develop major bypasses and link roads to decongest Nairobi by diverting commercial trucks away from the central business district.

1.3.1 Urban Growth

Kenya's population has steadily grown from 13.5 million in 1975 to an estimated 32.7 million in 2003. It is projected to be 44.2 million by 2015 [HDR05]. Urban population has also been growing steadily at a higher rate. In 1975, the total urban population was 12.9% with an estimate of 39.3% in 2003 and a projected growth to 51.8% by 2015 as reported by Transport Research Laboratory [TRL02]. This will result to an increased need for an efficient and effective transport network system or management policy for Nairobi and other urban centers.

Nairobi has experienced similar growth if not more resulting from rural urban migration, expansion of fringe areas and development. In 1963, the population was about 350,000 inhabitants, and this number increased to 828,000, 1,325,000 and 2,137,000 in 1979, 1989 and 1999 respectively [TRL02]. The high rate of population growth in Kenya, increasing demand for employment in the region will fuel continued rapid growth in Nairobi during the foreseeable future as reported by Post, Buckley International Inc [PB99]. According to the City Planning Department, Nairobi will continue to increase in population to 3,460,582 in 2007 however, the actual yearly percent increase in population is projected to steadily decline from 5.51% in 1997 to 4.95% in 2007 [PB99]. Within the next 10 years, nearly 1.3 million new residents will settle in the expanding metropolitan area, specifically the fringe areas where land is relatively affordable, generating more and longer trips than presently [PB99]. This is characterized by the rapid and huge housing development projects along Mombasa road (Mavoko/Athi River)

2 Peter Kimons in an article on the Daily Nation

Natrobi serves a large population from the neighboring districts on a daily basis for work, schools and college, hospital, industries and business. This is illustrated in Table 1-2:

	1979	1989			1999		
			Male	Female	Total	Arca (Km ²)	Density (per/Km ²)
Kenya			14,205,589	14,481,018	28,686,607	581,677	49
Nairobi District	828,000	1,325,000	1,153,828	989,426	2,143,254	696	3,079
Theka Destruct			323,479	322,234	645,713	1,960	329
Keambu District			369,101	374,909	744,010	1,324	562
Muranga District			164,670	183,634	348,304	930	375
Kajiado District			206,353	199,701	406,054	21,903	19
Machakos District			442,891	463,753	906,644	6,281	144

Table 1-1 Population of Kenya, Nairobi and other nearby districts. Transport Research Laboratory [TRI.02]

From table 1-1, neighboring districts are experiencing rapid growth which bears direct impact on the city with regard to heavy traffic flows during peak hours and supply of services which cannot meet daytime demands [TRL02]. Traffic demand outstrips the available resources notably infrastructure, human resource, and traffic control facilities.

1.3.2 Nairobi Road Network

The initial layout of Nairobi main road system was reasonably well planned and spacious, but its' development has not been able to keep up with the explosive growth of population and vehicular traffic [TRL02]. The current government has put forward initiatives to establish and implement a number of bypasses or circular routes through which long distance traffic can avoid the central business district. Going by travel demand forecasts, road network performance, and little or no emphasis on traffic management, the average travel speed will continue to decline even with the implementation of committed road improvements, based on present land use and demographic trends [PB99]. This will result to greater traffic delays, higher vehicle operating costs and more conflict between motorized, street pedestrian and non-motorized traffic. Results of a survey carried out in 1998 by the Ministry of Local Government reveal there are approximately 300km of main road and 850 km of access roads in Nairobi, including unpaved earth roads of which much is in a deteriorated condition.

1.3.3 Nairobi Traffic Volumes and Composition

Data collected along some 6 major entries and exists from Nairobi central business district in May 2002 [PB99] suggests there are less mass-hall vehicles compared to smaller or individual vehicles. Unuru highway has the most private cars but with the least small to mini buses. On the other end of the spectrum, Muranga road has less private vehicles and more small to mini buses. These statistics have a direct bearing on traffic congestion patters as experienced today.

1.3.3.1 Vehicle Population

Historical vehicle populations in Nairobi are 230,478 in 1989, 274,820 in 1994, and 320,072 in 1989 [TRL02]. A comparison of the historical and future conditions is as presented in Table 1-4 by [PB99]:

Network Operation Characteristics				
Ycar	Vehicle Kilometers	Vehicle hours of travel	Congested Speed: network Travel	
	Traveled (VKT)	(VHT)		
			speed (KM/H)	
1998	3,276,910	84,571	50.55	
2003	3,155,947	78,922	50.31	
2013	3,819,966	107,656	46.32	

Table 1-2 Network Operation Characteristics Post, Buckley International Inc [PB99]

From the Table 1-2, it seen that speeds decrease due to greater congestion as characterized by the VKT and VHT. VKT and VHT increase since additional vehicle throughput cannot be handled over the existing network. The net effect is longer period of congested travel over the network, slower travel speeds, higher vehicle operating costs, driver passenger frustrations leading to road rage and increased environmental degradation due to both noise and air pollution. As forecasted by the study, a 2.3% increase in average travel time from 1998 and 2003 and 3.5% increase from 2003 to 2013 are expected. Clearly, the issue of congestion and travel delay is of great concern today and will get worse in the future if not addressed.

1.3.3.2 Transportation Studies

There has been a number of transport planning initiatives for Nairobi City, however little implementation of resulting recommendation undertaken. Past plans are thus of interest primarily from the perspectives adopted and the extent to which these address the needs of the urban majority as shown in table 1-3:

Transport planning studies				
Study	Year	Underlying Principles		
Nairobi Metropolitan Growth Strategy	1973	• Use of Bus ways		
Nairobi Long-Term Transport Study	1989	Improvement of origin destination movement Improvement of pedestnan journey		

2 Peter Komans in an article on the Daily Name

Transport planning studies			
		Current and Future traffic demand management Environmental impact management Road network improvement Organize and coordinate bus and matatus system Increase traffic transport speeds, reducing congestion and improving safety	
Current Urban traffic situation KIPPR A ²	2004	 Impact of new traffic regulations on vehicles and commuters. 	

Table 1-3 Previous Transport planning studies Transport Research Laboratory [TRL02]Post, Buckley International Inc [PB99]

1.4 Problem definition

"Once upon a teme, when traffic lights governed motorists and roads bore less partholes, motorists' greatest agony was whether they would find lights and eide-mirrors of their parked cars intact"²

The Nairobi road network comprises more than 2000 km of road ranging from national highways linking Nairobi to other parts of the country, to unpaved earth tracks providing access to individual properties [PB99]. To minimize vehicle-operating costs and maximize utility of movement, a driver would benefit from an automatic route analysis for decision support.

To achieve optimum and environmental friendly vehicle usage, a pre-trip travel advisory, on road route guidance and route selection will be of need. The Ministry of Local Government has embarked on road bypass constructions and privatization of roads of which the taxpayer will pay for. Major investments in new bypasses or other expensive road infrastructure projects would be deferred in favor of a program of traffic management which is not capital intensive or with adverse environmental impact [PB99]. The Table 1-4 identifies affordable urban transport strategies as a basis of the research problem:

Urban Transport Strategy Matrix				
Urban Transport sub- sector	Insue or problem category	Problem diagnosis	Recommended Strategy	
	Road congestion and delay	Inadequate management of custing road capacity	Implementation of a traffic circulation and priority plan	
Road network	Manamize exposure of hazardous road shapments.	The railways infrastructure is poor and management wanting Shipments of hazardous products done via road network.	Determining the optimal route for shipment that minimizes both travel distance and population exposure along the route	
	Road finance and management priority	Management of rehabilitation sequence and priority	Implement balanced networ management and prioritized rehabilitation programme	
Traffic Management	Traffic Flow and	Poor management of existing	Implement real time adviso	

² Kenya Institute of Public Policy Research and Analysis

Peter Koman in an article on the Daily Name

Urban Transport sub-	losue or problem category	Problem diagnosis	Recommended Strategy
sector			
	Enforcement	road space	
		Lack of equipment for	
		effective traffic management	
	Demand Management	Rigid work rules causes	Implement flex-
		concentrated AM and PM	time/staggered work hours
		traffic in the CBD	that extend the traditional
			work hours of 82m-5pm to
		Unrestricted peak period	night.
		vehicle access in major	
		consdors results in high	Implement bus priority
		volumes and low service	measures.
		levels	

Table 1-4 Urban Transport Strategy Matrix Post, Buckley International Inc [PB99]

Currently, drivers depend on experience, intuition, radio traffic 'infomercials'' and traffic police to direct traffic: all of whom do not have hard facts on the global traffic status nor the future condition. As much as there are attempts by all entities to optimize their local situation, global optimization of the road network can not be achieved.

> "Naknow is 200 kilometers invery and one needs about two bours to get there, the same amount of time that a commuter needs to get to town from Umoja, one of the estates in Narrobi's Viastlands, just about 10 kilometers away, "

1.5 Proposed Solution

The solution to the problem of automated traffic routing and management is a hybrid artificial intelligence and GIS based decision support system.

This solution has an underlying database managed by a relational database management system (SQL Server 2005). The database contains three basic themes of data: Neural network data, road traffic count survey data and road network data.

A graphical user interface (GUI) with GIS forms the primary means of communication and data exchange. Built within the GUI is a neural network to learn the underlying traffic survey data and thereafter predict traffic speeds based on historical speeds. Closely coupled to this is a route search module which identifies the shortest path between any two points.

¹ Advertising used to send critical information to radio broadcast receivers

² Peter Komons in an article on the Daily Nation

In summary, the proposed solution uses the following:

- A geo-referenced road network of Nairobi,
- An artificial neural network to predict vehicle travel speeds at selected road intersections and identified as a node.
- A route analysis module employing the A* search algorithm.
- A GIS subsystem to handle spatial queries, analysis and visualization
- A relational database as a persistent data store for GIS, neural network data and traffic count survey data,
- A reliable operating system which supports multithread applications.

1.6 Project Objectives

"If people closurbers measure distance by the amount of time needed to drive through, then such yardsticks are useless in Narrobi and its enverons. " Peter Kimam

The research objective was to build a prototype automated route selection system from shortterm traffic prediction in Nairobi. The prototype uses data available from KIPPRA to simulate actual operations envisioned. To help achieve this objective, a set of questions were posed to define the boundary of the research area.

Main research questions

- 1) Is artificial intelligence capable of solving traffic management problems in Nairobi as an alternative to capital investment on road construction?
- 2) What framework is suitable for building an A.I, GIS decision support system for road network analysis?

Minor research questions

- How effective are artificial neural networks in predicting road traffic congestion in Natrobi?
- 2) Is the A* search algorithm an effective and efficient algorithm in automated traffic management and decision support?
- 3) How critical is visualization and spatial analysis in modern intelligent traffic management systems?
- 4) What role can amficial intelligence play in urban development and planning?
- 5) How can the Natrobi City Council better manage emergency services?
- 6) What is the state and accessibility of data in Kenya with respect to traffic management?.

"Den't mention Jagoo Road, at least ant from Landines Road which serves countryside bus terminus commonly known as Machahos amport. Here, people find it faster to walk than ride or drave into the city. The same is true of side roads that food into the city; by and by, the city is general ¹²

? Poler Kana

1.7 Project Hypothesis and Theory

Three sets of hypothesis were used to guide the development and subsequent conclusion of the project:

- 1) Neural networks as a universal function approximator can predict vehicular speeds on a read network given previous bistorical speeds and time.
- 2) Travel time as a the cost of traversing a road segment or junction as a function of impedance due to speed, congestion, width, surface type and security can be used as the basis of a benristic search (A*) in automatic route selection and decision support at a predicated time in the future.
- 3) Automated route analysis can be reduced to a static route analysis problem when time spans are taken and each time span has the road network at equilibrium.

1.7.1 Theoretical underpinning

- Neural networks are universal function approximators. This property is used in predicating travel speed given historical traffic speed parameters and associated environmental and temporal factors.
- Heuristic functions do not have theoretical underpinning but by experimenting and visualization one can observe phenomena caused by heuristic functions. The properties of the A* search (an admissible function) is used in determining the optimum route of vehicular movement at any time in the future with the aim of reducing congestion. For a good introduction on the A* search algorithm, refer to Russel and Norvig [RN95].
- Studies in equilibrium state that a system will attain equilibrium and a route not in use does not have a higher utility than the current in use.

1.8 Project Justification

"And for these using Monthaus Road, a change of cluthes might come in bandy when crerything stops and you are stuck there for days "?

Traffic congestion occurs when the volume of traffic on a roadway is high enough to become detrimental to its performance. In congested conditions, vehicle speeds are reduced, increasing drive times. These conditions are also frustrating for drivers leading to road rage and automobile accidents. Furthermore, vehicles burn unnecessary fuel when on idle. A period of extreme traffic congestion is known as a traffic jam. Traffic congestion is synonymous to Nairobi roads. Road rage is not alien to Nairobi as seen in the shooting of a matatu driver in July 2004 by Professor A. Obel inventor of Kemron an AIDS miracle cure.

² Peter Kaman as an article on the Daily Nation

Road rage also known as road violence is the informal name for deliberately dangerous or violent behaviors under the influence of heightened, violent emotion such as anger and frustration, with regard to the use of automobiles. Frustration with the road condition, along with perceived inconsiderate actions by other drivers results in a heightened emotional response (anger).

The traditional approach to reliving congestion is to build more and larger roads. However, for a variety of reasons as will be explored, this approach is no longer viable. Instead, the focus now is on improving the management of existing infrastructure.

1.8.1 Nairobi Congestion causes and solutions from pundit journalistic view

The print media has highlighted a number of articles and editorials on the issue of road congestion problems facing Nairobi and offered solutions, most of which have no bearing to any authoritative study done in recent history. Politicians have also had a fair share of ideas on the causes of road congestion with solutions not grounded in actual research. The table 1-7 is a summary of articles and views from various online resources on the matter of Nairobi traffic congestion.

Table 1-7 Selected Public Opinion on Road Congestion

Sample of public opinion on traffic in Nairobi	Cause of Congestion	Solution Offered	Remark
Raila explains delay in road works	Matatus are the cause of numerous congestion problems Dilapidated road network	Road repairs Expansion of selected roads to dual carriage way Privatization of road network	The solutions offered are in direct contrast to those recommended by the Post, Buckley International Inc [PB99]which emphasized traffic management not capital investment
Transport Licensing Board in plan to case congestion		 Land use change to parking Stop beensing of matatus on already congested routes. Privatization of bus parks 	The solutions have been offered but the cause of the problems has not been explicitly mentioned Some of the solutions are mentioned in the Nairobi Urban Transport plan 1998.
Taxus cause of parking nightmare	Taxis waiting for commuters		A solution to the taxi conundrum is not offered. Else where in the world, taxis are not allowed to stop and park in the CBD.
City traffic boss, Mascreti speaks out on law violation.	 Dilapidated city rods Number of vehicles has increased. Traffic lights are only at a few junctions and traffic islands while some need police intervention Poor enforcement of traffic regulations (Matatu menace, hawking) 	Report the offending motor vehicle to the traffic boss.	The solution aims are curbing road menace but does not address the issue of hawking on the streets, non functional traffic control equipment nor road condition. Post, Buckley International Inc [PB99]report suggests the enforcement of traffic regulations as a means of controlling traffic congestion.
For safety's sake, try double-decker busses	 Careless transport planning and lack of traffic management schemes Public service vehicles are not scheduled and do not observe 	 Capital and visionary long-term planning Immediate impact by introducing double-deckers to maximize road space. Bus scheduling Enforcing traffic regulations and tests 	The solution focuses on traffic management of public service vehicles and offers suitable affordable solutions that do not require heavy capital investment. The existing traffic rules are not being enforced as such there is much

2 Peter Kimani in an article on the Daily Nation

Sample of public opinion on traffic in Nairobi	Cause of Congestion	Solution Offered	Remark
	 traffic regulation Competition between non- motorized and motorized transport. Lack of pedestman facilities, hawkers, lack of traffic controls, poor education and attitudes. Fluman and vehicular Population growth 	 Purative measures for repeat traffic offenders. Legislature to control road safety and control. 	need to realize that the rules do exist but machinery to enforce is missing. There needs to be a critical change of attitude in Nairobi drivers with regard to traffic and road manners.
City transport under threat	 Public service vehicles are not scheduled Too many small operators Private vehicles replacing public vehicles 	 Promote the use of mass haul public transport Introduce public transport schedules. Provision of legal framework for public vehicle operations. 	The solutions offered clearly embrace the concept of traffic management as an alternative to capital intensive road upgrade and development programmes.
Roads project must work	Dilapidated roads	 Construct an elevated highway over Uhuru highway as well as other roads. Initiate a concession programme and private firms participation in road development 	The solutions offered are in direct contrast to those recommended from the Nairobi Urban Transport plan (1998) which emphasized traffic management not capital investment The use of concession might result to increased road use costs from tolls: might lead to further congestion on cheaper roads
Accidents reduced drastically, says report	 Small public transport vehicles Lack of route management 	 Phase out 14-scater matatus and replace with larger capacity vehicles Introduce route management. 	This is a viable solution that lends itself to the category of non-capital intensive. As suggested by the Post, Buckley International Inc [PB99] report, traffic management and use of mass transport vehicles will ease traffic congestion both in the short and medium term.
Traffic: Blaming	Lethargic approach to traffic	Enforce traffic regulations	The solution offered is on the realm of attitude change of drivers.

2 Peter Kemane in an article on the Daily Nation

Sample of public opinion on traffic in Natrobi	Cause of Congestion	Solution Offered	Remark
minuster unfair	management issues by government and policy makers.	Overhaul traffic control points, islands and junctions.	There is mention of the need to overhaul traffic rules that do not apply or conflict with each other on Nairobi roads.
Traffic ;ams: "Why I accuse the planners"	 Exponential increase in number of vehicles w.r.t mad capacity Low carrying capacity of roads especially at junctions, lack of ring roads Little or no compliance to traffic rules and regulations especially for matatu and other public service vehicles. 	 Reduce the number of vehicles by ensuring they are more expensive to acquire or by insisting on a decent standard of maintenance. Introduce shp lanes at junctions, addition of ring roads Enforce the traffic regulation thereby instituting proper road attitudes and behavior 	Majority of vehicles imported are small private vehicles whose duty is more often than not undervalued. Many financial institutions offer facilities for easy vehicle purchase in return keeping the log book as security making the process of owning a vehicle easy As for standards, only commercial vehicles are inspected hence control of private vehicles is not practical. Enforcement of the traffic act and regulation is a solution that can be immediately implemented. The solution offered by this article does indicate the potential of traffic management solutions arguably this right offer short reprive.
Transport Policy urgent	 No implementation of past policies or recommendations from studies Lack of a public transport management framework/policy Urban growth 	 Prohibition from venturing into the central business district to some vehicles (minibuses) Introduce congestion charges Introduce mass haul vehicles. Expanding existing infrastructure Adequate implementation of urban plans and recommendations of studies. 	The solutions discourage the proliferation of small public transport systems, which will encourage the use of mass haul vehicles. Introduction of congestion charges will increase the cost of vehicle operation, but in the long run, case the movement of the same. This has been suggested in the Post, Buckley International Inc [PB99] report. Expanding the existing infrastructure is a long term solution, but is capital intensive for short term gains and studies. There is need of government to implement results of studies and research carried out.

1.9 Project Motivation

Nairobi is experiencing a rapid rate of growth which is estimated at 5% per annum with a resulting increase in urban travel leading to greater traffic congestion. Within the next 10 years, nearly 1.3 million people are expected to contribute to this. It is more than necessary to have a plan or methodology of traffic prediction analysis in order to better prepare for optimum resource usage.

- This project is timely in suggesting a short to medium term solution to congestion problems.
- By being able to predict congestion and route traffic, it would be possible to manage public transport routes, rates and schedules as such manage the role of matatus and other forms of public transport.
- Traffic management and congestion analysis results can be targeted toward increasing public transport vehicle operating speeds, reducing overall congestion and improving traffic safety. This will also enable improved traffic laws enforcement, affecting traffic flow and safety.
- Congestion has a number of secondary effects which are symptomatic of poor urban transport management. These include:
 - O Pollution as evidenced by dying and dead vegetation by the side of roads,
 - O Road rage and other minor traffic offences,
 - O Numerous traffic accidents,
 - O Spiraling vehicle operating costs,
- Outputs of this study, will avail opportunities for other researches to delve more into the psychological aspects of congestion, road related stress and traffic associated pollution.
- Nairobi is a growing metropolitan city. Its' population of plus 3 million will benefit from short to medium term congestion control with possible vehicle operating costs reduction and efficient road management. The findings can be replicated to other towns and cities.

- Previous research has looked in to the cause of congestion with little emphasis on understanding the nature of congestion as a spatial temporal problem which is predictable and replicable.
- This study is a realization of a previous study Osoro [O05]. With the possibility of using the developed system for simulation.
- As an implementation of recommendations, other researchers can look into the possibility and cost benefit of using local technology to build, operate and maintain automated traffic counting equipment. This technology can be patented and sold as appropriate technology to other 3rd world countries.

1.10 Project Assumptions

"The rest of the sequence happened too fast: the "parking boy," graduated into "street bays," some armed with an arread of weapons that included human waste, and agments of the city became sussafe to renture through "?

- Road traffic is a dynamic phenomenon. For purposes of simulation, we can consider traffic to be static within some range of time to allow modeling and speed prediction using ANN.
- The existing traffic count data collected by KIPPRA at 30 minute interval (2004) will suffice to model an artificial neural network to simulate actual working environment,
- 3. A typical road in Natrobi has a vehicle carrying capacity of 1,200 vehicles per hour.
- The Greenshield linear model for macroscopic traffic flow based on limited data is a suitable mathematical representation of vehicle travel speed and road capacity.
- Any generated data will be within 10% confidence of actual observable data for the purpose of building neural networks for road segments where data is available.
- 6. The traffic in Nairobi shows a stable pattern.
- The speed of a vehicle within Natrobi is less than or equal to 50 km/hr as indicated in the Traffic Act.
- 8. In future, data collection will be via sensors sending data to a central database on real time.
- The node and link resistance values can be randomly generated as a fair representation of the status on ground.

2 Peter Kiman in an article on the Daily Nation

1.11 Report Summary

The report is organized into 6 Chapters. Chapter 1 gives an introduction to the project and in depth historical view of issues afflicting Nairobi traffic management. The project report assumptions, theory, and justification are presented concluding with a succinct report summary.

Chapter 2 introduces forecasting in general with specific focus on vehicular traffic. A brief introduction is given on traffic flow theorem as developed by Greenshield which is the cornerstone of this project. An introduction to neural network models and architecture is presented with a more in depth look to time series forecasting using neural networks is presented. A more detailed approach to neural network design in presented and looks at the development of neural networks as time series forecasting modules, use of lag windows to forecast time based events neural data processing, network training and control of over fitting. Since the feedfoward back propagation neural network model is used, a brief discussion is presented on BPN networks and the motivation on its selection as compared to other models. A succinct treatment of search algorithms is presented focusing on A* and Dijikstra search. A brief introduction is presented on role of decision support systems and GIS in the context of this project culminating with architecture requirements in road network topology design

Chapter 3 identifies the methodology used to conduct this study. This includes sources of data and actual surveys, questionnaires issued and system architecture. A detailed treatment is given on the process of digitizing the road network, design of the database and neural network. Data flow diagrams to level 3 are presented with an entity relation diagram of the database. A justification is presented on the use of MLP neural network as opposed to other models. Specific emphasis is given to the process of saving neural network weights and recall for the same since this is used in the speed prediction process. As the neural network is a core module of the system, a module test using IRIS dataset is presented with results proving the source code is correct.

2 Peter Konase in an article on the Daily Nation

-16-

Chapter 4 presents the system implementation and integrity tests carried out. The hardware, software and implementation process is reported culminating with a proposed mode of use and training frequency of the neural network.

Chapter 5 presents the results obtained. This includes detailed neural network training results and following the training pattern introduced in chapter 3 and 4.

Chapter 6 concludes the research work and presents recommendations for further research.

Chapter 7 presents the references and bibliographies with appendices A to I containing supporting results and source code.

2 Literature Review

2.1 Introduction

2.2 Traffic Forecasting

Traffic congestion is a predictable man made phenomena. Congestion is not a new pandemic afflicting modern man. Julius Caesar became so frustrated by traffic congestion that he banned the movement of carts during daylight hours Kornhauser et al [KB06]. In a bid to discover volume trends across time (peek hours) in metropolitan Atlanta, Georgia roads, Kornhauser et al draw the conclusion that traffic demand drops drastically during non peak hours of the day, yet providing efficient and affordable public transportation is extremely difficult. Travelers without traffic reports and forecasts are only able to plan a route then hope there is minimal traffic congestion on their chosen path.

In a related study, Florian [F99] presents a flexible modeling approach to alleviate current challenges in urban transport with related pollution. In this study, the issue of congestion is approached from the principle of equilibrium. Florian identifies environmental pollution as a fundamental objective in planning and understanding the phenomena of congestion and traffic [F99].

Sherif et al [SPC00] introduce an approach to optimize the short term traffic prediction performance using multiple topologies of dynamic artificial neural networks and various network-related and traffic related settings by deploying multi-modal approaches under parameters and traffic condition settings.

2.2.1 Forecasting Models

Prediction or forecasting is the process of generating information for the possible future development of a process from data about its past and its present development Kasabov [K98]. Kasabov identifies three different tasks to be distinguished under the generic prediction problem:

1. Short-term prediction - default meaning of the word prediction

- Modeling, which is finding global underlying structures, models, and formulas, which can explain the behavior of the process in the long run and can be used for long-term prediction as well as for understanding the past.
- 3. Characterization, which is aimed at finding fundamental properties of the process under consideration, such as degrees of freedom.

Challenges in solving prediction problems requiring resolution before any serious prediction work is carried out [K98]:

- 1. Determine if the process id predictable.
- 2. Determine the type of data available and the process subject to prediction.
- 3. Determine the right features for presenting the prediction problem.
- 4. Identify amount of historical data required for a good prediction.

5. Identify a methodology which will be used to test the accuracy of the prediction. No single method is expected to be the best method under all circumstances to provide travelers with individual travel time information for a limited part of a route Versteegt et al [VT03]. By reviewing the state of the art of travel time prediction methods carried out to obtain insight into the strength and weaknesses of existing methods, Versteegt et al [VT03] categorize prediction into two classes: explanatory based (simulation) and extrapolation based (statistical based). In order to justify their approach, Versteegt et al compile a prediction horizon shown in figure 2-1 illustrating the predictive strength of various methods from statistical regression to neural network system.

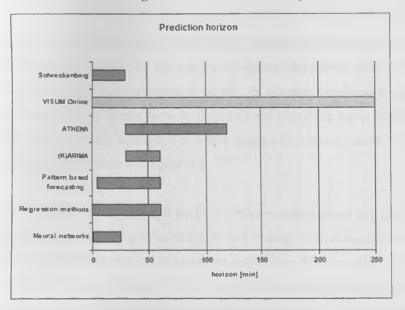


Figure 2-1 Prediction horizon showing predictive strengths of various methods. From figure 2-1, Versteegt et al [VT03], conclude that :

- O Most methods have a threshold in terms of prediction horizon,
- O Horizons overlap by several methods
- O No single method is best

Jacobs [J03] deploys a feed forward artificial neural network to predict average speed in Holland from loop detector data. By using a lag window of historical speed from a loop detector, Jacobs is able to predict a single step ahead forecast of traffic. Yasdi [Y99] demonstrates the effectiveness of a neural network system for prediction of congestion using traffic volume. Unlike Jacobs [J03] whose neural network parameters include time, day of week, month, weather, holidays and events, Yasdi [Y99] only uses traffic volumes to predict congestion.

You et al [YK00], propose an architecture and data flow for a system to predict travel time. In addition to this, they review various technologies that have been used for developing a travel time forecasting model with geographic information systems (GIS) technologies to be employed for location based services. You et al [YK00] conclude that data to estimate travel times is delayed information due to the dynamic nature of network traffic as such cannot be guaranteed to be a true representation. Park et al [PSH]05] shows that for certain future time periods (e g. 60 minutes later from now) travel time forecasting using only the historical profile without real-time profile is better than one using real-time profile or both.

Without exception, a traffic conditions change rapidly and dynamically as time goes by, thus traffic conditions cannot be the same as the conditions when travel times are initially estimated in traffic management information centers. In essence, travel time forecasting models could reduce the difference between estimated and actual link travel times. You et al [YK00] diagrammatically highlight a data flow diagram to predicted travel times and calculate shortest paths as shown in figure 2-2.

From figure 2-2, a database of historical traffic surveillance data is stored in a data warehouse. Online, real-time data collection tools and systems (closed circuit television, GPS probe cars, loop detectors e.t.c) continuously collect data. Both historical and real time data is staged though a process of data fusion and presented to a forecasting system. GPS data also verifies and fine-tunes the prediction system's results. From the traffic prediction results, the shortest path is determined.

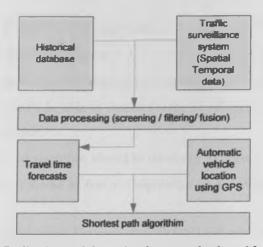


Figure 2-2 Predict time and determine shortest path adopted from [YK00]. Kisgyergy et al [KR02] build a real time travel time prediction model for the freeway network of San-Antonio based on information collected by the loop sensor, GPS system, and later use the predictions for traffic management and advance traveler information systems. Kisgyergy et al [KR02] use a multi-step ahead feed forward neural network for prediction which outperforms as a single step neural network.

Fu-Sheny et al [FJ61] consider use of ANN for modeling and controlling traffic flow on the macroscopic level to accurately model the dynamics of the traffic flow and then control the traffic density hence force it to follow a desired pattern. Lingras et al [LS99] survey automatic traveler information systems and related research including various approaches used to predict traffic volumes in the short-term future. The ability to manage traffic congestion has a direct relationship with how accurate forecasting of traffic conditions in the short-term future. Optimization of driver route selection in response to future real-time road and traffic conditions can help alleviate road congestion and its associated problems. Lingras et al identify critical features in such systems as listed:

- 1. Route guidance system should use minimum and maximum values of projected travel times in determining the best route for a particular trip.
- 2. Typical input for traffic prediction should include:
 - Previous traffic data (avoid late night and early morning)
 - Modeling based on data of the same day historically.
 - Impact of events based on similar events in history (previous year)
 - Incident data to be used

- 3. Characteristics to aim at in the final model:
 - System should be adaptive,
 - System should be able to process time series,
 - System should be able to output a range of values as opposed to a single precise output,
 - The forecast algorithm should be resistance to noise,
 - The system should be fast in computation speed, and result formulation.

The benefits of traffic optimization Praween et al [PVD03] and route management can result in:

- 1. Reduced road travel time and cut down on unnecessary journeys,
- 2. Reduced stress levels,
- 3. Congestion avoidance,
- 4. Avoidance of unsafe driving conditions,

Finally, Demetsky et al [DMSS98] explore the potential for using case-based reasoning, on emerging artificial intelligence paradigm, to overcome real-time traffic flow routing congestion problems. This research develops a prototype CBR routing system, for the interstate network in Hampton Roads Virginia. CBR has the potential to overcome realtime routing and congestion management thus leading to significant user cost saving. It can be concluded that:

- Managing traffic flow through real-time guidance has emerged as one of the promising approaches to alleviate congestion.
- An effective traffic management decision support system must be able to function in real time. As soon as traffic conditions change such as when an incident occurs, routing strategies must be revised to mitigate the effects.

2.2.2 Types of Data Used

Different researches have used different parameters to predict congestion using a neural network. The table 2-1 shows a list of past research and primary data type:

You et al [YK00]	GPS location data, travel speed and travel time
Kisgyergy et al KR02]	Travel speed, vehicle occupancy, traffic volume, GPS location

	data
Fu-Sheny el al [FJ61]	Vehicle flow rate, jam density, vehicle travel speed
[Yasdi [Y99]	Day of the week, traffic volume
Jacobs[]03]	Time, day of week, month, weather, holiday, events, vehicle speed.
Park et al [PSHJ05]	Historical travel time, cost , travel speed
Kisgyergy et al	Vehicle speed, road occupancy, traffic volume, GPS location,
[KR02]	time

The common data element collected is travel speed, traffic flow and density. Studies in traffic flow behavior have shown that the three parameters (speed, density and flow) describing uninterrupted traffic stream are pair wise dependent.

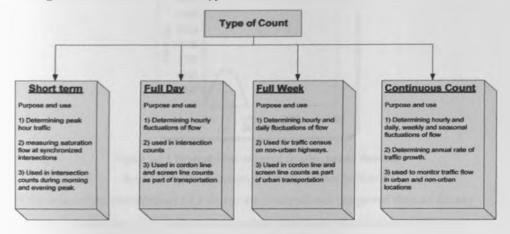
2.2.3 Traffic Volume (Flow)

Traffic flow is one of the fundamental measures of traffic on the road system. Since traffic is composed of a number of vehicle types for instance Lorries, trailers, busses, the traffic volume is normally converted into equivalent passenger units (PCU) by using vehicle equivalent factors. The table 2-2 is a sample derived from KIPPRA for converting vehicle counts to equivalent PCU.

factor	Car	Matatu	Bus	Lorry
Car	1.00	1.50	2.00	2.50
Car	1.00	1.50	2.00	2.50

Table 2-2 Equivalent passenger units from KIPPRA data

The passenger unit of a vehicle depends upon the size and the speed of the vehicle, type and kind of road environment. They are generally not dependent on the surface type and road width Okioga [O04].


2.2.3.1 Importance of "flow/volume" in highway transport studies

Volume counts are used as parameters to establish:

- Relative importance of a given road in traffic system
- Variations in levels of traffic flow over time
- Extent of the utilization of a facility in terms of its capacity to carry traffic
- The distribution of travel demand in a network.

2.2.3.2 Type of volume counts and their uses

The figure 2-3 shows the different types of counts based on durations of study.

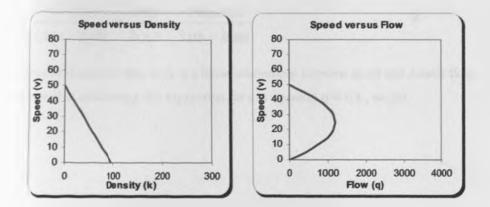


Figure 2-3 Type of Traffic Counts

From figure 2-3, most studies in Kenya are continuous counts and are carried out by the Ministry of Transport. The Kenya Institute of Public Research and Policy carry out short term while the Ministry of Local Government under the Kenya Urban Transport Infrastructure Programme carry out full week. Multilateral donors like the European Community and the Japanese International Aid carry out short term studies for selected studies.

2.2.3.3 Greenshield's Model

Studies in traffic flow behavior have shown that the three parameters (speed, density and flow) describing uninterrupted traffic stream are pair wise dependent. There exists a relationship between speed and density, flow and density and speed and flow Partha et al [PA]. Figure 2-3.1 shows typical plots of speed-density, speed-flow and flow-density data.

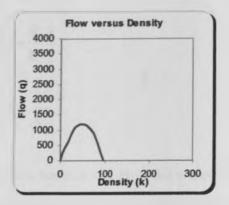


Figure 2-3.1 Typical plots of speed density, speed flow and flow-density for uninterrupted traffic stream in Nairobi

If the immediate surroundings of a driver are cramped and congested then as density increases, drivers for safety reasons reduce their speed and vice versa. In 1930, Greenshield based on limited data was able to develop a model of uninterrupted traffic flow that predicts and explains the trends that are observed in real traffic flows. While Greenshield's model is not perfect, it is fairly accurate and relatively simple linear model. Greenshield made the assumption that, under uninterrupted flow conditions, speed and density are linearly related.

The fundamental traffic theory states that the three basic variables of traffic namely, its flow, speed (space-mean speed) and density have a relationship with each other so that

1

$$q = uk$$

The units of u if given in vehicles per hour and density if given in vehicles per lane per km, would yield a flow rate given in vehicles per lane per hour.

$$\frac{vehicles}{lane \times hour} = \frac{kms}{hour} \times \frac{vehicles}{km \times lane}$$
 2

Greenshield assumed that there is a linear relationship between speed and density flow, expressed as substituting this expression for u in equation q = u k, we get

$$u = u_f - \frac{u_f}{k_j}(k) = u_i \left(1 - \frac{k}{k_j}\right)$$
$$q = k u_f \left(1 - \frac{k}{k_j}\right) = u_f \left(k - \frac{k^2}{k_j}\right)$$

Which expresses q as a parabolic function of k. From this it is evident that q is a point on the curve where the slope of a line tangent to the curve is equal to zero and where k = k; therefore, differentiating this equation with respect to k, and setting it equal to zero, we get

3

$$\frac{dq}{dk} = u_j \left(1 - \frac{2k_m}{k_j} \right) = 0$$

Since u cannot be equal to zero,

$$1 - \frac{2k_m}{k_j} = 0 \quad \text{or} \quad k_m = \frac{k_j}{2} \qquad 5$$

Next, we derive an expression for q as a function of u where,

$$u - u_f = u_f \frac{-k}{k_j}$$
 and $k = k_j \left(1 - \frac{u}{u_f} \right)$ 6

Therefore from q = u k and substituting this expression for k, we get

$$q = uk_j \left(1 - \frac{u}{u_f} \right) = k_j \left(u - \frac{u^2}{u_f} \right) \qquad 7$$

Which expresses q as a parabolic function of u. This relationship also indicates that for a given value of the flow rate, q there are two corresponding values of k and u. This represents the two flow conditions, where a flow rate q under free flow condition, is

achieved at a higher speed (u > u) obtained under a lower (d < d) density which is also equal to the same flow rate q, that achieved at a lower speed (u < u) at a higher density (d > d) under congested flow condition. Furthermore, differentiating with respect to u and setting it equal to zero, we obtain

$$\frac{dq}{du} = k_j \left(1 - \frac{2u}{u_f} \right) = 0 \qquad 8$$

Since k cannot equal zero at q

$$1 - \frac{2u_m}{u_f} = 0 \quad \text{and} \ u_m = \frac{u_f}{2} \qquad \text{g}$$

Therefore,

$$q_m = u_m k_m = \frac{u_f k_j}{2} \frac{k_j}{2} = \frac{u_f k_j}{4}$$
 10

The following can be derived from Greenshield's model:

- When the density is zero, the flow is zero because there are no vehicles on the roadway.
- As the density increases, the flow also increases to some maximum flow conditions.
- When the density reaches a maximum, generally called *jam density*, the flow must be zero because the vehicles tend to line up end to end (parking lot conditions).
- As the density increases the flow increases to some maximum value, but a continual increase in density will cause the flow to decrease until jam density and zero flow conditions are reached.

2.2.4 Time Series Data

Time series forecasting, or time series prediction, takes an existing series of data $x_{t-2}, x_{t-2}, x_{t-1}, x_t$ and forecasts the x_{t+1}, x_{t+2}, \dots data values. The goal is to observe or model the existing data series to enable future unknown data values to be forecasted

26

accurately. Examples of data series include financial data series (stocks, indices, rates, etc.), physically observed data series (traffic volume, sunspots, weather, etc.), and mathematical data series (Fibonacci sequence, integrals of differential equations, etc.). The phrase "time series" generically refers to any data series, whether or not the data are dependent on a certain time increment. Throughout the literature, many techniques have been implemented to perform time series forecasting. Several difficulties can arise when performing time series forecasting. Depending on the type of data series, a particular difficulty may or may not exist.

A first difficulty is a limited quantity of data. With data series that are observed, limited data may be the foremost difficulty. Limited data may result to a model overfitting the data available resulting to poor generalization or where the model parameter are more than the data, this also leads to the model not being able to learn the data in any way.

A second difficulty is noise. Two types of noisy data are (1) erroneous data points and (2) components that obscure the underlying form of the data series. Two examples of erroneous data are measurement errors and a change in measurement methods or metrics. A technique used in to reduce or remove this type of noise is the moving average. The data series $\dots, x_{t-4}, x_{t-3}, x_{t-2}, x_{t-1}, x_t$ becomes

 $\lim_{n \to \infty} [(x_{i-4} + x_{i-3} + x_{i-2})/3], [(x_{i-3} + x_{i-2} + x_{i-1})/3], [(x_{i-2} + x_{i-1} + x_i)/3]$ after taking a moving average with an interval *i* of three. Taking a moving average reduces the number of data points in the series by i-1. A third difficulty is nonstationarity, data that do not have the same statistical properties (e.g., mean and variance) at each point in time. A simple example of a no stationary series is the Fibonacci sequence: at every step the sequence takes on a new, higher mean value. A fourth difficulty is forecasting technique selection. From statistics to artificial intelligence, there are myriad choices of techniques. One of the simplest techniques is to search a data series for similar past events and use the matches to make a forecast. One of the most complex techniques is to train a model on the series and use the model to make a forecast. K-nearest-neighbor and neural networks are examples of the first and second techniques, respectively.

2.2.4.1 Importance of Time Series data

Time series forecasting has several important applications:

- One application is preventing undesirable events by forecasting the event, identifying the circumstances preceding the event, and taking corrective action so the event can be avoided.
- Another application is forecasting undesirable, yet unavoidable, events to preemptively lessen their impact for instance, in this case traffic congestion.
- Finally, many people, primarily in the financial markets, would like to profit from time series forecasting Muhoho [M05].

2.3 Artificial Neural Networks

2.3.1 Neural Network Description

Efraim et al [EAL04] classifies neural networks and other learning algorithms as displayed in figure 2-4.

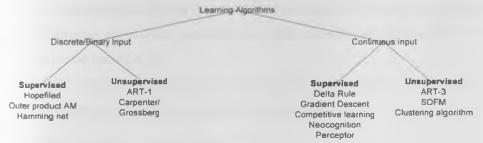


Figure 2-4 Learning Algorithms

Etraim [E95] presents the difference between natural and artificial intelligence. A list of the advantages of artificial intelligence versus natural intelligence:

- 1. A.I is permanent: from a commercial and business continuity perspective natural intelligence is perishable,
- 2. A.I. offers ease of duplication and dissemination,
- 3. A.I. can be less expensive therefore human effort expensive over the long run,
- 4. A.I. is consistent and thorough with predicable results. Human beings are irrational and erratic,
- 5. A.I. is documented: use of trace, logging. Natural intelligence is difficult to reproduce.

Conversely, the Advantages of Natural Intelligence over A.I. are:

- 1. Creativity,
- 2. Use of sensory and feed back to improve and adapt,
- 3. Wide context of experience and logic,

2.3.1.1 What is an artificial neural network

A sampling of definitions from Sarle [S02]:

- a neural network is a system composed of many simple processing elements operating in parallel whose function is determined by network structure, connection strengths, and the processing performed at computing elements or nodes.
- A neural network is a massively parallel-distributed processor that has a natural propensity for storing experiential knowledge and making it available for use. It resembles the brain in two respects:
 - o The network through a learning process acquires knowledge.
 - Interneuron connection strengths known as synaptic weights are used to store the knowledge.
- A neural network is a circuit composed of a very large number of simple processing elements that are neurally based. Each element operates only on local information. Furthermore, each element operates asynchronously; thus, there is no overall system clock.
- Artificial neural systems, or neural networks, are physical cellular systems which can acquire, store, and utilize experiential knowledge.

2.3.1.2 Types of artificial Neural Networks

There are many kinds of ANNs. Table 2-4 is a collection of some of the most well known methods. The two main kinds of learning algorithms are supervised and unsupervised as described in table 2-4.

2.3.1.2.1 Supervised Learning Artificial Neural Networks

In supervised learning, the correct results (target values, desired outputs) are known and are presented to the ANN during training so that the ANN can adjust its weights to try match its outputs to the target values. After training, the ANN is tested by giving it only input values, not target values, and seeing how close it comes to outputting the correct target values [RN95], [S02].

2.3.1.2.2 Unsupervised Learning Artificial Neural Networks

In unsupervised learning, the ANN is not provided with the correct results during training. Unsupervised ANNs usually perform some kind of data compression, such as dimensionality reduction or clustering. The distinction between supervised and

unsupervised methods is not always clear-cut. An unsupervised method can learn a summary of a probability distribution, then that summarized distribution can be used to make predictions [RN95], [S02].

2.3.1.2.3 Network Topologies for Artificial Neural Networks

Two major kinds of network topology are feedforward and feedback. In a feedforward ANN, the connections between units do not form cycles. Feedforward ANNs usually produce a response to an input quickly. Most feedforward ANNs can be trained using a wide variety of efficient conventional numerical methods [S02]. In a feedback or recurrent ANN, there are cycles in the connections. In some feedback ANNs, each time an input is presented, the ANN must iterate for a potentially long time before it produces a response. Feedback ANNs are usually more difficult to train than feedforward ANNs [RN95], [S02]. Table 2-4 illustrates some well-known kinds of ANNs:

Artificial neural Network		Pioneers
Supervised Feedforward	Linear Feedforward MLP: Multilayer perceptron RBF networks Classification only	 Hebbian - Hebb (1949), Fausett (1994) Perceptron - Rosenblatt (1958), Minsky and Papert (1969/1988), Fausett (1994) Adaline - Widrow and Hoff (1960), Fausett (1994) Higher Order - Bishop (1995) Functional Link - Pao (1989) ML.P: Multilayer perceptron - Bishop (1995), Reed and Marks (1999), Fausett (1994) Backprop - Rumelhart, Hinton, and Williams (1986) Cascade Correlation - Fahlman and Lebiere (1990), Fausett (1994) Quickprop - Fahlman (1989) RPROP - Riedmiller and Braun (1993) RBF networks - Bishop (1995), Moody and Darken (1989), Orr (1996) OLS: Orthogonal Least Squares - Chen, Cowan and Grant (1991) LVQ: Learning Vector Quantization - Kohonen (1988), Fausett (1994) PNN: Probabilistic Neural Network - Specht (1990), Masters
Supervised Feedback	Feedback BAM: Bidirectional Associative Memory	 (1993), Hand (1982), Fausett (1994) Hertz, Krogh, and Palmer (1991), Medsker and Jain (2000) BAM: Bidirecuonal Associative Memory - Kosko (1992), Fausett (1994)
	Associative Memory Boltzman Machine Recurrent time series	(1994) Boltzman Machine - Ackley et al. (1985), Fausett (1994) Backpropagation through time - Werbos (1990) Elman - Elman (1990)

Artificial neural Network		Pioneers
		FIR: Finite Impulse Response - Wan (1990)
		Jordan - Jordan (1986)
		Real-time recurrent network - Williams and Zipser (1989)
		Recurrent backpropagation - Pineda (1989), Fausett (1994)
		TDNN Time Delay NN - Lang, Waibel and Hinton (1990)
	Unsupervised	- Hertz, Krogh, and Palmer (1991)
	Competitive,	Grossberg - Grossberg (1976)
	Vector	Kohonen - Kohonen (1984)
	Quantization	Conscience - Desieno (1988)
	Competitive Self-	Kohonen - Kohonen (1995), Fausett (1994)
	Organizing Map	GTM: - Bishop, Svensen and Williams (1997)
		Local Linear - Mulier and Cherkassky (1995)
	Adaptive resonance	ART 1 - Carpenter and Grossberg (1987a), Moore (1988), Fauset
	theory	(1994)
		ART 2 - Carpenter and Grossberg (1987b), Fausett (1994)
		ART 2-A - Carpenter, Grossberg and Rosen (1991a)
Unsupervised		ART 3 - Carpenter and Grossberg (1990)
		Fuzzy ART - Carpenter, Grossberg and Rosen (1991b)
		DCL: Differential Competitive Learning - Kosko (1992)
	Dimension	Diamantaras and Kung (1996)
	Reduction	Hebbian - Hebb (1949), Fausett (1994)
		Oja - Oja (1989)
		Sanger - Sanger (1989)
		Differential Hebbian - Kosko (1992)
	Autoassociation	Linear autoassociator - Anderson et al. (1977), Fausett (1994)
		BSB: Brain State in a Box - Anderson et al. (1977), Fausett (1994)
		Hopfield - Hopfield (1982), Fausett (1994)

Table 2-4 Various Kinds of Neural Networks available [S02].

2.3.1.3 When to not use a neural network

Neural networks are universal approximators able to map any data to a model Tsai et al [TLW05], Zhang [Z04], Fu-Sheny [Fj61]. However there are inherent shortcomings of computers and neural networks in particular making them impractical to consistently use:

- Cannot formulate on algorithmic solution
- Need to generate lots of examples of the behavior
- Need to pick out the structure from existing data
- Massive parallelism is required,

2.3.1.4 Fundamentals of Neural Networks

Neural networks, sometimes referred to as connectionist models Russel et al [RN95], Bishop [B95], Looney [L00], are parallel-distributed models that have several distinguishing features:

- A set of processing units,
- An activation state for each unit, which is equivalent to the output of the unit;
- Connections between the units. Generally each connection is defined by a weight that determines the effect that the signal of one unit onto another unit;
- A propagation rule, which determines the effective input of the unit from its external inputs;
- An activation function, which determines the new level of activation based on the effective input and the current activation;
- An external input (bias, offset) for each unit;
- A method for information gathering (learning rule);
- An environment within which the system can operate, provide input signals and, if necessary, error signals.

2.3.1.5 Processing unit

A processing unit in figure 2-8 is also called a neuron or node, performs a relatively simple job; it receives inputs from neighbors or external sources and uses them to compute an output signal that is propagated to other units. ANN are modeled after the biological neuron [RN95].

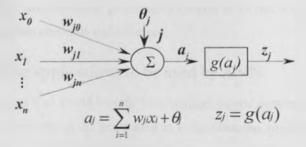


Figure 2-5 Processing Unit

Within the neural systems there are three types of units:

- Input units, which receive data from outside of the network;
- Output units, which send data out of the network;
- Hidden units, whose input and output signals remain within the network.

Each unit / can have one or more inputs x x₁ x₂ ... x_n, but only one output z.
 An input to a unit is either the data from outside of the network, or the output of another unit, or its own output.

Neural networks can provide good results in short time scales but only for certain types of problem, with great deal of care taken over design and input data pre-processing Dti [D94]. ANN should be considered as components within overall application – not as solutions in their own right use in expert systems

2.3.1.6 ANN attributes

Attributes of artificial neural networks that need to be considered before extensive use or deployment:

- Learning from experience: need lots of data
- · Generalizing from examples: high levels of generalization rules
- Extract essential information from noisy data: recognize patterns underlying process noise
- Develop solutions faster with less radiance on domain expect; to some extent but require expects in architecture design, inputs especially and result use
- Adaptability: learn "on the job" solutions can be designed to adapt to their operating environment
- Computational efficiency: training requires computational power but once trained, very easy to use. Parameter pruning processing can be used to speed up training
- Non-linearity: are non-linear processors thus able to fit real world problems much easier than conventional solutions

2.3.1.7 Identifying applications to be used by ANN

Identifying applications that would benefit from artificial neural network requires a keen sense of the overall outcome of the processing be it classification, prediction or getting missing values for data. Dti [D94] have developed a process of ANN development to speed up the process of evaluation.

2.3.1.7.1 Technical features

1 The application deals with poor quality or incomplete data,

- 2. The application requires integration of different types of input data e.g. a combination of computer data and signals from sensors or agents,
- 3. It is difficult to specify a model for mathematical simulation, or rules for acknowledge based system,
- The application needs to be adaptive i.e. the neural network must be capable of learning during operation, adopting its responses as the operating environment slowly charges.
- 5. Input data and target data is available: need to have sufficient data to train, validate and test ANN

2.3.1.7.2 Practical requirements

- 1. Availability of adequate resources: people, equipment, time and money, learning
- 2. Need to evaluate safety critical or business critical applications to provide castiron proof of ANN. Rules in decision making might be difficult to glean.
- 3. Costs of obtaining and processing data is much lower than the benefits
 - i) collection of data
 - ii) researching of data / phenomena
 - iii) storage of data and communication

2.3.1.8 Pre-processing and post processing

Pre-processing describes any process that converts inputs into a form suitable for use within a neural network. Post processing describes any process which operates on the ANN output. Dti [D94], Mbugua [M05] identify critical steps in preprocessing include:

- 1. Transforming the data into a form suitable to the ANN
- 2. Selection of the most relevant data thus eliminate noisy, irrelevant sets from the data available for modeling,
- 3. Minimize the number of input to the ANN as found in image processing applications where too much data slows down the learning process or wholly results to over fitting thus poor generalization.

The importance of preprocessing is to reduce network complexity and the computational ume. Designing and training neural networks is a computer intensive process. An essential component of the process is focused on reducing network complexity with respect to inputs required and hidden processing elements required to achieve good performance and accurate generalization. Generalization is the ability to give accurate answers on data that it has not seen as part of the training process. The achievement of good generalization is a key design aim, it is achieved by careful choice of neural network architecture and amount of training applied to the artificial neural network. Good generalization results from good performance. Performance is the predictive accuracy when presented with data other than that with which it has been trained. The figure 2-6 illustrates the process of developing an artificial neural network.

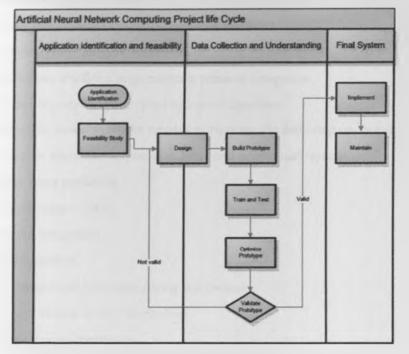


Figure 2-6 Artificial Neural Network computing Project life Cycle

2.3.1.9 Cross validation testing

Cross-validation is a method for estimating generalization error based on "resampling" Sarle [S02], Ian et al [IW99]. The resulting estimates of generalization error are often used for choosing among various models, such as different network architectures. Crossvalidation can be used simply to estimate the generalization error of a given model, or it can be used for model selection by choosing one of several models that has the smallest estimated generalization error.

2.3.2 Neural Network Application Areas

Artificial neural networks can be used in areas where hard and fast rules (such as those that might be used in an expert system) cannot easily be applied as seen earlier. Almost any finite-dimensional vector function on a compact set can be approximated to arbitrary precision by feedforward neural network (which are the type most often used in practical applications) given there is enough data and computing resources.

There are also many other important problems that are so difficult that a neural network will be unable to learn them without memorizing the entire training set, such as:

- Predicting random or pseudo-random numbers.
- Factoring large integers.
- Determine whether a large integer is prime or composite.
- Decrypting anything encrypted by a good algorithm.

Not withstanding, neural networks are able to carry out the following operations:

- Function approximation on both linear and polynomial systems
- Time series prediction,
- Classification of data,
- Pattern recognition,
- Fault diagnosis,
- Equipment and plant monitoring and control,
- Pattern analysis in data warehouses,
- Image & signal processing
- Process modeling.

Zhang [Z04] gives a general overview of neural networks, design consideration, previous work done on forecasting, dataset consideration and performance testing. His overview identifies a number of application areas where ANN has been deployed as seen research by Zhang. In addition Zhang prescribes a series of steps and conditions to be taken when developing any neural network model for forecasting purposes.

2.3.3 Advantage of Artificial of Neural Networks

Versteegt et al [VT03], identify the following advanteges using artifual neural networks:

- 1. Computationally fast to give result once trained,
- 2. Relatively fast to implement relative of other learning systems,
- 3. No behavioral knowledge required to model data using neural networks,
- 4. Learning ability is data and architecture based,
- 5. Auto organization: Can create its own representation of the data given in the learning process

- 6. Tolerance to faults: Because ANN store redundant information, partial destruction of the neural network do not damage completely the network response
- Flexibility: ANN can handle input data without important changes like noisy signals or other changes in the given input data.
- 8. Real time: ANN are parallel structures thus can benefit from multiprocessor
- 9. Scalability: ANN can be easily be parted to fit any problem from a particular area.
- 10. Data representation: Can take discrete numeric / non numeric and or continuous data as input / output.
- 11. Can work with both continuous and discrete data.

2.3.3.1 Disadvantage of artificial neural networks

Versteegt et al [VT03] identify the following disadvantategs of using artifual neural networks:

- 1. Training requires lots of data,
- 2. The individual relations between the input variables and the output variables are not developed by engineering judgment so that the model tends to be a black box or input/output table without analytical basis.
- 3. No reliable outcome for situations the network is not trained for.
- 4. Minimizing overfitting requires a great deal of computational effort

Zhao et al [ZCK03], Adva et all [AC98] in a related study attempt to reproduce past research results on ANN to corroborate findings highlight a major disadvantage of artificial neural networks: development and application of neural networks is no easy feat. From this study, they conclude the following:

- It is harder to obtain substantial improvements in extrapolative forecasting with ANN than might be assumed reading earlier studies.
- It is important for researchers to fully document and publish research details and data for reproduction and replication. (Replication should be done as soon as published material is available to note missing assumptions / data).
- When ANN are effectively implanted and validated, they show potential for forecasting and prediction.
- Significant portion of ANN research in forecasting and prediction lacks validity

• It is not easy to replicate studies as such the need for systematic approach in dealing with data mining Mbugua [M05].

2.3.4 Forecasting using Neural Networks

Tang et al [TF93] report on neural nets as models for time series forecasting inspired by the inconsistency of reported neural network performance. By conducting a series of forecasting experiments using neural networks and comparing the results with the conventional Box-Jenkins method they are able to demonstrate that neural nets outperform the Box-Jenkins method hence are suitable for forecasting problems. Frank et al [FD01] observe the importance of correctly specifying the sliding window size for a forward feed neural network based forecaster. Better forecasting (reduced error) is obtained by embedding a correct sliding window size. Large variation of the window diminishes performance. Corani et al [CCG03] apply a neural network on PM10 time series data to predict a 1 day ahead PM10 for Milan. By visualization they are able to observe the cyclic nature of data. Niraj [N03] uses similar framework model to model air pollution. In a related study to demonstrate the use of ANN to predict the seasonal and monthly rainfall over the series as inputs, Sahai et al [SSS00] use a 5 year sliding window with one step ahead forecasting to forecast rainfall.

Yao [YIPT98] implement a neural network to discover an effective market decision support system by discovering artificial variables that influence sales performance of color televisions. Unlike previous researches presented thus far, this particular research focuses on the need to know how attributes combined effect impacts sales as such build a neural network to predict sales effectively.

2.3.5 Feed forward Multilayer Back propagation Neural Network

Back-propagation is the most commonly used method for training multi-layer feedforward networks. It can be applied to any feed-forward network with differentiable activation functions. This technique was popularized by Rumelhart, Hinton and Williams Russel et al [RN95]. BPN is a layered, feed forward network that is fully interconnected by the layers. There is no feedback connections and no connections that bypass one layer to go directly to a later layer Freeman et al [FS91]. Looney [L00] identifies pertinent advantages of back propagation multi layer feed forward neural network as listed:

• Learning is independent of the order in which training data is presented.

- The architecture can be manipulated for better results
- They able to run on parallel processors

However, he also points out their shortcomings as :

- Training may converge to a local minimum that is shallow so that learning is not robust.
- The learning rate cannot be predicted in advance. This results to iterative learning which can lead to oscillation if not small.

For most networks, the learning process is based on a suitable error function, which is then minimized with respect to the weights and bias. If a network has differential activation functions, then the activations of the output units become differentiable functions of input variables, the weights and bias. If we also define a differentiable error function of the network outputs such as the sum-of-square error function, then the error function itself is a differentiable function of the weights. Therefore, we can evaluate the derivative of the error with respect to weights, and these derivatives can then be used to find the weights that minimize the error function, by either using the popular gradient descent or other optimization methods. The algorithm for evaluating the derivative of the error function is known as back-propagation, because it propagates the errors backward through the network.

The functionality of a neural network is determined by the combination of the topology (number of layers, number of units per layer, and the interconnection pattern between the layers) and the weights of the connections within the network. The topology is usually held fixed, and the weights are determined by a certain training algorithm. The process of adjusting the weights to make the network learn the relationship between the inputs and targets is called *learning*, or *training*. Many learning algorithms have been invented to help find an optimum set of weights that results in the solution of the problems. They can roughly be divided into two main groups:

• Supervised Learning - The network is trained by providing it with inputs and desired outputs (target values). These input-output pairs are provided by an external teacher, or by the system containing the network. The difference between the real outputs and the desired outputs is used by the algorithm to adapt the weights in the network (Figure 2-7). It is often posed as a function approximation problem - given training data consisting of pairs of input patterns

x, and corresponding target *t*, the goal is to find a function f(x) that matches the desired response for each training input.

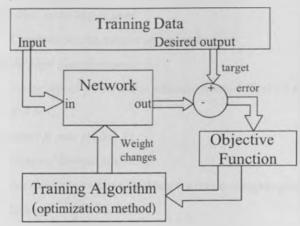


Figure 2-7 Supervised learning model

• Unsupervised Learning - With unsupervised learning, there is no feedback from the environment to indicate if the outputs of the network are correct. The network must discover features, regulations, correlations, or categories in the input data automatically. In fact, for most varieties of unsupervised learning, the targets are the same as inputs. In other words, unsupervised learning usually performs the same task as an auto-associative network, compressing the information from the inputs.

Looney [L97] discusses neural networks and learning algorithms used in artificial intelligence. Similar to other data mining methodologies, multilayer propagation architecture must be designed properly for the particular dataset to assure that the network will learn robustly and will be reasonable efficient. Looney [L97] presents a series of questions as a guide to developing multi layer propagation neural networks:

1. How many layers of neurons should a neural network have?

- Hidden layer and output layer of neurons are sufficient, provided that there are enough neurons in the hidden layer.
- To reduce the number of neurons in the hidden layer two hidden layers can be used.
- iii) One hidden layer is sufficient as it avoids complications.
- 2. How many input nodes should we use?
 - i) This depends on the feature vector and attributes.
- 3. How many neurons in the hidden layer?

- This is based on rules of thumb. Cyntia [C03] lists a number of formulas.
- 4. How many neurons in the output layer?
 - i) Depends on the output and encoding
- 5. What should the target (identifiers)vectors be?
 - i) Scaling depends on the output activation function. Tanh (-1 to 1) and for sigmoid (0.9 to 1)
- 6. How can we proceed to train the MLP?
 - i) Steepest descent method,
 - ii) Accelerated gradient methods such as conjugate gradients,
 - iii) Strategic search methods,
- 7. How can we test to determine whether or not the MLP is properly trained?
 - i) 60% training set
 - ii) 25% validation
 - iii) 15% test set
- 8. How do we select parameters (such as learning rate and momentum), and speed up and improve the learning?
 - i) Use heuristic methods,
 - ii) Manually iterate while changing (learning rate, momentum, weight,

hidden nodes, activation function) parameters.

9. What should be the range of weights and the network inputs and output?

Start with -0.5, 0.5: but some weights need to move to (-6, 6)

Fildes et al [FL03] propose an effective and computationally viable approach to objectively specifying the structure of neural network and thereafter evaluate its success (neural network) by examination of performance compared to various alternative statistical forecasting methods. Earlier research has established that the performance of a neural network model depends quite critically on the process by which it is constituted: Input nodes, hidden layer, learning rate, weights and bias, Transfer function. However no systematic procedure has been developed. After the selection of input nodes based on cross-validation, a 3-stage approach is proposed here which consists sequentially as shown in figure 2-8 generally seen as:

- 1. Selecting the learning rate and momentum,
- 2. Select the number of hidden nodes,
- 3. Select the initial weights

i)

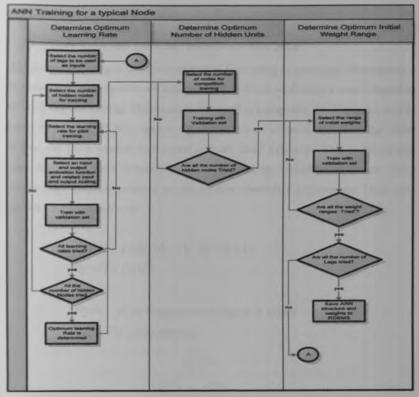


Figure 2-8 Complete Process flow for training ANN using Lags. Nome performance hints as identified by Looney [L97]:

- A single hidden layer is often sufficient,
- A basic simple performance evaluation between models is Root Mean square Error (RMSE),
- Test using an out of sample only once the winning model is selected,
- Start with 3 auto-regressive lags selected as a default.
- Logistic function used as the transform with input scaled between (0.35 0.65)
- Too large a structure will lead to over fitting.
- Learning rate of 0.9 performs well and 0.01 poorly.

• 200 iterations with max 1000

2.3.5.1 Time Series and Artificial Neural Networks: MLP

Time series forecasting is an important area of forecasting in which past observations of the some underlying variable are collected and analyzed to develop a model describing and analyzing relationship. The model is then used to extrapolate the time series into the future. Frank et al [FD01] observe the importance of correctly specifying the sliding window size for a forward feed neural network based forecaster. This is critical since better forecasting (with reduced error) is obtained by embedding a correct sliding window size. Incorrect variation of the window diminishes performance. Time series generalization can be seen as:

$$x(t+d) = f(x(t), x(t-1)...x(t-N+1))$$

x(t+d) = f(y(t))

d is normally one

Where: y(t) is N-ary vector of lagged x values

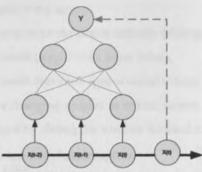


Figure 2-9 Sampling of a time series

From figure 2-9, discrete steps can be used to generate a set of training data for feedforward network. Successive values of the time dependent variable X(t), given by (X(td+1),....x(t), form the inputs to a feed forward network, and the corresponding target value is given by X(t+1).

Frank et al [FD01] use heuristic methods to determine the appropriate window size. In this study, they use the false nearest neighbor method and the singular-value analysis. Kaitani et al [KHM05] examine the forecasting performance of FNN models compared to other competing models, when the signal to noise ratio is small. They use a one step ahead neural network model as it is easier to calibrate and easier to compare among competing models. Cortex et al [CMJ01] attempt to use a genetic algorithm to modify the structure and parameter of ANN as such evolve the ANN topology, enhancing forecasting and generalization of time series data. From this study, the following can be concluded:

- 1. The architecture of an ANN in prediction requirements is sensitive to weight, architecture, learning and training data.
- 2. Sliding window range has a positive and negative input on prediction quality with too large resulting to over fitting and too narrow poor generalization.
- Performance of an ANN model can be evaluated by measuring the forecasting accuracy using, Root Mean Squared.

Tang et al [TF93], in a related study on neural networks as models for time series prediction highlight the benefit of using the sliding window approach. They also site the performance of ANN is highly dependent on the structure, training and data.

Crone [C05] presents a detailed treatment on the process of modeling time series data using a feed forward artificial neural network with a sliding window. The critical steps are identified (illustrated on figure 2-10) as:

- 1. Present input data pattern to the neural network (sliding window data),
- 2. Calculate neural network output from input values,
- 3. Compare neural network forecasts against actual values,
- 4. Backpropagate error changing weights to reduce output forecast errors,
- 5. Present new data input by sliding the window forward to show next pattern set.

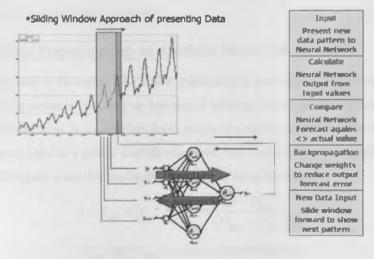


Figure 2-10 Neural Network Training on Time Series adopted from C05]

The decisions in neural network modeling all require expert knowledge. They can be

identified as shown in figure 2-11:

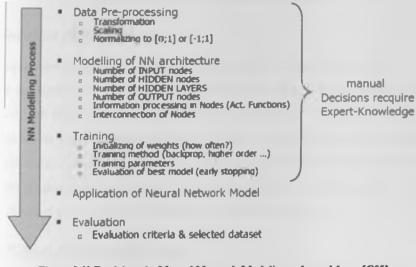


Figure 2-11 Decisions in Neural Network Modeling adopted from [C05]

The Advantage of time series forecasting using neural networks can be summarized as :

- ANN can forecast any time series pattern (t+1) without preprocessing nor extensive model selection.
- 2. ANN offers many degrees of freedom in modeling.

Some of the disadvantages of time series modeling with artificial neural networks are:

- 1. Experience of knowledge is required,
- Selection of the modeling window requires heuristics of extensive comparison of RMSE of various models with respect to validation error RMSE.
- 3. Explanation and interpretation of ANN weights is impossible or meaningless. ANN is a black box technique.

2.3.5.2 Data Preprocessing in Artificial Neural Networks

Input data needs to be treated first before presenting to an artificial neural network. Preprocessing assists in speeding up learning or splitting data to simpler attributes to assist in classification. In its simplest form, preprocessing can involve scaling down input or converting input to a pair of coordinates in the case of cyclic data Mbugua [M05]. The figure 2-12 depicts a suitable method to scale input between a range.

$$I = I_{\min} + (I_{\max} - I_{\min}) \times \frac{(D - D_{\min})}{(D_{\max} - D_{\min})}$$

D_m and D_m is computed for input basis

*I*_{min} and *I*_{min} is the range to normalize by Figure 2-12 Data Preprocessing by normalization

2.4 Shortest Path Problem

The computation of shortest path has been extensively researched since it is a fundamental issue in the analysis of transportation networks. There are many factors associated with shortest path algorithms. First, there is the type of graph on which the algorithm works-directed or undirected, real-valued of integer link costs, and possibly-negative link costs. Furthermore, there is the family of graphs on which an algorithm works- cyclic, planar and connected. The shortest path algorithms presented in this thesis assume directed graphs with non-negative real-valued link costs.

2.4.1 Dijkstra's Search Algorithm

Dijkstra's algorithm is a breadth first search thus it would search all points within a fixed circular radius, gradually expanding this circle searching further away from the point. It Best when you do not know where the destination is as it is a least cost path. Dijkstra's algorithm can solve single source shortest path problems by computing the one-to-all shortest path tree from a node to all other nodes.

2.4.2 A* Search Algorithm

It is not always feasible to use Dijkstra's algorithm to compute the shortest path from a single start node to a single destination since this algorithm does not apply any heuristic. It searches by expanding out equally in every direction and exploring a too large and unnecessary search area before the goal is found. It has a high computing cost. This has led to the development of heuristic searches. A* is a graph search algorithm that finds a path from a given initial node to a given node (or one passing a given goal test). It employs a "heuristic estimate" that ranks each node by an estimate of the best route that goes through that node. It visits the nodes in order of this heuristic estimate. The A* algorithm is an admissible search algorithm Russel [RN95]. In general, a search algorithm is called admissible if it is guaranteed to always find the shortest path from a start node to a goal node. If the heuristic employed by the A* algorithm never overestimates the cost, or distance, to the goal, it can be shown that the A* algorithm is admissible Russel. Invariably, an admissible heuristic is an informed guess that never overestimates the true cost of a solution

A' considers no more nodes than any other admissible search algorithm, provided that the alternative algorithm does not have a more accurate heuristic estimate. In this sense, A' is the computationally most-efficient algorithm that is guaranteed to find the shortest path. Husdal [H05] identifies measures for optimality in routing. These are listed below:

- 1. shortest time,
- 2. shortest distance,
- 3. least total cost,
- 4. most secure,

A dynamic network is one where cost of traversing the network varies over time. In transportation network representation, the weight of the links and nodes can be assigned as the cost of traverse along the link. Changes in traffic conditions are considered as changes in link and node weights.

2.4.2.1 Reasons for using the A*

According to Russel [RN95], the reasons for using A* are:

- 1. It is an optimal algorithm,
- 2. It is an admissible search routine,
- 3. It's complexity (space and time) is reasonable,
- 4. It can support hints to enable faster processing,

Compared to Dijkstra algorithm, the A* does not search all directions which is a favorable characteristic hence a decreased computation time.

The A^{*} search can be summarized as f(n) = h(n) + g(n) where f(n) is the A^{*} search solution, h(n) is the heuristics cost, an admissible function and g(n) us a greedy search cost. The greedy search is neither optimal nor complete but can be very efficient Russel [RN95]

2.4.3 Other Search Algorithms

Arroyo et al [AK05] analyze data from drivers using in-vehicle route guidance systems to empirically analyze the behavior of travel times on US road network. This paper focuses on identifying the proper functional forms to desirable travel time distributions. At any current location, the estimate time of arrival to a fixed destination is more properly described by a probability distribution associated with each of the choices. Algorithms like Dijkstra, Bellman-ford and its variations have proven to be efficient on calculating the shortest path on complex road network of linear deterministic single objective type. In vehicle route guidance software implements (above algorithms) rapidly enough to react in real time.

2.5 Decision Support Systems

2.5.1 Description of a Decision Support System

Turban et al [EAL04] defines it as "an interactive, flexible, and adaptable computer-based information system, especially developed for supporting the solution of a non-structured management problem for improved decision making. It utilizes data, provides an easy-touse interface, and allows for the decision maker's own insights." The decision maker can interact with the system directly as a user or through an intermediary who acts as the operator, queries the system and interprets the results to the decision maker.

The underlying themes in most DSS definitions are the concepts of interactive computer based systems that utilize data and models to solve semi-structured problems. However, they all emphasize that decision making is still dependent on the user as he retains control over the entire process. This allows his intuition and judgment to be factored into the development of the solution, which however introduces bias and subjectivity into the decision. DSS cannot make judgment they provide the user with various alternatives based on existing models, algorithms, data and scenarios built into them. Their role is to improve the quality of decisions by improving the response time of decision makers, discouraging premature decisions, exploring and testing multiple problem resolution strategies, and generating alternatives. Apart from decision support they can provide additional benefits such as organizational memory, and improved understanding of the problem context, as knowledge and practices built in are drawn from experts.

2.5.2 Components of a Decisions Support System

To respond to the decision maker's cognitive limitations caused by the decision makers biases and compensate for his short term memory, Mwangi [M06] points out that a DSS should mimic the positive human skills of inference and provide systematic approaches of organizing and retrieving information. To adequately address these requirements DSS are built to comprise the following generic subsystems Turban et al [EAL04]:

- Database Management This contains data required by the system and is managed by a database management software.
- Model Management: This includes the models that are used to solve or simulate problems. These models assist in solving problems especially those based on quantitative data or are tactical in scope Mwangi [M06].
- User interface It is the medium by which the user communicates with the DSS, whether through a web browser or other Graphical User Interface (GUI). The user interface needs to be well designed and simple to understand to help reduce levels of resistance. The level of technical skills required is influenced to a large extent by the design of the user interface.
- Knowledge Management (KM): This module contains rules, past knowledge, constraints etc that provides decisional guidance. KM calls for ways of leveraging information and individuals experiences for the benefit of the organization.

The four should be used as a guideline, when designing the basic structure of the system.

2.5.3 Intelligent Adaptive Decision Support System

Intelligent adaptive decision support system is best suited to deal with unstructured data. Some of the characteristics of an unstructured system are:

- they are novel, unstructured,
- no cut-and-dried method for handling the problem exists,
- calls for intelligent, adaptive, problem-oriented action,
- nonprogrammable is a better concept,

2.5.4 Successful Decision Support Systems Applications

Mwangi [M06] conducts research into what it takes to develop a successful decision support system (DSS) implementation strategy. This practical case study of one such DSS known as Rapid Emergency response and Contingency planning Tool (REACT) was then carried out. REACT is owned and under development at World Food Programme (WFP) Kenya. She concludes that DSS is definitely different to other information systems and its successful implementation is limited though they have been present in the Information Systems arena for decades. They are currently highly technocentric and further research needs to be carried out on how to improve their success rates.

2.6 Geographical Information Systems

A GIS makes use of geographical and attribute data. Attribute data, addresses, populations, etc., is associated with geographical data. Geographical data may be represented as points, lines or polygons. Attribute data can be handled easily using a conventional database management system (DBMS). It is the handling of the geographical data, such as the existence of rivers, roads or contour lines that requires the use of the special techniques that characterize the use of GIS. A GIS, as distinct from a mapping program, will have a database of geographic data, allowing linkages between different types of data and the ability to query this spatial data. For example a GIS database query might allow identification of all roads within a certain distance of a river. Therefore, while traditional database approaches can support queries on the attribute data, GIS is defined by its ability to cater for spatial queries.

2.6.1 Design of GIS databases

Miller et al [MH99] report on a GIS based decision support system for dynamic congestion modeling and shortest path routing in time critical logistics. From this research, GIS provides effective decision support through:

- 1. Database management capabilities
- 2. Spatial query language
- 3. Graphical user interface
- 4. Cartographic visualization and modeling of the earth

2.6.1.1 Transportation Network Data Model

A transportation network is a type of directed, weighted graph . The use of GIS for transportation applications is widespread and a fundamental requirement for most transportation GIS is a structured road network. In developing a transport network model, the street is represented by a series of nodes and links both with associated weights. This representation (impedance, cost of travel) is an attempt to quantify the street system for use in a mathematical model. Inherent in the modeling effort is a simplification of the actual street system. The network nodes represent the intersections within the street, an event like traffic control section or bridge. Two nodes make a link. The weights on both links and nodes represent a characteristic friction in moving from one node to another.

2.6.1.2 Topological rules for lines

Listed are properties a transportation GIS database system needs to observe [CD95]:

- 1 Lines are a single part, hence need to be un-split using ArcInfo,
- 2. There are no duplicate lines, hence build topology using Arcinfo,

The benefits of building a network topology are:

- Lines do not self overlap,
- Lines do not overlap other lines,
- Lines intersect only at nodes, and nodes anchor the ends of all lines,
- Lines do not overshoot or undershoot other lines they are supposed to meet and intersect,

Figure 2-8 illustrates this process in more detail.

2.6.1.3 Process of Image to vector conversion

Listed is the process of converting an analog data source to a vector digital GIS database.

- Using Arcinfo software, maps are geo-referenced by registering the image to known points using known survey ground stations.
- On screen digitizing to capture road network feature from aerial photos, scanned images e.t.c,
- Validation with satellite image to ensure consistency,
- Validation plots made to inspect digitizing quality and code assignment (visual checks)

2.6.1.4 Attribute enhancements

Additional attributes are added to each segment include:

- 1. Name of the road or node,
- 2. Highway type or road class
- 3. Length of the road.

Un-required attributes are removed from segments to keep the overall database small.

2.6.1.5 Process of vector lines in Arcview

A complete topological GIS database has the following properties:

1. lines are single part,

- 2. Cleaned database: arcinfo clean function is repeatedly used following edit to verify topology and enforce minimum distance between vertices hence control fuzzy and dangle errors.
- 3. No dangles or slivers: due to the topology verification, there may be minor differences in feature geometry between certain features

2.6.1.6 Digitizing Process

- 1. Inspection of each segment to ensure continuity with deliberate overshooting while digitizing
- 2. Shape file converted to Arcinfo coverage to enforce topology, integrity and build coverage
- 3. Lines un-split to begin and end at intersection with other routes,
- 4. Results to reduced features in large networks e.g. (200,000 to 2,000) Connecticut
- 5. Arcinfo clean to verify topology and enforce fuzzy and dangle rules
- 6. Coverage charged back to shape file once it is determined that it has captured all necessary geometry and conformed to the topology rules

2.6.2 Geographic Information Systems and Decision Support Systems

Michael et al [MRS03] determine the optimal route for shipments that minimizes both the travel distance of the shipment and population exposure along the route. This demonstrates GIS can be used to visualize and develop a route that minimizes the impacts of hazardous waste incidents along the roadway network and mange risk proactively. Praween [PDV03] develop an advanced traveler information system for Hyderabad City in a GIS environment. This system is able to provide the shortest path and closest facility based on distance and drive time. Praween [PDV03] follow a sereis of steps as illustrated in figure 2-13.

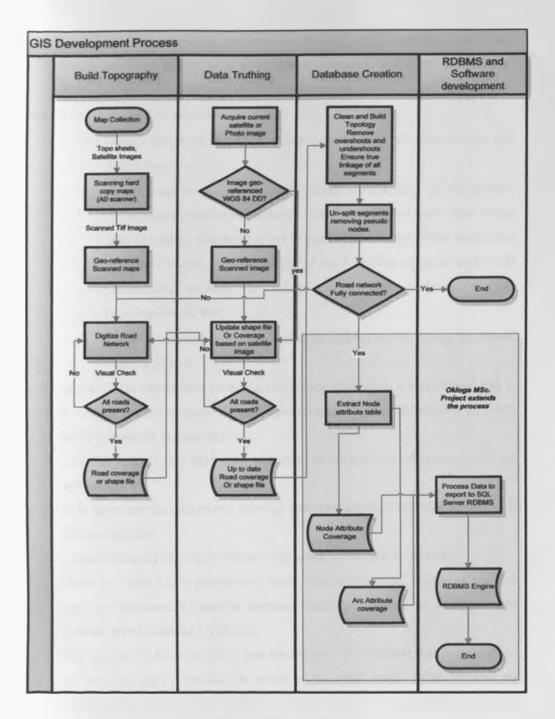


Figure 2-13 GIS Development Process

2.7 Discussion

Zhang [Z04] and other researchers have scientifically introduced ANN as tools suitable for forecasting when the data is static in various business fields with specific emphasis to non-linear relationships. They identify features that make ANN suitable for forecasting.

- 1. Data driven non-parametric methods that do not require restricted assumptions on the underlying process from which data is generated: 'learn from data'
- 2. ANN has been shown to have the universal function approximating capability.

Zhang [Z04] points out the need for:

- Careful design of the ANN architecture in terms of input, hidden and output neurons.
- He identifies the success of ANN mainly is dependent on the patterns represented by the input variables. In the case of time series forecasting, there should be concerted effort in gaining knowledge of the forecasting problem / domains, identification of the historical input set and ANN performance measure to select an optimum architecture from experimentation, and
- Lastly, identification of the number of hidden nodes during the model building process.

Developing an ANN model for a particular forecasting application is not a trivial task as noted by various researches cited. Critical aspects required when developing an ANN model can be summaries as listed below:

- ANN modeling is a combination of an art and science and software alone is not sufficient.
- 2. It is important to understand learning and generalization inherent in all ANN forecasting tasks.
- 3. Attention should be paid to address over fitting of the neural network.
- 4. Need for careful data preparation, input variable selection, choice of network type and architecture, transfer function, training algorithm, as well as model validating evaluation and seclusion.
- 5. Thought has to be accorded to data sample size. It is realized that large amounts of data are highly suitable as compared to small sizes. This impacts the generalization ability of the ANN and over fitting. For non-linear modeling, larger sample sizes should be more desirable (Zhang).
- Data splinting is critical. Data should be split to training, validation, testing. The training and validation is taken as in sample whilst testing as out of sample. Zhang identifies ratios as quoted in literature 70%: 30%, 80%: 20%, or 90%: 10%. The critical factor is data availability and spread in learning, validating and testing.

Data preprocessing is also touched by Zhang but not in details. A brief note is made on the importance of normalization as part of data pre-processing. An argument is put forward on the benefits accrued by data preprocessing as it belittles the ANN as a universal approximator. To justify the need of pre-processing, Zhang identifies studies that have demonstrated the pre-processing is indeed beneficial in improving ANN forecasting performance. Emphasis is given to the process of de-trending and deseasonalization.

7. Lastly, the issue of ANN architecture is addressed. Zhang asserts the need to build robust experiments to identify suitable ANN architecture. Good domain knowledge is necessary as this is an area of heuristic ability. Zhang emphasizes the need to design a good experiment but does not go to detail. No mention of the performance tests is made however; he has identified literature for future address the issue of modeling.

To build a successful model, a proposed checklist for ANN is presented:

- 1. Forward feed architecture is by for the best developed and most widely applied model for forecasting.
- 2. Size of the output layer is determined by the nature of the problem.
- 3. Both single step and multiple step forecasts are typical requirements that can be achieved by using one output node or more than one output node.
- 4. As noted in earlier literature and this multiple-step forecast can be achieved by iterating through a single step model.
- 5. The input layer is more important than the hidden layer in time series forecasting problem as such this needs considerable attention.
- 6. Most applications use one hidden layer however they should be determined by experimenting with a number of choices then selected by performance criterion like RMSE. Zhang notes that previous studies have demonstrated that the performance forecasting is not very sensitive to hidden nodes number.
- 7. Choice of transfer functions for hidden nodes as logistic or hyperbolic while output as liner or identity. Zhang correctly asserts that this should not adversely impact the performance of ANN and justifies that of the output layer is normalized into the range (0,1) then logistic function can be used for the output layers.

- Training, validating and testing is required to offer the best forecasting performance. It attributes success to the use of different learning algorithms can be beneficial.
- Zhang concludes by identifying ways of selecting an appropriate ANN model. He notes that the model to be selected is one whose performance is based on the testing sample.

In conclusion, researches like Zhang point out the importance of comparing the performance of ANN to traditional statistical methods. As noted in a previous study, this will justify the value of ANN in the problem solution. In addition, three evaluation cnterns are postulated:

- 1. Comparing ANN to a well-accepted traditional model
- 2. Using true-out of samples
- 3. Ensuring enough sample size in the out-of-sample for classification problems and time series problems.

3 Methodology

The techniques used in conducting the research include questionnaires, speed survey, data analysis, system analysis and literature review.

3.1 Questionnaires

Questionnaires were prepared for the project. The function was to identify the various causes of traffic snarls in Nairobi. The result was used to identify the least to the most significant causes of traffic snarls on Nairobi roads. Use was made of mainly open-ended questions as they allow the user to fully express their views or opinions.

3.2 Speed Survey

A speed survey was conducted using a hand held GPS for a week. This involved collecting the coordinates at every one second interval from Embakassi to Gigiri every morning and evening. The results were to establish a general average speed of travel and identification of problem spots on the roads.

3.3 Data analysis

Data from KIPPRA was collected and analyzed to train the neural networks to be developed. Since real time traffic data is not available due to lack of sensors, the data from KIPPRA is used to simulate how the system would behave.

3.4 System investigation

To develop an effective DSS, attention has to be given to system analysis and design phase, resulting to better understanding, modular iterative construction and less errors. The system investigation involved the following design methods:

- Development of data flow diagrams, context diagrams, and entity relations diagrams.
- 2. Iterative development with unit testing
- 3. Rapid application design,

3.5 Literature Review

Particular focus on literature that covers theories and research on neural networks for time series prediction and route search was evaluated. Primary sources were published research papers and secondary were books, doctorate and masters thesis written by previous researchers in the aforementioned topics.

3.6 Is the project tractable?

Kasabov [K98] identifies difficulties in solving the prediction problem requiring addressing before any serious prediction is carried out:

- Is the process predictable at all?
 - From literature review, traffic congestion is a seasonal phenomenon which can be modeled and thereafter predicted.
- What is the type of data available and the process subject to prediction?
 - Within the context of this research, the only data available is traffic volumes as collected by KIPPRA in 2004. This is sufficient to model traffic speeds given Greenshield's model parameters, and estimating.
- What are the right features for presenting the prediction problem?
 - The right features for presenting prediction problem in this context is traffic speeds at 30 minutes interval on critical locations or sections.
 - Link travel time is used as both the link and node cost Park et al [PSHJ05]
- Defining how much past data are required for a good prediction?
 - Within the context of this study, not enough data is available. As such the problem of over fitting is critical in evaluation of a suitable model.
- Defining a methodology to test the accuracy of the prediction.
 - A GPS reading of traffic speeds is used to validate the results of the model to test the accuracy. Where not applicable, validation error is measured to ensure that the model is general.

The above support the project is indeed tractable and a prototype can be developed. Lingras et al [LS99] identify critical features which were included in this prototype:

- 1. Typical input for traffic prediction should include:
 - Previous traffic data (avoid late night and early morning)
- 2. Characteristics to aim at in the model (These are critical requirements)
 - Adaptive,
 - Able to process time series,
 - Able to output range of values as opposed to a single precise output,

- Resistance to noise,
- Fast computation speed,

3.7 Project Data

The primary source of data used is based on KIPPRA traffic survey 2004. This data was imported into SQL server. Using Greenshields theorem, the traffic volume is converted to speeds for purposes of prediction using a neural network.

3.7.1.1 KIPPRA Traffic Count

The Kenya Institute of Public Policy and Research undertook a full week traffic count of various locations in Nairobi in 2004 during the month of January, May and June. Data availed for this research is for the locations as depicted on the map shown in figure 3-1.

Figure 3-1 KIPPRA data collection sites

Appendix H has a detailed list of all the locations.

3.7.1.2 KIPPRA traffic Survey methodology

Manual methods were used to obtain the traffic counts, whereby all the vehicles entering the marked section were counted and respective volumes obtained at 30 minutes intervals. The vehicles were then classified into different categories as detailed in Table 3-1. The same exercise was carried out for different days of a month and year.

STATION 15: UHURU HIGHWAY - BUNYALA RD R/A

Tuesday January 27, 2004

SURVEY TYPE & ARM I - UHURU HIGHWAY NORTH

Period		Care			Manan			Bunci			Lorrica	
Penag	APP	DEP	Total	APP	DEP	Total	APP	DEP	Total	APP	DEP	Total
7:00 - 7:30AM	709	1315	2024	213	207	420	15	14	29	65	25	90
7:30 - ROOAM	767	1147	1914	284	247	531	17	4	21	52	33	85
8:00 - 8:30 AM	742	809	1551	218	205	413	6	Û	6	53	34	87
8:30 - 9:00 AM	718	971	16.89	226	261	487	9	2	11	54	65	119
9:00 - 9:30 AM	817	992	1809	210	198	408	7	3	10	80	72	152
9:30 - 10:00 AM	813	951	1764	204	262	466	2	2	4	91	40	131
10:00 - 10:30 AM	737	1093	1830	178	258	436	5	2	7	49	64	113
10:30 - 12:00 AM	707	1055	1762	167	269	436	4	Û	- 4	69	69	136
11:00 - 11:30 AM	643	1181	1824	167	238	405	3	0	3	54	49	103
11:30 - 12:00 AM	677	1182	1859	219	287	506	2	3	5	74	54	128
12:00 - 12:30 PM	632	1306	1936	170	278	448	1	1	2	56	35	91
12:30 - 1:00 PM	671	1320	1991	189	253	442	2	3	5	84	38	122
1:00 - 1:30 PM	567	1161	1728	218	209	427	8	1	9	5.3	36	89
1:30 - 2:00 PM	657	1108	1765	164	250	414	2	1	3	51	48	99
2:09 - 2:30 PM	662	1219	1881	136	297	433	2	0	2	74	39	113
2:30 - 3:00 PM	649	1198	1847	159	218	377	0	0	0	51	48	99
3:00 - 3:30 PM	634	1346	1988	176	345	521	2	4	6	50	62	112
3:30 - 4:00 PM	610	1223	1833	180	415	595	3	2	5	45	33	78
4:00 - 4:30 PM	662	122?	1889	188	267	455	6	10	16	60	45	105
4:30 - 5:00 PM	895	1327	2222	259	343	602	5	9	14	38	44	82
5:00 - 5:30 PM	978	1186	2164	299	325	624	17	5	22	41	33	74
5:38 - 6:00 PM	835	1315	2150	278	418	696	6	13	19	33	34	67
6:00 - 6:30 PM	966	1626	2592	299	598	897	9	13	22	36	33	69
6:39 - 7:00 PM	1041	1262	2303	309	428	737	8	4	12	34	29	63
Day Total	17789	28529	46309	5100	7076	12176	141	96	237	1347	1062	2409

Table 3-1 Sample KIPPRA Data Set

The volume counts are converted to equivalent speeds using Greenshield model.

3.7.1.3 Application of Greenshield Model to Nairobi Traffic

Based on the equations derived based on speed, density and flow relationships, the following assumptions are made:

- The flow (q) has a value of 1200 vehicles/hour as reported in a report by Okioga [O04] from a survey of Uhuru Highway.
- The free flow speed of traffic is taken at 50 km/hour based on the Traffic act of Kenya governing the safe speed of moving vehicles within the central business districts and Nairobi environs which is the scope of this study.

Using Microsoft Excel, a scenario is build to determine the jam density of Nairobi Roads. The table 3-2 depicts the values at various jam densities:

Tabulation of Density, Speed and Flow for Nairobi Roads							
% of jam	Density (k)	Speed (v)	Flow (q)				
Density	k=%*(Λ/B)	v=A-B*K	q=k*v				
0%	0	50	C				
10%	9.6	45	432				
20%	19.2	40	768				
30%	28.8	35	1008				
-40%	38.4	30	1152				
50%	-48	25	1200				
60%	57.6	20	1152				
70%	67.2	15	1008				
80%	76.8	10	768				
90%	86.4	5	432				
100%	96	0	0				
	Table 3-2 Jan	n density valu	CS				

From the speed and flow columns as shown in the table 3-2, a generalized equation is formed from the graph using linear regression. This assumption is in line with Greenshields' linear model relationship.

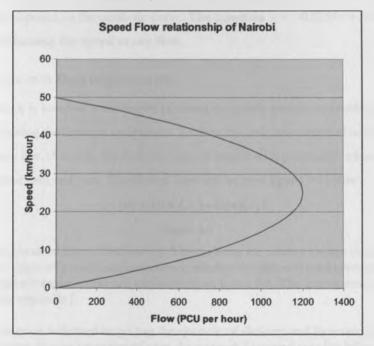


Figure 3-2 Speed Flow Relationship for Nairobi

A generalized liner equation is then assumed for the top half of the parabola as shown on the graph figure 3-3:

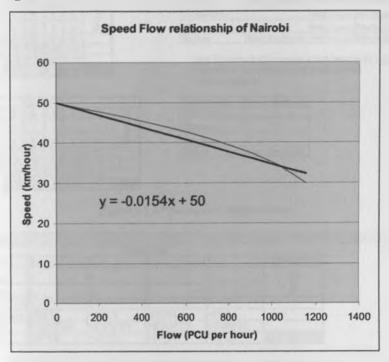


Figure 3-3 Speed Flow relationship of nairobi

To ease computation, a liner regression model is used to generalize the line into an equation as imposed on the parabolic curve. The equation v = -0.0154x + 50 will be used in evaluating the speed at any flow.

3.7.2 A* search Data requirements

The A* search is based on road lengths (forming the greedy search) and euclidian distance forming the heuristic component. To have the real time nature of traffic embedded in the A* search, the basic formulae is jittered with parameters whose values are updated at near real time. The general form will be as in figure 3-4 below

$$f(n) = H(n)(J_1) + G(n)(J_2)$$

Figure 3-4

 J_1 and J_2 are obtained from a field survey. They indicate the relative change due to temporal changes of a roads attributes hence redefine the physical road network. The results of questionnaire survey are summarized on figure 3-5. The questionnaire is presented in appendix I.

The cost function is derived by getting the quotient of distance and forecasted travel speed. By using time as a measure of cost, the network becomes near Euclidian. This is because of the varying speeds of roads in the network.

	Ne	de Di			
Details		3	2	1	10
Min Nem	1	1	1	1	
Max Rom	5	3	3	3	2
Value	6		3	3	
Significance	1 00	1 00	1.00	1 00	
Weight		0 30			
Factor	0.40	0.30	0 20	0 10	0.000

		L ine				
Details	5		3	2	1	15
blin ite m	1	1	1	1	1	
Max Nom	3	3	3	3	2	2
Value	3	3	3	3	2	
Significance	1 00	1 00	1.00	1.00	1 00	
Weight	0 33	0 27	0 20	0 13	0.07	
Factor	0.33	0 27	0 20	0 13	0 07	

L.			Max	Min
	Police	Least Significant	Max impact	Min Impact
2	Observation		Max impact	Min Impact
3	Security Slope		Max impact	Min Impact
	Slope	Most Significant	Max impact	Min Impact

* Max (1) means that the impact is high hence while min (0.28) means *The impact is low hence the road length reduces *D=D(1

1	Observation	Least Significant
2	Security	
3	Surface	
4	Drainage	
5	lanes	Most Significant

Figure 3-5 A* parameter compensators

	A	B	С	D	8	F	G
1			Hede	Data			
2	Detaile	4	3	2	1	-SUM(B2:E2)	
3	Min Item	1	1	1	1	Ranige	
4	Max Item	5	3	3	3	Ra	
5	Value	5	3	3	3		
6	Significance	=85/84	=C5/C4	=D5/D4	=E5/E4		
7	Weight	=(B2/\$F\$2)	=(C2/\$F\$2)	=(D2/\$F\$2)	=(E2/\$F\$2)		
8	Factor	=87*86	=C7*C6	=D7*D6	=67*66		
0	THORT						
9							
9 10							
9 10 11	Details	5	LI	ne	2	1	-SUM(812:F12
9 10 11 12	Details		LI 4 1	ne 3 1	2	1	8
9 10 11	Details		LI 4 1 3	3 1 3	2 1 3	1 1 2	
9 10 11 12 13 14	Details Min Rem		L1 1 3 3	ne 3 1 3 3	2 1 3 3	1 1 2 2	8
9 10 11 12 13 14	Details Min kem Max Item	5 1 3 3	LI 1 3 3 =C15/C14	1 3 3 3 =D15/D14	2 1 3 ≈E15/E14	1 1 2 2 =F15/F14	8
9 10 11 12 13 14 15 16	Details Min Rem Max Item Value	5 1 3 =B15/B14	4 1 3 3	3 1 3 3	1 3 3	1 1 2 2 =F15/F14 =(F12/\$G\$12)	8

Figure 3-6 Parameter formula relationship

The node values (Slope, security, observation, police enumerated as 4 to 1) were randomly generated as an actual survey was not carried out. Table 3-4 illustrates the code used to randomize the parameters as found in SQL server database. The total impact of node friction is a weighted sum of individual items, with the slope being most significant and police with the least. With respect to the node, figure 3-5 says:

- The effect of the node resistance value of maximum value (1) is to increase the actual length between two nodes. The maximum value is a multiplier effect of 1 while the least is 0.28 when there is no effect of the aforementioned node attributes.
- 2. Apart from slope with 5 states, all the remaining attributes have a range of 3 with 1 having the effect of reducing the relative impact and 3 increasing the effect.

The same can be mentioned for the link status. As seen in figure 3-5,

- 1. The number of lanes (enumeration 5), is most significant in determining the level of resistance in traversing a link. The value (randomly generated) has a maximum state of 3 and a minimum state of 1.
- 2. Similar to the node attributes, the drainage parameter has 5 viable states while the others have only 3.
- 3. A driver's observation of traffic ahead is least significant in assessing the

resistance of traversing a link.

Since time is the overall cost, the evaluated heuristic distance and path length are divided

by calculated neural network speed and path speed and summed.

```
SELECT SXI XCord SYI YCord SZI ZCord FROM doo Tolsode WITH BOLOCK WHERE
NodeID eStopnode
SELECT
          StartNode AS NodeId
           Sqrt (Square OX1-XCord +Square OY1-YCord ) OMeter = 1+ 1 COS (ATAN
eZl Altitude Length dbo tblnode [Security] 3 * 3 10
 dbo tblnode [Observation] 3 = 2 10) + (police 3) * (1/10) + (4/10)*(Zcord 5)) ))/
Neuralnetwork AS NodeCost
Length 1000 · 1 1/COS(ATAN @Z1 Altitude
Length lanes 3 · 5 15 Drainage 3 · 4 15 Surface 3 · 3 15 dbo TblLi
ne [Security] 3 · 2 15 dbo TblLine Observation 2 · 1 15 Speed AS PathCost
            Sqrt (Square 0X1-XCord +Square 0Y1-YCord + 0Meter + 1- 1/COS ATAN
OZ1 Altitude Length dbo tblnode [Security] 3 * 3 10)

        dbo
        tblnode
        [Observation] 3
        2
        101
        police 3
        1/10)
        (4/10)°(Zcord 5))
        ))/

        Neuralnetwork
        Length 1000
        1
        1
        COS:ATAN:
        021
        Altitude

        Length
        lanes 3
        5
        15
        Drainage 3
        4
        15
        Surface 3
        3
        15
        dbo
        TblLi

ne [Security] 3 = 2 15 + dbo TblLine Observation 2 · 1 15 )) Speed AS
TotalCost.
         RecID AS ArcID
FROM dbo thlline
WITH
          NOLOCK INNER JOIN dbo tblNode
WITh
         NOLOCK
ON
          StartNode NodeID
WHERE
          EndNode @StartNode
```

Table 3-3 Implementation in SQL Server

Table 3-4 is a snippet of the implementation of the same in SQL Server Database. A

detailed treatment of the source code is available in the appendix.

```
Update the security with random numbers Range 1-3
DECLARE GRecID int
DECLARE @Random float
DECLARE Node Security CURSOR FOR
SELECT NodeID
FROM tblNode
FOR UPDATE of [Security]
OPEN Node Security
FETCH NEXT FROM Node Security INTO @Recid
WHILE COPETCH_STATUS 0
BEGIN
        SET @Random 1 2"rand()
       UPDATE tblNode SET [Security] @Random where nodeID @RecID
FETCH NEXT FROM Node Security INTO @RecID
END
CLOSE Node Security
DEALLOCATE Node Security
```

Table 3-4 Code to randomize the security status of a node.

3.7.3 Digitize GIS Data

A network consists of a number of line segments that are interconnected in some way. Each line segment is defined by start and end nodes, both of known locations. A segment may contain intermediate points of known locations between start and end nodes. Each intermediate point refines the shape of the segment and is called a vertex. The difference between a vertices and nodes is that the nodes carry information about the topological relationships in the network, while vertices exist to simply delineate the segment. The topological relationships defined by the node determine the connectivity of a network. The figure 3-5 below shows the structure of a typical network as found in Nairobi.

Figure 3-7 Section of Nairobi Road Network

3.7.4 Evaluation of Nairobi Network

Nairobi network is evaluated using the γ index to measure the fundamental properties of the network complexity. The γ index is defined by the equation shown:

$$\lambda = \frac{l}{l_{\max}} = \frac{l}{3(n-2)} \dots$$

Where: Y Ratio of the actual number of links to maximum possible number of links in the network which is equal to 3(n-2) n the number of nodes / is the number of links in the network

Table 3-5 depicts the number of possible links.

γ for Nairobi				
Number of nodes (n)	2975			
Number of links (from the	3986			
Database)				
Number of links (based on graph	8919			
theory)				
Value of $0 < \gamma < 1$	0.44			
Table 3-5 Nairobi Road no	twork Analysis			

A value closer to 0 indicates a simpler network structure with fewer links. A lager value close to 1 indicates a better connected network with more links. From the evaluation above, Nairobi has a relatively poor network. The calculated number of links differs from the actual links in the database due to the following reasons:

- 1. The Nairobi network is not fully connected. There also exists dangle nodes.
- 2. There exist some digitizing errors with resultant links that do not connect to the overall network.

The figure 3-6 shows the above scenario on the GIS database.

Figure 3-8 Missing arcs

From figure 3-8, a digitizing error exists between node 1249 and 1258 (University way link) next to central police. Both nodes are not fully connected. Using the avenue script (appendix F), all links which are not connected are identified for future correction. The result of running the correction script is as shown in the figure 3-7 below:

Figure 3-9 Dangle link detection

To resolve the problem of dangle links, the connection link must be digitized and the database topology rebuilt.

3.7.4.1 Digitizing the road network

The main means of converting analogue data into digital data are manual digitizers and scanners. A topographical map and photo image of Nairobi is used in the digitizing process to acquire road network. The topographical map is the primary source of data while the photo image is a secondary source to verify the accuracy of the topographical map. By juxtaposing the digitized topographical map with the photo image, any salient changes in road network are captured, since the topographical map is older than the photo image. Figure 3-10 describes the steps in building the road network end to end.

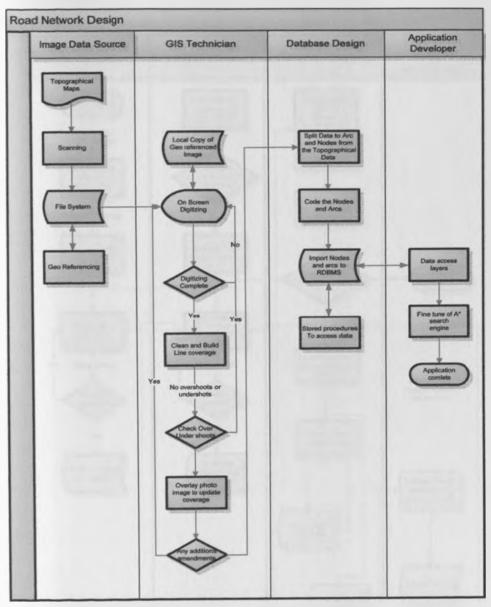


Figure 3-10 Building a complete Road network

Figure 3-10 depicts the detailed process flow of developing the GIS component. From figure 3-10, the GIS technician iteratively digitizes the images to derive the vector data. Since a custom build route analysis system is required and a strong coupling to the neural network is needed according to the system architecture, the road network is imported to a database management system.

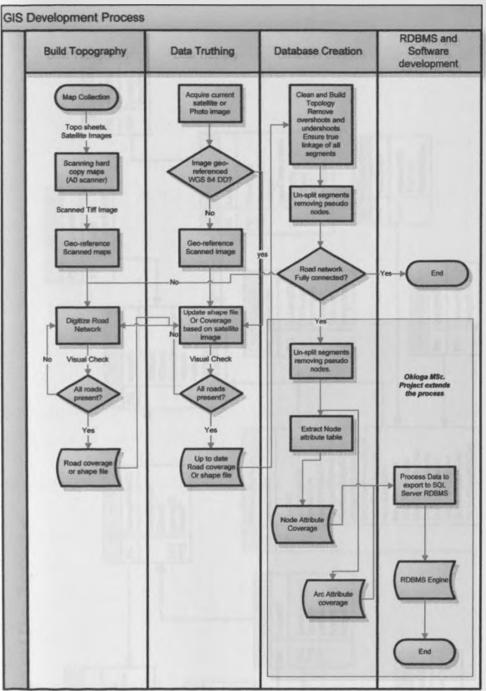


Figure 3-11 GIS Development Process

From figure 3-11, the process of creating the topologically correct road network is described in more detail. Building the topology is a manual process which can be partially automated when it comes to verifying the topology and connectedness of the network. The two most critical components required are the node and arc data.

3.8 Database Design and Data Preparation

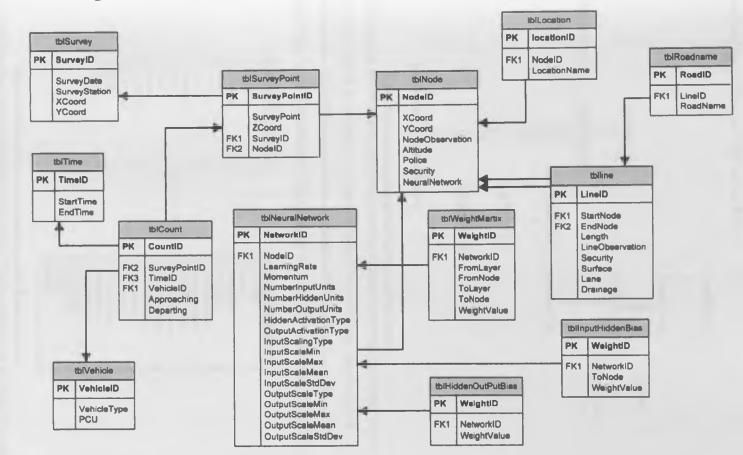


Figure 3-12 System's Complete Database Design Entity Relation Diagram

3.8.1 Database Design and Data Preparation

Figure 3-12 illustrates the complete data ERD while figure 3-13 illustrates the actual implementation of the database on SQL Server 2005.

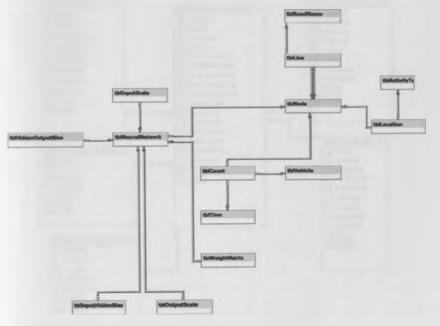


Figure 3-13 Actual implemented Database on SQL Server

Figure 3-13 illustrates the relationship between a node and neural network. Each node has an associated neural network or networks. The table tblNeuralNetwork describes the neural network architecture while tblNode represents an actual road intersection or event on the physical world. Each node is considered a brain suitable for prediction when data is available.

tbl	Node		tblNeuralNetwork
8	NodeID		S NetworkID
	StationID		NodelD
	SurveyPoint		LearningRate
	XCord		Momentum
	YCord		NumberInputUnits
	ZCord		NumberHiddenUnits
	Observation		NumberOutputUnits
	Altitude		HiddenActivationType
	Police		OutputActivationType
	Security		InputScaleType
	NeuralNetwork		InputScaleMin
	DateUpdated		InputScaleMax
		-	OutputScaleType
_			OutputScaleMin
			OutputScaleMax
			DateCreated

Figure 3-14 Neural Network Association with Road network

Figure 3-14 illustrates the complete neural network ERD. This is made up to 6 tables. Two tables tbloutputscale and tblinputscale store the networks output and input data scaling parameters.

The tblWeightMatrix stores the neural network weights for input-hidden and hidden-output connections while tblHiddenoutputBias and tblinputHiddenbias store the bias weights for the input and output bias values.

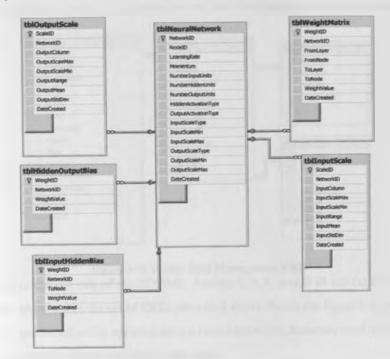
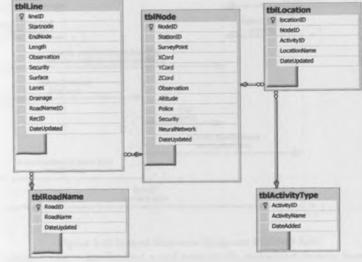



Figure 3-15 Complete Neural Network ERD

Figure 3-15 depicts the route analysis implementation. Both the A* and Dijkstra search depend on the two tables tblLine (which represents roads) and tblnode (which represents any road intersection point). On every update of node speed, all connected arcs from and to the node get updated by the same speed. SQL server take care of this.

Figure 3-16 Route Analysis ERD

The table tblRoadName identifies all instances of tblline by their known names. The table tbllocation identifies known nodes as buildings, traffic intersection points, speeds bumps, bridges or general location. Table tblactivity categories the locations into general groups. Figure 3-15 illustrates the traffic management tables ERD. The management of traffic data is handled by four tables. The table tblNode identifies all nodes found on the database network. The table tblCount, tbltime and tblVehicle assist in managing any traffic data collected either by a real time traffic sensor or historical data. A complete set of data flow diagrams is presented later in this chapter.

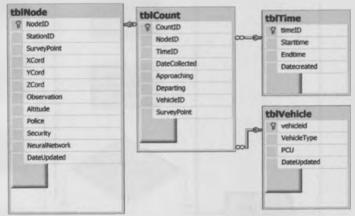


Figure 3-17 Traffic Data Management ERD

Figure 3-17 illustrates the role of the RDBMS. Activity 3, 5, A, and B all rely on full database or some tables as described in the set of ERD presented above. From the figure 3-16, the RDBMS is used to store predicted traffic speeds (using a neural network), maintain road network data, traffic data and provide data to the search algorithm.

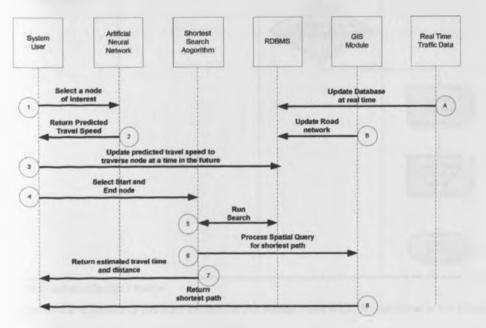


Figure 3-18 System Sequence Diagram: RDBMS Role

This research was not able to implement a real time traffic collection system, hence the use of historical data from KIPPRA to simulate actual speeds. Figure 3-19 summarizes the database design process.

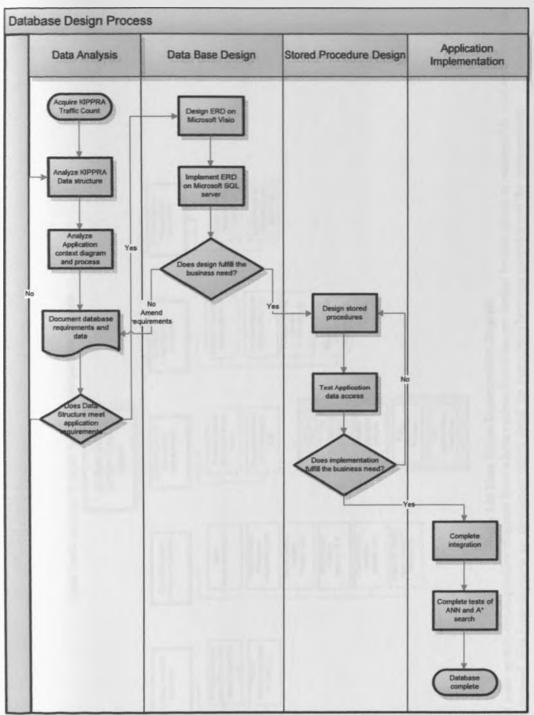
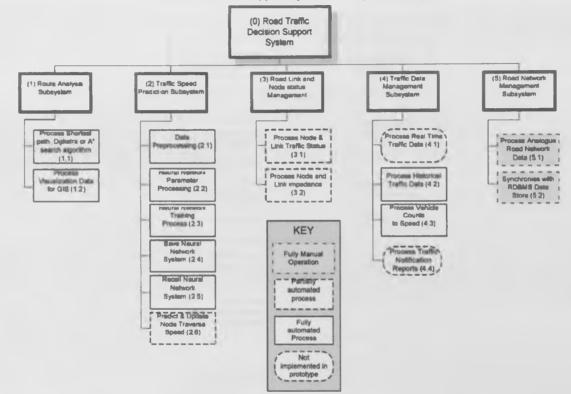



Figure 3-19 Database Design Process

The design of the database is iterative in nature. All interactions with the database is via stored procedures. This makes the database very flexible to update and maintain as all logic related to data access, storage, deletion and update is maintained in a central system independent from application developed.

Road Traffic Decision Support System Decomposition Diagram

Figure 3-20 Main System Decomposition Diagram

Figure 3-20 illustrates the main system decomposition diagram from where various functions are further broken down to manageable modules. From the decomposition diagrams derived, data flow diagrams are developed which detail the interaction between modules and the environment.

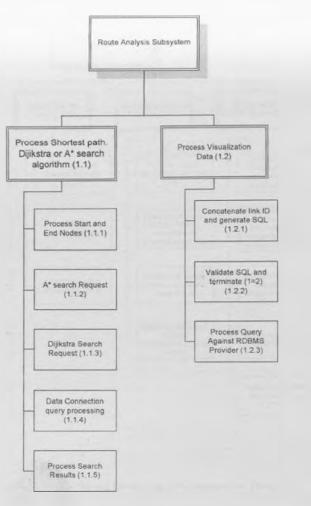


Figure 3-21 Route analysis Decomposition Diagram

The route analysis subsystem determines the shortest path between any two points and sends the resulting paths to the GIS system for visualization.

-

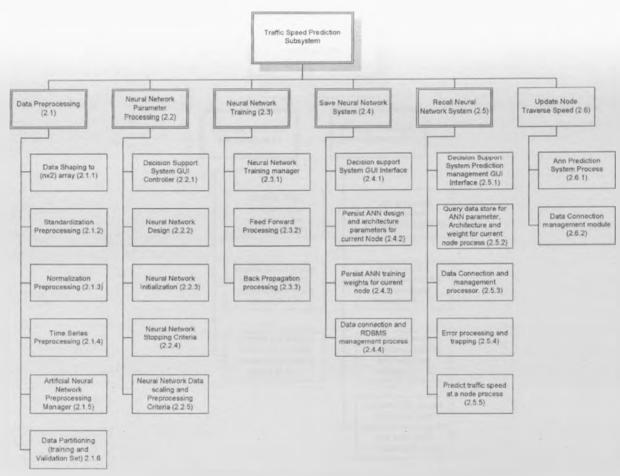


Figure 3-22 illustrates the traffic speed prediction subsystem whose role is to predict the speed at one step ahead in the future, given historical data or real time data.

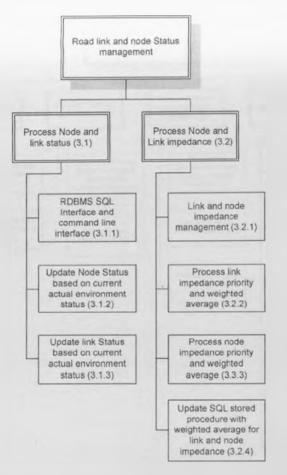


Figure 3-23 is the road link and node status decomposition diagram whose role is to update the link and node attribute status. For instance number of lanes on a road, the drainage status or security, e.t.c

Figure 3-24 Traffic Data Management Subsystem Decomposition Diagram

Figure 3-24 illustrates the Traffic Data management subsystem whose role is to import data to the system. It is assumed that the system will be extended to use real time sensor data in the future however for purposes of simulation, KIPPRA data is used.

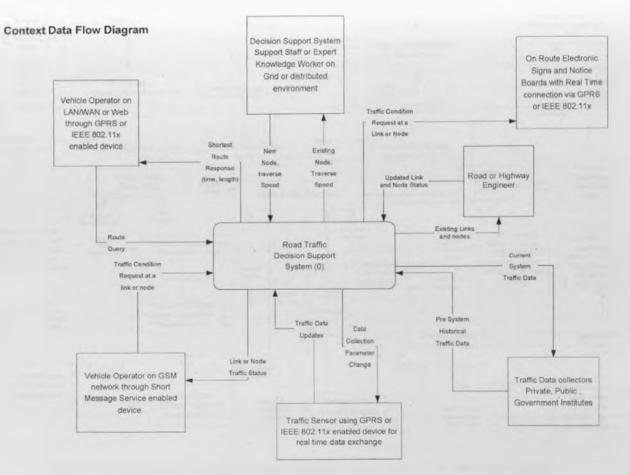


Figure 3-25 System Design Context Diagram

From the decomposition diagram, a series of data flow diagrams were developed to enable finale coding.

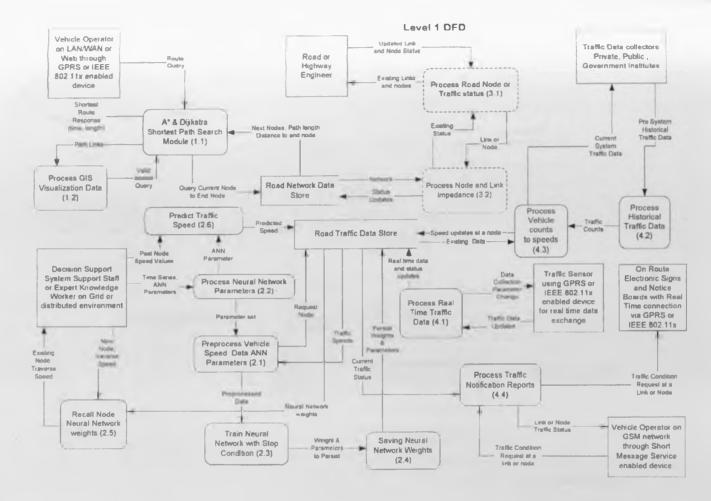


Figure 3-26 Level 1 Data Flow Diagram of the Automated Route Analysis Decision Support System Figure 3-26 illustrates a detailed overview of the system. Each process is further detailed in subsequent data flow diagrams.

Level 1.1 DFD

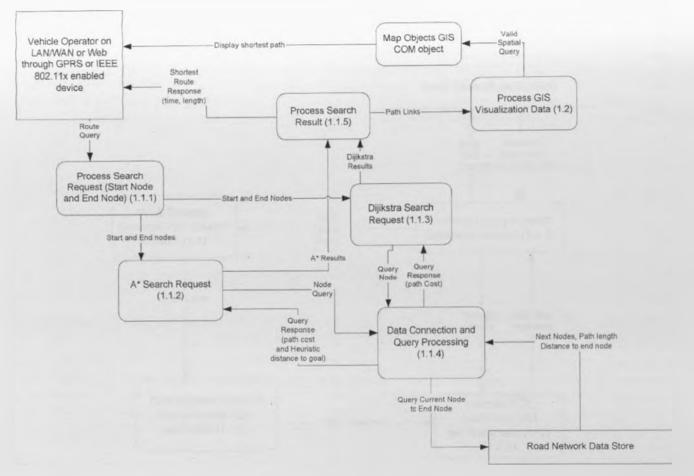


Figure 3-27 Level 1.1 Data Flow Diagram

Level 1.2 DFD

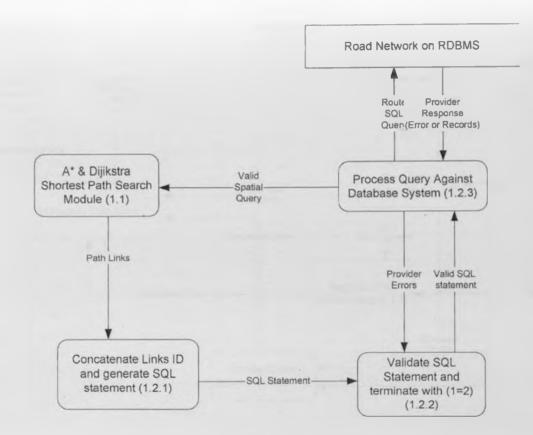


Figure 3-28 Level 1.2 Data Flow Diagram

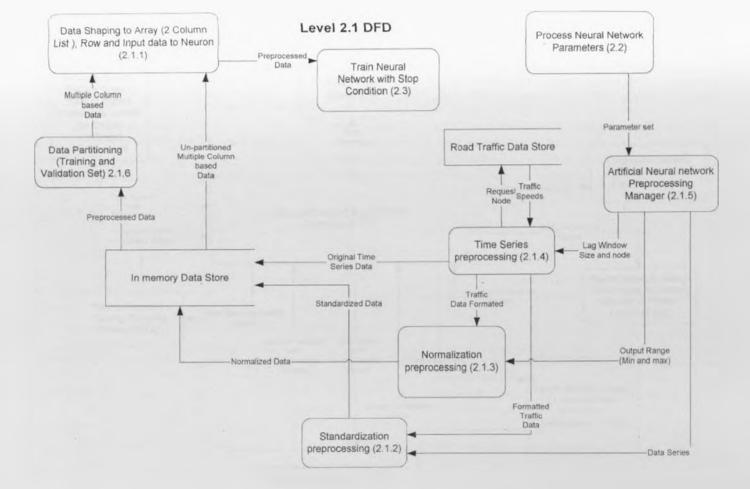


Figure 3-29 Level 2.1 Data Flow Diagram

Level 2.2 DFD

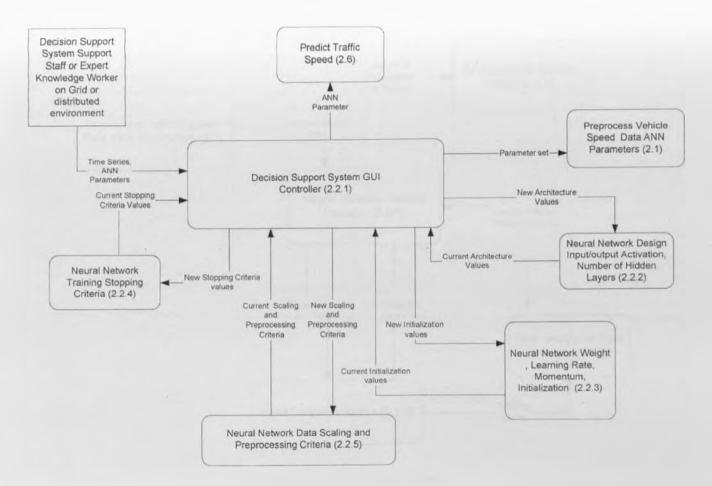


Figure 3-30 Level 2.2 Data Flow Diagram

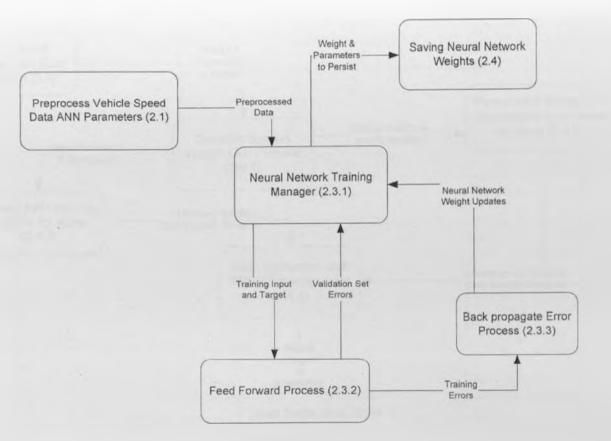


Figure 3-31 Level 2.3Data Flow Diagram

Level 2.4 DFD

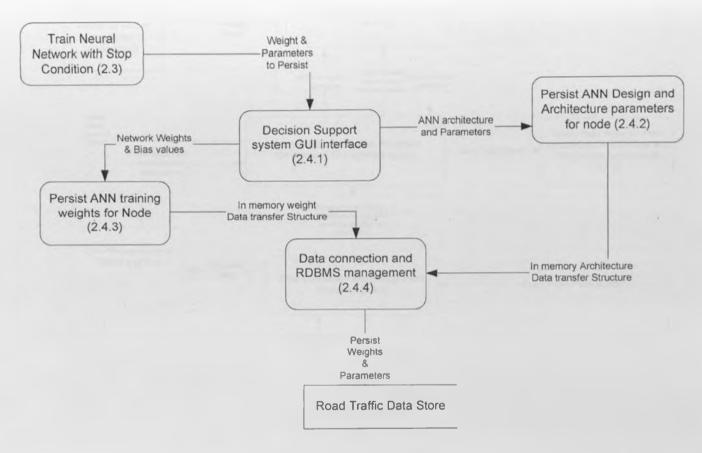


Figure 3-32 Level 2.4 Data Flow Diagram

Level 2.5 DFD

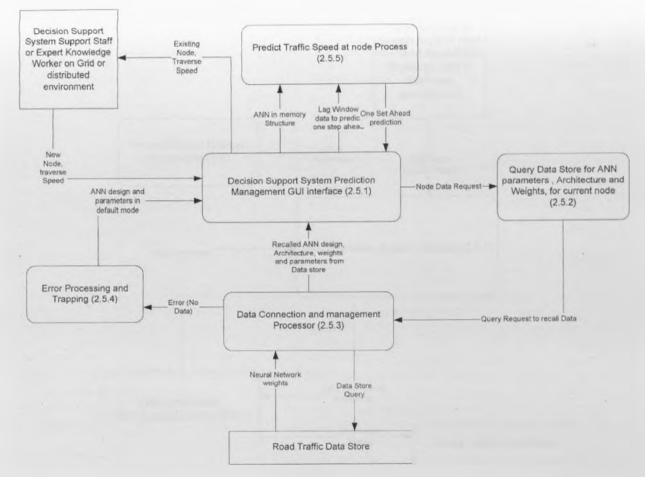


Figure 3-33 Level 2.5 Data Flow Diagram

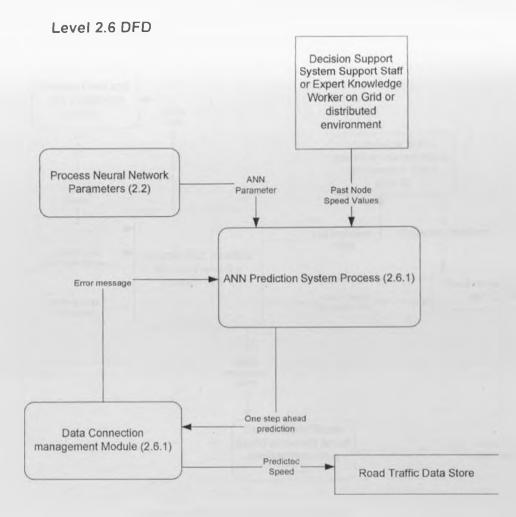


Figure 3-34 Level 2.6 Data Flow Diagram

Level 3.1 DFD

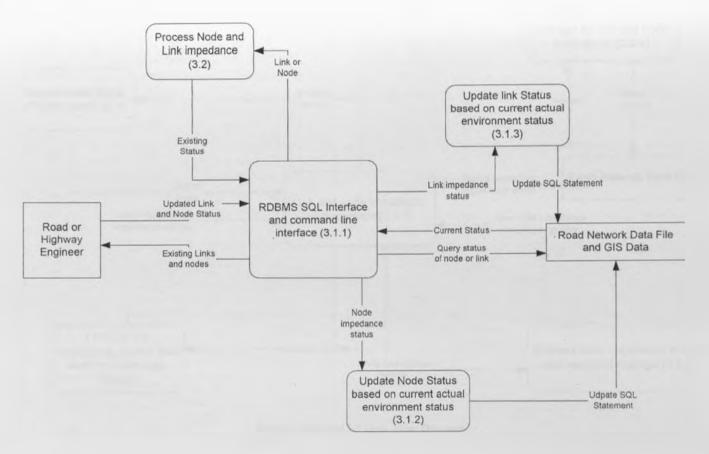


Figure 3-35 Level 3.1 Data Flow Diagram

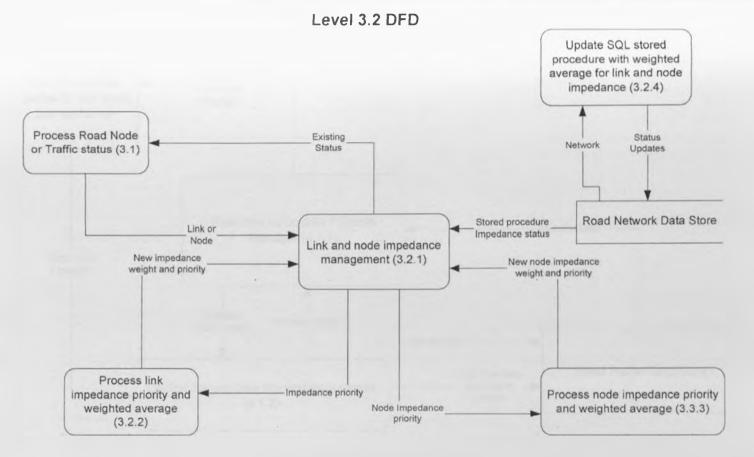


Figure 3-36 Level 3.2 Data Flow Diagram

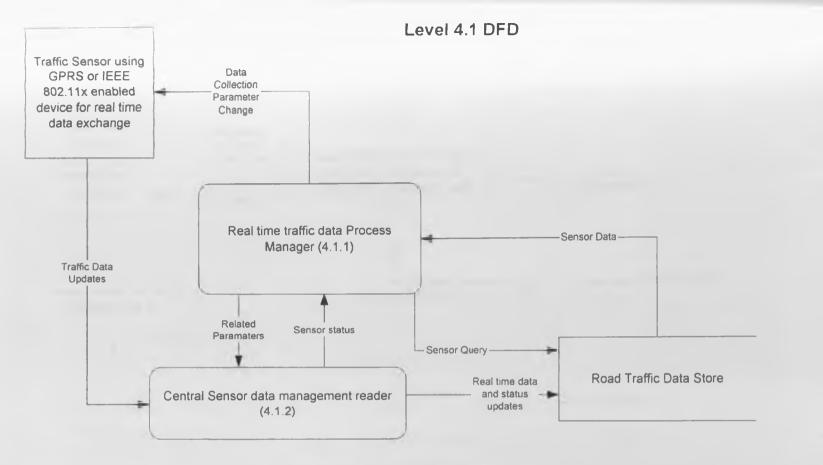


Figure 3-37 Level 4.1 Data Flow Diagram

Level 4.2 DFD

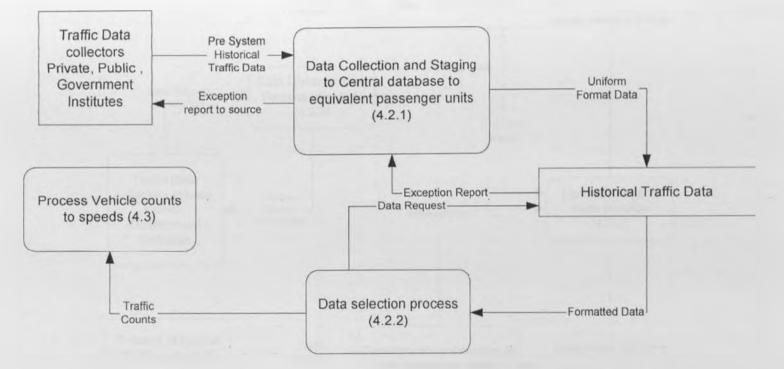


Figure 3-38 Level 4.2 Data Flow Diagram

Level 4.3 DFD

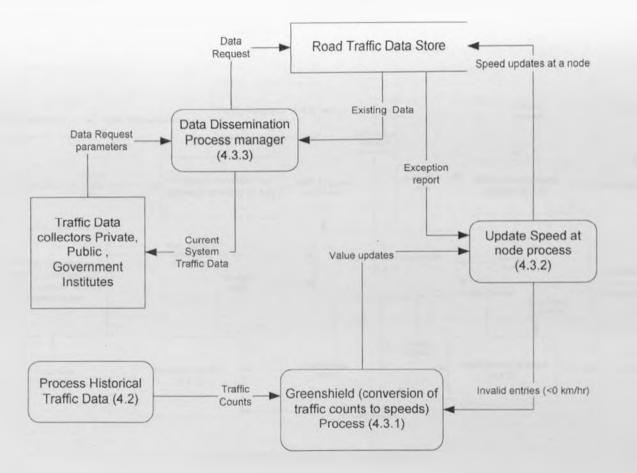


Figure 3-39 Level 4.3 Data Flow Diagram

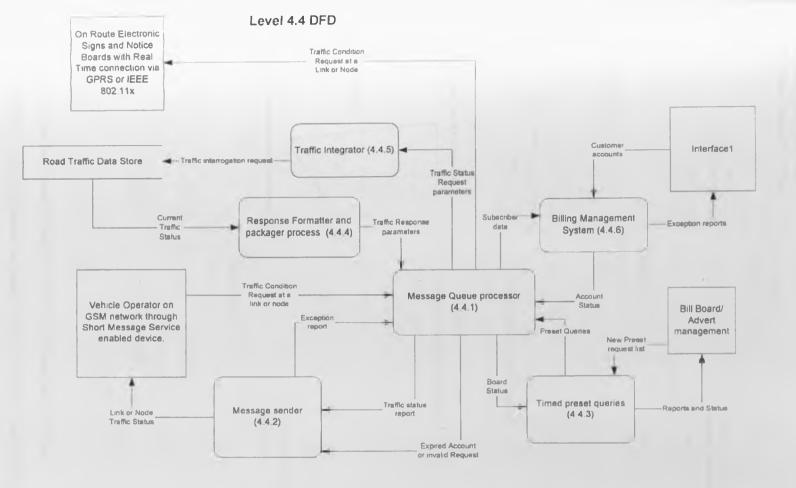
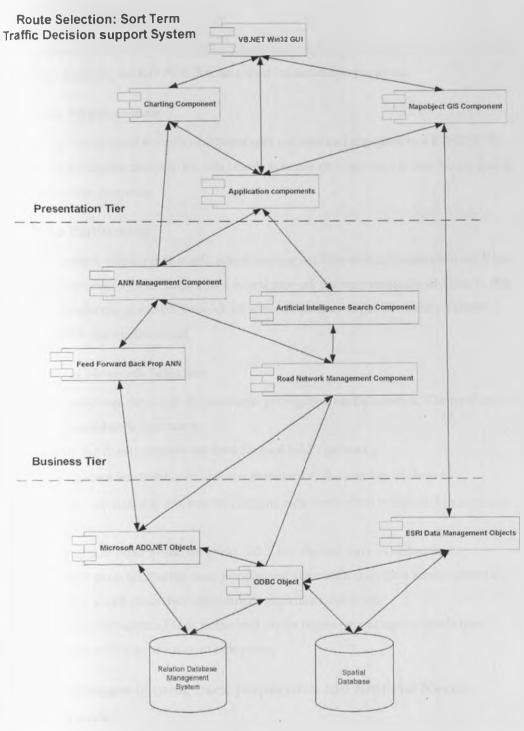



Figure 3-40 Level 4.4 Data Flow Diagram

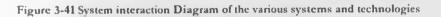


Figure 3-41 Illustrates the system interaction diagram as seen in terms of a 3 tier design approach framework.

3.10.1 Data Selection

All data availed by KIPPRA (63 data collection points) were used in the system. Since real time data was not available, the KIPPRA data was used for simulation purposes.

3.10.2 Data Preprocessing

KIPPRA data is converted to equivalent passenger car units and imported to a RDBMS. By employing Greenshields theorem, the half hourly volumes are converted to half hourly speeds used for prediction purposes.

3.10.3 Data Partitioning

The neural network training data is split into a training set 75% and 25% validation set. This split is critical to control over fitting of the neural network during training. In addition to this, the process of selecting a suitable network architecture primary depends on the measure of validation RMSE for models tested.

3.10.4 Neural Network Selection

This research proposes the use of the multilayer propagation neural network. The motivation for using this neural network structure is:

- 1. Looney [L97] recommends the feed forward MLPs because :
 - Require a less number of neurons compared to the number of classes
 - Take considerably less time to compute recursively when compound to recurrent ANN
- 2. Compared to other neural networks, MLP are relatively easy to understand.
- 3. The Back prop MLP is the most popular and extensively discussed neural network, making it a well researched algorithm to implement and learn,
- 4. The back propagation ML:P works well on the largest percentages of prediction problems with a good success track record.

3.10.4.1 Advantages of using back propagation and Artificial Neural Network

- Learning is independent of the order in which training data is presented.
- The architecture can be manipulated for better results
- Is able to run on parallel processors

3.10.4.2Disadvantages of using back propagation and Artificial Neural

Network

- Training may converge to a local minimum that is shallow so that learning is not robust.
- The learning rate cannot be predicted in advance. This results to iterative learning which can lead to oscillation if not small.

Figure 3-42 depicts the process of building a neural network.

The neural network is implemented as a class in the overall system whose input parameters are a dataset with input and output exemplars, neural network parameters and stopping criteria. Since the networks runs through a loop controlled by the number of epochs, a different thread is deployed to ensure the GUI remains interactive throughout the training process.

Training is an iterative process that involves heuristics in selecting suitable parameters to model with. The final trained neural network is experimentally build from a series of runs. The network with the best overall performance (least RMSE on validation set) is selected for purposes of predicting the speed at one step ahead.

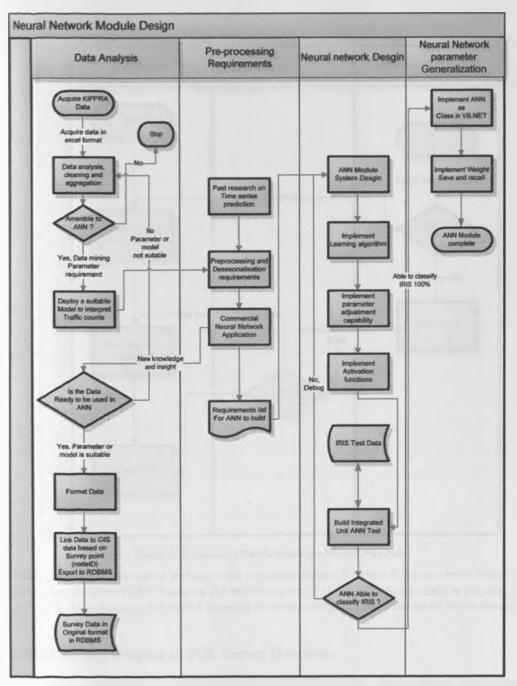


Figure 3-42 Neural Network Design

3.10.5 Neural Network Training

The purpose of training an MLP is to obtain an approximation to a function that maps input exemplar feature vector inputs into associated output target identifier vectors in a generalized (smoothed) fashion Looney [L97]. Figure 3-42 identifies pertinent steps in training a neural network.

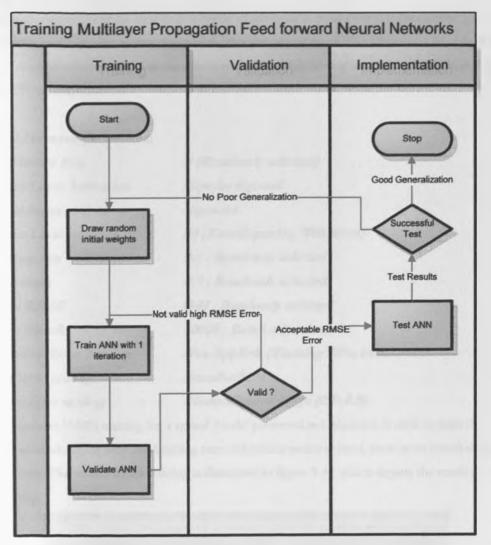


Figure 3-43 Process Flow in training a Neural Network.

In this project, the process of training is by experimentation. A network is considered trained when it has the least RMSE value on the validation set. A series of runs are made as presented in Chapter 5. After training, the neural network structure and parameters are saved into a database table.

3.10.5.1 Saving Weights to SQL Server Database

For purpose of making the system resistant to loss of training data, the last training run is saved on the database. However for purposes of simulation, KIPPRA data selected does not need to be subjected to weight saving as the system is not getting a continuous stream of traffic data. The process of saving the neural network weights for future prediction involves saving the following:

- 1. Neural network Architecture,
- 2. Neural Network weights,
- 3. Neural network Scaling and normalizing parameters.

Further, the weights can be used to determine which input is most critical in prediction (sensitivity analysis), due to time constraints, this was not perused. The illustration described next saves a trained network based on data from node 469 (Waiyaki way next to the Mall Shopping Center Westland)

Lag Window Size	:9 (Randomly selected)
Hidden Layer Activation	:Bipolat sigmoid
Output Layer activation	:Sigmoid
Hidden Layer neurons	:18 (Kancllopoulos, Wilkinsen)
Learning rate	:0.1 : Randomh selected
Momentum	:0.9 : Randomly selected
Target RMSE	:0.01 : Randomly selected
Target Epoch	:10000 : Randomly selected
Validation Error Testing	:Yes Applied, (Training 75%, validation 25%)
Input layer scaling	:Standardized
Output layer scaling	Normalization range (0.1- 0.9)

The processes 'ANN training for a typical Node' presented in Chapter 2, is used to train the neural network. Since only one learning rate and hidden nodes is used, there is no iteration of parameters. The results of the training is illustrated in figure 3-44 which depicts the result of overfitting.

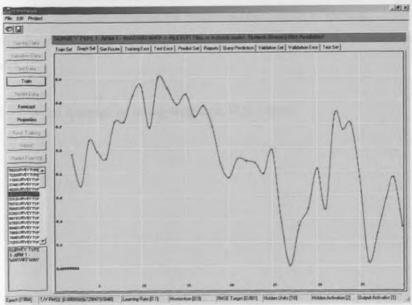
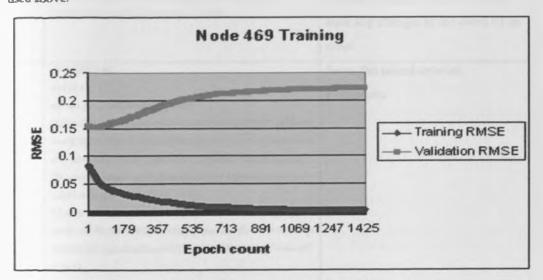



Figure 3-44 Training result for node Waiyaki way next to the Mall Shopping Center Westlands with overfitting allowed.

Figure 3-45 shows the results of training with respect to the RMSE error give the parameters used above.

Figure 3-45 Training and validation RMSE

Overfitting results to poor generalization of the network on an out of training set. The figure 3-45 depicts the results of overfitting on a network. As training proceeds, the validation error increases and the training error decreases. In this example, the training should stop as less than 170 epochs if the other parameters are to be maintained. To control overfitting, a number of strategies can be deployed:

- 1) Introduce noise to the data,
- 2) Early stopping via cross validation or epoch count,
- 3) Early stopping the validation error begins to increase.

After training, the neural network parameters, architecture and weights are saved in the database for recall later.

The table 3-6 lists the sequence of saving weights to SQL Server.

Siep	SQL Server Stored Procedure	Remark/Comment
1	SET TRANSACTION ISOLATION LEVEL READ COMMITTED;BEGIN TRANSACTION	Sets up a transaction space to roll back any changes in the event of an error
2	duclare @p16 int set @p16=14 coase dba./proc1ddlKmaanledgeTaNade/ @NiadeID=469.@I sammingRate=0,100000000000000001.@Mamen Lum=0.900000000000002.@Numbersupael acts=9,@Numberl lid dent insts=18,@NumberOntputumits=1,@IliddenActivationType=2, @Output ActivationType=1,@InputScaleType=1.@OutputScaleType= 0.@DateCreated="2006-06-18 1":00:02:697",@InputScaleMin=0,10000000000000000000,@InputSc aleMax=0.900000000000000000000000000000000000	Saves the neural network parameters
3	exx dba. [pros_14ddW aphts TaKnowledge] @NetworkID=14.@I'romLayer=0.@I'romNode=0.@TaLayer=1, @TaNodr=0.@W'aphtV alm=- 1.8391830107048914.@Date(.reated="2006-06-18 17:00:02:737"	This procedure saves the weights from the input to the hidden layer. In this case, it is called 162 times $(9 \times 18 = 162)$ one for each input node to hidden node.
4	exac din. [proc_AddI] IBias Weights To Knowledge] @NetworkID=14,@ToNade=0,@Weight Value=- 1.1126192489580798e-005,@DateCircated="2006-06-18 17:00:02:757"	This procedure saves the bias weights from to the hidden layer units. It runs 18 times in this case.
5	exec dim [proc1ddW aghtsToKnow kdge] @NetworkID=1+,@I*romLayer=1,@I*romNode=17,@ToLayer=2, @ToNode=0,@W*eghtV abse=1.2566606094877033,@DateCreated ="2006-06-18 17:00:03:147"	This procedure saves the weights from the hidden to the output layer In this case, it is repeated 18 times $1 \times 18 = 18$.
6	cxes dba.[procAddl 10BiasWeightsToKnowledge] @Network1D=14,@WeightValue=0.22293357297033528,@Dute Created="2006-06-18 17:00:03:147"	This procedure saves the bias weights to the output layer unit. It runs once.
7	exec dim. [proc_AddlupnetScale] @NetWorkID=14.@InputCalann=0.@InputScaleMax=0.@InputS waleMax=0.@InputRangy=0.@InputMaam=17.296369230769237, @InputStdDet=7.0839644109686519.@DateCreated="2006-06- 18 17:00:03:147"	This procedure saves the input scale parameters for each of the 9 input attributes for this case.

Step	SQL Server Stored Procedure	Remark/Comment
	@NetB*arkID=14,@OutputColourn=0,@OutputSealeMax=30.638 440000000004,@OutputSealeMin=3,3744000000000085,@Output Range=27.263999999999999996,@OutputNeam=0,@OutputStdDer=0 .@DateCircuted="2006-06-18 17:00:03:167*	scale parameters.
9	COMMIT TRANSACTION	Commits the transactions to the database saving all parameters and weights.

	a .	· · · · ·	. COL C.
Table 5.6	Sectore in	saving weights	IN SUIT SERVET
LAUIL JO	Dednere w	saving weights	on ordin ner

The series of steps 1-9 presented are processed sequentially when saving a neural network. Together with training, this forms a process that is repeated for all nodes. The sequence established in table 3-6 can be depicted in terms of process as shown in figure 3-46. This process is repeated while changing key parameters identified. The winning structure has the least difference between the training and validation RMSE.

3.10.5.2 Recalling a neural network for prediction purposes from SQL Server

Database

This is the reverse of the process described in section 3.6.5.2. Table 3-7 identifies significant steps in recalling a saved network structure in this case node 469:

- 1) Select the node to predict the traffic,
- 2) Complete the prediction table by entering the past traffic data for the window lag saved.
- 3) Click the load MLP button to recall the brain the update the predictions.

Table 3-7 identifies critical steps carried out at database level in the prediction process. Figure 3-47 illustrates the training set based on a 9 lag window.

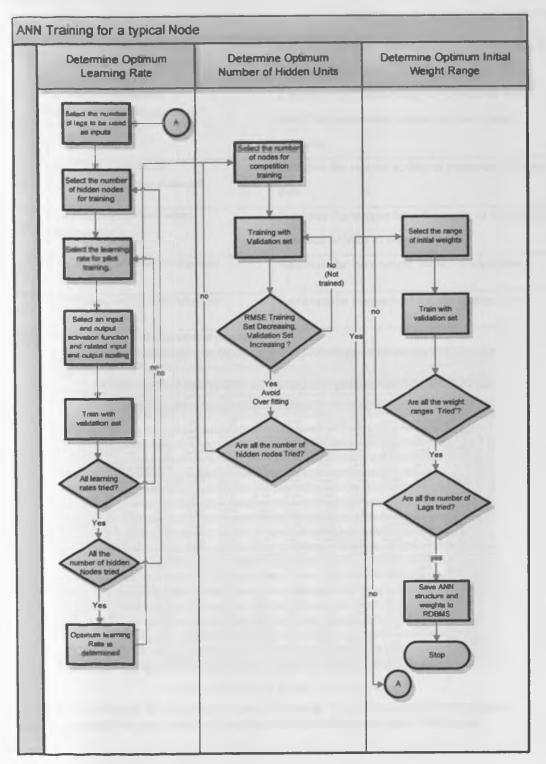


Figure 3-46 Training Process at a node

Step	SQL Server Stored Procedure	Remark/Comment
1	var die fører_GetKnowledgelimmNodej @NodeID=469	Retrieves the latest neural network architecture to reconstruct the network for a specified node.
2	exac diba.[proc_GetInputScale] @NetworkID=14.@InputCalumn=()	Retrieves the input scaling to preprocess input data. This procedure is called for each input attribute.
3	exec dba./proc_CoetOntputScale/ @NetworkID=14,@OutputColumn=0	Retrieves the output scaling to preprocess output data.
4	exac [prm_GetWeight+romKnowledge] @NetworkID=14	Retrieves the weight from the input to the hidden layer and hidden to output layer.
5	exer doe.jproc_GetHWeight romKnowledge @NetworkID=14	Retrieves the bias weight for the hidden layer
6	exac dba.[proc_GetHOW cight1*romKnowledge] @NetworkID=14	Retrieves the bias weight for the output layer

Table 3-7 Series of steps in the prediction process

	100	AND IN COLUMN 2	ACCR 100	CALIFORNIA DE LA CALIFICAL	COLUMN STREET,	ALC: NO.	or Street of Lot	American	And Investor	Alle Digiti	NAME OF OCCUPANTS	
Laning Data (1				1	_
and the second s	Dan	Set Graph Set	Gel Route 7	cearang Ewor 1	est (nor) Pand	kd Set j Flepos	a Guery Psede	Sens Validation	Ser j Validatio	n Emil Tanks	a)	_
roldskin (trafficial	100											
Test Date 11		Period 3	Parked 2	Peled 3	Period_4	Period 5	Percel &	Parkd 7	Period_8	Period_9	Culput	
	7	20.615	20.04	19.944	16-2304	9.096	19.2006	0.5009000000	13.9720	6.7728	9.0004009000	
Train	100	20.04	20.944	16.2384	9.096	19,2206	8.5808000000	13.9728	8.7728	9.0394000000	18-0806	
	100	19.944	16.2384	9.096	19.2336	8 5008000000	13.9728	6.7728	9.0384000000	16.0656	13.0512	
Netcillar	-	16.2394	9.006	19,2336	8.500000000	13,9728	6.7728	9.0354000000	16.0656	13.0512	8.0592	
		9.096	10.2336	0.500000000	13.9728	6.7728	9.0394000000	16.0656	13.0512	8.0592	3.9000	
Everan	100	19.2256	8.5008000000	13.9728	6.772E	9.000400000	16.0858	13.0512	8.0592	3.9888	16.1232	
		6.500000000	13.9725	6.7728	9.0394000000	16.0656	13.0512	0.0592	3,99900	16.1732	23.7648	
Paperies			6.7728	9.0384000000	16.0056	13.0512	8.0592	3.9088	16.1232	22.7648	12.9392	
			9.0084000000	14.0656	13.0512	8.09%2	3.9688	16.1232	23.7648	22.93%2	25.0704	
Sear Tuesda	100	5.0354000000	14.0656	13.0512	8.0592	3.98988	16.1232	23.7648	22.9992	25.9704	11.5344	
trans 1		16.0656	13.0512	6.0592	3.9000	16.1237	21.7548	22.5052	25.0704	11.5344	17.3328	
Fight.		13.0912	8.0592	3,9088	16.1232	23.7648	22.9992	25.0704	11.53+4	17.3328	11.6112	
Partie Franklin I			3.9888	14.1237	21.7648	22.9992	25.0704	11.5344	17.3328	11.6112	9.096	
Compare La			16.1737	73.7645	22.9392	25.0704	11.5344	17.323	11.6112	9.096	3.3744000000	
BURNEY TIPE A	1000	16.1232	23.7640	22.99992	25.0704	11.5344	17.3328	11.6112	9.096	3.3744000000	10.2672	
28URVEY TIPE			22.9392	25.8204	11.5344	17.3328	11.6112	9.0%	3.3744000000	18.2672	20.0209	
MEURVEY THE	100		25.0704	11.5344	17.3320		9.096	3.3744000000	10.2672	20.0205	16.6608	
CONTRACT OF			11.5344	17.3328	11.6112	9.096	3.37+4000000	10.3672	20.0206	15.6608	18.1776	
DI BURNEY THP	1000		17.3325	11.6112	9.095	3 3744080000	10.2572	20.0256	16.6408	19.1776	18.4040	
ETAURINEY THP			11.6112	9.0%	3.3744030000	10.2672	20.0208	16.6600	18.1776	15.4048	10.7536	
REFLEVENTIF	125		9.096	3.3744000000	10.2672	20.0300	16.6608	18.1776	18.4646	18.7536	16.0848	
LIBURVEY TVP	100		3.3744000000	10.2672	20.0208	16.6600	18.1776	18.4948	18.7536	15.0946	18.1776	
THEFT	100	2.1744000000		20.0268	16.6608	18.1776	18.4946	18.7536	16.0848	18.1776	23.496	
BADURVEY NP BADURVEY DP	1		20.0208	15.0600	10.1776	18,4040	18.7536	16.0048	18.1776	23.496	25.4528	
DADUHVEY THE			16.6628	18.1776	10.4040	10.7536	16.0948	18.1776	23.496	25.4529	24.8754	
SAURVEY NP	100		18.1775	18,4643	18.7536	16.0810	18.17%	23.4%	25.4528	24.8704	28.1424	
LIFNEY TYPE			10.4045	18.7536	16.0940	10.1776	23,496	26.4528	24,8764	28.1434	26.8256	
ARM 1-			18.7536	16.0046	18.1776	23.4%	25,4528	24.1754	29.1424	25.6256	28.9408	
	-		16.0048	:8.1776	23.4%		24.8784	28.1424	26.6256	25.9408	30.6394	
	1000		18.1776	23.4%	26.4528	24.6704	29.1424	26.6256	28.9488	30.6394	23.2848	
	100		23.4%	25.4528	24.8784		25.6256	25.9400	30.6394	23.2948	29.4054	
			26.4528	24.8784	28.1424	26.4254	28.9400	30.4384	23,2048	29,4564	27.9504	

Figure 3-47 Node 469 Ready for prediction.

Node 469 is on Waiyaki Way next to the Mall, Westlands. The attributes to act as inputs for purposes of prediction are entered in a prediction table as shown in figure 3-48 shown

1 1	HVEY IY	PEEARMI		MAX + DIA		south Dramit	NA.		and Colleged	
a In	in Set] Graph	Set] Get Rout	e Training Error	Test Enar	hader Sal Re	ouris Query Pie	ndiction] Valid	nion Set] Valid	alion Ency Test Sal	
н.	Douge	Input1	ligut2	Tapit3	Stout4	InputS	Seputs	lique?	Inpits	
	12	1	23	11	23	12	23	30	4	
	2	23	2 4	23	2	22	3	12	20	
						-	100		100000000	
1										
31										
1										
1										
1.90										
1.										
-										
1										
-										
12										
8										
er 👘										

Figure 3-48 Prediction table entries

There after, the icon of a folder is clicked to predict the single one step ahead for all rows of data shown.

ЯF	FNNet	work	and the second second
File	Edit	Project	
Ø			

Figure 3-49 Folder Icon to click complete the process of prediction.

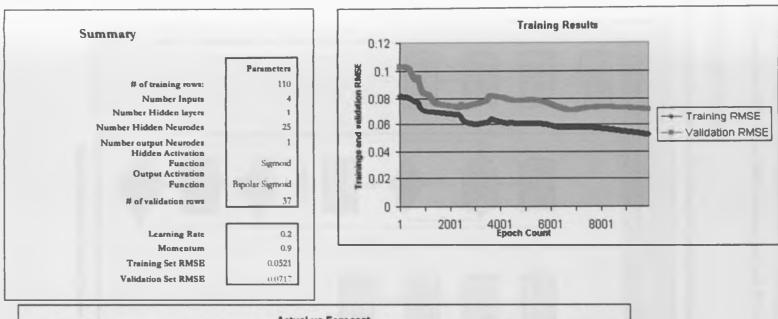
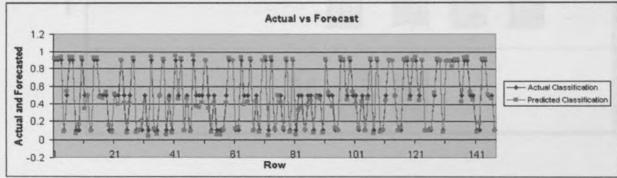

HOW I	Tuain Set Get Route Query Peedic	ten Secol Bedet Set T	et Los Laive Los Goal	A Sul Test Sul Vakation Ex	ny Valideion Sel	e NOS
heron Data	There are a service of a servic		and in the first			
MCH	F Oplinise have delance only					
Tsain	Real Property in the local division of the l					
arow.	Gat Baste	1 THE day	and all a	-	90 9 8/	
irest [0 6000g	fell of the s		680 90 A	-
opoten	Zaoni le Roule		AND BUT So off of	100 8 4 4	3 /000	8 8 2
- Loring	Zeem to Eaters		0 0.08d 40 0 0	12 month	to other	3.00
lest		- Colora B			Be all all the	0
	Sus/fel Cost (kahi)			Public Party	Artice Themas	20
or them Dill	Dist Bent		State of		a gran	Sen?
NAT THE A						Bale, 8
BUSYTOP	Piedet Spoed [72]	2 8 800 0 M	a gading a			2
BUDITOP BUDITOP BUDITOP	Particular	BEER OF	P+85 108850 -0		Different La	1.9489
#1/5171# #1/5170#	₽ 22.62782990	18 8 0 all	Bolletter S S P .	1 Starting	8 4 0 0 0 0	919
メロンセンプメデ メロンセンプメデ メロンセンプメデ	22.7153.4071 21.51.423548		al a		A Page	820
BUTTYP .	A REAL PROPERTY.		8 . 5		A 46	
EVINE	and the second second		·	Sugar	the allowed	
H Z- SI RING	Get Pedcloro		\$22.00 .6	10 m		
2						

Figure 3-50 Prediction data ready to update the road network node


Finally, a prediction is selected to update the node value. Figure 3-50 illustrates the resulting window once a prediction is ready for saving hence process a shortest path.

3.10.6 Neural Network Source Code Validation and Testing

Before making actual runs, the neural network is extensively tested on sample data. In this case, IRIS data is used as a benchmark to verify that the algorithm works and the source code is correct. In the IRIS dataset, 3 different types of IRIS flowers are described by 4 attributes. Measurements in millimeters of 150 flowers, 50 of each species: sepal-length, sepal-width, petallength, petal-width, class name.

3.10.7 Neural Network Training Result from IRIS data set.

The results affirm that the neural network source code and algorithm is correct. It is able to correctly classify the IRIS dataset 100% (training set) and 70% validation set.

3.10.8 A* Search Design

Figure 3-51 depicts the process of building the road network earlier described.

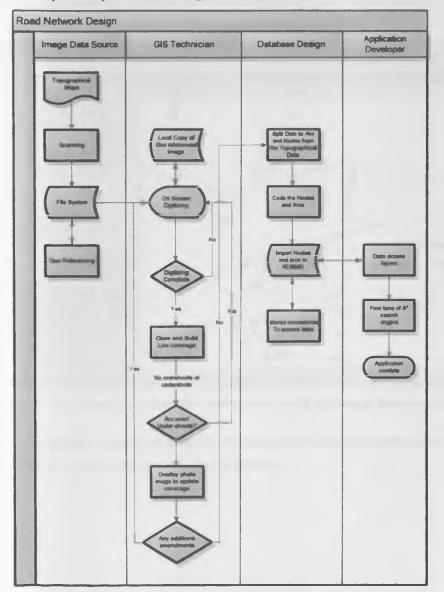


Figure 3-51 network Design Process

The process of developing the road network is not automated in the prototype. It combines some manual process and uses specialized software: ArcInfo/ArcView.

3.10.9 A* Search Testing

The A^{*} search is tested on a graph network using dry runs to ensure that the heuristic function is indeed working. The figure 3-52 illustrates the result of a run from node 67 (KPC Staff quarters Thika road) to node 197 (Kariobangi, Kamunde Road).

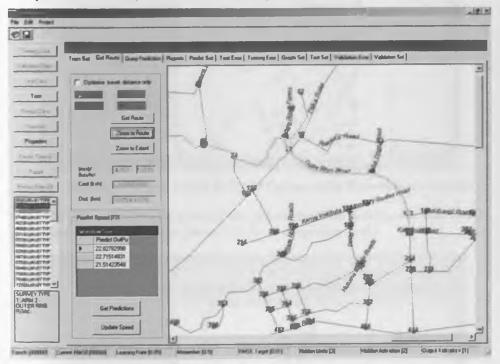


Figure 3-52 Run results from node 67 (KPC Staff Quarters) to 197 (Kariobangi, Kamunde road)

Figure 3-53 illustrates a second run from the same start point to a new destination (node 404 Huruma Road, Huruma). The path suggested is different.

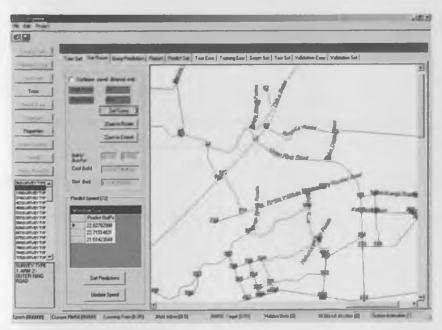


Figure 3-53 Run results from node 67 (KPA Staff Quarters) to 404 (Huruma Road, Huruma)

Figure 3-54 below illustrates the result of the same run based on path distance alone which gives a static result irrespective of time of the day or congestion level.

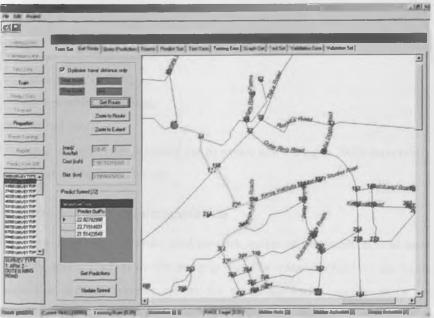


Figure 3-54 Shortest static path optimizing travel distance not time.

4 System Implementation

4.1 Hardware Platform used

• A Toshiba Laptop Celeron 1.7 GHz processor with 512 MB ram and 30 GB hard disk, with windows XP professional service pack II.

4.2 Software used

- Map Object 2.0,
- Visual Studio .NET 2003,
- SQL Server 2005 SPK1,
- .NET framework 1.2

4.3 Implementation Process

Using Visual Studio .NET 2003, the prototype is compiled and tested. The implementation process is as outlined:

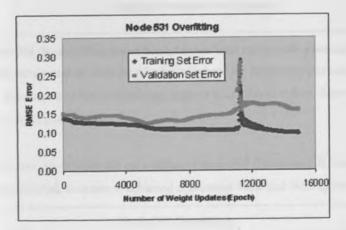
- 1. Implement artificial neural network,
- 2. Implement A* search,
- 3. Implement GIS visualization,
- 4. Implement ANN saving,
- 5. Implement ANN prediction,
- 6. Integrate all modules.

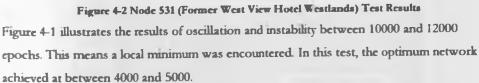
After each step, a series of tests is carried out to ensure unit testing is 100% successful before integration testing is carried out.

4.4 Decision Support Implementation

The system covers the entire Nauobi road network system of about 500 Km of main road and 1500 km of access road, as shown in figure 4-1. The research objective was to develop and document a decision support system for predicting traffic speeds hence conduct minimum cost routing as described in section 4.5.2 late in this chapter.

Figure 4-1 Network Coverage of the System: minor and major road network of Nairobi from 1:2000 source images.


The developed system has five features inbuilt differentiating it from exiting system found in other parts of the world Wang et al. [WTSW03]:


- Is based on the predicted information rather than the real-time (current) traffic information. Park et al. [PSHJ05] demonstrate that for certain future time periods travel time forecasting using only the historical profile without real-time profile is better that one using real-time profile or both.
- Each node on the road network is associated with a neural network hence greater flexibility and autonomy. This results to a more fine grained scale of analysis hence higher accuracy of prediction with results being less generalized spatially Innamaa [101].
- Complete independence from proprietary complex GIS spatial road-network database storage, hence inexpensive to deploy and replicate Park et al. [PYR05].

- Designed to work with historical traffic count data converted to speed using Greenshield's theorem, with inbuilt flexibility to manage real-time data feed.
- Depends on traffic counts collected manually, with a strong linkage to road and highway design volume and specification making it compatible to many third world countries. In this context, traffic count from KIPPRA.

4.5 Testing

A number of sample runs to have a feel of the dataset is run to identify critical parameters to be tuned while developing an optimum network structure for nodes identified.

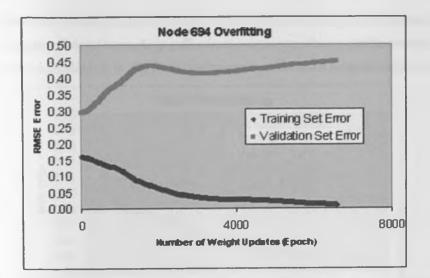


Figure 4-3 Node 694 (Waiyaki Way, Forest Road, Limuru Road Intersection parklands) Test Result Figure 4-3 Illustrates a case of extreme overfitting where the network parameters need to be reduced from the current values and training begin at much lower values. Such a result depicts poor guess of parameters.

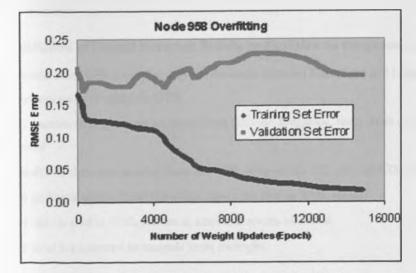


Figure 4-4 illustrates yet another run on a different node 958 (Museum Hill Center). The optimum neural network structure is achieved at between 4000 and 5000 epochs.

Figure 4-4 Node 958 (Museum Hill Center) Test Result

The validation line illustrates an increase in RMSE error as the training set error improves. It is characteristic of neural networks to suffer from overtraining when a suitable stopping function is not established. In this thesis, early stopping is enforced using the validation set.

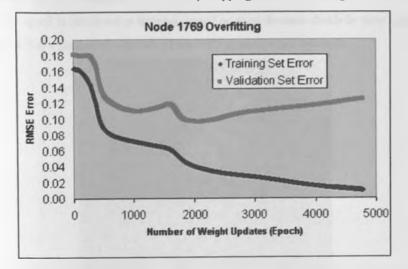


Figure 4-5 Node 1769 (Development House next to Railway Station) Test Result In figure 4-5, the optimum structure is achieved between 1800 and 1200 epochs. Thereafter the validation error increases which results from over fitting. At about 1000 epochs, the network overcomes local minima. By using the delta rule, the neural network can converge to a global minimum.

4.5.1 Validation of Neural Network Results to Realities on the ground

Using a Garmin etrex GPS, a number of runs are made between Embakassi and Gigiri. Listed is outlines steps of using the GPS:

- The garmin etrex gps is set to record data (latitude, longitude, time) after one (1) second
- The data is then downloaded from the GPS using an RS-232 cable on COM1
- The software used is EasyGIS which stores the data in XML format.
- The data is read in XML format in excel and results obtained.
- The time is converted to seconds from midnight.

- The distance between successive points is calculated using Euclidean distance with a conversion to KM by multiplying by 110.592. (1 degree is approximately 110.592km at the equatorial region)
- The speed is calculated at intervals based on total distance divide by time interval

The figure 4-5 is a picture of a garmin eTrex GPS as used in the research.

Figure 4-6 Garmin eTrex Hand Held GPS

Table 4-1 is a ample of data obtained and processed to give speed of the probe car.

Latitude	Longitude	Date	Time	Seconds	Distance	Speed
-1.233215	36.812696	2006-03-29	14:31:34	52294	0.007	28.70965292
-1.23328	36.812696	2006-03-29	14:31:35	52295	0.007	27.46943749
-1 233366	36.812696	2006-03-29	14:31:36	52296	0.010	27.36883642
-1.23343	36.812696	2006-03-29	14:31:37	52297	0.007	26.124370
-1.233559	36.812739	2006-03-29	14:31:38	52298	0.015	28.81852243
-1.233687	36.812782	2006-03-29	14:31:39	52299	0.015	32 4825089
-1 233795	36.812804	2006-03-29	14:31:40	52300	0.012	35.15866593
-1_233881	36.812825	2006-03-29	14:31:41	52301	0.010	36.9712311
-1 233968	36 812868	2006-03-29	14:31:42	52302	0.013	37_9588866
-1.234074	36.81289	2006-03-29	14:31:43	52303	0.010	38.0691436
-1.234159	36.812932	2006-03-29	14:31:44	52304	0.010	39.1621364
-1_234245	36.812954	2006-03-29	14:31:45	52305	0.010	40.1084689
-1.234331	36.812997	2006-03-29	14:31:46	52306	0.011	40.5126089

Table 4-1 Sample Data collected from a garmin GPS

The average speed is determined to be 23 km/hr. The neural network predicts speeds between 10 and 40 km/hr. The following charts and maps depict the speed at various times during the period of the survey.

Figure 4-7 Speed Survey Map of 22 March 2006 - Embakassi to Gigiri

A good section of the journey is made at speeds between 39 and 94 km/hr. However there are sections (Parklands, GPO, Moi Avenue) which seem to have speeds less than 12 km/hr. Speed 228372005

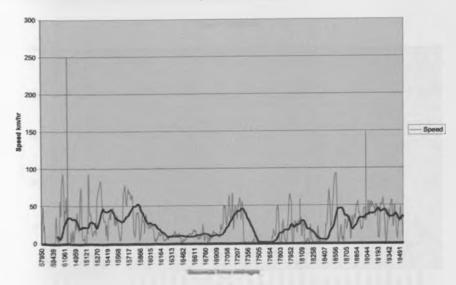
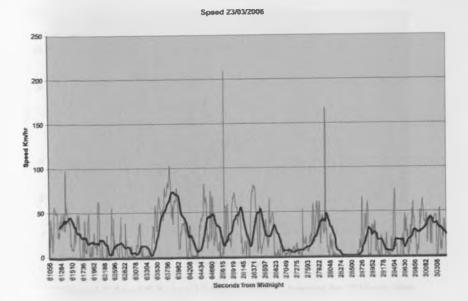
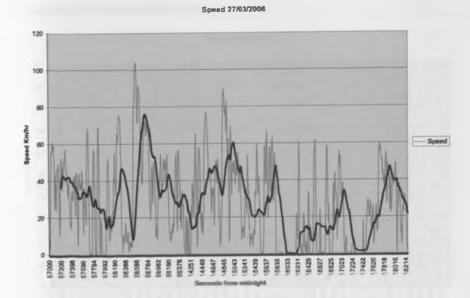


Figure 4-8 illustrates a 3 minute moving average. A good part of the journey has a travel speed of less than 50km/hr.

Figure 4-9 Speed Survey Map of 23 March 2006 – Embakassi to Gigiri The figure 4-9 illustrates a slightly different picture than 22⁻¹. Embakassi Road is used and features a number of points where the speed reduces to less than 12 km/hr. There is an even distribution between 12 and 39 km/hr and 39 to 94 km/hr.




Figure 4-10 Speed Values of 23 March 2006 with 3 minute moving Average

121

From figure 4-10, the travel speed from using Enterprise road as a higher travel speed compared to Mombasa road but the travel distance is longer.

Figure 4-11 Speed Survey Map of 27 March 2006 – Gigiri to Embakassi Figure 4-11 illustrates the journey back home using Mombasa Road on 27th. This is a relatively smooth journey with very few points of speeds less than 12 km/hr.

122

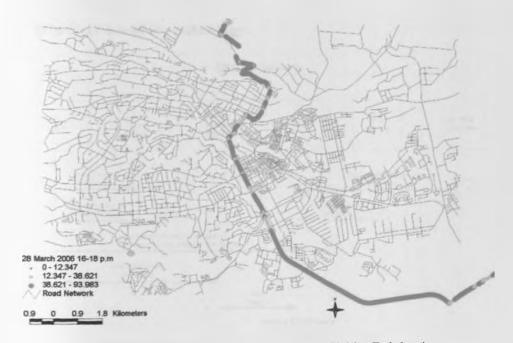
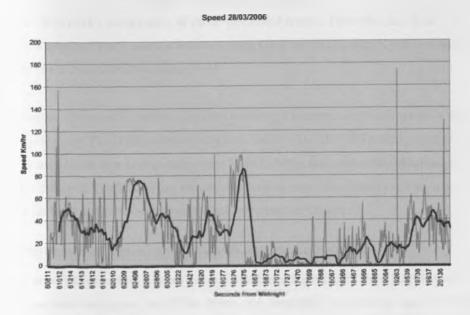
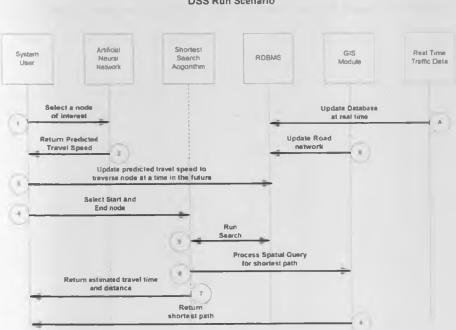




Figure 4-13 Speed Survey Map of 28 March 2006 –Gigiri to Embakassi The journey home on the 28th has a very few points where the speed is less than 38 km/hr. The speed is reduced to less than 39 km/hr between Kenyatta Avenue and Hali Selssie. A similar situation after Bunyala Road later on.

Figure 4-14 Speed values and 3 minute moving average for 28 march 2006

4.5.2 Motorists' use of the technology.

DSS Run Scenario

Figure 4-15 System Run Scenario

Figure 4-15 illustrates a run scenario of the implemented system. From the data flow diagram, it is assumed that a suitable interface using GPRS or IEEE 802.1X will be availed to support continuous seamless connectivity.

Using a remote system either before a journey or during a journey, a motorist selects a start node and end node. This is illustrated as step 4 on figure 4-14. The DSS returns a journey path, associated travel time and distance (step 7 and 8) to the motorists with which he/she can make a decision. Traffic data can also be displayed on road side displays and signs as illustrated on level 4..4 of the data flow diagram presented in Chapter 3.

4.6 Frequency of Training: Neural Network Calibration

Since real time data collection systems are not available in Kenya, data from KIPPRA was used for simulation using real data. If the system was connected to a real time data collection system, the training of the neural network would be after every 10 minutes and later on, once a day after years of data is available. Step 2 on figure 4-14 would be running automatically after any link and node status change or user intervention. As identified in the literature review, calibration of the network can take place even once a month Park et al [PSH]05].

5 Results and Findings

Test	Lag Window 3			Lag Window 5			Lag Window 7			Lag Window 9		
	Validation RMSE	Training RMSE	Difference									
1	0.1920	0.1570	0.0350	0.2142	0.0977	0.1165	0.1329	0.0571	0.0758	0.2494	0.0341	0.2153
2	0.1910	0.1570	0.0340	0.2152	0.0984	0.1168	0.1515	0.0657	0.0858	0.1628	0.0563	0.1066
3	0.2497	0.1958	0.0539	0.2937	0.2746	0.0191	0.2198	0.2661	0.0463	0.3607	0.1378	0.2229
4	0.2460	0.1190	0.1270	0.2423	0.0731	0.1693	0.1760	0.0100	0.1660	0.2203	0.0100	0.2103
5	0.2038	0.1119	0.0919	0.2169	0.0667	0.1502	0.0840	0.0100	0.0740	0.1740	0.0100	0.1640
6	0.2076	0.1033	0.1044	0.2386	0.0274	0.2112	0.0989	0.0100	0.0889	0.2209	0.0100	0.2109
7	0.2293	0.1062	0.1231	0.2689	0.0258	0.2431	0.0865	0.0100	0.0765	0.1575	0.0100	0.1475
8	0.2777	0.0772	0.2005	0.2190	0.0100	0.2090	0.1200	0.0100	0.1100	0.1715	0.0100	0.1615
9	0.2222	0.0841	0.1381	0.2365	0.0100	0.2265	0.1109	0.0100	0.1009	0.1774	0.0100	0.1674

5.1 Neural Network Analysis of the Result

* The optimum structure is Test 3 of lag Window 5

* The worst structure is Test 9 of lag window 5

The algorithm to determine the best and worst structure

- 1 Get the absolute minimum difference between the Validation RMSE and Training RMSE for each lag window
- 2 Get the minimum among the lag window minimum

Table 5-1 Node 1944 (Haile Sclassic) Results

	Lag Window 3			Lag Window 5			Lag Window 7			Lag Window 9		
Test	Validation RMSE	Training RMSE	Difference									
1	0.2397	0.1601	0.0796	0.2805	0.0977	0.1828	0.2326	0.0614	0.1712	0.1924	0.0417	0.1507
2	0.2472	0.1573	0.0899	0.2807	0.0984	0.1823	0.2226	0.0567	0.1659	0.2299	0.0366	0.1934
3	0.2535	0.1955	0.0580	0.3654	0.2637	0.1018	0.3755	0.3508	0.0247	0.2341	0.2112	0.0229
4	0.2224	0.1276	0.0948	0.3200	0.0748	0.2452	0.2074	0.0109	0.1965	0.2398	0.0100	0.2298
5	0.2262	0.1232	0.1030	0.3290	0.0485	0.2805	0.2183	0.0113	0.2070	0.2086	0.0100	0.1986
6	0.2024	0.0969	0.1055	0.3526	0.0133	0.1393	0.2012	0.0100	0.1912	0.1790	0.0100	0.1690
7	0.2106	0.0919	0.1187	0.3535	0.0190	0.3345	0.2179	0.0100	0.2079	0.1398	0.0100	0.1298
8	0.1839	0.0687	0.1152	0.2953	0.0100	0.2853	0.1881	0.0100	0.1781	0.1194	0.0100	0.1094
9	0.1729	0.0920	0.0809	0.2900	0.0100	0.2800	0.2042	0.0100	0.1942	0.1659	0.0100	0.1559

* The optimum structure is Test 3 of lag window 9

* The worst structure is Test 6 of lag window 5

The algorithm to determine the best and worst structure

- 1 Get the absolute minimum difference between the Validation RMSE and Training RMSE for each lag window
- 2 Get the minimum among the lag window minimum

Table 5-2 node 1769 (Hali Selassie Moi Avenue Intersection) Results

	Lug Window 1			Lag Window 5			Lag Window 7			Lag Window 9		
Test	Validation RMSE	Training RMSE	Difference									
1	0.33455	0.07760	0.25695	0.28680	0.01735	0.26945	0.21670	0.01000	0.20670	0.38740	0.01000	0.37740
2	0.30800	0.08970	0.21830	0.28790	0.01620	0.27170	0.28370	0.01000	0.27370	0.43815	0.01000	0.42815
3	0.36790	0.06825	0.29965	0.39300	0.01795	0.37505	0.22220	0.01000	0.21220	0.49680	0.01000	0.48680
4	0.30395	0.05155	0.25240	0.28730	0.01000	0.27730	0.29760	0.01000	0.28760	0.52030	0.01000	0.51030
5	0.27440	0.05856	0.21584	0.33950	0.01000	0.32950	0.23650	0.01000	0.22650	0.47330	0.01000	0.46330
6	0.29655	0.04967	0.24689	0.32200	0.01000	0.31200	0.27750	0.01000	0.26750	0.48715	0.01000	0.47715
7	0.29810	0.05310	0.24500	0.29730	0.01000	0.28730	0.34190	0.01000	0.33190	0.38965	0.01000	0.37965
8	0.31705	0.04245	0.27460	0.32710	0.01000	0.31710	0.37400	0.01000	0.36400	0.42685	0.01000	0.41685
9	0.28505	0.05620	0.22885	0.28865	0.01000	0.27865	0.28695	0.01000	0.27695	0.48390	0.01000	0.47390

* The optimum structure is Test 1 of all lag window 7 is optimum

* The worst structure is Test 4 of lag window 9

The algorithm to determine the best and worst structure

1 Get the absolute minimum difference between the Validation RMSE and Training RMSE for each lag window

2 Get the minimum among the lag window minimum

Table 5-3 node 928 (Kipande Road Globe Cinema Round About)Results

	Lag Window 3			Lag Window 5			Lag Window 7			Lag Window 9		
Test	Validation RMSE	Training RMSE	Difference									
1	0.2151	0.0900	0.1251	0.2180	0.0150	0.2030	0.3433	0.0100	0.3333	0.2953	0.0100	0.2853
2	0.2147	0.0900	0.1247	0.2467	0.0114	0.2353	0.3269	0.0100	0.3169	0.2919	0.0100	0.2819
3	0.2288	0.1022	0.1266	0.2093	0.0240	0.1853	0.3882	0.0100	0.3782	0.3206	0.0100	0.3106
4	0.3101	0.0569	0.2532	0.1891	0.0100	0.1791	0.3105	0.0100	0.3005	0.3431	0.0100	0.3331
5	0.3085	0.0541	0.2544	0.1607	0.0100	0.1507	0.2960	0.0100	0.2860	0.3385	0.0100	0.3285
6	0.3249	0.0374	0.2875	0.1532	0.0100	0.1432	0.3023	0.0100	0.2923	0.2999	0.0100	0.2899
7	0.3035	0.0495	0.2540	0.1701	0.0100	0.1601	0.3291	0.0100	0.3191	0.3189	Ũ.Ũ100	0.3089
8	0.3468	0.0369	0.3100	0.1522	0.0100	0.1422	0.3504	0.0100	0.3404	0.3293	0.0100	0.3193
9	0.3189	0.0465	0.2725	0.1510	0.0100	0.1410	0.3340	0.0100	0.3240	0.3232	0.0100	0.3132

* The optimum structure is Test 2 of all lag window 3 is optimum

* The worst structure is Test 3 of lag window 7

The algorithm to determine the best and worst structure

1 Get the absolute minimum difference between the Validation RMSE and Training RMSE for each lag window

2 Get the minimum among the lag window minimum

Table 5-4 Node 560 (Pangani Road Round About Intersection) Results

	Lad Window 3			Lag Window 5			Lag Window 7			Lag Window 9		
Test	Validation RMSE	Training RMSE	Difference									
1	0.22810	0.07405	0.15405	0.22855	0.02725	0.20130	0.36325	0.01000	0.35325	0.21885	0.01000	0.20885
2	0.22375	0.06807	0.15568	0.27935	0.03850	0.24085	0.32190	0.01000	0.31190	0.22060	0.01000	0.21060
3	0.22895	0.07610	0.15285	0.26555	0.05375	0.21180	0.29115	0.10510	0.18605	0.22335	0.01000	0.21335
4	0.22455	0.03500	0.18955	0.19410	0.01000	0.18410	0.38270	0.01000	0.37270	0.24115	0.01000	0.23115
5	0.23180	0.04260	0.18920	0.20680	0.01000	0.19680	0.36040	0.01000	0.35040	0.20230	0.01000	0.19230
6	0.23625	0.03375	0.20250	0.19490	0.01000	0.18490	0.33430	0.01000	0.32430	0.24115	0.01000	0.23115
7	0.22005	0.02920	0.19085	0.21180	0.01000	0.20180	0.34195	0.01000	0.33195	0.24465	0.01000	0.23465
8	0.26685	0.01280	0.25405	0.18750	0.01000	0.17750	0.37465	0.01000	0.36465	0.31205	0.01000	0.30205
9	0.23765	0.02120	0.21645	0.18525	0.01000	0.17525	0.36900	0.01000	0.35900	0.23145	0.01000	0.22145

* The optimum structure is Test 3 of lag Window 3

* The worst structure is Test 4 of lag window 7

The algorithm to determine the best and worst structure

- 1 Get the absolute minimum difference between the Validation RMSE and Training RMSE for each lag window
- 2 Get the minimum among the lag window minimum

Table 5-5 Node 72 (Outer Ring Road, Thika Road Round About) Results

5.2 A* and Dijkstra Search algorithm analysis of results.

A series of random points were selected to test the versatility of the A* and Dijkstra's search algorithm. Figure 5-1 illustrates the points. Vanous search runs were made from points in the same concentric circle or region to another.

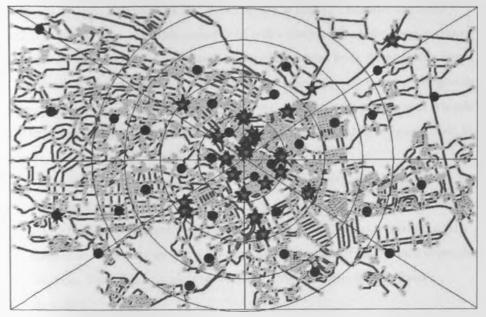


Figure 5-1 Random Points (black) selected to carry out shortest path analysis

Search	Start Node	End Node	Path length in meters	Algorithm Loop count recorded	Algorithm Run Time (min)
A*	43	2578	16,677	11,283	62 44
Dijkstra	43	2576	17,446	9,013	49.42
A*	2578	43	16,877	10,195	37.47
Dijkstra	2574	41	16,640	8,283	38.47
A*	1328	1442	3,477	4,712	1.42
Dijkstra	1328	1442	3,504	3,521	1.26
A*	1442	1328	3,480	1,799	0.09
Dijkstra	1442	1328	3,447	1,550	0.11
A*		1844	2,884	1,844	0.09
Dylastra		1844	2,211	1,319	0.04
A*	1864		2,884	2,286	0.17
Dilstra	1844	898	2,886	1,953	0.11
A*	1844	1035	3,755	3,588	0.74
Dijkstra	1844	1035	3,918	2,733	0.40
A*	1035	1844	3,755	3,647	1.18
Dijkstra	1035	1844	4,158	3,271	1.31

The run results were tabulated as shown in table 5-6 below:

Table 5-1 A* and Dijkstra search results

A complete list of run results is found in appendix B.

This thesis does not intend to compare nor contrast the performance of either the A* or Dijkstra's algorithm. A more objective test environment would be necessary for a comprehensive treatment.

Performance of both algorithms would be measured in terms of number of nodes opened, cost of comparisons made, number of cycles (loops). In addition, the current implementation of the A* search is based on impedance from both the node and link. The same code is altered to skip the summing of the heuristic component to the greedy component thus derive a primitive form of Dijkstra's algorithm. No correction is made to transfer the impedance associated on a node to adjacent links. Nevertheless, from the run results, the following observations can be made:

- 1. The number of loops evaluated by the Dijkstra's algorithm is approximately 20% less than the A* for most runs. This results in faster convergence.
- 2. The A* search consistently performs worse than the Dijkstra's algorithm with respect to processing time as a function of the number of loops made to reach a solution. The A* search takes on average 31% more time than Dijkstra's algorithm.
- 3. A bidirectional search would outperform a single direction search.
- 4. Dijkstra's algorithm doses not give consistent optimal routes when the start and end points are reversed.

5. A* search gives consistent results even on reversal of the start and end nodes. The choice of using the A* search stems primarily from the fact that it will always give consistent results from either direction a search is carried out. This results in consistent replicable answers to shortest path questions..

The A* examines and expands nodes in an ellipsoid manner unlike the Dijkstra's which expands nodes in circular bands. A more thorough investigation is required to address performance of search algorithms with respect to real time decision support and the need for satisficing rather than 100% accuracy.

6 Discussion

6.1 Overview

We have developed a system that gives the shortest path between any two points in Nairobi using predicted traffic congestion values. A GIS based traffic transport system is developed for modeling real time traffic parameters. Two artificial intelligence models are deployed to make decision making a reality: A feed forward artificial neural network and an A* search algorithm.

This chapter is organized as follows: section 6.2 presents the conclusion from this research thesis in support of using computer techniques in managing traffic congestion as opposed to intensive capital investment on road infrastructure. Section 6.3 presents the limitations of this research with a view of improving on the same. Lastly section 6.4 presents suggestions for future development in the problem of time series prediction and shortest path analysts.

6.2 Conclusion

Artificial intelligence is capable of solving traffic management problems in Nairobi as an alternative to capital investment on road construction. A.I techniques can be deployed within the framework of GIS based decision support systems to fundamentally predict short term traffic congestion, simulate scenarios to enhance traffic management and help in creating policy for long term sustainability of infrastructure. From actual GPS runs, the average vehicle speed in Nairobi is 23km/hr/hr which is 46% k/wer than optimum speeds of 50Km/hr. Clearly Nairobi roads are nearing capacity hence traffic congestions will be at its worst within the next few years if no policy or directive is made with respect to management.

This thesis presented a methodology and framework suitable for building an A.I, GIS decision support system for road network and transportation analysis. It is recommended to by the positive research results that rapid application design with prototyping is most suitable for building DSS systems. Service oriented architecture using object oriented platform on a multithread OS is most essential for both building and supporting a DSS solution which are responsive.

Artificial neural networks are suitable in predicting road traffic congestion in Nairobi for short term purposes. Neural network are effective in short term prediction when there is massive historical data. Support data on weather, events, and season is also critical. Using a sliding window approach is most beneficial in traffic prediction however, care needs to be taken into account to avoid over fitting. Artificial intelligence is critical in decision support and knowledge management. Scenarios can be built to look at the impact of policy or capital development in a growing city like Nairobi. Of particular concern is traffic management where intelligent agents can be deployed to manage congestion and traffic in general.

In addition, the A* search is an efficient algorithm in automated traffic management and decision support when the system is converted to a static model using short time lags. The A* search is effective for small networks as seen in Nairobi however, care needs to be taken in developing the heuristic component. If it is small, the A* decomposes to a greedy search and performs similarly to the Dijkstra's algorithm. Other factors need to be considered as identified in this research in fine tuning the A* search in terms of road characteristics and traffic influence for instance surface condition, location, width and gradient.

One critical generic component of a DSS is a visualization system or graphical user interface. As demonstrated in this report, GIS is critical in traffic management as it helps one get a quick overview of what is happening on ground. By visualizing the results of the search module, one is able to asses the maturity of our road network and identify suitable routes to expand or build mechanisms to control traffic. The speed survey carried out identifies roundabouts as most critical bottle necks.

Lastly, the city of Nairobi needs to deploy a traffic and route management system as proposed by this research. This will cut down the response time of emergency services and also warn people on identified routes of oncoming emergency vehicles and personnel thus create space. It goes without saying that data is not ready accessible in Kenya as experienced by the researchers. It is important for the government and academic institutions to partner in research and surveys to ensure that data collected is readily available for future research and analysis.

6.3 Limitations of Prototype

The forward feed back propagation neural network is best suited for static data modeling. Due to the spatial temporal nature of traffic congestion, a fundamental assumption taken was to reduce the dynamic nature of traffic to static by taking time segments. Data collected from KIPPRA was based on 30 minute time intervals. A better prediction and mapping to real time dynamics would benefit from a shorter data collection interval. This can be achieved by deploying a GPS data collection mechanism as presented in this thesis or use of loop detectors. A more suitable approach is to use a time delay neural network, reinforcement learning or K-nearest neighborhood algorithm to model time dynamics. Traffic congestion as a probabilistic phenomenon is a good candidate for naïve Bayesian networks. Bayesian networks allow one to

129

calculate the conditional probabilities of the nodes in the network given that the values of some of the nodes have been observed.

Recent developments in dynamic algorithms for routing have led to improvement of search algorithms. In dynamic transportation networks, weight changes can be classified as either deterministic or stochastic time dependent. A more practical approach to routing is to use timedependent shortest path algorithms. The link and node weight as a time dependent random variable is modeled using probability density functions and time-dependency.

This prototype re-computes the optimal route after every change in network and node weights based on the neural network predictions. This is an intensive process. It is subject to improvement by localizing optimizations, use of bi-directional A* or improving the A* by using advanced refinements of the A* search algorithm. An improved A* search should use the results of previous search to speed up later searches. By using the principle of the ant algorithm, a definite improvement of the search can be realized.

6.4 Suggestions for future work

As echoed by Efraim [E95] artificial intelligence has a number of advantages over natural intelligence. This thesis has demonstrated the possibility of developing a traffic management system to aid in managing traffic on Nairobi roads. There is room for development and future research which can be addressed in the following broad titles:

- 1. Data collection methodology using real time sensors,
- 2. Transport network modeling,
- 3. Traffic congestion prediction,
- 4. Dynamic routing and search strategies,
- 5. Traffic simulation.

6.4.1 Data Collection methodology

Data presented in this research from KIPPRA was collected manually and prone to collection, recording and collation errors. The data collected based on arm counts on a round about and a junction varies between 97% and 99%. The Greenshield theorem presented and used to derive traffic speeds is a rather generalized approach to modeling traffic densities and flow from traffic counts. From a practical point of view, it is much easier to collect traffic counts than travel speeds. This has a drawback in analysis where speeds are required resulting to generalization. A better traffic count methodology is to use automatic data collection tools like loop detectors, sensors, video camera or GPS. As presented in this thesis, the GPS probe car used is able to

obtain data at 1 second interval on all points traversed. Appendix H illustrates the data collection points and dates. For a comprehensive and accurate treatment of data, traffic counts should be collected all day through out the year.

The government of Kenya and academic institutions need to build up competency and systems to facilitate continuous collection of traffic data in all urban towns in Kenya. Listed are ways this can be done as potential future research areas:

- 1. Automated passive data collection (mobile phones, CCTV),
- 2. Point sensors (loop detectors),
- 3. Link sensors,
- 4. Vehicle probes (mobile phone, GPS, 911 requirements),
- 5. Video capture.

6.4.2 Transport network modeling

The road network developed in this research is based on topographical maps older than 15 years. The satellite image used to update the topographical maps is older than 7 years. An enhanced network based on current images and topographical sheets would result in better solutions. The digitizing of the data sources is most critical in developing a transport network. The transport network developed in this thesis has a number of errors ranging from dangles, missing links and incorrect attributes for roads.

6.4.3 Traffic congestion prediction

A feed forward neural network has been presented to predict traffic speeds. This approach is fraught with the major limitation of being suitable for static systems. An enhanced approach would be to use time-delayed neural networks, naïve Bayesian systems or K nearest neighborhood system. The use of probability densities and case based reasoning in prediction in the form of a hybrid system would greatly enhance the quality of results, accuracy of predictions and the step-ahead window from minutes to days or weeks with reasonable accuracy.

6.4.4 Dynamic routing and search strategies

A* search algorithm has been successfully been deployed to determine the shortest path between any two points. It is worthy to note the various variation of A* available to compare with in terms of performance. An enhancement to processing is to approach searching from parallel computing. This is achieved by use of bi-directional searches running on separate processing units. It will be most educative to compare A* runs with other search algorithms such Dijkstra's, floyd-Warshall, genetic algorithms and the ant.

6.4.5 Traffic simulation

The results of processing presented in this thesis are reported using a GIS. This would be greatly enhanced by use of a time variant continuous simulation engine, capable of using results of the prediction to animate agents on a scaled down model of the transport network. Such engines exist and use static mathematical models to run simulations of vehicle interaction on specific pomits of a road. This concept as used in computer games can be an invaluable tool in simulation and playback of predictions.

6.5 Government Maturity.

Schrader [S05] presents an evolutionary approach Governments pass though to maturity with respect to data collection and specifically transport network data. These phases illustrated as a S-curve (sigmoid) have the following listed critical zones:

- No data collected due to lack of human resources or funds to support long term planning. What exist is not easily shared as characteristic in many third world countries where data collection is still very expensive and seen as proprietary with high resale value,
- Data collected in quasi-real time and then is effective in developing ability to share information as characterized in many developed nations where value and service delivery is critical to effective and efficient running of the economy,

3. Data collected in real time and shared in real-time with the public (e-government). Kenya is making a positive transition from phase 2 to phase 3. As illustrated in figure 6-1,

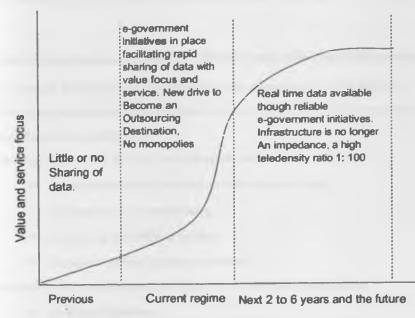


Figure 6-1 The progression of data sharing and c-government

This research would benefit immensely if road traffic data were available freely from a website, and would have at minimum:

- I. Speed data,
- 2. Events on road (spatial-temporal),
- 3. Road closures,
- 4. Accidents and slow spots.

For major intersections in major cities or towns. The aforementioned data using the proposed system presented in this research can be used to update changeable message signs. These billboards can be used to share travel time, incident messages and abduction / carjack messages. As identified in Jan et al [[S05] car drivers on motorways network may be aided by information about traffic from electronic boards, radio broadcasts and mobile phone broadcasts as detailed in Diane [DM05]. Route control helps motorists select a route that optimizes travel time, travel cost or distance through a network. Provision of routing information or route direction is expected to result in an efficient use of the network capacity under all traffic conditions. Information may be lengths of traffic queues at particular locations, travel time estimates or predictions for one or several routes recommendation.

Wastke [W01] identifies that easing congestion, or improved roads could help reduce emissions of some pollutants. Tackling road congestion is the basis of both economic and environmental development. Both Wastke, Bennett [B06] suggest methods to improve congestion from making better use of existing road infrastructure, managing demand for travel by road, creating new infrastructure and doing nothing which results to the increasing congestion to influence road users

6.5.1 Social Investments as a result of effective and efficient traffic management

The benefits accrued from effective and efficient traffic management can be listed as :

- 1. An efficient transport system is essential for economic growth and to support an enjoyable and serve daily life.
- 2. Economic importance derived from transport research can result to:
 - just in time delivery thus reduce on inventory costs,
 - pre-trip and en-route planning,
 - emergency and military support,
 - economic service (premium advisory),
- 3. Environmental management as an objective in transport management:
 - pollution reduction,
 - health road rage / anxiety

133

6.5.2 New markets available for route management services as proposed by this solution

A number of services can benefit from the proposed solution and prototype ranging from emergency services, to material and people movement. This opens up new avenues for business and knowledge sector growth in the Kenyan economy.

6.6 Closing remarks

The Government of Kenya through the ministry of information is in the process of presenting an ICT bill 2006 and e-government strategy which this research and future initiatives might benefit. There is provision for research and development which transport research initiatives will immensely benefit through:

- Establishment of one or more cost / performance test beds for data collection approaches where all forms of data collection techniques can be easily tested and compared as suggested in this thesis.
- Raise awareness of decision-makers on the potential value of artificial intelligence and strategic decision support systems as presented in this thesis and not limited to travel time, real-time and predictive systems.
- 3. Establishment of a transport research laboratory for focused research on time travel prediction in Kenya urban cities.
 - a. Mainstream initiatives focusing on methods and frameworks to increase public and private investment into traffic management and congestion control research and implementation.
 - b. Conduct research on the value of prediction versus-real-time information.
 - Improve on this study to use other network architecture such as recurrent neural networks.
- 4. Invest in continuous travel speed data surveys.

Figure 6-2 illustrates a traffic prediction value chain to turn Kenya around with respect to traffic management and prediction services.

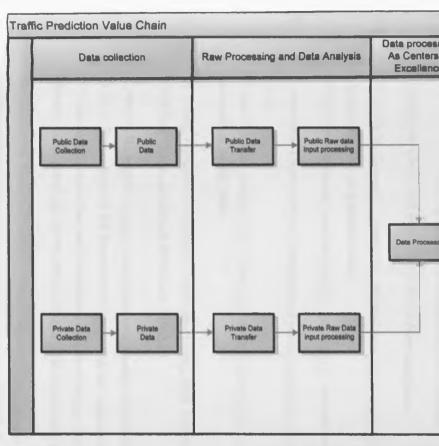


Figure 6-2 Traffic prediction value Ch

Figure 6-2 depicts a proposed value chain which involves both private and public sector pla dissemination. The proposed system fits under the column of prediction and management

7 Reference and Bibliography

[AC98]	M. Adya, F. Collopy How effective are neural networks at forecasting and prediction, A review and evaluation. 1998, Journal of forecasting 17, 481 - 495.
[AK05]	Arroyo S. and Kornhauser I.A., 2005, Modeling travel time distributions on a road network, 2005, Presentation at 2005 TRB Conference, Washington
[B06]	Garvin Bennett Traffic Jams: Why I accuse the planner, May 21 2006., Lifestyle magazine, Motoring, Sunday Nation
[B95]	C.M Bishop Neural Networks for pattern Recognition. Oxford University press, UK, 1995, ISBN: 0 19 853864 2
[C05]	S.S. Crone, Forecasting with Neural Networks, 2005, Portal on forecasting with artificial neural networks, EVIC 2005 Tutorial Santiago de Chile, 2005 http://www.neural-forecasting.com/
[CC G03]	Cecchelti M. Corani G, Guarsio G, Artificial neural networks prediction of Pm 10 in Milan Area, 2003 unpublished work. http://www.iemss.org/1ems2004/pdf/ai/ceccortl.pdf accessed on 14/04/2006
[CD05]	Connecticut Department of Environmental protection, Roads and trails metadata, 2005 http://dep.state.ct.us/gis/dataguides/dep/layers/metadata/road_coverage.html accessed on 26/01/2006
[CH05]	K. Chang, Introduction to Geographical Information Systems, 2005, Tata McGraw-Hill Publishing Company Limited ISDN-0-07-049552-1
(CMJ01)	Cortez P., R., Miguel, N., Jose. Evoluting time series forecasting Neural Networks Models, 2001, In Proceedings of 3rd International Symposium on Adaptive Systems: Evolutionary Computation and Probabilistic Graphical Models (ISAS 2001), Havana, Cuba, March, pp. 84-91, 2001, ICIMAF, ISBN:959-7056-14-3.
[D94]	Department of Trade and Industry, Neural computing learning solutions, 1994, Best practice guidelines for developing neural computing applications, Grown copyright 1994

136

[DFS01]	United Nations Department of Economic and Social Affairs, Human Resources
	Development for Eco-partnership building in Local Governance, 2001

- [DM05] C. Diane, C.B.Mary, The role of mobiles in Disasters and Emergencies, 2005, http://www.gsmworld.com/documents/public-policy/disaster_relief_report-pod December 2005, accessed on 14/04/2006
- [DMSS98] Demetsky M.J. McGhee C. C., Smith L.B, Sadek W.A., Development of decision support systems for real-time freeway traffic routing: Volume II, 1998, http://www.virginiadot.org/vtrc/main/online_reports/pdf/99-r10.pdf
- [E95] E. Turban, Decision Support and Expert Systems: Management Support Systems, 1995, Edition 4, Prentice-Hall, ISBN 0-02-421701-8,
- [EAL04] Turban E., J.E. Aronson, Ting-Peng Liong, Decision Support Systems and Intelligent Systems ,2004, Edition 7, Prentice Hall, ISBN 0-13-0461067
- [F99] M. Florian Untangling Traffic Congestion: Application of network equilibrium models in transport planning, 1999, OR/MS,

http://www.lionhttpub.com/orms/orms/orms-499/florian.html accessed on 14/04/2006

- [FD01] Frank J.R., Davey N., Hunt S.P. Time series prediction and neural networks, 2001, Journal of Intelligent and Robotic Systems 31: 91 – 103,
- [I] J61] Fu-Sheny Ho, Petros Joannou Traffic flow modeling and control using Artificial Neural Networks, 1961 IEEE control systems 0272-1708, <u>http://www-</u> rcf.usc.edu/~ioannou/2003update/d48pdf
- [FL03] Fildes R, Liao K., The accuracy of a procedural approach to specifying feed forward neural networks for forecasting, 2003, Lancaster University Management School Working Paper 2003/098 <u>http://www.lums.lancs.ac.uk/publications/viewpdf/000243/</u> accessed on 14/04/2006
- [FS91] J.A. Freeman, D.M. Skapura, Neural Networks: Algorithms, Applications, and Programming Techniques (Computation and Neural Systems Series) 1991, Addison-Wesley ISBN-0201513765
- [H05] J.Husdal Fastest path problems in dynamic transportation networks, 2000

	http://www.husdal.com/macgis/research.htm accessed on 29/9/2005					
[HD04]	Hossain, M.S., Davis, C.G. A GIS to Reduce Flood Impact on Road Transportation Systems, 2004, ESRI User Conference					
	http://gis.esti.com/library/userconf/proc04/docs/pap1512.pdf accessed 20/08/2006					
[HDR05]	The United National Development Programme, Human Development Report., 2005					
[101]	Innamaa, S. Sbort-Term Prediction of Highway Travel Time using MLP-Neural Networks, 2001, 8th world Congress on Intelligent Transportation Systems.					
[104]	ITS Orange Book, Predictive Travel Time, 2004 - Issue 1,					
	Source:http://www.pbsj.com/itsorangebook/ accessed on 26/01/2006					
[100:09]	F. F. Ian H.Witten. Data Mining: Practical Machine I carning Tools and Techniques with					
	Java Implementations. 1999, The Morgan Kaufmann Series in Data Management					
	Systems, Jim Gray, Series Editor, 1999.					
[]0.3}	C. Jacobs Average speed prediction using Artificial Neural Networks					
	,2003, Master of Science thesis Knowledge Based Systems group					
	Delft University of Technology					
[]505]	Jan H. V., Schuppen, Dynamic Route Control for Motorway Networks, 2000,					
	ERCIM News No 40 – January 2000					
	http://www.ercim.org/publication/ercim_news/enw40/van_schuppenl.html					
	accessed on 14/04/2006					
[K98]	N. K. Kanahaw, 1998, Foundations of Neural Networks, Finzzy Systems and Knowledge					
	Engineering (Computational Intelligences.), 2 Edition 1996 MIT ISBN 0262112124					
[KB06]	Alain K. Kornhauser, Megon Lynn Bernard Traffic congestion: How predictable?					
	Discovering volume trends across time and confirming fundamental speed-flow density relations, -					
	May 2006					
	http://www.ofe.princeton.edu/alaink/papers/Bernardtrafficcongestionpapers.doc					
	accessed on 14/04/2006					
[KHM05]	Kajitani Y, Hipel. KW, McLead A.I Forecasting non linear Time series with feed forward					
	neural networks: A case study of condition Lynx Data, 2005, Journal of forecasting 24,					
	105-117					

[KR02]	Kisgyergy L., Rilett R.L. Travel time prediction by advanced neural network, 2002,
	Periodica Polytechnica Ser. Civil Engineering Vol 46 No 1 Pp (15 – 32)
[[_97]	C.G. Looney Pattern Recognition Using Neural Networks Theory and Algorithms for
	Engineers and Scientists. 1997 Oxford University Press
	ISBN 0-10-507920-5
[LS99]	Lingras, P. and Sharma S. 1999. Short-Term Traffic Volume Forecasts: Excisting And
	Future Research, Proceedings of the Annual Conference of Canadian Society of Civil
	Engineers, Regina, Saskatchewan, IV, pp. 429-438.
[M05]	Muhomo Meshack Mbugua P15/7021/2001, Stock Price Prediction at the Nairobi
	Stock Exchange (NSE) a Neural Network Approach , 2005 University of Nairobi:
	School of Computing and Informatics
[M05]	Mwangi M. Decision Support systems implementation strategy: Case Study RF.ACT, 2005,
	MSc. School of Computing and Technology, University of Sunderland United
	Kingdom.
[MH99]	Miller H. J., Wu Y., Hung. M., GIS based dynamic traffic congestion modeling to support
	time critical logistics, 1999, Proceedings of the 32 nd Hawaii International Conference
	on System Sciences – 1999
[MRS03]	A., Michael, R.H Robert, P., Summa , GIS to minimize the impacts of bazardous waste
	shipments,
	http://ps.esr.com/library/usercont/proc01/professional/papers/pap572/p572.h
	tm accessed on 14/04/2006
[N03]	S Niraj, Application of GIS in Air Pollution Modeling, 2003 Central Road Research
	Institute Delhi India Source,
	http://www.gisdevelopment.net/application/cnvironment/air/index.htm
	accessed on 14/04/2006
[NHR99]	Nelson M, Hill. T , Remus W., Time series forecasting using neural Neutrals: Should the
	data be de-easonalized first?, 1999, Journal of forecasting 18(1999) 359-367
[004]	Okioga Teshamulwa F16/7950/00 FCE 446: Highways Engineering Course Work:
	Traffic Flow Analysis and Junction Design, 2004, Department of civil Engineering,

University of Nairobi

[005]	N., H.Osoro, Msc Thesis, Utilizing ICT to realize commuter needs in Narrobs transport
	sector, 2005, University of Nairobi
[POO]	Plummer Enc A, Time series forecasting with feed forward neural networks: Guidelines and
	limitations, 2000, MSc Computer Science, University of Wyoming 2000
[PA]	Partha Chakroborty, Animesh Das Principles of transportation Engineering
	Prentice Hall new IDheli – 110001 Page 66-67 (macroscopic traffic models)
[PB99]	Post, Buckley International Inc. and Kaburu, Okello & Partners, Nairobi Long Term
	Transport, 1999, Study for the Ministry of Local Authorities.
[PDV03]	K. Praween, R. Dhanunjaya, S. Vorum, Intelligent Transport System using GIS, 2003,
	MAP India Conference 2003
	http://www.gisdevelopment.net/application/utility/transprot/mi03164.html
	accessed on 10/11/2005
[PSHJ05]	Park, D. Shin, H. Hong, S., Jung, C. The use of Historical Data for Travel Time Forecasting in the ATIS, 2005, Journal of the Eastern Asia Society for Transportation studies, Vol. 6, pp.2473-2486
[PYR05]	Park, D. Yoo, K. Rhee, B. Development of Location-based Dynamic Route guidance System of Korea Highway Cooperation, 2005, Journal of the Eastern Asia Society for Transportation studies, Vol. 5, pp.1449-1463
[RN95]	S.J. Russel and P. Norvig Artificial Intelligence A modern Approach. Prentice
	Hall, NJ, 1995, ISBN 0 13 103805 2
[502]	Warren Sarle comp.ai. neural-nets FAQ, 2002
	ftp://ftp.sas.com/pub/neural/FAO.html.zip or comp.at.neural-nets accessed on
	10/10/2005
[SPC03]	I. Sherif, K. Prashanth, A. Ciprion, Optimization of Dynamic Neural Networks
	Performance for short-term traffic prediction, 2003, 82nd Transportation Research Board
	Meeting Revision, http://www.ltrc.lsu.edu/TRB_82/TRB2003-000349.pdf
[55500]	Sahai, A K Soman M.K Satvan V All Indian summer monsoon rainfall prediction using an
	artificial neural network, 2000, Climate dynamic 16: 291- 302.
[17:93]	Zaiyong Tang, Paul Fishwick Feed-forward Neural Networks as models for time series
	formation - Technical Report TR91-008 Computer and Information Sciences

University of Florida, 1991, http://citesecr.ist.psu.edu/cache/papers/cs/1784/ftp:zszzSzftp.cis.ufl.eduzSzcisz Sztech-reportszSztr91zSztr91-008.pdf/tang93feedforward.pdf accessed on 01/02/2006 [TLW05] Tsung-Hsien Tsai, Chi-Kong lee, Chiang-Hung WEI Design of dynamic neural networks to forecast sbort-term railway passenger demand, 2005 Journal of the Eastern Asia Society for Transport Studies Vol 6, pp 1651 - 1666, 2005 Transport Research Laboratory, Scoping Study Urban mobility in three cities, Sub-[TRI.02] Sabaran Africa Transport Policy Programme, 2002, The World Bank and Economic Commission for Africa. SSATP Working Paper No 70 H.H. Versteegt, C. M. J. Tampere Predict Time: State of the Art and functional [VT03] Architecture, 2003-07, TNO Into report, http://www.tno.nl accessed on 14/04/2006 Wasike S. K. W., Road Infrastructure Policies in Kenya: Historical Trends and Current [W01] Challenges, 2001, Infrastructure and Economics Service Division Kenya Institute of Public Policy Research and Analysis (KIPPRA) working paper no. 1 April 2001, http://www.kippra.or.ke accessed on 14/04/2006 Wang, F.Y, Tang, S., Sui, Y., Wang, X. Toward intelligent Transport Systems for the [WTSW03] 2008 Ohmpics, 2003, IEEE Intelligent Systems, Nov-Dec 18(6), 2003, pp.8-11 Yasdi R., Prediction of Road Traffic using a Neutral Network approach, 1999, [Y99] Neutral computer Approach 8: 135-142 F.Yong, S.Hongyu, T.Yong, R.Bin, 2004, Temporal difference learning with recurrent [YHYB04] neural network in multi-step abead freeway speed prediction, 2004, "IRB annual Meeting # 04-4233 You J., Kim TJ, Development and evaluation of a bybrid travel time forecasting model, 2000,. [YK00] Transposition research, Vol 8C, No. 1-6, PP 231-256 You J. Kun T.J., Toward developing a travel time forecasting model for location-based services: [YK03] A Review", 2003, ERSA conference papers ersa03p435, European Regional Science Association.

[YTPT98]	Yao J., Teng N., Pon H., Ton C.L., Forecasting and Analysis of Marketing data using			
	Neural Networks, 1998 Journal of Information Science and Engineering 14, 843-			
	862. http://www.ersa.org/ersaconfs/ersa03/cdrom/papers/435.pdf accessed on			
	10/03/2006			
[203]	Zhang G-P, Time series forecasting using a bybrid ARIMA and neural network model,			
	2003, Neutral computing 50 pages (159-175)			
[Z.0-4]	Zhang, G. P. Business Forecasting with Artificial Neural Networks: An Overvnew," 2004,			
	G. P. Zhang (ed.) Neural Networks in Business Forecasting. Hershey, PA: Idea			
	Group Publishing, (2004): pp. 1-22.			
	https://www.idea-group.com/ downloads/excerpts/1591401763F.pdf			
[ZCK03]	L. Zhao, F. Collopy, M. Kennedy, The problem of Neural Networks in Business			
	Forecasting: An attempt to Reproduce the Hill, O'Connor and Remus Study, 2003, Sprouts:			
	Working Papers on Information Environments, Systems and Organizations			
	Volume 3 Issue 4 Article 12 – 2003			
[ZQ00]	Zhang, P.G, Qi M Seasonal and trend time series forecasting with neural networks, 2000,			
	Proceedings of the annual melting of the decision sciences institution Orlando,			
	963- 965			

Bibliog	aphy
1	Dr. John A. Bullinaria Introduction to Neural Networks 2nd Year UG, MSc in Computer
	Science, http://www.cs.bham.ac.uk/~jxb/inn.html and
	http://www.cs.bham.ac.uk/~ixb accessed on 14/04/2006
2	Yu Zhanshon Feed forward neural networks and their application in forecasting, 2000, MSc
	Computer Science, University of Huston, 2000.
3	Wikipedia, the free encyclopedia, Artificial Neural Networks,
	http://en.wikipeida.org/wiki/artificial_netual-network_29/9/2004_accessed_on
	<u>14/04/2006</u>
4	A* search algorithm, http://en.wikipedia.org.wiki/A%2a-search , accessed on
	29/9/2005
5	Artificial Neural Networks - Wikipedia, the free encyclopedia,
	http://en.wikipeida.org/wiki/artificial_nerual-network accessed on 29/9/2005
6	Amit's Game Programming Site. 2003, Amit J. Patel. http://www-cs-
	students.stanford.edu/~amitp accessed on 29/9/2005
8	Prof. Leslie Smith, An introduction to Neural Networks,
	http://www.cs.stir.ac.uk/iss/NNintro/InvSlides.html accessed on 29/9/2005
9	Map representation,
	http://theory.stanford.edu/anmitp/gameprogramming/maprepresentation.html
	accessed on 29/8/2005
10	Worren S. Sarle, SAS Institute, III – Conditioning in neural networks September 5,
	1999
11	Google News Group, Google Talk, comp.ai.neural-net,
	http://groups.google.co.ke/group/comp/si.neural-net/ accessed on 14/04/2006
12	Neural Networks, http://www.statspft/cp./textbook accessed on 14/04/2006
13	D.R. Tveter, Backpropagaters Review, http://dontveter.com/opr/opr/html accessed on
	29/9/2005
14	Hoang G. Vu, Lee J Hyun, MLP - making MLP practical, , http://ai.kaist.ac.kr/-
	kim/cs570-2004/data/732 accessed on 29/9/2005
15	Choice of ANN model,
	http://www.thep.lu.se/public_html/jetnet_30manual/node14.html accessed on

15/12/2005

16

17

F. M. Christopher Give your. NET App Brains and brown with the intelligence of Neural Networks, 2005,

http://msdn.microsoft.com/msdnmag/issues/os/os/neuralnetworks/default.aspx

Lo C P Yeung Albert K.W., Concepts and techniques of Geographic Information Systems, 2002, Prentice Hall, ISBN-81-203-2230-4

144

1 Appendix A: User Manual

Start up Screen

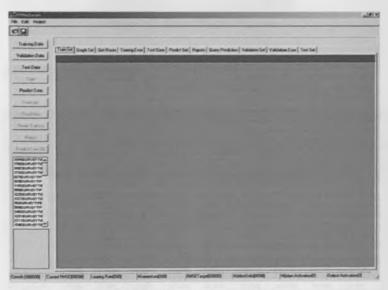


Figure 1-1 Start up screen of DSS

Loading Traffic Data

(Timetald)									1213
te ter inset	-								_
Internation 1	and the second sec	OPE & APRAT-				and in case of Females, Spinster, Sp			
	Tuesdad Goog	A.S.M. Get Finite	Tuning Evin [Test Care Photo: Se	r) Report Query Pre	diction () Validation Cat () 1	Addition Ever Tani Set		
Carson Line -	Contraction of the local division of the loc								
Second 1	Particit	Periol 2	Paried 3	Output:					1
	B 25.4578	24.9229	13.6399	34 9536					
Team	14.922	11.6304	14.0036	19.272					
	\$1,6304		19.272	14.499Z					
Same Same	14.0120		14.49RC	P5.5048					
	P\$.277	16.0902	15.3860	15.60					
Committee .	DA. APPE	13.204	18.40	11.0907					
	25, 39.66	10.00	14.8957	84.3384					
Pageties	16.68	18.8992	16.TOBS	25.634					
	14.4752	18.2344	20.004	21.400					
Nam Contropy	10,004		21.4032	20.7342					
	25.404	21.4932	29.7512	89.1284					
Fign	21.4032		18 1164	15.5472					
	20.7342		15.5472	24.2002					
Parent Aug. City	19.1104		14,202	17.0+40					
International States	25,5477		17.0+45	15.7194					
LTRUE VELTO	14,203		16.7504	13-9(57					
NAME OF A DESCRIPTION O	17.0440		13.9982	12,8794					
Classical AVTH Resources The	16,7254		12 0704	16.1404					
TUTEUR/C/T/P	13,4152		16.3424	11.495					
NUMBER OF THE OWNER	12.0764		11.416	EL ANNE					
REAL PROPERTY.	56,1404		11.6680	9.712HERRORD					
CONFURNITY TA	31.496	CC-0400	9.71048008						
TIME UP OF THE				15.424					
DICEL PURCHASE	9,71040		15.424	12.51.56					
Plan Land V Top	14.7408		12.5295	IL SHE					
RestURIETY4*	15.624		11.0%	12.0912					
GUINEY THE		12.5136	12.0912	12.0712					
t: w/w/5-	12.51.9		5,40%	4.5072					
MEMBAGA	11.000			10.624					
1040	12.0912		4.5072	10.4079					
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5.40%	4.5872	10.874						
	4.5872	10.809	13.45%	11.2948					
	MLAD4	20.4816	33.3848	3.400000				and the second	

Figure 1-2 Data Formatted in time Series format ready fro training

Click any of the nodes listed to build create a neural network

Setup parameters

Time Series Period	-	-
le le	-	
Moving Average Term	0	
	Okav	1

Figure 1-3 Select Window lag size

Select a suitable time series window

the Aust	_					_		-				-
	_	_				-				_		_
			1 AND D									
	Tran.	No. Graph S.	East Ploate 1	intering Kines T	ant Error Press	int Sal Barrow	() Lany Preside	tine Valdation	Sel Villa	Test Se	4 U	
atornia	1000											
		Period 1	Peret_2	Patial 2	Fernal 4	Pant S.	Pend 5	rent /	read of the	Public D -	Personal JTA	intend
entilisti	-			11.639	-	10.272	16 6000		16.46	164012	16.3364	22.854
	-	20.467#	24 million	14 19 30	19.272	16.000	15.35	No. of Concession, Name		INCOME.	20.904	21.452
Tage	1000	14,859	15.6304	19.272	16.6002	15,2546	in dil	10.0002	In 3944	20.994	21.455	20.7312
and I	-	11.4309			TS. STOR	16.00	N.OTH	H. STR	20.904	21 402	20.7312	19.1204
	1000	14.9136	19.272	16.0PE	In all	In ARG	in Zim		21.4882	20 7212	19.3501	15.5472
I	1000	19.272	16.4002	15.3146	STATEMENT .	HE.IJHE		21.402	20.7312	IN LUN	15.9472	14.3032
	-	16.000			16.2364			20.7362	19.1104	14.6472	14.402	17 0448
- oter	-	15-3168	14.68	IA AND	20 304	71 100	28.7312	INCLUME	15.5472	143802	17.044	16.7184
		IA.M	16.0042					15.5472		17.004	16.7]84	13 9152
of Channell I	-	16.6992	10.3344	20.404	21.4602	1101204	15.9472	10.200	17.000	15.7135	13.972	12.0704
	1000	In INI	22.991	26,7312	28.7312	15.5472		17,044		129152	E2.4704	16 1424
Page 1	1	20.904	25.4602	19 1 1 1	15 5472	N.300	17.948	16.7134	13.992	12.878	18.1424	11 75
	-	21.4002	28.7342			17.044		(3.9152	12,000	16.1424	11.496	11.448
A LOW THE		20 7312	10.1184	65 5472	14.2032		13.9152	TA WINC	15 1424	11.495	11.70	
	1	ER ETER	15.9172	14 202	17.0448		12,0704	16.1424		11.000	9 7104000000	
URVEY 711	-	15.5472	14.2027	17.044	14.7584	12.912		11.00	11.000	101 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	14 7000	IS AN
URVEYTE	1000	14.2002	17.3940	157101	13 9198	122 COLUMN		11.6688	9.7104000000		15.624	12.51.36
URIVEYTH	1000	17.0448	36.2384	TYNE	12.000		12.486		14.74	I KARN	12.5136	11.0992
RVEYTIP RVEYTIP	1000	16.7184	11.97.52	12 1311	16.1424	11 498	4 7104080008		15.424	12.5136	11.0992	12.0912
HEVETTO		13.9152	12.000	10.1424		11.44		15.824		11 Martin	12.042	5 40%
JRVEYTH JRVEYTH		12.0704	16,1424	11.406	11 6600	* CONTRACTO		12.8126	11.0002	12.0912		4 9072
URVETTA		36.1424	11.498		4 7104000000		12.5136	1120702	1223001	LE-OVIA	4.000	10.024
RVEYTYP		11.44	1122	9.710400000		19.15		12.0012	5 4046	4.5072	10.024	10.4976
URIVEY TH		11.0000	9 710-0000000		15.624	12.6126	11.4992		1 100	ILINE	10.000	11.2040
COLUMN TWO IS NOT		1.210	III 14,7408	15.674	12.513	31.0982	12.0912		10.001	18 4936	11.2040	1.460000003
RVEY TYP		14.7400	15.624	12.51%	11.0002	12 6012	5.40M				5 ALCONTROLOG	
EYTYPE		19.004	12 8136	TI-BOR	12.0012	Zellie	1 3077		11,304			13.4928
EY IME		12.5136	A A JUNEAR	A.R. AMAR	6.4006	4.6972	10.834	10.4976			12.46	17.2752
BASA	-	11.0002	EX JUNEX	2.000	4.5072	10220	10.4976	11.204	R. ALLERSON DE			
		12.0912	1.4096	4 56278	10.02M	10 45%	11.3040 ·····	9 44080000000		13.4938	11.2762	13-120
	1	2 4000	4.502	SHERE'S CO.	10.000	11:200	\$.400m000		13,428	17.2782		
		4.5072	10.424	10.4076	11.2040	1 44408000000		13 4928	17 2752	13.120	14 2384	13,3624
		10 824	10.4976	11.2010		10.9776	13 4428	17.2792	13 120	14.0004	11.4084	1.1.2mm

Figure 1-4 Input data based on varied lag size

Network parameters

Systematically identify the parameters to be changed iteratively while training with a view of getting an optimum neural network structure.

Step 1 is to create a network design. This involves identifying the number of hidden units and both hidden and output activation functions.

Input and Output Layer			
Number of Inputs (Training Data Columns)		10	
Number of Outputs (Last Column in Traini	ng Data Colu	mm) 1	
Output Layer Activation Function		Sigmoid	*
Hidden Layer			
		Suggest	
Number of Neurons in the Hidden Layer	20	Kanellopoulos_Wilkinsen	*
Hidden Layer Activation Function		Bipolar Sigmoid	*

Figure 1-5 network Design Parameters

Step 2-update the learning rate and momentum iteratively as learning proceeds.

etwork Design Inman	ation Stopping Criteria Sca	ling	
	Learning Rate	0.1	
	Momentum	0.9	
	Use Data Row Random Fee	ding 🗖	
Input to Hidden	Weight Initialization	Hidden to Output We	ight Initialisation
Automatic \	Weight Initialisation	Automatic Weig	ht Initialisation
Minimum Value	-0.5	Minimum Value	-0.1
Masāmum Valu	e [0.5	Maximum Value	0.1

Figure 1-6 Network Initialization Parameters

The weight initialization parameters for both input and output weight do not need to be changed during training. However where convergence takes a while, the weight changed iteratively.

Using Root mean Square Er	TOF	Target RMSE	0.01
✓ Using Epochs		Target Epochs	10000
Using Maximum Error		Target Max Error	0.01
Number of Epochs with no	Change to RMSE	RMSE No Change	50
Partition Data			
Training Set Partition	Partition Data	to Training, Validation and Test s	et
Number of Training Patterns	0.75	C Use Training Data as Cross	Validation Set
Number Validation Patters	0.25	Number of Hold out patterns	3
Number Testing Pallers	0	C Stop when Validation RMS	E starts to increase.

Figure 1-7 Neural Network stopping Criteria

Early stopping is used to avoid over fitting

out Data Scaling	Output Data Scaling
Normalise Data	Normaliee Data
C Max and Min	(F Max and Min
Lower Boundary	Lower Boundary 0.1
Upper Boundary 0.9	Upper Boundary 0.9
Standardise Diata Set	Standardise Data Set
F Mean and Stdandard Deviation	C Mean and Stdandard Deviation

Figure 1-8 Input and Output Scaling Parameter

Validation Set

Aven() 38.7707 11.859 71.139 21.459 31.059 51.500 11.0607	Feeting 2 19.1104 19.4408 19.4407 28.7982 14.1044	Person (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	Parent, 5 14,2022 16,0082	Head () (7.544)	Parisd &	Parial 2	Jundy	No.	Paried JR	Cutera
28.7917 11.0394 21.4384 21.4389 31.4389 31.4389 31.4389 31.4389	19.1104 54.408 15.6472 26.782	10.5472 38.270 34.200	14,2002	\$7.0mm						
21.0254 (1.1384 (2.400) (4.300) (5.300)	54.4CB 15.6477 26.782	18,210 34,2002				63,9852	12.0794	86.3424	23.098	13.400
25.5384 25.4000 36.6000 95.5000	15.6472	34,2002		15.700	18.08	ALC: NO	18.2548		12.400	25.75.2
21.400 31.602 35.500	267.92		17.0445	10.7594	11.0152	32.0784	26.3428	11.406	11.484	8.7104068
14.6M2 15.2ml			15.5472	14,202	17.000	84.7394	13.9132		18.1424	11.400
15.210		23.924	21.402	31.792	19.1184	85.5472	14,2802	0.048	10.7384	13.9522
	18.48	N.MME	18.2544	25.654	1.472	38.792	18.23.04	15.5477	14.3452	17.0440
	12.082	5.478	4.8072	6.424	10.45%	11.294		10.97%	12-403	0.292
16 ann	11.2948		18.97%	11.415	072762	11.18	14,2004		11,307	12.7524
		12.0942	1.476	4.580	10.674	0.65	11.2840	5 ACCRETED		123.4529
4.9072	11.096	10.40%	11.2548	LACOURSE		13.400	11,270	13.125	24,0304	11.4384

Figure 1-9 Post Validation setting data removal

Training

The process of training involves making incremental changes in the connection weights between layers.

During the training process, both the training RMSE and validation RMSE (optional) will be generated. A graph of the target versus the output value is dynamically generated giving the user a change to make a visual inspection of the progression of learning.

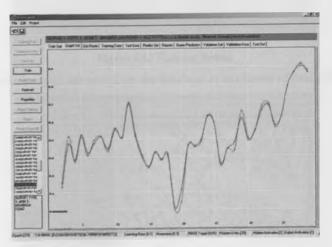


Figure 1-10 Training Result

the late of the late	_				
nia l					
	MARKEN CONFERENCE	AND TAXABLE APPROX ADDRESS ADDRESS TO TAXABLE ADDRESS	And in case of the local division of the loc	Pair/orginals/	
Langtain.	And and Reat Vol.	Sections Long Ent Los Eur Posts for (Report)	Own Buckson V Hanney Kall Mar	tented total	
same -	transferration of the second second				
	Randor 120	Thomas meta -0.03776474,044428	WEEKSTER REFE	3.154% Break (1811)	3
Tanta I	Epsthi 28	Trunneri, Abriz 4.00741780/007780 Trunneri, Mariz 6.007651887 Mathiet	VALENTER BALL +	a There is a manufacture	
	Epsth: 35 .	Thundred, there	VALENTEN PARE -	A TRADATO COME	
Take (Kash- M		VILEATEN MARY -	6.1990.79C784190	
			Via Collina Inc.	01001010-00000	
		TAMEN, RATE - & LEW CRINEWER	VILLEATEN PARE -	A TOTAL DUCTOR COMMENT	
C Trade Line 1			VALUE AT LOS PARTY OF	0.1822301003075	
		Training force EXTERNOL	VALUE ADDRESS	0.100.0000000000	
Francis			VALUATION INCOME	8196425465P-03	
			VALUE ATEM RATE -	A PRINT Paradition	
			VALUE AT THE PARTY OF	A CONTRACTORY	
Pagette		Truning Refs = 5.03702000040902	Visi Excitent darte -	A TOTAL COLUMN TWO IS NOT	
	Routes 212	TRANSMER HANGE - # STOR WINDOWS	VILEATON INTE -	01007649879311220	
1 Sungi Tanimi C.	Kanch+ 213	TRANSPOLISHER AND ADDRESS OF THE DRIVEN	VALUE ATOM PARTY OF	61994780567815	
	Sambi 214	TRADENC RAFE = 6 (127/ JST WRITE)	VIRE EACTIN MADE -	AT STREET, STR	
Sec. 1	Eputh 175 .	Channess Anesit ~ 6 62215 7/161 Melhetta	WALKATEN MADE -	6-1960PFCT96CMEW 24	
1000	Sauth: 25	Trialment Partia + 4.527 personal Torussical	WALKALEN PARK -	8758450720A08	
	Apaths 257	TANKING PARTE - EXCERCISIONER	VILEATER IMIE -	8196175-09402879	
Patrice R.	Randes 218	TRANSPOLY AND A DOMESTIC ADDRESS OF A DRESS	VALCATION RMOLT	419425042010019	
	Katabi 218	TRANSPORTED AND A DESCRIPTION OF THE PARTY AND A DESCRIPTION O	VILLATEN IMPER	O PHAT PLANEAU 3077	
Lamport dy to a	Eputo 28 .	TRADUCE FORTE + D 2005015040709714	VOLEATER PAYS -	813641525867514	
DISCOMPANY TO	Restlet 221	TRUMPIC PARTA > 8 CONTOAMOVIMUT	VILEADEN PME +	633640987061857	
0409-04-02-15	Spathy 222	TELAMENTY FORCE = 0.02901733234CITIS7	SINCE ATION RIVER -	0.736/98/CONTRACKS	
insputier74	Franket 275	TRANSIEL PINTE > 6.02760(8.07877/08	VALUATION PLACE +	R X MARKET 1440 MIC	
NEB-MURITIP	Read-1 28	TRAMES PAYSE - 6 SPECIES VETUPTIT	VALIDATION RIMUS >	018726300672	
Includiver Tel	Rander 28	TRUBING FORSE = INCOMECYCONDINA	WILLEATION PARSE :	0190210710703054	
reneway and the little	Eputo 25	TRANSIG FORTE + 1 CONCERNING ACTIN	VIR.EATION AMOL.+	6-116/00/09/09/09/07	
COMPLETE THE	Rando JIT .	TRANSING REAGE + BUDIED/UNLICER-BUD	WALKATION RAPE #	A 1907 MUMORE	
THE REPORT	Easth1 228 .	TENANDIG REALE - ALLONG TUDAL VALUES	VALUE AT THE PARTY A	A 15/MCLOREN/MCP	
100045-0114	Kash1 229 .	TRANING REASE ~ 6.007771881906080	VALUE ATEN MATE	619720707182208	
NAMES AND THE	Kanto 20 Faster 20	TRANSIG RAFE > 0.0747(LAENERT)	VILLENTER INTE -	01070017074	
and a state of the			VALUE ATEN RATE -	\$1157 MARCINE 757	
Support of the			VINE ATEN RATE -	1.15747.8687.0421	
names an Tat T		Training Name - Constant Constant	VIELEATER RATE -	0.157507973087179	
SHORY THE		Inspired Verial - Liconscience/verial	MALENTER RATE V	IL TRANSCONTINUES	
SUBJECT TYPE		TRANSING HIMLE - S-625749427623428	Visu discitutes Revisit -	IL THREAD AND FROM	
1 49943		TRUMPIC RIVER - 6 COMPLETION	WILL BUTTER HAVE	8+97727365X3986	
NONEACA MAD	Earth's 200	TANNAS AND - CONTRACTORS	WE EATON INTE -	41977902140765	
	Easthr 229	1748845 Feeta +3.02494 282745857	VINCEATION ITAKE +	8.1970/9623916498	
100 A 100 A 100 A	East- 50	TRANING FINTLE - S-ICHEAT/201541348	MILCATEN INTE +	E1979AD/CINEAC	
	Kantha 241	MARRIE RHUE - SIGNIFUSIONERS	MULTIATION PORTS ->	0.1988/09827332799	
The second second	Easts 20	Trumped, Items - 5 (2412)347920408	VALCATON INCL.	2 1000100100101122	-1

Figure 1-11 Training and validation RMSE results

Training Error

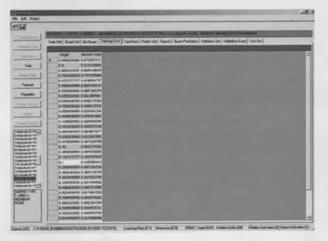


Figure 1-12 Training Errors

After training, the weights are saved on the database in readiness of prediction

Figure 1-13 Route engine Ready to Star Search

Route Search is used to determine the shortest path between any two points.

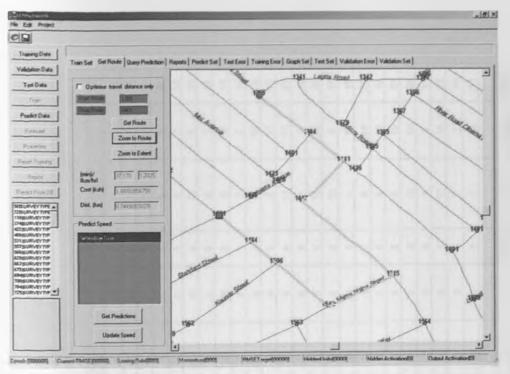


Figure 1-14 Route Selected after search

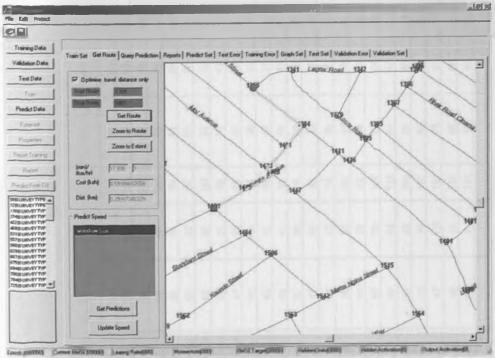


Figure 1-15 the same path based on static path length

APPENDIX B : Sample Data

STATION 1: RUAKA

Tuesday May 11, 2004

STATION 1: SURVEY TYPE 1: LIMURU ROAD

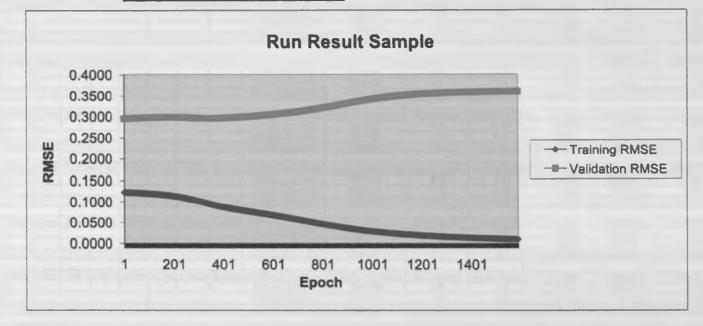
		Cars		N	latatus			Buses		L	orries	
Period	Approaching	Departing	Total									
7:00 - 7:30AM	126	20	146	91	56	147	4	0	4	11	2	13
7:30 - 8:00 AM	109	34	143	73	63	136	0	0	0	6	2	10
8:00 - 8:30 AM	97	34	131	57	46	103	2	0	2	3	4	7
8:30 - 8:30 AM	63	40	103	65	66	131	3	0	3	5	1	6
9:09 - 9:30 AM	55	34	89	65	84	149	1	0	1	6	7	13
9:30 - 10:68 AM	62	33	95	68	73	141	0	0	0	12	6	18
10:00 - 10:30 AM	60	65	125	52	58	110	0	0	0	8	7	15
10:30 - 11:00 AM	55	31	86	50	43	93	0	0	0	9	2	11
11:00 - 11:30 AM	47	36	83	40	78	118	1	0	1	7	7	14
11:30 - 12:00 AM	42	36	78	38	38	76	0	0	0	9	13	22
12:00 - 12:30 PM	48	46	94	47	29	76	0	0	0	5	12	17
12:30 - 1:00 PM	46	41	87	48	33	81	0	0	0	11	10	21
1:00 - 1:30 PM	37	58	95	28	29	57	0	0	0	6	9	15
1:30 - 2:00 PM	47	46	93	29	37	66	0	0	0	11	14	25
2:00 - 2:30 PM	44	50	94	46	41	87	0	0	0	12	5	17
2:30 - 3:00 PM	38	55	93	46	43	89	0	0	0	4	15	19
3:00 - 3:30 PM	46	39	85	48	35	63	0	1	1	9	14	23
3:30 - 4:00 PM	65	55	120	39	39	78	0	0	0	3	13	16
4:00 - 4:30 PM	48	64	112	44	47	91	0	2	2	5	12	17
4:30 - 5:00 PM	41	62	103	52	42	94	0	2	2	12	14	26
5:00 - 5:30 PM	43	94	137	60	63	123	0	0	0	7	4	11
5:30 - 6:00 PM	47	120	167	75	81	156	1	0	1	11	11	22
6:00 - 6:30 PM	42	92	134	68	59	127	0	0	0	7	7	14
6:30 - 7:00 PM	27	97	124	58	60	118	0	0	0	7	11	18
Day Total	1,335	1,282	2,617	1,287	1,243	2,530	12	5	17	188	202	380

STATION 2: KIAMBU

Wednesday May 12, 2004 SURVEY TYPE 1 KIAMBU ROAD

		Care		l N	latatus			Buses		L	orries	_
Period	Approaching	Departing	Total									
7:00 - 7:30AM	206	23	229	93	71	164	0	0	0	6	6	12
7:30 - 8:00AM	142	30	172	83	45	128	0	0	0	6	0	8
8:00 - 8:30 AM	106	68	172	74	77	151	0	0	0	4	4	8
8:30 - 8:30 AM	100	68	168	67	75	142	0	0	0	9	4	13
8:88 - 8:30 AM	92	69	161	66	65	131	0	0	0	5	8	13
9:30 - 10:00 AM	84	42	126	53	44	97	0	0	0	6	1	7
18:00 - 10:30 AM	83	50	133	52	52	104	0	0	0	8	10	18
10:30 - 11:00 AM	64	63	127	45	45	90	0	0	0	5	11	16
11:08 - 11:30 AM	76	54	130	45	47	92	0	0	0	9	8	17
11:30 - 12:00 AM	73	65	138	44	53	97	0	0	0	10	16	26
12:00 - 12:30 PM	68	82	150	55	57	112	0	0	0	4	9	13
12:30 - 1:00 PM	63	92	155	44	44	88	1	0	1	13	10	23
1:00 - 1:30 PM	87	77	164	55	66	121	0	1	1	15	17	32
1:30 - 2:00 PM	63	83	146	43	73	116	0	1	1 1	19	13	32
2:00 - 2:30 PM	98	68	166	62	62	124	2	0	2	7	9	16
2:30 - 3:00 PM	72	50	122	50	57	107	1	0	1	13	7	20
3:00 - 3:30 PM	64	61	125	70	56	126	0	0	0	11	9	20
3:30 - 4:00 PM	76	54	130	52	49	1 101	0	0	1 0	17	8	25
4:00 - 4:30 PM	50	64	114	53	50	103	0	0	1 0	9	14	23
4:30 - 5:00 PM	49	79	128	66	66	132	0	0	0	7	5	12
5:00 - 5:30 PM	52	148	200	56	74	130	0	0	0	7	8	15
5:30 - 6:00 PM	41	125	166	72	74	146	0	0	1 0	9	12	21
6:00 - 6:38 PM	31	130	181	82	75	157	0	1	1	7	7	14
6:30 - 7:00 PM	46	140	186	62	80	142	0	0	0	2	5	7
Day Total	1,886	1,783	3,689	1,444	1,457	2,901	4	3	7	208	201	408

STATION 9: KOMMAROCK-OUTER RING


Wednesday May 12, 2004

SURVEY TYPE 1: JUJA ROAD

Destad		Care		M	latatus			Buses		L	orries	
Period	Approaching	Departing	Total	Approaching	Departing	Total	Approaching	Departing	Total	Approaching	Departing	Tota
7:00 - 7:30AM	55	75	130	65	11	76	0	4	4	17	9	28
7:30 - 8:00AM	44	130	174	64	101	165	4	5	9	7	14	21
8:00 - 8:30 AM	30	76	106	47	80	127	1	11	12	5	11	18
8:30 - 8:30 AM	36	63	99	93	51	144	3	2	5	8	5	13
9:00 - 9:30 AM	57	55	112	109	56	185	2	8	10	10	12	22
8:38 - 18:00 AM	47	62	109	110	57	167	4	5	9	11	13	24
18:00 - 10:30 AM	41	46	87	83	52	135	5	2	7	12	8	20
18:30 - 11:00 AM	60	53	113	86	55	141	3	4	7	9	3	12
11:00 - 11:30 AM	64	55	119	79	56	135	3	6	9	13	6	19
11:30 - 12:00 AM	67	47	114	79	53	132	4	4		12	4	16
12:00 - 12:30 PM	65	55	120	80	53	133	2	5	7	17	13	30
12:30 - 1:00 PM	44	45	89	42	70	112	3	3	8	10	16	26
1:00 - 1:30 PM	67	70	137	73	31	104	4	2		21	4	25
1:30 - 2:00 PM	65	67	132	77	40	117	3	3	8	15	9	24
2:00 - 2:30 PM	63	52	115	65	45	110	2	4	8	17	4	21
2:30 - 3:00 PM	62	60	122	73	44	117	4	3	7	19	2	21
3:00 - 3:30 PM	68	43	111	87	53	140	4	4		17	6	23
3:30 - 4:00 PM	56	43	99	74	52	126	3	6	9	8	4	12
4:00 - 4:30 PM	58	50	108	73	42	115	3	1	4	10	3	13
4:30 - 5:00 PM	79	42	121	117	41	158	4	3	7	8	4	12
5:00 - 5:30 PM	114	36	150	116	62	178	11	2	13	12	6	18
6:30 - 6:00 PM	119	42	161	117	81	198	6	10	16	13	6	19
6:00 - 6:30 PM	113	36	149	124	82	206	8	9	17	14	15	29
6:30 - 7:00 PM	69	35	104	123	87	210	6	6	12	5	14	19
Day Total	1,543	1,338	2,881	2.056	1.355	3.411	82	112	204	290	191	481

Node Result 72

Struc	ture
Lag	5
Epoch	10000
Momentum	0.9
Learning Rate	0.08
Hidden	7
Hidden Activation	Bipolar sigmoid
Output Activation	Sigmoid

Node Heater 72

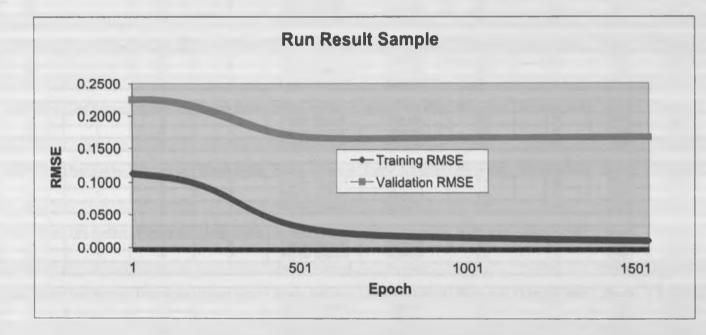
0.0212	0 53162	10000	0.08	60	plompiz	Bipolar Sigmold	6	3	and a second	5	1044
0.0243	0 1825	10000	80.0	60	DIOMIPIS	Bipolar Sigmoid	6	3	L L	61	1944
19100	0 2901	00001	80.0	60	Diompic	Bipolar Sigmoid	6	3	L L	81	19461
RMSE Value	nottabiliaV	Epoch	ela Rainsel	Momentum	nolfevitoA tugtuO	noltavitoA nebbiH	seboli nebbili	Del wobniw	Teat Number	Tedmul IseT	Glebo
0 0138	0 50082	10000	10	60	ριομδις	Bipolier Sigmold	6	3	ŀ	2	1044
0 0125	0 5920	10000	10	60	plompis	Bipoler Sigmoid	6	3	6	41	7761
10100	2882 O	10000	10	60	piouidis	Biporar Sigmoid	6	3	L	91	1844
RMSE Value	NoilebilaV	Epoch	etañ primeeu	muinemoM	nolfevitoA tuqtuO	Hidden Activation	Reboy nebbih	DEI MODUIAA	Teat Number		Clebo
0 0 5 6 5 6 5	0 35002	00001	1.0	60	piompis	biompis relogia	4	6	ł	2	7761
6460 0	05110	10000	10	60	piouois	Bipoter Sigmoid	1	3	L .	SL	7761
0 0511	0 5592	10000	1.0	60	piompis	Biporiar Sigmoid	L	3		91	19961
RMSE Value	Velidation	Epoch	etsi prime-	mujnemoM	noitevitoA lugiuO		Reboy nebbili		Teat Number		Giebo
52550 0	0 53625	00001	80.0	50	piouidis	blompis selogia	4	3		2	PP61
00341	0 5485	00001	90.0	60	ploubis	Bipotar Sigmoid	L	3	1	EL	10061
0 0334	0 5543	00001	80.0	60	piowbis	Bipoiar Sigmoid	1	3		15	7761
RMSE Value	nottabilaV	Epoch	etsa goimsed	Momentum	Output Activation	nolisvitoA nebbiH	sepon ueppin	Bel wobniw	Tedmuk teeT		QIPP
0 0428	0 5318	00001	80.0	60	piompia	biompi2 relogia	ç	3		2	PP61
0.0429	0 5335	00001	0.08	60	piouidis	Bipoist Signaid	S	3	1		2261
0.0423	0 5304	00001	80.0	60	procubis	Bipoiar Sigmoid	G C	8		01	7761
RMSE Value	noliabilaV	Epoch	etañ primael	Momentum	Output Activation	Hidden Activation	seboy nebbih		TedmuN SeeT	the second se	QIep
0 032	0 35422	00001	1.0	60	prouidis	Bipongie Sigmold	ç	1	6	Z	1044
0 0320	0 5541	10000	10	60	picubis	Biompic reiodia	S	3		01	19961
0 0320	0 5544	10000	10	80	Diompia	Bipolar Sigmoid	G G	6		A	7761
SMSE ATING	notabileV	Epoch	etañ gnimael	Momentum	Duty Activation	nottevitoA nebbiH	-	Del wobniW	Test Number	TedmuN TeeT	QIPP
					210111710	Bipoliar Sigmold		8	6	2	**61
1920 0	0 558882	10000	02	60	biompi2	Bipmpi2 telogig	3	3			
0.0727	0 5100	00001	<u>90</u> 90	60	Sigmoid	biomui2 natoqia	3	3		9	5961
6100	Validation	10000	etañ primaeu	Munamoli	Output Activation	noliavita nebbih	Rebon nebbih		Test Number	TedmuN JeeT	QHP
1000000	0/012.0	00001	1.0	60	pioutis	Biompic relogia	3			7	**61
£690 0	0 553250	10000	10	60	pioubis	Bipolar Sigmoid	3	3			7761
8990.0	0 5515	00001	10	60	plotudis	Bipolar Signord	6	3	<u> </u>	3	7761
Bago C	Valiation	Epoch	etañ gnimeal	Momentum	noifevitaA juqfuO	Hidden Activation	sebol nebbiH		TedmuN Inst	TedmuN test	Gieb
	10120	00001	0000		piompis	Bipoler Sigmold	3	1	1	2	PP61
50+200	0 3381	10000	80'0	60	piompis	Bipolial Sigmoid	3		1	7	19961
6990 0	0 5585	00001	80.0	60	picubis		6				19961
CORIS EM2E AFINE	0 S280	10000 Ebocy	etsi primael 80.0	mutremolil 0.9	Output Activelia	noitevitoA nebbih	Reboy nebbili	Del wobniłł	Teat Number	Tedmun JeeT	Cleb
				0.0.00	(une T , biompic	(unel ,blompis					
(100)	(Glop Epoch)	COOF HIMS	(0.08, 0.1, 0.5)	80,70,80) (1.0,20	(doeT biomol2	(Bipolor Sigmold,	(9.7.8.6)	(8,7,8,6)		(01-1)	(ALAINAGE
WHRE ANIT	Validation	40043	etsh primee.	mulnemoli	DUTINA TURNO	HollaviloA nebbiH	Hidden Nodes	Del wobritw	Tedmul IreaT	Teanul feet	0HPD

1	2	Ē	
i			
ł	ģ	k	
1	2	ł	
1	3		
1	ą	Ē	
ł	ļ	E,	
3		ł	
		1	
1	Ń		

1944	1944	1944	NodelD	1944	1944	1944	NodelD		1944	1944	1944	NodelD	1944	1944	1944	NodelD	4461	tytes 1	1944	1044	NodelD	1944	1944	1944	NodelD		(Network)	NodelD												
2	19	18	Test Number	2	17	16	Test Number		2	15	14	Test Number	2	13	12	Test Number	2	11	10	Test Number	2	8	7	Test Number	2	6	5	Test Number	1	+		Inclusion tends	Tast Number	2	2	1	Test Number		{110}	Test Number
1	-	-	Test Number	4	1	1	Test Number		1	-	-	Test Number	4	1	1	Test Number	1	1	-	Test Number	1	1	1	Test Number	1	1	1	Test Number	-	-	-	TORUTARI CAN	Tast Number	1	1	1	Test Number			Test Number
01	5	5	Window lag	5	5	0	WIND	-	5	5	0	Window lag	5	5	5	Wind	5	5	5	Wind	5	ch	5	Window lag	5	51	5	Window lag	0		n 0	Tur remained	Window lao	5	G	0	Window lag		(3,5,7,9)	Window lag
		9	Hidden Nodes	6	8	9	Hidden Nodes		7			Hidden Nodes	7	7	7	Hidden Nodes	5	5	5	Hidden Nodes	5	5	5	Hidden Nodes	3	3	3	Hidden Nodes	4				Hidden Nodes	3			Nodes		(3,5,7,9)	Test Number Test Number Window lag Hidden Nodes
Rinnlar Sigmold	Bipolar Sigmoid	Bipolar Sigmoid	H	Bipolar Sigmold	Bipolar Sigmoid	Bipolar Sigmoid	1	+	Bipolar Sigmold	Bipolar Sigmoid	Bipolar Sigmold	Hidden Activation	Bipolar Sigmold	Bipolar Sigmoid	Bipolar Sigmoid	-	Bipolar Sigmoid	Bipolar Sigmoid	Bipolar Sigmoid	Hidden Activation	Bipolar Sigmoid	Bipolar Sigmoid	Bipolar Sigmold	Hidden Activation	Bipolar Sigmoid	Bipolar Sigmoid	Bipolar Sigmoid	Hidden Activation	sipolar signioid	DiDuble relotio	bipolar sigmoid	Dipolo Ciomoid	Hidden Activation	Bipolar Sigmoid	Bipolar Sigmoid	Bipolar Sigmoid	Hidden Activation		(Bipolor Sigmold, Sigmold, Tanh)	Hidden Activation
Clamold	Sigmoid	Sigmoid	Out	Sigmold	Sigmoid	T	-	-	Sigmold	Sigmold	Sigmold	Output Activation				Output Activation	Sigmoid	Sigmoid	Sigmoid	Output Activation	Sigmoid	Sigmoid	Sigmoid	Out	Sigmold	Sigmoid		Output Activation	Diotific	Diolubic	Dioubic	-	Output Activation	Sigmold	Sigmoid	piombic	Output Activation			Output Activation
200	0.9	0.9	Momentum	0.9	-	-	Momentum	-				Mor		0.9		Mor	0.9			Mor	0.9	0.9	0.9	Momentum	0.9	0.9	0.9	Momentum	0.3	0.8	0.0	0.0	Momentum	0.9		L	MOI		(0.9, 0.7, 0.5, 0.3, 0.1)	Momentum
000	80.0	0.08	Learning Rate	0.1	0.1	0.1	Learning Rate		0.1	0.1	0.1	Learning Rate	0.08	0.08	0.08	Learning Rate	0.08	0.08	0.08	Learning Rate	0.1	0.1	0.1	Learning Rate	0.5	0.5	0.5	Learning Rate	0.7	0,1	0,1	0.4	Learning Rate	0.08	0.08	0.00	Learning Kate		{0.08, 0.1, 0.5}	Learning Rate
40000	10000	10000	Epoch	10000	10000	Г	Γ	Г	10000	10000	10000	Epoch				Epoch	10000	10000	10000	Epoch	10000	10000	10000	Epoch	10000	10000	10000	Epoch	IVVVV	10000	10000	10000	Epoch	00001	00001	10000	Epoch	Bunch	(Min 1000 Max 10000)	Epoch
0 40535	0 1445	0.2260	Validation	0.1875	0.1995	0.1755	Validation		0.2118	0.2236	0.2000	Validation	0.1949	0.2039	0.1859	Validation	0.2068	0.2037	0.2099	Validation	0.1941	0.2445	0.1437	Validation	0.26555	0.3201	0.2110	Validation	0.612.0	0.12.00	0.0400	D 94RA	Validation	0.22800	0.2230	0.4000	Validation	Vallatelan	(Stop Epoch)	Validation
0.04	0 0100	0.0100	RMSE Value	0.01	0.0100	0.0100	RMSE Value		0.01	0.0100	0.0100	RMSE Value	0.01	0.0100	0.0100	RMSE Value	0.01	0.0100	0.0100	RMSE Value	0.01	0.0100	0.0100	RMSE Value	0.05375	0.0598	0.0477	RMSE Value	0.000	U.UATU	0.0000	0.0500	RMSE Value	0.02720	0.0200	0.0400	TODOSS VAILE	DALOE Value	(0.01)	RMSE Value

NodelD	Test Number Test Number	Test Number	-	Nindow lag Hidden Nodes	Hidden Activation	Output Activation	Momentum	Learning Rate	Epoch	Validation	RMSE Value
{Network}	{110}		(3,5,7,9)	{3,5,7,9}	(Bipolor Sigmold, Sigmold, Tanh)	(Bipolor Sigmoid, Sigmoid, Tanh)	{0.9, 0.7, 0.5, 0.3, 0.1}	{0.08, 0.1, 0.5}	(Min 1000 Max 10000)	(Stop Epoch)	(0.01)
			-					I among a gate	Enach	Validation	DMCE Value
NodelD	Test Number	Test Number	Window lag	Hidden Nodes	Hidden Activation	Output Activation	Momentum	Learning Kate	Epocu	Validetion	AMOL VAIUS
1944	1	-	7	3	Bipolar Sigmoid	Sigmold	0.9	0.08	nnnt	0.3300	0.0100
1944		1	7	3	Bipolar Sigmoid	Sigmoid	0.9	0.08	10000	0.3960	0010.0
1944	2	1	7	5	Bipolar Sigmoid	Sigmoid	0.9	0.08	10000	0.36325	0.01
ModelD	Taet Number	Taet Number	Window law	Hirden Norles	Hiddan Activation	Output Activation	Momentum	Learning Rate	Enoch	Validation	RMSE Value
1944	E E		1	E C	Rinolar Simold	Simoid	0.0	0.1	10000	0.3193	0.0100
1944	4	-	~	000	Bipolar Slamoid	Siamold	0.9	0.1	10000	0.3245	0.0100
1944		1	2	~	Bipolar Sigmoid	Sigmold	0.9	0.1	10000	0.3219	0.01
NodelD	Test Number	Test Number	Window lag	Hidden Nodes	Hidden Activation	Output Activation	Momentum	Learning Rate	Epoch	Validation	RMSE Value
1944		1	1	3	Bipolar Sigmoid	Sigmoid	0.9	0.5	10000	0.2949	0.2002
1944	9	1	2	3	Bipolar Sigmoid	Sigmoid	0.9	0.5	10000	0.2874	0.0100
1944	2	1	7	9	Bipolar Sigmoid	Sigmoid	0.9	0.5	10000	0.29115	0.1051
NodelD	Test Number	Test Number	Window lag	Hidden Nodes	Hidden Activation	Output Activation	Momentum	Learning Rate	Epoch	Validation	RMSE Value
1944	7	1	2	5	Bipolar Sigmoid	Sigmoid	0.9	0.1	10000	0.3736	0.0100
1944	8	1	2	5	Bipoler Sigmoid	Sigmoid	0.9	0.1	10000	0.3918	0.0100
1944	2	1	7	5	Bipolar Sigmoid	Sigmoid	0.9	0.1	10000	0.3827	0.01
		_	_								
NodelD	Test	Test Number	Window lag	Hidden Nodes	Hidden Activation	Output Activation	Momentum	Learning Rate	Epoch	Validation	RMSE Value
1944		-	7	5	Bipolar Sigmoid	Sigmold	0.9	0.08	10000	0.3848	0.0100
1944		1	7	5	Bipolar Sigmoid	Sigmoid	0.9	0.08	10000	0.3360	0.0100
1944	2	1	7	2	Bipolar Sigmoid	Sigmold	0.9	0.08	10000	0.3604	0.01
ModelD	Teet Number	Test Number	Window law	Hidden Modes	Hidden Arthuston	Outsuit Activation	Momentum	Lasrning Bata	Enoch	Validation	RMSE Value
1044			1	2	Binder Comold	Cinmold	0.0	0.08	10000	0 2455	0.0100
1944	13		-	4	Bindlar Sigmoid	Sigmoid	60	0.08	10000	0.3231	0.0100
1944		1	2	7	Bipolar Sigmold	Sigmold	0.9	0.08	10000	0.3343	0.01
NodelD	Test	Test Number	Window lag	Hidden Nodes	Hidden Activation	Outp	Momentum	Learning Rate	Epoch	Validation	RMSE Value
1944	14	-	2	2	Bipolar Sigmold	Sigmold	6.0	0.1	10000	0.3566	0.0100
1944		-	1	-	Bipolar Sigmoid	Sigmold	0.9	0.1	10000	0.3273	0.0100
1944	2	1	7	2	Bipolar Sigmoid	Sigmold	0.9	0.1	10000	0.34195	0.01
NodelD	Test Number	Taet Number	Window lan	Hidden Modee	Hiddan Arthutian	Cutout Anthundow	Memoritan	I and no Date	Enach	Validation	Dated Value
1044			1		_	Cineria Cineria	U D D	AND A LINE	10000	0 2003	U DADO
1044	47	-	-		Dinolar Clamold	Ciamola	00	10	10000	0.2600	0.0400
1101		-	-	0		nouRio	0.0		00001	0.0000	00100
1944	2	1	1	6	Bipolar Sigmoid	Sigmoid	0.9	0.1	10000	0.37465	0.01
NodelD	Test Number	Test Number	Window lag	Hidden Nodes	Hidden Activation	Output Activation	Momentum	Learning Rate	Epoch	Validation	RMSE Value
1944		1	2		Bipolar Sigmold	-	0.9	0.08	10000	0.3539	0.0100
1944	19	-	2	6	Bipolar Sigmoid	Sigmoid	0.9	0.08	10000	0.3841	0.0100
1944	2	1	2	6	Bipolar Sigmold	Sigmold	0.9	0.08	10000	0.369	0.01

Inde Result 72


278

NodelD	Test Number Test Number N	Test Number	Window lag	Vindow lag Hidden Nodes	Hidden Activation	Output Activation	Momentum	Learning Rate	Epoch	Validation	RMSE Value
3	{110}		{3,5,7,9}	(3,5,7,9)	(Bipolor Sigmold, Sigmold. Tanh)	(Bipolor Sigmold, Sigmoid, Tanh)	(0.9, 0.7, 0.5, 0.3, 0.1)	{0.08, 0.1, 0.5}	(Min 1000) Max 10000)	(Stop Epoch)	{0.01}
-			1	TO A STATE OF THE STATE	ALASSA A Short a	and a state of the	Manadalan	I amalan Data	Enable	Validation	BillE Value
Diabon	lest Number	I est Number	MIN	HIGGEN NOGES	Bioder Clamold	Cutput Activation	0.0	0.08	10000	0.2210	0.0100
P-AL			2	2	Dipuisi Digitini	Pining	A N	0.00	10000	0.2167	0.0400
1944	2	-		2	Dipolar Summer	piompic	2.0			101910	
1944		-	6	5	Bipolar Sigmold	Sigmold	0.9	0.08	1 MOOR	0.27665	0.01
-	-			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			A new local days		And And And And	Black Value
NodelD	Test Number	Test Number	Window lag	Hidden Nodes	Hidden Activation	Output Activation	Momentum	Learning Kate	Epocu	Validation	KMSC Value
IBAA	~	-	8	2	Bipolar Sigmoid	Sigmold	80	10	00001	0.2213	00100
THE	4	-	6	R	Bipoler Sigmoid	Sigmoid	0.9	10	10000	0.2139	00100
194	74	1	6	3	Bipolar Sigmold	Sigmold	0.9	9.7	10000	0.2206	0.01
ModelD	Taul Mumber	Tast Mumber	Window lac	Mildan Morlas	Hidden Activation	Output Activation	Momentum	Learning Rate	linoah	Validation	RMSE Value
15	S S S S S S S S S S S S S S S S S S S	Incompany versa	0	Barrow I Hannut	Rinder Simoid	Simula	0.0		10000	0.2246	0.0100
					Rindar Simoid	Simold	00	212	10000	0.2221	0 0800
10.24	-	-		2	Rindar Simold	Simold	0.0	0.8	10000	0.22115	0.01
					months months	-					
NodelD	Test Number	Test Number	Window lap	Hidden Nodes	Hidden Activation	Output Activation	Momentum	Learning Rate	Epoch	Validation	RMSE Value
1044	4			10	Bindar Sigmoid	Sigmoid	0.0		10000	0.2212	0.0100
1044		-	0	200	Bipolar Sigmoid	Siamoid	0.9	0.1	10000	0.2611	0.0100
1944	re		ot	-	Bipolar Sigmoid	Sigmoid	0.9	0.7	10001	0.24115	0.01
						_					
NodelD	Test	Test Number	Window lag	Hidden Nodes	Hidden Activation	Outr	Momentum	Learning Rate	poch	Validation	RMSE Value
194A	10	-	-	10	Bipolar Sigmoid	Sigmoid	0.9	0.08	10000	0.2016	0.0100
TA		-	8	50	Bipolar Sigmoid	Sigmoid	6.0	0.08	10000	0.2030	0.0100
I	2	1	8	2	Bipolar Sigmold	Signold	0.0	0.08	00000	0.2023	0.01
NodelD	Test Number	Test Number	Window leg	Hidden Nodes	Hidden Activation	Out	Momentum	Learning Rate	poch	Validation	RMSE Value
1944	12		8	7	Bipolar Sigmoid	÷	0.9	0.08	10000	0.2338	0.0100
1944	13	1	6	7	Bipolar Sigmoid	Sigmold	0.9	0.08	10000	0.2485	0.0100
Int	1	+	8	4	Bipolar Sigmold	Sigmold	0.9	0.08	00000	0.24115	0.01
NodelD	Test Number	Test Number	Window lag	Hidden Nodes	Hidden Activation	Dutput Activation	Momentum	Learning Rate	looeh	Validation	RMSE Value
1944	14		6	4	Bipolar Sigmold	Sigmoid	0.9		10000	0.2720	0.0100
1944	15	1	0	7	Bipoler Sigmoid	Sigmold	0.9	0.1	10000	0.2173	0.0100
1944	2	1	8	6	Bipolar Sigmold	Slamold	0.9	0.1	10000	0.24465	0.01
Model	Tast Number	Tast Mumber Tast Mumber	Mindow las	Unidan Madae	Hiddan Arthusian	Cuttor & addressing	Manan Street	Tanan Inc. Base	and a second	The lease of the second	STATE LA P.
ADAA	TAUTION VEAL	A TOULOUT	1	Sabon usonin	Diadar Clamold	- 24	momentum	Learning Kate	mpoch.	Validation	HMSE VIII
	01	-	7110	7000	Dipolar Digmold	Diompic	200	1.0	10000	0.0001	
		-	710	2010	Dipolar Sigmoid	Diompic	6.0	10	00001	0.9640	
1944	~	-		*	Bipolar Sigmoid	Sigmoid	0.9	0.7	10000	0.31205	0.01
NodelD		Test Number Test Number	Window lag	Hidden Nodes	Hidden Activation	Output Activation	Momentum	Learning Rate	Epoch	Validation	RMSE Veine
1944	18	-	6	đ	Bipolar Sigmold	Sigmold	6.0	0.08	10000	0.2385	0.0100
THE		-	6	6	Bipolar Sigmold	Sigmold	6.0	0.08	10000	0.2244	0.0100
1944			6	8	Bloom Stamold	Slamold	9.0	0.0	10000	0.23145	0.01

Node Ranul 73

ép

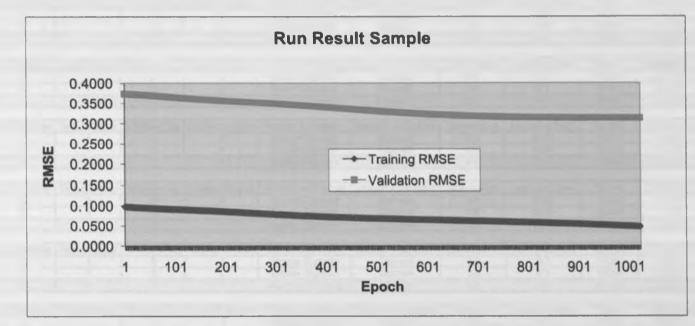
Struc	ture
Lag	5
Epoch	10000
Momentum	0.9
Learning Rate	0.1
Hidden	5
Hidden Activation	Bipolar sigmoid
Output Activation	Sigmoid

3 Bipolar Sigmoid Sigmoid Sigmoid 0.9 0.08 3 Bipolar Sigmoid Sigmoid 0.9 0.09 0.08 3 Bipolar Sigmoid Sigmoid 0.9 0.1 0.08 3 Bipolar Sigmoid Sigmoid 0.9 0.1 0.9 0.1 3 Bipolar Sigmoid Sigmoid Sigmoid 0.9 0.1 0.1 3 Bipolar Sigmoid Sigmoid 0.9 0.1 0.1 0.1 4 Sigmoid Sigmoid 0.9 0.1 0.1 0.1 5 Bipolar Sigmoid Sigmoid 0.9 0.1 0.1 0.1 5 Bipolar Sigmoid Sigmoid 0.9 0.1<	A 1 3 3 Bipolar Sigmoid A 2 1 3 3 Bipolar Sigmoid A 3 1 3 3 Bipolar Sigmoid A 1 3 5 Bipolar Sigmoid A 10 1 3 7 Bipolar Sigmoid A 10 5 Bipolar Sigmoid 1 A	(110) (3.5.7.9) (3.5.7.9) Test Number Test Number Window lag Hidden Nodes	Hidden Nodes I Hidden Astfration (3,5,7,9) (Bipolor Sigmoid, Sigmoid, Teah) Hidden Nodes Hidden Activation	(Bipolor Sigmold, Sigmold, Tanh) Output Activation	(0.8, 0.7, 0.5, 0.3, 0.1) Momentum	(0.08, 0.1, 0.5) Learning Rate		Epoch Max 10000 Max 100001	A (8)
7 7 3 3 Bipolar Sigmoid 5/3moid 0.3 1 2 1 3 3 Bipolar Sigmoid 0.9 0.1 1 2 1 3 3 Bipolar Sigmoid Sigmoid 0.9 0.1 1 2 1 3 3 Bipolar Sigmoid Sigmoid 0.9 0.1 1 2 1 3 3 Bipolar Sigmoid Sigmoid 0.9 0.1 1 2 1 3 3 Bipolar Sigmoid Sigmoid 0.9 0.1 1 2 1 3 3 Bipolar Sigmoid Sigmoid 0.9 0.1 1 2 1 3 3 Bipolar Sigmoid Sigmoid 0.9 0.1 1 1 3 5 Bipolar Sigmoid Sigmoid 0.9 0.1 1 1 3 5 Bipolar Sigmoid Sigmoid 0.9 0.1 1 1 3 3 Bipolar Sigmoid Sigmoid 0.9 0.1 1 1 1 3 3 Bipolar Sigmoid Sigmoid 0.9 0.1 1 1 1	7 3 3 8 lpolar Sigmoid 7 3 3 8 lpolar Sigmoid 7 2 7 3 3 8 lpolar Sigmoid 7 2 3 3 8 lpolar Sigmoid 7 2 3 3 8 lpolar Sigmoid 7 3 3 5 8 lpolar Sigmoid 7 3 5 8 lpolar Sigmoid 10 1 3 5 8 lpolar Sigmoid 11 1 3 5 8 lpolar Sigmoid 12 1 3 5 8 lpolar Sigmoid 13 10 1 3 7 8 lpolar Sigmoid 12 1 3 5 8 lpolar Sigmoid 13 <	00			0.9	0.08		10000	
Test Number Test Number Test Number Test Number Window lag Hidden Activation Output Activation Momentum Learning 1 3 3 3 3 3 Bipolar Sigmoid 0.9 0.1 0.9 0.1 1 4 3 3 Bipolar Sigmoid Sigmoid 0.9 0.5	Test Number Test Number Window lag Hidden Activation 1 3 1 3 3 Bipolar Sigmoid 2 1 3 3 Bipolar Sigmoid 4 5 10 1 3 3 Bipolar Sigmoid 4 10 1 3 5 Bipolar Sigmoid 10 1 3 5 Bipolar Sigmoid 1 3 3 5 Bipolar Sigmoid 1 3 5 5 Bipolar Sigmoid 1 3 5 5 Bipolar Sigmoid 1 3 5 5 Bipolar Sigmoid 1 1 3 5 Bipolar Sigmoid 1 1 </td <td>-</td> <td>Bipolar Sigmoid</td> <td>Sigmoid</td> <td>0.9</td> <td>0.08</td> <td></td> <td>10000</td> <td></td>	-	Bipolar Sigmoid	Sigmoid	0.9	0.08		10000	
1 3 1 3 3 Bipolar Sigmold Sigmold 0.9 0.1 1 2 1 3 3 Bipolar Sigmold Sigmold 0.9 0.5 1 2 1 3 3 Bipolar Sigmold Sigmold 0.9 0.5 1 5 1 3 3 Bipolar Sigmold Sigmold 0.9 0.5 1 5 3 Bipolar Sigmold Sigmold 0.9 0.5 0.1 2 1 3 3 Bipolar Sigmold Sigmold 0.9 0.5 1 0 1 3 5 Bipolar Sigmold 0.9 0.5 1 1 3 5 Bipolar Sigmold 0.9 0.1 2 1 3 5 Bipolar Sigmold 0.9 0.9 1 1 3 5 Bipolar Sigmold 0.9 0.9 1 1 3 5 Bipolar Sigmold 0.9 0.9 1 1 3 5 Bipolar Sigmold 0.9 0.1 1 1 1 3 5 Bipolar Sigmold 0.9 1 1 1 <td>3 1 3 3 8 lipolar Sigmoid 1 2 1 3 3 8 lipolar Sigmoid 1 2 1 3 3 8 lipolar Sigmoid 5 1 3 3 8 lipolar Sigmoid 6 1 3 3 8 lipolar Sigmoid 7 3 5 8 lipolar Sigmoid 10 1 3 5 8 lipolar Sigmoid 11 3 5 8 lipolar Sigmoid 12 1 3 5 8 lipolar Sigmoid 11 1 3 5 8 lipolar Sigmoid 12 1 3 5 8 lipolar Sigmoid 13 1 3 5 8 lipolar Sigmoid 13 1 3 5 8 lipolar Sigmoid 13 1 3 7 8 lipolar Sigmoid 14 1 3 7 8 lipolar Sigmoid 15 1 3 7 8 lipolar Sigmoid 16 1 3 7 8 lipolar Sigmoid 17 1 3 7 8 lipolar Sigmoid 16 1 3 7 8 lipolar Sigmoid 17</td> <td>Window lag</td> <td>Hidden Activation</td> <td>Output Activation</td> <td>Momentum</td> <td>Learning Rat</td> <td>e l</td> <td>H</td> <td>Epoch V</td>	3 1 3 3 8 lipolar Sigmoid 1 2 1 3 3 8 lipolar Sigmoid 1 2 1 3 3 8 lipolar Sigmoid 5 1 3 3 8 lipolar Sigmoid 6 1 3 3 8 lipolar Sigmoid 7 3 5 8 lipolar Sigmoid 10 1 3 5 8 lipolar Sigmoid 11 3 5 8 lipolar Sigmoid 12 1 3 5 8 lipolar Sigmoid 11 1 3 5 8 lipolar Sigmoid 12 1 3 5 8 lipolar Sigmoid 13 1 3 5 8 lipolar Sigmoid 13 1 3 5 8 lipolar Sigmoid 13 1 3 7 8 lipolar Sigmoid 14 1 3 7 8 lipolar Sigmoid 15 1 3 7 8 lipolar Sigmoid 16 1 3 7 8 lipolar Sigmoid 17 1 3 7 8 lipolar Sigmoid 16 1 3 7 8 lipolar Sigmoid 17	Window lag	Hidden Activation	Output Activation	Momentum	Learning Rat	e l	H	Epoch V
Test Number Test Number Window lag Hidden Nodes Bipolar Sigmold Sigmold 0.9 0.1 Test Number Test Number Test Number Window lag Hidden Activation Output Activation Momentum Learning 2 1 3 3 Bipolar Sigmold Sigmold 0.9 0.6 2 1 3 3 Bipolar Sigmold Sigmold 0.9 0.1 1 2 3 Bipolar Sigmold Sigmold 0.9 0.1 10 10 1 3 5 Bipolar Sigmold 0.9 0.1 10 1 3 5 Bipolar Sigmold 0.9 0.1 11 3 5 Bipolar Sigmold 0.9 0.1 12 3 5 Bipolar Sigmold 0.9 0.1 13 1 3 5 Bipolar Sigmold 0.9 0.1 14 1 3 5 Bipolar Sigmold 0.9 0.1 10 1 3 5 Bipolar Sigmold 0.9 0.1 11 1 3 3 Bipolar Sigmold 0.9 0.1 12 3 5 Bipo	Test Number Test Number Window lag Hidden Nodes Hidden Activation 5 1 3 3 Bipolar Sigmoid 6 1 3 3 Bipolar Sigmoid 7 3 3 Bipolar Sigmoid 10 1 3 5 Bipolar Sigmoid 11 1 3 5 Bipolar Sigmoid 12 1 3 5 Bipolar Sigmoid 13 1 3 5 Bipolar Sigmoid 13 1 3 5 Bipolar Sigmoid 13 1 3 7 Bipolar Sigmoid 14 1 3 7 Bipolar Sigmoid 15 1 3 7 Bipolar Sigmoid 15 1 3 7 Bipolar Sigmoid 15 1 3 7 Bipolar Sigmoid 16 1 3 7 Bipolar Sigmoid 16 1 3 7 Bipolar Sigmoid 17 3 7 Bipolar Sigmoid 18 16 3 7 Bipolar Sigmoid 16 1 3 7 Bipolar Sigmoid 16 1		Bipolar Sigmold	Sigmold	0.0	0.1		10000	10000 0.2147
Test Number Fest Number Window lag Hidden Nodes Hidden Activation Output Activation Momentum Learning 5 1 3 3 3 Bipolar Sigmold Sigmold 0.9 0.5 2 1 3 3 Bipolar Sigmold Sigmold 0.9 0.5 2 1 3 5 Bipolar Sigmold Sigmold 0.9 0.1 10 1 3 5 Bipolar Sigmold Sigmold 0.9 0.1 2 1 3 5 Bipolar Sigmold Sigmold 0.9 0.1 2 1 3 5 Bipolar Sigmold Sigmold 0.9 0.1 2 1 3 5 Bipolar Sigmold Sigmold 0.9 0.0 10 1 1 1 3 6 Bipolar Sigmold 0.9 0.1 2 1 3 5 Bipolar Sigmold Sigmold 0.9 0.0 <td>Test Number Test Number Test Number Test Number Test Number Test Number <th< td=""><td>-</td><td>Bipolar Sigmold</td><td>Sigmold</td><td>0.9</td><td>0.7</td><td></td><td>10000</td><td></td></th<></td>	Test Number Test Number Test Number Test Number Test Number Test Number Number <th< td=""><td>-</td><td>Bipolar Sigmold</td><td>Sigmold</td><td>0.9</td><td>0.7</td><td></td><td>10000</td><td></td></th<>	-	Bipolar Sigmold	Sigmold	0.9	0.7		10000	
5 1 3 3 Bipolar Sigmoid Sigmoid 0.9 0.5 7 3 3 3 Bipolar Sigmoid Sigmoid 0.9 0.5 7 3 3 Bipolar Sigmoid Sigmoid 0.9 0.5 0.5 10 10 1 3 5 Bipolar Sigmoid Sigmoid 0.9 0.1 10 10 1 3 5 Bipolar Sigmoid Sigmoid 0.9 0.1 11 1 3 5 Bipolar Sigmoid Sigmoid 0.9 0.0 11 1 3 5 Bipolar Sigmoid Sigmoid 0.9 0.0 11 1 3 5 Bipolar Sigmoid Sigmoid 0.9 0.0 11 1 3 5 Bipolar Sigmoid Sigmoid 0.9 0.0 11 1 3 5 Bipolar Sigmoid Sigmoid 0.9 0.0 11 1 <td>5 7 3 3 3 3 Bipolar Sigmoid 2 7 3 3 3 8 polar Sigmoid 1 3 3 5 8 polar Sigmoid 10 1 3 5 8 polar Sigmoid 1 1 3 7 8 polar Sigmoid 1 3 7 8 polar Sigmoid</td> <td>E</td> <td></td> <td></td> <td>Momentum</td> <td>Learning Rate</td> <td></td> <td>Epoch</td> <td>~</td>	5 7 3 3 3 3 Bipolar Sigmoid 2 7 3 3 3 8 polar Sigmoid 1 3 3 5 8 polar Sigmoid 10 1 3 5 8 polar Sigmoid 1 1 3 7 8 polar Sigmoid	E			Momentum	Learning Rate		Epoch	~
6 1 3 3 Bipolar Sigmoid Sigmoid 0.8 0.6 7 9 1 3 3 Bipolar Sigmoid Sigmoid 0.9 0.1 7 9 1 3 5 Bipolar Sigmoid Sigmoid 0.9 0.1 7 9 1 3 5 Bipolar Sigmoid Sigmoid 0.9 0.1 7 1 3 5 Bipolar Sigmoid Sigmoid 0.9 0.1 7 1 3 5 Bipolar Sigmoid Sigmoid 0.9 0.1 1 1 1 3 5 Bipolar Sigmoid 0.9 0.0 1 1 1 3 5 Bipolar Sigmoid 0.9 0.0 1 1 3 5 Bipolar Sigmoid Sigmoid 0.9 0.0 1 1 3 7 Bipolar Sigmoid Sigmoid 0.9 0.0 1 1 3 7 Bipolar Sigmoid Sigmoid 0.9 0.0 1 1 3 3 7 Bipolar Sigmoid 0.9 0.0 1 1 3 7 Bipolar Sigmoid Sigmo	6 1 3 3 3 Bipolar Sigmoid 7 10 1 3 5 Bipolar Sigmoid 11 3 5 Bipolar Sigmoid 12 1 3 5 Bipolar Sigmoid 13 1 3 5 Bipolar Sigmoid 13 1 3 5 Bipolar Sigmoid 13 1 3 7 Bipolar Sigmoid 14 1 3 7 Bipolar Sigmoid 15 1 3 7 Bipolar Sigmoid 16 13 1 3 7 Bipolar Sigmoid 17 3 7 Bipolar Sigmoid 1 16 1 3 7 Bipolar Sigmoid 17 3 7 Bipolar Sigmoid 16 1 </td <td></td> <td>-</td> <td></td> <td>0.9</td> <td>0.5</td> <td>_</td> <td>10000</td> <td>10000 0.2100</td>		-		0.9	0.5	_	10000	10000 0.2100
Test Number Test Number Window Iag Hidden Nodes Hidden Activation Output Activation Momentum Learning 1 1 1 3 5 Bipolar Sigmold Sigmold 0.9 0.1 2 1 3 5 Bipolar Sigmold Sigmold 0.9 0.0 1 1 3 5 Bipolar Sigmold Sigmold 0.9 0.0 1 1 1 3 5 Bipolar Sigmold Sigmold 0.9 0.0 1 1 1 3 5 Bipolar Sigmold Sigmold 0.9 0.0 1 1 1 3 5 Bipolar Sigmold Sigmold 0.9 0.0 1 1 1 3 5 Bipolar Sigmold Sigmold 0.9 0.0 1 1 1 3 5 Bipolar Sigmold Sigmold 0.9 0.0 1 1 1 3 7 Bipolar Sigmold Sigmold 0.9 0.0 1 1 3 3 5 Bipolar Sigmold Sigmold 0.9 0.0 1 1 3 3 7 Bipolar Sigmold	Test Number Test Number Window lag Hidden Nodes Hidden Activation 9 10 1 3 5 Bipolar Sigmold 2 1 3 5 Bipolar Sigmold 10 1 3 5 Bipolar Sigmold 11 1 3 5 Bipolar Sigmold 11 3 5 Bipolar Sigmold 12 1 3 7 Bipolar Sigmold 13 1 3 7 Bipolar Sigmold 13 1 3 7 Bipolar Sigmold 15 1 3 7 Bipolar Sigmold 15 1 3 7 Bipolar Sigmold 15 1 3 7 Bipolar Sigmold 16 1 3 7 Bipolar Sigmold 15 1 3 7 Bipolar Sigmold 16 1 3 7 Bipolar Sigmold		Bipolar Sigmoid Bipolar Sigmoid	Sigmold	80	0.5	- 11	10000	-
Test Number Test Number Window lag Hidden Nodes Hidden Activation Output Activation Momentum Learning 1 10 1 3 5 Bipolar Sigmold Sigmold 0.9 0.1 2 1 3 5 Bipolar Sigmold Sigmold 0.9 0.0 1 1 3 5 Bipolar Sigmold Sigmold 0.9 0.0 1 1 3 5 Bipolar Sigmold Sigmold 0.9 0.0 1 1 3 5 Bipolar Sigmold Sigmold 0.9 0.0 1 1 3 5 Bipolar Sigmold Sigmold 0.9 0.0 1 1 3 5 Bipolar Sigmold Sigmold 0.9 0.0 1 1 3 7 8ipolar Sigmold Sigmold 0.9 0.0 1 1 3 7 Bipolar Sigmold Sigmold 0.9 0.0 1 1 3 7 Bipolar Sigmold Sigmold 0.9 0.0 1 1 3 7 Bipolar Sigmold Sigmold 0.9 0.0 1 15 1 <	Test Number Test Number Window lag Hidden Nodes Hidden Activation 9 10 1 3 5 Bipolar Sigmold 2 1 3 5 Bipolar Sigmold 10 1 3 5 Bipolar Sigmold 11 1 3 5 Bipolar Sigmold 10 1 3 5 Bipolar Sigmold 11 1 3 5 Bipolar Sigmold 12 1 3 7 Bipolar Sigmold 13 1 3 7 Bipolar Sigmold 13 1 3 7 Bipolar Sigmold 14 3 7 Bipolar Sigmold 15 1 3 7 Bipolar Sigmold 15 1 3 7 Bipolar Sigmold 15 1 3 7 Bipolar Sigmold 16 1 3 7 Bipolar Sigmold 15 1 3 7 Bipolar Sigmold 16 15 3 7 Bipolar Sigmold 16 1 3 7 Bipolar Sigmold 16 1 3 7 Bipolar Sigmold								
9 1 3 5 Bipolar Sigmoid Sigmoid 0.3 10 10 1 3 5 Bipolar Sigmoid 0.3 0.3 11 10 1 3 5 Bipolar Sigmoid 0.3 0.3 11 10 1 3 5 Bipolar Sigmoid 0.3 0.3 12 1 3 5 Bipolar Sigmoid Sigmoid 0.3 0.3 12 1 3 5 Bipolar Sigmoid Sigmoid 0.3 0.3 13 1 3 5 Bipolar Sigmoid Sigmoid 0.3 0.0 13 1 3 5 Bipolar Sigmoid Sigmoid 0.3 0.0 14 13 1 3 7 Bipolar Sigmoid Sigmoid 0.3 0.0 14 13 1 3 7 Bipolar Sigmoid Sigmoid 0.3 0.0 15 1 3 7 Bipolar Sigmoid Sigmoid 0.3 0.0 15 1 3 7 Bipolar Sigmoid Sigmoid 0.3 0.0 16 15 1 3 7 Bipolar Sigmoid 0.3<	9 1 3 5 Bipolar Signoid 10 1 3 5 Bipolar Signoid 10 1 3 5 Bipolar Signoid 11 1 3 5 Bipolar Signoid 11 3 5 Bipolar Signoid 12 1 3 5 Bipolar Signoid 13 1 3 7 Bipolar Signoid 14 1 3 7 Bipolar Sigmoid 15 1 3 7 Bipolar Sigmoid 15 1 3 7 Bipolar Sigmoid 15 1 3 7 Bipolar Sigmoid 16 1 3 7 <td>Window lag H</td> <td>Hidden Activation</td> <td>Output Activation</td> <td>Momentum</td> <td>Learning Rate</td> <td>\square</td> <td>Epoch</td> <td>></td>	Window lag H	Hidden Activation	Output Activation	Momentum	Learning Rate	\square	Epoch	>
7 7 8 Bipolar Sigmold Sigmold 0.9 0.7 1 10 1 3 5 Bipolar Sigmold Sigmold 0.9 0.0 1 10 1 3 5 Bipolar Sigmold Sigmold 0.9 0.0 1 1 3 5 Bipolar Sigmold Sigmold 0.9 0.0 1 1 3 5 Bipolar Sigmold Sigmold 0.9 0.0 1 1 3 5 Bipolar Sigmold Sigmold 0.9 0.0 1 1 3 7 Bipolar Sigmold 0.9	Test Number Test Number Test Number Test Number Mindow lag Hidden Nodes Hidden Activation 1 10 1 3 5 Bipolar Sigmoid 2 1 3 5 Bipolar Sigmoid 1 1 3 5 Bipolar Sigmoid 1 3 5 Bipolar Sigmoid 1 3 7 Bipolar Sigmoid 1 3 7 Bipolar Sigmoid 13 1 3 7 Bipolar Sigmoid 14 3 7 Bipolar Sigmoid 15 1 3 7 Bipolar Sigmoid 14 1 3 7 Bipolar Sigmoid 15 1 3 7 Bipolar Sigmoid 16 1 3 7 Bipolar Sigmoid		Bipolar Sigmoid	Sigmold	6.0	0.1		10000	10000 0.3101
Test NumberTest NumberWindow lagHidden NodesHidden ActivationOutput ActivationMomentumLearning110135Bipolar SigmoidSigmoid0.90.090.0812135Bipolar SigmoidSigmoid0.90.0812135Bipolar SigmoidSigmoid0.90.0812137Bipolar SigmoidSigmoid0.90.08113137Bipolar SigmoidSigmoid0.90.08113137Bipolar SigmoidSigmoid0.90.08113137Bipolar SigmoidSigmoid0.90.08115137Bipolar SigmoidSigmoid0.90.08115137Bipolar SigmoidSigmoid0.90.08115137Bipolar SigmoidSigmoid0.90.08115137Bipolar SigmoidSigmoid0.90.05115137Bipolar SigmoidSigmoid0.90.03115137Bipolar SigmoidSigmoid0.90.16115137Bipolar SigmoidSigmoid0.90.1612137Bipolar SigmoidSigmoid0.9 </td <td>Test Number Test Number Window lag Hidden Nodes Hidden Activation 1 1 3 5 Bipolar Sigmold 2 1 3 7 Bipolar Sigmold 1 3 7 Bipolar Sigmold</td> <td></td> <td>Bipolar Sigmoid</td> <td>Sigmoid</td> <td>0.9</td> <td>0.1</td> <td></td> <td>10000</td> <td></td>	Test Number Test Number Window lag Hidden Nodes Hidden Activation 1 1 3 5 Bipolar Sigmold 2 1 3 7 Bipolar Sigmold		Bipolar Sigmoid	Sigmoid	0.9	0.1		10000	
Image: Number Test Number Nindow lag Hidden Nodes Hidden Activation Sigmoid 0.9 0.08 1 1 3 5 Bipolar Sigmoid Sigmoid 0.9 0.08 1 1 3 5 Bipolar Sigmoid Sigmoid 0.9 0.08 1 1 3 5 Bipolar Sigmoid Sigmoid 0.9 0.08 1 1 3 7 Bipolar Sigmoid Sigmoid 0.9 0.08 1 13 1 3 7 Bipolar Sigmoid Sigmoid 0.9 0.08 2 1 3 7 Bipolar Sigmoid Sigmoid 0.9 0.08 1 1 3 7 Bipolar Sigmoid 0.9 0.08 1 3 7 Bipolar Sigmoid Sigmoid 0.9 0.0 1 3 7 Bipolar Sigmoid Sigmoid 0.9 0.1	1 1 3 5 Bipolar Sigmoid 1 2 1 3 5 Bipolar Sigmoid 1 1 3 5 Bipolar Sigmoid 1 1 3 7 Bipolar Sigmoid 1 1 3 7 Bipolar Sigmoid </td <td></td> <td></td> <td>Output Activation</td> <td>Momentum</td> <td>Laarning Rate</td> <td></td> <td>Fnoch</td> <td>Froch Validation</td>			Output Activation	Momentum	Laarning Rate		Fnoch	Froch Validation
I II I 3 5 Bipolar Sigmold Sigmold 0.9 0.08 Z	1 1 3 5 Bipolar Sigmoid 2 1 3 5 Bipolar Sigmoid 12 12 1 3 7 Bipolar Sigmoid 13 1 3 7 Bipolar Sigmoid 13 1 3 7 Bipolar Sigmoid 14 1 3 7 Bipolar Sigmoid 14 1 3 7 Bipolar Sigmoid 15 1 3 7 Bipolar Sigmoid 15 1 3 7 Bipolar Sigmoid 16 14 3 7 Bipolar Sigmoid 16 1 3 7 Bipolar Sigmoid 17 1 3 7 Bipolar Sigmoid 17 1 3 7 Bipolar Sigmoid 17 1 3 9 Bipolar Sigmoid 17 1 3 9 Bipolar Sigmoid 17 3 </td <td>+</td> <td>-</td> <td>Sigmoid</td> <td>0.9</td> <td>0.08</td> <td></td> <td>10000</td> <td>┝</td>	+	-	Sigmoid	0.9	0.08		10000	┝
2 1 3 5 Bipolar Sigmold Sigmold 0.9 0.0 Test Number Test Number Window lag Hidden Nodes Hidden Activation Output Activation Momentum Laming 1 1 3 7 Bipolar Sigmold Sigmold 0.9 0.0 1 1 3 7 Bipolar Sigmold Sigmold 0.9 0.0 2 1 3 7 Bipolar Sigmold Sigmold 0.9 0.0 1 3 7 Bipolar Sigmold Sigmold 0.9 0.0 1 1 3 7 Bipolar Sigmold 0.9 0.0 1 1 3 7 Bipolar Sigmold 0.9 0.1 1 1 3 7 Bipolar Sigmold Sigmold 0.9 0.1 1 1 3 7 Bipolar Sigmold Sigmold 0.9 0.1 2 1 3 7 Bipolar Sigmold Sigmold 0.9 0.1	2 1 3 5 Bipolar Sigmoid Test Number Test Number Window lag Hidden Activation 12 13 1 3 7 Bipolar Sigmoid 13 1 3 7 Bipolar Sigmoid 14 1 3 7 Bipolar Sigmoid 14 1 3 7 Bipolar Sigmoid 14 1 3 7 Bipolar Sigmoid 15 1 3 7 Bipolar Sigmoid 15 1 3 7 Bipolar Sigmoid 16 14 3 7 Bipolar Sigmoid 16 1 3 7 Bipolar Sigmoid 17 1 3 7 Bipolar Sigmoid 17 1 3 7 Bipolar Sigmoid 17 1 3 9 Bipolar Sigmoid 17 1 3 9 Bipolar Sigmoid 17 1 3 9 Bipolar Sigmoid 17<	1	Bipolar Sigmoid	Sigmoid	0.9	0.08		10000	_
Test Number Window lag Hidden Nodes Hidden Activation Output Activation Momentum Learning 12 1 3 7 Bipolar Sigmold Sigmold 0.9 0.08 13 1 3 7 Bipolar Sigmold Sigmold 0.9 0.08 2 1 3 7 Bipolar Sigmold Sigmold 0.9 0.08 13 1 3 7 Bipolar Sigmold Sigmold 0.9 0.08 14 3 7 Bipolar Sigmold Sigmold 0.9 0.05 15 1 3 7 Bipolar Sigmold Sigmold 0.9 0.6 15 1 3 7 Bipolar Sigmold Sigmold 0.9 0.6 15 1 3 7 Bipolar Sigmold Sigmold 0.9 0.6 15 1 3 7 Bipolar Sigmold Sigmold 0.9 0.1 2 1 3 7 Bipolar Sigmold Sigmold 0.9 0.7	Test Number Test Number Window lag Hidden Nodes Hidden Activation 12 1 3 7 Bipolar Sigmoid 13 1 3 7 Bipolar Sigmoid 13 1 3 7 Bipolar Sigmoid 14 1 3 7 Bipolar Sigmoid 14 1 3 7 Bipolar Sigmoid 15 1 3 7 Bipolar Sigmoid 15 1 3 7 Bipolar Sigmoid 16 1 3 7 Bipolar Sigmoid 16 1 3 7 Bipolar Sigmoid 16 1 3 9 Bipolar Sigmoid 1 1 3 9 Bipolar Sigmoid 1 3 9 Bipolar Sigmoid 1 3 9 Bipolar Sigmo	3 8	Bipolar Sigmoid	Sigmoid	0.9	0.08		10000	10000 0.3085
12 1 3 7 Bipolar Sigmold Sigmold 0.9 0.08 2 1 3 7 Bipolar Sigmold Sigmold 0.9 0.08 2 1 3 7 Bipolar Sigmold Sigmold 0.9 0.08 2 1 3 7 Bipolar Sigmold Sigmold 0.9 0.08 1 1 3 7 Bipolar Sigmold Sigmold 0.9 0.08 1 1 3 7 Bipolar Sigmold Sigmold 0.9 0.09 1 1 3 7 Bipolar Sigmold Sigmold 0.9 0.1 1 1 3 7 Bipolar Sigmold Sigmold 0.9 0.1 2 1 3 7 Bipolar Sigmold Sigmold 0.9 0.1	12 1 3 7 Bipolar Sigmold 2 3 7 3 7 Bipolar Sigmold 2 1 3 7 Bipolar Sigmold 15 1 3 7 Bipolar Sigmold 16 1 3 7 Bipolar Sigmold 16 1 3 7 Bipolar Sigmold 1 1 3 7 Bipolar Sigmold 16 1 3 7 Bipolar Sigmold 1 1 3 7 Bipolar Sigmold 1 1 3 9 Bipolar Sigmold 1 3 9 Bipolar Sigmold <		-		Momentum		Ц	Epoch	P
13 1 3 7 Bipolar Sigmold Sigmold 0.9 0.08 2 1 3 7 Bipolar Sigmold Sigmold 0.9 0.08 14 1 3 7 Bipolar Sigmold Sigmold 0.9 0.08 14 1 3 7 Bipolar Sigmold Sigmold 0.9 0.03 15 1 3 7 Bipolar Sigmold Sigmold 0.9 0.1 2 1 3 7 Bipolar Sigmold Sigmold 0.9 0.1	13 1 3 7 Bipolar Sigmoid 2 1 3 7 Bipolar Sigmoid 14 1 3 7 Bipolar Sigmoid 15 1 3 7 Bipolar Sigmoid 15 1 3 7 Bipolar Sigmoid 15 1 3 7 Bipolar Sigmoid 16 1 3 7 Bipolar Sigmoid 1 1 3 7 Bipolar Sigmoid 16 1 3 7 Bipolar Sigmoid 1 1 3 9 Bipolar Sigmoid	3 2 7	Bipolar Sigmold	Sigmoid	0.9	0.08		10000	-
Test Number Window lag Hidden Nodes Hidden Activation Output Activation Momentum Learning 1 15 1 3 7 Bipolar Sigmoid Sigmoid 0.9 0.1 2 1 3 7 Bipolar Sigmoid Sigmoid 0.9 0.1	Test Number Test Number Window lag Hidden Nodes Hidden Activation 14 1 3 7 Bipolar Sigmold 2 1 3 7 Bipolar Sigmold 1 3 9 Bipolar Sigmold	1 2 1 2	Bipolar Sigmoid	Sigmoid	0.0	0.08		10000	10000 0.32485
1 1 1 3 7 Bipolar Sigmold Output Activation 0.9 0.1 1 14 1 3 7 Bipolar Sigmold Sigmold 0.9 0.1 1 2 1 3 7 Bipolar Sigmold Sigmold 0.9 0.1 2 1 3 7 Bipolar Sigmold Sigmold 0.9 0.1	Test Number Test Number Number Number Number Number Signal 2 1 3 7 Bipolar Sigmaid 2 1 3 7 Bipolar Sigmaid 1 3 7 Bipolar Sigmaid 1 1 3 7 Bipolar Sigmaid 1 1 3 7 Bipolar Sigmaid 1 1 3 9 Bipolar Sigmaid 1 1 3 9 Bipolar Sigmaid 2 1 3 9 Bipolar Sigmaid 2 1 3 9 Bipolar Sigmaid 1 1 3 9 Bipolar Sigmaid 1 3 9 Bipolar Sigmaid 2 1 3 9 Bipolar Sigmaid 1 1 3 9 Bipolar Sigmaid 1 3 9 Bipolar Sigmaid 1 1 3 9 Bipolar Sigmaid 1 1 3 9 Bipolar Sigmaid 1 1 3 9 Bipolar Sigmaid	1	1 H	1 L					
1 1 3 7 Bipolar Sigmoid Sigmoid 0.9 2 1 3 7 Bipolar Sigmoid 5igmoid 0.9	4 15 1 3 7 Bipolar Sigmoid 7 8 9 8 9 8 4 17 1 3 9 8 4 2 3 9 8 9 17 1 3 9 8 9 17 1 3 9 8 9 17 1 3 9 8 9 17 1 3 9 8 9 17 1 3 9 8 9 17 1 3 9 8 9 17 1 3 9 8 9 17 1 3 9 8 9 17 1 3 9 8 9 17 1 3 9 8 9 18 17 3 9 8 9 17 1 3 9 8 9 18 17 3 9 8 9 19 10 10 10 10 10	Window lag	_		Momentum	Learning Rate		10000	Epoch Validation
2 1 3 7 Bipolar Sigmold Sigmold 0.9	2 1 3 7 Bipolar Sigmold 4 16 1 3 9 Bipolar Sigmold 4 17 1 3 9 Bipolar Sigmold 4 17 1 3 9 Bipolar Sigmold 2 3 3 9 Bipolar Sigmold 1 1 3 9 Bipolar Sigmold	~ ~	Bipolar Sigmoid	Sigmold	0.9	0.1		10000	+
	Test Number Test Number Window lap Hidden Nodes Hidden Activation 4 17 1 3 9 Bipolar Sigmoid 2 1 3 9 Bipolar Sigmoid 2 1 3 9 Bipolar Sigmoid 1 1 3 9 Bipolar Sigmoid 2 1 3 9 Bipolar Sigmoid 1 1 3 9 Bipolar Sigmoid 2 1 3 9 Bipolar Sigmoid 1 1 3 9 Bipolar Sigmoid 2 1 3 9 Bipolar Sigmoid 1 1 3 9 Bipolar Sigmoid	3 7	Bipolar Sigmold	Sigmold	0.9	0.1	11	10000	
	4 17 1 3 9 Bipolar Sigmoid 2 1 3 9 Bipolar Sigmoid Test Number Vindow lag Hidden Nodes Hidden Activation			Sigmoid	0.9	0.1		10000	10000 0.3451
16 1 3 9 Bipolar Sigmold Sigmold 0.9 0.1	Test Number Test Number Window lag Hidden Nodes Hidden Activation	3	Bipolar Sigmoid	Sigmoid	0.9	0.1		10000	
16 1 3 9 Bipolar Sigmoid Sigmoid 0.9 0.1 17 1 3 9 Bipolar Sigmoid 5/3 0.1	Test Number Test Number Window lag Hidden Nodes Hidden Activation	3 8	Bipolar Sigmoid	Sigmold	0.9	0.1		10000	10000 0.3468
16 1 3 9 Bipolar Sigmoid Sigmoid 0.9 0.1 44 17 1 3 9 Bipolar Sigmoid 5igmoid 0.9 0.1 44 17 1 3 9 Bipolar Sigmoid 5igmoid 0.9 0.1 2 1 3 9 Bipolar Sigmoid Sigmoid 0.9 0.1	18 1 1 a Bindar Sigmoid	H	-		Momentum	Learning Rate		Epoch	
4 16 1 3 9 Bipolar Sigmoid 0.9 0.1 4 17 1 3 9 Bipolar Sigmoid 0.9 0.1 2 1 3 9 Bipolar Sigmoid 5/gmoid 0.9 0.1 2 1 3 9 Bipolar Sigmoid 5/gmoid 0.9 0.1 7 3 9 8/gmoid 0.9 0.1 7 3 9 9 9 0.1 0.1			Bipolar Sigmold	Sigmoid	0.8	0.08		10000	10000 0.3160
4 16 1 3 9 Bipolar Sigmoid 0.9 0.1 4 17 1 3 9 Bipolar Sigmoid 5igmoid 0.9 0.1 2 1 3 9 Bipolar Sigmoid Sigmoid 0.9 0.1 7est Number 1 3 9 Bipolar Sigmoid 0.9 0.9 0.1 4 18 1 3 9 Bipolar Sigmoid 0.9 0.9 0.1	19 1 3 1 9 1 Bipolar Signoid	-	Bipolar Sigmoid	Sigmoid	6.0	0.08	4	10000	-

B-10

And Red.

ie Result 5	80				HIDDEN-MO	MENTUM-LR-8					
NodelD	Test Number	Test Number	Window lag	Hidden Nodes	Hidden Activation	Output Activation	Momentum	Learning Rate	Epoch	Validation	RMSE Valu
(Network)	{110}		(3,5,7,9)	(3,5,7,9)	(Bipolor Sigmoid, Sigmoid, Tenh)	(Bipolor Sigmoid, Sigmoid, Tanh)	{0.9, 0.7, 0.5, 0.3, 0.1}	{0.08, 0.1, 0.5}	(Min 1000 Max 10000)	(Stop Epoch)	(0.01)
NodelD	Test Number	Test Number	Window lag	Hidden Nodes	Hidden Activation	Output Activation	Momentum	Learning Rate	Epoch	Validation	RMSE Val
1944	1	1	5	3	Bipolar Sigmoid	Sigmoid	0.9	0.08	10000	0.2243	0.0115
1944	2	4	5	3	Bipolar Sigmold	Sigmoid	0.9	0.08	10000	0.2116	0.0184
1944	2		3	3	Eignier Sigmold	Sigmali	0.0	0.00	10000	8.21785	8.01485
NadelD	Test Number	Test Number	Window lag	Hidden Nodes	Hidden Activation	Output Addivation	Momentum	Learning Rate	Epoch	Validation	RMSE VII
1944	3	1	5	3	Blooler Slamoid	Sigmoid	0.9	0.1	10000	0.3049	0.0127
1944	4	1	5	3	Bipolar Sigmoid	Sigmoid	0.9	0.1	10000	0.1885	0.0101
1944			J	3	Nyster Hymein	Igmold	0.0	internet & Indicate	10080	6.2417	
NodelD	Test Number	Test Number	Window lag	Hidden Nodes	Hidden Activation	Output Activation	Momentum	Learning Rete	Epoch	Velidetion	RMSE Val
1944	5	1	5	3	Bipolar Sigmoid	Sigmoid	0.9	0.5	10000	0.2248	0.0150
1944	6	1	5	3	Bipolar Sigmoid	Sigmoid	0.9	0.5	10000	0.1937	0.0329
1944	2	1	3	3	Bipolar Sigmaid	Sigmold	8.0		10000	HENRE.D	6.01365
NadelD	Test Number	Test Number	Window lag	Hidden Nodes	Hidden Activation	Output Activation	Momentum	Learning Rate	Epoch	Validation	RMSE Val
1944	7	1	5	5	Bipolar Sigmoid	Sigmoid	0.9	0.1	10000	0.2108	0.0100
1944	8	1	5	5	Bipolar Sigmoid	Sigmoid	0.9	0.1	10000	0.1674	0.0100
1944	2	and the first of the	5	5	Bipolar Sigmold	Sigmoid	0.9	0.1	10000	A. 1881	8.61
NodelD	Test Number	Test Number	Window lag	Hidden Nodes	Hidden Activation	Output Activation	Momentum	Learning Rate	Epoch	Validation	RMSE Val
1944	10		TTHING IT IN LA			Badada Andreas Andreas Andreas Andreas					
10		1 1	5	5	Bipolar Sigmold	Sigmoid	0.9	0.08	10000		
1944		1	5	5	Bipolar Sigmoid Bipolar Sigmoid	Sigmoid Sigmoid	0.9	0.08	10000	0.1564	0.0100
1944 1944	11 2	1	5 5 5	5 5 5	Bipolar Sigmoid Bipolar Sigmoid Bigolar Sigmoid	Sigmoid Sigmoid Eigmoid	0.9 0.9 0.9	0.08 0.08	10000 10000		
1944	11		5	5	Bipolar Sigmoid Bipolar Sigmoid	Sigmoid Elgmoid	0.9	0.08	10000	0.1564 0.1649 6.76685	0.0100
1944	11		5	5	Bipolar Sigmoid	Sigmoid Elgmoid	0.9	0.08	10000	0.1564	0.0100
1944	11		5	5	Bipolar Sigmoid Bipolar Sigmoid	Sigmoid Elgmoid	0.9	0.08	10000	0.1564 0.1649 6.76685	0.0100
1944 NodelD	11 2 Test Number		5 5 Window lag	5	Bipolar Sigmoid Bipolar Sigmoid Hidden Activation	Sigmold Eigmold Output Activation	0.9 9.5 Momentum	0.08 8.85 Learning Rate	10000 19055 Epoch	0.1564 0.1649 0.16015 Validation	0.0100 0.0100 6.01 RMSE Vai
1944 NodelD 1944	11 2 Test Number 12		5 5 Window lag 5	5 5 Hidden Nodes 7	Bipolar Sigmoid Bipolar Sigmoid Hidden Activation Bipolar Sigmoid	Sigmold Sigmold Output Activation Sigmoid	0.9 9.9 Momentum 0.9	0.08 6.65 Learning Rate 0.08	10000 19085 Epoch 10000	0.1564 0.1649 6.16916 Validation 0.1469	0.0100 0.0100 0.0100 0.0100 RMSE Vai
1944 NodelD 1944 1944 1944	11 2 Test Number 12 13 2	1 7 Test Number 1 1	5 5 5 5 5 5 5	5 5 Hidden Nodes 7 7 7	Bipolar Sigmoid Bipolar Sigmoid Hidden Activation Bipolar Sigmoid Bipolar Sigmoid Bipolar Sigmoid	Sigmoid Eigmoid Output Activation Sigmoid Sigmoid Eigmoid	0.9 6.9 Momentum 0.9 0.9 6.9	0.08 0.08 0.08 0.08 0.08 0.08 0.08	10000 10000 10000 10000 10000	0.1564 0.1649 6.76555 Validation 0.1469 0.1595 6.7532	0.0100 0.0100 0.01 00 0.0100 0.0100 0.0100
1944 1944 1944 1944 1944	11 Z Test Number 12 13 Z Teet Number	1 7 Test Number 1 1 7 Test Number	5 5 5 5 5 5 Window lag	5 5 Hidden Nodes 7 7 7 Hidden Nodes	Bipolar Sigmoid Bipolar Sigmoid Hidden Activation Bipolar Sigmoid Bipolar Sigmoid Bipolar Sigmoid Hidden Activation	Sigmoid Eigmoid Output Activation Sigmoid Sigmoid Eigmoid Output Activation	0.9 8.9 Momentum 0.9 0.9 8.9 Momentum	0.08 A.SI Learning Rate 0.08 0.08 B.SS Learning Rate	10000 18005 Epoch 10000 10000 16005 Epoch	0.1584 0.1649 2.1699 2.1699 0.1469 0.1595 6.1532 Validation	0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100
1944 1944 1944 1944 1944 1944 NodelD 1944	11 2 Test Number 12 13 2 Test Number 14	1 7 1 1 1 1 7 7 Test Number 1	5 5 5 5 5 5 7 Window lag 5	5 5 Hidden Nodes 7 7 7 Hidden Nodes 7	Bipolar Sigmoid Bipolar Sigmoid Hidden Activation Bipolar Sigmoid Bipolar Sigmoid Bipolar Sigmoid Hidden Activation Bipolar Sigmoid	Sigmoid Eigmoid Output Activation Sigmoid Eigmoid Output Activation Sigmoid	0.9 8.9 Momentum 0.9 0.9 8.9 Momentum 0.9	0.08 2.51 Learning Rate 0.08 0.08 5.65 Learning Rate 0.1	10000 10000 10000 10000 10000 10000 10000	0.1584 0.1649 0.1649 0.1469 0.1595 0.1595 0.1595 0.1582 Validation 0.1686	0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100
1944 1944 1944 1944 1944	11 Z Test Number 12 13 Z Teet Number	1 7 Test Number 1 1 7 Test Number	5 5 5 5 5 5 Window lag	5 5 Hidden Nodes 7 7 7 Hidden Nodes	Bipolar Sigmoid Bipolar Sigmoid Hidden Activation Bipolar Sigmoid Bipolar Sigmoid Hidden Activation Bipolar Sigmoid Bipolar Sigmoid	Sigmoid Eigmoid Output Activation Sigmoid Eigmoid Output Activation Sigmoid Sigmoid	0.9 8.9 Momentum 0.9 0.9 8.9 Momentum	0.08 A.SI Learning Rate 0.08 0.08 B.SS Learning Rate	10000 18005 Epoch 10000 10000 16005 Epoch	0.1584 0.1649 2.1699 2.1699 0.1469 0.1595 6.1532 Validation	0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100
1944 1944 1944 1944 1944 1944 NodelD 1944 1944	11 2 Test Number 12 13 2 Test Number 14 15	1 7 1 1 1 1 7 7 Test Number 1	5 5 5 5 5 5 7 Window lag 5	5 5 Hidden Nodes 7 7 7 Hidden Nodes 7	Bipolar Sigmoid Bipolar Sigmoid Hidden Activation Bipolar Sigmoid Bipolar Sigmoid Bipolar Sigmoid Hidden Activation Bipolar Sigmoid	Sigmoid Eigmoid Output Activation Sigmoid Eigmoid Output Activation Sigmoid	0.9 9.9 0.9 0.9 9.9 9.9 9.9 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100100	0.08 9.05 1.09ming Rate 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.09 0.09 0.09 0.09 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 	10000 Fine Epoch 10000 10000 10000 10000 10000 10000	0.1584 0.1649 8.1699 0.1699 0.1469 0.1595 6.1595 6.1595 Validation 0.1686 0.1715	0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100
1944 1944 1944 1944 1944 1944 1944 1944	11 2 Test Number 12 13 2 Test Number 14 15 2	1 7 Test Number 1 7 Test Number 1 1	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	5 5 Hidden Nodes 7 7 7 Hidden Nodes 7 7 7 7	Bipolar Sigmoid Bipolar Sigmoid Hidden Activation Bipolar Sigmoid Bipolar Sigmoid Bipolar Sigmoid Hidden Activation Bipolar Sigmoid Bipolar Sigmoid Bipolar Sigmoid Bipolar Sigmoid Hidden Activation	Sigmoid Eigmoid Output Activation Sigmoid Eigmoid Output Activation Sigmoid Sigmoid Eigmoid	0.9 9.9 0.9 0.9 9.9 9.9 1.9 1.9 0.9 0.9 0.9 0.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1	0.08 9.09 1.cerning Rate 0.08 9.09 1.cerning Rate 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	10000 Feet 10000 10000 Feet 10000 Feet Epech Epech	0.1584 0.1649 8.16995 9.1469 0.1595 8.1595 8.1595 9.1595 8.1595 9.1595 8.1595 9.1595 9.1595 9.1595 9.1595 9.1586 0.1715 8.17686 9.1715 8.17686 9.1715 8.17686 9.1715 8.17686 9.1686 9.1715 8.17686 9.1686 9.1686 9.1686 9.1686 9.1686 9.1686 9.1687 9.1686 9.1687 9.17757 9.17757 9.17757 9.17757 9.17757 9.17757 9.17757 9.1	0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100
1944 1944 1944 1944 1944 1944 1944 1944	11 2 Test Number 12 13 2 Test Number 14 15 2 7 Test Number 16	1 7 Test Number 1 7 Test Number 1 1	5 5 5 5 5 5 7 Window lag 5 5 7 Window lag 5	5 5 7 7 7 Hidden Nodes 7 7 7 7 7 9	Bipolar Sigmoid Bipolar Sigmoid Hidden Activation Bipolar Sigmoid Bipolar Sigmoid Bipolar Sigmoid Bipolar Sigmoid Bipolar Sigmoid Bipolar Sigmoid Bipolar Sigmoid Bipolar Sigmoid	Sigmoid Eigmoid Output Activation Sigmoid Eigmoid Output Activation Sigmoid Sigmoid Output Activation Sigmoid	0.9 9.9 0.9 0.9 9.9 9.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 	0.08 9.09 1.cerning Rate 0.08 0.08 0.08 0.08 0.09 1.cerning Rate 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0	10000 Fpech 10000 10000 Fpech 10000 Fpech 10000 Feech 10000	0.1584 0.1649 8.76885 0.1469 0.1595 6.7532 Validation 0.1586 0.1715 8.77855 Validation 0.1500	0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100
1944 1944 1944 1944 1944 1944 1944 1944	11 2 Test Number 12 13 2 Test Number 14 15 2 Yest Number	1 7 Test Number 1 7 Test Number 1 1	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	5 5 Hidden Nodes 7 7 7 7 7 7 7 7 7 9	Bipolar Sigmoid Bipolar Sigmoid Hidden Activation Bipolar Sigmoid Bipolar Sigmoid Bipolar Sigmoid Hidden Activation Bipolar Sigmoid Bipolar Sigmoid Bipolar Sigmoid Bipolar Sigmoid Hidden Activation	Sigmoid Eigmoid Output Activation Sigmoid Eigmoid Output Activation Sigmoid Sigmoid Eigmoid	0.9 9.9 0.9 0.9 9.9 9.9 1.9 1.9 0.9 0.9 0.9 0.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1	0.08 9.09 1.cerning Rate 0.08 9.09 1.cerning Rate 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	10000 Fpoch 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000	0.1584 0.1649 8.16995 9.1469 0.1595 8.1595 8.1595 9.1595 8.1595 9.1595 9.1595 9.1595 9.1595 9.1595 9.1595 9.1586 0.1715 8.17686 9.1715 8.17686 9.1715 8.17686 9.1715 8.17686 9.1686 9.1715 8.17686 9.1686 9.1686 9.1686 9.1686 9.1686 9.1686 9.1687 9.1686 9.1687 9.17757 9.17757 9.17757 9.17757 9.17757 9.17757 9.17757 9.1	0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100
1944 1944 1944 1944 1944 1944 1944 1944	11 2 Test Number 12 13 2 Test Number 14 15 2 7 Test Number 16	1 7 Test Number 1 7 Test Number 1 7 Test Number 1 7	5 5 5 5 5 5 7 Window lag 5 5 7 Window lag 5	5 5 7 7 7 Hidden Nodes 7 7 7 7 7 9	Bipolar Sigmoid Bipolar Sigmoid Hidden Activation Bipolar Sigmoid Bipolar Sigmoid Bipolar Sigmoid Bipolar Sigmoid Bipolar Sigmoid Bipolar Sigmoid Bipolar Sigmoid Bipolar Sigmoid	Sigmoid Eigmoid Output Activation Sigmoid Eigmoid Output Activation Sigmoid Sigmoid Output Activation Sigmoid	0.9 9.9 0.9 0.9 9.9 9.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 	0.08 9.09 1.cerning Rate 0.08 0.08 0.08 0.08 0.09 1.cerning Rate 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0	10000 Fpech 10000 10000 Fpech 10000 Fpech 10000 Feech 10000	0.1584 0.1649 8.76985 9.1469 0.1595 8.7632 Validation 0.1586 0.1715 8.77653 Validation 0.1500	0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100
1944 1944 1944 1944 1944 1944 1944 1944	11 2 Test Number 12 13 2 Test Number 14 15 2 Test Number 16 17 2	1 7 Test Number 1 1 7 Test Number 1 7 Test Number 1 1 7 Test Number 1 1 7	5 5 5 5 5 Window lag 5 5 5 Window lag 5 5 5 5 5 5	5 5 Hidden Nodes 7 7 7 Hidden Nodes 9 9 9	Bipolar Sigmoid Bipolar Sigmoid	Sigmoid Eigmoid Sigmoid Sigmoid Eigmoid Output Activation Sigmoid Sigmoid Sigmoid Output Activation Sigmoid Sigmoid Sigmoid Sigmoid	0.9 9.9 0.9 0.9 9.9 9.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 	0.08 9.08 9.08 0.08 0.08 9.08 0.08 0.08 0.08 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	10000 State Epoch 10000 State Epoch 10000 State Epoch 10000 State Epoch 10000 State State	0.1584 0.1649 8.7699 8.7699 0.1469 0.1595 6.755 8.755 9.1555 0.1586 0.1715 8.7755 9.17655 1.1550 0.1544 8.1512	0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100
1944 1944 1944 1944 1944 1944 1944 1944	11 2 Test Number 12 13 2 Test Number 14 15 2 Test Number 16 17 2 2 Test Number	1 7 Test Number 1 1 7 Test Number 1 7 Test Number 1 1 7 Test Number 1 1 7	5 5 5 5 5 Window lag 5 5 5 Window lag 5 5 5 5	5 5 Hidden Nodes 7 7 7 Hidden Nodes 9 9 9 9	Bipolar Sigmoid Bipolar Sigmoid	Sigmoid Eigmoid Sigmoid Sigmoid Eigmoid Output Activation Sigmoid Sigmoid Sigmoid Sigmoid Sigmoid Sigmoid Sigmoid Sigmoid Sigmoid	0.9 9.9 0.9 0.9 9.9 9.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 	0.08 9.09 9.08 0.08 0.08 9.09 1 Learning Rate 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	10000 Spech 10000 10000 See Barrow Epach 10000 See Barrow Epach 10000 See Barrow Epach 10000 See Barrow Epach 10000 See Barrow Epach	0.1584 0.1649 8.76995 9.76995 0.1469 0.1595 8.7552 Validation 0.1686 0.1715 8.77553 Validation 0.1544 8.7533 Validation	0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100
1944 1944 1944 1944 1944 1944 1944 1944	11 2 Test Number 12 13 2 Test Number 14 15 2 Test Number 16 17 2	1 7 Test Number 1 1 7 Test Number 1 7 Test Number 1 1 7 Test Number 1 1 7	5 5 5 5 5 Window lag 5 5 5 Window lag 5 5 5 5 5 5	5 5 Hidden Nodes 7 7 7 Hidden Nodes 9 9 9	Bipolar Sigmoid Bipolar Sigmoid	Sigmoid Eigmoid Sigmoid Sigmoid Eigmoid Output Activation Sigmoid Sigmoid Sigmoid Output Activation Sigmoid Sigmoid Sigmoid Sigmoid	0.9 9.9 0.9 0.9 9.9 9.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 	0.08 9.08 9.08 0.08 0.08 9.08 0.08 0.08 0.08 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	10000 State Epoch 10000 State Epoch 10000 State Epoch 10000 State Epoch 10000 State State	0.1584 0.1649 8.7699 8.7699 0.1469 0.1595 6.755 8.755 9.1555 0.1586 0.1715 8.7755 9.17655 1.1550 0.1544 8.1512	0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100


ode Result	660				HIDDEN-N	IOWER I DWIELS					
NodelD	Test Number	Test Number	Window lag	Hidden Nodes		Output Activation		Learning Rate	Epoch	Validation	RMEE Value
(Network)	{1. 10}		{3,5,7,9}	{3,5,7,9}	(Bipolor Sigmoid, Sigmoid, Tanh)	{Bipolor Sigmoid, Sigmoid, Tanh}	{0.9, 0.7, 0.5, 0.3, 0.1}	(0.08, 0.1, 0.5)	(Min 1000 Max 10000)	(Stop Epoch)	(0.01)
NodelD	Test Number	Test Number	Window lag	Hidden Nodes	Hidden Activation	Output Activation	Momentum	Learning Rate	Epoch	Validation	RMSE Value
1944	1	1	7	3	Bipolar Sigmoid	Sigmoid	0.9	0.08	10000	0 3978	0.0100
1944	2	1	7	3	Bipolar Sigmoid	Sigmold	0.9	0.08	10000	0 2888	0.0100
1944	2	1	7	3	Elogier Sigmoid	Sigmold	0.9	0.08	10000	0.3453	0.01
NodelD	Test Number	Test Number	Window lag	Nidden Nades	Hidden Activation	Output Activation	Momentum	Learning Rate	Epoch	Validation	RMBE Value
1944	3	1	7	3	Bipoler Sigmoid	Sigmoid	0.9	0.1	10000	0.3838	0.0100
1944	4	1	7	3	Bipolar Sigmoid	Sigmoid	0.9	0.1	10000	0.2699	0.0100
1544			7	3	Ripolar Sigmold	Sigmoid	0.9	0.1	10000	O'STREE	0.01
NodelD	Test Number	Test Number	Window lag	Hidden Nodes	Hidden Activation	Output Activation	Momentum	Learning Rate	Epoch	Validation	RMSE Value
1944	5	1	7	3	Bipolar Sigmoid	Sigmoid	0.9	0.5	10000	0.3942	0.0100
1944	6	1	7	3	Bipoler Sigmoid	Sigmoid	0_9	0.5	10000	0.3821	0.0100
1944	2		7	3	Elpolar Sigmoid	Sigmoid	0.8	0.5	10000	0.38815	0.01
NodelD	Test Number	Test Number	Window lag	Hidden Nodes	Hidden Activation	Output Activation	Momentum	Learning Rate	Epoch	Validation	RMSE Value
1944	7	1	7	5	Bipolar Sigmold	Sigmoid	0.9	0.1	10000	0.2796	0.0100
1944	8	1	7	5	Bipolar Sigmoid	Sigmoid	0.9	0.1	10000	0.3413	0.0100
1944			7	5	Bipolar Sigmold	Sigmoid	0.9	0.1	10000	0.31045	0.01
NadalD	Test Number	Test Number	Window lag	Hidden Nodes	Hidden Activetion	Output Activation	Momentum	Learning Rate	Epoch	Validation	RMSE Value
1944	10	1	7	5	Bipolar Sigmoid	Sigmoid	0.9	80.0	10000	0.3020	0.0100
1944	11	1	7	5	Bipolar Sigmoid	Sigmoid	0.9	0.08	10000	0.2900	0.0100
1944	2	1	7	5	Bipolar Sigmold	Sigmold	0.5	0.08	10000	0.296	0.01
NodelD	Test Number	Test Number	Window lag	Hidden Nodes	Hidden Activation	Output Activation	Momentum	Learning Rate	Epoch	Validation	RMSE Value
1944	12	1	7	7	Bipolar Sigmoid	Sigmoid	0.9	80.0	10000	0.2921	0.0100
1944	13	1	7	7	Bipolar Sigmoid	Sigmoid	0.9	0.08	10000	0.3125	0.0100
1944	2			7	Ripolar Sigmold	Sigmold	0.9	0.08	10000	0.3023	0.01
NodelD	Test Number	Test Number	Window lag	Hidden Nodes	Hidden Activation	Output Activation	Momentum	Learning Rate	Epoch	Validation	RMSE Value
1944	14	1	7	7	Bipolar Sigmoid	Sigmoid	0.9	0.1	10000	0.3587	0.0100
1944		1	7	7	Bipolar Sigmoid	Sigmold	0.9	0.1	10000	0.2995	0.0100
1944	2	1	7	1	Bipolar Sigmald	Sigmoid	0.9	0.1	10000	0.3291	0.01
NodelD	Teet Number	Test Number	Window lag	Hidden Nodes	Hidden Activation	Output Activation	Momentum	Learning Rate	Epoch	Validation	RMSE Value
1944		1	7	9	Bipolar Sigmoid	Sigmold	0.9	0.1	10000	0.3341	0.0100
1944	17	1	7	9	Bipolar Sigmold	Sigmoid	0.9	0.1	10000	0.3667	0.0100
1944	2	1	7	9	Bipolar Sigmold	Sigmaid	0.9	0.1	10000	0.3504	0.01
NodelD	Test Number	Test Number	Window lag	Hidden Nodes	Hidden Activation	Output Activation	Momentum	Learning Rate		Validation	RMSE Value
1944		1	7	9	Bipolar Sigmoid	Sigmoid	0.8	0.08	10000	0.3130	0.0100
1944		1	7	9	Bipolar Sigmoid	Sigmoid	0.9	80.0	10000	0.3550	0.0100
1944	2				Bipolar Sigmold	Sigmold	0.9	0.08	10000	0.334	0.01

HIMPEN MOMENTUM LIVE

PRODEN MOMENTUM AND

(Network) (Network) 1944 1944	NodelD Test Number Test Number Window Iag H	Test Number	Introduction Inc.		ddan Nodas Hiddan Activation	Output Activation	Momentum	Learning Rate	Epoch	Validation	RMSE Value
(Network) NodelD 1944 1944		a state and a state of the stat	I Rest MODULIAA		TOTAL TOTAL						
1944 1944	(110)		{3,5,7,9}	(3,5,7,9)	(Bipolor Sigmoid, Sigmoid, Tanh)	{Bipolor Sigmold, Sigmold, Tanh}	{0.9, 0.7, 0.5, 0.3, 0.1}	{0.08, 0.1, 0.5}	(Min 1000 Max 10000)	{Stop Epoch}	{0.01}
1944	Test Number	Test Number Window lag	-	Hidden Nodes	Hidden Activation Bipolar Sigmoid	Output Activation Sigmoid	Momentum 0.9	Learning Rate 0.08	Epoch 10000	Validation 0.2929	RMSE Value 0.0100
10.00	2	1	6	3	Bipolar Sigmoid	Sigmoid	0.9	0.08	10000	0.2976	0.0100
1944	2	+	6	3	Bipolar Sigmold	Sigmold	0.9	0.08	10000	0.29525	0.01
NodelD	Test Number	Test Number	Window lag	Hidden Nodes	Hidden Activation	Output Activation	Momentum	Learning Rate	Epoch	Validation	RMSE Value
4	3	1	6	3	Bipolar Sigmoid	Sigmoid	0.9	0.1	10000	0.2505	0.0100
1944		1	6	3	Bipolar Sigmoid	Sigmoid	0.9	0.1	10000	0.3333	0.0100
1944	2	1	6	5	Bipolar Sigmoid	Sigmold	0.9	0.1	10000	0.2919	0.01
NodelD	Test Number	Test Number Window lag		Hidden Nodes	Hidden Activation	Output Activation	Momentum	Learning Rate	Epoch	Validation	RMSE Value
1944			6	6	Bipolar Sigmoid	Sigmoid	0.9	0.5	10000	0.3234	0.0100
1944	9	+	6	3	Bipolar Sigmoid	Sigmoid	0.9	0.5	10000	0.3177	0.0100
1944	2	1	6	3	Bipolar Sigmold	Sigmoid	0.9	0.5	10000	0.32055	0.01
NodelD	Test Number	Test Number	Window lag	Hidden Nodes	Hidden Activation	Output Activation	Momentum	Learning Rate	Epoch	Validation	RMSE Value
1944	7		6	5	Bipolar Sigmold	Sigmold	0.9	0.1	10000	0.3408	0.0100
1944		1	6	5	Bipolar Sigmoid	Sigmoid	0.9	0.1	10000	0.3454	0.0100
1944	2	1	0	5	Bipolar Sigmoid	Sigmoid	0.9	0.1	10000	0.3431	0.01
NodelD	Test Number	Test Number	Window lag	Hidden Nodes	Hidden Activation	Output Activation	Momentum	Learning Rate	Epoch	Validation	RMSE Value
1944		1	6	5	Bipolar Sigmoid	Sigmoid	0.9	0.08	10000	0.3075	0.0100
1944		1	8	5	Bipolar Sigmoid	Sigmold	0.9	0.08	10000	0.3695	0.0100
1944	2	1	6	5	Bipolar Sigmoid	Sigmold	0.9	0.08	10000	0.3385	0.01
NodelD	Test Number	Test Number Test Number Window lag	Window lag	Hidden Nodes	Hidden Activation	Outp	Momentum	Learning Rate	Epoch	Validation	RMSE Value
1944	12	1	6	7	Bipolar Sigmold	Sigmoid	0.9	0.08	10000	0.3044	0.0100
1944		1	8	7	Bipolar Sigmoid	Sigmoid	0.9	0.08	10000	0.2954	0.0100
1944	2	4	6	4	Bipolar Sigmoid	Sigmold	0.9	0.08	10000	0.2999	0.01
NodelD	Test Number	Test Number	Window lag	Hidden Nodes	Hidden Activation	Output Activation	Momentum	Learning Rate	Epoch	Validation	RMSE Value
1944	14	1		7	Bipolar Sigmoid	Sigmoid	0.9	0.1	10000	0.3327	0.0100
1944	15	1	8	7	Bipolar Sigmoid	Sigmoid	0.9	0.1	10000	0.3050	0.0100
1944	2	1	6	2	Bipolar Sigmold	Sigmoid	0.9	0.1	10000	0.31885	0.01
NodelD	Test Number	Test Number Test Number	Window lag	Hidden Nodes	Hidden Activation	Output Activation	Momentum	Learning Rate	Epoch	Validation	RMSE Value
4	16	1	6	6	Bipolar Sigmoid	Sigmoid	0.9	0.1	10000	0.3533	0.0100
1944	17	1	6	6	Bipolar Sigmoid	Sigmoid	0.9	0.1	10000	0.3053	0.0100
1944	2	1	6	6	Bipolar Sigmoid	Sigmold	0.9	0.1	10000	0.3293	0.01
NodelD	Test Number	Test Number	Window lag	Hidden Nodes	Hidden Activation	Outp	Momentum	Learning Rate	Epoch	Validation	RMSE Value
1944	18		000	6	Bipolar Sigmoid	Sigmoid	0.0	0.08	10000	0.2902	0.0100
t-to I		-	De		Bipolar Sigmoid	Divition	0.0	0.00	10000	10000	0.0100
1944	2	-	2	2	Bipoiar Sigmord	piompic	0.9	0.08	10000	0.32315	10.0

Struc	ture
Lag	5
Epoch	10000
Momentum	0.9
Learning Rate	0.08
Hidden	9
Hidden Activation	Bipolar sigmoid
Output Activation	Sigmoid

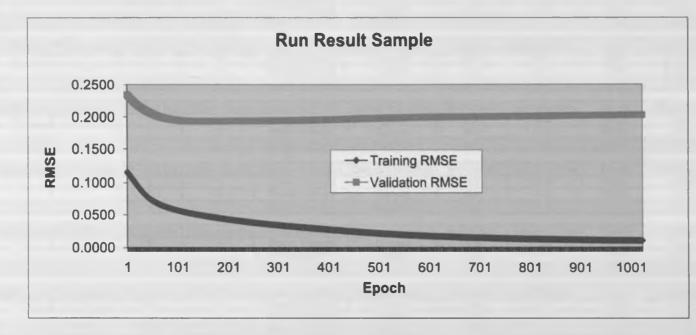
HIDDEN-MOMENTUM-LT-3

				and the second design of the s							
(Network	(110)		{3,5,7,9}	{3,5,7,9}	(Bipolor Sigmoid, Sigmoid, Tanh)	(Bipolor Sigmold, Sigmold, Tanh)	{0.9, 0.7, 0.5, 0.3, 0.1}	{0.08, 0.1, 0.5}	(Min 1000) Max 10000)	(Stop Epoch)	(0.01)
NodelD	Test Number	Test Number	Window lag	Hidden Nodes	Hidden Activation	Output Activation	Momentum	Learning Rate	Epoch	Validation	RMSE Value
1944			3	3	Bipolar Sigmoid	Sigmoid	0.9	0.08	10000	0.2989	0.0891
1944		-	0	3	Bipolar Sigmoid	Sigmoid	0.9	0.08	10000	0.3702	0.0661
1944	2	1	5	3	Bipolar Sigmoid	Sigmold	0.9	0.08	10000	0.33455	0.0776
NodelD	Test Number	Test Number	Window lac	Hidden Nodes	Hidden Activation	Output Activation	Momentum	Learning Rate	Epoch	Validation	RMSE Value
1944	0				Bipolar Sigmoid	Siamoid	0.9	0.1	10000	0.2996	0.0893
1944	4	-	0	00	Bipolar Sigmoid	Sigmoid	0.9	0.1	10000	0.3164	0.0901
1944		1	3	3	Bipolar Sigmoid	Sigmold	0.9	0.1	10000	0.308	0.0897
NodelD	Test Number	Test Number	Window lag	Hidden Nodes	Hidden Activation	Outp	Momentum	Learning Rate	Epoch	Validation	RMSE Value
1944		1	3	3	Bipolar Sigmoid	Sigmoid	0.9	0.5	10000	0.3737	0.0681
1944	9	1	3	3	Bipolar Sigmoid	Sigmoid	0.9	0.5	10000	0.3621	0.0684
1944		1	3	3	Bipolar Sigmoid	Sigmoid	0.9	0.5	10000	0.3679	0.06825
				1 11 11 11				The second s	Parent 1	T Mail and a start	Ditee Value
NodelD	Test Number	Test Number	MIN	Hidden Nodes	Hidden Activation	Output Activation	Momentum	Learning kate	Epocu	Validation	AMAC VAIUS
1944	6	-	60	5	Bipolar Sigmold	Sigmoid	0.9	0.1	10000	0.3148	0.0466
1944		-	3	5	Bipolar Sigmoid	Sigmold	0.9	0.1	10000	0.2931	6960.0
1944	2	1	07	5	Bipolar Sigmoid	Sigmoid	0.9	0.1	10000	0.30395	0.05155
NodelD	Test Number	Test Number Test Number	Window lag	Hidden Nodes	Hidden Activation	Output Activation	Momentum	Learning Rate	Epoch	Validation	RMSE Value
1944		1	3	5	Bipolar Sigmoid	Sigmold	0.9	0.08	10000	0.2809	0.0558
1944		1	3	5	Bipolar Sigmoid	Sigmoid	0.9	0.08	10000	0.2679	0.0613
1944	2	1	3	5	Bipolar Sigmold	Sigmoid	0.9	0.08	10000	0.2744	0.05856
NodelD	Test Number	Tast Number	Window lac	Hidden Nodes	Hidden Activation	Output Activation	Momentum	Learning Rate	Enoch	Validation	RMSE Value
4044	Cr	10/11/11/1001		Canoni liannili	Disolar Clamold	+	00	DU D	L	0.0720	0.0578
1344			20	1	Dipolar Sigmoid	Sigmoid	8.00	0.00		0.2108	0.0010
1944	2 2			6	Bipolar Sigmoid	Sigmoid	0.9	0.08	10000	0.29655	0.049665
NodelD	Test Number	Test Number Test Number Window lag	Window lag	Hidden Nodes	Hidden Activation	Outp	Momentum	Learning Rate	Epoch	Validation	RMSE Value
1944		1	3	2	Bipolar Sigmoid	-	0.9	0.1	10000	0.2915	0.0545
1944	15	1	3	2	Bipolar Sigmoid	Sigmold	0.9	0.1	10000	0.3047	0.0517
1944		1	8	2	Bipolar Sigmold	Sigmold	0.9	0.1	10000	0.2981	0.0531
MadalD	Tast Mumbar	Tast Nimbar Tast Nimbar	Window las	Hidden Medae	Hidden Artivation	Cutatit Activation	Memohim	I carning Rate	Fnoch	Validation	RMSF Value
1044		1001110111001	Rai Monilia	D D	Rindar Simold	+	0.9	0.1	1	0.3315	0.0354
1944		-	000	0	Bibolar Slamoid	Siamoid	0.9	0.1	10000	0.3026	0.0495
1944		4	9	6	Bipolar Sigmoid	Sigmoid	0.9	0.1	10000	0.31705	0.04245
NodelD	Test Number	Test Number	Window lag	Hidden Nodes	Hidden Activation	Output Activation	Momentum	Learning Rate	Epoch	Validation	RMSE Value
1944	18	-	8	6	Bipolar Sigmoid	-				0.2741	0.0587
1944	19 1 3	1	3	6	Bipolar Sigmold	Sigmoid	0.9	0.08	10000	0.2960	0.0537
40.4.4											

HIDDEN-MOMENTUM-LIN-9

1011	1044	1944	NodalD	1944	1944	1944	NodelD	4461	40.44	1944	1944	NodelD	4461		1044	1944		1944	1944	1944	NodelD	1944	1944	1944	NodelD	1344	4044	1044	NodelD	244	the	total a	NodelD	PARL	1011	1944	1944	NodelD	(Network)	NodelD
-0	10	181 Mumber	Tast Number	2	17	16	Test Number	-		15	14	Test Number	~		12	1est Number 12	Track Minishan	2	11	10	Test Number	2	~	7	Test Number				Test Number	2			Test Number	~		2		Test Number	(110)	Provide Development interest i
	-	Iadunni sai	_	1	1	-	Test Number	-		-	_	Test Number	-		-	1 est Number	-	1	1	1	Test Number	1	1	1	Test Number	-		-	Test Number	-		-	Test Number	-		4	-	Test Number		1001 INVITUDI
	7	DURAN	Window	5	5	5	Window lag	0		5	5	Window lag	0	-	7	5 MODUIA	Window low	5	5	5	Window lag	5	0	5	Window lag			7.0	Window lag	0	0	nc	w lag			5		Window lag	{3,5,7,9}	Rat accutate
	0	Sanon uanniu		9	9	9	Hidden Nodes		-	7	7	Hidden Nodes			7	7	Hidden Noden	5	o	5	Hidden Nodes	5	0	ch	Hidden Nodes			00	Hidden Nodes	3		0 0	Hidden Nodes			6	3	Hidden Nodes	(3,5,7,9)	
	Binolar Sigmoid		-	Bipolar Sigmoid	Bipolar Sigmoid	Bipolar Sigmoid	Hidden Activation	pioner signoid	Dinolar Classical	Bipolar Sigmoid	Bipolar Sigmoid	Hidden Activation	sipolar sigmoid	number mende	Rinolar Simmoid	Bipolar Sigmoid	Uldan Astustion	Bipolar Sigmoid	Bipolar Sigmoid	Bipolar Sigmoid	Hidden Activation	Bipolar Sigmoid	Bipolar Sigmoid	Bipolar Sigmoid	Hidden Activation	pipolar oldulor	Bindia Ciamold	Bipolar Sigmold	Hidden Activation	Bipolar Sigmoid	Dinuñio Jelodia	Diplot of anota	Hidden Activation	pipular orginoid	Dinatar Clampia	Bipolar Sigmoid	Bipolar Sigmoid	Hidden Activation	(Bipolor Sigmold, Sigmold, Tanh)	IDinalas Diamold
Diningio 1	Simold	Sigmoid	-	Sigmoid	Sigmoid	Sigmoid	Out	piomilie	Classical	Sigmoid	-	Output Activation	promibic	Cining a	Simold	Sigmoid	-	Sigmoid	Sigmoid	Sigmoid	Out	Sigmoid	Sigmoid	Sigmoid	Output Activation	Diotific	Clamold	Diomoio	Output Activation	Sigmoid	Diolubic	oignitic	Output Activation	origino	Cirmold	Sigmoid	Sigmold	Output Activation	(Bipolor Sigmold, Sigmold, Tanh)	IDinolos Ciamold
0,0	0.0	0.9		0.9	0.9	0.9	Mor	0.9	00	0.9		Momentum	0.3	0.0	00	0.9	1	0.9	0.9	0.9	Mor	0.9	0.9	0.9	Mor	0.0	0.0	0.0	Mor	0.9	0.0	0.0	Momentum	4.9	0.0			Momentum	(0.9, 0.7, 0.9, 0.3, 0.1)	20 20 202
0.00	80.0	0.08	I asming Data	0.1	0.1	0,1	Learning Rate	0.1	24	0.1	0.1	Learning Rate	0.00	0.00	80.0	0.08	I parning Data	0.08	0.08	0,08	Learning Rate	0.1	0.1	0,1	Learning Rate	0.0	0.0	0,0	Learning Rate	0.1	V. 1	0.1	Learning Rate	4414	80.0	0.08		Learning Rate	{0.08, 0.1, 0.5}	
Г	Т	10000		10000	10000	10000	Epoch	00001	40000	10000	10000		10	Е		10000		10			Epoch	10000	00001	10000	Epoch	- 11	н.		Epoch	00001	10000	10000	Epoch		10000	10000	10000	Epoch	(Min 1000) Max 10000)	
0.0101	0 2457	0.2616	Validation	0.3271	0.3517	0.3025	Validation	0.4813	0 0079	0.2939	0.3007	Validation	0.344	0.001	0.3574	0.2866	Validation	0.3395	0.3261	0.3529	Validation	0.2873	0.2858	0.2888	Validation	0.000	0000	0.0000	Validation	0.2879	0.5010	0.2000	Validation		RARC D	0.2865	0.2871	Validation	(Stop Epoch)	
0.0100	0.0100	0.0100	DMSE Value	0.01	0.0100	0.0100	RMSE Value	0.07	0.04	0.0100	0.0100	RMSE Value	0.01	001010	0.0100	0.0100	DMCE Value	0.01			RMSE Value	0.01	00100	0.0100	RMSE Value	0.01100	0.01705	7270.0	RMSE Value	0.0102	0.0100	0.0183	RMSE Value		0.01735	0.0178	0.0169	RMSE Value	{0.01}	

HIDDEN-MOMENTUM-LR-7


(Network)	{110}		(3,5,7,9)	{3,5,7,9}	(Bipolor Sigmoid, Sigmoid, Tanh)	(Bipolor Sigmold, Sigmold, Tanh)	{0.9, 0.7, 0.5, 0.3, 0.1}	{0.08, 0.1, 0.5}	(Min 1000) Max 10000)	{Stop Epoch}	{0.01}
ModelD	Taet Number	Tast Number	Window lag Hide	Hidden Nodes	Hidden Activation	Output Activation	Momentum	Learning Rate	Epoch	Validation	RMSE Value
1044	10011011001		En uppunt		Rinolar Sigmoid	Sigmold	0.9	0.08	10000	0.2618	0.0100
1044	0	-	2		Binolar Sigmoid	Siamoid	0.9	0.08	10000	0.1716	0.0100
			,		Diata Clanald	Clemold	00	0.08	40000	0 2467	0.01
1944	2	-	-	2	pipoiar sigmoid	orgrinora	0.9	0.00			
411		The state of the s	-	Total Medica	And and a stand of	Cutant Anthonian	Manandum	I anning Data	Enoch	Validation	RMSF Value
NodelU	1 est Number		Window rag		Dialas Survid	Cutput Activation		Pagining Nate	10000	0.2687	0.0100
55RL		-	-	2	Bipolar Sigmoid	Diompic	8.0	1.0	10000	0.0001	0,0100
1944		-	1	3	Bipolar Sigmoid	Sigmoid	0.9	1.0	nnnnt	0.3061	00100
1944	2	1	2	3	Bipolar Sigmold	Sigmold	0.9	0.1	10000	0.2837	0.01
NodelD	Test Number	Test Number	Window lad	Hidden Nodes	Hidden Activation	Output Activation	Momentum	Learning Rate	Epoch	Validation	RMSE Value
1044	1	1	6		Rinolar Simoid	Sinnoid	0.9	0.5	10000	0.2682	0.0100
1944		-	4		Rinolar Simold	Simoid	60	0.5	10000	0.1762	0.0100
1944	2	1	2	5	Bipolar Sigmoid	Sigmold	0.9	0.5	10000	0.2222	0.01
NodelD	Test Number Test Number		Window lag	Hidden Nodes	Hidden Activation	Output Activation	Momentum	Learning Rate	Epoch	Validation	RMSE Value
4	2				Bipolar Sigmold	Sigmoid	0.9	0.1	10000	0.3625	0.0100
1944		1	2	5	Bipolar Sigmoid	Sigmoid	0.9	0.1	10000	0.2327	0.0100
1944	2	1	2	20	Bipolar Sigmoid	Sigmoid	0.9	0.1	10000	0.2976	0.01
NodelD	Test Number Test Number	Test Number	Window lag	Hidden Nodes	Hidden Activation	Output Activation	Momentum	Learning Rate	Epoch	Validation	RMSE Value
1944		1			Bipolar Sigmoid	Siamoid	0.9	0.08	10000	0.2107	0.0100
1944	11	1	2	5	Bipolar Sigmoid	Sigmoid	0.9	0.08	10000	0.2623	0.0100
1944	2	1	7	5	Bipolar Sigmoid	Sigmold	0.9	0.08	10000	0.2365	0.01
ALL-LIN	To the second se	The first second second	The summer of the	Linkely webbit	and the And the Martin	Outer Anthrophysics	Manadation	according Data	Enach	Validation	DMCE Valua
nian	JACILINN 1981	JACILINN 1SAI			LIDDAL ACTIVATION	Output Activation	IIIniualiiow	DIDU RUIUBAT	10000	Adiudina	00100
1944	21	-		-	Bipolar Sigmoid	Sigmoid	8.0	0.08	00001	0.3130	001000
1844		-	_	_	Bipolar Sigmoid	Sigmold	R'0	0.08	nnnn	0.415	00100
1944	2	1	2	2	Bipolar Sigmoid	Sigmoid	0.9	0.08	10000	0.2775	0.01
delD		Test Number Test Number	Window lad	Hidden Nodes	Hidden Activation	Output Activation	Momentum	Learning Rate	Epoch	Validation	RMSE Value
1944		-	2		Bipolar Sigmoid	Siamoid	0.9	0.1	10000	0.3421	0.0100
1944	15	1	2	2	Bipolar Sigmoid	Sigmold	0.9	0.1	10000	0.3417	0.0100
1944	2	1	7	7	Bipolar Sigmold	Sigmoid	0.9	0.1	10000	0.3419	0.01
4.1.1		11					Manufacture 1	I anticipate Date	Bunk	- Well-Bard	I BREEVILIN
delu	I est Number	lest number window lag	WINDOW ING	HIDDEN NODES	HIDDEN ACTIVATION	Output Activation	Momentum	Learning Kate	Epocu	Validation	KMOC Value
1944		-	2	6	Bipolar Sigmoid	Sigmoid	0.9	0.1	10000	0.3616	0.0100
1944		-	2	8	Bipolar Sigmoid	Sigmold	6.0	0.1	10000	0.3864	0.0100
1944	2	4	7	6	Bipolar Sigmoid	Sigmoid	0.9	0.1	10000	0.374	0.01
delD	Test Number	Test Number	Window lag	Hidden Nodes	Hidden Activation	Outp	Momentum	Learning Rate	Epoch	Validation	RMSE Value
1944	18	1	2	6	Bipolar Sigmoid	Sigmoid	0.9	0.08	10000	0.2674	0.0100
1944	19	1	2	6	Bipolar Sigmoid	Sigmoid	0.9	0.08	10000	0.3065	0.0100

-	
8	
63	
-	
~	
-	
-	
-	
-	
-	
<u>14</u>	
- 22	
-	
- 2	
-9	
-	

HIDDEN-MOMENTUM-LR-

					/Rinolor Sigmoid	(Bindlor Sigmold.	109 07 05		/Min 1000		
(Network)	(110)		{3,5,7,9}	{3,5,7,9}	Sigmoid, Tanh)	Sigmoid, Tanh)	0.3, 0.1)	{0.08, 0.1, 0.5}	Max 10000	{Stop Epoch}	{0.01}
NodelD	Test Number	Test Number	Window lag	Hidden Nodes	Hidden Activation	Output Activation	Momentum	Learning Rate	Epoch	Validation	RMSE Value
1044		+	0	0	Rinolar Simoid		0.9	0.08	10000	0.4208	0.0100
10AA		-			Rinolar Sigmoid	Sigmoid	0.9	0.08	10000	0.3540	0.0100
the	-							0.00	40000	0 9074	0.04
1944	2	-	6	3	Bipolar Sigmold	Sigmoid	0.9	0.00	00001	0.30/4	0.01
			-				Manual Manua	I nambes Bake	Each	Validation 1	DMSE Value
NodelD	Test Number	Test Number	N lag	Hidden Nodes	Hidden Activation	dino	Momentum	Learning Kate	Epocu	Validettori	CINCLE VAIL
1944		-	6	9	Bipolar Sigmoid	Sigmold	0.9	0.1	10000	0.3600	0.0100
1944		1	6	3	Bipolar Sigmoid	Sigmoid	0.9	0.1	10000	0.5163	0.0100
1944	2	1	6	5	Bipolar Sigmoid	Sigmoid	0.9	0.1	10000	0.43815	0.01
Alabell	Track Munchese	Tank Mumber	Mindau las	Hidden Medae	Uldalan Ashinglan	Automat Antibudian	Monantum	I anning Bata	Enorh	Validation	DMSE Value
nian	I GST NUTIOUT	IACUINA ISAI	Bei MODUIA	Sabon Lianniu	Dialas Auranoid	Culput Activation	unnum ou	DION RITILIDAT	10000	0 AORE	0.0100
++0+		-	70 00	20	bipolar Sigmold	Diomoto	0.0	0.0	10000	0.4044	0.0100
4401		-	70 0	2	Bipolar Sigmoid	Sigmold	8.0	0.0	10000	1754.0	0010:0
1944	7	-	20	2	Bipolar Sigmoid	Sigmoid	0.9	0.0	10000	0.4300	10.0
NodelD	Test Number	Test Number	Window lad	Hidden Nodes	Hidden Activation	Output Activation	Momentum	Learning Rate	Epoch	Validation	RMSE Value
1944	7	-	0		Bipolar Sigmoid		0.9	0.1	10000	0.5220	0.0100
1944		-	6	5	Bipolar Sigmoid	Sigmoid	0.9	0.1	10000	0.5186	0.0100
1944	2	1	6	5	Bipolar Sigmoid	Sigmoid	0.9	0.1	10000	0.5203	0.01
delD	Test Number	Test Number	Window lag	Hidden Nodes	Hidden Activation	Output Activation	Momentum	Learning Rate	Epoch	Validation	RMSE Value
1944	10	1	8		Bipolar Sigmoid	-	0.9	0.08	10000	0.4703	0.0100
1944		1	6	5	Bipolar Sigmoid	Sigmoid	0.9	0.08	10000	0.4763	0.0100
1944	2	1	6	3	Bipolar Sigmoid	Sigmold	0.9	0.08	10000	0.4733	0.01
NodelD	Test Number	Test Number	Window lad	Hidden Nodes	Hidden Activation	Output Activation	Momentum	Learning Rate	Epoch	Validation	RMSE Value
1944	12	1	0	11	Rinolar Sinmoid	Simold	0.0	0.08	10000	0.4756	0.0100
1944				4	Rinolar Sigmoid	Simold	0.0	0.08	10000	0.4987	0.0100
1944	2	1	6	2	Bipolar Sigmoid	Sigmoid	0.9	0.08	10000	0.48715	0.01
NodelD	Test Number	Test Number	Window lag	Hidden Nodes	Hidden Activation	Output Activation	Momentum	Learning Rate	Epoch	Validation	RMSE Value
1944		1	6	7	Bipolar Sigmoid	Sigmoid	0,9	0.1	10000	0.3862	0.0100
1944	15	1	0	7	Bipolar Sigmoid	Sigmoid	0.9	0.1	10000	0.3931	0.0100
1944	2	1	0	7	Bipolar Sigmold	Sigmold	0.9	0.1	10000	0.38965	0.01
NodelD	Test Number	Test Number	Window lad	Hidden Nodes	Hidden Activation	Outbuit Activation	Momentum	Learning Rate	Froch	Validation	RMSE Value
1944		1	_		Rindar Simoid	+	0.0	0.1	10000	0.3830	0.0100
1944		-	0	6	Bipolar Sigmoid	Sigmoid	60	0.1	10000	0.4707	0.0100
1944		4	6	6	Bipolar Sigmold	Sigmold	0.9	0.1	10000	0.42685	0.01
NodelD	Test Number	Test Number Window lag	Window lag	Hidden Nodes	Hidden Activation	Output Activation	Momentum	Learning Rate	Epoch	Validation	RMSE Value
1944	18	1	6		Bipolar Slamoid			0.08	10000	0.4930	0.0100
1944	19		0	6	Bipolar Sigmoid	Sigmoid	0.9	0.08	10000	0.4748	0.0100

Struc	ture
Lag	7
Epoch	10000
Momentum	0.9
Learning Rate	0.08
Hidden	9
Hidden Activation	Bipolar sigmoid
Output Activation	Sigmoid

£11
Σ
ā i
-81
21
20
5
-19
-52
2

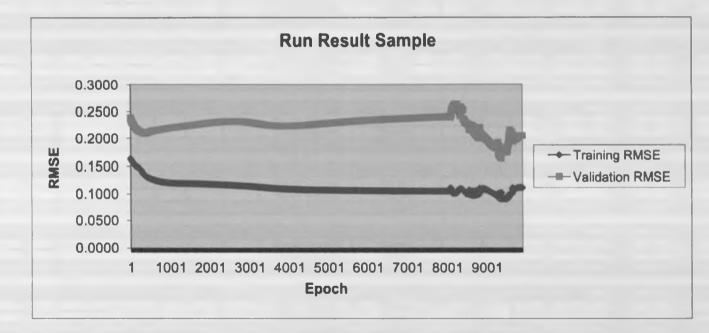
4944	1944	NodelD 1944	1911	40.42	1944	1944	NodelD	1944	1044	1944	NodelD	1944	treed 1	1044	NodelD	1944	4461	1994	NodelD	1944	1944	1944	NodelD	1944	1944	1944	NodelD	1944	1944	1944	NodelD	1944	1944	1944	NodelD	(Network)	NodelD
I	19	mber		3	17		Test	P-3	15	14	Test Number	2	10	21	mber	2	11	10	mber	2	01	8	umber	2		1 01	Imber	2	4	3	Test Number	2	2	1	Test Number Test Number	(01-1)	Test Number
	-	Test Number		-	-	1	Test Number	-		1	Test Number	1	-		Test Number	-	-		Test Number	1	-	-	Test Number	1	-	1	Test Number	1	1	1	Test Number	1	1	1	Test Number		Test Number
4	3	Window lag		-	3	3	Window lag	64	ы	٤	Window lag	4		and	Window lag	3	3	200	Window lag	2		2 64	w lag	3	4	6	Window lag	3	3	3	Window lag	3	3	3	Window lag	(3,5,7,9)	Window lau
	9	Hidden Nodes		~	9	9	Hidden Nodes	7	7	7	Hidden Nodes	1	-	4	Hidden Nodes	5	0		Window lag Hidden Nodes	5	0		Hidden Nodes	3		3	Hidden Nodes	3	ω		Hidden Nodes	3	ω	3	Hidden Nodes	{3,5,7,9}	Test Number Test Number Window lag Hidden Nodes
Dinolar Giomald	Bipolar Slamold	Hidden Activation Bipolar Sigmoid	Bipolar Signiolo	Binolar Clamold	Bipolar Sigmoid	Bipolar Sigmold	Hidden Activation	Stooler Stamold	Bipola; Sigmold	Bipolar Sigmoid	Hidden Activation	Bipolar Sigmoid	piombic Jaiodia	Dional Signal	Hidden Activation	Bipolar Sigmoid	bipolar sigmoid	bipolar Siginoid	Hidden Activation	Bipolar Sigmoid	Bipolar Sigmold	Bipolar Sigmoid	Hidden Activation	Bipolar Sigmoid	Bipolar Sigmoid	Bipolar Sigmold	Hidden Nodes Hidden Activation	Bipolar Sigmoid	Bipolar Sigmoid	Bipolar Sigmoid	Hidden Activation	Bipolar Sigmold	Bipolar Sigmoid	Bipolar Sigmoid	Hidden Activation		
	Sigmoid	Output Activation	Dinific	Clamold	Sigmoid	Sigmold	Output Activation	Lamold	Sigmoid	-	Output Activation	Sigmoid	Diotubic	DIDILIBIC	Output Activation	Sigmold	Sigmoid	Dioudic	Out	Stamold	Dioubic	Sigmoid	Outp	Sigmoid	Sigmoid	Sigmoid	Out	Sigmoid			Out	Sigmold	Sigmold	Sigmold	Out	(Bipola: Sigmoid, Sigmoid, Tanh)	Hidden Activation Output Activation
2 1 1	0.9	Mor		0.0	0.9	0,9	Momentum		5.0		Momentum	0,9			Mor	0.9	0,9	0.9	Momentum	0.9	0.9	6.0	Momentum	0.9	6.0	0.9	Momentum	0.9	0.9	0,9	Momentum	0.9	0.9	0.9	Momentum	(0.8, 0.7, 0.5, 0.3, 0.1)	Momentum
-	0.08	Learning Rate 0.08	1.6	24	0.1	1 0,1	Learning Rate	 2	0,1	0.1	Learning Rate	0.08	0.00	0.00	Learning Rate	0.08	1 0.08	0.00	Learning Rate	0.1	0.1	0,1	Learning Rate	0,2	0,5	0,5	Learning Rate	0,1	0.1	0,1	Learning Rate	0.08	0.00	0.08	Learning Rate	{0.08, 0.1, 0.5}	Learning Rate
10000	10000	10000	TUNIN	400000	10000	10000	Epoch	10000	10000	10000	Epoch	0000	Γ	Т	Epoch	10000	10000	10000	Epoch	00001	nnnt	UUUU	Epoch	00001	00001	10000	Epoch	00001	10000	00001	Epoch	10000	UUUUT	00001	Epoch	(Min 1000 Max 10000)	1
	0.1818	0.1640	0.10-00	1 4278A	0.1969	0,1708	Validation	0.210 54	0.2167	0.2044	Validation	0, 2010	0,1800	0.6030	Validation	0.22615	0.6310	0.2240	Validation	0,2224	0.4340	0.212.0	Validation	0.4930	0.200	0.2535	Validation	0.24715	0.2471	0.2472	Validation	0.23985	7447.U	0.2301	Validation	(Stop Epoch)	Validation
0000	0.0936	0.0904	endant's	Ì		0.0602	2		C 990 0	0.0875	RMSE Value	0.0969	106010	1 V.Var 1	RMSE Value	0.12315	0,1221	0.1600	RMSE Value	DARK N	0.1340	0.1204	RMSEV	0.110	0.1900	0,1955	RMSE Value	0.1573	0.1573	0.15/3	RMSE Value	0,16005	0,1000	0,1030	RMSE Value	(0.01)	Validation RMBE Value

4	6	
1	5	
	٣	
	⊭	
	5	
	5	
	ñ	
	5	
	×	
	õ	
	Ź	

HIDDEN-MUMERI UMPLINY

A Distance of the local distance of the loca											
(Network)	(Network) {110} {3.5,7,9} {		{3,5,7,9}	{3,5,7,9}	{Bipolor Sigmold, Sigmold, Tanh}	(Bipolor Sigmoid, Sigmoid, Tanh)	{0.9, 0.7, 0.5, 0.3, 0.1}	{0.08, 0.1, 0.5}	(Min 1000) Max 10000)	{Stop Epoch}	(0.01)
Madall	Toot Mumber	Tast Mumber	Window lan	Hidden Modee	Hiddan Activation	Outhout Activation	Momontum	I earning Rate	Footh	Validation	RMSE Value
TOAA	_	IDOILINN TOOL	Reimonilia	3	Rinolar Sigmoid	Sigmold	0.9	80.0	10000	0.2805	0.0977
1944	0	-	20	00	Bipolar Sigmoid	Siamold	0.9	0.08	10000	0.2805	0.0977
1944		1	5	2	Bipolar Sigmoid	Sigmold	0.9	0.08	10000	0.2805	0.0977
NodelD	Test Number	Test Number	Window lag	Hidden Nodes	Hidden Activation	Output Activation	Momentum	Learning Rate	Epoch	Validation	RMSE Value
1944		-	5		Bipolar Sigmoid	Sigmoid	0.9	0.1	10000	0.2807	0.0984
1944		-	5	6	Bipolar Sigmoid	Sigmold	0.9	0.1	10000	0.2807	0.0984
1944	2	-	2	9	Bipolar Sigmold	Sigmold	0.9	0.1	10000	0.2807	0.0984
NodelD	Test Number	Test Number	Window lad	Hidden Nodes	Hidden Activation	Output Activation	Momentum	Learning Rate	Epoch	Validation	RMSE Value
1044			3	C	Rinder Simoid	Simoid	00	0.6	10000	13277	0.3069
1944		-	0 40	000	Binolar Sigmoid	Sigmoid	0.9	0.5	10000	0.4031	0.2204
1944	2	1	2	6	Bipolar Sigmoid	Sigmold	0.9	0.5	10000	0.3654	0.26365
NodelD	Test Number	Test Number	Window lag	Hidden Nodes	Hidden Activation	Output Activation	Momentum	Learning Rate	Epoch	Validation	RMSE Value
1944		1	5		Bipolar Sigmoid	Sigmoid	0.9	0.1	10000	0.3677	0.0726
1944	8	1	5	5	Bipolar Sigmoid	Sigmoid	0.9	0.1	10000	0.2723	0.0770
1944			5		Bipolar Sigmold	Sigmold	0.9	0.1	10000	0.32	0.0748
NodelD	Test Number	Test Number	Window lag	Hidden Nodes	Hidden Activation	Output Activation	Momentum	Learning Rate	Epoch	Validation	RMSE Value
1944		1	5	5	Bipolar Sigmoid	Sigmoid	0.9	0.08	10000	0.3190	0.0550
1944		1	5	5	Bipolar Sigmoid	Sigmoid	0.9	0.08	10000	0.3389	0.0419
1944	2	4	5	5	Bipolar Sigmoid	Sigmoid	0.9	0.08	10000	0.32895	0.04845
NodelD	Test Number	Test Number	Window lag	Hidden Nodes	Hidden Activation	Output Activation	Momentum	Learning Rate	Epoch	Validation	RMSE Value
1944		1	5	7	Bipolar Sigmoid	Sigmoid	0.9		10000	0.3208	0.0101
1944	13	1	2	7	Bipolar Sigmoid	Sigmoid	0.9	0.08	10000	0.3843	0.0164
1944	2	1	CN.	7	Bipolar Sigmold	Sigmoid	0.9	0.08	10000	0.35255	0.01325
NodelD	Tast Number	Taet Number	Window law	Hidden Nodes	Hidden Activation	Outnut Activation	Momentum	Laarning Rate	Froch	Validation	RMSF Value
1944		1	2		Bipolar Sigmoid		0.9	0.1	10000	0.3311	0.0270
1944	15	1	2	7	Bipolar Sigmoid	Sigmoid	0.9	0.1	10000	0.3758	0.0110
1944		1	5	7	Bipolar Sigmoid	Sigmold	0.9	0.1	10000	0.35345	0.019
NodelD	Taet Number	Taet Mumhar	Window las	Hidden Modae	Hidden Antivation	Outbuit Activation	Momentum	I earning Rate	Fnoch	Validation	RMSF Value
1044		1001110111001	Rei Moniliaa		Rinder Simoid	+	0.0	FO FO	10000	0.2021	0.0100
1944		-		. 0	Bipolar Sigmoid	Sigmoid	0.9	0.1	10000	0.2984	0.0100
1944		1	2	6	Bipolar Sigmold	Sigmoid	0.9	0.1	10000	0.29525	0.01
NodelD	Test Number	Test Number	Window lag	Hidden Nodes	Hidden Activation	Output Activation	Momentum	Learning Rate	Epoch	Validation	RMSE Value
12	18	1	5		Bipolar Sigmoid	_	0.9	0.08	10000	0.2700	0.0100
1944	19 19	1	5		Bipolar Sigmoid	Sigmoid	0.9	0.08	10000	0.3099	0.0100
PEOP											

1	í	Ī		
1	i	İ		
	Ì	2		
		Į		


HDORWWOMENIA

1944	1944	1944		1944	1944	1944	NodelD		1944	1944	1944	NodelD	1941		044	1944	NodalD	1944	1844	1844	NodelD	1944	1000	1944	NodelD	1944	1844	1944	NodelD	1944	1944	1844	NodelD	1944	1944	1944	NodelD	(Network)	MadelD
9	19	18 18	Territoria	2	17	16	Test Number		2	15	14	Test Number	2	10	12	12	Tost Mumbar	**	11	10	Test Number	2	0	-	Test Number	*		101	Test Number	2	4	3	Test Number	2	2		Test Number	(110)	Test Number
	1	1 and Million		1	1	1	Test Number		-	1	1	Test Number	1		-	Inditinet test	Test Number	1	1	1	Test Number	1	-	-	Test Number	-	-	1	Test Number	-	1	1	Test Number	1	1	1	Test Number		Lost Number
4	7	7 Trindow lag	Window Inc.	T	1 7	7	Window lag		1	7		Window lag	1		4	Ret ACCOUNTS	Window lan	1	1	7	Window lag	1		4	Window lag	1	-	7	Window lag	1	7	7	Window lag	7	7	7	Window lag	(3,5,7,9)	Dei ACOULA I
	9	6 6	Uldan Noda	9	8	9	Hidden Nodes		7	7	1	Hidden Nodes	1		4	Thurst muss	Hidden Nodes	5	0	0	Window lag Hidden Nodes	0	0	nu	Hidden Nodes				Hidden Nodes	3	3	w	Hidden Nodes	3			Hidden Nodes	(3,5,7,9)	UNDER UNDER
Disolar Classold	Bipolar Sigmold	Bipolar Sigmold	Linkson Antionelland	Epolar Sigmoid	Bipolar Sigmoid	Bipolar Sigmoid	Hidden Activation	animation animation	Bipolar Sigmold	Bipolar Sigmoid	Bipolar Sigmoid	Hidden Activation	Bipolar sigmoid	and an	Rinolar Simmold	Bibolar Sigmoid	Hidden Activation	Bipolar Sigmoid	Bipolar Sigmoid	Bipolar Sigmoid	Hidden Activation	Bibolar Sigmoid	piningio pining	Bipolar Sigmold	Hidden Activation	sipolar sigmold	Bipolar Sigmold	Bipolar Sigmoid	Hidden Activation	Blooker Sigmold	Bipolar Sigmoid	Bipolar Sigmoid	Hidden Activation	Bipolar Sigmold	Bipolar Sigmold	Bipolar Sigmoid	Hidden Activation	(Bipolar Sigmold, Sigmold, Tanh)	LINGS IN THE LINES IN THE PARTY IN
Closed	Sigmoid	Sigmoid		blomold	Sigmoid	Sigmoid	Output Activation	anani Bra	Slamold	Sigmoid	_	Output Activation	pround is		Cinmoid	Sigmoid	Output Activation	Sigmoid	Sigmoid	Sigmoid	Out	Sigmoid	Contract	Sigmold	Output Activation	piompic	Sigmoid	Sigmoid	Out	Sigmold	Sigmold	Sigmoid	Output Activation	Sigmoid		Sigmold	Output Activation	(Bipolor Sigmoid, Sigmoid, Tanh)	MODEL 1981 NUMBER 1981 NUMBER 1 MANUAL TRANSPORT TRANSPORT TO TRANSPORT
	0.9	MOR		0.9	0.9	0.9	Momentum	110	0.0	6,0	0.9	Momentum	9.9	2.0	0.0	0.9	Momentum	0.9	0.9	0.9	Momentum	6.0	0.0	0.9	Momentum	6.0	0.9	0.9	Momentum	0.9	0.9	0.9	Momentum	0.9	6'0	0.9	Momentum	(0.9, 0.7, 0.5, 0.3, 0.1)	
0.02	1 0.08	0.08	Translaw Bass	0.1	0,1	0,1	Learning Rate	212	10	0.1		Learning Rate	0.08	00.00		0.08		0.08	R0*0	0.08	Learning Rate	0,1		0.1	Learning Rate	0.0	0,5	0.5	Learning Rate	0.1	0.1	0,1	Learning Rate	0.08	0.08	0.08	Learning Rate	(0.08, 0.1, 0.5)	A DESCRIPTION OF A DESC
ADVIUT		10000	L	10000	00001	10000	Epoch	12222	10000	10000	10000	Epoch	0000	10000	10000	10000	Enonh	0000			Eboch	0000	10000	10001	Epoch		UUUUT	1	Epoch	00001	00001	10000	Epoch	10000	Ł		Epoch	(Min 1000) Max 10000)	1 A M W
NATAG: U	0.2021	0.2062	- United the	0,18805	0.1763	0,1998	Validation	1000	0.2575	0.2100	0.2258	Validation	2102.0	0 000	0 050	0.2074	Validation	0.2183	6222.0	0.2137	Validation	9.2014	0.1011	0.6331	Validation	0.3/30	0.3868	0.3642	Validation	0.2226	1 0.2151	0.2301	Validation	0.20200	0.2143	0.2508	Validation	(Stop Epoch)	· · · · · · · · · · · · · · · · · · ·
10.04	0.0100	3	1.	0.01	F	0.0100	R		0.07	0.0100	0.0100	RMSE Value	10.0		0.0100	0.0100	RMSE Value	0.0113	00100	0.0126	RMSE Value	801010	01110	0.0100	RMSE Value	0.3900	F	t	R	10000	0.0537	0.0597	RMSE Value	0.0014	0.0538	0.0690	RMSE Value	(0.01)	T TOTAL T MANAGE

lode Resul	1765				HIDDENA	KOMENTUM HERE				-	-
NodelD	Test Number	Test Number	Window lag	Hidden Nodes	Hidden Activation		Momentum	Learning Rate	Epoch	Validation	RMSE Value
(Network)	{110}		{3,5,7,9}	{3,5,7,9}	{Bipolor Sigmoid, Sigmoid, Tanh}	(Bipolor Sigmoid, Sigmoid, Tanh)	{0.9, 0.7, 0.5, 0.3, 0.1}	{0.08, 0.1, 0.5}	{Min 1000 Max 10000}	(Stop Epoch)	(0.01)
NodelD	Test Number	Test Number	Window lag	Hidden Nodes	Hidden Activation	Output Activation	Momentum	Learning Rate	Epoch	Validation	RMSE Value
1944	1	1	9	3	Bipolar Sigmoid	Sigmoid	0.9	0.08	10000	0.2083	0.0341
1944	2	1	9	3	Bipolar Sigmoid	Sigmoid	0.9	0.08	10000	0.1764	0.0493
1944	2	1	9	3	Bipolar Sigmoid	Sigmoid	0.9	0.08	10000	0.19235	0.0417
NodelD	Test Number	Test Number	Window lag	Hidden Nodes	Hidden Activation	Output Activation	Momentum	Learning Rate	Epoch	Validation	RMSE Valu
1944	3	1	9	3	Bipolar Sigmoid	Sigmoid	0.9	0.1	10000	0.2036	0.0380
1944	4	1	9	3	Bipolar Sigmoid	Sigmoid	0.9	0.1	10000	0.2562	0.0351
1944	2	1	9	3	Bipolar Sigmoid	Sigmoid	0.9	0.1	10000	0.2299	0.03655
NodelD	Test Number	Test Number	Window lag	Hidden Nodes	Hidden Activation	Output Activation	Momentum	Learning Rate	Epoch	Validation	RMSE Valu
1944	5	1	9	3	Bipolar Sigmoid	Sigmoid	0.9	0.5	10000	0.3360	0.3523
1944	6	1	9	3	Bipolar Sigmoid	Sigmoid	0.9	0.5	10000	0.1321	0.0700
1944	2	1	9	3	Bipolar Sigmold	Sigmoid	0.9	0.5	10000	0.23405	0.21115
IodelD	Test Number	Test Number	Window lag	Hidden Nodes	Hidden Activation	Output Activation	Momentum	Learning Rate	Epoch	Validation	RMSE Val
1944	7	1	9	5	Bipolar Sigmoid	Sigmoid	0.9	0.1	10000	0.2319	0.0100
1944	8	1	9	5	Bipolar Sigmoid	Sigmoid	0.9	0.1	10000	0.2476	0.0100
1944	2	1	9	5	Bipolar Sigmoid	Sigmoid	0.9	0.1	10000	0.23975	0.01
lodeID	Test Number	Test Number	Window lag	Hidden Nodes	Hidden Activation	Output Activation	Momentum	Learning Rate	Epoch	Validation	RMSE Val
1944	10	1	9	5	Bipolar Sigmoid	Sigmoid	0.9	0.08	10000	0.1754	0.0100
1944	11	1	9	5	Bipolar Sigmoid	Sigmoid	0.9	0.08	10000	0.2418	0.0100
1944	2	1	9	5	Bipolar Sigmoid	Sigmold	0.9	0.08	10000	0.2086	0.01
						- ginena					
NodelD	Test Number	Test Number	Window lag	Hidden Nodes	Hidden Activation	Output Activation	Momentum	Learning Rate	Epoch	Validation	RMSE Val
1944	12	1	9	7	Bipolar Sigmoid	Sigmoid	0.9	0.08	10000	0.1976	0.0100
1944	13	1	9	7	Bipolar Sigmoid	Sigmoid	0.9	0.08	10000	0.1604	0.0100
1944	2	1	9	7	Bipolar Sigmoid	Sigmoid	0.9	0.08	10000	0.179	0.01
NodelD	Test Number	Test Number	Window lag	Hidden Nodes	Hidden Activation	Output Activation	Momentum	Learning Rate	Epoch	Validation	RMSE Valu
1944	14	1	9	7	Bipolar Sigmoid	Sigmoid	0.9	0.1	10000	0.2009	0.0100
1944	15	1	9	7	Bipolar Sigmoid	Sigmoid	0.9	0.1	10000	0.0787	0.0100
1944	2	1	9	7	Bipolar Sigmold	Sigmold	0.9	0.1	10000	0.1398	0.01
NodelD	Test Number	Test Number	Window lag	Hidden Nodes	Hidden Activation	Output Activation	Momentum	Learning Rate	Epoch	Validation	RMSE Valu
1944		1	9	9	Bipolar Sigmoid	Sigmoid	0.9	0.1	10000	0.1160	0.0100
1944		1	9	9	Bipolar Sigmoid	Sigmoid	0.9	0.1	10000	0.1228	0.0100
1944	2	1	9	9	Bipolar Sigmold	Sigmold	0.9	0.1	10000	0.1194	0.01
NodelD	Test Number	Test Number	Window Inc	Hidden Nodes	Hidden Activation	Output Activation	Momentum	Learning Rate	Epoch	Validation	RMSE Valu
1944		1	9	9	Bipolar Sigmoid	Sigmoid	0.9	0.08	10000	0.1747	0.0100
1944		1 1	9	9	Bipolar Sigmoid	Sigmoid	0.9	0.08	10000	0.1571	0.0100
					- point orginions	angino a	W1W	0.00	10000		0.0100

Sample Run Results

Struc	ture
Lag	3
Epoch	10000
Momentum	0.9
Learning Rate	0.1
Hidden	7
Hidden Activation	Bipolar sigmoid
Output Activation	Sigmoid

(Network) (110)	(Network) {110} {3.5.7.9}	{3,5,7,9}	{3,5,7,9}	(Bipolor Sigmoid, Sigmoid, Tanh)	{Bipolor Sigmoid, Sigmoid, Tanh}	{0.9, 0.7, 0.5, 0.3, 0.1}	{0.08, 0.1, 0.5}	(Min 1000 Max 10000)	{Stop Epoch} (0.01}	(0.01)
11						11				
NodelD Test Number	nber Test Number	Window lag	HIDDEN NODES	Rindlar Simoid	Sigmold	mm	Learning Kate	10000	0.1920	0.1570
	-	000	000	Bipolar Sigmoid	Siamoid	0.0	0.08	10000	0.1920	0.1570
1944 2	-	3	3	Bipolar Sigmoid	Sigmold	0.9	0.08	10000	0.192	0.157
NodelD Test Num	Test Number Test Number	Window lag	Hidden Nodes	Hidden Activation	Output Activation	Momentum	Learning Rate	Epoch	Validation	RMSE Value
4	1	3	9	Bipolar Sigmoid	Sigmoid	0.9	0.1	10000	0.1910	0.1570
1944 4	-	3	3	Bipolar Sigmoid	Sigmoid	0.9	0.1	10000	0.1910	0.1570
1944 2	1 1	3	5	Bipolar Sigmoid	Sigmold	0.0	0.1	10000	0.191	0.157
NodelD Test Number	Test Mumber	Window lan	Hidden Nodes	Hidden Activation	Dutnut Activation	Momentum	Learning Rate	Epoch	Validation	RMSE Value
4	1		-	Bipolar Sigmoid		0.9		10000	0.2630	0.1960
	-	0	9	Bipolar Sigmoid	Sigmoid	0.9	0.5	10000	0.2364	0.1956
1944 2	1	3		Bipolar Sigmold		0.9	0.5	10000	0.2497	0.1958
Medally Tand Mine	Test Number Test Number Window as	_	Hidden Modes	Hiddan Activation	Ditinit Activation	Momentum	Learning Rate	Fnoch	Validation	RMSE Value
4		-		Binolar Sigmoid	Sigmoid	0.9	0.1	10000	0.2439	0.1221
	-	000	2	Bipolar Sigmoid	Sigmoid	0.9	0.1	10000	0.2481	0.1159
1944 2		~	10	Bipolar Sigmoid	Sigmold	0.9	0.1	10000	0.246	0.119
11								1	11111111	Distor Veter
	Test Number Test Number	MING	HIDDEN NODES	HIDDEN ACTIVATION	Output Activation	Momentum	Learning Kate	40000	Validation	KMSE Value
1944 11		0 00	0 10	Bipolar Sigmoid	Sigmoid	6.0	0.08	10000	0.2189	0.1078
	1	8	5	Bipolar Sigmold	Sigmold	0.9	0.08	10000	0.20375	0.11185
NodelD Test Nun	Test Number Test Number Window lag	Window lag	Hidden Nodes	Hidden Activation	Output Activation	Momentum	Learning Rate	Epoch	Validation	RMSE Value
1944 12	+	3	7	Bipolar Sigmoid	Sigmoid	0.9	0.08	10000	0.2074	0.1032
4	1	3	7	Bipolar Sigmoid	Sigmoid	0.9	0.08	10000	0.2078	0.1033
1944 2	1 1	3	7	Bipolar Sigmold	Sigmold	0.9	0.08	10000	0.2076	0.10325
NodelD Test Nun	Test Number Test Number	Window lag	Hidden Nodes	Hidden Activation	Output Activation	Momentum	Learning Rate	Epoch	Validation	RMSE Value
14	-		7	Bipolar Sigmoid	Siamoid	0.9	0.1	10000	0.2539	0.1014
1944 15	-	0	7	Bipolar Sigmoid	Sigmoid	0.9	0.1	10000	0.2046	0.1109
1944 2	1 1	3	7	Bipolar Sigmoid	Sigmoid	0.9	0.1	10000	0.22925	0.10615
NodelD Test Nimber	nhar Teet Number	Window lan	Hiddan Modes	Middan Activation	Outnut Activation	Momentum	1 anning Bata	Enoch	Validation	RMSF Value
			0		Simold		1 0 1	10000	0.9774	0.0779
1944 17	-		0	Rinolar Sigmoid	Sigmoid	0.0	0.1	10000	0.2783	0.0772
	1	3	6		Sigmold		0.1	10000	0.2777	0.0772
NodelD Test Number	nber Test Number	Wind	Hidden Nodes	Hidden Activation	Output Activation	Momentum	Learning Rate	Epoch	Validation	RMSE Value
1944 18		~	6	Bipolar Sigmoid	Sigmoid	0.9	0.08	10000	0.2681	0.0808
41	-	6	6	Bipolar Sigmoid	Sigmoid	0.9	0.08	10000	0.1762	0.0874
4044 3										

{Network}											l
	(110)		{3,5,7,9}	(3,5,7,9)	(Bipolor Sigmoid, Sigmoid, Tanh)	{Bipolor Sigmoid, Sigmoid, Tanh}	{0.9, 0.7, 0.5, 0.3, 0.1}	{0.08, 0.1, 0.5}	(Min 1000) Max 10000}	{Stop Epoch}	{0.01}
distant.		Want Manufacture	The second second	Hiddan Madae	Uldan Ashudan	Outrus Activation	Manandan	I aarning Rata	Fronh	Validation	RMSF Value
NOGBID	I GRI NUMPER	IACUINA 1981	_	annu lianniti	Rinder Sinnoid	Simold	0.9	0.08	10000	0.2142	0.0977
1044		-	o u	0 0	Rinolar Sigmoid	Sigmoid	0.9	0.08	10000	0.2142	0.0977
4044	6		- ut		Bipolar Sigmold	Stamold	0.0	0.08	10000	0.2142	0.0977
1000	4	-		,	manific mode						
NodelD	Test Number	Test Number	Window lag	Hidden Nodes	Hidden Activation	Output Activation	Momentum	Learning Rate	Epoch	Validation	RMSE Value
1944	0	1	5			Sigmoid	0.9	0.1	10000	0.2152	0.0984
1944		+	5	3		Sigmoid	0.9	0.1	10000	0.2152	0.0984
1944	2	-	5	8		Sigmold	0.9	0.1	10000	0.2152	0.0984
NodelD	Test Number	Test Number	Window lag	Hidden Nodes	Hidden Activation	Output Activation	Momentum	Learning Rate	Epoch	Validation	RMSE Value
1944	5	1	_		Bipolar Sigmoid	Sigmoid	0.9	0.5	10000	0.2885	0.3326
1944	9	1	2	67	Bipolar Sigmoid	Sigmoid	0.9	0.5	10000	0.2988	0.2165
1944		1	5	3	Bipolar Sigmold	Sigmoid	0.9	0.5	10000	0.29365	0.27455
Madal	Tank Mumber	True Manhore	Mindaus last	Uldan Madar	Inddan Ashundan	Outout Activation	Momontum	I asriind Rate	Fnoch	Validation	RMSF Value
1944	1 954 NUTROOF	1 COL INUIDAL	-	21	Rinolar Simoid	Simold	0.9		10000	0.2678	0.0737
1944		-	5	010	Bipolar Sigmoid	Siamoid	0.9	0.1	10000	0.2168	0.0724
1944		1	0	5	Bipolar Sigmoid	Sigmoid	0.9	0.1	10000	0.2423	0.07305
NodelD	Test Number	Test Number	Window lag	Hidden Nodes	Hidden Activation	Output Activation	Momentum	Learning Rate	Epoch	Validation	RMSE Value
1944	10		2	o 4	Bipolar Sigmoid	Sigmoid	8.0	0.08	10000	0.2153	0.0603
1944			0	-	Bipolar Sigmoid	Siamold	0.9	0.08	10000	0.2169	0.0667
NodelD	Test Number	Test Number	Window lag	Hidden Nodes	Hidden Activation	Outp	Momentum	Learning Rate	Epoch	Validation	RMSE Value
1944	1 12	1	5	7	Bipolar Sigmoid	Sigmoid	0.9	0.08	10000	0.2455	0.0275
1944		1	5	7	Bipolar Sigmoid	Sigmoid	0.9	0.08	10000	0.2316	0.0272
1944	2	1	9	2	Bipolar Sigmoid	Sigmoid	0.9	0.08	10000	0.23855	0.02735
NodelD	Tast Number	Tact Number	Window lac	Hidden Nodes	Hiddan Artivitian	Outnut Artivation	Mornandian	I aarning Rate	Fnoch	Validation	RMSF Value
1944		1001110011	2	•	Binolar Sigmoid	+	0.9	0.1	10000	0.2500	0.0266
1944	15	-	2	7	Bipolar Sigmoid	Sigmoid	0.9	0.1	10000	0.2878	0.0250
1944	2	1	5	7	Bipolar Sigmoid	Sigmold	0.9	0.1	10000	0.2689	0.0258
Aladall	Tand Mundhan	True Manhan	Mindau Int	and	Litelan Astimuton	Cutimité Activation	Manandrian	I annulate Bata	Enach	Validation	DIRCE Value
1944	1601 INUINUI	IAMILIMAI 1001			Rinder Sinmoid	_		ATON RITTON	10000	0.2253	0.0100
1944	17	+	2	0	Bipolar Sigmoid	Siamoid	0.9	0.1	10000	0.2126	0.0100
1944		1	2	9	Bipolar Sigmold	Sigmoid	0.9	0.1	10000	0.21895	0.01
NodelD	Test Number	Test Number	Window lag	Hidden Nodes	Hidden Activation	Outnut Activation	Momentum	Learning Rate	Fronh	Validation	RMSF Value
1944	18	1	5		Bipolar Sigmoid		0.9	0.08	10000	0.1959	0.0100
1944	19	1	5	6	Bipolar Sigmoid	Sigmoid	0.9	0.08	10000	0.2770	0.0100
1944	2	1	5	6	Bipolar Sigmoid	Sigmoid	0.9	0.08	10000	0.23645	0.01

HIDDEN MOMENTUM-LN-D

Node Result 1944

(Network)	Test Number	NociaID Yest Number Test Number Window tag Hi (Network) (110) (3.5.7.9)	Window lag (3,5,7,9)	(3,5,7,9)		Hidden Activation Dutaut Activation (Bipolor Sigmoid, (Bipolor Sigmoid, Sigmoid, Tanh) Sigmoid, Tanh)	Momentum {0.9, 0.7, 0.5, 0.3, 0.1}	{0.08, 0.1, 0.5}	(Min 1000 Max 10000)	I Validation I (Stop Epoch)	(0.01)
1944 1944 1944	Test Number	Test Number	Window lag	Hidden Nodes 3	Hidden Activation Bipden Sigmoid Bipolar Sigmoid Bipolar Sigmoid	Output Activation Sigmoid Sigmoid Sigmoid	Momentum 0.9 0.9	Learning Rate 0.08 0.08	10000	Validebon 0.1215 0.1442 0.1442	8.05 0.05
1944 1944 1944 1944	Test Number Test 3 2 2		Window lag	Hidden Nodes	Hidden Activation Bipolar Sigmoid Bipolar Sigmoid	Output Activation Sigmoid Sigmoid	0.9 0.9 0.9	Learning V 0.1 0.1	10000 10000 10000	Validation 0.2017 0.1012 0.15145	CONSE Val 0.0643 0.0670 0.06565
NodelD 1944 1944	Test Number 5 2	Test Number Test Number Window lag Hi 5 7 2 7 7 7 7	Window lag	Hidden Nodes	Hidden Janvation Bipolar Sigmold Bipolar Eigmold	Output Activation Sigmoid Sigmoid	Momentum 0.9 0.9	Learning Rate 0.5 0.5 0.5	Epoch 10000 10000	Validation 0.1962 0.2434	RMSE Value 0.2081 0.3240 0.26603
1944 1944 1944	Test Number	Treet Number Window	Dej	Hidden Nodes	Hidden Activation Bipolar Sigmoid Bipolar Sigmoid	Output Activation Sigmold Sigmold	Momentum 0.9 0.9	Learning Rate 0.1 0.1 0.7	10000 10000 10000	Validation 0.1664 0.1855 0.17595	RMSE Value 0.0100 0.0100 0.0100
NodelD 1944 1944	Test Number 10 11 2	Test Number	Window lag	Hidden Nodes	Hidden Activation Bipolar Sigmoid Bipolar Sigmoid	Output Activation Sigmoid Sigmoid	Momentum 0.9 0.9	Learning Rate 0.08 0.08	Epoch 10000 10000	Validation 0.0834 0.0845 0.08395	
1944 1944 1944		Test Number Test Number Window lag Hi 12 1 7 13 1 7 2 7 7	Window lag	Hidden Nodes 7 7	Hidden Activation Bipolar Sigmoid Bipolar Sigmoid	Output Activation Sigmold Sigmold	Mornenturn 0.9 0.9	0.08	Epoch 10000 10000	Validation 0.0768 0.1210 0.0989	
1944 1944 1944	Test Number 14 15	Test Number	Window lag	Hidden Nodes 7 7	Midden Activation Bipolar Sigmoid Bipolar Sigmoid	Output Activation Sigmoid Sigmoid	Momentum 0.9 0.5	Learning Read	10000 10000 10000	Validation 0.0917 0.0812 0.08545	RMSE Value 0.0100 0.0100 0.01
1944 1944 1944	Test Number	Toat Number	Window lag	Hidden Nodes 9 9	Hidden Activation Bipolar Sigmoid Bipolar Sigmoid	Output Activation Sigmold Sigmold	Momentum 0.9 0.9	Learning Rate 0.1 0.5	10000 10000 10000	Validation 0.0966 0.1434 0.12	RMSE Value 0.0100 0.0100 0.01
1944 1944 1944	Test Number 18 19 5	Tost Number Window I	De	Hidden Nodes	Hidden Activation Bipolar Sigmoid Bipolar Sigmoid	Output Activation Sigmoid Sigmoid	Momentum 0.9	Learning Reas	Epoch 10000 10000	Validation 0.0987 0.1230	

(Network)	{110}	(Network) {110} {3,5,7,9} ({3,5,7,9}	{3,5,7,9}	(3,6,7,9) (Bipolor Sigmold, (Bipolor Sigmold, Sigmold, Tanh) Sigmold, Tanh)		{0.9, 0.7, 0.5, 0.3, 0.1}	{0.9, 0.7, 0.5, {0.08, 0.1, 0.5}	(Min 1000 Max 10000)	{Stop Epoch} (0.01)	(0.01)
100			TARE A CONTRACT	Index Medae	Hiddan Andhadan	Cutonité Anthundian	Memory	I astrolog Date	Enote	Validation	T DMCE Value
NOOPID	1 est Number	1 05t NUMBER	Bes MODUIAA		Binolar Sigmoid	Siamoid	0.9	0.08	10000	0.2692	0.0311
1944		-	0		Bipolar Sigmoid	Siamoid	0.9	0.08	10000	0.2296	0.0371
1944	2	1	6	3	Bipolar Sigmoid	Sigmold	0.9	0.08	10000	0.2494	0.0341
VodelD	Test Number	Test Number	Window lag	Hidden Nodes	Hidden Activation	Output Activation	Momentum	Learning Rate	Epoch	Validation	RMSE Value
1944		1	0	8	Bipolar Sigmoid	Siamoid	0.9	0.1	10000	0.1017	0.0639
1944	4	+	6	3	Bipolar Sigmoid	Sigmoid	0.9	0.1	10000	0.2239	0.0486
1944		1	9	3	Bipolar Sigmold	Sigmold	0.9	0.1	10000	0.1628	0.05625
									1110	12-11-1-121	Parate Victor
	Test		Window lag	Hidden Nodes	Hidden Activation	e solo	Momentum	Learning Kate	Epocu	Validation	KMJE VANUO
1944	5	1	6	0	Bipolar Sigmoid	Sigmoid	0.0	0.5	10000	0.4151	0.2000
1944		1	6	3	Bipolar Sigmoid	Sigmoid	6.0	0.5	10000	0.3062	0.0756
1944	2	1	6	3	Bipolar Sigmoid	Sigmoid	0.9	0.5	10000	0.36065	0.1378
Aleder I	Tand Mumber	Tand Mumber	Mindau las	Intellin Model	Middan Ashundian	Quitmut Activation	Momontum	I earning Rate	Frach	Validation	RMSF Value
NOT NOT	Lagumn 1881	IACILIANI 1921	The MONITIAN	31	Dinolor Clamold	Cirmold	U O O	Distant Milling	10000	0.0780	0.0100
APACI				0	Dipolar Sizmold	Clamold	0.0	+0	10000	0.4247	00400
4401	0	-	70	0	bipolar sigmold	piompic	R.0	1.0	nnni	0.1017	0.0100
1944	2	1	6	10	Bipolar Sigmoid	Sigmoid	0.9	0.1	10000	0.2203	0.01
ModelD	Test Number	Test Number	Window lad	Hidden Nodes	Hiddan Activation	Output Activation	Momentum	Learning Rate	Epoch	Validation	RMSE Value
1944	10	1	0	81	Rinolar Sigmoid	Simoid	0.9	0.08	10000	0.1681	0.0100
1944		+	6	5	Bipolar Sigmoid	Sigmoid	0.9	0.08	10000	0.1799	0.0100
1944	2	1	6	5	Bipolar Sigmoid	Sigmoid	0.9	0.08	10000	0.174	0.01
NodelD	Test Number	Test Number	Window lag	Hidden Nodes	Hidden Activation	Output Activation	Momentum	Learning Rate	Epoch	Validation	RMSE Value
1944		1	8	7	Bipolar Sigmoid	Sigmoid	0.9	0.08	10000	0.2738	0.0100
1944	13	1	6	2	Bipolar Sigmoid	Sigmoid	0.9	0.08	10000	0.1680	0.0100
1944	2	1	6	7	Bipolar Sigmoid	Sigmoid	0.9	0.08	10000	0.2209	0.01
NodelD	Test Number	Test Number	Wind	Hidden Nodes	Hidden Activation	Output Activation	Momentum	Learning Rate	Epoch	Validation	RMSE Value
1944	14	1	6	2	Bipolar Sigmoid	Sigmoid	0.9	0.1	10000	0.1759	0.0100
1944		1	6	7	Bipolar Sigmoid	Sigmoid	0.9	0.1	10000	0.1391	0.0100
1944	2	1	6	7	Bipolar Sigmoid	Sigmoid	0.9	0.1	10000	0.1575	0.01
NodelD	Test Number	Test Number	Window lag	Hidden Nodes	Hidden Activation	Output Activation	Momentum	Learning Rate	Eboch	Validation	RMSE Value
1944	16			6	Bipolar Sigmoid	Sigmoid	0.9		10000	0.1356	0.0100
1944	17	1	6	6	Bipolar Sigmoid	Sigmoid	0.9	0.1	10000	0.2073	0.0100
1944	2	1	6	6	Bipolar Sigmold	Sigmoid	0.9	0.1	10000	0.17145	0.01
Madell	Task Mumbas	Tant Mumber	Window Inn	Lidden Madee	Middan Arthurtion	Cution & Address	Manual and a state	I amina Data	Canad	Walldallow	Diser Value
nianou	1091 MAILING	Januinu teat		N HAD	Diadar Slawold	Cumul Activation	MUNIMUM	Teaming rate	40000	Validation	LINDE VOIDO
1044	10			200	Bipolar Sigmoid	Ciamold	8.0	0.00	10000	0,1009	0,0100
teto I		-				olginold	2.0	0.00	10000	RCOL-D	00100
1944	2	1	2	2	Bipolar Sigmoid	Sigmord	0.9	0.00	10000	0.1774	0.01

			Ciffedera			Diffection	algorithm			Olivera	algorithm	T	Either	Dijkatra or			Differen	Borter			Algorithm			Either Diaman	A' search			Dynatra			Dijkatra	algorithm		Difference			-	Dijam or	A' search	Γ	Either Dilitatra or	A' search		Elther	Dillation or	A' March		Dijkatra	algorithm		Ether	Dijkstra or	A seaton		A' Search	
	Weight	•		9.17		•	0.57	0.63		1.00	*	-	0.50		4			0.50	0.57	0.50	1 100		0.00			0.50		0.83	0.17		1.00							0.50	-	0		-	8.0	_		-	•	0.50	•	0.50	9.50	0.00	•	1.00	-	٦
ing.	Processing time for being best (1.0)	.*	*	-		•	1			1		4			4	4	4		-							+		•		100	1		*			•		+		*	•	*	-		-	4		1	*					-		
All or nothing rask	Loop count for bailing band (2/6)		*					1	(a)	1	4	4			*	4	1		4	•			.4.	•		+		-	•		1	*	-				-	Ŧ	1	•	*		-	•				1	*	•			*			
A8	Part length		•	8		•	•	-					-		·	1	1	-		-	•		-	•	•	•	•	-	• •	1	1	•	·		•	·	·	•		-		•	·				•	•	•	-	-			-		
	MUN			>	Γ	T	>			1		T	1		Π		Τ		>	T	1	•				*			1		1		T	1	•	Π		*			Π		~		•			*		T				`		
	111	62.44	49.42	37.47	19.00	1.42	0.09	0.11	0.09	0.04	0.17	0.11	0.74	1.18	1.31	3.82	2.00	1.68	0.78	1.64	909	121	23.63	7,61	2,48	4.69	327.68	33.29	30.47	40.40	20.01	49.76	48.79	24.36	35.30	23.57	28.52	20.12	30.60	30.14	32.82	29.27	11.94	5.42	1002	277	0.33	0.16	0.36	0.32	1.13	1 60	1.07	0.02	-	20.0
	win	Π		,		T	T			5		T	1		Π		-		T	T	,	•	T			>	1	>		T	~		1	,		Π		4	T	T	Π	1	~	1		T		1		1	1		t		T	
	Loops	11,283	9,013	10.105	1070	10.4	1 799	1,550	1,044	1,319	2.286	1,953	BOC'E	3.64	3,271	5,277	4,456	4,787	3,560	6,336	5,007	4 748	800.0	5,662	6.379	4,983	10,614	8,366	11.154	10.102	8,070	11,272	0.672	9,243	10.151	8,086	9,208	7.436	7 47.4	9,605	7,696	9,390	7.321	6.478		200 N	2,956	2,236	2,864	2 766	3.705	3,041	3.895	906	1	690
_	Win	Π	1	1		T	T	1		1		•		t	Π	~	~	~	ŀ	-	t	t	~			1		~	+	t	4		t					1	-	`	Π	1	1	T	1	t				~	-	+	t	,	ľ	
		16,877	17.446	110,01	10,040	3,411	1480	3.447	2,004	2.211	2,004	2,866	3.736	3.755	4.158	5,333	5,203	5,333	5.626	5,388	5,458	002-0	1.374	7,500	7,374	7.379	15,617	15,474	15.617	11 322	14.313	14,333	11,462	11,311	11.296	11,311	11,405	11,445	1240	9.730	10,070	9,732	9.742	7,170	DOS-1	7.526	2,961	3,296	2,961	2,928	2323	1000	BOX.E	3.170		1.600
	Kode K	2276	2576	9	2	2447	1328	1328	1644	1644	898	898	1035	1844	1844	2330	2330	494	484	1145	1145	1417	2419	2419	425	425	214	214	1922	414	414	2636	2636	178	2183	2183	1980	2806	8 2	623	623	8	z	1604		SING	1156	1158	1301	1301	100 M	1961	1964	1417		1417
	Start	43	3	22	0.07	1328	-	-		888	1644	1644	1844	_	_		\rightarrow	-+-	et:	-	-	-	425	-	2119	2419	1622	-	214		892	414	414	2183	_		666	899		84	84	623	823	Tiner .	1000				1158	-	1954	2.0	730		+-	1358
	4	.v	Distant		÷.	Dilectra	A"	Dijkstra	A.	Dijkstra	A.	2	-	A*	Dijkstra	٠.	Dilitatra	٧.	Cilication		Dijestra	Dilicatra	.<	Dijatra	٨.	Dijotra	.×	Distant	A' Diffection	. Y.	Dijustra	٧.		A.	A.	Dijustra	.v	Oliotra	A Research		Dijotha		Destra			Different	A*	Dylatina	۰.	Oukatra			Citization	Α.		CINKS112
	1	1	-		•		7	80	6	10	11	12		15	16.			=	8	1	22	24	22	R	22	12	10	8	10	12	2	35	T	37	2	40		T	3 3	\$\$	46	-	48	-	R 3			3	8	8	5	8 5	T	L	-	2

R eb.

A" and Dijikstra Search Algorithm Results

										A	or nothing ran	ting		
Ram Rumber	Search	Start Hoda	End Noda	Path length in meters	Win	Loops	Win	Run Time (min)	Win	Path length weight for being best [201]	Loop count for being best (216)	Processing time for being best (1/6)	Weight	Overall best
64	Dijkatra	1417	1359	3,366		3,019		0.78		•				
	A*	15.00	- 425	3,460		1.01								
		1350	-25	3,497	8	1,113	1	C 85		1	1	1	1.00	Dijkatra
67	A.	425	1300	3,548		6,118		4.06		•	-	-	-	algerithe
		425	1309	3.556		3,356		1.19		-	-		-	
60	<u>A*</u>	1359	494	2,877		1,309		0.13		-	-	-	-	
78	Dijestra	1359	494	2,854	1	1,262	1	8.05	1	1	1	1	1,00	Dijkstra
71	A*	494	1358	2,877		2,740		0.52		-	-	-	-	algorithm
72	Dijkstra	494	1359	2,819		2,513		0.34	_	-	-	-	-	
73	A*	831	1079	12,196	-	9,783		44.33					-	
74	Dinan	831	1.7	12,576	_	7,743	1	23.54		-	1	-	8.33	A' Bearc
78	A*	1579	101	11,371	1	8,62		21.00		1	-	-		Algeritie
7	Dijkstra	1579	601	12,107		8,012			1	-		1	L.17	100 million (100 million)

÷.

Appendix C: Sample Database Creation Scripts

thlCount
USE [RouteManer]
CO
/seese Object: Table [dbo] [dbCount] Script Date: 06/04/2006 20:11 56 *****
SET ANSE NULLS ON
CO CO
ST OUOTED_IDENTIFIER ON
CO CO
SET ANSI PADDING ON
GO G
CREATE TABLE [dbo] [tbi(Count](
[CountD] [mt] IDENTITY(1,1) NOT NULL,
[NodeID] [ant] NOT NULL,
[TimeID] [mt] NOT NULL,
[DateCollected] [datemme] NOT NULL CONSTRAINT [DF_th/Count_DateCollected] DEFAULT (getdate()),
[Approaching] [int] NOT NULL,
[Departing] Just NOT NULL,
[Vehicle(D) [int] NOT NULL,
SurveyPoint] [varchar](50) COLLATE SQL_Laun1_General_CP1_CLAS NOT NULL,
CONSTRAINT (PK_tblcount) PRIMARY KEY CLUSTERED
[CountD] ASC
WTTH (IGNORE_DUP_KEY = OFF) ON [PRIMARY]
) ON [PRIMARY]
GO
SET ANSI_PADDING OFF
GO
USE [RouteManer]
GO
ALTER TABLE [dbo] [dblCount] WITH CHECK ADD CONSTRAINT [FK_dblCount_tblNode] FOREIGN KEY([NodeID])
REFERENCES (dbo) (dbiNodel (NodelDI)
ALTER TABLE [dbo]. [dbiCount] WITH CHECK ADD CONSTRAINT [FK_dblCount_dblTeme] FOREIGN KEY ([TerreID])
RFERENCES [dbv].[tblTmc] (turnetD)
ALTER TABLE [dbo] [tblCount] WITH CHECK ADD CONSTRAINT [IK_tblCount_tblVehide] FOREIGN KEY ([VehideID])
REFERENCES (bbo) (bb/Vehicle) (vehicles())
Less sait a serve langel for a same l'Argentieur
iproc AddKaowiedgeToNode
USE (Route Maned
Con [Kousemaner]

GO /****** Object: StoredProcedure [dbo] [proc_AddKnowledgeToNode] SET ANSI_NULLS ON GO	Script Date: 06/04/2006 20:26:58
SET QUOTED_IDENTIFIER ON	
GO	
	2122
- Author: <edgar okioga=""></edgar>	
- Create date: <29/04/2006>	
- Description: <adds associated<="" network="" new="" parameters="" td="" the="" to=""><td>node from the learning Model></td></adds>	node from the learning Model>
- 2222222222222222222222222222222222222	
CREATE PROCEDURE (dbo) (proc_AddKnowledge?oNode)	
(invidelD int,	
(it complate fost,	
@Momentum float,	
@NumbecoputUnits ant,	
@NumberHiddenUnits int,	
@Number(Autputanits int,	
(g) lidden Activation'l ype int,	
(a)(Jutput Activation Type int,	
fotinputScale lype mt,	

	@DateCreated datetime,
	@InputScaleMin float,
	@InputScaleMax float,
	@OutputScaleMin float,
	@OutputScaleMax float,
	@NetworkID int Output
AS	
BEGIN	
	SET NOCOUNT ON added to prevent extra result sets from
	interfering with SELECT statements.
	SET NOCOUNT ON;
- Inscri	statements for procedure here
	-insert data into the underling table and return the networkID
	INSERT INTO the Neural Network
	(NodeID, LearningRate, Momentum, NumberInputUnits, NumberHiddenunits, NumberOutputUnits,
	tivationType, OutputactivationType, inputScaletype, outputscaletype, datecreated, InputscaleMin, InputscaleMax, emin, outputscalemax)
	values
	(@NodeID, @LearningRate, @Momentum, @NumberInputUnits, @NumberHiddenunits,
	OutputUnits, @HiddenActivationType, @OutputactivationType, @inputScaletype, @outputscaletype,
@datecres	ted,@InputscaleMin,@InputscaleMax, @outputscalemin, @outputscalemax)
	SET (@NetworkID = Scope_Identity()
END	

proc_ GetBrain	Desiz
USE filouteManer	
GO	
/sesses Object: S	toredProcedure [dbo] [proc_GetBrainDate] Script Date: 06/04/2006 20:30:01
SET ANSI_NULI	LS ON
GO	
SET QUOTED_I	IDENTIFIER ON
GO	

- Author	<edgar oksoga=""></edgar>
- Create date: <3	
- Description:	<tells a="" brain="" if="" is="" not="" or="" there="" us=""></tells>
CREATE PROCI	DURE [dbo].[prose_GetBran Date]
- Add	the parameters for the stored procedure here
(a)Not	IcTD as ent
AS	
BEGIN	
Declare @DateSa	ve as Datebane
Declare @Numbe	t as inter
Declare @Inputs	
- SET	NOCOUNT ON added to prevent extra result sets from
- enter	fenng with SELECT statements
SET N	KOCOUNT ON;
- Insert statem	ents for procedure here
	CT TOP (1) @DateSave= dbo.tblNeuralNetwork.DateCreated, @Inputs=dbo.tblNeuralNetwork.NumberInputant
	blNeuralNetwork INNFR JOIN
	thiNode ON dbo thiNeuraiNetwork.NodeID = dbo thiNode NodeID
	bbNode Node ID = @node ID)
	tblNeuraNetwork DateCreated DESC
	ter of brans avilable
	Count(node1D) from thINeuralnetwork where node1D = @node1D
-Return the Num	ber and Last Save Date
	ber, @Datesave,@laputs
END	

APPENDIX D – Sample Neural Network Source Code

Neural network Class Tram the Neural Network now() Public Sub TranNetwork() First Initialise the weights and bias Dim CurrentEpoch As Integer = 0 Dim CurrentRMSEThreshold As Double Dim OldRmseThreshold As Double Const ConstRMSENoChange As Double = 0.0000001 Dum CurrentPattern As Integer 'Each Training pattern Dim Patterindex As Integer Dim RMSENoChangeCount As Integer For the purpose of getting the RMSF Dum mscRows As Integer Dim Stopl carning As Boolean = False Dim CurrentInputs() \s Double Dum OldValidationError As Double Dim CurrentValidationError As Double Dum RmscCheck As Integer 'Delegate to show epoch to main window Dim dlgEpochShow \s ShowCurrentEpoch dlgEpochShow = New ShowCurrentEpoch(AddressOf UpdateEpoch) Dim Arg(1) As Object Parameter to pass to the main form Train the network ReDim Preserve CurrentInputs(mNumberInputUnits - 1) train the network 'Initialise weight InstalscWeights() While StopLearning = False Process for each case presented to the neural network For CurrentPattern = 0 To mNumberTrainingPatterns - 1 For PatterIndex = 0 To mNumberInputUnits - 1 CurrentInputs(PatterIndex) = mInputs(CurrentPattern, PatterIndex) Next 'Feed Forward HiddenInput(mNumberl fiddenUnits, mNumberInputUnits, CurrentInputs) HiddenTransfer(mNumberHiddenUnits, mHiddenlayerActivation) OutputInput(mNumberf liddenUnits) OutputTransfer(mOutputlayerActivation) Back propagate the error values UpdateOutputWeights(CurrentPattern, mNumberl fiddenUnits, mOutputlayerActivation) UpdateHiddenWeights(mNumberInputUnits, mNumberl fiddenUnits, ml liddenlayer Activation CurrentInputs) Next CurrentPattern 'Add the Current Epoch CurrentEpoch = CurrentEpoch + 1 Poke to update the epoch 'Carry oput post epoch calculations For mscRows = 0 To mNumberTrainingPatterns - 1 For PatterIndex = 0 To mNumberInputUnits - 1 CurrentInputs(PatterIndex) = mInputs(rmscRows, PatterIndex) New HiddenInput(mNumberHiddenUnsts, mNumberInputUnits, CurrentInputs) HiddenTransfer(mNumberHiddenUnits, mHiddenlayerActivation) OutputInput(mNumberHiddenUnits) Output I ransfer(mOutputlayer Activation) 'Update the Output Array mOutput(mscRows) = mOutputActivation(0) Next 'Calculate the Current RMSEErroe OldRmscThreshold = CurrentRMSEThreshold CurrentRMSEThreshold = ReturnRMSEThreshold(mOutput, mTarget) 'Update the main form Arg(0) = CurrentEpoch Arg(1) = CurrentRMSEThreshold & "|" & CurrentValidationError frmManForm.Invokc(dlgEpochShow, Arg)

```
Neural network Class
         Process the stopping entena once again
         Base of Epoch
         If (Clot(2 ° 0) And Clot(mStopTrainingMode)) <> 0 Then
         StopLearning = CBool(IIf(CurrentFpoch >= mEpoch, True, False))
         It StopLearning = True Then
             Exit While
         End If
         End If
         'RMSFThreshold
         If (Clut(2 ^ 1) And Clut(mStopTrainingMode)) <> 0 And CurrentEpoch > 100 Then
         Stop1.carring = CBool(IIf(CurrentRMSEThreshold <= mRMSEThreshold, Frue, False))
         If StopLearning = True Then
             Exit While
         End If
         End If
         'RMSEThreshold no Change Count
         If (CInt(2 ^ 5) And CInt(mStopTranngMode)) <> 0 And CurrentEpoch > 100 Then
         If Math.Abs(OldRmseThreshold - CurrentRMSEThreshold) <= ConstRMSENoChange Then
              RMSENoChangeCount += 1
         End If
         StopLearning = CBool(IIf(RMSENoChangeCount >= mRMSECount, True, False))
         If StopLearning = True Then
             Exit While
         End If
          stop if the erro is increasing
         1( OldRmscThreshold - CurrentRMSEThreshold < 0 Then
             Exit While
         End If
         End If
         'Use validation error to ensure we are okay
         If (CInt(2 ^ 2) And CInt(mStopTranangMode)) <> 0 And CurrentEpoch > 100 Then
         CurrentValidationError = GetValidationError()
         If CurrentValidationError > OldValidationError Then
              RmscCheck += 1
          End If
         If RmscCheck > 50 Then
              Exit While
          End If
          OldVahdationLeror = CurrentVahdationError
         End If
         "L pdate the staus bar
         mTramingResults = TellError()
    End While
    Process the output form the neural netork
    Dum myTimer As TurnOffTimer
    myTimer = New TumOffTimer(AddressOf TimerOff)
    frmMainForm.Invoke(myTimer)
  End Sub
  Sub UpdateEpoch(ByVal CurrentEpoch As Integer, ByVal CurrentRMSE As Stong)
    frmMamf om.stsBar Pancis(0).Text = "Epuch [" & CurrentEpoch.ToStmg & "]"
                                                                            String.Format(" {0:0.######}*
    frmMamForm.stsBar.Pancls(1).Text =
                                               "T/V-RMSE
                                                               11
                                                                      8c
CurrentRMSE.ToString) & "]"
CurrentEpoch ToSting & vblab & & vbTab & "TRAINING RMSE->" & vbTab
Stong.Format["{0.00000}", CurrentRMSE.Sole("|"c)(0) & vbTab & "TRAINING RMSE->" & vbTab
Stong.Format("{0:0.0000}", CurrentRMSE.Spla("|"c)(0)) & vbTab & ", & vbTab & vbTab & "VALIDATION
RMSE.>" & vbTab & Stong.Format("{0:0.0000}", CurrentRMSE.Splat("|"c)(1)) & vbCrLf
    If frmMainForm.tmrDraw.Enabled = False Then
         frmManForm.tmrI)raw Enabled = True
    End If
     Application.Dol.vents()
  End Sub
```

APPENDIX E: Sample A* search Source Code

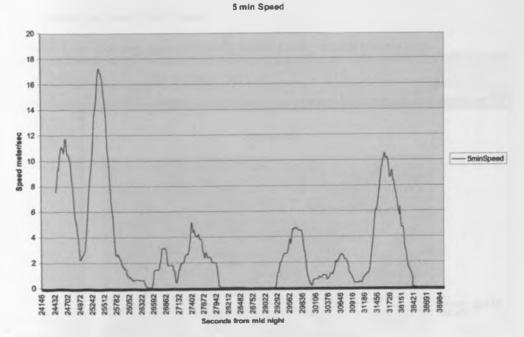
```
Route Class
              While (open QueneCount > 0)
                   'Get the lowest node
                   Mynode = Nothing
                   Mynode = open QueuePop
                   'Check if the goal node has been found
                   If Mynode.NodeID = Stopnode NodeID Then
                       Text now, found
                       While Not Mynode Is Nothing
                           Solution.Insert(0, Mynode)
                            Mynode = Mynode Parent
                       End While
                       Exit While
                   End If
                   'Expand the node
                   cmdGetAscFssmNode Parameters("@StartNode").Value = Mynode.NodeID
                   cmdGetArcl'romNode Parameters ("@StopNode"). Value = Stopnode. NodelD
                   drRoute = cmdGetArcFromNode ExecuteReader()
                   Dim Found As Boolean = False
                   Dun Added As Boolean = False
                   end of expansion now loop thru the expanded list
                   'For each node in the expansion
                   While drRoute Read = True
                       temp = New _Path
                        Populate the node
                       temp.NodeID = CType(drRoute.Item(0), Integer)
                        temp.NodeCost = CType (drRoute.Item(1), Decimal)
                       temp.PathCost = CType(drRoute.ltem(2), Decimal)
                        temp TotalCost = CType(drRoute_Item(3), Decimal) + Mynode.TotalPathCost
                       temp.TotalPathCost = temp.PathCost + Mynode.TotalPathCost
                        temp ArcID = CType(drRoute.item(4), Integer)
                        'Set the parent of this node
                       temp.Parent = Mynode
                        fend of population
                       'Is the tempnode found in the open list
                       Dim temp1 As _Path
                        Dim Discard1 As Boolean = False
                       Dum Discard2 As Boolean = False
                       If open.QueueFind(temp) = True Then
                            temp1 = open.QueuePeek(temp.NodelD)
                            It temp1.TotalCost < temp.TotalCost Then
                                Discard1 = True
                            End If
                        End If
                        It closed.QueueFind(temp) = True Then
                            temp1 = closed.QueuePeek(temp.Node1D)
                            It temp1.TotalCost < temp.TotalCost Then
                                 Discard2 = True
                            End If
                        End If
                        I Discard1 = True Then
                            II Discard2 = True Then
                                 open QueueRemoveNode(temp)
                                 closed.QueueRemoveNode(temp)
                            End If
                        Else
                            11 Discard2 = False Then
                                open.QueueAdd(temp)
                            End If
                        End If
                        LoopCount += 1
                   End While
                   drRoute.(Jose()
                   'Add node to clodes
                   closed QueueAdd(Mynode)
               End While
```

APPENDIX F: Samples GIS Dangle detection code

_	view Script to Identify dangles
_	n 03/06/2006
"To	o identify dangle links in the network
'G	et the current View
the	eview = av.GetActiveDoc
	et the active theme etheme = theview.GetActiveThemes.Get(0)
-	et the Feature table cFitab = theTheme.getFitab
	etum the number of records etotal = theftab.GetNumRecords
	cCurrent = theftab.GetNumSelRecords
	et the feature Bitmap
th	ebitmap = thefTab.GetSelection
	reate an array list
th	cShapes={}
	crate through all links beginning with the current one selecting all other links the
	stersect with it and add them to the array.
fo	r each item in 1thetotal
	for each rec in thebitmap
	theshape = theftab.ReturnValue(theFtab.findfield("Shape"),rec)
	Add the current link to the array
	theshapes.add(theshape)
	end
	Select all links the intersect with the current selected links theftab.SelectByShapes (theshapes, #VTAB_SELTYPE_NEW)
	Update the statistics
	thebitmap = thefTab.GetSelection
cn	d .
	efresh the view
	eView.invalidate
th	eCurrent = theftab.GetNumSelRecords
m	sgbox.info((thetotal-thecurrent).AsString,"Links not connected")

APPENDIX G: Probe Car Sample

Date 09_03_2006


Start point: Nyayo Estate End point: Unep gigiri

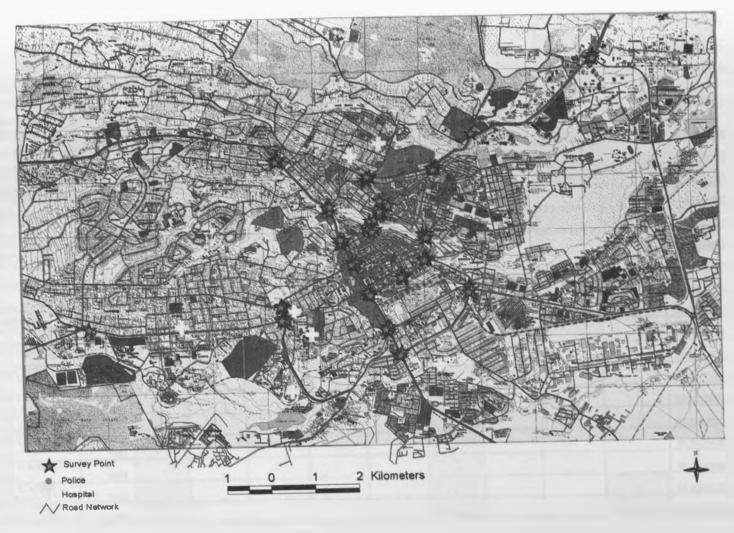
Tools

- 1) Garmin eTrex GPS
- 2) Software
 - a. Arciew 3.2
 - b. EasyGIS
 - c. Excel

Methodology

- The garmin etrex gps is set to record data after one (1) second
- The data is then downloaded from the GPS using an RS-232 cable on COM1
- The software used is EasyGIS which stores the data in XML format.
- The data is read in XML format in excel and results obtained.
- The time is converted to seconds from midnight.
- The distance between successive points is calculated using Euclidean distance with a conversion to KM by multiplying by 110.592. (1 degree is approximately 110.592km at the equatorial region)
- The speed is calculated at intervals based on total distance divide by time interval

This is the average speed at 5 minute intervals from start to finish.


The data collected from Start to stop.

The same Data depicting speed of travel graduated using normal interval steps

G-2

APPENDIX H: Traffic Survey locations.

SURVEY LOCATION NAME	NODE ID	TUE JAN	TUE MAY	TUE JUNE	WED JAN	WED MAY	THU JAN	THU MAY	THU JUNE	WED JUNE	LONGITUDE	LATITUDE
SURVEY TYPE 1 ARM 1 - UNIVERSITY WAY	1291	1				1	1		1		38 81654358	-1.28119206
SURVEY TYPE 1: ARM 2 - UHURU HIGHWAY S	1449	1				1	1		1		38.81608200	-1.28372300
SURVEY TYPE 1: ARM 3 - STATE HOUSE ROAD	1340	4				1	1		1		36.81438446	-1 28206706
SURVEY TYPE 1: ARM 4 - UHURU HIGHWAY NORTH	1283	4				1	1		1		36 83436966	-1 27934492
SURVEY TYPE 1: ARM 1 - HAILE SELASSIE AVENUE NE	1944	1				4	1		1		38.82144547	-1 29243147
SURVEY TYPE 1: ARM 3 - HAILE SELASSIE AVENUE W	1994	4				1	1		1		36.81680298	-1.29349661
SURVEY TYPE 1: ARM 4 - UHURU HIGHWAY NW	1887	1				1	1		1		36.81980515	-1.29129326
SURVEY TYPE 1 ARM 2 - UHURU HIGHWAY SE	2199	1				1	1		1		36.82342148	-1.29763091
SURVEY TYPE 1: ARM 6 - KIPANDE ROAD	1066				1					1	36.81892395	-1.27554369
SURVEY TYPE 1: ARM 1 - MURANGA ROAD	1193				1					1	36.82196426	-1.27730918
SURVEY TYPE 1: ARM 2 - KIRINYAGA ROAD	1212				1					1	36 82210922	-1 27905655
SURVEY TYPE 1 ARM 5 - KIJABE ROAD	1146				1					1	36.81716156	-1 27725983
SURVEY TYPE 1: ARM 4 - SLIP ROAD SURVEY TYPE 1: ARM 3 -	1258				1					1	36.81977463	-1.28038108
TOM MBOYA STREET	1230				1					1	36.82140350	-1.27964115
SURVEY TYPE 1: ARM 2 - LANDHIES/PUMWANI ROAD	1601				1						36.83413696	-1.28612518
SURVEY TYPE 1: ARM 1 - RING ROAD PUMWANI SURVEY TYPE 1: ARM 4 -	1327				1						36.83332062	-1.28183830
RIVER ROAD	1565	1			1						36.83174515	-1.28538179
HAILE SELASIE AVENUE	1616				1						36.83196640	-1.28643930
LANDHIES ROAD	1738	1					1				36.83950806	-1 28860188
JOGOO ROAD	1938	1					4				36.84356308	-1 29236519
LUSAKA ROAD SURVEY TYPE 1: ARM 4 -	1928	1					1				36.84096527	-1.29220736
AERODROME ROAD	2485						1				36.82036209	-1.30640972
UHURU HIGHWAY NORTH	2450	1					1			1	36 82665253	-1 30495871

SURVEY LOCATION NAME	NODE ID	TUE JAN	TUE MAY	TUE JUNE	WED JAN	WED MAY	THU JAN	THU MAY	THU JUNE	WED JUNE	LONGITUDE	LATITUDE
SURVEY TYPE 1: ARM 3 -	1											
UHURU HIGHWAY S	2320	1					1			1	36 82427597	-1 29991293
SURVEY TYPE 1: ARM 2 -							1			1		4 00004044
BUNYALA ROAD E	2303	1								*	36.82533264	-1.29954314
SURVEY TYPE 1: ARM 5 -		1			ł		1			1	36.82273102	-1.29976690
BUNYALA ROAD W	2314										30.02213102	-1.28870080
SURVEY TYPE 1: ARM 4 -	2405	1					1			1	36.82370758	-1.30570745
	2465										00.02010100	1.00070740
SURVEY TYPE 1: ARM 4 -	2445	1					1			1	36 82762527	-1.30441809
	2445	¥									JUDETUEDET	
SURVEY TYPE 1: ARM 3 - MOMBASA ROAD	2608	1					1			1	36.82894516	-1.30990696
SURVEY TYPE 1 ARM 1 -	2000										30 02084510	-1.30880080
VALLEY ROAD NORTH	2211	1					1				36 80291748	-1.29789639
SURVEY TYPE 1: ARM 3 -											50 00201140	-120100000
MBAGATHI ROAD SOUTH	2513	1					1				36.80381393	-1.30723608
SURVEY TYPE 1: ARM 2 -	2010										00.00001000	-1.00720000
NGONG ROAD EAST	2189	1					1				36.80507660	-1.29741907
SURVEY TYPE 1: ARM 4 -	2.00										00.00001000	1.20141001
NGONG ROAD WEST	2254	1					1	1			36.79870987	-1 29864299
SURVEY TYPE 1: ARM 1 -	6604											
VALLEY ROAD NORTH	1940	1					1				36.80515289	-1.29238355
SURVEY TYPE 1: ARM 2 -	1010										00.00010100	
ARGWINGS KODHEK EAST	2055	1					1				36.80647278	-1.29514205
SURVEY TYPE 1: ARM 3 -												
VALLEY ROAD SOUTH	2060	1					1				36.80243301	-1.29521990
SURVEY TYPE 1: ARM 4 -					<u> </u>	1						
ARGWINGS KODHEK WEST	2057	1					1				36.80044556	-1.29515493
SURVEY TYPE 1: ARM 4 -												
MOI AVENUE NW	1692	×									36.82693481	-1.28779161
SURVEY TYPE 1: ARM 2 -												
MOI AVENUE SE	1789	1									36.79620361	-1.28924775
SURVEY TYPE 1: ARM 1 -												
HAILE SELASSIE AVENUE												
NE	1769	1									36.82833481	-1 28889573
SURVEY TYPE 1: ARM 3 -												
HAILE SELASSIE AVENUE	1											
SW	1835	1									36.82584381	-1.29023111
SURVEY TYPE 1: ARM 3 -	705											4
CHIROMO ROAD SURVEY TYPE 1: ARM 2 -	795		-		1				1		36.80783081	-1.27120376
	1047				1	1			1		36 81265259	-1 27508628
UHURU HIGHWAY SE SURVEY TYPE 1: ARM 1 -	1047				¥.						30 61200208	-1 2/ 308028
	958				1	1			1		38 94200500	1 37383000
MUSEUM HILL ROAD	956			+							36.81309509	-1.27383900
WAIYAKI WAY	469	1				1	1				36.80176544	-1 26425540
SURVEY TYPE 1: ARM 3 -	403										30.00170344	-1.20420340
CHIROMO ROAD SOUTH	557	1				1	1				36.80316162	-1.26596081
CHIROMO ROAD SOUTH	1 30/		1	1		1		1			30.00310102	-1.20380081

SURVEY LOCATION NAME	NODE ID	TUE_JAN	TUE MAY	TUE_JUNE	WED JAN	WED MAY	THU JAN	THU MAY	THU JUNE	WED JUNE	LONGITUDE	LATITUDE
SURVEY TYPE 1 ARM 2 -												
RING ROAD WESTALNDS	422	1				1	1				36 80318832	-1 26297390
SURVEY TYPE 1: ARM 4 -								1			000000	T LOLD JOU
RING ROAD WESTLANDS					-							
WEST /RHAPTA	531	1	[1	1				36 80103683	-1.26555657
SURVEY TYPE 1: ARM 4 -	1							+			30 00 103003	•1 20000007
UHURU HIGHWAY NW	1569	1			1	1			1		35 81690979	-1 28541434
SURVEY TYPE 1: ARM 2 -	1000									<u> </u>	30 0 10 00 10	-1 20041404
UHURU HIGHWAY SE	1702	1			1	1			1		36 81816101	-1.28797388
SURVEY TYPE 1: ARM 1 -	1.02										30 0 10 10 10 1	*1.20/8/300
KENYATTA AVENUE NE	1602		1			1			1		36,81838989	-1.28612983
SURVEY TYPE 1: ARM 3 -	1002										30.01030909	-1.20012903
KENYATTA AVENUE SE	1701	1	1		1	1			1		36 81473541	-1 28792572
SURVEY TYPE 1 ARM 3 -											30 6147 3341	-120/823/2
THIKA ROAD SW	110						1				36 86303329	-1.24871302
SURVEY TYPE 1: ARM 1 -										+	30 00303328	-1.2407 1302
THIKA ROAD NE	58						1				36 86796951	-1.24347496
											30 00 / 80 83 1	-1.2434/480
SURVEY TYPE 1: ARM 2 -											00.00077470	4.044800005
OUTER RING ROAD	72						×				36.86677170	-1.24489605
SURVEY TYPE 1: ARM 4 -												
FOREST ROAD W	725		<u> </u>	<u> </u>					<u> </u>		36.81975937	-1.26917064
SURVEY TYPE 1: ARM 3 -	700										20.00050470	4.28080264
LIMURU ROAD S	739	1				+		+			36.82059479	-1 26960254
SURVEY TYPE 1 ARM 2 -											00000440000	
FOREST ROAD E	704	1	<u></u>				ļ	<u> </u>	<u> </u>		36.82141876	-1.26868391
SURVEY TYPE 1: ARM 1 -											0000045004	1 0000015
LIMURU ROAD NE	667	1							<u> </u>		36.82145691	-1 26806915
SURVEY TYPE 1: ARM 5 -												
WAIYAKI WAY	694	1									36.82072067	-1 26851153
SURVEY TYPE 1: ARM 2 -												
RING ROAD NGARA	675						1				36 83552933	-1 26822567
SURVEY TYPE 1: ARM 1 -												
THIKA ROAD NE	560						1				36.83536911	-1.26604676
SURVEY TYPE 1: ARM 4 -								1				
FOREST ROAD W	629				1		1				36 83289337	-1.26716566
SURVEY TYPE 1: ARM 3 -												
MURANGA ROAD SW	700						1				36.83322906	-1 26864862
SURVEY TYPE 1: NGONG												
ROAD KSTC ARM	2261		1								36 76322937	-1.29882741
SURVEY TYPE 1: KIAMBU												
ROAD	374					1					36 84178543	-1 26078546
SURVEY TYPE 1: ARM 4 -												
PARK ROAD	1275	1									36.83239746	-1.26072643
SURVEY TYPE 1: ARM 1 -												
RACECOURSE ROAD NE	1228	1									36.83350372	-1.27959728
SURVEY TYPE 1: ARM 3 -												
RACECOURSE ROAD SE	1324	1									36.83214188	-1.28160206

URVEY LOCATION NAME	-	NODE ID TUE JAN TUE M	TUE MAY	TUE JUNE	WED JAN	WED MAY	THU JAN	THU MAY	THU JUNE	WED JUNE	AAY TUE JUNE WED JAN WED MAY THU JAN THU MAY THU JUNE WED JUNE LONGITUDE	LATITUDE
SURVEY TYPE 1: ARM 2 -	1211	,									01000000 00	A AAAAAAAAAA
SURVEY TYPE 1: ARM 1 -											20,03320010	30.03320010 -1.20106/35
URU ROAD NW	928				1						36 82317734	BAPTAPTC 1. APTTPECE RE
SURVEY TYPE 1: ARM 2 -											40111090100	0001101911-
IRANGA ROAD NE	983				*						36.82489395	36.82489395 -1.27433729
SURVEY TYPE 1: ARM 3 - JGARA ROAD E	1086				,						BARICFCE AF	AR R0301548 1. 07684666

APPENDIX I: TRAFFIC IMPEDANCE QUESTIONNAIRE Dynamic Route Selection: Short Term Traffic Decision Support in Nairobi

Traffic jams are a daily occurrence in Nairobi and its environs. About been added to our roads over the last decade. Gavin Bennett, a reg Motoring column suggests 3 solutions. First option is reducing the more expensive to buy or enforcing minimum standards). The seco capacity of the roads by improving junction design, removing bottler routes, lanes or links and lastly, enforce traffic rules and regulations conduct and responsibility. This survey is to identify the various causes of traffic snarls in Nairo	jular co number nd optic necks a s resulti	lumnist of vehic on is to nd add ng to a	with cles (e impro ing m shift i	the Sunday Nation ensuring they are ove the carrying ore ring-roads n driver attitude,				
the least to the most significant causes of traffic snarls on Nairobi re				,				
Definitions								
The following words have their meanings as indicated here;	on ort th	at anni	~ ~ ~ ~	novimum of E				
 Car: A vehicle of less than 2500 cc used for private tran passengers. 	sport th	at cam	es a r	naximum or 5				
 Matatu: A vehicle of less than 5000 cc used for public tr between 14 and 28 passengers. 	ranspor	t with a	carry	ing capacity of				
iii. Bus: A vehicle of more than 5500 cc used for public tran than 28 passengers.	nsport v	vith a c	arryin	g capacity of more				
iv. Lorry: A vehicle that carries load over and above 14 tor								
v. Bottleneck: A factor that restricts or retards free flow of	vehicle	es from	a curi	rent location to the				
next during normal travel.vi. Balancing: The ability to maintain the steady idle of a v	ehicle e	enaine v	when	on a hill by means of				
using the clutch and accelerator pedals only.								
vii. Normal traffic flow: A situations where you are driving km/hr, being able to change lanes easily as your progre	vii. Normal traffic flow: A situations where you are driving at a comfortable speed of about 50							
Instructions								
For each question, unless otherwise stated, tick only one value p question as a means of indicating a rank relative to importanc								
Section A:		uasa	unven	on Nanobi Roads.				
(Please tick the relevant choice) 1) Your gender:								
Male Female								
2) How long have you held a valid driving license? :								
Less than 1 year Detween 2 to 5 years								
More than 6 years								
3) What vehicle do you most frequently drive?								
Car 🗌 Bus 🗌								
Lorry Matatu								
Section B (Please assign a value to the relevant importance of each of the ite 4) In your opinion, at a roundabout or traffic intersection point the following items in obstructing normal traffic flow?	t, what	is the r	elativ					
Bottleneck: (Rank: 1 least, 5 Most relevant) [Per row , select a complete set]	unique	value	WILLI	io repetition in trie				
Your observation of traffic ahead of you	:0 0) 3	4	\$				
If the section is a climbing lane requiring balancing ¹ of the vehicle	:0 0) (3)	4	\$				
The presence or absence of police/traffic lights	:0 0		4	\$				
	:0 0		4	S				
The weather condition of the day	:0 0) (3)	4	<u> </u>				

¹ A factor that restricts or retards free flow of vehicles from a current location to the next during normal travel.

APPENDIX I: TRAFFIC IMPEDANCE QUESTIONNAIRE

5) In your opinion, on an unrestricted section of a road, what is the relative importance of the following items in obstructing normal traffic flow? Bottleneck: (Rank: 1 least, 6 Most relevant) [Per row, select a unique value with no repetition in the

-	-				
:0	2	3	4	S	6
:0	2	3	4	(5)	6
:0	2	3	4	5	6
:0	2	3	4	S	6
:0	2	3	4	S	6
:0	2	3	4	(5)	6
	:0 :0:	:0 2	:0 2 3 :0 2 3 :0 2 3	:0 2 3 4 :0 2 3 4 :0 2 3 4 :0 2 3 4 :0 2 3 4 :0 2 3 4	:0 2 3 4 5 :0 2 3 4 5 :0 2 3 4 5 :0 2 3 4 5 :0 2 3 4 5 :0 2 3 4 5

6) The natural bottleneck areas in Nairobi have been thoroughly studied; there is a master plan which shows where even new link roads should be built to rationalise the traffic flow. There are also a few dozen junctions or roundabouts which could take much higher traffic flow with just a slip-lane of two. But a major part of the solution is reducing the number of obstructions to flow – a bad pothole, speed bump or irresponsible driver stopping at a non stopping zone or doing something to slow down traffic as characterised by matatus. In your opinion, what is the most obvious solution to take to achieve reduced traffic jams?

Solution: (Rank: 1 least, 6 Most relevant) [Per row . select a unique value with no repetition in the

set1 Build the new link roads	:0	2	3	4	\$	6
Add slip lanes to junctions and roundabouts	:0	2	3	4	5	6
Enforce the traffic act with effective policing	:0	0	3	4	S	6
Resurface all roads to eliminate potholes	:0	2	3	4	5	6
Remove speed bumps unless in a school zone	:0	2	3	4	\$	6
Introduce night work and shopping thought out a 24 hour period	:①	2	3	4	\$	6
Other:						

Thank you:

Edgar Nyamweya Okioga, P56/P/8066/03, MSc. Information Systems, University of Nairobi, edgar okioga@wfp.org 0727-676594