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ABSTRACT

Although a number of nonparameteric analysis 
have appeared in the literature, traditional flood 
frequency analysis has been approached primarily as 
a problem in parametric statistical inference. Peak 
annual streamflow data are assumed to come from a 
parent population whose distribution function is 
known, is analytically expressable and contains a 
finite number of parameters. A large number of peak 
flow distributions have been studied, for example, 
the normal, the l'ognormal; the Gumbel, the Gamma and 
Weibull distributions. Goodness of fit procedures 
then test whether or not the data do indeed fit the 
assumed distribution with a specified degree of 
confidence. However, the use of the convetional 
goodness of fit procedures in flood frequency analysis 
has several disadvantages. Firstly, is the lack of 
power of these goodness of fit tests with respect to 
the typically skewed flood peak distributions. This 
generates considerable variability in the estimation 
of design events. Secondly, the conventional goodness 
of fit tests are subjective in that the final results 
drawn from such tests depend very much on the level of 
confidence utilized. This means that different levels 
of confidence can often lead to conflicting results. 
Lastly, and probably the most serious disadvantage is
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that these conventional goodness of fit tests can 
pass more than just one flood peak distribution 
model in a given situation. Hence, these dis­
advantages introduce limitations to the useful- .
ness and power of such goodness of fit procedures 
in the identification process of the most optimum 
flood peak probability model. However, Kite (1977) shows 
that these conventional goodness of fit tests can never­
theless be modified to be useful in model identification.

The Akaike Information theory is used in this 
study to introduce another approach of goodness of 
fit which can be used to identify, more positively, the 
most optimum flood peak probability model. The 
Akaike Information Criterion gives an objective measure 
of the goodness of fit of a given flood probability 
model. This measure has no relevance to the commonly 
used confidence limits. The minimum of these measures 
for the various competing flood peak distribution 
models is used to identify the most optimum model.
The Akaike Information Criterion is also used, in this 
study, to detect the outliers, which due to the nature 
of flood peak, data can exist. The goodness of•fit
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of nine probability distributions was investigated 
in tnis study. Tnese comprised of the l o g n o r ma l  type 3 ,  

the Pearson, tne log-Pearson, tne Fisher Tippet and 
log-Fisher Tippet distributions; and four relatively 
new probability distributions, namely, tne Walter 
Bougnton, tne log-Walter Boughton (Boughton, 1S80) , 
the Wakeby and the log-Wakeby (Boughton, 1978a) 
distributions. The annual peak flow data used in 
tnis study wars collected from sixty river catcnments 
with areas from a few square kilometers to several 
thousand square kilometers, and distributed randomly 
in all the major basins in Kenya. The lengtns of the 
records varied from at least twenty five years to 
about fifty years with tne majority having between 
tnirty to forty years.

The modified Smirnov-Kolmogorov and tne chi-4
i

square tests identify tne Wakeby distribution as tne
best for flood frequency analysis, compared to the rest.
Tnis is furtner confirmed by tne more objective and

\

reliable AIC test. Tnus, the results snow that the 
Wakeby distribution is generally the most suitable 
for flood frequency analysis in Kenya. One of tne worst 
fitting distribution is found to be tne log-Pearson 
Type 3, despite its popularity worldwide. Tne results 
also show tnat tne peak flow data used does not have 
any true outliers. However, some of the poorly fitting 
distributions occasionally snow some outlying 
observations wnen tne more flexible distributions in­
d i c a t e  no such o u f t y . n g  v a l u e s . \
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CHAPTER I

1.0 INTRODUCTION

The magnitude and frequency of occurrence of 
extreme hydrologic events is of great importance in 
all parts of the world. Since man has for reasons 
of communication, water supply, agriculture and 
others,built most of his communities on the flood 
plains of large rivers, his lifestyle is extremely 
susceptible to flood disasters. Today's pressure of 
population increases the density of development along 
the river banks.

Forecasts of flood events can generally reduce 
the damages caused by floods. There are two ways in 
which this beneficial effect can be achieved. Firstly 
and most obviously, warning of flood event which enable 
people to evacuate the danger zone. If a sufficient 
lead-time is provided, vulnerable possessions can be 
removed from the danger zone. Preparations can also be
made such as sand-bagging, to minimize the flood damage

r
The second method of achieving benefits through 

forecasting is to use flood frequency analysis in the 
design of the hydraulic structures within the flood 
plain, and for flood plain zoning. As examples, 
knowledge of the magnitude-frequency relationships 
can be used in the design of dams, highway bridges, railway
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bridges, culverts, water supply systems and flood control 
structures (Kite, 1977). The American Water Works 
Association (1966) reported that about•20% of the dam 
failures all over the world are mainly due to faulty 
spillway designs. Flood plain zoning ensures that 
housing and industrial developments are not located 
in the high risk zones; or at least, if they are 
located in such areas, there can be no justification 
for compensation in the inevitable event of flood 
damage. High risk zones along the banks/of rivers 
susceptible to floods should be used for activities 
compatible with this risk such as parkland, recreation 
areas, some type of grazing or crop production (Kite, 
1977).

Frequency analysis can, not only be used as a 
means of preventing disaster but also as a means of 
introducing efficient designs. When a hydraulic design 
is underdesigned through inadequate or inaccurate data 
or methods, the results, are regretably obvious. The 
dam may fail, the highway may flood or the bridge may 
Collapse.. These extreme consequences do not happen 
very often and so the hydrologist, equating non-failures

I
with successes, is satisfied with his design techniques. 
Frequently, structures are overdesigned and hence very 
safe, but also very expensive. A truly efficient 
design can only be achieved as a result of studies

\
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relating cost of risk and frequency analyis.

The United States Water Resources Council
i(1967) noted that because of the range of uncertainity 

in design flood analysis, there is a need for continued 
research and development to investigate the many un­
solved problems in the field. Current methods pro­
viding design floods for hydraulic structures included 
the use of the flood formulae (Dalrymple, 1964), the 
deterministic use of the meteorological data in tech­
niques such as the dynamic flow equations and the so 
called Probable Maximum Flood method and the stochastic 
use of the frequency analysis. The Probable Maximum 
Flood and other similar methods suffer from the major 
disadvantages of being entirely subjective and of 
having no associated probability level. The latter is 
particularly important since to non-technical people, 
it implies that no risk is involved and that the maximum 
flood cannot exceed this certain limit. This of course 
is untrue and can at times have disastrous consequences. 
In order to be able to define the objectives of this 
research more fully, the following section gives a 
general review of the various methods which are used 
in flood forecasting and design.

1.1 LITERATURE REVIEW

We can divide the flood forecasting and design 
procedures into two broad categories:
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(i) rainfall - runoff catchment models which are 
utilized essentially to forecast the future 
states of streamflow in a river, and

(ii) methods which are used for hydraulic design 
purposes only. These two broad categories 
are reviewed independently in the following 
subsections.

1.1.1 CATCHMENT MODELS

\

Most frequently, the warning of a flood event 
is based on a relationship between the river stage at 
the location of interest and the upstream hydrological 
meteorological, topographical and soil parameters.
This type of relationship is called a catchment rain­
fall - runoff model.

River flows are t he result of an interplay 
of many physical processes. The complexity of hydrolo­
gical phenomena due to the great variety in the 
characteristics of a drainage basin and its response 
to precipitation together with the difficulties 
associated with obtaining the accurate data makes it 
impossible to reproduce such phenomenon accurately.
Hence, it becomes necessary to construct simplified

• I
models of hydrological processes for use in flood 
flow forcasting. In general, catchment models can 
be divided into three main categories: similitude 
models, analogue models and mathematical models.
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1.1.1.1 SIMILITUDE MODELS

The similitude models are based on the analysis 
of the physics of the various processes in the hydro­
logic cycle (Terstreip and Stall, 1974). They es- * 
sentially. consist of constructing a scale model of 
a drainage basin and then calibrating it by comparing 
the rainfall - runoff relations for the scale model 
with those of the actual drainage basin. The simili­
tudes models have the advantage that most of their 
governing parameters have a direct physical inter­
pretation and their ranges can be established re­
asonably well on the basis of field and laboratory 
investigations. These models are most useful when 
the streamflow data is not readily available, for 
example if the catchment is ungauged or if a hypothe­
tical land use is to be investigated. A major dis­
advantage of the similitude models is that they are 
generally quite demanding in terms of computers and 
data requirements. Such models often require an in­
tensive and sophisticated instrumentation in the 
watershed for calibration purposes. Further, the 
results of experiments under laboratory or field 
conditions are affected by additional factors not 
taken into account or not accurately reproduced in 
the model. Due to these constraints, similitude 
models are generally not popular for forecasting
purposes.
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1.1.1.2 ANALOGUE MODELS

Analogue models are based on the analogy 
between the movement of water in streams and electric 
currents in designed circuits or the flow of water 
in a system of vessels (Dawdy and Litchy, 1968).
These models make use of the electronic analogue 
computers which solve problems by behaving electro­
nically in a manner analogous with the problem solution. 
The analogue computer has the advantage of integrating
the problem variables continuously instead of using

!numerical approximations as is the case with digital
computers. Since the analogue computer is a parallel
device in that all computations proceed simultaneously,
it is a much faster computing device than the digital
computer. When the size of a problem is doubled the
time for solution in the analogue computer remains the
same although the amount of equipment required is also
approximately doubled. On the other hand the digital

/
computer, which is a sequential machine, takes about 
twice as long when the problem is doubled and when 
the amount of equipment remains unaltered.

When used for streamflow forecasting, the 
result of an analogue computer is presented in a 
graphical form as a continuous plot of the variables 
involved. The operator can visualize results as 
being the dynamic response of the drainage basin under
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investigation. Also, the results of the various ways

of combining the different components of the entire 
system can be quickly defined to determine the changes 
in specific processes that are necessary to meet the 
prototype conditions. Thus, the analogue system is 
very helpful during the exploratory phases of develop- 
ping the component relationships and also the composite 
model. Since the changes in problem size affect the 
amount of the analogue equipment required, and also 
considering the economic constraints that may be in­
volved, the use of analogue models is undertaken when 
all the other types of models are not feasible econo­
mically .

1.1.1.3 MATHEMATICAL MODELS

Mathematical models are the most widely used 
catchment models at the present time (Clark, 1973).
This is mainly due to their flexibility and ability to 
handle large quantities of data with computers to des­
cribe complex systems. For purposes of hydrological 
forecasting, there are about four main categories of 
the mathematical models, namely, stochastic models, 
system approach models, dynamic models and conceptual 
catchment models.

Stochastic models are relatively classical 
procedures based on simplified hydrologic balance
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equations which are usually calibrated statistically. 
These models normally yield the volume of runoff or 
some other outstanding characteristic such as the peak 
discharge. -

The systems approach models describe mathema­
tically the relation between precipitation and stream- 
iflow without reference to the process by which they 
are related. They are also called lumped parameter 
or black-box models. The unit hydrograph, time-area 
curves and linear reservoir concepts, often in their 
i more comp1icated systems analysis versions, are the 
basic examples of the approach. These models are 
often used in combination with others. In such cases, 
the systems approach components represent the actual 
distribution or response function.

Dynamic models, also called distributed para­
meter models, are based on the solution of equations 
for unsteady motion of water both for overland and 
channel flow, either in their pure hydraulic form or 
in a simplified hydrological form. The Kinematic wave, 
or other unsteady flow description by simplified 
differential equations, mostly solved by numerical 
methods represent examples of this type of model. These 
types of models are mostly suitable for routing channel 
flow from one point to. another.

✓
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Conceptual catchment models are based on simpli­
fied description of water movement in the basin, both
in time and space, on and under the surface of the

>earth, accounting for water storage and movement in 
discrete but short time intervals. The moisture 
accounting in these models can be either indices 
which are either implicit or explicit. The prolifi- 
cation of conceptual models and their increased 
importance for hydrological forecasting led to the 
World Meteorological Organization (WMO) to initiate 
a project on intercomparison of conceptual models 
which are mostly used in operational hydrologic 
forecasting (WMO, 1975). The choice of a model to 
be used depends mainly on the intended application 
and on how much information is available, on the be­
haviour of the system to be modelled.

I
1.1.2 METHODS USED FOR FLOOD DESIGN PURPOSES ONLY

The peak discharge that has been or may be 
exprienced is a pertinent item in the design of 
structures along or across a river. The peak discharge 
can- be computed from the Probable Maximum flood or 
from a flood frequency analysis concept.

\
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1.1.2.1 FLOOD FORMULAE

Many flood formulae have been developed for 
computing peak discharges (Chow, 1962), but most 
are considered inadequate for engineering design. 
Studies based on flood records are usually preferred, 
but flood records are scarce for most drainage areas, 
and often use must be made of some formula. The most 
commonly used flood formulae are the rational formula 
and the Myers-Jarvis enveloping curves.

The relation between rainfall and the peak 
discharge has been represented by many empirical or 
semi-empirical formulae. The rational formula can be 
taken as a representative of such formulae. Although 
this formula is based on a number of assumptions which 
cannot be readily satisified under natural conditions, 
its simplicity has won its popularity.

The rational formula is of the form
\

Q = CIA ___ (1)

where Q is the peak discharge, C is a runoff coef­
ficient depending on the characteristics of the 
drainage basin, I, is the rainfall intensity and A is 
the drainage area which is in acres if Q is in cubic 
feet per second and I in inches per hour. The formula 
is called rational because the units of the quantities

‘ I
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involved are numerically consistent approximately.

When using the formula, one must assume that 
the maximum rate of flow owing to a certain rainfall 
intensity over the drainage area is produced by that 
rainfall which is maintained for a period equal to 
the period of concentration of the flow at the point 
under consideration. Theoretically, this is the time 
of concentration which is the time required for the 
surface runoff from the., remotest part of the drainage 
basin to reach the point being considered. For uni­
form rainfall intensity, this is the time of'equilibrium 
at which the rate of runoff is equal to the rate of rain­
fall supply. For natural drainage basins of large 
size and complex drainage patterns, runoff water or­
iginating in the most remote portion may arrive at 
the outlet too late to contribute to the peak flow. 
Accordingly, the time of concentration is generally 
greater than the lag time of the peak flow. For 
small drainage basins with simple drainage patterns, 
the time of concentration may be very close to the 
lag time of the peak flow. For small agricultural 
drainage basin, Rasmer (1972) determined the time ©f 
concentration by noting the time required for the 
water in the channel at the gauging station to rise 
from the low to the maximum stage as recorded by the

r
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water-stage recorder. An emperical formula for the 
time of concentration in hours is given by Kirpich 
(1940),

- .0.77
t = 0.00013 c gO .385 ----------  ( 2 )

where L is the length of the basin area in feet, 
measured along the water-course from the gauging 
station and in a direct line from the upper end of 
the water-course to the farthest point on the drainage 
basin, and S is the ratio in feet to L of the fall 
of the basin from the farthest point of the basin to 
the outlet of runoff, or approximately the average 
slope of the basin in dimensionless ratio.

The range of values of the runoff coefficient 
C, in relation to the characteristics of the drain­
age basin are discussed by Merrill (1932).

The assumptions involved in the rational 
formula are:

(i) The rate of runoff resulting from any rain­
fall intensity is a maximum when this rain­
fall intensity lasts as long or longer than 
the time of concentration.

(ii) The maximum runoff resulting from a rainfall 
intensity, with a duration equal to or greater 
than the time of concentration, is a simple
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fraction of such rainfall intensity: that is, 
it assumes a straight line relation between 
Q and I, and Q = 0 when 1 = 0 .

(iii) The frequency of peak discharges is the same 
as that of rainfall intensity for a given time 
of concentration.

(iv) The relationship between peak discharges and 
size of drainage area is the same as the re­
lationship between duration and intensity of 
rainfall.

(v) The coefficient of runoff is the same for 
storms of various frequencies.

(vi) The coefficient of runoff is the same for storms 
on a given watershed.

It is believed (Chow, 1964) that these assump­
tions might nearly hold for paved areas with gutters 
and sewers of fixed dimensions and hydraulic charact­
eristics. The formula has thus been rather popular 
for the design of drainage systems in urban areas and 
airports. The exactness and satisfaction of these 
assumptions in application to other drainage basins, 
however, have been questioned. In fact, many hydro­
logists have called attention to the inadequacy of 
the method.

Probably, the most widely used flood formula 
is that developed by Major E.D.T. Myers (Dalrymple, 
1964). As modified by Jarvis (1942), this formula is
g i v e n  as
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Q = lO O p /iT  . . . .  ( 3 )

where Q is the discharge in cubic feet per second, 
p is the numerical percentage rating on the Myers 
scale, and M is the size of the drainage area in 
square miles. In ordinary use, peak discharge Q in 
cubic feet per second per square mile are plotted 
on logarithmic paper against the drainage area M is 
square miles. Then a straight line, called the 
Myers curve, with a slope of 1:2 is drawn as an 
envelope through the upper points. This curve is 
intended to give an estimate of flood peaks that 
could occur anywhere in the region.

The Myers - Jarvis formula makes two ques­
tionable assumptions:

(i) The flood peaks vary as the 0.5 power of the 
drainage area, and

(ii) The flood producing characteristics of the 
streams in the region under consideration 
follow the same law as expressed by the 
formula.
Experience, however, has shown that these 

assumptions are usually not realistic (Dalrymple, 
1964) .
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1.1.2.2 THE PROBABLE MAXIMUM DESIGN FLOOD

It is recognised that there is a physical 
upper limit to the amount of precipitation that can 
fall over a specified area in-a given time (Bernard, 
1944). This upper limit has become known as the 
Probable Maximum Precipitation, and is more precisely 
defined as, that depth of precipitation which for a 
given area and duration, can be reached but not 
exceed under known meteorological conditions.

A procedure to determine probable maximum 
precipitation for regions of little to moderate to­
pographic variation has been developed and is widely 
applied (U.S. Weather Bureau, 1937-1970, Bernard,
1944). The procedure involves two steps:

(i) the preparation of probable maximum depth - 
area - duration curves, and

(ii) the selection by means of these curves of 
a pattern of storm for use in the basin.

The probable maximum depth - area - duration 
curves are prepared by simple enveloping of the 
moisture adjusted depth - area - duration values for 
all storms considered transposable to the region of 
study. The moisture adjustment factor is the ratio 
of the maximum total moisture content in an at­
mospheric column of unit cross-section in the region 
to the total moisture in a similar column that occurred
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during the storm. The maximum values for different 
size - areas and for different durations may and 
probably do come from different storms. The pattern 
storm depends on the size of area, and to a lesser 

- degree, on the duration deemed hydrologically critical. 
For areas upto a a few hundred square miles in size 
and not too peculiar in shape, the pattern is not 
usually very critical and a single pattern may be 
applicable to many basins (Chow, 1964). For areas 
of tens of thousands of square miles or more in size 
and areas of unusual shape, close examination of 
the patterns may be necessary to determine one that 
is realistic. In ordinary cases, the pattern is 
based on one of the storms that gives the enveloping 
depth - area - duration values near the area size and 
duration of hydrologic importance . All depth - area - 
duration values for the storm are multiplied by a 
factor, which is the factor that brings the values of 
certain points to tangency with the enveloping curves. 
In case of unusual basin shape or of large topographic 
variation, the pattern storm may be based on combina­
tions of different parts of actual storms.

Although the use of the probable maximum preci­
pitation has some serious problems (as will be 
mentioned later), the advantages of the procedure are 
several. Tirstly, it provides both empirical and 
statistical controls. Secondly, the values obtained
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are directly related to the largest that have 
occurred. Thirdly, the exprience of a basin is 
extended through transposition. Fourthly, the use 
of actual storms for patterns ensures realism in 
that nature's integrations are used rather than 
hard - to - justify synthetic ones, and lastly, the 
overcompounding of probabilities is minimised.

Several features of the results which are 
obtained through this method are worth mentioning.
The highest estimates of probable maximum precipita­
tion often exceeds the greatest value of observed 
precipitation, in certain areas, by only a small 
percent. In other basins, they may be several times 
as great as the maximum observed. The greatest 
maximising process for a given basin is storm tran­
sposition. If a precipitation value several times 
as large as any over a given project basin has been 
observed over a nearby basin, then it is considered 
that ' the observed ischyets of the actual storm 
can be transferred, or transposed so as to indicate 
the maximum amount over the project basin. Obviously, 
there are geographical, topographical as well as 
synoptic limits as to how far this transposition can 
be extended. A difficulty arises in areas that are 
small in geographical extend and not homogeneous, 
meteorologically and topographically, with the 
neighbouring areas. Then, transposition results in
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values that are very much lower, comparatively, than 
would be obtained from transposition in large homo­
geneous areas.

The maximum probable flood can be obtained 
from the probable maximum precipitation by substracting 
loss rates and adding the snow melt (where applicable) 
with due regard to the relationship with time. It is 
seldom economically practicable to design for the 
probable maximum flood. The design flood is usually 
selected by pertinent facts. Pertinent facts are re­
presented by stream-flow records which are either 
computed from precipitation records or by application 
of hydrologic principles to measured physical factors 
or directly observed and ana Iysed to best apply to the 
particular situation.

Where an area is thickly inhabited or developed 
industrially, and the failure of protective works can 
result in loss of life and great property damage, a 
design on the basis of the probable maximum flood may 
be justified. In agricultural areas where failure 
would result only in flooding of crops, a design for 
a much smaller degree of protection would be justified. 
\arying conditions lie between these extremes and varying 
design discharges would be called for in providing 
protective works.
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1.1.2.3 FLOOD FRFQUFNCY ANALYSIS

Flood frequency analyses are generally made 
for one of the two purposes.

(i) as a guide to judgement in determining the 
capacity of a structure, such as a highway 
bridge opening or a cofferdam where it is 
considered permissible to take a calculated 
risk, and

(ii) as a means of estimating the probable flood 
damage prevented by a system of flood pro­
tection works over a period of years, usually 
equal to the estimated economic life of the 
works.

In the first case, the magnitude cf the flood 
discharge that will be equalled or exceeded in a certain 
period of years is required. In the second case, it 
may be necessary to consider, in addition to the peak 
flood discharge, peaks and season of occurrence. Most 
often, it is for the purpose of estimating the design 
flood (capacity of a hydraulic structure) that flood 
frequency analysis is done.

One of the most common problems faced in 
hydrology is the estimation of a design flood from a 
fairly short record of stream-flow data. By plotting 
the magnitude of the measured events against their 
observed return periods on a probability paper, some
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kind of a pattern is generally apparent. The 
difficulty with this approach is how to use this 
pattern to extend the available data and estimate 
design floods of higher return periods.

If a large number of records, at least as
long as the return period of the required design
event, are available then the problem is simplified.
In the extreme, if a large data sample were available,
then the design event and its risk estimates could be
derived directly from the sample data. However, this 

/kind of data is never available and therefore the short 
data sample is generally used to fit a frequency dis­
tribution which in turn is used for extrapoloration 
to the desired design event, either graphically or by 
estimating the parameters of the probability distribution 
function.

Graphical methods have the advantage of 
simplicity and visual representation and also the 
fact that no assumption of distribution type is made. 
However, these advantages are outweighed by the dis­
advantage that the method is highly subjective and 
is therefore not compatible with the other phases of 
engineering design. Nevertheless, subjective inform- 
mation ne'ed not be totally elliminated since the 
techniques such as the Bayesian analysis may permit
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its use (Wood and Rodriquez-Iturbe, 1975).

Although a number of non-parameteric frequency
analyses have appeared in the literature (Vicê  ̂ et al,

\

1975; Wood and Rodriquez-Iturbe, 1975), traditional 
flood frequency analysis has been approached primarily 
as a problem in parameteric statistical inference 
(Yevjevich, 1972b). In this method, peak annual stream- 
flow data are assumed to come from a parent population 
whose distribution function is known, is analytically 
expressable and contains a finite number of parameters. 
The main source of error in using the parameteric 
approach in flood frequency analysis is that, it is not 
known apriori which of the many possible probability 
distributions is the true distribution, that is, which dis­

tribution, if any, the flood events naturally f o l l o w .  

Thus, an identification process is usually necessary, 
since in general, the sample events available are for 
relatively low return periods (around the centre of 
the distribution) while the required estimates of the 
design events are of large return.periods in the tail 
of the distribution. Many distributions have similar 
shapes in their centres but differ widely in their tails. 
It is thus possible to fit several distributions to 
a sample data and end up with several different 
estimates of the required design flood. Chi-square 
and similar tests of goodness - of - fit can be used to 
choose the distribution which best describes the sample
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data. However, this does not usually solve the basic 
problem (Kite, 1977).

Numerous different probability or frequency 
distributions have been used in hydrology (Chow, 1964).. 
Discrete distributions such as the binomial and 
Poisson have been used to define the average intervals 
between flood events and to evaluate risks (Hall and 
Howell, 1963; Kalinin, 1960). Continuous distributions 
such as the normal, the lognormal, Pearson, Log-Pearson 
and the general extreme value distributions (in the 
real and logarithmic domains) have been studied with 
relevance to flood modelling. Furthermore, other 
new and more meaningful distributions such as the 
Walter Boughton and Wakeby distributions have been 
discovered (Houghton, 1978a; Boughton, 1980).

Once a probability distribution has been 
chosen, the second source of error becomes apparent.
The statistical parameters of the probability dis­
tribution must be estimated from the sample data.
Since the sample data is subject to error (more so 
with flood data), the method of fitting must be able 
to minimise these errors and must therefore pe as 
efficient as possible. In the following sections, 
we will review the estimation methods which are 
commonly used in hydrology.
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1 .1 .2 .3.1 PARAMETER ESTIMATION METHODS

The population properties of random variables 
are usually characterised by parameters, percentiles 
or other similar numbers. Because populations are 
rarely known in sciences like hydrology, the popu­
lation properties of random variables must be esti­
mated from the available sample data. Any estimate 
obtained from a sample is a statistic. The statistic 
also may be defined as a function of the sample values. 
This function of the sample values also refers to 
some property of the population of random variable.

If a probability distribution has three 
parameters <*,$ and y the estimators of these values

I
denoted here as a, b, and c should be as close to the 
papulation values as is practically possible. The 
measure of goodness of the estimation methods are 
the variances of the differences O- a), (3- b) and 
(y-c). The smaller these variances are, the better 
is the-estimation method. The estimated values a,b, 
and c, are called the estimators of °=,y and y. There 
is a large number of possible estimates of any parameter 
Some of them may be considered as best estimates. The 
concept of best estimates must be clearly defined. Though the 
best estimates, designated by 3 and y there may 
be a large number of these estimates (Yevjevich, 1972a).

- 23 -
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Because the various samples of the same size drawn 
from a given population have different estimates a,b 
and c of , 6 and y respectively, the sampling 
distributions of the estimates a,b, and c about their 
population values and y are important properties
of estimation methods. The bias and mean square errors 
are the main criteria used for determining the best 
estimates (Raynal and Salas, 1985). The smaller 
the variance of an estimate, the better the estimate 
is in comparison with the others.

An estimator is often classified as biased or 
unbiased, regular or irregular, efficient or ineffi­
cient, sufficient, or insufficient and consistent 
or inconsistent (Yevjevich, 1972a). To define these 
five concepts of estimates, ass-ume that the estimation 
is needed for in the one parameter probability density 
function, f(x;«), of the random variable, x; or for <* 
and B in the two parameter probability density function 
f(x;«,B). The variance of partial derivatives of the 
logarithms of these functions, designated by D(a) is 
given by

2 2

D(a) 8 Anf (x ;oc) 
3 “ f(x; dx-E 0 a

. . .  (4)

/



In the case f(x;«,B), the corresponding expressions
of (4) give D(a) and D(b).

If L.he expected value of an estimator,/ a, of « is 
E(a) = tx+v( oc) ___ (5)

in which v(“) =(= 0 , the estimator,, a, is unbiased.

The difference between the sample and population 
values is (a-“). If the variance of this difference 
satisfies the condition that it is greater than a 
certain value (given in (6)) the estimator is called 
regular. This inequality is (Carmer, 1958) *.

r- 2
2 [l + piZllVar( a-a) = E(a-«) > A --- (6)

in-which N is the sample size, D(a) is defined by (4) 
and v(«) is defined by (5). Fo1' an unbiased estimator,,
A“,(6).: becomes

A 2Var(cc-oc) >1/n .D(~) ___ (7)

If an estimator is unbiased and regular, and if 
Var(£) = E (S-«) = 1/N.D(«) ___ (8)

the estimator is efficient (Yevjevich, 1972a). It 
has the smallest possible variance of deviation 
(°c_oc) for a given N and f(x;«), and is usually under­
stood as the best estimator. For any other estimator
a, different from <=, the variance is E(a-«)2>
A 2E(cc-cc) , and the ratio

- 25 -
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<1 ... (9)

in which the numerator is given by (8) is called the 
efficiency of an estimation method which produces the 
variance given by the denominator of (9). Only an 
efficient estimator has a e„ = 1. Two efficient estimators

CL

<*j and «2 > the parameter have the same mean, «, the 
same variance given by (8), and their correlation co­
efficient, p = 1. When an efficient estimator exists, 
it can always be determined by the method of maximum 
likelihood (Mood et at, 1974).

If =2 and <*2 are two independent estimates of <*, 
then is considered a sufficient estimate if the joint 
proabbility distribution of and <*2 has the property 
(Yevjerich, 1972a) v

in which FC^) is the distribution of F(<*2/a1) is
conditional probability distribution of « 2 given o^, and 
K(x 1 ,x 2 ,....,xN) is not a function of «. When (10) holds 
“2 does not produce any new information about «, which

is not already contained in regardless of the esti­
mation method used to produce the estimate In /this
case, oĉ is optimum, or it is also a sufficient estimate.

F(“1,-2) = F(«1 ).F(«2/cc1) = F(*1 )K(x1,x2 > ••••>xw)

... (10)

Lastly, if the sample size N is large, /soc is called



-  27

consistent estimate of “ if it converges with a 
probability unity to a as N tends to infinity. Be­
cause many unbiased estimates have the variances of the 
type Var(“)= C//N, where C is a constant, then in most 
cases the condition of consistency is usually satisfied. 
If this is the case, and if the efficiency e tends to 
unity as N goes to infinity, the estimate £ is called 
the asymptotically efficient estimate.

The above five properties of estimators have > 
different significances when applied in statistics.
In the majority of cases of estimation, the most 
important properties are to have unbiased (and there­
for regular), and efficient (and usually sufficient 
and consistent) estimates (Yevjevich, 1972a). These 
two properties of unbiased and efficient estimates 
are usually required in hydrology when the requirement 
is to extract the maximum information from the same 
data.

Hydrologic data are often scarce. In arid and 
semi-arid regions, where the hydrological variables have 
the highest variation, and often have distributions 
which are highly skewed, the irony is that sample data'' 
are shortest in length, and the number of observa­
tional points is usually small. It is therefore a 
mistaken attitude of many practitioners in hydrology 
that simple estimation methods, like the graphical
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method or method of moments, are sufficiently 
accurate because of the scarce data. This approach 
should be quite the opposite. For these variables 
in hydrology with great variation, a highly skewed 
distribution, and a short series of observations, 
the unbiased and efficient estimates should be always 
searched for (Yevjevich, 1972a). The main problem 
is selecting the estimation method in each particular 
case that gives the unbiased and efficient estimates 
with the least computational cost.

Generally, the methods of distribution parameter 
estimation currently in use in hydrology given in their 
ascending order of efficiency, from the least efficient 
to the most efficient, are the graphical method, the 
least squares, method, the method of moments and the 
maximum likelihood method. However, for large samples 
(of size greater than 20), and for distributions which 
have distribution functions expressable in an inverse 
form the method of probability weighted moments is 
generally most efficient. The following sections give a 
brief review' of these parameter estimation methods.

1.1.2.3.1.1 THE GRAPHICAL ESTIMATION METHOD
If one draws the normal distribution in the form of a v

straight line in cartesian probability scales to the plotted 
empirical distribution, the 50°a probability gives the estimate of
the mean, x, and the difference of the value of the variate x for
84.]3 percent and 15.87 per-cent gives 2S, where S is the standard 
deviation. These values, x and S, are said to be 
graphically estimated, because the straight line fit

in these•scqles is usually°f  the normal distribution
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made visually in drawing a straight line. The accu­
racy however, is very limited.

Generally, any distribution other than the 
normal distribution, can be used. However, the basic 
condition for use of this method is for th'e coordinate 
scales to be transformed in such a way that a given 
probability distribution function, F(x;a,f3, ....),
plots as a straight line. The graphical fit may, how­
ever, be used for the fitting of the functions.

y = f(x;«, B,---) „ . --- (11)

without a transformation of coordinate scales. This
requires, a visual tracing of the curve, selecting
m points for m parameters in the various
parts of the curve, through which (1 1 ) should pass.

IThe coordinates yi and F^x; “,»,.... ) of m points give 
m equations from which the parameters may be estimated. 
The accuracy of this method is highly subjective, and 
depends on experience and good judgment.

1.1.2.3.1.2 LEAST SQUARES ESTIMATION METHOD

This method consists of the estimation of 
parameters by fitting a theoretical function to an 
empirical distribution, or any other empirical curve. 
The sum of all squares of deviations of observed 
points from the fitted function is minimised to

I

I
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produce least squares.

In the case a function y = f(x;a,3, ) shuuid 
be fitted to data by determining the best estimates 
a,b,...., of 3, the analytical method of
least - squares minimizes the sum.

2
yi“f(xi b,---)

-------  ( 1 2 )
in which x^ and ŷ  are coordinates of observed points,
a,3, .... are replaced by their estimates a,b.....
and n is the sample size. Instead of minimizing 

2 2ICy^-y) i often £en, which are perpendicular deviations 
from the function f(x;«,B, . . . . ) also may be minimized.
So that the line f(x;«,8,....) may have the minimum of
(1 2 ), all partial derivatives of the sum with respect 
to parameters a,b,.... should be zero so that

. (13)

These partical derivatives give m. equations for the 
determination of m parameters. The simplest functions 
f(x Ja>B>■••.) are those which are linear with respect 
to parameters. Among such functions, the polynomial 
function, of x is a general case, since other functions

n 9 n n
= l ei = l (y±-y ) 2 = li=l i=l 1 i=l

S

i
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can be approximated by polynomials if they are developed 
in power series form. There must be more points than 
parameters, or n> m. Generally, b should be much greater 
than m, ii the derived line is to be used for purposes 
of prediction.

Three conditions should be satisfied for the 
least squares method to be an efficient estimation 
method:

(a) that the deviations e_L of (1 2 ) are normally, 
or at least symmetrically, distributed;

(b) that the population variance of e.̂ is in­
dependent of the position of a group of
values ei, or the deviations are mutually

t *
independent along the line, and

(°) that the population variance of ê  along the
least-squares curve is constant.

These conditions are rarely satisfied in hydrology, 
especially the latter two, because often the deviations 
ei depend on y^; usually they increase with an increase 
in y. In this case, by minimizing S of (12.) through
(13), greater weights are given to larger y - values 
than to smaller ones. Therefore, a bias is introduced. 
To alleviate this, various transformations of coordi­
nates are used in an attempt to make the above condi­
tions satisfied as closely as practically feasible.
The logarithmic transformation is most commonly used 
in hydrology for this purpose, though it has the bias
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of giving larger weights to smaller y - values than 
to larger ones.

■  I

1 .1 .2 .3.1.3 METHOD OF MOMENTS

The expected value E(x) of a random variable x
is called the first population mcment of x. In general, the 
expected value E(xr) is called the r-th population

If the random variable x represents a probability dis-
bution model with parameters ....the population
moments are functions of these parameters. Therefore, 
the moment parameter estimates are obtained by equating 
population moments and sample moments, and solving for 
the parameters. If m is the number of parameters to 
estimate, then the first m population and sample moments 
must be equated and solved simultaneously.

For instance, consider a probability distribution 
model given by

moment of x. Similarly, when dealing with a sample 

....,XN’ r~th sample moment is defined by

--- (14)

» -°°<x £ ©a .... (15)

We would like to estimate the parameters « and £ based

\
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on the observed sample ....X[j which ls beiie„ed

to have a probability density function of (15). Since 
we have two parameters, then the first and the 
second population and sample moments must be equatetl. 
The first two population moments of (15) are

E(x) = » ___ (1 6 )
and

E(x2) = cc2 + B2 .... (17)

Similarly, the first two sample moments of the sample 
are

1 N
= I xi ' .... (18)

and
, _ 1 ? 2 
y2 N .1,xii=l

___ (19)

Equating the first population and sample moments of (16) 
and (18) respectively, we obtain the estimate = 
of the parameter = as

Acc 1 ?
Ni^lxi

/
___  (2 0)

Equationg the second population and sample moments 
of (l?) and (19) respectively, we obtain the estimate
6 of 8 as

/
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CX T/V A 2

or

_____  ( 2 1 )

The estimation of parameters by the method
of mompnts is usually not difficult to obtain and it 
is simpler than the estimation by other methods.
Often, the moment estimates are used as first appro­
ximations for the estimation by other methods. Except 
for the estimate of the. meat,the moment estimates of 
other parameters are usually biased, although adjust­
ment can be applied to make them unbiased. Moment 
estimates are asymptotically efficient when the under­
lying distribution is normal. For skewed variables 
though, the moment estimates generally are not 
asymptotically efficient.

1.1.2.3.1.4 METHOD OF MAXIMUM LIKELIHOOD

Let f(x;“,B,....) be a probability density 
function of x, with «, 3, . . . . , parameters to be 
estimated. The product

( 22 )

is called the likelihood function of a sample of N
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observations 
variable x. 
probability

from a population of the continuous 
In the case of a discrete variable with

....), the likelihood function is

jP^(x^»oc>6» • • • .), (23)

in which N is the sample size and = , 6 ..... are
replaced by the estimates a,b,.... The estimate of

consists of determining a,b.... from the
sample data in such a way that the value of L in 
(23) is maximised. Since the natural logarithm of L, 
usually denoted as Jln(L), attains the maximum values 
at given a,b,.... as L /does, the likelihood equation 
is

£n(L) Jin Ni5 1 f(xi;a,b,...)
N

= I  Ini=l
f (x, ; a, b,-- )

.... (24)

while its partial derivatives in a,b,...., equated 
to zero and called the maximum likelihood equations, 
are

-ĵ -£n(L) - 0; -|^£n(L) - 0; .... (25)

These equations, represented by the system of equations
in (25), which are of the same number as the number
of parameters allow the computation of the estimates
a»b,.... Therefore, the maximum likelihood equations

rjn j5 E R srT tl_ DF NATRCTB 
U B K A R Y
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are functions of the parameters to be estimated for a
given sample. In this case, the estimates a,b,....,
are the efficient estimates of *,P,....,if the
efficient estimate exist.

The solution of (25) must exclude all estimates 
which are constants, and retain only those roots of 
these equations that depend on the sample x^,x^,.... x^.
The estimates by the maximum likelihood method have 
the following properties.
(i) they are asymptotically unbiased
(ii) if efficient estimates exist for the parameters

..... the maximum likelihood method pro­
duces them, and

(iii) if sufficient estimates exist, the solutions 
of the likelihood equations are functions of 
these sufficient estimates.
Often, the likelihood equation (23), gives solution 

for estimates that converge to the true population 
values as the number of indepenent observations tends 
to infinity, with p r o b a b i l i t y  unity., so that the 
estimates are consistent.

The use of the least squares method, the graphical 
method and the probability weighted method which is 
reviewed in section 2 .8.2 , for parameter estimation can 
introduce further errors when an improper plotting position 
formul^ is used. The plotting position for the 
observed floods has been a matter of considerable
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controversy (Langbein: 1960). A general plotting
position formula is of the form (Harter, 1971) :

m-a
n-a-b+1 ___ (26)

where m is the rank order of the sample values 
arranged in ascending order of magnitude, p is the 
plotting position which is also the probability of
non-exceedance of the corresponding event, and a and

1
b are constants which depend on the shape of the 
assumed probability density function. When a = b = 0, 
we get the commonly used Weibull plotting position 
formula, which is appropariate for symmetrical 
distributions. However, a value of a = b = 0.38 
has been shown to be the best for asymmetrical 
distributions and for sample sizes of 15 or larger 
(Singh, 1980).

Having selected a distribution function and 
estimated its parameters, the question is how to use 
such distribution ;to estimate the design flood events. 
Chow (1951) proposed a general equation of the form,

xT y + Kcr ... (27)
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where Xrp is the required estimate of the design 
flood with return period T, and y and a population 

mean and standard deviation respectively, which can 
be replaced by the corresponding sample estimates, 
and K is the frequency factor. The frequency factor 
is a function of T and other population parameters.
In most cases,a relationship can be derived between 
the return period T, the distribution paramters 
and the frequency factor K (Kite, 1977). Therefore, 
by use of (27), with sample parameter estimates, it 
is possible to extrapolate beyond the recorded flood 
magnitudes to obtain design floods of higher return / 
periods.

1.2 OBJECTIVES OF THE STUDY

This project is entirely devoted to the ad­
vancement of the flood frequency approach using data 
from the major river basins in Kenya. Shen et al 
(1980) showed that at least three parameters are 
necessary for a probability distribution to model 
peak flows adequately. Hence, only those probability 
distributions with at least three parameter will be in­
vestigated herein.

The three parameter log-normal, Pearson 
Type 3, log-Pearson Type 3 and the Fisher /fippet- 
Type distribution in the real and logarithmic domains 
have been used very extensively all over the world
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for flood modelling. However, it has never been 
shown which of these distributions is in general 
better than the others, although some countries have 
adopted the use of one of them in preference to the 
others.

Recently, the Walter Boughton and the Wakeby 
distributions were proposed to have more advantages 
over the traditional distributions (Houghton, 1978b; 
Boughton, 1980). Nonetheless, no work has been done 
to give a convincing evidence to support such pro­
posals. In this project, we wish to find which of 
the nine probability distributions, namely, the 
three parameter lognormal, the Pearson Type 3, the 
log-Pearson Type 3, the Fisher Tippet Type, the log- 
Fisher Tippet Type, the Walter Boughton, the log- 
V.'alter Boughton, the Wakeby and log-Wakeby distribu­
tions, is most favourable in general than the others 
using annual peak discharge data from the major 
drainage bafeins in Kenya. This will be achieved, 
mainly by finding the model which most frequently gives 
the minimum Akaike Information Criterion in the con­
text of the existence of low and high outliers. The 
conventional goodness-of-fit tests, namely, the chi- 
square and the Smirnov-Kolmogorov tests will also be

used to supplement the Akaike Information Criterion 
test.
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In order to understand the optimum model 
identification process better, the properties and 
fitting procedures of both the traditional three 
parameter probability distributions and the new dis-. 
tributions will be discussed. Since the outlier pro- . 
blem in flood frequency model identification is a new 
approach in that field, a discussion of outlier de­
tection and accommodation, with emphasis on the Akaike 
information theory, . will also be given. The data 
used together with the climatology of the region of 
study will however, be reviewed first.

i ,
1.3 DATA USED

/
)

Kenya can be divided into five distinct drainage
areas, namely the Lake Victoria basin, the Rift Valley
drainage basin, the Tana River drainage basin, the *
Athi River drainage basin and the Uaso Nyiro drainage 
basin. Table 1 gives a summary of the characteristics 
of these drainage basins.

1.3.1 DATA COLLECTION

The Kenya Ministry of Water Development operates 
a fairly good network of fiver gauging stations (RGS) 
on rivers, streams and lakes of Kenya. There is also 
a good network, of rainfall stations, some of which 
are maintained by tne Ministry of Water Development
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T A H i f i  1: CHARACTERISTICS OF THE DRAINAGE BASINS IN KENYA
\ '

Drainage
basin

Area
£km̂ )

Mean
annual
rain­
fall

Mean
annual
runoff

Runoff
percent-

Predominant 
soil category

1. Lake Victoria 49,000 1245 149 12 poorly drained
2. Rift Valley 127,000 535 6 1 well drained soil
3. Athi River 70,000 585 19 3 well drained soil
4. Tana River 132,000 535 36 7 impeded drained soils
5. Uaso Nyiro 205,000 255 4 2 well drained soils

Kenya 583,000 500 25 5 well drained soils

1 - J 1

t
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but the majority are maintained by the Kenya Meteo­
rological Department. The quality of the data 
on river flows varies a great deal from station to 
station. At some of the major rivers, continuous 
records have been obtained from autographic water 
level recorders for a considerable number of years. 
However, at the majority of the river gauging stations, 
the water level is recorded manually by taking one or 
two readings daily on a staff gauge , and at some 
remote stations, the readings; are taken even less fre­
quently .

With the permission of the Director, Ministry 
of Water Development, the annual peak gauge heights 
were extracted from the River Gauging- (RGS) files 
which are routinely updated by the Water Resources 
Department of the Ministry. In all, about 400 RGS 
files were scrutinized. However, only 60 river gauging 
stations were chosen. These were the stations which 
had the most reliable data (from the remarks on the 
return sheets)'; had at least 25 years of complete 
records and had well established river stage-discharge 
relationships (rating curves). Twenty eight stations 
were chosen from the Lake Victoria basin, seven froir. 
the Rift Valley basin,seven from Athi River basin, ten from Tana kiver basin

and eight from the Uaso Nyiro basin. Figure 1 shows
cue location of these gauging stations in the five
drainage basins in Kenya. Table 2 shows the years

t
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TABLE 2: CHARACTERISTICS OF THE SELECTED RIVER GAUGING STATIONS.
I

YEARS OF DATA COLLECTION

RGS
CATCH­
MENT 
'AREA Km FROM TO

t
EFFECTIVE 
LENGTH 
(YRS.)

HYDROMETRY

1CE1 2440.0 1948 1982 34 STAFF + FLUME
1CB2 62.2 ' 1932 1968 36 STAFF + WEIR
lBAl 262.6 1953 1982 30 ■ STAFF + FLUME
LBEl 684.0 1948 1982 35 STAFF + FLUME
1BG4 54.4 1949 1982 33 STAFF + WEIR
IBD1 254.0 1961 1982 21 STAFF + FLUME
1BE1 715.0 1939 1973 34 STAFF + WEIR.
1BE2 20.7 1949 1982 33 STAFF + WEIR
1BE5 77.7 1949 1982 33 STAFF + WEIR
1BB1 1474.0 1948 1982 35 STAFF + FLUME
1GG1 298.0 . 1950 1982 32 STAFF + FLUME
UG1 ' 3287.0 1946 1982 36 STAFF + RECORDER
LKA5 3.63 1935 1982 42 STAFF + WEIR
1CA3 679.0 1963 1982 18 STAFF + FLUME
1CB5 697.0 1959 1982 23 STAFF + FLUME
1CB3 ..51.8 1932 1968 36 STAFF + WEIR
1CD1 67.3 1948 1982 50 STAFF + WEIR
1CA2 717.0 1959 1982 23 STAFF + FLUME
1CB1 298.0 1933 1963 29 STAFF + WEIR
1DA2 8417.0 1947 1982 36 STAFF RECORDER
1FG1 2388.0 1947 1982 35 STAFF -T- RECORDER
>UC13 7.77 1957 1982

25

)STAFF+KEIR + 
RECORDER
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TABLE 2: CHARACTERISTICS O THE SELECTED RIVER GAUGING 
STATIONS.

YEARS'" OF DATA C0LL3CTI0I

RGS CATCH? TliT 
AREA Km2)

FROM TO EFFECTIVE 
LENGTHS‘
(YRS)

HYDROMETRV

1KC3 3046.0 1951 1982 32 STAFF + FLUME
1PG2 2864.0 1958 1982 24 STAFF + RECORDER
1HA4 117.0 1924 1982 50 STAFF + WEIR
IFF 46.6 1959 1982 23 STAFF + FLUME
1FE2 1577.0 1961 1982 21 STAFF + FLUME
1FE1 1896.0 1960 1982 21 STAFF + FLUME
2B2 58.0 1946 .1982 34 » STAFF + WEIR
2EB3 331.0 1948 1982 33 STAFF + WEIR
2EC2 288.0 1931 1982 43 STAFF + WEIR
2FA2 155.0 1929 1982 40 STAFF + WEIR
2PC5 125.0 1941 1982 28 STAFF + WEIR
2EC3 48.0 1931 1982 41 STAFF + WEIR
2GD2 142.0 1935 1982 39 STAFF + FLUME
3BA10 64.7 ' 1921 -- 1982 41 STAFF + WEIR
3BA17 16.2 1931 1982 35 STAFF + WEIR
3BC12 357.0 1946 1982 36 ' STAFF + WEIR
3F2 4521.0 1952 1982 29 STAFF + FLUME
3DA2 5724.0 1956 1982 26 STAFF + RECORDER

3BA18 51.4 1939 1982 30 STAFF + WEIR
3BB10 41.4 1949 1982 27 STAFF + WEIR
4AA2 127.0 1948 1982 33 STAFF + WEIR \

WEIR + RECORDER4CA2 518.0 1922 1982 50
4BE1 414.0 1948 1982 34 STAFF + FLUME
4AA4 127.0 1947 1982 34 1 STAFF + WEIR

RGS = River Gauging Station number
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TABLE 2: CHARACTERISTICS OF THE SELECTED RIVER
GAUGING STATIONS.

. r ----------------
■/

YEARS OF DATA COLLECTION 1
.

RGS CATCHMENT 
AREA (Kin )

FROM TO EFFECTIVE
LENGTHS(YRS) hy drometry

47 4BC2 2365.0 1950 1933 30 STAFF + RECORDER
48 4AB5 420.0 1950 1983 32 STAFF + WEIR
49 4G1 32892.0 1940 1983 45 STAFF + RECORDER
50 4CB4 316.0 1946 1983 37 WEIF + RECORDER
51 4AA1 254.0 1998 1983 35 STAFF + FLUME
52 4AA4 96.0 1948 1983 36 WEIF + RECORDER
53 5AA1 577.0 1945 1982 37 STAFF + WEIR +

RECORDER
54 5AA5 157.0 '1959 1982 23 STAFF + FLUME\

55 5AB2 412.0 1960 1982 21 STAFF + FLUME
56 5BC4 1870.0 1962 1982 21 STAFF + RECORDER
57 5BC8 256.0 1960 1982 23 STAFF + WEIR +

RECORDER
58 5BE4 62.0 1950 1982 21 STAFF + WEIR +

RECORDER
59 5BE20 860.0 1960 1982 22 STAFF + RECORDER
60 5D5 4561.0 1950 1982 26 STAFF + RECORDER

RGS = River Gaunging Station



47 »\r

of data collection used in the project for each of 
the selected stations and also the mode of hydrometry 
utilized in each of the chosen stations.

The annual maximum gauge heights which were 
extracted as explained above were then converted into 
annual peak discharges by the use of the corresponding 
updated rating curves.

1.4 CLIMATOLOGY OF THE PROJECT AREA

In this section, the climatology of the project 
area will be briefly reviewed. The parameter dis­
cussed here include the rainfall and soils and their 
distribution over Kenya in general.

1.4.1 RAINFALL DISTRIBUTION IN KENYA

Kenya experiences a very wide range of climates, 
varying from semi-arid in the northern Kenya near Lake 
Turkana to wet over the highlands east of the Rift 
Valley and around Kisii and Kericho areas. As such, 
the average annual rainfall varies considerably from 
one place to the other. Figure 2 shows the distribu­
tion of average annual rainfall which is based on the 
Climatological Statistics fpr East Africa (East African 
Meteorological Department, 1975). Table 3 shows tne





TABLE 3: ANNUAL RAINFALL DISTRIBUTION IN KENYA

Rainfall (mm) i Distribution of land area 
in percent

< 250 27
'250 - 500 35
500 - 750 18
750 - 1000 8
1000 - 1250 5
1250 - 1500 3.3
1500 - 1750 1.6
1750 - 2000 0.7

>2000 0.1

/

\ /



relative distribution of the average annual rainfall 
in Kenya.

Climatological data shows that, broadly, the 
rains in Kenya exhibit two principal types of seasonal 
rainfall distribution with a broad peak between 
April and October which is typical in form for the 
Kenya highlands. Elsewhere, there are two peaks of 
varying relative importance; at Nairobi, the first
peak (long rains) is greater than the second (short/
rains). This is demonstrated on Figure 3.

1.4.2.' DISTRIBUTION OF SOILS IN KENYA

Potential flood runoff depends largely on the 
soil types. True black cotton soils being more or 
less impervious produce high surface runoff. Kenya 
consists of very many different soils as can be seen 
on the Explanatory Soil Map and Agro-Climatic zones 
map of Kenya by Sombroek and Braun (1982). However, 
we can group the soils of Kenya into three broad 
categories, namely, well drained soils, soils with 
impeded drainage and poorly drained soils. Figure 4 
shows the distribution of these categories of soils in 
Kenya.

In the following chapter, we will now develop 
the methods of analysis which will be employed in 
this study.



Fig. 3 Rainfall patterns in Kenya (Data from "Climatological Statistics for East 
Africa" by East African Meteorological Department 1 97 5 )





CiiAPTER 2

2.0 METHODOLOGY

For a very long tip.e, the hydrologic designer has been 

faced with the problem of chocsing from the many flood probabi­

lity distributions, the one that is most suitable in a given 

location, and consequently in establishing the flood probability

model that is of general applicability. A large number of peak" * ’ " /
flow distributions have been studied in the attempt to solve 

the above problems.

However, there is sufficient evidence to show that, at 

least three parameters in a probability distribution are neces­

sary to describe the variations in the actual distribution of 

annual peak flow data in different catchments (Shen e,t al,

19S1). The three parameter distributions are formed basically 

by adding a shift parameter (or a function of the shift para­

meter') to their two parameter conterparts. The location para­

meter, or a function of it, as the case might be, serves as a 

bound (lower or upper) for the random variable being fitted.

The location parameter is not a constant for a given three 

parameter distribution, but assumes different values for each

combination of the mean, variance and skewness coefficient of
\

the random variable. Moreover, tlie bound becomes negative in 

certain insta ceSof the three parameter lognormal, h'eibull 

and log-Pearson distributions. This parameter has a significant 

physical interpretation when applied to hydrologic variables 

such as streamflow or precipitation. These variables cannot



be negative unless they are made negative by some transforma­
tion, on one hand, and on the other, the imposition of an upper 
bound implying that there is a maximum certain value like flood 
flow, which is not physically meaningful (Rao, 1981).

Traditionally, the most commonly used three parameter 
flood frequency distributions are lognormal, the Pearson Type 3, 
the log-Pearson Type 3, the Fisher Tippet Type 2 and 3, and the 
log-Fisher Tippet Type 2 and 3. However, besides these three 
parameter traditional distributions, other relatively new pro­
bability distributions have also been proposed for use in flood 
frequency analysis. Two examples of such distributions are the 
Walter Boughton distribution (Boughton, 1980) and the Wakeby 
distribution (Houghton, 1978a). From these two distributions, 
log-Walter Boughton distribution and a log-Wakeby distribution 
can be developed. The following sections give a discussion of 
each of these distribtuions which are relevant to our study.

2.1 THE THREE PARAMETER LOGNORMAL DISTRIBUTION

The three parameter distribution represents the normal 
distribution of the logarithms of the reduced variate (x-XQ ) 
where xq is a lower or upper bound.

The probability density function, f(x), is given by

f(x) = (x-xjo.
1

2 __  (28)
o J y/ZtT 2oy
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where and are the mean and standard deviation of the 
logarithms of (x-xq) respectively.

When the skewness coefficient of the actual observa­
tions (Variate x), y , is positive, then x < x < °° and (x_x )* _ o o. . . **1 is distributed as the two-parameter lognormal with its origin
shifted by a value x . When y is negative, then <x <x'o x  o ■
and (x̂ -x) is distributed as a two parameter lognormal in the
reverse direction with its origin shifted by x'. The threeo
parameter lognormal distribution is unimodal and bell-shapped 
with a skew.

The selection of the parameter estimation procedure 
for the three parameter lognormal distribution is a matter of 
reliability (Salas and Smith, 1980). The method of moments is 
very simple but less accurate since the sample moments usually 
involve loss of information, hence, introducing bias. This 
occasionally results in a lower bound that is greater than the
observed minimum value or in an upper bound that is smaller

/
than the largest observation. In some rare cases, a solution 
is not obtainable at all. The method of maximum likelihood is 
more labourious if a computer is not available, but the results 
are more reliable.

The moment estimates of the parameters of three para­
meter lognormal distribution are given by _
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X = V! -O /z O X X ___ (29)

and
u = £,n(a /z)-^£,n(z“+ l)y x

*  p  ? ~i i"
Oy = |£n(z“+ l)J  2

__  (30)

__  (31)

where and are the sample estimates of the mean and the 
standard deviation of the actual observations, respectively, and 

,2/3
z =

1-w
w1/3 __  (32)

where
w = - v (v 4> /2 __  (33)

and Y is the skewness coefficient of the actual observations, x
On the other hand, the maximum likelihood estimates of 

the three parameter lognormal distribution can be obtained as 
follows:

The log-likelihood function of the three parameters log­
normal distribution is of the form (Salas and Smith, 1980)

LL(x;p ,o ,x ) = 
y y o

_ l. , £,n(x.-x )■ 
i = l  ^  1 o J

n
y£n(2ir) -n£n(o )-{ \

i=l

p n(xr xo)-My] /(2ay )} .... (34)
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where n is the size of the data sample. Differentiating the
log-likelihood function LL(x;u ,o ,x ) with respect to u ,oy y  o r  y y
and xq respectively, and equating the resulting explosions 
to zero, we get a set of three simultaneous equations given by

9LL
8 \iy

{iIl^n(Xi-xo)-yy]2} 8
y

o

8LL
8o

n r-
5 - +{ l
°y i=l*-

£n(x.-x )-u l o y ■}/°y = 0 __  (35)

8LL
8x

r ,  ̂v * 1  ̂ r' ^J j ' W  W y-op- Hn(x.-xo) = 0

The maximum likelihood estimates u , o anĉ x of u o and xy y o Hy ’ y o
in (28) can be obtained from (35) and are given by

* _ 1 I £n(x.-x )
wy " n i=l 1 ° __  (36)

n
- 1 lo = - , L . n i = l £n(x.-x )-y l o' y __  (37)

and r-n
p (x 0 ) .^(x.-x ) 1{— £n2(x.-x )}-— X  I r (x.-x )i=l l o' n i=l i o n i=l * l o'

n n —
n £n(V xo)} + $ {i=l i=l

£r{x.-x )  ̂l o' /(x.-xo)} = 0

I
____  (38 )
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*ote that (38) is an implicit function, F(xq) of J 
which is obtained by substituting (36) and (37) into 
the expression corresponding to 9LL/9xq = 0 in (35). 
The estimate xq is usually obtained from (38) by an 
iterative procedure, such as the Newton's tangent 
method (Salas and Smith, 1980). This method requires 
the first derivative F ' ( x q ) of F(xo) of (38), with 
respect to x q , that is

F ' (x ) F (b-c2-c-l) +-^ n -d+a(c+^) +e = 0 . . 
--- (39)

where a,b,c,d and e are given by

a
n
Ii=l

/v

o
-1

(40)

. _ 1 v , 2 , ~
b - H 4n

c - i ? to(xi-5o' i=l

n
d = I {

i=l f"n(xi"xo)] / (xi“x0)

and
n

e = l {
i=l

£n(x.-x ) 1 o /(xi-xo} }

--- (41)

--- (42)
<1

--- (43)

___  (44)
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The estimate xQ is then obtained by successive up- 
dation in every iteration k according to the equation

IA b A A

xo F' (Xq ) / (Xq )
/

___ (45)

A k+1 *and xq denotes the updated estimate of xq after the
k-th iteration. The initial estimate of xq is usually
taken to be that given by the method of moments. The
stopping criterion of the iterations in (45) is

~k+l ~kconstructed such that the absolute value of (xQ -xq) 
is less than the required error limit. The so obtained
estimate of xq is then used in (36) and (37) to obtain

~ , the estimates of y and o respectively.y y 1

When the skewness coefficient of the data sample 
is negative, then xq is an upper bound and (34) through 
(44) have to be modified accordingly. Nevertheless, 
the approach is similar.to the one described above.

Once the estimates of the parameters of the 
three parameter lognormal distribution have been 
estimated, it is sometimes required to estimate 
numerically the emperical probabilities and the 
cumulative probabilities of the sample values. The 
computation of the probability density function, 
f(x), for a given observation involves a direct 
substitution of the parameters and the required 
ooservation value in (28). However, the computation
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of the cumulative probability or the cumulative
distribution function, F(x), is a bit more difficult.
By definition, the cumulative distribution, F(x), of

/
the three parameter lognormal distribution is given 
by

F(x)
/^Foy (x-xo)

-exp{-^
£n(x-x_)-y _____o y

a }dx 

....(46)
An indirect way of evaluating the cumulative probabi­
lities for the three parameter lognormal distribution 
is to transform the original x-values into logarithmic 
vaues as y = £n(x-xQ) and use the procedure for the 
normal distribution. This works as follows:

Since dx = (x-xo)dy, • one can express (46) as

F (x) 1
/2tt a

fX y-yv )lexp -i< 0 7
ĉo y

2
dy .... (47)

By using a standardized variate U= (y-o )/ff , then (47) 
becomes

F (x) = F (u) 1_
/2tt

ru
exp -hu

j  __oo

(48)

which is an integral of the standard normal variate. 
Abramowitz and Stegun (1965) gave several approximations 
'for the cumulative distribution function, F(u), of 
the standard normal variate. A polynomial approximation

i i
(

\
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with error less than 10 is:

F(u)=l-f(u)(0.4318v-0.12017v 2+0.9373v3) .... (49)

where
f (u) . . .. (50)

and v is defined for u>0 as

v = 1/ 1+0.33267u ___ (51)

A similar polynomial approximation was given by Hastings 
(1955) and has been used by IBM (196.8) and ICL(1976). 
This approximation is:

F (u) - 1-f (u) w{0.319 3815+wjjO. 356 5638+w pL . 7814 78 +

w(-1821256+l.330274) } ___ (52)

where w is defined for u>0 as:

w = l/(l+0.2316419u) ' ___  (53)

In both approximations, the cumulative probability is
is l-F(u) if u<0. Tables of cumulative probabilities

)
for the standard normal variate are also available in

\

V

many statistics , probability and other related books. 
In this project, the Hastings (1955) approximation is
used.
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2.2 THE PEARSON TYPE 3 DISTRIBUTION

The gamma distribution with three parameters or 
the so called Pearson Type 3,distribution, has a 
probability density function

f (x) 1
«r(B)

8-1
o

-( S >Ja exp ___ (54)

\
where = and 8 are the scale and shape parameters 
respectively and xq is the location parameter. r(6)
is the gamma function given by
. / \

r (6) 13-1 -z, zH _e dz
o

___ (55)

The best method of estimating the parameters x q , 

“ and 8 of the Pearson Type 3 distribution is by the 
method-of maximum likelihood. However, mainly due to 
its simplicity, the method of moments- is occasionaly 
utilized to estimate these parameters. The moment 
estimates of the parameters x q , « and 8 of' the Pearson 
Type 3 distribution can be obtained as:

xQ = v-2a/y (56)

£ -oy/2 (57)

and
A A 2

b = (2/Yr ... (58)
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where p,d and y are the sample estimates of the^mean,
standard deviation and the skewness coefficient
respectively. Although the method of moments is
relatively simple, it does not always guarantee a\ • 
solution since in some instances, x , the location
parameter, can be computed to be within the range of
the actual observations. This of course is not
realistic and in such cases, the moment parameter
estimates are assumed to be not obtainable.

i
Generally, the method of maximum likelihood gives 

the most reliable estimates. However, this method is 
much more involved especially if a computer is not 
available.

The log-likelihood function of the Pearson 
Type 3 distribution is (Salas and Smith, 1980)

LL(x;xQ .«,6) nln\ r(6) l n
- ~ l *1=1

(Xi-xo)

n
(6-1) £ - S,n (x . -x ) -nB£n (“) .... (59)1=1 1 °

where n is the number of observations. The partial 
derivatives LL(x ;xq,«, (6) with respect tt> “ ,6 and xQ 
are:

3LL
3«

n
- Ii=l

( x i - x  ) - B n / a 1 (60)

and
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and

9LL i - n
g-g— - -njf ( 6) /r (6) + £ Jin (x^-xQ) -nJln (“)

i=l

1s t = l
o i=l 1/(xi"xo)

...  (61)

___ (62)

Simultaneous solution of 9LL/9=c = o, 9LL/9B= 0 
and 9LL/9xq = o yields expressions for £ and 3 in 
terms of xq given by

n
l p  ^

Hi=l(Xi~X°)_n
n
i=l

~ i
(xi-xo>

-1

B = {l-n: ? «*> n i
i (̂ - x0).i (—i=l i=l x .-x1 o

-1 -1
}

.. (63)
/
/

.. (64)

and an implicit expression for xq given by

n
F(xq) = n^(3) + £ £n (x-xQ)-nJln (“) = 0 ...,(65)

/v
where iM3) i-s the so-called digamma function which 
can be computed using the asymptotic expansion as in 
Condie and Nix (1975) , given by

jM 3) = (5) = Jin ( 3+2) -
2(3+2) 2 12 (3+ 2)

1 1 1
120 (3+2; 256 (3 + 2)b 3+1 3 (66)
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where y (3) = 1/3-^'(3)

where ip1 is the derivative of tM3) with respect to 3 
and is called the trigamma function, which can be 
obtained from (-66) as

a 1 i(3) = *-±-+ — — — * +A 2 A ^ A O3+2 2(e+2)z 6(e+2)J 30(3+2)J

42(6+2) 30(3+2) (3+1)
i 1 • 11+ -----j + ... (67)

3

Equation (65) is usually solved by an iterative 
approximation procedure starting with the moment 
estimate of xq in (63), (64) and (65). Every 
iteration of (65) returns to (63) and (64) to update

A Athe estimates of = and 3. The procedure for the Newton's 
tangent iterative method is as follows:

/v AThe first derivative of F(x ) with respect to x_ iso o
given by

F̂ x̂ -snijj ' ( 6) (fd ')/f 2-a-nh 1/h .... (68)

where
n 1a = l - - ___ (69)
i=l x .-x l o

d n 1 — ---
i=l(x^-x)1o

... (70)
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f = a-n2/b ___ (71)

f  = d-n3/b2 t ___ (72)

h = b/n-n/a i ___ (73)

h' = -1+nd/a2 ___ (74)

and
n

b = i=l(Xi”Xo) *••• (75)

Then
£ (k+l)=- (k) 
o o -F u ' k))/(FU0 (k> (76)

where k is the iteration number. These iterations are
carried out until ; (k)_j (k) 

O O < e, where e is the
required error limit. Note that the estimates of a
and 6 have to be updated with (63) and (64) after every

\
iteration in (76).

For a given set.of parameters, the probability 
density function, f(x), may be obtained directly from 
(54). In this case p($) is determined by a polynomial 
approximation given by Hastings (1955) and which has 
been programmed as a computer package, in many computer 
installations. In the ICL 2950 computers, this package 
is under the name of F4GAMMA. On the other hand, the 
the computation of the corresponding cumulative 
distribution functions require a numerical integration 
procedure since they cannot be expressed explicitly.

/
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In this project, the numerical integration procedure 
by O'Hara and Smith (1969) and programmed by Salas 
and Smith (1980) is used.

2.3. THE LOG-PEARSON TYPE 3 DISTRIBUTION

. V  .

A random variable x has a log-Pearson Type 3 
distribution if the transformed variate y = Jln(x) has 
a Pearson Type 3 distribution. Let f(-) denote a 
probability density function. Then

f (y) 1
«r(B)

y-y J Jo 8-1
exp{- (77)

and
S,n(x) -yo 8-1 rexp{ -

£n (x) -yQ
f fyl — ^ cc

[ } xoc r (8) i <x

where a, 8 and yQ are the scale, shape and location 
parameters and f(y) and f(x) are the Pearson Type 3 and 
log-Pearson Type 3 probability density functions 
respectively.

If “ > 0, then, the Pearson Typfe 3 distribution
is positively skewed and y ^ y  <°°. In this case, the
log-Pearson Type 3 distribution is also positively
skewed and exp(yQ)<x«». If « < O, the Pearson Type 3
distribution is negatively skewed and -oo<y<y . In this

— o
case, the log-Pearson distribution is either positively 
skewed or negatively skewed depending on the computed 
values of <* and (3.
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There are about four methods available for the 
estimation of the parameters of the log-Pearson Type 3 
distribution, namely, the direct method of moments, 
the method of moments applied to the Pearson Type 3 
distribution, the method of mixed moments and the 
method of maximum likelihood.

For the direct method of moments, Bobee (1975), 
Kite (1977) and Salas and Smith (1980) have shown 
that, the application of the moment generating 
function technique to the log-Pearson Type 3 
distribution of (78), the scale parameter = can be 
estimated from

«=l/(A+3.) .. T79)
where

A=0.23019+1.65262C+0.20911C2-0.04557C3 . . .  ( 8 0 )

when
3.5 < B < 6 and

A = 0.45157+1.99955C ___ (81)

f

when
3,0_< B <_ 3.5.

In these equations, C is computed from

C = 1. / (B-3) ... (82)
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-  ey -

and
Jin ( y 3 ) -3£n (p^) 

B = £n (y 2 i ~2S.n (y^)
___  (83)

where y-̂ , y  ̂and y^ are the first three sample moments 
of the variate x about the origin. Similarly, the •
shape parameter 8 and the location parameter are
estimated by

8
n ( y 9 ) - 2 £ n ( y ^ )  

£n{l-»)2-£n(1-2“) ____ (84)

and
. . AyQ = £n(y1)+£n(l-“) ___ (85)

When
3< B < 6, this

method of moments yield the most reliable estimates 
(Bobee,1975). However, when B <3 or B >6, 
then the above method is not accurate and therefore 
other estimation methods have to be sought.

We have seen that, if x is distributed as the
log-Pearson Type 3 distribution, then the variate
y = £n(x) has a Pearson Type 3 distribution and the
logarithmically transformed data can also be utilised
to estimate the parameters 8 and y . As before,o
the moment estimates of these parameters can be 
obtained as:
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A  /s

“ * ° y V Z • --  (86)

B = (2/Yy)2 .... (87)

and
r A A A ^

y° = V 2oy/Yy •••• (88>
A A Aand p , o and y are the sample estimates of the mean,> y y

standard deviation and skewness coefficient respectively for 
the log-transformed variate y = £n(x).

Just like it is the case with the method of moments 
applied to the Pearson Type 3 distribution for the untrans­
formed variate x, this method has the major disadvantage that, 
occasionally, yQ can be estimated to be within the range of 
the observations ŷ , which is not realistic. Consequently, thi 
method, though simple, is usually not used to estimate the para 
meters «, 3 and y .

In order to avoid the uncertainities in the parameter 
estimation, which are associated with the use of the skewness 
coefficient, Rao (1980b) showed that the parameters of the log- 
Pearson Type 3 distribution can be estimated by use of only 
the first two moments of the data by mixing the real and logari 
thmic moments. He described two procedures for fitting data 
to the log-Pearson Type 3 distribution;

(i) the method in which the mean and variance of the real 
data and the mean of the logarithmic data are used; a

J
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procedure which can he called MXMl, and 
(ii) the method in which the mean and variance of the log­

arithmic data and the mean of the real data are used.
He called this method MXM2.

» •
The objective of the method of mixed moments MXMl

is to estimate the parameters “, B and y so that the population
2 . • mean, ŷ , and variance, ô , of the log-Pearson Type 3 distribu­

tion are the same as the corresponding untransformed sample
_ 2parameters x and Ŝ . Further, this method attempts to make the 

population mean, ŷ , of the corresponding Pearson Type 3 dis­
tribution (in log-Domain) equal to the sample mean, y, of the 
log-transformed data. The procedure for estimating the para­
meters of the log-Pearson Type 3 distribution by MXMl is as 
follows:-

(i) choose an initial value for the population skewness
coefficient, y > say CS - the skewness coefficient 
of the untransformed data.

(ii) estimate the parameters a,B and yQ by the direct method
—  2 2of real moments with y =x, o = S and y as chosenX X X X

(iii) calculate by ŷ  = «B+yo

(iv) if yy differs significantly from y, repeat steps (ii)
and (iii) by varying y until y =y.x y
The objective of the method of mixed moments

MXM2-, is to estimate the parameters “,B, and y so that 
—  2 —y, = y, a = S and y = x. This method is essentially a y J y y x }

variation of the method of moments applied to the Pearson Type 3
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distribution in the log-domain with the exception that the popu­
lation skewness coefficient, y , of the log-transformed data 
is selected on the basis of the untransformed sample mean x
instead of CSy, the skewness of the log transformed data. The
relationship between y , o and y can be shown (Rao 1980b) to be;y y *

Vy=4|An(l-oyyy/2)+oyyy/2 /y +£n(y ) 'y x . C89)

If y,r» av an£I yv are known (from the sample estimates), the onlyy y *
unknown variable in (89) is y which can be solved for by they
Newton-Raphson method. Then the values of and y can be
obtained from (86) through (88).

Rao (1980b) also showed that, the method of mixed moments 
MXM1, has in general, superior statistical properties than 

all the other moment methods.

The method of maximum likelihood gives the same results 
as those obtained when the method of maximum likelihood is - applied 
to the Pearson Type 3 distribution in the log-domain. Thus, the 
procedure is parallel to that outlined in the discussion of the 
maximum likelihood method with the Pearson Type 3 distribution 
when xe is replaced by yQ in (59).

The United States Water Resources Council (1977) recom­
mended that the log-Pearson Type 3 distribution be adopted as 
the standard flood-frequency distribution by the United States 
government agencies. Being a three parameter distribution 
operating upon the logarithms of the flood magnitudes, the log-

i
Pearson type 3 distribution would appear to be an extremely
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versatile distribution. However, its applicability in hydro­
logy is strictly limited (Kite, 1977).

I
Bobee (1975) derived the density function of the log- 

Pearson Type 3 distribution and studied at length its mathe­
matical and statistical properties. Bobee (1975) presented in 
a general fashion the various forms of the log-Pearson Type 3 
distribution. Rao (1980a) extended Bobees work and presented 
the properties and results of the log-Pearson Type 3 distribu­
tion on the basis of its population parameters. Bobee (1975) 
and Rao (1980a) showed that the scale parameter, “ and the shape 
parameter, 3, govern the overall geometric shape of the distribu­
tion, which takes four basic forms, namely, J- shape, reverse 
J-shape, bell (unimodal shape) and U-shape. In addition, several 
transitional shapes varying from one basic shape to another

dccur. Figure 5 shows some of the various forms of the log- 
Pearson Type 3 distribution for some critical parameter values. 
The critical parameter values which produce different shapes 
are summarised in Table 4.

i
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TABLE A: CHARACTERISTICS OF THE LOG-PEARSON TYPE 3
DISTRIBUTION (BOBEE 1975)

Parameter value Form of the distribution
Class A: — > 0

o c

o <e> ±  i Reverse J-shape
\

6 > 1 Bell (unimodal) shape with a skew

Class B: - < 0
o c

- 1 - 0; 0<B ̂  1 U-shape

- 1 ^<0; 6 > 1 Reverse J-shape

- < -1; 0 < B < l
/

t

J-shape

=■ < - i; B > i Bell (unimodal) shape with a
slight skew

/



- Kite (1977) showed that for flood frequency analysis, the 
only shape of interest is that which is unimodal, continuous from 
zero to infinity, has an infinitely high order or smooth contact 
with a lower limit and unbounded at the upper limit. The log- 
Pearson Type 3 distribution falls within these criteria only 
when 8 > 1 and — > 0. When the coefficient of skewness of theOC

untransformed data is negative, this corresponds to a negative 
value of “ which is not suitable. Reich (1972) gave examples 
of the application of the log-Pearson Type 3 distribution to 
samples with negative skew in which the Computed upper bounds 
were found to be lower than the maximum observed events.

The log-Pearson Type 3 distribution is related to the 
Pearson Type 3 distribution (in log-domain) in that, if x is log-
Pearson Type 3, then y = £n(x) is Pearson Type 3 distributed.

I
Hence, the probability density function of x, f(x) is Velated 
to the probability density function fo y, f(y) by

f(x) = jf(y) .... (90)

Equation (90) is used to find the log-Pearson Type 3 density function 
f(x) based on the Pearson Type 3 density of 7= £n(x) as

ft

described earlier. As for the cumulative distribution function 
of x, F(x), the following relation holds*.

F (x) =
•x
f(x)dx=dx=F(y)= 

i o
£n(x)

f (y)dy
.... (91)

where F(y) is the cumulative distribution function of y (the 
cumulative distribution function of the Pearson Type 3 in the
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log-domain). Thus, from (91) we can see that 
F(x) may be obtained by integrating the Pearson Type 3 
density in the log-domain.

I
2.4 THE FISHER TIPPET TYPE DISTRIBUTIONS

The Fisher Tippet type distribution of the
first, second and third types, in other words the

lGumbel, the Fisher Tippet Type 2 and Fisher Tippet 
T\|pe 3 distributions are well known as models for 
extreme observations such as annual maximum wind 
speeds and floods. The distribution functions of 
these types of probability functions are summarised 
in Table 5. )

(
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TABLE 5: THE FISHER TIPPET TYPE DISTRIBUTIONS

Distribution name

Gumbel

Fisher Tippet Type 2

Fisher Tippet Type 3

Cumulative distribution

F(x) =expjj-exp(x

F(x)=exp{-jl- (x-xQ)/
_ 1
B)

F(x)=exp{-
-  - , 1
l- (x-x̂ ) At 8}

Rangg of variate

°c<x<°°

B<o,x>x +“/B 

8>o,x<x +“/B

(

1

f

)
\  fc



The Gumbel distribution depends on a location 
parameter x q and a positive valued scale parameter «•
Fisher Tippet Type 2 and Type 3 distributions depend 
on these two parameters and also on a shape parameter 3.
It can be shown that, the Gumbel distribution correponds .
to the limit case of M  0 (Salas and Smith, 1980).

There is a practical way of determining, the
<

type of general extreme value distribution for a given 
sample. Since the theoretical skewness coefficient of 
a Gumbel variate is 1.14 (6=0), for a skewness 
coefficient greater than 1.14, the distribution is 
Fisher Tippet Type 2 while for the Fisher Tippet 
Type 3, the skewness coefficient of the sample is less 
than 1.14. .

Note that none of the general extreme value 
distributions can be used individually in all cases . 
due to their individual requirements on the sample 
skewness coefficient. Furthermore, the Fisher Tippet 
Type 3 distribution is mostly appropriate for the 
smallest values analyses since it has an upper bound.

There are about five methods available for 
the etstimation of the parameters of the general 
extsreme values distributions, namely, the method of 
moments, the method of maximum iikelihood, the method of sextiles, the 
graphical method and the method of probability weignted moments. Tne detail! 
of these methods can be found in the works by Gumbel
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(1958) and WMO (1966). However, the F'*'*-1 commonly
usec^ methods of parameter estimation are the method\/
of moments and the method of maximum likelihood.
The application of these two methods is described 
below.

The method of moments can be used as follows:-
AUsing the sample skewness coefficient^ i the 

parameter, 8, can be estimated by trial and error 
methods from the following relationship (Sallas and Smith.1380)

Y =
( -i);i[r(i+38)-3r(i+2B) (1+6)+2r2 (+i+8)Q

Jr(i+28)-r2 (i+8fj 1.5
* * • • (92)

in which j = 1 for Y < 1.14 and j = 2 for Y jl 
1.14; and T is the gamma function.

Having obtained an estimate of 8, the estimates
of a and x can be obtained from; o

“ =(-1)^8 .... (93)

and
x •= a -S/B o

where

8 {o4 r (1+26)
*5
}

___  (94)

___ (95)

and
a n A

a = u+ (-i) ̂ erd+B) .... (96)



a 2and y and o are the sample estimates of the mean and 
variance respectively. As before, j = 1 for y < 1.14 
and j = 2 for y > 1.14. The method of maximum like- 
hood is used as follows:

Using the Jenkinson's approach (Jenkinson 1969), 
the log-likehood function of the general Fisher Tippet
Type distributions takes the form: .

\

n n _
LL(x;x ,«,B) = nfcn(cc) - ( 1-6) £ y -

i=l i=l

___ (97)

where

__  (98)

and n is the sample size
Differentiating with respect to xQ, «, and g yields:

3LL _ Q
3x ’ = o (99)

3LL _ P+Q
9k - ocg ____  ( 100)

and
9LL
38 =pR-P+Q)/8j/8 ( 101)

where
n

P = n- £ e ^i 
i=l ... (102)
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Q = l e(B:i)yi-(l-8) l e6yi i=l i=i ___  (103)

and
n n

# R = n- l y l y 
i=l 1i=l x

. e-yi ___ (104)

The maximum likelihood estimates of x , “ and B musto
therefore satisfy the equations:

9LL
9x = 0 , - 9LL9a = 0 , - 3LL = 0 (105)

These equations must be solved iteratively as there
is no explicit solution. It is required to begin the
process with initial values x ,“,8 as for example the
moment estimates. Let Axq be the differences
between the maximum likelihood estimates and the
current estimates xo ^,6^ and “j. at the kth iteration.

/
That is

xo,k+l = *o.k+ 4xo,k ---  <106>

“k+1 " “k +A“k .... 11071

and

6k+i ■ Bk + ABk •••• (1081

Expanding the equations of (105) in a Taylor series 
about the maximum likelihood 'values and omitting the 
terms containing higher powers and cross-products

ft
of ^xo,k,Aak and A^k yields the matrix eauation:.
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-  — 1- —
Ax . o, k -3 2L L /3 x 2 , - 3 2L L , 3= -3 2L L /3x  .36.o,k k o,k k

-1 3 L L /3 x  . o ,k

/\
§

A“k ts -32/LL.'3.k3xo>k-32LL/3«2-32LLy3«k36k 3 L L /3 “ k

V -3 2LLy36k 3xo>k-3 2LL /3B k3=k -3 2L L /3 6 2 ai_u/38k
/

Jenkinson replaces the elements of the matrix to • 
be inverted by their expected values which results in 
the large sample maximum likelihood variance - covariance

10  ̂ /N /Smatrix of estimators xq,« and 8, which is given by:

Var x q Covtxo,«r) Co v(x q,B) <*2b -CCMU “f

Co v (x q ,6)
/

Var oc Cov Cx , 8)0 = -2h 2“ a “g

Cov (x ,6) 0 cov(oc, 8) Var 8 “f “E v c

here a,b,c,f,g and h are functions of 8 and are given 

for some values of 8 in Table 6 below:. i

/

i
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TABLE 6: VARIATION OF THE COEFFICIENTS IN THE
INFORMATION MATRIX WITH VARIATIONS IN B 
(FROM SALAS & SMITH 1980).

6 a b c f g h
- 0.4 1.05 1.29 0.84 0.36 0.09 0.80
_ 0.3 0.92 1.29 0.73 0.26 0.03 0.69
- 0.2 0.81 1.28 0.64 0.26 0.04 0.57
- 0.1 0.72 1.27 0.55 0.26 0.10 0.46
0.0 0.65 1.25 0.48 0.26 0.15 0.34
0.0 0.61 1.22 0.39 0.24 0.18 0.21

o • to 0.58 1.20 0.33 0.22 0.4 0.09
0.3 0.58 1.17 0.27 0.19 0.23 -0.03
0.4 0.60 1.14 0.21 0.16 0.24 -0.16
0.5 0.63 1.11 0.15 0.13 0.24 -0.30
0.6 0.68 1.08 0.10 0.09 0.22 -0.4 3

00•
o 0.82 1.02 0.03 0.03 0.15 -0.71

1.0 1.00 1.00 0.00 0.00 0.00 /-1.00
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Inserting the expressions for the derivatives 
3LL/3xq .k3LL/3“k and 3LL/3&k in P,Q and K as in (99) 
to (101) with (109) and using (110) for the inverse 
of the matrix yields:

Ax , o , k
2. „2 f 

“kb “k “k

1 b h f 
ak “k “k '(pk+Qk);/(“k6k >

A8k

N

“ka “k^ c — _(Rk-pk+Qk'-/Bk /Bk
- - — _ ■

___ (111)

This matrix equation can be simplified to:

/
Axo,k = V V k +hkBk+fkck>/N

’ (

■ A“k = W k ' * '  akBk+9kCk)/N •••• (112)

ASk = -(fkAk+9kBk+9kEk+ ckCk)/N

where ak, bk, ck fk, gk and hk are the estimates of 
a,b,c,f/g and h for a given 6k in iteration k; and 

• Ak Ak, Bk and Ck are given by:
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Ak = Q-   (1.13)X X 7

Bk = (Pk+Qk)/6k   (114)

ck = (Rk“V /6k   {115)

and Qk, and Rk are the values of Q,P and R in 
iteration k for a given set of and x ,. The newX O / X
estimate of parameters are:

x , . = x +Ax ,o,k+l o,k o,k ___ (116)

ock+l k ___ (117)

Bk+1 6k+ABk
___ (118)

For every iteration k,, one requires to set up 
a routine for estimating a,b,c,f,g and h in Table 6 

which can be very time consuming and complicated.
However, the following regression equations, vali,d 
for -0.4 £ 6 £ 1.0 and with a Spearman's rank 
correlation coefficient R >_ 0 . 999 and maximum 
absolute error MAE <_ 0.0092 (Salas and Smith, 1980) ,
are usually qsed.

( v

a=0.6528060-0.55987836+1.0876209B2-0.05402483-0.127021484 .... (119)/

b=l.2488727-.0.2052446-0.2225715B2+0.096248163+0.081321464 __  (120)

C=0.4725506-0.76030836+0.28361716-.188646663+0.193118264 .... (121)
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f=0.2597848-0.17271303-0.1̂ 7O156B2-0.2437380B3+O.2937678e4 .... (122)

g=0.1432656+0.44192193-0.426160232-0.15617133 .... (123)

h=0.3386324-1.20416913-0.133379432 .... (124)

The numerical procedure may be finished when 
all of the increments of Ax ., A«. and <*. become lessO , K K K
than a selected percentage of the correct values of 

ak and 3k usually taken as 1 x 10-6.

For a given set of parameters of the Fisher
. . . . **Tippet type distributions, the probability density

function and cumulative distribution function can be
computed directly from the corresponding equations
since these have explicit exponetial forms.

2.5 THE LOG-FISHER TIPPET DISTRIBUTIONS

Actually, the log-Fisher Tippet distributions 
are the Fisher Tippet distributions in the log-domain.. i .
That is, if x is log-Fisher Tippet distributed, then* 
y = £n(x) is Fisher Tippet distributed. That is:

f (y) = 1 l-B(y-y0)/« F(y) ___ (125)

where
F (y) • • • • (126)
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and « ,8 and yQ are the scale, shape and location 
parameters, respectively, of the distribution in the 
log-domain.

Hence,
f(x) = — (f(y) .... (127)x

and
F(x) = F(y) .... (128)i

It is evident from (127) that the parameters of 
the log-Fisher Tippet distribution are exactly those 
of the Fisher Tippet distribution in the log-domain.
The methods of estimating these parameters have already 
been discussed in the previous sections.

2.6 THE WALTER BOUGHTON DISTRIBUTION

The Walter Boughton distribution is essentially 
a three parameter probability distribution which is 
based on the non-linear relationship between the
frequency factor K and the function £n{fcn T/(T-1) |}

of the recurrence interval T. It is important to 
note that the Gumbel distribution assumes a linear
relationship between K and JLn{ Jin 
given by the following equation.

T/(T-l) } 'which is

K = - 0.45+0.779jln * n ( ^ (129)

Boughton (1980), Mutua (1984) and others have shown



> 89

that a non-linear relationship exists without exception 
between K and £n{ in [t/<T-1) _[} using flood data in 

Australia and Kenya respectively. In fact, there is 
sufficient evidence to show that this relationship 
holds true for all flood data (Boughton 1980).

Generally, this non-linear relationship is of the
form

S'rUn(f=I; c ___ (130)

where a and b are the asymptotes of the frequency factor 
K and £n£n T/(T-l7J respectively, and c is a positive 
constant. Equation (130) can also be rewritten as

K =a+c/UnJln (^-) -b} ___ (131)

In flood frequency analyses, it is customary to
relate the estimate of a flood magnitude x and its
corresponding return period, T, to the population mean

2y and variance a (or the corresponding sample estimates)\ "
and the frequency factor K by an equation of the form

x = y+ Ka .... (132)

so that

K = (x-y)/o ___ (133)

Using (133) , (131) can also be rewritten as:

x =y+aa+ca/{£nJln(^I) —b} ___ (134)
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The return period T which corresponds to a flood 
of magnitude x is related to the cumulative distri­
bution F (x) , by the equation

F(x)' = (T-l)/T ___ (1 3 5)

Hence, (134) can further be rewritten as

x = y+aa+ca/{£n -Jin (Fx) -b} ___ (136)

from which we get

F(x) = exp{-exp :+ 8/ ( x - x q ) .... (137)

where a - b, the scale parameter, B =co, the shape 
parameter, and x q  = y+ca, the location parameter.

The corresponding probability density function 
f(x) is therefore given by

f(x) = (3. ex j “ + 3/ ( x - x q ) J  /  ( x - x q ) 2 . F (x) (138)

}

Thereiare two methods, which can be developed 
for the estimation of the parameters of the Walter 
Boughton distribution, namely, the method of least 
squares and the method of maximum likelihood. Equation 
(138) can also be rewritten as 1

1 _ “ , l£n{-£n
x.-x 8 8  1 o

when n is the number of > observations and the subscript 
i denotes the ith observation.

The method of . least squares can be therefore 
developed from (139) as follows:

F (x .) }, i=l,2 ,. , n .. (139)
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(i) By the use or an appropriate plotting position 

formula, F(x^) can be estimated for all x^, 

i=l,2 n, where n is the number of observations.

(ii) A value of x^ is adopted and a regression analysis is 

done between l/fx^x^ and £n{-£nF(x.) }.

By repeating this process several times, each time 

with a different estimate x^, the optimum values of 

Xo can be obtained as the one which gives the minimum 

sum of squared error. If I and S are the intercept 

and slope of the regression analysis at minimum sum of 

squared error, then we can see.from (139) that

6 = 1/S ___ (140) .

and “ = ~ I/S ___ (141)

It should be noted that the method of least sqaures gives 

the estimates of x , 01 and S which are fairly close to the maximum 

likelihood estimates, especially when a good plotting position 

formula is used. ' •

From (137) and (138), it can be shown that the log-likelihood 

function of the Walter Boughton distribution is given by:

LL(x:Xo«,8)= - ) exp | <*+£/(x_̂ -XQ) |+ £
i=i l r  a

~+B/(x.-x )1+ ning-2 J £n(x.-x ) 
1 ° i=l 1 °

___ (142)

For convenience, we will denote LL(x,-x ,«,B) by LL. Then theo
maximum likelihood estimation can be obtained from the system of

/
simultaneous equations given by.

3bL
3x It. ‘+6/(x.-x ) B/(x.-x )2}+ t1 o l o ,L_- -* . 1=1

0-r n
8/(x.-x )*.1 o 1 . ^  = 0i=l X.-X

1 o

9LL _ y 3<r i f
1 =  1

«+8/(x.-x ) 3 o + n = 0. ___  (143)
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3LL ?r [a+B/(x.-x )1 ., . S
r ’i(e 1 oJ/ ( W }+ Ii=l " i=l

l/(x.-x )  ̂1 o +n/B= 0

Following the methodology as given by Carnaham et al (1969), 
the solution of this system of non-linear simultaneous equations 
can be obtained by an iterative procedure which can be represented 
in matrix form by

X 1 1o,k + l

i
no

1 X 1-----
ACOX____

CCk+1 = OCk - Aak

Bk+1 k̂
1

ABk
_ — _ __ _ _

. ... (144) ; .

where x . , and 6, denote the estimates of x , « and B0 j K K K O
during the k-th iteration and x . ,, <* , and B, n are theo,k+l k+1 k+1
updated estimates after the k-th iteration. The increments 
Axq j , and ABk during the k-th iteration can be obtained 
from the solution Qf the matrix;

— —♦ -- -

32LL 32LL JCM

Ax .O, K 3LL
3x2o

3x 3“ 0 8x 86 o 3xo

23 LL 32LL
/23 LL

A"k 3LL
3“3cc3xo 3a2 3«3B = -

23 LL 32LL 23 LL A6k 3LL .8B3x0 3B3“ 03B“ 3B

.... (145)
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. where,

92LL - I ^xp9x i = l o
r~ 61 6 r b 2 r 6 -lfix . - x  1 o ( x . - x 3 1 o ( x . - x  ) 1 o '

CMr—
\oX1•HX

V-
S

1

( x . - x  ) 1J  ̂ 1 0

__  (146)

29 LL
9x 9= o

exp
i=l

cc+ (x.-X ) 1 o (x.-x )' 1 o
__  (147)

29 LL 
9x 96 = "I ( expi=l

cr-f _6__,(x.-x ) v 1 o '

2

(x.-x ) 
i  o '

__  (148)

29 LLo9°̂
n

" li=l
exp OC + 6 -|

(X.-X )1 o (149)

29 LL
9«96

n
• I exp i=l (x.-x ) 

i  o '
/(Xi-xo) __  (150)

92LL
8B2

n
~l exp i=l (x.-x ) l o' x̂.-x ) 1 o '

2 - 32 __  (151)

It is possible to set up the stopping criterion such that 
the iterations stop when Axq r and A6R are all less than the
required error limit. Further, the method of maximum likelihood
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(
requires initial estimates of x̂ ,** and 6. The estimates as 
obtained by the method of least squares can be used for this 
purpose.

Just like as it is with the Fisher Tippet distribution, 
the probability density and cumulative distribution functions 
can be competed directly from the corresponding equations for 
a given set of parameters.

t2.7 THE LOG -WALTER BOUGHTON DISTRIBUTION

If a variate x is log Walter Boughton distributed, then 
y = £n(x) is Walter Boughton distributed. That is

f(y) = E.expjj + B(y-yon/(y-y0)2.F(y) .... (152)

where

F (y) = exp{-expj= + 3/(y-yo)~j}

and “, 3 and yQ are the scale, shape and location parameters 
respectively, of the distribution in the log-domain. Hence,

f o o4* ( y )  • ____  ( 1 5 3 )

and
F (x) =F (y) __  (154)

It is clear from (153) that the parameters of the log- 
Walter Boughton distribution are essentially those of the 
Walter Boughton distribution in the log-domain. The methods

-  34 -
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of estimating such parameters of the Walter Boughton distribution 
have already been discussed in the previous sections. In the 
same way, the probability density functions and the cumulative 
distribution functions can be computed directly from (153) and 
(154) respectively, for a given set of parameters.
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2.8 THE WAKEBY DISTRIBUTION
The distribution which has aroused the most interest 

for analytical reasons is the five parameter Wakeby 
distribution. This distribution is most easily defined as an 
inverse function of the form;

x=-a{l-F(x)]b+c[l-F(x)J-d+e __  (155)

where F(x) is the cumulative probability corresponding to the 
observation x; a, b, c and d are positive distribution 
parameters and e is also a distribution parameter which can 
be negative or positive.

The Wakeby distribution is similar to a five parameter 
member of the Tukey family of Labdas (Joiner and Rosenblatt, 
1971). Given values of a and b that are typical of the flood 
records, the -a[l-F(x)]̂  term generally has no effect on x if 
F(x)>0.25. Thus, the Wakeby distribution can be thought of 
in two parts: the right hand tail cJl-F(x)] +̂e and the
left hand tail -ajl-F(x)]k which is in effect an adjustment

1
to the graph of the right hand tail.

The Wakeby distribution was introduced by Houghton 
(1978a) as a grand parent of the frequency distributions 
because of its ability to generate flows which mimic most 
conventional hydrologic distributions if the parameters are 
chosen correctly. Further, Houghton (1978b) noted the 
similarity of the Wakeby distribution to the older Fuller 
(1914) flood model which is expressed as

x=a+b{T(x)] .... (156)
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T(x)=l/[l-F(x)J .... (157)

and a and b are positive constants and F(x) is as defined above.
The Wakeby distribution was introduced mainly because 

of its ability to absorb more degrees of freedom than the 
traditional distributions. There is some reason to believe 
that none of the traditional distributions have the properties 
on their left hand tails that reflect nature accurately (Greis 
1983). If in reality, the lowest observations follow the 
left-hand tail of a low-skew log-normal distribution and the 
highest observations follow the rigiit hand tail of a high-skew 
lognormal distribution, then, no conventional three-parameter distrfcution 

can model it accurately. They lack enough kurtosis for any 
given skew. Fitting a three-parameter curve to a four- 
parameter nature can distort the whole fit, including the 
higher quantiles. This is mainly due to the so called

i
'separation effect' presented by Matalas et al (1975).

When the traditional distributions are used to 
generate synthetic flood data in Monte Carlo experiments, tiie 
standard deviation of skew of such data is usually found to 
be lower than that which exists in nature. This is the 
phenomenon referee to as the separation effect.

The accuracy of the procedures involved in the estimation 
of the parameters of a distribution is very sensitive to the 
instability of higher moments and their functions such as

Vthe coefficient of skew. The higher moments often add more
►
noise than signal to the estimation procedures for conventional
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distributions. Although the Wakeby distribution has 
five parameters, some of the parameter estimation 
methods require only the first sample moment.

There are about four methods which can be used 
to estimate the parameters of the Wakeby distribution. 
These methods are: the method of least squares, the 
method of incomplete means, the method of probability 
weighted moments and the differential correction 
technique method. The usage of these methods is 
discussed in the following subsections.

THE LEAST SQUARES METHOD FOR THE ESTIMATION 
THE WAKEBY PARAMETERS.

This parameter estimation procedure which was 
developed by Houghton (1978b) works in two phases, 
taking advantage of the separation properties of the 
left and right tails of the Wakeby distribution.
Phase one operates on the right hand tail while phase 
two operates on the left hand tail. The procedure is 
as follows:

(i) Choose some F(xc) which is a cutoff point, where
F(xc) denotes the cumulative probability of
the variate of maanitude x . This cumulative* c
probability is usually estimated by an appropriate 
plotting position foriVula. The curve corres- 
poding to the cumulative probability F(x) such 
that F(x)>F(xc) is analysed in phase one and
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that corresponding to F(x)<F(xc) is analysed 
in phase two. For phase one,

- b r — d
+c 1 -F(x,) +ek ..(158)

or alternatively

- i b
xk-e+a 1 -F(xk) =c 1 -F(xk )k

-d
... (159)

therefore

log(xk~e+a P “Ib[l-F^)} ==log( c (160)

for all x. >x K c
(ii) set a = 0 , b = 1 and assume an initial value for e. 

then one can use linear regression analysis on
the basis of (160) between log {xk~e-t a{l-F (x̂ ] } 

and log [1 -F(xk)] for all the observations xk 
such that F(xk)>F(xc). The regression analysis 
then yields estimates of c and d from the inter­
cept and slope respectively.

(iii) a search is then made over various values of e to 
find the one which minimises the sum of scxuares 
of vertical distance from each observation points 
to the regression line.

Phase one gives improved estimates of c,d and e.

(iv) in phase two, one assumes the values of c,d and e 
estimated in phase one and evaluates a and b by 
regression analysis between log{-x^+e+c [l-F(Xj)]-d}

b
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and log fl-F(x.)1 accordina to the rmintion.
—  j  -  -

log {-Xj+e+c [T-F(Xj)ĵ d}=log(a)+b log'[l-F(Xj)] .

___ (161)

for all x. such that F(x.)<F(x ) . Phase two
therefore gives estimates of a and b from the 
intercept and slope respectively.

(v) given new values of a and b, phase one is 
repeated, then phase two, and so on. In 
practice, repetitions are unnecessary (Houghton, 
1978b). In those cases where repetitions 
are necessary, one repetition provides most 
of the change and further repetitions tend to 
oscillate about the required estimates.

The cut-off cumulative probability F(xc) is 
usually not known apriori and can only be determined

)by a trial and error method. This trial and error
i

method can be started by assuming that the left hand 
tail of the VJakeby distribution contains the lowest 1 

two observations, with the rest of the observations
4

in the right hand tail of the distribution. Thus, 
if the observations are sorted in an ascending order, 
the above assumption would correspond to F(xc)=F(x2).
By continuing this process from x, to x, and so ona (

I

/



I

- l o r - i

to the third quartile x , different values cf (x ) ,n c
can be obtained together with their corresponding 
parameter estimates which are obtained as explained 
above. Usually, xQ falls within the lower half of the 
observations but extending the search to the lowest 75% of the

A
observations ensures that.the wrong final estimates of F(xc) is not 
obtained.

The criterion by which the optimum value of F.(x ) 
is chosen (together with its corresponding parameter 
estimates) is a weighted sum of the squares of the 
correlation coefficients calculated in phase one and phase 
two according to the relationship given below;

n n-n „
p = + — ip2Hw n n ^u ____  (162)

where p is the weighted sum of squares of the corre-w
lation coefficients, n^ is the number of observations 
in the lower tail of the Wakeby distribution, p? is 
the correlation coefficient in phase two, pu is the 
correlation coefficient in phase one and n is the 
total number of observations.

The optimum cut-off cumulative probability
F(xc) is chosen as the one that has the maximum pw .

The optimum estimates of a,b,c,d and e are then chosen
to be those which correspond to the optimum value of
F(x ). For a high value of F(x ), phase one would c c
often result in some calculations involving the 
logarithms of negative numbers. In such.case, the 
particular cut-of point and all others above it are
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excluded from further analysis.

ESTIMATION OF THE WAKEBY DISTRIBUTIONS 
PARAMETERS BY INCOMPLETE MEANS.

The incomplete means estimation uses a combination
of means calculated over only part of the total range'.
This new procedure yields fairly stable estimates with
little bias since it uses no moments higher than the
first (Boughton 1978b). Consider a sample of n ranked
observations . Calculate the mean x; it
will fall between two adjacent observations in the
sample. It effectively divides the sample into two
disjoint sets. Calculate the mean of the upper set and 
call it x* Similarly calculate the mean of all the
observations above x^> and lable the incomplete mean X£• 
and so on. The incomplete means and the corresponding 
n^, the corresponding rank order from which the com­
putation of the mean start, can be related to the 
parameters in the Wakeby distribution in a straight­
forward way. This is due to the inverse definition 
of the Wakeby; the relation of the incomplete means to 
the parameters of the lognormal distribution, for 
example, would not be as simple-

To derive the relationship between the parameters 
and the incomplete means, recall that

x xf(x)dx
* — oo

___ (163)

where f(x) is the probability density function of the 
variate x. Let y=F(x), x=F-1 (y) and dy=f(x)dx
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where F(.) denotes the cumulative distribution function. 
Then,

x
1
F 1 (y)dy 

o
___ (164)

Define x to be the mean of the interval
(xa/xb) in the x-space or of the interval (a,b) in 
F-space. Then

- = — i. F'1 (y)dy ___ (165)
(a,b) b-a a

In the incomplete means method, end points are 
determined by functions of n^. For example, for the 
Wakeby distribution,

-a(l-F) b -<2.u+c(I-F) +e dF
i=0,1,2,3,4

... (166)

which reduces to
n . , n . -<a

a(l- ~i)b (1 - -i)
11 + ^ + e(1 +b) 1 -d) ___ (167)

i=0 ,1 ,2 ,3,4
Therefore, by using x, x^ , , x^ , x^ ; and the corresponding
expressions from (167) it Is possible to estimate the 
parameters a,b,c,d and e of the Wakeby distribution .

2.8.3.^ ESTIMATION OF THE WAKEY DISTRIBUTION
PARAMETERS BY PROBABILITY WEIGHTED MOMENTS.

The applicability of the probability weighted 
moments in the estimation of the parameters of the 
Wakeby distribution and other distributions was
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given by Greenwood et al., (1979)

A distribution function F = F(x)=P(X<x) ^
denotes the probability that the independent variate X
is less than or equal to a value, can be characterised

%

by probability weighted moments which are defined as

r1
x£F(l-F)kdF

• o
___ (168

where £,j and k are real numbers. If j=k=0 and £ is 
a nonnegative integer, then M represents the*. t  O  i G
conventional moments about the origin of order £.

If M £, o ,o exists and X is a continuous function of 
F, then exists for all nonnegative real numbers
j and k.

If j and k are nonnegative integers,

and

M j, k
k k

= l (7)j=o
(-1) £ , j , o

M£, j ,o I (k)(-1) 
J

___ (169)

___ (170)

where if exists and X is a continuous function

F' V j , o  exists- general, if y . exists it
may be difficult to derive its analytical form, 
particularly if the inverse x=x(F) of the distribution 
F=F(x) cannot be analyticallv defined.
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In the special case where l ,  j and k are nonnegative
integers, M is proportional to E[X* , . .1, the £-th*■»! »K 1 j + l, k+j+lJ'
moment about the origin of the (j+l)-th order statistic for
a sample of size k+j+i, More specifically,

Ef r W -.] = H
where B[*,»] denotes the beta function. If j=0, then 
(k+l)M̂  Q j, represents the £-th moment about the origin,

.... (171)

of the first order statistic for a sample of size (k+1);
and if k=0, (j + l)M . represents the £-th moment about the&,j ,o
origin of the (j+l)-th order statistic for a sample of size
(j + l) •

Arana the distributions for which only the inverse form. 

x=x(F) is explicitly defined are the generalized lambda 
(Tukey, 1960) and the Wakeby distribution. There are many 
distributions which may be explicitly defined as both 
F=F(x) and x=x(F), among them being the kappa, recently 
introduced by Milke (1973) in analysing precipitation data, and 
the more familiar Weibull, Gumbel and logistic distributions.

Let M(k) M. ,. Then, for the Wakeby distribution,i, o ,K

M(k) 1+k+b + i+k-d + 1+k 1̂72)

The algorithm for estimating the Wakeby parameters from (172) 
requires estimates of M-, ,, for several nonnegative values of 
k. To estimate M =E[X(1-F)̂ ] from a sample of size n, where



1 0 6

k is nonnegative, let , i=l,...n, denote the sample 
values in ranked order, smallest to largest. An 
unbiased estimator of where k is constrained
to be a nonnegative integer is given by (Landwehr
et al. , 1979) :

M (k)
n-k ., n-i n-1 ,

= ~ l x.(k )/(k '
ni=l 1

___ (173)

Another estimator constructed in accordance with the 
concept of plotting positions is aiven by

- 1 n ,
M (k) = H.^1 xi[1 "P(xi)] --- (174)

where p(x^) is the plotting position for the observation 
x±. Landwehr et al. (1979b) and Landwehr et al. (1979c)
used

P(xi) = (i-0.35)/n ___ (175)

Note that in (17 4 ) it is not necessary to specify 
that k is an integer; k is assumed only to be nonnegative. 
After estimating for five values of k, the simulta­
neous equations, of (172) can then be solved to yield 
the parameter estimates a,b,c,d, and e.

2 -8.4. ESTIMATION OF THE WAKEBY DISTRIBUTION
PARAMETERS BY THE DIFFERENTIAL CORRECTED 
TECHNIQUE.

In many applied problems, the form of a function 

f (x > c0 ' ci' • • • • • Cjj,) representing a phenomenon is known,
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whereas the parameters c ,c,f....c are to be determined. 
For example, according to theoretical considerations, 
a particular phenomenon might be represented by an 
exponential, logarithmic, trigonometric or other 
functions. If a set of observations provides 
emperical values of the function

. . . • , c^)/ i-l, 2 , . . . . n, (n*>m)...(176)

then the parameters c^, k=0,1,....,m, can be determined 
from a set of estimates c°, k=0, l,....m, by dif­
ferential correction techniques based on least squares. 
Such techniques are used extensively in mathematics.

Assume that for a particular phenomenon, there 
exists an explicit function

y = f(x,c ,c,,....,c ) .... (177)u x m

relating the variables x and y where cQ,....,c  ̂are 
unknown independent parameters that enter non-1inearly 
into the functional expression. Assume that 
observation of this phenomenon has provided a set of 
data pairs (xi,yi), i=l,2,....,n, at distinct and 
discrete values of x^ of the independent variable x.
The recorded values y^ may contain errors of obser­
vation, measurement, recording, transmission, con­
version and so forth.

If the values of the parameters c^ were known,
it would be possible to evaluate f(x,c ,c,,....,c )o 1 m
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for each to obtain a set of 'true" residuals.

ri=f (xi,co,cl---- ,c^) -yi # i=l12.... n --- (178)
A "true" residual then would represent the difference 
between the actual function value at x. and thel
emperical or recorded value , for i=l,2,...,n.
These "true" residuals cannot be calculated because 
the actual values of the parameters ck, k=0,1,....,m 
are unknown.

However, if estimates c°, k=0,l,....,m of the 
parameters can be obtained by some means, then 
"computed" residuals

Ri ^ xi,co,cl'* ' ‘ ’ ,cir̂ Yj_ ___ (179)

can be calculated. The problem then is to obtain 
improved values of the parameters c^ using the data 
pairs (x^,yi), the estimates c£ and the computed 
residuals . This can be accomplished by a 
differential correction technique based on least 
squares, provided the estimates c° are sufficiently 
close to the actual values of the parameters c^ to 
lead to convergence of the method.

This differential correction technique can be
derived by first expanding the function about 
. O O o, . , .ck'C1'*’* *'Cm1 usin9 a linear Taylor-series expansion 
of the form ( McCalla, 1967 ) :
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f(x,co,c1, . 'Cm)=f (x'Co'c?"- ..,c°)+IT.

3f t~ 9f , oN ,
( o"co) 9c, cl”cl +" -9c ••H"(ci"ci) — (180)m

so that a relation between and R_̂ can be obtained. 
This can be obtained by evaluating (180) at each 
and subtracting from both sides of the equation. 
Using the definitions

6ck = ck - ck
and

9fi 9fk
3ck 3ck x=x. , c, i' k

0uil

for k = 0,1,. t • • / m and i = 1,2, .
the result in the form

n, we can write

f(xi,co,c1,---,cm)-y.-f(x.;co,c1,. \ . 
•'cm)-yi+

9 f i
~ 9c +....9c o

9 f .
^ 3  c.a C IT» (181)

m
The desired relation between r. and R. can be foundl l
by substituting (178) and (179) into (181); the 
result is the relation

9 f . 9f.
r-~R. + c_ +...."5— —  9cl l d c o 9 m ___ (182)

Now let us see how this relation can be used
to compute, from c, , a set of parameters c..
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that minimise the sum of squares of the "true" 
residuals r̂ ; that is, such that the Quantity Q, 
defined by the relation

n
Q = l rf -i=l

n
Ii=l

3f.
R. +1 3c 6c + o

* 3 f .
-- 6cc m m

(183)

is minimised.

Equation (183) indicates that Q is a "function" 
of the terms 6ck> • That is, if any 6ck is varied, then 
the change in Q will result. We therefore consider Q 
as a function of the terms 6ck and write Q( c q , c -^,..., 

Ĉm̂  ’ This function Q has a minimum value when all its 
partial derivatives with respect to the 6ck are 
simultaneously zero; that is, when

90___
3 (6c r )

n
2 y r . 3 f 3f .
•i-i -jr— 5c +. . .+ -7T— 6ci—J- dc o 3c mo m

3A
9(6ck) 0

___ (184)

for k=0,1, . . . ,m,

where

co+‘
3f.

.+ — —c 
Cm m

denotes the total differential o f the function f. 
Substituting the relation
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3A
9(6ck)

3f . 1
3ck

into (184), and multiplying each term in the brackets 
by this quantity, we can write (184) in the form

9Q___
9(6ck)

n
= li=l

3f . __i
3c,k

R.+l
3f .l
dCO

6c +. o
3f. 3 f . i ix
3c, 3c cm = 0

m
.. (185)

for k = 0, 1,....,m.

Evaluating this equation for each value of k, 
and writing the result in matrix form, we obtain the 
normal set of equations:

n 3f. 2 3f. 3f.
I <^> I 1 1i=l o . 3c 3cn i=l o 1

n 3f.
y —.L. 3c i=l m

n 3f. 3f. n
l 1

3f.
. , 3^7 —  . I hET*1=1 1 o 1 = 1 1

n
' l ai=l 3ci

3f. 3f.i i
3cm

6c
n . 3f.

' I IT*-i-1 3 o 1

6c„ n 9f.
j A

n 3f. 3f. n 3f. 3f. n 3f .
y# u l 1 y 1 l • • i C - 1 )L 9 c3c c 3c 9 c _i-1 m O i=l m i • , ri=l

£cm

. . . . ( 186 )
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The solution (6c ,6c......6c ) of this set of equations is ao 1 nr
first order approximation of the change in (c°,c°... c° ) re­
quired to obtain the parameters (c ,Cj,....,cm). If any |6ĉ |>e, 
where e is a required error limit, we replace c° by c°+6ĉ  •
(k=0,1,,..,m) and repeat the entire differential correction 
technique using the known new estimates.

In order to relate this type of analysis to the Wakeby 
distribution, let

n

satr
n r~
I
i=l

U-Fj) logd-F.)



11 j

5bd= ac r1=1
b-d logeCi-

v ] !

Sbe“ -1 = 1

s =cc
n
l Cl-F )
1*1 1

-2d

Sc<T -c Jtl-FjJ'^loged-F.J

? -dSce= 1 U-Fp 6 i = l 1

1 =  1
■2d loggCl-F^ 2

and
" -d

sde= -c l O-FJi = l 1 1

where n is the number of independent peak flow observations 
and Fi, the cumulative probability is estimated by an appro­
priate plotting position formula. Then (186) for the Wakeby
parameters becomes



w here 6 d en o te s the  change  in  th e  in d ic a t e d  pa ram ete r and

Ri=aU-F.)b+c(l-Fi)-d+e-x.) i=l,2,...,n

where a,b,c,d and e are the Wakeby parameters and x̂  indicates 
the i-th peak flow observation (not necessarily ordered) .

Having said so much on the estimation of the Wakeby 
distribution parameters, it now remains to show how the pro­
bability density and cumulative distribution functions can be
obtained for a given set of parameters and variate x. 

f
Since (155) is a one-to-one and onto function of x, 

the probability density function, f(x), can be obtained from
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f(x) = = 1./ dx/dF(x)l = 1./{ab
J

l-F(x) b-1

cd 1-F Cx)J "d_ X} __  (187)

This shows that, unlike in other probability distributions, 
f(x) is defined explicitly in terms of F(x) rather than in terms 
of x. Thus, in order to obtain f(x), one needs to solve (155) 
for F(x) by an appropriate method first. The following is one 
method of solving for F(x) in (155) for a given set of parameters,

For a given set of parameters a,b,c,d and e, the procedure 
can be summarised as follows:-

(i) for values of F(x*) between 0 and 0.9999, generate a 
series of corresponding values of x* by use of (155).

(ii) for every observation x, two consecutive values of x* 
can be found which envelop the observation x.

(iii) Langrangian interpolation can then be used to estimate 
the required value of F(x).

(iv) repeat steps (ii) and (iii) for all observations 
of x to obtain F(x) for all data. Consequently, f(x) 
can be obtained from (187).

2.9 LOG-KAKEBY DISTRIBUTION

If a variate x is log-lVakeby distributed, then,
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y=£n(x) is Wakeby distributed. That is

f(y)=l/(ab l-F(y) b-1+cd l-F(y) -d-1

where

-a l-F(y))Jb+c[̂ -FCy)J-d+ e

.... (188)

__  (189)

and a,b,c,d and e are the parameters of the Wakeby distribution 
in the logarithmic domain. Then

’ f(x)= jf(y) __  (190)

and
F (x) =F (y) __  (191)

As before, (190) and (191) suggest that it suffices to 
estimate the parameters of the Wakeby distribution in the logari­
thmic domain in order to define the log-Wakeby distribution. 
Methods of estimating the Wakeby parameters have already been 
discussed. Similarly, the proability density function, f(x), 
and the cumulative distribution function, F(x), for the log- 
Wakeby distribution can be evaluated by a method similar to 
the one described for the Wakeby distribution with the 
consideration of (190) and (191).

We have so far described the properties and methods of 
application of the various probability distributions which can be 
used in flood frequency analysis. However, it is important 
to mention that, often, it is possible to fit more than one of



117

the probability functions to the same peak flow data.
In such cases, tests of goodness of fit may be used 
to identify the most adequate model(s) . Some of the 
methods of goodness of fit which can be used in such 
an identification procedure are discussed in the next 
sections.

2,10- COMPARISON OF THE FLOOD FREQUENCY DISTRIBUTIONS

The previous sections have described the use 
of various continuous probability distributions for 
estimating events at return periods larger than those 
of the recorded events. The question naturally arises 
as to which of these distributions can be used in 
general. Hence, the goodness of fit tests of these 
probability distribution functions are necessary steps 
in drawing from, the data the most reliable information.

Goodness of fit tests require a measuring 
parameter for fitting the discrete and continuous 
distribution. Two such parameters (statistics) are 
discussed here, the chi-square and the Smirnov-Kolmogorov 
statistics. These two statistics will also be used to 
to supplement the main goodness of fit procedure to be 
discussed later.

2.. 10.1 THE CHI-SQUARE GOODNESS OF FIT TEST

Let a discrete variable have k mutually exclusive



118

random events, or a continuous variable be divided 
into k class intervals of mutually exclusive events. 
Let f^, i=l,2,....,k represent the respective 
frequencies of these random events or of class intervals 
for a sample of size N, and let the discrete or 
continuous distribution functions have the probability 
of class intervals as p^, i=l,2,...k. For the 
observed sample size N, the sample absolute frequencies 
are n.=Nf., in which f. are the relative frequencies, 
and the expected values of the absolute frequencies 
are NP^, i=l,2,....k.

It has been shown (Kendall and Stuart, 196 1)
2that the chi-square statistic, x / which is given by

9 k (n.-wP.)2Z r 1 1x = z -------i=l
(192)

has a chi-square distribution with the number of 
degrees of freedom, NDF=k-l, fora sufficiently large N.

The chi-square test prescribes the critical 
2value xof for a given probability level “, so that

for x2< Xq ' the null hypothesis of a good fit is
2 2accepted, otherwise, for x > X / it is rejected.

°  2Figure 6 shows the distribution of xo for various 
values of a.

In general, the number of class intervals 
should be k>5 and the expected absolute frequencies 
should be NP^>5 for the distribution with NDF=k-l 
to well approximate the distribution of the statistic



( C a r n a h a n ,  et a! 1963 )
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of (192). If k< 5, the expected absolute frequencies 
should be NP^> 5. The represent the integral of 
the probability density function between the lower 
and upper limits of the ith cla*ss interval for continuous 
variables. The length of the class intervals may be 
equal or unequal. In the latter case, the class lengths 
are selected in such a way that all have equal probabili­
ties Pi = 1/k, or equal absolute frequencies NPi. The 
distribution of these NP^, the expected values over the 
unequal class intervals is uniform.

Two cases currently prevail in practice. The 
parameters of the distribution functions are .assumed 
known, and the parameters of the distribution functions 
are estimated from the data sample. In the first 
case, the number of degrees of freedom NDF=k-l, that 
is, a degree of freedom is lost because of the constraint 
that

y Pi=l ' ‘ --- (193)
i=l

In the second case, the number, h, of parameters of 
the distribution function, represents additional h 
constraints, so that NDF=k-h-l.

i \

2.10.2 THE SMIRNOFF KOLMOGOROV TEST

In order to avoid the loss of information due
2to the grouping suffered by the x " tests, other 

methods of goodness of fit have been developed such 
as the Neym an-Barton (B a rt on,1953) and the Cramer-Von Kxses
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W -test (Cramer, 1946). The most important of these 
_ 2alternatives to the x -test is the Smirnoff-Kolmogorov 

statistic, (Kite, 1977). The Smirnoff-Kolmooorov 
tests is based on the deviations of the sample 
(emperical) distribution function P(x) from the 
completely specified continuous hypothetical 
distribution function F(x); of the continuous variable 
x, such that

2

A i --- (194)

Table 7 gives the critical values of the Sm.irnoff- 
Kolmogorov, Aq, for various values of the sample size 
N and also for several values of the confidence level .
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TABLE 7; CRITICAL VALUE AQ OF THE SMIRNOFF-KOLMOGOROV
STATISTICS A, FOR VARIOUS VALUES OF N AND 
® (YEVJEVICH 1972a). .

oc
N- 0.20 0.10 0.05 0.01
5 0.45 0.51 056 0.67

10. 0.32 0.37 0.41 0.49
15 0.27 0.30 0.34 0.40
20 0.23 0.26 0.29 0. 36
25 0.21 0.24 0.27 0.32
30 0.19 022 0.24 0.29
35 0.18 0.20 0.23 0.27
40 0.17 0.19 0.21 0.25
45 0.16 0.18 0.20 0.24
50 0.15 0.17 0.19 0.23
N> 50 1.07//N 1.22//N 1.36//N 1.63//N
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Comparing the A - test to the y - test, there is no 
condition in a A - test that the absolute class frequencies 
should be greater than five, and no sorting of data in class 
intervals is required.

Because the parameters of a distribution function F(x), 
fitted to the emperical distribution P(x), must be estimated 
from the sample data, the A - test is not an exact test, but 
an approximation. Because A is obtained from the absolute 
maximum difference between F(x) and P(x) under the condition 
that the parameters of F(x) are estimated from the sample data,
A is likely to be smaller than the true At if the distribution 
parameters are known. The bias A- Â  is not known, however, 
(Yevjevich/(1972a). Regardless of this bias, a A - test is useful 
and quick, if the critical value Aq is selected somewhat smaller 
than Â  of Table (7) (Yevjevich,(1972a).

A typical streamflow record of peak annual events usually 
contains one or more flood events which may occcur at the higher 
return period side of the data and which may deviate signi­
ficantly from the general trend of the other events for which­
ever probability model is adopted (see Figure 7). Despite the 
fact that the assumed flood frequency model might be incorrect, 
these large floods often contain very large measurment errors 
which may account for this type of deviation. On the other 
hand, if a truly 100-year return period flood, say, is observed 
within, ray, a 20-year record of annual peak flows, then such 
an event would be assigned, quite inevitably, a return period 
of about 20 years. When plotted on any probability paper, this
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Fig. 7 Comparison of some frequency c u r v e s  from v a r io u s  d istributions.
St. M a ry ’ s R iv e r  at Stillwater, U .S .A .  1916-  1975. (KitP T977 )
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flood event would appear as a rogue value or more specifically
as an outlier. Depending on the degree of underestimation of
the return periods of these very high floods, the use of the
conventional goodness of fit tests, such as the x“ - test and
A - test, may reject the assumed probability distribution,
correct as it may be and irrespective of how accurately such
distribution fits the other lower flood events. Thus, in order
to be able to understand better, the behaviour of distribution
of annual peak floods, it is important to use a goodness of fit
test which not only gives an objective measure of the goodness
of fit of the assumed distribution, but which is also capable
of detecting the outlying floods. Tnese outlying peak
flows, hereafter referred to as outliers occur as a result of
measurement error or as a result that their return periods were
either underestimated or overestimated. The following section
gives a brief review of the theory, of the detection and accom-
mondation of outliers and how the theory can be Utilised to
construct- an objective goodness of fit test statistic. 

t

2..;],0.-3 OUTLIERS AND THE BEST-FITTING MODEL

The intuitive definition of an outlier is "an observation 
which deviates so much from other observations as to arouse 
suspicion that is was generated by a different mechanism other 
than that which generates the majority of the observations."

The concept of an outlier has fascinated experimenta­
lists since the earliest attempts to interpret data. Even before

i
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the formal development of statistical methods, arguments ranged 
over whether or not, and on what basis we should discard 
observations from a set of observations on the grounds, that they 
are unrepresentative, spurrious, mavericks or rogues. Attitudes' 
have varied from one extreme to another: from the view that we 
should never sully the purity of the data by daring to adjudge 
its propriety, to an ultimate pragmatism expressing if in doubt, 
throw it out.

In observing a set of observations in some practical 
situation, one or more of the observations jars or stands out 
in contrast to the other observations usually as extremes or 
outliers. Such outliers do not fit with the tidy pattern pre­
sent in our minds at the outset of our enquiry, of what con­
stitutes a reasonable set of data. We have subjective doubts 
about the propriety of the outlying observations both in rela­
tion to the specific data set we have obtained and in relation 
to our initial views of an appropriate probability model to des­
cribe the generation of our data. Our attitudes about the data 
will in this respect differ quite widely with different possible 
basic probability models. If we assume a normal distribution 
for a given set of data, we may react quite strongly to certain 
observations which would arouse no specific concern if the 
assumed distribution were longer tailed such as the lognormal 
or cauchy. . The purpose of most of the statisitcal methods 
for examining outliers is in broad terms to provide means of 
assessing whether or not our subjective declaration of the pre­
sence of outliers in a particular data set has important objective
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implications for the further analysis of the data. Thus, it is 
important to analyse the set of data using all the feasible 
probability models before one makes a final decision that the 
data contains outliers. Some of the tests which have been used 
to test for the presence of outliers are discussed below.

2 ..10-* TESTS FOR OUTLIERS IN STATISTICAL DATA

Auorentim the classification of Barnett and Lewis, 
(1979), we can distinguish seven types of outlier - test 
statistics. These basic types of outliers - test statistics 
are given below.

2.10.4.1 EXCESS SPREAD STATISTICS

These are the ratios of differences between an outlier 
and its nearest or next nearest neighbour to the range, or some 
other measure of spread of the data sample. Examples are:-

(i) the Dixon type statistic (Dixon, 1951) which can be
written as (x -x ,)/(x -xn) where the subscripts de­n n-1 n 2 r
note the rank order of the data of length n, 
arranged in ascending order.

(ii) the Irwin type statistic (Irwin, 1925) which can be
written as (x -x ,)/o. where the subscripts have the n n-1
same meaning as in Dixons test statistic and a is the 
population standard deviation.
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Irwins statistic assumes that a is known and is 
particularly relevant for a normal distribution.
Clearly, we could replace o with an estimate which

/ #

can be based on a restricted sample which excludes
observations we wish to test for; such as the outlier
x or other extremes (Barnett and Lewis, 1979) . n

*
2.10.4.2 RANGE-SPREAD STATISTIC

's

In this case, the numerator of the Irwins type 
statistic is replaced with the sample range to get 
for example, (xn~x^)/S (David et al3 1954, Pearson and 
Stephen, 1964). Again, S, the sample standard deviation

r

can be replaced by a restricted sample analogue, 
independent estimate or a known value of a measure of 
spread of the population. Using the.range has the 
disadvantage that it is not clear without further 
investigation whether significant result rep'resent 
discordancy of an upper outlier, lower outlier or both.

2.10.4.3 DEVIATION-SPREAD STATISTICS
4

These statistics give a measure of the
distance of an outlier from some measure of central
tendency in the data. An example 'for a lower outlier
test is (x-x-p/S wnere x is tne sample mean (Grubbs,
1950). Botn x and S can be based on a*restricted
sample, or replaced with independent estimates, or

I
population values of some convenient measure. A
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modification uses maximised deviation, for example 
maximum Ix^xl/S (Halperin et al.t 1955), x ^  as 
before, denotes the ith observation when the data is 
arranged in ascending order.

2.10.4.4. SUM OF SQUARES STATISTICS

These statistics are expressed as ratios 
of squares for the restricted and the total s>ample. 
For example, the statistic of the form

n-2 n 2
l " (xi-xn n-l) /   ̂ (xi~x) i=l 1 n,n 1 i=l 1

___ (195)

where

xn,n-l
n-2
l x./(n-2) 
i=l 1

___ (196)

and x. denotes the ith observation when the data isl
arranged in increasing order and n is the sample 
size. This statistic was proposed by Grubbs,(1950) 
for testing two upper outliers xn_̂  and xn>

2 k10.4.5 ' HIGHER ORDER MOMENT STATISTICS

Furguson, (1961) showed that statistics such 
as measures of skewness and kurtosis, although 
specifically designed for assessing outliers can 
nevertheless be useful, in this context. However, 
this application was based on the normal alternatives
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only and no test distribution exists for the other
skewed distributions (Barnett and Lewis, 1979).

% •Another omnibus statistic of relevance for 
testing for outliers is the W-statistic proposed by 
Shapiro and Wilk,_ (1965, 1972) and Shapiro and Wilk, 
(1968). For normal samples, this statistic: consists 
of the ratio of the square of  ̂particular type of 
linear combination of all the ordered sample values
to the sum of squares of the individual deviations

2about the sample mean 3 , tnat is :

"(n/2)
an,n-i+l ̂ xn-i+l xî

where (n/2) denotes the integer part of n/2 and n is
the sample size. The coefficients a . can be obtained' n,j

2from a table given by Shapiro and Wilk, (1965) and S
denotes the sum of squares of the individual deviations
about the sample mean, x. denotes the magnitude of • D
the jth observation when the observations are arranged 
in ascending order. The Shapiro and Wilk, (1972)
statistic for the exponential distribution takes the/
simple form:

' \

/S' ___ (197)

n(x-x^
n

(n-1)^ IX4-X) • j=l 3
2 ___ (198)

where n is the sample size, x-̂ the smallest observation, 
Xj the jth observation when the data is arranged in
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ascending order and x t*ie samP^e mean.

Historically, the motivation fora statistical 
treatment of outliers came first from the problems of 
combining astronomical observations, and repeated 
measurements or determinations must always be one 
of the main contexts in which discordancy problems 
arise. In very many cases, errors of measurement 
may plausibly be assumed to follow a normal distribution, 
whether through the operation of the central limit 
theorem on contributory error components, or purely as 
an empirical fact. It is not surprising therefore 
that the vast body of published methodology on outliers 
from the eighteenth century to the present day rest 
on the working hypothesis of a normal distribution. 
Indeed, it is only in the last 20 or 30 years that 
outliers in the exponential (and gamma) models have 
been specifically considered (Hawkins , 1980) .

Barnett and Lewis, (1979) have analysed 
exhaustively the efficiency, propertie s and limitations 
of the above mentioned statistics. One of the most 
serious disadvantages of these test statistics is the 
existence of the masking effect. This effect arises 
when a sample contains more than one outlier. These out­
liers so increase the spread of the sample that the 
removal of one outlier makes little improvement in the 
appearance of the sample, and in particular all values 
of (x^-x)/S are near zero because of the very large
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value of S (all variables have the same meaning as 
explained previously). The practical consequences of 
the masking effect is that any attempt to remove 
these outliers one at a time proves fruitless.

Furthermore, Tietjen and Moore, (1972) showed 
that each of these tests is geared to a particular 
kind of outliers and the application of these procedures 
to a given set of data at a given level of significance 
often leads to conflicating conclusions with respect 
to the null hypothesis. Tiejen and Moore, (1972) also 
emphasised the importance of the determination of the 
number of outliers previous to testing - a fact which, 
not surprisingly leads to 'if you already know how 
the outliers are distributed in the data, then why 
test for them?"

Kitagawa, (1979) solved these problems of outlier 
detection within the context of estimation theory,

t

using the Akaike Information Criterion. With this 
method, we no longer need a two step procedure of 
determination of the type and number of outliers and 
hypothesis testing.

2‘. 10 . 4.6 THE AKAIKE INFORMATION CRITERION FOR 
DETECTION OF OUTLIERS.

Akaike (1973) proposed an objective procedure
for the identification of an optimal model from a
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a class of competing models. Kitagawa, (1979) 
extended the work of Akaike, (1973,1977) and showed 
that a criterion which he called the Akaike Information 
criterion,can not only be used to identify the optimal

Imodel, but can also be used to detect the existence of 
any outliers in a given model.

The Akaike Information Criterion (AIC) is given 
by

AIC= - 21og(maximum likelihood)+2(number of
independently adjusted parameters) .... (199)

The AIC has been used for modelling in various fields 
of statistics (Akaike, 1970, 1976, Otsu et at.3 1976)/ 
engineering (Otomo et al.t 1972) and numerical analysis 
(Tanabe, 1974).

The Akaike Information Criterion has the desired 
advantages over all the previously mentioned tests of 
goodness of fit or outlier detection procedures in that 
it not only gives an objective and comparative measure 
of the goodness of fit when tested over various 
alternatives, but with it, it is possible to detect 
either low or high outliers without any danger of the 
masking effect. Thus, with the use of the Akaike 
Information Criterion, it is now possible to identify, 
more positively, the optimal flood frequency model 
from the class of competing frequency models previously 
discussed. This AIC approach has also been used herein 

for the detection of outliers in flood data and also for the
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identification of the best fitting model(s) at - 
each of the river gauging stations used. In this way, 
it will be possible to choose the overall optimal 
flood frequency model(s) of general applicability.

Since the Akaike Information Criterion 
approach is a key method in this project, the details 
of its development and application are presented in 
the following sections.

2;10.5 DEVELOPMENT OF THE AKAIKE INFORMATION CRITERION

The maximum likelihood principle has been 
utilized in two different branches of statistical 
theories. The first is the estimation theory where 
the method of maximum likelihood has been used - 
extensively and the second in the test theory where 
the log-likelihood ratio test plays a very important 
role in hypothesis testing (Mood et at. 3 1974).
Akaike, (1973) defined a loss function W(9,0) and 
risk function R(0,6) where 6 is a vector of the true 
(population) parameter values and 0 is the vector of 
the estimated (sample) parameter values, and suggested 
that these two parameters can be combined into one 
problem of statistical decision. Thus, instead of 
considering a single estimate of the vector 9, the 
estimates corresponding to various possible restrictions 
of the distribution can be considered and instead of 
treating the problem as a multiple decision or test
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between hypothesis, the problem of general estimation
procedure based on the decision theoretic consideration
is treated. The whole idea can be simply realized by

A >\
comparing R(0,0) or W(0,0) when possible for various 

values of 0 and taking the one with the minimum R(0,0) 
or W(0,0) for our final choice. Akaike, (1971) discusses 
at length, the advantages and disadvantages of this 
approach.

The problem of statistical model identification 
is often formulated as a problem of the selection of 
a density function f(x,0 ), k=l,2,....,L based on the 
observations X, where 0 is the projection of 0 , a 
vector on L-dimensional real subspace, where L is the 
number of population parameters, to a lower dimensional 
real subspace of dimension k. The value of k, which 
is the number of parameters of the emperical distribution 
is often called the order of the model. Wald, (1943) 
shows that this problem can be treated as a subject 
of composite hypothesis testing and the use of the 
log-likelihood ratio: criterion is well established
for this purpose.

Consider the situation where the results x^,
i=l,2,....,N of N independent observations of the

A }•£variate X have been obtained. Let 0 " denote the
maximum likelihood estimates in the space of 0^, that

Ak kis, 0 ', is the value of the vector 6 which gives
the maximum of the likelihood function
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N _ , _ k.
* > . . . .  ( 200) i=l

Then, Akaike, (1973) strongly suagested the use of

k _ 2 P ,
w ----- n L -o g

i=l
f (xi,eJV)
f (xi ,0 ) . . . .  ( 2 0 1 )

as an estimate of the loss function W(0,0k). 

The statistic

k « k
* = N -w .... (202)

is the familiar log-likelihood ratio test statistic 
which is asymptotically distributed as a non-central 
chi-square variable with (L-k) degrees of freedom when 
the true parameter vector 0 is in the space of 0k.

Assuming the tendency towards a Gaussian 
distribution of /N(0-0) and the consistency of 0K

A ,

and 0 as the estimates of 0K and 0 respectively, it
can be shown (Akaike, 1973) that, an asymptotic
equality in distribution for the log-likelihood ratio 

* . kstatistic exists and is given by

where ||a j | denotes the norm in the space of « and is 
defined by
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~ L L
lla llc=I l ai am C(l,m) (0) ___ (204)

£=1 m=l ..
where C (A ,m) (0) is the U,m) element of the Fisher's 
information matrix given by

CU,m) (0) =-
3 2 log [j: (x, 0)

}f(x,6)dx

for all x
By using the identity

(205)

I |e-ek| |2= 11 (0 - 0 )-(ek- 0 ) | |2
c c (206)

and the definition of the norm on the first term of 
the right hand side of (203), we get

nk=N| |0k-0| |2-w| fe-e| |2-i jek-ekj |2-2N(e-0,0k-e) c c * c c

___ (207)

Extending (201), Akaike, (1973) defined the loss 
function W(0,0k) as

W(0,0k)= l l (0k- 0?) (0k-0rn)C(P.,m) (0) ... 
H r l  1 1 m m

(208)

which can also be rewritten as:

W(0,0k)=||0k-0||2 + ||0k-0k||̂  ___ (209)

 ̂kUsing (207), W(0,0 ) can be further rewritten as
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a Vw(9,e
* ) = n k - ( N  11e-e| | * - n | |0k - e k | \ 2c ) +

2N(0-e,0k-0)c + I |ek-0k | I 2c ___  (210)

Geometrically, 0-0 is approximately the projection
. kof 0-0 into the space of 0 . From this result, Akaike

(1973) showed that N| | 0-0 | | 2-n | | 0k-0k| |2 and N| | 0k-0k| |2c c c
are asymptotically independently distributed as chi-
square variables with (L-k) and k degrees of freedom
respectively. Akaike, (1973) further showed that the
standard deviation of the asymptotic distribution of
N(0-0, 0 k-0 )c is equal to '^ •) | 0^-0 | | ̂  . Thus, if
N||0 —0||c is of comparable magnitude with L-l or k
and these are large integers, then, the contribution
of N (0-0,0 -£?,). in (210) remains relatively insignificant.

k 2Further, if N||0 —0|| is significantly larger than L,
~ kthe contribution of N (0-0,0 '-0) is also relatively

k i 2insignificant. Also, if N j |0 -0| |̂  is significantly 
smaller than L and k, again, the contribution of 
N(0-0,0 -0)c remains insignificant compared to the other 
variables of the chi-square type. These observations 
suggest that (210) can be approximately written as

W(0,0k)=nk-{N||0-O k I lc')+l I 0k-0k| \* _____ (2 .1 1 )

AFor a giver, model, f(x^,0 ) is a constant. 
Hence, taking the statistical expectation operation E 

on both sides of (211) r v/e get
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E [w (0,0kr] = nk+2k-L .... (212)

Using (201) and (202), (212), can further be rewritten 
as

E (w(e,e*)
N

= -2l log 
i=l

f (x,,0K )
N

+2k-{L+2£loq
i=l

f (xi ,0 )J ) --  (213)

The two last terms of (213), in braces, are both
constants for a.given set of observations x̂ , since
they represent population values.. Hence, these two
terms cannot have any decisive power on the model

r "Tdiscrimination test based on E|̂ W(0,0 ) . On this
basis therefore, Akaike, (1973). derived a criterion

\

which is herein called the Akaike Information Criterion 
for model identification and other statistical 
inference situations given by

N i— -'V “1AIC = - 2 l log f(x.,0 ) + 2k --- (214)
i=l - 1 J

The interpretation of (214) is given by (199).

The AIC has a clear interpretation in model 
fitting. The first term of ( 214) indicates the 
badness of fit and the second the increased unreliability 
due to the increased number o f parameters. The best 
approximating model is the one which achieves the

/
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most satisfactory (minimum AIC) compromise. The 
process of finding the model with the minimum AIC 
is equivalent (approximately) to finding the model 
with the maximum entropy(Kitagawa, '1979). This 
approach can be used in the identification of an 
optimal flood frequency as higlighted in the following 
subsection.

2.1P-6 APPLICATION OF THE AIC IN FLOOD FREQUENCY 
MODELLING

The Akaike Information Criterion can be 
utilised in two main ways. Firstly, it can be used 
purely as a model identification process and secondly,I
both as a model identification process and as an outlier 
detection process simultaneously. Obviously, the 
latter use of the Akaike Information Criterion is 
more profitable in most statistical analysis in which 
the basic data is prone to contamination by outliers,

A common type of outlier problem arises in 
situations where a set of data can be divided into 
distinct subsamples. The subsamples may correspond 
with different levels of some set of factors. The 
subdivision of the sample into the sub-samples may 
take place after we have collected a random sample from 
some overall population in which case, subsairple, sizes m., are 
ran d o m  q u a n t it ie s # t ern at iv e l y ,  and more l i k e l y ,  we may choose

random sam ples of p re s c r ib e d  s i i e ,  ir jj, at different factor levels or



under different circumstances: these samples in
*

combination serve as subsamples in the overall data 
set. This is the case in many designed experiments 
and one of interest, examinable by analysis of variance 
techniques on the customary assumptions of normality, 
addidivity and homoscedasticity, is in the 
comparison of the means or variances of the populations 
from which the subsamples arise. Barnett and Lewis 
(1979) have discussed this problem in the context of 
the other problems in details. In flood studies 
however, we are mainly concerned with the existence 
of subsamples of the former type.

Flood flows are the very events subject to the 
maximum measurement error. In fact, maximum flows 
are seldom, if ever, measured because of the difficulties 
involved, firstly in predicting the time at which 
maximum flow might occur, secondly the difficulty in 
getting to the gauging site at that time and, finally 
the difficulties of actually carrying out the gauging 
at the high stage and high velocities. The automatic 
recording stations are usually not ver y helpful during 
these high flows because they are either clogged up 
by the characteristically muddy waters or are simply 
destroyed by the debris or washed away by the fast 
flowing waters. As a result, high flows are normally * 
estimated by extrapolation of the rating curve, 
estimation of the mean velocity from an isolated

- 141 - •
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surface velocity measurement, use of slope area 
method or other similar estimation procedures. The 
resulting estimates of discharge of these high flows 
contain a high error component which Blench,, £1959) 
estimated to be at least 25%. This is partly the 
reason why the highest few flood observations.show up 
as discordant values in relation to the smaller 
flood values, hence depicting the existence of at 
least two subsamples.

Another factor which can give rise to subsamples
in flood data is the plotting position. It was 

' \mentioned earlier that the effect of the plotting 
position is most serious at both extremes of the flood 
data.- Hence, most often, some of the smallest flood 
values and some of the highest flood values are 
unintentionally overestimated or underestimated in 
terms of. their return period, depending on the length 
of the record.

Consequently, a flood data sample may have 
three distinct subsamples. Since the lowest and the 
highest - valued subsamples arfe generated by 
mechanisms which either originate from measurement 
error, underestimation or overestimation, we can 
refer to the observations in these subsamples, as 
low outliers and high outliers respectively.

i \
In order to make this existence of subsamples
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compatible with the requirements of the Akaike In­
formation Criterion analysis, we can assume that the 
subsamples arise from populations with identical 
means, with the alternative prospect that in just one 
or two of the subsamples, the mean has slipped up or 
down from the predominant level. Or perhaps the 
variance of one or. two of the subsamples is larger 
than the common variance of the majority of the sub­
samples .

Due to the uncertainities involved in the Iicomputation of the variances of both the low and high
outlier subsamples, (since they contain very few‘  ... ... |
observations) we can only use the mean slippage
alternative. This alterntive can be simply stated

as follows: all the observations have a common
probability distribution only that the low and high
subsamples have slipped means y-̂ an(3 1*2 resPectivelyt
while the inlying observations have the true mean y.
This can be further interpreted mathematically as

follows: Let the sample of n observations be denoted
in order of increasing magnitude by x^ _< X2 £ ....—xn‘
Assume that x/iS a realization of the flood variable
specified by a probability function f(x,.). Then, we
can write that
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f (x±) =

g(x^,y^)J i - 1 n

g. (x. ,y), i=n +1 ,.. . . n-n„-i-n^,n-n^-n2 1 2

g (x±,y2), i=n-n2+l, . . . .n .... (215)

where f(.) is the underlying probability distribution
which in this project can be any of the previouslv
discussed probability density functions, and g. (...)£, m '
is the probability density function of the ordered 
observations x££ xt+1 £..•.<x , for any £ less than m 
and m less than n, from the population with density 
g(.,.). The integers n ^  and n2 denote the sizes of 
the lower and upper subsamples respectively. It is 
important to note that (Hood et al., 1974).

'i-n-lfn- -n2 l(x, , y) = C (i-n^ , (n- x-n2 + l )

G(x±,y) i-n.,-1 r, „, ,, n-i-n1 . (l-GCx^^, )} z gix^y2 g(x, ,y ) --- (216)

where

C (i-n^ ),(n-i-n2
(n-n^- n2)i
(i-n^-1 ) i(n-i-n2)! *“ (217)

and
G(x±,y)

fxi
__  (218)

— oo
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The model of (215) means.that n^ observations

x , , n - n , - n 0 observationsx > 1 1 2  n^+l ,xn-n2 and

n2 observations xn_n^+if. . . . , each are realizations 

of the distribution g(.,.) with common parameters . 

except the means which are y^yand y2resPectively• ’
In this project we will consider the observations in 
the lower and upper subsamples as outliers.

The likelihood function L(x;n^,n2 ,lĴ ,yfV|) 
of (215) is given by

n. n-n.
L (x!n1n2y1,u2)= V xi ' V ' i i +1 (xi'u) •

n
TT
i=n-n2+l

g(x±/y2) ___ (219)

Thus, the log-likelihood function £ (xz-n̂  ,n2 , P2 '’l)
of (219) is given by

nl
l  (x;n1,n2 ,V!1,y2^)=iIilo9jg(xi'^i)jHog(n_ni"n2)’

n-n.
-l {log
i=n̂ +l

(i-n-̂ ) i+log(n-i-n) ! + (i-n̂ -l)log Gtx.̂ , p) +

(n-i-n2)log

logJ~g(xi,y2r

1-G(x^,y) + log
— n

g (xj ,y)
i=n-n2+l

___  ( 2 2 0 )
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Hence, it is now clear tnat the minimum Akaike 
Information Criterion of the best approximating numbers 
of the outliers in the low side and nign side are 
tnose values of n^ and n2 which minimize AIC(i,j) 
given by

AIC(i,j)

-2Mx;i, j , . , .y ) + 2k1, i = j = 0

-2*(x;i,j,.,y,y)+ 2k~ , i = 0, j | 0
2 2 --- (221)

-2 (x;i,j,y1>., y ) + 2k3, i $ 0, j = 0 

2 (x;i,j,y1,y2,y) + 2k4, i f 0, j t 0

with the maximum likelihood estimates y- ,y.- and y andx z
all other common parameters. The integers k^, k2, k̂ ' 
and k^-in (221) are the number of independently 
estimated parameters' wnen no outliers are assumed, when 
there are no high outliers, when there are no low 
outliers and when there are outliers both in the low 
and upper subsamples respectively.

Hence, it is clear tnat by changing tne under­
lying density function f(.,.), the best fitting 
distribution can be obtained as the one with an overall 
minimum Akaike Information Criterion (MAIC). The 
required number of low and high outliers would'then be 
those values of i and j in (221) which correspond to 
the MAIC.

Theoretically, i and j in (221) can attain any 
integer values such that i+j<n. However, experieince
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(Kite, 1977; Morel-Seytoux, 1981 and Greis, 1983)
9

show that when discordant flood observations do 
exist, there are hardly ever more than three of them 
on either side of the extremes. Thus, in this project 
the minimum Akaike Information Criterion MAIC is 
found from all the AIC (i,j) in (221) such that i<3 
and j<3.

The use of the mean slippage alternative which 
was utilized to arrive at (221) require s that in each 
of the nine chosen flood probability distributions, the

A

estimate y of the inlying subsample remain unchanged 
throughout the changes of i and j. The total sample

A /Cmean gives a good estimate of y. The estimates y^ and
A

V>2 are obtained from the subsample means of the lower and 
upper subsamples respectively. This formulation is • 
quite appropriate for a distribution which contains 
the y, as one of its parameters. However, the 
probability distributions in consideration do not always 
possess this property. Nevertheless, at least one of 
the distribution parameters is a function of the mean 
when the other higher moment sample statistics are 
held constant as is required by the mean slippage, 
alternative. This is especially true with the moment 
parameter estimates. For the sake of convenience, 
these moments parameter relationship are used to 
define the variations of a required parameters with

A A

variations of the mean. Thus, through y-, , and
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the concerned parameter or parameters can be changed 
accordingly in the lower and upper subsamples.

In the three parameter lognormal distribution,
I Athe overall estimates of the location parameter xQ

A

and the shape parameter in (28) are assumed common
in the three subsamples. The scale parameter y^ of
the inlying subsample is taken as the one that is

A (11 / o)computed from the total sample, while y nd ^
y an v

the scale parameters of the lower and upper subsample 
are obtained as follows

G (1) 1 "x
y * n.J *n(xi - Vli=l

. .  ( 2 2 2 )

and
* (2) 1 «y = — ) £n (x. -x )
y n2 iil-n.+l 1 °

___ (223)

where and ri2 are the lengths of the lower and upper 
subsamples and n is the length of the total sample 
of the variate x.

In the Pearson and log Pearson Type 3 distri-
A ,butions, the scale parameter estimate ® and the 

shape parameter estimate £ of the subsamples are 
taken as those estimated from the total sample. In 
both the Pearson Type 3 and the log Pearson Type 3

A ~ .the location parameter xq (in Pearson) and yQ (in 
log Pearson) of the inlying subsample are taken as
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those computed from the whole sample. However, the
location parameters x ^  and x ^  of the lower ando o
upper subsamples for the Pearson Type 3 are obtained 
from,

and

n
x (1) _ 1 1

= ± In L

( 2 )

i=l

n

x i +
6

___ (224)

= i lL,n,.‘ xi+S/g2i=n-n2+l
___ (225)

where n^,n2 an^ n are as defined before and a2 is the 
sample estimate of the variance of the untransformecl

variate x. The estimate of the location parameter
* (1) *(2 ) yQ of the lower subsample and the location yo
of the upper subsample for the log Pearson Type 3
are obtained from

___ (226)

l ln(x.)+Vs- o n0 .L i y B2 i=n-22+l 1

2 .

___ (227)

where a " is the estimate of the variance of they
A

transformed variate y = £n(x) and 3 is an estimate 
of the shape parameter for the total sample in the log 

domain K

In the AIC analysis with the Fisher Tippet 
and log-Fisher Tippet distribution, the scale

Aparameter estimate and the shape parameter estimate
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from the total data sample are assumed to be common 
in all the subsamples. The location parameter then, which

A  Ais a function of the mean when « and 3 are invariable 
is then the one which is changed within the subsamples. 
The location parameter xq of the Fisher Tippet dis-

A

tribution and the location parameter yQ of the log- 
Fisher Tippet distribution of the inlying subsample
is again taken as the one computed from the total

 ̂(1)sample. However,-the location parameters xQ and

x \ 2 ) for the lower and upper subsamples in the
Fisher Tippet distribution are obtained as follows:,

n.
x (1 ) 1 r , «= —  ) X . + ——n, .L, i o‘1 i=l

1-r(1+8) (228)!

and
( 2 ) n
o = —  In~ L

i=n-n2+l

cc
X . + —

1 8
i-r (i+8)j 229)

where n^, n2 and n are as defined before and T is the
gamma function of (55). The corresponding parameter
estimates y (1) and y (2) for the log-Fisher Tippet J o o
distribution are obtained as follows.

- (1 )yJ o =
n].

~  yni i=i
r /n "j

8,n (x . ) + £ -1-1(1+B) l 1 p. L J
(230)

and
n.(2) = 1. y

c\ to u 2n(x.) + ~-| 1-H1+3)
n2 i=n-n2+l 1 8 [ *

(231)
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In (2 30) and (231) , the parameters « and 3 are for the 
log-transformed data unlike the « and 3 in (228) which are 

computed from the untransformed x-variate.

The scale parameter « and the shape parameter 3 
of the Walter Boughton and log-Walter Boughton 
distributions are independent of the mean y of the 
variate. Hence, under the mean slippage alternative,

/V *the estimates a and 3 as computed from the total
sample are assumed common to all the subsamples.
However, the location parameter xq (in the Walter
Boughton distribution) or yQ (in the log^Walter Boughjton
distribution) is a function of the mean of the variate
under consideration. Thus, the location parameter ha’s
to be changed accordingly. The estimate of x or yQ
for the inlying subsample is taken as that which is
computed from the total sample. In the Walter-Boughton

 ̂(1)distribution analysis, the location parameter xq of the 

upper subsample is  obtained from

n. n.

;° + *1 J i Xl" s J i Xi ___ (232)

and
" ( 2 )x I (xi)_i=h-n^+l

1
n2

n
l xii=n-n2+l

— (233)

A
where xQ is the estimate of the location parameter for 
the total sample of the untransformed variate x; n^,^ 
and n are as defined before. For the log-Walter Bcugnton
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distribution, the corresponding location parameter
a (i) A (2)estimates y and y ^- .. . ,^o o of the lower and upper sub­

samples are given

n. nl
l fi,n(x.)- i l 

i=l 1 nli=l
in(x±) ... (234)

and
A

I nZJ *n(xi>i-n-n2+l . 2 i=n-n2+l

where yQ is the location parameter of the Walter- 
Boug'nton distribution in the log-dcmain for the total

, Isample.

Finally, in foe VJakeby and log-Wakeby distributions, 
the estimates of the parameters a,b,c and d as computed 
from the total sample are assumed common to all the 
subsamples. This way, the parameter e becomes a 
function of the expected values of the variate in 
question. Thus, in this case, the estimate of the 
parameter e is changed (within the samples) accordingly. 
The estimate el (in the real or log-domain) of the in­
lying subsample is assumed to be that estimated from

A

the whole sample while e^ of the lower subsample and 
^  of the upper subsample are obtained from

ej=’Ĵ  -a/ (1 +b) He/ (1+b) . . .  ( 2 3 6 )
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and
e2 = u2-a/(l+b)+c/(l+b) ___ (237).

wnere is tne lower subsample mean of tne untrans­
formed data in tne case of tne Wakeby and of tne log 
transformed data in tne case of tne log-Wakeby and m2 
is tne upper sample mean of eitner tne untransformed 
data in tne case of tne Wakeby or of tne log-transformed 
data in tne case of tne log-Wakeby. Further, tne 
estinates a,b,c and d in (236) and (237) for tne 
Wakeby (real domain) are different from those of tne 
log-Wakeby (log domain).

Table 8 below gives tne appropriate values
\

of k,,k9,k- and k, of (221) for tne various distri­
butions under consideration.

Using the methods which nave been reviewd above, 
tne Akaike Information Criterion was used to identify 
tne^ most optimum flood frequency model, as well as tne 
outliers relevant to the nine probability models des- / 
cribed earlier. Tne results are presented and dis­
cussed in tne next chapter. However, for complete­
ness sake, tne distribution parameter estimates for 
each of tne nine probability models and for each of tne 
cnosen catchments are presented and discussed first in 
tne next cnapter.

\
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TABLE 8 VALUES OF k, , k̂  , k, AND k, OF (221)X c. . H .

DISTRIBUTION kl k2 k3 k4
Lognormal Type 3 3 4 4 5
Pearson Type 3 3 4 4 5
Log-Pearson Type 3 3 4 4 5
Fisher Tippet Type 2 or 3 3 4 4 5
Log Fisher Tippet Type 2 or 3 3 4 4 5

Walter Boughton 3 4 4 5
Log-Waiter Boughton 3 4 4 5
Wakeby 5 6 6 7
Log-Wakeby 5 6 6 7
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CHAPTER 3

3. O RESULTS AND DISCUSSION

In this section, we will present the major * 
results of the study under two subsections. In the 
first subsection, the parameters obtained for the 
various distributions are presented while in the final 
subsection, the results of the goodness-of-fit tests 
are presented.

3.1 PARAMETERS OF THE DISTRIBUTIONS

It is often accepted that the maximum like-j 
lihood method is the most efficient in the estimation 
of the parameters of a probability distribution. 
Furthermore, the Akaike Information theory requires 
that the maximum likelihood estimates should be used 
in the computation of the various alternatives of 
the Akaike Information Criteria given in (221).

Thus, except for the Wakeby and the log-Wakey 
distributions for which there were no maximum 
likelihood routines for the estimation of their 
parameters, the maximum likelihood estimates were used, 
whenever possible, in all the other probability dis­
tributions. However, the maximum likelihood routines 
for most of the skewed distributions, the flood 
probability distributions included, involve trial and



error or successive approximation procedures which 
unfortunately do not always guarontee convergence 
to the required solutions. An error limit of 
0.00001 was used in all the maximum likelihood 
routines. Further, whenever 200 iterations were 
reached without the required convergence error limit, 
then the routine in questions was assumed to have no 
convergence for the catchment in consideration. In 
such case, the estimates by the method of moments

Iwere computed and adopted except for the flood 
probability distributions which do not posses methods 
of moments, such as the Walter Boughton, Log-Waiter 
Boughton, Wakebv and the Log-Wakeby distributions.
The alternative to the method of maximum likelihod 
in the cases of the Walter Boughton and the Log-Waiter 
Boughton distributions was the method of least 
squares. The parameters of the Wakeby and Log-Wakeby 
distributions were computed solely by the tnethod of 
probability weighted moments.

In Table 9(a) through 9{i), the estimates 
of the parameters of the various distributions under 
investigation are presented. Together with these 
parameter estimates, it is also remarked against|
each river gauging station (RGS) which estimation

* i

routine accomplished to give the shown estimates.
The method of maximbm likelihood is denoted by MLE;
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TABLE 9 (a): PARAMETERS OF THE LOG-NORMAL 3 DISTRIBUTION

P A R A M E T E R S S A M P L E S T A T I C T I C S

RGS:NO. LOCATION SCALE SHAPE MEAN STD- DEV- SKEW METHOD USED
X u 0o y y 1 -

1CE1 - 623.20 8.1+1+ 0.67 5073.1 3688.0 1.05 MLE
1CB2 20. U8 1+.52 1.29 225.5 325.8 3.21 1
1BA1 27.66 5.50 1.03 1+18.2 380.9 1 .1+8 \ u1
1BC1 613.3 163.6 -0.37 1 ”
IBGk 1*3.83 3.95 1.0 1 127.8 89.6 1.87 n
1BD1 - UU.99 5.99 0.80 u 92.9 1+16.1+ 1.13 it
1BE1 . - 6 7̂.60 7.10 0.1I+ 577.6 171.8 0.60 11
1BE2 5.19 2.3U 0.91+ 21.1+ 17.3 2.21 it
1BE5 56.35 5.06 0.53 236.7 97.7 l.lU ti
1BB1 - 55.15 6.52 O.5I4 729.2 1+72.1 1.97 ti
1GG1 11 .16 6.83 1.28 2269.5 5355.u 5.57 n
1JG1 - 1213.33 8.92 0.53 7377.1* 1+716.2 . 1.09 ii
1KA5 - 1.57 2.68 0.65 16.5 13.2 1.71* 11
1LA3 1027.5 303.lt • -0.17 11
1CB5 636.2 289.0 -0.17 "
1CB3 6.26 U.5U 0.79 136.9 11+0.9 3.81+ ti1
1CD1 - 21+.22 5.03 O.71* * 176.7 166.9 2.27
1CA2 — 89U.5 U72.3 -O.16 11
1CB1 73.95 5.93 1.15 763.8 787.8 1.72 it
1DA2 87.09 8.73 0.51 7207.6 1+289.8 2.37 11
1FG1 - 576.71 8.20 . 0.33 327I* .8 1287.8 0.75 11
1JCL3 U .76 2.23 1.02 21.7 31.3 U.96
1KC3 - 389.62 9.38 0.70 II+57I* .0 HOl+9.1 1.61+ n
1FG2 1235.16 7.76 0.73 1*263.5 2298.2 1.1+9 it
1HAU 152.85 6.11+ 0.88 81+7.2 911*. 8 5.07 11
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TABLE 9 (a ): PARAMETER OF THE LOG-NORMAL 3 DISTRIBUTION
• P A R A M E T E R S S A M P L E S T A T I S T "’I C S ' t

RGS. NO. LOCATION
Xo

SCALE . 
PY

SHAPE
0y

MEAN STD. DEV. SKEW MEAN METHOD

1FF2 80.65 1+.87 1 .12 298.7 207.0 1.53 MLE
1FE2
1FE1

83.91 7.97 0.70 37U1+.9
2378.9

2676.9
781+.5

1.50
0.00

tf

n
2B2 21+.72 1+.52 0.35 122.7 35.9 1.16 if

2EB3 3.1+1 1+.71 0.90 171.5 195.1 3.72 11
2EC2 0.32 3.01 0.9I+ 30.2 2U.7 1.01 ti

2FA2 - 18.07 1+.28 0.66 70.2 55-6 0.92 n
2FC5 6.21 1+.59 2.01+ 31+3.6 1+07.5 1.32 if
2EC3 1.25 3.1+9 1.15 66.0 100.7 3.66 11
2GD2 - 0.05 1+.59 2.1+1+ 397.2 1+1+1+. 7 1.11+ 11 1
3BA10 7.26 3.90 1.69 202.0 1+51.2 It.09 n
3BA17 2.33 2.37 1.05 19.9 19.0 2.1+1+ t«

3BC12 68.26 6.97 1.28 2079.1 1963.1+ 0.85 it

3F2 3366.80 9.11 0.99 17831+.3 16225.9 2.50 11

3DA2 200.03 9.02 1.07 13331.1 10989.1+ 0.75 11

3BA18 - O.Ol 3.91+ 0.85 71.6 60.2 1.79 it

3BB10 - lU.1+6 1+ .22 0.53 63.7 1+0.6 0.71 11

1+AA2 85.62 5.78 0.98 601+.3 51+!+.1+ 1.58 it

1+CA2 0.00 7.35 O.78 2102.9 1970.9 3.69 11

1+BE1 - 178.63 8.07 0.71 3857.0 2897.2 1.61+ ti

hAAk 55.81+ 5.31+ 1.23 1+78.1+ 570.9 3.00 ii

1+BC2 0.00 8.55 0.52 5885.8 3139.1 1.17 11

1+AB5 75.57 6.27 0.81 797.8 630.1+ 2.11 11



TABLE 9 ( a ) ; :  PARAMETERS OF THE LOG-NORMAL 3 DISTRIBUTION

P A R A M E T E R S S A M P L E S T A T I S T I c s

RGS. NO. LOCATION
Xo

SCALE
gy

SHAPE
ay

MEAN STD. DEV. SKEW METHOD USED

1+G1 771+5.93 9.95 1.19 52515.1 73639.6 2.99 MLE
1+CBL -1+098.96 8.63 O.lU 1560.9 816.8 0.11 n
i+bbi 0.00 6.32 0.55 6U3.1* 360.2 1.08 1!
i+aai 0.00 5.90 0.78 1+83.3 357.6 0.90 I f

5AA1 “ 1.79 5.72 0.73 396.2 352.0 3.27 ” i
5AA5 - ll+.l+i* 5.26 0.78 238.9 173.7 0.63 M
5AB2 21.03 5.09 1.37 3U2 .1 302.1 0.75 f t

5BCL 31* .78 6.68 0.81 1112.6 81*0.9 1.10 It

5BC8 19.22 5.92 1.68 1165.8 1725.0 2.1+1+ tt

5BEU - 11.1*3 5.55 0.85 351* .7 31*1.0 1.89 tt

5BE20 358.05 6.51 1 .0L 1*157.1 1089.8 1.32 I f

5D5 680.39 7.08 l.lU 2717.1 201*2.0 J • • 1.1+9 f t
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TABLE 9(b); , PARAMETERS OF THE PEARSON TYPE I I I  DISTRIBUTION I

P A R A M E T E R S S A M P L E S T A T I S T I Q S
RGS. NO. LOCATION SCALE • SHAPE NEAN STD.DEV. SKEW METHOD USED

X0 oc 8 |-

1C El 271.8 3161.9 1.52 5073 3688.0 1.05 MLE
1CB2 -365876.8 0.3 130211+3.0 225.5 325.8 3.2 T n

1BA1 -3UU221.8 0.1+ 81+7919.0 '1+18.2 380.9 1.1+8 it

1BC1 613.3 163.6 -0.37 MOM
ibgL 32.0. 83.7 1.15 127.8 89.6 1.87 11

1BD1 - 21+2.1 235.9 3.12 1+92.9 1+16.1+ 1.13 it

1BE1 - 280.k 33.1 1 25.95 577.6 171.8 0.60 MLE
1BE2 5.7 19.1 0.82 21.1+ 17.3 2.22j MOM
1BE5 92.0 66.5* 2.17 236.7 97.7 l.lU MLE
1BB1 87.3 300.7 2.13 729.2 1+72.1 1.97 MLE
1GG1 -2851881.k 9.6 295930.0 2269.5 5355.it 5.57 MLE
1JG1 103.3 2921.1 . 2.1»9 7377.“* 1+716.2 1.09 it

1KA5 O.U 9.0 1.78 16.5 13.2 1 .71* it

1LA3 1027.5 303.1+ -0.17 MOM
1CB5 - 881+92.2 0.9 99393.0 636.2 - 289.0. -0.17 MLE
1CB3 63.5 '<70.7 0.0 136.9 11+0.9 3.81+ MOM
1CD1 -I96L7L.8 0.1 1I+I87I+I.O 176.7 166.9 2.2f. MLE
1CA2 -1361+23.3 1.6 88331.0 891+.5 1(72.3 -0.16, MLE
1CB1 - 15U.6 675.7 1.36 763.8 789.8 1.72 MOM
1DA2 1279.9 21+39.2 2.U3 7207.6 1+289.8 2.37| MLE
1FG1 L51.0 581+. 1 1+.83 3271+.8 1287.8 0.75 MLE
1JC13 -1666k,6 0.1 297762.0 21.7 31.3 1+.96 MLE
1KC3 1095.5 9057.6 1.1+9 II+57I+.O 1101+9.1 1.61+ MOM
1FG2 16L9.9 2103.1 1.21+ 1(263.5 2298.2 1.79 MLE



TABLE 9Cbl :.i PARAMETERS OF THE PEARSON TYPE I I I  DISTRIBUTION

P A R A M E T E R S S A M P L E  S T A T I S T I C S
RGS. NO. LOCATION

xo
SCALEoc SHAPE

8 MEAN STD.DEV. SKEW METHOD USED

ihaL U86.3 23:T.6 0.0 8U7.2 '91U.8 5.07 MOM
1FF2 -lll872.it O.U 307832.0 298.7 207.0 1.53 MLE
1FE2 689.6 2956.2 1.03 •37UU.9 2676.9 1.50 MLE
1FE1 -791162.7 0.8 1023122.0 2378.9 73U.5 0.00 MOM
2B2 U5.6 15.5 U.99 122.7 35.9 1.16 MLE
2EB3 66.5 362.lt 0.0 171.5 195.1 3.72 MOM
2EC2 -13U36.2 0.0 305850.0 30.2 2U.7 1.01 MLE
2FA2 - 5 1.O 25.5 U.76 70.2 55.6 0.92 MOM
2FC5 - 273.8 268.9 2.30 3U3.6 U07.5 1.32 MOM
2EC3 11 .0 l8U.lt 0.0 66.0 100.7 3.66- MOM
2GD2 -200196.U 1.0 209283.0 397.2 UUU.7 l.lU MLE
3BA10 - 18.8 922.2 0.2U • 202.0 U51.2 U.09 MOM
3BA17 U.2 23.2 1.0 19.9 19.0 2.UU MOM
3BC12 - 2523.7 837.5 5.50 2079.1 1963.u 0.85 MOM
3F2 -68U063U.5 36.9 186035.0 1783U.3 16225.9 2.56 MLE
3DA2 -U211280.2 27.u 153953.0 13331.1 10989.u 0.75 MLE
3BA18 U.6 5U.0 1 .2U 71.6 60.2 1.79 MOM
3BB10 - 50.6 lU.U 7.9U 63.7 U0.6 0.71 MOM
UAA2 - 85.7 U29.6 1.6 1 60U.3 5UU.U 1.58 MOM
UCA2 1033.3 3631.8 0.0 2102.9 1970.9 3.69 MOM
Ubei 316.9 2371.0 1.79 3859.0 2897.2 1.6U MOM
UAAU 97.7 856.3 0.0 U78.U 570.9 3.00 MOM
UBC2 13U3.lt 2187.u 2.08 5885.8 3139.1 1.17 MLE
UAB5 201.5 666.3 1.0 797.8 630. U 2.11 MOM
Ugi 3197.5 109956.6 0.U5 52515.I ., .73639.6. . . . 2.99. . . . MOM
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TABLE 9(b): PARAMETERS OF THE PEARSON TYPE III DISTRIBUTION

P A R A II E T E R S S A M P L E S T A T I S T I C S i

RGS.NO. LOCATION
xo

SCALEoc SHAPE
8

MEAN STD.DEV. SKEW METHOD USED

HOB!* -1+97.0 31*8.1*1 5.91 ' 1560.9 816 oiii MLE
1+BB1 136 262.5 1.93 61*3.1* 360.2 1.08 MLE
1+AA1 -309.8 161.2 l* .92 • 1*83.3 357.6 0.90 MOM
5AA1 181.0 575.8 0.00 396.2 352.0 3.27 MOM
5M5 -22U50U.1 0.1 1751306.00 238.9 173.7 0.63 MLE
5AB2 -1+62.1 113.5 7.09 31*2.1 302.1 0.75 MOM
5BCU -l+ll+.l 1*63.2 3.30 1112.6 81*0.9 1.10 MOM
5BC8 -21*6.9 2106.1* 0.67 1165.8 1725.0 2.1*1+ MOM
5BEU -5.7 322.7 1.12 351*.7 3l*1.0 1.89 MOM
5BE20 -190.8 720.7 2.29 11*57.1 1089.8 1.32 MOM
5D5 -28.7 1518.6 1.81 2717.1 201+2.0 1.1*9 MOM

1

t
i

t



RGS. NO.

TABLE 9(c); PARAMETERS OF THE LOG-PEAESON TYPE 3 DISTRIBUTION
P A R A M E T E R S

LOCATION SCALE SHAPE
yo oc 8
- 3^1.8 0.0 179336.0

2.6 O.'t 5.15
-5.5 0.1 l6l .0
3.8 O.lt 2.26

-Hi* .8 0.0 1532Ult .0
1.6 0.3 ' 3.8 U
3.5 0.1 23.02

-70.3 0.0 38UO.O
-333.1* 0.0 256219.0
-1 0 5 .6. 0.0 131927.0

-0.9 0.1 58.00

3.7 0.3 7.H
-1.3 0.0 392.00

-83U.8 0.0 U 5 3 36U.00
1.3 0.3 It .85

7.0 0.2 6.28
U .2 0.2 12.98

SAMPLE STATISTICS
[EAN STD.DEV. SKEW METHOD

8.2 0.8 -0.57 MLE
It.8 1.0 O .65 l MLE
5.7 0.9 0.08 MLE
6.1* ‘ 0.3 -0.91 MOM
U.7 0.6 0.95 MLE
5.8 1.0 -0.78 MOM
6.3 0.3 -0.67 MLE
2.8 0.6 0.87 MLE
5.It O.lt '0.28 MLE
6.U 0.6 -0 .18 MOM
6.9 1.3 0.05 MLE
8.7 0.7 -0.63 ■ MLE
2.5 0.8 -O.5 1 MOM
6.9 0.3 — 0 . U 8 MLE
6.3 0.6 -1.39 MOM
It.6 0.7 0.39 MLE
U.8 1.0 -0.86 MOM
6.6 0.9 -2 .16 MOM
6.2 0.9 0.U3 MLE
8.7 0.5 G.17 MLE
8.0 o.lt —0.2 U MLE
2.8 0.7 1.71 ' MLE
9.3 0.7 -0.17 MOM
8.2 0.5 0. SH MLE
6.5 0.6 0.76 MLE

1C El
1CB2
1BA1
1BC1
1BGU
1BD1
1BE1
1BE2
1BE5
1BB1
1GG1
1JG1
1KA5
1LA3
1CB5
1CB3
1CD1
1CA2
1CB1
1DA2
1FG1
1JC13
1KC3
1FG2
1HAU
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RGS. NO

TABLE S (c);PARAMETERS OF THE LOG-PEARSON TYPE 3 DISTRIBUTION
P A R A M E T E R S

jOCATION SCALE
oc

SHAPE
6

lt.lt 0.5 2.16

2.6 0.0 62.00
-10.6 0.0 317.00

-51*9.3 0.0 113011.00
-It.7 0:1 59.00

1.8 0.9 2.81
-0.7 0.2 16.33
7.9 0.3 5.1*0

i* .2 0.3 6.25

-255.5 0.0 118507.00
3.9 0.5 3.70

-861.8 0.0 27771*31.00
1.0 0.1 63.00
8.9 0.5 3.13

-1*88.0 0.0 573860.00

SAMPLE STATISTICS
MEAN STD.DEV. SKEW METHOD USED |

1FF2
1FE2
1FE1
2B2
2EB3
2EC2
2FA2
2FC5
2EC3
2GU2
3BA10
3BA17
3BC12
3F2 .
3DA2
3BA18
3BB10
1+AA2
1*CA2
1*BE1
UaaU
1*BC2
UAB5
i*gi
LCBi+

5.5
8 .0
7.7 
l*.8 
1*.8
3.0
3.8
1*.8
3.8 
U.6 
U.2
2.6
7.1
9.5
9.1
3.9
3.9
6.1
7.3
8 . 0
5.7
8.5 
6.It
10.lt
7.2

0.7
0.7
O.U
0.3
0.9
0. 9' 
1.1 
1.7 
1.1 
2.5
1. U 
0.8  
1.2 
0.7 
1.0' 
0.9 
0.7 
0.8  
0.8  
0 .8  
0.9 
0.5 
0.7 
0.9 
0.7

0.29
-0.03
-0.63
0.32
0.13
-0.2U
-1.18
- 0 .3 2
0.29
-1.23
0.70
0.29

- 0.22
0.67

- 0.38
-0.23
-0.55
0.67

- 0.00
-0.30

0.60
0 . 0 0
0.21
1.21
-0.86

MLE
MLE
MOM
MLE
MLE
MOM
MOM
MLE
MLE
MOM
MLE
MLE
MOM
MLE
MOM
MOM
MOM
MLE
MOM
MLE
MLE
MOM
MLE
MLE
MLE
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TABLE 9(c){PARAMETERS OF THE LOG-PEARSON TYPE 3 DISTRIBUTION

P A R A M E T E R S ' SAMPLE STATISTICS 1
RGS. NO. LOCATION SC'.LE SHAPE MEAN STD:DEV. SKEW METHOD USED

yo a 6

1+BB1 6.3 0.6
I-o.op MOM

UAA1 -161+.9 0.0 l+9*+93.00 5.9 0.8 -0.01 MLE
5AA1 -175.9 0.0 60798.00 5.7 0.7 -0.06 MLE
5AA5 -306.9 0.0 1257 2̂.00 5.2 0.9 -0.50 MLE
5AB2 -507.8 0.0 217657.00 5.3 1 . 1 -0.25 MLE
5BCU -231.5 0.0 96888.00 6.7 0.8 -0.03 MLE
5BC8 -3.0 0.2 37. M 6.1 1.5 0.15 MLE
5BEU 5.5 0.9 -0.23 MOM
5BE20 5.9 0.1+ 2.96 ' 7.1 0.7 0.60 MLE



1

TABLE 9 (d): PARAMETERS OF THE FISHER TYPE DISTRIBUTIONS

P A R A M E T E R S SAMPLE ^'fATISTICS
RGS. NO. LOCATION

Xo
SCALE
a

SHAPE
6

MEAN • STD.DEV. SKEW METHOD USED

1CE1 3123.30 2339.51* -0.21+ 5073.1 3688.0 1 .0 5 MLE
1CB2 78.21+ 183.53 -0.19 • 225.8 325,8 , 3.21 MOM
1BA1 21+1+ .02 - 276.88 -0.05 1+18.2 380.9 . 1.1+8 MOM1BC1 565.38 16 9 .6 1 0.1+0 613.3 163.6 -1.37 MLE1BGU 86.63 60.1+8 -0.10 127.8 89.6 1.87 MOM
1BD1 305.65 32 5.1+5 0.00 1+92.9 1+1 6 .1+ 1.13 MOM1BE1 508.86 15 6 .3 2 0.15 577.6 171.8 1 0.60 MLE
1BE2 13.1+2 11.03 -0.13 21.1+ 17.3 2.21 MOM
1BE5 188.81 6 5 .8 1 -0.11+ 236.7 97.7 1.11+ MLE
13B1 512.0 8 283.35 -0 .16 729.2 1+72.1 ■ 1.97 MLE
1GG1 -51.03 2575.33 -0.25 2269.5 5355.1+ 5.57 MOM
1JG1 5 0 1 1.11+ 301+7.51 -0 .18 7377.1+ 1+716.2 1.09 MLE
1KA5 10.05 6 .8 1 -0.29 16 .5 13.5 1.71+ MLE
1LA3 95U.38 316.67 0.50 1027.5 303.1+ -0.17 MLE
1CB5 556.89 297.78 0.1+3 636.2 289.0 -0.17 MLE
1CB3 78.37 50.13 -0.38 136.9 11+0.9 3.81+ MLE
1CD1 96.71 81.18 -0.32 176.7 16 6 .9 2.27 MLE
1CA2 71*8.19 I+7I*. 88 0.36 891*.5 1+72.3 -O .16 MLE
1CB1 1+01.90 51+7.02 -0.08 763.8 787.8 1.72 MLE
1DA2 5313.91* 21+72.11 -0 .16 7207.6 1+289.8 2.37 MOM
1FG1 2701.95 1036.92 0:03 327I*. 8 1287.8 0.75 MLE
1JC13 8.02 15.55 -0.21+ 21.7 31.3 1+ .96 MOM
1KC 3 9035.05 603I* .27 -0.28 1 U571+ .0 1101+9.1 1.61+ MLE
1FG2 3062.61+ 1220.1+2 -0.31+ 1+263.5 2298.2 1.1+9 MLE

166



I

TABLE 9(d)iPARAMETERS OF THE FISHER TIPPET TYPE DISTRIByTION

P A R A M E T E R S SAMPLE STATISTICS
RGS. NO. LOCATION

Xo
SCALE
a

SHAPE
8

MEAN . STD:DEV. SKEW METHOD USED

1HAU 520.81t 287.90 -0.31+ 81+7.2 91*+. 8 5.07 MLE
1FF2 203.92 11+8.93 -0.06 • 298.7 207.0 1 .5 3 MLE
1FE2 2378.00 11+77.20 -0.29 371+U.9 2676.9 1 .5 0 MLE
1FE1 2127.1+6 772.15 -0.33 2378.9 781+.5 6.00 MLE
2B2 106.68 26.92 -0.02 122.7 35.9 1 . 1 6 MLE
2EB3 8U . 2U 105.07 -0.21 171.5 195.1 3.72 MOM
2EC2 19.20 19.82 0.02 30.2 2U.7 1 . 0 1 MOM
2FA2 U l .1+1 37.09 -0.19 70.2 55.6 0.92 MLE
2FC 5 158 .Ho 306.01 -0.03 31+3.6 1+07.5 i. 32 MOM
2EC 3 20.90 51+. 51 -0.20 "66.0 100.7 3.66 MOM
2GD2 197.08 31+7.11 0.00 397.2 1+1+1+. 7 1 .1 I+ MOM
3BA10 . 1.50 236.31+ -0.22 202.0 1+51.2 1+.09 MOM
3BA17 ll-.lU 11.75 -O.llt 19.9 19.0 2.1+1+ MOM
3BC12 1 2 1 8 .1+5 1632.91+ 0.05 2079.1 1963.U 0.85 MOM
3F2 101+lU .63 981+8.03 -0.15 17 8 3U . 3 16225.9 2.56 MOM
3DA2 8579.22 9361.91 0.08 13331.1 10989.1+ 0.75 MOM
3BA18 1+0.00 30.96 -0.37 71.6 60. 6 1.79 MLE
3BB10 1+3.76 29.1+8 -0.09 63.7 1+0.6 0.71 MLE
1+AA2 35^.78 388.07 -0.06 60l+. 3 51+U.U 1.58 MOM
kCA2 1206.76 857.63 -0.36 2102.9 1970.9 3.69 MLE
1+BE1 2U0U .96 170 0 .22 -0.21+ 3857.0 2897.2 1.61+ MLE
1+AAU 219.31 328.86 -0.1 8 -n 1+78.1+ 570.9 3.00 MOM
1+BC2 1+337.01+ 2079.1+7 -0.15 5885.8 3139.1 . 1.17 MLE
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TABLE 9 (d): PARAMETERS OF THE FISHER TIPPET TYPE DISTRIBUTION
— -------------------------------- —  —  — ------------------------------------------ ------------ ----------------------------------------------  .  “

r PARAMETERS SAMPLE STATISTICS

RGS.NO. LOCATION
Xo

SCALE
oc

SHAPE
8

MEAN STD.DEV. SfcEW
1 ' '

METHOD USED

1* AB5 1*88.iU 300.31* -0.35 • 797.8 630.1* 2.11 MLE
UG1 19093.38 1*21*79.1*2 -0 .18 52515.1 73639.6 2.99 MOM
U cbU 1320.52 825.90 0.39 1560.9 8 16 .8 6 . 1 1 MLE
1+BB1 1*59.39 233.27 -0.19 61*3.1* 360.2 1 .0 8 MLE
1+AA1 325.71+ 291+.15 O.OU 1+83.3 357.6 0.90 MOM
5AA1 21*1* .15 l6U.ll* -0.26 396.2 352.0 3.27 MLE
5AA5 11*5.19 117.97 -0.21 238.9 173.7 0.63 MLE
5AB2 211.1*0 257.10 0.07 3U2.1 302.1 0.75 MOM
5BCU 735.25 6 6 1.7U 0.01 1112.6 8U0.9 1.10 MOM
5BC8 375.58 10 6U . 37 -O.lU 1165.8 1725.0 2.1*1* MOM
5BEU 197.86 229.35 -0.10 35U .7 31*1.0 1.89 MOM
5BE20 951.78 817.93 -0.03 1U57.1 1089.8 1.32 MOM
5D5 1783.27 1 U8 1.8 2 -0.05 2717.1 201+2.0 1.1*9 MOM
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TABLE 9(e) ;PARAMETERS OF THE LOG-FISHER TIPPET TYPE DISTRIBUTIONS
P A R A M E T E R S SAMPLE STATISTICS

RGS.NO. LOCATION
yo

SCALEoc
SHAPE
B

MEAN STD.DEV. SKEW 1 METHOD
USED

1CE1 8.0U 0.89 0.50 8.2 0.8 -0.57 MLE
1CB2 U .1*2 0.85 0.08 1+.8 . 1 .0 Oi.65 MLE
1BA1 5.37 0.88 0.32 5.7 0.9 01.08 MLE
1BC1 6.32 0.33 0.60 6.1+ 0.3 -O'. 91 MOM
1BGU It .1+0 0.1+0 -0.10 1+.7 0.6 0.95 MLE
1BD1 5.56 1.07 0.51 5.8 1.0 -0.78 MLE
1BE1 6 .2U 0.31+ 0.51 6.3 0.3 -0.67 MOM
1BE2 2.55 0.1+8 -0.02 2.8 0.6 o!. 67 MLE
1BE5 5.21+ 0.36 0.22 5.1+ 0.1+ 0.28 MLE
1BB1 6.21 0.62 0.31 6.1+ 0.6 -0 .18 MLE
1GG1 6.39 1.25 0.23 6• 9 1.3r 0.05 MLE
1JG1 8.5U 0.71* 0.50 8.7 0.7 -0.63 MLE
1KA5 2.30 0.83 0.39 2.5 0.8 -0 .5 1 MLE
1LA3 6 .8 1 0.33 0.50 6.9 0.3 -0.1+8 MLE
1CB5 6 .16 0.63 0.51 6.3 0.6 -1.39 MLE
1CB3 1+.3U 0.69 0 .18 1+.6 0.7 0.39 MLE
1CB1 It .55 1.12 0.59 1+.8 1.0 -0.86 MOM
1BA2 6.58 0.86 1.05 6. 6 0.9 -2 .16 MOM
1CB1 5.82 0 .8 1 O.llj 6.2 0.9 0.1+3 MLE
1DA2 8.56 0.50 0.23 8.7 0.5 * 0.17 MLE
1FG1 7.89 0 .1+1 0.37 8.0 0.1+ -0.21+ MLE
1JC13 2 .I+7 0.53 0.02 2.8 0.7 1.71 MLE
1KC3 9.10 O .76 0.36 9.3 0.7 -0.17 MLE
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TABLE 9(e);PARAMETERS OF THE LOG-FISHER TIPPET TYPE DISTRIBUTIONS
P A R A M E T E R S SAMPLE STATISTICS

RGS. NO. LOCATION
yo

SCALE
oc

SHAPE
6

MEAN STD .DEV. SKEW
1

■METHOD USED

1FG2 8. OU 0.1+1 0.10 8.2 0.5 ; 0.5U MLE
1HAU 6.23 0.57 0.11 6.5 • 0.6 , 0 .76 MLE
1FF2 5.2 U 0.59 0 .18 5.5 0 .7 0 .29 MLE
1FE2 7.78 0.69 0.33 8.0 0.7 -0 .03 MLE
1GE1 7.63 0.38 0.50 7.7 0.1+ -0 .63 MLE
2B2 1+ .67 0.26 0.21 1+.8 0.3 0.32 MLE
2EB3 1+.1+3 O .85 0.23 1+.8 0.9 0.13 MLE
2EC2 2.80 0.99 0.»+9 3.0 0.9 -0 .21+ MLE
2FA2 3.53 1.20 0.51 3.8 1.1 -1 .18 MLE
2FC 5 1+.1+1+ 1.76 0.50 • 1+.8 1.7 -0 .32 MLE
2EC 3 3. lU 1.03 0.21 3.6 1.1 0.29 MLE
2GD2 3.9U 2.62 0.51 1+.6 2.5 -1 .23 MLE
3BA10 3.56 1.0 8 -0.01 1+.2 1.1+ 0.70 MLE
3BA17 2.33 O .76 0.20 2.6 0.8 0.29 MLE
3BC12 6.81 1.22 0.50 7.1 1.2 -0 .22 MLE
3F2 9.22 0.59 0 :08 9.5 0.7 0 .67 MLE
3DA2 8 .8 1 1.09 0.50 9.1 1.0 -0 .38 MLE
3BA18 3.68 0.88 0.38 3.9 0.9 -0 .23 MLE
3BB10 3.75 O .78 0.50 3.9 0.7 -0 .55 MLE
1+AA2 5.76 0.62 0.06 6.1 0.8 0 .67 MLE
1+CA2 7.06 0.77 0.2)+ 7.3 0.8 -0 .00 MLE
1+BE1 7.76 0.80 0.39 8.0 0.8 -0 .30 MLE •
kAAh 5.28 0.75 0.02 5.7 0.9 0 .60 MLE
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TABLE 9(e h  PARAMETERS OF THE LOG-FISHER TIPPET TYPE DISTRIBUTIONS
P A R A M I] T E R S SAMPLE STATISTICS

1 1

RGS.NO. LOCATION SCALE SHAPE MEAN STD:DEV. Skew METHOD USED ^
yo oc 8

1*BC 2 8.38 0.52 0.32 6.5 0.5 ;0.00 MLE
1+AB5 6.18 0.66 0.23 6.1* 0.7 0.21 MLE
i+gi 9.99 0.62 -0.06 10.1* 0.9 1.21 MLE
UCBU T.Ol 0.69 0.51 7.2 0.7 -0.86 MLE
Ubbi 6 . l k 0.55 0.3*+ 6.3 0.6 -0.00 MLE
Uaai 5.69 0.8l 0 .UU 5.9 0.8 -0.01 MLE
5AA1 5 .1*1* o . l k 0.26 5.7 0.7 -o.o6 MLE
5AA5 k . 9 3 0 . 9 k 0.50 5.2 0.9 -0.50 MLE
5AB2 5.06 1.17 0.50 5.3 1.1 -0.25 MLE
5BCU 6.51 0.79 o.Uo 6.7 0.8 -0.03 MLE
5BC8 5.56 l.»+5 0.29 6.1 1.5 0.15 MLE
5BEU 5.20 0.95 0.37 5.5 0.9 -0.23 MLE
5BE20 6.73 0.52 -0.03 7.1 0.7 0.60 MLE
5D5 7.38 0.59 0.11 7.7 0.7 0.1*2 MLE



I l
TABLE 9(f);PARAMETERS OF THE WALTER BOUGHTON DISTRIBUTION

P A R A M E T E R S1 SAMPLE STATISTICS
■1 .

RGS. NO. LOCATION
Xo

SCALEoc
SHAPE
B

MEAN STD.DEV. SKEW

j

METHOD USED

1CE1 -270762.6 -99.7 2731*0986.1* 5073.1 3688.0 !l.05 LSQ
1CB2 192.6 - U.2 1171.5 225.5 325.8 13.21 MLE
1BA1 -1259.3 - 7.9 11751.7 1*18.2 380.9 11.1*8 LSQ
1BC1 -61700.2 532.1 33119753.7 613.3 163.6 -0.37 LSQ
lBCrU -73.7 -U.9 762.1* 127.8 89.6 ,1.87 MLE
1BD1 t20000.0 -67.2 1363222.0 1*92.9 1*16.1* •1.13 LSQ
1BE1 -U65U9.O —36U.U 1711*2 11 .1 577.6 171.8 0.60 LSQ
1BE2 -18159.0 -1U30.9 26001*156.1 21.U- 17.3 j2.21 LSQ
1BE5 -18099.9 -21*6.5 1*508787.2 236.7 97.7 l.ll* LSQ
1BB1 729.2 1*72.1 il.97 LSQ
1GG1 -3310.8 -5.5 221+20.7 2269.5 5355.U '5.57 LSQ
1JG1 -103769.6 -33.1 360321*5.9 7377.1* 1*716.2 1.09 LSQ
1KA5 -18700.5 -1891* • 3 351*1*5297.8 16.5 13.2 1.7l* LSQ
1LA3 -69390.0 -327.6 23021910.7 1027.5 303.1* -i0.17 LSQ
1CB5 -82683.0 -396.0 3291*0553.3 636.2 289.0 -0.17 LSQ
1CB3 -21*0.8 -6.5 2095.1 136.9 ll*0.9 13.81* MLE
1CD1 -531.2 -7.8 1*921.1 176.7 166.9 2.27 MLE
1CA2 -113035.0 33U.6 35051*653.8 891*. 5 1*72.5 -*0.l6 LSQ
1CB1 -66U.8 -U.l 1*127.1 763.8 787.8 1.72 LSQ
1DA2 -19009.6 -10.6 257070.6 7207.6 1*289.8 2.37 LSQ
1FG1 -187189.0 -195.2 3706991+7.0 3271+.8 1287.8 0.75 LSQ
1JC13 -18.8 -5.8 176.8 21.7 31.3 U.96 LSQ



TABLE 9(f):PARAMLTERS OF THE WALTER BOUGHTON DISTRIBUTION
P A R A M E T E R S SAMPLE STATISTICS

■RGS.NO. LOCATION
Xo

SCALE
a

SHAPE
8

MEAN STD.DEV. SKEW
i

METHOD USED

1KC3 -53806.7 -10.2 61*5605 .“3 11+571+.0 1101+9.1 1.61+ LSQ
1FG2 -18602.9 -15.1 329262.7 ■1+263.5 2298.2 1L.U9 LSQ
1HAU -13U3.9 -7.2 131+16.2 81+7.2 911+.8 5.07 LSQ
1FF2 -2756.0 -21.5 63622.0 298.7 208.7 1.53 LSQ
1FE2 -17082.0 -12.2 23821+7.6 371+1+.9 2676.9 1.50 LSQ
1FE1 -1̂ 5377.0 -257.0 37887803.9 2378.9 781j .5 D.00 LSQ
2B2 -19800.0 -727.5 ll+1+81815.3 122.7 35.9 1.16 LSQ
2EB3 -301.7 -0.0 2328.1 171.5 195.1 5.72 MLE
2EC2 -196U0.O -105U.9 20737529.0 30.2 2U.7 1.01 ■ LSQ x
2FA2 -19879.2 -l+lU.3 9I+5056U.I+ 70.2 55.6 b.92 LSQ
2FC5 -2267.0 -10.7 25877.9 31+3.6 *107.5 1.32 LSQ
2EC3 -68.1* -1+.1+ 1+09.1+ 66.0 100.7 3.66 MLE
2GD2 397.2 1+1+.7 £.iu LSQ
3BA10 -239.9 -1+.7 1353.5 202.0 1+51.2 1+.09 LSQ
3BA17 -18630.0 2327.1+ 2I+7I+I+82I+.I 19.9 19.0 2.1+1+ LSQ
3BC12 -158658.0 -115.0 18390300.0 2079.1 1963.1+ 0.85 LSQ
3F2 -28903.0 -6.1+ 250170.1+ 17831+.3 16225.9 2.56 LSQ
3DA2 -71+3890.0 -91+.2 70366389.1+ 13331.1 10939.1+ b.75 LSQ
3BA18 -1+65.1 -13.9 7057.3 71.6 60.2 1.79 LSQ
3BB10 -19829.1 -629.1 1250281+1+.1+ ' 63.7 1+0.6 0.71 LSQ
1+AA2 -502.9 -1+.5 3710.0 601+.3 5I+1+.1+ 1.58 MLE
1+CA2 -6821+.7 -9.1 73709.6 2102.9 1970.9 3.69 LSQ
i+bei -25527.2 -15.1+ 3ki9̂ 3857.0 2897.2 1.61+ LSQ

I
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TABLE 9(f) :PARAMETERS OF THE WALTER BOUGHTON DISTRIBUTION
P A R A M E T E R S1 SAMPLE STATISTICS

RGS.NO. LOCATION
Xo

SCALE
oc

SHAPE
8

MEAN STD.DEV. SKEW METHOD USED

1+AAl* -1176.8 -6.7 9328.5 1+78.1+ 570.9 3.00 LSQ
1+BC2 -851+00.0 -1*0.1 3597125.3 5885.8 3139.1 1L17 LSQ
1+AB5 -2395.8 -9.0 26158.1 797.8 630.1+ 2 .11 LSQ
1+G1 -36599.8 -U.5 265919.1 52515.1 73639.6 2.99 LSQ
1+CBl* -11+7190.0 -250.2 371231+56.1 8160.9 816.8 0.11 LSQ
i*bbi -35171.1 -132.2 UV12931.7 61*3.1* 360.2 1.08 LSQ
1*AA1 -63672.1 -21*3.1 1555»+95.3 1+83.3 357.6 0i90 LSQ
5AA1 --------. c 396.2 352.0 3.27 MLE
5AA5 -3511*3.6 260.5 9197085.0 238.9 173.7 0.63 . LSQ
5AB2 -56061.0 -25^.0 1U292606.2 31*2.1 302.1 0175 LSQ
5BC1+ -113081*. 3 -18U.8 1032679.5 1112.6 81*0.9 1.10 LSQ
5BC8 -3233.0 -6.0 21627.2 1165.8 1725.0 21,1*1+ LSQ
5BEU -639.7 -5.8 1*791+ .7 3 5 M 31*1.0 1.89 MLE
5BE20 -31+18 .1 -8.0 31*1*06.1 H+57.1 1089.8 1.32 LSQ
5D5 -599U.5 -7.2 55257.1 2717.1 201*2.0 1.1*9

1
LSQ

I



TABLE 9(g ) ̂ PARAMETERS OF THE LOG-WALTER BOUGHTON DISTRIBUTION

RGS.NO:

1HAU
1FF2
1FE2
1FE1
2B2
2EB3
2EC2
2FA2
2FC5
2EC3
2GD2
3BA10
3BA17
3BC12
3F2
3DA2
3BA18
3BB10
1+AA2
UCA2
UBE1
kAAk

P A R A M E T E R S
LOCATION SCALE

a
3HAPE
e

SAMPLE STATISTICS
AN STD.DEV. SKEW

6 .5 0 .6 0 .7 6

5 .5 0 .7 o.p
8 .0 0 .7 -0 .0 3
7 .7 O.U -0 .6 3
U.8 0 .3 0 .3 2
U.8 0 .9 0 .1 3
3 .0 0 .9 -0 .2U
3 .8 1 .1 - 1 .1 8
U.8 1 .7 -0 .3 2
3 .6 1 .1 0 .29
U.6 2 .5 -1 .2 3
U.2 l . U 0 .70
2 .6 0 .8 0 .29
7 .1 1 .2 -0 .2 2
9 .5 0 .7 0 .6 7
9 .1 1.0 - 0 .3 8
3 .9 0 .9 -0 .2 3
3 .9 0 .7 -0 .5 5
6 .1 0 .8 0 .67
7 .3  . 0 .8 - 0 .0 0
8 .0 0 .8 -0 .3 0
5 .7 0 .9 0.60

METHOD USED

LSQ
LSQ
MLE
MLE
MLE
LSQ
MLE
MLE
MLE
MLE
MLE
LSQ
MLE
MLE
MI+E
MLE
MLE
MLE
MLE
MLE
MLE
LSQ

'Otn

(



1
TABLE S( g ) : PARAMETERS OF THE LOG-WALTER BOUGHTON D ISTR IB U TIO N

P A R A M E T E R S SAMPLE STATISTICS i

MEAN STD.DEV. SKEWt.....1....
METHOD USED

8.2 0.8 -0.57
0<65

MLE
It.8 1.0 MLE
5 .7 0.9 0,08 MLE
6.U 0.3 -0.91 MLE
U.7 0.6 0.95 LSQ
5.8 1.0 -0.78 MLE
6.3 0.3 -0.67 LSQ
2.8 0.6 0 j 87 LSQ
5.U . O.U 0.28 . MLE
6. It 0.6 -0J18 LSQ
6.9 1.3 0.05 LSQ
8.7 0.7 -0:63 MLE
2.5 0.8 -0J51 MLE
6.9 0.3 -0.U8 MLE
6.3 0.6 -1.39 MLE
It.6 0.7 0.39 LSQ
It.8 1.0 -0,86 MLE
6.6 0.9 -2jl6 MLE
6.2 0.9 0 .U3 LSQ
8.7 0.5 0J17 LSQ
8.0 O.U -0.2U MLE
2.8 0.7 1.71 LSQ
9.3 0.7 -0.17 MLE
8.2 0.5 0 . 5U MLE

RGS. NO. LOCATION
x

SCALE
«

SHAPE
P

1CE1
1CB2
1BA1
1BC1
1BGU
1BD1
1BE1
1BE2
1BE5
1BB1
1GG1
1JG1
1KA5
1LA3
1CB5
1CB3
1CD1
1CA2
1CB1
1DA2
1FG1
1JC13
1KC3
1FG2

\

1
7

6



TABLE ‘J (g )• PARAMETERS OF THE LOG-WALTER BOUGHTON DISTRIBUTION

P A R A M E T E R S SAMPLE S T A T IS T IC S

MEAN STD.DEV. SKEW METHOD USED

‘8.5 0.5 0.00 LSQ
6.1* 0.7 0.21 MLE

10.1* 0.9 1.21 LSQ
7.2 0.7 , -0.86 MLE
6.3 0.6 -0.00 MLE
5.9 0.8 0.01 MLE
5.7 0.7 -o .o6 MLE
5.2 0.9 -0.50 MLE

" 5.3 1.1 -0.25 MLE
6.7 0.8 -0.03 MLE
6.1 1.5 0.15 i LSQ
5.5 0.9 ‘ -0.23 MLE

. 7 .1 ... . 0.7 0.60 LSQ
7.7 0 .7- 0.1*2 MLE

RGS. NO.

UBC2
UAB5
1*G1
UCBU
1*BB1
Uaai
5AA1
5AA5
5AB2
5BCi+
5BC8
5BEl
5BE20
5D5

LOCATION
X„

SCALE
oc

SHAPE
fi

177



P A R A M E T E R S SAMPLE STATISTICS
RGS. NO. A B c D E MEAN STD.DEV. SKEW METHOD USED

1CE1 25757.90 0.211 0.00 0.000 2631+9.61+ 8.21+ 0.70 -0.575 PWM
1CB2 0.00 0.000 261.22 0.1435 -236.95 >4.85 1.00 < 0.61+9 ft
1BA1 0.00 0.000 31+83.77 0.096 -3U37.23 5.66 0.80 0.080 h
1BC1 llU.39 2.991 3I+6.I+7 0.153 307.90 6.38 0.09 -0.908 ft
1BGU 0.00 0.003 299.93 0.207 -250.1+1 1+.68 0.32 | 0.91+7 it

1BD1 81+05.29 0.058 0.00 0.000 8U3I+.O9 5.80 l.OU j -0.777 it

1BE1 3U9.29 7.733 9*+5.32 0.111+ -1+1+9.00 6.31 0.10 -O.667 it

1BE2 0.00 0.000 1+2.56 ’0.252 -35.51* 2.81+ 0.1+0 0.868 11
1BE5 671. **5 0.218 0.00 0.000 787.85 5.39 0.15 0.279 it

1BB1 352.11 7.30U 1076.1+0 O.2U9 -66li89 6.1+2 0.37 1 -0.176 it
1GG1 0.00 0.000 1791+.71+ 0.51+5 -1675.31+ 6.86 1.60 0.050 it

1JG1 U5358.U6 0.138 0.00 0.000 1+721+5.32 8.70 0.1+7 -0.628 it

1KA5 0.00 0.000 * 172.30 0.069 ‘ -168.55 2.53 0.62 -0.506 tt
1LA3 1102.38 1.028 0.00 0.000 1571.12 6.89 0.10 -O.I+78 it

1CB5 1019.81 1.010 0.00 0.000 Hl+3.57 6.61 0.38 -1.392 it

■ 1CB3 35.10 5.692 11+6.92 0.375 -93.00 1+.62 0.55 0.395 tt
1CD1 57.39 U.U25 1+09.68 0.239 -350.93 I+.76 1.05 -0.861 n
1CA2 1617.74 1.088 0.00 0.000 1669.35 6.56 0.78 -2.165 it
1CB1 0.00 0.000 2219.53 0.235 -2138.71 6.20 0.86 0.1+31 tt
1DA2 2936.81 1+.328 7189.90 0.289 -2357.73 8.75 0.26 0.171 it
1FG1 586U.83 O.l+l+O 0.00 0.000 731*8.39 8.02 0.16 -0.238
1JC13 9.31 123 1+.82 0.692 7.89 2.75 0.1+6 1.707
1KC3 UoUl.07 12.128 101850.32 0.092 -97323.36 9.33 0.55 -O.165 it
1FG2 0.00 0.000 991+61+3.56 0.002 99282U.79 8.21+ 0.23 O.5I+2 it
1HAU 0.00 0.000 2920.75 0.167 -2658.21+ 6.1+9 0;1+1 O.76U tt
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TABLE 9(h );PARAMETERS OF THE WAKEBY DISTRIBUTION
P A H A M E T E R S SAMPLE STATISTICS

egs.'mo.’ A B 1c D E MEAN STD.DEV. SKEW method used
1FF2
1FE2
1FE1
2B2
2EB3
2EC2
2FA2
2FC5
2EC3
2GD2
3BA10
3BA17
3BC12
3F2
3DA2
3BA18
3BB10
1*AA2
kCA2
1+BE1
1+aaU
l»BC2
1*AB5

5231+.89
2599.U3
2891* .01 

222.80 
69.07 
221+.50 
356.80 
0.00 
0.00 

. 0.00 
0.00 
0.00 

26121.1*3 
1*1*28.87 

62873.59 
69.81 

208.69 
0.00 
0.00 

2021+. 38 
0.00 

23268.66 
1785.95

0.01*5
65.532

0.892
0.252
1.771*
0.11*8
0.238
0.000
0.000
0.000
0.000
0.000
0.092

27.923
0.281*
0.761+
0.31*1*
0.000
0.000
2.053
0.000
0.191*

210.767
1

' 0.00 
1*271*8.1*1 

0.00 
0.00 

151+.55 
0.00 
0.00 

21*28.61* 
.76.52 

71376.1*9 
126.02 

75.38 
. 0.00 

30975.07 
0.00 

91+.31* 
0.00 

1652.20 
52322U.69 

8891.18 
905.21* 
0.00 

21*73.08

5308.70 
0.059 
0.000 
0.000 • 
0.1*17 
0.000 
0.000 

’ 0.138 
0.1* 1*2 
0.007 
0.617 
0.179 0.000 
0.287 
0.000 
0.269 
0.000 
0.222 
0.003 
0.193
0.319
0.000
0.181

5308.70 
-1*1633.98 

3908.85 
300.71* 
-68.63 
225.78 
358.1*2 

-2U7U.53 
-71.02 

-711*1*8.39 
-127.37 
-71.97 

25991.90 
-25U70.79 

62299.20 
-17.79 
219.01 

-1520.02 
-522861*. 51 
-61*96.67
2M - M
-2215.20

5.1*9 
8.00 
7.72 ' 
1* .77 
U.76 
3.03 
3.81
U.85
3.56 
1* .57 
1* .20 
2.65
7.09 
9.52 
9.06 
3.9l» 
3.93
6.09 • 
7.35 
7.99 
5.70 
8.55 
6.1*1*

0.1*3
0.1*8
o.ip
0.08
0.77
0.87
1.32 • 
2.82 
1.19 
6.1*1 
1.91 
0.68
1.33 
0.50 
1.09
0.7I*
0.55
0.58
0.62
0.60
0.87
0.27
0.1*8

0.290
-0.026
-0.633
0.317
0.132
-0.235
-1.181*
-0.318
0.291
-1.227
0.700
0.291
-0.216
O.670
-0.383
-0.226
-hD.551*
0.668
-0.003
-0.297
0.61*
0.001
0.211*

PWM ,
f t

" '{ tT i
I f  1 
I f  1
» ! 
" *" ; 
I f  * 
If 

If1 I
f t

If

II

I f

II

II

I f

II

II

I f

II
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TABLE Q (h) PARAMETERS OF THE WAKEBY DISTRIBUTION

RGS.NO
1+G1
1+CBU
1+BB1
i+aai
5AA1
5AA5
5AB2
5BCU
5BC8
5BEU
5BE20
5D5

P A R A M E T E R S .

A

0 .0 0  
2985.75 
2738.1+0 
3262.77 

268.08 
871.70 

2161.1+9 
11227.36 

0 .0 0
0 .0 0
0 .0 0
0 .0 0

B

0 .0 0  
0.80U 
0.188 
0.11+7 
2.1+1+9 
0 .3 6 0  
0.205 
0.091 
0.000, 
0.000 
0.000 
0.000

1+101+8.58
0 .0 0
0 .0 0
0 .0 0

176.68
0.00
0 .0 0
0 .0 0

1915.39
1753.01
8598.76

33752.75

D

0.0.507
0.000
0.000
0.006
0.1+93
0.000
0.000
0.000
0 .3 9 1*
0.11+9
0.111
0.058

SAMPLE STATISTICS

-30731+.07 
3215.90 
291+7.97 
3326.72 
125.75 
879.93 
2135.75 
11 :S99.ll* 
-1997.09 
- 1706.21 
-8215.13 
-33101.58

MEAN

10.39
7.18
6.32
6.90
5.71
5.15
5.33
6.7U
6.07
5.1*8
7.05
7.67

STD.DEV.

0.75
0.1+1+
0.31
0.6l
0.56
0.81
1.27
0.6l
2.29
O.85
0.26
0.1+7

SKFT’

1.207
-0.865
- 0.002
-0.009’
- 0 . 061+
- 0.501
-0.21+5
-0.030

0.1U6
-0.226

0.601
0 .1+21

METHOD USED

-FWM

C
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t
T A B L E  9 ( i )  :PARAMETERS OF THE LOG-WAKEBY D I S T R I B U T I O N

P A R A M E T E R S SAMPLE STATISTICS
RGS.NO. A. B c D E MEAN STD.DEV. SKEW METHOD USED
1C E1 3.1U 1.2 7 0 0:00 0.000 9.62 8.21+ 0.70 -0 .5 7 5 PWM
1CB2 1+ .02 0.00 0.00 0.000 7 .3 3 1+.85 1.0 0 0.61+9 If

1BA1 3.U9 0.819 0.00 0.000 7.58 5.66 0.80 0.080 11
1BC1 l.UO 9 .1 1 5 0.80 0 .18 9 5.53 6.38 0.09 -0 .90 8 tl j
1BGU 3 .0 1 0.375 0.00 0.000 6.86 1+ .68 0 .32 0.91+7 tl
1BD1 3 .7 1 1 .1 0 9 0.00 0.000 7.1*9 5.80 1.01+ -0 .7 7 7 ft
1B E1 1 . 3 1 1.7 6 7 0.00 0.000 6.79 6 .3 1 0 .10 -0 .6 6 7 ft
1BE2 3 .3 7 0.31+7 0.00 0.000 5.31+ 2.81+ 0.1+0 0.868 I f

1BE5 . 1 .7 0 0.770 0.00 0.000 6.35 5.39 0 .15 0.279 ft
1BB1 2.00 10.621+ 2.01+ 0 .176 U . 1 1 6.1+2 0 .37 -0 .1 7 6 11
1GG1 2.99 U. 837 5.20 0.122 1.1+5 6.86 1 .6 0 0.050 It

1JG1 2.65 1 .0 16 0.00 0.000 10.02 8.70 0.1+7 +0.628 It

1KA5 2.61+ 0.986 0.00 0.000 3.86 2 .5 3 0.62 -0 .5 0 6 ft

1LA3 2 .1 7 11+.639 1 .1 8 0.203 5.55 6.89 0.10 -O.U78 ft

1CB5 2 .7 5 9.708 1+.70 0.072 1 .5 0 6 .3 1 0.38 - 1 .3 9 2 ft
1CB3 2.8 3 O.7I+I+ 0.00 0.000 6.25 1+.62 0 .55 0.395 tt
1CD1 3.31+ 1.1+53 0.00 0.000 6.12 1+.76 1.0 5 -O .8 6 1 tt

1CA2 3.70 8.378 3.69 0.090 2.90 6.56 0.78 -2 .1 6 5 tl

1CB1 1+.00 0.610 0.00 0.000 8.69 6.20 0.86 0.1+31 ft
IDA 2 1 .9 7 1 2 .1 8 7 1.5 8 0.208 6.90 8.75 0.26 0 .1 7 1 It

1FG1 1 .6 5 13.61+2 1+.71 0.073 3.05
. . . .  i . r

8.02 0 .16 -0 .2 3 8 It

18
1



TABLE 9(i ) i PARAMETERS OF THE LOG-WAKEBY DISTRIBUTION

i
r P A R A M E T E R S SAMPLE STATISTICS

RGS.NO. A B C D * • E MEAN 1 STD.DEV SKEW METHOD ttrrd

1JC13 1.29 U.683 0.38 0.1*57 2.28 2.75 0.1+6 1.707 PWM
1KC3 2.55 11.776 9.1+6 0.063 -0.56 9.33 0.55 -0.165
1FG2 3.02 32.237 3.22 O.lkO 1+.58 8.21+ 0.23 0.5^2
1HAU 2.22 1.130 0.00 0.000 7.51* 6.1+9 0.1+1 O.76U
1FF2 2.85 0.707 0.00 0.000 7.16 5.1*9 0.1+3 0.290
1FE2 2.73 13.52U 3.90 0.137 3.67 8.00 0.1+8 -0.026
1FE1 2.U6 15.750 1 .2U 0.206 6.30 7.72 0.13 -0.633
2B2 1.55 '31.395 3.71 0.071 0.82 1+.77 0.08 0.317 11

2EB3 3.21 0.903 0.00 0.000 6.1*5 I+.76 0.77 0.132 II
2EC2 3.23 1 .110 0.00 0.000 1*. 56 3.03 0.87 -0.235 If
2FA2 . 3.78 1.890 0.00 0.000 5.12 3.81 1.32 -1 .18U
2FC5 0.05 1.585 0.20 0.1+81 6.1+3 I+.85 2.82 -0.318
2EC3 U.00 0.771 0.00 0.000 5.82 3.56 1.19 0.291
2GD2 8.1+8 2.366 0.00 0.000 7.09 1*. 57 6.1+1 -1.227
3BA10 2.0U 1.383 68.25 0.013 -61+.08 1+ .20 1.91 0.700
3BA17 3.1U 0.711 0.00 0.000 1+.1+8 2.65 0.68 0.291
3BC12 1+.17 1 .13b 0.00 0.000 9.05 7.09 1.33 -0.216
3F2 2.16 1U.U56 3.79 0.150 . 5.20 9.52 0.50 O.67O
3DA2 1+ .01 1.292 0.00 0.000 10.81 9.06 1.09 -0.383
3BA18 3.07 1.111 0.00 0.000 5.1+0 3.91* 0.7U -0.226 n
3BB10 2.62 1.309 0.00 0.000 5.06 3.93 0.55 -0.551* 1!



I

T A B L E  i ) ; PARAMETERS OF THE LOG-WAKEBY D I S T R I B U T I O N

P A R A M E T E R S SAMPLE STATISTICS i!- --- 1— "■
RGS.NO. A B C D E MEAN STD.pEV. SKEW METHOD US|D

1*AA2
kCA2
1*BE1
UaaU
1+BC2
1+AB5
i+gi
l*CBl*
1+BB1
ItAAl
5AA1
5AA5
5AB2
5BCU
5BC8
5BEU
5BE20
5D5

3.63 
2.86 
2.18 
h.28 
2.IT 
1.83 
1.60 
2.1*7 
2.2k
2.98
1.99 
3.28 
k.lk 
3.2k 
5.89 
3.38 
3.53 
3.17

0.1*71
1.085
7.195
O.U96
16.718
11.919
11.061
1.751
0.889
0.909
5.680
1.361
l.lUl
0.855
O.762
O.9U1
0.1*85
O.650

0.00 
0.00 
9.1+7 
0.00 

: 8.09 
16.01 

2.88 
0.00 
' 0.00 

0.000 
1.17  
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00

0.000 
0.000 
0.057 
0.000 
0.060 

• 0.038 
0.201+ 
0.000 
0.000 
0.000 
0.256 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000

8.56 
8.72
-1.78

8.56 
0.06

-10.06
6.90
8.07
7.71
7.1+6 
l*. 1*3
6.51+
5.27
8.U8
9.1+1
7.23
9.1+3
9.59

6.09
7.35
7.99
5.70 
8.55 
6.1*1*
10.39

7.18
6.32
5.90
5.71 
5.15 
5.33
6.7I+
6.07
5.1+8
7.05
7.67

O.581
0.62'
0.60
0.87,
0.271
0.1*8
0.75|
o.i*»*
0.31i
0.6i;
0.56
0.8l|
1 .2*1
0.6l
2.29
0.85
0.1*61
0.1*7

0.668
-0.003
-0.297

0.60U
0.001
0.21U
1.027
-0.865
-0.002
-0.009
-0.061*
-0.501
-0.21+5
-0.030

0.1U6
-0.226

0.601
0.1*21

PWM *

:: ?
4

it *
n *
11
if 1
it i

H
It

tt

ft

It

tt

ft

ft

II

tl

'  i

I 1
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the method of moments is denoted by MOM, the method 
of least squares is denoted by LS and the method of 
probability weighted moments by PWM.

Except for the Walter Boughton and the Pearson 
Type 3 distributions, all the other flood probability
distributions which are under* investigation and which 
have maximum likelihood parameter estimation routines 
gave maximum likelihood parameter estimates in most 
of the catchments. It was noticed that the maximum 
likelihood method cannot work with the Walter Boughton 
distribuiton when the estimate of 8 in (138) is at 
least equal to 20000. This is mainly due to the 
creation of an arithmetic overflow in the maximum 
likelihood equations.

The most serious problem with the moment 
estimates of the Pearson and the log-Pearson Type 3 
distributions was that the upper or lower bounds were 
most frequently within the range of the actual observations. 
This is certainly not permissible and therefore in such 
cases, no further analysis could be done. Similarly, 
whenever the final estimate of the shape parameter 8 in 
(54) or (78) as obtained by either the method of moments 
of the method of maximum likelihood was greater than 57, 
no goodness of fit tests were carried out. This was 
mainly because the ICL/2950 Fortran subroutine F4GAMMA, 
which was used to compute T(8) in (55) could not be
used with 8 > 57.
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The existence of a lower or upper bound in a 
fitted distribution usually depends on the sample 
skewness coefficient. Figure (8) shows a histogram 
of the sample skewness coefficients for both the 
transformed and untransformed flood data for the 
catchments used in this study. Individual values 
range from. 5.56 to -0.37 with a mean values of 1.77 
for the untransformed data and from 1.6 6 to -2.18 
with a mean value of -0.07 for the log-transformed 
data. In general, 55% of the selected catchments 
had negative coefficients of skewness for the log- 
transformed data and only about 7% of the selected 
catchments had skewness coefficients which were at 
least equal to 1.14 for the untransformed data while 
only about 3% had sample skewness coefficients which 
were at least equal to 1.14 for the log-transformed 
data. In general, this implies that if all ̂ he chosen 
distributions' parameters were obtainable, then,

(i) about 7% of the fitted three parameter log-normal 
distributions would have upper bounds.

(ii) about 62% of the fitted Fisher Tippet distributions 
would be of type 2 with lower bounds and the
rest 38% would be of type 3 with upper bounds.

(iii) about 3% of the fitted log-Fisher Tippet dis­
tributions would be of Type 2 with lower bounds 
and the rest 97% of Type 3 with upper bounds.

(iv) about 7% of the fitted Pearson Type 3 dis-
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Fig. 8 Histograms of the skewness coefficients of the annual peak flow dafa
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tributions would nave upper bounds and about 
55% of tne fitted log-Pearson Type 3 distri­
butions would nave upper bounds.

Tne conclusions were generally in line witn 
observations altnougn some distribution parameters 
were not obtainable.

It is important to recall tnat, irrepsective 
of tne sample skewness coefficient, tne Walter 
Bougnton distribution always nas a lower bound wnicn is 
usually negative wnile tne log-Walter Bougnton 
distribution always nas an upper bound. Tne Wakeby 
and log-Wakeby distributions always nave lower bounds 
wnicn are very close to zero in botn domains.

Tne existence of an upper bound in a probability 
distribution is unrealistic in flood frequency analysis.
For tnis reason tnerefore, only tnose cases of tne 
catcnments for wnicn a given probability distribution 
gives only lower bounds wnicn are smaller tnan tne 
smallest observed value in tne catchment are considered.

Tne flood probability distributions in tne real 
domain normally require that the lower bound when it 
exists be positive. However, for tne negative lower 
bound flood probability distributions, corresponding 
truncated probability distributions were used. Tnis
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requires that, a finite probability, pQ, given by

f O

po = f (x)fdx ____ (238)

be used for the value x = 0, where xq is the negative 
lower bound and f(x) is the negative lower bounded 
probability density function of the variate x. In 
this way, all the negative values of the variate x 
in f(x) are assigned zero probability.

Lastly, it is noteworthy to mention that the 
methodologies for estimating the parameters of all 
the other distributions except the Wakeby and log- 
Wakeby distributions were generally straight-forward 
and relatively less complicated to program for the 
computer. It was found that the least squares approach 
which was developed for the estimation of the parameters 
of the Wakeby and Log-Wakeby distributions did not 
give an overall least sum of squared error as is 
required in all the chosen catchments. During the 
search for the optimum location parameter e in equation (160) 
it was noticed that the sum of squared error decreased 
fairly fast for values of e close to zero and then 
continued to decrease only but very slowly with further 
decrements or increments in e until e became so large 
in magnitude that it virtually overdominated the other 
components in equation (160)̂ hence making it impossible to
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continue witn tne required regression analysis. Due 
to tnis problem, it was found necessary to adopt the 
metnod of probability weignted moments for tbe 
estimation of tbe prameters of tbe Wakeby and Log-Wakeby 
distributions. A plotting position formula of tbe form,

p(x^) = (i-0.35)/n .... (239)
was found to be most appropriate for tbe data cboseb,

i
where p(x^) is tbe probability of non-exceedance of tbe 
i-tb smallest observation x^ and n is tbe total number 
of observations.

In tne following subsection, we will discuss tbe 
results from tbe goodness of fit tests.

3.2 RESULTS OF GOODNESS OF FIT TESTS

Tbe Smirnov-Kolmogorov distance goodness of fit
measure, A ,  was computed directly fro m  equation(194) after tbe
computation of distribution parameters in eacn catchment.
Tbe observed cumulative probability p(x) was estimated by 
the plotting position formulae given by equation (239),Tbe distribution of
the computed A is presented in Table (10). In tnis table and tbe
others to follow, the distributions are given tbe notation as follows

LN3 - tnree prameter log-normal
P3 - Pearson type 3
LP3 - log-Pearson type 3
FT - Fisher-Tippet
LFT - log-Fisher-Tippet
WB - Walter-Boughton
LWB - Log-Walter-Boughton



TABLE 10: G00DNESS-0F-FIT BY THE SMIRNOV--KOLMOGOROV TEST
DISTRIBUTION

*GS i2J3 P3 LP3 FT LFT WB LWB H LW

_CE1 0.082A 0.077A 0.092A 0.083A 0.119A
1

0.066A* 0.120A
LCB2 0.094A - 0.091A 0.241R ' 0.088A* 0.107A - 1 0.093A 0.131A
1BA1 0.075A* - 0.167A 0.104A 0.128A - 0.096A 0.119A
BC1 - - - 0.078A 0.098A 0.170A - 0.052A* 0.122A
BG4 0.059A 0.161A 0.058A* 0.136A 0.067A 0.073A - 0.059A 0.084A
BD1 0.106A 0.137A - 0.151A 0.100A 0.146A - 0.089A* 0.129A
-BEl 0.105A 0.104A - 0.110A 0.990R 0.153A - 0.100A* 0.229R
EE2 0.053A 0.110A 0.052A* 0.125A 0.054A 0.151A - 0.076A 0.098A
BE5 O.049A* 0.053A 0.051A 0.053A 0.058A 0.068A - 0.070A 0.124A
l.BBl O.H5A 0.119A - 0.115A 0.123A - - 1 0.105A 0.092A*
LGGx 0.109A - - 0.365R 0.117A 0.115A - 0 .113A 0.095A*
1JG1 0.111A 0.121A - 0.106A 0.123A 0.127A - 0.077A* 0.145A
IKA5 0.105A 0.135A - 0.086A* 0.128A 0.156A - 0.095A 0.139A
JLA3 - - - 4 0.145A 0.136A 0.210A - 0.114A* 0.169A
1CB5 - - - 0.066A 0.098A 0.124A - 0.064A* 0.088A
1CB3 0.066A - - 0.058A 0 .063A 0.055A* - 0.062A 0.105A
1CB1 0.064A* - - 0.067A 0.993R 0.074A - 0.068A 0.150A
1CA2 - - - 0.123A 0.985R 0.096A* - 0.107A 0.153A
1CB1 0.070A 0.198A 0.065A* 0.171A 0.073A 0.087A - 0.091A 0.083A
1DA2 0.077A 0.0O8A 0.071A 0.090A 0.062A* 0.068A 0.127A
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TABLE 10: GOODNESS OF-FIT BY THE SMIRNOV-KOLMOGOROV TEST

DISTRIBUTION
1

RGS LN3 P3 LP3 FT LFT WB LWB w LW ■ >. • ‘ l
1FG1 0.060A 0.056A — 0.063A 0.056A* 0.074A _ 0.061A O.09r5A
1JC13 0.138A - 0.129A 0.293R 0.125A 0.134A 0.070A* q.078A
1KC3 0.045A 0.072A - 0.040A 0.060A 0.040A* - 0.042A CJ.074A
1FG2 0.115A 0.111A 0.114A 0.113A 0.123A 0.142A _ O.IOOA CJ.093A
1HA4 0.124A* - 0.125A 0.124A 0.125A 0.146A - 0.125A Cl. 183A
1FF2 0.111A - 0.120A 0.145A 0.128A 0.142A - 0.092A* cj. 102A
1FE2 0.062A 0.074A - 0.054A* 0.077A 0.064A - i O.057A CM33A
1FE1 - - - 0.095A 0.087A* 0.158A - O.lllA G.147A
2B2 0.135A 0.142A - 0.132A 0.132A 0.127A - 0.126A 0.084A*
2EB3 0.044A* - - 0.129A 0.053A • 0.064A !' 0.052A 0.103A
2EC2 0.095A - - 0.134A 0.096A 0.136A _ 0.080A* 0.082A
2FA2 0.108A 0.088A 0.123a 0.089A 0.159A 0.076A* * 1 ! 0.120A 0.149A
2FC5 0.176A 0.183A - 0.204A 0.140A 0.189A - i ! 0.133A 0.116A*
2EC3 0.056A - - 0.230R 0 .049A* 0.074A - i ; 0.054A 0.084A
2GD2 0.169A - - 0.155A 0.131A - - 1 0.126A 0.086A*
3BA10 0.065A 0.49R 0.070A 0.362R 0.087A 0.36A - ! 0.112A 0.058A*
3BA17 0.074A - 0.070A* 0.119A 0.078A 0.154A - • 0.080A 0.113A
3BC12 0.116A 0.195A - 0.198A 0.113A* 0.187A j i 

1 0.127A 0.167A
3F2 0.071A* - 0.081A 0.124A 0.078A 0.078A 0.076A 0.110A
3DA2 O .160A - - 0.131A 0.150A 0.162A 1 ~ | 0.124A* 0.154A
3BAlf 0.013k 0.080A - 0.078A 0.065A 0.097A 0.064A* 0.105A
3BB1 0 0.090A 0.103A - 0.097A 0.088A 0.101A - 0.074A* 0.097A
4AA2 0.138A 0.269R 0.122A 0.237R 0.115A 0.096A* - 0.143A 0.135A

i



TABLE 10: GOODNESS OF FIT BY THE SMIRNOV-KOLMOGOROV TEST
DISTRIBUTION

RGS LN3 P3 LP3 FT LFT WB LWB W LW

4CA2 0.063A 1 0.073A 0.071A 0.078A — 0.058A* 0.116A
4BE1 0.081A 0.061A - 0.077A 0.067A 0.064A _ 0.053A* P.08 2A.
4AA4 0.072A* - 0.08OA 0.177A 0.088A 0.133A 0 .087A 0 j076A
4BC2 0.071A 0.071A - 0.O67A* 0.076A 0.083A 0.068A 0 .1 0 1A.
4AB5 0.090A - - 0.074A 0.083A 0.078A 0.123A 0 jp43A*
4G1 0.094A 0.388R 0.073A 0.262R 0.060A* 0.066A 0.068A 0.081A 0jb84A
4CB4 0.118A 0.124A - 0.119A 0.109A 0.160A - 0.065A* 0 1L 50A
4BB1 0.071A 0.065A - 0.070A 0.076A 0.091A - 0.055A* 0 1L03A
4AA1 0.102A 0.139A - 0.147A 0.122A 0.153A - 0.090A* 0.JJ98A
5AA1 0.106A - - 0.093A 0.105A - 0.056A 0 .046A*
5AA5 0.105A - - 0.112A 0.095A 0.102A - 0.094A* O.'llOA
5AB2 0.150A, 0.171A - 0.174A 0.147A 0.168A 0.119A 0.113A*
5BC4 0.148A 0.209A - 0.221R 0.176A . 0.21R “ 0.158A 0.138A*
5BC8 0.077A ‘ 0.330R 0.096A 0.227R 0.96A 0.191A _ 0.148A 0.086A^
5BE4 0.078A 0.110A - 0.118A 0.078A O.IOOA - 0.065A* 0.125A
5BE20 • 0.104A 0.177A 0.095A* 0.198A 0.099A 0.157A - 0.121A 0.167A'
5D5 0.078A 0.148A 0.133A 0.075A 0.098A _ 0.067A* 0.107A

II
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w - Wakeby

LW - Log-Wakeby

For "the sake of comparison, tne 95% confidence level 
critical values in Table (10) were utilized. Tnis 
way, it was tnen possible to classify tne computed 
values A accordingly as to whether the fit they 
represented was acceptable (A) or not acceptable (R). 
This calssification is also included in Table (10).

Generally, all tne tested flood probability dis­
tributions gave acceptable fits to tne flood data 
according to the Smirnov-Kolmogorov test. However, 
there were some isolated cases wnen fitted distributions 
were not acceptable according to tne test. Tne pro­
bability distribution whose fit was most frequently 
rejected was tne Pearson Type 3 distribution while the 
Wakeby andthe logWakeby had tne least number of cases of 
rejection. Tne most important point to note is that in 
most cases, all the flood probability distributions 
usually gave acceptable fits in any one given catchment 
so that, conventionally, it is impossible to identify 
tne most optimum flood probability model with this test. 
However, the minimum of the computed values of A for 
all the distributions in a given catchment can be used 
as an identifier of the best fitting distribution 
according to the Smirnov-Kolmorov test, irrespective 
of its location in the test-region, as is done in Kite 
(1977). In Table 10, this mininum is shown by a 
in a given catchment. The consistency with which each
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of tne nine probability distributions gives tne minimum 
A is stiown in Table 11. Thus, using the same procedure 
as in Kite (1977), we find that tne order of goodness 
witn respect to the Smirnov-Kolmogorov- test of these 
nine distributions, from the best to the worst is:

1. Wakeby
2. Log-Wakeby
3. Log-normal type 3
4. Walter Boughton/Log-Fisher-Tippet
5. Log-Pearson Type 3
6. Fisher-Tippet
7. ' Pearson Type 3/Log-Waiter Boughton

Thus, tne Smirnov-Kolmogorov test snows tnat, generally, 
the Wakeby distribution is significantly superior tnan 
tne other eignt probability distributions.

2Theoretically, the cni-square test statistic x 
is generally easy to compute for any fitted distribu­
tion witn known parameters, once the number of class
intervals and tne class limits are known. Tnus, the

2most crucial step in tne computation of x > after the 
successful completion of tne determination of the 
distribution parameters is the determination of the 
number of classes to be used and subsequently the 
class limits.

As tne hydrologic samples were of the order of 
n = 20 to 50, seven classes for k, were used in equation (192) for 
tne cni-square test. For the three parameter distri-
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TABLE 11: CONSISTENCY OF BEST FIT BY SMIRNOV-KOLMOGOROV
TEST.

DISTRIBUTION CONSISTENCY (PER-CENT)

Log-normal 3 11.7
Pearson 3 0. o
Log-Pearson 3 8.3
Fisner-Tippet 5.0
Log-Fisner-Tippet 10.0
Walter Bougnton 10.0
Log-Waiter Bougnton 0.0
Wakeby 35.0
Log-Wakeby 20.0
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butions, seven class intervals were cnosen so that
the number of degrees of freedom was 3 and for tne
Wakeby and Log-Wakeby distribution with five parameters
also, seven class intervals were chosen so that in
these cases, the number of degrees of freedom was one.
For simplicity, these class intervals were assumed to
have equal probability of occurrence equal to p^=l/k
so that the expected number of frequencies were np^=n/k
The observed frequencies n. were then computed by a
simple searcn process which is equivalent to plotting
the cumulative distribution function F(x) against x
for the variate x, then dividing the F(x) into k equal
classes and then finding accordingly the number of
observations which fall in each class. For the sake
of comparison, the 95% confidence level critical values 

2of X were utilized. For the tnree parameter dis-
2 .tributions, the XQ = 7.815 and for the five parameter

2distributions, Xo = 3.54. In this way, the computed 
2values of x given in Table (12) (where the notation is 

similar to that of Table (10)) are also classified 
accordingly as to whether the fit tneyrepresented are 
acceptable (A) or not acceptable (R).

Generally, all the tested flood probability 
distributions gave acceptable fits to the flood data 
according to the chi-square goodness of fit test 
although the Pearson Type 3, the Fisher Tippet and 
the Walter Bougnton distributions had higher incidences 
of rejection of fit. Nevertheless, all the flood
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TABLE 12: GOODNESS OF FIT BY THE CHI-SQUARE TEST

, 5 DISTRIBUTION «

RGS LN3 P3 LP3 FT LFT WB LWB W LW

1CE1 1.412A l.OOOA* — 1.824A 1.824A 3.882A - 2.235A 5.941R
1CB2 2.111A* - 2.889A 25.444R 3.667A 5.222A - 1 2.111A 10.667R
1BA1 , 2.200A* - - 10.133R 4.067A 9.200R - 4.533R 3.133A
1BC1 - 5.600A 7.600R 5.200A 5.20 0A ' 6.400A _ 1 3.20 0A* 15.200R
1BG4 4.121A .7.091A 2.848A 15.152R 1.152A 1.152A* - 5.394R 7.091R
1BD1 2.00oA* 8.667R - 12.667R 4.OOOA 8.667R - 4.OOOR 4.667R
1BE1 12.529R 12.529R - 12.529R 12.529R 10.882R - 7.176R* 32.706R
1BE2 3.697A 6.242A 3.273A 11.758R 4.121A 16.424R - 2.424A* 2.424A
1BE5 1.576A* 1.576A . 1.576A 1.576A 1.567A 1.567A - 4.121R 5.818R
lBBl 16.OOOR 11.200R - 9.600R 10.800R • - - 10.800R 3.600A*
1GG1 9.562R - - 33.187R 9.562R 7.375A 1 - 6.937R 5.625R*
1JJ1 7.944R 6.389A - 5.611A 5.611A 7.944R - 2.889A* 9.111R
1KA5 7.333A* 10.000R - 7.333A 10.000R 18.OOOR 8 .OOOR 12.333R
1LS3 - - - 5.333A 6.111A 10.778R I 4.556R* 13.111R
1CB5 - - - 1.043A* 2.870A 7.130A - 2.261A 3.478A

. 1CB3 5.611A - - 4.444A 4.056A* 5.611A - 5.611R 5.222R
1CD1 11.320R - - 7.68OA . 13.560R 7.680A* - 7.680R 14.120R
1CA2 - - - 12.609R 5.304A 12.699R - 4.087R* 13.826R
1CB1 4.552A 12.276R 3.586A 19.034R 4.552A 4.552A - 4.552A 2.138A*
1DA2 3.667A 4.444A - 4.056A 6.000A 1.333A* - 2.111A 10.667R
1FG1 1.600A 1.600A - 1.600A 1.600A 1.200A* - 3.200A 6 .8OOR
1JC13 8 .88OR - 9.440R 22.880R 6.640A 6.640A - 2.160A* 9.440R
1KC3 1.687A 1.687A - 0.813A* 0.813A 0.813A - 1.250A 1.687A
1FG2 6.333A 6.333A 6.333A 6.333A 5.167A 5.167A - 3.417A 2.833A*
1HA4 ' 11.880R - 13.000R 16.920R 13.OOOR 10.480R* - 12.160R 26.440R

i



TABLE 12; GOODNESS OF FIT BY THE CHI-SQUARE TEST

- DISTRIBUTION •

RG3 LN3 P3 LP3 FT LFT WB LWB W LW

1FF2 1.652A* - 4.087A 9.565R 4.087A 12.000R mm 3.478A 5.304R
1FE2 2.667A 4.000A - 6.667A 1.333A* 2.667A 5.333R 4.667R
1FE1 - - - 4.000A 2.0O0A* 4.000A ~ | 4.000R 8.667R
2B2 12.118R 12.118R - 14.176R 12.118R 14.176R 8.000R* 8.142R
2EB3 2.848A -r - 7.939R 2.000A* 4.545A - 2.848A 4.970R
2EC2 10.233R - - 16.744R 13.163R 18.698R _ i 13.163R 2.093A*
2FA2 9.350R 9.350R 6.200A 11.80GR 4.800A* 16.000R _ i 7.250R 6.900R
2FC5 14.500R 14.500R - 14.500R 10.000R 18.000R i 17.000R 6.500R*
2EC3 5.610A - - 25.073R 6.293A 8.341R 2.878A* 7.659R
2GD2 22.205R - - 21.128R 10.718R -

_ 16.103R 7.846R*
3BA10 1.512A 37.220R 4.244A 46.927R 3.902A 19.268R “ i 13.805R 2.878A*
3PA17 4.400A - 2.800A 6.400A 2.000A* 12.000R 3.200A 8.80OR
3BC12 5.611A 32.833R - 32.833R 10.278R 14.944R - 9.111R 9.50OR*
3F2 1.655A - 1.655A 14.690R 1.172A* 1.655A - 1.655A 4.552R
3DA2 9.000R - - 12.769R 5.769A 6.308A - 11.692R 3.077A*
3BA18 2.200A* 4.067A - 2 .2 0 0a 2.200A 5.933A - 2.200A 5.467R
3BB10 4.370A* 6.963A - 4.370A 4.889A 5.926A - 6.963R 6.444R
4AA2 2.848A 18.121R 2.424A 22.364R 2.424A* 7.090A - 7.515R 5.394R
4CA2 5.720A - - 4.600A 5.720A 4.600A — 3.200A* 7.680R
4BE1 2.235A 1.412A - 2;235A i3.882A 2.235A - 1.412A* 3.471A
4AA4 1.824A - 7.176A 19.941R 5.529A 17.059R - 4.294R 1.412A*
4BC2 1.733A 1.267A - 2 .667A 0.800A* 1.733A - 2.667A 4.533R
4AB5 6.062A - - 4.750A 6.062A 3.875A - 6.937R 2.562A*
4G1 4.00A 31.467R 6.489A 51.289R 4.622A 1.511A* 4.622A 7.111R 4.311R
4CB4 5.189A 6.703A 13.892R 2.919A 7.081A 2.162A* 4.243R



TABLE 12; GOODNESS OF FljT BY THE CHI-SQUARE TEST

DISTR1 BUTION
RGS LN3 P3 LP3 FT LFT WB LWB W LW

4BB1 2.000A* 2.400A — 2.000A 2.000A 5.600A - 2.800A 7.600R
4AA1 6.389A 16.111R - 16.111R 11.444R 17.278R - 5.611R* 6.788R
5AA1 5.189A - - 6.703A 5.189A - - 1.027A* 1.027A
5AA5 , 7.130A * - 10.783R 5.304A* 7.739A - 5.913R 10.174R
5AB2 5.333A 10.667R - 10.667R 4.667A* 5.333A - lO.OOOR 8.000R
5BC4 , 9.333R 12.000R - 12.667R 13.333R 15.333R - 12.667R 8.667R*
5BC8 ’ ; 2.870A 9.348R 2.261A* 21.130R 2.261A 19.304R - 5.913R 4.087R
5BC4 1 1.742A* 8.516R - 8.968R 1.742A 2.645A - 2.645A 8.968R
5BE20 : 5.364A 13.000R 4.727A* 14.273R 4.727A 8.545R - 5.364R 7.273R
5D5 ‘ 4.692A 3.077A 7.385A 2.538A 2.538A 2.000A* 4.154R

•

•i

' r * 1

I

I

I
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probability distributions gave cni-square values wnich
were usually acceptable in any one given catcnment.
Tnus, conventionally, as was mentioned concerning
Smirnov-Kolmogorov test it is impossible to identity
uniquely the most optimum flood probability distribution
However, proceeding similarly as in the case of the
Smirnov-Kolmogorov test, tne minimum of the computed 

2values of X for all tne distributions m  a given catch­
ment can be used as an identifier of the best fitting 
distribution according to the chi-square test, irrespect 
of its location in tne test region. In Table 12, tnis 
minimum is snown by a in a given catchment. Again,
the consistency witn which each of tne nine probability 

. 2distributions gives tne minimum x is snown in Table 13. 
Accordingly, based on the chi-square test, tne order of 
goodness of tne nine distributions from tne best to the 
worst is: _ _

1. Wakeby
2 Log-Wakeby
2 Log-Fisner-Tippet
 ̂ Log-normal 3      _
5. Walter Boughton
6. Log-Pearson 3/Fisher Tippet
7. Pearson 3
8. Log-Waiter Boughton



TABLE 13: CONSISTENCY OF BEST FIT BY CHI-SQUARE TEST

DISTRIBUTION CONSISTENCY (PERCENT)

Log-normal 3 16.7
■ Pearson 3 1.7
;Log-Pearson 3 3.3
Fisher-Tippet 3.3
Log-Fisher-Tippet 18.3 '
Walter Boughton 10.0
Log-Waiter Boughton 0.0
Wakeby 25.0
Log-Wakeby 21.7
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We can notice that the ranking of these probability 
distributions in this order of goodness, according to 
the chi-square test is almost similar to that when the 
Smirnov-Kolmogorov test is used. Thus, the chi-square 
test, similarly, shows that the Wakeby distribution 
is significantly more superior compared with the other 
eight distributions considered. The results of the 
AIC test are presented and discussed below.

For a given probability distribution, sixteen 
AIC values were computed for all the sixteen possible 
combinations of having at most three outlying peak flow 
observations in either the low side or the high side 
of extremes in a given sample of observations in a given 
catchment. The minimum of these sixteen AIC values 
identified the most optimum combination of the outlying 
values (Kitagawa, 1979). This minimum AIC value and the 
corresponding outlier-combination was recorded and the 
process repeated for all the distributions and catch­
ments in which realistic distribution parameters exist.
In Table 14 are presented these minimum AIC values.
Against each minimum AIC entry in the table, the corres­
ponding outlier-combination is also shown._ This com­
bination of outliers represents the number of obser­
vations in the corresponding extreme sides which cannot 
be modelled adequately by the distribution under con­
sideration in the given catchment. The.first entry in brackets 
represents the number of low outliers, while the other 
represents the number of high outliers. Since all the



TABLE 14: GOODNESS OF FIT BY AIC TEST
DISTRIB JTION

RGS LN3 P3 LP3 FT LFT WB LWB w LW
ICEl 530.7(0,0) 526.8(0,0) -  | 534.4(0,0) 524.6(0,0) 538.6(0,0) - 824.2(0,0)* 590.1(0,0)
1CB2 325.9(0,0)* - 327.0,0) 462.9(0,0) 327.5(0,0) 337,9(0,0) - 328.3(0,0) 344.2(0,0)
1BA1 323.6(0,0) - - 361.7(0,0) 324.4(0,0) 3357(0,0) - 323.0(0,0)* 360.9(0,0)
1BC1 -  j - - 340.9(0,0) 344.3(0,0) 338.9(0,0) - 338.5(0,0)* 905.2(0,0)
1B64 244.2(0,0)* 304.6(0,0) 244.6(0,0) 305.4(0,0) 245.4(0,0)- 247.5(0,0) - 251.(0,0) 269.5(0,0)
1BD1 244.4(0,0) 254.9(0,0) - 256.7(0,0) 242.3(0,0)* 254.4(0,0) - 246.2(0,0) 259.2(0,0)
IBEl 345.9(0,0)* 347.9(0,0) - 350.1(0,0) 1274.6(1,0) 367.8(1,0) - 346.2(0,0) 259.2(0,0)
1BE2 134.0(0,0)* 165.8(0,0) 134.5(0,0) 191.0(0,2) 134.1(0,0) 210.5(0 ,0 ) - 138.1(0,0) 143.3(0,0)
1BE5 272.2(0,0)* 272.4(0,0) 272.9(0,0) 273.5(0,0) 272.6(0,0) 278.1(0,0) - 275.2(0,0) 308.9(0,0)
1BB1 399.0(0,0)* 404.3(0,0) - 399.0(0,0) 404.0(0,0) - - 401.6(0,0) 703.6(0,0)
1GG1 448.4(0,0)* - - 660.8)0,0) 452.2(0,0) 453.2(0,0) - 473.7(0,0) 451.6(0,0)
1JG1 582.4(0,0) 585.3(0,0) - 582.2(0,0) 586.3(0,0) 588.1(0,0) - 578.4(0,0)* 626.3(0,0)
1KA5 169.1(0,0) 183(0,0) - 164.1(0,0) 177.9(1,0) 217.8(0,0) - 161.1(0,0) 258.6(0,0)
1LA3 - - - 2 1 2 .2 (0 ,0 ) 213.5(0,0) 232.3(0,0) - 211.5(0,0)* 322.8(0,0)
1CB5 - - - 255.3(0,0) 267.4(0,0) 278.3(0,0) - 255.2(0,0)* 387.2(0,0)
1CB3 290.2(0,0) - - 286.9(0,0)* 290.6(0,0) 287.1(0,0) - 289.9(0,0) 342.5(0,0)
1CD1 436.9(0,0)* - - 437.3(0,0) 182.9(1,0) 437.5(0,0) - 438.7(0,0) 1 1 2 1 .0 (0 ,0 )
1CA2 - - - 286.1(0,0) 898.7(0,1) 304.0(0,0) - 281.1(0,0)* 378.3(1,0)
1CB1 343.3(0,0)* 408.2(0,0) 343.4 403.7(0,0) 344.7(0,0) 350.3(0,0) - 354.9(0,0) 355.5(1,0)
IDA 2 562.9(0,0) 570.5(0,0) - 559.9(0,0) 566.1(0,0) 559.5(0,0)* - 562.9(0,0) 779.1(0,0)
1FG1 477.4(0,) 477.0(0,0) - 477.9(0,0) 476.0(0,0)* 478.1(0,0) - 478.3(0,0) 846.0(0,0)
1JC13 126.0(0,0) - 121.9(0,0) 225.9(0,0) 1 2 1 .0 (0 ,0 ) 119.2(0,) - 112.9(0,0)* 187.8(0,0)
1KC3 560.4(0,0)* 566.9(0,0) - 560.8(0,0) 561.1(0,0) 561.5(0,0) - 567.0(0,0) 580.5(0,0)
1FG2 356.1(0,0)* 356.8(0,0) 356.4(0,0) 356.9(0,0) 356.8(0,0) 363.3(0,0) “ 358.8(0,0) 633.1(0,0)



TABLE 14: GOODNESS OF FIT BY AIC TEST
DISTRIBUTION

RGS LN3 P3 LP3 FT LFT WB LWB W LW

1HA4 609.5(0,0) - 604.8(0,0) 601.0(0,0)* 608.1(0,2) 611.0(0,0) — 895.8(0,0) 732.0(0,Oj
1FF2 231.0(0,0)* - 233.6(0,0) 2433(0,0) 233.9(0,0) 241.2(0,0) - 235.8(0,0) 247.2(0,0)
1FE2 319.2(0,0)* 324.4(0,0) - 320.0(0,0) 319.3(0,0) 321.8(0,0) - 325.3(0,0) 338.1(1,0)
lFEl - - - 280.1(0,0) 278.9(0,0) 292.7(0,0) - 278.8(0,0)* 428.2(0,0)
2B2 230.2(0,0) 233.6(0,0) - 230.4(0,0) 230.8(0,0). 231.3(0,0) - 230.2(0,0)* 847.6(0,0)
2EB3 286.4(0,0) - - 330.3(0,0) 278.6(0,0) 6 8 8.8 (0 ,0 ) - 286.0(0,0)* 303.0(0,1)
2EC2 236.6(0,0) - - 270.5(0,0) 228.4(0,0) 268.0(0,0) - 225.7(0,0)* 254.6(0,0)
2FA2 292.0(0,0) 299.7(0,0) 282.8(0,0) 293.6(0,0) 295.5(2,0) 297.7(0,0) - 282.7(0,0) 631.9(0,0)
2FC5 309.2(0,1) 351.7(0,0) - 356.2(0,3) 300.1(0,0) 341.8(0,0) - 326.1(0,0) 295.3(0,0) *
2EC3 269.4(0,0) - - 429.8(0,3) 269.1(0,0) 275.5(0,0) - 267.5(0,0)* 333.4(0,0)
2GD2 459.2(0,0) - - 493.8(0,0) 454.3(0,0) - - 454.2(0.0)* 468.3(2,0)
3BA10 336.1(0,0)* 118.4(2,0) 339.4(0,0) 663.1(0,0) 345.6(0,0) 397.6(0,0) - 376.6(0,1) 340.2(0,0)
3BA17 151.5(0,0) - 151.8(0,0) 188.6(0,0) 151.9(0,0) 2 1 2 .1 (0 ,0 ) - 151.4(0,0)* 187.8(0,0)
3BC12 514.8(0,0)* 578.8(0,0) - 581.2(1,0) 515.1(0,0) 580.0(1,0) - 538.2(0,0) 516.0(0,0)
3F2 516.5(0,0)* - 516.7(0,0) 555.4(0,0) 516.6(0,0) 520.0(0,0) - 524.4(0,0) 538.7(0,0)
3DA2 471.4(0,0)* - - 493.3(0,0) 471.8(0,0) 493.4(0,0) - 481.3(0,0) 490.8(0,1)
3BA18 216.8(0,0) 216.7(0,0) - 219.6(0,0) 214.0(0,0)* 2 2 2 .6 (0 ,0 ) - 217.8(0.0) 259.5(0,0)
3BB10 291.6(0,0) 198.5(0,) - 192.5(0,0) 189.1(0,0) 194.4(0,0) - 189.0(0,0)* 201.7(0,0)
4AA2 378.1(0,0) 455.5(0,0) 374.4(0,0) 453.5(0,0) 473.5(0,0) 373.8(0,0) - 383.0(0,0) 390.5(0,0)
4CA2 671.2(0,0) * - - 678.6(0,0) 673.6(0,1) 679.7(0,0) - 693.(0,0) 757.9(0,0)
4BE7 508.5(0,0) 506.1(0,0) - 509.9(0,0) 506.6(0,0) 509.7(0,0) - 505.8(0,0) 524.7(0,0)
4AA4 362.5(0,0)* - 363.1(0,0) 440.1(0,0) 366.0(0,0) 398.5(0,0) - 377.2(0,0) 373.5(0,0)
4BC2 461.5(0,0)* 461.9(0,0) - 461.8(0,0) 461.6(0,0) 464.1(0,0) - 462.3(0,0) 744.1(0,0)
4AB5 375.1(0,0)* - - 375.2(0,0) 375.2(0,0) 376.8(0,0) - 413.8(0,0) 381.7(0,0)
4G1 887.6(0,0) 1260.2(0,0) 879.1(0,0) 114.9(0,0) 877.0(0,0) 879.3(0,0) 890.5(0,0) 874.8(0,0)* 903.3(0,0)
4CB4 490.8(0,0) 489.0(0,0) 493.2(1,0) 485.7(0,0) 518.0(0,0) 473.9(0,0)* 526.1(0,0)

20 4



t

TABLE 14: GOODNESS OF FIT BY AIC TEST

___________________________________________i____________
DISTRIBUTION

RGS LN3 P3 LP3 FT LFT LW LWB W LW

4BB1 380.1(0/0) 378.8(0,0) - 381.2(0,0) 378.9(0,0) 388.2(0,0) -
378.7(0,0) 407.7(0,0)

4AA1 400.7(0,0) 432.5(0,0) - 435.3(0,0) 402.3(0,0) 431.8(0,0) - 400.4(0,0)* 404.1(0,0)
5AA1 386.9(0,0) - - 383.3(0,0) 392.2(0,1) - 1 - 378.0(0,0)* 381.2(0,0)
5AA5 237.4(0,0) - - 239.2(0,0) 231.3(0,0) 240.4(0,0) - 230.9(0,0)* 242.4(0,0)
5AB2 235.5(0,0)* 251.5(0,0) - 252.0(0,0) •236.0(0,0) 251.7(0,0) - 243.5(0,0) 2 ^.7(0,0)
5BC4 281.9(0,0)* 294.2(0,0) - 296.7(0,0) 282.3(0,0) 295.7(0,0) - 283.8(0,0) 29j.8(0,1)
5BC8 294.5(0,0)* 404.3(0,0) 296.2(0,0) 362.2(0,0) 295.7(0,0) 334.3(0,0) - 321.2(0,0) 3ol.5(0,0)
5BE4 323.7(0,0) 345.3(0,0) - 358.2(0,0) 325.6(0,0) 325.0(0,0) 322.9(0,0)* 34$.0 (0 ,0 )
5BE20 292.3(0,0)* 318.4(0,0) 292.6(0,0) 321.7(0,01 294.3(0,0) 305.9(0,0) 300.8(0,0) 31*i.3 (0 ,0 )
5D5 371.0(0,1)* 396.0(0,0)

i

396.1(0,0) 373.3(0 ,0 ) 379.5(0,0) 1 -i 377.3(0,0) 398.2(0,0)
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distributions have different snapes in tneir tails/
(Shen et al, 1980), each fits a given sample dif- 

» *
ferently from tne otner. Therefore, the minimum AIC 
values given in Table 14 represent a measure of the 
objective measure of the degree of goodness of fit of. 
tne distributions for the samples of the catchments 
when the corresponding outliers are taken into con­
sideration. The smaller this measure is, the better 
is the fit. Thus, for a given catchment, the best

i
fitting model gives the least value of the minimum 
AIC values, which is shown by in the table. The
consistency with which each of the nine probability 
distributions gives the overall minimum AIC value is 
shown in Table 15. Accordingly, based on the AIC test, 
the order of goodness of the nine distributions'from 
tne best to the- worst is:

1X • W a k e b y /lo g -n o rm a l 3

2 . Log-Fisher-Tippet
3 . Fisner-Tippet
4 . Log-Wakebt/Waited-Boughton
5 . Pearson Type 3/log-Pearson Type 3/log Waiter-

Boughton.

Regarding the existence of outliers, it was
pointed out earlier that, when we assume a particular
distrioution for a given set of data, we can react 
quite strongly towards some observations, and classify 
tnem as outliers, which may cause no specific concern 
when we assumeenother distribution for the data. Thus,
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TABLE 15: CONSISTENCEY OF BEST FIT BY AIC TEST

DISTRIBUTIONt /
CONSISTENCY (PERCENT)

Log-normal 3 4 3.3 -
Pearson 3 C.O .
Log-Pearson 3 0.0
F isner-Tippet 3.3
Log-Fisner-Tippet 6 . 7
Walter-Boughton 1.7
Log-Walter-Boughton 0.0
Wakeby 43.3
Log-Wakeby r !-7 .

I
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it is only when outliers are consistently identified 
under different basic model assumption, can we brand 
sucn observations as true outliers with an improved 
degree of certainity. In -Table 14, we can see that, 
in any given catchment, outliers are located in not 
more than two models when the others give no evidence 
of the existence of such outliers. In most cases, no 
outliers are found by any distributions. The frequency 
with which outliers are found within the catchments by 
the various distributions is as follows:

log-normal 3 — 3 . 3%
Pearson Type 3 - 1.7%
log-Pearson Type 3 - 0.0%
Fisher-Tippet - 13.3%
log-F isner-Tippet - 16.7%
V/al ter-Bought on - 5.0%
log-Walter-Boughton - 0.0%
Wakeby - 1.7%
log-Wakeby - 10.0%

We can also notice that, except in only one case of 
the three parameter log-normal distribution, all tne 
overall-minimum-AIC cases are in no-outlier cases also.

However, the fact that some models show no 
outliers at all in any one given catchment proves that, 
those which are found with the other models are not 
overall outliers. This implies that all the peak flow 
samples considered have no true outliers. The computed 
AIC values, under the assumption of no outliers in the
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samples snow that tne distributions can be ranked in 
order of their goodness of fit from the best to tne 
worst as:

1. Wakeby
2 . log-normal 3
3 . log-Fis^er-Tippet
4. Fisher-Tippet
5. log-Wakeby/Walter Bougnton
6 . Pearson Type 3/log-Pearson Type 3/log-Walter

Bougnton.

Thus, identification of the Wakeby distribution
by the Smirnov-Kolmogorov and the chi-square tests is
further confirmed, without the doubt of coincidence
by the more objective and reliable AIC test wnicn again
identifies the Wakeby distribution to be more superior
compared to the others, although only with a small
margin over the three parameter log-normal distribution.
Table 16 shows the average consistency of best fit in
the catchments based on the results of the Smirnov­* \
Kolmogorov test, the chi-square test and the AIC test. 

The results of this table show that, again the Wakeby
distribution is remarkably more superior than the rest,♦
followed by the three parameter log-normal.
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TABLE 16: AVERAGE CONSISTENCY OF BEST FIT BY SMIRNOV- 
KOLMOGOROV, CHI-SQUARE AND AIC TESTS

i---------------DISTRIBUTION CONSISTENCY (PERCENT)

Log-normal 3 2 3.4
Pearson 3 0.6
Log-Pearson 3 3.9
Fisher-Tippet 3.9
Log-Fisher-Tippet 12.2
Walter-Boughton 7.2
Log-Walter-Bougnton 0.0
Wakeby 34 . 4
Log-Wakeby 14.4

r



CHAPTER 4

4. SUMMARY AND CONCLUSION

Tnere is no general agreement among 
nydrologists, as to which of the various theoretical 
probability distributions available, should be used. 
Presently, no general agreement has been reached for 
the preferable techniques and no standards have been 
establisned for design purposes. Acceptance of a 
certain distribution is based on the goals and conditions 
that are to be fulfilled and satisfied by the distri­
bution (Zelenhasic, 1970). Sucn conditions inclu de 
tne suitability of a distribution for flood analysis 
as well as tne goodness-of-fit.

Tne most commonly used goodness-of-fit tests 
in nydrology include tne cni-square and tne Smirnov- 
Kolmogorov test statistics. Tnese approacnes when 
used conventionally in tne tests of goodness of fit of 
empirical probability distributions are very subjective 
in that tne results depend entirely on a predetermined 
level of confidence. Furthermore, these tests can 
pass more than one probability distributions without

V.

any distinction of the relative goodness of fit. This 
has been one of the major reasons contributing to 
the existence of tne disagreement among nydrologists 
in the choice of the most optimum flood probability 
model. However, in this study, the modified usage of 
these tests is utilised. In all, nine flood probability 
distributions were fitted to flood data obtained from
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sixty river gauging stations distributed randomly 
within the five major river basins of Kenya. This 
study uses not only the chi-square and the Smirnov- 
Kolmogorov tests but also the Akaike Information 
Criterion which is based on the entropy maximisation 
principle, to test the goodness of fit of the nine 
probability distributions. The Akaike Information 
Criterion is used not only for the model identifi­
cation but also for the identification of any out­
liers that can exist in peak flow data.

Tne modified Smirnov - Kolmogorov and tne 
chi-square tests identify the Wakeby distribution as 
the best for flood frequency analysis compared to the 
rest. Tnis is furtner confirmed by tne more objective 
and reliable AIC test. Thus, the three goodness of 
fit tests identify tne Wakeby distribution to be 
generally tne most suitable for flood frequency analysis 
in Kenya. One of the worst fitting distributions is 
the log-Pearson Type 3, despite its popularity world­
wide .

The results also snow tnat tne peak flow data 
does not nave any true outliers. Howeveri some of the 
poorly fitting distributions occasionally show some out­
lying observations when the more flexible distributions 
indicate no such outlying values. The Fisher-Tippet 
distributions has the highest frequency of snowing out­
lying values.
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In conclusion therefore, we can see that the 
Akaike Information Criterion goodness of fit test, 
which has not been used in flood frequency model testing 
before, has been successively used for the identification 
of an optimum flood frequency model as well as for the 
identification of outliers that can exist in peak 
flood data. We also note that, for the purposes of 
achieving efficient flood designs in .the Kenyan drai­
nage basins, the Wakeby distribution should be used 
whenever possible and not the log-Pearson Type 3 dis­
tribution as it has been the tradition.

4.1 SUGGESTIONS FOR FUTURE WORK

The existence of reliable parameter estimates 
for a distribution is an important aspect in model 
identification. There are usually many methods 
available for the estimation of the distribution 
parameters. However, when the maximum likelihood 
method of parameter estimation exists for a given 
probability distribution, then it is considered to 
be the most efficient method. Except for the Wakeby 
and the log-Wakeby distribution, all the other 
probability distributions which were considered in 
this study have maximum likelihood routines, 
although mainly implicit in form. The method of 
probability weighted moments was used for the estimation 
of the parameters of both the Wakeby and log-Wakeby 
distributions. It was earlier pointed out that this
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method occasionally yields unsuitable parameters especially 
with short records. Thus a study should be carried 
out to find a more reliable parameter estimation pro­
cedure for the Wakeby to improve its efficiency in 
flood frequency analysis.

In the previous chapters, we described some 
of the probability distributions that can be used 
to carry out a frequency analysis on a set of 
observed or computed data. Using any one of these 
techniques, the event magnitude corresponding to 
a given probability of occurrence can be determined 
This event magnitude applies only to the exact 
location at which the original observations were 
made. Frequently, for design purpose, it is necessary 
to estimate event magnitudes at sites wnere no 
observations have been taken. Regional analysis 
is the term given to the techniques which make such 
estimations possible. Thus, although the Wakeby 
distribution was established to be tne most optimum 
for the single site flood frequency analysis in Kenya, 
a study should be carried out to regionalise ..its useful­
ness .
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