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Abstract
It is important that a consumer get the quality of a product she/he wants. 
Consequently, the quality of a finished product should be controlled to a desired 
level. This is done through statistical quality control. We have Univariate process 
control and multivariate process control. In the first case, one is interested in 
controlling one quality characteristic of a product, whereas in the second case, 
one is interested in controlling more than one quality characteristics of a product. 
This project deals with both cases with special emphasis on the second.
Finally, we have looked at multivariate process control using the method of 
principal component analysis.
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Ihapter 1
INTRODUCTION
.1 Statistical quality control charts.
;he best a manufacturer can do is to find out the causes of variability in the product 
ind device means to control each contributing factor within appropriate limits, 
hereby controlling the quality of the product. This has to be done since the products 
should have the quality the consumer expects as the progress of an industry 
depends on the successful marketing (selling) of quality products. This is done by 
quality specifications from the arrival of raw materials, through their processing to 
the final product. However, complete elimination of the assignable causes of 
variation may not always be possible or even if possible, it may be uneconomical. 
Thus, statistical quality control is a system of planned collection and use of data for 
detecting causes of variation in the quality of a product. More specially it is a system 
of variation and maintenance of a desired level of quality by careful planning, using 
proper equipment, and controlling inspection and by taking corrective action where 
necessary. This is a most powerful productivity technique for effective diagnosis of 
lack of quality (lack of conformity to settled standards) in any of the materials, 
process, machines or end products. Statistical quality control therefore consists of 
techniques which help in the separation of the assignable causes from chance causes 
of variation thus signaling whenever assignable causes of variation are present in a
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process. To achieve this stated aim statistical quality control has three main 
objectives:

(i) It defines a goal or standards which the manufacturer may strive to 
achieve (specification),

(ii) It serves as an instrument for attaining the defined goal (production),
(iii) It serves as a means of judging whether the goal has been achieved

1.2 Setting limits on control charts
In order to exercise control over a process, we set limits on the variability due to 
chance occurrences. This is done by the use of control charts. If w is a sample 
statistic that measures some quality characteristic of interest with mean \xw and 
standard deviation 6 w, then the control chart limits proposed by Shewhart (1931)

are given by
UCLW = p w+ k5w
CLW = p w
LCL w = p w - k8 ,

(1.1)

where
UCL w denotes the upper control limit

CL w is the central line,
LCL w is the lower control limit
k is the distance of the central line from the control limits. /
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When k=3, the control limits represented by (1.1) are called Shewhart 3-sigma limits. 
To apply these limits, a random sample of size n from a production process is taken 
at regular intervals. The relevant sample statistic is computed for each sample and 
plotted on a control chart with limits as in figure 1.1. The pattern of the plotted 
points on the control charts indicates whether the process is in control or otherwise 
in relation to the control chart limits.

Shewhart control chart

Sample of observation in order of production
/

Figure 1.1
When a sample statistic w falls outside the control limits or when eight consecutive 
samples points plot above (or below) the central line, the process is said to be out of 
control,otherwise it is in control.
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Control charts can be classified into several types. Here, we briefly mention three 
types. The first type control charts are for variables which are used when the quality

characteristics are measurable . These charts include the X -chart, R- chart, S2 - chart, 
S- chart and the moving average chart. The second type is the control charts for 
attributes. These charts are used for quality characteristics, which can be observed 
only as attributes classifying an item as defective or non-defective (conforming or 
not conforming to specifications). The P-chart and the C-chart are used in this case. 
The third type is the cumulative sum (CUSUM) control chart that is used primarily 
to maintain the current control of a process when detection of a small shift in the 
process is of interest.
In the next three sections, we shall briefly discuss some of the univariate control 
charts mentioned above.

/
1.3.1. X - control chart

V

The X -chart monitors variability between sample sub-groups. Samples of size n are 
drawn from a production process and the sample means of the relevant quality

characteristics are calculated. The means are then plotted on the X -Chart. If we set 
the type 1 error of the test to be, say a  =0.0027, then k = 3 and the 3-sigma limits of

the X - chart are given by

1.3 Types of control charts
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UCL =p+36/ yfn 
CL = p 
LCL = p - 35/

(1.2)

The control status of the process is then determined as in figure 1.1
Generally, p and 6 are unknown and are estimated from preliminary samples taken

when the process is believed to be in control.

1.3.2. R- control chart
If the measure of interest is the variance (52) of the quality characteristic, several 
different control charts can be used. All of these control charts assume that random 
sample of size n is available and the characteristic is normally distributed. The range 
chart (R-Chart) is used to monitor process dispersion for small sample sizes (ru£lO).
If X(jbe the ),h observation in the ilh for (j=l,2,.... ,n;i=l,2,....,m) then the i"1 sample

mean is given by
/

x , = 'Z x ,',n
and the grand mean is given by

x  = Y J L x i lnm 

- I * , '™
The i,h sample range is given by

R (= max (x y)- min (x y) for i=l,2,.... ,m >
) ' •’
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Similarly, the average sample range is given by 

R = ^ R i  / m

It can be shown that E(R) =S0d 2 anc* var(R) =d 32 S0"
VVhere 80 is the standard deviation of the sample characteristic assumed to be 
Icnown and since most of the distribution of R is within the interval E (R) ±3 [var 
(R)] the control limits for the R-Chart are given by 

UCL = 80 [d2 + 3cb] =D2So

CL = S0D2 (13)
LCL = 80 [d2- 3da] = D180 

A 3-sigma R-chart is as in figure 1.2
R-Chart

Sample lots in order o f production 
Figure 1.2

Sample range falling outside the control limits implies that the process is out of 
control, otherwise it is in control.
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If n>10, the range method for estimating 5o loses efficiency and we have to resort to 
the standard error chart (S- Chart) which also monitors process dispersion and 
variability within sample units. The 3-sigma control limits for the S- chart are given 
by

UCL, =50 (Q+ 3V (l-O 2)) = B6 60

CL, = 60 C4 (1.4)
LCL, = 80 (O +3V (1- C42)) = B5 50

A 3-sigma S-Chart is shown in figure 1.3

S-Chart

1.3.3. S- control chart

Standard 
Error S

Figure 1.3

t
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This chart also monitors dispersion of a product. It is based on the sample variances. 
Here we assume that the sample characteristic is normally distributed. Since

(n-l) S2 /  Sq has a chi-square distribution with (n-1) degrees of freedom, it follows 
that

P [5 2 X2n-1 (l-a/2) /  (n-l) < S2<62 X2 (n-l), (a/2) /  (n-l)] = 1-0 
The control limits for the S2 -chart are then given by

UCL= 5 2 X2n-1, (a/2) / (n-l) (1.5)

LCL = 8  2 X2n-1, (l-a /2)/ (n-l)

Guttman, Wilks and Hunter (1965) have pointed out that it is customary to use only 
an upper control limit, since the chi-square distribution is always positive. The 
upper control limit is given by 

UCL = 52X2n-ia/(n-l)

Therefore, S2 -chart is equivalent to the tests involving simple hypothesis against a
simple alternative involving 5 2

H 0:5 2 = 6 2

against
H , :6 2* 5 2

The critical regions for this test are the regions above the UCL and below the LCL as 
in (1.5) ' f "

U .4  S 2 - control chart
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YVe note that, it is customary to constructing the charts for monitoring process 
dispersing i.e. the R- Chart, S- chart and S2 -Chart. If any of these charts indicate that

the process is in control, we construct the X -chart, which monitors variability 
between samples. If on the other hand the charts for monitoring process dispersion

indicate the process is out of control, we do not need to construct the X -Chart.

1.4 Problem statement
No two objects are identical. Items produced in large quantity under the same 
operating conditions will differ in quality upon inspection. This variability may be 
due to chance or assignable causes. Chance causes are variations brought about by 
interacting factors which are random in nature and can neither be predicted nor 
controlled. Assignable causes on the other hand are variations resulting from 
multiplicity of factors e.g. defective or sub-standard raw materials, new operation, 
improper handling and setting of machines, mechanical defects e.t.c. Therefore in 
view of this the assignable causes can be identified, controlled and possibly 
eliminated where possible. When the variability of the product is only due to chance 
causes, the process is said to be under control (in control) otherwise it is out of 
control.

/
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Chapter 2

m u l t iv a r ia t e  p r o c e s s  c o n t r o l

2.1 Multi -characteristic control charts
There are many situations in which it is necessary to simultaneously monitor two or 
more correlated quality characteristics. Such problems are referred to as multivariate 
quality control problems. To be able to monitor two or more correlated quality 
characteristic we normally use multi-characteristics control charts.

2.2 Literature Review
The development of multi-characteristic control charts is necessarily based on 
Hotelling T2-control charts. Hotelling (1974) proposed the use of the ^-random  
variable in a control chart setting for the testing of bombsights although he did not 
actually use %2 -control charts because the covariance matrix (Z0) was unknown. 
His papers are primarily devoted to the case for Z0 unknown. A fundamental 
assumption in the development of the j 2-control chart is that the underlying 
distribution of the quality characteristics is multivariate normal.

Ghare and Torgerson (1968) discussed the use of a multi-characteristic control 
chart referred to as the Q-control chart to monitor the central tendency of a number 
of measurable quality characteristics on one control chart. The quadratic form of the 
multivariate normal distribution has chi-square distribution. Thus, ah appropriate
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confidence region can be defined and a control chart constructed to monitor the 
stability of the pattern of variation of variables. As a special case of the Q- 
control chart, a bi-characteristic control chart was developed to identify the 
presence of a single assignable cause of variation. The Q-control chart is 
particularly effective when two or more quality characteristics are 
correlated. This is because the use of separate control charts to individually 
monitor each quality characteristic separately suffers from the weakness of 
ignoring the correlation between the variables which affects the type I error. 
Therefore in this case, we might erroneously conclude tha t a process is out- 
of-control when it is actually in control.

Montgomery and Klatt (1972) developed an appropriate model for the 
economic design of Hotelling T2-control chart to maintain quality control for 
two or more related variables. They assumed that the process is subject to 
occurrence of a single assignable cause of variation and the time between 
occurrences has an exponential distribution. In order to formulate the cost 
function, they assum ed that the state of the process (in control or out-of-

V

control) is detected exactly at the same time a particular sample is drawn. 
This assumption underestimates the cost-function when the sample size is 
exceptionally very large and the inspection procedure is complicated. A two- 
stage grid search was used to find the optimal parameters of the Hotelling 
control chart (T2-control chart). Montgomery and Klatt (1972) presented a 
cost model for a multivariate quality control procedure to determine the

11



optimal sample size, sampling frequency and control chart for the sample 
means constant.

Montgomery and Klattt found that by minimizing the average run 
length (ARL) of an out-of-control process for a large fixed valued of the ARL 
of an in-control process, we can determine the sample size (n) and the 
control chart constant ( / 2p,a) when there are two correlated quality 
characteristics, where p is the number of variables and a is the size of type I 
error) thus

(i) For a large positive correlation, (p0>O), a large sample size is 
needed to detect large positive shifts in the sample means than 
small positive shifts. (p0 is the correlation between the two 
variables)

(ii) A larger sample size is required to detect shifts for p0 >0 than 
for p0 <0 .

/

Jackson (1980) presented an overview of principal components and its 
relation to quality control. Alt and Smith (1988) have given an excellent 
review of the multivate process control methods.

t
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To illustrate the need for multivariate control charts, consider a 
manufacturing plant where the product is a plastic film. Let the usefulness 
of the film depend on its transparency (x,) and its tear resistance (x2). 
Further assume that the two quality characteristics are jointly distributed 
as bivariate normal and the standard values are
|Joi, P02, 801 and 802 with a correlation between these two characteristics. 
We can therefore display these values as follows:

2.3 Multivariate control charts

Mo = Mo\
Po2

£ 0= /01 02

pAA02 '01

(2 . 1)

(2 .2 )

where E0 is the covariance matrix.
A sample of size n is drawn from the process at regular intervals and 
measurements of both variables x, and x 2 are obtained.

If we focus our attention on monitoring the process means, one way of doing 
this is to ignore the correlation between the characteristics which results to 
type 1 error and monitor each process mean separately. For each sample of

1
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size n we take an unbiased estimate of juoi which is denoted by Xi and plot

it against sample lots on an X -chart with the limits
UCLi = poi + 380i/Vn

CLi = poi (2.3)
LCLi = poi- 380i/Vn

Here, 3-sigma limits developed by Shewhart [1931] are used to determine 
the control limits for the first quality characteristic.

Another X-chart is also set up to monitor the process mean of the tear 
resistance variable (x2).
The control limits are thus given by 

UCL2 = P02 + 3802/ Vn
CL2 = P02 (2.4)

LCL2 = P02-  3802/ Vn

/
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X-chart for variable x, (i= l, 2)

Sample Means

UCLj= |ii+ 380i/Vn

CLj = |i0i

LCLj—(J-oi - 38oi I yfn

Figure 2.1

If the mean of any sample lots falls outside the respective control limits or if 
eight consecutive points falls above the central line, the process is said to be 
out of control hence, there'is evidence of assignable causes of variation.

t

15



The Elliptical and Rectangular control Regions

X2 LCLxi UCLxi

Figure 2.3
If the pair of sample means falls within the rectangular control region, the 
process is considered to be in control otherwise it is out of control.

The use of separate control charts or the equivalent rectangular region 
can be very misleading because when we ignore the correlation coefficient 
between the variables will results to type I error. The appropriate control 
region is elliptical in nature as in Figure 2.3 above. A processes considered

out of control if the pair of means (X ,, X 2) falls outside the elliptical region. 
On the other hand, if we use the rectangular region, we may erroneously 
conclude that both process means are in control which is demonstrated by

16



region A, one is out of control and the other in control denoted by region B 
and both process means are out of control that is represented by region C.

In practice, individual, X -charts are used in conjunction with the 
-chart to determine which process mean is out of control. When this is 

done, it is recommended that the type I error of each one of the charts be 
set equal to a /p  where p is the number of variables and a is the overall type 
I error. For example when p=2 as in our case and a=0.0054, the type I error 
of each chart will be set at 0.0027 which means 3-sigma limits are 
computed as in equations (2.3) and (2.4).

In some instances, estimates of p 0 and £ 0 may be derived from such a 
large amount of past data that these values may be treated as parameters 
and not their corresponding estimates. Duncan (1974) states that the 
values for the parameters could also be selected by management to attain 
certain objectives. These are referred to as standard or target values. In a 
case where there are no set values, (standard values) p 0 and £ 0 are usually
estimated from rational subgroups taken when the process is believed to be 
in control. In the sequel, control charts will be presented for both standards 
given and values estimated. In both cases, we will employ two 
characteristics for easy interpretation. These control charts will be referred 
to as bivariate control charts which can be extended to more than two 
characteristics.

17



2.4 Control charts for the process mean

In this section, the X -chart when a process has more than one quality 
characteristic is considered. However, we will restrict ourselves to two 
quality characteristics that can be extended to three or more quality 
characteristics as we have mentioned above. The cases when |i0is known 
and when it is unknown are considered.

2.4.1 Control charts for the process mean when p 0is known
In the univariate case, the process has only one quality characteristic. If 
this quality characteristic is normally distributed with mean p0and
standard deviation 8 0, the probability that a sample mean will fall between 

M0± Z ^ 5 „ /V n  (2.5)
is (1- a) where Z y is such that

P(Z>Z^) = a /2  ' (2.6)

This is the basis for the control charts presented in equations (2.3) and (2.4) 
which were earlier discussed (univariate case). It is customary to use 3.0 in
place of Z 7as proposed by Shewhart (1931), which givesn

a=0.0027. In case of sample mean X-plotting outside the control limits, 
assignable causes of variation are sought.

18



Suppose random samples of a given size are taken from a process at

regular intervals and an X -chart is maintained to determine whether or not 
the process mean is at the standard value p 0. This is equivalent to repeated 
significance tests of the form.

H0: p = p0against (2.7)
Hi: p * Po

Normally, the X -chart is used with upper and lower control limits. 
Equivalently, we could use an X-chart with only upper control limits (UCL). 
This is done by noting that

Z = X -  £(X)

is distributed as a standard normal variable.
Here,

E [X] =p0and Vvar (X) = 50/Vn 
which gives us

Z = Vn [X -p0] /80] as the standard normal variable.
Thus

(2 .8)

/
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Z2 = Vn [X-Jio] /  5o] 2 has a chi-square distribution with 1 degree of 
freedom. The sample values of Z 2 are then plotted on a chart whose upper
control limit is

(2.9)

where / 2,(a) is the percentage point of a chi-square distribution on 1 degree 
of freedom.
The x 1 -chart has the disadvantage of not being able to distinguish the runs 
on either side of the mean. However, hypothesis testing based on j 2 -chart 
concept is important in that it provides the foundation for the extension of 
the univariate control charts.

In the present set up the univariate null hypothesis in (2.7) will be 
rejected if

In quality control, rejection of H0 would imply that the process is out of
control. A natural generalization to a multivariate case is. to reject the 
hypothesis in equation (2.7)

(2 . 10)

where

xl = [Vn(X-Mo)S.P - n tx -u .m jr'tx -u ,) (2.11)

If
(2. 12)
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Xo = n[X-Ho]X0-, (X-u0) (2.13)
^ h ere

^ denotes the (pxl) vector of samples mean and Z 0 is a pxp variance-

covariance matrix 
For p=2

Xo - n (^'Po) [(Xj _Hoi) 50I +(X2-p02 )802

-2 Po 501-, 802 -1(X 1-m01)(X2-m02)] (2.14)
Where p0 is the correlation coefficient between the two variables. Equation 
(2.14) is that of an ellipse centered at (jj01, p02) shown in figure 2.3. For
bivariate quality characteristics, a control region is the interior of such an 
ellipse. In particular, a vector of sample means resulting in a point outside 
the elliptical region indicates that the process is out of control. By 
Bonferroni’s inequality, the probability that each process mean is at the 
standard value is at least 1-a.

The x 2 -chart has associated with it an operating characteristic curve or 
equivalently a power curve. The power indicates the probability of detecting 
a shift in the process mean on the first sample taken after the shift has 
occurred.
If tc M denotes the power of the chat, then

n (A) = Pr [x] >x] ,a\ (2 -15)

21



^here %2P denotes the non central chi-square random variable with p
degrees of freedom and non centrality parameter 

A = n (la-po)' Lo’Hp-Po) 
por two quality characteristics

I A=n(l-p0) ((p,-p0I) 6 01 + (4 2 '^ 02) d 02

-2 p0^01"' (2.16)
A fundamental assumption in the development of the %2 -chart is that the 
underlying distribution of the quality characteristics is multivariate normal

2.4.2 Control charts for the process m ean when p 0is 

unknown
If the mean jn0 is unknown, it must be estimated from preliminary samples 
taken when the process is believed to be in control. These preliminary 

i samples are referred to as rational subgroups. We shall denote by m the 
number of subgroups. The standard values used in section 2.4.1 are 
replaced by their unbiased estimates obtained from the m rational 
subgroups. For example |a0in equation (2.3) would be replaced by the 
average of the sample means obtained from each rational subgroups and 
any one of the several measures of variability would be used in place of 5 01

•Hillier (1969) developed a two-stage procedure using probability limits for 
determining whether the data for the first m subgroups come from a process

22



^ a t  is in control and whether future subgroup data from this process 
exhibit statistical control.

For each of the m subgroups, a random sample of size n is obtained

and the (pxl) vector of sample means (X i) is calculated so is the (PxP) 
sample variance-covariance matrix (S,). If there is statistical control within 
each subgroup then estimates of the process mean vector and the process 
variance -  covariance matrix are given by

X i- LXij/n and Si = Z(Xr Xi)2/(n-l)
therefore

X = LX i/m  and 5'=LSi/m

where X i and Si denote the 1th sample mean and sample variance of the m 
subgroups. The overall mean and variance of the m subgroups are given by

X and S respectively.
For known standard values of p and Z, the test statistic is given by equation 
(2.13). If the values of n and E are unknown, then they are replaced by their 
unbiased estimates and the resulting statistics is

T20,i = n(Xi-X)'S-HXi-X) • (2.17)
for i= l,2 ,...,m

where
T2o,i follows the Hotellings T : -distribution.

For two quality characteristics, equation (2.17) becbmes

23



(2 .1 8 )

T20(i = (n/det (S)) [X u - X i)2 S22+(X2li-X 2)2Si2 

-2(X u-X) (X 2>i-X 2)Si2)

Det (S) = S i2S22-Si22

where
Si2 =E S2i, i/m  
S22= S S22ii/m  
Si22 = LSi2>> i/m

It can be shown that T2o.i is distributed as
Ci[m,n,p,]Fp ,mn-m-p'

where
p.mn-m-p is the F-distribution

and
Ci [m,n,p) = p(m-l)(n - l_) 

(mn-m-p+1)
(2.19)

To determine whether the process is in control when the first m subgroups 
are obtained, the m values of T2o,i are plotted on a chart with 

UCU = Ci [m,n,p) Fp ,mn-tn-p+l,a

= P (m- 11 (n- 1) Fp,mn-m-p+l,a ' (2 .2 0 )

(mn-m-p+1)
L C L x  =  0

24



If T2o.i, for one or more of the m initial subgroups falls out of control, such 
subgroups are discarded. Control limits are then recalculated using the

remaining subgroups. X and S are also recomputed and new control
limits are determined with (m minus the number of discarded rational
subgroups). In the case (p=l) equation (2.19) becomes

Ci (m,n,l) = (m -iun-ll = (m-1) (n-1)
(mn-m) m (n-1)

therefore
UCLxl = (in-lJFl,m(n-l),a (2'21)

m
and

T2o,i = n(Xi -  xi2 (2.22)
S2

where S 2 is the average of the sample variances obtained from each 
subgroup.

F'l.min-l), 0L = t2 m(n-l),a/2

therefore

l-a = pr [(X i -  X)2/S 2 < [ (m-1)/m) Fi,m(n-i),a]

=Pr [ (X i -  X) <V (S2 ( (m-1) /m) ) tm(n-i),a/2]

! “a -  pr [X -  AWS2 <Xi<X+A4VS2] * (2-23)
where

A4 = V ((m-l)/m)trn(n-l),a/2  /
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^u s, the multivariate result reduces to the univariate one, hence the 
intervals for the individual characteristics are obtained by using 

A4 = V ((m- 1) / m)tm(n-l),a/2p
and for P = 2, the upper and lower control limits for each variable are given 
by

x ± a4 Vs2

2.5 Control charts for the process dispersion
In Multivariate situation, it is usually desired tha t the covariance matrix of 
the process remains at a standard value L0. This is checked by taking a 
random sample of size n and the value of some sample statistic is 
determined from the (pxn) data matrix. Thus if S denotes the (pxp) sample 
variance-covariance matrix.

V " K
S2] S22
s s ■ s„
P\ p 1 pp

where the diagonal elements Su = Si2 (i=l,2,.....p) are the sample variances
and the off diagonal elements Sij=Sji (i#j=l,2 ,..i,p) are the sample
covariance’s.

1
I
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por bivariate characteristics we get

where

S i 2 = - * i ) 2el

S12 = ~*l)(*2* ~ xl)<-l
2

S21 = £(X U “ *lX*2* - ^ 2)el

^22 ^ ( * 2* *2)el
The sample correlation coefficient for the i* and j*  variables is given by 

Yij = Sij/SiSj
The generalized sample variance denoted by | S | is a commonly used scalar 
measure of multivariate dispersion. For bivariate characteristics 

| SI = Si2S22-Si22= Si2S22(l-ri22).
Johnson and Wichern (1982) pointed out that one of the properties of |S | 
is that distinctly different covariance matrices can have the same 
generalized variance. In view of the last property it is recommended that 
any procedure based on | S | is to be accompanied by the appropriate 
univariate procedures to monitor dispersion.
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2.5.1 Control charts for the process dispersion when £o is known

2.5.1.1 The | s | ^-control chart when £o is known
The | S | ^  -control chart is the multivariate analogue of the S-chart. This 
control chart makes use of two approaches. In the first approach, we make 
use of the distributional properties of | S | 1/2. For bivariate quality 
characteristics, it can be shown that
2(n-l) | S | |E0| ^  is distributed as j 22n-4. In view of this expression, the
control limits for the | S | -chart are as follows:

UCL = [ I £o I % Z 22n-4.a/2] /2(n-l)
(2.24)

LCL = [ I So I % X 22n-4,l-a/2] /2(n-l)
where

|£o|^ = 8oi5o2V ( l- p 02). 

therefore, for each random sample of size n,

|S| ^ = (S i2 S22- S i 2 2)^ = SiS2V(l-ri22) is computed. 

If

| S | ^  > UCL 

or

| S | ^ < LCL,
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then dispersion of the process is said to be out of control thus assignable
1/causes are to be sought. The exact distribution of | S | 72 for more than two 

quality characteristics is unknown.
VThe second approach to the construction of the | S | 2 control chart utilizes

only the first two moments of | S | ^  and the property that most of the

distribution of | S | ^  is within three standard deviations of its expected 
value. Since

I S I = (n-l)-P|Lo|7t ^ 2n-k,
where the chi-square random variables are independent, it follows that 

E [ |S |r] = (n-l)-pr|Z0 | r7i r (r+(n-k)/2)/ r [(n-k)/2]
It follows therefore that

E [ |S |* ]  = ]20 | ^ (2 /(n -l) P/2 r (n /2 ) /r  [ (n-p) /2]

- |  So | * 6 3  (2.25)
and

E [ |S | ] = |£o| (n-1) -PTi(n-k)
= lEol/M (2.26)

Now

V a r[ |S |* l = E [ | S | ] - ( E [ | S | %
-  12„ | (bi-b32) . (2.27)

with this, the upper and lower limit for a | S | -control chart are given 
respectively by . - -
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UCL = E [ | S | ^  ] + 3Vvar [ | S | ^ ]

LCL = E[ | S | ^  ] - 3Vvar [ |S | %].
It follows that the control limits for E 0 are given by

UCL = |E0| ^  (b3 + 3V (bi-bs2)
CL = |E01 ^ b 3 (2.28)
LCL = | E01 * (b3 - 3< (bi-b32)

In the univariate case, b3= C4, b, = l,

|Eo|^ = 8o and the control limits in (2.28) reduce to those stated in the 
univariate case(1.1). In the bivariate case 

bi= (n-2) / (n-1)
b3= (2 / ( n - l ) ( r (n /2) / r [(n-2) /2)].

If n=10, bi=b3 =0.889 and bi-b3 2 =0.099. Then, the UCL=1.8311E01 2̂ and 
since LCL is negative, hence UCL=0

/

2.5.1 .2 The s2-control chart when Eo is known
*

The S2 -control chart is also used in the multivariate case to monitor
process dispersion. This is equivalent to repeated tests of significance.
Anderson (1984) has shown that the likelihood ration test for

H0: E = Eo 
against

Hi: E ^ E0

30
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modified to be unbiased (the power of the test is greater than or equal to the 
significance level) is based on the following statistic:

W* = - p (n-1) -  (n-l)ln[ | S | ] + (n-1)ln[|Z 0 1] + (n-1) tr (Z0-iS) (2.29)
where tr (Z^S) is the sum of the diagonal elements of Z ^ S .  For bivariate 
quality characteristics

tr (Zo-iS) = (1-p 02)-i[S2i/82Oi) + (S22/ 52o2) - 2 p 0(Si2/ 5oi8o2)]
He further showed that W* is asymptotically distributed as %2p(p+1)/2 and

has presented the upper 5% and 1% points for the exact distribution of W*. 
For two quality characteristics and n -1 =9 degrees of freedom, the upper 5% 
and 1% percentage points are 8.52 and 12.38 respectively. In our case the 
process dispersion is considered out of control a t the 5% level if W*>8.52 
and at the 1% level if W*> 12.38. A natural generalization is that a process 
dispersion will be out of control if W*>UCL at the specified level of 
significance.

/

We notice that | S | ^  is plotted on the charts described by both equation 
(2.24) and (2.28). The difference between the two charts is that the control 
limits in equation (2.24) and (2.28) are probability limits and 3-sigma limits 
respectively. We also note that the range chart is used to monitor the 
variability of each quality characteristics but the multivariate analogue is 
not presented, as it is relatively intractable.
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When there are multiple quality characteristics, two variations of the

| S | ^  -chart were presented for monitoring process dispersion when Eo is 
known. The first was a probability limit chart with control limits as stated in 
equation (2.24). These limits are applicable only when there are two quality 
characteristics.

Let | S* | ^  denote the average of the square roots of the generalized 
sample variance. This implies that

| S* | ^  = 1/mZ | Si| ^ .
then, | S* | ^  / b3 is an unbiased estimate of |Eo| ^ th u s  the control limits 
for process dispersion when Eo is unknown are as follows:

UCL = [|S*| % ^ 22n-4,(a/2)]2b3(n-l) (2.30)

LCL = [ |S*|^ / 22n-4,(l-a/2)]2b3(n-l)
/

where the constant b3 is as defined earlier. The chart for | S* | 2 when Eo is 
known uses the 3-sigma limits already discussed in the previous section 
and is applicable for any number of quality characteristics.
Therefore for Eo unknown, the control limits are obtained by substituting

| S* | ^  b3 for | Eo | ^  in equation (2.28).

2.5.2 Control charts for the process dispersion when Eo is unknown

t
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UCL = lS*| ^ (l+(3/ b3) V(bi-b32)

CL = | S* | ^  (2.31)

LCL = | S* | % (1- (3/b3)V(bi-b32)
yFor the univariate case the limits given in (2.31) for a |S*| 2- control chart 

are identical to those for the S-chart(2.19) with the b3 and b4 factors stated 
as

C2 (m,n,p) = p(n-l) (m+1) / (mn-m-p+1)
Another procedure which could be used to investigate process dispersion 
when L0 is unknown is obtained from equation (2.29). This is the likelihood 
ratio statistic for testing 

H0: L = £0

against
Hi: L t L o

To obtain the corresponding procedure in this section, we need the
yunbiased estimates of |£ 0| 72 and Lo'1.

If we let | So | denote the average of the generalized sample variances from 
the m rational subgroups, then 

| So | = 1 / m £ | Si | .
Using the result in equation (2-26), it can be verified tha t JS0|/b i  is an

• *
unbiased estimate of | Z01. . ) '

This results to the following limits for process dispersion when £.0is
unknown:
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Further, let S r1 denote the inverse of the sample variance-covariance matrix 
for subgroup i, i=l, 2 , ...,m.
Kshirsagar (1972) showed that (n-p-2) Si-1 / (n-1) is an unbiased estimate of
So'1-
Therefore if

S* = 1 /m  E Sr1,
then

(n-p-2) SM/(n-l)
is also an unbiased estimate of E0_1 which is obtained for the m rational 
subgroups. Therefore to obtain the procedure for determining the control 
limits for this section, we substitute |S0| /b i for |E0| and (n-p-2)S*/(n-l) for 
Eo1 in equation (2.29). The revised values of W*, i=l,2,...m , would still be 
plotted on a control chart with

UCL = Z p ( p + \ ) / 2
/The control limit factors used in this section for both p=l and p>l are

*

independent of the number of subgroups. However, at times these factors 
depend on the number of subgroups (i.e. they should be a function of m)
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Chapter 3

d a t a  c o l l e c t io n  a n d  a n a l y s is

3.1 Simulation study
In this section, we generated 25 samples of size 10 each from a motor 
production company where the products are piston rings of various 
diameters (Xi) and thickness (X2).The two quality characteristics are jointly 
distributed as bivariate normal with means |uoi = 30, goi= 15, variances 
8oi2 = 8 , 8o22 = 4 and correlation coefficient p =0.5.
Table 3.1 provides data for X and x  2 control charts for the means of Xi and 
X2 at a = 0.05.
Table 3.2 provides data for X and x~ control charts for the means when 
they have been disturbed as indicated 3.1.1.
Table 3.3 provides data for dispersion control charts namely R-chart,

S-chart, S 2-chart, | S | ^-chart (probability chart), |S |^ - c h a r t  (1.96-sigma
/

limits chart) and W*-Chart at a = 0.05.
Table 3.4 provides data for control charts in Table 3.3 when the variances 
have been disturbed as indicated 3.1.1.

t
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Control chart data for the means of Xiand X2
^Sample

Number Xi x 2 x l
1 30.546 14.204 3.63331
2 30.488 15.528 0.718873 29.711 14.171 1.865314 29.494 15.274 1.003775 28.883 13.903 3.20267
6 28.855 14.440 1.719057 29.771 15.635 1.77423
8 31.301 16.123 3.581109 29.898 15.039 0.03179
10 29.836 14.483 0.73594
11 29.299 15.020 0.85338
12 29.870 15.103 0.1001413 30.240 14.394 1.6629214 29.000 15.691 4.8869715 39.632 14.528 0.5589116 29.237 15.674 3.6966617 29.880 14.709 0.2239618 30.590 14.396 2.6361719 29.259 14.718 0.68769
20 29.260 14.697 0.6920
21 29.221 14.938 0.91037
22 30.090 14.420 1.2578723 29.844 15.196 0.2406824 30.740 14.293 3.8119725 30.372 15.432 0.47394

Table 3.1
UCLi = 32.68 UCL2 = 16.90 UCL = Z2,005 = 5.99 
CLi = 30.00 CL2 = 15.00
LCLi = 27.32 LCL2 -  13.10 p 0 = 0.5 (correlation coefficient)

Table 3 .1 shows an in-control situation as all values of X i and X 2 lie 
within their respective control limits and the values oi>2 < UCL = 5.99
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,10
1 Means and variances when disturbed.

( por these samples poi is increased by 30 + 0.5i for i = 1,........

b for these samples |a02 is increased by 15 + 0.5i for i = 1,.......

L For these samples, |ioi and po2 are increased by 30 + 0.5i and

15 + 0.5i respectively for i = 1,....... ,5

Samples 1 to 10 the variance is shifted as (£02,= 8 x 0.2i,for i= 1,..........10).

Samples 11 to 20 the variance is shifted as (<S022= 4 x 0.2i, for i= 1,...... . 10)

Samples 21 to 25 the variances are shifted as (<S0-,= 8 x 0.2i and 

S„2 = 4 x 0.2i, for i= l,...... ,5).
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Control chart data when means are disturbed.

Sample
Number Xi x2 ____ xl

1 a 29.562 14.152 1.526
2 a 29.708 15.528 1.683
3 a 30.321 14.171 2.320
4 a 31.337 15.274 7.5627
5 a 31.439 13.903 19.213/
6 a 32.893d 14.440 13.1677
7 a 32.907d 15.635 17.231/
8 a 33 .117d 16.123 36.782 f
9 a 34.234d 15.039 18.6077
10a 34.675d 14.483 25.453/
l l b 29.299 14.528 26.741/
12 b 29.870 15.609 34.191
13 b 30.240 15.920 21.3117
14 b 29.000 16.962* 13.8197
15 b 39.632 16.978* 41.132 ^
16 b 29.237 17.313* 15.234/
17 b 29.880 17.401* 29.327/
18 b 30.590 18.211* 32.103/
19 b 29.259 18.347* 16.263/
20b 29.260 18.912* 16.816/
21 c 29.142 15.674 3.193
22 c 29.614 19.123 4.121
2 3 c 31.312 16.432 2.342
24 c 32.009' 16.919* 12.1837
25c 32.238 17.021* 14.3897

Table 3.2
UCL = * 2210.05= 5.99
The values in Xi chart marked by d falls outside the control limits 
indicating an out of control status in the process.
The valued in X2 chart marked by e falls outside the control limits 
indicating an out control situation in the process.
The values in x l chart marked by /  shows an out of control situation since

*their value are greater than UCL=5.99 '] > '
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Control chart data for process dispersion.

Sample
Number R> r 2 s , s 2 s a |S | |S |* W*

1 8.09 6.22 2.74 1.97 1.03 28.08 5.30 1.311
2 6.71 6.83 2.05 2.04 2.65 10.47 3.24 2.6293 6.36 7.18 1.90 2.09 2.51 9.17 3.03 3.8504 9.67 8.23 2.83 2.69 5.34 29.44 5.43 2.5525 8.79 6.18 2.83 2.30 3.23 31.93 5.65 0.459
6 6.42 7.52 1.96 2.18 0.28 18.18 4.26 3.9227 8.32 4.96 2.38 1.47 2.71 4.90 2.21 5.526
8 7.95 3.81 2.49 1.17 1.194 4.72 2.17 5.9249 7.29 5.85 2.60 1.66 0.39 18.48 4.30 1.928
10 6.75 5.10 2.36 1.50 2.76 4.91 2.22 5.527
11 11.22 8.93 2 .12 2.05 0.26 18.82 4.34 2.983
12 8.34 6.56 2.66 2.32 3.04 28.84 5.37 0.65513 5.93 5.38 2.35 1.54 2.45 7.09 2.66 3.17214 6.79 5.08 3.37 1.38 1.61 19.04 4.36 3.41315 6.84 7.47 2.34 2.16 3.61 12.51 3.54 2.36916 8.02 7.05 2.42 2.37 3.56 20.22 4.50 1.6217 7.72 5.91 2.58 1.91 0.66 23.85 4.88 1.58218 10.98 3.06 2.91 0.99 1.63 5.64 2.38 7.21519 7.71 4.04 2.92 1.42 3.05 7.89 2.81 4.420
20 9.28 4.95 3.66 1.77 4.42 22.43 4.74 2.721
21 7.43 5.69 2.40 1.96 1.52 19.82 4.45 0.659
22 13.2 6.08 3.39 1.74 2.72 27.40 5.23 1.37323 11.30 9.23 2.37 2.35 1.28 29.38 5.42 2.45124 6.92 5.61 2.43 2.63 1.21 39.38 6.28 4.58125 8.59 5.21 2.54 2.15 0.133 29.71 5.45 2.921

Table 3.3

i
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Control limits for the process dispersion in table 3.3.

C hart Oualitv C haracteristic  I Oualitv C haracteristic  2
R-Chart UCLi = 15.471 UCL2 = 10.94

CLi = 8 .7 1 2 CL2 = 6.16
LCLi = 1.949 LCL2= 1.378

S-Chart UCLi = 4 .720 UCL2 = 3.337
CLi = 2.751 CL2 = 1.945

LCLi = 0.779 LCL2 = 0.52
S2 -C hart UCLi = 15.04 UCL2 = 7.52
In table 3.3 the process is in control because all the values for the 
process dispersion ch a rts  falls w ithin their respective control lim its as 
shown above.

/

/ *t
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Control chart data for process dispersion when variances are disturbed.

"Sample
Number

s , s 2 S ij |S| |S|* W*

1 1.264 2.000 1.03 5.33 2.31 7.744
2 1.789 2.65 5.78 2.40 5.9893 2.191 2.51 12.90 3.59 1.4604 2.530 5.34 2.91 1.71 11.2595 2.828 3.23 21.56 4.64 0.318
6 3.098 0.28 38.31 6.19 3.5907 3.347 2.71 37.47 6 .12 1.042
8 3.578 1.94 47.44 6.89 2.9529 3.793 0.39 57.40 7.58 6.902
10 4.000 2.76 56.38 7.51 4.455
11 2.288 0.894 0.26 6.32 2.51 7.872
12 1.263 3.04 3.52 1.88 9.60413 1.549 2.45 13.19 3.63 1.38114 1.789 1.61 23.00 4.86 0.56215 2.000 3.61 18.96 4.35 0.45616 2.191 3.56 25.72 5.07 0.22017 2.366 0.66 44.33 6.66 3.86418 2.530 1.63 48.53 6.97 3.40119 2.683 3.05 48.27 6.95 2.830
20 2.828 4.42 44.42 6.66 3.069
21 1.264 0.894 1.52 1.03 1.01 11.903'
22 1.789 1.263 . 2.72 2.29 1.51 6.95923 2.191 1.549 1.28 9.88 3.14 1.67524 2.530 1.789 1.21 19.02 4.36 0.72625 2.828 2.000 0.33 31.88 5.65 2.738

Table 3.4

/
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probability Limits for | S | ^  - C hart (a = 0.05)
UCL= 7.851 
LCL= 1.880

1.96-Z Limits for | S | ^  - C hart
UCL= 7.3750 

CL= 4 .3544 
LCL= 0

W* - C hart (a = 0.05)
UCL = 8.52

Table 3.4 ind icates an  ou t-o f control situa tion  for sam ples 9 and  10 

using 1.96-E lim its on | S | /2- chart.

The probability lim its for | S | ^  -chart shows an  ou t-o f control s ta tu s

for sam ples 4, 21 and  22. Both |S |^ - c h a r t  and  W*- ch a rt register 
out -  of control on sam ples 4 and  21.

It seem s th a t | S | ^  -chart w ith the probability lim its h a s  perform ed 
better th a n  the o ther ch a rts  for W*-Chart, th is  is no t su rp rising  since 
it is based  on a  large sam ple te st statistic . A be tte r p ic tu re would 
probably emerge if larger studies involving m ore th a n  1 0 0  sam ples 
were conducted since th is  reduces the sub-group variability.

Control limits for process dispersion in table 3.4
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C h a p ter  4

PRINCIPAL COMPONENTS AND FACTOR ANALYSIS
4.1 Residuals associated  with principal com ponents
Most statistical techniques involve operations on single response variables 
such as weight, pressure specific gravity, temperature, concentration. 
However, there are a number of occasions where more than one response 
variable is of interest in a problem .These variables should be studied 
collectively so as to take advantage of the information about the 
relationships among them. This is the field of multivariate analysis as 
pointed out earlier. Multivariate techniques are extension of univariate 
techniques such as t-tests or the analysis of variance.
Principal components and factor analysis are two techniques, which are 
finding increasing application by quality engineers who are concerned with 
processes with more response variable. This method is a procedure in its 
own right. It is used to simplify simultaneous interpretation of a number 
related variable.
Principal components are used as a data reduction technique, a diagnostic 
tool as well as a control device. In this case, we are concerned with control 
situation using a method of principal components together with its 
associated residual analysis.
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In the early days of principal component analysis, most of the attention was 
devoted to ways of obtaining characteristic root and vectors from a 
covariance matrix and the interpretation of the root and vectors. Effort has 
since then shifted to the problems of inference, such as estimation and test 
of hypothesis concerning these parameters to deeper examination of new 
tools for the application of these techniques.
The improved understanding of principal components as a data reduction 
tool, their role in applications such as regression analysis and multivariate 
quality control and the availability of high speed computer and convenient 
software packages have made incorporation of principal components 
techniques in routine data analysis not only feasible but also common.
This increased use implies imperatives such as model fit questions in 
general and examination of residuals in the model in particular. The 
problem is similar to those in regression analysis and need a test for outliers

4.2 Matrix algebra to principal com ponents analysis
Given two related quality characteristics, we can carry out the method of 
principal components in order to check the control status of the process. We 
first obtain the means of each quality characteristics, the variances and the 
covariance between the two qualities. In this case, the means will be 
donated by

/
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x 2

and the covariance matrix is

where X =Lxij is the mean of the Ith quality characteristics and
Sij = (nLxik Xjk -Lxik£jk)/n(n-l) is the covariance between the Ith and the 1th
quality characteristics
The correlation coefficient r between x, and x y is given by 

Cov(X,X,)
Tij

The important point from matrix algebra related to the method of principal 
component is that a pxp symmetric non-singular matrix such as the 
covariance matrix S may be reduced to a diagonal matrix L by 
premultiplying and post multiplying by a particular orthonormal matrix U 
as shown below:

L =U'SU (4.1)
The diagonal elements of L are Ii, I2,— ,Ip which are the characteristics 
roots, or eigenvalues of S. The columns of the orthonormal matrix U denoted 
by Ui, U2,...,UP are the characteristics vectors or eigenvectors of S.
The characteristic root can be obtained without using formula (4.1).

t

45



'This can be done by using the characteristic equation
| S-1I | =o

where I is a 2x2 identity matrix i.e.

I = 1
0

0

1

(4.2)

On evaluating equation (4.2) we get a p *  degree polynomial in I from which 
the values of characteristics roots are obtained, 
for p=2 , we have

| S-11 1 = 1 , 12 = 0L Sl2 si - 1J
that is

S i22-(S? S 2 -S ,2 1-S2 1 + 12) = o
We can therefore solve for 1 whose values will be 1, and 12 .The 
characteristic vectors may be obtained by solving the equations

[S-Iil)t,=  0 /  (4.3)

and

for i =1, 2,..., p
Equation (4.3) is evaluated as

y
N̂> 1 1 'O'

Sn s 22- i k i 1__ - 0

(4.4)
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These are homogeneous equations with two unknowns therefore, in order to 

solve them, assume tu  =1 which helps us to work with one equation. 

Therefore

Ui* —
i/V<

Similarly, we can use I2 and let t22=l hence

|S -I2I| t 2
s,2- / 2 Sn V ‘O'

Sn s 22- i 2_ J  22. O |
U 2 = ‘2

'Ihh
The matrix U= [u, | u 2 ] is orthonormal hence 

u 1'u, = l ,u 2'u 2 = l and u i 'u 2 = 0 . 
Therefore

U'SU 0

/ is a diagonal matrix.

Equation (4.2) and (4.3) are used for small values of p. For large values of p, 
iterative procedures for obtaining characteristic vectors are used.

4.3 Principal com ponents to sta tistica l analysis
The sample covariance matrix S is the basis for the statistical applications 
of the method of the principal components. For p-quality characteristics the 
matrix S is given as shown below
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‘s ,2 *̂12..... • s..
S2i S22.... • S2,

s  =

S,2.... - 5P2

Where the leading diagonal elements S i 2, s are the variances o f the i"' 

variables and the off diagonal elements Sij are the covariance’s between the 

i* and j111 variables. If the covariances are non-zero, then the variable are 

related otherwise they are not.

A principal axis transformation transforms p correlated variables xi,X2,...,Xp 

into p new uncorrelated variables zi,Z2,—  ,zp where the coordinate axes are 

described by the vectors Ui.  Thus,

Z=U'(x-jc) (4.5)

where x and x are pxl vector of the original variables and their means 
respectively .These transformed variables are the principal components of x. 
The i "1 principal component is denoted by

Z, =u'(x-x)
which has mean zero and variance l i  .For example, if p=2, 
Then

Z = U' (X-X)

(4.6)

Therefore
Var (Zi) = 11, var (Z2) - I 2
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If you wish to transform a set of variables x by a linear transformation

Z = U ' ( x - x ) ,  whether U is orthonormal or not, the covariance matrix of the 
original variables by the formula

Although we have said that U is orthonormal, this is not a sufficient 
condition for the Zi's to be independent. Only a transformation such as 
principal axis transformation will produce a n S , ,  which is a diagonal matrix 
L as earlier stated. The fact that S. is diagonal means that principal 
components are uncorrelated. If the coefficients for the first vector are 
nearly equal and both positive, this means that the first principal 
component is related to the variability which both measurements have in 
common .If there are no correlated errors of measurements, it would be 
assumed to represent process variability. For diagnostic purpose, we 
determine the correlation of each of the original variables.

/

The correlation of the i'h principal component z, and j ,h original variable xj is

Principal component have also another property in that equation (4.5) can 
be re-written as

SZ=U’SU (4.7)

given by

(4.8)

X=X+UZ (4.9)
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gince U is orthonormal that is LH^UhThis helps us to determine the 
original data if we know the values of the principal components. In other 
vvords each observation is made up of a linear combination of the principal 
components. If we know the population covariance matrix Z , we would 
operate on it ju s t as with S. The characteristic roots of Z would be obtained 
by

r, 2' .......... p’
The characteristic vectors associated with the roots would be the population 
values.

4.4 Scaling o f principal com ponents
We have two ways to scale characteristic vectors as indicated in the 
following equations

(i) V i = V7 ,Ui (4.10)

(ii) W i=U i/  V7, (4.11)
/

The first transformation gives
V 'V = L (4.12)

which means that the vectors are orthogonal but not of unit length.
Further,

L2 =V' SV .(4.13)
which implies that the transformation given by the following expression

V7 ,z,= Vi'(x-X) ' / '* (4.14)
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1̂1 produce a new variable with zero mean and variance li2 which is 
^correlated. These are now principal components, which are scaled to their 
respective characteristic root rather than a unit length as in equation (4.5) 
another useful relationship

S  = W '  (4 - 15)

shows that the covariance matrix can be obtained directly from its 
characteristics vectors. Scaling the principal components as in equation 
(4.15) is useful since the components will be in the original units of the 
problem if the x variables were all in the same units.
Using the transformation in (4.11), we have

Y i= W i ' ( x - x )  (4 -16 )

1 from which we have
L-i=W'W (4 -17)

and
L=W'SW (4-18)

The variables obtained from this transformation are uncorrelated and have 
unit variance.
Relations (4.5), (4.14) or (4.16) are used to express principal components as 
regards scaling. These relations differ only by a scale factor. U-vectors are 
desirable from a diagnostic point of view since the vectors have the 
advantage that the coefficients are restricted from -1 to +1 .
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V-vectors have the advantage that the principal components in that mode 
are expressed in terms of the units of the original variables.W-vectors 
produce components that have variance.

4.5 Generalized m easures o f principal com ponents to variability
We present two ways to describe the variability of a set of related variables 
namely

(i) the determinant of the covariance matrix | S |
(ii) the sum of the variances of the variables

S i2+S22.... +SP2

here S i2+S22+....+Sp2= trace of S written as TrS. Trace of S means the sum 
all leading diagonal elements of S which are the variances.
There are other measures of generalized variability but the above two are 
commonly used. An important property of principal components is that the 
variability as specified by any measure is preserved as follows

IS | = | L | (4.19)
where the determinants are related to the area or volume generated by asset 
of variables .Equivalently,

TrS=TrL . (4.20)
Relation (4.20) implies that the sum of the characteristic roots (the 
variances of the principal components) is equal to the sum of the variances 
of the original variables.
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fhis shows that the characteristic roots may be treated as components of 
variance. If we obtain the ratio of each characteristic roots to the total, we 
obtain a proportion of the total variability associated with each principal 
component.

4.6 Principal com ponents for quality control
When we use the method of principal components for quality control, one 
has to calculate the deviations from the means and then use any of the 
three principal component transformation given by equations (4.5),(4.14) or 
(4.16) to calculate the measure of overall variability T2 where

The scaling for principal components adopted is a matter of choice .The 
scaling in (4.16) is preferred since it gives a set of principal components with 
unit variances. Control charts for these components can be constructed 
except that individual components are controlled instead of their means and 
the tabulated value of T2 is given by

T2=y 'Y (4.21)
which follows the Hotellings T 2 -distribution as discussed earlier.
for p=2

T2=Y,2+Y22

. (4-22)
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Therefore, any observation vectors with values of T2>T2P, n, a will imply an out 
of control situation on the T2-chart. We point out that T2 -chart has only an 
upper limit since T2 is always positive. It is worth noting, that the control 
charts for the principal components should be used together with the T2- 
chart .If T2 is in control, one should proceed normally otherwise if it is out of 
control, one should revert to the individual control chart for the principal 
components so as to determine the nature of the trouble, that is to check 
which variable cause an out of control status.

A control ellipse can also be used to judge whether a process is out of 
control or otherwise .However, this is only possible for two quality 
characteristics. It is important to note that T2 can be obtained directly from 
the original variables without the use of principal components. However, the 
principal component approach is easier to handle and has many desirable 
properties that cannot be obtained directly from the original variables 
especially when a larger number of variables is under study.

4 .7  Extension o f principal com ponents to more than two variables.
In the previous sections, we have discussed the approach of principal 
components when there are two correlated quality characteristics. In this 
section, we briefly outline how the method of principal component is applied 
in the case of more than two variables. It is necessary to note that the 
principal component method works well for ,a large number of variables
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however, the two variable situations has an advantage in that, the operation 
and relationships can be demonstrated in a simple manner.
A greater part of the computational procedures to obtain the roots and 
vectors in a sequential manner is as follows, we begin with the largest root 
and its associated vector, the next largest and so on. When we scale these 
V-vectors the variability left unexplained by the first principal component is 
S-ViV'i, the variability unexplained by the second two is S-ViV'i-V2V'2 and 
so on.

If the covariance is matrix is of full rank p, there will be p positive 
characteristic roots whose rank will be in descending order .If however, the 
covariance is not of full rank say r<p, there will be r positive root and the 
remaining p-r roots will be zero. This occurs when one or more linear 
relationships exist among the original variables so that knowledge of a 
subset of them would allow us to determine the remainder without error. In 
such a case, we will require r principal components to reconstruct the 
original data.Suppose it is given that p=2, this is extended to p=3 by setting 
X3=Xi+X2 and immediately the first two variables are obtained, the third 
variable would be known by default. The covariance matrix would therefore 
be

V ,V ,'+V 2V2'= = W '

t
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where v has only two columns instead of three as the two principal 
components will completely reconstruct the original data.
It is customary to have the first few roots, say k<p explain most of the total 
variability where we use percentage of TrS as a yardstick .If the remaining 
(p-k) roots are equal, it means that the remaining (p-k) vectors are not 
different and are all of the same length with arbitrary rotation. The closer 
together the roots are, the larger will be the standard errors. If the 
remaining (p-k) roots are equal and do not differ significantly such that we 
use only k vectors, then it is impossible to reproduce the exact covariance 
matrix. However, if the percentage of the total trace represented by these 
remaining roots is small, the first k vectors will be used adequately for 
reconstruction.

/
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In this section, we generated one sample of size 10 each from a motor 
production company where the products are piston rings of various 
diameters(Xi) and thickness(X2).The two quality characteristics are jointly 
distributed as bivariate normal with means poi=3O,p.02-15, variances

5oi2=8, 5o22=4 and correlation coefficient p=0.5.
A and B represent process shift with jaoi=32, |io2=17, and goi=33, po2=19, 
respectively.
C represents recording error whereas D is an outlier.

4.8 Simulation study for principal components

Observations
Sample number x, x 2

1 27.54 14.32
2 35.35 14.38
3 31.67 15.69
4 27.87 15.23
5 29.46 14.72
6 28.28 16.38
7 33.58 13.92
8 29.93 15.18
9 28.93 15.83
10 27.26 15.28
A 35.93 19.10
B 37.02 18.67
C 26.23 12.18
D 36.12 18.36

Table 4.1
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Principle components data chart

—
rrip le  n u m b e r x,-x, X2-X 2 z. z 2 z.VA Z2 Va Y, y2 T2

1 - 2 .4 4 - 0 .7 7 - 0 .0 6 0 .5 0 - 0 .2 4 1 .0 9 0 .3 6 0 .31 0 .2 3

2 5 .3 7 - 0 .71 3 .7 4 3 .0 7 1 5 .1 7 6 .7 0 0 .8 4 - 0 .0 8 0 .71

3 1 .6 9 0 .6 0 2 .6 8 2 .7 2 1 0 .8 7 5 .9 3 0 .9 5 0 .4 4 1 .1 0

4 - 2 .11 0 .1 4 - 1 .0 2 - 0.71 - 4 .1 4 - 1 .5 5 - 0 .1 4 0 .61 0 .3 9

5 - 0 .5 2 - 0 .3 7 - 1 .6 5 - 1 .8 3 - 6 .6 9 - 3 .9 9 - 0 .6 9 - 0 .6 3 0 .8 7

6 - 1 .7 5 1 .2 9 - 1 .7 0 - 1 .59 - 6 .9 0 - 3 .4 7 - 0 .51 0 .0 4 0 .2 6

7 3 .6 0 - 1 .1 7 3 .8 3 3 .6 0 1 5 .5 4 7 .8 5 1 .1 6 - 0 .0 3 0 .21

8 - 0 .0 5 0 .9 0 - 1 .1 4 - 1 .1 6 - 4 .6 3 - 2 .5 3 - 0 .4 0 - 0 .2 0 0 .2 0

9 - 1 .0 5 0 .7 4 - 0 .0 5 0 .1 8 - 0 .2 0 0 .3 9 0 .1 4 0 .5 3 0 .3 0

10 - 2 .7 2 0 .1 9 - 4 .6 3 - 4 .7 9 - 1 8 .7 8 - 1 0 .4 5 - 1 .7 0 - 0 .9 8 3 .8 5

A 5 .9 5 4 .0 1 2 .2 7 1 .0 6 - 4 .31 - 3 .1 6 - 2 .61 2 .21 1 1 .7 0

B 7 .0 4 3 .5 8 1 .2 8 - 3 .1 2 1 .3 0 - 3 .6 3 2 .3 2 - 3 .3 6 1 3 .0 3

C 3 .7 5 - 2 .9 1 - 1 .7 0 2 .1 3 - 0 .1 8 1 .41 - 4 .0 3 - 2 .0 8 1 6 .2 5

D 6 .1 4 3 .2 7 1 .5 3 - 1 .7 7 - 3 .8 9 2 .8 1 3 .7 4 2 .0 4 1 8 .2 7

Table 4.2 T22 10,0.05-10.04
In Table 4.2 samples 1 to 10 shows an-in control status since T2 values are

/

less than critical value 10.04.
Samples A, B, C and D indicate an out-of control situation with T2-critterion 
as T2>10.04, therefore control charts for Y,and Y2would be constructed to 
determine the nature of the trouble. These in conjunction with charts for Xi, 
X2 and T2 Could be used as diagnostic checks on assignable causes such as 
outliers, recording errors and process shift which fail to be signaled by the 
charts for the individual characteristic x, and x 2.
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4.9 Conclusion

Given some data from a production process, we start by constructing the 
process dispersion charts namely the R-chart, S-chart, and S2-chart, which 
monitor the variability within samples. If the process dispersion registers an 
in-control status, we proceed to construct the X-chart, which monitors 
variability between samples
The numerical results in table 3.1, shows that for those points, which 
registered an in-control status using x 2 -chart, all the individual charts 
registered the same .Further, those points which registered an out-of
control situation with the x  2 -chart registered the same with a t least one of 
the individual charts. It would therefore seem reasonable to construct the 
individual charts to determine which quality characteristic is the cause of 
the trouble. The | S 11/2-chart with the probability limits seems to perform 
better than the | S | x!2 -chart using 1.96 -sigma limit and W*-chart.

/

4.10 Areas o f further Research
In the principal component analysis, in case the T 2 -chart registers an out-of 
control status, one should revert to the individual chart to discover the 
nature of the trouble.
Further, since our project is based on bivariate process control in which we 
restricted ourselves to two quality characteristics, we recommend that more 
research should be carried out on more than two quality characteristics.
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