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Abstract

Tlit* Navier-Stokes equations are the systein of non-linear partial differential equations governing 

the motion of a Newtonian fluid. This study is based on three kind of flows of obtaining the 

Exact solutions of Navier-Stokes equations which are:Flows for which the non-linear terms of 

Navier-Stokes equations vanish identically such as parallel flow,Flow with similarity properties 

such that the flow equations reduces to set of ODEs-Ordinary differential equations(Stagnation 

point flow was used as an example of such flow)and Flows for which the vorticity function is 

so chosen that the governing equations reduces to a linear equation.In each case the governing 

equations were formulated and the method of obtaining the exact solutions was analysed.
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Background of the study

The non-linear nature of the Navier-Stokes equation makes it difficult to achieve exact solu­

tion. Researchers have been employing different methods to study them.Most of the exact solu­

tions of the Navier-Stokes equation for fluid flow with constant viscosity and constant thermal 

conductivity are obtained by a variety of method and adress specific fluid-dynamic problem re­

sulting in minimal cross referencing.

Much of the early history of the exact solutions has been recorded by the Trues- 

dell[1954];also many books such as Batcherlor[1967],contain brief accounts of the most impor­

tant exact solutions.More extensive accounts are to be found in treatises on the the flow of a 

viscous fluid,such as Dryden,Murnaghan and Bateman[1932],Schlichting[1979],Whithman[1963] 

and Langerstrom[1996].

Satya [1966], studied some exact solutions* of the Navier-Stokes equation of viscous liquid motion 

in spherical polar coordinates (r, 9, with axial symmetry,the line OZ(i.e 9 = 0)being the axis

of symmetry in the annulus of a convergent tunnel bounded by two porous coaxial cones with 

variable suction and injection and the results were found to be in agreement with those dis­

cussed in Schlichting’s book(Schlichting [I960]) and the solution discussed by Agarwal(Agarwal 

[1957]).The investigation of the axially symeinetric flow of a viscous liquid through a convergent 

tunnel bounded by a porous wall 9 = a  and 9 = ( 3 ( 0 < ( 3 < a <  |)between the sections r = a 

and r =  6,where 0 < b < a and a is finite since r ^  0 and 7/ =  cos# ±  =pl .The conclusion was 

that the flow of viscous liquid with axial symmetry along a plane boundary(9 = | )  which ejects 

liquid with velocity At 2,and in which the velocity along the axis of symmetry is zero.The velocity 

and pressure distributions were

vr = — k\r2 cos#sin2 9

Vo =  Aqr2sin30

p = C — Akipvr cos 9

where C  is an arbitrary constant 0 < r < a and 0 < 9 < | .
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Gupta &: Goyal [1970], studied Plane Coutte flow between two parallel plates with uniform suc­

tion at the stationary plate,on pressure,longitudinal and transverse velocities of the plane coutte 

flow has been studied without taking the transverse velocity as independent of x  and by intro­

ducing the non-dimensional quantities in such a way that the results of the plane coutte flow 

without suction can directly be obtained by taking A equal to zero.

Sinha &: Choudhary[ 1965];attempted to find the exact solution of the Navier-Stokes equations 

for the steady laminar flow of a viscous incompressible fluid between two coaxial porous cylin­

der rotating with constant angular velocities.A solution was obtained under the assumption of 

uniform conditions along the axis of the cylinders.The cylinder being porous, a hyperbolic radial 

velocity distribution has been superimposed over the circumferential velocity produced due to 

rotation.There is a Bernouli type pressure variation in the radial direction.When the inner cylin­

der is at rest,the shearing stress at it and the torque transmitted to it decreases as a (= 

increases.When a =  0,the results transform to the known results for coutte flow between uni­

formly rotating coaxial cylinders.

Cliandna &: Ukpong[1992];Studied the exact solutions of the Navier-Stokes equations of flows 

for chosen vorticity functions.Solutions were obtained for the equations of the motion of the 

steady incompressible viscous planar generalized Beltrami flows when the vorticity distribution 

was given by

V2V> = ip -f f{x , y) for some choosen forms of f[x ,y , z).

Singh[2007]; Solved the exact solutions of Navier-Stokes equations on Hydromagnetic Steady 

flow of viscous Incompressible fluid between Two parallel Infinite plates under the influence of 

Inclined Magnetic field.The analytical expression for fluid velocity were obtained graphically for 

different values of Hartmann numbers and at different inclinations.

Singh[2008];Studied the exact solution of Navier-Stokes equation for Coutte Flow Between Two 

Parallel Infinite plates in the presence of Transverse magnetic field.The study was for steady 

laminar flow of viscous incompressible fluid between two parallel infinite plates when the upper 

plate is moving with constant velocity and lower plate is held stationary under the influence 

of transverse magnetic field.The resulting expressions was solved by the application of Laplace 

transform and analytical expression was obtained.Further analysis showed the velocity profile 

decreases as the Hertmman number increases.He suggested that a similar approach can be used

vn



to solve some of the meteorological problems which involve differential equation and are difficult 

to solve directly by applying boundary conditions.
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Chapter 1

Preliminaries

1.1 Introduction

The equation of viscous incompressible fluid flow,known as the Navier-Stokes(N.-S.)equations 

named after the Frenchman (Claude Louis Marie Henri Navier)&nd Englishman( George Gabriel 

Stokes)-who proposed them in the early to mid 19th century,can be expressed as:

^  =  F _ I Vp + - V 2(7 (1.1)
Ut p p

V.</ =  0 (1.2)

where p is the density of fluid (taken to be known constant) ; q — (111, 112, 113) is the velocity 

vector which will often be written as (u ,v ,w )T ; p is the air pressure ; p is viscosity, and 

F=Xi+Yj+Zk  is the body force. J ;+ u £ + v ^ + w J^  which is the material derivative or 

substantial derivative expressing the Langrarian,or total acceleration of the fluid particle ; V2 is 

the Laplacian,i.e.V2 =  iJ ^  + j j p  +  and V. is the divergence operator. The first equation 

is a three-component vector equation which is just N ew ton’s second law of motion applied to 

a fluid particle,the left hand side of cquation(l.l) is the sum of forces acting on a fluid element. 

Substituting into(l.l) and re-arranging the similar terms we obtain a system  of Navier-Stokes 

equations as follows:

du du du du 1 dp n 9
d i + u d i  + v d i  + wTz = x - p t e  + -p v  u '

dv du dv dv 1 dp u 9
ot ox oy dz pdy p

1



dw dw dw dw

The Navier-Stokes equationsAgrawal[1957] are the system of non-linear partial differential equa­

tions governing the motion of a Newtonian fluid, which may be liquid or gas. In essence,they

related to the rate of strain of the fluid.These equations have been widely accepted as an ex­

cellent model of the macroscopic motions of most real fluids,including air and water,and are 

used by countless engineers,physicists,chemists,mathematicians,meteorologists, oceanographers 

geologists and biologists. Navier-Stokes isn’t really an equation;but a group of equations tha t’s 

used to solve fluid dynamics problems.The idea is to describe precisely the forces in a moving 

fluid.Suppose,for example,one want to design a wing for a new air plane.To figure out how air 

will flow around the wing,how much lift it will generate,and how much drag it will produce,one 

need to be able to precisely model the behavior of air flowing around it.That’s a very typical 

example of what the Navier-Stokes equations are used for.

The equations themselves are in some sense sort of straight forward.In all practical interac- 

tions;there a collection of fundamental conserved properties:mass,momentum,angular momentum 

and energy.One can express the velocity and pressure in terms of how the fluid motion preserves 

those conserved properties.The problem with Navier-Stokes equations is that they are group of 

extremely difficult partial differential equations.They don’t actually tell us what the values of 

the variables are;they talk about the relationships between rates of change.So far we (Mathe­

maticians) haven’t been able to actually solve the Navier-Stokes equations in a way that gives us 

a useful closed-form solution.

There, however, notable and and useful models of fluids whose motions are not governed by 

the Navier-Stokes equations. For example there non-Newtonian fluids which are governed by a 

non-linear stress tensor, and visco-elastic fluids in which the stress depends on the strain as well 

as on the rate of strain of the fluid and retains a ’memory’ of previous deformation;Lolyd[1981]. 

An exact solution may seem to be more or less than a solution,because either a given set of 

fields <f, p, for given p , p and body force F  satisfies the governing equations or it does not. By

represent the balance between the rate of change of momentum of an element of fluid and the 

forces on it, as does Newton’s second law of motion for a particle, where the stress is linearly

2



exact solution we mean a solution which has a simple explicit form,usually an expression in finite 

terms of elementary or other well known special functions.Sometimes an exact solution is taken 

to be one which can be reduced to a solution of ordinary differential equations.Rarely we go even 

further,and take an exact solution to be the solution of a partial differential equation, provided 

that the equation has fewer independent variables than the Navier-Stokes equations themselves. 

This is in contrast with to an approximate solution which is taken to be a field,simple or compli­

cated, which approximates a solution either in numerical sense or asymptotic limit,for example 

vanishingly small viscosity thus the logical distinctions between solutions are blurred,but in prac­

tice the distinctions made are usually clear and useful.The exact solutions are,essentially,a subset 

of the solutions of the Navier-Stokes equations which happen to have relatively simple mathe­

matical expressions and which are,mostly simple physically.The essence of this account, then,is 

the explicitness and relatively simplicity of the expression of the solutions.Many exact solutions 

of the Navier-Stokes equations are unstable and therefore unobservable in practice.In this work 

we are not going to include the stability flow of the Navier-Stokes equations. In the early decades 

of the development of the mathematical theory of the motion of a viscous fluid,exact solutions 

were the only solutions available.Researchers solved what problems they could,rather than solv­

ing the practical problems in hand.Inevitably the solvable problems were the simple ones,usually 

idealised with a strong symmetry. From the mid-nineteenth century,and early twentieth cen­

tury,asymptotic method were developed,and thereafter numerical method.Nevertheless,the exact 

solution remain a valuable and irreplaceable resource. They immediately convey more physical 

insight than a numerical table.

Exact solutions are important for the following reasons:

a) The solutions represent fundamental fluid dynamic flows.Also,owing to the uniform validity 

of exact solutions,the basic phenomena described by the Navier-Stokes equations can be more 

closely studied.

b) The exact solution serves as standards for checking the accuracies of the many approxi­

mate methods,whether they are numerical,asymptotic,or empirical.Current advances in com­

puter technology make the complete numerical integration of the Navier-Stokes equations more 

feasible.However,the accuracy of the results can only be ascertained by a comparison with an 

exact solution;C.Y.Wang[1991].

3



1.2 S ystem s o f C oord inates for N avier-S tokes equations.

The Navier-Stokes equations for an incompressible fluid occurs in three most common co-ordinates 

systems,notably,the Cartesian co-ordinates,the Cylindrical polar co-ordinates and Spherical po­

lar co-ordinates.

(i)Cartesian co-ordinate: In Cartesian co-ordinates(:r, y, z) so that <7=m+vy-fwA;.The Navier- 

Stokes and Continuity equations (1.1) and (1.2)then become

du du du du 1 dy n
(1.3)dt +  u —  

dx + Vdy rb w —dz
7;— h A + I/V u, 

p dx
dv dv dv dv 1 dp _ 9

(1.4)dt + u d i +
V dy

+ w —
dz — pdy

dw dw dw dw 1 dp _ 2
(1.5)dt + u d i

+ +  w—
dz

— —  ~  +  Z  +  v \72w , 
p d z

du dv dw
=  0, (1.6)dx d J

where the body force per unit mass F= (X , Y ,Z ) ,V2 represent the three-dimensional Laplacian 

operator.The vorticity w=€i+r)j+£k=(€, 77, £) where

dw dv _  du dw dv du
dy dz ^ dz dx  ’ dx dy (1.7)

For two-dimensional flow independent of the co-ordinate z,say,the continuity equation(1.6)

is satisfied by introducing the stream function xjj such that

d'lp dxjj
u = dy dx

and the only non-zero component of the vorticity is

(1.8)

C = -v2V-,
which satisfies, for a conservative body force F,

(1.9)

(1.10)

4



so that

( l . l l )

(ii)Cylindrical polar co-ordinate:We define cylindrical polar co-ordinates (r,0 ,z) such that

x = rcosO,y =  r s in 0, r > 0,0 < 0 < 2n, (1.12)

with corresponding velocity components v  =  (vr,ve,vz) = vrr 4- vqO + vzz , vorticity and body 

force components u> =  (ujr,u>o,ujz), F = (Fr , F<?, Fz) respectively.The component of Navier-Stokes 

equations are, then,

dvr dvr VfdVr dvr v j 1 dp 2 2 dve
■ g f  +  " r —  +  - - 5 5 -  +  -  —  =  -zsz +  F r  +  -  -  -  3 - s t t ) ,dr r 89 dz pdr

dve dv„ v0dve dve vrv0 1 dp 2 ------- . . .
^  +  yr—  +  - 7 S -  + —  =  +  " (V + I5TST -  15).

r2 c$

2 dvr Vq

dr r dO dz pdO ■2 <90
dvz dvz Ve dvz dvz l dp 2
77 + ̂ 77  + 7 7 7  + u‘77 "  + + "v

(1.13)

(1.14)

(1.15)

with continuity equation

1 d , x , 1  dve dvz
- - 7- ( ™ r )  +  --7 7 7  +  77-  =  0 .r a r  r dO dz (1.16)

The components of vorticity are given by

1 dvz dv0 dvr dvr 1 d . . 1 dvr
= 777 ~ 77 ’W9 = 77 ~ 77’"*= 777(n*} “ 777' (1.17)

For a rotationally symmetric flow, independent of 0,we introduce a different stream function V; 

,such that with

1 dip 1 dip
Vr r\ l^z r\ 1r dz r dr (1.18)

the continuity equation is satisfied identically.

(ni)Spherical polar coordinates:We define spherical polar co-ordinates (r,0,(p) such that

x  =  r  sin 0 cos <p, y =  r  sin 0 sin (p, z = r cos 0, r > 0,0 < 0 < 2tt, 0 < (p < 27t. (1.19)

5



with corresponding velocity component v=(t>r , i>0,t^ )=  vrr+vo9 -fv^vorticity  and body-force 

components u;=(ujr,u>o,<jj<f,),F=(Fr, Fp, F^) respectively.The components of Navier-Stokes equa­

tions are,then,

di'r dvr vq dvr v# dvr Vg+v^ _  1 dp 2 2vr 2 dvp 2vp cot 0 2 dv#
dt r dr r  <9#^~rsin0#0 r  p d r ^  r ~̂ Vr r2 r2 d9 r 2 r2sin# d<p ’

(1.20)
vpdvp dve ve dvp v# dve vrve vl cot A _  11 dp 2 2 dvr

dt r dr r 39 r  sin 9 d(p r r p r d 9 V9^~r 2 89 r2sin29 r2 sin2 9 d<p
2 cos 9 dvq,

/>

dv# dv<j, vp dv<t> v# dv<p v^Vr vpv^ cot 9 
dt Vr dr  r  09 +  r  sin 9 d<j> r r

1 1  dp 
p r sin 9 d 

with continuity equation

i i up _  /f_ 9 i.u 2 dvr 2 cos 9 dvp,
-----1 oT +  F<t> +  ,(V  v<t>---- 2 . 2/1 +  ~2~r ~n~xT ~2 "r  2 /."Hr)’/? r  sin (/ r 2 sin 0 r J sin 0 a<p r 2 sin 0 dcp

(1.21)

(1.22)

i  a /2  x 1 * 9 ,  . x i  dvp~^Tr{r2vr) + — —  —  (ve sm 9) +  —— —  =  0. 
r 2 dr r sin 9 d9 r sin 9 d(p

(1.23)

The component of vorticity are given by

UJr =
1 I d  dv0 1

—r - 7< — (u,/,sm0) -  -zrr >, r s m 6 \ d 9  d(p

1 dvr I d ,  . 
w» =  — - - - f l - N ,r  sin 0 <90 r dr

(1.24)

1 5 . . 1 VT
U* = r ¥ r (rve) ~ r W

The Stokes stream fimction,for a rotationally symmetric flow independent of (p. is now defined 

such that

vr =
1 • dip

r2 sin 9 d9 ,vp =
1 dip

r sin 9 dr (1.25)

6



1.3 D eriva tion  o f N avier-S tokes E quations.

Let there be a viscous fluid occupying certain region. In this region let v be the volume enclosed 

by the surface S  that moves with the fluid and so contains the same fluid particles at all times. 

Within S, let dv be the volume element surrounding the fluid particle p of density p.The mass 

pdv of this element remains constant throughout.Then if q is the velocity of the fluid particle,the 

momentum M  of volume V is given by

M =  JJJ pqdv (1.26)

where the integral has been carried out over the entire volume V  .Let p be the normal pressure 

force which has an outward unit normal n.The surface force due to p is

••~JJ P™ds = ~ JJJ Vpdu ^By GaussDivergence Theorem  (1-27)

The force acting on the volume V  due to frictional force is:

gX/2qdv (1-28)L
Again let F  be the external force per uit mass acting on the fluid,so that the total force acting 

on the fluid within the surface S  at any time t  is:HiF pdv. (1.29)

Thus the to tal force acting on the volume V[of the Euler’s equationsioi the perfect fluid] will be:

(1.30)

By Newton’s second law,since the rate of change of Linear momentum is equal to the total force

111/̂ -111/̂ * fffy^
acting on the mass of the fluid,we get,

D M
Dt -Iffy -  Vp +  p V 2q)dv. (1.31)

Using equation(l/26) and the product rule of differentiation,equation (1.31) above can be written

as:

.// L n̂ pdv + SSL̂t[pdv)=Illy -vp+̂ dv- (u2>
( ^ )  being zero since pdv is constant.Now since volume V can be taken as arbitrary volume of 

the fluid in the region considered.Thus equation (1.32) can be written as:

7



Or

Dq 9
p—  = pF -  Vp +  p V 2q

757 = F — -V p  +  i/V2g.L>t p

(1.33)

where i/=^is taken to be the Kinematics of viscosityy Equation (1.33) is Navier-Stokes equa­

tion in vector form. Now if we let,

q = ui 4- v j  + wk and 

F  = X i  + Y j  + Z k

then, Navier-Stokes equation takes the form:

D r .  .1 /  . . . \  l  r

p§1 [«* + VJ + wk] = (x'i + Yj + Zfc) -  1 [jge + j|E + fcff] + 1/ [iv2u + j V 2v + kV w 

(1.34)

Equating the coefficient of i , j  and k on both sides of equation (1.34) we obtain:

Du ’ 1 dp 2
Dt pox
Dv 1 dp _ 2t/
m = Y - - p i  + l /V V

^  =  Z -Dt p dz

(1.35)

Equation(1.35) is the Navier-Stokes equation in Cartesian form.Using the definition of Material 

derivative; ^  = ^ + u ^ + i ' ,^+ iy ^ ,eq u a tio n  (1.35) may be written as:

du du du du 1ch?
—  + Wt t  +  v —  +  w—  = X -  -  +  i/V2ua£ ax ay az p ax

<9?; 5?.' 1 dp ~ ,
«r + u —  + v —  + w —  =  y -  -  —  +  i^V2v (1.36)
a t ax  ay dz p a y

dw dw diu dw l dp 0
“37 +  =  Z  — +  ^V2icdt dx dy dz p dz

Equation (1.36) is the Navier-Stokes equations in a simplified Cartesian form.

8



1.4 S ignificance o f th e  Term s R ela ted  to  N avier-Stokes

Equations.

B ody force term s F(X ,Y ,Z ):T he body force due to gravity is important in flow problems 

in which free liquid surface exists or when the fluid is noil-homogeneous, i.e. its density 

changes from one point to another so that there exists a density gradient. If a fluid is 

rotating about an axis,body force due to centripetal action must be considered.In case of 

homogeneous fluid flow within closed boundaries,there is an equilibrium between the weight 

of a fluid and the buoyant force acting on it.In such a case.body force due to gravity does 

not influence the fluid motion and hence can be neglected from Navier-Stokes equation.

• V iscous terms [(^V2u), etc. :The no-slip condition between the fluid and the solid bound­

ary requires that the fluid velocity must be equal to that of boundary (i.e zero for a sta­

tionary boundary) .In other words,both normal and tangential velocity components must 

be zero.In frictionless flow,however,only the normal component of the velocity is required 

to be zero.Two independent boundary conditions must,therefore,be fulfilled,which require 

a partial differential oquation(PDE)of second order.For that,it is not permissible to ignore 

the viscous terms in the PDE,even for very small values of i/,if true behaviors of the viscous 

fluid is to be determined in the vicinity of the boundary.

Pressure terms ), etc.] :The pressure gradient terms is incorporated in Navier-Stokes 

equations to show the pressure distribution across a fluid flow,subjected to different bound­

ary terms.

• Inertia terms ( if ) ,e tc . :For high Reynolds number flow,inertia terms dominate over the 

viscous terms and hence,the viscous terms can be neglected to lead a fair approximation. 

However,in very low Reynolds number flow (known as creep flow),the velocity components 

are very small and higher order iner.tia terms can be neglected,which converts the Navier- 

Stokes equation into a linear PDE,which is much easier to solve.

9



1.5 L im iting C ases o f th e  N avier-Stokes E quations.

• Potential Flow Case.

In potential flow,viscous forces tend to zero. Akshoy,[2005].

For incompressible flow u = |^ , v = w =  |^,where q>(x,y,z) is the velocity potential 

function.

Using the equation of continuity for incompressible flow, V.<f=0,

and since q=ui + v j  + wk, then the Navier-Stokes equation reduces to Euler’s equation of 

motion as shown below;

Viscous terms of Navier-Stokes equations arefj/V2̂ )  =  0 .

As in case of incompressible flow,viscous terms in Navier-Stokes equations are zero and 

become viscous term independent, i.e.

Equation (1.38) is Euler’s equation of motion.

• Creep Flow case.

Creep flow case occurs at very low Reynold numbers.At these Reynold numbers(i.e.at very 

small velocity,small linear dimensions of the body or of the flow passage and large vis­

cosity of fluid),the inertia forces are much smaller than the viscous forces.We know that 

for steady flow,inertia force=/9L2V2and viscous force=/iA(|^).As for creep flow,q is very 

small,hence,we neglect higher order terms of the inertia force,like it(|*), v |jJ,etc.Equation(l.l)above

dz 1 dx   ̂dy + dz d x2 +  dy2 +  dz2

=> vV = o.

(1.38)

becomes,

(1.39)

(1.40)

10



Creep flow analysis is of potential importance for laminar flow in pipes and open chan­

nels,for seepage flow of water and oil underground,for motion of very small bodies such as 

spheres in a highly viscous fluid and in the theory of lubrication.

11



Chapter 2

Essential Concepts Related to the 

study of Fluids Dynamics in relation to 

Viscous Fluids.

Fluid dynamics is the science of flow of fluids.

2.1 Difference between solid and fluid.

The following definitions are important in’ understanding the difference between solid and fluid. 

Rigidy or shear modulus (N) =  g,Shcar 8trcss. =  -J v '  Shearing strain a

Bulk modulus (K)= ^ ^ = ^ = p f

wheredp is the change in pressure, dp is the change in density and dv is the change in volume of 

fluid from the original volume V.

Compressibility ((3) =

• Perfect Solid(Ny^ Oand 0)

Stressed on perfect solid,the external forces acting on it are balanced by the internal forces 

arising from the elastic strain(or static deformation)produced.The external forces may be ten-

12



sile,comperehensive or tangential(shear)in nature.If the force per unit area is less than the yield 

stress of the material,the deformations disappear when the force is removed.This is true within 

the elastic limit of the material.Perfect solid hence obeys Hook’s law within the elastic limit.

• Perfect Fluid(N  =  0 and K — 0)

Fluid is a substance,which deforms continuously under the application of a tangential(shear)force,no 

matter how small the force might be.In other words,if shear force is applied to a fluid,it deforms 

continously regardless the magnitude of the force.The following points are worthwhile for fluid, 

o Fluid has no tensile strength or very little of it.

o Fluid can resist the compressive force only when it is kept in a container(as compressive 

forces=normal pressure forces).

oFluid is frictionless,as it can not transmit tangential(shear)forces.

Fluid can be divided into two categories,namely,liquid and gas.

• Perfect Liquid(K =oo, i.e.Incom pressible)

oLiquid possesses a definite volume,which* varies slightly with temperature and pressure. 

oAll known liquids vaporise at narrow pressures above zero,depending on temperature. 

oLiquid being composed of relatively closed-packed molecules with strong cohesive forces,tends 

to form a free surface in a gravitational field if unconfined from above.

• Ideal Fluids.

Ideal fluids have no viscosity and no surface tension and these are incompressible.However in 

nature,no such ideal fluid are found.
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• Real F lu ids.

These are fluids having viscosity,surface tension and compressibility in addition to the density. All 

kinds of fluids found in nature are considered as real fluids.

2.2 D ifference betw een Incompressible and Compressible

For incompressible fluid,dp =  0.Therefore,velocity of sound(a)is infinite in incompressible fluid,i.e.pressure 

pulses emmited any where in the fluid are thus felt simultaneously at all other points.

• C haracteristics o f Incom pressible Fluids.

★ Fluid velocity(v)is small compared with the velocity of sound(a).

★ Fractional variation in density is insignificant.

★ Fractional variation in temperature and pressure may be very large.

%
• C haracteristics of com pressible Fluid.

★ Fluid velocities are appreciable as compared with the velocity of sound.

★ Fractional variation of density,temperature and pressure are of significant magnitude.

Fluids.

Velocity of sound at isentropic condition can be expressed as:

(2.1)

2.3 Viscosity.

Viscosity is the property of fluid by virtue of which it offers resistance to flow.The shear stress 

at a point in a moving fluid is directly proportional to the rate of shear strain. The above figure
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represents two plates at a distance Ay. The intermediate portion of two plates is filled up by some 

fluid.Now,the upper plate is moving at a velocity Auby means of a force F.The lower plate is kept 

stationary.Since the particles of all the real fluids stick to the solid surfaces,the fluid particles 

sticking to the lower plate will have zero velocity and the particle sticking to the upper plate will 

have a uniform velocityA u .This variation of velocities in y-direction leads to a velocity gradient.

If force F acts over an area of contact A,then the shear stress defined as r  = ^ . 

Newton postulated that shear stress is proportional to the rate of shear strain, i.e.r oc 

In the limiting case,as A y  —> Hence,

du
T  OC —

dy
du . x

r =  n —  (2.2)

where,/z=coefficient of absolute or dynamic viscosity.The law above is called N ew ton’s law of 

viscosityand fluids obeying this law are known as Newtonian fluids.

The unit of // in S/system  is N s /m 2.In CGS system of units,//. is expressed in poise.lpoise = 

0.1 N s/m 2

The coefficient of kinematic viscosity(v)is defined as the ratio of coefficient of dynamic viscosity 

to density of fluid.i.e

v = -  (2.3)
P
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The unit of vin SI system is m 2/ s .In CGS system of units,v is expressed in stoke. 1 stoke = 

10“ 4 m2/s.

2.4 Steadness and Uniform ity of Flow.

A flow is said to be Steady,if all the dependent fluid variablesfsuch as velocity,pressure,density,ter 

any point in the flow do not change with time.In other words,the time rate of the dependent 

variables at a position is zero.Mathematically we write,

— (dependent fluidvariables) = 0 
ot (2.4)

It follows that

du
dt £  = I f  = ° = f t  =

A flow is regarded as U nsteady,if the dependent fluid variables alter with the passage of time 

at a position in a flow.mathematically,we write

Q
—(dependent fluid variables) ^  0 for unsteady flow. (2.5)
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lie?&  the  flow -pattern does not change with time whereas, unsteadiness 

p a tte rn  w ith  passage of time at the same point in space.

r. u r n\^> a n  instant of time,if the velocity,in magnitude,direction and
• 1 to >yi

t , i i < ( l l j r n o u t  the flow field.This calls for the velocity components to be the same 

i n  td ie flow.In o th er words,the space rate of change in velocity components 

i s h ,
Kwitlon 

must v a r n

d  , s
7̂  (dependent fluid variable) =  0 (2.6)

follows t h a t

O  ijL du _  d v  dv dw
3 % / dz d x  dy dy  ’

etc.for uniform flow.

y  ( o n i p < i r i e n t s  at different locations are different at the same instant of time,the flow 

non- m i  i f o r m .

•t'Ts t o  n o  change w ith  tim e  and uniformity refers to no change in space.Therefore, 

r >»ead\ o r  unsteady  q u ite  independent of its being uniform or non-uniform.All the 

ltl"n*s a r e  xoossible, w hich are given in the table below with examples.

T ype Examples
y ug o r r q  f l ow Flow at constant rate through a duct of uniform cross section.

tiow Flow at constant rate through a tapering pipe.

F low  at varying rates through a long straight pipe of uniform cross section

" ^ ' u ‘ < f o r r i i  flow Flow at varying rates through a tapering pipe.

^ t i o n  in  F lu id  Flow.
VplOr»t v

c>rFiponent in  fluid flow are in general functions of space and time

U =  u {x, y , z , t ), v = v{x, y, z , t ) ,w  = w(x, y, 2, t)
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By differential calculus,an infestimal(small) change in u is given by

Su = du . du . du . d u .
— 5x +  —  dy +  — Sz +  —  St 
ox dy dz dt

and the acceleration component in x,y  and ^-directions are respectively given by

(2.7)

Su Du du du du du
a i = H = m = u t e + v d i  + w d~z + d i

Sv Dv dv dv dv dv
ay = Ht = ~Dt = Udx + Vdy +  Wdz +  dt

Sw Dw dw dw dw dw
a  ̂ = T t = T t = u ^  + v ^ j + w T z + m

(2.8)

From equation(2.16) see that the operator for total differential with respect to time is in a 

convective field is related to the partial differential equations as

D_
Dt

d d
= u —  + v —  + w  

dx dy
d_

dz

Using vector calculus, we know that:

_ _  - U - U ; O
Gradient : V = i - — h 7- — \- k —  

dx dy dz
—♦ A A A

Velocity :V  = ui + vj + wk

Hence equation (2.17) can be written as

(2.9)

^  =  (V?V) +  |  (2.10)

Equation(2.18) represents a definition of m aterial or substantial derivative operator in vec­

tor notation,thus it is valid in any coordinate system.

Substantial(or total)derivative, which is physically the instantaneous change fol­

lowing a moving fluid element.

(V\V)—> Convective derivative,which is physically the time- rate change due to the movement 

of fluid element from one location to another in the flow field,where the follow properties are 

spatially different.

18



oint.
[ence,the total acceleration is given as:

Local(or te m p o ra l)d e riv a tiv e ,which is physically the time-rate change at a fixed

DV _  -  7 , dV _  Du,  Dv ,  D w r , , t
Dt  ̂ ‘  ̂ + dt D t l +  Dt J +  D i k ~ axl + ayJ+azkcU

r in words

Iotal acceleration=Convective acceleration-i-Local acceleration .

(2.11)
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C hapter 3

Solutions of Flows For Chosen Vorticity 

Functions.

These are flows for which the vorticity function is chosen so tha t the governing equation itenns 

of the stream function reduces to a linear equation(Generalized Beltrami Flow-Wang[1991])

Let q be the velocity and £ =  V x q be the vorticity.The vorticity equation is obtained by taking 

the curl on the steady Navier-Stokes equations such that:

V x (C x q) = -iA 7 x V x C (3.1)

our case,the generalized Beltrami flows the left-hand side of equation(3.1) is identically 

2ero,such that V  x (V x ()  =  0

âng[1991] employed this approach of choosing the vorticity by taking V2̂  =  Kij), V 20 =  /(V;)> 

^  = y + (A'2 — 4tt2)^ , =  A'lp 4- C y  and V 2̂  =  A'(V> -  By) respectively.For this case

study the generalized Beltrami flows when the vorticity function u = —V2V> is given by: 

^  = i) + Ay2 -h B xy  + C x  + D y , V 2V' = V; + Ay2 + C x + D, V V = 'ip + Cx + Dy,  where 

‘̂ ,C,D are constants.

^overning E q u ation s and Their Solutions:

^ Iwo dimensions-Steady plane incompressible viscous fluid flow,in the absence of external
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forces,the Navier-Stokes equation will be governed by the system:

'U'X d” Vy — 0 

1-UUx +  VUy +  -px  =  //V U 
P
1 ^ 2- UVx +  VVy -f ~Py =  p V  V.

(3.2)

where u ^x,y^, v [x ,y^  are the velocity components.^ ( x ,y )  is the pressure function,p is the 

constant density,// is the constant viscosity and V2 =  is the Laplacian opera­

tor.The vorticity function for this flow is given by

U  =  V x ~ U y (3.3)

Letting U,L to be the characteristic velocity and length respectively,we introduce the non- 

dimensional variables,given by

x  y u  v Lou p
x = —,y  = —,u  = — ,v  = —,e) =  —  = (3.4)

V 9 L 1 ~ U '~  U 1" U ' r  pU2

in system(3.2) and equation(3.3).Applying the integrability condition/^ =  pyx to the linear 

momentum equations we find tha t u ,v ,w  should satisfy the system:

ux +  vy — 0

ueux +  veuy =  V2u/ H
Ur -  =  U.

(3.5)

where R = the Reynolds number. Introducing the stream function such ib(x, y) such that

u =  ipy,v  =  -ty x (3.6)

in system (3.5),we find tha t ^ ( x . y )  must satisfy

v V + « ® ^ . od(x, y)
(3.7)

Our concentration is the study of the flow for which the vorticity distribution takes the forms:

(a)w =  - V 2V> =  -{i> +  Ay2 +  B xy  + C x + Dy) (3.8)
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(3.9)

(3.10)

(b)u; =  - V 2̂  =  — (V> +  Ay2 +  Co; +  £>y)

(c)u; =  —V 2ip =  -(-0 + Cx +  Dy)

where A,B,C,D are real constants.

Form(a):

Substituting equation(3.8) in the compatibility equation(3.7) we obtain,

R{2Ay +  B x  4- D)ipx — R(By  4- C)ipy 4- 4- Ay2 4- Bxy  4- C x  4- Dy +  2/4 = 0 (3.11)

Using the canonical coordinates given by

£ =  Ay2 4- B xy  + Cx + D y , ij = y, (3.12)

where(By +  C)  ^  0,equation(3.11) may be written as

—R (B t) 4* C)iprj 4- ip 4~ £ +  2A =  0 (3.13)

Equation(3.13) is solved and we obtain

^  4- D)~£b -  (A y 2 4- Bxy + Cx + Dy + 2A) (3.14)

where /  is an arbitrary function of £.Introducing equations(3.14) into (3.8),we obtain

jf t2 [c*(C2 +  D 2) + 2 B C D i + B2f ]  /"(C) + 2 R \c (R A C  + D) -  /'(C) + [l -  R B  -  R2C2}

+ 2 f lc |2 f l  \ c ( A D  +  BC )  +  A B t\  /"(€) +  2A [r b  + 1] /'(« ) -  R B f ( i ) \ v  

+ f i |2 R  [ c 2(2.42 + 3B2) +  AB C D  +  A B 2̂  +  /"(C) +  2AB  [flB  +  l] /'(£ ) -  BB2/(C) jr /  

+4/?2s c |  [a 2 + B 2] / " ( o |» ; 3 +  « 2b 2 j  [/I2 +  B2] /"(C)'l4 j  =  0

(3.15)

Since £,7/,are independent variables and j  1, //, r/2, j/\r /4 j  is a linearly independent set,therefore

the coefficients of the various powers of // are zero.Taking the coefficients of 7/4,7;3,r;2,r; and 1 

equal to zero,we obtain

/(£ ) =  ci£ +  c2 (3.16)

m
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2A{RB  +  l)ci -  R B c2 -  R B c i t  = 0 (3.17)

whereci,C2 are arbitrary constants.Since {1,£} is a linearly independent set,it follows therefore 

from equation(3.17) that 2A{RB  +  l)ci — R B c 2 =  0 ,RBc2 =  0 giving Ci = c2 = 0.Using 

Ci = c2 = 0 in equation (3.16),we obtain /(£) =  0.

From equation(3.11), the stream function is given by

ip(x, y) =  —{Ay2 +  B xy  +  Cx + Dy + 2A) (3.18)

The exact integral of this flow is

u = —(2 Ay  +  Bx  +  D), v = By  +  C, and

V =  Pa -  \  [b 2(x2 +  y2) +  2(BD  -  2AC)x + 2BCy\ j (3.19)

where p0 is an arbitrary constant.

Equation (3.18) represents an impigment of two const ant-vorticity oblique flows with stagnation

point

(* .» )=  ( 2 ^ 2 , - § )  (3.20)

for non-zero values of A, B, C  and £',Wang(1991)[5].

Form(b):

Substituting equation(3.9) in (3.7),we obtain

R{2Ay D)il>x — RC/'ipy 4- 'ip 4- Ay2 +  Cx  +  Dy  4- 2A = 0 (3.21)

Choosing the canonical coordinates

£ =  Ay2 4- C x  4- Dy, 77 =  y (3.22)

where C ^  0 and equation(3.17) above will take the form

—RCiprj 4- "0 £ “b 2A = 0 (3.23)

Solving the above equation we obtain

^  =  g{OexP { w v )  ~  (Ay2 + Cx 4- Dy 4- 2 A) (3.24)
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where g is an a r b it r a r y  f u n c t i o n  o f £ .S u b s t i t u t i n g  e q u a t i o n ( 3 .2 3 )  in t o  e q u a t io n  ( 3 .8 ) w e  o b ta in

'fi! C y ©  +  2 f l 2 / t C y ( 0  +  (1  -  + 2 R C g \ 0 ( 2 A i ,  +  n) + R2C 2g"(i)(2A ,,  + D f  =  0

(3 .2 5 )
Since ,̂T/ are in d e p e n d e n t  v a r ia b le s  a n d  { 1 ,  ( 2 A y  4 - D ) 2 }  is  a  l in e a r ly  in d e p e n d e n t  s e t , i t  fo llow s

that

< ?"(£ ) =  0 , g ' ( 0  =  0 , ( 1  -  R 2C 2) g ( 0  =  0  (3 .2 6 )

From (1 -  R2C 2)g(£) =  0 ,w e  g e t  t h e  t h r e e  p o s s i b i l i t i e s :# ^ )  =  0  ,R 2C 2 ±  \ ,R 2C 2 =  1 ,# (£ )  ^  

O;g(0 =  0 ,R2C 2 =  1. T h e  s t r e a m  f u n c t i o n  in  e q u a t i o n (4 .2 4 ) is  g iv e n  b y

-  (A y 2 + C x +  D y  +  2A) g =  0 , R 2C 2 ^  1

V ' ( ^ y )  =  ( ^ # )  ~  ( A y 2 +  C x  + D y  + 2A); R 2C 2 =  1 ,#  ^  0  (3 .2 7 )

-  ( A y 2 +  Cx  +  D y  +  2 A ) g =  0 , R 2C 2 =  1

where g ^  0  im p lie s  g =  K ( n o n - z e r o  c o n s t a n t ) ,  

when the stream  f u n c t io n  is  g iv e n  b y

i)(x, y)  =  - ( A y 2 +  C x  +  D y  +  2 ,4 ) ;  R 2C 2 =  1 o r  R 2C 2 =  1 (3 .2 8 )

the exact integral fo r  t h e  f l o w  is

u  =  ~ ( 2 A y  +  D ), i)  =  C,  a n d  p = p0 +  2 A C x  (3 .2 9 )

where p0 is an a r b it r a r y  c o n s t a n t .

The solution o f  e q u a t i o n ( 3 .2 9 )  m a y  b e  r e a l i z e d  o n  a  p la t e  s i t u a t e d  a lo n g  th e  lin e  w ith

uniform su ction  o r  b l o w i n g . C  >  0  a n d  C  <  0 ,r e s p e c t iv e ly  , f o r  b lo w in g  a n d  s u c t io n  a t  th e  

plate.The exa ct in te g ra l f o r  t h e  f lo w  is  g iv e v  b y  t h e  s t r e a m  fu n c t io n

tb(x, y) =  K e x p  ( 7 ^ 5 y )  — { A y 2 +  C x  +  D y + 2 A ) \ R  C2 =  1 (3 .3 0 )

is

u = j f Q e x P — +  D ) , v  = C, a n d  p  = Po + 2 A C x  (3 .3 1 )
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where po is an arbitrary constant.

If K=RCD in equation(3.30) and (3.31),the velocity profile in(3.31) can be realized on a plate 

located along the line y = 0 with uniform sunction.The velocity profile attains the form

u =  Dexp (  JLy) -  (24y +  D ),v  =  C

only asymptotically,and so may be regarded as the asymptotic suction profile [20]. C  

C < 0 for blowing and suction at the plate,respectively.

Form (c):

Substituting equation(3.9)into equation equation(3.7) gives:

RDipx — RC'ijjy +  +  Cx  +  Dy = 0

The canonical coordinates

£ =  Cx  +  D y , 77 =  y; C ^  0 

are employed in equation(3.33) to obtain

—RCipn +  +  £ =  0

The solution of this equation is

ip = h(£)exp ( ^ y )  -  (Dx +  Ey)

where/i is an arbitrary function of £.We substitute equation(3.35) into(3.10) to obtain 

R2C2 {C2 +  D 2 ) ti '{0  +  2R C D h \ i )  +  (1 -  R2C 2 )h{Q =  0 

The general solution of (3.36) is

Aiexp(Xi^) +  A 2exp(A2£) ; R2{C2 +  D2) — 1 > 0

MO = I (Bi +  B t f e x p  (= §2{) ; fi2(C2 +  D2) — 1 = 0

CtCosimZ + C2)exp [ - flc(^ +D,)C] i # 2(C2 +  1 < 0

where
x - D  =f C ^R?(C *  +  D2) -  1 _  v 'l  -  fl2(C2 +  D 2)
1,2 “  RC(C2 + D2) ’ R(C 2 + D2)
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(3.37)

(3.38)

(3.39)
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and Ai ,B1,B2A A  are arbitrary constants.

We now examine the three possibilities separately

(i) When ^ ( C 2 + D2) -  1 > 0 The stream function from (3.35) and (3.37), is

ip{x,y) =  Aiexp \^\xCx  +  ( a:D + y] + A 2exp [a2CX + ( \ 2D  +  V ~{Cx + Dy) (3.40)

The exact integral of this How is

u = ( aiD +  A xexp ^Ai(7.t + ( A i D + y ]  + ( a2D +  A 2exp \ \ 2Cx  + ( a2D + V 

v = - D | A i , 4 i e a ; p  [AiCx- +  [ \ XD +  y ]  +  A2A2exp A2Cx +  ( a2D +  ^ y )  y] ~ 1 j ’

P = P0 + 2 [ l -  rHJ ; d7»] A lA**V

- D ,

2 (D y -E x )
R(C2+ D 2)

(3.41)

where p0 is an arbitrary constant and Al5A2 are given by equation(3.38)

This flow represents an impingement of an oblique uniform stream with an oblique rotational,divergent 

flow.with stagnation point

(*.y) =  -
RC

2 v /ft2(C2 +
= = C ln  ( ^ ^ - D s /W iC *  +  £>2) -  1 In j

—4>11̂ 2 n2(c2 + n 1
R2{C2 +

+ P  In —
, x _______________ r -4 ^ !^ 2  [ ^ ( c 2 + r>2) -  il "i
( _ t ) + CV/<2(C2 + D2) - l l n | --------- * L _ _ --------i |

(3.42)

where, A u A 2 are non-zero real constants and either v4i > 0 ,^2  <0, , 42 >0 .  For fixed values of 

R.C and D ,the stagnation point shifts upward when the absolute value of v42 is larger than that 

of .4!. If y4iand ,42are of the same sign,the above phenomenon does not take place,and we have 

a flow without a stagnation point.

When WFPiCP + D2) - ! ^ ! )

Using equation(3.37) in (3.35),the stream function is

^{x i y) =  [#i -I- B2(Cx + Dy)j exp jR(Cy -  Dx) -  (Cx -I- Dy) (3.43)
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Tliis flow has the exact integral

u =  \ B B 2 +  RC [Bi +  |

v =  |  -  D B 2 +  RD  [fij +  B2(Cx +  By)] [#(Cy -  Dx) + D,
(3.44)

P = Po -  2 f f B 2 exP [2 R(Cy -  Dx) 

wherepo is an arbitrary constant.

If B2is a positive real constant,this flow represent an impingement of an oblique uniform stream 

with an an oblique rotational,divergent flow,with stagnation point

(X' y} = ~ C * T l P  ( ^ ■ - 5 lnB2’^  +  B lnB2) 3̂'45)

For fixed values of /?,and C,the stagnation point shifts upward if B\ and D are of opposite sign 

and the absolute value of Biis larger than B 2.

If B2 is a negative real constant,equation(3.41) represents an oblique uniform stream which abuts 

on an oblique rotational,convergent flow.

(iii)when R2(C2 + D2) -  1 < 0

From (3.28) and (3.37), the stream function is given by:

ip(x,y) = Cl cos m(Cx + Dy) + C2 exp - ( Cx + Dy)

The exact integral for this flow is
Ci

U ~ ~R{C2 + D2 ̂  C°S + Dy) + C2\ ~  mRD(C2 + D2) sin (Cx  + Dy) + C2 exp

1 ~ R(C2 + D2) I ̂  C0S [m (̂ -'2 T- Dy) +  +  vnRC{C +  D2) sin m(Cx  +  Dy) +  C;

(3.46)

Cy-Dx
R(C2+D2) - D ,

)
>exp Cy—Dx

Lh(C2+D2)

P0 + 2 I r2(c2+d2) J f os 2 mix(Cx  +  Dy) +  C2 expP.Xp 2 {Cy-Dx)
\_R(C2+D2)

(3.47)
where PQ is an arbitrary constant,and m is given by equation(3.38)

If > 0,the stagnation point for this flow are

M  = ( RC (2n +  1 ) | -
■ 4- RD In Ci^/l-R2(C2+D2

RD (2n +  l ) f  -  C2
■ - R C  In <7, , /l T)2lr,'2 1 rva\"V y/\-R2{C2+D2) ------- [ R(C2+D2) J v 'l-R2{C2+D2) L R{C2-\-D2)

(3.48)
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ipter 4

ict solutions of Navier-Stokes 

nations for parallel Flow.

.sic difficulty in  solving Navier-Stokes equations arises due to  the presence of nonlin- 

idratic) inertia te rm s[i.e .u g ,v g ,e tc ] on the L.H.S of equation(1.36) .However, there some 

vial solutions of the Navier-Stokes equations in which the non-linear inertia terms are 

ally zero, Akshoy[2005].One such flow is p a ra lle l flow,in which only one velocity term is 

.vial and all the fluid particles move in one direction only.

ties of parallel flows includesiSteady Two-Dimensional Laminar Flow Through Two Straight 

el Plates(Plane Poiseuille Flow),Coutte Flow between Two Plates,Flow between Two con- 

: Rotating Cylinders,Generalized Beltrami flows,Flows in long Cylinders driven by a Pres- 

jadient.Ekman Flow and Planar Generalized Beltrami Flow.

it us choose x  to  be the direction along which all fluid particles travel,i.e. u ^ 0 , v  - 0 , w  -

Qg this into continuity equation,we get

d u '  _  q

~dx+ ]jy /Oz

= ^ = 0
dx

==* u = u { y , z , t )
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>' "— U - u(yVv

Hence the Navier-Stokes equations for incompressible flow becomes

du l dp , d2/i
+ & -r  =  — tt- +dz p dx jox*

d2u d2u 
dy2 dz2

% dv dv 1 dp .
+MfFz = - p ^  + v(

dw dw 1 dp
+ X-^ =  7T* +dy dz p dz

Hence,we obtain;
d p _  dp 
dy dz

=> P = p(x) alone,

And,
du
dt

1 dp
~ p d i + u

d2u I d2u
dp a? (4.1)

For Steady two-dimensional flow trough parallel plates,equation(4.1)can be further simplified

and the analytical solution can be obtained;Singh & Okwoyo[2008]and Singh[2007] applied 

equation(4.1) to obtain the exact results in their findings.
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4.1 Steady Two-Dim ensional Laminar Flow Trough Two 

Straight Parallel plates (Plane Poiseuille Flow)

Since the flow is Steady, ^  =  o j , and as flow is independent of any variation in z-direction, =

equation(4.1),becomes
dp d2u

dx ~  ^  
Asp = p(x) and u = u(y) equation (4.2) can be written as an ordinary differential equation,

dp d2u 
' '  dx ^  dy2

which is subjected to boundary conditions: u =  0,at y =  ±6.

du _  1 dp 
dy p dx ̂  1

=>u = ^-j-y2 + ciy + c22p dx

Applying boundary conditions:C\ = 0 and C2 =

The solution is

(4.3)

1 dp 112 2\u = — - — — (b — y ) 
2p d x v

(4.4)

Equation (4.4) is the relation describing P lan e  Poiseuille flow,which means that the velocity 

profile is parabolic.

At, y = 0, u =  umax,then from equation (4.4) above we obtain:

—b2 dp
l Jmn-r — 2/x dx

But the average velocity is given by: Uav = F1p™ ^ĉ  =  [2b)xi» keeping unit thickness,we then

have.

Ua 2_ [ l 
= 2bJ0

udy

U™ = \ j ~ ŷdy By using efluati°n(4.4)

Uav~  2 iJ ,dxb \[b y

-I 6

. 0

,Thus
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2/idz3

. U™ 2 
Umn'r 3

rj _  _

Or Um ax 2  Uav

The shearing stress at the wall for parallel flow(as described in the diagram below),

i;
Fig. Shear stress and velocity profile for parallel flow in a straight channel.

(4.5)

o Um< 
=  - 2M —

Local friction coefficient,(7/ is defined as

c  _  |(rya)h| _  3fJLUgy/b _  12
'  ~  ~  ~  b)/p

(4.6)

4.2 Generalised Coutte Flow

One plate is held stationary and other plate is moving at a velocity U as it is shown in the 

figure below. As both the plates are infinitely long in ^-direction, thus z-dependence is not there. 

Therefore the governing equations are:Singh[2008]

The equation of continuity for the incompressible horizontal flow is;

<)u da
d i  + f y = 0 (4.7)
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whereiqv and w are components of velocity of the fluid in the x ,y ,and 2 directions,for this case

w = 0
The equation of motion in two direction are:

du du du l dp ( »2 \  f  x
a t + u d^ + v a ; r - o ^ + u ^  + W  + 7

1 dp
dy p d x

(4.8)

and

dv dv dv 1 dp (,0 *2 \  f  y
TT7 +  U—-----h V—  — ----- —----- b V ( +  o-f ) H-------dt dx dy p d y  \ dx Qy 1 o

(4.9)

Since the plates are of infinite length,we assume that the flow is only along the x-axis 

and depend on y. Thus

(4.10)? = 0
dx

Since we have assumed a steady flow,the flow variables do not depend on time.Thus equations 

(4.8) and(4.9) can now be written as:

_ 1 dp d2u Fx
0 =  — —— b H------

p dx  dy2- p

0 =  ~~7>~ +  ~  pd y  p

Since,f = 0(By equation 4.10),substituting equation (4.10)into (4.7),we therefore obtain:

£ - 0dy

which implies that velocity components i£ independent of y.

As there is no fluid flow along y-axis we have:

(4.11)

(4.12)

(4.13)

V =  0 (4.14)

In the absence of body forces, equations(4.11) and (4.12) reduces to:

1 dp d2u 
p d x ^  U dy2

1 dp 
pdy

(4.15)

(4.16)
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From (4.16) it is clear th a t p is independent of y because =  0 .Keeping this in mind and 

differentiating equation (4.15) with respect tox  we obtain:

0 =  -I^
p d x 2

(4.17)

^ ^  =  0 
dx2

(4.18)

. dp 
dx p

(4.19)

where p in the above equation is assumed to be a constant. Using using equation (4.19) we

obtain from (4.15)

o II
•fc

 I*
S3 

+ m
| s (4.20)

Or

•1*
a.11II

(P 'U p ' p 
dy2 p ' p
d?u p p 
dy2 p p

M
 3. 
1II

3 I<m 
« 

Igi 
"X3 1̂

3

t (4.21)

Integrating equation(4.21) we obtain

du p 
—  =  - f  y + A 
dy n

(4.22)

where A is a constant of integration,Again integrating equation (4.22) we get:

u ='Tr~y2 +  Ay +  B2 p
(4.23)

where B is another constant of integration. A and B may be calculated from given bound­

ary conditions.The boundary conditions are u =  0 at y — oand u =  [/at y — h (refer to the 

diagram).Incoperating equation(4.23)with the given boundary conditions we obtain

B  = 0 (4.24)

A = U  . V h
ft +  2jlh (4.25)
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Substituting equations (4.24) and(4.25) into(4.22) we obtain

“ = 2 y 2 + ( * + i h) y (4.26)

Equation(4.2G) can further be simplified and we obtain;

i  = y + P y f x _ q
U h h \  V (4.27)

where P = non-dimensional pressure gradient). Equation(4.27) describe gener-

alised C ou tte  flow.Akshoy[2006]. For generalised Coutte flow,(^ 

unit width of plate is given by

/  0)and the discharge per

- j f

—  t ( > - 0 (4.28)

And shear stress is given as;

t =  ^  =  K  i  + (4.29)

ForsimpleCoutte f l o w =  0(i.e.P =  0),equation(4.27)becomes

u y 
U ~  h

(4.30)

Equation(4.30) describes sim ple C o u tte  flow. The location of maximum or minimum velocity 

in the channel is found out by by setting the derivative^)equal to zero.From equation (4.27),one

can write

u = l u + p u l ^ ~ l )
dv ■ U PU ( \  

^  h V1 _ 2 J (4.31)

Setting =  0,for maximum or minimum velocity,yields:

y  1 1  
h = 2 + 2P (4.32)

For P=0,simple Coutte flow exists.For P > 0 ,^  < 0;pressure gradient will assist the viscously 

induced motion to overcome the shear force at the lower surface.ForP < 0 ,^  > 0.Pressure 

gradient will resist the motion induced by the motion of the upper plate.In this case,a region of
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reverse flow may occur near the lower surface. The values of maximum and minimum velocities 

can be obtained by substituting the value oiy from equation(4.32) into equation(4.27) as

Umax — 

Umin =

U{ 1 +  P 2) 
4 P

U{ 1 -  P)2 
4 P

for P  > 

forP <

1

1
(4.33)

Q

35



y
A

high
P

■X.W V\I\X \  \  vST
(a)

low
P

— >  X

y
A v

------- > u

( b )

4.3 Com bined plane C outte and Poiseuille Flow:

Because the form of the Navier-Stokes equation for both coutte flow and Poiseuille flow is linear,i.e 

it contains u{y}to the first power,we can add together these two solutions of Coutte flow yet has 

an impressed pressure gradient (negative pressure gradient).

* * = (s)+ % (t?) y(h ~ v) (4.34)

Figure (a) above shows the linear combination of Coutte and Poiseuille plane flows between 

parallel plates with relative motion and figure (6) is an impressed pressure gradient results in a 

velocity profile I.e the sum of the two flows. The volumetric flow rate Q is simply the sum of 

the rates for the respective flows,

W  ' 2 12/i V dx )
(4.35)

An expression on the shear stressrw on the upper(moving)wall is given by

TW = ( ^ f ) lx +  2 ( ^ )  lx (4-36)

Example:A friction pump consists of a solid cylinder of diameter D and lengths; that rotates 

clockwise at an angular speeds inside a hollow coaxial cylinder of inside diameterD +  2h,as 

shown in the figure below.The fluid flow into the pump is pulled clockwise through a complete 

circle by the friction with the moving inner cylinder surface.The inflow and outflow passages 

to the pump are separated by a septum that prevents leakage from the higher outflow pressure 

VoMt to the lower inflow pressure pm,the pressure difference Ap = pout -  pin being maintained by 

clockwise flow through the pump.

Derive expressions for (a) the volumetric flow rate Q through the pump and (b)the clockwise
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torquer that must be applied to the rotor for the steady operation as functions of the pressure, Ap.(c) If 

the power pout produced by the pumped fluid is QAp,derive an expression for the value of Ap 

that maximizes Pout and find the numerical value of the pump cfficienyr/ =  ^  for this value
* in

of Ap, where the input power is Pin = QT.

Solution: (a)Tlie pump flow is a combined plane Coutte and Poiseuille flow in which the wall 

velocity Vp and pressure gradient ^  are:

p 2 ’ dx 7tD ttD

Inserting these values into equation(4.35) for the volumetric flow rate Q,

12m \ nD J\ 4  h V
Q = W llD h  , 

4 “r
h2A p  ^  

3tvpilD2 )

(b)rw is the magnitude of the shear stress acting on the wall of the rotating cylinder in opposition 

to its motion,then the torqueT that must be applied to the cylinder in the clockwise direction

T  = Tt
D ,  ttD 2W  [ nn  . a "| tTpWQ.Dz f  .2() \

,—(7tDW ) = --------  =  — --------- I 1 + h ilP , )
2 V 2 L 2/1 27rD\ 4 / l  \A ^  3?r/iHD2 /

Tw .

w 2 y ’ 2 _

where we have the equation(4.36)to evaluate

(c) The power Pout is:
_  s~\ A  W QDh f  1 2  *  \  aPout = QAp = — —  ( l  -  g f e )  Ap 

To maximize Pout,differentiate with respect to Ap and set equal to zero

1 -
2h2Ap n . 3tfpttD 2
-----=  0; Ap =

which result in a maximum Pout of:

37rpf2D2 2 h2

rnaxPout = WPtDh M  / 3np,nWilD2\  
4 W  \  2̂ 2 ) 16h

The corresponding value ofPjn is:

_  7rpW tfD *  / x _  5ttpWQ2D*
m 4 h W  8 h

The ratio of these powers is the pump efficiency t]p :

V = ^  =  x T~ = 3°Percent Pin 16 07T
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4.4 Circular Poisseuille Flow

Laminar flow through a circular tube is of interest because a circular cross-section is the most 

common form tube or pipe.In,fact,it was the research on blood flow in animal capillaries and 

veins that first revealed the relationship between volumetric flow rate and pressure change in 

pipes of circular cross-sect ion. In mammals,both,blood flow in capillaries and veins and air flow in 

lung alveoli are examples of circular Poiseuille flow. Other common examples are the flow through 

a sodastraw or through a hypodermic needle.

Because of the circular symmetry of the container,Circular Poiseuille flow is an axially-symmetrie 

flow best described by using cylindrical coordinates,with circular coordinates,Navier-Stokes equa­

tions simplifies to the form:

dr2 r  \ dr )  r dr \  dr / p d z (4.37)

here we have used the total derivative because Vz is the function of radial distanceralone and p 

is the function of axial distance 2 alone.Multiplying the previous equation by r and integrating 

once,we obtain
dVz r2 dp
dr 2p dz Cl

The shear stress at the tube centerline r = Omust be zero because of axial symmetry and thus 

^  = Oatr =  0 thereby requiring that C\ = 0 .Dividing equation 4.38 by r and integrating,we

get
_  r2 dp

v‘ - ^ T z + c2 (4.39)
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By choosing c2 =  —a2(^ )(4 ^ ) , the velocity Vz at the tube wall r = a becomes zero,as it should 

be at a stationary wall,and the velocity distribution for circular Poiseuille flow is:

Vz = (4.40)

where we include the minus sign multiplying ^  because the latter is negative for positive Vz, i.e 

.for flow in the z-direction(this is called parabolic velocity distribution).

The volumetric flow Qcan be found by integrating the axial velocity Vz across the tube cross-

section:Q=l v’{2*r)dr - i(-£) l ~ r̂dr = (if) \r~f2 2 4.r a r 4
\d z  J to= = i£L

8u \ dzJ 128u V dzj

(4.41)

The volumetric flow rate trough a circular tube is very sensitive to the tube diameter/),varying 

as the fourth power of the diameter.For a fixed pressure difference across a coronary artery,for 

example,a reduction of the flow area1̂  by a factor of two would decrease the blood volume flow 

rate by a factor of four.

The average flow velocity!) is obtained by dividing the volumetric flow rateQ by the tube area2̂  :

v =

An expression for the wall shear stress rw may be derived by applying the linear momentum the­

orem to a cylindrical sample of the fluid inside the circular tube of length L and diaineterD.The 

pressure d i f f e r e n c e L  acting on a cylinder produces a ioice(=̂ ) L  in the 2 direction

that must be balanced by the shear stress forcerw(7r/)L) acting in the opposite direction:

rw^ n L )  =  ( = * )

T- = f  ( - s f H ^ )  <4-43)
Example:

The kinematic of viscosity of a mixture of waste oils is to be measured by use of a laboratory fun- 

nel.The oil is poured into the funnel at a steady rate Q ,as shown in the figure below,maintaining 

the level of oil in the funnel at a distance H = 3cin above the entrance to the funnel tube,which
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ni? the lengthL =  30cm and diameter D =  3mm.The time required for 100cm3 to pass through 

:ae funnel is measured to be 152s.Calculate the kinematic viscosity v of the oil mixture.

Solution:

Solving equation (4.41) for v  =  ^ :

p ttD a (
(-5)-p 12 8Qp

Assuming that the flow in the top part, of the funnel is inviscid,the value of p at the entrance

to the funnel tube is the same as that at the liquid surface,i.e,Pa.At the funnel exist,P = Pa —

pg[H + L).Thus the pressure gradient is:

dp =  (Pa -  pg{H +  L)) -  Pa =  _  / K \
dz L P9\ l + l )

Substituting in the equation for w.

v =
128 Q M )

x(3 .0)E (-3)m )4(9.80.7m/s2) 3 ..
"  128(1.0B(-3)m3 -  152,) (1 + 30} "  2-682E(“ 4)m I s

If the funnel length L were doubled in this experiment,the flow rate Q would decrease only 

slightly,in proportion to 1 -1- £).

4.5 Flow Down an Inclined Plane 

Underlying Assum ptions
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• Assuming a viscous Huid is flowing in only one solid surface.

• Assuming that the fluid motion is caused by a component of gravity force parallel to the

solid surface.

• Assuming a plane surface inclined above the horizontal surface by an angle 0 and 

covered with the liquid layer of constant thickness h that flows parallel to the plate 

in the down hill direction.

• Assume the upper surface of the fluid y = h is in contact with air.

• Assume the air pressure is constant ̂ thus a negligible shear stress on a liquid surface^ •

-r

In the description of this motion,we select the x- component of the Navier-Stokes equa- 

tion(because the flow is along the x-axis only).

/i =  constant. (4.44)

noting that =  0, | |  =  0 because the air pressure is constant and the x  component of g is

g sin 0:

u =  —
(ffsin <(>)y2

2i/ +  ciy +  c2

41



and applying the boundary conditions that u = 0 aty = 0 and rxy = = 0 at y = h enables

us to find the velocity distribution u{y}:

u =
gsiiu/)

v (hv - 4) (4.45)

This velocity profile in figure (6) ,is parabolic with a maximum value umax at upper surface

(F =

Umn/r —
gh2 sin (j)

2 v
(4.46)

The volumetric flow rate per unit distance normal to the plane of the flow, ^  is found by 

integrating equationQ above on y:

Q_
W

gsin(j) hy2 y3h gh3 sin <f>
V 2 6 r  ”  31/ (4.47)
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Chapter 5

Summary and Conclusion

• In this chapter we present applications of Navier-Stokes equations for some problems.

5.1 Some Application Problems

Application 1: Starting with the Navier-Stokes equation,obtain the velocity profile which

describes the incompressible flow between two parallel vertical plates.The right plate is at 

rest,while the left is moving upward at a constant velocity,^. Assume the flow is laminar.

Solution:The Navier-Stokes equation in the y-direction is,
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(5.1)

where,

P ( —  -U -1-  yQ v  =  — —R. 4- II ( d2v _1_ d2V I d2v\  — n f
y \ d t ^ U d x ^ V d y + W d z )  Qy  ^  P \ d ^  +  d ?  +  d ? )  P P

dv

Substituting in equation (5.1)

Integrating,

dt
= 0 for steady flow.

u = 0 =  w

dv _  _  dv
dy dz

dp . dp
—  =  — =  constant. dy dy

dp drv
° = - i + ^ - ? F

or
d?v 1 r 
d ^  =  ~a ipF

+ d£ 
dy

X2 r
V =

2p pF  + H" Ax -f- B

Applying the boundary conditions,

(5.2)

At x  =  0, v = vs gives, 

vs = B

At x — l, v = 0 gives,

°=RM+̂ +Al+Vs
or A = - [ Y  + ± ( p F  + %)

Substituting for A and B  in equation(5.2)gives:

v-i Vf+%] (*2 -ix>+v- (x -  f) (s-3)

I'0te:The first expression in equation (5.3) is the equation of a symmetric parabola and the the 

second expression in above equation is the equation of a straight line with negative slope.
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Application2: Derive the differential equations of motion for a fluid of constant viscos-

:*y and density which is flowing over an impulsively accelerated,infinitely long horizontal flat 

plate.Assume that the flow is laminar.

Solution: Writing the Navier-Stokes equation for the 2-direction,

+  u dx (5.4)

.Assuming the following:

l.No body force in the 2-direction; Dx = 0
2.One dimensional flow ; v =  w = 0
3No change of flow variables in the ^-direction;

d_
dz

Then,

—  =  7—  = 0 for the long plate in the 2-direction.
ox ox/

Substituting these conditions into equation(5.4) yields:

du d2u

Similarly for the y-direction,the ^component of the Navier-Stokes equation becomes,

and the 2-direction gives,

%  =  ^  =  - pF  

dpor —  =  - p F  
dy

0 =  pBz

Thus,there is no body force component in the ^-direction.

Application3: Consider a fluid with constant viscosity and density which is flowing between

‘wo fixed parallel plates.The velocity profile is given by u = c(bz — z2), where b is the distance
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z

Laminar Flow Between Two parallel Plates.

between the plates and c is a constant.If the pressure at the point (0 ,0 ,0)is p0, find the pressure 

distribution at any point in the flow region.Assume that v = w = 0.

Solution: Writing the Navier-Stokes equation for steady flow in the x-direction,

n ( n.du  i „.d u  I „ SuA — _i- n f  d2u > d2u , d2u \ _j_ n T?
P \ Ud i + V d ^ + W -d-z) ~  Qx  +  +  W  +  a ? )  + f x

Where,

pFx =  0 (no body force in the x-direction)

v = w = 0 (given)

du du
- = ° = -  (given)

and S  = -2 c

Substituting in equation(5.5) we obtain:

d z2

dp
/  =  - 2  pc ox

The y and z components of the Navier-Stokes equation are:

dp
dy

=  0

Thus p is not a function of y.

Integrating equation(5.8) with respect to z,

dp „ 
d i  = - p F

(5.5)

(5.6)

(5.7)

(5.8)

P =  - j  oFz +  f(x) (5.9)
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To find /(x),differentiate (5.9) with respect to x,

Comparing to (5.10) with (5.6) gives:

! - « * >

f ' (x )  =  — 2 jic

(5.10)

or / (x )  — —2ficx +  d

Substituting equation (5.11) into equation (5.9) yields:

(5.11)

p(x, z) =  d  — 2 iicx — pFz

Substituting p = p0 at (0,0,0) gives

c  =  Po

and the final result is:

p(x, z) — po -  2pcx -  pFz

Application 4: Using the Navier-Stokes equation,determine the velocity profile for the incom­

pressible steady flow of water between two parallel plates at rest. Assume one dimensional laminar 

flow with constant viscosity.

Solution:For one dimensional flow,

Upper Plate: y * h

Lower Plate: y = 0
Flow between two parallel plates 
of infinite width.

V —  W =  0
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du
Thus, —  = 0 (from the continuity equation) 

du
Also, —  =  0 for steady fiow(no body forces in the x-direction) 

ot

Substituting the above in the ^-direction of the Navier-Stokes equation and simplifying,

dp _  d2u 
dx P dy2

Similarly for the y  and 2 directions:
dp _  „
dy P

and ^ = 0
dz

For small'h' the variation of p in the y-direction will be negligible and hence,

. dp

(5.12)

dy
=  0

Thus dp _  _  constant.(because u ^  /(.t ))
ax dx

Substituting in (5.12) and integrating twice,

u=tA%)v2+CiV+C2
At y =  0, u = 0, gives, c2 =  0 

At y  =  h, u = 0 gives,

Substituting,

u i (2) (y2 ~ hy)
Application5:

An incompressible viscous fluid undergoes steady.laminar flow through a circular pipe of radius 

ft.Derive the equation relating the velocity at any point to the maximum velocity. Assume one 

dimensional flow.
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Laminar Flow in a Circular Pipe.

S olution: Writing the Navier-Stokes equation in cylindrical coordinates for steady,laminar,constant 

property,with fully developed flow within a circular pipe,

1 1  ( r * )  =  1  
r  dr V dr /  u

1 dp
p dx

(5.13)

Since the the flow is fully-developed,
du
dx

=  0

Thus, u is the function of r  alone.In addition,since p is not a function of r  and the left-hand side 

of equation (5.13) can not depend on x  (since u depends upon r,but not x),

Thus,equation (5.13) becomes,

Integrating twice,

dp dp
—  =  — =  constant. 
dx dx

l d du l dp
r dr dr pdx

\ dp ,
u = — — (r*)+ cir  + c2 

4/i dx

At r  =  ± R u

1 ( a \
0 =  — . Me )

4/i \dx)

0 =  —  |(V )
4/i '

Solving,

C2

Ci =  0

= ~iXt)R2
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Substituting,

“ = i  ( i )  (r2 - *2>
Now,the maximum velocity occurs at r  =  0,

Substituting in equation (5.14) and simplifying,

(5.14)

Application6:

u = U i - ( f c )
2

In idealized laminar flow,as defined for the circular pipe shown in the figure below,the tempera­

ture is constant.Velocities in the z-direction are not zero,the viscosity and density are functions 

of temperature only,the potential Q is zero and the flow is at steady state. Also,the pressure drop 

per unit length of conduit is taken to be a constant.Determine the equation of motions of motions 

for idealized laminar flow.

-► 2

Coordinate System for Flow in Circular Pipe.

solution: The continuity equation in cylindrical coordinates is given by,

=  0 .

where r is the radial direction,# the azimuth,and 2 the axial direction.The designations vr,vo 

&ndv2denote the components of the velocity in the radial,azimuthal,and axial direction respec­

tively. For idealized flow,the above equation becomes,

dp
dt

dp
dr

dp
'de

dp
—  +  Vr —---- b Up —  +  Vz —---- 1----

az r
drvr
dr

+ Qm  +  ^  de ^
drvz

dz
= 0 (5.15)
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since p is a constant,
drvr dve drvz

+ —7 +  ~77-“ = 0dr 89 dz 
There are no radial or azimuthal components of velocity.Therefore:

drv ,
dz

=  0

(5.16)

(5.17)

1 r

(5.18)

Since the potential is zero,the following equation,

0—  =  p0r —  —  —  \^ ( drVr 4- ^2. _l_ f —  [ n r +  r —  ( n ^ x \dt dr  3  dr Lr  V dr +  w +  a* ) J ^ iT dr \ ^ r  dr ) ^ r uo ao ) ^ rdz dz )
where p = absolute viscosity,becomes

7T = °dr

when equations (5.16) and (5.17) are used together with the fact that vr = 0.

Similarly, the following equation

dt m  rdO  3r dO L r  V ~ d T  +  ~do +  ~ d t )  J +  Lr d r  V *  dr )  ^  r do de ) ^  r dz \0> dz )

'» -  2M ^ ]

Vvr +  2 ^ ^

becomes

smce

^  =  0

=  0

(5.19)

(5.20)

Since steady state-state conditions are assumed,the following equations,

p—  -  qA  _  ^  +  \n ( drv£ , dvz , drUj.)
dt Pq>z dz 3 d z l r \ - d ? + M + ^ J

and

1
H—  r dr d r )  ^  r dO [ P  d0 J  ^  d z  \J* dz )

dvz dvz dvz vp dv2 dv2

gives:

~ d t = ~ d t +Vr^  + V d s  +Vz~dz

_^  + iJL( t U n
dz +  rdr V" ar) 0

The fact that vr and Vp are zero and the symmetry of the flow condition gives:

dvz
dn

= 0

(5.21)

(5.22)
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Thus for idealized laminar flow in a pipe the pressure gradient may be expressed interms of the 

viscous force in the following way:

dp I d  
dz r dr O )̂ (5.23)

Equation (5.23) may be solved for the idealized flow by integrating once with respect to r so

that

where A(z) is an arbitrary function of z  and corresponds to a constant of integration in ordinary 

integration.Since the flow is symmetrical about the axis,

dv2
dr

=  0 (5.25)

at r =  0 so that A{z) =  0 

In the idealized flow T  is taken as a constant and

=
\d p J r

0

and therefore p is also a constant.Thus,a Second radial integration may be made to give

The velocity vz is zero when

and so,

Thus finally we obtain,

r -  r0

R ( s _  rldp  
B{z) ~

(5.26)

dp (r2 -  rg)
Vy = (5.27)

dz 4p

Application7:Consider an incompressible liquid in a cylindrical vessel which has been under­

going constant angular motion for a time interval which is of such a duration tha t the liquid 

has assumed a fixed orientation in the vessel.Show that the steady-state,the free surface forms a
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(r  ,z) w i t h in
f l u i d

paraboloidal surface given by z — zq = ^  j  r 2. Assume the viscosity of fluid is constant. 

Solution: Writing the Navier-Stokes equation in cylindrical coordinates for laminar flow,

'•component: p+ vTf y  +  -  *  +  vz% )  =  -§ £ + /*  [ g  ( $ £ (n v )) +  £ $

9-component:/; +  vr^  + %  +  % + + v , f e )  =  - \ % + »  [& ( « )  +  ^  ■

+P9r

d2ve
~d£

-component :p( * .  + v rf y  + = ~ f z + ^  [?& ( r ^ )  +  S

For steady state,

+  P9z

vz = v r = 0

and v0 = f(r )  only.
t

Therefore the above equation now becomes:

v[ _  Vp
^ r dr

(5.28)

(5.29)

n dp 
° = - ^ - P 9

dp
01 Tz = ~ p9

Integrating equation(5.30) we obtain:

1 C2 vo = +  -  i  r

(5.30)

where a  = 0 for a finite value of vo at r  =  0 At R = 0,the vessel radius,

q ClR y9 = u R  =  —
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or Ci =  2u

Hence, vq =  ur

Substituting in equation(5.29) we have:

Integrating,

uj2r2 dp
r dr

dp 2 or —  =  p u r  
or

v = \puj2''2 +  / ( 2 ) (5.31)

To find the unknown function f(z),we differentiate the above expression with respect to z,

dp
dz = f { z )

Comparing with equation(5.30),

/ '( *)  =  ~P9
Thus, f ( z )  = -p g z  +  c

Substituting into equation(5.31),

p =  -p g z  +  -po;2r 2 +  c

At r = 0, p = p0 and z — zq gives,

c =  p0 +  pgz o

Thus,

p =  pg(z0 -  z) +  ^pcj2r 2 + p0 

or P~Po = ~pg(z ~ zo) + 2 f)uj2j'2

It is known thatp =  p0 =  pa*m(f°r open vessels)at all radii on the free surface,and hence the 

equation of free surface is,

0 =  -pg{z -  zq) + -pct/2r 2 

or ■2 -  2° =  ( £ ) r2-
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