

ESTIMATES OF FERTILITY LEVELS IN NYERI DISTRICT:

EVIDENCE FROM 1979 CENSUS.

This Project is submitted in partial fulfilment of the requirement for the Post Graduate Diploma in Population Studies of the university of Nairobi.

September, 1991

DECLARATION

This project is my original work, and to the best of my knowledge has not been presented for a degree in any other University.

Signature:.

ANNEBELL W. K

This project has been submitted for examination with our approval as University supervisors.

8/10/91 Signatur

Prof. J.A.M.OTTIENO

Signature: A.B.C. OCHOLLA-AYAYO Prof.

PSRI,

UNIVERSITY OF NAIROBI,

P.O.BOX 30197,

NAIROBI.

ТО

My dear mother Rose Muthoni Njomo who loved me so dearly.

ACKNOWLEDGEMENT

I wish to express my sincere gratitude and appreciation to t University of Nairobi for offering me an opportunity to underta Population Studies Diploma Course.I am also grateful to a individuals who contributed to the success of this course.

I thank the Ford Foundation for offering me the one ye scholarship that enabled me pursue the course . I am great indebted to my two supervisors:Prof.J.A.M. Ottieno a Prof.A.B.C.Ocholla Ayayo for their guidance and scholar criticism. I also acknowledge the general assistance accorded me by Mr.Kimani, Mr.Koyugi and Miss Weru the Librarian of t Population Studies and Research Institute.

My unreserved gratitude goes to my dear husband Kihuha Wawen and children Waweru, Nungari and Muthoni for their grea perseverance.

Last but not least, I acknowledge Wamalwa who tiressly type this work.

iv

ABSTRACT

The objective of this study was to estimate fertility levels and differentials in Nyeri District by Division. The differentials studied include place of residence, marital status and level of education of mothers. Data used was from the 1979 National Population Census.

Fertility levels have been estimated at national, provincial and district levels in Kenya by applying the Coale Trussell P/F ratio method and the Gompertz Relational Model. Fertility levels by various variables have also been estimated but only at national levels due to lack of enough data.

Method of data analysis used is the unadjusted method for calculating the Total Fertility Rate(TFR).

The findings show that fertility is higher for women living in rural areas than for those living in urban centres, it is lowest for women with secondary plus education as compared with that of women with lower levels of education and women in married unions have highest fertility as compared to the others while single mothers have lowest fertility. The results on fertility levels show that differences in fertility levels in Kenya still persist among divisions in Nyeri District. They range between below six (Mathira, Tetu) and above six almost seven (Kieni East, Kieni West, Mukurweini and Othaya).

V

Table of Contents.

Title			,					×							i
DECLARATION						• •									ii
DEDICATION	а ь а		*					,							iii
ACKNOWLEDGEMENT								6							iv
ABSTRACT	р ц р	, e 4						в							V
CHAPTER ONE															
1.0 GENERAL INTRODUCTIO	N			в			в							*	1
1.1 Introduction and st	atemer	nt of	tł	ne	pro	ble	əm				q	я			1
1.2 Background of the s	tudy a	area							×					ø	2
1.3 Objective of the st	udy .		æ						٠					R	10
1.4 Methodology								R	,						10
CHAPTER TWO															
2.0 LITRATURE REVI	EW AN		NCE	PT	UAL	_ FF	RAM	1EV	/OR	ĸΚ			 		.12
2.1 Literature review															12
2.2 Conceptual framewor	k														16
2.2.1 Conceptual hypoth	esis .				a -										18
2.2.2 Operational hypot	hesis								в		я	*			18
CHAPTER THREE															
RESULTS AND D	ISCUSS	SION								,					19
3.0 Introduction				8		. r							н		19
3.1 Fertility level by	divisi	ons			• •								s		20
3.2 Differential by res	idence	j * =								я	•	a			22
Summary										*	5				26

CHAPTER FOUR

4.0	SUMMARY	AN	١D	СС	NC	CLU	JSI	101	1					4		ĸ					н		27
4.1	Summary				•	•									в	¥						•	27
4.2	Conclus	ior	ns.								٠												29
4.2	2.1 Reco	mme	enc	lat	ic	ons	ò										и	4					29
4.2	.2 Furth	er	Re	ese	ar	ch	1				N	Þ	8	٩									29
BIBL	IOGRAPH	Y			a		a														,		30
APPE	ENDIX .							6															33

List of Figures.

Fig	1 Location of Study area in Kenya	хi
Fig	2 Administrative Units of Nyeri District (1979) >	<ii< td=""></ii<>
Fig	3: Distribution of Health Centres and Maternity/Nursing	
	Homes by Division	6
Fig	4. Bongaarts Model	17
Fig	5. Total Fertility Rates in Nyeri District by	
	Divisions	21

List of Tables.

Table 1: Distribution of Health Centres and Matern	ity	y/N	lur	si	ing	3	
Homes by Division							7
Table 2 Population Density per division in Nyer	- i	Di	ist	ri	ict	Ľ.	
(1979)			v				8
Table 3: Kieni East (Rural) Fertility level				8			19
Table 4: TFR by Division							20
Table 5: TFR by mother's residence	•						22
Table 6: Differential by mother's marital status			,	٠			24
Table 7: Differential by Education				٠			25
Table 8: Summary of TFR by various differentials							26

viii

Fig. 1 LOCATION OF STUDY AREA IN KENYA

Fig. 2 : ADMINISTRATIVE UNITS OF NYERI DISTRICT

CHAPTER ONE

1.0 GENERAL INTRODUCTION

1.1 Introduction and statement of the problem

Kenya's population has been increasing rapidly. The growth rate has also been increasing from 3.3% per year in 1948 to 3.9% per year in 1979. Demographic surveys that were conducted in 1973, 1977 and 1978 also point to the fact that the trend is likely to continue upto the end of the century and beyond. In Kenya the gap is widening between fertility (which is high and stable) and mortality (which is low and still on a gradual decline) which means that the population is expected to grow in size for a number of years. (Z. Muganzi, 1988).

The study of the estimation of the levels and differentials of fertility is a means of explaining in terms of the social, economic, cultural, environmental and demographic factors, the fertility differences in Kenya. The 1974 Bucharest world Population plan of Action clearly, emphasized the need for such studies (U.N 1974). The plan of action mainly emphasized research dealing with relationship between socio-economic and demographic factors, especially in the developing countries.

The study of fertility levels and differentials among the various regions and groups in the country is an important aspect of demographic research. Studies carried out in Kenya indicate that fertility in Kenya has been rising since the first census in 1948.

The first estimation using the 1948 and 1962 census data by Som (1968) found the total fertility rate in Kenya to be 6.4 births. Blacker using the 1969 census (1971) found the total fertility rate to be 7.6 births. The National Demographic and Health Survey (1977) and the Kenya Fertility Survey (1977/78) show total fertility to have been 8.1 births. Mwobobia using the 19 79 census data estimated the total fertility rate at 8.2 births. Fertility in Kenya has therefore been rising over time. This with the corresponding increase in annual population growth rate cause serious socio-economic problems in the country especially in provision of essential services such as health, education and food.

Even though the total fertility rate of the whole country is high, the rates aren't uniform across regions and groups in the country. It is therefore important to study the relationship between fertility and the socio-economic, socio-cultural and environmental factors.

Earlier studies on fertility levels and differentials have been done upto district level. It becomes important to study the levels and differentials at lower administration units like divisions, locations and sub-locations to find out whether differences also exist, and how they compare with the national fertility level.

1.2 Background of the study area

Nyeri district is one of the five districts in Central province and forms part of Kenya's eastern highlands. It covers an area of 3,284 sq. km. The main physical features of the District

are mount Kenya (5199m) to the East and the Aberdare Range (3999m) to the west. These mountains both of volcanic origin, determine relief, climate and soils, and as a consequence, the agricultural potential of the District.

A great part of the district consist of resent volcanic rock, except for the extreme south eastern part with its small ancient basement rock formation. The soils are mainly red clays and red humid clays which are relatively deep and generally well drained and fertile.

The pattern of rainfall is typically equatorial for the district is situated within the highland equatorial zone of Kenya. There are two rainfall maxima; long rains, from March to May and short rains from October to December.

Over the past twenty years, certain areas of the District (Kieni) have been experiencing increased levels of population pressure due to migration from the high potential areas. Previously, these areas were able to sustain a number of large ranches due to extensive use of grassland and sparse vegetation. However, due to subdivision of the ranches into small holdings and the resultant removal of vegetation cover the fragile ecosystem of Kieni has suffered a great deal of degradation. Hence afforestation for fuel use and orderly water use are important conservative measures in the areas of most recent settlement.

Forest resources, both indigenous and plantations, are also under increasing pressure. Nyeri district possess a total of 100,000 hectares of gazetted forest. Approximately 66% of these is

indigenous or catchment protection forest, mainly of a mountain nature reserved for water catchment and wildlife.

Tourism forms an important part the natural resource base. The district earns a considerable amount of foreign currency from tourism industry, particularly from its town hotels, National parks, spectacular waterfalls, public campsite, fishing lodges and television and film making activities.

Administratively, Nyeri district is divided into seven divisions namely; Othaya, Mukurweini, Mathira, Kieni East, Kieni West, Municipality and Tetu which are further sub-divided into twenty four locations and one hundred and fifty six sub-locations. Nyeri district has four local authorities: Nyeri county council, Nyeri municipal council, Karatina Town council and Othaya urban. Health

There are fairly good health facilities in Nyeri district. Most of the population benefit from the medical services provided. The health facilities are provided by the gorvernment, church missions, private institutions and individuals. The government provides free services through a network of rural health units. The integrated rural survey showed that in 1983 12% of the households were just over 12km from rural health facilities, 21% were within 5km and 76% were between 3 to 12km. This accessibility data pertained to the populous divisions of Tetu, Othaya, Mathira and Mukurweini. Only Kieni East and Kieni West divisions are worse off. There the available health facilities are not within the effective reach of the rural population. This is partly due to under-

utilisation of health centres and partly due to lack of information on how to utilize properly the available preventive/promotive and curative facilities and also due to inadequate personnel, medicine, laboratory facilities etc.

Before the 1984-88 District Development Plan, there were 986 beds in the district's health facilities, which were very (few) inadequate, causing congestion in all sections of the then only hospital, particularly the maternity section. now there has been increase in bed capacity by extending Provincial General Hospital (PGH) and upgrading 3 health centres namely Karatina, Othaya and Mukurweini to hospital status. utilisation of health centres and partly due to lack of information on how to utilize properly the available preventive/promotive and curative facilities and also due to inadequate personnel, medicine, laboratory facilities etc.

Before the 1984-88 District Development Plan, there were 986 beds in the district's health facilities, which were very (few) inadequate, causing congestion in all sections of the then only hospital, particularly the maternity section. now there has been increase in bed capacity by extending Provincial General Hospital (PGH) and upgrading 3 health centres namely Karatina, Othaya and Mukurweini to hospital status.

Fig. 3 : DISTRIBUTION OF HEALTH FACILITIES IN NYERI DISTRICT

Table 1: Distribution of Health Centres and Maternity/Nursing Homes

by Division

Division	Homes/Beds	Population	Population/Bed
Mathira Othaya Tetu Mukurweini Kieni East Kieni West	2/20 3/42 4/45 4/58 1/18 2/33	138,289 76,832 158,030 86,240 42,214 52,600	6,914 1,829 3,112 1,487 2,345 1,594
Total	16/214	560,205	2,618

Source: MOH (Nyeri)

Although there are several dispensaries in Othaya, Tetu and Mukurweini, the population densities in these divisions are very high.

Inorder to reduce the rate of child mortality the MOH recommends stepping up child welfare clinics. Diarrhoeal diseases in the Kieni East and Kieni West divisions where clean water supply is inadequate.

The family health programmes continue to aim at reducing maternal, perinatal, infant and child mortality. The newly settled divisions of Kieni East and West require full water supply, sanitation and health education more than any other part of the district. Preventive measures are given first priority.

DEMOGRAPHIC AND SETTLEMENT PATTERNS

According to the National census of 1969 and 1979, the population of Nyeri district grew from 360,845 to 486,477 people at an annual growth rate of 3.03%. 8.4% of the districts population Currently the classified road network is approximately 1704 km. The classified road network is concentrated on the traditional southern divisions (Nyeri municipality, Mathira, Othaya and Mukurweini). In Kieni east and Kieni west the road network system does not properly meet the needs of the population.

The 1989-93 Development plan undertakes to improve the road network in the two Kieni's as the two divisions have now become economically productive (wheat, maize and horticultural crops) and the population is increasing at a fast rate as a result of resettlement from other divisions.

The unclassified road network is denser in the more populated areas of the south (viz Mathira, Othaya, Mukurweini and Tetu) where more socio-economic activities take place, as opposed to the two Kieni's where the population becomes relatively sparse and therefore less socio-economically active. Another reason for the light road network in the two Kieni's is that it is here that most of the national parks and forests are situated.

Schools are fully utilized and in some cases over utilized in divisions like Mathira, Othaya, Tetu and Mukurweini. There are 346 primary schools with an optimum pupil/teacher ratio of 30:1. In the Kieni's the schools are under utilized due to either under enrolment due to low population density or lack of education facilities as a result of recent resettlement.

There are two primary teacher training colleges at Kamwenja and Kagumo. There are 112 secondary schools, with optimal student/teacher ratio of 18:1. Schools facilities are under

utilized due to lack of sufficient school facilities.

1.3 Objective of the study

The main objective is to estimate fertility levels and differentials in Nyeri district by divisions.

Specifically, the study will estimate the relationship between education, marital status and place of residence and fertility levels and trends.

1.4 Methodology

There are a number of demographic techniques for estimating fertility. These methods fall under two categories. These are those that are based on children ever born(CEB) data and those that depend on age structure along with mortality level. For the first category there are methods such as Brass P/F ratio,Coale-Trussell method and Gompertz Relational model.For the second category, we have the Reserve survival methods.

The assumption made here is that the fertility and mortality schedule are constant. However, under changing conditions a number of modifications have to be done. For the first category we can apply Zlotnik and Hill's method known as the hypothetical cohort approach. This method requires two sets of data to obtain a third set. For the second category Coale (1981), Ventakacharya (1983) developed techniques for non-stability assumptions.

The techniques based on CEB, Births Last Year (BLY) for every five-year age groups.

Thus parity P(i) is defined by

P(i) = CEB(i)/FPop(i)

Where (i) refers to the iths age group.

For current fertility f(i) we get F(i) and thus we get P/R ratio method Coale-Trussell and Gompertz Model use this P/F ratio in calculating TFR. By so doing f(i) is analyzed.

However in our study, we shall not use these methods to adjust current age specific fertility rates f(i). Instead we shall use the unadjusted f(i) which is simply defined as

f(i) = BLY(i)/FPop(i).

CHAPTER TWO

2.0 LITERATURE REVIEW AND THEORETICAL FRAMEWORK.

2.1 Literature review

Studies on fertility levels and differentials in Kenya are quite recent. Kangi (1978) used the 1969 census data and recommended that the provision of just primary school education for girls is enough to reduce fertility in Kenya even more than secondary education. However, Cochrane (1979) and Henin argued that just primary education for girls would lead to higher fertility levels. Mwobobia (1982) also used the 1979 census data and concluded that Kenya's move to free primary education would lead to a rise in total fertility rate. The study also found that the mean age at first marriage works in the same direction and magnitude with primary level of education. He also recommended a reduction of illiterate women in the urban areas. Cochrane (1983) found that although the effect of female education reduces fertility by one child, male education by one third as large and urban residence by two third. Total fertility rate for rural areas in Kenya, 8.4 births but 6.1 births when all women are considered. But when only ever married women are considered, it is 8.0 births and 6.5 births respectively.

Osiemo (1986) also recommended that secondary education for girls in Kenya is necessary for any substantial reduction in fertility. The study further found out that urban fertility is not very much different from rural fertility in Kenya. 1

Formal education is said to help in the achievement of female reduction. Caldwell (1980) says that the impact of education on fertility is not direct but acts through other mechanisms. He concluded that formal education rather than duration of schooling among those who have attended school is the most important force behind fertility decline. This is particularly so, he added, when it involves the majority of the populace especially females.

Kerkar (1978) was a predecessor of Henin and Cochrane. He investigated the effect of housewives education on fertility in Sierra Leone and held that those with primary education had more children than those with none.

Henin (1973) did a study in Tanzania and found out that more years of education results in lower fertility for single women. When education for all women was considered those women with 1-4 years of education had a higher fertility than women with no education. Fertility only declined after the fourth year of education. In this study professional women had the highest fertility while agricultural paid workers had the lowest fertility level. When women economic status was controlled, the higher the economic status of the husband the higher the fertility of the wife. An uncommon finding in this study is that fertility tends to rise as women move up the socio status ladder.

Malnos (1973) on cultural practices of the East African tribes found out that sex preference for sons was practiced by all tribes, a factor which can influence fertility. Studies have shown that urbanization makes people drop or loose contact with their cultural

beliefs and practices, this is a fact that could affect fertility.

Anker and Knowles (1980) support this in their study which showed an inverse correlation between fertility and urbanization.

Anker and Knowles (1977) found out that total fertility rates in urban areas were reasonably lower than they were in the surrounding rural areas. They showed that Nairobi had a total fertility rate of 5.5 while the surrounding area of Central province had 8.5. In Kenyan urban areas, the main ideal family size was found to be 6.79 while that of the rural Kenya was 7.84 children. The two authors concluded that Kenya has a definite rural-urban fertility differential.

Gaitta (1982) using data from 1977/78 KFS found that working women were proportionately more educated and more urbanized, had late age at marriage, desired smaller family and had highest use of contraceptives. Marital stability was found to affect fertility performance.

Omagwa (1985) found that the major factors which influence the levels of fertility are education, mortality and immigration.

Osiemo (1986) used the 1969 and 1979 census data and found out that fertility levels are quite high in Kenya and have been increasing. These levels varied with education, marital status and residence. He recommended that secondary education for girls in Kenya is necessary for substantial reduction in fertility.

Ong'uti (1987) used data from KCPS 1984 and 1979 census. He also found that fertility varies by education, residence, marital status, religion and regions. From the fertility trends in Kenya, from 1962 upto 1984, there are signs that Kenya's fertility has started to stabilize.

Bogue (1969) concluding from his surveys in the United States found that through out the world, there seems to be strong inverse relationship between the amount of educational attainment and the level of fertility (1969:693)." In his study, Bogue found that rising educational levels, school attendance and elimination of early marriages are much more powerful in promoting fertility reductions than simple urbanization and rising levels of income.

Hiesel (1968) using the 1962 census data found that women with higher levels of formal education in any given age group have lower fertility. He also showed that the desired family size decreased with increased survival rates of children.

Studies done in developing countries have shown that an urbanrural fertility differential exists. In Latin America it has been Contile shown that the rural women are more fertility than the urban women (United Nations, 1973). While doing a study in Mexico, Burnight (1965) showed that differences in fertility existed between the rural and urban communities with the urban centers having a lower fertility than the rural areas. At a later date Robinson (1960) came to the same conclusion but demonstrated that the gap between urban and rural fertility differentials in Mexico had narrowed considerably due to the increase in fertility in the urban centers. attempted to explain the observed rural urban Zarate 1967 differentials in Mexico. He came to the conclusion that these fertility differentials were due to variations in age at marriage,

percentage of married women and the literacy levels of these married women.

2.2 Conceptual framework

Bongaarts in his conceptual framework illustrates that socioeconomic factors influence the proximate determinants of fertility. The proximate determinants of fertility are those factors that affect fertility directly like use of contraceptives, biological like the duration of breastfeeding, child-spacing, infant and child mortality. The socio-economic variables are factors like level of education of the mother, mother's income and place of residence. Fig 4. Bongaarts Model.

2.2a Conceptual Framework of Fertility Determinants.

2.2.1 Conceptual hypotheses

(i) Level of mother's education is likely to affect fertility.

(ii) Marital status is likely to affect fertility.

(iii) Place of residence is likely to affect fertility.

2.2.2 Operational hypotheses

1. Women with zero or few years of education upto 4 years are likely to have fewer number of children than those with primary education.

2. Women with secondary education and above are likely to have the least number of children. Lower than those with zero education.

3. Women with primary education are likely to have highest number of children. So primary education is positively related to number of children.

4. Fertility of women in urban centers is likely to be lower than for those living in the rural areas.

5. Women in unstable unions (divorced, separated and widowed) are likely to have a lower fertility than those in stable unions.

CHAPTER THREE

RESULTS AND DISCUSSION

3.0 Introduction

In the following discussion of fertility in Nyeri district by division, we have used the unadjusted technique to estimate the fertility levels. Which is obtained from the formula

Where ASFR is the age specific fertility rate, BLY is the births in the last year and FPop is the female population. All this refer to the ith age group. Since ASFR is unadjusted, the Total Fertility Rate TFR is obtained by

 $TFR = 5 \times \Sigma ASFR(i)$(3.2)

Table 1 below shows the data used to obtain the TFR for Kieni East (Rural)

Table 3: Kieni East (Rural) Fertility level.

(1)	(2)	(3)	(4)	(5)
Age	FPOP	CEB	BLY	f(i)
15-19 20-24 25-29 30-34 35-39 40-44 45-49	1985 1279 1077 1013 896 694 485	439 2316 4031 5507 5883 4788 3392	181 374 337 247 164 67 24	0.091184 0.292416 0.312906 0.24383 0.183036 0.096542 0.049485
		TFR =	TOTAL 5 x 1.26939	1.269398 98 = 6.346991

Column (1) represents the age of mothers stated in five-year age groups, column (2) is Female population for each age group, column (3) is number of children ever born per each age group, column (4) is number of births twelve months before the census and column (5) is the age specific fertility rate (given by column (4) divided by column (2) for each age group). Sum of column (5) multiplied by 5 (size of age group) gives the TFR.

The data used as stated earlier is from the 1979 census. The study is therefore based on the administrative divisions that are available. Nyeri municipality is missing and the estimates have been calculated exclusive of it.

3.1 Fertility level by divisions

Table 4: TFR by Division

Division	TFR
Kieni East	6.35
Kieni West	6.55
Mukurweini	6.86
Mathira	5.80
Tetu	5.93
Othaya	6.39

Fig. 5 : NYERI DISTRICT - TOTAL FERTILITY RATE

Of the six divisions studied, Mukurweini has the highest fertility for all combined cases, with a TFR of 6.86, while Mathira has the lowest fertility in general with TFR of 5.8.

The district as a whole has a relatively low fertility. The fertility range within the district is also low with a range of about one child (5.8-6.86).

The district has high potential areas for agricultural development. Most of this has been fully exploited especially in high density areas like Mukurweini. The main cash crops in the area are coffee and tea. These are income generating and have contributed a lot to the economic development of the district.

The level of education is relatively high in Nyeri district. In addition to the formal education of primary and secondary schools there are facilities for professional and adult education thus enhancing the high level of literacy. This could be one factor contributing to relatively low fertility compared to the national level of 8.1 in 1979.

3.2 Differential by residence Table 5: TFR by mother's residence

Division	RURAL	URBAN
Kieni East Kieni West Mukurweini Mathira Tetu Othaya	6.35 6.55 6.86 5.90 6.37 6.46	3.21 5.00 4.65

In the table 3 above it is clear that Nyeri District at the time of the census 1979, not all the divisions were classified into rural and urban. Three of the divisions, Kieni east and west and Mukurweini were classified as just rural. However the results obtained of the fertility conform with the expected. Fertility of mothers in urban centers is lower than for those mothers in rural areas. This can be explained by the differences in socio-economic situation in urban and rural areas. In urban areas basic services are provided for but life is expensive because one has to pay for these services. The more the number of children the more the spending hence the need to have smaller families. Due to the accessibility of basic services more people in urban areas are educated and hence there is more child survival and the people start valuing other goods more than many children. All these coupled with the fact that most urban women are employed and can not afford a lot of time in rearing children, leads to lower fertility. In urban areas there is high contraceptive use due to accessibility while in the rural areas, the reverse is true. The fertility is higher than for those in urban areas. This could be due to the fact that most of these mothers are engaged more in farming, majority have their husbands working in the urban centers leaving all the farm work to her. This makes the mothers need more children to assist in the farm where necessary. There is also low contraceptive use in the rural centers due to lack of time to attend the clinics and also inaccessibility of these clinics.

Division	Single	Married	Widowed	Divorced/ separated
Kieini East	3.21	8.35	4.11	5.77
Kieni West	4.02	8.45	8.58	7.71
Mukurweini	3.04	9.36	3.88	7.08
Mathira	2.64	8.47	3.09	4.04
Tetu	2.81	8.28	4.20	5.52
Othaya	2.92	8.75	3.46	5.12

Table 6: Differential by mother's marital status

In the above table marital status is categorized into single, married, widowed and divorced or separated. A lot of variation in fertility exists within the District especially among the widowed in Nyeri District the TFR is 8.58 in Kieni West. It is 3.09 in Mathira, and among the Divorced/separated TFR is 7.71 in Kieni West and 4.04 in Mathira. Among the single and the married the variation is not great. The highest fertility among the single is in Kieni West (4.02) and among the married is in Mukurweini (9.36) while the lowest are in Mathira (2.64) for single and Tetu (8,28) for married.

Fertility differentials in Nyeri District conforms with the pattern observed in various other studies except for Kieni West where the widowed have higher fertility than the divorced or separated. This could be due to the influence of migration where widows after migrating co-habit and get more children while still identifying themselves with the late husband. The other possibility is that the female population being considered is very small hence the number of widows is also small and tends to exaggerate the TFR.

24

-

Division	None	Primary	Secondary plus
Kieini East	6.95	6.61	3.21
Kieni West	6.83	6.92	4.70
Mukurweini	7.55	7.07	5.33
Mathira	6.20	6.06	4.82
Tetu	6.21	6.47	4.16
Othaya	6.44	6.72	4.94

Table 7: Differential by Education

In the table 7, above education of the mother is classified into those with none, primary and secondary plus. Many scholars have shown that an inverse relationship exists between fertility and the level of education. According to Kangi, the mean number of children women in childbearing period have and desire to have, she observed a decline according to their level of education. According to Kangi in Central province there is widespread illiteracy and primary education has greater influence in depressing fertility than secondary education. However in Nyeri district as can be seen from the table above there is little difference between those with no education and those with primary education. Secondary education seems to have a great effect on depressing fertility. The difference in fertility between women with primary education and those with secondary education is about 2 children while that between those with none and those with primary education is less than 0.1 children. The effect of secondary education in Nyeri could be explained with the number of primary and secondary schools in the districts. Other professional colleges are also present.

Summary

The above mentioned tables can be summarized into the following table which shows fertility estimates by various differentials.

Table 8:	Summ	ary c	of TFR by	variou	us d'	ifferentia
Variable	Kieni East	Kieni West	Mukurweini	Mathira	Tetu	Othaya
<u>Residence</u> Rural Urban	6.35	6.55	6.86	5.9 3.21	6.37 5.0	6.48 4.65
<u>Marital</u> <u>Status</u> Single Married Widowed Divorced/ separated	3.21 8.35 4.11 5.77	4.02 8.49 8.58 7.71	3.04 9.36 3.88 7.08	2.64 8.47 3.09 4.04	2.81 8.28 4.20 5.52	2.92 8.75 3.46 5.12
Education None Primary Secondary plus	6.95 6.61 3.21	6.83 6.92 4.70	7.55 7.07 5.33	6.2 6.06 4.82	6.21 6.47 4.16	6.44 6.72 4.94

For the combined cases Mukurweini has the highest fertility and Kieni east has the lowest. By education women with primary education have the highest fertility except in Kieni east, Mukurweini and Mathira.

Rural fertility is higher than urban fertility. Fertility of the married women is the highest whereas for the single it is the lowest

CHAPTER FOUR

4.0 SUMMARY AND CONCLUSION

4.1 Summary.

The main objective of this study was to estimate the fertility differentials in Kenya by division. The source of data in this study has been the census of 1979. The data however had only three differentials which were not enough to account for the fertility differentials. The method used was the unadjusted one which involved dividing births last year with the female population. The errors found in the data were mainly due to misreporting of age and marital status.

The estimation of the TFRs by the three differentials showed that differences within each of them were very stricking. In education women with no education and those with primary education had slightly higher TFR. This means that women's education upto primary level is not enough to change their perceptions towards large families.

There is a significant decline in fertility for women with secondary plus education. This could be due to the fact that these are women likely to have married late due to time spent in school, they are likely to get paid jobs and hence value other goods in place of many children. They are also likely to have higher income and access to family planning services which are factors likely to suppress fertility.

In general although women's fertility declines as the women's

level of education increases, the magnitudes of the differences are very small. This agrees with a study by the United Nations (United Nations, 1984: pp.235) that differences in fertility are greatest in countries that have had substantial fertility decline. The present results show that differences in fertility are greatest when women with no education are compared with those having secondary plus education.

Fertility rates by place of residence showed that for those women residing in rural areas were higher than for those in urban areas. This higher fertility in rural areas could be due to the fact that children are looked at as the source of labour and as security in old age because enough social amenities have not affected the rural people.

Fertility rates by marital status also showed some variation. The women who were single had lowest fertility while the fertility of the married women was the highest. Those in unstable marriages (widowed, divorced or separated) had their fertility rates intermediate between the single and the married. This could be due to much time spent outside the marital unions. The widowed and the divorced have an economic burden to look after their children and also earn income. This economic burden is in terms of time spent looking after children instead of selling their labour in the market. This is likely to make them have fewer children than the ones in constant marital unions. This is also a clear indication that remarriages or inheriting a widow is dying out in the district.

4.2 CONLUSIONS.

4.2.1 RECOMMENDATIONS

(i) Universal secondary education for females

(ii)The number of secondary schools should be increased and should be well equipped.

(iii)Health facilities should be increased in the district, should be distributed evenly and should offer family planning services. (iv)When the policies are being made culture of the society should be taken into account so that the policies can have the intended impact.

4.2.2 FURTHER RESEARCH

We recommend further research to be done in these areas: (i) Study the fertility differentials in Nyeri Municipality (ii)Study the effect of in-migration on fertility levels at location level in Nyeri and in particular Kieni East and Kieni West.

(iii)Socio-economic and cultural determinants of high and low fertility areas in Nyeri District.

(iv)Adolescent fertility in Nyeri district and its determinants.(v)Fertility among the widowed in Kieni West.

BIBLIOGRAPHY

Anker, R. and Knowles, J.C (1980) "Human Fertility in Kenya", <u>World Employment Programme Research,</u> Draft Monograph, I.L.O., Genera.

(1977): Socio-Economic Determinants of Fertility in Kenya: At Macro and Micro Level. A paper presented in a conference at Kericho, Kenya.

- Bogue, D.J. (1969): <u>Principles of Demography</u>, New York, John Wiley and Sons, Inc.
- Cochrane, S. (1979): "Fertility and Education: What do we Really Know?, <u>IBRD Occasional Papers,</u> No.26, Baltimore.
- Henin R. A. (1968): Fertility Differentials in Sudan Population Studies Vol. 22 No.1 pp.147-164.
- Henin, R.A. (1979): <u>Recent Demographic Trends in Kenya,</u> Population Studies and Research Institute, University of Nairobi.
- Hiesel, D.F. (1968): "Attitudes and Practice of Contraceptives in Kenya", <u>Demography</u> , Vol.5, pp.632-641
- Kangi, M. (1978): <u>Urban-Rural Fertility Differentials</u>: <u>A case</u> <u>Study of Nairobi and Central Province.</u> A Dissertation of M.A in the Department of Geography, University of Nairobi.

Kenya.Ministry of Planning and National Development:

Nyeri District Development Plan (1989-93).

Kpedekpo, G. (1982): Essentials of Demographic Analysis for Africa. Heinmann, London.

- Little, R.J.A and Hobcraft J. (1984):Fertility Exposure analysis: A new method of Assessing the contribution of Proximate Determinants to Fertility Differentials, <u>Journal of Demography</u>, Vol. 38 No. 1.
- Loebner, H. and Driver, E. D. (1973) "Differential Fertility in Central India: A Path Analysis." <u>Demography</u> Vol. 10. No.3 pp. 329-350.
- Muganzi Z. (1988):" Fertility and Mortality Trends in Kenya" Kenya's Population Growth and Development to the Year 2000.
- Mwobobia, I.K (1982): <u>Fertility Differentials in Kenya: A Cross</u> <u>Regional Study</u>, A Dissertation for M.A in the Population Studies and Research Institute, University of Nairobi.
- Osiemo, A. (1986): "Estimation of Fertility Levels and Differentials in Kenya: An Application of the Relational Gomperz and Coale-Trussell Models". Msc. Thesis Population Studies and Research Institute, University of Nairobi.
- Robinson, W. C. and Robinson, E. H. (1960): Rural-urban Fertility Differentials in Mexico <u>American Sociological</u> Review Vol. 25. No.1 pp.77-81.

- Som, R.K. (1968): "Some Demographic Indicators for Africa", Caldwell, J.C. and Okonjo, C(eds.). <u>Population</u> <u>of Tropical Africa</u>: Paper of the First African Conference. University of Ibadan, Nigeria. 3-7 Jan.
- United Nations (1973): The Determinants and Consequences of Population Trends. New Summary of Findings on Interactions of Demographic Economic and Socio-Factors. Department of Economic and Social Affairs. <u>Population Studies</u> No. 50 New York.
- Zarate, A.O. (1967): Factors associated with Urban-Rural Fertility Differentials in Mexico. <u>Population Studies.</u> Vol. 21 No. 3 pp 283-293.

APPENDIX

NYERI DISTRICT : RURAL/URBAN RESIDENCE

Kieni East (Rural)

Age	F Pop	CEB	BLY	f(i)
15-19 20-24 25-29 30-34 35-39 40-44 45-49	1985 1279 1077 1013 896 694 485	439 2316 4031 5507 5883 4788 3392	181 374 337 247 164 67 24	0.091184 0.292416 0.312906 0.24383 0.183036 0.096542 0.049485
		TFR = 5	Σf(i) = *Σf(i) =	1.269398 6.346991

Kieni West (Rural)

Age	F Pop	CEB	BLY	f(i)
15-19 20-24 25-29 30-34 35-39 40-44 45-49	2291 1308 1079 1075 1033 746 558	455 2351 4202 6194 7198 5478 4230	177 379 361 266 208 87 24	0.077259 0.289755 0.334569 0.247442 0.201355 0.116622 0.043011
		TFR =	Σf(i) = 5*Σf(i) =	1.310013 6.550066

Mukurweni (Rural)

Age	F Pop	CEB	BLY	f(i)
15-19 20-24 25-29 30-34 35-39 40-44 45-49	4182 2217 1998 1907 1529 1379 1111	738 3808 7622 10502 9839 9393 7378	325 722 657 563 303 140 50	0.077714 0.325665 0.328829 0.295228 0.198169 0.101523 0.045005
		TFR =	Σf(i) = 5*Σf(i)	= 1.372132 = 6.860662

Age	F Pop	CEB	BLY	f(i)
15-19 20-24 25-29 30-34 35-39 40-44 45-49	7349 3895 3398 3323 2678 2267 1677	1220 6098 12232 17813 17300 15441 11667	440 1065 1009 805 477 203 67	0.059872 0.273427 0.296939 0.242251 0.178118 0.089546 0.039952
	TF	Σf(R = 5*Σf(i) = i) =	1.180106 5.900529

Mathira (Urban)

Age	F Pop	CEB	BLY	f(i)
15-19 20-24 25-29 30-34 35-39 40-44 45-49	135 223 212 145 61 36 12	34 279 516 534 211 147 51	14 39 36 24 0 1 0	0.103704 0.174888 0.169811 0.165517 0 0.027778 0
	0.641698 3.208490			

Mathira

Age	F Pop	CEB	BLY	f(i)	
15-19 20-24 25-29 30-34 35-39 40-44 45-49	7484 4118 3610 3468 2739 2303 1689	1254 6377 12748 18347 17511 15588 11718	454 1104 1045 829 477 204 67	0.060663 0.268091 0.289474 0.239043 0.174151 0.08858 0.039668	
Σf(i) = 1.15967 TFR = 5*Σf(i) = 5.798351					

Mathira (Rural)

Age	F Pop	CEB	BLY	f(i)
15-19 20-24 25-29 30-34 35-39 40-44 45-49	7349 3895 3398 3323 2678 2267 1677	1220 6098 12232 17813 17300 15441 11667	440 1065 1009 805 477 203 67	0.059872 0.273427 0.296939 0.242251 0.178118 0.089546 0.039952
$\Sigma f(i) = 1.1801$ TFR = 5* $\Sigma f(i) = 5.9005$				

Mathira (Urban)

Age	F Pop	CEB	BLY	f(i)
15-19 20-24 25-29 30-34 35-39 40-44 45-49	135 223 212 145 61 36 12	34 279 516 534 211 147 51	14 39 36 24 0 1 0	0.103704 0.174888 0.169811 0.165517 0 0.027778 0
	0.641698 3.208490			

Mathira

Age	F Pop	CEB	BLY	f(i)	
15-19 20-24 25-29 30-34 35-39 40-44 45-49	7484 4118 3610 3468 2739 2303 1689	1254 6377 12748 18347 17511 15588 11718	454 1104 1045 829 477 204 67	0.060663 0.268091 0.289474 0.239043 0.174151 0.08858 0.039668	
Σf(i) = 1.15967 TFR = 5*Σf(i) = 5.798351					

Tetu (Rural)

Age	F Pop	CEB	BLY	f(i)
15-19 20-24 25-29 30-34 35-39 40-44 45-49	6059 3460 2927 2536 2220 1858 1508	1042 5849 11051 14062 14869 12288 9928	396 1017 956 647 432 188 56	0.065357 0.293931 0.326614 0.255126 0.194595 0.101184 0.037135
	ΤF	Σt R = 5*Σt	f(i) = f(i) =	1.273942 6.369712

Tetu (Urban)

Age	F Pop	CEB	BLY	f(i)
15-19 20-24 25-29 30-34 35-39 40-44 45-49	2095 2011 1580 1010 659 435 337	545 2766 4654 4531 3557 2687 1988	173 415 373 192 102 32 19	0.082578 0.206365 0.236076 0.190099 0.15478 0.073563 0.05638
	TFF	Σf(i) R = 5*Σf(i)	=	0.999841 4.999203

Tetu

Age	F Pop	CEB	BLY	f(i)
15-19 20-24 25-29 30-34 35-39 40-44 45-49	8154 5471 4507 3546 2879 2293 1845	1587 8615 15705 18593 18426 14975 11916	569 1432 1329 839 534 220 75	0.069782 0.261744 0.294875 0.236605 0.185481 0.095944 0.04065
	TFR	Σf = 5*Σf	(i) = (i) =	1.18508 5.925402

Othaya (Rural)

Age	F Pop	CEB	BLY	f(i)
15-19 20-24 25-29 30-34 35-39 40-44 45-49	3872 2189 1909 1639 1430 1128 1000	625 3687 7403 9110 9644 4411 6949	249 644 613 447 296 112 38	0.064308 0.294198 0.321111 0.272727 0.206993 0.099291 0.038
Σf(i) = 1.296628 TFR = 5*Σf(i) = 6.483139				

Othaya (Urban)

Age	F Pop	CEB	BLY	f(i)
15-19 20-24 25-29 30-34 35-39 40-44 45-49	101 120 99 59 30 34 13	20 164 283 273 159 191 95	7 28 13 7 9 0 1	0.069307 0.233333 0.131313 0.118644 0.3 0 0.076923
	0.929521 4.647603			

Othaya

Age	F Pop	CEB	BLY	f(i)
15-19 20-24 25-29 30-34 35-39 40-44 45-49	3973 2309 2008 1698 1460 1162 1013	645 3851 7686 9383 9803 4602 7044	256 672 626 454 305 112 39	0.064435 0.291035 0.311753 0.267373 0.208904 0.096386 0.0385
Σf(i) = 1.278386 TFR = 5*Σf(i) = 6.391928				

NYERI DISTRICT : MARITAL STATUS

Kieni East (Single)

Age	F Pop	CEB	BLY	f(i)
15-19 20-24 25-29 30-34 35-39 40-44 45-49	1644 401 142 92 69 34 29	144 343 317 325 300 155 98	69 65 23 13 4 2 0	0.041971 0.162095 0.161972 0.141304 0.057971 0.058824 0
	TFR	Σf(= 5*Σf((i) = (i) =	0.624136 3.120681

(MARRIED)

Age	F Pop	CEB	BLY	f(i)
15-19 20-24 25-29 30-34 35-39 40-44 45-49	315 844 885 835 743 573 385	279 1888 3529 4741 5138 4088 2836	107 301 306 216 149 62 23	0.339683 0.356635 0.345763 0.258683 0.200538 0.108202 0.05974
	TFR	Σf(* = 5*Σf(*	i) = i) =	1.669244 8.34622

(WIDOWED)

Age	F Pop	CEB	BLY	f(i)
15-19 20-24 25-29 30-34 35-39 40-44 45-49	3 6 9 27 37 42 46	2 17 35 154 235 286 308	1 0 1 6 4 2 0	0.333333 0 0.111111 0.222222 0.108108 0.047619 0
	TFR	Σf(= 5*Σf((i) = (i) =	0.822394 4.111969

(DIVORCED/SEPARATED)

Age	F Pop	CEB	BLY	f(i)
15-19 20-24 25-29 30-34 35-39 40-44 45-49	15 28 41 56 47 44 22	13 68 150 274 210 253 138	4 8 7 12 7 1 1	0.266667 0.285714 0.170732 0.214286 0.148936 0.022727 0.045455
	TFR	Σf(= 5*Σf((i) = (i) =	1.154516 5.772582

KIENI WEST

(Single)

AGE	F Pop	CEB	BLY	f(i)
15-19 20-24 25-29 30-34 35-39 40-44 45-49	1972 464 179 123 100 60 43	158 463 389 494 516 254 194	79 68 28 17 13 6 4	0.040061 0.146552 0.156425 0.138211 0.13 0.1 0.1 0.093023
$\Sigma f(i) = 0.804272$ TFR = 5* $\Sigma f(i) = 4.021359$				

(Married)

Age	F Pop	CEB	BLY	f(i)
15-19 20-24 25-29 30-34 35-39 40-44 45-49	294 795 819 847 826 561 412	274 1756 3484 5107 5977 4425 3342	89 296 310 220 177 71 18	0.302721 0.372327 0.37851 0.25974 0.214286 0.12656 0.043689
		Σ1 TFR = 5*Σ1	f(i) = f(i) =	1.697834 8.489168

(Widowed)

Age	F Pop	CEB	BLY	f(i)
15-19 20-24 25-29 30-34 35-39 40-44 45-49	9 11 15 28 54 65 63	10 34 70 148 379 431 447	5 3 5 10 9 1 1	0.555556 0.272727 0.333333 0.357143 0.166667 0.015385 0.015873
	TFR	Σf(i) = 5*Σf(i)		1.716683 8.583417

(Divorced/Separated)

Age	F Pop	CEB	BLY	f(i)
15-19 20-24 25-29 30-34 35-39 40-44 45-49	12 34 65 77 53 59 38	12 88 258 445 326 358 246	4 12 18 19 9 8 1	0.333333 0.352941 0.276923 0.246753 0.169811 0.135593 0.026316
	TFR	Σf(i = 5*Σf(i) =	1.541671 7.708356

MUKURWEINI(SINGLE)

Age	F Pop	CEB	BLY	f(i)
15-19 20-24 25-29 30-34 35-39 40-44 45-49	3861 854 253 125 54 36 34	410 701 500 367 130 121 95	197 149 42 13 0 3 1	0.051023 0.174473 0.166008 0.104 0 0.083333 0.029412
	TFR	Σf(i = 5*Σf(i) =	0.608249 3.041246

MARRIED

Age	F Pop	CEB	BLY	f(i)
15-19 20-24 25-29 30-34 35-39 40-44 45-49	301 1302 1675 1680 1363 1180 916	312 2991 6876 9659 9059 8295 6325	120 562 600 525 288 131 44	0.398671 0.431644 0.358209 0.3125 0.211299 0.111017 0.048035
	1.871374 9.356871			

(WIDOWED)

Age	F Pop	CÉB	BLY	f(i)
15-19 20-24 25-29 30-34 35-39 40-44 45-49	3 9 25 45 76 139 122	0 18 91 224 489 863 752	0 1 6 10 9 6 5	0 0.111111 0.24 0.222222 0.118421 0.043165 0.040984
Σf(i) = 0.775903 TFR = 5*Σf(i) = 3.879517				

(DIVORCED/SEPARATED)

Age	F Pop	CEB	BLY	f(i)
15-19 20-24 25-29 30-34 35-39 40-44 45-49	14 50 45 56 34 23 39	16 94 155 247 150 114 206	8 10 9 15 6 0 0	0.571429 0.2 0.2 0.267857 0.176471 0 0
		TFR = 5	Σf(i) = *Σf(i) =	1.415756 7.078782

MATHIRA(SINGLE)

Age	F Pop	CEB	BLY	f(i)
15-19 20-24 25-29 30-34 35-39 40-44 45-49	6860 1841 696 443 228 144 81	591 295 1252 1259 802 554 328	232 218 89 50 17 7 1	0.033819 0.118414 0.127874 0.112867 0.074561 0.048611 0.012346
		TFR =	Σf(i) = 5*Σf(i) =	- 0.528492 = 2.642459

(MARRIED)

Age	F Pop	CEB	BLY	f(i)
15-19 20-24 25-29 30-34 35-39 40-44 45-49	581 2296 2763 2826 2278 1901 1343	629 4812 11014 16167 15527 13491 9826	216 866 935 757 447 185 62	0.371773 0.377178 0.3384 0.26787 0.196225 0.097317 0.046165
		TFR = 5*2	Σf(i) = Σf(i) =	1.694928 8.474639

(WIDOWED)

AGE	F Pop	СЕВ	BLY	f(i)
15-19 20-24 25-29 30-34 35-39 40-44 45-49	5 21 46 84 143 167 206	8 73 182 427 846 1105 1318	0 4 11 5 8 9 4	0 0.190476 0.23913 0.059524 0.055944 0.053892 0.019417
Σf(i) = 0.618384 TFR = 5*Σf(i) = 3.091921				

(DIVORCED/SEPARATED)

Age	F Pop	CEB	BLY	f(i)	
15-19 20-24 25-29 30-34 35-39 40-44 45-49	27 66 102 112 88 82 54	26 157 296 494 405 418 262	6 16 10 17 5 3 0	0.222222 0.242424 0.098039 0.151786 0.056818 0.036585 0	
Σf(i) = 0.807875 TFR = 5*Σf(i) = 4.039375					

TETU(SINGLE)

Age	F Pop	CEB	BLY	f(i)
15-19 20-24 25-29 30-34 35-39 40-44 45-49	7175 2363 897 471 254 163 98	740 1871 1775 1410 896 710 407	273 260 121 54 22 11 1	0.038049 0.11003 0.134894 0.11465 0.086614 0.067485 0.010204
	TFR	Σf(i = 5*Σf(i) =	0.561925 2.809625

(MARRIED)

Age	F Pop	CEB	BLY	f(i)
15-19 20-24 25-29 30-34 35-39 40-44 45-49	922 2978 3418 2865 2365 1852 1518	799 6469 13252 16189 16091 13881 10985	285 1138 1180 756 486 197 65	0.309111 0.382136 0.345231 0.263874 0.205497 0.106371 0.042819
$\Sigma f(i) = 1.65504$ TFR = 5* $\Sigma f(i) = 8.275198$				

(WIDOWED)

Age	F Pop	CEB	BLY	f(i)
15-19 20-24 25-29 30-34 35-39 40-44 45-49	7 29 38 86 146 193 227	11 80 168 467 863 1290 1501	1 5 10 17 9 8	0.142857 0.172414 0.210526 0.116279 0.116438 0.046632 0.035242
	TFR	Σf(i) = 5*Σf(i)) =	0.840389 4.201945

(DIVORCED/SEPARATED)

Age	F Pop	CEB	BLY	f(i)
15-19 20-24 25-29 30-34 35-39 40-44 45-49	27 92 150 118 113 78 60	36 192 505 440 573 376 373	10 28 20 19 3 1	0.37037 0.304348 0.133333 0.161017 0.079646 0.038462 0.016667
	TFF	Σt R = 5*Σt	f(i) = f(i) =	1.103843 5.519214

OTHAYA(SINGLE)

Age	F Pop	CEB	BLY	f(i)
15-19 20-24 25-29 30-34 35-39 40-44 45-49	3575 881 272 116 78 33 26	287 730 532 358 255 122 72	126 117 36 11 4 2 2	0.035245 0.132804 0.132353 0.094828 0.051282 0.060606 0.076923
	TFF	Σf(R = 5*Σf((i) = (i) =	0.58404 2.920201

(MARRIED)

Age	F Pop	CEB	BLY	f(i)
15-19 20-24 25-29 30-34 35-39 40-44 45-49	367 1359 1642 1468 1257 996 857	341 2991 6813 8515 8835 7256 6186	125 540 568 426 286 108 35	0.340599 0.397351 0.34592 0.290191 0.227526 0.108434 0.04084
Σf(i) = 1.750861 TFR = 5*Σf(i) = 8.754303				

(WIDOWED)

Age	F Pop	CEB	BLY	f(i)
15-19 20-24 25-29 30-34 35-39 40-44 45-49	4 10 28 56 76 109 105	6 24 134 296 518 690 659	0 1 7 9 11 2 2	0 0.1 0.25 0.160714 0.144737 0.018349 0.019048
	TFR	Σf(= 5*Σf(i) = i) =	0.692847 3.464237

(DIVORCED/SEPARATED)

Age	F Pop	CEB	BLY	f(i)
15-19 20-24 25-29 30-34 35-39 40-44 45-49	16 52 63 58 47 24 24	11 104 207 212 214 134 124	5 13 15 8 4 0 0	0.3125 0.25 0.238095 0.137931 0.085106 0 0
		TFR = 5	Σf(i) = *Σf(i) =	1.023633 5.118163

NYERI DISTRICT : EDUCATION

KIENI EAST (none)

Age	F Pop	CEB	BLY	f(i)
15-19 20-24 25-29 30-34 35-39 40-44 45-49	87 167 285 394 462 420 320	60 424 1333 2222 3027 2855 3400	15 51 91 92 97 39 18	0.172414 0.305389 0.319298 0.233503 0.209957 0.092857 0.05625
	TFF	Σf R = 5*Σf	(i) = (i) =	1.389668 6.948338

(primary)

Age	F Pop	CEB	BLY	f(i)
15-19 20-24 25-29 30-34 35-39 40-44 45-49	1242 744 675 563 395 254 140	311 1520 2601 3105 2665 1824 1027	135 235 221 148 65 27 5	0.108696 0.31586 0.327407 0.262877 0.164557 0.106299 0.035714
	T F F	Σf R = 5*Σf	(i) = (i) =	1.321411 6.607056

Age	F Pop	CEB	BLY	f(1)
15-19 20-24 25-29 30-34 35-39 40-44 45-49	649 349 112 43 28 13 15	68 315 269 145 119 53 35	31 86 24 6 0 0	0.047766 0.246418 0.214286 0.139535 0 0 0
Σf(i) = 0.648005 TFR = 5*Σf(i) = 3.240024				

KIENI WEST

(n	Ö	n	e)

Age	F Pop	СЕВ	BLY	f(i)
15-19 20-24 25-29 30-34 35-39 40-44 45-49	65 130 234 351 579 468 352	47 323 1015 2068 3977 3437 2628	8 36 90 77 115 55 16	0.123077 0.276923 0.384615 0.219373 0.198618 0.117521 0.045455
	ΤF		<pre>Ef(i) = Ef(i) =</pre>	1.365583 6.827914

(primary)

Age	F Pop	CEB	BLY	f(i)
15-19 20-24 25-29 30-34 35-39 40-44 45-49	1469 788 733 672 430 258 194	337 1605 2906 3919 3083 1934 1539	136 259 244 173 91 31 8	0.09258 0.32868 0.332879 0.25744 0.211628 0.120155 0.041237
		2 TFR = 5*2	Σf(i) = Σf(i) =	1.384599 6.922997

Age	F Pop	CEB	BLY	f(i)
15-19 20-24 25-29 30-34 35-39 40-44 45-49	745 366 105 45 22 19 11	68 363 264 171 124 103 56	31 84 25 15 1 1 0	0.041611 0.229508 0.238095 0.333333 0.045455 0.052632 0
		TFR =	Σf(i) = 5*Σf(i) =	0.940634 4.703168

MUKURWEINI

(none)

Age	F Pop	CEB	BLY	f(i)
15-19 20-24 25-29 30-34 35-39 40-44 45-49	108 267 459 614 743 785 720	70 602 1948 3600 4691 5241 4668	18 96 151 188 140 89 34	0.166667 0.359551 0.328976 0.306189 0.188425 0.113376 0.047222
	TFF	Σf R = 5*Σf	(i) = (i) =	1.510406 7.552028

(primary)

Age	F Pop	CEB	BLY	f(i)	
15-19 20-24 25-29 30-34 35-39 40-44 45-49	2469 1254 1274 1206 760 578 385	489 2497 4985 6524 5006 4026 2700	218 461 351 160 51 16	0.088295 0.367624 0.326531 0.291045 0.210526 0.088235 0.041558	
$\Sigma f(i) = 1.413814$ TFR = 5*\Strime f(i) = 7.06907					

Age	F Pop	CEB	BLY	f(i)
15-19 20-24 25-29 30-34 35-39 40-44 45-49	1590 664 259 80 22 15 4	175 616 683 340 136 77 10	86 162 89 23 3 0 0	0.054088 0.243976 0.343629 0.2875 0.136364 0 0
	1.065557 5.327785			

MATHIRA

(none)

Age	F Pop	СЕВ	BLY	f(i)
15-19 20-24 25-29 30-34 35-39 40-44 45-49	148 245 479 860 987 986 849	116 637 1945 4666 6338 6205 5587	11 76 131 216 187 87 45	0.074324 0.310204 0.273486 0.251163 0.189463 0.088235 0.053004
	TFF	Σ R = 5*Σ	f(i) = f(i) =	1.239879 6.199397

(primary)

Age	F Pop	CEB	BLY	f(i)
15-19 20-24 25-29 30-34 35-39 40-44 45-49	3971 2201 2449 2352 1648 1246 790	803 4202 9194 12649 10623 8961 5819	309 705 719 561 273 111 22	0.077814 0.320309 0.293589 0.23852 0.165655 0.089085 0.027848
	TFF	Σ1 R = 5*Σ1	f(i) = f(i) =	1.212821 6.064106

Age	F Pop	CEB	BLY	f(i)
15-19 20-24 25-29 30-34 35-39 40-44 45-49	3337 1626 660 231 86 51 35	332 1404 1563 849 447 284 190	133 322 191 46 17 2 0	0.039856 0.198032 0.289394 0.199134 0.197674 0.039216 0
	TFF	Σ1 R = 5*Σ1	f(i) = f(i) =	0.963306 4.816532

(none)

Age	F Pop	CEB	BLY	f(i)
15-19 20-24 25-29 30-34 35-39 40-44 45-49	200 345 621 879 1225 1211 1067	108 818 2390 5095 8035 8679 7465	25 99 173 198 214 128 49	0.125 0.286957 0.278583 0.225256 0.174694 0.105698 0.045923
	TFF	Σf(* R = 5*Σf(*	i) = i) =	1.24211 6.210551

(primary)

Age	F Pop	CEB	BLY	f(i)
15-19 20-24 25-29 30-34 35-39 40-44 45-49	4243 2881 2883 2308 1524 1006 744	1014 5718 10911 12230 9853 7214 5657	360 897 888 576 314 99 26	0.084846 0.31135 0.308012 0.249567 0.206037 0.09841 0.034946
	TFF	$\sum_{k=0}^{n} \sum_{k=1}^{n} \sum_{k$	f(i) = f(i) =	1.293168 6.465838

Age	F Pop	CEB	BLY	f(i)
15-19 20-24 25-29 30-34 35-39 40-44 45-49	3677 2181 978 333 111 56 28	461 1898 2329 164 435 282 109	182 434 262 63 10 2 0	0.049497 0.198991 0.267894 0.189189 0.09009 0.035714 0
	TFR	Σf(* = 5*Σf(*	i) = i) =	0.831375 4.156877

NYERI DISTRICT: FERTILITY ANALYSIS

General

Division	TFR
Kieni East	6.35
Kieni West	6.55
Mukurweini	6.86
Mathira	5.8
Tetu	5.93
Othaya	6.39

By Place of Residence

	TFR	
Division	Rural	Urban
Kieni East Kieni West Mukurweini Mathira Tetu Othaya	6.35 6.55 6.86 5.9 6.37 6.48	3.21 5 4.65

By Marital Status

	TFR			
Division	Single	Married	Widowed	
Kieni East Kieni West Mukurweini Mathira Tetu Othaya	3.21 4.02 3.04 2.64 2.81 2.92	8.35 8.49 9.36 8.47 8.28 8.75	4.11 8.58 3.88 3.09 4.2 3.46	5.77 7.71 7.08 4.04 5.52 5.12

	TFR			
Division	None	Primary	Secondary	Plus
Kieni East Kieni West Mukurweini Mathira Tetu Othaya	6.95 6.83 7.55 6.2 6.21 6.44	6.61 6.92 7.07 6.06 6.47 6.72	3.21 4.7 5.33 4.82 4.16 4.94	

By Level of Education