DIRECT SUM DECOMPOSITION AND CANONICAL FACTORIZATION OF OPERATORS IN HILBERT SPACES

By

Bernard Mutuku/Nzimbi

A thesis submitted in full fulfilment of the recuirements for the degree of Doctor of Philosophy in Pure Nathematics of the University of Nairohi.

> School of Mathematics. University of Nairoli P.o Box 30197, Nairoli. KENYA.

April 29. 2009.

Declaration

This thesis is my original work and has not been presented for a degree award in any other University.

Signature:

Date:..11th May, 2009
Benard Mutuku Nzimbi

This thesis has been submitted for examination with our approval as University supervisors.

Contents

Abstract iv
Acknowledgements vi
Dedication vii
List of abbreviations viii
1 Preliminaries 1
1.1 Introduction 1
1.2 Notation and Terminology 5)
1.3 Inclusions of Operator Classes and Examples 10
2 On normal and completely non-normal summands of an operator 14
3 On unitary and completely non-unitary summands of a contraction operator 31
4 On invariant and hyperinvariant lattices of operators 60
5 On canonical factorization of an operator 104
6 Conclusion 123
6.1 Conclusion 12:3
G.2 Smmanry of Main Contributions $1 \div 3$
6.3 Future Research 125

Abstract

The existence of direct smm derompensions and factorizations of bomuded linear operators acting on a Hillert space appears to be one of the most diflicult questions in the theory of linem operators. The direct sman decomposition problem is closely related to the invarian subsiace problem, which to date has very few allimative answers regarding it. In this thesis we stmely the direct sum decomposition and factorization of some classes of oprerators in Hillort spaces with a view to determining propert jes of the direct summands of these operators, their invariant and hyperinvariant sulsspace lattices and factors for such operators.
This thesis is organized as follows: Chapter 1 is m introchetion and is devoted largely to notations and terminology and examples of varions concopts that we shall use in the rest of this thesis.

Chapter 2 deals with the orthogonal direct sum decomposition of an arbitrary opcrator into a nomal and a completrly nom-nomal part. In this chapter we show that a general operator T decomposes in this mamer. We give conditions under which an operator hat nontrivial nomal and direct smmands. We stady this decomposition for operators in the same equivalence classes (gutsisimilar, similar, unitarily equivalent, almost-similar operators). We give conditions under which a non-nomal operator is normal.

Chapter 3 is on the direct sum decomposition of a contraction operator into a unitary and a completely non-unitary (c.n.u.) part. We give conditions under which a nonmitary operator is unitary. We show that a general operator enjoys this decomposition upon re-nomalization (by dividing the operator by its norm). In so doing we show that the problem of docomposing an operator into a nomal and a c.n.n. part can be deduced from the decomposition of a contraction operator. We pay special atitention to the c.n.n parts of an operator and the shift operators which play a very important role in this kind of decomposition. We itse the camonical backward shift as a model to aid the decomposition of such operators. We also deduce the characteristic functions of some classes of operators and use them to detemine the nature of the original contraction

operator

 of operators. We show that these sulsapaces reveal a lod of information aboult the dired sum decompositions of linear operatens. We investigate the topological st meture of Lal (T) and H !pperlal (T) for some operator classes comtaining T. We show that there is a one-te-one correxpondene betweren the invarian lattice and the regular Factorization of the characterist ic function of a contraction operator T. We gemeralize this result to arlitrary operators.

Chapter 5 is on the factorization of some operators ins a portuce of simpler operators (self-arljoint., mitary, nomal, projections, idempotents, n-th roots of the identity. cerlic. scalar, etc.). We find necessary and sufficient conditions muler which an operator can be expressed as a product of such simpler operators. We give neevessary and suflicient conditions on the minimal number of such operator fatcors by improving on some known results.

By a canonical model of an operator we mean a nat ural representation of the operator in terms of simpler operators, and in a context in which more structure is prencont.

Most of the results in the direct sum decompositions of an operator T will revolve aromed its nearmess to being a mormal operator ($\left[T^{*}, T\right]=T^{*} T-T T^{*} \equiv 0$) and its nearness to being a unitary operator ($D_{T}^{2}=I-T^{*} T \equiv 0$ or $\left.D_{T}^{2}=I-T T^{*} \equiv 0\right)$.

Acknowledgements

I would like to thank my supervisor Prof. Janns Mateklede Khathgai who has sulp) ported me along my jommery from my malergradnate stodies to my doctorate and who. for comuless hours thronghom mer researd was willing to guide me in the core research artivity. I must, also thank my oher supervisor Prof. Ganesh Prasad Pokharival for his conclesss effort, tireless and valuable guidance and dedieation and inspired idens, without which this thesis would not have bern writa
I owe the coname to finish this work to all my collengues al the School of Mathematics. This includes not only professors that I have known in the classioom but also secretaries and computer technologists. I woud sperifically like to express my appreciation to the immediate former Director of the School of Mathematics, Prof. John ()koth Owino, for his support and for enabling me win a scholarship to pursue this degree. I thank the new Director of the School of Aathematics, Dr. Jamen Hudson Were, for the valuable knowledge he imprated on me in Complex Analysis churing my post grachuate st undies, at the University of Nairoli, which has come in handy in handling some results in this thesis. The valnable guidance that I have received goes berond the University of Nairobi. however. I must give my appreciation to Professors Steven Diaz. Tadensz IWaniec, Adam Lutoborski and others at Syracuse University. New York, who tanght me as a graduate student and honed my interest and skills in ()perator Theory and Harmonic Analysis. which play a crucial role in this thesis.

I must thank those who helped me in matters non-mathematical. I would like to thank my mother Kambua, wife Regina, my children, the rest of the family and friends for their love, patience, understamding and perseverance of putting up, with many days when I was away from home in pursuit of this degree. Withont their support, this thesis would not have been finishered. Last but not least, I would also like to thank DAAD (Deutscher Akademischer Austausch Dienst)-German Acalemic: Exchange Service for their fellowship which has seen me through the financial aspects of my research.

Nairobi, Kenya
Bernard M. Nzimbi
April 29, 2009

Dedication

This work is dedicaterl to my family.

List of abbreviations

$B(\mathcal{H})$: Banak aldgebra of homuded linear operators on \mathcal{H}
$\mathbb{D}:\left(O_{p e n}\right.$ mit dise in $\mathbb{C}, \mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$
$\partial \mathbb{D}$: Unit circle in $\mathbb{C}, \partial \mathbb{D}=\{z \in \mathbb{C}:|z|=1\}$
\langle,$\rangle : Inner product on the Hilbert spare \mathcal{H}$
$f^{2}(\mathbb{C})$: The Hilbert space of sequencess $\left(\xi_{1}, \xi_{2}, \ldots\right)$ of complex mumbers for which
 $x:=\left(\xi_{i}\right)$ and $y=\left(\eta_{i}\right)$ induced from the norm $\|x\|=\langle x, x\rangle^{1 / 2}=\left(\sum_{i=1}^{\infty}|\xi|^{2}\right)^{1 / 2}$.
$L^{2}([a, b])$: The Hilbert space of all complex valued Lebesgne measurable functions f defined in the interval $a \leq x \leq b$ with the property that $|\delta|^{2}$ is Ledesgue int egrathe and imer product $\langle f \cdot g\rangle=\int_{a}^{b} f(x) \bar{g}(x) d x$.
$\dot{f}(k)$: the $k^{\text {th }}$ Fourier coefficient of the function f defined on the unit circle ofD
$\mathbb{H}^{2}, \mathbb{H}^{\infty}$: Hardy classes of amalytic functions. where
$\mathbb{H}^{p}=\left\{\int \in L^{\mu}(\partial \mathbb{D}): \bar{f}(k)=\int_{\partial \mathbb{D}} f(z) z^{-k} \frac{|L| z \mid}{2 l \mid}=0\right.$, for $\left.\left.h<1\right)\right\}$
or
$\mathbb{H}^{2}=\left\{f: \mathbb{D} \longrightarrow \mathbb{C}: f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}, \quad \sum_{n=0 \mid}^{\infty}\left|a_{n}\right|^{2}<\propto\right.$, for all $\left.z \in \mathbb{D}\right\}$
\mathbb{H}^{∞} : space of all functions that are analytic and bomeded on the open mit disk $\partial \mathbb{D}$ with the norm of $f \in \mathbb{H}^{\infty}$ defined ly $\|f\|_{\infty}=\sup \{|f(z)|: z \in \mathbb{D}\}$
Θ_{T} : Characteristic function of a contraction operator T
$r(T)$: The spectral radius of T, which is the radius of the smallest circle in the complex plane \mathbb{C} and contains the spectrum of T.
$\mathcal{M}(\mathbb{D})$: the set of all injective, analytic mappings of the open unit disc \mathbb{D} onto itself.
c.n.u. : Completely non-unitary
c.n.n. : Completely non-nomal
$\{T\}^{\prime}$: Commutant of T
$\{T\}^{\prime \prime}$: Double commutant of T
$\mathcal{M} \oplus \mathcal{N}$: Direct sum of \mathcal{M} and \mathcal{N}
\mathcal{M}^{+}: Orthogonal complement of \mathcal{M}
$P_{M}:$ Orthogenal projection onto a dosied sulspace \mathcal{M}
$m,| |$: the normalized (i.e $m(\partial \mathbb{D})=1$) Ledesgue measure on $\partial \mathbb{D}$

Chapter 1

Preliminaries

1.1 Introduction

In this thesis we st udy the dired sum decomponitions and factorizations of some classes of operators on Hilbert spaces. The idea of decomposing an operator (or an operatorvalued function) into parts, which are casier to investigate than the original operator, is fundamental to the theory of opreators. The so-called direct sum lecomposition is one of many known kinds of decompositions. The direct sum decomposition has been largely motivated loy the work of Nagy and Foias [53] from which it results that any operator can be decomposerd as a direct sum of nomal and completely non-nomal (c.n.n) parts and that a contraction operator can be decomposed as a direct sum of a unitary and completely non-mitary (c.n.u) parts (where any of these direct summands could be missing). Wold [77], while studying stationary stochast ic processes, discovered the decomposition of an isometry into the mitary and the completely nom-mitary parts, which has since been referred to as the von Nemmam-Wold decomposition of an isometry.

Canonical decomposit ions are often the first stepp in constructing models of operators. By a description of the structure of an operator nsually means one of the following: the determination of an equivalent operator on a prescribed class of concrete (often functional) models; a specific method of reconstructing it from a class of simpler operators (for example, in the form of a direct sum or factors); the discovery of a basis in which the operator has its simplest form; a comple e description of the lat ice of insariant and hyperinvariant subspaces; the identifionion of maximal chains of invariant subspaces
(triangular repescmation) or maximal chains of reducing sulnapaces (diagomal or directsime representation); or the construction of a sulliciently wide fimetional cakenhs. The
 the structure of operatoms. The powerful structure theomens that are known for finitedimensional operators (the Jordan form) : and nomal operators (the spectral theorem) provide, in essence, decompositions into invariant sul)spaces of special kinds. No comparable theorem exists for general onerators on an infinite dimensional Hilbert space. Althongh the general operator rmains a mystery, one can say quite a bit about the invariant sulspaces of a handfind of specific operaters.

The study of the strmelure and properties of an arbitrary operator on a Hilloert space is essentially equivalent to the study of its complementary parts, its invariant and hyperinvariant latices, its characterist ic function and its factors.

Several Mathematicians have proved some interest ing results on operator decomposition and factorization. Williams [76$]$ has demonst rated that every operator T is mitarily equivalent to the direct smm $T_{1} \oplus T_{2}$ where T_{1} is nomal and T_{2} is pure (completely nonnormal) and that if \mathcal{M} is a reducing sulspace for T_{2} and $T_{2} \mid$. is nomal, then $\mathcal{M}=\{0\}$. Stampfli and Wirthwa [66] while working on hyponornal operators proved that a hyponomal operator which is similar to a mormal operator must act nally be nomal. Lee and Lee [50] studied a larger class -that of p-quasihyponomal operators and proved that, if a p-quasilyponormal operator T has a finite defect index then it is normal. Nagy and Foias [5.3] have introduced a classification of contraction operators that depends on the asymptotic iterates of T and T^{*}. They proved that a contraction $T \in B(\mathcal{H})$ is a direct sum of a unitary and a completely non-unitary part and that for an isometry. this decomposition coincides with the von Neumann-Wold decomposition for isometries, where the completely non-nomal part in this case is a unilateral shift (cf. Wold [77]). A similar result was proved by Fuhrmam [24] that any contraction $T \in B(\mathcal{H})$ has a mique decomposition with respect to the decomposition of \mathcal{H} into a direct sum $\mathcal{H}=\mathcal{H}_{10} \oplus \mathcal{H}_{1}$ of reducing subsipaces of T such that $\left.T\right|_{\mathcal{H}_{10}}$ is unitary and $\left.T\right|_{\mathcal{H}_{1}}$ is completely nom-mitary. Win [85] proved that if T is a contradion with finite defect indices then T is guasisimilar to an isometry if and only if the completely non-mintary part of T is chasisimilar to an isometry.

While working on the problem of writing an operator as a proflact of "nice" or simpler
 mitary operator on an infinite dimensiomal space is a prodect of (sisteen) pesitive operators, an mexpected result in a finite dimemsjomal Hillore space, givern the results of Ballantine [7] that if an operator is identilied with a linite sepure matrix. then it is the product of positive operators precisely when its deverminant is nom-negative. Win's [84] result was improved by Phillips [57] by showing that every mitary operator on an infinite-dimensional Hilbert space is a product of six positive operators.

Some operator theorists have sturlied the open question of the existence of anontrivial invariant subspaces. Kubrusly [45] has shown that if a contraction has no nontrivial invariant subspace, then it is either a $C_{\text {(א) }}$, a C_{01} or a $C_{\text {for }}$ contraction. A similar result, was proved for the class of hyponomal contracions ly Kinlomsly and Levan [44] that if a hyponoman contraction T has no nontrivial invariant sulspace, then it is either a C_{00} or a C_{10} contraction. Duggal and Kiubrusly [16] datacterized the completely non-mitary part of a contraction using the Putnam-Fuglede(PF) Theorem. Hoover [39] proved that quasisimilarity preserves the exist ence of nontrivial heperinvariant subspates and Herrero [37] has shown that quasisinilarity does not preserve the full hyperlatide.

- Few results exist in the literature on the intrinsic properties of the pure dired summand of an operator in the dired sum decomposition of an operator. Some anthors have given a classification of an operator depending on its direct summands. However, to-date open questions remain m-answered: Does every operator derompose into a direct sum? Which classes of operators docompose into non-trivial direct. smmmands? This question is motivated hy the most colelorated invariant subspace problem: Does every operator on a (separable) Hilbert space of dimension greater than one have a nontrivial invariant subspace? In this thesis we will give an at tempt at the invariant subspace problem and (ome up with a partial solntion to the problem for some classes of operators. We show that for any non-zero operator T. the invariant subspace prohlem is reduced to the class of contractions: Does every contraction have a n non rivial juvariant sulaspace?
- There are many results in the litcrature abont the direce sum decomposition of a contraction operator into a milary and a completely non-muitary part but very few
results linking this decomposition to an arbitray operator are known. We look at how we can sulbere an athitrary operator to this clecomposition. We note that any (mperator T divided by its mom (nommatizod) is always a contraction operator.
- In this thesis, we show that there is a one-to-one comespondence between the in-
 with a contraction operator.
- Topological properties of invariant and hyperinvariant shbspaces of operators have not beren extensively sturdied. We shall deseribe these sperial subspaces for some clasises of operators and me them to athieve a dired smom decomposition of an operator on a Hilbert space.
- We show that if an operator is invertihle it facturs into a product of simpler operalors. We give necessary and suflicient comblitions for an operator to enjoy such a product factorization. We determine a criterion for the optimal mumber of fartors a given operator could have in its lactorization.

We aim to generalize results in order bapply them to a wider class of operators. Finally: we establish a comection between direct smm decompositions, invariant, herperinvariant and reducing subspaces and the factorizations of an operator. For instance, as an application we show that any direct sum decomposition of a contraction operator into a mitary part and a completely nom-matary part can be directly discemed from the direct sum decomposition of an operator into momal part and a complet ely non-nomal direct part. We investigate an operator whose insariant subspace lattice satisfies a certain purely lattice-theoretic condition and whether or not it has a nontrivial hyperinvariant subspace and determine how this relates with the decomposition of such an operator. We shall describe up to unitary equivalence all the c.n.u. contractions which possess a constant characteristic function. In case one of the defect indices is finite, we show that the chameteristic: function is comstant if and only if the c.n.u. operator admits at direct sum decomposition such that each summand is one of the bilateral weighted shifts with weight sequence $\{\ldots, 1, \lambda, 1 \ldots\}, 0<\lambda<1$, or the milateral shift or the aljoint of the milateral shift. A consegpuence of this is that the chatacteristic function of an irrerlucible contraction is constant if and only if it is one of the shift operators described
ahove, which are examples of homogenomis operators. We wee the (cen.n.) contratLion operators to pht the notion of decomposition on a rigorons footing and obtain at decomposition of any operator, by first remomalizing it to a contraction.

1.2 Notation and Terminology

In what follows, capital letters $\mathcal{H}, \mathcal{H}_{1}, \mathcal{H}_{2}, \mathcal{K}, \mathcal{K}_{1}, \mathcal{K}_{2}$, etic denote Hilbert spaces or subsipaces of Hilbert spaces, and T, T_{1}, T_{2}, A, B, ete denote bomeded linem operators where by an operator we mean a bomeded linear transfomation from \mathcal{H} into \mathcal{H}. By $B(\mathcal{H})$ we denote the Banach algedora of bounded linear operators on $\mathcal{H} . B\left(\mathcal{H}_{1}, \mathcal{H}_{2}\right)$ denotes the set of bomed lincar operators from \mathcal{H}_{1} to \mathcal{H}_{2}. For an operator T, we denote by $T^{*},\|T\|, \operatorname{Ran}(T), \operatorname{Kar}(T)$ the arljoint, nom, range and kemel of T, respertively. We reserve the symbols $\mathbb{Z}, \mathbb{N}, \mathbb{R}, \mathbb{C}, \mathbb{D}, ~ d \mathbb{D}$ for the sets of integers, positive integers, real mmbers, complex mombers, open unit dise in \mathbb{C}, and mit circle in \mathbb{C}, respectively: $\mathrm{By} \quad \sigma(T), W^{\prime}(T), u^{\prime}(T), r(T)$ we denote the spectrum, muntrical range. nmmerical radins and spectral radius of T, respectively where $\sigma(T)=$ $\{\lambda \in \mathbb{C}: \lambda I-T$ is mot invertible $\}$, (i.e. $\operatorname{Krpr}(\lambda I-T) \neq\{0\}$ or $\operatorname{Ran}(\lambda I-T) \neq$ $\mathcal{H}, W(T)=\{\langle T \cdot x, r\rangle:\|x\|=1, \quad x \in \mathcal{H}\}, \quad r(T)=S u p\{|\lambda|: \lambda \in \sigma(T)\}=$ max $\{|\lambda|: \lambda \in \sigma(T)\}=\lim _{n}\left\|T^{n}\right\|^{\frac{1}{n}}, w^{\prime}(T)=\operatorname{Sup}\{|\lambda|: \lambda \in \mathbb{W}(T)\}$. We denote by $\sigma_{P}(T)=\{\lambda \in \mathbb{C}: \operatorname{Ker}(\lambda I-T) \neq\{0\}\}$, which is the set of all eigenvalues of T and is called the point spectrum of T. The set of those λ for which $(\lambda I-T)$ has a densely defined but mbomoled inverse is the continuous spectrum: $\sigma_{C}(T)=\{\lambda \in$ $\mathbb{C}: \operatorname{Kier}(\lambda I-T)=\{0\}\}, \quad \overline{\operatorname{Ran}(\lambda I-T)}=\mathcal{H}$ and $\operatorname{Ran}(\lambda I-T) \neq \mathcal{H}$. If $(\lambda I-T)$ has an inverse that is not clensely defined, then λ belongs to the residual spectrum: $\sigma_{R}(T)=\{\lambda \in \mathbb{C}: \operatorname{Kipr}(\lambda I-T)=\{0\}\}$ and $\overline{\operatorname{Ran}(\lambda I-T)} \neq \mathcal{H}$. The parts $\sigma_{P}(T), \sigma_{C}(T)$ and $\sigma_{R}(T)$ are pairwise disjoint and $\sigma(T)=\sigma_{P}(T) \cup \sigma_{C}(T) \cup \sigma_{R}(T)$. We also define the approximate point spectrum of $T: \sigma_{\text {ap }}(T)=\{\lambda \in \mathbb{C}:(\lambda I-T)$ is not boundrd below $\}$.

A subspace (closed linear manifold $\mathcal{M} \subset \mathcal{H}$ is said to be invariant mader an operator $T \in B(\mathcal{H})$ if $x \in \mathcal{M} \Rightarrow T r \in \mathcal{M}$ or $T \mathcal{M} \subset \mathcal{M}$, and T is satid to have a montrivial invariant subspuce (n.i.s) if there is a subspace $\{0\} \neq \mathcal{M} \neq \mathcal{H}$ invariant for T. A subspace $\mathcal{M} \subset \mathcal{H}$ is sadid to be a raducing subspace for T or rerluces T if it is invariant mader both T and T^{*}. An operator T on a Hilbert space \mathcal{H} is reductive if every invariant
subspace of T reduces T. We demote by $\overline{\mathcal{M}}$ the closme of a sulspace \mathcal{M} of \mathcal{H}.
A lattice \mathfrak{L} is a partally ordered sod sum that exery pair of oldments of \mathfrak{a} hats a
 surch that $a=x \vee y$ mul $b=x \wedge!$ for every pair $x \in \mathfrak{L}$ and $y \in \mathbb{L}$). The lattice of all invariant subspaces of T will be demeted by L at (T). If I is any subsed of $B(\mathcal{H})$, we denote by Λ^{\prime} the commutimet of A . i.e. $\Lambda^{\prime}=\{T \in B(\mathcal{H}): S T=T S$ for corrys S in $\Lambda\}$. Specifically, $\{T\}^{\prime}=\{S \in \mathcal{B}(\mathcal{H}): S T=T S\}$. The bicommutant or domble commut ant of $T \in B(\mathcal{H})$ is defined and demoterl by $\{T\}^{\prime \prime}=\{A \in B(\mathcal{H}): A S=S A$. for all $S \in$ $\left.\{T\}^{\prime}\right\}=\left\{p(T): T \in B(\mathcal{H}), p^{\prime}\right.$ apolymomiall $\}$. A suluspare $\mathcal{M} \subset \mathcal{H}$ is said to be a nontrivial hyperinvariant subspuce (n.h.s) for a fixed operator in $T \in B(\mathcal{H})$ if $\{0\} \neq$ $\mathcal{M} \neq \mathcal{H}$ and $S \mathcal{M} \subset \mathcal{M}$ for each S in $\{T\}^{\prime}$. The lattice of all hyperinvariant sulspaces of T will be denoted by H yperlat (T).
 the corresponding projections $P_{W_{3}}$ and $P_{. C}$ commute. A lattice \mathfrak{L} is said to be totally ordered if for every \mathcal{M} and \mathcal{N} in \mathfrak{D}. cither $\mathcal{M} \subseteq \mathcal{N}$ or $\mathcal{N} \subseteq \mathcal{M}$. The height of a batice \mathfrak{L} of sulspaces of \mathcal{H} is defined to be the length of the longest path from $\{0\}$ to \mathcal{H}. In general, the lattice $\mathfrak{L}=(\Omega)(\Omega) . \subseteq)$ hats height $\operatorname{card}(\Omega)$. for a linite set Ω where $\Omega(\Omega)$ denotes the power set of Ω and card($\Omega \Omega$) denotes the cardinality of Ω.

For subspaces (closed linear manifolds) \mathcal{M}. \mathcal{N} of a Hilbert space $\mathcal{H} . \mathcal{M}^{\perp}$ and $\mathcal{M} \oplus \mathcal{N}$ will denote the orthogonal complement of \mathcal{M} and the orthogonal direct sum of \mathcal{M} and \mathcal{N}, respectively.
An operator is said to be raducible if it has a montrivial reducing sulaspace (equivalent ly, if it has a proper nonzero direct smmmand).
An operator T is said to be:
an involution if $T^{2}=I$,
self-adjoint if $T=T^{*}$,
a projection if $T^{2}=T$ and $T^{*}=T$,
unitary if $T^{*} T=T T^{*}=I$.
normal if $T^{*} T=T T^{*}$.
an isometry if $T^{*} T=I$,
co-isometry if $T T^{*}=I$,
a partial isometry if $T=T T^{*} T$,
quasinormal if $\left[T^{*} T, T\right]=0$.
 $\left\{T . r_{n}\right\}$ contains a subsexpence converging to some linnt in the range,
hyponormal il $T^{*} T \geq T T^{*}$,
seminormal if cithor T or T^{*} is hyponommal.
p-hyponormal if $\left(T^{*} T\right)^{p} \geq\left(T T^{*}\right)^{p}$, where ()$<p \leq 1$,
semi-hyponormal if $\left(T^{*} T\right)^{\frac{1}{2}} \geq\left(T T^{*}\right)^{\frac{1}{2}}$.
quasihyponormal if $T^{*} T^{2}-\left(T^{*} T\right)^{2} \geq 0$, equivalently il $T^{*}\left(T^{*} T-T T^{*}\right) T \geq 0$,
M-hyponormal if $\left\|(z I-T)^{*} . r\right\| \leq M\|(z I-T) r\|$, for all complex mumbers z and for all $r \in \mathcal{M} \subset \mathcal{H}$ and M some posilive mumber (i.e. $M>0$),
paranormal if $\|T: r\|^{2} \leq\left\|T^{2} x\right\|$. for all unit vectors $x \in \mathcal{H}$. equivalently if, $\|T J\|^{2} \leq$ $\|T x\|\|. r\|$. for every $x \in \mathcal{H}$.
h-paranormal if $\|T \cdot x\|^{k} \leq\left\|T^{k} x\right\|\|x\|^{k-1}$, for all $x: \mathcal{H}$ mol $k \geq 2$ some integer,
k-quasihyponormal if $T^{*}\left(T^{*} T-T T^{*}\right) T^{k} \geq 0$, for $k: \geq 1$ some integer, and evory .$x \in \mathcal{H}$,
μ-quasihyponormal if $T^{*}\left(\left(T^{*} T\right)^{p}-\left(T T^{*}\right)^{p}\right) T \geq 0$.
($p . k$)-quasihyponormal if $T^{*}\left(\left(T^{*} T\right)^{p}-\left(T T^{*}\right)^{p}\right) T^{k} \geq 0$. where $0<p \leq 1$ aud k a positive integer,
dominant if for each $\lambda \in \mathbb{C}$ there corresponds an mumber $M_{\lambda} \geq 1$ such that $\|(T-$ $\lambda I)^{*} x\left\|\leq M_{\lambda}\right\|(T-\lambda I) x \|$. for all $r \in \mathcal{H}$.
subnormal if it has a nomal extemsion. That is, if there exists at nomal operator B on a Hilbert space \mathcal{K} such that \mathcal{H} is a smbapace of \mathcal{K} and the subspance \mathcal{H} is invariant under the operator B and the restriction of B to \mathcal{H} coincides with T. That is, $T=\left.B\right|_{\mathcal{H}}$, a contraction if $\|T\| \leq 1$,
left shift operator if $T x=y$, where $x:=\left(x_{1}, x_{2}, \ldots\right)$ and $y=\left(x_{2}, x_{3}, \ldots\right) \in \ell^{2}$, right shift operator if $T r=?$. where $x=\left(x_{1}, x_{2}, \ldots\right)$ and $y=\left(0, x_{1}, x_{2}, \ldots\right) \in \ell^{2}$.
An operator $T \in B(\mathcal{H})$ is a milateral shift if there exists a sequence $\left\{\mathcal{H}_{0}, \mathcal{H}_{1}, \ldots\right\}$ of painwise orthogonal subspaces of \mathcal{H} such that:
(a) $\mathcal{H}=\mathcal{H}_{0} \oplus \mathcal{H}_{1} \oplus \ldots$
(b) T spans \mathcal{H}_{n} isometrically onto \mathcal{H}_{n+1}.

An operator $T \in B(\mathcal{H})$ is:
a scalar if it is a scalar multiple of the inlentity operator (i.e. $T=a I, \quad a \in \mathbb{C}$),
positive if $\langle T x, x\rangle>0$, for all $0 \neq x \in \mathcal{H}$.
Hilbert-Schmidt if $\|T\|_{2}<\infty$ where $\|T\|_{2}=\left\{\sum_{n=1}^{x}\left\|T \varphi_{n}\right\|^{2}\right\}^{\frac{1}{2}}$ is $1 h_{0} \cdot 2$-1201m and $\left\{e_{n}\right\}$ is an orthonomal bavis for \mathcal{H},
an n-th root of identity if $T^{n}=I$. n a positive intemer,
2-normal if $T^{*} T^{2}=T^{2} T^{*}$.
An operator T is quasinilpotent if $\sigma(T)=\{0\}$. That is, if $r(T)=\lim _{n}\left\|T^{n}\right\|^{1 / n}=0$.
An operator T is nilpotent if $T^{n}=0$ for some positive integer n.
Given a contraction $T \in B(\mathcal{H})$, both $\left(I-T^{*} T\right)$ and $\left(I-T T^{*}\right)$ are positive operators and hence have mique square roots. We define $D_{T}=\left(I-T^{*} T\right)^{\frac{1}{2}}$ and $D_{T^{*}}=\left(I-T T^{*}\right)^{\frac{1}{2}}$ and call them the defect operators of T. The respective dimensions (ranks) d_{T} and d_{r}. are called the defect indices of T.
An operator $T \in B(\mathcal{H})$ is strongly stable if the power serfuence $\left\{T^{n}\right\}$ converges strongly (in the sense of the strong operator topology (SOT)) to the mull operator (erpivalently, $T^{n} \longrightarrow O$ strongly or $\left\|T^{n}: x\right\| \longrightarrow 0$ for every $\left.x \in \mathcal{H}\right)$.
A contraction operator $T \in B(\mathcal{H})$ is of class:
C_{1}. if $\lim \left\|T^{n} x\right\| \nrightarrow 0$, strongly as $n \rightarrow \infty$, for every $a \neq 0$,
C_{1} if $\lim \left\|T^{* n} x\right\| \nrightarrow 0$, strongly as $n \rightarrow \infty$. for every $x \neq 0$,
C_{0}. if $\lim \left\|T^{n} x\right\| \rightarrow 0$, stromgly as $n \rightarrow \infty$, for every $x \in \mathcal{H}$.
C_{0} if $\lim \left\|T^{* n} x\right\| \rightarrow 0$, strongly as $n \rightarrow \infty$, for every $x \in \mathcal{H}$,
$\mathrm{C}_{i j}$ if $T \in C_{2} \cap C_{\mathrm{j}},(0 \leq i, j \leq 1)$.
An operator $T \in B(\mathcal{H})$ is called a proper contraction if $\|T x\|<\|r\|$. for every $0 \neq x \in \mathcal{H}$.
The maximum(largest) subsipace in \mathcal{H} which reduces an operator T to a unitary (respect ively, normal) operator is called the unitary(normal) subspace in \mathcal{H} of T.
An operator $T \in B(\mathcal{H})$ is said to be pure or completely non-normal (c.n.n.) if there exists no nontrivial reducing subspace $\mathcal{M} \subset \mathcal{H}$ such that $\left.T\right|_{\mathcal{M}}$ (the restriction of T to \mathcal{M}) is normal, that is, if T has no direct normal smmand, equivalently if the nomal subspace is $\{0\}$. When the subspace \mathcal{M} is invariant under the operator T. then T induces a linear operator $T_{\mathcal{M}}=\left.T\right|_{\mathcal{M}}$ on the space \mathcal{M}. The linear operator $T_{\mathcal{M}}$ is definect by $T_{\mathcal{M}}(x)=T(x)$, for $x \in \mathcal{M}$. A $\tilde{p}_{\text {art }}$ of an operator is an restriction of the operator to an invariant subspace.
A contraction $T \in B(\mathcal{H})$ is said to be completrly non-unitury (c.n.u) if there (xists no
nont rivial reflucing subspace of $\mathcal{M} \subset \mathcal{H}$ of T on which T acts mitarily, or crguvalempy if its mitary part adsts on the zoro space $\{0\}$.
If \mathcal{K} is a Hillort space, $\mathcal{H} \subset \mathcal{K}$ is a submpate, $S \in B(\mathcal{K})$, and $T \in B(\mathcal{H})$, then S is a dilation of T (and T is a perur-tompression of S^{\prime}) provided that $T^{n}=\left.P_{\mathcal{H}} S^{\prime \prime \prime}\right|_{\mathcal{H}}$.
$n=0,1,2, \ldots$. Where $P_{\mathcal{H}}$ denotes the orthogmal projection of \mathcal{K} onto \mathcal{H}.
Let \mathcal{H} and \mathcal{K} be Hilbert pates. An operator $X \in B(\mathcal{H}, \mathcal{K})$ is invertille il it is injertive (one-to-one) and surjective (onto); ; ernvalenty il $\operatorname{Ker}(\mathcal{X})=\{0\}$ and $\operatorname{Ran}(\mathcal{X})=\mathcal{K}$. We denote the clasis of invertible lincar operators by $\mathcal{G}(\mathcal{H}, \mathcal{K})$. The commutator of two operators A and B, denoted by $[A, B]$ is definerl by $[A, B]=A B-B . A$. Two operators $T \in B(\mathcal{H})$ and $S \in B(\mathcal{K})$ are similut (denoted $T \approx S$) if there exists an operator $X \in \mathcal{G}(\mathcal{H}, \mathcal{K})$ such that $X T=S X$ (i.e. $T=X^{-1} S X$ or $S=X T X^{-1}$).
Lincar operators $T \in B(\mathcal{H})$ and $S \in B(\mathcal{K})$ are unilarily requivalem. (demoted $T \cong S$), if there exists a unitary operator $U \in \mathcal{G}(\mathcal{H}, \mathcal{K})$ surch that $U T=S U$ (i.e. $T=U^{*} S U$ or equivalenty $S=U T U^{*}$). Two operators are considered the "same" if they are mitarily equivalent since they have the same properties of invertibility, nomality, spectral picture (norm, spectrmm, sipectral malins).
An operator $X \in B(\mathcal{H}, \mathcal{K})$ is quasimpertible or a quasi-affinity if it is an injertive operator with dense range (i.e. $\operatorname{Ker}(X)=\{0\}$ and $\overline{\operatorname{Ron}(X)}=\mathcal{K}$: equivalently, $\operatorname{Ker}(X)=\{0\}$ and $\operatorname{Ker}\left(X^{*}\right)=\{0\}-$ thms $X \in B(\mathcal{H}, \mathcal{K})$ is quasinvertille if and only if $X^{*} \in B(\mathcal{K} . \mathcal{H})$ is quasiinvertible).
An operator $T \in B(\mathcal{H})$ is a quasioffine iran.form of $S \in B(\mathcal{K})$ if there exists a quasiinvertible $X \in B(\mathcal{H}, \mathcal{K})$ such that $X T=S X$. Two operators $T \in B(\mathcal{H})$ and $S \in B(\mathcal{K})$ are quasisimiliar (denoted $T \sim S$) if they are quasialfine transforms of cach other (i.e., if there exist quasiinvertible operators $X \in B(\mathcal{H}, \mathcal{K})$ and $Y \in B(\mathcal{K}, \mathcal{H})$ such that $X T=S X$ and $\left.Y S=T Y^{\prime}\right)$.
It is easily verified that quasisimilarity is an erquivalence relation and also that T^{*} is quasisimilar to S^{*} whenever T is quasisimilar to S and that similar operators are, of course, quasisimilar but not conversely ($[45]$).
Quasisimilarity was introduced by Nagy and Foias [5:3] in their theory on infinitedimensional analogne of the Jordan Form for certain classes of contractions as a merns of studying their invariant subspace structures. It replaces the familar notion of similarity which is the appropriate copuivalence rolation to nse with finite dimensional Hillert.
spaces. In finite dimensional spaces quasisimilaty is the same thing as similaty, but. in infinite rimensional spaces it is a murd woaker relation.
Two operators A and B are saivl to bo almost-similar (denoteol $A \approx B$) if there exists an invertible operator N surch that the following 1 wo comblitions are satisfied.

$$
\begin{aligned}
A^{*} A & =N^{-1}\left(B^{*} B\right) N \\
A^{*}+A & =N^{-1}\left(B^{*}+B\right) N
\end{aligned}
$$

An operator $X \in B(\mathcal{H} . \mathcal{K})$ midertumes $T \in B(\mathcal{H})$ to $S \in B(\mathcal{K})$ if $X T=S X$. In such a case we say that T is intertwined to S. Note that T is a quasiaffine transform of S if there exists a duasiinvertible operator intert wining T to $S . T$ is said to be densely metertwined to S if there exists in operator with dense range intertwining T to S.
The multiplicity $\mu(T)$ of $T \in B(\mathcal{H})$ is the minimum cardinality of a set $\mathcal{K} \subset \mathcal{H}$ such that.

$$
\mathcal{H}=\bigvee_{n=0}^{\infty} T^{\prime \prime} \mathcal{K} .
$$

For the milateral shift operator $S_{+}, \mu\left(S_{+}\right)=\operatorname{dim}\left(\operatorname{ser}\left(S_{+}^{*}\right)\right)$ and for the loackward shift. $\mu\left(S_{+}^{*}\right)=\operatorname{dim}\left(\operatorname{Ran}\left(S_{+}^{*}\right)^{\perp}\right)=\operatorname{dim}\left(\operatorname{Ker}\left(S_{+}\right)\right)$. We view the Hardy spare \mathbb{H}^{2} as a sulsijace of L^{2} on the mit circle by replacing convergent power series by their boundary functions. The Lebesgue spaces L^{p} are defined with respect to normalized Lelnesgue measure on $\partial \mathbb{D}$. It is known that the Hardy space \mathbb{H}^{∞} is the space of bomuded analytic functions on \mathbb{D} in the supremmm nom, which we sometimes view as a subspace of L^{∞}. A bounded linear operator T asting on the complex separable Hilbert space \mathcal{H} is called homogeneous if $\sigma(T) \subset \overline{\mathbb{D}}$ and $\varphi(T)$ is unitarily equivalent to T for every $\varphi \in \mathcal{M}(\mathbb{D})$, the group of Möbius functions on the unit clise.

1.3 Inclusions of Operator Classes and Examples

It is well known that the following inclusions hold and are proper (see [1], [25]).

Normal \subseteq Quasinormal \subseteq Subuormal \subseteq Hyponormal $\subseteq M-$ hyponormal
 $p<\frac{1}{2}$)

```
H!ponormal \(\subseteq M-\) hyponormal \(\subseteq\) Dominanı
Umitary \(\subseteq\) Normal \(\subseteq\) Quasimormal \(\subseteq\) Binormal
Unilary \(\subseteq\) Isometry \(\subseteq\) Parlial Isometry \(\subseteq\) Combraclion
Unitary \(\subseteq\) Isomatry \(\subseteq 2-\) normal \(\subseteq\) Binormal
Projection \(\subseteq\) Self - adjoint \(\subseteq\) Normal \(\subseteq\) h!pomormal
Hyponormal \(\subseteq\left\{\begin{array}{l}k-q u a s i h y p o n o r m a l \\ k \text {-paranormal }\end{array}\right.\)
quasihyponormal \(\subseteq\) paranormal.
```

$p-q u a s i h y p o n o r m a l \subseteq(p, k)-q u a s i h y p o m o r m a l$
$k-q u a s i h y p o n o r m a l \subseteq(p, k)-$ quasihyponormal
Normal \subseteq Quasinormal \subseteq Sulmormal \subseteq Hyponormal \subseteq Paranormal
Hilbert - Schmidt \subseteq Compact.

We note that a $(p, 1)$-quasilhyponomal operator is p-quasihyponommal and that a ($1 . h_{\text {a }}$)quasihyponormal operator is k-quasihyponommal.
We give some examples to show that these inclusions are proper. The following example shows an isometry which is not unitary.

Example 1.1

Define $T: \ell^{2} \longrightarrow \ell^{2}$ by $T(x)=T\left(x_{1}, x_{2}, x_{3}, \ldots\right)=\left(0, x_{1}, x_{2}, \ldots\right)$ for $x=\left(x_{1}, x_{2}, x_{3}, \ldots\right) \in$ ℓ^{2}. Then $T^{*}(y)=\left(y_{2}, y_{3}, \ldots\right)$ for $y=\left(y_{1}, y_{2}, \ldots\right) \in l^{2}$ and $\left(T^{*} T\right)(x)=T^{*}\left(0, x_{1}, x_{2}, x_{3}, \ldots\right)=$ $\left(r_{1}, x_{2}, x_{3}, \ldots\right)=r$. This shows that $T^{*} T=I$. That is. T is an ismenetry. On the other hand, $\left(T T^{*}\right)(x)=T\left(x_{2}, x_{3}, x_{1}, \ldots\right)=\left(0, x_{2}, x_{3}, x_{4}, \ldots\right)$. Thus $T T^{*} \neq I$ and so $I=T^{*} T \neq T T^{*} \neq I$. This shows that T is an isometry which is not unitary. Indeed, it is clear in this case that T is a partial isometry which is not, matary: since $T(x)=$ $T\left(x_{1}, x_{2}, \ldots\right)=\left(0, x_{1}, x_{2}, \ldots\right)$ and $T T^{*} T(x)=T T^{*} T\left(x_{1}, x_{2}, \ldots\right)=T T^{*}\left(0, x_{1}, x_{2}, \ldots\right)=$ $T\left(x_{1}, x_{2}, \ldots\right)=\left(0, x_{1}, x_{2}, \ldots\right)$. Thus, T is a partial isometry which is not mitary. Also. T is a contradion which is not mitary, since $\|T\| \leq 1$.

Remark 1.1

We observe that in Example 1.1 above, T^{*} is a partial isometry which is not an isometry and that it is a contraction which is not an ismmetry. This is from the fact that $\left\|T^{*}\right\|=1$ and hence a contraction but not an isometry since $T T^{*} \neq I$.

Example 1.2

There are operators which are self-adjom but are not projections.
Consider $T=\left(\begin{array}{ll}1 & 2 \\ 2 & 3\end{array}\right)$. It casy to check that T is self-adjoint but not a projection.

Example 1.3

There are operators that are projections but are not mitary.
Consider $T=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$. Then T is a projection which is not a mitary operator.

Example 1.4

Every hyponomal operator is paranomal. This assertion follows from:

$$
\|T x\|^{2}=\langle T x, T x\rangle=\left\langle T^{*} T x, x\right\rangle \leq\left\|T^{*} T x\right\| \leq\left\|T^{2} x\right\|,
$$

for every unit vector $x \in \mathcal{H}$.

Example 1.5

Comsider $S_{+}: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$ definerl by $S_{+}(x, y)=(0, r)$. Then S_{+}is a milateral shift given by the matrix $S_{+}=\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)$. The multiplicity or $S_{+}, \mu\left(S_{+}\right)=\operatorname{dim}\left(\right.$ Rom $\left.\left(S_{+}\right)\right)=$ $\operatorname{dim}\left(\operatorname{spon}\left\{\binom{0}{1}\right\}\right)=1$. Thus, in this example, S_{+}is a milateral shift of multiplicity one.

Example 1.6

Trivial examples of C_{00}, C_{01}, C_{10} and C_{11} are: the mull operator, a backward shift, a milateral shift and the identity operator.

Chapter 2

On normal and completely non-normal summands of an operator

In this chapter we study the decomposition of an (arbitrary) operator into a direct sum of its normal and completely non-normal(c.n.n.) part.s. By a decomposition we mem separation of an operator into parts. This matches a rerfurement of isolat ing "simple" direct summands of an operator. We give a decper characterization of the nomal and completely non-normal summands for $T \in B(\mathcal{H})$. We use the properties of the direct summands to classify the original operator T.
Unlike other forms of decompositions of an operator. such as polar and cartesian decompositions which do not transfer invariant subspaces from the parts (factors or ordinary summands) to the original (decomposed) operator, direct sum decomposition does have this property. In fact an invariant subsipace for a direct summand is invariant for the direct sum. By the Spectral Theorem [46, Theorem 6.43], for every compact normal operator $T \in B(\mathcal{H})$ there exists a commable resolution of the identity $\left\{I_{k}\right\}$ on \mathcal{H} and a set of scalars $\left\{\lambda_{k}\right\}$ such that $T=\sum_{k} \lambda_{k} P_{k}$, where $\left\{\lambda_{k}\right\}=\sigma_{p}(T)$, the set of all (distinct) eigenvalues of T, and each P_{h} is the orthogonal projection onto the eigenspace $\operatorname{Ker}\left(\lambda_{k} I-T\right)$. Since by [45, Thêorem (0.14 and page 75], this ordinary sum of projections can be translated into a direct sum, we find that a normal operator is mitarily equivalent to a direct sum of simpler operators, which are indeed normal since projection
operators are nomal. This mens that a momal operator is mitarily equivalent to a diered sim of scalar opecatoms, which are (ensy to handle.
Every boumed linear operator T on a Hilloer space has an orthogonal deromposition $T=T_{1}$ 雨 T_{2}, implemented throngh a restriction of T to a reducing sulspate, where T_{1} is nomal and T_{2} is pure or completely nom-nomel (c.m.m.). which means that no part or restriction of T_{2} to a reducing subspace is nomal. It is well known that cither of these two summands may be absent.
It is well known [45, page 22] that in a linite-rimensional setting (Intainomality, sulmormality and hopomomality all collapse to momality. This moms that in surh a setting such operators will have no pure dired smmands.

The following results will be useful in the sequel. We start with the following known result due to [5:3].

Lemma 2.1 [53] For any operator $T \in B(\mathcal{H})$, if $|\lambda|=\|T\|$ is an eigenvalue of T then $\operatorname{Hr}(T-\lambda I)$ is reducing.

Lemma 2.1 gives rise to the following conserfuences.
Corollary 2.2 If T is pure(c.n.n) and if $\|T\|=r(T)$, then there are no migenvalues λ for which $|\lambda|=\|T\|$.

Remark 2.1

We note that $\sigma(T)=\sigma_{P}(T)$ for operators T ading on a finite dinemsional space. However, $\sigma_{P}(T)$ may be empty in an infinite dimensional space.

Example 2.1

Consider the milateral shift $T: \boldsymbol{~}^{2} \longrightarrow\left(^{2}\right.$ on the Hilbert space ℓ^{2} of all square summable infinite serguences of complex numbers, given by
$T\left(x_{1}, x_{2}, x_{3}, \ldots\right)=\left(0, x_{1}, x_{2}, x_{3}, \ldots\right)$ for every $\left(x_{1}, x_{2}, x_{3}, \ldots\right) \in \ell^{2}$. Suppose that $\lambda \in \mathbb{C}$ is an cigenvalue of T. Then there exists a mon-zero eigenvector $\left(x_{1} . x_{2}, x_{3}, \ldots\right) \in r^{2}$ such that $\left(0, x_{1}, x_{2}, x_{3}, \ldots\right)=\lambda\left(x_{1}, x_{2}, x_{3}, \ldots\right)=\left(\lambda x_{1}, \lambda . r_{2}, \lambda x_{3}, \ldots\right)$, so that $\lambda x_{1}=0$ andl $\lambda x_{2}=x_{i-1}$ for every $i>1$. If $\lambda=0$, then the *econd condition implies that $x_{1}=x_{2}=x_{3}=\ldots=0$, a contradiction again. It follows that the operator T, which is a milateral shift, has no cigenvalues and thens $\sigma_{P}(T)=\emptyset$.

Corollary 2.3 If $T \in B(\mathcal{H})$ is dominand wilh $T=T_{1}$ (f) T_{2} wheqe T_{1} is normal and T, is pure, the:" T_{2} is dominamul.

Remark 2.2

We note that Corollary 2.3 applies 10 all sublasses of olominant operators: hyponorman, M-hyponommal. We now investigate the decomposition of $(p, t i)$-quasihyponormal operators, which are an extension of p-hyponomal operators, k-quasihyponomal operators and p-quasilyponormal operators.
Aluthge [1], Arora and Arora [5] mul Kim[43] introduced p-hyponormal. p-quasihyponommal and (p, k)-quasihyponomal operators, respertively. These operators share many interesting properties with hyponommal operators. We give and prove conditions murler which such an operator is normal.

Theorem 2.4 If $T \in B(\mathcal{H})$ is a (μ, k)-quasihyponormal operalor and $S^{*} \in B(\mathcal{H})$ is a p-hyponormal operator, and if $T X=X S$ where $X: \mathcal{K} \longrightarrow \mathcal{H}$ is an injective bounded linear operator with dense range (a quasiaffinity), then T is a normal operator unitarily equivalent to S.

Remark 2.3

Theorem 2.4 says that a (p, k)-quasihyponomal operator which is a quasiaffine fransform of a co-p-hyponormal operator is always normal. We need the following result.

Proposition 2.5 [65] If $T \in \mathcal{B}(\mathcal{H})$ is a hyponormal operator and $S^{-1} T S=T^{*}$ for an operator S, where $0 \notin \overline{W^{*}(S)}$, then T is self-adjoint.

Remark 2.4

From Proposition 2.5 we conclucle that T is normal, since a sell-adjoint operator is normal. From this result, we also deduce that if a hyponormal operator is similar to its adjoint, then it must be normal. We extend the result of Proposition 2.5 to the class of p-hyponormal operators is follows.

Theorem 2.6 If T or T^{*} is p-hyp onormal, and S is an operator for which $0 \notin \overline{\prod^{\prime}(S)}$ and $S T=T^{*} S$, then T is self-adjoint and hence normal.

To prove this theorem we use the following lemmat.

Lemma 2.7 [75] If $T \in B(\mathcal{H})$ is any opervator suth that $S^{-1} T S=T^{*}$, where () $\notin \overline{\mathrm{I}^{\prime}\left(S^{\prime}\right)}$, then $\sigma(T) \subseteq \mathbb{R}$.

Proof of Theorem 2.6. Suppse that T or T^{*} is hyponomal. Since $\sigma(S) \subseteq \overline{W^{(S)}(S)}$. S is invertible and hence $S T=T^{*} S$ becomes $S^{-1} T^{*} S=T=\left(T^{*}\right)^{*}$. Applying Lemmat 2.5 to T^{*} we gel $\sigma\left(T^{*}\right) \subset \mathbb{R}$. Then $\sigma(T)=\overline{\sigma\left(T^{*}\right)}=\sigma\left(T^{*}\right) \subset \mathbb{R}$. Thus $m_{2}(\sigma(T))=$ $m_{2}\left(\sigma\left(T^{*}\right)\right)=0$, for the plamar Lerbescue mensure m_{2}. Applying Putnan's inequality for p-hyponomal operators T or T^{*} (depenating upon which is p-hyponomat), we gel

$$
\left\|\left(T^{*} T\right)^{p}-\left(T T^{*}\right)^{p}\right\| \leq \frac{p}{\Pi} \iint_{\sigma(T)} r^{\cdot 2 p-1} d r d \theta=0
$$

or

$$
\left\|\left(T T^{*}\right)^{p}-\left(T^{*} T\right)^{p}\right\| \leq \frac{p}{\Pi} \iint_{\pi\left(T^{*}\right)} r^{2 p^{p-1}} d r d \theta=0
$$

It follows that T or T^{*} is normal. Since $\sigma(T)=\sigma\left(T^{*}\right) \subset \mathbb{R}$. T must be self-adjoint. Wh extend the result of Theorem 2.6 to the class of f-quasihyponombal operators. We use the following lemma.

Lemma $2.8[43]$ If $T \in B(\mathcal{H})$ is a (p, k)-quasthyponormal operator, then T has the following matrix representalion:
$T=\left(\begin{array}{cc}T_{1} & T_{2} \\ 0 & T_{3}\end{array}\right)$ with respect to the decomposition $\mathcal{H}=\overline{\operatorname{Ron}\left(T^{k}\right)} \oplus \operatorname{Hor}\left(T^{*}\right)$, where T_{1} is p-hyponormal on $\overline{R a n\left(T^{k}\right)}$ and $T_{3}^{k}=0$. Furthermore. $\sigma(T)=\sigma\left(T_{1}\right) \bigcup\{(1\}$.

The following result clue to $[43]$ is usiseful.
Theorem 2.9 [43] If T is a (p, k)-quasihyponormal operator and S is an arbuthery operator for which $0 \notin \overline{W(S)}$ and $S T=T^{*} S$, then T is a dievect sum of a self-adjoint. (and hence normal) and a nilpotent operator.

Corollary 2.10 If T or T^{*} is a p-quasihyponormal opervtor and S is an arbitrary operator for which $0 \notin \overline{W(S)}$ and $S T=T^{*} S$, then T is. sclf-adjoint. (and hence normal).

Proof. If T is p-chasihyponormal, then $b y$ Lemma 2.8 , for $k=1, T$ hats the matrix representation
$T=\left(\begin{array}{cc}T_{1} & T_{2} \\ 0 & 0\end{array}\right)$ where T_{1} is p-hyponommal on $\overline{\operatorname{Ran}\left(T^{k}\right)}$ and $\sigma(T)=\sigma\left(T_{1}\right) \bigcup\{0\}$.

Since T_{1} is self-adjoint and $T_{2}=0$ lay Theorem 2.9, $T=\left(\begin{array}{cc}T_{1} & 0 \\ 0 & 0\end{array}\right)$ is also sell-adjoint. On the other hand, if T^{*} is (p, k)-ghasihyponomal, them nsing Theorem 2.9 we conducle that T is self-atljoint (and lemee nomaral).

Lemma 2.11 The restriction $\left.T\right|_{\text {. of }}$ a (p, k)-quasihypponotmal operator T on \mathcal{H} to an imearyant sublspace \mathcal{M} is also a (p, k)-quasishyponormal opectator.

Remark 2.5

From Lemma 2.11, we conchate that the direct smmands of a (p, b)-chasihyponermad operator T are again ($p, f_{\text {}}$)-quasilyponomal.
We need the following results.
Theorem 2.12 (Löwner-Heinz Theorem [40 , Proposition A]) If A and B are operators such that $A \geq B \geq 0$ then $A^{\circ} \geq B^{n}$ for any $a \in[0,1]$.

Theorem 2.13 (Hansen's Incquality [40, Proposition $B]$) If $A \geq 0$ and $B \leq 1$, then $\left(B^{*} . A B\right)^{\delta} \geq B^{*} . A^{\delta} B$ for all $\delta \in(0,1]$.

Lemmana 2.14 If $T \in B(\mathcal{H})$ is a (p.k)-quasishyponotmal operator and \mathcal{M} is an anvariant subspace of T for which $\left.T\right|_{.4}$ is an injective normal operator, then \mathcal{M} reduces T.

Proof. Suppose that P is an orthogomal projection of \mathcal{H} onto $\overline{\operatorname{Ran}\left(T^{h}\right)}$. Since T is (p, k)-quasihyponomal, we have $T^{* k}\left(\left(T^{*} T\right)^{p}-\left(T T^{*}\right)^{p}\right) T^{k} \geq 0$. If we let $S=\left.P T\right|_{\mathcal{M}}$, then clearly, $P\left(\left(T^{*} T\right)^{p}-\left(T T^{*}\right)^{p}\right) P \geq 0$. Put. $T_{1}=\left.T\right|_{\mathcal{M}}$ and $T=\left(\begin{array}{cc}T_{1} & T_{2} \\ 0 & T_{3}\end{array}\right)$ on $\mathcal{H}=\mathcal{M} \oplus \mathcal{M}^{\perp}$. Clearly, $S=T_{1}$ if $\mathcal{M}=\overline{\operatorname{Ram}\left(T^{k}\right)}$. Since by assumption T_{1} is an injective normal operator, we have $Q \leq P$ for the orthogonal projection Q of \mathcal{H} onto \mathcal{M} and $\overline{\operatorname{Ran}\left(T_{1}^{k}\right)}=\mathcal{M}$, because T_{1} has dense range. Therefore, $\mathcal{M} \subseteq \overline{\operatorname{Ran}\left(T^{k}\right)}$ and hence $Q\left(\left(T^{*} T\right)^{p}-\left(T T^{*}\right)^{p}\right) Q \geq 0$.
Since T is (p, k)-quasihyponomal, using the Löwner-Heinz inequality and Hansen's in(rpuality, we have
$\left(\begin{array}{cc}\left(T_{1} T_{1}^{*}\right)^{p} & 0 \\ 0 & 0\end{array}\right)=Q\left(T Q T^{*}\right)^{p} Q \leq Q\left(T T^{*}\right)^{\mu} Q \leq\left(Q T^{*} T Q\right)^{p}=\left(\begin{array}{cc}\left(T_{1}^{*} T_{1}\right)^{p} & 0 \\ 0 & 0\end{array}\right)$. Since T_{1} is nomal, we have. by Löwner's inecquality,
$\left(T T^{*}\right)^{\frac{\mu}{2}}=\left(\begin{array}{cc}\left(T_{1} T_{1}^{*}\right)^{\frac{p}{2}} & A \\ A^{*} & B\end{array}\right) \cdot \operatorname{So}\left(\begin{array}{cc}\left(T_{1} T_{1}^{*}\right)^{\prime \prime} & 0 \\ 0 & 0\end{array}\right)=\left(Q\left(T T^{*}\right)^{\mu}()=\left(\begin{array}{cc}\left(T_{1} T_{1}^{*}\right)+A A^{*} & 0 \\ 0 & 0\end{array}\right)\right.$
and hence $A=0$ and $T T^{*}=\left(\begin{array}{cc}T_{1} T_{1}^{*} & 0 \\ 0 & B^{\frac{2}{*}}\end{array}\right)$. Since $T T^{*}=\left(\begin{array}{cc}T_{1} T_{1}^{*}+T_{2} T_{2}^{*} & T_{2} T_{3}^{*} \\ T_{3} T_{2}^{*} & T_{3} T_{3}^{*}\end{array}\right)$, it follows that $T_{2}=0$ and hence T is reduced by \mathcal{M}.

Remark 2.6
Lemma 2.14 says that $T=\left(\begin{array}{cc}T_{1} & 0 \\ 0 & T_{3}\end{array}\right)$, where $T_{1}=\left.T\right|_{M}$. That is, T decomposes into a direct sum of nontrivial complementary parts.
We state the following result important result, which has been proved in [46].
Theorem $2.15[4 G]$ Let $T \in B(\mathcal{H})$. The following ussertions.s are pairurise equivalent. (a) \mathcal{M} reduces T.
(b) $T=\left.\left.T\right|_{\mathcal{M}} \oplus T\right|_{\mathcal{M}^{\perp}}=\left(\begin{array}{cc}\left.T\right|_{\mathcal{M}} & 0 \\ 0 & \left.T\right|_{\mathcal{M}^{\perp}}\end{array}\right): \mathcal{H}=\mathcal{M} \oplus \mathcal{M}^{\perp} \longrightarrow \mathcal{H}=\mathcal{M} \oplus \mathcal{M}^{\perp}$.
(c) $P T=T P$, where $P=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right): \mathcal{H}=\mathcal{M} \oplus \mathcal{M}^{\perp} \longrightarrow \mathcal{H}=\mathcal{M} \oplus \mathcal{M}^{\perp}$ is the orthogomal projection onto \mathcal{M}.

From Theorem 2.15 we note that, if \mathcal{M} reduces T, then the investigation of T is reduced to the investigation of the restrictions $\left.T\right|_{\mathcal{M}}$ and $\left.T\right|_{\mathcal{M}^{1}}$, which have a simpler structure than that of T.
The following result proved in [64] will come in handy in this chapter.
Theorem $2.16\left[64\right.$, Lemma 1] If T is a pure p-hyponormal operator, then $\sigma_{p}(T)=\emptyset$.
Lemma 2.17 If $T \in B(\mathcal{H})$ is paranormal, then the restriction $\left.T\right|_{\mathcal{M}}$ to an invariant subspace \mathcal{M} is also paranormal.

Proof. Let $x \in \mathcal{M}$ be an arbitrary vector. Then we have,

$$
\left\|\left.T\right|_{\mathcal{M}} x\right\|^{2}=\|T x\|^{2} \leq\left\|T^{2} x\right\|\|x\|=\left\|\left(\left.T\right|_{\mathcal{M}}\right)^{2} x\right\|\|x\| .
$$

This implies that $\left.T\right|_{\mathcal{M}}$ is paranorinal.
Theorem 2.18 If \mathcal{H} is finitc-dimensional and T is an M-hyponormal operator on \mathcal{H}. then T is normal.

Remark 2.7

We note that Theorem 2.18 cam be extemed to the dans of dominamt operators and in general to any arbitrary operator ading on a finite-dimensional Hillert space. The next result due to [51] is useful.

Theorem $2.19[51]$ If $T \in B(\mathcal{H})$. then there exists a roduring subspuce \mathcal{M} of \mathcal{H} (possilly trivial) such that $\left.T\right|_{\mathcal{M}}$ is normal and $\left.T\right|_{\mathcal{M}^{+}}$is complately non-normal. Furthermone. the decomposition is unique, and

$$
\begin{aligned}
\mathcal{M} & =\bigcap_{m, n=0}^{\infty} \operatorname{ker}\left(T^{n} T^{* \prime \prime}-T^{* n} T^{\prime \prime}\right) \\
& =\bigcap_{m=0}^{\infty} \bigcap_{n=0}^{\infty} \operatorname{Ker}\left(T^{n} T^{* m}-T^{* m} T^{n}\right)
\end{aligned}
$$

Remark 2.8

Theorem 2.19 is a version of Theorem 2.15 and gives miqueness of the recomposition. In the following result, we nise the notation $\left[T^{*}, T\right]=T^{*} T-T T^{*}$. We use Theorem 2.19 to prove the following result.

Theorem 2.20 Let T be an operator on \mathcal{H}. If $\mathcal{K}=\operatorname{Ran}\left(T^{*} T-T T^{*}\right)$ is the smallest reducing subspace of T, then $\left.T\right|_{\mathcal{K}}$ is the completely non-nommal summand of T.

Proof. Let \mathcal{K} be as defined in the theorem. From Theorem 2.19. $T=T_{1} \oplus T_{2}$ on $\mathcal{M} \oplus \mathcal{M}^{\perp}$, where T_{1} is completely non-normal and T_{2} is normal. Since $\left[T^{*}, T\right]=$ $\left[T_{1}^{*}, T_{1}\right] \oplus\left[T_{2}^{*}, T_{2}\right], \quad\left[T_{2}^{*}, T_{2}\right]=0$ and so it is clear that $\mathcal{K} \subseteq \mathcal{M}$, because \mathcal{M} is a reducing subspace of T containing the range of $\left[T^{*}, T\right]$. If this containment is proper, then T_{1} itself could further be reduced into $T_{11} \oplus T_{12}$ on $\mathcal{K} \oplus \mathcal{K}^{\perp}$, where \mathcal{K}^{\perp} is the orthogonal complenent of \mathcal{K} in \mathcal{M}. But the definition of \mathcal{K} implies that $\left[T_{12}^{*}, T_{12}\right]=0$, which contradicts the fact that T_{1} is completely nom-nomal. Therefore, $\mathcal{K}=\mathcal{M}$. which completes the proof.

Remark 2.9

Nzimbi, Pokhariyal and Khalagai [5G, Theorem 2.9] have shown that Theorem 2.20 holds for the class of 2-normal operators. We give an example of a basic non-nomal operator.

Example 2.2

A milateral shift is a mon-1nomal operator.
Proposition 2.21 An isometry is pare if and only if it is a anilateral shifl.
Proof. Suppose that T is in isometry and that $T=T_{1}$ o T_{2}, where T_{1} is nomed and T_{2} is completely nom-nomal. Since T is pure, T_{1} is missing and T_{2} is pure. Hence $T T^{*} \neq T^{*} T=I=T_{2}^{*} T_{2}$. Thus T is an isometry which is not a co-isometry and honce must be a milateral shift. Comversely, suppose T is a unilateral shift. Then $T^{*} T x \neq T T^{*} x$ for every $0 \neq x \in \mathcal{M} \subset \mathcal{H}$. This proves that T is pure.

Remark 2.10

Proposition 2.21 is a special case of Theorem 2.16. Indeed, by [45, Remark 5.5] any pure operator is a milateral shift or a direct sum of unilateral shifts. We investigate the direct sum deromposition for similar, quasisimilar and unitarily equivalent operators.

Lemma 2.22 Let $T \in B\left(\mathcal{H}_{1}\right)$ be a p-quasihyponormal operator and $N \in B\left(\mathcal{H}_{2}\right)$ be a normal operator. If $X \in B\left(\mathcal{H}_{2}, \mathcal{H}_{1}\right)$ has dense range and satisfies $T X=X N$, then T i.s also a normal operator.

Proof. By [69] and Lemma 2.8, $T=\left(\begin{array}{cc}T_{1} & T_{2} \\ 0 & 0\end{array}\right)$ and $N=\left(\begin{array}{cc}N_{1} & 0 \\ 0 & 0\end{array}\right)$, with respect to the decompositions $\mathcal{H}_{1}=\overline{\operatorname{Ran}(T)} \oplus \operatorname{Ker}\left(T^{*}\right)$ and $\mathcal{H}_{2}=\overline{\operatorname{Ran}(N)} \oplus \operatorname{Ker}\left(N^{*}\right)$, respectively. Since $T X=X N$ and X has dense range, we have $\overline{X(\overline{\operatorname{Ran}(N)})}=\overline{\operatorname{Ran}(T)}$. If we denote the restriction of X to $\overline{\operatorname{Ran}(N)}$ by X_{1}, then $X_{1}: \overline{\operatorname{Ran}(N)} \longrightarrow \overline{\operatorname{Ran}(T)}$ has dense range and for every $x \in \overline{\operatorname{Ran}(N)}$

$$
X_{1} N_{1} x=X N x=T X x=T_{1} X_{1} x
$$

so that $X_{1} N_{1}=T_{1} X_{1}$. Since T_{1} is p-hyponormal ly Lemma 2.8 , there exists a hyponormal operat.or \bar{T}_{1} corresponding to T_{1} and a quasiaffinity Y such that $\bar{T}_{1} Y=Y T_{1}$, where $\bar{T}_{1}=\left|\hat{T}_{1}\right|^{1 / 2} V\left|\hat{T}_{1}\right|^{1 / 2}$, with $T_{1}=U\left|T_{1}\right|$ and $\tilde{T}_{1}=\left|T_{1}\right|^{1 / 2} U\left|T_{1}\right|^{1 / 2}$.
Thus, we have

$$
\tilde{T}_{1} Y X_{1}=Y T_{1} X_{1}=Y X_{1} N_{1} .
$$

Since $Y X_{1}$ has dense range, \bar{T}_{1} is nomal, and so T_{1} is normal. Thus the inequality

$$
\left(T_{1}^{*} T_{1}\right)^{p} \geq\left(T_{1} T_{1}^{*}+T_{2} T_{2}^{*}\right)^{p} \geq\left(T_{1} T_{1}^{*}\right)=\left(T_{1}^{*} T_{1}\right)^{p}
$$

implies that $T_{2}=0$. Hence T is nomal.
We state the next result for (quasisimilar p-quabily pomomal operators.
Theorem 2.23 Let $T_{i} \in B\left(\mathcal{H}_{1}\right)(i=1,2)$ be injective p-quasihupponormal operators such that T_{1} and T_{2} are quasisimilat and let $T_{1}=N_{i}$ का V_{i} on $\mathcal{H}_{i}=\mathcal{H}_{11}$ (1) $\mathcal{H}_{i 2}$, where $N_{\text {i }}$ and V_{i} are the normal and pare parts. of T_{2}, esppectively. Then N_{1} and N_{2} are unitarily equivalent and there exist $\mathcal{X}_{*} \in B\left(\mathcal{H}_{22} . \mathcal{H}_{12}\right)$ and $Y_{0} \in B\left(\mathcal{H}_{12}, \mathcal{H}_{22}\right)$ with dense: runges such that $V_{1} X_{*}=X_{*} V_{2}$ and $Y_{*} V_{1}=V_{2} Y_{*}$.

Proof. There exist quasiadfinities $X \in B\left(\mathcal{H}_{2}, \mathcal{H}_{1}\right)$ and $Y \in B\left(\mathcal{H}_{1}, \mathcal{H}_{2}\right)$ such that $T_{1} X=$ $X T_{2}$ and $Y T_{1}=T_{2} Y$. Let $X:=\left(\begin{array}{ll}X_{1} & X_{2} \\ X_{3} & X_{4}\end{array}\right)$ and $Y:=\left(\begin{array}{ll}Y_{1} & Y_{2} \\ Y_{3} & Y_{4}\end{array}\right)$. Wo show that $X_{*}=X_{4}$ and $Y_{*}=Y_{4}$. A simple matrix calculation shows that $V_{1} X_{3}=X_{3} N_{2}$ and $V_{2} Y_{3}=Y_{3} N_{1}$. We claim that $X_{3}=Y_{3}=0$. Indeed. leting $\mathcal{M}=\overline{\operatorname{Ran}\left(X_{3}\right)}$, the sulbspace \mathcal{M} is invariant under V_{1}. So let $V_{1}^{\prime}=\left.V_{1}\right|_{\mathcal{M}}$ and let $X_{3}^{\prime}: H_{21} \longrightarrow \mathcal{M}$ be defined by $X_{3}^{\prime} x=X_{3} x$ for each $x \in \mathcal{H}_{21}$. Since V_{1}^{\prime} is injective p-fuatily ponormal (since ley Lemma 2.11 the restriction of a p-(pusibyponomal operator to an invariant subspace is also p-chasilyponormal), X_{3}^{\prime} hat dense range, and $V_{1}^{\prime} X_{3}^{\prime}=X_{3}^{\prime} N_{2}$. Hence V_{1}^{\prime} is nornath les Lemma 2.22 and hence \mathcal{M} reduces V_{1}. Since V_{1} is pure we have that $\mathcal{M}=\{0\}$. and hence $X_{3}=0$. Similarly, we have $Y_{3}=0$. Thus, it follows that X_{1} and Y_{1}^{\prime} are injective. Since $N_{1} X_{1}=X_{1} N_{2}$ and $Y_{1} N_{1}=N_{2} Y_{1}$, by [76, Lemma 1.1], we have that N_{1} and N_{2} are unitarily equivalent. Also, we can notice that X_{4} and Y_{4} have dense ranges and $V_{1} X_{4}=X_{4} V_{2}$ and $Y_{4} V_{1}=V_{2} Y_{4}$, which completes the prool.

Remark 2.11

For any operator $T \in B(\mathcal{H})$ the self-commutator of $T,\left[T^{*}, T\right]=T^{*} T-T T^{*}$ is always selfadjoint. Recall that an operator T is normal if it commutes with its adjoint. It is easy to check that the operator $\left[T^{*}, T\right]$ is normal. We use this notion to give a characterization of normal and quasinormal operators.

Theorem 2.24 Let $T \in B(\mathcal{H})$ such that $T=T_{1} \oplus T_{2}$ with T_{1} normal and T_{2} pure. T is normal if and only if $\left[T_{2}^{*}, T_{2}\right]=0$.

Proof. Suppose $T \in B(\mathcal{H})$ is normal. Then $T^{*} T-T T^{*}=\left[T_{2}^{*}, T_{2}\right]=0$. Conversely,suppose $\left[T_{2}^{*}, T_{2}\right]=T_{2}^{*} T_{2}-T_{2} T_{2}^{*}=0$. Since T_{2} is pure this holds only if $T_{2}=0$. A simple computation shows that $T^{*} T=T T^{*}$. This proves that T is normal.

Remark 2.12

We note that. Theorem 2.24 (an be proved canily by using the fact that T has no phere part. Recall that an operator $T \in B(\mathcal{H})$ is chatimomal if it commutes with $T^{*} T$. Equivalently, if $\left(T^{*} T-T T^{*}\right) T=0$. We use this fact to prove the following result.

Theoren $2.25 T \in B(\mathcal{H})$ is quasinormal if and omly if $\left[T^{*}, T\right] T=0$.
Proof. The proof follows casily by inntating Theorm 2.24 above.
We investigate the direct smmands of a duasinomal operator.
Theorem 2.26 Every divech summand of a quasinormal operator is. again quasinormal.
Proof. Let \mathcal{M} be a reducing sulspace for $T \in B(\mathcal{H})$. Suppose that $T=T_{1} \oplus T_{2}$ on $\mathcal{H}=\mathcal{M} \oplus \mathcal{M}^{\perp}$ where $T_{1}=\left.T\right|_{\mathcal{M}}$ and $T_{2}=\left.T\right|_{\mathcal{M}^{\perp}}$ and T is quasinomal. Then $T^{*} T T=T_{1}^{*} T_{1} T_{1} \oplus T_{2}^{*} T_{2} T_{2}=T_{1} T_{1}^{*} T_{1} \oplus T_{2} T_{2}^{*} T_{2}=T T^{*} T$.
This shows that $T_{1}^{*} T_{1} T_{1}=T_{1} T_{1}^{*} T_{1}$ and $T_{2}^{*} T_{2} T_{2}=T_{2} T_{2}^{*} T_{2}$ (i.e $\left[T_{1}^{*}, T_{1}\right] T_{1}=0$ and [$\left.T_{2}^{*}, T_{2}\right] T_{2}=0$) and hence by Theorem $2.25, T_{1}$ and T_{2} are both quasinomal.

Remark 2.13

Theorem 2.26 salys that the restriction of a quasinmmal operator 10 a reducing sul)space is always guasinomal. We give conditions under which a hyponormal operator is quasisimilar to an isometry.

Corollary 2.27 Let T be a hyponormal operator whose c.n.n part has.s fimte multiplicity. Then T is quasisimilar to an isometry if and only if its normal part, is unitary and its c.n.n. part is quasisimilar to a unilateral shift.

Proof. Let T be hyponormal with the decomposition $T=T_{1} \oplus T_{2}$ and suppose that T is quasisimilar to an isometry $V=U \oplus S$, where T_{1} is nomal, T_{2} is c.n.n., U is unitary and S is a unilateral shift. By [33, Proposition 3.5], T_{1} is unitarily equivalent to U and hence unitary. Since by assumption T is quasisimilar to V, and by Clary [14] cuasisimilar hyponomal operators have the same spectra, and by [29], $\|T\|=r(T)=r(V)=1$, where $r(T)$ and $r(V)$ are the spectral radii of T and S, respectively, then this proves that T_{2} is cuasisimilar to S.

Remark 2.14

We nead the following result to give and prove comelitions under which a p-ditasihyponormal rontration is normal. This result will also be useful in Chapter Theree.

Theorem $2.28[4]$ The c.n.u part of a paranormal conltaction is of clas.s. C_{0}.

Remark 2.15

Since ly [25] the clats of p-cquasilyponomal operators is contained in the class of paranomal operators, the c.n.n part of a 1 -quasilhyponomal contraction is of class C.on We use this ansertion to prove the following result.

Theorem 2.29 Let $T \in B(\mathcal{H})$ be a p-quasihyponormal contraction. If $d_{T}<\infty$, then T is normal.

Proof. Since T is a contraction, we have the decomposition $T=T_{1} \oplus T_{2}$ with respect to the decomposition $\mathcal{H}=\mathcal{H}_{1} \oplus \mathcal{H}_{2}$, where $T_{1}=\left.T\right|_{\mathcal{H}_{1}}$ is unitary (hence injective with $\operatorname{Ker}\left(T_{1}\right)=\{0\}$) and $T_{2}=\left.T\right|_{\mathcal{H}_{2}}$ is (.n.n. p-quasihyponormal. Since by Theorem 2.28 the c.n.u. part of p-quasihyponomal contraction is $C_{0} . T_{2}$ is of class C_{00}. On the other hand, since T_{1} is unitary, the deficiency index $d_{T_{1}}=0$ and hence $d_{T_{2}}=\operatorname{rank}\left(D_{T_{2}}\right)=$ $\operatorname{rank}\left(D_{T}\right)<\infty$. Since $T_{2} \in C_{.0} . T \in C_{0}$. Thus, there exists an inner function f such that $f(T)=0$. By [60, Theorem 2], the planar Lebesgue measure of the spectrom of T is zero. This proves that T is normal.

Remark 2.16

Takahashi and Uchiyama [67] proved that if T is a hyponormal contraction with HilbertSchmidt defect operator, then T is c.n.n. and T is of class C_{10} are equivalent.
We give the following generalization to the class of p-quasihyponormal operators.
Theorem 2.30 Let $T \in B(\mathcal{H})$ be a p-quasihyponormal contraction such that the defect operator D_{T} is of Hillect-Schmidt class. Then T is completely non-normal if and only if T is of class C_{11}.

Proof. Suppose that T is a con. p-quasihyponomal contraction. Then by Theorem 2.27, T is of class $C_{\text {.0 }}$. Define $\mathcal{M}=\left\{x \in \mathcal{H}: T^{n} x \longrightarrow 0, n=1,2, \ldots\right\}$. Then \mathcal{M} is a T invariant subspace and the restriction operator $\left.T\right|_{\mathcal{M}}$ is of class C_{00} and $D_{T_{1}}^{2}=I_{\mathcal{M}}-T_{\mathbf{1}}^{*} T_{1}$
is of trace-class. That, is, $\sum_{n}\langle | D_{I}\left|e_{n}, e_{n}\right\rangle<\infty$ or erquivalemt $\}$, $\sum_{n}\left\|\left|D_{T}\right|^{1 / 2} e_{n}\right\|^{2}<\infty$ for an orthomomal basis $\left\{e_{n}\right\}$ of \mathcal{M}. By Nagy and Foias [53, Theorem 2], the phanar Lebengue measure of the spectrum of T is zero. But ley Lee and Lee [50] the phanat Lobesgue measure of the spectrum of any con.n. p-quasilhyomomal operator is positive. This implies that $\mathcal{M}=\{0\}$, and hemee T is of chass C_{10}. Comerrely, suppose T is of chass $C_{\text {to }}$. For a nommal operator $N, N \in C_{0}$ and $N \in C_{0,}$ are equivalent. So the condition $T \in C_{10}$ excludes the existence of any non-trivial normal direct simmand. This means that T is completely non-nomal.

Corollary 2.31 Let A and B be hyponormal operators. Assume that the can.n. part of A has finite multiplicity. If A is quasisimilar to B then their normal parts. are unitarily equivalent.

Proof. The result follows easily from Corollary 2.27 and by the application of the fact that quasisimilar normal operators are mitarily ergivalent (see Hastings [33]. Williams [76]).

Note that from Corollary 2.31, we camot conclude that cuasisimilar hypomomal operators have quasisimilar pure parts. By [33], if A and B are quasisimilar hyponomal operators and A is pure, then B is also pure.

Definition 2.1

An operator $T \in B(\mathcal{H})$ is called quastrongular if there exists an increasing sefuence $\left\{P_{n}\right\}_{n=1}^{\infty}$ of finite rank (orthogonal) projections such that $P_{n} \longrightarrow I$ (strongly, $n \longrightarrow \infty$) and $\left\|T P_{n}-P_{n} T P_{n}\right\| \longrightarrow 0$ as $n \longrightarrow \infty$ (see [37].[54]). Recall that an operator T is reductive if every T-invariant subspace reduces T. We give some decomposition results.s for quasitriangular operators.

Theorem 2.32 If A is completely nonnormal and reductive, and if T commutes with A, then T is quasitriangular.

Proof. By Hoover [39], since A is reductive, and $A T=T A$, then T is reductive and hence every invariant subspace of T is reducing. Thus every invariant subspace of T is
also an invariant sulspace for T^{*}. If T^{*} hats an cigenvalne λ, $\operatorname{lot} \mathcal{M}_{\lambda}=\operatorname{Ker}\left(\lambda I-T^{*}\right)$. Cleaty, \mathcal{M}_{λ} is T^{*}-invariant and A^{*}-invanimat. Thus \mathcal{M}_{λ} is hyperinvariant for T^{*} and thas redures T. Now suppose that T is monghasitriangular and ket \mathcal{M} be the span of all cigenvectors of T^{*}. The subspace \mathcal{M} reduces T and $\left.T\right|_{M}$ is diagonal, so it must be
 cont radiction of the choice of \mathcal{M}. Thus T is quasitriangular.

Remark 2.17

We note that Theorem 2.32 is not generally true for all reductive operators. For comsider $T=I$. Thus T commutes with every linear operator A but $T=I$ is not quasit riangular. Thus the complete nommormality of A camot be dropped.
This fact learls to the following result.
Corollary 2.33 Every reductive operalor $T \in B(\mathcal{H})$ is quasilmanignlar:
Proof. Suppose T is reductive. Then $T=T_{1} \oplus T_{2}$, where T_{1} is nomal (hence) quasitriangular, and the completely non-nomal T_{2} commutes with itself and is therefore quasitriangular by Theorem 2.32.

Remark 2.18

We now look into the normal parts of a dominant operator. We first note that a hyponomal operator which is similar to a mormal operator must be normal. It is known from the definition that every hyponormal operator is dominant. First, we need the following two corollaries due to Stampeli and Warlhwa [65].

Corollary 2.34 [66]. Let $T \in B(\mathcal{H})$ be hyponormal. If T is similar to a normal operator, then T is nomnal.

Remark 2.19

We note that Corollary 2.34 also follows casily from Proposition 2.5 and the Proof of Lemma 2.7. We give a simplified but detailed proof to the following corollary:

Corollary $2.35[66]$. Let $T \in B(\mathcal{H})$. Let. $T W^{\prime}=W$ where N is normal and W is any non-zero operator in $B(\mathcal{H})$. Then T has, a nontrivial invariant subspace.

Remark 2.20

We note that Corollary 2.35 applies 10 (puasiafline transfoms of all relucible operators with a finiterdimensional dired smmand (remember: nomal operators are reducilje).

Corollary 2.36 [19]. Led $A \in B\left(\mathcal{H}_{1}\right), B \in B\left(\mathcal{H}_{2}\right)$ and $X \in B\left(\mathcal{H}_{2}, \mathcal{H}_{1}\right)$ be such that $A X=X B$. If enther A is a pure domimant operator or B^{*} is a pure M-hyponormal operator, then $X=0$.

Remark 2.21
The following results. show that the results on clecompositions of (p, k)-quasihyponomal operators can be strengthened to suloclasses.

Theorem 2.37 An operator $T \in B(\mathcal{H})$ is k-quasihyponormal if and only if $T=\left(\begin{array}{cc}T_{1} & T_{2} \\ 0 & T_{3}\end{array}\right)$ with respect to the decomposition $\mathcal{H}=\overline{\operatorname{Ran}\left(T^{k}\right)} \oplus \operatorname{Ker}\left(T^{* h}\right)$, where $T_{1}^{*} T_{1}-T_{1} T_{1}^{*} \geq T_{2} T_{2}^{*}$ and $T_{3}^{k}=0$.

Proof. This result follows easily from Lemma 2.8.
Corollary 2.38 If T is k-quasingponormal and the spectrum of T has zero Lebesgue measure, then T is a direct sum of a normal operator and a milpotent operator.

Proof. The hypothesis implies that T is of the form in Theorem 2.37 with spectrum of T_{1} of zero area measure. Therefore T_{1} is nomal and hence $T_{2}=0$. Hence, $T=\left(\begin{array}{cc}T_{1} & 0 \\ 0 & T_{3}\end{array}\right)$, where T_{1} is normal and $T_{3}^{k}=0$, i.e. T_{3} is nilpotent. This proves the result.

Remark 2.22

From Corollary 2.38, it is clear that the direct summand T_{3} is completely non-nomal.
Corollary 2.39 If T is k-quasihyponormal and the spectrum of T has zero Lebesyue area measure, and $\operatorname{Ker}(T) \subset \operatorname{Ker}\left(T^{*}\right)$ (equivalently, $\left.\operatorname{Ker}(T) \cap \operatorname{Ran}(T)=\{0\}\right)$, then T is normal.

Proof. Suppose that T satisfies all the assmuptions in Corollary 2.38. From Theorem 2.37 and Corollary 2.38, $T=T_{1} \oplus T_{3}$ where T_{1} is nommal. If $T_{3}^{k}=0$ and $T_{3} \neq 0$. then $\operatorname{Ran}(T) \cap \operatorname{Ker}(T)=\{0\}$. Thus $T_{3}=0$ and thus $T=T_{1} \oplus 0$, which is normal.
'Theorem 2.40 If A is a complelrly mon-marmal operalor of norm one, such that I $^{*} A-$ A A^{*} is a projection, then A is a umblateral shifl. The condusion is also true if the norm condition is not assumed.

Proof. We show that
(1) A is quasinommal,
(2) $\mathcal{M}=\operatorname{Ker}\left(I-A^{*} A\right)$ rerlinces A.
(3) $\operatorname{Ker}\left(I-A^{*} A\right) \subseteq \operatorname{Ker}\left(A^{*} A-A A^{*}\right)$.

Write $P=A^{*} A-A A^{*}$. Since for all $x \in \mathcal{M}$

$$
\|x\|^{2} \geq\|A x\|^{2}=\left\langle A^{*} A x, r\right\rangle=\left\langle A A^{*} x, x\right\rangle+\langle P \cdot x, r\rangle=\left\|A^{*} \cdot r\right\|^{2}+\|P r\|^{2},
$$

it follows that if $P=I$, then $A^{*} P^{P}=0$. This implies that $\left(A^{*} P\right)^{*}=0$, and hence $P A=0$. This shous that $\left(A^{*} A\right) A=A\left(A^{*} A\right)$, which proves (1). If $x \in \mathcal{M}$. then $x-A^{*} A x=0$. Thus

$$
A x-\left(A^{*} A\right) A x=A x-A\left(A^{*} A\right) x=A\left(x-A^{*} A r\right)=0,
$$

so that \mathcal{M} is invariant under A^{*}. Similarly, replacing.r by $A^{*} r$ we get that \mathcal{M} is invariant mader A. This proves (2). Finally, since P is idempotent, it follows that

$$
A^{*} A-A \cdot A^{*}=A^{*} A A^{*} A-A \cdot A^{*} A^{*} A-A^{*} A A \cdot A^{*}+A A^{*} A A^{*}
$$

Since $A^{*} A$ commates with both A and A^{*}. this cam be written as

$$
A^{*} A-A A^{*}=A^{*} A\left(A^{*} A-A \cdot A^{*}\right)
$$

In other words, $P=A^{*} A P$, or, $\left(I-A^{*} A\right) P=0$. It follows that $\operatorname{Ran}(P) \subseteq \mathcal{M}$, or, $\mathcal{M} \perp$ $\operatorname{Ker}(P)$ (since range and kernel of a projection operator are algebrac complements) and since A is completely non-normal, Ker (P) inclurles no non-zero sulspace that reduces A. Thus $\mathcal{M}^{\perp}=\{0\}$, which means that A is a milateral shift.

Remark 2.23

From $[50]$ an operator $T \in B(\mathcal{H})$ is 2 -nomal (rlenoted $T \in[2 N]$) if $T^{*} T^{2}=T^{2} T^{*}$. We investigate the direct sum decomposition of 2-nomal operators.

Proposition 2.41 [56, Proposilion 2.1] Let $T \in B(\mathcal{H})$ hawe Uhe divest sum decomposition $T=T_{1} \oplus T_{2}$ with respect to the decomposition $\mathcal{H}=\mathcal{H}_{1} \oplus \mathcal{H}_{2}$. I/ $T \in[2 N]$ then euch direct summand $T_{i}, i=1,2$ is 2 -nommal.

Proof. Suppose that $T^{*} T^{2}=T^{2} T^{*}$. Them a simple onerator multiplication shows that. $T^{*} T^{2}=T_{1}^{*} T_{1}^{2}$ 就 $T_{2}^{*} T_{2}^{2}$ and $T^{2} T^{*}=T_{1}^{*} T_{1}^{*}$ \& $T_{2}^{2} T_{2}^{*}$. Since $T \in[2 N]$, we have $T_{1}^{*} T_{1}^{2}$ g) $T_{2}^{*} T_{2}^{2}=T_{1}^{2} T_{1}^{*}$ © $T_{2}^{2} T_{2}^{*}$. Equating respective dired smmands gives $T_{1}^{*} T_{1}^{2}=T_{1}^{2} T_{1}^{*}$ and $T_{2}^{*} T_{2}^{2}=T_{2}^{2} T_{2}^{*}$. Hence $T_{i} \in[2 N], i=1.2$.

Remark 2.24

Nzimbi, Pokhariyal and Khalagai [56] have chamerl that the converse of Proposition 2.41 is also true. This leads to the following result.

Proposition 2.42 [50. Proposilion 2.2] Let T be a normal operator. Then T is 2 normal.

Proof. Since T is nomal, so is T^{*}. Thus $T^{*} T^{2}=\left(T^{*} T\right) T=\left(T T^{*}\right) T=T\left(T^{*} T\right)=$ $T\left(T T^{*}\right)=T^{2} T^{*}$. This completes the proof.

Remark 2.25

The converse of Proposition 2.42 does not hold in general. For instance, if $T=$ $\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)$. Then a simple matrix multiphication shows that T is 2 -nomat but not nomal (indeed, in this case T is pure). This shows that a 2 -nomal operator T decomposes as $T=T_{1} \oplus T_{2}$ where T_{1} is normal and T_{2} is completely non-momal and any of these direct summands could be missing. We give conditions muler which a 2 -nomal operator turns out to be nomal (That is, T has no non-trivial pure summand).
We give a condition for which a 2 -normal or quasinomal operator is normal.
Proposition 2.43 [56, Proposition 2.6] If $T \in B(\mathcal{H})$ is 2-normal and quasinormal and injective on $\operatorname{Ran}\left(\left[T^{*} . T\right]\right)$, then T is nommal.

Proof. The assmmption that T is 2 -nomal and (phasinomal implies that $T^{*} T^{2}=T^{2} T^{*}$ and $\left(T^{*} T-T T^{*}\right) T=0$. A simple calculation shows that T is nomat.

Remark 2.26

By Proposition 2.43, an operator which is both 2-momal and quasinomal has no nonzero c.n.n direct smmand. We note that we can not merely drop any or both of the 2nomality or quasinormality conditions in Proposition 2. 43 . If T is the milateral shift

On ℓ^{2} then T hits inn infinite matrix representation $T=\left(\begin{array}{cccc}0 & 0 & 0 & \ldots \\ 1 & 0 & 0 & \ldots \\ 0 & 1 & 0 & \ldots \\ \vdots & \vdots & \vdots & \ddots\end{array}\right)$. A simple computation shows that T is quasimomal but mot 2 -nommal. Also, $T^{*} T-T T^{*}=$ $\operatorname{diay}(1,0,0, \ldots) \neq \operatorname{diag}(0,0,(0, \ldots)$. Thus T is not normal.

Chapter 3

On unitary and completely non-unitary summands of a contraction operator

In this chapter we study the decomposition of a contraction operator into a direct imm of unitary and completely non-mitary parts. We investigate properties of the e.n.n summands of contraction operators.

Nagy and Foias [53] have shown that every contraction operator T can be written as a direct sum of a unitary and a completely non-mitary (c.n.u.) part and that any of the direct summand could be missing. Recoll that a contraction is completely mommitary (c.n.u.) if it has no nonzero mitary direct smmand; equivalently, if the restriction of it to any nonzero reducing subspace is not mitary. We start with some preliminary results. The following result which appears in [24] is useful.

Proposition 3.1 [24] If $T \in B(\mathcal{H})$ is an isometry and \mathcal{M} is an invariant subspace for T such that $T \mathcal{M}=\mathcal{M}$, Ihen \mathcal{M} reduces T and $\left.T\right|_{\mathcal{M}}$ i.s unitary and

$$
\mathcal{M} \subseteq \bigcap_{n=0} T^{\prime \prime} \mathcal{H}
$$

Remark 3.1

We give some results on contractions with defect indices. We beyin with following well known result.

Lemmaa 3.2 [85] Let, T be a contrartion with fimile defret indices. Then the folloming stalements are equimalent:
(i) T as quasismmilar to a umilaleaval shift.
(ii) T is of class C_{10}.

Lemman 3.3 Let T be a C_{1}. combartion with finte defect indices. Lel T have the triangrulation $T=\left(\begin{array}{cc}T_{1} & * \\ 0 & T_{2}\end{array}\right)$ be of type $\left(\begin{array}{cc}C_{1} & * \\ 0 & C_{0}\end{array}\right)$. Then T_{1} and T_{2} ape of class C_{11} and C_{10}, respectively.

From Lemma 3.3 we state the following result about isometries.
Lenman 3.4 Let $T \in B(\mathcal{H})$ be an isometry. If T has the decomposition $T=T_{1} \oplus T_{2}$ with respect to the decomposition $\mathcal{H}=\mathcal{M} \oplus \mathcal{M}^{\perp}$, with \mathcal{M} reducing, then $T_{1} \in C_{11}$ and $T_{2} \in C_{10}$.

Remark 3.2

Note that any of the direct smmmands in Lemma 3.4 may be missing. This is the famons von Nemmam-Wold decomposition of an isometry (see [45]. [47]) which is a consequence of the Nagr-Foias-Langer decomposition of a general contraction operator as a direct sum of a unitary operator and a c.n.u. operator. If T_{1} is missing in Lemma 3.4, then T is a pure isometry or a completely nonmitary isometry and hence a milateral shift. From Lemma 3.4 we can conclude that every isometry on a Hilbert space is either a unitary operator, a unilateral shift or a direct sum of a unitary operator and a unilateral shift operator. Nagy and Foias [53] have proved that every contraction T of class C_{11} is quasisimilar to a unitary operator U and that since quasisimilar unitary operators are unitarily equivalent, the operator U is miquely determined up to unitary equivalence.

Proof of Lemma 3.4. If T is an isometry then $A=\lim _{n \rightarrow \infty} T^{* n} T^{n}=I$ and $\operatorname{Ker}(I-$ A) $=\mathcal{H}$ and hence $\mathcal{M}=\operatorname{Ker}(I-A) \cap \operatorname{Ker}\left(I-A_{*}\right)=\operatorname{Ker}\left(I-A_{*}\right)$ is a reducing subspace, where $A_{*}=\lim _{n \rightarrow \infty} T^{n} T^{* n}$. By the Nagy-Foias-Langer (lecomposition with $\mathcal{M}=\operatorname{Ker}\left(I-A_{*}\right)$ we have that $\left.T\right|_{\mathcal{M}}$ is mitary and $\left.T\right|_{\mathcal{M}^{\perp}}$ is a completely non-mitary isometry on \mathcal{M}^{\perp}, which means a milateral shift.
Note that the proof also follows immediately from lroposition 2.21 and Corollary 2.27 .
 im⿻日木（ant subspace of T ．
（i）If T is quasisimilar to an isomelvy，so is $\left.T\right|_{\mathcal{M}}$ ．
（ii）If T is quasisimilur to a umilateral shifl，so is $T \mid M$ ．
Lemmat 3.6 ［80，Corollary 3．9］．Let $T=T_{1} \oplus T_{2}$ and $S=S_{1} \boxminus S_{2}$ be combuctuons，whore T_{1} and S_{1} are of class C_{11}, T_{2} and S_{2} are of class C_{0} and T_{2} has finile maltiplicity． Then T is quasisimilar to S if and only if T_{1} is quasisimilar to S_{1} and T_{2} is quasisimilar to S_{2} ．

Remark 3.3

We use Lemma 3.6 to prove the following result for hyponomal contractions．We use the fact that quasisimilar nomal（unitary）operators are mitarily equivalent．

Corollary 3.7 Let T and S be hyponormal contractions．Assume that the con．u part of T has finite multiplicity．Then T is quasisimilar to S if and only if their unitary parts are unitaraly equinalent and c．n．u parts ave quasisimilar to each other．

Proof．The conchasion follows from［16，Lemma 1］，Lemma 3.6 and the fatt that completely non－nomal（and hence completely non－mitary）hyponomal contradions are of class C_{0} by Theorem 2.28 since every hyponommal operator is paranomal．

Remark 3.4

Duggal and Kubrusly［16］have proved that the completely non－mitary direct summand of a contraction T is of class C_{0} if and only if T has the PF（short for Putnam－Fuglede） commutativity property：whenever $T X=X J^{*}$ holds for some isometry $J \in B(\mathcal{K})$ and some $X \in B(\mathcal{H}, \mathcal{K})$ ，then $T^{*} X=X J$ ．Contanctions with the PF property include dominant and paranommal operators．This result has been extended by Duggat anot Kubrusly［16］to the class of k－paranommal operators．

Corollary 3.8 If a contraction $T \in B(\mathcal{H})$ is k－quasqhyponotmal or k－patanommal，then the completely non－unitary direct sammand of T is of class C_{0} ．

Remark 3.5

We now chatacterize contraction operators using shift operaters on Hilbert spaces. This Haracterization makes the analysis of (ementration operators casier to handle since we investigate their action on fundion Hillore spaces rather than vector Hillert spaces. We study the miversal model of operators on finite and infinite dimensional Hilbert spaces. Shift operators lave the following remarkable property: Lp to mitary equivalence and multiplicative constants, the dass of operators $T=\left.S^{* *}\right|_{M}$, where S is a shift operator and \mathcal{M} is an invariant sulspace for S^{*}, includes every bounded linear operator on a Hilbert space. This result was proved ly Rota [63].
Let \mathcal{H} be a Hilbert space with imer product $\langle,\rangle_{\mathcal{H}}$ and norm $|.|_{\mathcal{H}}$. By $\mathbb{H}_{\mathcal{H}}^{2}(\mathbb{D})$ we nean the Hardy space of all \mathcal{H}-valued holomorphic functions

$$
f(z)=\sum_{j=1}^{\infty} a_{j} z^{j}
$$

on \mathbb{D} for which the quantity

$$
\frac{1}{2 \Pi} \int_{0}^{29}\left|f\left(r e^{i \theta}\right)\right|_{\mathcal{H}^{2}}^{2} d \theta=\sum_{j=0}^{\infty}\left|m_{j}\right|_{\mathcal{H}^{2}}^{2} r^{2 j}<\infty, \quad 0 \leq r<1 .
$$

It is easy to see that $\mathbb{H}_{\mathcal{H}}^{2}(\mathbb{D})$ is a Hillert space with immer procluct given ly

$$
\langle f, g\rangle_{2}=\lim \frac{1}{2 \pi} \int_{0}^{2 \Pi}\left\langle f\left(r e^{i \theta}\right) \cdot g\left(r e^{i \theta}\right)\right\rangle_{\mathcal{H}} d \theta=\sum_{0}^{\infty}\left\langle a_{j}, b_{j}\right\rangle_{\mathcal{H}}
$$

as $r \uparrow 1$ for any $f(z)=\sum_{0}^{\infty} a_{j} z^{j}$ and $g(z)=\sum_{0}^{\infty} b_{j} z^{J}$ in the space.
Thus $\mathbb{H}_{\mathcal{H}}^{2}(\mathbb{D})$ is isomorphic with $\int_{\mathcal{H}}^{2}$ via the correspondence between function and its Taylor coefficients. Where there is no confusion we write $\mathbb{H}^{2}(\mathbb{D})$ for $\mathbb{H}_{\mathcal{H}}^{2}(\mathbb{D})$ and ℓ^{2} for $f_{\mathcal{H}}^{2}$. As a result of this isomorphism we obtain the following results.

Theorem 3.9 The opecrator of multiphicalion by \approx on $\mathbb{H}_{\mathcal{H}}^{2}(\mathbb{D})$ defined by $S: f(z) \longrightarrow$ $z f(z)$ for all $f(z)$ in $\mathbb{H}_{\mathcal{H}}^{2}(\mathbb{D})$ is a shift operator of multiplicity $\operatorname{dim}(\mathcal{H})$ and the adjoint of S is $S^{* *}: f(z) \longrightarrow \frac{[f(z)-f(0)]}{z}$.

Proof. Note that $(S f)(z)=z f(z), \quad f \in \mathbb{H}_{\mathcal{H}}^{2}(\mathbb{D})$. Define the Fourier transform from \mathcal{H} to $\mathbb{H}_{\mathcal{H}}^{2}(\mathbb{D})$ by $\left(a_{1}, a_{2}, a_{3} \ldots\right) \longrightarrow \int$ where $\int(z)=\sum_{j=0}^{\infty} \|_{j} z^{j}$. Thns, $S\left(\sum_{j=11}^{\infty} a_{j} z^{j}\right)=$ $\sum_{j=0}^{\infty} a_{j} z^{j+1}=\sum_{j=0}^{\infty} a_{j-1} z^{j}$. Clearly, the Fourier transform is a mitary equivalence
between a shift opreator and the operator S. Since every operator mitaily equivalent to a shift is a shift, S most be a shift operator. The rest of the assertion follows from the fact that the multiplicity of a shilt on \mathcal{H} is conal to $\operatorname{dim}(\mathcal{H})$ and the adjoint of a shift operator is mitarily equivalent to S^{*}.

Corollary 3.10 Every shift opemator on a Helbert space \mathcal{H} is unitarity equaralemt do multiplication by z on $\mathbb{H}_{\mathcal{H}}^{2}(\mathbb{D})$ for some chovice of \mathcal{H}.

Remark 3.6

Let \mathcal{H} be a separable Hilbert space. To every completely nom-mitary (c.n.n) contraction T on \mathcal{H}, Nagy and Foias [53] associated a contraction-valued holomorphic function Θ_{r} on the open unit disk \mathbb{D} such that $\Theta_{T}(0)$ is a pure contraction. We call this function the characteristic function of the operator T. Conversely, given any holomorphic function Θ on \mathbb{D}, there exists a completely non-mitary contraction T_{Θ} whose characterist ic function coincirles with Θ.

We will try to characterize completely non-mitary contractions in terms of their characteristic: functions. We first investigate completely non-mitary contractions with constant. characteristic functions.
Recall that $D_{T}=\left(I-T^{*}\right)^{1 / 2}$ and $D_{T^{*}}=\left(I-T T^{*}\right)^{1 / 2}$ are the defect operators associated with a c.n.u contraction T and the range closures in the nomm topology of $\mathcal{H}, \mathcal{D}_{T}$ and \mathcal{D}_{T}. of D_{T} and D_{T}. respectively, are called the defect spaces. We say that two operators $A \in B\left(\mathcal{H}_{1}, \mathcal{H}_{2}\right)$ and $B \in B\left(\mathcal{K}_{1}, \mathcal{K}_{2}\right)$ coincide if there exist mitary operators $U: \mathcal{H}_{2} \longrightarrow \mathcal{H}_{1}$ and $V: \mathcal{K}_{1} \longrightarrow \mathcal{K}_{2}$ such that $V A U=B$. The operator-valued functions $\Theta_{i}(z): \mathcal{H}_{1} \longrightarrow \mathcal{K}_{i}, i=1.2$ are said to coincide if there exist unitary operators $U: \mathcal{H}_{2} \longrightarrow \mathcal{H}_{1}$ and $V: \mathcal{K}_{1} \longrightarrow \mathcal{K}_{2}$ such that $V \Theta_{1}(z) U=\Theta_{2}(z)$, for all z.
We construct an inner-onter factorization for operator-valued holomorphic functions that are of bounded type on a disk or half-plane. Let $\Omega=\mathbb{D}$ or \mathbb{T}, where $\mathbb{D}=\{z:|z|<1\}$ and $\mathbb{T}=\{z: I m z>0\}$, the mit disk and half-plane, respectively. If $A \in \mathbb{H}_{B(\mathcal{H})}^{\infty}(\Omega)$, then:
(i) A is an inner function if the operator $T(A): f \longrightarrow A f, f \in \mathbb{H}_{\mathcal{H}}^{2}(\Omega)$, is a partial isometry on $\mathbb{H}_{\mathcal{H}}^{2}(\Omega)$.
(ii) A is an outer function if $\bigvee\left\{A f: \int \in \mathbb{H}_{\mathcal{H}}^{3}(\Omega)\right\}=\mathbb{H}_{\mathcal{M}}^{2}(\Omega)$ for some subspace \mathcal{M} of \mathcal{H}. A function $\varphi \in \mathbb{H}^{\infty}$ is sald to be imner provided $|\varphi|=1$ almost everywhere on \mathbb{R}. For
surch φ, the sel $\varphi \mathbb{H}^{2}=\left\{\varphi \int^{\prime}: \int \in \mathbb{H}^{2}\right\}$ is a closed subspace of \mathbb{H}^{2}. Inmer finctions of the form

$$
B(z)=\left(\frac{z-i}{z+i}\right)^{m} \prod_{n} \frac{\left|z_{n}^{2}+1\right|}{z_{n}^{2}+1} \frac{z-z_{n}}{z-\overline{z_{n}}}
$$

for m and n nommegative integers and $\left\{z_{n}\right\}$ a secpucuce in $\partial \mathbb{D} \backslash\{i\}$, with $\sum_{n} \frac{h_{n}}{1+\left.z_{n}\right|^{2}}<$ $\infty, \quad z_{n}=x_{n}+i y_{n}$ are Blaschbe products with zeros $\left\{z_{n}\right\}$ and their mulliplicity is defined to be the number of factors if this mumber is finite, and infinite if not. In general. we define the multiplicity of an inner function to be the dimension of the sulspace $\mathbb{H}^{2} \ominus \varphi \mathbb{H}^{2}$. It can be shown that an imer function φ has finite multiplicity if and only if it is a finite Blaschke product, in which case the elements of $\mathbb{H}^{2} \theta_{4} \mathbb{H}^{2}$ are all rational fimetions. The function identically zero is both imer and outer. The canonical shift operators on $\mathbb{H}_{\mathcal{H}}^{2}(\mathbb{D})$ and $\mathbb{H}_{\mathcal{H}}^{2}(\partial \mathbb{D})$ are defined by $S: f(z)=z f(z)$ on $\mathbb{H}_{\mathcal{H}}^{2}(\mathbb{D})$ and $S: f(z)=\frac{z-z}{\dot{z}+i} f(z)$ on $\mathbb{H}_{\mathcal{H}}^{2}(\mathbb{T})$.
These operators are unitarily equivalent by means of the isomorphism

$$
f(z) \longrightarrow F(z)=\Pi^{-1 / 2}(z+i)^{-1} f\left(\frac{z-i}{z+i}\right),
$$

from $\mathbb{H}_{\mathcal{H}}^{2}(\mathbb{D})$ onto $H_{\mathcal{H}}^{2}(\partial \mathbb{D})$.
We recall that a contraction T is said to be proper if $\|T x\|<\|x\|$ for all monzero vecturs $x \in \mathcal{H}$. Recall that an operator $X \in B(\mathcal{H}, \mathcal{K})$ is a quasi-invertible or a quasis-affinity if it has trivial kernel and dense range, (i.e, $\operatorname{Ker}(X)=\{0\}$ and $\overline{\operatorname{Ran}(X)}=\mathcal{K}$).
Using the preceding concepts we give the following results.
Lemma 3.11 Let T be a contraction between two Hilbert spaces. Then the folloung are equivalent.
(i) T is a proper contraction.
(ii) T^{*} is a proper contraction.
(iii) $\left(I-T^{*} T\right)^{1 / 2}$ is quasi-invertible.
(iv) $\left(I-T T^{*}\right)^{1 / 2}$ is quasi-invertible.

Proof. (i) \Longleftrightarrow (ii): First note that the contraction T is a proper contraction if and only if $\operatorname{Ker}\left(I-T^{*} T\right)^{1 / 2}=\{0\}$. If T is a proper contraction, then polar decomposition shows that $\left(I-T^{*} T\right)^{1 / 2}$ and $\left(I-T T^{*}\right)^{1 / 2}$ are unitarily equivalent, which implies the stated equivalence.
(i) \Longleftrightarrow (iii): If T is a proper contraction, then $\operatorname{Ser}\left(I-T^{*} T\right)^{1 / 2}=\{0\}$.

This means that $\left(I-T^{*} T\right)^{1 / 2}$ is injertive and hemere has demse range. Thus $\left(I-T^{*} T\right)^{1 / 2}$ is quasi-invertille.
(i) \Longrightarrow (iv). (ii) \Longleftrightarrow (iii) and (ii) \Longrightarrow (iv): The egnivalence of (i) and (ii) shows that $\left(I-T T^{*}\right)^{1 / 2}$ is quasi-invertible as well. Note that the equivalence of (ii) and (iii) implies the equivalence of (iii) and (iv). Finally, if $\left(I-T^{*} T\right)^{1 / 2}$ is quasi-invertille, then it is obvions that T is a proper comraction, which shows that (iv) \Longrightarrow (i), (iv) \Longrightarrow (ii).

Definition 3.1

$T \in B(\mathcal{H})$ is strongly stable if the power seguncuce $\left\{T^{n}\right\}$ converges strongly to the mall operator (equivalently. $T^{n} \longrightarrow O$ strongly or $\left\|T^{n} x\right\| \longrightarrow 0$ for every $x \in \mathcal{H}$). Clearly every strongly stable contraction is clanly completely non-minitary and is thus a proper contraction and satisfies Lemma 3.11.

Example 3.1

The operator $B=\left(\begin{array}{cc}1 / 2 & 0 \\ 0 & 0\end{array}\right)$ is strongly stablue since $B^{* n} B^{n}=\left(\begin{array}{cc}(1 / 2)^{2 n} & 0 \\ 0 & 0\end{array}\right) \longrightarrow$ $\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$ is $n \longrightarrow \infty$. It is clear that B is completely non-unitary. A simple matrix computation shows that T satisfies Lemma 3.11.

Definition 3.2

A bounded linear operator T acting on the complex separable Hilbert space \mathcal{H} is called homogeneous if $\sigma(T) \subset \overline{\mathbb{D}}$ and $\varphi(T)$ is unitarily equivalent to T for every $\varphi \in \mathcal{M}(\mathbb{D})$.

Remark 3.7

Homogeneous operators were investigated in several works (see [6], [13]). It was proved by Bagdi and Misra [6] that if T is a homogeneons contraction such that the restriction $\left.T\right|_{\mathcal{D}_{T}}$ of T to the defect space \mathcal{D}_{T} is of Hilbert-Schmidt class, then T has a constant characteristic function. Let $\mathcal{M}(\mathbb{D})$ denote the set of all injective, analytic mappings of the open unit disc \mathbb{D} onto itself. That $\sqrt{\prime}$. $\mathcal{M}(\mathbb{D})=\{f: \mathbb{D} \longrightarrow \mathbb{D}, f 1-10-1$, analytic on $\mathbb{D}\}$. Any element of $\mathcal{M}(\mathbb{D})$ is of the form

$$
\varphi_{k, a}(z)=\frac{k(z-a)}{(1-\bar{a} z)}, \quad z \in \mathbb{D}, k \in \partial \mathbb{D}, a \in \mathbb{D} .
$$

These mappings are knowin as the Molnins transformations of the mit disk \mathbb{D}.
Nagy and Foias [53] have shown that for any $\varphi \in \mathcal{M}(\mathbb{D})$ and for any contraction $T \in$ $B(\mathcal{H})$, the Molius transform $\varphi(T)$ is mitary (c.n.n) if and only if T is unitary (c.n.u, respectively). Thes the contraction T is homegreneons if and only if the mitary and completely non-unitary parts are both homogeneons.
Let us assume that $T \in B(\mathcal{H})$ is a completely mon-mintary contraction. We consider the characteristic function Θ_{T} of T defined l_{y}

$$
\Theta_{T}(z)=\left.\left(-T+z D_{T^{*}}\left(I-z T^{*}\right)^{-1} D_{T^{\prime}}\right)\right|_{D_{T}} \in B\left(\mathcal{D}_{T}, \mathcal{D}_{T^{*}}\right), \quad z \in \mathbb{D},
$$

where $D_{T}=\left(I-T^{*} T\right)^{1 / 2}, D_{T}=\left(I-T T^{*}\right)^{1 / 2}$ are the defect operators, and $\mathcal{D}_{T}=$ $\overline{\operatorname{Ran}\left(D_{T}\right)}, \quad \mathcal{D}_{T^{*}}=\overline{\operatorname{Ran}\left(D_{T^{*}}\right)}$ are the defect spaces of T. The mapping

$$
\Theta_{T}: \mathbb{D} \longrightarrow B\left(\mathcal{D}_{T}, \mathcal{D}_{T^{*}}\right),
$$

is a contraction-valued, analytic function, and 1 y $[78], \Theta_{T}(0)=-\left.T\right|_{D_{T}}$ is a pure (proper) contraction, that is, $\|T x\|<\|x\|$ for every $0 \neq x \in \mathcal{D}_{T}$. We note that c.n.u contractions $T_{1} \in B\left(\mathcal{H}_{1}\right)$ and $T_{2} \in B\left(\mathcal{H}_{2}\right)$ are unitarily equivalent if and only if their characteristic functions $\Theta_{T_{1}}$ and $\Theta_{T_{2}}$ coincide. That is, there exist unitary transformations $U: \mathcal{D}_{T_{1}} \longrightarrow$ $\mathcal{D}_{T_{2}}$ and $V: \mathcal{D}_{r_{i}} \longrightarrow \mathcal{D}_{T_{i}}$ such that $\Theta_{T_{1}}(z)=V \Theta_{T_{2}}(z) U, \quad z \in \mathbb{D}$. We show that if the characteristic function of a c.n.u contraction T is constant, i.e, $\Theta_{T}(z)=\Theta_{T}(0)$, for every $z \in \mathbb{D}$, then T is a homogeneous contraction.
Nagy and Foias [53] have proved that ar c.n.u. contraction $T \in B(\mathcal{H})$ of constant. characteristic function is a weighted bilateral shift with special operator weights. We claim, however, that all unitary operators also have this property.

Theorem 3.12 Let T be a homogeneous c.n.u. conlraction. If $\left.T\right|_{\mathcal{D}_{T}}$ is compact, then the characteristic function of T is constant.

Proof. Suppose T is a homogeneons c.n.u. contraction with chracteristic function Θ_{T}. By [6, Theorem 2.9], $\Theta \circ \varphi^{-1}$ coincides with Θ for each $\Theta \in \mathcal{M}(\mathbb{D})$. By [6 , Theorem 2.10], since $\left.T\right|_{p_{T}}$ is compact, T is unitarily eguivalent to a c.n.n. contraction with constant characteristic function. This proves that Θ_{T} is constant.

Example 3.2

Some homogeneons contractions with non-constant charathist ie fimetions are these of class $C_{\text {on }}$. i.e. those that are strongly stable. These are barkwand weighted shifts with wright sequence $\left\{w_{n}=(1+n)^{1 / 2}(c+n)^{-1 / 2}\right\}_{n=0}^{\infty}$, where $r>1$.
We also note that if T is a c.nn.1. contraction and Θ_{Y} is constant, then T is the orthogonal direct sum of a unilateral shift, a backward shift aud a C_{11}-contraction.

Remark 3.8

Isometries comprise a rather special clatss of C_{1} - contradions. They ate the cont ractions $T \in B(\mathcal{H})$ for which $\|T x\|=\|x\|$, for every $x \in \mathcal{H}$. It is easy to show that every isometry has a nontrivial invariant sublspace. Since a unitary operator is a normal isometry, it follows that the unitary contractions comprise a set of particularly well-known operators. By Kupin [48] every invariant subspace \mathcal{M} of a model opetator T_{θ} defines a certain regular factorization of the characteristic function $\Theta=\Theta_{2} \Theta_{1}$ of a contraction T. These model operators have been characterized as multiplication or composition operators in \mathbb{H}^{2}. The following canonical decomposition will be useful.

Theorem 3.13 [53, Theorem 1.3.2]. To every contraction T on a Hillbert space \mathcal{H} there corresponds a uniquely determined decomposition of \mathcal{H} into an orthoyonal sum of subspaces reducing T, say $\mathcal{H}=\mathcal{H}_{0} \oplus \mathcal{H}_{1}$, such that $T_{0}=\left.T\right|_{\mathcal{H}_{0}}$ is unitary and $T_{1}=T \mid \mathcal{H}_{1}$ is c.n.u. In particular, for an isometry, this canomical decomposition coincides with the von. Neumann-Wold decomposition.

Remark 3.9

For a contraction T with decomposition $T=T_{0} \oplus T_{1}$ as in Theorem 3.13, we have $D_{T}=0 \oplus D_{T_{1}}, D_{T^{*}}=0 \oplus D_{T_{i}^{*}}, \mathcal{D}_{T}=\mathcal{D}_{T_{j}}$ and $\mathcal{D}_{T^{*}}=\mathcal{D}_{T_{i}^{*}}$. These results lead us to the following result.

Corollary 3.14 Let $T \in B(\mathcal{H})$ have the decomposilion in Theorem 3.13, then $\Theta_{T}(\lambda)=\Theta_{T_{1}}(\lambda)$.

Proof. A simple (omputation shows that.

$$
\begin{aligned}
\Theta_{W}(\lambda) & =\Theta_{T_{1, f} T_{1}(}(\lambda) \\
& =\left[-\left(T_{11}(1) T_{1}\right)+\lambda\left(D_{T_{0}^{*} \& T_{i}^{*}}\right)\left(I-\lambda\left(T_{1}^{*}\left(\mathcal{J} T_{1}^{*}\right)\right)^{-1} D_{\left.T_{1}, T_{1} T_{1}\right]}\right]\right. \\
& =\Theta_{T_{1}}(\lambda)+\Theta_{T_{1}}(\lambda) \\
& =\Theta_{T_{1}}(\lambda) .
\end{aligned}
$$

Remark 3.10

The conclusion of Corollary 3.14 follows from the fact that the characteristic finction of a milary contraction operator is identically zero.
Recall that a function Θ_{T} is an outer function if $\overline{\Theta_{T} \mathbb{H}^{2}\left(\mathcal{D}_{T}\right)}=\mathbb{H}^{2}\left(D_{T^{*}}\right)$. Recall that if \mathcal{K} is a Hillert space, $\mathcal{H} \subset \mathcal{K}$ is a subspace, $S \in B(\mathcal{K})$, and $T \in B(\mathcal{H})$, then S is a dilation of T (and T is a power-compression of S) provided that $T^{n}=\left.P_{\mathcal{H}} S^{n}\right|_{\mathcal{H}}, n=0,1.2, \ldots$ and $P_{\mathcal{H}}$ is the projection on \mathcal{H}. We now chatacterize contractions T with mitary quasi-alline transforms in terms of their characteristic function Θ_{T}.

Proposition 3.15 Let \mathcal{H} be a Hillect, space and let T be a contraction on H such that $\operatorname{Fer}(T)=\{0\}$. The following assertions are equinalent:
(a) T has unitary quasi-affine transforms:
(b) T belongs to the class C_{1}.

Proposition 3.16 Let \mathcal{H} be a separable Hillert space and let T be a contraction on \mathcal{H} such that $\operatorname{Ker}(T)=\{0\}$. The following assertions are equivalent:
i) T has. unitury quast-affine tran.sforms;
ii) the characteristic function Θ_{T} of T is outer and $\operatorname{Ker}\left(\Theta_{T}\right) \cap \mathbb{H}^{2}\left(\mathcal{D}_{T}\right)=\{0\}$.

Proof. Assume without loss of generality that T is a c.n.u contraction. It. is well known that the following are equivalent: (a) T is of clatss C_{11}; (b) Θ_{T} is an outer function; (c) the operator $A=\left.P_{H}\right|_{\mathcal{R}}: \mathcal{R} \longrightarrow \mathcal{H}$ (where $\mathcal{R}=\cap_{n=1}^{\infty} U_{+}^{n} \mathcal{H}, U_{+}=U \mid \mathcal{K}_{+}$and U is unitary dilation of T, U_{+}is isometric dilation of T and $\mathcal{K}_{+}=\bigvee_{10}^{\infty} U_{+}^{n} \mathcal{H}$) has dense range. Also the following assertions are equivalent: (1) A is injective; (2) $\operatorname{Kicr}\left(\Theta_{T}\right) \cap \mathbb{H}^{2}\left(\mathcal{D}_{T}\right)=\{0\}$.

Remark 3.11

From Theorem 3.13, we conclude that $T \in C_{1}$ if and only if its characteristic function Θ_{T} is outer. In the decomposition in Theorem 3.13 it is not excluded that \mathcal{H}_{10} or \mathcal{H}_{3} is
possibly the subspare $\{0\}$. Furthermore. \mathcal{H}_{0} is given by

$$
\begin{aligned}
\mathcal{H}_{0} & =\left\{x \in \mathcal{H}:\left\|T^{n} x\right\|=\|x\|=\left\|T^{* n} x\right\|, \quad n=1,2, \ldots\right\} \\
& =\bigcap_{k=1}^{\infty}\left\{x \in \mathcal{H}: T^{* k} T^{k} x=x=T^{k} T^{* k} x\right\}
\end{aligned}
$$

is called the umatary subspace of T and it is the maximal reducing subspace on which its restriction is mitary. We give anothor characterization of the mintary space: If T is a contraction, then $\left\|T^{n+1} x\right\| \leq\left\|T^{n}, r\right\|$ for all $x \in \mathcal{H}$ and the sequences $\left\{T^{* n} T^{n}\right\}$ and $\left\{T^{n} T^{* n}\right\}$ are monotonically decreasing and hence converge strongly to positive contractions A^{2} and A_{*}^{2}, respectively with $T^{*} A^{2} T=A^{2}$ and $T^{*} A_{*}^{2} T=A_{*}^{2}$. By using the unique positive square roots. A and A_{*} of A^{2} and A_{*}^{2}, respectively, we can represent \mathcal{H}_{0} ds follows.

$$
\begin{aligned}
\mathcal{H}_{0} & =\left\{x \in \mathcal{H}:\|A x\|=\left\|A_{*} x\right\|=\|x\|\right\} \\
& =\left\{x \in \mathcal{H}: A^{2} x=A_{*}^{2} x=x\right\} \\
& =\operatorname{Ker}(I-A) \cap \operatorname{Ker}\left(I-A_{*}\right)
\end{aligned}
$$

It is clear that $\operatorname{Ker}(A)=\{x \in \mathcal{H}: A x=0\}$ and

$$
\begin{aligned}
\operatorname{Ker}(I-A) & =\{x \in \mathcal{H}: A x=x\} \\
& =\left\{x \in \mathcal{H}:\left\|T^{n} x \mid=\right\| x: \|, \quad n=1,2,3, \ldots\right\}
\end{aligned}
$$

are invariant under T and $\left.T\right|_{\operatorname{Ker}(I-A)}$ is an isometry and $\operatorname{Ker}\left(A-A^{2}\right)=\operatorname{Ker}(A) \oplus$ $K \operatorname{er}(I-A)$. We give an example to illustrate this fact.

Example 3.3

Let T be the backward unilateral shift on $\mathcal{H}=\ell^{2}$. It is not difficult to show that T is is contraction on ℓ^{2}. A simple calculation gives that $A=0$ and $I-A=I, \operatorname{Ker}(A)=\mathcal{H}$ and $\operatorname{Ker}(I-A)=\{0\}$. Hence, $\operatorname{Ker}\left(A-A^{2}\right)=\operatorname{Ker}(A) \oplus \operatorname{Ker}(I-A)=\mathcal{H} \oplus\{0\}$ which we identify with \mathcal{H}.

Remark 3.12

If T is completely non-mitary (has no nonzero mitary direct smmand), then the mitary subspace $\mathcal{H}_{0}=\operatorname{Ker}(I-A) \cap \operatorname{Ker}\left(I-A_{*}\right)=\{0\}$.

Recall that a contraction $T \in C_{\text {on }}$ if $A=A$, $=0$. We give some results on the mature of dired summands of some classes of completely non-mitary contractions.

Proposition 3.17 If $T \in B(\mathcal{H})$ is a normal contruction, then the c.n.u part of T is of class.s Cion .

Proof. Suppose T is normal and $T=T_{1} \oplus T_{2}$ with T_{1} mitany and T_{2} completely nonunitary. It is casily verified ly Mathematical Induction that $T^{* n} T^{n}=T^{n} T^{* n}$ for every $n \geq 1$. By Theorem 2.28, T_{2} is of class C_{15}. It sufficees to show that T_{2} is of class C_{01}. Since T_{2} is of class $C_{0.0}$, them $\left\|T_{2}^{* n}\right\| \longrightarrow 0$. Since T is nommal, $A=\lim _{n} T_{2}^{*} T_{2}^{n}=$ $\lim _{n} T_{2}^{n} T_{2}^{* n}=A_{*}=O$. Thus $T_{2} \in C_{(0)}^{n}$.

Remark 3.13

T and T^{*} have the Putnam-Fuglede property if and only if $A=A_{*}$. We note that Proposition 3.17 also follows from the fact that T has the Putnam-Fuglecle property (see Nzimbi, Pokhariyal and Khalagai [55, Corollary 2.3]).

Proposition 3.18 If $A \in B(\mathcal{H})$ is a normal contraction and $B \in B(\mathcal{H})$ be similar to A then the c.n.u part of B is of classs C_{00}.

Proof. The result uses Proposition 3.17.

Remark 3.14

We note that by Lemma 3.6 and Corollary 3.7, Proposition 3.18 also holds when we replace similarity with either quasisinilarity or mitary equivalence. The following result gives a further decomposition of normal operators and appears it in [17].

Lemma 3.19 [17, Lemma 1] If A is a normal contraction such that A^{n} is normal for some integer $n \geq 2$, then there exast divect sum decompositions.s $\mathcal{H}=\mathcal{H}_{n} \oplus \mathcal{H}_{p}$ and $A_{n}=\left.A\right|_{\mathcal{H}_{n}}$ is a normal $C_{11} \oplus C_{(1)}$ type contrastion and $A_{p}=\left.A\right|_{\mathcal{H}_{p}}$ is a pure C_{00} contraction.

Remark 3.15

Note that if a contraction is pure then it must, be c.n.n but the converse is not generally true. For consider the operator with the matrix $T=\left(\begin{array}{cc}0 & \frac{1}{2} \\ \frac{1}{2} & 0\end{array}\right)$. Then $T \in C_{\text {(10) }}$ and T is
nomal. Thus not all $C_{\text {on }}$ contrations ane pure. Equivalently, there is no $C_{\text {iwn }}$ contration willa a mitary part. A pure Con contraction is c.n. in and has a triangulation ats in Lemma 3.19.

Lemma 3.20 . Let T be a C_{11} contraction on \mathcal{H} and U be a anitary opecrator on \mathcal{K}. If there exists a one-to-one operator $X: \mathcal{H} \longrightarrow \mathcal{K}$ such that $X T=U X$, then T is

Proof. Since T, being a C_{11} contraction, is guasisimilar to a mitary, the assertion follows.

Remark 3.16

We note that there are C_{11} contractions which are not nomal (and hence, not mitary). For consider the operator with matrix $\left(\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right)$. A simple computation shows that $T \in C_{11}$ but T is non-normal. The conclusion in Lemma 3.20 cannot be extended to cover similarity. For instance, take an arlitrary integer $n \geq 1$ and let $T_{n}=\operatorname{shift}\left(\left\{\omega_{k}\right\}_{k=-\infty}^{\infty}\right)$ be a bilateral weighted shift on $\left(^{2}\right.$ with weights $\omega_{k}=1$ for all k except for $k=0$ where $\omega_{0}=(n+1)^{-1}$. Each T_{n} is a nom-mitary C_{11}-contraction similar to a mitary operator, and $T=\bigoplus_{n=1}^{\infty} T_{n}$ is a C_{11}-contraction not similar to any unitary operator. Thus if $T \in C_{11}$, then T is quasisimilar to a mitary operator, in which case, there exists an increasing seguence $\left\{\mathcal{M}_{n}\right\}_{n \in \mathrm{~N}}$ of T-invariant subspaces that span \mathcal{H} (i.e., $\bigvee_{n \in \mathbb{N}} \mathcal{M}_{n}=\mathcal{H}$) such that each part $\left.T\right|_{\mathcal{M}_{n}}$ is similar to a mitary operator. This remark leads to the following result.

Corollary 3.21 . A nonumitary C_{11} contraction is similar to a unitary operator if it is invertible.

Proof. We prove this assertion by the method of contradiction. Suppose a c.n.u. $T \in C_{11}$ is such that. $T=X^{-1} U X$. where U is unitary and suppose that T is not invertible. Then this is an alsurdity since the right hand side is invertible while the left hand side in not. This completes the proof.

Remark 3.17

We extend Corollary 3.7 on hyponomal cont ractions and unilateral shifts to wider classes of operators: that of p-cuasihyponomal contractions and isometries.
 multiplicity. Then T is quasisimilar to an isometry if and only if its normal part is umbary and the c.n.n (hence c.n.u) part is quasismimilar to a unilateral shift.

Proof. Assmue that $T=T_{n} \oplus T_{p}$ is quasisimilar to an isometry $V=U \notin S$, where T_{n} is nommal, T_{p} is c.n.n., U is mitary and S is a milateral shift. By the Putnam-Fuglede theorem [25], T_{n} unitarily equivalent to U whence mitary. By ([14], Theorem 2), ([6t], Corollary 12) and ([40, Theorem 5]), V and T have the same spectra (since they are quasisimilar p-hyponomal operators),

$$
\|T\|=r(T)=r(V)=1
$$

By Corollary 3.5 and $\mathrm{Wu}([80],[85]), T_{p}$ is (quasisimilar to S.

Remark 3.18

Takahashi and Uchiyama [67] have proved that if T is a hyponormal contraction with Hilbert-Schmidt defect operator, then the following atsertions are equivalent.
(a) T is. ($\cdot . \mathrm{m} .1 \mathrm{n}$.;
(b) T is of class C_{10}.

We give a generalization of this result to p-quasilyponomial contractions.
Theorem 3.23 Let T be a p-quasilhyponormal contraction such that the defect operator D_{T} is of Hillert-Schmidt class. Then T is completely nonunitary if and only if T is of class C_{10}.

Proof. The proof follows from the proof of Theorem 2.30 with c.n.n. replaced with c.n.u.

We now characterize some contraction operators in terms of their characterist ic functions.

Corollary 3.24 If $T \in B(\mathcal{H})$ is an isometry then the characteristic function Θ_{T} is identically zero almost evcrywhere.

Proof. We first prove the ressult for a mitary T. For a mitary operator $T, D_{T}=$ $D_{T} .=0$ and $\mathcal{D}_{T}=\overline{D_{T} \mathcal{H}}=\{0\}$. Therefore, $\Theta_{T}=-\left.T\right|_{\mathcal{D}_{T}}=-\left.T\right|_{\{0\}}=0, \quad \forall \lambda \in \mathbb{D}$. Since $D_{T}=0$ for a milateral shift T, we also have that $\Theta_{T}=0$. Since by the von

Nemmam-Wold decomposition an isometry is a direct sum of a mitary and a milateral shift, the result follows.

Remark 3.19

Note that in the proof of Corollary $3.24 \Theta_{T}$ is constant since $\Theta_{T}(0)=\left(\Theta_{r}(\lambda)\right.$.
We prove the following important property of the chatateristic function of an operator.
Theorem 3.25 Let $T \in B(H)$. Then $\Theta_{h I}(\lambda)=k \cdot \Theta_{T}(\bar{k} \lambda), \quad \lambda \in \mathbb{D}$ holds for any $k \in O \mathbb{D}$.

Proof. By a simple computation and using the refinition we have

$$
\Theta_{k T}(\lambda)=\left[-k T+\lambda\left(I-k \bar{k} T T^{*}\right)^{1 / 2}\left(I-(\bar{k} \lambda) T^{*}\right)^{-1}\left(I-\bar{k} k T T^{*} T\right)^{1 / 2}\right]
$$

But since $k \in \partial \mathbb{D}, k=e^{2 n \prime}, \quad 0 \leq \theta \leq 2 \Pi$ and $n=0 . \pm 1, \pm 2, \ldots$ Thus $\bar{k} k=1$. Thus, the previous equality becomes

$$
\Theta_{k T}(\lambda)=\left[-k T+\lambda\left(I-T T^{*}\right)^{1 / 2}\left(I-(\bar{k} \cdot \lambda) T^{*}\right)^{-1}\left(I-T^{*} T\right)^{1 / 2}\right]
$$

Similarly,

$$
k \Theta_{\Gamma}(\bar{k} \lambda)=\left\{-k T+(k \bar{k}) \lambda\left(I-T T^{*}\right)^{1 / 2}\left(I-(\bar{k} \lambda) T^{*}\right)^{-1}\left(I-T^{*} T\right)^{1 / 2} \mid\right.
$$

Once again, since $k \in \partial \mathbb{D}, \quad k \cdot \bar{k}=1$. Thus the above equality simplifies to

$$
k \Theta_{T}(\bar{k} \lambda)=\left[-k T+\lambda\left(I-T T^{*}\right)^{1 / 2}\left(I-(\bar{k} \lambda) T^{*}\right)^{-1}\left(I-T^{*} T\right)^{1 / 2}\right]
$$

This completes the proof.

Definition 3.3

Two contraction-valued analytic functions $\theta_{1}: \mathbb{D} \longrightarrow B\left(\mathcal{D}_{T_{1}}, \mathcal{D}_{T_{1}^{*}}\right)$ and $\theta_{2}: \mathbb{D} \longrightarrow$ $B\left(\mathcal{D}_{T_{2}}, \mathcal{D}_{T_{2}}\right)$ coincide if there exist unitary operators

$$
\begin{aligned}
& U: D_{T_{\mathrm{i}}^{*}} \longrightarrow D_{T_{2}^{*}} \\
& V: D_{T_{2}} \longrightarrow D_{T_{\mathrm{t}}}
\end{aligned}
$$

such that $\theta_{2}(z)=U \theta_{1}(z) V$, for all $z \in \mathbb{D}$. This definition leads to the following rewult.
Corollary 3.26 If c.n.u contrachons T_{1} and T_{2} are unilarily equivalent, then thear characteristic functions coincide.

Proof. Suppose T_{1} and T_{2} are mitarily equivalent e.n.1 contractions. Then there exists a matary operator U such that $T_{1}=U^{*} T_{2} U$. Using the adefintion of the characteristice finntion we have

$$
\begin{aligned}
\Theta_{T_{1}}(z) & =\left(\Theta_{U * T_{2} U}(z)\right. \\
& =-\left(U^{*} T_{2} U\right)+z\left[I-\left(U^{*} T_{2} U\right)\left(U^{*} T_{2}^{*} U\right)\right]\left(I-z U^{*} T_{2}^{*} U\right)^{-1}\left(I-\left(U^{*} T_{2}^{*} U\right)\left(U^{*} T_{2} U\right)\right) \\
& =-\left(U^{*} T_{2} U\right)+z\left[I-U^{*}\left(T_{2} T_{2}^{*}\right) U\right]\left(I-z U^{*} T_{2}^{*} U\right)^{-1}\left(I-U^{*}\left(T_{2}^{*} T_{2}\right) U\right) \\
& =U^{*}\left(\Theta_{T_{2}}(z) U, \quad z \in \mathbb{D} .\right.
\end{aligned}
$$

Without loss of generality, we let $V=U^{*}$.

Remark 3.20

Corollary 3.26 says that the characheristic finction, modulo coincidence, is a complete unitary invariant for c.n.n. contractions. This inclicates that it should be possible to recover a c.n.u. contraction, up to mitary equivalence, from its characteristic function. The following result characterizes c.nn. contractions with constant characteristic functions.

Theorem 3.27 [41]. If T is a c.n.u. contraction and the characteristic fanction Θ_{T} is constant, then T is the orthogonal sum of a unilateral backuard shift and a C_{11} contraction.

Remark 3.21

Theorem 3.27 says that a c.n.u contraction with a constant characteristic function decomposes as a direct sum of a milateral shift and an operator quasisimilar to a unitary operator. We note that since T is c.n.u., the C_{11} part camot be unitary, ot herwise this would contradict the complete non-mitarity of T. We now investigate conditions for a partial isometry implying quasinormality and paranormality.

Theorem 3.28 Let $T \in B(\mathcal{H})$. Then T is a quasinormal partial isometry if and only if T is the direct sum of an isomelry and zero.

Proof. If T is a partial isometry and quasinommal, then $T=P T=T P$, where $P=T^{*} T$ is the projection on $\mathcal{M}=\overline{\operatorname{Ran}(|T|)}$. Thus the space \mathcal{M} reduces T and $\left.T\right|_{\mathcal{M}}$ is
an isometry. This mems that $T=S(f)$) where S is an isometry. Conversely, supmose $T=S$ ($) 0$, where S is an isomery. Then

$$
T^{*} T T=\left(S^{*} S \oplus 0\right)(S \oplus 0)=S \oplus 0=T=\left(S \oplus (0) \left(S^{*} S \oplus(0)=T T^{*} T\right.\right.
$$

We now give a result on normal and subnomal partial isometries.
Theorem 3.29 Let T be an operator on a Hilluet space \mathcal{H}. Then
(i) T is normal partian isometry if and only if T is the divect sum of a unitary opectator and zero.
(ii) T is sulnormal partial isometry if and only if T is the direct sum of an isometry and zero.

Proof. (i). Since $T^{*} T=T T^{*}$ and $\operatorname{Ker}(T)^{\perp}$ coincides with $\operatorname{Ran}(T)$ and therefore $\left.T\right|_{\operatorname{Ker}(T)^{\perp}}$ is unitary, then $T=U \oplus 0$ on $\operatorname{Kifr}(T)^{\perp} \oplus \operatorname{Ker}(T)$. The proof of the converse is obvious and we leave it.
(ii) If T is subnormal, then T is hyponormal. That is, $T^{*} T \geq T T^{*}$, so $\operatorname{Ker}(T)^{\perp} \supset$ $\operatorname{Ran}(T)$. It follows that $\operatorname{Ker}(T)^{\perp}$ is invariant under T. and hence it reduces T. Clearly $\left.T\right|_{\operatorname{ker}(T)^{\perp}}$ is an isometry, so $T=S \oplus 0$ on $\operatorname{Ker}(T)^{\perp} \oplus \operatorname{Ker}(T)$, where S is an isometry. The converse follows from [25. §2.6.2].
We introduce the following useful definition.

Definition 3.4

Let \mathcal{H} be a Hillbert, space and $A \in B(\mathcal{H})$. An operator A is left invertible if it has a left inverse $X \in B(\mathcal{H})$ such that $X A=I$. An operator A is right invertible if it has a right inverse such that $A X=I$. An operator is said to be semi-invertible if it is left or right invertible.
We note that this definition makes sense only in an infinite dimensional Hillsert space since in finite dimensions every semi-invertible operator is invertible.

Theorem 3.30 For any $T \in B(\mathcal{H})$ the following statements are equivalent:
(a) T is left invertible,
(b) T is injective and $\operatorname{Ran}(T)$ is closeal,
(c) T^{*} is right invertible,
(d) T^{*} is surjective,
(e) $0 \notin \sigma_{a p}(T)$.

Remark 3.22

Recall that the spectrinn of an operator is never an emply sed. Note that if T is a finitedimensional operator (i.e. $R(m)(T)$ is finite-dimensionall, if \mathcal{H} is finite-dimensiomal), then $\sigma(T)=\sigma_{P}(T)$. A special example of a kelt invertible operator is an isometry since $T^{*} T=I$.

Definition 3.5

The deficiency of a left invertible operator T is $\operatorname{dim}\left(\operatorname{Ran}(T)^{\perp}\right)$. The deficiency of a right invertible operator T is dim $(\operatorname{Ker}(T))$. The deficiency of a semi-invertible operator is a nomegative integer or $+\infty$. A semi-invertible operator is invertible if and only if its deficiency is zero. An isometry S is a milateral shift if $S^{* n}$ converges to 0 in the strong operator topology. The deficiency of a milateral shift S is usually called the multiplicity of S. Equivalently, we take the multiplicity of a shift operator $S \in B(\mathcal{H})$ to be the minimm dimension of a cyclic sul)space for S. Usually, multiplicity of S is $\operatorname{dim}\left(\operatorname{Ker}\left(S^{*}\right)\right)($ (cf. $[61])$. For any Hillert space \mathcal{H}. the multiplicity of the shift operator

$$
S\left(c_{0}, c_{1}, c_{2}, \ldots\right)=\left(0, c_{0}, c_{1}, c_{2}, \ldots\right)
$$

on $\ell^{2}(\mathcal{H})$ is equal to the dimension of \mathcal{H}, since a simple calculation shows that $\operatorname{Her}\left(S^{*}\right)=$ \mathcal{H}.
We now use the deficiency of a contraction operat or to characterize its direct summands.
Proposition 3.31 $A n$ isometry $T \in B(\mathcal{H})$ with deficiency (0) is a unitary operator.
Proof. Suppose that T is an isometry with deficiency zero. Then $T^{*} T=I$ and $\operatorname{Ker}(T)=\{0\}$. Since T has deficiency zero, $\operatorname{Ran}(T)=\mathcal{H}$. Thus T is injective and surjective and hence invertible. This implies that $T^{*} T=I=T T^{*}$. Hence T is a mitary operator.

Remark 3.23

From Proposition 3.31, an isometry with deficiency zero has no nontrivial c.n.u. direct summand. This result gives a confition under which an isometry turns out to be unitary. Next we investigate isometries with nomzero deficioncy indices and their derompositions.

I'roposition 3.32 (i) Emery isome try wilh nonzero deficingey is a direct sum of a umilateral shifl and a nmilary operalor.
(ii) Tuo shifts are unitamily cquinalent if and only if they have the same mulliphacity.

Proof. Note that (i) gives the von Nemman-Wold decomposition and the prool follows from Proposition 2.21, Lemma 3.4 and $[45, \xi 55.1]$.
(ii) Let $S_{j} \in B\left(\mathcal{H}_{j}\right) j=1,2$ be the shift operators. If S_{1} and S_{2} have the same multiplicity, then the subspaces $\mathcal{K}_{j}=\operatorname{Kipr}\left(S_{j}^{*}\right), j=1,2$, have the same dimension. Hence there is an isomedry W_{0} which maps \mathcal{K}_{1} onto \mathcal{K}_{2}. For any $f \in \mathcal{H}_{1}$, refine

$$
\mathbb{U}^{\prime} \int=\sum_{0}^{\infty} S_{2}^{j} W_{u} k_{j} \quad \text { if } \quad f=\sum_{0}^{\infty} S_{1}^{j} k_{j}
$$

(This is becanse each $f \in \mathcal{H}$ has a mique representation $f=\sum_{0}^{\infty} S^{j} k_{j}$, where $k_{j} \in$ $\mathcal{K}, j \geq 0$). Then W is an isomorphism (injective and surjective and indeed midary by construction) from \mathcal{H}_{1} to \mathcal{H}_{2} such that $S_{2} W=W^{\prime} S_{1}$. Thus S_{1} and S_{2} are matarily equivalent. In the other direction, if S_{1} and S_{2} are unitarily equivalent, then $\operatorname{Kr} r\left(S_{1}^{*}\right)$ and $\operatorname{Ker}\left(S_{2}^{*}\right)$ are isomorphic (and hence of the same dimension). Hence S_{1} and S_{2} have the same multiplicity.

Remark 3.24

Just like the unilateral shifts, all bilateral shifts of the same multiplicity are mitarily similar.

We now study the universal model of bounded linear operators.
Shift operators are very applicable in operator theory owing to the following remarkable property [61]: up to unitary equivalence and multiplicative constants, the class of operators $T=\left.S^{*}\right|_{\mathcal{M}}$, where S is a shift operator and \mathcal{M} is an invariant subspace for S^{*}, includes every bounded linear operator on a Hilbert space. Using [61] we give the following result.

Theorem $3.33[61]$ Let $T \in B(\mathcal{H})$ such that $\|T\| \leq 1$ and $\left\|T^{n} x\right\| \longrightarrow$ () for each $x \in \mathcal{H}$. Let S be a shift operator on a Hilbert space \mathcal{G} of multiplicity $\geq \operatorname{dim}\left(\overline{\left(I-T^{*} T\right) \mathcal{H}}\right)$. Then there exists an invariant subspace $\ddot{\mathcal{M}}$ of S^{*} such that T is unitarily equivalent to $\left.S^{*}\right|_{\mathcal{M}}$.

Remark 3.25

Therorem 3.33 says that any $T \in C_{i t}$ is mitarily erfuivalent to a part of a backward milateral shift. If $T \in B(\mathcal{H})$ does not satisfy the hypothesis of Theorem 3.33, then $r T$ will sat isfy the hypotheses for any $c: \neq 0$) such that $\|r T\|<1$. In this caste, it is necessary to choose a shift operator S whose multiplicity is $\operatorname{dim}(\mathcal{H})$.

Remark 3.26

We now show that the study of general contractions can be reduced to the study of the completely nomormal (c.n.n.) contractions. First we need the following result.

Corollary 3.34 For every contraction $T \in B(\mathcal{H})$ there exist, reducing sulbspaces. \mathcal{H}_{1}. \mathcal{H}_{1} for T such that
(i) $\mathcal{H}=\mathcal{H}_{0} \oplus \mathcal{H}_{1}$
(ii) $\left.T\right|_{\mathcal{H}_{1}}$ is completely nonumitavy, and
(ivi) $\left.T\right|_{\mathcal{H}_{0}}$ is a unitury operator.
The spaces \mathcal{H}_{0} and \mathcal{H}_{1} are uniquely determined by conditions (i)-(imi).

Remark 3.27

Corollary 3.34 shows that the study of general contractions can be roftuced in many cases to the study of the completely non-mitary ones. Clearly a milateral shift is a completely nommitary operator and we use it to study general contractions.
It is important to understand the structure and relative position of the invariant sub)spaces of an isometry. Recall that an isometry $V \in B(\mathcal{H})$ is a mulat eral shift if there is a closed subspace $\mathcal{M} \subset \mathcal{H}$ (called a wandering space) such that the spaces $\left\{V^{n} \mathcal{M}\right\}_{0}^{\infty}$ are mutually orthogonal (that is, $\cap_{n=0}^{\infty} V^{n} \mathcal{H}=\{0\}$) and

$$
H=\bigoplus_{n=0}^{\infty} V^{n} \mathcal{M}
$$

The dimension of the sulsspace \mathcal{M} is called the mulliplicity of V.
We show that the direct sum decomposition in Proposition 3.1 and Lemma 3.4 is unique.
Theorem 3.35 Let V be an isometry on the Hilbert space \mathcal{H}. Then there exists a unique. reducing subspace \mathcal{H}_{0} for V such that
(i) $\left.V\right|_{\mathcal{H}_{0}}$ is a unilateral shijt, and
(ii) $\left.V\right|_{\mathcal{H} \in \mathcal{H}_{0}}$ is a unitary operator.

Proof. The sergume of subspaces $\left\{V^{n} \mathcal{H}\right\}_{n=0}^{\infty}$ is obvionsty decreasing se that we have

$$
\mathcal{H}=\left(\circlearrowleft_{n=11}^{\infty}\left(V^{n} \mathcal{H} \ominus V^{n+1} \mathcal{H}\right)\right)\left(\cap_{n=0}^{\infty} V^{n} \mathcal{H}\right)
$$

We set $\mathcal{H}_{10}=\mathcal{T}_{n=10}^{\infty}\left(V^{n} \mathcal{H} \ominus V^{n+1} \mathcal{H}\right)=\oint_{n=11}^{\infty} V^{n} \mathcal{M}, \quad \mathcal{M}=\mathcal{H} \ominus V \mathcal{H}$. Thas \mathcal{M} is a wandering subsimace and $V_{\mathcal{H}_{10}}$ is a shifi. From the aloove courality, \mathcal{H}_{0} is rechacing and

$$
\mathcal{H} \ominus \mathcal{H}_{10}=\cap_{n=0}^{\infty} V^{u} \mathcal{H}
$$

Thus $V\left(\mathcal{H} \ominus \mathcal{H}_{0}\right)=\cap_{n=1}^{\infty} V^{n} \mathcal{H}=\cap_{n=0}^{\infty} V^{n \prime} \mathcal{H}=\mathcal{H} \ominus \mathcal{H}_{0}$ and \mathcal{H}_{0} has all the properties (i) and (ii). Now $\left.V^{\prime}\right|_{\mathcal{H}_{0}}$ is completely nommitary so that the micpurness of \mathcal{H}_{0} follows. This proves the result.

Corollary 3.36 An isometry $V \in B(\mathcal{H})$ is a umlateral shift if and only if $\lim _{n \rightarrow \infty}\left\|V^{* *}{ }^{\prime}\right\|=$ 0 for all $x \in \mathcal{H}$.

Proof. Assume V is at shift so that

$$
\mathcal{H}=\bigoplus_{n=0}^{\infty} V^{n} \mathcal{M}, \quad \mathcal{M} \subset \mathcal{H}
$$

Then $V^{* n} x=0$ for $x \in V^{n} \mathcal{M}$. Since the secpuence $\left\{V^{* n}\right\}_{n=1}^{\infty}$ is bounded in norm and the spaces $\left\{V^{\prime \prime} \mathcal{M}\right\}_{n=0}^{\infty}$ span \mathcal{H}. it follows that $\lim _{n-\infty}\left\|V^{* n} x\right\|=0$ for every $x \in \mathcal{H}$. Conversely, if V^{\prime} is not a shift and \mathcal{H}_{10} is as in Theorem 3.35, then $\left\|V^{* n} x\right\|=\|x\|$ for every $x \in \mathcal{H} \in \mathcal{H}_{0}$. The corollary follows.

Remark 3.28

We give results characterizing c.n.u. contractions of class C_{0} in terms of their multiplicities. These results apply to hyponommal, quasihyponomal and paranomal contractions and to operators that have the Putman-Fuglede (PF) property. Recall from Corollary 3.8 that the c.n.u. parts of these contractions are of clasis C.o. We use $\mu(T)$ to denote the multiplicity of T. First we noed the following result for a general operator T.

Lemma 3.37 Let $T \in B(\mathcal{H})$ and $S \in B(\mathcal{K})$ and $X \in B(\mathcal{H}, \mathcal{K})$ be such that $S X=X T$ and $\overline{X \mathcal{H}}=\mathcal{K}$. Then $\mu(S) \leq \mu(T)$.

Proof. If $\mathcal{M} \subset \mathcal{H}, \operatorname{card}(\mathcal{M})=\mu(T)$ and $\bigvee_{n=0}^{\infty} T^{n} \mathcal{M}=\mathcal{H}$, then $X \mathcal{M} \subset \mathcal{K}, \operatorname{card}(X \mathcal{M}) \leq$ $\mu(T)$, and $\bigvee_{n=0}^{\infty} S^{n} X \mathcal{M}=\bigvee_{n=0}^{\infty} X T^{n} \mathcal{M}=\overline{X \mathcal{H}}=\mathcal{K}$. Therefore $\mu(S) \leq \operatorname{card}(X \mathcal{M})=$ $\mu(T)$, which was to be proved.

Remantk 3.29

Lemman 3.37 satys that if S and T are densely intert wined then $\mu(S) \leq \mu(T)$.
Corollary 3.38 If $T \in B(\mathcal{H})$ is a combaction of class C then $\mu(T) \leq \operatorname{dim}(\mathcal{D} \cdot)$.
Proof. It is clear that the minmal isometric dilation $U_{+} \in B\left(\mathcal{K}_{+}\right)$of T is a milateral shift of multiplicity $\operatorname{dim}\left(\mathcal{D}_{T^{\circ}}\right)$. If P clenotes the projection of \mathcal{K}_{+}onto \mathcal{H}, we have $T P=P U_{+}$so that $\mu(T) \leq \mu\left(U_{+}\right)=\operatorname{dim}\left(\mathcal{D}_{T^{*}}\right)$, by Lemma 3.37.

Lemma 3.39 For every operator $T \in B(\mathcal{H})$ of class C. 0 there exists a umilateral shift $U \in B(\mathcal{K})$ and an operator $\mathrm{X} \in B(\mathcal{K}, \mathcal{H})$ wnth dense tange such that
(i) $T X=X U$; and
(ii) The multiplicities of U and T are equal.

Proof. Let $U_{+} \in B\left(\mathcal{H}_{1+}\right)$ be the minimal isometric dilation of T, and choose a set $\mathcal{M} \subset$ \mathcal{H} such that $\operatorname{card}(\mathcal{M})=\mu(T)$ and $V_{n=0}^{\infty} T^{n} \mathcal{M}=\mathcal{H}$. Define $\mathcal{K}=V_{n=0}^{\infty} U_{+}^{n} \mathcal{M} . U=\left.U_{+}\right|_{\mathcal{K}}$ and $X=\left.P_{\mathcal{H}}\right|_{\mathcal{N}}$. The relation $T X=X U$ follows becanse $T P_{\mathcal{H}}=P_{\mathcal{H}} U_{+}$. Then $(\overline{X K})=$ $V_{n=0}^{\infty} \mathcal{V} U_{+}^{n} \mathcal{M}=V_{n=0}^{\infty} T^{n} X \mathcal{M}=V_{n=10}^{\infty} T^{n} \mathcal{M}=\mathcal{H}$ so that X has dense range. Thus U is a milateral shift (as the restriction of a milateral shift) and $\mu(U) \leq \operatorname{cord}(\mathcal{M})=\mu(T)$. The opposite inequality $\mu(T) \leq \mu(U)$ follows from Lemma 3.37.

Remark 3.30

By Lemma 3.39, quasisimilar completely non-mitary contractions have the same multiplicity and hence are unitarily equivalent. Duggal and Kubrusly [16] have shown that c.n.u paranormal operators are of class C_{0}. The preceding results can be used to characterize the c.n.u. parts of such contractions.
Let $T \in B(\mathcal{H})$ be a completely non-mitary contraction with minimal unitary dilation $U \in B(K)$. For every polynomial $p(\lambda)=\sum_{j=0}^{n} a_{j} \lambda^{j}$ we have

$$
\mu(T)=\left.P_{\mathcal{H}} p(U)\right|_{\mathcal{H}}
$$

which shows that the functional calculus $p \longrightarrow p(T)$ might be extended to more general functions p. We generalize this result and clefine $f(T)$ by

$$
f(T)=\left.P_{\mathcal{H}} f(U)\right|_{\mathcal{H}}, \quad f \in L^{\infty}
$$

While the mapping $f \longrightarrow f(T)$ is linear, it is mot gemerally multiplicative, and it is convenient to fincl a subalgelata in L^{x} on which the functional calculus is multiplicative. It thmens out there is a migue maximal algebrat that will do the joh for all operators T; this algetrat is \mathbb{H}^{∞}, which is the set of all bounded malytic functions on \mathbb{D}. Every function $u \in \mathbb{H}^{\infty}$ can be extended a.e. on $\partial \mathbb{D}$ via taking ratial limits:

$$
u\left(e^{i t}\right)=\lim _{r \rightarrow 1} u\left(r e^{i t}\right)
$$

\mathbb{H}^{∞} is a subalgelta of L^{∞}. This follows casily since \mathbb{H}^{∞} is a sulbipace of L^{∞} consisting of all bounded analytic functions u in \mathbb{D} with nom $\|u\|_{\infty}=\left.\operatorname{sun}\right|_{|z|<1}|u(z)|$.

Lemma 3.40 If $T \in B(\mathcal{H})$ is of classs C_{0} then T is of clluss. $C_{.01}$.
Proof. We need to prove that $\lim _{n \rightarrow \infty}\left\|T^{* n} x\right\|=0$ for each $x \in \mathcal{H}$. Assimme that $T \in C_{0}$. Then $u(T)=0$ for some $u \in \mathbb{H}^{\infty} \backslash\{0\}$. Let. $U_{+} \in B\left(\mathcal{K}_{+}\right)$be the minimal isometric dilation of T, where $\mathcal{K}_{+}=\bigvee_{0}^{\infty} U^{n} \mathcal{H}$. Let $\mathcal{R}=\bigcap_{n=0}^{\infty} U_{+}^{n} \mathcal{H}$ be the residual part of \mathcal{K}_{+}, and $A=\left.U_{+}\right|_{\mathcal{R}}$. We have

$$
T\left(\left.P_{\mathcal{H}}\right|_{\mathcal{R}}\right)=\left(\left.P_{\mathcal{H}}\right|_{\mathcal{R}}\right) \cdot A
$$

Consequently, we have

$$
\left(\left.P_{\mathcal{H}}\right|_{\mathcal{R}}\right)=u(T)\left(\left.P_{\mathcal{H}}\right|_{\mathcal{R}}\right)=0 .
$$

By the Fisher-Riesz theorem, the function $u(\xi)$ defined $b y(\xi)=\lim _{r-1} u(r \xi)$ is different from zero for almost every $\xi \in \partial \mathbb{D}$ and by the spectral theorem $u(A)=\lim _{r \rightarrow 1} u(r, A)=$ $\lim _{r \rightarrow 1} \sum_{0}^{\infty} a_{n} r^{n} A^{n}$ has dense range. Thus $\left.P_{\mathcal{H}}\right|_{\mathcal{R}}=0$ and therefore $\left.P_{\mathcal{R}}\right|_{\mathcal{H}}=0$, and

$$
0=\left\|P_{\mathcal{R}} x\right\|=\left\|\lim _{n \rightarrow \infty} U_{+}^{n} T^{* n} x\right\|=\lim _{n \rightarrow \infty}\left\|T^{* n} x\right\|
$$

This proves the lemma.
The following result is a consequence of Lemma 3.40.
Corollary 3.41 Every operator of class C_{0} is also of class $C_{(1)}$.
Proof. Let T be of class C_{0}. By Lemma 3.40, T is of class C_{01}. The corollary follows from Lemmal 3.40 applied to T^{*}.

Remank 3.31

We now study the relationship of the daracheristice finction of a C_{0} contraction T and the chatacteristic functions of the direct smmands of restrictions of T to invarinnt subspaces. Recall that a function $\| \in \mathbb{H}^{x}$ is inner if $\left|u\left(e^{3 t}\right)\right|=1$ almost everywhere on $\partial \mathbb{D}$. Recall also that the imner function v such that $v \mathbb{H}^{\infty}=\left\{u \in \mathbb{H}^{\infty}: u(T)=0\right\}$ is called the minimal function of T. We denote the minmal function of T by m^{T}. Let, θ and θ^{\prime} be two functions in \mathbb{H}^{∞}. We saty that, θ dimides θ^{\prime}, denoted $\theta \mid \theta^{\prime}$ if θ^{\prime} can be written is $\theta^{\prime}=\theta . \phi$ for some $\phi \in \mathbb{H}^{\infty}$. Clearly, if θ and θ^{\prime} are inmer, then such ϕ must be an imer function.

Proposition 3.42 Let $T \in B(\mathcal{H})$ be a c:n.u. contraction, \mathcal{M} be an invariant subspuce for T, and $\mathcal{N}=\mathcal{H} \ominus \mathcal{M}$. Let $T=\left(\begin{array}{cc}T_{1} & X \\ 0 & T_{2}\end{array}\right)$ be the matrix of T with respect to the decomposition $\mathcal{H}=\mathcal{M} \oplus \mathcal{N}$. Then T is of class C_{0} if and only if T_{1} and T_{2} are operators in classs C_{0}. If T is of class C_{0} then $m_{T_{1}} \mid m_{T}$ and $m_{T_{2}} \mid m_{T}$, and $m_{T} \mid m_{T_{1}} m_{T_{2}}$
Proof. We have $u(T)=\left(\begin{array}{cc}u\left(T_{1}\right) & * \\ 0 & u\left(T_{2}\right)\end{array}\right)$ for every $u \in \mathbb{H}^{\infty}$. If $u(T)=0$, we conclude that $u\left(T_{1}\right)=0$ and $u\left(T_{2}\right)=0$ so that T_{1} and T_{2} are of class C_{0} and $m_{T_{1}}$ and $m_{T_{2}}$ divide m_{T}.
Conversely, assume that T_{1} and T_{2} are of class $C_{0}, \theta_{1}=m_{T_{1}}$ and $\theta_{2}=m_{T_{2}}$. If $x_{2} \in$ \mathcal{N} we have $0=\theta_{2}\left(T_{2}\right) r_{2}=P_{\mathcal{N}} \theta_{2}(T) x_{2}$ and therefore $\theta_{2}(T) x_{2} \in \mathcal{M}$. Consequently, $\left(\theta_{1} \theta_{2}\right)(T) r_{2}=\theta_{1}\left(T_{1}\right) \theta_{2}(T) r_{2}=0$. Since $\left.\left(\theta_{1} \theta_{2}\right)(T)\right|_{\mathcal{M}}=\theta_{2}\left(T_{1}\right) \theta_{1}=0$ we conclurle that $\operatorname{Kor}\left(\theta_{1} \theta_{2}\right)(T) \supset \mathcal{M} \cup \mathcal{N}$ and this clearly inplies that $\left(\theta_{1} \theta_{2}\right)(T)=0$. We conclude that T is an operator of class C_{0} and m_{T} divides $\theta_{1} \theta_{2}$. That is, $m_{T} \mid m_{T_{1}} m_{T_{2}}$.

Remark 3.32

We note that we do not in general have $m_{T} \equiv m_{T_{1}} m_{T_{2}}$. For consider $T=\left(\begin{array}{cc}0 & 0 \\ 0 & 0\end{array}\right)$. Clearly $T=T_{1} \oplus T_{2}=0 \oplus 0$. A simple computation shows that $m_{T}=t$ while $m_{T_{1}}=t$ and $m_{T_{2}}=t$. Thus in this case $m_{T} \not \equiv m_{T_{1}} m_{T_{2}}$. We note that equality holds only when \mathcal{M} is a hyperinvariant subspace for T.

Proposition 3.43 Let $T \in B(\mathcal{H})$ be an operator of clas.s C_{0} and let θ be an imner divisor of m_{T}. If $T=\left(\begin{array}{cc}T_{1} & X \\ 0 & T_{2}\end{array}\right)$ is the matrix of T writh respect to the decomposition $\mathcal{H}=\mathcal{M} \oplus \mathcal{N}$, with $\mathcal{M}=\operatorname{Ser}(\theta(T))$, then $m_{T_{1}} \equiv \theta$ and $m_{r_{2}} \equiv m_{T} / \theta$.

Proof. We have $\left.\theta\left(T_{1}\right)=\left.\theta(T)\right|_{\operatorname{Ker}(\theta(T))}=\theta\left(\left.T\right|_{\{x: \theta(T) x=(0\}}\right)=\theta\right\}_{\{0\}}=0$ since θ is isomentic on $\partial \mathbb{D}$. This shows that $m_{T_{1}} \mid \theta$. It is also clear that $\{0\}=m_{T}(T) \mathcal{H}=\theta(T)\left(m_{T} / \theta\right)(T) \mathcal{H}$ so that

$$
\left(m_{T} / \theta\right)(T) \mathcal{N} \subset\left(m_{T} / \theta\right)(T) \mathcal{H} \subset \operatorname{Ker}(\theta(T))=\mathcal{N}
$$

and consequently $\left(m_{T} / \theta\right)\left(T_{2}\right)=\left.P_{N}\left(m_{T} / \theta\right)(T)\right|_{N}=0$. We have $m_{T_{1}}\left|\theta, \quad m_{T_{2}}\right|\left(m_{T} / \theta\right)$ and by Proposition 3.42, $\theta\left(m_{T} / \theta\right)=m_{T} \mid m_{T_{1}} m_{T_{2}}$. These relations imply $m_{T_{1}} \equiv \theta$ and $m_{T_{2}} \equiv m_{T} / \theta$.
The following is a consequence of Proposition 3.42.
Lemma 3.44 Assume that $T \in B(\mathcal{H})$ is a contraction and \mathcal{M} is an invariant subspace for T and $\mathcal{N}=\mathcal{H} \ominus \mathcal{M}$, and $T=\left(\begin{array}{cc}T_{1} & X \\ 0 & T_{2}\end{array}\right)$ is the triangulution of T with respect to the decomposition $\mathcal{H}=\mathcal{M} \oplus \mathcal{N}$. If T is of class $C_{(10}$ then both T_{1} and T_{2} are of class $C_{(1)}$.

Proof. Assume $T \in C_{(0)}$. Then we have $T_{1}^{n}=\left.T^{n}\right|_{\mathcal{M}}, T_{1}^{* n}=\left.P_{\mathcal{M}} T^{* n}\right|_{\mathcal{M}}, T_{2}^{* n}=\left.T^{* n}\right|_{\mathcal{N}}$, and $T_{2}^{n}=\left.P_{\mathcal{N}} T^{n}\right|_{\mathcal{N}}$ for $n \geq 1$. It clearly follows that T_{1} and T_{2} are of class C_{00}.
Alternative Proof. $T \in C_{\text {orf }}$ implies that $T^{n} \longrightarrow 0$ and $T^{* n} \longrightarrow 0$ as $n \longrightarrow \infty$. Thus

$$
\lim _{n \rightarrow \infty}\left(T^{*} T\right)^{n}=\lim _{n \rightarrow \infty} T_{1}^{*} T^{n} \oplus T_{2}^{* n} T_{2}^{n}=0 \oplus 0
$$

which implies that $T_{1}^{n} \longrightarrow 0$ and $T_{2}^{n} \longrightarrow 0$ as $n \longrightarrow \infty$. Thus both T_{1} and T_{2} are in class C_{00}.
The following results show that we can generalize the results on contractions to general operators. We use the fact that every operator suitably multiplied by a positive scalar becomes similar (in fact unitarily equivalent.) to a part of a canonical backward unilateral shift:[63].

Proposition 3.45 Every part of a unilateral shift is again a unilateral shift.

Rematk 3.33

If \mathcal{M} is an invariant sulspace for S_{+}(so that $\left.S_{+}\right|_{\mathcal{M}}$ is a milateral shift), then \mathcal{M}^{\perp} is an invarian sulspace for S_{+}^{*}. It is then natural to ank what kind of operator is $\left.S_{+}^{*}\right|_{\text {M }}$. More generally, which operators are parts of a backward unilateral shift? The answer to this cuestion was given by Rota [63] and it was as surprising as it was remarkalde: all operators, up to a scaling factor and up to similarity. That is, every operator suitably multiplied by a positive scalar becomess similar (in fact mitarily equivalent) to a part of a canonical backward milateral shift. In other worts, canomical backward unilateral shifts are universal models. This is Rota's Theorem. This gives us the motivation to give the following results which are consequences of Theorem 3.33.

Theorem 3.46 Let T be an operator on a Hilletert space \mathcal{H}. If $r(T)<1$, then T is similar to a part of the canomical back:uard unilateral shift on $\ell_{+}^{2}(\mathcal{H})$.

Proof. Suppose $r(T)<1$, or, equivalently, $\sum_{k=1}^{\infty}\left\|T^{k}\right\|^{2}<\infty$, and set $W: \mathcal{H} \longrightarrow$ $\operatorname{Ran}(W) \subseteq \ell_{+}^{2}(\mathcal{H})$ as follows.

$$
W x=\bigoplus_{h=0}^{\infty} T^{k} x
$$

so that

$$
\|x\|^{2} \leq \sum_{k=0}^{\infty}\left\|T^{k} x\right\|=\|W \cdot x\|^{2} \leq\left(\sum_{k=0}^{\infty}\left\|T^{k}\right\|^{2}\right)\|x\|^{2}
$$

for all $x \in \mathcal{H}$. Therefore W is a bounded linear transformation which is also bounded below. Thus $\operatorname{Ran}(W)$ is closed in $\ell_{+}^{2}(\mathcal{H})$ and hence $\operatorname{Ran}(\mathbb{W})$ is a subspace of $\ell_{+}^{2}(\mathcal{H})$. Let S_{+}be the canonical unilateral shift on $\int_{+}^{2}(\mathcal{H})$ so that $S_{+}^{*} \bar{r}=\oplus_{k=0}^{\infty}, r_{k+1}$ for all $\bar{x}=\oplus_{k=0}^{\infty} x_{k} \in \ell_{+}^{2}(\mathcal{H})$. Note that

$$
W T x=\bigoplus_{k=0}^{\infty} T^{k+1} x=S_{+}^{*} W^{\prime} x
$$

for all $x \in \mathcal{H}$. Thus $\operatorname{Ran}(W)$ is an invariant subspace for S_{+}^{*}, and hence $\left.S_{+}^{*}\right|_{\operatorname{Ran}(11)}$: $\operatorname{Ran}(W) \longrightarrow \operatorname{Ran}(W)$ is a part of S_{+}^{*} such that

$$
T=W^{-1}\left(\left.S_{+}^{*}\right|_{\operatorname{Ran}\left(W^{\prime}\right)}\right) W
$$

This proves the result.
Corollary 3.47 An operator T is similar to a stmet contraction if and only if $r(T)<1$.

Proof. The proof is the same in in Theorem 3.46.

Rennark 3.34

Comollary 3.47 characterizes similatity 10 a strid contraction. By Halmos [32] similarity to a strict contraction is easier to hamblle than similatity to a general contraction. The following result is obtained by strengthening Theorem 3.33.

Theorem 3.48 An opovator T is umbarily aquinalent lo a parl of a canonical backuard unilatectal shift if and only if $\|T\| \leq 1$ and $T^{n} \longrightarrow 0$.

Proof. Use the Proof of Theorem 3.33.
Remark 3.35
We note that every operator suitably maltiplied by a scalar becomes mitarily equivalent to a part of a camonical backward milateral shili (equivalently, becomes a part of a backward milateral shift.). In other words, every operator $T \in B(\mathcal{H})$ is unitarily equivalent to a multiple of a part of the canonical backward milateral shift S_{+}^{*} on $f_{+}^{2}(\mathcal{H})$, so that $S_{+}^{*} \in B\left(r_{+}^{2}(\mathcal{H})\right)$ is a miversal mondel for $B(\mathcal{H})$. Since operators that are multiples of anch other share the same insarimat subspaces, the above result learls to a reformatation of the invatiant subsipace problem: Take any (nomzero) operator on a Hilbert space \mathcal{H} (of dimension greater than one) and consider a multiple of it, say T, that is a strict contraction (e.g divide the original operator by the double of its own norm). Then by Theorem $3.49, T$ is unitarily equivalent to $\left.S_{+}^{*}\right|_{\mathcal{N}}$, where S_{+}is the canonical unilateral
 $\mathcal{N} \subseteq \ell_{+}^{2}(\mathcal{M})$ is an invariant subspace for $S_{+}^{*}($ so that $\operatorname{dim}(\mathcal{N})=\operatorname{dim}(\mathcal{H})>1)$. Kubrusly [45] has given a generalization of these results.

Theorem 3.49 [45, Theorem 6.11] A completely nonunitary contraction on a Hilbert space \mathcal{H} is unitarily equivalent to a part of the direct sum of the canonical backward unilateral shift on $\ell_{+}^{2}(\mathcal{H})$ and the canonical backward balateral shift on. $\ell^{2}(\mathcal{H})$.

Remark 3.36

We give results on mitary and c.nin summands of almost-similar contraction operators. These results are due to [54].

Corollary $3.50[54$, Corollary 2.3$] L: 4 \in B(\mathcal{H})$ and suppose that $A \stackrel{\text { n. }}{\approx} S_{+}$, where S_{+}denotes the unilateral shift of finte maltiplicaty. Then A is a completely non-umilary comtraction such that $R e(A) \approx Q$ where Q is a quasidiagonal operator and $R e(A)$ denotes the real part of A.

Proof. Since $A \stackrel{n, x}{\approx} S_{+}, A^{*} A=N^{-1}\left(S_{+}^{*} S_{+}\right)$and $A^{*}+A=N^{-1}\left(S_{+}^{*}+S_{+}\right) N$, where N is an invertible operator. Since $S_{+}^{*} S_{+}=I, A^{*} A=I$. That is, A is an isometry (indeced, a c.n.n isometry). It is clear by operator multiplication that $S_{+}^{*}+S_{+}$a is fuasi-diagonal operator Q. Hence $\operatorname{Re}(A) \approx Q$.

Proposition 3.51 [54, Proposition 2.12] Let $A \in \mathcal{B}(\mathcal{H})$ such that A is almost simular to an isometry T. Then the unitary and completely non-unitary summands of A are isometric.

Proof. Since T is an isometry, by the von Nemmam-Wold decomposition ([45.585 .2$]$), $T=S_{+} \oplus U$, where U is unitary and S_{+}is the unilateral shift. Since $A \stackrel{a \sim x}{\approx} T$. there exists an operator N such that

$$
\begin{aligned}
A^{*} A & =N^{-1}\left[\left(S_{+} \oplus U\right)^{*}\left(S_{+} \oplus U\right)\right] N \\
& =N^{-1}\left(S_{+}^{*} S_{+} \oplus U^{*} U\right) N \\
& =N^{-1}(I \oplus I) N
\end{aligned}
$$

Now, suppose $A=A_{1} \oplus A_{2}$, then $A^{*} A=\left(A_{1}^{*} A_{1} \oplus A_{2}^{*} A_{2}\right)$. This show's thatt $\left(A_{1}^{*} \cdot A_{1} \oplus\right.$ $\left.A_{2}^{*} A_{2}\right) \approx I \oplus I$. From this equation, it follows that $A_{i}^{*} A_{i} \approx I, i=1,2$. This means that there exists an operator N such that $A_{i}^{*} A_{i}=N^{-1} I N=I$. Thus $A_{i}^{*} A_{i}=I$. This proves that the direct summands of A are isometric.
The following is a conserpuence of Corollary 3.51.
Corollary 3.52 If an operator $A \in B(\mathcal{H})$ is such that A^{*} is almost similar to a c.n.u. coisometry, then A has no unitary direct summand.

Proof. Suppose $A=A_{1} \oplus A_{2}$. By an application of the proof of Corollary 3.51, we get that the direct summands of A areminitary. But the c.n.u part of an operator camot. be unitary. This means that $A_{1}=0$ or A_{1} acts on the mull space $\{0\}$. Thus A has no unitary direct summand.

Corollary 3.53 [54, Conollar! 2.1:3] Let $A \in B(\mathcal{H})$ br a contiruction. If A is unitarily rquivalent to a unilary operator T, then A is umbary.

Remark 3.37

Corollary 3.53 says that an operator which is mitarily equivalont 10 a mitary operator has no completely non-mitary direct summand.

Proposition 3.54 [54, Iropesilion 2.14] If $A, B \in B(\mathcal{H})$ are combrartions such that $A \stackrel{\text { a.s }}{\approx} B$ and B is c.n.u, then A is c.n.u.

Proof. By the Nagy-Foias-Langer recomposition for contractions [45.§5.1], $B=U \oplus \subset$ on $\mathcal{H}=\mathcal{H}_{1} \oplus \mathcal{H}_{2}$, where $U=\left.B\right|_{\mathcal{H}_{1}}$ is the unitary part of B and $C=\left.B\right|_{\mathcal{H}_{2}}$ is the completely non-mitary part of B. Since B is c.n.u. the unitary direct smmand U is missing or $\mathcal{H}_{1}=\{0\}$. Without losis of generality we suppose that $B=C$. Then $A^{*} A=N^{-1}\left(B^{*} B\right) N=N^{-1}\left(C^{*} C^{*}\right) N$. This shows that $A^{*} A$ is similar to $C^{*} C$ (i.e. $A^{*} A \approx C^{*} C$). Now suppose $A=A_{1} \oplus A$. where A_{1} is mitary and A_{2} is c.n.n. Then $\left(A_{1}^{*} A_{1} \oplus A_{2}^{*} A_{2}\right) \approx C^{*} C$. This holels if and only if the direct summand A_{1} is missing. That is, $A=A_{2}$. Hence A is completely non-mitary.

Corollary $3.55\left[54\right.$, Theorem 2.15] If $A \in B(\mathcal{H})$ is normal, then $A \stackrel{a . s}{\approx} A^{*}$.
Proof. The result follows sisily from the fact that $A A^{*}=A^{*} A=N^{-1}\left(A A^{*}\right) N=$ $N^{-1}\left(A^{*} A\right) N$ and $A+A^{*}=A^{*}+A=N^{-1}\left(A+A^{*}\right) N=N^{-1}\left(A^{*}+A\right) N$.

Remark 3.38

We note that the converse of Corollary 3.55 is not true in general, for consider $A=$ $\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)$ and $N=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$. By matrix computation gives $A^{*} A=N^{-1}\left(.4 A^{*}\right) N$ and $A^{*}+A=N^{-1}\left(A+A^{*}\right) N$. That is, $A \stackrel{a . s}{\approx} A^{*}$, althongh A is not normal.

Remark 3.39

We conjecture that Corollary 3.55 can be strengthened to the class of nommal cont ractions as follows.

Conjecture 3.56 If $A \in B(\mathcal{H})$ is a normal conlraclion and $B \in B(\mathcal{H})$ such that $A \approx$ B, then the c.n.u part of B is of class C_{010}.

Chapter 4

On invariant and hyperinvariant lattices of operators

In this chapter we study the invariant and hyperinvariant subsipaces of some classes of operators in Hillert spaces. We give a shot at the open invariant and hyperinvariant subspace problems: Does every operator on an infinte dimensional Halbert space have a nontrinial invariant (hyperinvariant) subspace? These two problems are both unresolved and are of importance for understanding the structure of Hilbert space operators. Invariant subspaces play a key role in studying the spectral properties and canonical forms of operators. The invariant and hyperinvariant lattices come in handy to determine whet her it is possible to isolate the parts (direct summands) of a given linear operator. The basic motivations for the study of invariant subspaces come from the interest in the structure of operators. The well known Jordan-canonical-form theorem for operators on finite-dimensional spaces can be regarded as exhibiting operators (to within similarity) as direct sums of their restriction to certain invariant sulbspaces. The fact that every matrix on a finite-dimensional complex vector space is mitarily equivalent to an upper triangular matrix follows immediately from the existence of nontrivial invariant sulspaces for operators on finite-dimensional spaces. We denote the lattice of invariant subspaces and hyperinvariant subspaces of T by $\operatorname{Lat}(T)$ and H yperlat (T), respectively. If \mathcal{H} is any Hilbert space and $T \in B(\mathcal{H})$, and $\mathcal{M} \in \operatorname{Lat}(T)$, then the representation of
T with respect to the decomposition \mathcal{M} बə \mathcal{M}^{\perp} of \mathcal{H} is npper triangular:

$$
T=\left(\begin{array}{cc}
T_{1} & T_{2} \\
0 & T_{3}
\end{array}\right)
$$

where $T_{1}=\left.T\right|_{\mathcal{M}}$ (the restriction of T to \mathcal{M}) and where T_{2} and T_{3} are operatos mapping \mathcal{M}^{\perp} into \mathcal{M} and \mathcal{M}^{\perp} respectively. Thens there are varions relations between the structure of an operator T and $\operatorname{Lat}(T)$. Also, knowledge of hyperinvariant subspates of T can give information about the structure of the commutant of T. The commintant of an operator T is very useful since it contains all quasiaffine transforms of an operator and its very nature reveals information about operators quasisimilar, similar, or unitarily equivalent to T. Recall that a complete lattice is a partially ordered set(poset) in which all subsets have both supremum(join) and an infimmm(meet). We show that if the algebra generated by T coinciles with the commutant of T, then cevery invariant subspace is hyperinvariant. In particular, this is the case for injective milat eral shifts and in general any completely non-normal (or completely non-mitary) operator. Since the set of all the invariant subspaces of an operator T can be partially ordered by inclusion, then $\operatorname{Lat}(T)$ is a complete lattice.
The following definitions will be useful in the rest of this chapter.
Let $T \in B(\mathcal{H})$. Then $\operatorname{Lat}(T)=\{\mathcal{M} \subset \mathcal{H}: T \mathcal{M} \subset \mathcal{M}\}$, and H yper $\operatorname{Lat}(T)=\{\mathcal{M} \subset \mathcal{H}$: $S \mathcal{M} \subset \mathcal{M}$. whenever $S \in B(\mathcal{H})$ commutes with $T\}$. If $\mathcal{M} \in \operatorname{Lat}(T)$, then T has an upper triangular form relative to the decomposition $\mathcal{H}=\mathcal{M} \oplus \mathcal{M}^{\perp}$:

$$
T=\left(\begin{array}{cc}
\left.T\right|_{\mathcal{M}} & \left.P_{\mathcal{M}} T\right|_{\mathcal{M}^{+}} \\
0 & \left.P_{\mathcal{M}^{\perp}} T\right|_{\mathcal{M}^{\perp}}
\end{array}\right)
$$

where $P_{\mathcal{M}}$ denotes the orthogonal projection of \mathcal{H} onto the subspace \mathcal{M}. Such a representation is called a triangulation of T.

We investigate the structure of invariant and lyperinvariant lattices of operators sharing a certain spectral property: quasisimilar, similar, mitarily equivalent, with a view to determining whether we can isolate the direct summands of one operator if the ot her operator cujoys this property. We will study a subset of Lat (T), which we denote by $\operatorname{Red}(T)$, of reducing subspaces for which T decomposes as a direct sum of $t w o$ complementary parts. We note that Red (T) is not in general a latice. This is becanse both \mathcal{M} and \mathcal{M}^{\perp} are in $\operatorname{Red}(T)$ but the pair $\left\{\mathcal{M}, \mathcal{M}^{\perp}\right\}$ has no supremum and infinmm in
$\operatorname{Red}(T)$.
We show that if two operators are quasisimilar and if one of them has a nontrivial hyperinvariant sulspace, then so has the other. That is quasisimilatity preserves nomerivial hyperinvariant sulspaces. It is well known (see [8]) that similarity of operators preserves compactacss, cycticity, algelmaicity, and the spectral pieture (i.e. the spectrom, essential spectrum, and intex function), and that similar operators have isomorphic lat tices, of invariant sulspaces and hyperinvariant subspaces. That is, similarity of operators (which implies quasisimilarity of operators) not only preserves nontrivial hyperinvariant sulsepaces but also nontrivial invariant sulspates.

Definition 4.1

An operator $T \in B(\mathcal{H})$ is cyclic if there exists a vector $x \in \mathcal{H}$ for which the list $\left\{x, T x, T^{2} x, \ldots, T^{n-1} x\right\}$ spans (and is therefore a basis) for a finite-dimensional Hillert, space \mathcal{H}.

Example 4.1

It is clear that if T las an cigenvalue. then the corresponding eigenspace is an invariant subspace. Since every operator $T: \mathbb{C}^{n} \longrightarrow \mathbb{C}^{n}$ hats eigenvalues it follows that T has nontrivial invariant subspaces whonever $n \geq 2$. However, on \mathcal{H} there are many linear operators that do not have eigenvalues, e.g. the milateral shift operator $T: \mathcal{H} \longrightarrow \mathcal{H}$ defined by $T\left(a_{1}, a_{2}, a_{3}, \ldots\right)=\left(0, a_{1}, a_{2}, a_{3}, \ldots\right)$ as proved in Example 2.1. However, the milateral shift T has nontrivial invariant sulsipaces. To prove this, we let. \mathcal{M}_{n} be the subspace of ℓ^{2} of square summable sequences such that the first n components are zero. That is

$$
\mathcal{M}_{n}=\operatorname{span}\left\{\left(0,0,0, \ldots, 0, a_{n+1}, a_{n+2}, \ldots\right)\right\} .
$$

Then it is clear that for each $x \in \mathcal{M}_{n}$, we have $T x \in \mathcal{M}_{n+1} \subseteq \mathcal{M}_{n}$. Thus \mathcal{M}_{n} is an invariant subspace for T. We show that the milateral shift has plenty of invariant subspaces, by using the Fourier transform. We define the Hardy space \mathbb{H}^{2} to be the space of complex-valued analytic functions on the open mit disc $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\} \subseteq \mathbb{C}$. More precisely, we set

$$
\mathbb{H}^{2}=\left\{f: \mathbb{D} \longrightarrow \mathbb{C}: f(z)=\sum_{n=0}^{\infty} a_{n} z^{n} \text { for } z \in \mathbb{D}, \sum_{n=0}^{\infty}\left|a_{n}\right|^{2}<\infty\right\}
$$

and devemine the Fomier transiom from \mathcal{H} to \mathbb{H}^{2} by

$$
\left(a_{1}, a_{2}, a_{3}, \ldots\right) \longrightarrow f,
$$

where

$$
f(z)=\sum_{n=0}^{\infty} a_{n} z^{n} .
$$

Note that the Hardy space \mathbb{H}^{2} contans all the polynomials. On the space \mathbb{H}^{2} we can define the operator of multiplication by z as

$$
\left(\Lambda_{z} f\right)(z)=z \int(z), \quad f \in \mathbb{H}^{2}
$$

Then

$$
M_{z}\left(\sum_{n=0}^{\infty} a_{n} z^{n}\right)=\sum_{n=0}^{\infty} a_{n} z^{n+1}=\sum_{n=0}^{\infty} a_{n-1} z^{n},
$$

and it is easy to see that the Fourier transform provides a unitary equivalence between T and M_{z}. Now let $\left\{c_{1}, c_{2}, \ldots, c_{7}\right\}$ be a finite subset of \mathbb{D}. Then we can set

$$
\mathcal{M}=\left\{f \in \mathbb{H}^{2}: f\left(c_{i}\right)=0, i=1,2,3, \ldots, n\right\}
$$

It is easy also to see that \mathcal{M} is a closed smbsace of \mathbb{H}^{2} and it is clear that \mathcal{M} is invariant for M_{z}. It is also easy to see that \mathcal{M} is a nontrivial subspace of \mathbb{H}^{2}. In fact, since $1 \in \mathcal{M}$ we have $\mathcal{M} \neq \mathbb{H}^{2}$, and we also note that

$$
p(z)=\prod_{i=1}^{n}\left(c_{i}-z\right)
$$

is a polynomial in $\mathcal{M}, p \neq 0$, hence $\mathcal{M} \neq\{0\}$. Thus we have a new invariant subspace for the milateral shift T, and one can go on one step further: Let $\left\{c_{1}, c_{2}, \ldots\right\}$ be an infinite subset of \mathbb{D}, and set

$$
\mathcal{M}=\left\{\int \in \mathbb{H}^{2}: f\left(c_{i}\right)=0, i=1,2,3, \ldots\right\}
$$

As before it is easily seen that $\mathcal{M} \subseteq \mathbb{H}^{2}$ is an invariant subspace of M_{z}, and that $\mathcal{M} \neq \mathbb{H}^{2}$. However, in this case, it is not, clear that $\mathcal{M} \neq\{0\}$. It is easy to check that also, $\{0\}$ and \mathbb{R}^{n} are always T-invaifant and $\operatorname{spon}\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$ is T-invariant, where v_{i} are eigenvectors of T. Also, if T has the block upper triangulation $T=\left(\begin{array}{cc}T_{11} & T_{12} \\ 0 & T_{22}\end{array}\right)$
with $T_{11} \in \mathbb{R}^{v \times r}$, then $\mathcal{M}=\left\{\binom{z}{0}: z \in \mathbb{R}^{r}\right\}$ is T-invariant.
Suppose \mathcal{M} is at T-invariant sulbipace. Suppose that we pick a basis it $=\left\{z_{1}, v_{2}, \ldots, v_{k}\right\}$ of \mathcal{M} and complete it to a basjs of \mathcal{H}. Then with respect tor this basis, the matrix representation of T takes the form $T=\left(\begin{array}{cc}T_{11} & T_{12} \\ 0 & T_{22}\end{array}\right)$, where $T_{11}=\left.T\right|_{\mathcal{M}}, T_{22}=\left.T\right|_{\mathcal{M}}$ and $\mathcal{H}=\mathcal{M} \oplus \mathcal{M}^{\perp}$. The operator $T_{12}=0$ if and only if \mathcal{M} reduces T. in which case the operator T is decomposed (reduced) into the (orthogomat) direct sim of the operators T_{11} and $T_{22}: T=T_{11} \oplus T_{22}$.
Thus, on a finite-dimensional complex Hilbort space every operator has an eigenvalue. and eigenspaces of non-scalar operators are nontrivial and hyperinvariant, so that every operator on a finite-dimensional complex Hilbert space of dimension greater than 1 has a nontrivial invariant sulspace (hyperinvariant, actually, if it is mon-scalar). The invariant subspace problem trivially has a negative answer in a real space. For instance, the operator $\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$ on \mathbb{R}^{2} has no nontrivial invariant subspace (when acting on the Euclidean real space but, of course, it has a nontrivial invariant subsipace when acting on the complex space \mathbb{C}^{2}). This is in general the case with rotations of a two-dimensional real vector space.
We need the following known results which are proved in [18].
Theorem 4.1 [18] Let T be a k-th root of a p-hyponormal operator. If T is compact. or T^{n} is normal for some integer $n>k$, then T is a (generalized) scalar operator.

Corollary $4.2[18$, Corollary 2.2$]$. Let $T \in B(\mathcal{H})$ be a k-th root of a p-hyponormal operator. If T is compact or T^{n} is normal for some integer $n>k$, then T has hyperinvariant subspaces.

Definition 4.2

Let $T, A, B \in B(\mathcal{H})$. We say that T intertwines the pair $(A . B)$ if $T A=B T$. If T intertwines both (A, B) and (B, A), we say that T doubly intert wines A and B.

Remark 4.1

We investigate the relationship of the invariant subspaces of such operators A and B, when T is an arbitrary operator and when T is a quasiaflinity. We try to answer the
question whether (pusisimilarity preserves nomtrivial invariant suldespers.
Lemma 4.3 I/ $T \in B(\mathcal{H})$ dovily intertwines A and B and $\operatorname{Lat}(A) \cap \operatorname{Lat}(B)$ is trivial then T is cither () or a gunsinffinily. The sume is true if T commules with A and B and Lal(A) $\cap \operatorname{Lal}(B)$ 1.s trivial.

Proof. T doubly commutes the pair (A, B) implies that $T A=B T$ and $T B=A T$. Since $T A=B T$ then $\overline{\operatorname{Ran}(T)} \in \operatorname{Lat}(B)$ and $\operatorname{Ser}(T) \in \operatorname{Lat}(A)$. Since $T B=A T$, we deduce that $\overline{\operatorname{Ran}(T)} \in \operatorname{Lat}(A) \cap \operatorname{Lat}(B)$ and $\operatorname{Ker}(T) \in \operatorname{Lat}(A) \cap \operatorname{Lat}(B)$. We rum through the following two cases.
Case 1: If $\overline{\operatorname{Ran}(T)}=\{0\}$ then $T=0$. If $\overline{\operatorname{Ran}(T)}=\mathcal{H}$, then $\operatorname{Ker}(T)=\{0\}$ and hence T is one-to-one or injective and has dense range, hence a quasiaffinity.
Case 2: If T conmutes with A and B, i.e. $T A=A T$ and $T B=B T$, then by the argument alove, $\overline{\operatorname{Ran}(T)} \in \operatorname{Lat}(A) \cap \operatorname{Lat}(B)$ and $\operatorname{Ker}(T) \in \operatorname{Lat}(A) \cap \operatorname{Lat}(B)$. Thus ly the same argment either $T=0$ or T is a chasialfinity.

Remark 4.2

The triviality of $\operatorname{Laf}(A) \cap \operatorname{Lat}(B)$ follows from the orthogonality of $\operatorname{Ker}(T)$ and $\overline{\operatorname{Ran}(T)}$. Strengthening Lemma 4.3 to similarity shows that $\operatorname{Lat}(-A)$ is iscomorphic to $\operatorname{Lat}(B)$.

Theorem 4.4 Let. $A, B \in B(\mathcal{H})$. If $. f^{2}=B^{2}$ and A has nontrvial invariant subspaces then B has nontrivial invariant subspaces.

Proof. We prove this result by contraliction. Suppose Lat (B) is trivial. That is, $\operatorname{Lat}(B)=\{0\}$ or \mathcal{H}. Then $\operatorname{Lat}(A) \cap \operatorname{Lat}(B)$ is trivial also. Denote $T=A+B$. Then $T A=(A+B) A=A^{2}+B A, \quad B T=B(A+B)=B A+B^{2} ;$ and
$A T=A(A+B)=A^{2}+A B, \quad T B=(A+B) B=A B+B^{2}$.
This shows $T A=B T$ and $A T=T B$. Thus T doully intertwines A and B.
If $T=0$, then $A=-B$ or $A=B=0$. Both cases imply that $\operatorname{Lat}(B)$ is nontrivial, which is an absurdity, since we had assumed $\operatorname{Lat}(B)$ to be trivial. We admit that $T \neq 0$, so by Lemma 4.3, T is a quasiaffinity doubly intertwining A and B. Using [58, Theorem 6.19], we derluce that. B has nontrivial hyperinvariant subspaces, which is once more absurd. We conclucle that $L a t(B)$ is nontrivial.

Theorem 4.5 If A and B are milpoleme operators of nilpolemey index 2 having no

Proof. If $L a l(A) \cap \operatorname{Lat}(B)$ is trivial, then $T=A+B$ is nonzero becanse if $T=0$, then $\operatorname{Lat}(A)=\operatorname{Lat}(B)$ and nilpotent, operators have nontrivial invariant subspaces. Consecpuently, A and B are quasisimilar since T is a quasiaffinity doubly intertwining A and B by Theorem 4.4.

The following theorem will comes in handy in the secpuel.
Theorem 4.6 (Spectral Theorem) [46. Theorem 0.14] If \mathcal{H} is a finite dimensional Holbert space and $T \in B(\mathcal{H})$ is solf-adjoint, then there exists an orthonommal basis $\varphi_{1}, \varphi_{2}, \ldots, \varphi_{n}$ for \mathcal{H} and real numbers $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ such that

$$
T \varphi_{i}=\lambda_{i} \varphi_{i}, \quad 1 \leq i \leq n .
$$

The matrix $\left(t_{i j}\right)=\left(\left\langle\varphi_{\varphi_{j}}, \varphi_{i}\right\rangle\right)$ corresponding to T and $\varphi_{1}, \varphi_{2}, \ldots, \varphi_{n}$ is the diagonal matrix

$$
\left(\begin{array}{ccc}
\lambda_{1} & & 0 \\
& \ddots & \\
0 & & \lambda_{n}
\end{array}\right)
$$

A natural question is whether this spectral theorem can be generalized to the case where T is self-adjoint and \mathcal{H} is infinite climensional. That is to say, is there an orthonormal basis $\varphi_{1}, \varphi_{2}, \ldots$ for \mathcal{H} and numbers $\lambda_{1}, \lambda_{2}, \ldots$ such that

$$
T \varphi_{i}=\lambda_{i} \varphi_{i}, \quad 1 \leq i ?
$$

This means that the matrix corresponding to T and $\varphi_{1}, \varphi_{2}, \ldots$ is an infinite climensional diagonal matrix. It is known that the spectral theorem admits an important generalization to compact self-adjoint operators. For an arbitrary operator T, the matrix is triangular. The following examples are useful in understanding the notion of an invariant subspace for T acting on infinite dimensional Hilbert spaces.

Example 4.2

- 1. Let $\left\{\varphi_{1}, \varphi_{2}, \ldots\right\}$ be an orthonormal hasis for \mathcal{H}. Suppose the matrix corresponding to $T \in B(\mathcal{H})$ and $\left\{\varphi_{n}\right\}$ is upper triangular, that is, $t_{i j}=\left\langle T \varphi_{j}, \varphi_{i}\right\rangle=0, \quad i>j$.

If the matrix $\left(t_{n}\right)$ is lower trimgular, i.e. $l_{1,}=0$ if $i<1$, Iben for eads n, spen $\left\{\varphi_{n+1}, \varphi_{n+2} \ldots\right\}$ is an invariant sulspace for T.

- 2. Define T on $L^{2}[a, b]$, the Hillort space of sigure integrable functions on $[a, b]$. by $\left(T \int\right)(I)=\int_{u}^{t} k:(t, s) \int(s) d s, \quad$ for $k \in\left(L^{2}[a, l] \times L^{2}[a, l]\right)$.
For each $l \in[a, b]$, the space
$\mathcal{M}_{t}=\left\{\int \in L^{2}[a, l]: f=0\right.$ a.e. on $\left.[n, l]\right\}$ is invariant muter T.

Remark 4.3

We now investigate invariant subspaces of some clatses of operators. We start with the following results for M-hyponomal operators.

Theorem 4.7 If $T \in B(\mathcal{H})$ is an M-hyponomal operator on \mathcal{H}, then the set $\mathcal{K}=\left\{x \in \mathcal{H}:\left\|\left(T^{*}-\bar{z} I\right) x\right\|=M\|(T-z I) r\|, \quad z \in \mathbb{C}\right\}$ is a closed subspace of \mathcal{H}.

Proof. For $x \in \mathcal{K}$, we have

$$
\left\|\left(T^{*}-\bar{z} I\right) x\right\|^{2}=\Lambda^{2}\|(T-z I) x\|^{2},
$$

which yields

$$
\begin{equation*}
\left\langle\left(M^{2}\left(T^{*}-\bar{z} I\right)(T-z I)-(T-z I)\left(T^{*}-\bar{z} I\right)\right) \cdot x, x\right\rangle=0 . \tag{4.1}
\end{equation*}
$$

In view of the M-hyponormality of T, (4.1) holds if and only if

$$
\begin{equation*}
\left(M^{2}\left(T^{*}-\bar{z} I\right)(T-z I)-(T-z I)\left(T^{*}-\bar{z} I\right)\right) x=0 \tag{4.2}
\end{equation*}
$$

From (4.2) it follows that \mathcal{K} is the kernel of the operator

$$
M^{2}\left(T^{*}-\bar{z} I\right)(T-z I)-(T-z I)\left(T^{*}-\bar{z} I\right)
$$

and since by Kubrusly [45, $\S 0.1]$, the kerned of any operator T is closed, \mathcal{K} is a closed subspace as desired.

Remark 4.4

Note, similarly, that if T^{*} is M-hyponommal on \mathcal{H}, then the set $\mathcal{K}=\{x \in \mathcal{H}: \|(T-$ $\left.z I) x\|=M\|\left(T^{*}-\bar{z} I\right) x \|, \quad z \in \mathbb{C}\right\}$ is a closed subspace of \mathcal{H}. When $M=1$ (i.e., T is a hyponormal operator), it is well known that the space \mathcal{K} is an invariant sulspace under
T. and the restriction $\left.T\right|_{\mathrm{N}}$ is nomal.
We investigate whether an M-hyponermal operator has a montrivial invariant sulspate To do this we need to st mely the rigenispares of M-hyponomal operators.

Theorem 4.8 Suppose that the subspaese \mathcal{K} of \mathcal{H} reduces an operator T on \mathcal{H}. Then T is M-hyponormal is and only is $\left.T\right|_{\mathcal{N}}$ and $\left.T\right|_{\mathcal{N}+1}$ are M-hyponormal.

Proof. Let $T=T_{1} \oplus T_{2}$, where $T_{1}=\left.T\right|_{\kappa}$ and $T_{2}=\left.T\right|_{\mathcal{K}^{1}}$. If T is M-hyponomat, then there exists a real number M such that.

$$
\left\|(T-z I)^{*} x\right\| \leq M\|(T-z I) \cdot x\|,
$$

for all $x \in \mathcal{H}$ and for every complex number z. But on $\mathcal{K}, T=T_{1}$ and $T^{*}=T_{1}^{*}$. Thus for any vector $x \in \mathcal{K}$ we have

$$
\left\|\left(T_{1}-z I\right)^{*} x\right\|=\left\|(T-z I)^{*} x\right\| \leq M\|(T-z I) \cdot x\|=M\left\|\left(T_{1}-z I\right) x\right\| .
$$

This shows that T_{1} is M-hyponormal.
Similarly, for $x \in \mathcal{K}^{\perp}$ we have.

$$
\left\|\left(T_{2}-z I\right)^{*} x\right\|=\left\|(T-z I)^{*} \cdot r\right\| \leq M\|(T-z I) \cdot r\|=M I\left\|\left(T_{2}-z I\right) x\right\|
$$

showing that T_{2} is M-hyponomal. Conversely assume that T_{1} and T_{2} are M-hyponomal operators. It is well known that for every $x \in \mathcal{H}, x=x_{1}+x_{2}$, where $x_{1} \in \mathcal{K}$ and $x_{2} \in \mathcal{K}^{\perp}$. Hence for all complex z and for all vectors $x \in \mathcal{H}$ we have,

$$
\begin{aligned}
\left\|(T-z I)^{*} x^{2}\right\|^{2} & =\left\|(T-z I)^{*} x_{1}+(T-z I)^{*} x_{2}\right\|^{2} \\
& =\left\|\left(T_{1}-z I\right)^{*} x_{1}+\left(T_{2}-z I\right)^{*} x_{2}\right\|^{2} \\
& =\left\|\left(T_{1}-z I\right)^{*} x_{1}\right\|^{2}+\left\|\left(T_{2}-z I\right)^{*} x_{2}\right\|^{2} \\
& \leq M^{2}\left\|\left(T_{1}-z I\right) x_{1}\right\|^{2}+M^{2}\left\|\left(T_{2}-z I\right) x_{2}\right\|^{2} \\
& =M^{2}\left\|(T-z I) x_{1}\right\|^{2}+M^{2}\left\|(T-z I) x_{2}\right\|^{2} \\
& =M^{2}\|(T-z I) x\|^{2}
\end{aligned}
$$

which proves the M-hyponomality of T.
Theorem 4.9 Let T be an M-hyponommal operator. Then the span of all eigenvectors of T reduces T.

Proof. We shall divide the proof into four sterps.
Step 1-By the definition of M-hyponomatity of T,

$$
\{x \in \mathcal{H}: T x=\lambda x\} \subset\left\{x \in \mathcal{H}: T^{*} x=\bar{\lambda} x\right\}
$$

for all complex mumbers λ.
Step 2-For each complex mumber λ, whe sulspace $\mathcal{K}=\{x \in \mathcal{H}: T x=\lambda . r\}$ reduces T since for any $x \in \mathcal{K}$, we have $T(T x)=\lambda(T x)$ which implies that $T x$ is in \mathcal{K}. Also $T\left(T^{*} x\right)=\bar{\lambda}(T x)=\lambda(\bar{\lambda} x)=\lambda\left(T^{*} x\right)$ showing that $T^{*} x$ is in \mathcal{K}. This shows that \mathcal{K} is invariant under both T and T^{*}. Hence \mathcal{K} reduces T.
Step 3- If $\lambda_{1} \neq \lambda_{2}$, then ly $\left[74\right.$, Proposition 2(i)], $\left\{x \in \mathcal{H}: T x=\lambda_{1} x\right\} \perp\{x \in \mathcal{H}:$ $\left.T x=\lambda_{2} x\right\}$.
Step 4-The span of all the cigenvectors of T reduces T and the restriction of T to that span is normal.
The proof follows from steps (1), (2), (3) and using the fact that the restriction of T to any of its eigenspaces is normal from step (2).

Remark 4.5

Note that Theorem 4.9 applies to all operator subclasses of the class of A-hypomomal operators. The subalgebra of all operators generated by an operator $T \in B(\mathcal{H})$, denoted by $W^{*}(T)$ will be called the (mital) weakly closed (von Neumamn) algebra of T. We use this algebra to investigate the structures of the invariant and hyperinvariant lattices for various operators.

Theorem 4.10 If an operator $A \in B(\mathcal{H})$ is in the weakly closed algebra generated by an operator $B \in B(\mathcal{H})$, then $\operatorname{Lat}(B) \subseteq \operatorname{Lat}(A)$.

Proof. Since $A \in W^{*}(B)$, then $Q P_{\mathcal{M}}=P_{\mathcal{M}} Q$ where $Q \in W^{*}(B)^{\prime}=\{B\}^{\prime} \cap\left\{B^{*}\right\}^{\prime}$ is an orthogonal projection in $\{B\}^{\prime}, \mathcal{M} \in H_{\text {tperlat }}(B)$, hence $P_{\mathcal{M}} A P_{\mathcal{M}}=P_{\mathcal{M}} A$, where $P_{\mathcal{M}} \in$ $W^{*}(A)$ is the orthogonal projection of \mathcal{H} onto \mathcal{M}. This means that $\mathcal{M} \in H$ yperlat $(B) \subseteq$ $\operatorname{Lat}(B) \Longrightarrow \mathcal{M} \in \operatorname{Lat}(A)$. This proves the result.

Remark 4.6

Theorem 4.10 can be strengthened to conclucle that if $A \in W^{*}(B)$ then Hyperlat $(B) \subseteq$ Hyperlat (A). This follows from the fact that for any operator T. Hyperlat $(T) \subseteq \operatorname{Lat}(T)$.
'Theorem 4.11 Simmar operalovs have isomorphas: lalliees of innaranh and hyperinvariant subspares.

Proof. Suppose $A, B \in B(\mathcal{H})$ such that $A=X^{-1} B X$. Then $X A=B X$ and $A X=X B$. The rest of the proof follows from Lemman 4.3 and Remark 4.2.

Remark 4.7

We want to show that quasisimilanity preserves hyperinvariant subsipace latites but does not in gencral preserve invariant subspace lattices. First we need the following results.

Proposition 4.12 If T_{1} and $T_{2} \in B(\mathcal{H})$ ave quasisimilar (uith quasiaffimities X and Y in $B(\mathcal{H})$), then $X Y \in\left\{T_{1}\right\}^{\prime}$ and $Y \cup X \in\left\{T_{2}\right\}^{\prime}$.

Proof. Suppose $T_{1} \sim T_{2}$ with quasiaffinities X and Y. Then $T_{1} X=X T_{2}$ and $T_{2} Y=$ $Y T_{1}$. Post-multiplying the first equalion by Y and using the second equation we have $T_{1} X Y=X T_{2} Y=X Y T_{1}$, which proves that $X Y \in\left\{T_{1}\right\}^{\prime}$. Post-multiplying the second equation by X and using the first equation, we have $T_{2} Y X=Y T_{1} X=Y X T_{2}$, which proves that $Y X \in\left\{T_{2}\right\}^{\prime}$.
We give some definitions which are useful in our next results.

Definition 4.3

A quasiaflinity X is said to have the hereditary property with respect to an operator $T \in B(\mathcal{H})$ if $X \in\{T\}^{\prime}$ and $\overline{X(\mathcal{M})}=\mathcal{M}$ for evory $\mathcal{M} \in \operatorname{Hyperlat}(T)$.

Definition 4.4

If T_{1} and T_{2} are quasisimilar and there exists an implementing pair (X, Y) of quasiaffinities such that $X Y$ has the hereditary property with respect to T_{1} and $Y X$ has the hereditary property with respect to T_{2}, then we say that T_{1} is hyper-quasisimilar to T_{2} and denote it by $T_{1} \stackrel{h}{\sim} T_{2}$.

Remark 4.8

We note that hyperquasisimilarity is an equivalence relation which is strictly stronger than quasisimilarity. Clearly, from Definition 4.4. two operators T_{1} and T_{2} are hyperquasisimilar if there exist cuatialfinites X and Y sal isfying $X T_{1}=T_{2} X, T_{1} Y=Y T_{2}$, and the additional conditions that $\overline{Y X \mathcal{M}_{1}}=\mathcal{M}_{1}$ and $\overline{X Y \mathcal{M}_{2}}=\mathcal{M}_{2}$, for every
 fices, we write $\mathcal{L}_{1} \equiv \mathcal{L}_{2}$ to signily that there exists in order preserving isomorphism of one onto the other. When we say that (wo) operators have isomorphic lat tices of invariant sulbsipaces there are two things that can lee meant. First, they are isomorphic as abstract lattices and second, they are isomorphic as lattices of subspaces of Hilbert. space, that is, there is a bomeled invertible operator from one Hilbert space onto the other that mapls the first latice onto the second.

Theorem 4.13 If T_{1} and T_{2} are hyper-quasisimilar then H yperlat $\left(T_{1}\right) \equiv$ Hyperlat $\left(T_{2}\right)$.
Proof. Since $T_{1} \stackrel{\stackrel{h}{\sim}}{\sim} T_{2}$, we have (nasiaflinities X and Y satisfying $\overline{Y X \mathcal{M}_{1}}=\mathcal{M}_{1}$ and $\overline{X Y \mathcal{M}_{2}}=\mathcal{M}_{2}$, for every $\mathcal{M}_{1} \in \operatorname{Hyperlat}\left(T_{1}\right)$ and $\mathcal{M}_{2} \in \operatorname{Hyperlat}\left(T_{2}\right)$. Using Proposition 4.12, $X Y \in\left\{T_{1}\right\}^{\prime}$ and $Y X \in\left\{T_{2}\right\}^{\prime}, \mathcal{M}_{1} \in \operatorname{Hyperlat}\left(T_{2}\right)$ for every $\mathcal{M}_{1} \in$ Hyperlat $\left(T_{1}\right)$ and $\mathcal{M}_{2} \in \operatorname{Hypfr} \operatorname{lat}\left(T_{1}\right)$ for every $\mathcal{M}_{2} \in \operatorname{Hyperlat}\left(T_{2}\right)$. This means that every hyperinvariant sulspace of T_{1} is a hyperinvariant subspace of T_{2} and vice versa, which proves the result.
Note that Theorem 4.13 also holds when \equiv is replaced with $=$.
Theorem 4.14 Suppose $X \in B(\mathcal{H})$ is a quasiaffinity and $0 \notin \mathbb{W}^{\prime}(X)$, where $\mathbb{W}(X)$ denotes the numerical range of X. Thon X has a hereditary property with respect to every $T \in B(\mathcal{H})$ such that $X \in\{T\}^{\prime}$.

Proof. We prove the result by contradiction. Suppose that $X \in\{T\}^{\prime}$ and $\mathcal{M} \in$ Hyperlat (T) such that $\overline{X \mathcal{M}} \neq \mathcal{M}$. there exists a vector $x \in \mathcal{M} \ominus \overline{X \mathcal{M}}$ and $\langle X x, x\rangle=0$. This is an absurdity. Hence $\overline{X \mathcal{M}}=\mathcal{M}$. Thus X has a hereditary property with respect to every $T \in B(\mathcal{H})$ such that $X \in\{T\}^{\prime}$.

Corollary 4.15 Suppose $X \in B(\mathcal{H})$ is a quasinffinity and there exists $0 \leq \theta \leq \Pi$ such that $R=\operatorname{Re}\left(e^{1 \theta} X\right)$ is postive definite. (i.e., $\langle R x, x\rangle>0$ for every $x \neq 0$ in $\left.\mathcal{H}\right)$. Then X has the herrditary property with respect to every T in $B(\mathcal{H})$ for which $X \in\{T\}^{\prime}$.

Proof. If $\langle X x, x\rangle=0$, then

$$
\langle R x, x\rangle=\left\langle\frac{1}{2}\left(e^{i \theta} X+e^{-i \theta} X^{*}\right) x, x\right\rangle=0,
$$

so $x=0$. By Theorem 4.14, we conclude that X has the hereditary property with respect to every T in $B(\mathcal{H})$ for which $X \in\{T\}^{\prime}$.

Remark 4.9

In the following result. we denote by $\mathcal{H}^{(n)}$, he direct, sum of 11 copien of \mathcal{H}. for any ordinal n saltisflying $1 \leq n \leq \omega$. That is, $\mathcal{H}^{(n)}=\bigoplus_{0 \leq k \leq n} \mathcal{H}_{k}$ with $\mathcal{H}_{h}=\mathcal{H}$ for every k.

Theorem 4.16 Suppose $\left\{S_{n}\right\}_{n \in N}$ and $\left\{T_{n}\right\}_{n \in \mathcal{N}}$ are bounded seguencers of operators in $B(\mathcal{H})$ writh $\dot{S}=\bigoplus_{n \in \mathbb{N}} S_{n}$ and $\dot{T}=\bigoplus_{n \in \mathbb{N}} T_{n}$. Suppose, moreover, that $\left\{X_{n}\right\}_{n \in \mathbb{N}}$ is a sequence of invertible operators such that

$$
X_{n}^{-1} S_{n} X_{n}=T_{n}, \quad n \in \mathbb{N}
$$

Then \dot{S} and \dot{T} are hyperyuasisimilar and consequently

$$
\text { HyperlatS }=\text { Hyperlat } \hat{T} \text {. }
$$

Proof. As is well known.

$$
\hat{X}=\bigoplus_{n \in \mathbb{N}} \frac{X_{n}}{\left\|X_{n}\right\|} \quad \text { and } \quad \hat{Y}=\bigoplus_{n \in \mathbb{N}} \frac{\left(X_{n}\right)^{-1}}{\left\|\left(X_{n}\right)^{-1}\right\|}
$$

belong to $B\left(\mathcal{H}^{(\omega)}\right)$ and satisfy $\hat{S} \hat{X}=\hat{X} \hat{T}$ and $\dot{Y} \hat{S}=\hat{T} \hat{Y}$. Moreover

$$
\hat{X} \hat{Y}=\bigoplus_{n \in \mathbb{N}} \frac{1}{\left(\left\|X_{n}\right\|\left\|\left(X_{n}\right)^{-1}\right\|\right)}=\hat{Y} \hat{X}
$$

is a positive operator and $\dot{X} \hat{Y}$ and $\hat{Y} \hat{X}$ have the appropriate hereditary properties ly Theorem 4.14. The result follows from Theorem 4.13.

Definition 4.5

An operator $T \in B(\mathcal{H})$ such that there exists a nonzero polynomial p satisfying $p(T)=0$ is called an algebraic operator.

Remark 4.10

Foias and Pearcy [22] have shown that the class of algebraic operators has a good supply of nontrivial hyperinvariant subspaces. Their result was notivated by the following well known theorem of Halmos [29].

Theorem 4.17 [29] Suppose $T \in B(\mathcal{H})$ and p is monic polynomial of minimal degnee such that $p(T)=0$. If $p(z)$ has. the factorization $p(z)=\left(z-\lambda_{1}\right)^{q_{1}} \ldots\left(z-\lambda_{k}\right)^{q_{h}}$ where
$\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$ are the distinct zeross of p, then $\sigma(T)=\left\{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right\}$ and T is similar to an operator T_{1} of the form

$$
T_{1}=\left(\lambda_{1} I+N_{1}\right) \nmid \ldots \notin\left(\lambda_{k} I+N_{k}\right)
$$

where N_{1}, \ldots, N_{k} are milpoltent operators.
As an easy conserpuence of Theroren 4.17 we give the following result.
Corollary 4.18 With the notation aloveve, Hyperlat $(T)=H_{\text {yperlat }}\left(N_{1}\right) \notin \ldots$ 由่ H yperlat $\left(N_{k}\right)$

Remark 4.11

The following concepts are useful.

Definition 4.6

A partially ordered set Ω is said to be a divected set if every pair $\{x . y\}$ of elements in Ω is bounded above. In this case, Ω is said to be divected upwand. If every pair $\{x, y\}$ of elements in $\Omega \Omega$ is bomaded below. then we say that $\Omega \Omega$ is divected downward.

Remark 4.12

We note also that since $\operatorname{Lat}(T)$ and H yper $\operatorname{lat}(T)$ are lattices and since by Kubrusly [46, §1.6], lattices are directed both upward and downward, any subs.pace generated by two or more invariant or hyperinvariant subspaces is also an invariant or hyperinvariant subspace, respectively.
We need the following concepts.

Definition 4.7

A subalgebra $\mathcal{A} \subset B(\mathcal{H})$ is said to be reflexive if $\mathcal{A}=A \operatorname{Alg} \operatorname{Lat}(\mathcal{A})$, where $\operatorname{Alg} \operatorname{Lat}(\mathcal{A})=$ $\{T \in B(\mathcal{H}): \operatorname{Lat}(\mathcal{A}) \subset \operatorname{Lat}(T)\}$. An operator $T \in B(\mathcal{H})$ is said to be reflexive if the weakly closed (von Neumam) sulalgelra generated by T in $B(\mathcal{H})$ is rellexive. We need the following terminology.
The dual space (or conjugate space) of a mormed space \mathcal{X}, denoted by \mathcal{X} *. is the normed space of all continuous linear functionals on \mathcal{X} (i.e., $\mathcal{X}^{*}=B(\mathcal{X}, \mathbb{F})$, where \mathbb{F} stands either for the real field \mathbb{R} or the complex field \mathbb{C}, depending on whether \mathcal{X} is a real
or complex mormed space, respertively). We mote that \mathcal{X}^{*} is a Banach space for every normend spate \mathcal{X}, since $\mathcal{X}^{*}=B(\mathcal{X}, \mathbb{F})$ and $(\mathbb{F},| |)$ is a Banath ipace. If $\mathcal{X} \neq\{0\}$, when $\mathcal{X}^{*} \neq\{0\}$ and hence $\mathcal{X}^{* *}=\left(\mathcal{X}^{*}\right)^{*}$, the dual of \mathcal{X}^{*} is again a non-zero Banach space, called the second dual of \mathcal{X}. It is easy to show that \mathcal{X} can be identified with a linear manifold (a closed subset) of $\mathcal{X}^{* *}$. That is, \mathcal{X} is naturally emberlect in its dual $\mathcal{X}^{* *}$ (see [46], Theorem 4.66, p. 266).
Now, let $\Phi: \mathcal{X} \longrightarrow \mathcal{X}^{* *}$ be the natural embedding of the normed space \mathcal{X} into its second dual $\mathcal{X}^{* *}$. If $\Phi(\mathcal{X})=\mathcal{X}^{* *}$ (i.e. Φ is surjective), then we say that \mathcal{X} is reflexive. In Kubusly [46, Example 3Q], it is shown that every finite-dimensional nomed space is reflexive. It is clear that cevery reflexive nomed space is a Banach space, but the converse is not true in general. There exist nonreflexive normed spaces. If \mathcal{X} is separable and \mathcal{X}^{*} is not separable, then $\mathcal{X} \not \not \mathcal{X}^{* *}$ and \mathcal{X} is not reflexive. This provides a necessary condition for rellexivity.

Remark 4.13

Consider the linear spaces ℓ_{+}^{1} and ℓ_{+}^{∞} equipped with their usial norms (|| $\|_{\infty}$ and $\left\|\left\|\|_{1}\right.\right.$, respectively). Since $\ell_{+}^{\text {rin }}$ is a linear manifold of the linear space ℓ_{+}^{∞}, equip it with the sup-norm as well. Recall that $\ell_{+}^{t_{0}}$, the set of all scalar-valued sequences that converge 10 zero, and ℓ_{+}^{1} are separable Banach spaces but the Banach space ℓ_{+}^{∞} is not separable. It is not difficult to check that $\left(\ell_{+}^{\text {co }}\right)^{*} \cong \ell_{+}^{1}$ and $\left(\ell_{+}^{1}\right)^{*} \cong \ell_{+}^{\infty}$ and so $\left(\ell_{+}^{c_{0}}\right)^{* *} \cong \ell_{+}^{\infty}$. Thus ℓ_{+}^{1} is a separable Banach space with a nonseparable dual, since $\left(\ell_{+}^{1}\right)^{*}$ is not scparable because $\left(\ell_{+}^{1}\right)^{*} \cong \ell_{+}^{\infty}$ and separability is a topology invariant. Hence, ℓ_{+}^{1} is a nonreflexive Banach space. It is clear that $\ell_{+}^{1} \subset \ell_{+}^{2}$ and that $\overline{\left(\ell_{+}^{1}\right)}=\ell_{+}^{2}$ in $\left(\ell_{+}^{2}, d_{2}\right)$, where $d_{2}(x, y)=\left(\sum_{k=1}^{\infty}\left|\xi_{k}-v_{k}\right|^{2}\right)^{1 / 2}$, for every $x=\left\{\xi_{k}\right\}_{k \in \mathbb{N}}$ and $y=\left\{v_{k}\right\}_{k \in \mathbb{N}}$ in ℓ_{+}^{2}. This shows that the set ℓ_{+}^{1} is dense in the metric space $\left(\ell_{+}^{2}, d_{2}\right)$.
Positive results concerning the invariant subspace problem have been found for certain Clatses of operators on a Hillert space (in particular for subnormal operators) and for a general Banach space. It is an open problem whether every non-normal operator $T \in B(\mathcal{H})$ has a nontrivial invariant subspace if \mathcal{H} is an infinite-dimensional Hilbert space. It is easy to show that for non-separable Banach spaces the invariant subspace problem has an immediate affirmative answer. For finite dimensional complex Banach spaces the invariant subspace problem hats an affirmative answer too. To see this, let
$T: X \longrightarrow X$ be a bomded operator on a dinite dimensiomal complex Banath space $(\operatorname{dim}(\mathcal{H})>1)$. There is nothing to prove if T is a multiple of the iflentity operator, since then each subspace is invariant (and the only hyperinvariant sulsipaces are the trivial ones). So, we assume that T is not a multiple of the iclentity. Now if λ is an eigenvalue of T, then its eigenspare $\mathcal{M}_{\lambda}=\{x \in H: T x=\lambda x\}$ is a non-tivial closed hyperinvariant subspace. Counter examples have been constructed to answer the invariant subspace problem, in some non-reflexive spaces and even in ℓ_{1}. For instance, Read [G0] presented an example of a bounded operator on the real l_{1} spare without non-trivial invariant subspaces. These cxamples have established that the invariant sulspace problom in its general form has a negative answer.
As a consequence of the fundamental theorem of algebra, every linear operator on a complex finite-dimensional Banad space (in particular a Hilbert space) with dimemsion at least 2 has an eigenvector. Therefore every such lincar operator has a non-trivial invariant subspace. The fact that the complex mombers are algebraically closed is required here. It is clear that the invariant subspaces of a linear operator is dependent upon the underlying scalar field of the Hilbert space \mathcal{H}.

The invariant and hyperinvariant subspaces of a linear operator T shed light on the structure of T. When \mathcal{H} is finite dimensional Hillert space over an algelmaically closed field, a linear operator T acting on \mathcal{H} is characterized (up to similarity) by the Jordan canonical form, which decomposes \mathcal{H} into invariant subspaces of T. Many fundamental questions regarding T (including isolation of parts) can be translated to questions aloout invariant subspaces of T.

For subnormal operators, the existence of invariant subspaces was proved by Brown [11]. Chō and Huruya [12] have shown that a large class of hyponormal operators have invariant subspaces.

Definition 4.8

An algebra \mathfrak{U} of operators on a Hilbert space is reductive if it is weakly closerl, contains the identity operator, and that $\operatorname{Lat}(\mathfrak{l})=\operatorname{Lat}\left(\mathfrak{U}^{*}\right)$.
It, is clear that von Neumann algelneis are reductive.
Corollary 4.19 (Burnside)[58]. If \mathcal{K} is a finite-dimensional Holbert sparee and \mathfrak{U} is a subalgebra of $B(\mathcal{K})$ with no nontrivial invariant subspace, then $\mathfrak{U}=B(\mathcal{K})$.

Proof. Since $\operatorname{Lat}(\mathfrak{U})=\{\{0\}, \mathcal{K}\}$. it follows that \mathfrak{U} is a recluctive algelara. Now let. $S \in B(\mathcal{H})$ be a milateral shift of finite multijlicity, and define the reductive algelora $\mathfrak{W}=B(\mathcal{H}) \oplus \mathfrak{d}$. Since \mathfrak{W} contains the operator $S \oplus 0, \mathfrak{W}$ is a von Nemmann algehra, which implies that \mathfrak{U} is a von Nemman algelra. It. follows from this fact that $\mathfrak{U}=\mathfrak{U}^{\prime \prime}$, where $\mathfrak{U}^{\prime \prime}$ is the donlde commutant of \mathfrak{U}. The fact hat \mathfrak{U} has no nont rivial invariant sulspace implies that \mathfrak{A}^{\prime}, the communtant of \mathfrak{U}, consist, of the scalar operators. Therefore, $\mathfrak{U}=\mathfrak{U}^{\prime \prime}=\left(\mathfrak{U}^{\prime}\right)^{\prime}=\{\lambda I: \lambda \in \mathbb{C}\}^{\prime}=B(\mathcal{K})$. Thus $\mathfrak{U}=B(\mathcal{K})$. which was to be shown.

Remark 4.14

Whu [78] has studied the Hyperfat (T) of C_{11} contractions with finite defect indices and characterized the elements of $H y p o r l a t(T)$ among invariant sulspaces for T of their regular factorizations and has shown that the elements of Hyperlat (T) are exactly the spectral subspaces of T defined by Nagy and Foias [53]. Which are T-invariant and matrix representation of T in the basis of \mathcal{H} using the bases of these subspaces represent its Jordan canonical form. Nagy and Foias [53] have shown that if T_{1} and T_{2} are two such operators which are quasi-similar to each other, then H yperlat $\left(T_{1}\right)$ is (lattice) isomorphic to Hyperlat $\left(T_{2}\right)$. Recently several authors studied Hyperlat (T) for certain classes of contractions. Uchiyama ([$[0],[71]$) has shown that $H y p e r l a t(T)$ is preserved, as a lattice, for cutasi-similar $C_{0}(N)$ contractions and for completely injection-similar C_{0} contractions with finite defect indices. Wu [79], detemined H yperlat (T) when T is a complet.ely non-mintary (c.n.u) contraction with a scalar-valued characteristic function or a direct sum of such contractions. Win [78] has shown that elements of Hyperlat (T) are exactly the spectral subspaces \mathcal{H}_{F} defined by Nagy and Foias [53].
Using these results we can completely determine H yperlat (T) in terms of the well-known structure of the hyperinvariant subspace lattice of normal operators.
We know that for a C_{11} contraction T. $d_{T}=d_{T}$. Let Θ_{T} denote the characteristic function of an artitrary contraction T. There is a one-to-one correspondence between the invariant sulnspaces of T and the regular factorizations of Θ_{T}. If $\mathcal{K} \subseteq \mathcal{H}$ is invariant for T with the corresponding regular
factorization $\Theta_{T}=\Theta_{2} \Theta_{1}$ and $T=\bullet\left(\begin{array}{cc}T_{1} & X \\ 0 & T_{2}\end{array}\right)$ is the triangulation on $\mathcal{H}=\mathcal{K} \oplus \mathcal{K}^{\perp}$, then the characteristic functions of T_{1} and T_{2} are purely contractive parts of Θ_{1} and Θ_{2}, respectively.

Wio nerd the following notation. For any subsel \mathcal{E} of the mit circle. $\partial \mathbb{D}$, Iet. $M_{\mathcal{E}}$ demote the operator of maltiplicalion by en on the space $L^{2}(\mathcal{E})$ of square-integralle finctions on E. It was proved in Wu [81] that any enn. Cin contraction T with finite defect indicess is quasi-similar to a miquely determined operator, called the Jordan model of T, of the form $M_{\mathcal{E}_{1}} \oplus \ldots \oplus M_{\mathcal{E}_{k}}$, where $\mathcal{E}_{1}, \ldots, \mathcal{E}_{k}$ are Burd sul)sets of $\partial \mathbb{D}$ satisfying $\mathcal{E}_{1} \supseteq \mathcal{E}_{2} \supseteq \ldots \supseteq \mathcal{E}_{k}$. In this case $\mathcal{E}_{1}=\left\{1: \Theta_{T^{(}(t)}\right.$ is not isometric $\}$.
Here we nse t to denote the argunent of a function defined on the unit circle $\partial \mathbb{D}$. A statement involving t is said to be true if it holds for almost all t with respect to the Lebesgue measme. In particular, for $\mathcal{E}, \mathcal{F} \in \mathcal{D}, \quad \mathcal{E}=\mathcal{F}$ means that $(\mathcal{E} \backslash \mathcal{F}) \cup(\mathcal{F} \backslash \mathcal{E})$ has Lebesgue measure zoro.
We start with the following lemma.
Lemma 4.20 [78, Lemma 1]. Let T be a C_{11} contraction on a Hilbert space \mathcal{H} and Let U be a unnary operator on a Hillert space \mathcal{K}. If there exists a one-to-one operator $X: \mathcal{H} \longrightarrow \mathcal{K}$ such that $X T=U X$, then T is quasi-similar to the unitary operator $\left.U\right|_{\bar{X}}$.

Remark 4.15

Let T be a c.nnu C_{11} contraction on \mathcal{H} with finite defect indices d_{T} and d_{T}. and $U=$ $M_{\mathcal{E}_{1}} \oplus \ldots \oplus M_{\mathcal{E}_{k}}$ acting on $\mathcal{K}=L^{2}\left(\mathcal{E}_{1}\right) \oplus \ldots \oplus L^{2}\left(\mathcal{E}_{k}\right)$ be its Jordan model. Let $X: \mathcal{H} \longrightarrow \mathcal{K}$ and $Y: \mathcal{K} \longrightarrow \mathcal{H}$ be quasi-affinities intert wining T and U. For any Borel subset $\mathcal{F} \subseteq \mathcal{E}_{1}$, let

$$
\mathcal{K}_{\mathcal{F}}=L^{2}\left(\mathcal{E}_{1} \cap \mathcal{F}\right) \oplus \ldots \oplus L^{2}\left(\mathcal{E}_{k} \cap \mathcal{F}\right)
$$

be the spectral subspace of \mathcal{K} associated with \mathcal{F}. For a contraction T we consider $\sigma(T) \subseteq \partial \mathbb{D}$ holds and there has been developed a spectral decomposition [53, p. 318]. Let $\mathcal{H}_{\mathcal{F}}$ denote the spectral sul)space associated with $\mathcal{F} \subseteq \partial \mathbb{D}$. Indeed, $\mathcal{H}_{\mathcal{F}}$ is the (unique) maximal subspace of \mathcal{H} satisfying (i) $\left.T \mathcal{H}_{\mathcal{F}} \subseteq \mathcal{H}_{\mathcal{F}},{ }_{\text {(ii }}\right)\left.T_{\mathcal{F}} \equiv T\right|_{H \mathcal{F}} \in C_{11}$ and (iii) $\Theta_{T_{\mathcal{F}}}(t)$ is isometric for t in \mathcal{F}^{C}. the complement of \mathcal{F}, that is $t \in \partial \mathbb{D} \backslash \mathcal{F}$. Moreover $\mathcal{H}_{\mathcal{F}}$ is hyperinvariant for T. Such sulsspaces $\mathcal{H}_{\mathcal{F}}$ give all the elements in Hyperlat (T). To show this, we need the following results.

Lemma 4.21 [78, Lemma 2] For any Borel subset $\mathcal{F} \subseteq \mathcal{E}_{1}, \overline{X \mathcal{H}_{\mathcal{F}}}=\mathcal{K}_{\mathcal{F}}$.

For :ny Borel subsed $\mathcal{F} \subseteq \mathcal{E}_{1}$, let $\ell\left(\mathcal{K}_{\mathcal{F}}\right)=\mathrm{V}_{S_{T}=T S} S \mathcal{S} \mathcal{K}_{\mathcal{F}}$. It is shown in [53 pp. if -78] that $q\left(\mathcal{K}_{\mathcal{F}}\right)$ is hyperinvariant for T and $\overline{\mathcal{X}_{\ell}\left(\mathcal{K}_{\mathcal{F}}\right)}=\mathcal{K}_{\mathcal{F}}$.

Lemman 4.22 [78, Lemma 3] For any Borel suluset $\mathcal{F} \subseteq \mathcal{E}_{1}$, let g($\mathcal{K}_{\mathcal{F}}$) be defintlas as in Lemma 4.21. Then $q\left(\mathcal{K}_{\mathcal{F}}\right)=\mathcal{H}_{\mathcal{F}}$.

Lemma 4.23 [78, Lemma 4] Let $\mathcal{M} \subseteq \mathcal{H}$ be hyperimwarnant for T with the corresponding factorization $\Theta_{T}=\Theta_{2}\left(\Theta_{1}\right.$ and lat $\mathcal{F}=\left\{1: \Theta_{1}(t)\right.$ is not isometric $\}$. Then $\mathcal{M}=\mathcal{H}_{\mathcal{F}}$.

Remark 4.16

Lemma 4.23 says that the hyperinvariant subsipaces of a C_{11} contraction are the spectral subspaces of T. Using the previous concepts we now state and prove the following result.

Theorem 4.24 Let T be a c.n.u. C_{11} contraction on \mathcal{H} with $d_{T}=d_{T} *=n<x$. Let $\mathcal{K} \subseteq \mathcal{H}$ be an invariant subspace with the corresponding reyular factorization $\Theta_{T}=\Theta_{2} \Theta_{1}$ and let $\mathcal{E}=\left\{t: \Theta_{T}\right.$ is not isometric $\}$. Then the following are equinalent:
(i) $\mathcal{K} \in \operatorname{Hyperlat}(T)$
(ii) $\mathcal{K}=\mathcal{H}_{\mathcal{F}}$ for some Borcl sulset $\mathcal{F} \subseteq \mathcal{E}$
(iii) the intermediate space of $\Theta_{T}=\Theta_{2} \Theta_{1}$ is of dimension n and for almost all 1. cither $\Theta_{2}(t)$ or $\Theta_{1}(t)$ is isometric.

Proof. $(i) \Longrightarrow(i i)$. That $\mathcal{K}=\mathcal{H}_{\mathcal{F}}$, where $\mathcal{F}=\left\{t: \Theta_{1}(t)\right.$ is mot isometric $\}$, is proved in Lemmia 4.23. It is a simple matter to check that $\mathcal{F} \subseteq \mathcal{E}$.
(ii) \Longrightarrow (iii). Since $\left.T\right|_{\mathcal{H}_{\mathcal{F}}} \in C_{11}$, the intermediate space of $\Theta_{T}=\Theta_{2} \Theta_{1}$ is of dimension n. For the proof of the remaining parts (see [53]).
$($ iii $) \Longrightarrow(i)$. Since the intermediate space $\Theta_{T}=\Theta_{2} \Theta_{1}$ is of dimension n and $\operatorname{det}\left(\Theta_{1}\right) \not \equiv 0$ (otherwise $\operatorname{det}\left(\Theta_{T}\right) \equiv 0$), we conclude that $\left.T\right|_{\mathcal{K}}$ is of class C_{11} by [53, p. 318]. Therefure, Θ_{1} is outer (from both sides). This, together with the other conclition in (iii), implies that $\mathcal{K}=\mathcal{H}_{\mathcal{F}}$, where $\mathcal{F}=\left\{t: \Theta_{1}(t)\right.$ is not isometric $\}$. Thus $\mathcal{K} \in \operatorname{Hyperlat}(T)$.
These concepts lead to the following results.
Corollary 4.25 Let T be as in. Theovem 4.24 and let $U=M_{\mathcal{E}_{1}} \oplus \ldots \oplus M_{\mathcal{E}_{6}}$. acting on \mathcal{K}, be its Jordan model. Then Hyperlat (T) is (lattice) isomorphac: 10 Hyperlat (U). Moreover, if $X: \mathcal{H} \longrightarrow \mathcal{K}$ and $Y: \mathcal{K} \longrightarrow \mathcal{H}$ are quasi-affinities intertuining T and U,
then the mapping $\mathcal{M} \longrightarrow \bar{X} \overline{\mathcal{M}}$ implements the Lattice isomorphism from Higperlal((T)
 case, $\left.T\right|_{\text {M }}$ amd $\left.U\right|_{\overline{X M}}$ are quasi-similar to earh other.

Corollary 4.26 Let T_{1} and T_{2} be c.n.u. C_{11} contractions. with finite defeed indices. If T_{1} is quasi-similar to T_{2}, then Hyprrat $\left(T_{1}\right)$ is (lathice) asomorphice to Hyperlat $\left(T_{2}\right)$.

Corollary 4.27 Let T be a c.n.u. C_{11}^{\prime} contraction with finte defect indices. If $\mathcal{K}_{1}, \mathcal{K}_{2} \in$ $H_{\text {! glper }} \operatorname{lat}(T)$ and $\left.T\right|_{\mathcal{K}_{1}}$ is quasi-similat to $\left.T\right|_{\mathcal{K}_{2}}$, then $\mathcal{K}_{1}=\mathcal{K}_{2}$.

Proof. $\left.T\right|_{\mathcal{N}_{1}}$ quasi-similar to $\left.T\right|_{\mathcal{K}_{2}}$ implies that they have the same Jordan model, say $U=M_{\mathcal{E}_{1}} \oplus \ldots \oplus M_{\mathcal{E}_{k}}$. By Theorem $4.24, \mathcal{K}_{1}=\mathcal{H}_{\mathcal{E}_{1}}=\mathcal{K}_{2}$.

Remark 4.17

The following results give a charaderization of invarimat and hyperinvariant subspaces for some classes of operators. First we prove the following result which is an extension of Theorem 4.13.

Lemma 4.28 Suppose $A \in B(\mathcal{H})$ and $B \in B(\mathcal{K})$ are quasisimilar operalors on \mathcal{H}. If B hus a nontrivial hyperinuariant subspace then A has a nontrivial hyperinvariant subspace.

Proof. Let $V: \mathcal{H} \longrightarrow \mathcal{K}$ and $\boldsymbol{V}: \mathcal{K} \longrightarrow \mathcal{H}$ be quasi-affinities of A and B. That is, $B V=V A$ and $A W=W B$. Let \mathcal{N} be a nontrivial invariant subspace for B. Define

$$
\mathcal{M}=\bigvee\left\{X W \mathcal{N}: X \in\{A\}^{\prime}\right\}
$$

Clearly \mathcal{M} is B-hyperinvariant and $\mathcal{M} \neq\{0\}$ because $\mathcal{M} \supset W \mathcal{N}$. Moreover, $\mathcal{M} \neq \mathcal{H}$ because

$$
\begin{aligned}
V \mathcal{M} & =V\left\{\bigvee X W \mathcal{N}: X \in\{A\}^{\prime}\right\} \\
& \subset \bigvee\left\{Y \mathcal{N}: Y \in\{B\}^{\prime}\right\} \\
& \subset \mathcal{N} \neq \mathcal{K}=\overline{(V \mathcal{H})} .
\end{aligned}
$$

Thus \mathcal{M} is nomitrivial.

Remark 4.18

Recall from Definition 4.5 that an operator $A \in B(\mathcal{H})$ is alyeloraic if there exists a polynomial p other than 0 such that $p(A)=0$. Every operator on a finite-dimensional space is algelraic. The algehraic operators on infinite-timensional spaces can be characterized in terms of their invariant subspaces. An operator $T \in B(\mathcal{H})$ is algelraic if and only if the mion of its finite-dimensional invariant subspaces is \mathcal{H}. We now investigate and analyze the invariant sulspaces of an algetraic operator.

Theorem 4.29 Let A_{1} and A_{2} be algebraic operators with minimal polynomials p_{1} and p_{2} on the Hillert spaces. \mathcal{H}_{1} and \mathcal{H}_{2}, respectively. Then $\operatorname{Lat}\left(A_{1} \oplus A_{2}\right)=\operatorname{Lat}\left(A_{1}\right) \oplus \operatorname{Lat}\left(A_{2}\right)$ if and only if g.c.l $\left(p_{1} \cdot p_{2}\right)=1$.

Proof. In general case, for every operator $A_{i} \in B\left(H_{2}\right), i=1,2$,
$\operatorname{Lat}\left(A_{1}\right) \oplus \operatorname{Lat}\left(A_{2}\right) \subset \operatorname{Lat}\left(A_{1} \oplus A_{2}\right)$ holds. For the inverse inclusion, let g. $\operatorname{cod}\left(p_{1}, p_{2}\right)=1$. That is the two polynomials are relatively prime. We must show that $\mathcal{M} \in \operatorname{Lat}\left(A_{1} \oplus A_{2}\right)$ implies that $\mathcal{M}=\mathcal{M}_{1} \oplus \mathcal{M}_{2}$ with $\mathcal{M}_{i} \in \operatorname{Lat}\left(A_{2}\right), i=1,2$ Given $\mathcal{M} \in \operatorname{Lat}\left(A_{1} \oplus A_{2}\right)$, let $\mathcal{M}_{1} \oplus\{0\}=(1 \oplus 0) \mathcal{M}$ and $\{0\} \oplus \mathcal{M}_{2}=(0 \oplus 1) \mathcal{M}$. Obviously, $\mathcal{M} \subset \mathcal{M}_{1} \oplus \mathcal{M}_{2}$. To prove that $\mathcal{M}_{1} \oplus \mathcal{M}_{2} \subset \mathcal{M}$, let r_{1} and r_{2} be polynomials such that $r_{1} p_{1}+r_{2} p_{2}=1$, and let $q_{2}=r_{2} p_{2}$. We must have $q_{2}\left(A_{1}\right)=1-r_{1}\left(A_{1}\right) p\left(A_{1}\right)=1$. So, $q_{2}\left(A_{1} \oplus A_{2}\right)=$ $y_{2}\left(A_{1}\right) \oplus q_{2}\left(A_{2}\right)=1 \oplus 0$. Hence $\mathcal{M} \oplus\{0\}=(1 \oplus 0) \mathcal{M}=q_{2}\left(A_{1} \oplus A_{2}\right) \mathcal{M} \subset \mathcal{M}$.
Sinilarly, $\{0\} \oplus \mathcal{M}_{2} \oplus \mathcal{M}$. Thus $\mathcal{M}_{1} \oplus \mathcal{M}_{2} \subset \mathcal{M}$, and it follows that $\mathcal{M}_{1} \oplus \mathcal{M}_{2}=\mathcal{M}$. The converse is easy to prove and we omit its proof.

Remark 4.19

Hoover [39] has indicated that the structure of an operator is not likely to be revealed by the presence of a single nontrivial hyperinvariant subspace for an operator T, but more likely by the presence of a collection of hyperinvariant subspaces $\left\{\mathcal{M}_{0}\right\}_{o \in I}$ for which the structure of $\left.T\right|_{\mathcal{M}_{o}}$ is well understood. Thus the ultimate value of the quasisimilarity relation may lie in the extent to which it preserves the lattices of the hyperinvariant sul)spaces of quasisimilar operators. Nagy and Foias [53, Prob 5.1, pg. 76] have shown that if A and B are quasisimilar and B is a unitary operator, then there exists an injective mapping of Hyper Lat (B) into Hyper Lat (A) which respects the lattice structures. They also proved that if S is mitary, then H yper $L a t(T)$ contains a sublatice isomorphic to

Hyper Lat (S). In Heover [39], the result was extemded to the catise when B is a mormal operator.
Using these facts as a motivation, we give a gencratization of these results to completely non-nomal operators. We note also that these results are valid for completely nommihary conatrations.

Theorem 4.30 If $T=T_{1} \oplus T_{2}$ where T_{1} is normal and T_{2} is c.n.n., then $\{T\}^{\prime}=$ $\left\{T_{1}\right\}^{\prime} \oplus\left\{T_{2}\right\}^{\prime}$, and all the imnariant subspuaces of T_{2} are hyperimzariant, that is, L at $\left(T_{2}\right)=$ HyperLat $\left(T_{2}\right)$.

Proof. Let \mathcal{N} be the largest rerlucing subspace for T such that the restriction of $T 10 \mathcal{N}$ is normal. Then it is casy to see that there is a largest such subspace since \mathcal{N} can be characterized as the span of the set $\left\{\mathcal{M}: \mathcal{M}\right.$ is a reduring subspace for T and $\left.T\right|_{\mathcal{M}}$ is normal $\}$. Since T_{2} is c.n.n1, any operator A can be written as a matrix $A=\left(\begin{array}{ll}A_{11} & A_{12} \\ A_{21} & A_{22}\end{array}\right)$ corresponding to the decomposition of the Hilbert space as $\mathcal{H}=\mathcal{N} \oplus \mathcal{N}^{\perp}$. If A commutes with T then $T_{1} A_{12}=A_{12} T_{2}$ and $A_{21} T_{1}=T_{2} A_{21}$. This says that $\left.T_{2}\right|_{\text {Kir }\left(A_{12}\right)}$ is normal. Since T_{2} is c.n.n., it has no momall direct summand, $\operatorname{Her}\left(A_{12}\right)^{\perp}=\{0\}$. That is, $A_{12}=0$. Similarly, $\left.T_{2}\right|_{\text {Ran }\left(A_{21}\right)}$ is nomal and it follows that $A_{21}=0$. This shows that $A=\left(\begin{array}{cc}A_{11} & 0 \\ 0 & A_{22}\end{array}\right)$. This shows that every invariant sulspace of $A \in\{T\}^{\prime}$ reduces. A. The fact that every invariant subspace of T_{2} is hyperinvariant follows by the same proof. where the direct summands of T_{2} play the role of T_{1} and T_{2}.
The following is a consequence of Theorem 4.30.
Corollary 4.31 If $T \in B(\mathcal{H})$ and T is completely non-normal (c.n.n.), then $\operatorname{Lat}(T)=$ Hyper Lat (T).

Corollary 4.32 If $T \in B(\mathcal{H})$ is nomal, then every hyperinvariant subspace of T is hyperinvariant for T^{*}. That is, Hyper Lat $(T)=$ H!pper Lat $\left(T^{*}\right)$.

Proof. Since T is normal if and only if T^{*} is normal, the result follows from the fact that if $T^{*} \in\{T\}^{\prime}$ then $T \in\left\{T^{*}\right\}^{\prime}$.
Corollary 4.31 and Corollary 4.32 yteld the following result.
Theorem 4.33 If $T=T_{1} \oplus T_{2}$ where T_{1} is normal and T_{2} is c.n.n.,$\{T\}^{\prime}=\left\{T_{1}\right\}^{\prime} \oplus\left\{T_{2}\right\}^{\prime}$ and Hyper Lat $(T)=H_{\text {yper }} \operatorname{Lat}\left(T^{*}\right)$ then Lat $\left(T_{2}\right)=H_{\text {yper }} \operatorname{Lat}\left(T_{2}\right) \cap H_{\text {yper }} \operatorname{Lat}\left(T_{2}^{*}\right)$.

We note that for a momal operator T. $\operatorname{Lat}(T)=\operatorname{Lat}\left(T^{*}\right)$ holds if and only if T^{*} lies in the weakly closed algelta geremated by T (i.e, the weak closime of the set of polynomials in T). Theorem 4.33 vields the following result.

Corollary 4.34 Let T be a completely non-normal opectator whose every imarriant subspace is reducing. Then the normal direst summand T_{1} is absent and Lat $(T)=$ Hyper Lat $(T) \cap$ Hyper Lal $\left(T^{*}\right)$.

Remark 4.20

Note that if A commules with T and \mathcal{M} is a hyperinsariant sulspace of A then \mathcal{M} is invariant under T and hence. \mathcal{M} reduces $\{T\}^{\prime}$. In particular. \mathcal{M} reduces A. In particular, every operator that commutes with a normal operator has a nontrivial hyperinvariant subs.pace that reduces it.

Corollary 4.35 If T is completely non-normal and if every invariant subspace of T meduces T (that is, $\operatorname{Lat}(T)=\operatorname{Red}(T)$) and $A T=T A$, then every hyperinvariant subspace of A reduces A. That is Hyperlal $(A)=\operatorname{Red}(A)$.

Proof. By Corollary 4.34. $\operatorname{Lat}(T)=\operatorname{Hyper} \operatorname{Lat}(T) \cap \operatorname{Hyp} \operatorname{cr} \operatorname{Lat}\left(T^{*}\right)$ and since $A T=$ $T A$, then \mathcal{M} invariant for T is expivalent to \mathcal{M} hyperinvariant for A. This means that $\operatorname{Lat}(T)=$ Hyperlat (A). Since every invariant sulbspace of T reluces T. we have $\operatorname{Lat}(T)=\operatorname{Red}(T)$. By Remark 4.20, it follows that. Hyper/ar $(A) \subseteq \operatorname{Red}(A)$. But the reverse inclusion Hyperlat $(A) \supseteq \operatorname{Red}(A)$ is obvious. Thus $\operatorname{Hyperlat}(A)=\operatorname{Red}(A)$.

Remark 4.21

If $T \in B(\mathcal{H})$ is a contraction, then the operator $T^{* *} T^{n} \longrightarrow A$ strongly to an operator A on \mathcal{H}, where $O \leq A \leq I,\|A\|=1$ whenever $A \neq O$. We use this information to prove the following assertion by Nzimbi, Poklariyal and Khalagai [55] about the characterization of invariant subspaces of some contraction operators.

Proposition 4.36 [55] Let T be a contraction. If T and T^{*} have no nontrivial invariant subspace, then cither $T \in C_{(0)}$ or $\|A\|<1$ with $\operatorname{Ker}\left(A-A^{2}\right)=\{0\}$.

Proof. We prove the case for T. The case for T^{*} can be proved similarly by applying the adjoint operation. Now sippose that T is a contraction with no nont rivial invariant
sulbeace. It suffices to show that $T \in C_{11}$. Using [55, Proposition 1.4], it is clear that, $\operatorname{Ker}\left(A-A^{2}\right)$ is invariant for T. By the hypothesis, this means that either $\operatorname{Ken}\left(A-A^{2}\right)=$ $\{0\}$ or $\operatorname{Ker}\left(A-A^{2}\right)=\mathcal{H}$. The former case implies that A is a projection, and hence T cim be decomposed as $T=G \oplus S_{+} \oplus U$, where G is a strongly stable contraction, S_{+}is a unilateral shift, and U is a mitary operator, where any of the direct summands may be missing. But ly $[45, \S 0.5], S_{+}$and U have nontrivial invariant subspaces. Since T is assumed to have no nontrivial invariant subspace, these direct summands are missing in the decomposition of T. Thus $T=G$ and $T \in C_{0}$. To prove the latter case, we note that $\{x \in \mathcal{H}:\|A x\|=\|x\|\}=\operatorname{Kitr}(I-A) \subseteq \operatorname{Ker}\left(A-A^{2}\right)=\{0\}$. Since T is strongly stable and A is also a contraction, $\|A\| \neq 1$. Hence $\|A\|<1$. This completes the proof.

Remark 4.22

Note that direct sum decompositions of operators arises from the action of orthogonal projections of \mathcal{H} onto invariant (in particular, reducing) subspaces. We now characterize invariant subspaces of an operator T in terms of orthogonal projections on such subspaces.

Theorem 4.37 If $T \in B(\mathcal{H})$ and P is any projection onto $\mathcal{M} \subseteq \mathcal{H}$ then $\mathcal{M} \in \operatorname{Lat}(T)$ if and only if $T P=P T P$.

Proof. If $\mathcal{M} \in \operatorname{Lat}(T)$ and $x \in \mathcal{H}$, then $T P x$ is contained in $T(\mathcal{M})$, and since $T(\mathcal{M}) \subset$ \mathcal{M} it follows that $P(T P x)=T P x$. Conversely, if $T P=P T P$ and $x \in \mathcal{M}$, then $P x=x$ and $T x=P T P x$. Since $P(T x)=T x, T x \in \mathcal{M}$, we have that $\mathcal{M} \in \operatorname{Lat}(T)$.

Theorem 4.38 If $T \in B(\mathcal{H})$ and P is the projection on $\mathcal{M} \subseteq \mathcal{H}$ along $\mathcal{N} \subseteq \mathcal{H}$ then \mathcal{M} and \mathcal{N} are both in $\operatorname{Lat}(T)$ if and only if $T P=P T$.

Proof. By Theorem 4.37, $\{\mathcal{M}, \mathcal{N}\} \subset \operatorname{Lat}(T)$ if aurd only if $T P=P T P$ and $T(I-P)=$ $(I-P) T(I-P)$, (since $I-P$ is a projection on $\mathcal{N})$. The second equation is equivalent to $T-T P=T-P T-T P+P T P$, or $0=-P T+P T P$. The first equation gives $0=-P T+T P$, which completes the proof.

Remark 4.23

Recall that $\operatorname{Red}(T)$ is the collection of all sulspaces of \mathcal{H} which are invariant under both T and T^{*}. Equivalently, a subsipace $\mathcal{M} \in \operatorname{Red}(T)$ if $T \mathcal{M} \subset \mathcal{M}$ and $T \mathcal{M}^{\perp} \subset \mathcal{M}^{\perp}$.

It is emsy to see that \mathcal{M} reduces T if and only if $\mathcal{M} \in \operatorname{Lat}(T) \cap \operatorname{Lal}\left(T^{*}\right)$. These facts together with Theorm 4.38 keal to the following result.

Corollary 4.39 Let $T \in B(\mathcal{H})$. A subspace $\mathcal{M} \in \operatorname{Rcd}(T)$ if $I T=T I$, where P is the orthoyonal projection onto \mathcal{M}.

Remark 4.24

It is not difficult to see that a nontrivial sulspace of \mathcal{H} may be an invariant sulnpace for an operator $T \in B(\mathcal{H})$ but not reduce T. In fact, an operator may have many nontrivial invariant subspaces and no nontrivial reducing sul)spaces. For instance, the operator $T: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$ defined by $T(x, y)=\left(\frac{1}{2} x+\frac{1}{2} y, y\right)$ has $\mathcal{M}=\operatorname{span}\left\{\binom{1}{0}\right\}$ as a nontrivial invariant subspace but $\mathcal{M}^{\perp}=\operatorname{span}\left\{\binom{0}{1}\right\}$ is not invariant under T. So \mathcal{M} does not reduce T.

Proposition 4.40 For a self-adjoint $T \in B(\mathcal{H})$, invariance of \mathcal{M} implies the invariance of \mathcal{M}^{\perp}.

Remark 4.25

We note that Proposition 4.40 can be be extended to normal operators which contains the class of self-aljoint operators. Since similar operators have isomorphic invariant subspace lattices, the lattice of hyperinvariant sulspaces of T is a similarity invariant. On the other hand, there may be T-invariant subspaces that are not T-hyperinvariant. For let $A=\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1\end{array}\right)$ and $B=\left(\begin{array}{ccc}0 & 1 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$ acting on \mathbb{R}^{3}. Let $P=\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$ be the projection onto an A-invariant subspace \mathcal{M}, which is not B-invariant.
A simple computation shows that B commutes with A, and thus Ran (P) is not hyperinvariant under A. By Kubrusly [47, Problem 1.3], since $A B=0$, $\operatorname{Ker}(A)$ and $\overline{\operatorname{Ran}(B)}$ are nontrivial invariant invariant subspaces for both A and B. In this example, all invariant subspaces will be hyperinvariant since by construction $A B=0$.
Proof of Proposition 4.40. Let $x \in \mathcal{M}^{\perp}$. Then $\langle x, y\rangle=0$ for every $y \in M$. However, $T y \in \mathcal{M}$ for $y \in \mathcal{M}$. Hence $\langle x, T y\rangle=0$. Since T is self-adjoint, $\langle T x, y\rangle=0$ for every
$y \in \mathcal{M}$. Consequently, $T x \in \mathcal{M}^{\perp}$, as wats required.
We give an application of the precorling facts.
Theorem 4.41 Let, \mathcal{M} be an invaruant subspate for $T \in B(\mathcal{H})$. If T is hyponormal, then $\left.T\right|_{\text {м }}$ is hyponormal.

Proof. Let \mathcal{M} be invariant under T. Then $\left(\left.T\right|_{\mathcal{M}}\right)^{*}=\left.P T^{*}\right|_{\mathcal{M}}$, where P is the orthogonal projection onto \mathcal{M}. Thus

$$
\left\|\left(\left.T\right|_{\mathcal{M}}\right)^{*} x\right\|=\left\|\left.P T^{*}\right|_{\mathcal{M}} x^{\|}\right\| \leq\left. T^{*}\right|_{\mathcal{M}} x=\left\|T^{*} x\right\| \leq\left\|\left.T\right|_{\mathcal{M}} x\right\|, \quad x \in \mathcal{M} .
$$

Remark 4.26

It is known (see Hoover [39]) that if A and B are quasisimilar operators and A has a nontrivial hyperinvariant sulbspace then so does B. Furthermore, if A is normal then quasisimilarity induces an injertion from Hyperlat(A) to Hyperlat(B), so one conld expect that quasisimilar operators always have isomorphic hyperlatitices. An example will show that this is not necessarily true, even for simple operators.
To see this we investigate the hypertatice of certain nilponent operators.
Lemma 4.42 Let T be a nilpotent operator of order three (i.e, $T^{3}=0$). Then $\operatorname{Ker}\left(T^{2}\right)$ (respectively, $\overline{\left.\operatorname{Ran}\left(T^{2}\right)\right)}$ is a maximal (respectively, minimal) hyperinvariant subspace of T.
Proof. Let $T=\left(\begin{array}{ccc}0 & T_{12} & T_{13} \\ 0 & 0 & T_{23} \\ 0 & 0 & 0\end{array}\right)$ be the matrix of T with respect to the orthogonal direct sum decomposition $\mathcal{H}=\mathcal{H}_{1} \oplus \mathcal{H}_{2} \oplus \mathcal{H}_{3}$, where $\mathcal{H}_{1}=\operatorname{Ker}(T), \mathcal{H}_{2}=$ $\operatorname{Ker}\left(T^{2}\right) \ominus \operatorname{Ker}(T)$ and $\mathcal{H}_{3}=\mathcal{H} \ominus \operatorname{Ker}\left(T^{2}\right)$. Then T_{12} and T_{23} are injective operators and therefore their adjoints have dense ranges.
A straight forward computation shows that the commutant of T consists of all those operators $A \in B(\mathcal{H})$ of the form $A=\left(\begin{array}{ccc}A_{11} & A_{12} & A_{13} \\ 0 & A_{22} & A_{23} \\ 0 & 0 & A_{33}\end{array}\right)$ such that $A_{11} T_{12}=T_{12} A_{22} . A_{22} T_{23}=$ $T_{23} A_{33}$ and $A_{11} T_{13}+A_{12} T_{23}=T_{12} A_{23}+T_{13} A_{33}$, where A_{33} can be arbitrarily chosen. Let $\mathcal{M} \in \operatorname{Hyperlat}(T)$ and assume that \mathcal{M} is not contained in $\operatorname{Ker}\left(T^{2}\right)$; then there exists a vector $v=\left(v_{1}, v_{2}, v_{3}\right)$ in $\mathcal{M}\left(v_{1} \in \mathcal{H}_{1}, r_{2} \in \mathcal{H}_{2}, v_{3} \in \mathcal{H}_{3}\right)$ wilh $v_{3} \neq 0$.

Lat A be as above with $A_{k i}=0$ for $(j . k) \neq(1,3)$; then the hyper-invariance of \mathcal{M} implies that $A v=A\left(v_{1}, v_{2}, v_{3}\right)=\left(A_{13} v_{3},(0,0) \in \mathcal{M}\right.$. Since A_{13} can be artitratily chosen. we conclucle that $\mathcal{H}_{1} \subset \mathcal{M}$. Hence ($0, v_{2}, v_{3}$) $\in \mathcal{M}$.
Since $\operatorname{Ran}\left(T_{23}^{*}\right)$ is dense, there exits ann $f_{10} \in \mathcal{H}_{2}$ such that $\left\langle T_{23}^{*} f_{0}, l_{3}\right\rangle=1$. Let f_{2} be an element in \mathcal{H}_{2} and define $B_{23}=f_{2} \otimes T_{23}^{*} f_{0}, B_{12}=T_{12} f_{2} \otimes f_{0}$ (where $x \otimes y$ donotes the operator defined by $x \otimes y(z)=\langle z, y\rangle x)$ and $B_{j k}=0$ for all $(j, k) \neq(1,2)$ or $(2,3)$. It is easily seen that $B=\left(B_{J k}\right) \in\{T\}^{\prime}$, the commutant of T and therefore $B\left(0, v_{2}, v_{3}\right)=\left(B_{12} v_{1}, B_{23} v_{3}, 0\right)=\left(B_{12} v_{1}, f_{2}, 0\right) \in \mathcal{M}$. Thus $\mathcal{H}_{1} \oplus \mathcal{H}_{2}=\operatorname{Ker}\left(T^{2}\right) \subset \mathcal{M}$. Hence ($\left.0,0, \imath_{1} \imath_{3}\right) \in \mathcal{M}$.
Now use the fact that $\overline{\operatorname{Ran}\left(T_{12} T_{23}\right)}$ is dense in orler to oltain an $e_{0} \in \mathcal{H}_{1}$ such that $\left\langle\left(T_{12} T_{23}\right)^{*} \rho_{0}, v_{3}\right\rangle=1$. Let g_{3} be an element in \mathcal{H}_{3} and define $C_{33}=g_{3} \otimes\left(T_{12} T_{23}\right)^{*} e_{0}, C_{22}=$
 for all $(j, k) \neq(1.1),(1,2),(2.2),(2,3)$ or $(3,3)$. Then $C=\left(C_{j k}\right) \in\{T\}^{\prime}$ and therefore $C\left(0,0, v_{3}\right)=\left(0, C_{23} v_{3}, C_{33} v_{3}\right)=\left(0, C_{23} v_{3}, g_{3}\right) \in \mathcal{M}$. Thus, we conclude that $\mathcal{M}=\mathcal{H}$. That is \mathcal{M} is maximal.
The same arguments applied to T^{*} shows that $K^{\prime} e r\left(T^{* 2}\right)$ is a maximal hyperinvariant sulsipace of T^{*} and therefore $\left(\operatorname{Ker}\left(T^{* 2}\right)\right)^{\perp}=\overline{\operatorname{Ran}\left(T^{2}\right)}$ is a minimal hyperinariant subspace of T.

Corollary 4.43 If $\mathcal{M} \in H$ yperlat (T), with $T^{3}=0$ and $\{0\} \neq \mathcal{M} \neq \mathcal{H}$, then $\overline{\operatorname{Ran}\left(T^{2}\right)} \subset \mathcal{M} \subset \operatorname{Ker}\left(T^{2}\right)$.

Proof. The result follows from Lemma 4.42.

Definition 4.9

Let $T_{k} \in B\left(\mathbb{C}^{k}\right)$ be the nilpotent operator defined by $T_{k} e_{1}=0, T_{k} e_{j}=e_{3-1}$ for $j=$ $2,3, \ldots, k$, with respect to the canonical orthonormal basis $\left\{e_{j}\right\}_{j=1}^{k}$ of \mathbb{C}^{k} and let $T_{k}\left(\alpha_{k}\right)$ be the orthogonal direct sum of α_{k} copies of T_{k} acting in the usual fashion on the orthogonal direct sum of α_{k} copies of \mathbb{C}^{k}. An operator $J \in B(\mathcal{H})$ is a Jordan operator if it can be written as $J=\bigoplus_{k=1}^{n} T_{k}\left(\Omega_{k}\right)$ with respect to a suitable decomposition $\mathcal{H}=$ $\bigoplus_{k=1}^{n}\left(\oplus_{j=1}^{\alpha_{k}} \mathbb{C}_{j}^{k}\right)$ of \mathcal{H}.
Clearly, every nilpotent operator $T \in B(\mathcal{H})$ is quasisimilar to a Jordan operator.

Proposition $4.44 L e t T \in B(\mathcal{H})$ be such that $T^{3}=0$. Then H!purlal(T) is the chain of five clements

$$
\{0\} \subset \overline{\operatorname{Ran}\left(T^{2}\right)} \subset \mathscr{K}(T) \subset \overline{\operatorname{Ram}(T)}=\tilde{\operatorname{Ror}\left(T^{2}\right) \subset \mathcal{H} .}
$$

Corollary 4.45 There exist luo quasisimilar nilpolent opetators T and J of order three such that Hyperlat(T) and Hyperlat (J) do not contain the same (finite) number of elements. In particular, these lattices are not order-isomorphic.

Remark 4.27

Fillmore, Herrero and Longstaff [21] have given an example of a nipotent operator T such that $T^{3}=0$ and such that $H y p e r l a t(T)$ can only have four, six or eight elements and a Jordan operator J quasisimilar to T. However, by Proposition 4.44, the Hyperlat (T) of a nilpotent operator T of nilpotence index 3 has five elements. Wra [83] has shown that if T is a C_{0} contraction with finte defect indices, then H yperlat (T) is (latice) generated by those subspaces which are either $\operatorname{Ker}(\psi(T))$ or $\overline{\operatorname{Ran}(\xi(T))}$, where ψ and ξ are scalar-valued imer functions. This result was extended to general operators loy Fillmore, Herrero and Longstaff [21], who have shown that on a finite-dinensional space \mathcal{H}, Hyperlat (T) is (lattice) generated by those subspaces which are either K'er $(p(T))$ or Ran $(q(T))$, where p and q are polynomials.
We give a simplified proof to the following result l)y Wris1].
Theorem $4.46[83]$ Let $T \in B(\mathcal{H})$ be a contruction of classs $C .0$ with fintite defect indices acting on a separable Hilbert space. Then Hyperlat (T) is (lattice) generated by those subspaces which are either $\operatorname{Ker}(\psi(T))$ or Ran $(\xi(T))$, where ψ and ξ are scalar-valued inner functions.

Proof. The result follows easily since every unilateral shift on a Hilbert space \mathcal{H} is unitarily equivalent to the operator of multiplication by z on the Hardy space $\mathbb{H}^{2}(\mathcal{H})$ and the fact that the unilateral shift is of class C_{0}.

We give an extension of Theorem 4.46 to a general linear operator.
Corollary 4.47 Let T be a linear transformation on a finte-dimensional space \mathcal{H}. Then Hyperlat (T) is (lattice) gencrated by those subspuces whach are cither $\boldsymbol{l} \mathrm{r}(p)(T)$) or $\operatorname{Ran}(q(T))$, where p and q are polynomials.

Proof. For $0<a<1 /\|T\|, \quad S \approx a T$ is a strict contraction, hence a comtraction of (lass $C_{\text {. }}$. Theorem 4.46 implies that. Hyperlal $(S)=H$!yperlat (T) is (lattice) generated by those subspaces which are aither $\operatorname{Hor}(U)$ or $\operatorname{Ran}(V)$, where U, V are operators in $\{S\}^{\prime \prime}=\{T\}^{\prime \prime}$, the double commutants of S and T. Our assertion follows from the fact that $\{T\}^{\prime \prime}$ consists of all polynomials in T.

Definition 4.10

An operator is reducille if it has an nontrivial rexlucing subspace (equivalently, if it hats a proper nonzero direct summand); otherwise it is said to be irveducible (e.g. a milateral shift of multiplicity one is irreducible and ion is the 2 by 2 operator matrix $\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)$). An operator T is said to be reductive if all its invariant subspaces are reducing. Note that an operator may be relucible but fail to be reductive. Thus the class of reductive operators is contained in the class of reducible operators. From Proposition 4.40, every self-adjoint (and by extension, normal) operator is reductive.
We state and prove the following result.
Theorem 4.48 Every operator unitarily equivalent to a reducible operator is redurable.
Proof. Let \mathcal{H} and \mathcal{K} be unitarily equivalent Hilbert spaces. Take $T, P \in B(\mathcal{H})$ and an arbitrary operator $U: \mathcal{K} \longrightarrow \mathcal{H}$. Put $S=U^{*} T U$ and $E=U^{*} P U$ in $B(\mathcal{K})$. The operator E is an orthogonal projection if and only if P is. Indeed $E^{2}=U^{*} P^{2} U$ and $E^{*}=U^{*} P^{*} U$ so that $E=E^{2}$ if and only if $P=P^{2}$ and $E=E^{*}$ if and only $P=P^{*}$. Moreover, $E=U^{*} P U$ is nontrivial if and only if P is, and E commutes with S if and only if P commutes with T (since $E S-S E=U^{*}(P T-T P) U$). Thus S is reducible if and only if T is reducible.

Remark 4.28

We note that. Theorem 4.48 does not hold under similarity. For consider the matrices

$$
A=\left(\begin{array}{ccc}
1 & -1 & 1 \\
0 & 0 & 0 \\
0 & 1 & 0
\end{array}\right), \quad B=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 1 & 0
\end{array}\right), \quad X=\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

representing operators in \mathbb{C}^{3}. A simple matrix computation shows that $X A=B X, X$ is invertible (thms A and B are similar) and B is a direct sum, $B=1 \oplus\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)$ but

A is irreducible since the only one-rlimensional invariant sul)space $\mathcal{M}=\operatorname{spm}\left\{\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)\right\}$ for A is not invariant for A^{*}.
We now extend and prove the celebmated Lomonosov theorem to complex Hilbert spaces.
Theorem 4.49 (Lomonosov Theorem) ([58, §8.3], [40, Theorem 0.12]). If a nonscalar operator commutes with a nonzero compact operator, then it has a nonlrivial hyperinvariant subspace.

Proof. Let T be an operator on a complex Hilbert space. Suppose that there exists a nonzero compact operator A in $\{T\}^{\prime}$, and suppose T has no nontrivial hyperinvariant subspace. The following assertions hold
(a) There exist an operator L in $\{T\}^{\prime}$ such that $K i r(I-L A)$ is nonzero and T-invariant.
(b) T has an eigenvalue $\lambda \in \mathbb{C}$ such that $\operatorname{Ker}(\lambda I-T) \neq\{0\}$.

But $\operatorname{Ker}(\lambda I-T)$ is a hyperinvariant subspace for T. Therefore, if T has no nontrivial hyperinvariant subspace, then $\operatorname{Ker}(\lambda I-T)=\mathcal{H}$. Equivalently, $T=\lambda I$; that is, T is scalar operator. This sums up the following: If an operator T has no nont rivial hyperinvariant subspace and commutes with a nonzero compact operator A, then T must be scalar.
Note that any scalar operator T commutes with any operator in $B(\mathcal{H})$. Thus $\{T\}^{\prime}=$ $B(\mathcal{H})$. By Corollary 4.19, we have Hyperlat $(T)=\operatorname{Lat}\left(\{T\}^{\prime}\right)=\operatorname{Lat}(B(\mathcal{H}))=\{\{0\}, \mathcal{H}\}$. We introduce the following notation: we let $A=\lim _{n} \longrightarrow \infty T^{* n} T^{n}$ and $A_{*}=\lim _{n-\infty} T^{n} T^{* n}$. We note that $A=0$ if and only if $T^{n} x \longrightarrow 0(n \longrightarrow \infty)$ and $A^{*}=0$ if and only if $T^{* n} x \longrightarrow 0 \quad(n \longrightarrow \infty)$.

Corollary 4.50 If T is a contraction for which $A \neq 0$ and $A_{*} \neq 0$, then either T has a nontrimial hyperinvariant subspace or T is a scalar unitary.

Proof. We consider two cases:
If $\operatorname{Ker}(A)=\operatorname{Ker}\left(A_{*}\right)=\{0\}$, then T is a C_{11}-contraction and hence it cither has a nontrivial hyperinvariant subspace or it is a scalar unitary. This is because on a Hilbert space of dimension greater than one, a C_{11} has a nontrivial invariant subspace.
If $\operatorname{Ker}(A) \neq\{0\}$, then by $[45$, Proposition $3.1(\mathrm{i})], \operatorname{Ker}(A)$ is a nontrivial hyperinvariant subspace for T (since $\operatorname{Ker}(A) \neq \mathcal{H}$ because $A \neq 0)$. Equivalently, if $\operatorname{Ker}\left(A_{*}\right) \neq\{0\}$,
then $\operatorname{Hen}\left(A_{*}\right)$ is a montrivial invariant sulnpate for T^{*}, so that Fi. $\left(A_{*}\right)^{\perp}$ is a nomtrivial hyperinvariant subspace for T. This complates the proof.

Remark 4.29

We now study the invariant subspaces of a shift operator. We note that the results can be extended to completely nom-nomal operators. This is true since every operator can be modeled using the backward shift by Remark 3.24 and Theorem 3.33.
The functions $e_{n}(z)=z^{n}$ for $n \in \mathbb{Z}$ form an orthonomal basis in $L^{2}(\partial \mathbb{D})$. The orthonormal expansions

$$
f=\sum_{n \in \mathbb{Z}} \hat{f}(n) e_{n}, \quad \hat{f}(n)=\frac{1}{2 \Pi} \int_{0}^{2 I I} f\left(e^{i t}\right) e^{-i n t} d t, \quad n \in \mathbb{Z}
$$

are just the classical Fonrier series. Since $(\widehat{z f})(n)=\tilde{f}(n-1)$, for $n \in \mathbb{Z}$, the action of the operator $f \longrightarrow z f$ can be considered as a right translation or shift, Let $\mathcal{M} \subseteq L^{2}(\partial \mathbb{D})$, where \mathcal{M} is a closed linear subspace. We want to find out how this \mathcal{M} looks like. We distinguish iwo separate cases:

$$
z \mathcal{M}=\mathcal{M}, \quad \text { or } \quad z \mathcal{M} \neq \mathcal{M}
$$

We note that $z \mathcal{M}=\mathcal{M}$ if and only if $\bar{z} \mathcal{M}=\mathcal{M}$, since $z \in \mathscr{D}$ and $z \bar{z}=|z|^{2}=1$. In this case when $z \mathcal{M} \subseteq \mathcal{M}$ and $\bar{z} \mathcal{M} \subseteq \mathcal{M}$ then \mathcal{M} is a reducing subspace and in the case when $z \mathcal{M} \subset \mathcal{M}, \quad z \mathcal{M} \neq \mathcal{M}, \mathcal{M}$ is simply invariant and not reducing.
First we consider the reducing subspaces of the shift.
We write $d \mu$ for normalized Lebesgue measure on the circle. That is $d \mu=\frac{1}{2 \pi} d t$.
Theorem 4.51 (Wiener) [58]. Let $\mathcal{M} \subseteq L^{2}(\partial \mathbb{D})$ satisfy $z \mathcal{M}=\mathcal{M}$. Then there is a unique measurable set $\sigma \subseteq \partial \mathbb{D}$ such that $\mathcal{M}=\chi_{a} L^{2}(\partial \mathbb{D})=\left\{f \in L^{2}(\partial \mathbb{D}): \int=\right.$ 0 a.e. outside $\sigma\}$, where χ_{σ} is the characteristic function (indicator function) of σ.

Proof. Let $\chi=P_{\mathcal{M}} 1, \chi \in \mathcal{M}$, where $P_{\mathcal{M}}$ is the orthogonal projection from $L^{2}(\partial \mathbb{D})$ onto \mathcal{M}. We have the following:

$$
1-\tilde{\chi}=\left(I-P_{\mathcal{M}}\right) 1 \in \mathcal{M}^{\perp}
$$

and so

$$
z^{n} \chi \perp 1-\chi, \quad \forall n \in \mathbb{Z}
$$

that is,

$$
\int_{a n} z^{n} \chi(1-\bar{\top}) d_{1}=0, \quad \forall n \in \mathbb{Z} .
$$

Since $\lambda(1-\bar{x}) \in L^{\prime}(\partial \mathbb{D})$, the produch $\lambda(1-\bar{\lambda}) d \mu$ is a finite complex Bord monsure on $\partial \mathbb{D}$ which amihilates the set \mathcal{T} of trigonometric polynomiaks, the set of finite linear combinations of powers z^{n} with $n \in \mathbb{Z}$. But \mathcal{T} is clense in the vector space $C(\partial \mathbb{D})$ of continums functions on the unit circle, so, $\chi(1-\bar{x})=0$ a.e. Hence $\chi=|\chi|^{2}$ a.e. and this implies that χ takes only the values 0 and 1 . Let $\sigma=\{1: \chi(1)=1\}$. Them the set σ is well-rlefined up to a set of meanure zoro. Since $\chi \in \mathcal{M}$, we have $z^{n} \chi \in \mathcal{M}$ for all $n \in \mathbb{Z}$, and $\mathcal{T}_{\chi} \subseteq \mathcal{M}$ and $\overline{\gamma \mathcal{T}} \subseteq \mathcal{M}$. On the other hand, $\overline{\chi \mathcal{T}}=\chi L^{2}(\partial \mathbb{D})$, since $\overline{\mathcal{T}}=L^{2}(\partial \mathbb{D})$. Thus $x L^{2}(\partial \mathbb{D}) \subseteq \mathcal{M}$. and it only remains to show that these two spaces are equal.
Let, $f \in \mathcal{M}$ with $f \perp \chi z^{n}, \quad \forall n \in \mathbb{Z}$. Then $z^{n} f \in \mathcal{M}$ for all n, and $1-\chi \perp z^{n} f, \forall n \in \mathbb{Z}$, and these imply that.

$$
\int_{\partial \mathbb{D}} f \chi z^{-n} d \mu=0 \quad \text { !!nd } \quad \int_{\partial \mathbb{D}} z^{n} f(1-\chi) d \mu=0, \quad n \in \mathbb{Z}
$$

Hence $f \chi=f(1-\chi)=0$ a.e., and $\int=0$ a.e. Hence $\chi^{2}(\partial \mathbb{D})=\mathcal{M}$.
We now study the strmeture of the simply invariant subspace of the shift operator.
Theorem 4.52 (Beurling, H. Helson)[58]. Let $\mathcal{M} \subseteq L^{2}(\partial \mathbb{D})$ with $\approx \mathcal{M} \subset \mathcal{M}, z \mathcal{M} \neq$ \mathcal{M}. Then thene exists a measurable function θ (anique up to a constant) such that $|\theta|=1$ a.e. on $\partial \mathbb{D}$ and $\mathcal{M}=\theta \mathbb{H}^{2}$.

Proof. First we note that $\theta \mathbb{H}^{2}$ is a closed subspace, since the transformation $f \longrightarrow \theta f$ is an isometry and even a mitary operator on $L^{2}(\partial \mathbb{D})$. Using the orthogonal projection method as in Theorem 4.51, we consider the orthogonal complement of z \mathcal{M} in $\mathcal{M}: \mathcal{M} \ominus$ $z \mathcal{M}$ is a nontrivial subspace of \mathcal{M}, so we take $\theta \in \mathcal{M} \ominus z \mathcal{M}$ with $\|\theta\|=1$. Then $\theta \in \mathcal{M}$ and $\theta \perp z \mathcal{M}$, and so $z^{n} \theta \in z \mathcal{M}$. for $n \geq 1$. implying that $\theta \perp z^{n} \theta$. That is,

$$
\begin{gathered}
\int_{\partial \mathbb{D}} \bar{\theta} \theta z^{n} d \mu=0, \quad n \geq 1 \quad \text { i.e. } \\
\int_{\partial \mathbb{D}}|\theta|^{2} z^{n} d \mu=0, \quad n \geq 1 .
\end{gathered}
$$

Taking complex conjugates we have:

$$
\int_{\partial \mathbb{D}}|\theta|^{2} \bar{z}^{n} d \mu=0, \quad n \geq 1
$$

that, is, $\left(\widehat{|\theta|^{2}}\right)(n)=0$ for $n \in \mathbb{Z} \backslash\{0\}$.
Thns $|\theta|^{2}=$ ronst $=$ c a.e. Since $1=\|\theta\|_{2}^{2}=\int_{\mathbb{D}}|\theta|^{2} \lambda_{\mu}=r \mu(\partial \mathbb{D})=r$, we have $|\theta|=1$ a.e.

Thus $\int \longrightarrow \theta f$ is an isometry in $L^{2}(\partial \mathbb{D})$. Thus we have $z^{n} \theta \in \mathcal{M}$, for $n \geq 0$. The linear span has the same property. We write \mathcal{P} for the sed of polynomials in z, so $\mathcal{P} \theta \subseteq \mathcal{M}$, and $\overline{\theta \mathcal{P}}=\theta \overline{\mathcal{P}}=\theta \mathbb{H}^{2} \subseteq \mathcal{M}$. Thus we have a closed subspace of \mathcal{M}, $\theta \mathbb{H}^{2} \subseteq \mathcal{M}$, and we want it to coincide with \mathcal{M}. To show this, consider $\int \in \mathcal{M} . \int \perp \theta \mathbb{H}^{2}$. We need to show that, $f=0$. Incleed, we have:

$$
f \perp \theta \mathbb{H}^{\prime 2} \quad \Longrightarrow \quad \int \perp \theta z^{n}, \quad n \geq 0
$$

and

$$
f \in \mathcal{M} \Longrightarrow z^{n} f \in z \mathcal{M}, \quad n \geq 1 \Rightarrow z^{n} f \perp \theta, n \geq 1
$$

It follows that

$$
\int_{\partial \mathbb{D}} \int \bar{\theta} \bar{z}^{n} d \mu=0, \quad n \geq 0
$$

and

$$
\int_{i \mathfrak{D}} f \bar{\theta} z^{n} d \mu=0, \quad n \geq 1
$$

Thus $(\widehat{J \bar{\theta}})(n)=0, \quad \forall n \in \mathbb{Z}$ and $f \bar{\theta} \equiv 0$. But $|\theta|=1$ i.e., and so $f=0$ a.e. and $\mathcal{M}=\theta \mathbb{H}^{2}$.
To show uniqueness, let $\theta_{1} \mathbb{H}^{2}=\theta_{2} \mathbb{H}^{2}$, where $\left|\theta_{1}\right|=\left|\theta_{2}\right|=1$ a.e. on $\partial \mathbb{D}$. Then $\left(\theta_{1} \bar{\theta}_{2}\right) \mathbb{H}^{2}=$ \mathbb{H}^{2}, so $\theta_{1} \bar{\theta}_{2} \in \mathbb{H}^{2}$, ancl, by symmetry, $\theta_{2} \bar{\theta}_{1} \in \mathbb{H}^{2}$, or $\theta_{1} \bar{\theta}_{2} \in \overline{\mathbb{H}^{2}}$. But $\mathbb{H}^{2} \cap \overline{\mathbb{H}^{2}}=\{$ const $\}$, since, for instance $f \in \mathbb{H}^{2} \Longrightarrow \widehat{f}(n)=0, n<0$; and $\bar{f} \in \mathbb{H}^{2} \Longrightarrow \hat{\bar{f}}(n)=\overline{\hat{f}}(-n)=0, n<$ $0 \Longrightarrow f=$ const .
Theorem 4.52 implies a particular result about closed shift-invariant subspaces of \mathbb{H}^{2}, generally referred to as Beurling's theorem.

Lemma 4.53 (Beurling)[58] Any closed shift-invariant subspace $\mathcal{M} \subseteq \mathbb{H}^{2}$ has the form. $\mathcal{M}=\theta \mathbb{H}^{2}$, where θ is inner.

Proof. Clearly, if $\theta \mathbb{H}^{2} \subset \mathbb{H}^{2}$ and $|\theta|=1$ a.e on $\partial \mathbb{D}$ then θ is in \mathbb{H}^{2}, and hence inner.

Remark 4.30

The Beurling Theorem characterizes invariant subspaces of the shift operator in terms of operator-valued inner functions on the unit clisk. If $A \in B(\mathcal{H})$, then ly Corollary 4.39
the reducing sulsepaces of A are the ranges of the orthogonal projections I^{P} such that $A P=P A$. Taking the arljoint of the last equality we oltain $P^{P} A^{*}=A^{*} P^{P}$. Thus, the problem of finding the reducing subspaces of A is contained in the problem of finting all operators that commmite with A and A^{*}.
We solve this problem for the multiplication operator.
Theorem 4.54 Let μ be a fimate, postine, compaclly supported Borel measure in the complex plane \mathbb{C} and let A be the operalor in $L^{2}(\mu)$ of multiplication by z,

$$
(A f)(z)=z f(z), \quad f \in L^{2}(\mu), z \in \mathbb{C} .
$$

Then the operators that commute whith A amd A^{*} are preciscly the operalots on $L^{2}(\mu)$ of multiplication by the functions in $L^{\infty}(\mu)$.

Proof. One half of Theorem 4.54 is trivial: If A is as clescribed and $\varphi \in L^{\infty}(\mu)$, then multiplication by p obviously defines an operator on $L^{2}(\mu)$ that commotes with A and A^{*}. The other half of the theorem is eathy to prove.

Remark 4.31

The milateral shift S_{+}is defined on ℓ^{2} so that

$$
\left(S_{+} f\right)(n)=\left\{\begin{array}{cc}
0, & n=0 \\
f(n-1), & n>0
\end{array}\right.
$$

The operator S_{+}is an isometry and its adjoint, the backward shift, satisfies

$$
\left(S_{+}^{*} f\right)(n)=f(n+1), \quad f \in \ell^{2}
$$

The sequence $\left\{S_{+}^{*}{ }^{n}\right\}$ converges strongly to (0. The minimal unitary (nomal) extension U of S_{+}is the bilateral slift defined on $L^{2}(\mathbb{D})=\left\{f: \mathbb{Z} \longrightarrow \mathbb{D}\right.$ and $\left.\sum_{n=-\infty}^{\infty}\|f(n)\|^{2}<\infty\right\}$ and U is defined by

$$
(U f)(n)=f(n-1), \quad \text { for } \quad f \in L^{2}(\mathbb{D})
$$

It is easily verified that U is mitary and we identify f^{2} as a subspace of $L^{2}(\mathbb{D})$ in the obvious way, $S_{+}=\left.U\right|_{r^{2}}$. By the von Neumann-Wold decomposition, any isometry $T=W \oplus S_{+}$, where W is unitary and S_{+}is a milateral shift. The commutant of any isometry $T=W \oplus S_{+}$consists of the restriction of operators with matrix $\left(\begin{array}{cc}A_{1} & 0 \\ A_{3} & A_{4}\end{array}\right)$
where $A_{1} U=U A_{1}, \quad A_{1} 1^{2} \subset I^{2}, \quad A_{3} U=\| A_{3}$ and $A_{4} W^{\prime}=W_{1}$.
Shifts are of fmodamental importance in (operator Theory. They can be considered as prototypes (models) of infinite-dinemsional operators (i.e. openators with an infinite(limensional range). Every oprator is mitarily equivalent to a multiple of a part, of the arloont of a milateral shift.

Remark 4.32

We now sturly some special T-invariant subspaces for anditary $T \in B(\mathcal{H})$. We define the kernels and ranges of the power $T^{n}, n=0,1,2, \ldots$ of a linear operator T on a Hilbert space \mathcal{H}. We have the following two sequences of subspaces.

$$
\operatorname{Ker}\left(T^{0}\right)=\{0\} \subseteq \operatorname{Ker}(T) \subseteq \operatorname{Ker}\left(T^{2}\right) \subseteq \ldots
$$

and

$$
T^{(1)}(\mathcal{H})=\mathcal{H} \supseteq T(\mathcal{H}) \supseteq T^{2}(\mathcal{H}) \supseteq \ldots
$$

Generally, all these inchasions are strict. We note that for weighted unilateral shift operators one or both of these two sorquences becomes constant.
We define the following special subspaces of \mathcal{H}.

$$
\begin{aligned}
T^{\infty}(\mathcal{H}) & =\bigcap_{n=0}^{\infty} T^{n}(\mathcal{H}) \\
\operatorname{Ker}^{\infty}(T) & =\bigcup_{n=0}^{\infty} \operatorname{Ker}\left(T^{n}\right)
\end{aligned}
$$

Proposition 4.55 Both $T^{\infty}(\mathcal{H})$ and Ker ${ }^{\infty}(T)$ are T-invariant.
Proof. Let $: x \in T^{\infty}(\mathcal{H})$. That is $x \in \bigcap_{\eta=0}^{\infty} T^{n}(\mathcal{H})$. Then

$$
T x \in T\left(\bigcap_{n=0}^{\infty} T^{n}(\mathcal{H})\right)=\bigcap_{n=0}^{\infty} T^{n+1}(\mathcal{H}) \subseteq \bigcap_{n=0}^{\infty} T^{n}(\mathcal{H})
$$

Therefore $T x \in \bigcap_{n=0}^{\infty} T^{n}(\mathcal{H})$. Thus $T^{\infty}(\mathcal{H})$ is invariant uncler T. The proof of showing that $K e r^{x}(T)$ is T-invariant is similar.
Theorem 4.56 Let $T \in B(\mathcal{H})$ be a C_{01} contruction. Then $\mathcal{H}=T^{\infty}(\mathcal{H}) \oplus \operatorname{Ker}^{\infty}(T)$. We note that this result can be extended to $C_{(1)}$ contractions since $T \in C_{0}$ implies $T^{*} \in C_{0 .}$.

Remark 4.33

If $T \in B(\mathcal{H})$ is a nilpotent operator of nilinalex n, then $\operatorname{Laf}(T)($ Hyperlat $(T))$ is a chain and $\operatorname{Bed}(T)=\{\{0\} . \mathcal{H}\}$. The lattice of invariant sul) pipaces of an operator T is a metric space. We give varions topological conditions on a point in the latioe which ensure it is a hyperinvariant sulsipace for the operator $T \in B(\mathcal{H})$. We can extract some information about the structure or properties of an operator given its invariant sulspace lattice.
We introduce the following teminology concerning sulnspace latites.
Definition 4.11 A lattice is commmtative if for every pair of subspaces \mathcal{M} and \mathcal{N} in the lattice, the corresponding projections. $P_{\mathcal{M}}$ and $P_{\mathcal{N}}$ commute.

Theorem 4.57 If $\operatorname{Lat}(T)$ is commatative, then $\operatorname{Lat}(T)=$ Hyperlat (T).
Proof. This result follows from Theorem 4.37, Theorem 4.38 and Corollary 4.39 using Definition 4.11.

Example 4.3

For the unilateral shift A with multiplicity $1, \operatorname{Lat}(A)=H$ yperlat (A). This follows clearly from Theorem 4.52 and Theorem 4.54.

Corollary 4.58 If $\operatorname{dim}(\mathcal{H})<\infty$, then the following conditions are equivalent.
(i) $\operatorname{Lat}(T)=\operatorname{Hyperlat}(T)$
(ii) Lat(T) is finite

Proof. From Theorem 4.47, we have Hyperlat $(T)=\left\{\operatorname{Kier}\left[\left(T-\lambda_{1} I\right) \ldots\left(T-\lambda_{n} I\right)\right]\right.$: $\left.\lambda_{1}, \ldots, \lambda_{n} \in \sigma(T)\right\} \cup\left\{\operatorname{Ran}\left[\left(T-\lambda_{1} I\right) \ldots\left(T-\lambda_{n} I\right)\right\}: \lambda_{1}, \ldots, \lambda_{n} \in \sigma(T)\right\} \cup\{\{0\}, \mathcal{H}\}$ and this is a finite set, since \mathcal{H} is finite-dimensional.

Remark 4.34

The following results relate the lattices of invariant subspaces of similar operators. Let \mathcal{H} and \mathcal{K} be separable Hilbert spaces, and let $\mathcal{A}: \mathcal{H} \longrightarrow \mathcal{H}, B: \mathcal{K} \longrightarrow \mathcal{K}$, and $X: \mathcal{H} \longrightarrow \mathcal{K}$ be operators such that X intertwines the operators A and B, i.e. $X A=B X$. Then the map $\Omega_{X}: \operatorname{Lat}(A) \longrightarrow \operatorname{Lat}(B)$ given by $\Omega_{X}(\mathcal{M})=\overline{X(\mathcal{M})}, \quad \mathcal{M} \in \operatorname{Lat}(A)$ is well defined.

Theorem 4.53 Let \mathcal{H} and \mathcal{K} be sepanable: Hillorat spares, and let $A: \mathcal{H} \longrightarrow \mathcal{H}, B:$ $\mathcal{K} \longrightarrow \mathcal{K}$, and $X: \mathcal{H} \longrightarrow \mathcal{K}$ be opequtovs such that $X A=B X$. Then the map $\Omega_{X}:$ $\operatorname{Lal}(A) \longrightarrow \operatorname{Lat}(B)$ given by $\Omega_{\mathrm{S}}(\mathcal{M})=\overline{\mathrm{X}(\mathcal{M})}, \quad \mathcal{M} \in \operatorname{Lat}(A)$ has the following properties
(1) Ω_{X} is a lattice isomonyhism if and only if Ω_{Y} is a bijection
(2) $\Omega_{X}(\operatorname{Lat}(A))=\operatorname{Lat}(B)$ if and only if $\Omega_{X^{*}}$ is injective.
(3) Ω_{X} is injective if $\mathcal{M}_{1}=\mathcal{M}_{2}$ whenever $\mathcal{M}_{1}, \mathcal{M}_{2} \in \operatorname{Lal}(A), \mathcal{M}_{1} \subset \mathcal{M}_{2}$, and $\Omega_{X}\left(\mathcal{M}_{1}\right)=\Omega_{X}\left(\mathcal{M}_{2}\right)$.

Proof.

(1). S. X a latice isomorphism if and only if it is an invertible latice homomorphism that preserves spans(joins) and intersections(meets). This is equivalent to saying that Ω_{X} is a bijection of $\operatorname{Lat}(A)$ onto $\operatorname{Lat}(B)$.
(2). First note that $\Omega_{X^{*}}: \operatorname{Lat}\left(B^{*}\right) \longrightarrow \operatorname{Lat}\left(A^{*}\right)$ is well-clefined by $\Omega_{X^{*}}(\mathcal{N})=\overline{\left(X^{*} \mathcal{N}\right)}$, $\mathcal{N} \in \operatorname{Lat}\left(B^{*}\right)$. Since $X A=B X$. then $A^{*} X^{*}=X^{*} B^{*}$. Thus $\Omega_{X^{*}}$ is onto $\operatorname{Lat}\left(A^{*}\right)$ if and only if $\Omega_{X} \cdot=\Omega_{X}$ is one-tome on $\operatorname{Laf}(A)$. It is clear that. Ω_{X} is a latice isomorphism since Ω_{X} is by (1). This proves that $\Omega_{X^{*}}$ is injective. Conversely, suppose $\Omega_{X^{*}}$ is injective. Then $\operatorname{Ker}\left(\Omega_{X^{*}}\right)=\{0\} \operatorname{and} \operatorname{Ram}\left(\Omega_{X^{*}}\right)=\operatorname{Lat}\left(A^{*}\right)$, which shows that $\Omega_{X^{*}}$ is onto $\operatorname{Lat}\left(A^{*}\right)$ and hence Ω_{X} is onto $\operatorname{Lat}(B)$. Equivalently. $\Omega_{\mathrm{Y}}(\operatorname{Lat}(A))=\operatorname{Lat}(B)$. (3). This is trivial and follows from the defintion.

Remark 4.35

In Theorem 4.59, if X is invertible, then A and B are similar. This is in accorlance with the well known fact in [8] that similarity preserves the lattice of invariant subspaces. Recall from [8] that similarity preserves many other characteristics of the operators A and B, e.g, the multiplicity, spectra, etc. Quasisimilarity is weaker than similarity and it has been proved that quasisimilarity does not preserve invariant subspace lattices of quasisimilar operators A and B. in general. It preserves a sublattice of the invariant subspace lattice. But if A and B are quasisimilar weak contractions, then Lat (A) and $\operatorname{Lat}(B)$ are isomorphic. However Hoover [39] has shown that quasisimilar operators have isomorphic hyperinvatiant sulspace latidece.
All nommal operators have reducing subspaces (\mathcal{M} and \mathcal{M}^{\perp}). This follows from the spectral theoren. Unless T is a multiple of the identity, these reducing subspaces are even
hyperinvariant. Every sumomal operator, i.e., $T=\left.N\right|_{\mathcal{M}}$, where \mathcal{M} is an invariant subspace of the momal operator N, has invariant subspaces. These invariant subspaces need not be reducing, e.g., the milaternd shift. (which is subnommal) has mo reducing subspaces by Beurling's theorem although a milateral shift has plenty of invariant subspaces.

Proposition 4.60 For cuery $T \in B(\mathcal{H})$ and for every $\mathcal{M} \in H$ yperlal (T), $P_{\mathcal{M}}$ belongs to $W^{*}(T)$, where $P_{\mathcal{M}}$ is the projection of T on \mathcal{M} and $W^{*}(T)$ denotes the (weakly closed) (unital) von Neumann algebra generated by T.

Proof. By the rouble commutant theorem. it suffices to show that if $Q=Q^{2}=Q^{*} \in$ $\left\{W^{*}(T)\right\}^{\prime}=\{T\}^{\prime} \cap\left\{T^{*}\right\}^{\prime}$, then $P_{\mathcal{M}} Q=Q P_{\mathcal{M}}$, or, equivalently, that $Q \mathcal{M} \subset \mathcal{M}$. Since $Q \in\{T\}^{\prime}$ and $\mathcal{M} \in$ Hyperlat (T), this proves the result.

Proposition 4.61 Let T be a normal operator in $B(\mathcal{H})$. Then

$$
\text { Hyperat }(T)=\left\{\mathcal{M} \subset \mathcal{H}: P_{\mathcal{M}} \in \mathbb{V}^{*}(T)\right\}
$$

Proof. By Proposition 4.60, if $\mathcal{M} \in H y p e r l a t(T)$, then $P_{\mathcal{M}} \in W^{*}(T)$. On the other hand, by Fuglede's theorem

$$
\{T\}^{\prime}=\{T\}^{\prime} \cap\left\{T^{*}\right\}^{\prime}=W^{*}(T)
$$

Thus, if $P_{\mathcal{M}} \in W^{*}(T)^{\prime \prime}=W^{* *}(T)$ and $S \in\{T\}^{\prime}$, then $P_{\mathcal{N}} S=S P_{\mathcal{N}}$ so $S \mathcal{N} \subset \mathcal{N}$ and $\mathcal{N} \in$ Hyperlat (T).

Remark 4.36

Recall from Corollary 4.47 that $\operatorname{Hyper} \operatorname{lat}(T)$ is generated as a lattice by the spaces $\operatorname{Ker}\left(T^{m}\right)$ and $\operatorname{Ran}\left(T^{m}\right), \quad m=0,1,2, \ldots, n$. Lemma 4.42 can be generalized to show that $\operatorname{Ran}\left(T^{n-1}\right)$ (respectively, $\operatorname{Kipr}\left(T^{n-1}\right)$) is the smallest (respectively, the largest.) nontrivial hyperinvariant subspace for a nilpotent: operator $T \in B(\mathcal{H})$, where n is the nilpotency of T. We give an illustration, where J_{n} denotes a Jordan operator.

Example 4.4

When nilpotency $n=1$, we have $T=0$ and the only hyperinvariant subspaces are the trivial ones: $T=J_{1}:\{0\} \subset \mathcal{H}$.

When $n=2$, there are two possible latiaces:

$$
\begin{aligned}
& T=J_{2}:\{0\} \subset \operatorname{Kcr}(T)=\operatorname{Ran}(T) \subset \mathcal{H}, \\
& T=J_{2} \oplus J_{1}:\{0\} \subset \operatorname{Kir}(T) \subset \operatorname{Ran}(T) \subset \mathcal{H}
\end{aligned}
$$

while for $n=3$, there are four possibilities:

$$
\begin{gathered}
T=J_{3}:\{0\} \subset \operatorname{Ran}\left(T^{2}\right)=\operatorname{Ker}(T) \subset \operatorname{Ran}(T)=\operatorname{Ker}\left(T^{2}\right) \subset \mathcal{H} . \\
T=J_{3} \oplus J_{2}:\{0\} \subset \operatorname{Ran}\left(T^{2}\right) \subset \operatorname{Ker}(T) \subset \operatorname{Ran}(T) \subset \operatorname{Rer}\left(T^{2}\right) \subset \mathcal{H} \\
T=J_{3} \oplus J_{1}:\{0\} \subset \operatorname{Ran}\left(T^{2}\right)=\operatorname{Run}(T) \cap \operatorname{Ker}(T) \subset \operatorname{Ran}(T), \\
\operatorname{Ker}(T) \subset \operatorname{Ran}(T) \vee \operatorname{Ker}(T)=\operatorname{Ker}\left(T^{2}\right) \subset \mathcal{H} \\
T=J_{3} \oplus J_{2} \oplus J_{1}:\{0\} \subset \operatorname{Ran}\left(T^{2}\right) \subset \operatorname{Ran}(T) \cap \operatorname{Krr}(T) \subset \operatorname{Ran}(T), \\
\operatorname{Ker}(T) \subset \operatorname{Ran}(T) \bigvee \operatorname{Ker}(T) \subset \operatorname{Ker}\left(T^{2}\right) \subset \mathcal{H} .
\end{gathered}
$$

These results follow clearly from Remark 4.32 and Proposition 4.55 . We give an example to show that quasisimilarity does not preserve the hyperlatice.

Example 4.5

Consider the operators

$$
\begin{aligned}
& A=J_{1} \oplus J_{2} \oplus J_{2} \oplus \ldots \\
& B=J_{2} \oplus J_{2} \oplus J_{2} \oplus \ldots
\end{aligned}
$$

where J_{n} denotes the Jordan operator associated with a nilpotent operator of nilpotency n. Clearly, A and B are quasisimilar but Hyperlat (A) has four elements (i.e. is of height 4) and Hyperlat (B) has three elements (i.e. is of height 3). In this case we have four lattices, where the first two are totally ordered and other two are not totally ordered. Recall that lattices are isomorphic if they have the same number of levels or heights. The following result strengthens Theorem 4.57. It says that the converse of Theorem 4.57 is also true.

Corollary 4.62 Let $T \in B(\mathcal{H})$. Hyperlat $(T)=\operatorname{Lat}(T)$ if Lat (T) is any one of the following:
(i) commutative
(ii) totally ordered.

Proof.

By insimplion, H ypurlal $(T)=\operatorname{Ln\prime }(T)$ if $\{\mathcal{M}: T \mathcal{M} \subset \mathcal{M}\}=\{\mathcal{M}: S \mathcal{M} \subset \mathcal{M}, S \in$ $\left.\{T\}^{\prime}\right\}$. Clearly \mathcal{M}, \mathcal{N} are in $\operatorname{Lal}(T)$ if and only if $P_{\mathcal{M}} T P_{\mathcal{M}}=T P_{\mathcal{M}}$ and $P_{\mathcal{N}} T P_{\mathcal{N}}=T P_{\mathcal{N}}$, where $P_{M}{ }_{M}$ and $P_{\mathcal{N}}$ are the projections of \mathcal{H} onto \mathcal{M} and \mathcal{N}, respectively. Thus by the hypothesis, $P_{\mathcal{N}} P_{\mathcal{M}}=P_{\mathcal{M}} P_{\mathcal{N}}$ and $\mathcal{M} \subseteq \mathcal{N}$ or $\mathcal{N} \subseteq \mathcal{M}$. This proves that $\operatorname{Lat}(T)$ is commutative or totally ordered.

Remark 4.37

We note here that any element in Hypertat (T) is the kernel or range of some operators in $\{T\}^{\prime \prime}$. Note also that $T=\beta I$ (i.e. scalar operator) if and only if $H y p e r l a t(T)=$ $\{\{0\}, \mathcal{H}\}$ if and only if $\operatorname{Red}(T)$ is the collection (in this case, a lattice) of all subspaces of \mathcal{H}. Recall that. $\operatorname{Red}(T)$ is not necessatily a lattice.

Theorem 4.63 If $T x_{k}=x_{k+1}$ is the unilateral shift opecator, the only closed linear subspaces which reduce T are $\{0\}$ and \mathcal{H}.

Proof. Suppose $\mathcal{M} \neq\{0\}$ is a closed linear subspace which reduces T. For a non-zero vector $y=\sum_{m}^{\infty} \lambda_{k} x_{k}$, define the index of y to be the smallest subscript k such that $\lambda_{k} \neq 0$. Let m be the smallest index of any mon-zero vector in \mathcal{M}, and choose any non-zero $y \in \mathcal{M}$ with index m. Clearly, $y=\sum_{m}^{\infty} \lambda_{k} x_{k}$. Necessarily, $m=1$; otherwise. \mathcal{M} would contain the non-zero vector $T^{*} y=\sum_{m}^{\infty} \lambda_{k} x_{k-1}=\sum_{m-1}^{\infty} \lambda_{k+1}, x_{k}$, contrary to the minimality of m. We may suppose $\lambda_{1}=1$, thus $y=x_{1}+\sum_{2}^{\infty} \lambda_{k} \cdot x_{k}$. One has $T^{*} y=$ $T^{*} x_{1}+\sum_{2}^{\infty} \lambda_{k} T^{*} x_{k}=0+\sum_{2}^{\infty} \lambda_{k} x_{k-1}$, hence $T T^{*} y=\sum_{2}^{\infty} \lambda_{k} T x_{k-1}=\sum_{2}^{\infty} \lambda_{k} x_{k}=y-x_{1}$. Since $x_{1}=y-T T^{*} y$, clearly $x_{1} \in \mathcal{M}$. Clearly \mathcal{M} also contains $T x_{1}=x_{2}, \quad T x_{2}=x_{3}$, and so on. This show's that $\mathcal{M}^{\perp}=\{0\}$ and $\mathcal{M}=\mathcal{H}$. This completes the proof.
We note that by Theorem 4.63 that a milateral shift or a direct sum of unilateral shifts has no nontrivial unitary summand in its decomposition.

Theorem 4.64 If \mathcal{M} reduces T, then $\left(\left.T\right|_{M}\right)^{*}=\left.T^{*}\right|_{\mathcal{M}}$.
Proof. Let $R=\left.T\right|_{\mathcal{M}}$ and $S=\left.T^{*}\right|_{\mathcal{M}}$. For all $x, y \in \mathcal{M}$.

$$
\left\langle R^{*} x, y\right\rangle=\langle x, \stackrel{\rightharpoonup}{R} y\rangle=\langle x, T y\rangle=\left\langle T^{*} x, y\right\rangle=\langle S x, y\rangle,
$$

and since R^{*} and S are operators in $\mathcal{M}, R^{*}=S$.
 normal (respuectiocly, mitary).

Proof. By Theorem 4.64 , since \mathcal{M} reduces $T .\left(\left.T\right|_{\mathcal{M}}\right)^{*}=\left.T^{*}\right|_{\mathcal{M}}$. The nommality of T implies $T^{*} T=T T^{*}$. Hence $T_{\mathcal{M}}^{*} T_{\mathcal{M}}=\left(\left.T\right|_{\mathcal{M}}\right)^{*}\left(\left.T\right|_{\mathcal{M}}\right)=\left(T_{\mathcal{M}}\right)\left(T_{\mathcal{M}}\right)^{*}=T_{\mathcal{M}} T_{\mathcal{M}}^{*}$. The cose when T is unitary follows easily.
We investigate nontrivial invariant sulngates of operators. First, we nere the following definition.

Definition 4.12

If T is an operator and λ is a scalar, then $\operatorname{Ser}(\lambda I-T)$ is called the $\lambda-1$ hantrivial subsipace of T, and is denoted by $\mathcal{M}_{T}(\lambda)=\{x \in \mathcal{H}: T x=\lambda . r\}$. Clearly, $\mathcal{M}_{T}(\lambda)$ is a (llosed linear subsipate of \mathcal{H} and is clifferent from $\{0\}$ if and only if λ is an cigemathe of T.

Theorem 4.66 If S and T are operators such that. $S T=T S$. then the λ-subspares of T are imoariant under S.

Proof. If $x \in \mathcal{M}_{T}(\lambda)$, then $T(S x)=(T S) x=(S T) \cdot r=S(T x)=S(\lambda x)=\lambda(S x)$. This shows that $S x \in \mathcal{M}_{T}(\lambda)$.

Theorem 4.67 If T is a normal operalor. then
(i) the λ-spaces of T reduce T;
(ii) $\mathcal{M}_{T}(\lambda)=\mathcal{M}_{T^{-}}(\bar{\lambda})$;
(iii) $\mathcal{M}_{T}(\lambda) \perp \mathcal{M}_{T}(a)$, whenever $\lambda \neq a$.

Remark 4.38

Note that Theorem 4.67 is a combination of Theorem 4.66. Corollary 4.65 and Theorem 4.66 with S replaced with T^{*}. It is well known (see [58]) that every reductive operator is normal if and only if it has anontrivial invariant subspace. If \mathcal{M} reduces every operator in the commutant of T, we call \mathcal{M} hypervaducing for T (ecpuivalently, $\mathcal{M} \in$ $\left.\operatorname{Lat}\{A\}^{\prime} \cap \operatorname{Lat}\left\{A^{*}\right\}^{\prime}\right)$.

Proposition 4.68 If T is reductive. then erery hypromatriant subspace of T is hyperreducing.

Proof. Suppose that. \mathcal{M} is herperinsamian for T. and suppose that. B commmetes with T. Then \mathcal{M} is insariant moter B, and with resped to the decomposition \mathcal{M} (f) \mathcal{M}^{\perp} wo (an write T and B is operalor matrices a follows:

$$
T=\left(\begin{array}{cc}
R & 0 \\
0 & S
\end{array}\right) \quad \text { and } \quad B=\left(\begin{array}{cc}
E & F \\
0 & G
\end{array}\right)
$$

Since $T B=B T$, it is true that. $R F=F S$, and ly the Putnam-Fuglede theorem $R^{*} F=$ $F S^{*}$ is well. The last equation is the same as $F^{*} R=S F^{*}$ and this meams that T commentes with the operator $D=\left(\begin{array}{cc}0 & 0 \\ F^{*} & 0\end{array}\right)$. But by hypothesis \mathcal{M} is hyperinvariant, for T, and hence is invariant muler D. Thas $F^{*}=0$, or,$F=0$, and hence \mathcal{M} reduces B.

Theoren 4.69 If T is a reductime operator then T can be uritlen as a direct sum $T_{1} \oplus T_{2}$ where T_{1} is normal, T_{2} is wiductave, $\{T\}^{\prime}=\left\{T_{1}\right\}^{\prime} \oplus\left\{T_{2}\right\}^{\prime}$, and all the invariant subspaces of T_{2} are hyperimatiant (in fact hyperveducing). Equinalently, $\operatorname{Lat}\left(T_{2}\right)=$ $\operatorname{Lat}\left\{T_{2}\right\}^{\prime} \cap \operatorname{Lat}\left\{T_{2}^{*}\right\}^{\prime}$.

Proof. Mimic the proof of Theorem 4.30.

Remark 4.39

The second part of Theorem 4.69 says that if T is a completely non-nomal reductive operator (that is, T has no nomal direct smmmand) then $\operatorname{Lat}(A)=\operatorname{Lat}\{A\}^{\prime}$. But by Remark 4.38, every operator has a nontrivial invariant subspace if and only if every reductive operator is normal. It may turn ont there are no non-momal reductive operators and that we are dealing with an empty dass. Remember that every scalar operator $T \in B(\mathcal{H})$ has a nontrivial invariant subspace if $\operatorname{dim}(\mathcal{H})>1$.

Using Proposition 3.44, we cleduce the following result.
Corollary 4.70 Let $T \in B(\mathcal{H})$ be an operator in class C_{0}. If T is not a scalar then it has nonbivial hyperinvariant subspaces.

Proof. By Proposition 3.44, an imner divisor θ of m_{T} is miquely determined (up to a constant codficient) by the hyperinariant subspace $\operatorname{Ker}(\theta(T))$. Thas, if $\theta \not \equiv 1$ and $\theta \not \equiv$

nontrivial imer divisors. Then m_{T} mast be a Blaschke factor: $m_{T}(\lambda)=\frac{a-\lambda}{(1-\bar{\pi} \lambda)}, \quad \lambda \in \mathbb{D}$, which ckemty means that $T=a I$.

Theorem 4.71 Let $T \in B(\mathcal{H})$ and $\mathcal{M} \subseteq \mathcal{H}$. If \mathcal{M} is T-ingariant then $\overline{\mathcal{M}}$ is also T-invariant.

Proof. Take an arbitrary $x \in \overline{\mathcal{M}}$ so that x is a limit point of \mathcal{M} and hence there exists an \mathcal{M}-valued sequence, say $\left\{x_{n}\right\}$ that converges to r. If \mathcal{M} is T-invariant, then $\left\{T, x_{n}\right\}$ is again an \mathcal{M}-valued serfuence. Since T is continuons, $\left\{T r_{n}\right\}$ converges to T r. But $\overline{\mathcal{M}}$ is closed and each $T x_{n}$ lies in $\mathcal{M} \subseteq \overline{\mathcal{M}}$ so that $T x$ lies in $\overline{\mathcal{M}}$. This shows that $\overline{\mathcal{M}}$ is T-invariant whenever \mathcal{M} is.

Corollary 4.72 Let $T \in B(\mathcal{H})$. Then
(i) Ker (T) and $\overline{\operatorname{Ran}(T)}$ are hyperimbariant subspaces for T.
(ii) If $\operatorname{dim}(\mathcal{H})>1$ and T has no nontrivial invariant subspace, then $\operatorname{Kifr}(T)=\{0\}$ and $\overline{\operatorname{Ran}(T)}=\mathcal{H}$.

Proof. (i) Suppose $L \in B(\mathcal{H})$ commules with T. If $x \in \operatorname{Ker}(T)$, then $T L x=L T x=0$, and hence $L x \in \operatorname{Ker}(T)$. Thus $L(\operatorname{Ker}(T)) \subseteq \operatorname{Ker}(T)$ so that $\operatorname{Ker}(T)$ is L-invariant. Since $L T x=T L x$ for every $x \in \mathcal{H}$, it follows that, $L(\operatorname{Ran}(T)) \subseteq \operatorname{Ran}(T)$, and hence $L(\overline{\operatorname{Ran}(T)}) \subseteq \overline{L(\operatorname{Ran}(T))} \subseteq \overline{\operatorname{Ran}(T)}$, so that $\overline{\operatorname{Ran}(T)}$ is L-invariant.
(ii) Suppose $\operatorname{dim}(\mathcal{H})>1$ and T has no nontrivial invariant sulsipace. Then $T \neq 0$ and has no nontrivial hyperinvariant sulspace, so that $\operatorname{Ker}(T)$ and $\overline{\operatorname{Ran}(T)}$ are trivial subspaces by assertion (i). But since $T \neq 0$, it follows that $\operatorname{Kier}(T) \neq \mathcal{H}$ and $\operatorname{Ran}(T) \neq$ $\{0\}$. Therefore, $\operatorname{Ker}(T)=\{0\}$ and $\overline{\operatorname{Ran}(T)}=\mathcal{H}$.

Remark 4.40

Corollary 4.72 says that if an operator has no nontrivial invariant subspace, then it is quasiinvertible.

Corollary 4.73 Let S and T be nonzero operators on a Hillert, space \mathcal{H}. If $S T=0$, then $\operatorname{Ker}(S)$ and $\overline{\operatorname{Ran}(T)}$ are nontrivial invariant sub,spaces for both S and T.

Proof. If $S T=0$, then $\operatorname{Ran}(T) \subseteq \operatorname{Ker}(S)$, and hence $T(\operatorname{Ker}(S)) \subseteq T(\mathcal{H})=\operatorname{Ran}(T) \subseteq$ $\operatorname{Ker}(S)$. If $T \neq 0$, then $\operatorname{Ran}(T) \neq\{0\}$ so that $\operatorname{Ker}(S) \neq\{0\}$. If $S \neq 0$, then
 \mathcal{H} and $\{0\} \neq \overline{\operatorname{Ran}(T)} \neq \mathcal{H}$. Since S is continnous and since $S(\operatorname{Ran}(T))=\{0\}$,

$$
S(\overline{\operatorname{Rn} n(T)}) \subseteq \overline{S(\operatorname{Ran}(T))} \subseteq \overline{R m n(T)} .
$$

Thus if $S \neq 0, T \neq 0$, and $S T=0$, then $\operatorname{Sirr}(S)$ and $\overline{R a n(T)}$ are nontrivial invariant sulbsipaces for S and T, respectively.

Chapter 5

On canonical factorization of an

operator

In this chapter we investigate the factorization of an operator into two or more simpler factors and the properties shared by these factors. Although operator factorization is a live subject in Operator Theory. there is no general theory on how to carry on. A number of mathematicians have considered the problem of writing an operator as a prodnct of "nice" operators, such as positive, hermitian (self-aljoint), mitary, cyclic, nilpotent, quasinilpotent, nomal operators, projections, idempotents, cyelic, scalar, or n-th roots of ielentity. Operator factorization is a first hand tool in solving many problems in mathematical and theoretical physics and the diversity of the problems necessitates to keep improving it.

We start with the following result che to Ram and Yan [04] which will be useful in the sequel.

Lemma 5.1 [64. Lemma 2]. Let. $S, T \in B(\mathcal{H})$. If $A=T S$ and $B=S T$, then $\operatorname{dim}[\operatorname{Ker}(A-\lambda I)]=\operatorname{dim}[\operatorname{Kev}(B-\lambda I)], \lambda \neq 0 ;$ moreover, if $\operatorname{Ker}(S)=\operatorname{Ker}(T)$, then $\sigma_{P}(A)=\sigma_{P}(B)$.

Remark 5.1

Recall by Definition 4.12, Lemma 5.1 says that if $A=T S$ and $B=S T$ then $\operatorname{dim}\left(\mathcal{M}_{A}(\lambda)\right)=$ $\operatorname{dim}\left(\mathcal{M}_{B}(\lambda)\right)$.
Factorizations of matrices over a field are useful in quite a mumber of problems, both
amalytical and numerical; for cexample in the mumerial solution of lincar erpations and rigenvalue problems. Some well-kinown factorizations are (OR. SVD, LU. Cholesky and Wiener-Hopf factorizations (see [G8] for details). We need the following definitions and terminologies.

Definition 5.1

A vector $x \in \mathcal{H}$ such that $\bigvee\left\{T^{n} x\right\}_{n \geq 0}=\mathcal{H}$, then x is said to be a cyclic vector for T, where $\bigvee\left\{T^{n} x\right\}_{n>0}=\mathcal{H}=\overline{\operatorname{span}\left\{T^{n} x\right\}_{n>0}}$, which is a sulbsipace of \mathcal{H}. If $T \in B(\mathcal{H})$ has a cyclie vector, then it is a cyctic operator. Note that the (linear) span of the orvia of x : under T (i.e. $\left\{T^{n} r\right\}$) is the set of the inages of all nonzero polynomials of T at r, that is,

$$
\operatorname{span}\left\{T^{n} x\right\}_{n \geq 0}=\{p(T) x \in \mathcal{H}: p \text { is a nonzero polynomial }\} .
$$

A linear manifuld \mathcal{M} of \mathcal{H} is totally cyclic for T if every nonzero vector in \mathcal{M} is cyclic. Observe that T has no nontrivial invariant subspace if and only if every nonzero vector in \mathcal{H} is a cyclic vector for T : For if $\mathcal{M} \subseteq \mathcal{H}$ is T-invariant, then $T^{n}(\mathcal{M}) \subseteq \mathcal{M}$; that is, if and only if $\bigvee\left\{T^{n} x\right\}_{n \geq 0}=\mathcal{H}$ for every $x \neq 0$ in \mathcal{H}; which means that \mathcal{H} is itself totally cyclic for T. A diagonal operator D is said to have multiplicity 1 if the diagonal sequence is made up of distinct elements.

Example 5.1

A unilateral shift of multiplicity 1 on \mathbb{C}^{2} is $T=\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)$. As has been shown in Example 1.5, $\mu(T)=1$. This is an example of a nilpotent operator of nilpotence index 2.

Remark 5.2

We show that an operator T is the product of finitely many cyclic operators if and only if the $\operatorname{Kicr}\left(T^{*}\right)$ is finite-dimensional. That is, if the multiplicity $\mu\left(T^{*}\right)$ if finite. Nore precisely, if $\operatorname{dim}\left(\operatorname{Ker}^{*}\right) \leq k \quad(2 \leq k<\infty)$, then T is the product of at most $k+2$ cyclic operators. Wu [82] conjectured that in this case at most k cyclic operators would suffice. We verify this conjecture for some classes of operators.
A necessary condition for an operator T to be expressible as a product of $k(1 \leq k<\infty)$ cyclic operators is that $\operatorname{dim}\left(\operatorname{Ker}\left(T^{*}\right)\right) \leq k$. Indeed, for $k=1$ this is trivial. Assmming
its validity for k, we prove it for $h+1$. Let $T=T_{1} \ldots T_{h+1}$ be a pronded of $k+1$ evelic: operators, and let $S=T_{1} \ldots T_{k}$. Then $T^{*}=T_{k+1}^{*} S^{*}$ implies that dim $\left(\operatorname{kror}\left(T^{*}\right)\right)=$ $\left.\operatorname{dim}\left(\operatorname{Kin}^{\prime}\left(S^{*}\right)\right)+\operatorname{dim}\left(\operatorname{Ram}\left(S^{*}\right) \cap \mathfrak{K}^{*} r\left(T_{k+1}^{*}\right)\right) \leq \operatorname{dim}\left(\operatorname{KrN}\left(S^{*}\right)\right)+\operatorname{dim}\left(\operatorname{Kirr}_{k+1}^{*}\right)\right) \leq$ $k+1$. In view of this, we conjecture that, when $k \geq 2$, this meressary (ondition in also sufficient. This leads to the following result.

Proposition 5.2 An operator T is the product of $k(2 \leq k<\infty)$ cyclic operators if and only if $\operatorname{dim}\left(\operatorname{Ker}\left(T^{*}\right)\right) \leq k$.

Lemma 5.3 Every cyclic operator is the product of turo other cyrlic: operators.
Proof. Since T is cyclic, by ([29], Problem 167) it has a special matrix form
$T=\left(\begin{array}{ccc}a_{1} & \ldots & * \\ b_{1} & a_{2} & \\ \vdots & b_{2} & \ddots \\ 0 & & \ddots\end{array}\right)$, where all the b_{n} 's are non-zero. We dacompuse
$T=\left(\begin{array}{ccc}c_{1} & & 0 \\ & c_{2} & \\ 0 & & \ddots\end{array}\right)\left(\begin{array}{ccc}d_{1} & & * \\ e_{1} & d_{2} & \\ & e_{2} & \ddots \\ 0 & & \ddots\end{array}\right)$. Where the c_{n} 's are distinct and the e_{n} 's are all nonzero. Then T is the product of two cyrelic operators.

Remark 5.3

We study some classes of operators where the factorizations have been investigated. Suppose \mathcal{H} is a separable infinite-dimensional Hilbert space, and, for each positive integer n, let \mathcal{P}_{n} denote the set of all operators on \mathcal{H} that can be writen as the product of n positive operators. It was shown in Wu [84] that the mion of the \mathcal{P}_{n} is the set of invertible operators and it equals \mathcal{P}_{17}.
Recall that an operator $T \in B(\mathcal{H}, \mathcal{K})$ is invertible if it has an inverse on $\operatorname{Ran}(T)=\mathcal{K}$; and such an inverse must be bomaled. For convenience we denote by $\mathcal{G}(\mathcal{H} . \mathcal{K})$ the class of all invertible operators in $B(\mathcal{H}, \mathcal{K})$. This class contains the class of unitary operators (i.e. an invertible operator for which $\vec{T}^{-1}=T^{*}$). Note that $\mathcal{G}(\mathcal{H})=\mathcal{G}(\mathcal{H} . \mathcal{H})$ is a group uncler multiplication and not an algebra and that $\mathcal{G}(\mathcal{H}) \subset B(\mathcal{H}) . \mathcal{G}(\mathcal{H})$ contans the identity I. Hence it is a (unital) von Nemman algedra. Recall that moperator is
said to be peasitive if $\langle T, x, x\rangle>0$ for all nomzero $x \in \mathcal{H}$. We note that positive operators are not necessarily invertible (see [45], [f(i], [47]). If T is a positive operator, then $\operatorname{Ker}(T)=\{0\}$ and $\operatorname{Ran}(T)^{\perp}=\operatorname{Ker}\left(T^{*}\right)=\operatorname{Ker}(T)=\{0\}$, (for T is solffaljoint) so that $\overline{\operatorname{Ran}(T)}=\{0\}^{\perp}=\mathcal{H}$, and T has an inverse on its dense range. However, $\operatorname{Ran}(T)$ is not necessarily closed in \mathcal{H}. A positive scalar multiple of the identity operator is an example of an operator which is in looth classes. In this case we say T is strictly positive. Kabrusly [46] has given another lont equivalent characterization of a strictly positive operator T as one where o $\|r\|^{2} \leq\langle T x, x\rangle$ for every $x \in \mathcal{H}$ and $\alpha>0$. More recenty, Plinlips [57] inproved on Wis's result and proved that \mathcal{P}_{7} contains every invertible operator (i.e. $\mathcal{G}(\mathcal{H}) \subset \mathcal{P}_{7}$). That is, every invertible operator can be expressed as a product of seven positive operators. Finite-dimensional results had been obtained Carlier by Ballantine [7] who proved that \mathcal{P}_{5} is the set of all $n \times n$ matrices with positive determinant. Khalkhali etal [42], studied the norm closures of the \mathcal{P}_{n}, and membership in $\overline{\mathcal{P}_{2}}$ was characterized for certain classes of operators. It was shown that $\overline{\mathcal{P}_{4}}$ contains all biquasitriangular operators and that $\overline{\mathcal{P}_{5}}$ contains sach \mathcal{P}_{n} for $n \geq 5$; and hence $\overline{\mathcal{P}_{5}}$ contains every invert ible operator. i.e. $\mathcal{G}(\mathcal{H}) \subset \overline{\mathcal{P}_{5}}$.
We need the following definitions.
An operator $T \in B(\mathcal{H})$ is called quasidiagonal (quasitriangular) if there exists an in(reasing sequence $\left\{P_{n}\right\}_{n=1}^{\infty}$ of finite rank (orthogonal) projections such that $P_{n} \longrightarrow I$ (strongly as $n \longrightarrow \infty)$ and $\left\|T P_{n}-P_{n} T\right\| \longrightarrow 0$, i.e. $\left(\left\|T P_{n}-P_{n} T P_{n}\right\| \longrightarrow 0\right.$, respectively as $n \longrightarrow \infty$) (see [54]). The class of biquasitriangular operators is defined as $(B Q T)=\left\{T \in B(\mathcal{H}): T\right.$ and its adjoint T^{*} are quasitriangular $\}$. Quasitriangularity can be illustrated further as follows:
An operator matrix $Q=\left(q_{i j}\right)$ is quastriangular(Hessenberg) matrix if $q_{v 3}=0$ whenever $i>j+1$. That is, if all entries of Q below the sulb-diagonal are zero (see [54]). Compact operators, algebraic operators and quasinilpotent operators are biquasitriangular. Let S_{+}denote a unilateral shift. Then the bilateral shift $S_{+} \oplus S_{+}^{*}$ is a c.n.u biquasitriangular contraction (it is a partially isometric bicuasitriangular contraction). Recall that bilateral slifts are unitary (i.e besidess being isometries they are normal too).
Hadwin [27] hats shown that. $\overline{\mathcal{P}_{4}} \Longrightarrow \overline{\mathcal{P}_{5}}$ and completely characterized $\overline{\mathcal{P}_{2}}$ as the set of biquasitriangular operators T for which each component of $\sigma_{t}(T) \cup \sigma_{0}(T)$ intersects the set \mathbb{R}^{+}of non-negative real mumbers, where $\sigma_{c}(T)$ is the essential spectrum of T (a
subset of the spectrum of T. i.e. those $\lambda \in \mathbb{C}$ such that $\lambda I-T$ is mot. Frocllosh, i.e., its range is not closed and its kernol and range are not finite-dimensional) and $\sigma_{11}(T)$ is the set of normal eigenvalues of T (i.e, $\lambda \in \sigma_{0}(T)$ if λ is an isolated point of $\sigma(T)$ whose Rie\%-Dunford spectral projection is finite-dimensional). Harluin [27] has also shown that $\overline{\mathcal{P}_{3}}$ contains every operator whose essent ial spectrom contains 0 and that the operatoms in $\overline{\mathcal{P}_{3}}$ all contain 0 in their essential munerical range. Hence, $\overline{\mathcal{P}_{3}} \neq \overline{\mathcal{P}_{4}}$. Wu $[84]$ olserved that \mathcal{P}_{2} is closed under similarity since \mathcal{P}_{2} is the set of operators similar to a positive invertible operator.

Theorem 5.4 The following assertions. are equivalent for an operator T :
(i) $T \in \overline{\mathcal{P}_{2}}$
(ii) $T \in \overline{\left\{A: \sigma(A) \subset \mathbb{R}^{+}\right\}}$
(iii) T is biquasitriangular, and each component. of $\sigma_{e}(T) \cup \sigma_{11}(T)$ mitersects \mathbb{R}^{+}.

Proof. The equivalence of (ii) and (iii) is contained in [2, Proposition 10.1] and the implication (i) \Longrightarrow (ii) is obvious from the fact that \mathcal{P}_{2} is the set of all operators similar to a positive invertible operator. This also follows from the fact that every positive operator is self-acljoint and hence has non-negative real spectra. Hence we need to show that if $\sigma(T) \subset \mathbb{R}^{+}$, then $T \in \overline{\mathcal{P}_{2}}$. If $\sigma(T) \subset \mathbb{R}^{+}$, then no point in the Fretholm resolvent can have non-zero index. Hence by [3], T is biquasitriangular. It follows from Voiculescu [73] that T is a norm limit of a sequence of algebraic operators. By the semicontinuity of the spectrugn, for every positive number ε there is an algelraic operator A such that $\|T-A\|<\varepsilon$ and the imaginary parts of all the eigenvalues of A have alosolute value less than ε. However, by [30], A has an upper triangular operator matrix whose diagonal entries are eigenvalues of A.
The equivalence (iii) \Longrightarrow (i) follows immediately from Hadwin [27]. By perturbing the diagonal entries of A to make them positive and distinct, we obtain an operator B with $\|A-B\|<\varepsilon$ such that B has an upper triangular operator matrix with distinct positive diagonal entries. By Rosenblum's theorem [62], B is similar to a positive invertible operator and thus $B \in \mathcal{P}_{2}$. Since $\varepsilon>0$ was arbitrary, $T \in \overline{\mathcal{P}_{2}}$.

Corollary 5.5 If T is a bilateral operator-weight shift with weights that are all unilary or form a commuting family of diagonal operators $\left\{D_{n}\right\}$ with $D_{n}=D_{1}$ for all nom-zreo integers n, then $T \in \overline{\mathcal{P}_{2}}$.

Proof. If the weights are all mitary, then T is a mitary operator whose speremm is the

 Hence by [3] T is biquasitrimghar. Since $\sigma(T)$ and $\sigma_{r}(T)$ have dircolar symmetry, $\sigma_{0}(T)=\emptyset$ and each component of $\sigma_{1}(T)$ intersects \mathbb{R}^{+}. Hence, by Theorem 5.4, $T \in \overline{\mathcal{P}_{2}}$.

Theorem $5.6[27] \quad \overline{\mathcal{P}_{4}}=\overline{\mathcal{P}_{5}}$

Remark 5.4

In Theorem 5.6, by showing that $\overline{\mathcal{P}_{1}}=\overline{\mathcal{P}_{5}}$ shows that \mathcal{P}_{4} is not cont aned in the biquasitriangular operators. This result was improved by $[27]$ by showing that $\overline{\mathcal{P}_{3}}$ is not contained in the biquasitriangular operators.

Theorem 5.7 [27] The set $\overline{\mathcal{P}_{3}}$ combains enery T whose essential spectrum contains 0 .

Remark 5.5

Theorem 5.7 shows that $\overline{\mathcal{P}_{3}}$ contans many operalors: however, $\overline{\mathcal{P}_{3}}$ does not contain every invertible operator. Note that a monber λ is in the essential mmerical range of an operator T if there is an orthonomal seruence $\left\{e_{n}\right\}$ of vectors such that $\left\langle T e_{n}, e_{n}\right\rangle \longrightarrow \lambda$.

Proposition 5.8 If $T \in \overline{\mathcal{P}_{3}}$ then the essentinl numerical range of T intersects \mathbb{R}^{+}.
Proof. Suppose $T \in \overline{\mathcal{P}_{3}}$, and choose sequences $\left\{A_{n}\right\},\left\{B_{n}\right\}$ and $\left\{C_{n}\right\}$ of positive invertible operators such that $A_{n} B_{n} C_{n} \longrightarrow T$. Since $A_{n} B_{n} C_{n}=\left(\frac{A_{n}}{\left\|A_{n}\right\|}\right)\left(\left\|A_{n}\right\| B_{n}\right) C_{n}$, we can assume that $\left\|A_{n}\right\|=1$ for each n. Since $B_{n} C_{n}$ is similar to a positive operator, there is a positive λ_{n} in the left essential spectrum of $B_{n} C_{n}$. Hence we can construct a sequence $\left\{x_{n}\right\}$ of unit vectors such that $x_{n} \in\left\{x_{1}, x_{2}, \ldots, x_{n-1}\right\}$ for $n \geq 2$, and such that $\left\|B_{n} C_{n} x_{n}-\lambda_{n}\right\| \leq \frac{1}{n}$ for $n \geq 1$. Hence dist $\left\{\left\langle T x_{n}, x_{n}\right\rangle, \mathbb{R}^{+}\right] \leq \mid\left\langle T x_{n}, x_{n}\right\rangle-$ $\lambda_{n}\left\langle A_{n} x_{n}, x_{n}\right\rangle \mid \longrightarrow 0$. Thus any limit point of the secpuence $\left\{\left\langle T x_{n}, r_{n}\right\rangle\right\}$ is a point in the essential numerical range of T that lies in \mathbb{R}^{+}.

Remark 5.6

When we consider products of n invertible hermitian operators with at least one factor positive \mathcal{H}_{n}. we find that $T \in \mathcal{H}_{2}$ if and only if T is similar to an invertible lermitian operator.
(Proof. $A B=A^{\frac{1}{2}}\left(A^{\frac{1}{2}} B A^{\frac{1}{2}}\right) A^{-\frac{1}{2}}$ and $S^{-1} D S^{\prime}=S^{-1}\left(S^{*}\right)^{-1}\left[S^{*} D S\right]$). This memins that Theorem s. 4 remains valid with \mathcal{P}_{2} replaced with \mathcal{H}_{2} amd \mathbb{R}^{+}replated with \mathbb{R}. From Theorem 5.6 , it is clear that $\overline{\mathcal{H}_{1}}=\overline{\mathcal{P}_{1}}$. Proposition 5.8 remains valid when \mathcal{P}_{3} is replaced with \mathcal{H}_{3} and \mathbb{R}^{+}replaced wilh \mathbb{R}.
Falling short of proving the Lemma 5.3, we are able to verify it for several classese of special operators. We start with the finite-dimensional case.

Proposition 5.9 On a finite-dimensional Hillert space $\mathcal{H} . T \in B(\mathcal{H})$ is the product of $k:(2 \leq k<\infty)$ cyclic operators if and only if $\operatorname{dim}\left(\operatorname{Ker}\left(T^{*}\right)\right) \leq k$.

Proof. We prove that $\operatorname{dim}\left(\operatorname{Ker}\left(T^{*}\right)\right)=k$ implies that T is the product of k cyclic operators. Since the property of cyclicity is preserved under similarity, we may assume that T is of the form
$\left(\begin{array}{cccc}0 & 1 & & 0 \\ & 0 & \ddots & \\ & & \ddots & 1 \\ 0 & & & 0\end{array}\right) \oplus \ldots \oplus\left(\begin{array}{cccc}0 & 1 & & 0 \\ & 0 & \ddots & \\ & & \ddots & 1 \\ 0 & & & 0\end{array}\right) \oplus\left(\begin{array}{lll}a_{1} & & * \\ & \ddots & \\ 0 & & a_{n}\end{array}\right) \approx T_{1} \oplus \ldots \oplus T_{k} \oplus T_{k+1}$,
where T_{j} is of size n_{j} for $j=1, \ldots, k+1$ and the a_{i} 's are all nonzero. Note that
$T_{1} \oplus \ldots \oplus I_{k}=\left(\begin{array}{ccccc}0 & 2 & & & 0 \\ & 0 & 3 & & \\ & & & \ddots & \\ & & & \ddots & N \\ 0 & & & & 0\end{array}\right)\left(\begin{array}{llll}u_{1} & & & 0 \\ & b_{2} & & \\ & & \ddots & \\ 0 & & & b_{N}\end{array}\right) \approx S_{1} S_{2}$, where $N=n_{1}+n_{2}+$ $\ldots+n_{k}$ and $b_{j}=\left\{\begin{array}{cc}\frac{1}{j} & \text { if } 1 \leq j \leq N \text { and } j \neq n_{1}+1, n_{1}+n_{2}+1, \ldots, n_{1}+\ldots+n_{k-1}+1, \\ 0 & \text { otherwise }\end{array}\right.$
and that $T_{k+1}=\left(\begin{array}{ccc}b_{N+1} & & * \\ & \ddots & \\ 0 & & b_{N+n}\end{array}\right)\left(\begin{array}{ccc}c_{1} & & 0 \\ & \ddots & \\ 0 & & c_{n}\end{array}\right) \equiv R_{1} R_{2}$,
where $b_{N+1}, \ldots . b_{N+m}$ are all nonzero and distinct and the c_{j} 's are nonzero and distinct and also distinct. From the nomzero b_{j} 's. Letting $A_{j}=S_{j} \oplus R_{j}, j=1,2$, we have
$T=A_{1} A_{2}$. Since $A_{1}=\left(\begin{array}{ccc}L_{1} & & * \\ & \ddots & \\ 0 & & L_{n}\end{array}\right)$ where the L_{i} are all cyclic and have mut mally disjoint spectra, A_{1} must be cyclic. (On the other hame since A_{2} is a diagomal operator with $k-1$ zero diagonals, we can express it as a product of $k-1$ diagomal operatoms coich with distinct diagonals. Hence A_{2} is the product of $k-1$ cyclic operators, and therefore T is the product of k cyclic operators.

Corollary 5.10 On an n-dimensional Hollert space, emery operator is the product of n ryclic operators and n is the smallest such number.

We now investigate operators on infinite-dimensional Hillert spares. We denote the multiplicity of an operator T by $\mu(T)$. Since $\operatorname{dim}\left(\operatorname{Ker}\left(T^{*}\right)\right) \leq \mu(T)=\operatorname{dim}(\operatorname{Ker}(T))$ for any operator T, the next proposition is weaker than the Corollary 5.10. Recall that a multicyclic operator is one that has finite multiplicity. That is $\mu(T)<x$. The cyclic multiplicity is the number of cyclic sulspacess for T that are needed to generate \mathcal{H}.

Proposition 5.11 If T is a multicyclic operator with multiplicaty m, then T is the product of m cyclic operators.

Proof. We prove this result by Mathematical Induction on the multiplicity m. Olvicously, this is true for $m=1$. Assuming its validity for any operator T with multiplicity $\mathcal{L}^{\mu}(T)=m$, we prove it for $m+1$. So let T be an operator with multiplicity $m+1$, then 7 y Herrero and Wogen [36], we have the triangulation for $T=\left(\begin{array}{cc}T_{1} & X \\ 0 & T_{2}\end{array}\right)$, where T_{1} is <c.yclic and $\mu\left(T_{2}\right)=m$. Hence $T_{2}=S_{1} \ldots S_{m-1} S_{m}$ is a product of m cyclic operators by
he induction process. On the other hand, using Lemma 5.3, we obtain $T_{1}=R_{1} \ldots R_{m+1}$,
Where the R_{j} 's are all cyclic and each $R_{j}, j=1, \ldots, m$, is diagonal and invertible with $\checkmark\left(R_{j}\right)$ disjoint from $\sigma\left(S_{j}\right)$ when $j=1, \ldots, m-1$. Moreover, let $S_{m}^{\prime}=S_{m} S_{m+1}$, where 1 ooth factors are cyclic, $\sigma\left(S_{m}\right)$ is disjoint from $\sigma\left(R_{n}\right)$ and S_{m+1} is diagonal and invertible Lvith $\sigma\left(S_{m+1}\right)$ disjoint from $\sigma\left(R_{m+1}\right)$. Finally, we let $Q_{1}=\left(\begin{array}{cc}R_{j} & 0 \\ 0 & S_{j}\end{array}\right), j=1, \ldots, m$, kIEnd $Q_{m+1}=\left(\begin{array}{cc}R_{m+1} & R_{m}^{-1} \ldots R_{1}^{-1} X \\ 0 & S_{m+1}\end{array}\right)$.
Then each Q_{j} is cyclic by Proposition 5.9 and $T=Q_{1} \ldots Q_{m+1}$. This proves the result.

Remark 5.7

Recall that an operator is triamgular if it can be represemted in thematrix form $\left(\begin{array}{cc}a_{1} & \\ & a_{2} \\ \\ 0 & \\ 0 & \end{array}\right)$. We give an improvennent of Lemma 5.3.

Lemma 5.12 If T is a cyclic: operator whilh denses range, then $T=T_{1} T_{2}$, where T_{1} is unitary cyclic: and T_{2} is triangular cygclic.

Remark 5.8

This is essentially the infinite-dimensional QR fecomposition: every operator with dense range is the profluct of a mitary operator and a triangular operator (see [68] for cletails).

Proposition 5.13 If the spectrum of T does not survound (0. Then T is the product of two cyche operators.

Proof. We assmue that T is of the form $\left[T_{i j}\right]$, where T_{n} is cyclice for all i and $T_{\imath j}=0$ for $i>j$. It is easily seen from [58 , Theorem ($) .8]$ that $\sigma\left(T_{i i}\right)$ is contaned in the polynomially convex hull of $\sigma(T)$.
Our hypothesis implies that T_{i} is invertible for all i. Thus by Lemma 5.12 , we obtain $T_{i i}=U_{i} A_{i}$, where U_{2} is unitary cyclic and A_{2} is triangular cyclic. Let $\left\{r_{i}\right\}$ be a sequence of dist inct real mombers between 1 and 2 , and lot $V_{i}=r_{i} U_{i}$ and $B_{i}=\frac{A_{1}}{r_{0}}$. Then $T_{i n}=V_{i} B_{i}$. Since the B_{i} 's together with the A_{2} 's are all invertible, we may make furt her arljustiments so that the diagonals of all the B_{i} 's are distinct. If
$T_{1}=\left(\begin{array}{cccc}V_{1} & T_{12} B_{2}^{-1} & T_{13} B_{3}^{-1} & \\ & V_{2} & T_{23} B_{3}^{-1} & \ddots \\ & & V_{3} & \ddots \\ 0 & & & \ddots\end{array}\right)$ and $T_{2}=\left(\begin{array}{cccc}B_{1} & & & 0 \\ & B_{2} & & \\ & & B_{3} & \\ 0 & & & \ddots\end{array}\right)$,
then $T=T_{1} T_{2}$. The relation $B_{i}^{-1}=r_{i} A_{i}^{-1}=r_{i} T_{i i}^{-1} U_{i}$ implies that $\left\|B_{i}^{-1}\right\| \leq 2\left\|T^{-1}\right\|$ for all i, whence T_{2} is invertible and therefore T_{1} is inded a bounded operator. Since the V_{i} 's are cyclic and their spectra are muthally disjoint, Proposition 5.9 implies that T_{1} is cyclic. On the other hamel, if D_{2} is a cliagonal operator whose diagonals are exactly those of B_{i}, then D_{i} is a quasiaffine transform of B_{i}. Hence $\sum_{i} \oplus D_{i}$ is a quasiaffine transform of T_{2}. Since $\sum_{i} \oplus D_{2}$ is itself a diagonal operator with distinct diagonals, it is cyclic, whence T_{2} is cyclic. This completes the proof.

Theorem 5.14 Let $T=\sum_{n} \oplus T_{n}$, where the T_{n} 's are cyctic. If $k \geq 2$ and T_{n} has dense range for all $n \geq k$, then T is the product of k cyclic operators.

Proof. By Lemmad 5.3 we can express cath $T_{n}, n=1,2, \ldots, k$, as a product $T_{n}=$ $T_{n 1} \ldots T_{n k}$, where $T_{n j}$'s are all cyclice and ead $T_{n j}, j \neq n$, is a diagonal operator with spectrom disjoint. from the spectra of all the other $T_{i j}$'s. For the remaining T_{n} 's, we use Lemma 5.12 to oltain $T_{n}=U_{n} A_{n}$, where U_{n} is unitary cyelic and A_{n} is triangular (yclic. We further express these T_{n} 's as a product $T_{n}=T_{n 1} \ldots T_{n k}(n>k)$, where each $T_{n 1}$ is a distinct multiple of U_{n} with spectrum disjoint from the spectra of $T_{11}, \ldots, T_{k 1}$, and each $T_{n j}, j=2, \ldots, k$, is either triangular cyelic or diagonal cyclic with the closure of its distinct diagonals disjoint from the spectra of $T_{1 j}, \ldots . T_{k j}$. Let $S_{j}=\sum_{n} \oplus T_{n j}, j=$ $1, \ldots, k$. Olviously, $T=S_{1} \ldots S_{k}$. with S_{1} cyclic by the above construction. To prove the ('yclicity of the remaining S_{j} 's, let $D_{n j}(n>k)$ and $j=2, \ldots, k$ be the diagonal operator with diagonals exactly those of $T_{n j}$. Since $T_{1 j} \oplus \ldots \oplus T_{k j} \oplus \sum_{n=k+1}^{\infty} \oplus D_{n j}, \quad j=2, \ldots, k$, is cyclic and is a quasiaffine transfom of S_{j}, using the above construction and Proposition 5.9 , we conclude that S_{j} is cyclic as asserted.

We now use our results to give some factorizations for some special classes operators.
Corollary 5.15 An isometry T is the product of $k(2 \leq k<\infty)$ cyclic operators if $\operatorname{dim}\left(\operatorname{Ker}\left(T^{*}\right)\right) \leq k$.
Proof. This result follows from the application of Theorem 5.14 and the application of the spectral theorem and the von Nemman-Wold decomposition of an isometry that: Every isometry can be expressed as a direct sum of simple unilateral shifts (c.n.u) and cyclic unitary (unitary) operators. In a similar fashion, every co-isometry is the direct sum of some backward shift ((c.n.u) summand) and cyclic unitary (unitary summand) operators.

Corollary 5.16 Every co-isometry is the product of two cyclic operators.
Proof. This result follows by the application of the fact that the backward shift is cyclic and Theorem 5.14.

Remark 5.9
We note that Corollary 5.15 also follows from [44, Theorem 2] that an isometry T with $\operatorname{dim}\left(\operatorname{Ker}\left(T^{*}\right)\right)=k$ is the product of k simple unilateral shifts. Corollary 5.16 also
follows from [10, Theorem 3] that every en-isometry is the prodict of some backward shift and a simple milateral shift. For a nomal operator T with $\operatorname{dim}\left(\operatorname{Kr}\left(T^{*}\right)\right)=h$, we have, by the wectral theorm, the decomposition $T=\sum_{n=1}^{\infty} T_{n}$, where T_{1}, \ldots, T_{k} are the zero operators on a one-dimensional spate and exery $T_{n}(n>k)$ is one-to-one with dense range.
This leads to the following result.
Corollary 5.17 A normal operator T is the produch of $k(2 \leq k<\infty)$ cyclic operators if and only if $\operatorname{dim}\left(\operatorname{Ker}\left(T^{*}\right)\right) \leq k$.
The following result says that the product of finitely many cyclic: operators condition can be characterized by the condition that the dimension of $\operatorname{Ker}\left(T^{*}\right)$ is finite.

Theorem 5.18 An operator T with $\operatorname{dim}\left(\operatorname{Krr}\left(T^{*}\right)\right) \leq k, 2 \leq k<\infty$ is the product of at most $k+2$ cyclic operators.

Proof. If $\operatorname{dim}(\operatorname{Ker}(T)) \leq \operatorname{dim}\left(\operatorname{Ker}\left(T^{*}\right)\right)$, then the polar decomposition of T yields $T=V P$. where V is an isometry with $\operatorname{dim}\left(\operatorname{Kicr}\left(V^{*}\right)\right)=\operatorname{dim}\left(\operatorname{Ker}\left(T^{*}\right)\right)-\operatorname{dim}(\operatorname{Kicr}(T))$ and $P=\left(T^{*} T\right)^{1 / 2}$ satisfies $\operatorname{Ker}(P)=\operatorname{Ker}(T)$. By Corollaries 5.15 and 5.17, V and P are, respectively, the products of m and $\|$ cyclic operators. where $m=\max \left\{d i m\left(\operatorname{Ker}\left(T^{*}\right)\right)-\right.$ $\operatorname{dim}(\operatorname{Ker}(T)), 2\}$ and $n=\max \{\operatorname{dim}(\operatorname{Ker}(T)) \cdot 2\}$. It follows that T is the procluct of $k+2$ cyclic operators.
On the other land, if $\operatorname{dim}(\operatorname{Ker}(T))>\operatorname{dim}\left(\operatorname{Ker}\left(T^{*}\right)\right)$, then consider the decomposition $T=P V$, where $P=\left(T T^{*}\right)^{1 / 2}$ and V is a co-isometry. Since $\operatorname{dim}(\operatorname{Ker}(P))=$ $\operatorname{dim}\left(\operatorname{Ker}\left(T^{*}\right)\right) \leq k$, Corollary 5.17 implies that P is a product of k cyclic operators. Also, V is the product of two cyclic operators by Corollary 5.16. This proves the result.

Remark 5.10

We note that Corollary 5.18 simply says that T is a product of k cyrlic operators if $2 \leq \operatorname{dim}(\operatorname{Ker}(T))$ and $\operatorname{dim}(\operatorname{Ker}(T))+2 \leq \operatorname{dim}\left(\operatorname{Ker}\left(T^{*}\right)\right) \leq k \quad(2 \leq k<\infty)$.
We also note that using Halnos [31], Corollary 5.15 can be sharpened to: Every isometry is either unitary or a shift or a prodüct of two of these two kinls. Some results sharpening the preceding results have been given. For instance, Radjavi [59] has shown that a normal operator is the procluct of four self-aljoint operators, Halmos anel Kakutami [28]
have proved that cath mitary operator is the product of foar symmetries. Recently, Phillips [57] has proved that every invertible operator is the product of seven positive operators. Very recently, Moslehian [52] worked on decomposition of an operator into a product of projections. It is well known (see [34]) that if T is a linear operator in a finite- dimensional Hilbert space having nomzero kemel, then T is the product of a finite mumber of projections.
We give a simple proof to the following important assertion.
Proposition 5.19 An invertible operator T is a produc: of two self-adjoint operators if and only if T is similar to T^{*}.

Proof. Suppose T is invertible with $T=A B$ with $A^{*}=A$ and $B^{*}=B$. Since T is invertible, then $I=T T^{-1}=(A B)\left(B^{-1} A^{-1}\right)$. This shows that A and B are invertible also and hence $B . A$ is invertible.
$T^{*}=B A=B I A=B T T^{-1} A=B T(A B)^{-1} A=B T B^{-1} A^{-1} A=B T B^{-1}$. This shows that $T \approx T^{*}$. Conversely, suppose T is invertible and $T \approx T^{*}$. Since T is invertible, by the polar decomposition theorem, T has a mique polar decomposition $T=U P$, where U is unitary (and not necessarily self-adjoint) and $P=\left(T^{*} T\right)^{1 / 2}$ is a positive operator (self-adjoint). We use the similarity of T and T^{*} to show that U, must indeed, be self-arljoint. $T \approx T^{*}$ implies that $U P=X^{-1}(U P)^{*} X=X^{-1} P U^{*} X$. Withont loss of generality, we can let $X=I$. In that case, $U=U^{*}$, which proves that U is self-aljoint. This completes the proof.

Remark 5.11

We clenote by \mathfrak{S}_{0} the set of all invertible products of self-arljoint operators A and B and by \mathfrak{S} the set of invertible operators that are similar to their adjoints. It is clear that $\mathfrak{S}_{0} \subseteq \mathfrak{S}$. Proposition 5.19 assorts that $\mathfrak{S} \subseteq \mathfrak{S}_{0}$ is also valid. By using the invariance of the classes \mathfrak{S}_{0} and \mathfrak{S} under similanity transformations $T=S^{-1} T S$. We notice that \mathfrak{S} is strictly larger than the class of operators that are similar to self-ardjoints. An example is the bilateral slift.

Theorem 5.20 T is unitarily cammalent to its adjoint if and only if T is the product of a symmetry and a self-adjoint opernotor.

Proof. If $T=J A$, where $J=J^{*}=J^{-1}$ is a symmetry and A is self-adjoint, then $J T J=A . J=T^{*}$, so that T is mitanily equivalent to its aljoint. Conversely, suppose $T U=U T^{*}$, where U is unitary. Then T commules with U^{2}. Let. $\int r^{\text {at }} d E_{\theta}$ be the spectral representation of U^{2}. If $V=\int e^{1 \theta / 2} d E_{\theta}$, then V is a milaty operator, $V^{2}=U^{2}$, and V commutes with every operator that commmes with U^{2}. It follows that V commutes wilh U and T, therefore $J=V^{-1} U$ is a symmetry and $T J=J T^{*}$. Hence $T=J(T, J)$ is the product of a symmetry and a self-adjoint operator.
Theorem 5.20 leads to the following assertion.
Corollary 5.21 A unitary operator U is similar to its inverse if and only if U is the product of two symmetries.

Remark 5.12

We now study operators that admit a factorization as a procluct of two self-adjoint operators.
We begin by considering the finite-dimensional case.
Theorem 5.22 If \mathcal{H} is a finite-dimensional Hilbert space, then the following are pquivalent conditions for an operator T on \mathcal{H}.
(i) T is a product of two self-adjoint operators.
(ii) T is a product of two self-adjoint operators, one which is invertible.
(iii) T is similar to T^{*}.

Remark 5.13

The implications (iii) \Longleftrightarrow (ii) \Longrightarrow (i) are purely formal and hence they remain valid in the infinite-dimensional case. To show that (iii) does not imply (i), consider the operator $T=\left(\begin{array}{ll}1 & 2 \\ 0 & 4\end{array}\right)$. It is clear that T is similar to T^{*} but $T=T_{1} T_{2}$, where $T_{1}=\left(\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right)$ and $T_{2}=\left(\begin{array}{cc}2 & 2 \\ -1 & 2\end{array}\right)$. Clearly, T_{2} is not self-adjoint.
These results show that the invertibility condition of T in Proposition 5.19 camnot be droppeed.

Theorem 5.23 Two normal operators A and B that are similar are unitarily equivalent.

Proof. Suppose A and B sintisty the relalion $A=X B X^{-1}$ i.f $A X=X B$ for some invertible operator X. By the Patman-Fuglede Theorem, il $A X=X B$ lor some operator X, then $A^{*} X=X B^{*}$. Thus $A^{*}=X^{*-1} B^{*} I^{*}$ and $A^{*}=X^{*} B^{*} X^{-1}$, which means that $X^{*}=X^{-1}$ or X is a matary operator. This proves the result.

Corollary 5.24 Each nommal opreralor in \mathcal{S} belongs lo \mathcal{E}_{0}.
Proof. The proof follows from the fact that two nommal operatoms that are similar are also unitarily equivalent, إy Theorem 5.2:3.

Theorem $5.25 T \in B(\mathcal{H})$ is a product of two projections if and only if $T T^{*} T=T^{2}$.
Proof. The necessity is trivial. To prove the sufficiency, let I_{1} be the projection onto $\overline{\operatorname{Ran}(T)}$, and let P_{2} be the projedion onto $\operatorname{Krr}(T)^{\perp}$. Then $T=P_{1} P_{2}$.

Remark 5.14

We now study the factorization of invertible operators. Invertible operators include the unitary operators which are a first hand tool in solving many problems in mathematical and theoretical physics, with applications in quantum cryptography and quant um teleportation. We wish to factorize a mitary operator ats $T=A B$, where A is mitary and is a product of (n-1) mitary operators mad B is a little bit simpler operator than T. Recall that an operator T is similar to S if $T=X^{-1} S X$ for certain invertible X and T is congruent to S if $T=X^{*} S X$ for some operator X. Since mitary operators are invertible, we give the following general result.

Theorem 5.26 (1) An invertible operator T is the product of a positive opcrator and a hermitian operator if and only if it i.s similar to a hermitian operator.
(ii) An invertible operator is the producl of a positive operator and an involution operator if and only if it is congruent to an involution operalor.
(iii) Every invertible operator is a product of a positive operator and a unitary operator:

Proof. The proof of (i) is olsvious.
(ii). If $T=X^{*} V X$ where V is an involution, then $X^{*} X$ is positive, $X^{-1} V X$ is an involution and $T=\left(X^{*} X\right)\left(X^{-1} V X\right)$. as recpuired. Conversely, if $T=P V$ where P is positive and V is an involution, then $P^{1 / 2} V P^{-1 / 2}$ is an involution and $T=$ $P^{1 / 2}\left(P^{1 / 2} V P^{-1 / 2}\right) P^{1 / 2}$, as required.
(iii) If $T=P U$ is the polar deromposition of T, then $I^{P / 2} T P^{1 / 2}=J^{1 / 2} U P^{1 / 2}$ and $P^{-1 / 2} T P^{-1 / 2}=P^{1 / 2} U D^{-1 / 2}$, as reguired.

Theorem 5.27 An inver tible operalor T is
(i) similar to its adjoint if and only if it is a produce of thoo hermilian operators
(ii) similar lo its innerse if and only if it is a produch of two involution operators.

Lemma 5.28 Let S and T be imolution operators on \mathcal{H}. Then $S T$ is an involution if and only if $T S=S T$.

Proof. Since S and T are involutions, then $S^{2}=I$ and $T^{2}=I$ (equivalently, $S=S^{-1}$ and $T=T^{-1}$). Now $S T$ an involution inplies that $(S T)^{2}=S T S T=I$. A simple computation shows that $S T=T S$. Conversely, suppose the involutions satisfy $T S=$ $S T$. Then $S T S=T S S=T S^{2}=T$. Also, $S T^{2} T S=T$. Thus, $S T T S=I$ or $S T S T=I$. This shows that $(S T)^{2}=I$. Hence $S T$ is an involution.

Remark 5.15
We introduce a spocial factorization of T which is applicable in solving linear systems. We conjecture that for commuting linear operators $P_{n}, P_{1}, \ldots, P_{n}$, any operator $T=P_{0} P_{1} \ldots P_{n}$. This decomposition has an applicability in the solution of general inhomogeneons problems $T x=y$. Using the above factorization this problem reduces to a system of simpler problems. These problems capture the structure of the solution and range spaces and, if the operators involved are differential, then this gives an offective way of lowering the differential order of the problem.

Theorem 5.29 Let $T=P_{0} P_{1} \ldots P_{n}$ where the P_{i} are commuting linear operators. Then (a) $\operatorname{Ker}(T)=\operatorname{Ker}\left(P_{i}\right)$
(b) $\operatorname{Ran}(T)=\operatorname{Ran}\left(P_{i}\right)$

Theorem 5.30 The product of two projection operators $P_{M I}$ and P_{N} is also a projection operator if and only if P_{M} and P_{N} commute.

Corollary 5.31 Tuo subspaces \mathcal{M} and \mathcal{N} are orthogonal if and only if $P_{\mathcal{M}} P_{\mathcal{N}}=0$.
Theoren 5.32 A finite sum of projection operators $P_{\mathcal{M}_{1}}+P_{\mathcal{M}_{2}}+\ldots+P_{\mathcal{M}_{n}}=Q$ is a projection if and only if $I_{\mathcal{M}_{1}} I_{\mathcal{M}_{2}} \ldots P_{\mathcal{M}_{n}}=0$. That is, if and only if $\mathcal{M}_{i} \perp \mathcal{M}_{j}, i \neq j$.

Remark 5.16

We now study the factorization of operators intor n-th roots of identity:
Corollary 5.33 Let T be of the form $T_{1} \oplus T_{2} \oplus \ldots \oplus T_{n}$, where the moduct $T_{1} T_{2} \ldots T_{n}$ is a group commatator. Then T is a produch of three n-th roots of identity for any given $n>2$.

Proof. We write the product $T_{1} T_{2} \ldots T_{n}$ as a commatator $U V U^{-1} V^{-1}$. Led w be the (irculant matrix that sends the first basis vect or to the last, the second to the first, the third to the second, etc. Let W be the tensor product of w with the identity operator I, i.e., $W=w \otimes I$. Define

$$
K_{1}=\left(U^{-1} T_{1} T_{2} \oplus T_{2}^{-1} T_{1}^{-1} U V T_{1} \oplus I \oplus \ldots \oplus I \oplus T_{1}^{-1} V^{-1}\right) W
$$

and $K_{2}=\left(V T_{1} T_{2} \oplus T_{2}^{-1} T_{1}^{-1} U T_{1} \oplus T_{1}^{-1} V^{-1} U^{-1} T_{1} T_{2} T_{3} \oplus T_{4} \oplus \ldots \oplus T_{n-1} \oplus T_{n}\right)$ I' $^{\circ}$ Then $K_{1}^{n}=K_{2}^{n}=I$ and $T_{1} \oplus T_{3} \oplus T_{4} \oplus \ldots \oplus T_{n} \oplus T_{2}=K_{1} K_{2} W^{-2}$. Since T is block permutationally similar to $T_{1} \oplus T_{3} \oplus T_{4} \oplus \ldots \oplus T_{n} \oplus T_{2}$, we are done.

Remark 5.17

It is clear from the proof that at least one of the n-th roots, namely W^{-2} is mitary and that for unitary $T_{i}, i=1,2, \ldots, n$, all n-th roots are unitary.

Proposition 5.34 If an invertible normal operator N has a unitary direct summand acting on an infinite-dimensional subspace, then N is a product of three n-th root.s of the identity.

Proof. Write $N=N_{1} \oplus U_{2} \oplus U_{3} \oplus \ldots \oplus U_{2 n}$ with N_{1} normal and U_{2} unitary, and let

$$
T=\left(N_{1} \oplus U_{2}\right)\left(U_{3} \oplus U_{4}\right) \ldots\left(U_{2 n-1} \oplus U_{2 n}\right)=\left(N_{1} U_{3} \ldots U_{2 n-2}\right) \oplus\left(U_{2} U_{4} \ldots U_{2 n}\right) .
$$

since the second direct summand is unitary and acts on an infinite-dimensional sulbipace, by [9 , Theorem 2], it is a group commutator. Hence, T is a group commutator and the rest follows from Corollary 5.33.

Corollary 5.35 Every unitary operator on an infinite-dimensional Hillert space is a product of three unitary n-th roots of the identity, where $n>2$.

Proof. First, as a commerexample, let $U=a I$ will $|a|=1$ amd $a^{n} \neq 1$. If $n I=A B$ with $A^{n}=B^{n}=I$, then A and B commme amel we have $a^{n} I=A^{\prime \prime} B^{n}=I$, which is impossible. For $n=2$, it is not possible to have or $I=A B C$ wilh $A^{2}=B^{2}=C^{2}=I$ if $\alpha^{2} \neq \pm 1$ since ot herwise we would have a $C=A B$ and $a^{-1} C=B A \sim A B=a C$. Hence, $a^{2} C$ womld be similar t.o C which is impossible maless $a^{2}=1$ or $\alpha^{2}=-1$. Note however (see [40]) that every mitary operator is the pronluct of four involutions.

Corollary 5.36 A genceral invervible operalor T on an infinate-dimensional Hilbert space is a product of five n-th roots of the identity for enery $n>2$ and three of the factors can. be chosen to be unitary.

Proof. By polar decomposition we have $T=P U$ where P is positive and U is mitary. By $\left[38\right.$, Theorem 1],$P=K_{1} K_{2} V_{1} V_{2}$ with $K_{1}^{n}=I, K_{2}^{n}=I, V_{1}^{n}=I, V_{2}^{n}=I$ and V_{1}, V_{2} unitary. Then $T=K_{1} K_{2} V_{1} V_{2} U=K_{1} K_{2} W^{\prime}$ and since $W^{\prime}=V_{1} V_{2} U$, being untary, is also a product of three mitary n-th roots by Comollary 5.35 .

Remark 5.18

The question is whether five factors are needed, or a general invertible operator T can be written as a product of fewer than five 11 -th roots for an $n>2$.

Lemma 5.37 If U be a bilateral shaft on an infinite dimensional Hillert space \mathcal{H} with multiplicity equal to the dimension of \mathcal{H} then
(2) every invertible operator on \mathcal{H} is a product of six operators simalar to U.
(ii) every unitary operator on \mathcal{H} is a product of two operators, unitarily equizalent to U.

Proof. Every unitary operator is a product of two bilateral shifts of multiplicity equal to dimension of the space ([28, Proof of Theorem 1]) and any two bilateral shifts of the same multiplicity are unitarily equivalent. This proves the second part.
Now choose an arbitrary integer $n \geq 3$. Acorrling to [38. Corollary 3] every invertible operator is a product of two n-th roots of identity and a mitary operator. The proof is concluded by noticing that every n - 1 h root of the identity is similar to a mitary operator.

Remark 5.19

We use the terms multiplicity and dèfciency interchangeably for isometries. An operator T is left invertible if there exists another operator S such that $S T=I$. Isometries are examples of left invertible operators.
 pressesed as a product of an opervator similar to $\left(\begin{array}{cc}B & \\ & C\end{array}\right)$ and an operator similat to $\left(\begin{array}{cc}D & \\ & E\end{array}\right)$, where B. C, D and E are lefl invertible opecrators on H with deficiency d.
Proof. Let $N \in B(\mathcal{H})$ be nomal. Then by $[28], \mathcal{H}$ is the orthogonal sum of two subspaces of equal dimension, both of which reduce N. Now let T be an arbitrary isometry with nonzero deficiency. Then it is a direct sum of a shift and a mitary operator, by von Nemamm-Wold decomposition. If the shift has multiplicity $d_{1}+d_{2}$ it, (an olvionsly be expressed as a direct sum of shifts of multiplicities d_{1} and d_{2}. Becanse A is left invertible its polar decomposition is $A=U|A|$, where U is an isometry with deficiency $4 d$ and $|.4|$ is normal (since it is positive and self-adjoint) and has two reducing subspaces. There exist in isometry V of deficiency $2 d$ that leaves both these subspaces invariant and such that V restricted to each of these subspaces has deficiency d. Hence $V|. A|$ has the same reducing sulsipaces as A and is similar to some $\left(\begin{array}{cc}D & \\ & E\end{array}\right)$ as reguired. There also exists another isometry W of deficiency $2 d$ such that $U=W V$. But as stated above we can split W^{\prime} as a direct sum of two isometries, each with deficiency d and thus achieve the form $\left(\begin{array}{ll}B & \\ & C\end{array}\right)$.
We now study the factorization of unitary operators and isometries.
Proposition 5.39 Let A be an isometry uith deficiency d on a separable infinite dimensional Hilbert space \mathcal{H}. Suppose there exists a subspace \mathcal{M} of \mathcal{H} such that $\operatorname{dim}(\mathcal{M})=$ $\operatorname{dim}(\mathcal{H})$ and $A(\mathcal{M}) \perp \mathcal{M}$. Then every isometry uith deficiency $6 d$ is a product of 6 operators, unitarily equivalent to A.

Proof. Let U be a bilateral slift with infinite multiplicity on \mathcal{H}. We know that an operator of the form $\left(\begin{array}{ll}U & \\ & X\end{array}\right)$ is a product of two operators unitarily equivalent to A where X is an isometry with deficiency $2 d$. Let P and Q be arbitrary isometries on \mathcal{H}, with deficiencies $2 d$ and $4 d$, respectively. Since X^{2} and Q have the same deficiencies, there exists a unitary operator V such that $V X^{2}=Q$. We obtain $\left(\begin{array}{cc}V & \\ & Y\end{array}\right)$ as a product of two operators mitarily equivalent to A. There exists mitary W such that
$W Y=P$, hemce $Y W$ is mitarily equivalent $10 \quad P$.
 operators mitarily equivalent to A is

$$
\left(\begin{array}{ll}
Y & \\
& V
\end{array}\right)\left(\begin{array}{ll}
W & \\
& X^{2}
\end{array}\right) \cong\left(\begin{array}{ll}
P & \\
& Q
\end{array}\right)
$$

The proof is completed by noticing that every isometry with deliciency God is mitarily equivalent to a direat sum of an isometry with deficiency $2 d$ and one with cleficiency $t d$ as in Lemma 5.39.

Theorem 5.40 Let, A be an isometry with deficiency $d>0$ on a separable infinite dimensional Halbert space \mathcal{H}. Then every isometyy with deficiency index Od is a product of 6 operators unitarily equivalent to A.

Proof. Since $d \neq 0, A$ is an orthogonal sum of a shift S and a mitary operator by Wold decomposition of an isometry. Let $S\left(x_{1}, x_{2}, x_{3} \ldots\right)=\left(0, x_{1}, x_{2}, x_{3}, \ldots\right)$. The space of all vectors of the form $\left(x_{1}, 0, x_{3}, 0, \ldots\right)$ clearly matches the requirements for \mathcal{M} in Proposition 5.40 , since $S\left(x_{1}, 0, x_{3}, 0, x_{5}, 0, \ldots\right)=\left(0, x_{1}, 0, x_{3}, 0, x_{5}, \ldots\right)$ is orthogonal to $\operatorname{span}\left(x_{1}, 0, x_{3}, 0, \ldots\right)=\mathcal{M}$. The restult follows from Proposition 5.39.

Chapter 6

Conclusion

6.1 Conclusion

The results in this thesis show that every lincor operator acting on a Hilbert space hats a direct sum decomposition into a nomal part and a completely nom-normal part and that either direct smmand may be absent. Similarly, every contraction operator has a direct smin decomposition into a mitary part and a completely non-mitary part. The problem of decomposing some classes of operators as a direct sum has been solved in Chapter Two and Chapter Three. To aid in carrying out a direct sum decomposition of an operator, we studied its invariant and hyperinvariant lat tices. This work was done in Chapter Three of this thesis. We have used simple operator theoretic tools to find out when some onerators turn ont to be normal or pure and when certain contractions are unitary or completely non-mitary. We have found a relationship between the direct sum decomposition of an operator and its invariant and hyperinvariant lattices. In Chapter Five we have studied the idea of factorizing a given linear operator into two or more factors. We have found conclitions under which a certain operator factorizes into a certain mumber of factors.

6.2 Summary of Main Contributions

In this thesis we have made severil key contributions about the spectral properties for some classes of operators. We have extented results on some classes of operators to higher classes of operators.

In Chapter Two we have developech a merhanism to determine conditions muler which some higher classes of operators are nornal. For example, in Theorem 2.6 we have shown that if a p-hyponomal operator is similar to its adjoint, then it has no completely nomnormal direct summand. In Theorem 2.4 we have relaxed the condition of similarity and extended this result to a (p, k)-quasihypomomal operator which is a guasialfine transform of a co-p-hyponormal operator. In particular, we have shown in Theorem 2.4 that a p-quasihyponomal operator which is a quasialfine transform of a normal operator is nomal. We have shown in Lemma 2.14 that if an operator is (p, k)-quasihyponormal such that the restriction of the operator to an invariant sulaspace is injective and normal, then the operator decomposes into a direct sum of nontrivial normal and completely non-normal (complementary) parts. In Lemma 2.22 , we have shown that any p-quasihyponomal operator that densely intert wines a normal operator is also normal. We have proved in Proposition 2.43 that any linear operator T that is 2 -normal and quasinomal and is injective on $\operatorname{Ran}\left(\left[T^{*}, T\right]\right.$) has no c.n.n. part.

In Chapter Three we have solved a long standing open question: "When are the c.11.u parts of quasisimilar hyponormal contractions quasisimilar?", by investigating their c.n.u. parts. In this direction we have shown in Corollary 3.7 that this is the case when the c.n.u. part of one of the contractions has finite multiplicity. In Proposition 3.31, we have characterized isometries with deficiency index zero as unitary operators. Using Proposition 3.31, we have proved in Proposition 3.32 that every isometry with nonzero deficiency index is a direct sum of a unilateral shift and a unitary operator. This result agrees with the Wold Decomposition of an isometry. In Proposition 3.18, we have proved that the c.n.u. part of an operator which is similar to a normal contraction is of class C_{00}. Characterizing some contractions in terms of characteristic functions, we have shown in Corollary 3.23 that the characteristic function of any isometry is identically zero almost everywhere. We have proved in Corollary 3.52 that if two linear operators are almost similar and one operator is c.n.u, then the other is c.n.u.

Our work in Chapter Four was essentially to aid in carrying out the direct sum decompositions and is a first attempt in trying to give a partial solution to the long standing
open problem: Doss every operator have a nomtrivial invariant sulspace? In Lemma 4.28, we have shown that if two linear operators are quasisimilar and one operator has a montrivial hyperinvariant subspace, then so is the other. We have charaderized some classes of operators in terms of their invarian and hyperinvariant latides. For instanee, in Corollary 4.32, we have shown that if T is nemal then every liyperinvariant subspace of T is also hyperinvariant for T^{*}. We have also shown in Corollary 4.35 that for any c.n.n. linear operator T, every invariant subspace is also hyperinvariant for T.

In Chapter five, we have proved several results on factorization of some operators. We have shown in Proposition 5.13 that any multicyclic operator with multiplicity m is a product of m cyclic operators. We have also proved in Corollary 5.17 that any operator T with $\operatorname{dim}\left(\operatorname{Ker}\left(T^{*}\right)\right) \leq k,(2 \leq k<\infty)$ is the product of at most $k+2$ (yclic operators. In Theorem 5.20, we have shown that any invertible operator is a product of two self-adjoint operators if and only if the operator is similar to its adjoint. We have proved interesting results about normal and mitary operators. For instance, in Corollary 5.34, we have shown that if an invertible normal operator has a unitary direct summand acting on an infinite dimensional sulsipace of a Hillert space, then it is a product of three n-th roots of the identity. We have proved a consequence of this result in Corollary 5.35 for the case of a unitary operator.

6.3 Future Research

The results in this thesis clearly demonstrate that it is of considerable interest to carry out more analysis in order to determine structures and properties of operators. These results could be used to give more insight into the problem of determining the structure of operators in some classes of operators. For instance, given the sulspace lattice and hyperinvariant lattice of an arhitrary linear operator, we may be able to discem the location of the spectrum of the operator. It is clear from this work that direct summands and factors of a linear operator reveal information about the operator. This thesis has produced many new reşlts on direct sum decomposition and factorization of some classes of operators. The treatment of the topic is, however, far from complete. We give a list of some possibilities for future research.

1. It is wedl-known from resnlts in this work that if the spertrum of a k-quasihyponomal operator bas zoro Lehesgue moasme, then the operator can de decomposed as direct smom of a momal operator and a nilporent operator. It is of considerable interest. to find ont more int rinsic properties of the nilpotent smmand. For instance, what are the spoctral properties of the operator if its nilpotent summand happens to be the zero operator or a non-zero nilpotent operator?
2. From the decomposition results in this thesis. it is chear that every c.n.n. contraction is completely mon-mitary. It would be worthwhile if one were able to decompose any c.n.u contraction as a direct sum of a nomal and a c.n.n. contraction.
3. Direct sum decomposition amd factorization reveals spectral information about a lincar operator. An interesting future research direction is to investigate how the spectrmm, the mmerical range and the nom of ead direct summand and factor compares with that of the operator.
4. To date, special research emphasis has been on the direct sum decomposition of an operator into a normal and a cen.n. part and a contraction into a mintary and a c.n.u. part. We anticipate other forms of direct sum decompositions where the direct smmmands have ot her properties.
5. Most of our results on factorization were on a single linear operator. An interesting fut ure research direction would be to find out the relationship of such factorizations for operators which are unitarily equivalent, similar, quasisimilar, hyperquasisimilar, ahmost-similar, commute or are guasiaffine transforms of each other.
6. In the (numerical) solution of linear efuations and eigenvalue problems.

The central theme in the decomposition of the abstract operator linear system $A x=y$ into sets of linear subsystems (equations) which can be solved independently is to obtain a concepthal simplification of the systom model. There are computational reasons for examining the decomposition process: Decomposition provides an altemative to inver-
sion as a terhnique for solving or amalying the equations which describe a system. In particular, decomposition provides a practical techaique for computing solutions to lincar differential equations with arbitrary injunts. The ability 10 combine the solutions io small subproblems into a solution for the full system erfation depends on the principle of linearity. It is known that we can decompose most linear systems into sets of simple scalar multiplications. It would be a research challenge to determine the opt imal number of such sulsyystems.
7. Operator decomposition and factorization is applicable in the study of mathematical systems theory. It reduces the computational word length regured in the operator computations. It is useful in easing the solution of linear operator equations. Results on the factorization of operators as products of self-adjoint operators in Hilbert space play a role in pure and applied mathematics. Problems which give rise to linear operator equations include linear regression, optimal resource allocation, optimal filtering, optimal control and solutions of integral and partial differential equations, which have lots of applications in control, signal and image processing. An interesting research direction would be to develop a real-time application of operator decompositions and factorizations in signal and image processing.

Bibliography

[1] Aluthge, A., On p-hyponormal operalors for $0<p<1$, Integr. Equat. ()per. Th. 13, No. $3(1990), 307-315$.
[2] Apostol, C., Fialkow, L., Herrero, D. and Voiculescu, D., Approximuluon of Helbert space operalors, Vol. II, Pitman. Bostom. 1984.
[3] Apostol, C., Foias, C. and Voiculescu, D.. Some vesult.s on mon-quasitman!gular operators VI, Rev. Rommaine Math. Pures Appl. 18(1973), 1473-1494.
[4] Apostol, C., Operators quasisimilar lo normal operatots, Proc. Amer. Math. Soc., $53(1975), 104-106$.
[5] Arora, S.C. and Arora, P., On p-quasihypmormal operntors for $0<p<1$, Yokohama Math, J. 41, No.1(1993), 225-229.
[G] Bagchi, B. and Misra, G.. Constant characteristic functions and homogeneous operators, J. Operator Theory 37(1997), 51-65.
[7] Ballantine, C.S., Products of positive defimte matrices IV, Linear Algebra Appl. 3(1970), 79-114.
[8] Bercovici, H., Foias, C. aud Pearcy, C., On the hyperinvariant subspace problem IV, Canad. J. Math., Vol. 60 No.4(2008), 758-789.
[9] Brown, A. and Pearcy, C., Multiplicative commutators of operators, Canad. J. Math., 18(1966), 737-749.
[10] Brown, L.G., Almost every proper isometry is a shift. Indiana Univ. Math. J. 23(1973), 429-431.
[11] Brown, S.. Some impariunt subuspuces for sulmormal operalors, Integr Equat. Oper. Theory 1 (1978), 31()-333.3.
[1:2] Chö. M. and Huruya, T., p-hyponormal opecrutors for ()$<p<\frac{1}{2}$. Conemtationes Math. 33(1993), 23-29.
[13] Clark, D.N. and Misra, G., On some homogeneous contractions and unitary representations of $S U(1,1)$, J. Operator Theory, 30(1993), 109-122.
[14] Clary, S., Equality of spectro of quasisimilar hyponormal operators, Proce. Amer. Math. Soc. 53(1975). 88-90).
[15] Douglas, R.G., On the opprator equation $S^{*} X T=X$ and related Lopics, Acta. Sci. Math. Szeged 30 (1909), 19-32.
[16] Duggal, B.P. and Kubrusly, C.S.. Paranormal contractions have property PF, Far East. Journal of Nathematical Sciences 14(2004), 237-249.
[17] Duggal, B.P., $n^{\text {th }}$ roots of normal contractions, Bull. Lon. Math.Soc, 25(1)(1993), 74-80.
[18] Duggal, B.P., Jeon, I.H.. and Eungil, K.. k-th roots of p-hyponormal operators, Bull. Korean Math. Soc. 42 No. 3,(2006), 571-577.
[19] Duggal, B.P., On dominant operators. Arch. Math., Vol. 46 (1986), 353-359.
[20] Duggal, B.P., Quasisimilar p-hyponormal operators, Integr. Equat. Oper. Th., 26 (1996), 338-345.
[21] Fillmore, P.A., Herrero, D.A. and Longstaff, W.E., The hyperinvariant subspuce lattice of a linear tran.sformation, Linear Algebra and Appl. 17(1977), 125-132.
[22] Foias. C. and Pearcy, C.. On the hyperinwariant subbspace problem, J. Funct. Anal., 219(2005), 134-142.
[23] Fujii, M., Himeji, C. and Matsumoto, A., Theorems of Ando and Saito for p-hyponormal operators, Math. Japonica 39 (1994), 595-598.
[24] Furhmann, P.A., Linear systems and operators in Hilbert space, Mcgraw Hill, 1981.
[25] Furuta, T., Invitation lo lincar operators: from matrices to berunded livear opectaLots on a Hillert spuce, Taylor \& Frameis, Lomolon, 20012.
[26] Gilfeather, F., Operator muluced roots of abelian analytio functions, Pacilic .J. Manth. 55 (1974), 127-148.
[27] Hadwin, D., Limuts of products of positive operators, Bull. Lomelon Math. Soc. 27(1995), 479-482.
[28] Halmos, P.R. and Kakutani, S.. Products of symmetries, Bull. Amer. Math. Soce. 64(1958), 77-78.
[29] Halmos, P.R., A Hilbert space problem book, 2nd Ed. Springer-Verlag, Now York. 1982.
[30] Halmos, P.R., Capacity in Banach algebras, Indiana Univ. Math. J. 20(1971). 855-863.
[31] Halmos, P.R., Products of shifts, Duke Math. J. 39(1972), 779-787.
[32] Halmos, P.R., Ten problems in Hillert space, Bull. Amer. Math. Soc. 76(1970). 887-933.
[33] Hastings, W.W., Subnormal operators quasisimilar to an isometry, Trans. Anner. Math. Suc. 256(1979), 145-161.
[34] Hawkins, J.B. and Kammerer, W.J., A class of linear transformations which can be written as the product of projections, Proc. Amer. Soc. 19(1968), 739-745.
[35] Herrero, D., Quasisimilarity does not preserve the hyperlaltice, Proc. Amer. Math. Soc., 65(1978), 80-84.
[36] Herrero, D.A. and Wogen, W.R., On the mulliplicity of $T \oplus T \oplus \ldots \oplus T$. Rocky Mountain J. Math. 20 (1990). 445-4G6.
[37] Herrero, D.A., Quasidiagonality, similarity and approximation by nilpotent operators, Indiana Univ. Math. J Vol. 30, No. 2 (1981), 199-233.
[38] Hladnik, M., Omladic̄, M., and Radjavi, H., Products of roots of the identity, Proc. Amer. Math. Soc., Vol. 129, No.2, (2001), 459-465.
[39] Hoover, T., Qunsisimilurily of operators, Illinois J. Mat lı, 16 (1972), 678-686.
[40] Jeon, I. H., Lee, J. I. anul Uchiyama, A., On p-quasihnypmommal opezutors and quasisimilurily. Mathematical hequalitios and Applications, Vol. 6, No. 2 (20003), 309-315.
[41] Kirchy, L.. On homogeneous contractions, J. () 1 мer. Th., 41 (1999), 121-126.
[42] Khalkhali, M., Laurie, C., Mathes, B. and Radjavi, H., Approximulions by products of positive opecrators, J. Ocr. Th. 29(1993), 237-247.
[43] Kim, I. H.. On (p, i)-quasihypomormal operatorss. Jomrial of Math. Inecpualities and Applications, Vol.7, No.4(20(0)4). G29-6.38.
[44] Kubrusly, C.S. and Levan, N., Proper contructions and imwariant subspaces, IJMAIS 28, 4 (2001), 22.3-2:30.
[45] Kubrusly, C.S., An introduction to Models and decompositions in operator theory, Birkhäser, Boston, 1997.
[46] Kubrusly, C.S., Elements of Operator Theory, Birkhäser, Bositon, 2001.
[17] Kubrusly, C.S., Hilbert space opecatons: A problem solving appnoach, Birkhäser, Boston, 2003.
[48] Kupin, S., Operators similar to contractions and their similarity to a normal operator, Indiana Univ. Math. J., Vol. 52. No. 3(20)()3), 753-768.
[49] Laursen, K.B., Operators with Finite Ascent, Pacific Journal of Mathematics, Vol. 152, No. 2, 1992, 323-336.
[50] Lee, M. and Lee, S.H., Some generalized theorems on p-quasihyponormal operators for $0<p<1$, Nihonkai Math. J.. 8(1997). 109-115.
[51] Morrel, B.B.. A decomposition for some operators. Indiana Luiversity Math J. 23 (1973/74), 497-511.
[52] Moslehian, M. S., On prosfäct of projections, Archivum Mathematicum (BRNO), Tomus 40 (2004), 355-357.
[53] Nagy, B.Sz. aud Foias, C., Harmonir: Amalysis of Hillert spare opecators, North Holland-Akadémiai Kiarló, Amstorclan-Budlapesst, 1970.
[5-1] Nzimbi, B.M.. Pokhariyal, G.P. and Khalagai, J.M., A note on simularity, almost-similarity and equinalence of operators, Far East J. Math. Sci., Vol. 28, Issue 2(2008), 305-317.
[55] Nzimbi, B.M., Pokhariyal, G.P. and Khalagai, J.M., Charactervization of $C_{(1)}-$ contractions and their impariant subspares, Opuscula Mathematica, to appear.
[50i] Nzimbi, B.M., Pokhariyal, G.P. and Khalagai, J.M., Linear opetrutorss for which T^{*} and T^{2} commute, Global Journal of Pure and Applied Mathematics (G.JPAM), to appear.
[57] Phillips, N.C., Every imvertible Hilbert space operator is a product of seven positive operators, Camad. Math. Bull. 38(1995), No.2, 230-236.
[58] Radjavi, H. and Rosenthal, P., Inmuriunt sulbspuces, Springer Verlag, Berlin, Heidellberg, New York. 1973.
[59] Radjavi, H., On self-adjoint factorization of operators, Canad. J. Math. 21(1969), 1421-1426.
$[G 0]$ Read, C.J., A solution to the invariant subspace problem on ℓ^{1}, Bull. London Math. Soc. 17(1984), 337-401.
[61] Rosenblum, M., and Rovnyak, J., Harly classes and operator theory, Clarenclon Press, Oxford University Press, New York, 1985.
[62] Rosenblum, M., On the operator equation $B X-X A=0$, Duke Math. J. 23(1956), 256-269.
[6:3] Rota, G.-C., On models for linear operators, Comm. Pure Appl. Math. 13(1960), 469-472.
[64] Ruan, Y. and Yan, Z., Spec:Iral Structure and subdecomposability of p-hyponormal operators, Proceedings of the Amer. Math. Soc., Vol. 128. No. 7(2000), 2069-2074.
[65] Sheth, I. H., On hyponormal operators, Proc. Amer. Math. Soc. 17(1966), 9981000 .
[(if)] Stampfli, J. and Wadhwa, B.L., An asymmetric: Pulnam-Fuglede: theorem. for dominant operalors, Indianal Univ. Malh. J. Vol. 25(1976), 359-36i5.
 defect operutor is of class C_{0}, J. ()per. Th., 10(1983), 331-335.
[68] Trefethen, L.N. and Bau, D., Numerical Linear Algebra, SlAM1. 1997.
[69] Uchiyama, A., Inequalities of Puinam and Beryer-Shaw for p-quasihyponormal operalors, Integr. Equat. Oper. Th., 34 (1999), 91-106.
[70] Uchiyama, M., Hyperinvariant subspaces of contractions of chas.s $C_{0, ~ H o k k a i d o ~}^{\text {a }}$ Math. J. 6(1977), 260-272.
[71] Uchiyama, M., Hyperinvariant subspaces of opetators of class $C_{01}(N)$, Acta. Sci. Math.(Szeged)39(1977), 179-184.
[r2] Voiculescu, D., A non-commutative Weyl-von Neumann theorpm, Rev. Rommaine Math. Pures Appl. 21(1976), 97-113.
[73] Voiculescu, D., Norm-limits of algobraic operators, Rev. Rommane Math. Pures Appl. 19(1974), 371-378.
[74] Wadhwa, B.L., M-hyponormal operators, Duke Math. J.. 41(3)(1974a), 655-660).
[75] Williams, J. P., Operators similar to their adjoints, Proc. Amer. Math. Soc. $20(1969), 121-123$.
[76] Williams, L.R., Quasisimilarity and hyponormal operators, J. Operator Theory 5, (1981), 127-139.
[77] Wold, H., A study in analysis of stationary time series, Almquist and Wiksells, Uppsala, 2nd ed., 1983.
[78] Wu, P. Y., Hyperinvaraint subspaces of C_{11} contractions, Proc. Amer. Soc., Vol. 75, No. 1(1979), 53-58.
[79] Wu, P. Y., Hyperimaniant subspaces of the direct sum of certain contractions, Incliana Univ. Math. J. 27 (1978), 267-274.
[s()] Wu, P. Y., Hyponotmal oppralors quasisimilar lo an isomelty, Trans. Aner. Math. Suc.. Vol. 291, No.1(1985), 229-2:39.
[81] Wu, P. Y., Jomdan mondel for wrak: combartions.s, Acta. Sci. Math. (Szeged)40(1978), 189-196.
[82] Wu, P. Y., Sums and products of ryclic: operators, Proc. Amer. Math. Soc., Vol. $122, \mathrm{No} .4(1994), 1053-1063$.
$[8: 3] \mathbf{W u}, \mathbf{P} . \mathrm{Y}_{\text {. , The }}$ haperimoariant sabspace latlice of a contraction of class C.0, Proc. Anmer. Math. Soc. Vol.72, No.3(1978), 527-530.
[84] Wu, P. Y., The operator factorization problems, Linear Algebra Appl. 117(1988), 35-63.
[85] Wu, P. Y., When is a contraction ruasisimilar to an isometry?, Acta Sci. Math. $44(1982), 151-155$.

