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Abstract

Estimation of random effects (variance components) is a method often used in population 

genetics and applied to areas such as animal and plant bleeding and growth. Scientists nowadays 

feel lost if confronted with huge set of different random effects estimation methods. This is 

especially because there exists no uniformly best method hence deciding which method should 

be used is difficult to take. This paper gives an overview of maximum likelihood and restricted 

maximum likelihood methods of estimating random effects applied to random coefficient mod­

els and demostrates them by applying them in determining variability in the growth of Acacia 

Senegal trees. We can say that both methods gives similar results with the dataset used. How­

ever random effects estimated using maximum likelihood method are slightly less than those 

estimated using restricted maximum likelihood methods. Random intercept and slope model is 

more appropriate to use in determination of variability in growth of Acacia Senegal trees than 

random intercept model.

Keywords: Maximum Likelihood, Restricted Maximum Likelihood, Random Effects, Random 

Intercept Model, Random Intercept and Slope Model.
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Chapter 1

Introduction

In longitudinal studies, individuals are measured repeatedly through time. Observations are taken 

in two or more occasions. Longitudinal data can be collected either prospectively .following sub­

jects over time, or retrospectively, by extracting multiple measurements on each person from 

historical situations. The defining feature of a longitudinal dataset is repeated observations on 

individual, enabling direct study of change. Longitudinal data require special statistical methods 

because the set of observations on one individual tends to be intercorrelated. Most longitudinal 

analysis are based on a regression model. The natural experimental unit is not the individual 

measurement, but sequence of measurements on an individual. Replicatioon here means number 

of subjects.

There are different approaches that can be adopted to longitudinal data analysis with repeated 

measurements. A simpler and often effective strategy is to reduce the repeated values into one 

or two summaries and analyse each summary variable as a function of covariates.

In practice longitudinal data are highly unbalanced in the sense that not equal number of mea­

surements are available for all subjects and/or mearsurements sre not taken at fixed time points. 

As such Seber (1984)and Taylor (1987) observed that many longitudinal datasets cannot be an­

alyzed using multivariate regression techniques. A natural alternative arises from observing that 

subject-specific longitudinal profiles cannot often be approximated by linear regression functions. 

One hereby summarises the vector of repeated measurements for each subject by a vector of 

relatively small number of estimated subject-specific regression coefficients and in the second 

stage multivariate regression techniques are used to relate estimates to known covariates.

In general linear mixed effect model,inferences are based on marginal distribution of response.lt
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assumes that the vector of repeated measurements on each subject follows a linear regression 

model where some of the regression parameters are population specific, that is same for all sub­

jects, wheres others are subject specific. Subject specific parameters are assumed to be random 

and are called random effects.

Mixed models may contain interaction between fixed and random effects. An interaction be­

tween a random subject effect and a fixed effect associated with an explanatory variable might 

be used to allow the coefficient of the variable to be different for each subject. Th is is termed as 

random coefficient model. For this model Random intercept model is a linear mixed effect model 

where the only subject specific effects are intercepts. In random intercept model its assumed 

that all variability in subject specific slopes can be ascribed to treatment differences hence can 

be obtained by ommitting the random slopes.The subject specific profiles are then assumed to 

be linear with subject specific intercepts but with the same slopes within each treatment group. 

We have two covariance mtrices.That is, the random effect covariance matrix D which is a scalar 

and residual covariance matrices. The implied covariance assumes constant variance over time as 

well as equal correlation between any two measurements from the same subject. For highly un­

balanced data with many repeated measurements per subject, one usually assumes that random 

effect can account for most of variation in the data assume that the remaining error components 

have a very simple covariance structure.

Various methods for estimating variance components exist. Among them are maximum general­

ized least square estimation (G LS), maximum likelihood (M L) estimation and restricted maximum 

likelihood (R EM L) estimation .ML and REM L are based on maximising likelihood functions corre­

sponding to statistical model underlying experimental design. The REM L is based on maximising 

the portion of likelihood that is invariant to the fixed effects.

ML is a general method for estimating parameters from realisation of random variables. M LE 

of parameter is the value for which the parameter attains maximum. ML has a long celebrated 

history going back to Fisher (1922). However it had not been used in mixed model analysis until 

Hartley and Rao(1967) because estimation of variance component in linear mixed effect model 

was not easy to handle computationally. Its easier to work with log-likelihood.The vector of first 

order partial derivatives of log-likelihood is called the scoring vector. A standard approach to 

maximum likelihood estimation is to find all the roots of the scoring vector and to explore the 

behaviour of log-likelihood on the boundary of the parameter space and at the point where the
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scoring vector is not defined. These are the only possible locations of M LE. Typically if the 

score vector has roots, then the root is a M LE. Because of computational nature of complex 

log-likelihood equations, the variance components in general are estimated recursively using ei­

ther the Newton-Raphson or Fisher scoring method. M LE often produces biased estimators of 

variance components. With M LE one has to estimate all the parameters involved. Patterson 

and Thompson (1971) introduced REM L as a technique for estimating variance components in a 

random effects or linear mixed effect model. REM L can estimate the parameter of main interest 

without having to deal with nuisance parameters. REM L is defined through a transformation 

matrix although it does not depend on this transformation matrix as shown by Harville (1974). 

Hence choice of transformation matrix is not unique and one does not want the estimator to 

depend on transformation matrix. The idea behind REM L estimation is to consider likelihood 

of linear combination of responses that do not depend on mean parameters. Restricted log- 

likelihood is a function of variance component only. Thus REML is a method of estimating 

variance components. However once the REML estimator of variance components is found other 

parameters are usually estimated the same way as the M LE.

In order to properly specify the model, the covariance parameters are necessary though they are 

not the parameters of interest for drawing conclusions. Doing a good job in choosing a co- 

variance model improves the efficiecy of the fixed effect estimates and allows for more accurate 

confidence intervals and hypothesis tests. This is done by selecting a covariance matrix that is 

close to or include the actual covariance matrix as a special case and vector parameter has few 

elements as possible.

This paper discusses ML and REM L methods of estimation of random effect(variance compo­

nents) for random coefficient models and apply them in determination of variability in the growth 

of Acacia Senegal trees.

1.1 Background Information on Growth of Acacia Sene­

gal Trees

Growth and yield models are used to forecast the development of the forest resources in forest 

management and planning.Long term forecasts about development of forests are needed for 

decision making in forest policy. The growth and yield model selected should have valid biological
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and ecological basis inorder to produce reasonable growth predictions even when applied outside 

the range of data they are developed from. The input of the growth models must be consistent 

and compatible with the data available. In forest management planning evaluation of alternative 

management schedule is an essential part. Growth and yield models should be able to predict 

reliably the effect of various treatments on development of managed stands. In order to have 

a reliable model, data from forest inventories as well as from purpose designed experiments 

are needed. Designed experiments carried out provides information about the effects of various 

treatments on growth and yield, which is important in developing the model structure.

Acacia Senegal tree grows in arid and semi-arid lands where soils are shallow,rocky with low 

organic matter, low moisture content and low water holding capacity. Gum arabic is the sap of 

the Acacia Senegal tree, and some other African species of Acacia, occurring as an exudate from 

the trunks and branches. It is normally collected by hand when dried, when it resembles a hard, 

amber-like resin normally referred to as 'tears’ . Gum arabic powder is widely used in the food 

industry, as an emulsifier, thickener, flavour encapsulator and thickening agent. Grieve’s classic 

A Modern Herbal’: 'Gum Acacia is a demulcent and serves by the viscidity of its solution to 

cover and sheathe inflamed surfaces.’ Mucilage of Acacia is a nearly transparent, colorless or 

scarcely yellowish, viscid liquid, having a faint, rather agreeable odour and an insipid taste.’ 'It is 

employed as a soothing agent in inflammatory conditions of the respiratory, digestive and urinary 

tract, and is useful in diarrhoea and dysentery. 'Gum Acacia is highly nutritious. During the time 

of the gum harvest, the Moors of the desert are said to live almost entirely on it, and it has been 

proved that 6 oz. is sufficient to support an adult for twenty-four hours. It is related that the 

Bushman Hottentots have been known in times of scarcity to support themselves on it for days 

together. In many cases of disease, it is considered that a solution of Gum Arabic may for a time 

constitute the exclusive drink and food of the patient.’King’s 1898 Dispensatory: 'Gum arabic 

is nutritive and demulcent, and exerts a soothing influence upon irritated or inflamed mucous 

tissues, by shielding them from the influence of deleterious agents, atmospheric air, etc. On this 

account it has been used in diarrhoea and dysentery, to remove tenesmus and painful stools, in 

catarrh, cough, hoarseness, gonorrhoea, ardor urinae, e tc .’ It exerts a soothing influence upon 

all the surfaces with which it comes in contact.'In dispensing, Mucilage of Acacia is used for 

suspending insoluble powders in mixtures, for emulsifying oils and other liquids which are not 

miscible with water, and as an ingredient of many cough linctures. 'Equal parts of pulverized alum
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and gum arabic form a good preparation to check hemorrhages from small cuts, wounds, etc. 

Externally, the application of its solution to burns and scalds has proved serviceable, repeating 

it until a complete coating is secured.' Mucilage of acacia is soothing to burns and scalds of 

the mouth and alimentary canal, and may be used as a demulcent after poisoning by irritant and 

corrosive poisons'.

There has been a wide spread over-exploitation of plant resources leading to an alarming rate 

of diminishing these tree species. Due to its economic importance, there has been a felt need 

to sustain and improve its existence. An experiment was carried out on seedlings to study the 

performance due to the effects of silvicultural treatments to different soil types.

In this paper, we determine variability in growth of acacia Senegal trees grown in a glass house 

simulating arid and semi-arid conditions.The variability in growth to be identified was in the 

initial individual tree heights and rate of growth.

1.2 Literature Review

1.2.1 E stim ation of R andom  Effects

Variability mathematically is determined by estimating the variance components using the appro­

priate method. Rasch, D. and Masata, 0. (2006) observed that there exists no best method of 

variance components estimation. Various methods exists. These incudes, least square methods, 

maximum likelihood (M L) method, restricted maximum likelihood method (R E M L), minimum 

norm quadratic unbiased (M INQUE) method, bayes methods among others.

Herbach (1959) derived a real maximum likelihood(solution restricted to parameter space). An­

derson and Bancroft (1952) introduced a restricted maximum likelihood method. This method 

uses a translation invariant restricted likelihood function depending on the variance components 

to be estimated only and not on fixed effects.This restricted likelihood function is a function 

of sufficient statistics for the variance components.REML is derived with respect to variance 

components under restriction that the solution are non-negative.

In linear mixed effect models for repeated measures analysis, its prefered to estimate the variance 

components and variance-covariance according to REM L criterion which compensate for estima­

tion of fixed effect parameters when estimating the random effects. Harville (1977) suggested 

that REM L may be used even when the data are not normally distributed since REM L can be
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viewed as iterated MINQUE and theory of MINQUE does not depend on any assumption of 

normality. Boos. D.D. and Gumpertz. M L. (2001) showed why REM L estimation reduce the 

bias of variance and covariance parameter estimates in small samples.

Random intercept models and Random intercept and slope models, both of which are examples 

of random coefficient models, for longitudinal data are contained in linear mixed effect models. 

Cheng Hsiao and Pesaras, M.H. (2004) categorised the random coefficient models into two. 

Th a t is, stationary random coefficient model where random variables have constant mean and 

variance or covariance and non-stationary random coefficient model where coefficient vectors 

are not regarded as having constant mean and variances or covariances. Random intercept 

model is an example of stationary random coefficient model whereas random intercept and slope 

model is an example of non-stationary random coefficient model. Bates. D .M . (1993) noted 

that computational for ML or REM L estimation of parameters in linear mixed effect models are 

greatly enhanced by expressing the variance-covariance matrix of random effects at each level in 

terms of square root of inverse of relative variance matrix. Using this formulation and matrix 

decomposition, the profiled log-likelihood or profiled restricted log-likelihood can be gotten and 

calculated. These expression give an indication of suitable starting values of variance-covariance 

parameters.

Growth is a function of time, and for trees, growth is not infinite. Growth is considerably influ­

enced by natural and environmental conditions and illegal or unauthorized activities by Man. As 

such growth mostly inhibits variability. Thus its always in order to identify sources of variabilty 

at every stage of growth. Different treatment such as micro-nutrients treatments play a major 

role in tree growth. When all other disturbing variations are removed, one can test whether 

after application of nutrients, the initial variability in the growth affect the final size of the tree. 

Different micronutrients plays different roles in the growth of trees. Its always acceptable to 

select micro-nutrients that gives higher yields and speed the rate of growth. For acacia Senegal 

best nutrients are those that give higher gum arabic yields.
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1.3 Study Objectives

1. To give an overview of maximum likelihood and restricted likelihood estimation methods 

for random effects in random coefficient models.

2. To compare the results the two method gives when applied to the analysis of random 

effects in the growth of Acacia Senegal.

3. To determine variability in the growth of Acacia Senegal trees.

1.4 Statem ent of problem

Estimation of random effects are needed whenever interest is in prediction of subjects specific 

evolution though in practice one is primarily interested in estimating fixed effects parameters. 

Covariance parameters are necessary in order to properly specify the model.
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C hapter 2

M ethodology

Tw o random coefficient models, that is, random intercept and random intercept and slope models 

were discused and applied to the growth of Acacia Senegal trees. Maximum likelihood and 

restricted maximum likelihood as some of the random effect estimation method were reviewed. 

The design, data management and analysis were as follows.

2.1 Design

To carry out the experiment split-split plot design was used. This comprisedof two main 

plots(media) namely soil and vermiculite, three subplots (sites) namely Kim orok(KK),Kapkun(KN) 

and Solit(ST)and thirteen sub-sub plots(micro-nutrients treatments). The treatments (micro­

nutrients) used included Boron, Zinc, Manganese, Molybdenum, Copper and Iron with each 

having either low(-),normal(n) or high(-h) concentrations. A control consisting of all the micro­

nutrients with normal concentrations was also cooporated. Table 2.1 show the treatment struc­

ture.

A  total of 156 seedlings were randomized to either vermiculite or soil. The experiment was 

replicated twice. It was carried out in a glasshouse to simulate the arid and semi-arid climate 

conditions. The micro-nutrients were applied after every two weeks. Measurements were taken 

for the heights and diameter at ground level(dgl) over time. This was a repeated measures 

experiment because the same seedlings were measured at each time. Eight seedlings dried within 

the study period (four on soil medium) and were not used in analysis. This yielded unbalanced 

design.
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Table 2.1: Table of Treatment structure_______________
Copper Iron Manganese Zinc Boron MolybdenumTreatment No.

1 n n n n n n

2 - n n n n n

3 + n n n n n

4 n - n n n n

5 n + n n n n

6 n n - n n n

7 n n + n n n

8 n n n - n n

9 n n n + n n

10 n n n n - n

11 n n n n + n

12 n n n n n -

13 n n n n n +

2.2 D ata management

74 seedlings on soil medium were used for analysis. The four that dried were excluded from 

the model. The heights only were considered and not the diameter. Trees are assumed to 

have a growth that takes a sigmoid curve. The initial heights were considered from the day the 

treatments were applied inorder to establish the the variability at time t=0. The height were 

then measured with time for two years. This was done to establish the rate of growth which was 

used to determine the variabilty of rate of growth. The data was meant to be used for prediction 

over a period of 25years in intervals of 1 year hence constituting equally spaced time points. 

Soil medium was chosen so as to incorporate the site characteristics excluding the vermiculite 

from the analysis. The random intercept model and random intercept and slope model model 

were fitted to the available data observed over a period of two years and predictions were made. 

Wiihelm lotshhert and Gerhard Beese, (1983) observed that Acacia Senegal tree grows up to a 

maximum 15 metres tall. Th is constitute the carrying capacity of the model . A data set was 

generated using R program.

The sivilcultural treatments were coded as they appear on Table 2.1 in design section. The
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sites;Kapkun(KN ),So lit(ST ) and Kim orok(KK) were coded 1,2 and 3 respectively. The fields in 

the data set height(see appendix) include;

Treatm ent- refers to the thirteen micro-nutrients treatments

Site- refers to the site from which the seeds were extracted from with their corresponding soil 

sample

Height- refers to the height measurement of each tree seedling in millimetres from the initial day 

o f treatment application

Day- refers to the time measurements used in the analysis

Tree- refers to the identification of each tree seedling in the experiment.

T h is  data set was then used in determination of variation both at intial time and later during 

growth analysis.

2 .3  M ethod of analysis

Th e  method of analysis was based on the method proposed by Goldstein(1995) which is a mul­

tilevel form of representation as shown in chapter 3. The steps for analyzing the data were as 

follows;

For random intercept model given by

Vi j  ^0i T b\i t i j  T Eij

where

&0t =  Po +  Voi

bn — Pi
the variaton of the mean (b0i) of intercepts (initial height of trees) D, around population mean 

{boi ~  A/^O. D )) and variation of observations around the subject specific mean, (F^ ~ A^(0, E *)) 

were evaluated. The variance D shows the variation between individual tree height at t=0. E* 

show the measurement error.

The total variance was then calculated which is given by dn  -her2, since random intercept model 

is assumed to be comprising of two constant variance components.That is, variation due to inter­

cepts and the measurement error. Then using the values of D and a1 the intraclass correlation 

or reliability coefficient given by
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dn

Pi ~  o ' + dn

was calcurated. The fitting of the model was done using R program and estimation of the vari­

ance components was done using restricted maximum likelihood estimation techniques.

For random intercept and slope model given by

where

Vij — 0̂ i + b\{t{j £{j

boi — flo +  t>0i 

bu =  fii +  vu

the variation of the variation of the mean around subject specific mean, (Yij/boi ~  A^O, £ ;) ,  and 

covariance matrix D of random effects were evaluated. In this case D consists of four variance 

components. That is dn  which is variance of intercepts (spread around average height of the 

tres at t=o), d22 which represents variation of slope (spread around the rate of growth across all 

trees) and d\2 which is correlation between dn and ^ (degree to which individual tree height 

at t=o and rate of growth co-vary). From this covariance matrix which is given by

Vi = Z tD Z J + E i

and the corresponding correlation structure were obtained.
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C hapter 3

M odels

R andom  coefficient M odel

3 .0 . 1 Linear effect m ixed m odel

The general linear mixed effect model for longitudinal data is given by

Vij ~  Z'ija i + X'tj0  + Eij (3.1)

where

yij is observed data for subject i at time j

Zij and X ij are rii x  q and n* x  p known covariates matrices

0  is p-dimensional p x  1 vector of unknown population parameters (fixed effects)

01 is q-dimensional (q x 1) vector of uknown individual effects 

Eij is the error term

oti ~  A/fO, D )

That is oti is assumed to be normally distributed with mean 0 and covariance matrix D.

E^ ~  Af( 0, £*)

1 . .  . TV

D is a q x  q covariance matrix with i ,  j  element dij = dji

£* is (rii x rii) covariance matrix which depends on i only through its dimension ri{. That is, the 

set of unknown parametersin £ j will not depend on i.

It follows from equation 3.1 that conditional on the random effect a*, is normally distributed 

with mean +  ZjQj and with covariance matrix E*. .

18



let f{yij)/cti and f(c*i) be the corresponding density functions, then the marginal density func­

tion of y ,j is then given by

JiVij) ~  j  f  (Vij /  &i) f  iptijdoti

which is the density function of ^-dimensional normal distribution with mean vector Xj/?and 

with covariance matrix

Vi = ZXD Z\ + E  <

which show the dependance of mean structure and covariance structure on the covariates X* 

and Z x respectvely. The conditional regression function of 3.1 takes the form

E{yij/a ,)  = Z'ijOti + X-jP  (3.2)

Z-jQi comprises the random effects portion of the model and 

X -jP  comprises the fixed effect portion

A linear mixed effect model where some of parameters are normally distributed random variables 

is called random coefficient model.

3 .0 .2  D erivation  o f random  coefficient m odel

From the linear mixed effect model, suppose that q = p  and Zit = X^ .ln  this case the linear

mixed effect model reduces to random coefficient model of the form

Hence

Eiyij/oti) = X ’̂ a t  + p)

= X ^  (3.3)

where pi given by a* 4- P are random vectors with mean p. 

hence

Vij ~  X ijpi +  £ij
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In the model y is a t x  1 vector representing ith individual’s t repeated measurements on response 

variable, X i3 is a t x p matrix of t corresponding reapeated measurements on p explanatory 

variables, pi is p  x  1 vector of individual specific regression coefficients corresponding to p 

explanatory variables and is t x  1 vector of random errors.

So from this model we can see that each individual tree has a different relationship between its 

outcome measuerments, height and time variable defined by the p regression parameters of 

For the purpose of inference we need to make the following assumptions.

A l .  Pi ~  M V N {p ,Y ,i)

T h a t is Pi comes from multivariate normal distribution of dimension p with mean vector P, 

and variance-covariance matrix £*. P[s are indepedent across individual trees. A2. Eij ~

M V M { ^ O ih )

T h a t is Eij j  = 1 comes from a univariate normal population with mean 0 and variance 

a 2. A ll of s'ijS are indepedent of each other. This is referred to as the conditional indepedence 

assumption.

The random coefficient model can be interpreted as a two stage sampling model. In the first 

stage, one draws the ith subject from the population that yields a vector of parameters /%. From 

the population this vector has mean

m )  = p

and variance

var(Pi) = D

At the second stage, one draws Ti observations for the ith individual, conditional on having 

observed Pi.

Th e  mean of observations is given by

and the variance is given as

E(Vij/Pi) = Xijpi

V ar(yi:j/pi) =

20



Putting this two stages together yields,

E (ytJ) = X i:iEpi 

= X tjfi (3.4)

Var(yij) =  E(Var(yi:j/fa)) + Var(E(yij/fa))

=  Hi +  Var(Zijfa)

= Hi +  X'ijDZij

= Vi (3.5)

However certain variation of two stage interpretation of the random coefficients model lead to 

other forms of random effect models in equation 3.3. To illustrate, we may take the columns 

of Zij to be a strict subset of column of Xij. Th is is equivalent to assumming that certain 

components of fa associated with Z i3 are stochastic wheres other components are associated 

with X i (but not Z i3) are non stochastic.

By convention we assume that the mean of random effects a* is known and equal to zero.Thus 

we arbsorb the additional terms into the Xijfl portion of the model. Thus its customary to 

include those explanatory variables in Z i3 covariate matrix as part of Xi covariate matrix.

In our case we have used Z i3 and X i3 interchangably. In random coefficient model the same 

model holds for all individuals, but the parameters of the model do not have fixed values. Instead 

for each individual the value of each parameter is regarded as a random observation from its own 

distribution.

Random coefficient models are of different types. We have used in our case random intercept 

model and random intercept and slope modelel to model the covariance matrix for the growth 

of acacia Senegal trees under varying conditions.

3.0.3 R andom  intercept m odel (RI)

Random intercept model is a linear mixed effect model where the only subject-specific effect 

is intercept. The random effect covariance matrix D is a scalar and Z* are of the form l ni
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(n,-(dimensional vector of ones), with as many l ’s as the number of trees used in height de­

terminations (i = 1...39). Residual variance matrices are of the form E* = <J2Ini (conditional 

indepedence). D is variance term which indicates how much spread there is around the initial 

height(intercepts). A simple extension of regression model for our data is given by

Vij =  A) + 0iUj + £ij (3.6)

To allow for the influence of each individual (tree) on it’s repeated outcomes the model becomes

Vij =  Po + PiUj + Ôi +  £ij (3.7)

where

00 is intercepts or initial average height of all the trees (population initial height)

01 is linear change across time or average rate of growth (population rate of growth)

Uij is outcome variable or height of i th tree measured at time j

t{j is indepedent time variable

voi is the influence of individual (tree), i on it's repeated observations. If an individual (tree) 

have no influence on their repeated outcome, uqi =  0- However its more likely that individual 

(trees) will have positive or negative influences on their repeated measures and so voi will deviate 

from zero.

To better reflect how this model characterises as individuals influence on their observations, its 

helpful to represent the model in hierachial or multilevel form as observed by Goldstein (1995). 

In our case we have represented the models in this manner.

The model is partitioned into the following 

Within subject (or level-1) model given by

Vij — bfo 4- bnUj 4- £ij (3.8)

and between subject(or level-2) model

boi = 0o +  t>ot (3-9)

bn =  0\

where

bot is intercept or initial height of ith individual (tree)
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6i , is the individual (tree) rate of growth.

The other parameters remains as stated above. Level-1 indicates that individual (tree) response 

at time j is influenced by its initial level 60, and time trend or rate of growth (slope) 61,

The level-2 model indicates that individual tree initial level is determined by population initial 

level /3q plus a unique contribution for that individual tree tfa . Thus each individual (tree) has 

their distinct initial level. Conversely, individual (random deviation from mean slope) rate of 

growth are assumed to be the same. All are equal to population rate of growth (slope) (3\ . That 

is, each individual trend line is parallel to population trend (average rate of growth) determined 

by /3b.initial population height and /3i, population rate of growth . The difference between each 

individual trend's and population trend is Voit which is constant across time.

The hierachial representation shows that just as within subjects (level-1) covariates can be in­

cluded in the model to explain variation in level-1 outcomes (y^), between subjects (level-2) 

covariates can be included to explain variation in level-2 outcomes (subjects intercept 60iand 

slope bu ).

Random intercept model implies a compound symmetry assumption for variances and covariances 

of longitudinal data. That is both variances and covariances are assummed to be same across 

time namely

where vot A r(0 ,a l)

V ar(yij) = + a 1

coviyijyij,) = a \

between any two measurements from the same subject. Th is covariance structure is called com­

pound symmetry.

Let o 2v = dn . In general in random intercept models, observations are modelled as having two 

sources of variation. One is variation of the means boi,which is zero around their population mean

b(H ~  f /(0 , D)
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and second is the variation of observations around the subject-specific mean

Observations Y^ vary around a different value &oi for each individual. These values are the 

intercepts of the line each individual responses vary around, since the true rate of change are 

zero. The mean of Y^-. . .  Yry  is an estimate &oi of the unkown subject-specific intercept bQi. The 

sets of intercepts (initial heights) boi,i =  are a sample from the population . The Rl

assumes observations bouncing around a flat line = b(h +  £ ij •

Random intercept model implies a compound symmetry assumption for variances and covariances 

of longitudinal data. That is both variances and covariances are assummed to be same across 

time. Observations have constant variance d\\ -I- a 2 and constant dn . That is

VariXij) = Var(boi+£ij))

= V ar(boi) + V  ar(£i:i)

= du +  o’2 (3.10)

where dn  is the individual variation from initial mean (height of all the trees) and a 2 = a2Irii 

We assumes that all variability in rate of growth of individuals can be ascribed to treatment dif­

ferences hence can be obtained by omittimng random rate of growth (slopes). Implied marginal 

covariance structure (£* = o 2Ini) is given by

Vi =  ( l M i ( l ) + a 2)

=  dn + o2 (3.11)

Hence the implied covariance matrix is compound symmetry.

The covariance between Y^ and Yu simplifies to
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Cov{Yih Yir ) Cov(boi - f -  £ij, boi +  £ij>)

Cov(boi,  boi) +  Cov{boi,£ij>) +  Cov(£ij,boi) +  Cov(£ijt£if) 

Cov(£{j>, £ jj')

V a r fa y )

— d \ \ (3.12)

. Under this model the observations have constant variance and constant covariance. Thus this 

model implies compound symetry covariance structure.

Expressing the covariance as a corelation yields the intraclass correlation which is ratio of the 

individual variance, dn  to total variance a2 + dn . The implied covariance structure assumes 

constant variance a2 + du  over time as well as equal correlation.

The intraclass correlation thus is given by

dn
Pi — j  , o 

dn + (t*

Which is correlation between height for two individuals in the same subject.pi is large when 

inter individual variability dn is large in comparison to intraindividual(tree), a2, variability. This 

coefficient represents degree of association of data within individual and specifically indicates the 

proportion of variance in the data attribitable to individuals tree. Random intercept models that 

includes autocorrelated erros provides variance-covariance structure that is general than com­

pound symetry. So its Random intercept model with indepedent errors that implies compound 

symmetry.

3.0 .4  R andom  intercept and slope m odel (RIAS)

It is unlikely that rate of change (growth) at a given time point is the same for all individuals 

. Its more likely that individual differ in their time trends. Not everyone change at the same 

time. Compound symetry assumption is usually untenable for most longitudinal data. In general 

measurements at points close in time tends to be more highly correlated than measurements 

further separated in time. In many studies subjects are more similar at baseline and they grow
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at different rates across time. Thus its natural to expect that variability will increase with time. 

Hence a more realistic model is to allow both initial heights and time trend to vary by individuals

tree

. The RIAS model generarizes Rl model to observations Yi3 falling around subject specific lines 

boi +bu  with unkown subject specific intercepts &o, and subject-specific slopes &i,. Thus within- 

subject (level 1) model remains the same as in Rl. That is

Vij == ■+■ butij -T Eij

and

level-2 of random intercept model is augmented as

boi = Po +  voi

bu — 0i +  v ii

where

00 is overall population intercept (average height of all trees at initial time).

01 is overall population slope (mean growth rate across all tree).

ita ~  A^O, a j j  is random deviation from the mean (height for tree i)

Vu ~  j \f(0 , cr^) is rate of growth random deviation from the mean (growth rate across time for

tree i)

Eij ~  ,V ( 0 , a 2) is the residual error term.

cov(voi,vu) = (TVoVl With two random individual specific effects, the population distribution 

of intercept and slope deviations is assummed to be bivariate normal ~  Af(0, D ) with random 

effects variance-covariance matrix as

D  =

ob

<7vovx

^VqVi a Vi j
(3.13)

We make assumption that both and vu  are indepedent from residual error but we cannot 

assume that they are indepedent because a simple shift in the time variable will change the 

correlation of the two random effects.

This model can be thought of as a individual trend or change model since it represents mea­

surements of Y  as a function of time both at individual (t>o, and fi,)an d  population (0O and
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/3i) levels.

The intercept parameters indicates starting point and the slopes indicates degree of change over 

time. The population intercept and slope parameters represent overall (population) trend, while 

individual parameters express how subjects deviate from population trend. Because slopes varies 

for individuals, this model allows the possibility that some individuals do not change across time 

while others can exhibit dramatic change.

The population trend is average across individuals and variance terms indicates how much hetero- 

genity there is in the population. Variance term indicates how much spread there is around 

the population intercept and aVi represent the spread in slopes. If each individual deviation 

from the population trend is only due to random error, these variance terms will approach zero. 

Alternatively as each individual deviation from population is non random, but characterized by 

individual trend parameters Vo,• and vu  as being non zero, these variance terms will increase 

from zero. Covariance term represent degree to which the individual intercept and slope 

parameters co-vary. Positive covariance term would suggests that individuals with intial higher 

values have greater positive slopes while negative covariance would suggest the opposite.

In RIAS there is a different intercept and slope pair 6; =  {boi,b'u ) for each subject. The 6*. 

i =  1 , . . .  , n  form a sample from the population of possoble (intercepts, slopes) pairs. As there 

are two random effects we assume bivariate normal distribution. The mean a =  ( a i , a 2/) of Ks 

is the population mean of intercept-slope pair. The population mean time trend of the observa­

tions at time Uj is the line

The RIAS model has four covariance parameters. The variance a2 is the error variance of the 

observations Yy  around subject-specific line bu +  62iA j-The 2 x 2  matrix D has three unique 

parameters d n , di2 = d2iand d22. The parameter dn  is the variance of initial heights (intercepts) 

boi in the population. Similarly c/22 is the population variance of the rate of growth (slopes) bu 

and di2 is the covariance of the slopes and intercepts.

E[Yij/a\ c*i -T Ck2tij

Let (7^ = d u , &V1 = d2 2 , &V1V1 = d n  = rf21

D  = (3.14)
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Unconditionally, that is, ignoring the individual-specific intercept and slope parameters bit and 

thinking in terms of the parameters a 2 and D, the marginal variance of Y^ is given by

Thus

V ar (Yii! o \ D ) =  ( l + O2

V ar(Y ij/a2, D) = a2 + dn  + 2Ujdn  -I- t2tjd22 (3.15)

and the covariance between Y^ and Yy/ is

C o v ( Y i j , Y i j ' )  =  d n  T { t i j  T  t - i j ' )d i2  T  tijtij>d22

The marginal variance Var{Yij/P0.a 2,D )  is quadratic in time. The coefficient of t2j is d22, the 

population variance of slopes; the coefficient of 2Uj is di2, the population covariance between 

thge intercepts and slopes; and the constant portion of the marginal variance du  + a 2 is the 

sum of the intercepts plus the residual variance.

Random intercept and slope covariance structure is heteroscedastic where the diagonal element 

of D  increases with time with positive curvature d22- It also assumes that correlation between 

reapeated measures changes with time. If data is collected over along period of time, the marginal 

variance explodes which is usually implausible. Over a short period, there is little problem.

3.0 .5  M od el A ssum ptions

1. The within errors are indepedent and identically normally distributed with mean zero and 

variance a 2 and are indepedent of random effects.

2. The random effects are normally distributed with mean zero and covariance matrix D (not 

depending on subject) and are indepedent of different groups.

3. The variances of random effects in random intercept and random intercept and slope models 

are constant and non-negative.
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Chapter 4

M ethods of E stim ation

4.1 M aximum  likelihood estim ation M ethod

The maximum likelihood estimator of 6 is the value of 6 that maximises the likelihood function 

for all values of 6 in parametric space.

Under mixed effect model the normal distribution of y has the joint probability density function

f(y) = (2^ V W exp{~ l (y -  XP) 'V -\y-X0)}  (4.1)

where n is dimension of y.

In deriving this methods of estimation we take y^ =  y*.

For random coefficient models, with assumption that {y * } are normally distributed, the log- 

likelihood of a single subject is

W ,  r)  =  - i ( j y n ( 2 i r )  +  IndeW ^r) + (Vi -  -  X t0)) (4.2)

The log-likelihood of entire dataset is given by

N

r )
i=i

The values of (5 and r  that maximises L((3,r) are maximum likelihood estimators (M LEs) de­

noted by (3m l e  ar|d t m l e -

The score vector is the vector of derivatives of log-likelihood taken with respect to the parameters. 

Typically, if the score has roots, then the root is a maximum likelihood estimator. To compute 

the score vector, first take the derivative with respect to the parameter and find the root. That is
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N

h L{0'T) =
1 N 

=  - E a
j V T ' M * 1 (V i-X /3 ))

2 tid0(y -  X0)
N

(4.3)
1=1

Setting this score vector equal to zero yields

N N

53 -  E  = o
t=l »=1

Th is yields

N  N

(, 3cls, r )  = ( 5 3  ( X / V M - 'X ,)-5 3  (4 .4)
i=l i=l

Thus for fixed covariance parameter r ,  MLE and GLS are same.

From equation 4.2 and 4.4 substituting expression for GLS in log-likelihood equation yields 

concentrated or profiled log-likelihood given by,

1 N
L (0 g ls , t ) = - - Y i T M ^  + lndetVi(r )  + (y, -  X (0ols)' -  X<0gls)

1 t=l 

1 N
= —-  ^ (T i/n (2 7 r )  +  IndetV^r) + (errorS S)i(r) (4.5)

t=i

W hich is a function of r .  

where

(errorSS)i{r) = (y{ -  Xi(5GLS)'V  \ t ) \ y i  -  X ipGLS)

We maximimises the log-likelihood as a function of r .  In only few cases can we obtain closed 

form expression for maximising variance components.

For random intercept model the variance components are given as r  =  (cr2,d n ) . Hence

Vi = var(yij) = du Ji + (r2Ii
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Thus

IndetVi =  lndet(duJi + a 2Ii) 

= Tilna2 + ln( 1 +
o '

(4.6)

From this the concentrated log-likelihood equation becomes 

1 N
L(PGLS,dn ,a 2) = - -  y^(7;-/n(27r)

i=l

+  Tilm72 + ln( 1 +  -  X rfGLS) \ l ,
o ' o '

i l l
T}d  ii +  <72 Ji)(Vi -  XipGLs)

Removing parts that do not depend on variance components yields

L(0GLS,dl u a2) =  -  J  ViTM̂+lni l+ % ) ^ ( y f -  X ^ s ^ U - — ^ -  
1 o ' o ' J-idu ----oJi){yi-Xi0GLS+  o'

(4.7)

This likelihood can be maximized over (o2,d n ) using iterative methods.

For random intercept and slope model Vi(r) represent all the variance components. That is, 

variance of intercepts dn , variance of slopes d22 and covariance of intercepts and slopes d\2. 

These also are gotten by maximization of likelihood. All these estimates were obtained for the 

dataset on growth of Acacia Senegal trees considered.

4.1 .1  R estr ic ted  m axim um  likelihood estim ation  (REM L)

R EM L is likelihood based estimation procedure.Harville observed that its not specific to a partic­

ular design matrix as are most analysis of variance estimators. REML result in unbiased estimator 

of variance components for many balanced designs. The idea behind REM L estimation is to con­

sider likelihood of linear combinations of responses that do not depend on mean parameters. The 

responses (y) are assumed to be normally distributed with E (y ) =  X/3 and variance-covariance 

matrix V ( r )
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4.1.2 REM L calculations

Indepedence o f residuals and least-squares estim ators

Assume that y has a multivariate normal distribution with mean X/3 and variance-covariance 

matrix V . where X has dimension N  x p with rank p. V depends on variance-covariance param­

eter r.

We use the matrix Q = /  -  X ( X ' X ) ~ 1X' .  Because Q is idempotent and has rank N  -  p, we 

canfind an N  x ( N  — p) matrix A such that

AA! = Q 

and

A A ' = IN

We also need G =  V -\X {X 'V -\X ) -1, an N  x p matrix.Note that the GLS estimator of (3 is 

given by G'y = bGLS.

With these two matrices, define the transformation matrix H (A  : G ), an N * N  matrix. Consider 

the transformed variables

H 'y =

Basic calculation show that

A 'y ~M {Q ,A !V A )  

and

G 'y = bgl. ~ M ( 0 , ( X 'V . iX ) - \ )

in which z ~  A f{p, V)  denotes that a vector z has a multivariate normal distribution with mean 

p and variance V. Further, we have that A 'y  and bGL S  are indepedent. This is due to normality 

and the zero covariance matrix.
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Cov(A'y,  bgis) = E(A'yy'G)

= A 'VG

= A ' X ( X ' V ~ 1X - 1

We have A 'X  =  0 because A ' X  = ( A 'A ) A 'X  = A 'Q X  and Q X  = 0

(4.8)

Derivation o f R estricted  likelihood s

To develop the REM L we first check the rank of transformation matrx H. Thus with H as above 

we have

det{H2) =  det(H 'H)

=  d e t [ [ ( ^ ] \ A G ] \

=  det(A'A)det(G’G -  G'A

=  det(G'G- G'QG)

= d e t { G ' X ( X ' X ) - 'X 'G )

=  d e t i ( X ' X ) - 1) (4.9)

Using G'X  = I.  Thus, the transformation H is nonsingular if and only if X ' X  is nonsingular. 

No information is lost by considering the transformation H'y.

Based on probability density function of A'y  the restricted likelihood is developed. We writen 

f c ' y to denote the probablity density function of the random vector G'y, evaluated at the (vec­

tor) point z with mean parameter f3. Because probability density function integrate to one, we 

have the relation
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1

=  f ------ 75------- ---------------- exp (- ^ (z  -  0 ) ' ) X ' V - \  X Q z  -  0dzJ ( 2 x f 2d e t ( X ' V - ' X ) - l / 2  2
1

j  fg'y{z,0)dz

-1
=  / ------ 75------- -----------------exp(-^-(z  -  0 ) ' ) X ' V - \ X Q z  -  0d0J (2n)p/2d e t ( X ' V - 1X ) - l / 2  2 ’
=  J }g'v{z -.PW

for each z with a change of variables.

Because of indepedence of A'y  and G'y = bcLS. we have

(4.10)

///'!/ =  fA'y fG'y

where fH'y,fA'y ands f e y  are the density functions of random vectors of fH'y,fA'y and f e y  

respectively.

Let y be a potential realisation of the random vector. Thus, the probability density function of

A'y  is

!#v(A'y)  =  J  f A,y(A'y) fG,y(G'y ,0)d0

= f  f„,y(H

=  J  de t(H)~ ' fy(y ,0 )d0  (4.11)

using change of variables.

Let bcLS be the realization of Pgls using y. Then, from a standard equality from analysis of 

variance,

(y -  X 0 ) ' V - ' ( y  -  X 0 )  =  (y -  X b GLs) 'V~ '{y~XbGis )  +  (bGLS -  0 ) ' X ' V - 1X ( b GLS -  0)
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With this equality, the probability density function f y can be expressed as

U v ’0)  = ^ 4 ^ exp(- T ( y - W " 1 (y - X/3)

=  (2^ L ( V ^ XP(- T ^  -  X 'o u D V - ' i *  -  X io u ) )

exp (-l-(bCLs -  0)'X'V-'X(bGLS-  0))
(2 n y /* d e t ( X 'V - 'X ) - l / 2  , - 1 ,  v l  v „ r£nw „  m

=  ------- (2n)N/2det{V1/2------- GXP— 2~(y ~ Xf)GLs ) v  W ~  X bG LS)) fG'y{bGLs,ft)

Thus

,  , (2n)pl2d e t ( X ' V - 1X)-l/2, ,  - 1 .  v , v , . .
l * v (A y )  =  ------  'W/2 ------ det(H) exp(— — (y -  X6c is ) K (y -  XbGLS))

(27t) 7 a e t \ y xiz ^

J fG'y{^GLS-.P)dP

= {2n)-{N- p)/2de t{V) -1/2d e t ( X 'X ) 1/2d e t { X ' V - lX ) ~ l/2

e x p ( - ^ ( y  -  X b GLS) ' ) V - \ y  -  XbGLS))  (4.12)

Taking logariths and dropping terms that do not involves variance components r  yields,

LREML(baLs(r),T)  =  - l-[lndet(V(T)) + ln<kt(X'V(T)~1X )  + (y -  X bGLS( T ) ) ' ) V - \ y  -  XbGLS(T)] 

= ~^[lnde t(V  ( t ) )  + lnd.et(X'V ( r ) ~ l X )  +  (e r r o r S S ) ( r )  (4-13)

which is restricted log-likelihood function, 

where

(errorS S ) ( t )  =  ( y  -  Xf tGLs(r)) ')V~l (y -  XftGLS(r)

4.1 .3  A pplication  o f REM L

Defining a projection matrix as

q = i -  x(x'x~lxy
i

and considering linear combination Qy, then we find that Qy has mean zero and variance- 

covariance matrix that do not depend on parameter ft. Derivatin of REM L function is shown in
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appendix 2. Rank of Q is N  — p thus we lose some information by considering this transformation 

of data hence the use of descriptor restricted maximum likelihood.There is some information 

about r  in vector /3Gls  that we are not using.The REM L as derived in above is given by

Lreml(0cls(t) .t ) = -^[lndet(V(T))+lndet(X'V(T)-1X)+(y  -  Xa0Ls(r)) ')V - '(r)(y-X 60Ls{r)]

(4.14)

where

(ErrorSS) (r )  =  (y -  X  0 gls(t) ) ' ) V - \ t )(-

Thus in random coefficient model the likelihood for a single subject is given by

Lreml(Pgls(t).t ) =  —-  [lnde&(Vi(r))+ lndet(X,iVi(T) 1Xi)-\-

(:y -  X i/3GLs ( r ) ) ') V r 1(r)(2/i -  X ^ g l s {t )} (4.15)

The log-likelihood of entire dataset is given by

N

L ( 0 , t ) = Y i W t)
1=1

The values of f3 and r  that maximises L(/5, r )  are restricted maximum likelihood estimators 

(R M LE s ) denoted by /3REml and t REm l -

The score vector is the vector of derivatives of log-likelihood taken with respect to the parameters. 

Typically, if the score has roots, then the root is a maximum likelihood estimator. To compute 

the score vector, first take the derivative with respect to the parameter and find the root. That is

N

I j W r )  =  £ | w , r )

1 N
=  -  £

d

2 t r  0/ %  -
7 V f ‘ (T  ) - ' ( V i - X 0 ) )

N
(4.16)

1=1

Setting this score vector equal to zero yields

N N
-  £ x /K X ,/3  =  0

1=1 1=1
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This yields

{ f id s ,  t ) (^T^ (x * Vi{r) XjVi(T) lyt (4-17)
i=1 i=i

Thus for fixed covariance parameter r ,  REM L and GLS are same.

From equation 4.15 and 4.17 substituting expression for GLS in log-likelihood equation yields 

concentrated or profiled log-likelihood given by,

1 N
L{ficLS,r) =  - -  ^ (T i/ n (2 7 r )  +  IndetV^r)  + I n d e t ^ x y ^ r ) - 1 X t)

Z i=l

+  (lH ~ X ifiGLs),V ~ 1{T)~1{yi -  XidcLS))
1 N

= ~ 2  Y ^ ( TM 2 n )  +  lndetVi{r) +  I n d e ^ X ' ^ r ) - 1 Xi) + {error SS)i{r))
L *=i

Which is a function of r .

We maximimises the log-likelihood as a function of r .  In only few cases can we obtain closed 

form expression for maximising variance components.

Thus from equation above the R EM L for random intercept model becomes

LREML[fiGLs{T~),T) = — ~[lndet{Tilno2 + ln{ 1 H— l—̂ ~) + lndet{X'i{Ii -  y  ) + o2Jl)Xl)
2. a * -Z *ctii

+ (y -  X < /W t))')(/< -  ~ X^ L s ( r ) }2 id n

where cr2 =  a 2Ini This likelihood can be maximized over (<72,d n ) using iterative methods to 

obtain (cr2) and d\\.

Vi(r )  also represent all the random effects for random intercept and slope model. That is, 

variance of initial heights (intercepts) dn,  variance of rate of growth (slopes), d22 and covariance 

of intercepts and slopes dx2. These also are gotten by maximization of likelihood using iterative 

methods. These estimates were for the dataset on growth of Acacia Senegal trees considered 

were obtained.

4.1.4 M a t r i x  in v e r s io n

To simplify our equation and provide a better intuition for expression we site a formula for in- 

verting V*. Vi has dimension 7* x  T*.
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(4.18)

V -1 =  (E i + ZiDZl)-'

=  E - 1 -  Y . - ' Z ^ D - '  + Z ' E - ' Z . r ’ Z 'E ,-1

The last equation is easier to compute than the left hand side when temporal covariance E* has 

an easily computable inverse and dimension q is small relative to 7*. Moreover because the matrix

D " 1 +  Z 'E r 1̂ )

is only a q x  q matrix its easier to invert Vi, a T* x  Ti matrix. In case of no serial correlation 

E i =  a 2I ni hence equation 4.35 reduces to

v r 1 =  (<r2/„ i +  ZiDZ'J- '

=  \ ( I ni -  Zi(a2D - '  +  (4.19)

For random intercept model we thus have

V - 1 = ( a 2I„i + D Z iZ i r '

where

Q = T TQ-+fT-? For random intercept and slope model, Vi take the simple form

Vi = D + a2(Z’,Zi)~l

hence the weihgt take the form

WiCLs = (D + <T2(Z'iZ i) - 1) - 1

This shows that subjects with large values of Z 'Z *) have greater effect on pGLS than subjects 

with sm all values.

o (Ini
D

TtD  + a2Ji)

J _ (7  . _  ^ ri )2 \1nt rp )Oz l i
(4.20)
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4.1.5 D eriva tion  o f ftcL S

Consider a Linear Model

and

Y  = X f t  + e

Var{e) = a2V

where V  is N  x  N  positive definite (p.d) matrix. Since V is positive definite it follows from 

diagonability of positive definite matrices that there exist an TV x  TV matrix K with R (K )= N  such 

that V  =  K K ' .  Le tZ  = K ~ ly , B  = K ~ 1X , r ] = K ~ le 

Since r ( X )  = r < p  it follows that r(B)  = r and E(rj) = 0.

Var{r]) = K ~ xo2V K ~ x

=  a2K - xK K fK ~ x

=  (J2In  (4.21)

Minimizing

r/r) = ( Z -  B0) ' (Z  -  B0)

with respect to ft we obtain the generarized least square(GLS) solution to normal equations as

r\r\ =  e'V  1e

= ( y - X 0 ) ' V - \ y - X 0 )

= y ' y - 2 0 ' X ' V ~ ly  + 0 ' X ' V - ' X 0  (4.22)

Differentiating with respect to ft and setting equal to zero, That is

^  = -2  X ' V ~ ly  + 2 X ' V ~ lX f t  =  0

Thus we get

0 = ( x ' v - l x y ' x v - ' y  (4.23)

If r  = p  we have full rank model hence X ' V ~ 1X ~ ] exists and the solution vector is unique 

geralized least squares(GLS) of ft given by

f t cLS  = ( X ,V ~ 1X ) ~ 1X V ~ 1y (4.24)
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to*

*C*'

<y~ Cft

r iance-covariance matrix of /3 is given by

===== V a r ^ X ' V - ' x y ' X ' V - ' y ]

^  ^ ( X V - 1! ) - 1

. , n 3 | d a ta . T h e  weighted least square of (3 is given by

8w =  ( X ' W X y ' X ’Wy

(4.25)

(4.26)

. - , t r i x .  If W  =  V ~ l this yields O LS estimate of (3. While setting

rT»4 e f f i c i e n t  estim ator.

. r r  ? r n o d e l  shown above the vector y* has mean Xi(3 and variance

K ( r )  =  ZiDZ'  + Zi

= Vi

• rx>r *■> i ^ m t :  model, th e  G LS estimator of Po l s is given by

n,
=  Y  ( x y c ' X i ) - '  Y  x M ~ lVi

(4.27)

(4.28)
i = l i=l

/ , , t  i < > i  i  ^ V l g o r i t h m

n p o n e n t s  are estim ated recursively. Th is can be done using either the 

c o r in g  m ethod. We in this case use Newton-Raphson algorithm
»uv* I t s  
te a r*  f .

^  o f  the m ost widely used optimisation procedures. It uses first

XloCc' t  H
J r 'l c : : t : io n  (the gradient of log-likelihood function) around a current 

n e x t  estim ate Each iteration requires the calculation of
'  r

the hessian matrix of log-likelihood. Newton-Raphson converge

L  =  L ( P g l s {t ) , t )

V M TOLD - { (
d2L

dTdTf)

-1 8L
r\ } \T- -  T0ld
Or
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& L
~&rdrJ

Any iterative algorithm requires initial values for parameters. Because 

mu*  & th pr hied >; likelihood and profiled log restricted likelihood as a function of 

Q trgvj'BM ri **■ **y rmd to f emulate starting values for r when performing iterative op- 

tor linear mixed effect model.
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Chapter 5

Analysis

5.1 Estim ates for R andom  Intercept (RI) M odel

Hierachial model was assumed in which random effects are used to describe the covariance struc­

ture in the data whereas all the remaining variability is assumed to be purely measurement error. 

The corresponding hierachial model is given by ommiting subject specific slopes thereby assum­

ing all individual profiles have equal slopes.

Table 5.2 shows the ML and R EM L variance estimates for random intercept model with their 

respective log-likelihood estimates for the data on growth of Acacia Senegal trees. In both the

Table 5.1: Table of ML and REML estimates of random effects for Random intercept model

Effect Parameter ML REML

Covariance of 6,

Var(60j) du 0.2248 0.2511

Residual Variance Var(e^) (72 0.1153 0.1155

REML Loglikelihood -336.5372 -350.6117

Intraclass correlation 0.6611 0.6851

estimates of variances for intial height (intercept) is more than the measurement eroor variances. 

Thus its not difficult to detect the heterogeneity in random effects thus &oi may reflect the correct 

distribution shape. However the R EM L estimates of dn  and a 1 are slightly higher than those 

estimated using ML.
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Intraclass co rre la tio n

Observations made on the same subject share the same random effects b0i hence they are corre- 

lated.The covariance between observations on the same subject is du  corresponding to correlation 

of

d u
P i  =  -T" ,  2d n  +  v

This gives intraclass correlation which can be interpretated as correlation between observations 

within a subject or proportion of variability of response that is due to heterogeneity namong 

subjects.

The intraclass correlation obtained from M L estimates is given by

P m l
0.2248

0.2248 +  0.1152 

0.6611
(5.1)

Similarly the intraclass correlation obtained from R E M L  estimates is given by

0.2511

PML ~  0.2511 +  0.1155 (5 2)

=  0.6851

The intraclass correlation obtained from R E M L estimates are slightly higher than those obtained 

from ML estimates. This shows that 66 .11%  from ML and 68.51% of total variance in acacia 

Senegal tree growth was due to between repeated observations in the subject differences. That 

is, correlation between height of trees for two randomly selected trees from the same subject from 

ML and REM L estimates were 0.6611%  and 0.6851%  respectively.lntraclass correlation obtained 

from REM L estimates are slightly higher than those estimated from ML estimates.

Covariance an d  C o rre la tio n  S tu c tu re s

Random intercept models assumes that all variability in subject specific slopes are ascribed to 

to treatment differences hence random slopes are ommitted. The implied marginal covariance 

structure is given by
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and

cov(Yij,Y ij,) =  ( l ) d „ ( l )  + CT2/„

=  I

Thus the implied covariance matrix is given by

— (in  +  a 2In

 ̂ d ii +  cr2 dn . . .  dn

dn dn +  g2 . . .  dn

 ̂ d n d ii . . .  dn +

The covariance matrix obtained from ML and REM L estimates a

(  0.6611 0.2247 . . . 0.2247 ^

0.2247 0.6611 . . . 0.2247

 ̂ 0.2247 0.2247 . . . 0.6611 j
and

( 0.66851 0.2247 . . . 0.2247 ^

0.2511 0.6851 . . . 0.2511

 ̂ 0.2511 0.2511 . . . 0.6851 y

(5.3)

respectively. Thus random intercept implies an equivariance or equicorrelation matrix. The 

corresponding covariance matrix with constant variance and constant correlation is compound 

symetry. Positive estimates for dn  of random effects estimated by the two methos indicates 

that the assumptions of positive correlation between the repeated measurements was valid for 

the dataset.

5.2 Estimates for R andom  Intercept and Slope (RIAS) 

Model

RIAS generarizes Rl model to observations falling around subject specific lines with unknown 

subject specific intercepts (60i) and subject specific slopes(6H). There is different sntercept and
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slope pair.

Table 5.2 shows the ML and REM L estimates of random effects for RIAS model and their re­

spective loglikelihood estimates.

Table 5.2: Tabic of REML estimates of random effects for Random intercept and slope 

model _________  ___________________________________
Effect Parameter ML REML

Covariance of bt

Var &oi dn 2.0245 2.1030

Var bu ^22 6.7417e-06 6.9337e-06

Cov (boiMi) du -3.4875e+02 -3.5881e+02

Residual Variance

Var (Eij) a2 0.06516 0.06515

REML Loglikelihood -176.4778 -189.428

From the table the resulting 2 x 2  estimates of random effects covariance matrix D  are given 

by.

for ML estimates and

D ml =
'  2.0245 -0.003487 ^

 ̂ -0.003487 0.000006742 }

Dreml =
2.1030 -0.003588

-0.003588 0.000006944

for REM L estimates.

D  has three unique parameters. That is d\\ which is variance for random intercept, 2̂2 which 

is variance of random slope and d \ 2  which is covariance of slopes and intercepts. The estimates 

of measurement error are almost equal for the two methods. From the D matrix the ML esti­

mates for variance of random intercepts(intial heights) and variance of random slopes (rate of 

growth) are slightly less than those of REM L but are comparable. The ML estimates for corre­

lation between intercepts and slopes (-0 .9 4 4 ) is also slightly less than that of REM L estimates
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(-0 .939 ). Th is indicates a strong negative correlation of the intial height(intercepts) and rate 

of growth(slopes).

Since the variance of the slopes is small compared to variance of intercepts, its natural to explore 

whether a random intercept model is adequate.

E stim a ted  V ariance F unction

From the D  matrix the variance function is predicted by

Var{Yij/ a2 , D) =  d,22Uj2 +  2d\2Uj +  d\\ - f  a2 

Th is  gives the variance functions estimated by ML and R EM L to be

VariYijiUj)) = 0 .000006742^/ -  0.006974*# + 2.08966 

and

VariYijiUj)) = 0.000006944Uj2 -  0.007176*# +  2.16815

respectively.

From both, we have positive estimates of random slopes. Th is suggests presence of positive cur­

vature in variance function. Thus the obtained variance functions are compatible with proposed 

hierachial models hence random effect models that naturally arose from two stage approach 

described in chapter 3 implies an appropriate marginal model.

C ovariance an d  C orre la tion  M atrices

Random effects results from variation between and within subjects hence impact on variance 

and covariance of the observations. The estimate for marginal covariance matrices obtained by 

combining the estimate for D  with estimate for a lni is assumed to be of the form

Vi = ZiDZ '  + G l ni
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D is as described above.

The following are portions of correlation matrices estimated by ML and REM L respectively.

/ 1.0000000 0.9773966 0.9738081 0.9693334 0.9649574 0.9633820 0.9519445 ^

0.9773966 1.0000000 0.9699753 0.9654874 0.9611015 0.9595231 0.9480703

0.9738081 0.9699753 1.0000000 0.9618671 0.9574751 0.9558949 0.9444349

0.9693334 0.9654874 0.9618671 1.0000000 0.9529664 0.9513851 0.9399228

0.9649574 0.9611015 0.9574751 0.9529664 1.0000000 0.9469860 0.9355268

0.9633820 0.9595231 0.9558949 0.9513851 0.9469860 1.0000000 0.9339472

 ̂ 0.9519445 0.9480703 0.9444349 0.9399228 0.9355268 0.9339472 1.0000000 )

for M L and

/  1.0000000 0.9809179 0.9782164 0.9749571 0.9718695 0.9707792 0.9631519 ^

0.9809179 1.0000000 0.9752230 0.9719510 0.9688531 0.9677596 0.9601136

0.9782164 0.9752230 1.0000000 0.9692184 0.9661133 0.9650176 0.9573591

0.9749571 0.9719510 0.9692184 1.0000000 0.9628164 0.9617185 0.9540490

0.9718695 0.9688531 0.9661133 0.9628164 1.0000000 0.9586002 0.9509231

0.9707792 0.9677596 0.9650176 0.9617185 0.9586002 1.0000000 0.9498212

 ̂ 0.9509231 0.9498212 1.0000000 0.9305383 0.9122976 0.8790089 0.8101871 y

for R E M L .

Both methods gives non constant variances that decreases with time. However the variances 

and covariances estimated using R EM L are slightely higher than those estimated using ML.

The correlation are seen to decrease with increasing lag. As time increases the correlation be­

tween the observations at two adjacenttime points decreases.

R IAS covariance matrix is heteroscedastic where diagonal element of Vi  increases quadratically 

with time with positive curvature. Th is covariance structure also assumes that correlation be­

tween repeated measurements changes with time. This covariance structure is obtained when 

additional random effect bn associated with time is assumed. Thus our estimated variances are 

consistent with this.

47



Likelihood R a tio  T E s t (LRT)

A likelihood ratio test can be derived for comparing models with different covariance structure 

and to test whether variance function is significantly different from constant. More specifically 

the hypothesis of interest is

Ho  : d\2 — <̂22 — 0

From table 5.1 and 5.2 the L R T  obtained from comparing maximised ML and REM L loglikelihood 

values can be obtained. The observed values for the test statistic obtained by ML method equals

- 2 l n \ N = —2(-336 .5372 + 176.4478)

= 320.1788

Similarly the observed values for the test statistics obtained from REM L method is

(5.4)

—2/nA.v =  -2 (-3 5 0 .6 1 1 7  + 1189.4729) 

=  322.2776
(5.5)

The test statistics obtained by ML are slightely less than those obtained by REM L. We compare 

this with chi-square distribution on 2 degree of freedom. The critical values at 5% level of 

significant is 3.84. Thus for the two methods there is a strong evidence of between subject 

differences.The two test statistics are significant when compared to a chi-square distribution 

with 2 degrees of freedom (p < 0.001). Hence the random intercept and slope model is more 

consistent with the Acacia Senegal dataset.
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C hapter 6

C onclusions

Maximum likelihood estimation and Restricted maximum likelihood estimation both have same 

merits of being based on likelihood principle which leads to useful properties such as consistency 

, asymptotic normality and efficieny. One expect results from ML and REM L estimation to differ 

more as number of parameters of fixed effects increases.

The random effects for both random intercept and random intercept and slope models were 

comparable for the two estimating methods.

Both intial heights(intercepts) and rate of growth (slope) were strongly negative correlated. The 

covariance between them were negative hence the individual tree with initial higher values have 

greater negative slopes. The covariance structure implied by random intercept and random in­

tercept and slope models is more consistent with typical longitudinal data.

Positive estimate of d\\ random effects estimated by the two methods indicates that assump­

tions of positive correlation between repeated measurements was valid for the dataset.// The 

estimated variance functions were compatible with proposed hierachial model assumed hence 

random effects that naturally arose from two stage approach described by the dataset used im­

plies an appropriate model.

Error variance and covariance structure play an important role in the shape of distribution of 

random effects 6*. Since error variability a 2 was small compared to random effect variability 6, 

reflects the correct distributional shape of the random effects.

Under hierachial interpretation of model, ti may be of scientific interest to test for the need of 

some of the random effects. Here we test
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Ho '• d\2 — 2̂2 — 0

All observed values for — 2 ln \^  (log-likelihood ratio test)are larger than 3.84 hence there was 

strong evidence of between subject differences.The p < 0.0001 hence covariance structure should 

not be simplified deleting random effects from the model.

Thus in all ML and REml compared quite well for the dataset on growth of Acacia Senegal trees. 

Further work acn be done by using the same dataset to compare other estimating methods 

such as Generalized Estimating Equation(GEE) and Minimum Norm Quadratic unbiased Equa- 

tion(M IN Q U E). Other hierachial models could be considered.

6.1 A ppendix

6 .1 .1  R  code used in analysis

p ro d a ta < -re a d . csvO 'd a ta p ro . c s v " )

a t t a c h  (p ro d a ta )

p ro d a ta

p ro d a ta A < -p ro d a ta [! i s  .n a (p ro d a ta H E IG H T ), ]

p ro d a ta A

l ib r a r y (n lm e )

f  i t p r  oMLS<-lme ( HE IGHT ~TIME+TRE ATMENT+S IT E S , random=~ 1+TIME |

S U B JE C T , data= prodataA , contro l= list(m sVerbose= TRU E),m ethod= "M L") 

f  itp ro M L K - lm e  (HEIGHT~TIME+TREATMENT+SITES, random=~ 1 1 SUBJECT, 

d a ta= p ro d a taA , contro l= list(m sVerbose= TRU E),m ethod= "M L")

Z i l< - c ( r e p (1 ,2 1 ) )

M L I< -1.422844055 ~2 

M LS<-0.002596475*2 

MLR<-0.255255121^2

D m atM Lc-m atrix (c (2 .0 2 4 4 8 5 ,-0 .0 0 3 4 8 7 4 9 4 ,-0 .0 0 3 4 8 7 4 9 4 ,0 .0 0 0 0 0 6 7 4 1 6 8 2 ),nrov=2) 

covM L<-0.002596475*1 .422 844055*(-0 .944 )

VarcovMLS<-Zi3y.*y,DmatREMLy,*'/,ZT3 

VarSigmaML<-VarcovMLS+( 0 . 06515077*d iag (21 ))
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corrM L<-cor(VarSigm aM L)

########################################################### 

fitp ro R E M L< -lm e ( HEIGHT~TIME+TREATMENT+SITES, random=~l+TIME|

SUBJECT, d a ta= p ro d ataA , co n tro l= lis t (m sV e rb o se = T R U E )) 

fitp ro R E M L< -lm e ( HEIGHT~ TIME+TREATMENT+S IT E S , random=~1 1 

SUBJECT, d a ta= p ro d ataA , co n tro l= lis t (m sV e rb o se = T R U E ))

R ED 1K-1 ,450178869~ 2 

RERES<-0.255246492^2

REC0VA<-1.4 5 0 1 7 8 8 6 9 *0 .0 0 2 6 3 5 0 9 8 *(-0 .9 3 9 )

RED22<-0.002635098^2

D m atREM L< -m atrix(c(2 .1 0 3 0 1 9 , -0 .0 0 3 5 8 8 2 6 , -0 .0 0 3 5 8 8 2 6 ,0 .0 0 0 0 0 6 9 4 3 7 4 ) ,nrow=2) 

Z T l< - t (Z i3 )

Z T 3 < - t (Z i3 )

Var c o vREML< -  Z i  37.*°/,Dmat REML0/.* °/#ZT3 

VarSigmaREML<-VarcovREML+( 0 . 0 6 5 1 5 0 7 7 *d iag (2 1 )) 

corrREM L<-cor(VarSigm aREM L) 

a n o v a (f  itp ro R E M L 2 ,f itp ro R E M L l) 

a n o v a ( f i tp ro M L l ,f i tp ro M L S ) )
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