An investigation of the influence of mulching and agroforestry systems on the microclimatic conditions affecting soil moisture and a maize/bean intercrop in semi-arid areas of Laikipia district

тн: 1.O.O.1995
IND AC, : AX BF L $\angle A C E D$ HN IE
UNLVムB8AIY L」BRABY,
UNIVERSITY OF NAIROB
IIBRAR"
f. O. Box 30197

BY
NAIROBI

SILVERY BEDDAR BULUMA OTENG'I

```
H18 THESIS M19 REEN ACOEPTED YOA THS DPORPR or.......... 1995 AND \(A\) CSTC "AY RT IH KED IN THI ONA: FOHSITY I.IUKARY.
```

A thesis sumbitted in fulfillment for the derree of [nctor of Fhilosophy in the Uni\%ersity of Hairobi (Faculty of Seience)

DECLARATION

This thesis is my own original work and has not been presented for a degree in any other university

This thesis has been submitted for examination with our approval as University Supervisors

$$
\frac{1.1 \cdot 96}{\text { Date }}
$$

Prof. C.J. Stigter

$$
\frac{28|11|^{\prime} 95}{\text { Date }}
$$

DEDICATION
I dedicate this humble effort, the fruits of my thowhts and study to my affectionate darents: my late father Mzee ianuarius Gmuii otena'd Waniala and my mrither Faulina Juma Buluma Oteng'i whese efforts have steered and inspired me to higher 1 deals of life.

ACKNOWLEDGEMENTS

The funds for this study came from many sources. The University of Nairobi. through the Dean's Committee advanced us the funds to set un preliminary study at Matanya experimental site station. The University of Nairobi also aranted my paid study leave which enahled me to proceed to The Netherlands for the writiro-un of this thesis. The African Academy of Sciences provided the core onerational funds which covered among other items: travelling expenses to Nanyuki. livino expenses while in Nanyuki. salaries for field assistants.

The TMMI-Froject. core financed by The Netherlands government (DGIS/DPO/OT), provided fiunds for soerational costs. co-supurvisjon. research equipment. books and other recessary literature. return air tickets to Holland. fellowships. cost of analysis and writind-up of this thesis.

The Laikipla Research prooramme (LFF') provided transport. office space ard other logistical support. experimental sites at Matanva ard Embori. initial supervision during initiation of this wark and for building up rappot with small-scale farmers whach made it easier fan them to participate in this study.

The kenya Metemolcoical Lepartment gave some of the equipment and facilities fior calibration of scme of the equipment. The [epartment of Grop Science in the University of Nairobi allowed their technician who works half of his time for TTMI tor wate with me in Manvaki whenever there was a roblem with iretruments in the fjeld in Lajkjpja distrjet. The [henartment of Guo Soience also qave us a rocul to storn TIMI equipment.

I am dreatlv indebted to these oroanizations without which this work would not have been successfully comoleted.

I wish to express mu hear tfelt aratitude to mv sunelvisors: Frof. J.K. No'aria'a. Frof. C.J. Stigter'. Er. [I.N. Murbai and former superviscri Ir. H.F'. Liniger for their wise onvidance arri valuatule suggestions in the course of preparinu this thesis. followimy the PICNIC model develcoped iri the TMMI-Frojert.

I wish to express my considered aratitude to the [epartment of Meteorology of Wageningen Ansicultural University for providirio valuatle facilities during the writind-up of this thesis in The Netherlands. In particular I wish to thank Ins G. Van den Brink and her assistant mw. J. Van den Bomoaard for then' administrative acumen ard assistarne. 'Ilıe computer wizard' Irs. C.L. Van den In ies for his useful assistance. jng. B.G. Heusinkvelu for manufacturing WAU anemometers and for begularly

This work would not have started in Laikidia district in aeneral and Matanya in rasticular if it were not for foresiaht and inspiration of [r. Hanspeter Liniger who ploneered and speried up Matanva. Kalalu. Embori arm other statjons where this work was done ard for invitino TTMI for coopration in solvina the food problems of the resource pinor small-scale farmers of Laikinua district.

Additionally this work would not have got off the oncund without TMM-project having been started by a smaj] proun of African and Eurouean scientists who foresaw the need for work of scientific researchers to understard. by learmina from the African farming methods uncer difficult climatic conditions. in ouder to help the African falmers imorove on theil farmiru approaches for irucreased ford oroduction. I am ofiateful for this foresight.

I further wish to thark the former LRF Research Coordinator [n. U. Herren and his successor [r. M. Hubwr. Mr. Atony kiarie and the entire
staff of LRP for whom I am lost of words with which to exprees inv aratefulriess fou their valuable assistance durira my soigur in Hanvuki.

My special acknowledrement goes to the research assistants: Messrs B.M. Maina. C.W. Sumba. N. Gjtomara arai C. Najchu for their useful assistance in the field.

The Emall-scale farmers at Kiahuks and Matarıa who participated in this study were of great held. I therefore wish to thank Maee Muchangi. Mys. Regina Wangari Mucuuro and Mr. Murone for allowina us use their farms for cour study.

The useful contrioution of the TTMI/Eaerton University M.Sc. students: Messy. M. Mutinda ard H. Mturi for addressing their aspects of small-scale farmer's problems that we could not have time to address.

Last fut by far the most imbcytant role in accomplishment of this stady was played by my family. My wife Wilbroda Akinyi Wabwire oteng i and pu children: Caloline Atieno Fuluma. Betty Nardongi Buluma. Felix Evieri Buluma. Yvonne Fulina Juma Euluma arai Valentine Actriano Enluma all missed me during mv four vears in the field and my mine months sojourn in The Nether lande.

Table of Contents

Title 1
Leclaration ji
Enedication iii
Acknow ledge IV
Table of Contents vii
List of Fioures xwi
List of Tables xoxiii
List of Plates xoxviji
List of Fioures in Appendix :ccri:
List of Tables in Appendiy. $x 1$
Ahstract xli
CHAPTER ONE

1. Introduction 1.
1.1 Froblem identification 1
1.2 Relief measures (apolied or proposed) I
1.2.1 Historjcal rerspective 1
1.2.2 Micrometeorolouical asuects of famers conditions in the area 5
1.3 Aupromeh to more derailed problem identification after selection of reliet mearnues 0
1.4 ITMI-oroject. 10
1.5 Thesis obiectives 11
1.5.1 The Kenva Gover nment resear ch oriorities 11
1.5.2 The meterolruical asmects in the study area 12
1.5.3 Soco of the study 13
1.6 Hyponthesis 14
1.7 Other expectation 10
CHAPTER TWO
2. Literature review 18
2.1 Orop orowing in semi-arıd areas 18
2.1.1 Climate and cropping systems 18
2.1.2 Nature of soils in the Semi-arid areas 20
2.1.3 Soils in Matanya experimental areas 22
2.2 The role of acroforestry (AF) sustem in croo production 20
2.2.1 The benefit of acroforestry system 20°
2.2.2 Soil moisture and soil nutrients in $A F$ system 29
2.2.3 Grevillea robusta in arroforestry farming systems 31
2.2.4 Coleus barbatus as live-fence materials 35
2.2.5 Crop performance and yields 35
2.2.5 (a) Maize in semi-arid environment 35
2.2.5 (b) Common beans in semi-arid envirorment 39
2.3 Meteorolorical and soil factors affecting mazze, bears intercrons in the semi-arid areas 42
2.3.1 Soil moisture 42
2.3.1 (a) Volumetric soil water content and bulk dersity 42
2.3 .1 (b) on neutacri probe 4
2.3.1 (c) Aurrencmy and soil manarpement with respert. to soil moisture 4
2.3 .1 (d) Effect of surface cover and tillage made with respect to soil moisture 53
(i) Fiple of mulches: in an arowth 53
(ii) Intluence of mulching on soil mristure 56
(iij) Effect of mulching ard tillage on soil
ohysical characteristics 59
2.3.2 Strong winds 62
2.3.2 (a) पnerview 62
2.3 .2 (b) Fole of winde in soil dear adation. 64
2.3.2 (c) The effect of wind on olants. 06
2.3.2 (d) The role of wandureaks in rotection against winds 58
2.3.3 Solar radiation. 75
2.3.3 (a) Gerview 75
2.3.3 llol Iry matter production and solar radiation. 79
2.3 .3 (c) Interception of whoternthetically active radiation (FAR) by trees and rrops B1
2.3.3 (d) Radiation interception by irdividual tall trees 85
2.3.4 Soil temperatures. 86
2.3.4 (a) Onerview 86
2.3.4 (b) Liurmal variations of soil temperature 87
2.3.4 (c) Effects of homogeneity of soil on dampina depths 89
2.3.4 (d) Surface cover effects on soil temberatue Darameters. 911
2.3.4 (e) Mulching effects on soil temperatures. 91

x
 CHAPTER THREE

3. Materials and Methods: $\cdot 36$
3.1 Croo 96
3.1.1 Materials 36°
3.1.1 (a) Matanya experimontal site 96
3.1 .1 (b) Emperimental lavout in adroforestry (AF) 97
3.1.1 (c) Expermmental lavout in non-aonoforestry (NAF) 100
3.1 .1 (d) Crop varietjes. spacinas and direction Dt sowing 103
3.1.1 (e) Measurement of maize heiohts and anain and biomass yields of maize. 103
3.1 .1 (f) Maize ard heans intercrop experiments in two on fiam sites 107
3.2 Soj! moisture measurements with neutron prole 110
3.2.1 calihration of neutron probes 110
3.2.2 Conrection for minimum denth to start meution orobe readinas 112
3.2.3 The lavout of access tubes in AF 114
3.2.4 The layout of access tubes in NAF 115
3.2.5 The lavout of access tubes in on-fadm live-fence Dlot at Ki.ahukro-A 115
3.2.6 The laycut of access tures in onffarm Grevillea rlot at Kiahuko-B 117
3.3 Wird meãsuremerıts. 118
3.3 .1 (a) Instrumentation. 118
3.3.1 (h) Evaporimeter svstem as an auxiliaryanemometer:
3.3.1 (c) The Woelfle anemographs 122
3.3.1 (d) Calibration site 123
3.3.1 (e) Experimental set up at Calibration site 124
3.3.2 Materials for field measurements at Matanya 127
3.3.2 (a) Experımental site 127
3.3 .2 (b) experimental layout of wind system. 131
3.3.2 (c) The Woelfle anemoorraphs 132
3.4 Radiation measurements 133
3.4.1 Instruments for radiation measurements. 133
3.4.1 (a) General 133
3.4.1 (b) Tube solarimeters (unfiltered. TSL) 134
3.4 .1 (c) The Kipp solarimeters 139
3.4 .1 (d) Millivolt inteurators 140
3.4.2 Experimental layout of solarimeters 140
3.5 Soli temperature measurements 143
3.5.1 Instruments for measurang soil temperatures 143
3.5.i (a) Soll temperature thermistors. 143
3.5.1 (b) Grant Squirrel dataloggers $14 i$
3.5.2 Calibration of soll thermistors in a Temperature

- Humidity Chamber 145
3.5.3 Experimental layout 145
3.5.3 (a) Aoroforestry piot 145
3.5 .3 (b) Non-agroforestry piot 146
3.5 .3 (c) Bare soil plot 140
CHAPTER FOUR

4. Results and Discussions 149
4.1 Results on maize and beans intercroos 149
4.1.1 Short rains season of 1991 149
4.1.1 (a) Rainfall and evaporation climate 140
4.1 .1 (b) Maize and beans phenology 149
4.1.1 (c) Maize heiọhts 154
4.1.1 (d) Biomass yields of̂ maize and bearıs 156
4.1 .1 (e) Bean seed yields 159
4.1.2 Long rains season of 1992 162
4.1 .2 (a) Rainfall and evaporation climate 162
4.1.2 (b) Maize and beans phenology 163
4.1.2 (c) Maize heights 164
4.1.2 (d) Majze biomass yields 167
4.1 .2 (e) Beans bicmass yields 173
4.1.3 Short rains season of 1992 175
4.1.3 (a) Fainfall and evaporation climate 175
4.1.3 (b) Mäize and beans phenology 179
4.1 .3 (c) The effect of mulching and root pruning on maize 180
4.1 .3 (d) Number of maize plants per hole and of cobs per plant. 183
4.1.3 (e) Maize yieids for SR92. 186
4.1.3 (f) Maize weight components 196
4.1.3 (g) Mulch effect on maize biomass and orrain weights in pruned and unpruned maize 199
4.1 .3 (h) Root pruning effect on maize biomass and grain wejuhts in mulched ard iocal plots. 2013
4.1.3 (j) Eean yields for SR92 209
4.1.4 Long rains seasion of 1993 216
4.1.4 (a) Rainfall and evaporation climate 216
4.1.4 (b) Maize and heans phenolory 210°
1.1.4 (c) Maize hejuints: The effect of mulching and
 319
 and pruning on marze tarwase weignts 225
4．i．－（e）Eears Dlomass and sted yoelds 225
4．j．E Joort ralns seascn For 1.05 229
 229
4．1．E（b）Yalze and bears pinemolooy 232
孔．i．E（c）Malze helothts 234
4．i．\＃（d）：daree bicmass yieidき 235
 $24 i$
 243
 243
孔．i．E inj Maz＝e and Leants rimenciory 243
4．之．（：）Mauこe neluntミ 240
 249
4． 1.6 （e）Seans momass and seed yneldis $-5 i$
4．1．7 Brort ：anns season for 1004 253
4．1．7（a）Eaintall anà evaporation cilmate 253
4．1．7（i）Marze and beans pherwicgy． 260
4．1．7（c）Marze hergints for SR94 260
4.1 .7 （d）Maize biomass yields 262
4．1．7（e）Beans biomass and seed ylelds 265
4．1．8 kiesults of on－farm live－fence experıment at Kiahuko－A 266
4．1．8（a）Maize and beans performancey 266
4.1 .8 （b）Maize heights 271
4．1．8（c）Malze blomass yields 272
4．1．9 Resuits of Muichang and prannng experiments at Kıaruko－B 274
 274
4.1. (i) Maj=e ne gonts 275
4.1.g (c) Maize domass yieids 38
4.1.) (d) Eeans seed and blomass yleids at Klanuio- on-farm 284
4.1.10 Intersomparison of yields in the on-farm (ílanuko-A \& B and on-station (Matanya) 280
4.2 Fesults and discussion soll moisture 290
4.2.i Feiatronship between observed and calculated VEMC (\%) 290
4.2.1 (a) Fesults of calibrations of neutron probes For Matanya soils 290
4.2.1 (b) Foiationship between bulk density anc soi. mCisture at Matanya 295
4.2.z Thoree of depth to start measurements with neutron probe 300
4.2.3 ミili misture sampliro at Matanva 302
$\div 2.3$ (a) Soll molsture sampiing at Matanya 302
4.2 .3 (b) Average VSMC in pruned Grevillea robustã trees in $\dot{A} F$ Dlots AFM1 \& AFL1 during LRg2. 313
4.2 .3 (c) Average VSMC in ungruned Grevillea robusta trees in AF plots AFM2 \& AFLí juring LR92 316
4.2.3 (d) Average VSMC in pruned Grevillea rokusta trees in AF plots AFMi \& AFLl during SF92 319
4.2 .3 (e) Average VSMC in unpruned Grevillea robusta trees in AF plots AFM2 \& AFL2 during SR92 320
4.2.4 Intercomparison of the VSMC in the mulch and Local $A F$ in the whole soil profile for the seasons 323
4.2.4 (a) Soil moisture distribution in the whole profile. 323
4.2 .4 (b) Effects of mulching on VSMC 326
4.2.4 (c) Muich effect on soil moisture distribution. 329
4.2 .4 (d) koot pruning on soil moisture distribution. 332
4.2.4 (e) Mulch effect on vertical soli moisture distrioution in the control 334
4.2.4 (f) Root pruning on soil molsture distribution with depth 335
4.2.5 Soil moisture deviations 338
4.2.5 (a). VSMC deviations from pruned area for the whole soil profile 338
4.2 .5 (b). VSMC deviations irom the means at each depth during LR92 and SR92. 342
4.2.5 (c). Per cent VSMC deviations of tubes in pruned
(AFM1 \& AFL1) from the means of entire AF plot LR92. 347
4.2 .5 (d). Per cent VSMC deviations of tubes in pruned (AFM1 \& AFLl) from the means of entire AF piot SR92 348
4.2.5 (e). Per cent VSMC deviations of tubes in unoruned (AFM2 \& AFL2) from the means of entire AF plot SR92 351
4.2.5 (f). Per cent VSMC deviations oi tubes in unpruned (AFM2 \& AFL2) from the means of entire AF plot SR92. 353
4.2.6 Differences among equivalent access tubes ror LR92 and SR92 353
4.2 .6 (a) General 353
4.2.6(b) LR92 Pruned Gevillea robusta trees (PT1. PT2. PT4 \& PT5) for LR92 357
4.2.6 (c) LR92 Unpruned Gevillea robusta trees (UT1. UT2. UT4 \& UT5) for LR92 362
4.2.6 (d) SR92 Pruned Gevillea robusta trees (PT1. PT2. FT4 \& PT5) for SR92 364
4.2.6 (e) SR92 Unpruned Gevillea robusta trees (UT1. UT2. UT4 \& UT5) for SR92 368
4.2.7 Soil moisture gradients from the Grevillea robusta trees 372
4.2.8 on-farm soil moisture experimentation at Kiahuko-A and Kiahuko-B for SR93. LR94 and SR94. 381
4.2.8 (a) Effects of Coleus barbatus live-fence root pruning on soil moisture
distribution in cropland ar Kiahuko-A.... 381
4.2.8 (b) Efiects of Grevillea robusta tree rocit pruning on soll moisture distribution in cropland at Kiahuko-B 380°
4.3 Fesults or strong winds at Matanya. 390
4.3.1 Calibration of wind system at Embori 390
4.3.1 (a) hind speeds and directions during calibration periods 390
4.3.1 (b) Intercomparisons of WAU electrical cup anemometers during daytime (07h00-20h00) winds 396
4.3.1 (c) intercomparisons of WAU electrical cup anemometers during night-time (21h00-06hOC) winds 401
4.3.1 (d) Intercomparisons of Woelfle anemographs and the WAU cups 410
4.3.1 (e) intercomparisons of Woelfle anemooraphs with electrical anemometers at Embori 415
4.3.2 Kesults of wind speed analysis for Matanya 425
4.3.2 (a) Experimental periods for wind measurements 425
4.3.2 (b) Monthly wind directions 427
4.3.2 (c) Choice of representative experimental periods 433
4.3 .2 (d) Average wind speeds during strong wind season 442
4.3.2 (e) Sheltering (protective) effect against mean daily wind speeds in rows and transect lines 450
4.3.2 (f) Daily wind fluctuations in $A F$ during strong winds season 461
4.3.2 (g) Shaded Piches with cup anemometers at Matanya 465
4.4 Results on radiation and Grevillea robusta shading in $A F$. 479
4.4.1 General 479
4.4.2 Comparison of thirteen cube soiarimeters and two kipp solarımeters in the open in October. 1991 480
4.4.3 Solar radiation recelved by intercrop under UT1 during SR91 481
4.4.3 (a) Fraction radlation received by the intercrop in November 482
4.4.3 (b) Fraction radiation received by the intercrop in December 486
4.4.3 (c) Fractional radiation received by the intercrop during SR92 488
4.4.4 Solar radiation received by intercrop under UT1 during LR92 488
4.4.4 (a) Fraction radiation recelved by the intercrop in April 438
4.4.4 (b) Fraction radiation received by the intercrop in May 490
4.4.4 (c) Fractional radiation recelved by the intercrop in June 491
4.4.4 (d) Fractional radiation received by the intercrop during LR92 491
4.4.5 Solar radiation received by intercrop under UII during SR92. 493
4.4.5 (a) Fraction radiation recelved by the intercrop in April 493
4.4.5 (b) Fraction radiation recelved by the intercrop in May 493
4.4.5 (c) Fractional radiation received by the intercrop in June 495
4.4.5 (d) Fractional radiation received by the intercrop during SR92 497
4.4.6 Comparison of thirteen tube solarimeters and two Kipp solarimeters in the open in April-May, 1993 497
4.4.7 Fractional radiation received by the inter-crop in June 1993 498
4.4.8 Solar radiation received by intercrop
under UTl durana Sk93. 500
4.4.8 (a) Fraction radiation received by the intercrop in October 500
4.4 .8 (b) Fraction radiation received by the intercrop in November 502
4.4.8 (c) Fractional radiation received by the intercrop in December 504
4.4.8 (d) Fractional radiation received by the intercrop during SR93 504
4.4.9 Solar radiation recelved by intercrop under PT2 during LR94 506
4.4.9 (a) Fraction radiation received by the intercrop in May 506
4.4 .9 (b) Fraction radiation received by the intercrop in June 508
4.4 .9 (c) Fractional radiation received by the intercrop during LR94. 510
4.4.10 Solar radiation received by intercrop under PT2 during SR94 510
4.4.10 (a) Fraction radiation received by the intercrop in October 510
4.4.10 (b) Fraction radiation received by the intercrop in November 513
4.4.10 (c) Fraction radiation received by the intercrop in December 514
4.4.10 (d) Fractional radiation received by the intercrop during SR94 517
4.4.11 Shading effects of Grevillea robusta canopy on maize dry matter yield at Matanya 518
4.4.11 (a) General 518
4.4.11 (b) Maize dry matter yield estimated from solar radiation at Matanya for in LR92-SR93 520
4.4.11 (c) Maize dry matter yield estimated from solar radiation at Matanya on the eastern and western sides of UT1 in LR92-SR93 525
4.4.9 (i) Marze dry matter yıelds estumated from seasonai solar radiation for LR92 \& LR93 and SR92 \& SR93 526
4.4.9 le, Mäze diry matter yield estimated from solar radiation under PTL in LR94 \& SR94. 531
4.5 Fesulis on soil temperature at Matanya 539
4.5.1 Calibration of soil thermistors in a Temperature-łumidity chamber 539
4.5.2 Average weekly soil temperatures (AWT) at Matanya. 539
4.5.2 (a) AWT in agroforestry plot 541
4.5.2 (b) AWT in non-agroforestry
(NAF) control and bare soli olots 559
4.5.3 Soil temperature characteristics at Matanya 563
4.5.3 (ā) Maximum. minimum. average monthly soil temperatures and their ampiltudes 563
4.5 .3 (b) Soil temperature damping depths (D) 577
4.5.3 (c) Phase shifts 580
4.5.3 (d) Stigter's rätios (Rati) 583
CHAPTER FIVE
5 Discussions and conclusions 591
5.1 Maize and beans intercrops 591
5.1.1 Comparıson within and between seasons 591
5.1.2 Comparisons of on-station and on-farm results 601
5.1 .2 (a) On-farm results 601
5.1 .2 (b) on-farm and on-station comparisons 603
5.2 Soil moisture 604
5.3 Strong winds 609
5.4 Solar radiation 612
5.5 Soil temperatures 614
5.6 Weather advisories and further research 615
5.6.1 Weather advisories 615
5.6.2 Further research 617
References 619
Abbreviations and acronyms 679

List of Figures

$$
\begin{aligned}
& \text { Fig. 1. Mt. Kenya and Mts. Aberdare areas } \\
& \text { showing Laikipia district and Matanya. } \\
& \text { Kalalu and Embori experimental stations......... }
\end{aligned}
$$

Fig. 2. Agroclimatic zone and dynamic land-use pattern in Laikipia district 4
Fig. 3. A district Map of Kenya 8
Fig. 4. Soil profile description at Matanya 24
Fig. 5. Shrinking factors for Matanya soils 25
Fig. 6. Soil texture and soil water capacity of Matanya soils 26
Fig. 7. A layout of access tubes in AF 98
Fig. 8. Matanva experımental station showing AF and NAF plots and wind measuring system 101
Fig. 9. Aaroforestry plot showing Grevillea robusta tree rows. maize rows and SR92 harvesting plots. 105
Fig. 10. A layout of wind measuring system in A F 135
Fig. 11. A layout of tube solarımeters around UT1 in AF plot 142
Fig. 12. A layout of soil thermistors in $A F$ 147
Fig. 13. A layout of soil thermistors in NAF 148
Figs. 14 \& 15. Deviations (in mm) of Short and Long Rains 1991-1995 monthly seasonal rainfall and evaporation from long term means at Matanya 151
Fig. 16. SR91 maize heights for three plots:
Local. Mulched and AF at Matanya. 155
Fig. 17. Average SR91 maize biomass yields in pruned and unpruned plots in the AF.... 155
Fig. 18. Average SR91 beans biomass yields in pruned and unpruned plots 158
Fig. 19. Average SR91 beans seed yields orunec and unpruned plots in the $A \bar{F}$. 158
Fig. 20. SR91 beans seed weight as a vercentage of total plant weiont 160

> Fiogs. 21-24. Maize heights at 94. 188. 282 and 376
> cm from Grevillea robusta row (rows $1-4$ of
> maizel in AF plots for LR92. for four
> differently treated series of plots160. $165 \& 166$

Figs. 25-28. Average LR92 maize yields per row
in Mulched pruned (AFM1). Mulched unpruned
(AFM2), Local pruned (AFL1) and Local unpruned
(AFL2) plots .. 168 \& 169
Figs. 29-33. Maize heights in pruned Mulched (AFM1). unpruned Mulched (AFM1) pruned Local (AFL1) and pruned Local (AFL2) plots in AF and controls (M \& L) for SR92
169. 176 \& 177

Figs. 34-37. Total number of plants and cobs per
row in first and middle holes of each row in
the AFM1. AFMZ. AFL1 and AFL2 plots for SR92

$181 \& 182$

Figs. 38-45. Shelled cob (cob solint) and grain
wights in first hole (hole 1) and maddle hole
(hole 4) per row in AFM1. AFL1. AFL2 and AFM2
for SR92
187. 188. $190 \& 191$
Figs. 46-49. Weights of maize cob splints. orauns and biomass as percentages of total dry matter weight of maize in AFM1. AFM2. AFL1 and AFL2 for SR92 191 \& 198
Figs. 50-61. Average maize biomass yields per row in AFM1. AFM2. AFL1 and AFL1 for SR92 200-202 \& 204-206
Fiọs. 62-09. Average beans biomass ylelds per row
in AFM1. AFM2. AFL1 and AFL2 for SR92 210-213
Figs. 70-73. Average maize heights in AFM1. AFL1.
AFM2. AFL2 for LR93 217 \& 218
Figs. 74-77. Average maize biomass yields per row in AFM1. AFM2. AFL1 and AFL2 for LR93 220 \& 221
Figs. 78-81. Average maize heights per row in AFM1. AFM1. AFLl and AFL2 for SR93 230 \& 231
Figs. 82-85. Average maize biomass yields per row in AFM1. AFM1. AFL1 and AFL2 for SR93 233 \& 236
Fiog. 86-89. Average maize heionts in AFM1. AFMÉ. AFL1 and AFL2 for LR94 244 \& 245
Figs. 90-93. Average maize bumass vields der row in AFMi. AFME. AFLi and AFL2 for LR94. 247 ~ 248
Figs. 94-97. Average maize heights in AFM1. AFM2. AFL1 and AFL2 for LR94 $256 \& 257$
Figs. 98 \& 99. Average maize biomass yields per row in AFM1. AFM2. AFL2 and AL1 for SR94 259
Figs. 100-101. Average maize biomass yields per row in AFM1. AFM2. AFL2 and AL1 for SR94 261
Figs. 102-104. Average maize heiohts as a function of distance from pruned and unpruned live-fence at Kıahuko-A on-farm plots for SR93. LR94 and SR94 267 \& 268
Fig. 105. Average maize herghts in Mulched and
Local treatments in AF and NAF plots at Kiahuke-B on-farm for SR93 268
Figs. 106-109. Average maize heights at distances of 90 cm and $180-270 \mathrm{~cm}$ from root pruned and undruned Grevillea robusta trees in Mulched and Local and treatments in $A F$ and in NAF plots at Kiahuko-B on-farm for LR94. 277 \& 278
Figs. 110-113. Average waize heiohts at distances of 90 cm and $180-270 \mathrm{~cm}$ from root pruned and unpruned Grevillea robusta trees in Muiched and Local and treatments in AF and in NAF plots at Kiahuko-B on-farm for SR94 279 \& 280
Fiogs. 114 \& 115. Calibration of neutron probes (types CPN $501 \& 503$) 291
Fias. 116-122. Bulk density versus soil moisture at 18. 60. 90. 90. 120. 150 and 170 cm deptis 296. 297. 298. 299
Fig. 123. Weekly VSMC (\%) for the cool dry and SR92 seasons in $A F$ and the control plots 299
Fias. 124-126. 1992 weekly VSMC (\%) for 18 till 90Cm depths taken at the distance of 94.188and 376 cm from G. robusta trees. PT1. inpruned plot (AFM1)304 \& 305
Figs. 127-129. 1992 weekly VSMC (\%) for 18 tall 90cm depths taken at the distance of 94.188and 376 cm from \mathcal{G}. robusta trees. PT4. inpruned plot (AFM1)305 \& 3000
Fios. 130-i32. 1992 weekly VSMC (\%) for 18 t111 90cm depths taken at the distance of 94.188and 376 cm from (7. robusta trees. UT1. inunpruned plat (AFM2)$308 \& 309$
Fios. 133-135. 1992 weenly VSMC (\%) for 18 till 90 cm depths taken at the distance of 34.188 and $370^{\circ} \mathrm{cm}$ from G. robusta trees. UT4. in unoruned plot (AFME) 309 \& 310
Figs. 136-138. 1992 weekly VSMC (\%) for 18 cm depth taken at the distances of 94.188 .376 cm fram G. robusta trees (PT1. PT4. UT1 \& UT4) in pruned and unpruned plots (AFM1 \& AFM2) $312 \& 327$
Figs. 139 \& 140. Mulch effect on soil moisture in pruned (AFM1 \& AFL1) and unpruned (AFM2 \& AFL2) plots for six seasons 327 \& 328
Figs. 141-144. Mulch effect on soil molsture at 94 and 376 cm from Grevillea robusta trees in LR92 \& SR92 in pruned and unpruned plots 328. 330. 331
Fiọs. 145 \& 146. Pruning effect on soll moisture in mulched and Local plots for six seasons at 94. i 88 \& 376 cm from Grevillea robusta trees 331 a 333
Fig. 147. Mulch effect on soil moisture in control plots for LR92 \& SR92 seasons 333
Figs. 148-151. Prunino effect on soil moisture at 94 cm from Grev in mulched and Local pruned and Local plots- LR92 \& SR92 336 \& 337
Figs. 152-155. LR92. SF92 VSMC deviations from the means in pruned (AFMi \& AFL1) and unpruned (AFM2 \& AFL2) for whole profile 339 \& 340
Fios. 156-161. LR92 per deviation of VSMC in pruned and unpruned \mathcal{G}. robusta trees 344-346
Figs. 162-164. LR92 per cent deviations of prunedin Entire at 94. $188 \& 376 \mathrm{~cm}$ from G. robustatrees349 \& 350
Figs. 165-167. SR92 per cent deviations of prunedmeans of pruned at $94.188 \& 376 \mathrm{~cm}$ from G.robusta trees.350. 352. 353
Figs. 168-170. SR92 per cent deviations of VSMCin unpruned plots from the average of theunpruned treatment at 94, $188 \& 376 \mathrm{~cm}$ fromG. robusta trees354 \& 355
Figs. 171-173. SR92 per cent deviations of VSMC inpruned plots from the average of Entire AF at94. $188 \& 376 \mathrm{~cm}$ from G. trees355 \& 356
Fiọs. 174-i79. LRG2 aliferences in VSMi amono equivaient access tuces at 94. i88. \& 376 cm iroil G. pobusta trees in pruned and unpruned plots 359-361
Fios. 180-185. SR92 differences in VSM amono equivalent access tubes at 94.188 \& 376 cm from G. robusta crees in oruned and unpruned plots 366. 367. 369
Fiọs. i86 \& 187. LR92 VSMC orradients from pruned and unpruned G. robusta trees 370
Fias. 188 \& 189. SR92 VSMC gradients from pruned and unoruned G. robusta trees 379
Figs. 190 \& 191. VSMC gradients from pruned and unoruned live-fence at kiahuko-A on-farm in SR93. LR94 \& SR94 382
Figs. 192 \& 193. VSMC unradients from pruned and unpruned Grevillea robusta trees (AGM1 \& AGL1) at kianuko-B on-farm in SR93. LR93 \& SRg4 383
Fig. 194. Averac̣e VSMC for three seasons at Kiahuk-B on-iarm for 90 and 200 cm irom (7. robusta and Controi plots 389
Fig. 195. Hourly wind speeds for Embori for DOY 55-59 of 1993 as read with cup anemometer 10... 391
Fig. 190. Hourly wind speeds for Embori for DOY $134-140^{\circ}$ of 1994 as read with cup anemometer 15. 391
Fig. 197. Hourly wind speeds at Embori for DOY 32-34 of 1995 as read with cup anemometers 15 and 38 392
Figs. 198-201. Day- and night-time relative per cent wind direction frequencies during calibration periods at Embori in February-March 1993 393
Flas. 202 \& 203. Day- and night-time relative per cent wind direction frequencies during calibration periods at Embori in May 1994 394
Fiọs. 204-207. Day- and nig̣t-tame relative per cent wind direction frequencies during calibration periods at Embori in January -February 1995 395
Fugs. 208-211. The scatter plot and 1:1 line of houriv wind speeds ior waU electrical cub anemoreters 10. 11. 44 \& 55 against sub- standard 40 for the day-time beriod (07h00- 20 h 00) at Embori for 55-62 of 1993 397 \& 398
Figs. 212 \& 213. The scatter olot and 1:1 11nes or
electrical cup anemometers 10 \& 55 ajainst middle cup 38 for day-time (07h00-20hũ) conditions at Emborı for DOY 25-32 \& 32-34 of 1995 402
Figs. 214-217. The scatter plots and 1:1 line of hourly wind speeds for WAU electrical cup anemometer 10. 11. 44 \& 55 against cup 40 for nuoght-time (21h00-06h00) conditions at Emiori for DOY 55-62 of 1993 213-404
Figs. 218-219. The scatter plot and 1:1 line of hourly wind speeds for WAU electricai cup anemometers 10 \& 55 against middle cud 38 for niont-time (21h00-0öh00) conditions at Embor for [0Y 25-32 \& 32-34 of 1995 407
Fiogs. 220 \& 221. The scatter plot and 1:1 line of hourly wind speeds for Woelfle anemoorraph (WB. Ser. Nr. 31587) aḍāinst anemograph (WA.
Ser. Nr. 341836) for day- and niant-time (07h00-20h00) conditions for DOY 57-ō of 1993. 411
Figs. 222-225. The scatter Dlots and 1:1 line or hourly wind speeds for Woelfle anemooraph (Wb. Ser. Nr. 31587) against anemoorraph (WA. 341836) for day- and night-time for LOY 25-32 \& 32-34 of 1995 $413 \& 414$
Fias. 226-231. Relative per cent monthly wind direction frequencies for April till September 1993 at Matanya taken with WA at 2.0 m height in the open (NAF) 429 \& 430
Figs. 232-237. Relative per cent monthly winddirection frequencies for April till September1993 at Matanya taken with WB at 2.0 m heightAF$431 \& 432$
Figs. 238-245. Relative per cent monthly winddirection frequencies for June 1994 till January1995 at Matanya taken with WA at 2.0 m heightNAF434 \& 435
Figs. 246-253. Relative per cent monthly winddirection frequencies for June 1994 till January1995 at Matanya taken with WB at 2.0 m heightAF
Figs. 254-256. Intercomparison of meãn daily wandspeeds recorded by cup anemometers in rows 1-3in AF and control during windy season at Matanyain 1993 (Fig. 91439 \& 440
Figs. 257-259. Intercomparison of mean dally wind speeds recorded by cup anemometers in rows 1-3 in $A F$ and control during windy season at Matanya in 1994 $440 \& 441$
Figs. 260 \& 261. Intercomparison of mean daily wind speeds in rows 1-3 and lines 1-4 at 2.4 m height in $A F$ as function of the distance from SH and WH for July 1993 (DOY 182-209) during windy season. 448
Figs. 262 \& 263. Intercomparison of mean daily wind speeds in rows $1-3$ and lines $1-4$ at 2.2 m height in AF as a function of the distance from SH and WH for July 1994 (DOY 185-196) durino windy season 449
Fiogs. 264-266. Intercomparison of hourly wind speeds recorded by cup anemometers in rows 1-3 and control at 2.4 II height in $A \bar{F}$ for Juiy $199 j$ (DOY 182-209) during wináy season $45 i \& 452$
Fig. 267. Comparison of overall average hourly wind speeds in AF with control for Julv 1993 (DOY 182-209) during windy season 452
Figs. 268-270. Intercomparison of hourly wind speeds recorded bv cup anemometers row 1-3 and control at 2.2 m herght in AF for Juiy 199° (DOY 185-196) during windy season 453 \& 4
Fig. 271. Intercomparison of overall AF average of houriy wind speeds with control for July 1994 (DOY 185-194) during windy season 454
Fiọs. 272 \& 273. Intercomparison of G. robusta trees and Coleus barbatus live-fence protective effect. E, for rows $1-3$ and lines $1-4$ as function of distance from SH and WH for Jurte (DOY 154-165) 1993 457
Fiogs. 274 \& 275. Intercomparison of G. nousta trees and Coleus barbatus live-fence protective effect. E. for rows 1-3 and lines 1-4 as function of distance from 5H and wH for June (DOY 155-:74) 1994 458
Figs. 276 \& 277 . Intercomparison of G. robusta trees and Coleus barbatus live-fence protective effect. E, for rows $1-3$ and lines $1-4$ as function of distance of distance from SH and WH for July (182-209) 1993 460
Fiogs. 278 \& 279. Intercomparison of G. robusta trees and Coleus barbatus live-fence protective effect. E. for rows $1-3$ and lines 1-4 as function of distance from SH and WH for July (DOY 185-196) 1994 461
Figs. 280 \& 281 . Intercomparison of G. robusta trees and Coleus barbatus live-fence protective effect. E. for rows 1-3 and lines 1-4 as function of distance from SH for August (229-236) 1993. 466
Figs. 282-283. Intercomparison of G. robusta trees and Coleus harbatus live-fence protective effect. E. for rows 1-3 and lines 1-4 for Aug̣ust (DOY 216 -235) 1994 467
Fiọs. 284-286. Solar radiation readinas during comparison of TSL in the open in October 1991 for ISLs to be instailed at 94. 188 and 376 cm from experimentai Grevillea $483 \dot{\alpha} 484$
Fiogs. 287 \& 288. A scatter and a $1: 1$ iune of To and kpl on kpl and Tb on kpz during comparison in the opers in October 1991 $484 \& 485$
Fias. 289 \& 290. Average monthly radiation for TSLs under UT1 as fractions of radiation read with To in the open area during November and December 1991 $4 E 5 \dot{\alpha} 487$
Fig. 291. Average fraction radiation of Short
Rains 1991 (SK91) for TSLs under UT1 487
Figs. 292-294 Average monthly radiation for TSis under UT1 as function of fractional radiation during April. May \& June 1992 $489 \& 492$
Fig. 295. Average fraction radiation of Long $\bar{k} a n s$ 1992 (LR92) for TSLs under UT1 492
Figs. 296-298. Average monthly radiation for TSLs under UT1 as function of iractional radiation during Üctober. November and Iecember 1992 $494 \& 490^{\circ}$
Fig. 299. Average fraction radiation of Short Raurs 1992 (SR92) for TSLs under UT1 $+36$
Flos. 300-30ć. Lasiy radiation totais for TSis for 44. 188 and 376 cm during part or comparison in the ocen: $19 / 4 /-24 / 4 / 93$ $499 \& 501$
Fig. 303. Average radiation as a runction of iractionai radiation for TSLs under UT1 during LRᄏ3. Jure 501
Fios. 304-306. Average monthiy radiation as a function of fractional radiation for Tols unier UT1 during October. November and December 1993 503 \& 505
Fig. 307. Average radiation as a function of fractional radiation for TSLs under UT1 during SR9う 505
Figs. 308 \& 309. Average monthly radiation as a function of iractional radiation for iSLs under PT2 during May \& June 1994 507
Fig. 310. Average radiation as a function of iractional radiation for TSis under PT2 during LR94 512
Fig̣s. 311-313. Average monthiy radiation as a function of iractional radiation for Tils under PI2 during October. November and December iG94.. $512 \& 515$
Fig. 314. Average radiation as a function of iractional radiation for TSLs under PT2 durina Sk94 522
Fig̣s. 315-317. The effect on maize dry matter yields of transmitted radiation through UT1 canopy at 94.188 and 376 cm from the tree during LR92-SR93 seasons $522 \& 523$
Fig. 318. The effect on maize dry matter yields of transmitted radiation through UT1 canopy for all the three distances (bulked data) from the tree during LR92-SR93 seasons 527
Figs. 319 \& 320. The effect on maize dry matter yields of transmitted radiation through UT1 canopy on the eastern and western sides of UT1 during LR92-SR93 seasons 527 \& 528
Fig. 321. The effect on maize dry matter yields of transmitted radiation through UT1 canopy during two Long Rains seasons (LR92 \& LR93) 528
Fig. 322. The effect on maize dry matter yields of transmitted radıation through UII canopy during two Short Rains seasons (SR92 \& SR93) 530
Fig. 323. The effect on maize dry matter yields of transmitted radiation through UT1 canopy and full radiation in Mulched control (M) during Short Rains seasons (SR92 \& SR93) 530
Fig. 324 \& 325. The effect on maize dry matter yields on the east of UT1 of transmitted radiation through UTI canopy and full radiation in Mulched control during two Short Rains seasons
(SR92 \& SR93) 532
Fig. 326 \& 327. The effect on maize dry matter yields on the west of UT1 of transmitted radiation through UT1 canopy and full radiation in Mulched control during two Short Rains seasons (SR92 \& SR93) 533
Fig. 328 \& 329. The effect on maize dry matter yields on the east of PT2 of transmitted radiation through PTZ canopy and full radiation in Local control (L) during two rainy seasons of 1994 (LR94 \& SR94) 534
Fig. 330 \& 331. The effect on maize dry matter yieids on the west of PT2 of transmitted radiation through PT2 canopy and full radiation in Local control (L) during two rainy seasons of 1994 (LRg4 \& SR94) 535
Fig.332. The calibration curve for the old (TMi) and new (TM2) sets of Grant thermistors 540
Fig. 333. The calibration curve for the old and new sets of Grant thermistors against temperature in the Temperature-Humidity Calibration Chamber. 540
Fiogs. 334-337. Weekly average soll temperatures atthe depths of 7.5 and 15 cm at the distancesof 94 and 376 cm from tree PT1 in AFM1. PT2 inAFL1. UT4 in AFM2 \& UT5 in AFL2 during SR91 ...$543 \& 546$
Figs. 338-341. Weekly average soil temperatures atthe depths of 7.5 and 15 cm at the distancesof 94 and 376 cm from PT1 in AFM1. PT2 in AFL1.UT4 in AFM2 \& UT5 in AFL2 during LR92$547 \& 549$
Fig. 342-345. Weekiy average soil temperatures at the depths of 7.5 and 15 cm at the distances of 94 and 376 cm from PTI in AFMi. PT2 in AFLi. UT4 in AFM2 \& UIS in AFLE during LR93 551 \& 552

Fig. 346-349. Weekly average soil temperatures at the depths of 7.5 and 15 cm at the distances of 94 and $370^{\circ} \mathrm{cm}$ from PT1 in AFM1. PT2 in AFL1. UT4 in AFN2 \& UIS in AFL 2 during Sris
Fias. 350. Weekly average soll temberatures at the depths of 7.5 and 15 cm in the controi and bare soil plots durarg SRG1 500
Fig. 351. Weekly average soil temperatures at the deptis of 7.5 and 15 cm in the control and bare soil plots for June and July 1992 560
Fig. 352 \& 353. Weekly average soil temperatures at the deptis of 7.5 and 15 cm in the control and bare soil plots during LR93 and SR93 562
Fig. 354. Monthly diurnal patterns of soll temperatures at 15 and 7.5 cm deptis as a iunction of distances (94 and 376 cm) from pruned PT1 in AFM1 for March 1992 564
Fio. 355. Monthly diurnai patterns of soll
semperatures to show mulch effect in AF at 15 and 7.5 cm depths and a distance of 94 cm from PT1 in AFM1 and PT2 in AFL1 for March 1992 504
Fig. 350. Monthly diurral patterns of soil
temperatures at 15 and 7.5 cm depths as a function of distances (94 and 376 cm) from FTl in AFMI for April 1993 51
Fia. 357. Manthly diurnal patterns of soll
temperatures to snow mulch effect in $A F$ at 15 and 7.5 cm deptins and a distance of 94 cm from FTi in AFMi and FTZ in AFLi for April 1993 571
Fig. 358. Monthly diurnal patterns of soll temperatures at 15 and 7.5 cm depths as a fiunction of distances (94 and 376 cm) from PTI in AFMI for June 1992 572
Fig. 359. Monthly diurnal patterns of soil temperatures to show mulch effect in AF at 15 and 7.5 cm depths and a distance of 94 cm from PTi in AFM1 and PT' in AFL1 for June 1992 572
Fig. 360. Monthly diurnal patterns of soil
temperatures at 15 and 7.5 cm depths as a function of distances (94 and 376 cm) from PT1 in AFM1 for June 1993 573
Fig. 361. Monthly diurnal patterns of soiltemperatures to show mulch effect in $A F$ at15 and 7.5 cm depths and a distance of 94 cmfrom PT1 in AFM1 and PT2 in AFL1 for June 1993.573
Fig. jöz. Monthiy diurnal fatterns of soil
remperacures at 15 and 7.5 cm deoths ãe a iunction of distanices 194 and 370 cml from FM1 in AFM1 for July 1992 575
Fig. 36̄. Montrily diurnai patterns af soil temberatures to show muich effect in AF at 15 and 7.5 cm depths and a distance of 94 cm from PT1 in AFM1 and PT2 in AFLI for Juiy 1992 575Fig. 364. Monthly diurnal patterns of solltemperatures at 15 and 7.5 cm depths as afunction of distances (94 and 376 cm) fromFT1 in Mulched plot (AFM1) for July 1993576
Fig. 305. Montinly diurnal patterns of soilremberatures to show mulch effect in AF at 15and 7.5 cm depths and a distance of cm cm ir:PTI in AFM1 and FTC in AFLl for July $1993 . .$.576

List of Tobles

Table 1. Composition of the Matanya Verto-luvic phaeozem soils (after Liniger. 1991) 45
Table 2 Shrinking factors for Matanya soils (after Liniger. 1991) 45
Table 3. Locations of access tubes in relation to the Grevillea roousta trees in AF plot at Matanya station 114
Table 4. Locations of access tubes un relation to the Live-fence at Kıahuko-A 117
Table 5. Locations of access tubes un reiation to the Grevillea robusta trees in Ar plot at Kiahuko-B on-farm 118
Table 6 \& 7. Seasonal monthiy rainfall and pars evaporation rates and deviations from thear iong term averages for Long and Short Rauns seasons 150
Table 8. Soli chemical composition at Matanva taken during the study period $i 53$
Table 9. Ehort rains 1991 maize biomass vields (tha) in $A F$ and relative to the controi Diots. 150°
Toble 10. Short räns 1991 beans seed yzeids it/ha) in $A F$ and relative to the controi plots. 161
Table 1i. Short rairs 1991 beans biomass yuelds (t /ha) in AF 162
Table 12. Long rains 1992 maize blomass yields (t/ha) in $A \bar{F}$ and relative to the control plots 172
Table 13. Long Rains 1992 beans biomass vields (t/ha) compared to the controls 173
Table 14. Long Rains 1992 beans seed yields (t/ha) relative to the controls 178
Table 15. SR92 number of plants per hole (NPti) and of cobs NCP) Der olot plant for the first hole. 185
Tabie 16. SR92 number of plants per hole (NFri) and of ccios NCF) per piot plant for the rourth noie. 189
Table 17. SR9: maize biomass (BOD) vieids inpruned ard undruned grevillea rooustarelative to controi plots192
「äit 18. SK32 marze grain (6000) vields in pruned and unpruned cireviilea robusta relative 0 control plots 193
Taible 19. SK92 maize Cod (CUW) yields in pruned and uncruned Greviliea robusta relative to control piots 194
Taole 20. SF92 per cent by welght of maize biomass. orain and coi in pruned and unvruned Grevillea robusta 207
Table 21. Effects of mulched and pruning on maize orain. cob and biomass weights for SR92 208
Taije 22. Effects of muiched and pruning on bean seed and blomass weights for SR92 214
Tále 23. Lñ93 màze blomass yieids in pruned and unpruried Gr. robusia reiative to control plots... 222
Table 24. Effects of muiched and pruning on maize cicmass weigints for LF93 223
Taile 25. Effects of mulched and pruning on beans seed a blomass welunts for LR93 223
Table 26 . LR93 beans biumass yrelds in pruned and unpruned jirevillea robusta relative to controi piots 227
Taiole 27. LR93 beans seed yields in oruned and unpruned Grevillea robusta relative to control plots 228
Taole 28. Effects of mulched and pruning on mäize biomass weights for SR93 237
Table 29. SR93 maize D1omass yields (t/ha) in pruned and unprunea Grevillea robusta relative to controi plots 238
Table 30. Effects of muiched and pruning on bearis seed \& blomass weights for SR93 239
Table 31. SR93 Beans biomass yields (t/ha) in pruned and unpruned Grevillea robusta relative to control plots 240
Table 32. SR93 Beans seed yields (t/ha) in pruned and unpruned G robusta relative to control plots 241
Table 33. Effects of muiched and pruning on málze bumass yuelds for LRG4 249
Toile 34. LR94 marze biomass in oruned and unpruned G. robusta reiative to control plots 252
Table 35. Effects of mulched and pruning on beans seed \& biomass yields for LR94 253
Table 36. iR94 Beans biomass yields in pruned and unpruned G. robusta relative to control plots 254
Table 37. LR94 Beans seed yields in pruned and unpruned G. robusta relative to control plots 255
Table 38. Sr94 maize biomass in pruned and unpruned G. robusta relative to control plots 262
Table 39. Eifects of mulched and pruning on maize blomass ylelds for SR94 204
Table 40. Eifects of mulched and pruning on beans seed \& biomass yields for SR94 265
Table 4i. SR94 Beans biomass vields in pruned and unoruned G. robusta relative to control plots 269
Taole 42. SR94 beans seed vields in pruned and unoruned G. robusta relative to control plots 270
Table 43. On-farm yields (orain and bucmass) at Kiahuko-A and Kiahuko-B: for SR93 and LR94 275
Tabie 44. On-farm yields (orain and biomass) at Kiahuko-A and Kiahuko-B for SR94 284
Table 45. Comparison of observed and calculated per cent VSMC ($\boldsymbol{\theta}$) and the radius of sphere of the importance for CPN 501 and CPN 503 293
Table 46 Reoression constants for observed and calculated VSMC $(\boldsymbol{\theta})$ at the measuring depths at Matanya 294
Table 47 Calculations of available water from observed and calculated soil moisture 294
Table 48. Relationship between dry bulk density and VSMC ($\boldsymbol{\theta}$) obtained during calibration exercise 301
Table 49. Average VSMC at different depths and distances from Grevillea robusta trees for the period 20/3/-29/5/92 317
Table 50. Average VSMC at different depths and distances from G. robusta trees for the period: 9/10/92-29/1/93 322
Table 51. Intercomparisons of VSMC averages in AF mulched with $A F$ Local plots for the $18-170 \mathrm{~cm}$ soil profile and distance from G. robusta trees for the six seasons 324
Table 52 \& 53. Differences between pairs of access tubes at the measuring depths and equidistance from the G. robusta trees in pruned and unpruned AF plots for LR92 368. 373
Table 54 \& 55 . Differences between pairs of access tubes at the measuring depths and equidistance from the G. robusta trees in pruned and unpruned AF plots for SR92 374. 375
Table 56. Directions of soil moisture with distance from the G. robusta trees for LR92 and SR92 381
Table 57. Intercomparison of electrical cup anemometers with the substandard (cup 40) at day-time wand speeds for davs 55-62 of 1993 399
Table 58 \& 59. Intercomparison of electricai cupanemometers with the maddle cup (cup 38) atday-time wind sbeeds for days $25-32$ \&$32-34$ of 1995$399 \& 405$
Table 60. Intercomparison of electrical cup anemometers with the substandard cup (cup 40) at night-time wind speeds for days $55-62$ of 1993 405
Table 61 \& 62. Intercomparison of electrical cup anemometers with the middle cup (cup 38) at night -time wind speeds for days 25-32 \& 32-34 of 1995. 408
Table 63 \& 64. Intercomparison of electrical cup anemometers with the middle cup (cup 381 for bulked data wind speeds for days 25-32 \& 32-34 of 1995 409
Table 65 \& 66. Intercomparison of electrical cupanemometers with whelfle anemograpis duringday-and night-time winds at Embori for days$55-62$ of 1993$416 \& 417$
Tabie 07. Intercomparisorı of electricai cupanemometers with wielifle anemuraphs (WA)during day-time wands at Embori for the davs$25-32$ \& 32-34 of 1995.419
Table 6\%. Intercomparison of electrical cup anememeters with Wieifle anemoorachs (w'A) during nught-tume winds at Emburl for the davs 25-3i \& 32-j4 of 1995 422
Table 09. Intercomparison of eiectrical cup anemometers with Woelfle anemodraphs (wiA) for bulked wind speeds at Embori for the days 25-32 \& 32-34 of 1995 423
Table 70. Ratios of mean wind speeds recorded with electrical cup anemometers to substandard (cup 40). to extreme cup (cup 10) and to middle cup (cup 38). during calibration periods (Cbl. Cb2 \& Cb3a \& Cb3b) at Embur 424
Table 71. Ratios of mean wind speeds reconded with Woelfle anemodraphs (WA \& WB) to those recorded with wAU electrical cup anemometers during calibrations at Emoors 424
Table 72. Relative sizes of gaps in the live-rence around Matanya AF 426
Table 73 \& 74. Average wind speeds and standard deviations at Matanya for experimental periods of 1993 \& 1994 444 \& 445
Table 75. Normalized standard deviations of average wind speedis in 1993 and 1994 404
Table 76. Regression coefficients of comparison of weekly wind speeds for 193 and 1994 recorded by electrical anemometers during overlap period with those derived from Piche atmometers 471
Table 77 \& 78 . Wind reduction ratios from measured and calculated wind speeds (cups 55 \& 38 as references) $475 \& 477$
Table. 79. Regression coefficients of calculation of maize total biomass yields from solar radiation data for LR92-SR93 under UT1 and LR94 \& SR94 under FT2 536
Table 80. Damping depth (D) in cm for each treatment and each month during SR91. LR92. LR93 and SR93 581
Table 81. Phase shift ($\$$) in hours for each treatment during SR91. LR92. LR93. SR93. LR94 \& SR94 583
Table 82. Thermal effect of G. robusts canopy shades and crop residue mulch plus manimum tillage as estimated from Stigter's ratios 587
Table 83. Thermal effect of G. robusta canopy shades and not mulching plus deep tillage estimated from Stigter's ratios. 588
List of Plates
Plate 1. The first land preparations for a Short Rains growing season (SR91) 99
Plate 2. LR92 showing two plots of Mulch plus minimum tillage and sub-piots of Local plus deep tillage in the AF plot 99
Plate 3. LR92 showing diagonāliy opdosite Mulch and Local treatments in the new control Dlot site. 102
Flate 4. The author supervising $3 R 91$ bean harvest... 102
Plate 5. The iayout of the wind measuring system during the calibration at Embori 129
Plate 6. A picture of the upper half of AF at Mantarya snowing electrical cup anemometers in row 3: on the backoround are tube solarimeters. 129
Plate 7. A picture of the agroforestry piot at Matanya showing part of staff houses and some of the surrounding houses and part of the kale hedge 137
Plate 8. The layout of tube (TSis) and Kipps (kp2) solarimeters during calibration 137
Plate 9. The layout of tube solarmeters in the agroforestry plot 144
Piate 10. SR92 maize harvesting at Matanya 170
Plate 11. A picture of young malze/beans intercrop in AF showirg position of depressed plant hejohts. 170
Figures and Tables in Appendix 637
Figures in the Appendix 637
Fig. Ai. A sketch of a root-pruned Grevillea robusta tree iilustrating its geometry including its cone-shaped canopy used in wind protection and radiation shading effects 638
Fig. A2. A layout of on-farm exteriment on the effect of live-fence root pruning on soll molsture at Kiahuko-A 639
Fig. A3. A layout of on-farm experiment on the effect of Grevillea robusta root pruning and mulching on soil moisture at Kiahuko- B 640
Fig. A4. 1993 soll molsture content at 7.5 cm depth obtained from soil samples 641
Fig. A5. Mean wind patterns over Airica for July
(a) and October (i). Note: North-easterly and south-easterly winds over kenya durina these months (After Griffiths. 1972) 642
Figs. A6-A8. Comparison of dally radiation in the four (NE. SE. SW. NW) of Grevillea tree (UT1) at 94.188 and 376 cm from the tree stem and in the open in November. 1991 $643 \& 644$
Figs. A9-A11. Comparison of daily radiation in the four
(NE. SE. SW. NW) of Greviliea tree (UT1) at 94. 188 and 376 cm irom the tree stem and in the open in Iecember. 1991 $644 \& 645$
Figs. Al2-A14. Comparison of daily radiation in the four
(NE. SE. SW. NW) of Grevillea tree (UT1) at 94. 188 and 376 cm from the tree stem and in the open in April. 1992 646 \& 647
Figs. A15-A17. Comparison of dally radiation in the four(NE. SE. SW. NW) of Grevillea tree (UT1) at 94. 188and 376 cm from the tree stem and in the open inMay. 1992647 \& 648
Figs. A18-A20. Comparison of daily radiation in the four (NE, SE, SW, NW) of Grevillea tree (UT1) at 94. 188 and 376 cm from the tree stem and in the open in October. 1992 $649 \& 650$
Figs. A21-A23. Comparison of dally radiation in the four (NE. SE. SW. NW) of Grevillea tree (UT1) at 94.188 and 376 cm from the tree stem and in the open in November. 1992 650 \& 651
Fiog. Az4-Ażo. Comparison of daily radiation $1 n$ the four (NE. SE. SW. NW) of Grevillea tree (UT1) at \$4. 188 and 376 cm from the tree stem and in the open in Lecemicer. 1992. 652 \& 653
List of Tables in Appendix 654
Table Al. Sowing and harvesting dates (in DOil) of deans in on-station at Matanya for the seven experimental periods indicating duration of beans crop cycle... 655
Table A2.1 On-station yields (t/ha) - Review table: Maize and bean biomass and bean seed yields (t/ha) at Matanya in $A F$ and $N A F$ plots. 656
Table A2.2 On-farm yieids (t/ha) - Review table: Marze and bean biomass and bean seed yleids (t/ha) at Kiahuko - A \& B in live-fence and G. robsuta AF 657
Tabie A3. Monthly seasonal raintall tutals (mm) for SR93. LR94 and SR94 for the two on-farm aauaes lat Kıaruko-A and Kıahuko-B) and Matanya station 658
Tabie A.t. Volumetric soil \mathbb{I} olsture content (\%) obtanned from oven dried oravimetric samples taken in the $A \bar{s}$ and controi plots 659
Tabie A5. Hieiơhts to which cup anemometers were adjusted in the field at Matanya in the course of strong winds per 1ods (June-September) during the $L R$ growing season. 060
Table Aó Experimental periods covering strong wind speeds at Matanya during in (a) 1993 and (b) 1994 061
Table A7. WAU cup anemometer layout in the AF plot at Matanya station and their distances from western and southern hedges 662
Table A8. The geometry of the Grevillea robusta trees in pruned and unpruned area in AF 663
Table A9. Cup 55 as reference: Calculated wind speeds and wind reduction ratios 605
Table A10. Cup 38 as reference: Calculated wind speeds and wind reduction ratios 668
Table A11. Soil temperature measuring positions in AF plot. 671
Table A12. Weeks of soil temperature data in Matanya plots for in SR91. LR92. LR93 and SR93 672
Table Aly. Soil temberature characteristics in Matanva AF plots for in SK91. LR92. LR93 and SK93. 673
Tabie A14. Soll temberature craracteristics in Matanya NAF plots ior in SR91. LR92. LR93 and SR93. 677

Abstract

The main thrust of this research was to come up with relief measures as a strategy to orotect the small-scaie farmina environment. using agroforestry systems in the semi-arid areas of Laikipia district. based on this thrust our hypothesis for the research was that the relief measures introduced via on-station and on-farm experımentation can 1ndeed be used to improve the semi-arid microclimate for crop production. resulting in higher yields. For yield improvement the relief measures had to provide protection against and mitigation of vield iosses due to: (i) competition for water between agroforestry trees and the intercrop and water ioss by evaporation or by run off from the soil surface: (ii) destructive and desiccating strong wirnis. hioh radiative load on piants and the soll and hı̣̣̆ soll temperatures: (iij) lack of water in this area is a major constraint.
we experimented. at Matanya on-station and Kiahuko on-rarm plots. with a farming system used by small-scale farmers in Laikipia. in which an intercrod of maize (variety $H 511$) and beans (variety rosecocol is used in association with Grevilleas in an arroforestry plot surrounded by a live-fence of Coleus barbatus shrub.
[uring the main experimental perıod (LR92-SR94) plots (agroforestry and nor-agroforestry controls) were divided into (i) two mulched plots with minimum tillage (digqing till 4 to 5 cm). one with root pruned and one with unpruned trees and (ii) two unmulched plots with only deep tillage (digging till 20 to 25 cm). again one with root pruned and one with unpruned trees. Five mulched and five unmulched plots and a bare soil plot located in the open. away from any tree influence, were used as control plots.

For determination of near surface soil temperatures we used 16 thermistors in $A F$ at two distances from Grevilleas and 16 in NAF. including 2 in the bare soil plot, for soil temperature determination at 7.5 and 15 cm depth.

Sheltering effects against strong winds provided by the live-fence and the trees to the intercrop in AF plots were oquantified. The southerly winds reaching̣ Mulched pruned minimum tillage (AFM1) and Local pruned deep tilled (AFLl) plots were differently reduced. The maize plants in AFM1 were therefore somewhat better protected and orew taller and had higher biomass yielde.

The results of the relarive magnitude and direction of concentration of tree canopy shade showed that during the Fnort Fains (SR) seasuns the region of heaviest tree canopy shacing aifects mainiy the NW and NE sectors below the tree canopy. With the fic:mer gettinc the highest deurree of shadina. Iurina the Long Rains ILFI Eeasons the reaion of heavlest tree canopy shading affects mainly Six and $\overline{\text { si sectors below }}$ the tree canopy. witere SE tends to get the nughest sr.ading. Compared to U1. the PT2 canopy shading was iess discernible tharı thie ili shading. The results of biomass vields (YLD) correiaced with fractional radiation received by maize plants show the dry 山atter yields of marze generally to decrease with decrease in intercepted soiar radiation through Grevillea canopies uritil about a fraction of 0.60 till 0.65 of that in the open. below which it virtually stops.

We may conciude from the resuits of anajises of extreme temperatures that although mulcinng at 3 tha wäs ingint. it was useriui in infiuencing soll morsture. oy shädna and insularıcr: but darticuiarly by decreasma run off. and consecuentiy in moderãand extreme sols

The inter-comparison of the yields wannly refiected weather events. particulariy iow rainiail with poor distributions. that affected the soll water status for each season differently. The bean seed and other biomass yelds also reflected seasonal differences that depended on these weather events. The results show that adroforestry (AF) has advantages as well as disadvantages in the area studied.

For soil moisture determination in the on-station conditions we used 28 access tubes in AF piots at different distances from the Grevillea trunks and 14 in non-aọroforestry plots (NAF) for data taking with pre-calibrated neutron probes (type CPN 501 or CPN 503). In the onfarm AF plots with Grevilleas at Kiahuko-B we had 24 access tubes in the $A F$ plots. ursiailed at two distances from the tree stems. and 4 in NAF plots. We also used 19 access tubes in the ilve-fence exwerıment at Kilahuko-A at different distances from 3 pruned and unpruned portions of a live-fence.

For measurements of wind speeds on-station we used 13 waiu electrical cup anemometers in AF plots. 4 in each of 3 rows in the same direction as the crop and the Grevillea rows. Each anemometer was used in association with a shaded Piche atmometer for wind speed interpolation and extrapolation experiments. For wind direction we used four Woelfle anemoorrapis, two in AF and two in NAF plots. one of each was adjustable to grow with the maize.

For determination of crop shading by trees from solar radiation we used $13 \mathrm{E}-\mathrm{W}$ oriented tube solarimeters (12 in AF at three different distances from trees, and 1 in NAF) at 2 m above the ground under two Grevilleas (unpruned UTI for SR91 till SR93 and later on pruned PT2 for SR94 and LR94).
temperatures by afiecting the temperature amplltudes ara phase shafts.
The results of soli moiscure contents during ir seasons show that root prunang of Grevilleas in combanation wath manamum tiliage plus our muicinng conserved wore molsture than unoruned trees wath mirimum tiilage plus muiching as well as pruned and unpruned trees with deep tillage without mulching. The differences between access tubes in pruned and unpruned areas were repeatediy higiner than $\pm 2.0 \%$ whicn we took as a value above which differences may be expected to become agronomically important. This indicates that pruning was agronomically more important than shading in orrstation piots. due to laroe spacing between trees 15 m by 7.5 ml . The unpruned Erevilleas and the unpruned coleus live-rence competed strongly with ine malze/beans intercrop for soll moisture.

The resuits of soll moisture in the on-farm situations show that root-pruning of the Grevilleas is only marainally aoronomically important winen the trees are planted close to each otiner (as they result in differences between access tubes of less than our criterion of $\pm 2.0 \%$). sucn that they heavily shade one another due to small spacina between trees (3 m dy 5 m). In that case shading may become more important than root pruning. The on-farm Coleus live-fence experiment confirms that soil moisture was most of ten highest in the areas closest to the pruned portions of the live-fence.

In the driest season of study period. LR92. indicate that the control plots gave the lowest maize and beans yields of all seasons. The minimum tilled pruned Mulched plot (AFM1) had the highest maize biomass yields followed by Local control while the deep tilled pruned Local and the Mulched control had the lowest. The yield differences between upper and lower halves of AF plots varied between 20 to 25% in pruned and 35

The exempiarious results of the measurements of the per cent yzeld components of walze (i.e. cob. grain and blomass welonts) for 5K92 in both AF and RAF show that the ratio by weloht of cob. grain and bromass in the totai weignts produced per row was on the average nearly 1:3:6. The coo and grain weights were directly related to each other and inversely reiated to the bicmass weights. The cob weights tended to be wore staille around their mean values than the orain and biomass weights.

The following weather advisory summarizes our most important findings as set out in the hypothesis for the protection of farming envirorment in the semi-arid areas of Lalkipia district: to root prune aorriforestry trees and hedoes: to piant acroforestry trees with suitable econcmic returris and with canopy spacinas and crown densities iarter pruning of roots and eventually branches) that compromise between crop protection througin shading from too strong solar radiation and troroughfali of sufficient light to match in the best rainy seasons the rate of photosynthesis allowed by the fertility of the farmer's plots: to use (residue) mulch. of preferably more than 3 t/ha. for soil moisture improvement. particularly on scmewhat sloping land. where runoif prevention appears essential. More mulch would also mean a nigher contribution for soil fertility: to combine mulching with minimum or low tillage to improve physical soil properties near the surface: to desion hedge and tree configurations that maximize wind protection preferably $\geq 35 \%$, and do not introduce tunnelling through gaps. The plot environments should not generate turbulence that can harm the crops and/or hedges and trees: to utilize the observed spatial differences in seasonal rainfall over short distances (of a few kilometers): to try drought resistant maize varieties with shorter

```
        xlvij
        growing seasons, that are acceptable to the local farmers: and to try
        malze varieties with higher rooting depths that would use percolated
        water in deeper layers in seasons with irregular rainfall.
```


CHAPTER ONE

1. Introduction

1.1 Problem identification

Some of the main probiems in the semi-arid highlands west and nortinwest of Mt. Kenya (Laikipia distract) center on the food production by smali scale immigrant farmers from the high potential areas in the nelohioning districts. This immioration accounts for a population increase of 4 (e.a. Kohler. 1987: Republic of Kenya. 1994a). These immiorant farmers form the core of the resource poor smali-scale farming community in Laikipia district. The $1 m m$ igrant swall-scale farmers own parceis of land ranging from 0.8 to 2.0 ha on wich they must eke a living. These immiarant farmers who are forced to farm on more droughtprone larid hence in appreciably harsher ciamatic conditions than where they came from. face recurrent crop fallures due to soll deorradation through water and wind erosion and lack of inputs. They aiso face low production of grass for grazing and decreasing availability of firewood (Liniger. 1991). Rainfall variability is very high making water become a major limitang factor to rain-fed farmiroug. The farmers reiy on low External inouts to produce food (Reijntjes et al.. 1992) but lack sufficient knowiedge of dry-land farming. Extension services are rather inadequate. The use of proper weather advisories could therefore assist these farmers oreatly. More details on their situation may be found in sections 1.3.

1.2 Relief measures (applied or proposed)

1.2.1 Historical perspective

The above problems were identified by the LRP way back in 1985 (Liniger, 1991). To support demonstrations of relief measures LRP set
ū two agrorecclogicai stations in 1980. One at Matanyá aría one at
 meteoroiogical data. Adaitzonally. LEP started carrying out demonstrations of possible relief measures by acronomic and agrohvdrological trials on gentle slopes of $4-5 \%$. The sites are zituated on Mt. Kenya voicanic soils (Phonolites) and in two different arciclimatic zones (see rig. 2): Matanya 15 in a semi-arid zone (aurocijmatic zone V) and on a dark clay (Vertoluvic piaenzem) at an altitude of $1840 \mathrm{ma.s.l}$ and kalalu is in a dry semi-humid (using Draun (1980)' s cerminology, to semi-arid zone (agroclimatic zone IV) aria on a red clay soil iferric luvic at an altitude of 2020 ma a.s. (e.g. Desaules. 1986: Liniger. 1991).

The main alms were to assess the possibilities of 1 mproving wacer use and the farming systems in general. to a degree that it would contribute to solving farmers' problems in line with the Kenya Natiunal Food Policy. The trials included intercropping of maize and beans in several treatments. These were ii) local (unmulched) - deep tilled (depth of $20-25 \mathrm{~cm})$ with no conservation measures (ii) mulched-minamum tilled (depth of $4-5 \mathrm{~cm})$ with mulch of 3 tha crop residues applied, (iii) agroforestry (AF) plots planted with a maize/beans intercrop in association with Grevillea robusta trees and with the AF plot fenced with a live-fence of Coleus barbatus shrubs. (iv) ridging, that is pianting a crop on raised earth built along the contours. mainly to conserve soil moisture and restrain runoff. Sometimes two adjacent ridges are connected with transect raised earth to make a rectangular depression where water accumulates. Such ridges are called 'tied ridges'. This raised earth is also useful in beneficially increasing

N

Fig. 1. Mt. Kenya and the Aberdare Mts. areas showing
Laikipia district and Matanya, Kalalu and
Embori experimental stations.

Legend
I humid
II sub-humid
III semi-humid
IV semi-humid to semi-arid
V semi-arid
VI arid
vII very arid

Fig. 2. Agroclimatic zones and dynamic land-use pattern of Laikipia district (after Flury, 1986).
surface roughness at the orround ievel if wha as strora ara problematic iwebster and Wilson. 19601. À rough surface reduces wind speed and tends to trap particles moving in saltation or by surface creep. Cioddiness is beneficial this way and so are operations whicn produce a rough or irregular surface such as ploughing. ridging or mulchang with crop residues.

In all these cases. LRP chose practices that were most prevaient whth farmers in iaikipia distract. The main crops orown by the imiorarits in Laikipıa are maize (Z̃ă mays L.. Hīil). beans (Fhaseilus viluaris L.. rosecoco varlety). Irısh potatoes (soianwm tuherosum L.) and sweet potatces (ipomea batatus i.) (Aciand. 1971). The most popuiar aorroforestry tree species is Ireviliea robusta and as hedorirg materiai Coleus bardátus shrie is prererably used. The problems thus identified hiv in had set stage for micrometeorological 15sues. however. they did not have the capacity to generate and use the needed agrometeoroiogical/ aproclimatologic field data and information (Stjoter. 1994a \& 19j4b). Tnerefore they arraroded for collaboration with the TIMI project to develop an interdisciplinary apprcach to contribute to solving the problems of small-scale farmers in the Footzone west and northwest of Mt. Kenya (Laikipia district). It is in line with the National Food Policy to develop this way appropriate weather advisories.

1.2.2 Micrometeorological aspects of farmers' conditions in the area Introducing crops, agroforestry trees. live-fences, homesteads and rural access roads in "opening up" newly acquired, previously open ranch-lands (i.e. with only sparse trees) drastically modifies the macroclimate of the now farmed lands and to some extent the mesoclimate

si Lise areas. Ine foilowirig micrometeoroloucal factors in air arid soil are influenced: ij wind speed ard air movement: iil) surface refijectivity: (ili) surface infiltration and soll water retention: (iv) so1i sinermal properties and temperature and (v) micromorganic activities. Because of the charges in (i). (ij) ario (iv) all temperatures also change: because of the changes (i) and (iil) alr humidity also charges. These are corsequences of enerov and water jaiances that have to find new eurullibria.

Thas new iana use. however. also allows maragement ana maripuiation of microclimate for morovement of crod ardi animai production of the rescurce poor suall scale farmers who come to live an Fhe area (Gibert. 1995). This cails for innovative manaorement of water ara sosl fertility. It shouid be undersiogi from the beginning that a resuiting weather adviscry of the kind chat reaud local conditions are not suitable to small-scaie acroforestry production systems" are not accedtable. These farmers have to live and io orow crops there. They are
 which malze/beans intercrups take the most important position.

1.3 Approach to more detailed problem identification after selection of relief measures.

After independence in 1963. the immioration of small-scale farmers into the semi-arid fringes of the Kenya highlands, such as Laikıpia district. led to a significant change and intensification in land-use. The immigrants, mostly originating from densely populated high potential districts (e.g. Nyeri. Kirinyaqa. Kıambu. Murang'a. Nyandarua. Meru. Tharaka-Nthi. Embu. etc.. see Fig. 3) initiated the process of shafting towands more intensive land-use. Rain-fed crop production became
predominant although the ecological suitability for this activity is rather marginal. The risks of crop fallures are therefore very honh. Trie farmers were ill-equibped to practice semi-arid farming. Thev lacked proper management knowiedge and well researched extension adivisuries for these conditions. They introduced their tradutional farming metnods from medium and high potential areas into these ASAis. They grow intercrops of mäize loften maize h511 and sometimes other highland cuitivars e.g. H614. H624. H625 etc.) and beans (often rosecoco variety) ar association with aproforestry trees. mainly Grevillea roiousta. Thev âiso keep livestock on their small pieces of land.

In our detailed problem identification, we had to fcous our attention on the existing agriculturai droduction structures. These would helo us develod more atproprate relief measures which worid orarantee a reasonable levei of sumsistence farming under the semi-arid conditions of Laikidia district. Freilminary work of ipr le.ọ. Deraer. 1989: Fiury. 1986. 1987\& i988: rohier. 1987: innger. i991: Muges. i991) gave leads as to which direction our research aporoach colsi take. Firstly. there was information on immorant movements arri therr taiseover of large ranch-land farms from the previous white settler iwners. Also available was information on the subdivision of the accuired land into smaller units on winicn they apolied traditional production technioues from their areas of origari (Fiury. i986). Secundiy. there Wäs oreilimany information from suli molsture conservation triais of intercrops of mäize and beans (inmuer. i99i) at Matanva arni kalaiu. Tinirdly. there was aiso oreilmanary information on cumpetation for sosi moisture between maize/beans intercrops ani iojeus bardätui iju-fence around the $A \bar{r}$ plot at the Mátanya station (Moces. 1991). Fariaily.

[^0]Fie. 3. A district map of Kenya showing Laikipia anc neighbouring districts where immigrants originete frow.
irfilurard:n expermerıts were siartec jater. at kaialu. Murogucio and Emiorls in jajkidia distrıct by an M.Sc. Student. When our work was in promess. winose daca we coula use in tine interpretation of our soli moisture datā. We also did ilmited inilltration rates experiments at Matanya specifically to crieck on the problem of compaction which migit have risen Erom overuse of our experimental plots prior to the start of wr experiments.

Wriā nere bädly lackıno were compiementary on-farm experiments and sufificient onstation ard orrfarto microclimate quantification representino small-scale formers problems in Laikipla. Nevertheless. LFF haud iwen in couch with the icical faumers througin oroanization of seminars. Ileld visits and siden-days (at Matanya and kiaialu) for the iarmers to learn from the work going on at the two stations. These were not particlpatory approaches but it created contacts which we could use to deveiop simpie quantitative on-fam experiments.

There was little information on eanipment necessary to start work in Máianyä. ine experimental area. However. LRP-iarmer contacts assisteć in selectirng nev variables for quantification of sultable traditional technıues oí mlcroclimate improvement in location-specific protection of the environment. If this wouid lead to a better understanding of prociuction probiems and improvements for Matanya area. this could be estrapolated to other areas in iaikipia district in particular and the Kenya ASAi in general (Stioter. 1994b). It would have been difficult to 1ssue meaningfui weather advisories and to start to validate them without farmer participatory research on the on-farm conditions which wias lacking dy the time of starting this work. This gap was left for the IIMI project to tackle.

1.4 TMMI - Project

The core operation of TMMI is the Ph.D.-degree research training component at Airican universities using the PICNIC model (Stigter, et ai.. 1995). The approach should basically involve the understanding and subsequent use of andigenous (or tradjtional) tecinacal knowledoe (ITK) (or concepts) of microclimate management and manipulation. The manauement and manipulation selected for transier and dissemiration of African ITK and ITK concepts/orinciples have worked elsewhere under Airicar constraints and conditions. Results from IMMI-proorams in the participating countries have been discussed in numerous papers ie.g. Stugter. 1990. 1994 a. io à c: Mungai and Stiơier. 1994).

At the time of the start of the ITMI-project muiching. snading. wind protection and surface modification were thoựht to be the most in need of attention and were most likely to yleid coerationà resuits for jocai valudation and acceptance. Most of the research work is dine in collatoration with a thrrd cartv organization with wich the jocai InilUnit has signed a letter of understanding. These pautles deiver screntific and loasticai support. In our case this was the Lairippia रुesearch Frooram. a Swiss funded prograll of winjch agroforestıy research is this days funded by the Netherlands.

In inne wath the aspurations of the TIMI-Project istapter. 199ta \& 1994b: Munai and Stưter. 1994) in Laiklpiá distrıct we had to start this study with purposes that hài to satisiy the henya Naticrai food Foilicy spelt out in र̄eplitic of kenva ii981. ij83 and 1986) and later revised $1 r_{1}$ Feputiac of keriva (1924a).

1.5. Thesis objectives

1.5.1 The Kenya Government Research Priorities

Trie major iood poilcy spelt out in Sessional Facer No. it of i98i (keruilic of kenva. 1901) and later consolidated in Reouilic of kenva (1986) gave sixi Levelopment Plan (1989-1993) strateqies which emonasized research into drouwit resistant crops for the ASAi areas e.g. soronum. miliet. Irish potatces. sweet potatces. puises and oilseeds. There is some potential for expansion in areas such as Laikipia. Mäcriakos ani Nakuru distrıcts and parts of Coast province (Fepublic of nenya. iggła. Munọal. 1991). Tne Government research orıorities for increased focd production in the ASAL focus on conservation of soil molsture and of soll fertility ievels to minimize reilance on chemical rertilizers (Republic of Kenya. 1981. 1980 \& 1994 a).

These priorities inciude:
(i) increased intercropping with agroforestry trees in aisil:
(ii) increased muitiple croppino:
(11i) use of organic manures:
(iv) improvement in other cuitural practices ancluding

Suli monsture conservation elforts:
(v) improved soli analysis and increased and
efficient use of fertilizers.
Food crop research was recommended to get more emphasis in the ASAL. especially maize growing in agroforestry systems. Other suggested areas were agronomic research on small scale production systems and on environmental protection. The TMMI research policy on environmental protection issues fits in quite well with the above. This study was formulated taking into consideration the above National Food Policy because it was our first general objective to be part of the priorities of national policies.

1.5.2 Meteorological hazands in the study area

 Eicessive rainfail eplsuies are uhior corstrants to fosd production in tre $A=A L$ of iaikicia district. Rainiall variability is very hion. The rairs maıriy cuctur in two distanct seasuns: Long kann (Lf. March - May) and snort fians iSR. Uctuber - [necembery. These seasonai rains are associatec with the movement of the intertropical convergence zone as the sun apparently travels seasonaily from nortn to south and back le.g. jackson. 1989a, A few areas. such as kalalu, another iff station. receive à chisd marimum in Juiy - Aurust (Flury. 1986). There is nigh varianility of rainfall from year to year and season to season. These temporal varıaizons oreatiy affect water avaliability ror denoie. livestuck ans crops. A considerable proportion of ramfali may be concentrated 1 r a comoaratively smail number of neavy torrentaji storms. juch a rainfaid is not effective in crop orduction. as is will hardily in availabie to piants uniess in irrmated areas. It wili hardly contribute to soil irsisture reserve to be drawn on in dry spells. It will mostly be jost as surface runoff. creating probiems of ilooding and Water erosien ara aecelerating land derraciaticn twough itss in soil organac matter. including humus. as well às soll nucraents (also vertically tincuan leaching) and manerals and soil micro-oroanisms (e.g. Hiarrison. 1987: Jackson. 1989a).

Strong winds that occur in Laikipià and nelahboring districts every year towards the end of the $i R$ based orowing season (JuneSeptember) hit Matanya with full force. Hourly average speeds of up to $12 \mathrm{~m} / \mathrm{s}$ have been recorded. These winds are due to the channelling of the S.E. trade winds between the Aberdare ranges and Mt. Kenya. LRP (Liniger. 1991) had identıfied these strong winds as particularly a meriace to crop production and as destroyers of the environment in

Inte ABALs of Laıkipla experıence cooler davtime conditions due to aititude and proximity to Mt. Kenva. The nagtits are chilly arid frost occurences are dulte reoular from Novemoer to February because of very coid oravity (katabatici wirds incm the wountain at nigit. The second general objective of the study was therefore to protect agricultural production ervironment in the area as best as possible against consequences of these occurring meteorologicai hazards. Such protection of the aonicuitural ervironment indeed rariks hagin in the TMI prioritaes (Stioter et al.. 1989a: 19890).

1.5.3 Scope of the study

wien the glven oojectives the present study was carried out trumidin joth ori-station and un-farm experimentation. The alm was to neip deveiso low external input farming systems with mulchang and agroforestry in which the alr and soil macroclimate were manipulated to beneilt crop performance and yields. It should be noted that in the
 have a protective function (against winds) and an economic function (wood and/or fruits). These functions were mentioned by Mungai et al. (1995) as necessary to improve agroforestry in semi-arid regions. Some Lenefits combined provide ecologically more sound conditions for crop production.

Mulching and agroforestry (without mulching) do not require any other external input than land to grow crops and collect mulch and AF trees. eventually together with additional nutrients for sustainability at a reopired level. In poor infrastructural conditions associated with semi-arid areas. mulching as iow input agricultural technology may provide farmers with an accessible economically sustainable alternative

To other fouming systems such as sinftarọ cultivataon. rwnadism etc. Fiowever. to bisse the nutrient balance with only lattle fertilizer adiations. wuich should come frow other land trian that cropped (Acjard. $1 \ni 711$ and leaching shouid je prevented.

Stuaises on the managemerit aria marimpuation lthe latter jeadirio to woilfication of microcilmate by the above mentioned systems in the Laikipia ASAis had therefore the particular objectives to contribute to:
(1) optimizing the use of soil moisture by both trees and crops in an agrofirestry system: (ii) creating sufficient wira protection by ine $A \bar{s}$ trees and the live-fence between june and Seotember: (i11) optimizing ret radiation of the crops. wiln mears here ris heavy shade but eroưoh so orotect them from serious nognt radiation losses by the arifluence of the $A \bar{F}$ trees and tine surrourding iive-ience: conseơuentiy ivi) increassing sow temperstures that occur between November and February.

This would enabie us to $1 s s u e$ preliminary relevant weather advisorıes regarding the use of such sysiems. The small-scaie immorant iarmers widj have deminstrations of existing relief measures for dryland farming in the area and may therefore be able to use tiseir land more economicaily. be it at low yaeld levels. They will be able to produce fooc as weli as firewood. may De including other AF products as We11. depenaing on the choice of trees. in their AF systems. The full economics and sustairiability levels of such a system can only be derived when some of such types of farming systems have settled in the region.

1.6 Hypothesis

Crop production by small-scale farmers in semi-arid Laikipia. as discussed earlier in section 1.5.2. is faced with the constraints of (i) lack of. and competition for water for. farming: (ii) strong winds which
necessirates planting or $\overline{A r}$ trees sn the gigt and live-fence isumetimes nilti âciultunal treesl around the piot: (211) shade ana comenetituon for water and nutrients irom the AF trees ard the hadae: ard I IVI very haun daytime ari very low nionttime soli temperatures trat could cause physioioglcal stress in diants.

We formulate a research hypothesis on protection of the smallscale farming environment in the semı-arid areas of Laikipla district based on these constraints ard the oroposed relief measures. We postuiate that the reilef measures introduced via on-statior and orriarm enterizuntation can indeed be used to imorove the semi-arid microcinmate for zrop production, overali and trierefore the intercrop yaead. rotwitnstaniung the aided comnetition.

Eri sojl water conservation our nymotnesis means tnat with other factors controlled by the system's conditions. use of crop residues. frum ine 1 nererop produced on the farm and falier, leaves of Grevillea robus:a crees. as muich will lower runoif and soll evaporation from the intercrop root zone and increase final yields. Inis implication on mulch suggests that the 3 tha muichang rate of crod residue wouid orovide adeofiate surface cover to considerabiy influence soil molsture regimes. Foot-pruning (trenching) of botn Gievillea robusta trees and the Coleus barbatus live-fence are also implied as soil water conservation relief measure. Our hypothesis also assumes that minimum tillage as another relief measure will assist conserving soil moisture in semi-arid $A F$ systems. Optimum crop performance and yields would so be expected under conditions determaned by the behaviour of rainy seasons. and by other microclimatic factors altered as a consequence of the AF svstem desion. Our hypothesis means for wind protection that agroforestry trees and live-fence (location specifically influenced by nearbv structures. e.g. houses. cattle sheds. piggeries. etc.) provide
 winas. here warajedent asperts of windurears anci sirelter can de determining factorき.

Jur hruatinesis means for the effect of the AF tree rand eventuai live-fencel shades that at trie swacing of 7.5 wh 5 w the Grevillea rojusta trees should reduce vield unacceptably through sinadino and reduction of photosynthetically active radiation (PAR̃) as thelr canopies urow large. ilere management osoects of lopping and pollarding and provision oí muich materıals ari firewood can be determinang factors. Any ecornmicaliv acceotable vield reduction has to be oft-set with ápureciabie Jalns ircm tree products.

Trie nivornesis means ior 3011 and alr temwerature that 3 tha weli sistributei maize/bears intercrop ressoue mulch tarether wath accentabie shade and therefore joint anfluence on net radiation. 15 adequate to rave a positive mmact on soll and air temperature reaimes Diy mitagatino temberature extremes and amelioratino crod perionmance.
riavino speided out the macroclimate implications of the nvoothesis. the snus is to prove or disprove from the research resuits that the rejiei measures have positive microciluatic and viela effects under the semi-arid conditions of Laikipla. We have to prove that on tnese relief measures proper weather advisories ean be formulated that can be validated and applied by the small-scale immiorant farmers in Laikipia district and other areas with comparable problems.

1.7 Other expectations

The fifw seasons we have worked with farmers' plots con-farm experimentationl at Kiahuko-A and kiahuko- B we have realized that farmers' expectations from research results are very high. They themselves have experimented with different cropping combinations
involving maize. beans. potatoes. cowpeas. pegronpeas. tomatoes etc. on their lands to try to come up with cropping patterns that could survive to maturity during recurrent periods of inadequate rainfall. They therefore expect a lot from research results like ours. To assist these farmers, and measure up to at least a part of their expectations. there is an urouent need for extension services based on weather advisories that could be obtained from up-to-date agroclimatic/ agrometeoroiogicai quantitative information of the scales discussed in this study.

Most importantiy. these smali-scale farmers may acopt chanues brount about by research resuits. but should factors such as recurrent rain fallures iead to successive crop fallures ai eariy extension stages (i.e. in the validation phase) of adopting the suggested tecrnoicgy. the farmers wili distrust these new metrocis anc rever: to their earlier sechniques. Therefore introduction of weather adivisories has to ancilde compiete molifization of extension services during the vaidiaizacn piase. Sugestions for arvolvement of the adminstrative and of grovernment in the area will be included.

CHAPTER TWO

2 Literature review

2.1 Crop growing in semi-arid areas

2.1.1 Climate and cropping systems

Farmeis in rain-fed semi-arid iancis practace cropping svstems mainily centered on suosistence farming. These cropoing systems nave often been deveioped tradistionaily by experience. using trial and error methois with crod mixtures and crop rotations inziuenced by uncertannty of rains. irops orown ani culturai metrods ajopted vary wideiv. deperding on a varıety of factors. chier amora tnem being the cizmate. Erop producion in tre semı-arid areas depernes on the arriunt. instributzon and onset of the malr rains. on winis. on soli and aiso on the djetary haisits of the peupie le.g. jacionrn. igsjal. Inadequate rainiail aris often desiccatina strong whais. whthan and outsicie the orowing season (erosion:), are the mann environmeniai factors bamiting crop production in manv semi-aria areas. Even winen seemangiy adequate. rainiali amounts are generally so irreguiariy distributed while evaporation races and runofi are so hioh. that iosses in crop yields are very comor le.g. Futheniorg. 1970: Härrascn. 1987: Rei int jes er ä.. 1992). Increasing cilmate variability worsens these problems (Stigter et al.. 19951.

In countries like kenya density and growth of population in the high potential areas have greatly affected farming systems and the availability of other natural resources. Such population increase in high potential areas coupled with increasing production of cash crops (e.g. coffee. tea. pyrethrum etc.) and fodder for improved livestock that require large tracts of lands have caused severe pressure on land.

Lack of arable lands due to over-population in haoh potential lands has. in countries like kenya. forced a part of the population into semi-ärid areas where they have introduced unadapted cropping systems (e.g. Webster and Wilson. 1900: Fiury. 1986: Kohler. 1987: Liniger. 1991).

Mixeu cropping initercropping and sequential croppinọi is a universal feature of semi-arid acrıcuiture. ideaily all annuai and perennial Crods can be orown in different crod mixtures and crot Geametry in these areas le.a. Fiuthenberg. 1976: Faianiacdan. 1985: Davis and Garcla. 1957: Lhavis et ai. 1907: Wiersuim. 1968). Stresses attendant in semi-arıa enviroriments. such as overorazing. water aris wiris erosion ard iow avallainlity of water and rutrients. antensify comoetative ariteraction between spezres. The Ary season. when wincs biuw frow noter iand masses. esteciaily larve deserts. is normaily a time of fariv desiccating wirnis. whier retara piant growth and induce wanc erusior
 cropuing systems and these siresses wirser, recurrent razaucis such as irouants etc.

Cultivation of larai in such frac̣ile areas durina gaja vears can de dangerous and can agonavate soil moisture and nutrient problems durag Hrier seasons (Bowien. 1971: Jackson. 1989a). Iroughts can wipe cut both crops and arimais and pauperize the farmers who then beccule really siaves to cimate. Miked crooping resuits in the anteraction icompetition as weli as comoiemertarity beiwer, species as each component species auants to the envaronment abililed bi the presence of

 factor will garr at the emperse eif the other too. heseter ard wisors.

1966: Bowden. 1979: Palaniappan. 1985: Rejjntjes et al.. 1992).
In an agroforestry system the perennial tree component whose roots have colonized the soil layers for a considerably lonaer time than the crop component have an advantage over the latter component with respect to the use of growth factors (e.g. Ihyani et al.. 1990: Nicouilaui et al.. 1994).

Intercrops may actually share crop space by eather having their needs in different pericds or by spatlai compiementarity very ofter one component renders services to the other or there are mutuaj services rendered (Stagter arci Bāldy. 19̧̧i) in intercroppırg risks are iower as foud security dan better de addressed. Some caros are likeiy to give a fajr return even in bad weather. As exampie uf servaces reraerea ore can mention ierumes that provide nitrogen to ron-iecrumes libe it on a iong term basss, ara higher plants that shade shorter ornes from excessive

2.1.2 Nature of soils and their influence on crop growth in the semi-arid areas

Semi-arid solis are derived from main classes or Aifiscis. Vertisols. Entisois and Inceptisole (e.g. Laj. 1979: işib: Normana it al. 1984: Desaules. 1980: EUROCONSUL. 1989: Liniger. 1991). These solis are very fragile and vary enormousiv in sultainily for farmina. Arratic axi neavy ráns iead to extensive ieachurg whicin carry misi soiutie piant nutrients beiow the root zone. as ti:e veqetation is manly orase with shailow rict systers le.c. Piar. 19shi. Tnese soils are easjiy erociait. Solis in semi-arac areas which are denuded of vectatan cr intter (Iulich rective neavy impacts if weather le.a. Futhervera. isto:
 too nagin suli temperatures aria ton jry scil. The roots in such soils grow sub-rorimaily.

F̄anfaij lmbact seais the suriace of loam solis and resuits in sariy solls iusinic its conerence. The suil generaliy loses edaphon. Iroiidenier ii368) defined edaphons as the totailty of organisms. for e:iampie macro-organisms (bacterıa and fungil. soil algae and soll micticiura. Eiabhors contribute to ine iormation of humus wich 15 ciseiy assinatec witr ciay datticies. Ciay-numus (loamy) complexes give the scif ate anternai structure. Soil oraanisms play a very
 scili. when sial 13 suifected to harit radiation. erratic and excessave rairs and strorn wands. eciaphory furctions in trie soid are interfered With and soil ilfe Decomes endarourred (e.g. Futherioera. 1976: Lai. 1979:

Most orqanic matter in semi-arid areas breais down differenty with dufierent ramnfali ediscoies hiackson. 1989̂a). Ine to their varıed texturai compositions and structure. soils of semi-arid areas differ in triejr woriabijicy ard mude of N unnerailzation frou one orowing period tu another in seopential cropping (e.g. Palanlappan. 1985: Norman et a1. 1384: Anorecht ard Bristow. 1990). At the onset of the main rains N is maneralized and maxes the soil poor in this nutrient. The C / N ratio $1 s$ ralsed resulting in slow decomposition of vegetation. Oultivation enccurages mineralization of the added organic matter. accelerating the breakdown of the more stable humic substances (e.g. Lal. 1979: 1987: EUROCONGULT. 1989: Liniger. 1991). Semi-arid soiis are also easily compacted. Eennett et al. (1986) demonstrated that at high nitrogen

Abstract

－セV゙elミ nater ミtress riai reiatlvedv less eifect on malze water use inan and water stresses were luposea in comiolratiun to ekamine tine IntEractave effest of iv and water stresses rn maize．Jones et ai．（i986） sinwed that piaris trown wath littie it wele more sensitive to water stress anc were iess efflcient in utilizino intercepted radiation． altruugh tris wãs yartiv due to lower ieaf area indices（iAl s）．Irie étects on sctr saroor dloxiae extrunge rates（CEx）and canody have bén tirana ts be aquitlve．The reiationsnid between ber and jiurnai hvisteresis at buw aria as weil as nian N．wltn cansiaelainle SETEIGjVIEY OH LnIS Jutrigen ievei ṻ the Elup．jones et à．（1980） conciude tra：mist of the diurral varaataur ari iEriEl was irie resule of differ゙ences in vậur oressure dellcits．Manauement of zoii mulsture and N as well ās carucy vapour pressure deficit an auroforestry systems in tre semj－arıa jreas couid therefore contribute to tinerr suetainability．

2．1．3 Soils in Matanya experimental area

Most solis in the seml－arid areas of Lajkipla distract are mainiy derived from Vertisois．Ferralsols．Nitosols and Phaeozems（ e．g． Liniger．1991：Desaules．1986：Sombroek and Braun．1974）．Their classification systems were based on the Commission for Technical Cooperation in Africa（CCTA）taxonomy．which was adopted by FAO from French and us apprcaches（e．g．Norman et al．．1984：Desaules．1986： EUROCONSULT．1989）．

These soils belong to the vertic-luvisols class. which are widespread in Lajkipia district (Desaules 1986). They are dark-coloured and have high clay contents. They display wide deep cracks during dry periods. The cracks are sealed off during cultivation when surface vegetation cover and ag̣oreqate sizes in surface soll are reduced. levertheless wâter infiltration via cracks becomes an important mechanism ior water recharge at the onsec of the rains. If water can infiltrate vaa cracks to deptins beiow 15 cm . tnus bypassing the surface layer. Water storage will be imercived.

The Mátariva solls have nigh water content in the lower layers, as sumarızed dy Fiğs. 3. $4 \hat{\alpha}$ and Täies 1 \& 2. These soils also swell when wetted arci self-wuich when crving. followarg rainfali events re.a. Van de wiet. i978: Norman et al. 1984: Efroccistidi. 1989: Abreche and
 reaction ard nic̣ meisture-holdung capacity. Their surfaces are generaijy graruiar, a factor that is causurg their seif-muiching characteristics.
in dreingo. iarg̣e clods naturaily breakdown into smäll ag̣ọreơates. These solis are relatively fertile given the semi-arid conditions with relatively hign caicium (Ca) content sut generaily low in N, P and Zn . They are hard to cultivate duriro dry seasuns. apart frow the mentioned self-muich layer. Their suriaces decame sticky during wet seasons. Hä̌ing it difificult to work re.g. Van de Weq. 1978: Desauies. 1980: Linger. 1591. Water infiltrates in tnese solls out hardly oces beyord the iaver

The tud soid has niah orqaris: marter content which makes it iolong to the farily of priaecem somis (innger. 1901). These sols have the

followng characteristics:

- deed dark onrey soil in the top 20 cm . black frow züoú cm ara yeilow inuwtash bejuw 60 cm. .
- nugh organic matter content in the top horizon (3.i \%).
- highest clay content in the biack layer.
- formation of cracks during the dry season fram ine surface to 60 cm depth in the biack iayer.
- imperfectly riralred. mottled. in the top 60 cm . amottles:
patches of osidized iron (or Ferric uxides, conient of the
soll. formed by irequent wettino and drying of soll contaaning
iron).

Ah,p : greyish yellou broun (10yR 5/2) dry and brownish blach (10yn 2/2) soist, clay; fine subangular blocky structure; slightly hard dry, very friable moist, sticky ret; adny eacropores, sany biopores; frequent fine roots; (en reddish mottles; clear boundary to
Bt,v : greyish yellow brom (10yR 4/2) dry and bromish black (10YR 3/2) toist, clay; coarse angular and subangular structure; very hard dry, fire noist, very stichy met; bany cracks up to 25 mide, feu aacropores, many biopores: frequent fine roots; few hard round iron-angqanese concretions: few reddish mottles; gradual boundary to
Bck : dull yellowish broun (10yR 5/3) dry and moist, clay; nediua subangular blocky structure; slightly hard dry, triable moist, slightly sticky wet; few hard live nodules, Eany soft lise accumulations; fen hard iron-manganese concretions; anany eacropores and biopores; feu fine roots; diffuse boundary to
Bck,cs : dull yellow orange (10yr 6/3) dry and dull yellowish broun (10yR 5/3) moist, clay: vedium subangular blocky structure; slightly hard dry, triable moist. sligthly sticky wet; many merropores and biopores; feu tine roots; frequent hard and ferd soft iron-manganese concretions, any hard live nodules; diffuse boundary to
BCck,cs: as horizon above but: less roots and less iron-manganese concretions

Legend:

huaified organic atter
$(1$ dash $=11$)
plant roots
comon fine roots

8 evidence and exx. depth of more or insect activity
(m) evidence and axx. depth of namal digging activity
\approx soft line accumulation
(3) hard lise nodules (concretioas)

- hard round iron-annganese concretions
- soft angular iron-aamanese concretions

OO gravel (angular, round)

Fig. 4. Soil profile description at Matanya (after Liniger. 1991).

- rign wãer noldara canacity .
- riard top syid when iry. arki stleky and heavy when wet.
- ierrile soli witn no málor constraints in rutrients.
 downwaras.

Fig. 5. Shrinking for Matanya soils isamples taken at field capacity and then oven-dried), after Linıger. 1991.
andicating that water after infiltrating to that depth 15 taken up by plants. while the lime washed in from the top horizon accumulates. These
accumuiatlon poses toutentad dander to crops and tress. nenco a negative factor as Es soij fertillty.

rig. 6. Soil texture and soil water capacity (after Liniger. 1991).

2.2 The role of agroforestry ($A F$) systems in crop production

2.2.1 The benefit of agroforestry systems

Agroiorestry (AF) is frequently mentioned as a possible alternative solution in semi-arid and arid areas to problems of land and water degradation as well as a contribution to solve shortages of food. and/or fuel-wond. and/or cash income. and/or ansmal fodder. and/or

Luilaing materials (Fochejeau et al. Lob8). Aurororestry may orfer at .east färtal soilutjons to many rural lari-use aná production problems. The berfilts of agroforestry may anclude: (i) nitrogen-fixation in cropland and pasture to 1 mprove soil fertility: iji) protection against water and wind erosion thus tending to conserve the status quo in the scili: ilili supplying of wandioreaks and snelter thereby reducing physicai Iamage to accompanying plants: (IV) provision of mulch from tree leaves and stumirs. to conserve soll water and increase soll ielrility. among mariy otner uses of such prunings le.g. Mngi and riuxi=̌. 1579: Eurley. 1985: Focheleau et ai.. 1988).

The mij Commission for Aoriculturai Metecrisiary anreed in its latest session at Havana. Buba. that there was an increase of interest in aromorestry research and in exteriing the research to the agrometeoroiogy of trees. It stated alsi in $u t s$ report that. however. trins area of research remanned falriy limited. due. to some extent. to various organizational ard iunancial reasons. The Commission also recournzed the difficulties in the development of research. caused by the complexity of aoroforestry systems as weil as the problems relating to experimental desion and avaliability of cheap and reliable equipment. The Commission. therefore once more cailed upon the research community
 ior on-farm quantification" (WMO. 1995).

Agroforestry (AF) is most often defined as "the land use systems in winch trees or shoubs are grown in association with herbaceous plants (crops and pastures). in a spatial arrangement or time sequence and in which there are both economic and ecologlcal interactions between the tree and non-tree components of the systems" (e.g. Lundgren and
 variug econcmic and environmerical functions to the farmer lMpl (uultipurose trees). but so far remain least successful in the semiar'là areas. mainly because of the low hlomass production.

The nost important rraditional knowledge of shadino. mulching and windioreaks and their effects in AF (and other cropolng, systems over the years. have been elaborately presenced by Stagter (1988). Traditarnal iarmers ali over the world are aware of the harmfui and beneficial eifects of cilmate in different crop stages. Such damares as caused by hlgin radiation ioals to young seedilrogs. desiccation of the topsoll lunder dry windy siruations. wind rarrled sand and wind erosion have bern traditioriaily addresséd. The environmental roies of AF systems are slmiar but the approach and their actuāi mitigation vary in different parts of the worid and are even location specific within comparabie Elimatic conditions 1e.g. Lundoren and Raintree. 1983: Rachie. 1983: Hiazra. 1985: Stioter. 1985a: Stioter. Iarnhofer ard Herrera. 1987: rierknof. 1390: Lawson and Kang. 1990).

The micrometeorological aspects of AF systems include:
(i) mulching by materials provided by treesibushes:
(ii) protection against the mechanical impacts of wind. rain and hail:
(lii) shading against strong radlational loads. for example in some commercial crops. Among others. Curdia abvssinica and Grevillea robusta have been used in Kenya as shade trees in coffee plantations (Acland. 1971):
(IV) control of soil erosion: and
(v) improved water holding capacity. water infiltration and some other related soil factors by provision of organic matter.

Ther functlons of anmoforestry in the sem-arid areas may anciude to (i) allevıate fodder situation durıng dry seasons: (ii) provide rueiwoad: (111) satisiy timber needs: (IV) provide nutrients (e.g. nutrogen) to the crop component of the system. in case of tree leorumes.

The functions of $A F$ systems may thus be divided into two broad areas. i.e. productive and service functions. Froductive functions include: provision of firewood, domestic timber. fodder, food. olls. fibre etc.: and service (or protective) functions include: provision of shade. shelter (against heavy radiation load and hiah wind speeds) ard heigira. soil conservation, water conservation and soll nutrients (mulches) le.g. Yound i 1987: Nair. 1988). In semı-arıd areas soll and moisture conservation. provision of rutrients and futl-wion provision are the most important.

2.2.2 Soil moisture and soil nutrients in AF system

AF svstems are māinly used in attempts to optamize beneficial effects of the interactions of the woody components (trees) with the non-woody components (crop and/or arimals). The alm is to obtain a production pattern that improves on the exploitation of resources under traditionally prevailing social, agruecological and economic conditions (Kerkhof. 1990). Here issues like total yields (both seeds and biomass from the AF systems). diversity of end products and sustalnability have to be included (e.g. Lundgren. 1978: Nair. 1984: 1988: Young. 1989). AF systems are developed which consist of trees of desirable forms and root systems. using appropriate management to minimize competition for resources with the crop components. To optimally share water and nutrients. the ideal perennal trees for an ideal $A F$ system colonize deeper soil layers whereas the annuals colonize the shallower layers.

Thas would manuize comperition for these resources between the two romporents. The ronts of the trees loosen the soli and enhance mifiltration. The trees stabllize the soll by ancioring it against erosion. preservina the nutrients in the top soll.

In the undisturbec veretated ecosystems. water movement under saturated conditions takes place in solls through macro-pores that domirate the pore space (e.g. Narr. 1984: Jackson. 1989a). Surface runoff is generally low. even in periods of heavy rains with a high dropsize distribution. Infilitration rates ard infiltration capacity are generaily high. The soll bulk density is low. However. removal of vejetative cover from such scills increases thear bulk density. decreases their porcsity and reduces their anfiltration rates. The removal of bush and forest cover accelerates storm-flow. leaairo to moreased soil erosion.

Fereira (1979) coserved that development of tea estates in rain forest areas of East Aifica increased run-off during anitial clearing and terracing operations. This drasticaliv reduced when the tea canopies were properly established. Michena (1979) observed high infiltration rates in uneroded forest solis, but these rates were later greatly reduced due to compaction by orazing animals.

As to nutrients. leopminous MPTS. like Cassia spp. . Acacia spp. . Leucaena spp.. etc. fix nitrogen but do extract phosphorus and potash from the nutrient reserve in the soil. thereby making the soil poorer in these elements. Non-leṣminous MPTS like Grevillea spp. Balanites spp.. Zizyphus spp. etc. do not fix nitrogen but deplete nutrient reserve without repiacing any (e.g. Connor. 1983: Rachie. 1983: Burley. 1985).

The widei in nutrient recycimg and distributzon in an ideal AF svstem described by Nalr (19B4) is based on:
(i) addition of nutrients to the soll for use by the $A F$ system from (a) rain. e.g. N. S. P. K etc. from the air:
(b) iltter fall. pruning or lopping "pumping mechanısm from deeper lavers by the perennal": (c) release to the soil through root decay and: (d) release of nutrients from the soll by weathering.
(ii) nutrient export compensated by turn-over within the system and its efficient use.
(111) nutrient remival from the $A F$ systems occurrang at reduced rate throun: (a) little erosion and runotf:
(i) 1ittie loss from the system due to deep percolation
(ieaching) and: (ci complementary sharing of nutrients.
A rainfed acroforestry cropping systems in semi-arid areas could therefore be improved with muiching from sutside the system for conservation of soil water and addition of nutrients.

2.2.3 Grevillea robusta in agroforestry farming systems

Grevillea rebusta A. Oumm. ex. R. Er. (also known as silky oak) 13 a tree species native to subtropical eastern Australia. The genus Girevilled comprises over 260 species and belonas to the tribe fa tribe consists of a group of several genera with similar chacteristics) Grevilleae within the family of Proteaceae le.g. Jeffrey. 1973: 1982: Harwood. 1989: 1992: Gwino. 1992). Grevillea robusta is the largest species in the genus. It can reach 40 m high and a diameter of 100 cm . It grows naturally in the northern New South Wales and southern

Queensland. from the coast to about 160 km inland. at an altitude of 1120 ma.s.l.. and between the latitude $30^{\circ} 10^{\prime} \mathrm{S}$ and $25^{\circ} 50^{\prime} \mathrm{S}$. The rainfall there 19 from 720 to 1710 mm while the mean temperatures range from 14.7 to $20.1^{\circ} \mathrm{C}$ (Harwood. 1989: 1992).

Grevillea robusta occurs in two natural habitats within the latitudes mentioned above: first, on alluvial soils in the riverine forests along the banks of rivers and streams and in valleys of small creeks and rivers away from forests: second. though at low density. in the vine forests and thickets in the upper valley slopes and rolling terrain away from the rivers.

Grevillea robusta was brought to Sr 1 Larika and India for use as shade tree for tea. coffee and cinchona (Harwood. 1989 and Cwino. 1992). It was brought to East Africa from India as shade tree for tea and coffee around 1910. It is still beang used for that purpose to date (Aclaná. 15̣1). Grevillea robusta is light demändina. ploneering colomzer af disturbed sites as it has fast initial growth then slows down as competition from surrounding vegetation increases le.g. ünougo. 1992: Owinc. 1992).

Grevillea robusta is conspicuous in landscapes of the high potential parts of kenya. where it is grown along plot boundaries as ornamental tree. As such it has aesthetic value enhanced by: fernlike leaves: braghtly colowred dense flowers: a near conical pine-like crown and a racemose branching (i.e. unbuttressed. erect. taperino bole surmounted by a smail tufted crown) system (e.g. Harwond. 1092: Owino. 1992). It $1 s$ wluely drown aiong farm ooundaries as weli as intercroped with malze. ieans. Irısh potatoes. Sweet potatcres and oither crops in row planting on smail-scale tarms in the hugh potentiai areas of nenva le.g.

Kerkhof. 1988: Onougo. 1992). It was imported from the high potential areas into semi-arid ar by the small-scale immigrant farmers. as a component of what we have learnt is basically inappropriate traditional farming technology in these areas. Grevillea robusta trees orown along boundaries act as windbreats.

Grevillea robusta is being grown less and less as shade tree for, coffee and tea in Kenya, because under application of fertilizers it is said to reduce productivity of these crops by its shade. It is also said to spread Armillaria mellea which is a disease that attacks roots (Owino. 1992: Onouado. 1992). Grevilled robusta is increasingly being grow in agroforestry with croos such as maize, beans. potatoes. etc. because it orows fast. is relatively easy to grow and exhibits little negative reaction (competitive) effects with crops. It is popular among small scale farmers in Kenya.

In the semi-arid environmerit. Intensive on-farm use of Grevillea rabusta could provide self-sufficiency in wood products. It could provide the farmer with fuel-wood and building (construction) poles. shade. litter mulch and saw timber of acceptable quality (e.g. Young. 1989. Neumans. 1983). It has relatively little interference with adjacent agricultural crops under adequate moisture conditions ISpiers and Stewart. 1992). From interviews with Farmers in Meru and Embu dietricte Splere and Stewart (1992) found that dense etands or large unpruned Grevilled trees could reduce crop yields. Competition for soil factors between Grevillea and the intercrop may increase under dry conditions because of increased efficiency of Grevillea under these conditions. This integration of wood production into the farming systems would avoid the land-use diseribution conflicts which may require
setting aside areas for Dlar ation forests to meet rural wood requirements (e.g. Fepublic of Keriya. 1994a: Owino. 1992).

Issues such as mineral nutrition, mutrient cycling and biomass. geometry, and distribution and turn-over of roots are important to determine the success of intercropping Grevillea with annual crops. Proteoid roots in Grevillea are said to develop under low soil molsture status and play a similar role as mycornizal associations in other tree families, harvesting nutrients and water more efficiently than the normal roots (e.g. Nair, 1988: Harwood. 1989). Grevillea robusta exhibits auto-allelopathy which prevents young Grevillea robusta seedlings from growing near the older ones (Webb et 21.. 1967). Chemical analysis of Grevilled barks has indicated the presence of mono- and disaccharides while leaves have been found to contain for example nitrogen, phosphorus and potassium, in the proportion of 1.18\%. 0.12% and 0.50% respectively (Gosh and Rac), 1972).

Grevillea robusta trees are regularly side-pruned and pollarded to reduce shading of the ground crops and to supply firewood and poles. Grevillea has typically a short orowing life in plantations and poor coppicing ability. Grevillea is currently the most popular agroforestry tree species for the small-scale farmers, which can improve and sustain productivity and waintain environmental etability in the semi-arid areas (o.g. Ongugo, 1992, Owino. 1992).

In agroiorestry systems that came into existence in the Laikipia semi-arid areas, Grevillea robusta is often planted either randomly or grown in association with maize/beans intercrops. Grevillea regularly sheds its leaves, providing abundant quantities of leaf mulch. Reddy (1992) observed Grevillea sobusta leaf mulch to accumulate to a
considerable depth, with the top hardly decomposing, the middle remaining partially decomrosed and the bottom layer forming a good decomposed humus. Greviliea miusta leaves are used occasionally as dry season animal fodder in the semi-arid areas of Laikipia, although they are not quite palatable to the animals. The leaf litter is used as mulch for soil moisture conserration and soil temperature moderation.

2.2.4 Colous (Plectranthus) birontus as live-fence materials

Coleus barbatus shrisi locally known as "Maigoya" is a soft hairy shrub which grows up to $4-4.5 \mathrm{~m}$ tall with rather fleshy angled stem. with velvety. soft and hairy leaves of up to 10 cm long (Gachathi. 1989. Lind and Tallantire. 1975). It is normally propagated through cuttings during rainy seasons to establish a permanent boundary around cropped areas and/or houses. It is Widely used in Laikipia district as hedges to exclude domestic animals from entering into the cropland (Mogee. 1991). Moges (1991) observed from the experiments on soil moisture competition between Coleus harbatus live-fence and maize plants that the leaves of Coleus could be weed for mulching and stems for firewood. the purposes for which it is normally not used. The dried leaves were instead left to decompose at the roots of the hedges and were never collected and spread in crocland as mulch.

2.2.5 Crop perimmance and yielde

2.2.5 (a) Maize in semi-arid environment

Crop productivity in semi-arid Laikipia district is substantially
lower than yields obtained with adequate irrigation. The rotal ecoeystem should be considered when choosing yields criteria because yields are
highly varioble in semj-arid environments (hall et al. 1979). Maize is a main staple food of senj-arid inhabitants.

Early develoment stages of maize were delineated by Hanway (1963) in terms of the aprearance of leaf pairs. This development index has subsequently been refined to suit local climates and has been related to above ground growth (e.g. Todorov. 1977; Brown. 1976: Liniger, 1991). Todorov (1977) surcsisted that the middle leaf. that is 9th leaf, be used in East Africa Meterealogical Services as the third phenological stage after germination ind emergence stages. The 9th leaf stage and conversion to a rerroductive apex coincides with internode elongation. Leaf production on a tiller ceases usually after eight to ten leaves. At this stage initiation of ear primordia occurs by development of buds in the leaf axil. Fertilization requires pollen shedding from the tassels and development of receptive silks through elongation of carpels of female epikelete. Edirting from the base of the ear (Todorov. 1977).

In the lowland tropics depending on varietal differences cultivars such as Katumani concosite B an early maturing variety reach anthesis in about 50-60 days anc: come to maturity in 80-120 days. Development before anthesis is highly dependent on temperature (Hartfield. 1976).

In East Africn maize is grown from sea level to over 3500 m altitude depending is variety (Hartfield, 1976). It is therefore not possible to generalize development patterns and time to maturity, as abserved in Kenya. In the equatorial region in Kenya when, maize ev . H6302 is grown at various altitudes, the duration to maturity increases at a mean rate of 7.6 days per 100 m . from 131 days at 1270 m to 205 daye at 2250 m altitude (Hartfield. 1976). Such altitudinal effects are normally taken into account by agricultural authorities in Kenya when
choosing malze gerotypes for a particular area (Republic of kenya. 1994).

Most cultivars of Zea mays are sensitive to drought but this crop is grown in semi-arid environments due to food preferences. The landraces of maize. such as katumani composite-B. which produces grain within an annual rainfall of less than 500 mm in the warm semi-arid area of Machakos in Kenva, represent sources of characteristics that confer drought resistance (Hall et al.. 1979).

The large seed of maize (usually $0.2-0.4 \mathrm{~g}$) leads to rapid radicle and epicotyl growth after imbibition. The radicle appears from the seed before the eplcotyl (i.e. at lower seed water content) and both. radicle and shoot. eiongate linearly with time. sharing a temperature optimum of about $30^{\circ} \mathrm{C}$ and showing a negligible elongation at less than $9^{\circ} \mathrm{C}$ or above $40^{\circ} \mathrm{C}$. Maize seed has a relatively large water requirement at imbibition. hence maize $1 s$ more sensitive to low soil water at sowing. Maize does not go into dormane! (e.g. Blacklow, 1972: Hall et al.. 1975: Martfield. 1976: Todorov. 1977).

Photosynthetic rates of maize peak at $30-40^{\circ} \mathrm{C}$, they are negligible at $40-50^{\circ} \mathrm{C}$. Rates of leaf emergence and lamina expansion also peak at $30^{\circ} \mathrm{C}$ (e.g. Blacklow. 1972: Swan et al.. 1981: Hartfield. 1976). One would therefore expect oreatest maize growth in environments conducive to leaf temperatures of $30-33^{\circ} \mathrm{C}$ during the day but with cool nights (low respiration). One expects higher dry matter yields in the wet-and-dry cool semi-arid trcpics (SAT) than in the wet or humid tropics which usually have less diumal varjations, with higher night temperatures. expected to produce less total orowth.

In the tropice efficiency of conversion of PAR into maize dry matter averages 5.1 :0 7.2% (e.g. Trenbath. 1976: 1986; Norman et al.. 1984). High growth stes are achieved at a maize population of about 50. 000 plants/ha. Higher population during early growth increase rates of dry matter accumulation. but under rainfed conditions long-term growth. water use and parimzularly grain yield may or may not respond to population dependiris on soil water availability. In the tropics total above ground maize dry matter yield at maturity is between 12 and 20 t/ha, for well nurzed experimental crops, but grain yields range from average of 1.0 to 1.5 t/ha to $5.0-8.0$ t/ha with good management and 10.0-12.0 t/ha in erperiments at 1500-2000 maltitude INorman et al.. 1984). Low maize griain vields in the tropics are usually attributed to dry matter distribution sithin the crop and to the sensitivity of both. net photosynthesis and partitioning, to environmental stress, particularly water Eficit.

The physiolocical mechanisms of dry matter distribution, that is short and long distance translocation, are documented (Eastin 1969: Hofstra \& Nelson. 1969: Hower. very little is known of quantitative partitioning to ronst. 8 ir: field environmente. given their function in water and mineral ufake and the provision of support. Flowering in tropical maize is accelerated by short days. Critical day lenoths are 14.5-15.0 hrs. Tire to flowering is accelerated by increasing temperatures (Hartijelc, 1976). After flowering there is a 'lapse phase' which is of $3-8$ days duration in open pollinated tropical cultivars. The actual orain filling period is about $20-30$ days. Maximum grain weight is attained and growth terminated at maturity. The number of grains that fill depends on tenverature: directly through fertilization and
photosynthate production and indirectly thnough an increase in axillary tillering at low temperature. The number of filled grains is linearly related to radiation received after floral initiation or above ground growth rate. Irought reduces leaf area and leaf photosynthetic rate during stress perims, delays silking and reduces grain yield components. particularly grain number. Reduction in grain number is due to increased asyncriony in flowering water deficit reduces the rate of pollen production during periods silks are receptive and reduces the periods the silks ars exposed to pollen.

Maize in the tropics has low yield. depending on variety and altitude, relative to temperate maize, because of supra-optimal temperature, inefficient redistribution of dry matter to grains and sensitivity to water stress that influences both vegetative and reproductive growth.

Maize $1 s$ prefninantly intercropped with beans in many parts of the world. for example in East Africa and Central and South America (Nadar and Faught. 1993; Nadar. 1983: Rao. 1986). Maize is intercropped with bush beans in the semi-arid lowland areas of Kenya. Both crops are planted with the reginning of the rainy season. Beans mature here in about 90-110 days and maize is harvested in about 120-150 days depending on variety and temperature (altitude influence). The early maturing varieties are prown in lowland area where temperatures are relatively high and mature earlier than the highland varieties.

2.2 .5 (b) Common bean (Phaseolus vulgaris)

Beans. just like maize. is a most popular crop second only to maize as a staple food of semi-arid areas of Laikipia district. The
varjety widely orown in Laikipla is rosecoco. This $1 s$ a determinate type which is short. self-supporting (or bushy) and of short growth duration. and it matures in about three months (Smart, 1969). The rosecoco cultivar is normally intercropped with maize in Lajkipla district (Liniger. 1991). Rasecoco bears flowers on short. lax, axillary racemes: the flowers are self-fertilized and develop slender pods which usually carry four to six seeds.

The development pattern of bush types to which rosecoco belongs is predictable (e.g. Todorov. 1977: Norman et al., 1984: Liniger. 1991). Full maturity. that is to dry seed, is reached from between 45 to 150 days after emergence. depending on growth habit. type and location. Most of the bush types are not sensitive to day-length (CIAT. 1978). Growth duration depends pramarily on temperature. The relative duration of various development events are fairly constant under a wide range of thermal environments. Since bush types are of short duration they have only four to ten nodes on the main stem at maturity (CIAT. 1978).

Phaseolus rulgaris has very wide geographical distribution. It is grown whenever temperatures between 10 and $35^{\circ} \mathrm{C}$ prevail. Nearly all bean genotypes are found where temperatures at flowering lie between 17.5 and $25^{\circ} \mathrm{C}$ (CIAT, 2979). The optimum temperature for flowering is about $21^{\circ} \mathrm{C}$ which correspond to about 1250 m altitude in the tropice. Yield reductions below or over the optimum are related to plant mortality at high temperatures. reduced photosynthesis and to failure of flowers to produce mature pods. Failure rates are about 50-70\% of opened flowers and the proportion increases above $30^{\circ} / 25^{\circ} \mathrm{C}$ day/night temperatures (Kay. 1979).

Water is a major climatic constraint to yield in the semb-arid areas (including the SAT). Beari-arowing areas have an annual rainfall of 500-1500 min. In East Africa bean production is most successful where rainfall during the growing period is $300-400 \mathrm{~mm}$ and seed maturation occurs in dry weather (kay. 1979). Beans stomates close at moderate leaf water deficit $(-0.5 \mathrm{hPa})$. Stress during flowering. when the crop $1 s$ most sensitive. reduces yield through increased flower failure and to a lesser extent by reducing the number of seeds per pod (Stocker. 1974: Todorav. 1977). On the other hand heavy rainfall creates micro-climatic conditions conducive to furgal diseases.

Fartitioning of bean dry matter during vegetative growth has received little attention. Stofella et al. (1979) found that 40% of root dry weight was in the tap root and its branches. 50% in the basal root system and only 10% in adventitious roots.

Beans are nitrogen fixers. Nitrogenase activity is highest at the beginning of seed development and may contribute up to 90 kg nitrogen na-1 during the life of the crop (Norman et al. 1984).

Seed vield is closely correlated with number of pods per plant and number of plants surviving to maturity. Varying plant population or intercropping may affect yields, depending on cultivar mortality and sensitivity in pod formation (Thui and Nadar. 1983). Chui and Nadar (1983) found from experiments carried out at the National Dry-land Farmina Station at Katumani in Kenya. on Oxic Paleustalf, and at the Iowa State University U.S.A.. on a Nicollet sandy clay loam. that intercropping reduced bean vield by an average of 67% due to a decrease In number of pods per plant for the plants of interrow spacing of 60 cm . The decrease in number of poois per plant ranged from 31 to 38% while the
decrease in number of seads per pod ranged from 9 to 20\%. Un the other hand highe! waize orain vielas were obtained in intercrops than $2 r_{1}$ sole crops. Willey and Osiru (1972) observed in Uaanda tnat maize/bean intercropping was 38% more productive than a combunation of sole crops. The higher productivity of the intercrop was attributed to better utilization of growth resources. particularly 1 aotht.

2.3 Meteorological and soil factors affecting maize/beans intercrops in the semi-arid areas.

2.3.1 Soil moisture

2.3.1 (a) Volumetric water content (VSMC) and bulk density

The relation of available soil water to plants, clamatic conditions and olant development are major factors in water conservation efforts. Flant arowth depends on the amount and distribution of water in the soll. Climatic conditions control the rate of prowth. Monitoring of water content an order to determine its rate of change in the soil provides very useful information on crop performance and ultimate yields.

The nature of the solls and their water holding capacity give useful information on the distribution of soil water and ats availability to plants. Textural composition of soils. water storage capacity and the dmount of swelling and shrinking of clay soils could give an indication of the available water to plants (e.g. Liniger. 1991: Ibrahim. 1992).

Table 2 shows the shrinking factors for Matanya soils. Undisturbed ring samples. collected from all horizons (i.e. 15-170) at field capacity and oven dried. were placed on a photocopyind machine (Linger. 1991). The photocopies were used to work out the percentage of cracks int
different directions through the center of the ring. From this linear form. volumetric shrinkage factors (a) were calculated. Shrinkage factors (b) were obtained from (a) using the assumption that shrinking $1 s$ proportional to water loss. From Liniger's (1991) data (Table 2) we learn that on drying Matanya soils reduce their volume by $14-20 \%$ between field capacity and wilting point in the top 60 cm of the soil profile.

The factors that determine the supply of water to plants are (Mugah. 1983: Nicoullaud et al. 1994):
(i) the storage capacity of the soil:
(ii) the soils ability for recharge from the surface water (infiltration rate or capacity):
(iii) its internal drainage. and
(iv) plant root distribution in the soil.

The water avallable to plants falls between two limits. Field Capacity and Wilting Point. The upper limit, which is the Field Capacity (FC). is defined as the water content at a suction from -0.1 to -0.33 ber. The lower limit, which is the wilting point (WP) is defined as the water held at a suction of -15 bar. The field measured upper limit for water retention of the soil. the real $F C$ is defined as the volumetric water content attained 2-3 days after saturation and after free drainage has practically ceased (Russel. 1980; Ratliff et al.. 1983: Gardner. 1988). The field measured lower limit, or permanent WP. is the volumetric water content of the soil at which plants are practically dead or dormant as a result of the soil water content (Russel. 1980; Ratliff et a... 1983: Gardner. 1988: Liniger. 1991). The lower limit could be determined under grass cover where the rooting depth is deep enough to extract water even further than the lowest measured depth of

Tables 1 \& $2(170 \mathrm{~cm}$). The difference between FC and WP is the available water to plants. In srder to develop appropriate water conservation measures in the somi-arid areas. soil moisture data down to the lowest rooting depth of annuz1 crops for a period of about 4 years may be used (Liniger, 1991).

Arnlysis by Kenya Soil Survey of the Matanya Verto-luvic phaeczem soils as given in Table 1 (see Liniger 1991) show that the surface layers contain 40% clay and 3% organic matter fractions. These layers. till a depth of 25 cm , were holding 30% of soil water available for plant uoe and 14% not available to plants. The 14% occurs partly as constitutionally bound hydrcgen atoms in the clay minerals and in organic matter and this part may be referred to as equivalent water (e.g. Greacen. 1981: Ibrahim. 1992).

2.3.1 (b) On neutron probe: Nature of neutron prabe

A neutron prohe is made up of two main components: the source and the detector. Test neutrons are emitted from the Americium 241/Beryllium-9 source. They pass through the detector without causing a response and fly into test the material (generally soil) bouncing around in the material and gradually slowing down in the process (Greacen. 1981). The detector tube. a boron tri-fluoride (BF3) detector. is responsive to weak, thermal neutrons but is not responsive to high energy fast neutrons. When neutrons bounce around sufficiently to slow down to thermal level they can be detected by the BF3 tube. Neutrons are drastically slowed down if they collide with hydrogen atom which has the same mase as the neitrons and the energy loes is groat. In moet soils. except soil with orconic composition e.g luvisols. the only source of nydrogen is water. Hence the only major moderation of fact noutron 18
water. reason why neutron probe is used to measure soil moisture.
The neutron probe measures volumetric water content and its spatial and temporal changes. Calibration of a measuring instrument is usually made by obtaining the readings of the instrument for a range of accurate independently determined values of the parameter to measure. The relationship between the readings and the calibration values provides the calibration curve. The calibration curve for the determination of volumetric water content takes the form of Eq. 1:

Table 1. Comoosition of the Matanya Verto-luvic phaeozem
soils (After Liniger (1991).

Depth	Clay (\%)	silt (\%)	sand (\%)	organic matter $(\%)$
18	40	23	34	3
30	53	19	27	1
60	65	13	22	0
90	56	16	28	0
120	47	22	31	0
$150+$	47	21	32	0

Table 2. Shrinking factors for Matanya soils (after Liniger. 1991).

Depth (cm)	Shrinking factors (a) F.C. till Sinrinking factors (b) linear	oven dry volunetric	F.C. till linear	wilting point volumetric
18	0.88	0.68	0.93	0.80
30	0.84	0.59	0.93	0.81
60	0.88	0.68	0.95	0.86
90	0.97	0.91	0.99	0.96
120	0.99	0.97	1.00	0.99
150	0.98	0.94	1.00	0.99
170	0.98	0.94	0.99	0.98

(a) measured
where $\theta\left(c m^{3} c m^{-3}\right)$ is the volumetric water content of free water (water released on drying at $105^{\circ} \mathrm{C}$ for 12 hours), or is the calibration (count) ratio of the count rate in the soil to the count rate in a standard medium, b is a calibration reoression coefficient and a is the intercept (Greacen. 1981: Liniger. 1991 and Ibrahim, 1992). The calibration curve depends on $C r$ but is also affected by soil properties such as dry bulk density of the soil. volumetric content of constitutional hydrogen (expressed as equivalent water). chemical components of the soil and the soil solution.

Ibrahim (1992) found from his work with the Gezira clay (Vertisols) soils that count rates vary diurnally with temperature. attaining maximum values when the temperature is maximum and reaching a minimum at the time of minimum temperature. The neutron meter responds more strongly to the soil properties close to the detector and source. This complicates the calibration procese for eracking claym much as the Matanya vertisols. It is difficult to obtain a soil with properties that give a simple calibration curve (e.g. Parkes and Sian, 1979: Greacen. 1981: Ibrahim. 1992).

Matanya soils. as vertisols, have these complications that affect count rates (Liniger. 1991). The calibration curve may be site and horizon specific due to complexity and variability of soil composition. Additional soil parameters e.g. soil depth, soil dry bulk density and texture, constatutional hydrogen and neutron absorbing elements may be corrected for where coefficients may differ with different soils for particular instruments and installation where the latter parameters (constitutional hydrogen and neutron absorbing elements) can be estimated. The differences in glope of the calibration curve may be due to soid composation and dry bulk density (Greacen. 1981). Greacen (1981)
contends that by making the calibration in terms of constitutional hydrogen $\theta_{\text {. we }}$ way overcome the gross errors caused to the calibration curve by total water content (Eq. 2). That is free plus equivalent water.

$$
\begin{equation*}
\theta_{t}=\theta+\theta_{0} \tag{2}
\end{equation*}
$$

The depth to start measurements also has to be carrected for during calibration (Greacen. 1981).

The radiative source (Americium-241 and Beryllium-9) used in this type of probe has a half-life of 458 years. Greacen (1981) supplies the following information that is used here. For 1×10^{6} neutrons s^{-1} coming from beryllium the y dose rate at a distance of 1 m is 1 mremh-1. coming from Americium. The probe radiative source emits 2.5×10^{3} neutrons \mathbf{s}^{-1} mCi-1. Which 13 the emiseion of neutrons by beryllium (neutrons s^{-2}) when irradiated by 1 mCi (from Americium). The Curie (Ci) is a unit of radionativity (e,gi, Jerreed and MoNoidd, 1972). The Amerioium generatec y-rays in its disintegration. that is in the process of producing neutrons from beryliium. The rem is a unit of ionizing radiation such as gamma radiation (e.g. Jerrard and McNeill. 1972). The alpha particles used in the neutron generation process have very low penetrating power and are easily confined within a restricted range by shielding. The $y-$ rays. on the other hand, are highly penetrating and require heavier shielding for adequate containment. The probe can maintain an effectively constant neutron production rate for many years. The low yradiation from americium-241 is advantageous in this respect.

The emission from a spherical volume around the source influences the detector count rates (Van Bavel et al.. 1963. Ibrahim. 1992). This so called sphere of importance. affects 95% of reflected thermal neutrons. It is defined as the sphere around the source which. if all soil and water outside it is removed, will yield 95% of the expected neutron flux from an infinite similar medium. Hydrogen content of soil is the determining factor of the sphere of importance. which according to Visvalingam and Tandy (1972) and Kristensen (1973) is given by Eq. 3:

$$
\begin{equation*}
Q_{y}=\frac{100}{1.4+0.1 * \theta_{t}} \mathrm{~cm} \tag{3}
\end{equation*}
$$

where $Q_{\text {}}$ is the radius of sphere of importance. The water in the soil closer to the eource/detector has greater influence on the count rates than that farther away. We therefore expect distortions of the sphere of importance in heterogeneoue soils.

Van Bavel et al. (1963) found from the formula that the data taken with a neutron probe at a depth of calibration 20 cm and shallower were erroneous for all water contents below about 35\%. Kristensen (1973) showed that lower soil moisture contents of clays ($\theta \leq 25 \%$ by volume) could accurately be measured from 20 cm downwards. Long and French (1967) showed that accurate measurements from 20 cm depth in clay soils could be obtained at very low water content ($\theta=13 \%$ by volume). They showed for a probe held in air at 20 cm from a water body that the radius of the sphere of importance attained an infinite value and hence its effect on the counting rate was minimal. The sphere of importance therefore determines the depth at which measuremente made could yield
data with minimum error. Eq. 3 is generally used to determine:
(i) the permitted minimum access tube spacings:
(ii) the advisable minnmum depth intervals:
(iii) the shallowest measuring depth permitted: and
(iv) minimum dimensions needed for the calibration drums to avoid the influence of any arr/soil interface. which underestimates to a certain extent the soil moisture content (Ibrahim. 1992).

According to Eq. 3, the radius of the sphere of importance varies according to the seasons. Neutron transport tends to decrease with increasing soil density at the same pore volume. The count rates, and so the ratios, therefore tend to increase with increasing soil density (Ibrahim. 1992). The bulk density affects both the slope of the calibration curve and the intercept. Media with different bulk density distributions would give different calibration curves between bulk densities (Bd's) ard the slopes (b's) of their calibration curves. Ibrahim (1992) obtained Eq. 4 for Gezira soils.

$$
\begin{equation*}
b=14.43+19.84 * B d,(r=0.97) \tag{4}
\end{equation*}
$$

where ' b ' is the slope of the calibration curve. An increase of 40 percent in the slope of the curve was obtained for an increase of bulk density (Bd) from 1.0 to $1.7 \mathrm{~g}(\mathrm{~cm})^{-3}$.
2.3 .1 (c) Agronomy and soil management with respect to soil moisture

In natural situations plants in a semi-arid environment use water from rainfall. urdercround lateral recharge from nearby high orounds.
soil moisture reserve and in some cases from capillary rise. Suil moisture intakes by plant roots are among other factors anfluenced by weather parameters such as radiation and relative humidity. These parameters may influence stomatal behaviour. Wind has an indirect influence on root intakes by carrying away water vapour and other influences (see below). Soil water. nutrient status. textural and structural stratification (based on soil taxonomical composition). salts and water table level etc. strongly influence root development and distribution in the soil (e.g. Mugah. 1983: Nicoullaud et al.. 1994). Crop yields have bxeen observed to he directly proportional to the soil water reserve conditions at the beginning of growing seasons (Stewart. 1982a: 1982b). In the sem1-arid areas, high wind speeds. low humidities. high radiational loads etc, heavily influence evaporation. thus water intake by plants. Lack of adequate water supply therefore beccmes a major constraint to crop production. Water management 15 therefore crucjal to alleviate the effects of recurring droughts which serjously alfoct crop production in the semi-arid areas.

To be able to take up moisture from the soil the plant roots must exert a higher and more neaative suction (matric head) than the force with which the soil holds to the water (Russell. 1961: Da Costa et al.. 1986). Soil moisture taken up by roots has to be replenished. citherwise the soll will dry out and stress will be induced causing plants to wilt and die: a regular accurrence in the semi-arid areas.

Generally an increase in wind speed (i.e. a decrease in air diffusion resistance) increases transpiration rates. However. incidentally the leaf temperatures at very high troplcal irradiances may decrease so much that transpiration rate decreases with increase in wind
speed (e.g. Grace. 1977: 1988). Stomatal closure anterferes with the CO_{2} flux. soil moisture and soil mutrient intake by plants and nence influences assimilation rates and dry matter production (Grace. 1977: Lomas and Lewin. 1977). Water stress. induced at any phenological phase before senescence, reduces its final yield. The yield reduction depends on the phenological phase at which the stress was induced le.g. [enmead and Shaw. 1960: Shaw. 1977: Harder et 1.. 1982). Increase in so11 moisture stress in young plants results in increase in yield reduction. Large and well developed plants are not as much affected as the younger ones (Shaw. 1977).

Water shortage constrains plant productivity in the semi-arid areas because of unfavourable temporal distribution of rainfall. Losses due to runoff deprive roots of moisture. Productivity could be analyzed in torm of the oupply of water to the planta by expresenng dry mateor (DM in t/ha) as the amount of transpired water (W in mm) and the anount Of dry matter produced per unit of water extracted (q in g / kg). Which 13 etrongly dependent on saturation doflett of the air (Sd in kPa) (Stpure et al.. 1987). This is expressed as Eq. 5

$$
\begin{equation*}
D M=\frac{W^{*}\left(q^{*} S d\right)}{S d}=W^{*} q \tag{5}
\end{equation*}
$$

where (q*Sd) is a conservative quantity with a characteristic value for each crop species. In optimum weather conditions, which favour good yields, the emergence of the male flowers (tassels) at the top of the maize plant colncides with the'appearance of the silks (female flowers) borme near the middle of the plant. If. however. a shortage of water
occurs in the two weeks before and after flowering. there is poor pollination which results in low yields, even if subsequent rains are adequate. During drought, the tassels compete against the silks for avallable carbohydrates. This means that by the time the silks are ready for pollination, the pollen grains from tassels have come and gone and no fertilization has taken place, hence low crop yields results (e.g. Shaw. 1977: Lomas and Lewin, 1977: Harder et al.. 1982). In dryland maize farming this is the principal cause of low yields during a cropping season where showers are separated by long dry spells.

Water stress at a critical phase may result in total crop failure. Inducing water stress at either silking or tassellina could have severe effect on yields. Water stress occurring at any stage of the plant development could have comparatively less effect than that at tasseling-silking stages (Shaw, 1977: Harder et al.. 1982). Tasseling and silking stages are also cratical for fertilizer application (top dressing) to minimize yield reduction.

Vertical root distribution for maize has been observed to be highest near the soil surface and decreasing exponentially with depth (e.g.Mugah. 1983. Nicoullaud et al.. 1994). Mugah (1983) reported high root length density for Katumani maize to occur at 30 cm depth and sharply decreasing beyond 60 cm . with the lower densities at lower depths observed in drier soils. Comparing maize root distributions in four different soils. Nicoullaud et al. (1994) observed that the exponential vertical pattern was valid only for vertisols. with the maximum in the $10-30 \mathrm{~cm}$ layer. The other three soils tarenosols. luvisols and planosols) presented non-monotonic root distribution. In arenosols the maize roots concentrated entirely in the surface layer.

Dhyani et al. (1990) investigated the root distribution of five tree species (i.e. Bauhinia purpurea. Grewia optiva. Eucalyptus tereticornis. Leucaena leucocephala and Ougenia oojeinensis). They observed that the bulk of their roots were concentrated in the soil layer $90-120 \mathrm{~cm}$. Thas would make them good companions with maize which has most roots in the soil layer 0-50 cm (Umaya. 1991). Umaya (1991) working on a well drained. dark, brown. reddish-brown sandy clay luvisol observed that the top 0-10 cm soil layer was occupied by maize roots. There was an overlap in alley cropping of maize and Cassia siamea roots at depths of $20-30 \mathrm{~cm}$ and $40-50 \mathrm{~cm}$ which led to competition for soil factors and depressed maize yields.
2.3.1 (d) Effect of surface cover and tillage mode with respect to soil moisture

(i) Role of mulches in crop growth

Direct evaporation from the soil constitutes a pathway of water loss which is wasteful. since it does not contribute to crop production. In growing crops, direct evaporation from the exposed soll surface. E. accounts for a substantial part of evapotranspiration. ET. It has been estimated that in a widely spaced row crop such as maize. if the soil is wetted frequently, by rain lor irrigation). E may be as hagh as 50% of ET. even when the canopy is fully developed (Tanner et al. 1960). Obviously, reduction of this loss by surface mulch 13 necessary since this will increase the storage of plant available water in the root zone and cause a greater portion of $E T$ to be used by transpiration. Dry matter production is a linear function of transpiration by the crop. Direct evaporation from the soil induces upward movement of soil water.

This reduces soil water storage and also may deposit salts within the root zone thereby contributing to salinization of the soll.

Mulches applied extraneously at the soil surface reduce evaporation and soil salinization. Mulch $1 s$ for tropical conditiors best broadly defined as any shallow layer that appears at the sollair interface with properties that differ from the oraginal soll surface layer (e.g. Stigter. 1994a). Soil covers like dead and live mulches (including crop residues or standing stubble) influence the microclimate of a plants' environment. These covers affect the water. nutrient and. indirectly. CO_{2} intake by Dlants the latter due to differences in stemal epening because of soll morerure atatuel, esprecialily under semi-arid conditions, and hence their growth and development rates. In dry land farming. Where soll water is limiting and its effects dependent on weather, soil fertility. soil physical conditions. type of cultivars as well as population and geometry of planting. application of mulches will influence crop productivity (e.a. Stewart. 1982b: thuxley. et al. 1987).

A wide range of organic and inorganic mulches has been studied over the years with respect to their influences on soil moisture conservation, soil fertility improvement. soil temperature fluctuations. etc.. that result in increased crop yields co.g. van Wijk et al.. 1959, Lavies. 1975: Bohn et al.. 1979: Ross et al.. 1985a; Stigter. 1987: Brietow, 1988: Budelman. 1988: 1989: Liniger. 1991). Incorporation of mulches (which is another form of mulching) into the soil increases their soil fertility improvement effects, by faster decomposition. but appreciably reduces their evaporation reduction and temperature effecte unless the top layer remains dry (e.g. Munơai. 1991).

Generally. mulches may provide a range of benefits to semi-aric cropping systems such as:
(i) maintenance and conservation of soil moisture to reduce water stress in crops. Some mulches reduce runoff. Mulches can alter the root moisture budget of the plant:
(ii) maintenance or reduction of the soll bulk density, that
is. improvement of soil structure. Mulches therefore enhance infiltration and storag̣e capacity. as it acts as a sponge. and changes the pattern of leaching and erosion:
(iii) maintenance and improvement of soil nutrient contents Ichemical properties) of the soil. Mulches provide a suitable environment for microbial decomposition:
(iv) moderation of soil temperature by reducing extreme temperature fluctuations. that is. reducing the amplitude of the daily temperature wave and lowering or raising the average ordginal soil temperature. debending on the enerog balance. Mulches for example help alter the heat budget of the plant root zone to exclude heat stress:
(v) related reduction of radiation, heat and mossture exchanges between the original surface and the sky and atmosphere through shading. reduced conduction. convection and turbulence. Here mulches help to keep the soll elther cool or warm depending on the amount and type of mulches applied and the prevailing microclimatic conditions again depending on the energy balance,
(Vi) protecting the soil from mechanical impacts of rain. hail
and wind: and
(vij) control of weed growth (by shading and mecharical suppression).

We notice here that the cardinal benefits of surface mulching in semi-arid areas are conservation of soil water (reduction of evaporation and runoff) and lowering of average soll temperatures. These aspects are particularly important in the early stages of crop growth when drouatit may cause death of the seedlings. excessive high temperatures may cause low emergence rates. stunted shoot and insufficient root development (Harrison-Murray and Lal. 1979: Abrecht and Bristow. 1900). The main effect of mulch incorporation is increased soil fertility le.g. Murdai. 1991).

On the other hand mulches have been reported to encourage attacks by certain pests and diseases. Pests such as birds, rodents, termites and nematodes have been known to live and hide in the trash and eat away the crop. thus reducing the crop yield in mulched fields (e.g. Lavies. 1975. Budelman. 1988: 1989).

Abrecht and Bristow (1990) observea. on clay Loam 10x1C Paleustaff) at Katherine Research station in Australia. that plant residue mulch increased shoot growth rate betore and after emergence of malze seedlings. The surface mulch also ancreased the length of the first internode. thereby partitioning the apical meristem of the plant at a shallower depth in the mulched soil.

(ij) Influence of mulching on soil moisture

By restraining water loss through evaporation. surface mulches (such as crop residues) improve water use efficiency (WUE) (i.e. weight of economic yields per unit of water applied). These mulches may reduce evaporation from the original soil surface by shadina. by increasing the
reflectance of the soil surface and by reducing the speed of the wind sc the convectional exchange at the soil surface (insulation effect). Sowe surface mulches are very effective in restraining runofi. thereby reducing erosion. increasing infiltration and conserving soll moisture. The decomposition rates of surface mulches determine the effect they have on mitigating soil temperatures and conserving soil monsture as well as their effect (be it somewhat limited) on soil fertility (Budelman. 1989). Slowly decaying mulches have eather low or hagt: initial impact on modifying soil temperature and conserving s011 moisture, but their effects last longer. Rapidly decaying mulches may have high or low initial impact but their effects are shorter in time (e.g. Othieno et al.. 1985: Stigter and Darnhofer. 1989: Budelman. 1989). If not renewed, slowly decaying mulches may be more beneficial for soil fertility increase. Vertical distribution of soll molsture within the soil could be influenced by different mulches. mulching rates. soil type. rainfall distribution and other climatic parameters (Papendick et al.. 1973).

Budelman (1988: 1989) observed that the leaf mulch of Fleminaia macrophylla applied at 5 t/ha dry matter (LM) restrained soil moisture loss. moderated soil temperature in the first 5 cm and retarded weed growth more than either Leucaena leucocephalla or Gliricidia sepium appljed at the same rate. The slowly decomposing mulches had longer lasting effect in conserving soil moisture. resulting in the highest yields (Budelman. 1988: 1989). The slow decomposing mulches allow enough time to retain soil molsture during dry periods unlake the fast decomposing ones which break down rapidly and have to be reapplied. To prevent soil erosion in young tea at Kericho. it was found that low
initial impact. Jow decay rate grass mulch was ideal as there was too much reduction of soil temperature by the high impact orrass mulches which affected tea root orowth in these highlands lothieno et al.. 1985).

Wilhelm et al. (1986) observed, on no-till soil. a linear response between maize orainistover yields and amount of maize (zea mays L.I residue applied on the surface. The results showed that each Moha-1 (tonne/ha) of residue removed resulted in about 0.10 Maha $^{-1}$ reduction in grain yield and about $0.30 \mathrm{Moha}^{-1}$ reduction in residue yield. The amount of water stored in the soil was closely associated wath the quantaty of residue applied the previous year. The soil temperature at 5 cm depth and total available water accounted for nearly the same amount of variation in yield as the quantity of residue. This was a vary interesting observation. These factors should therefore be considereci when evaluating response of crops to residue-management practices.

In related experiments on maize (zea mays L.). soybeans (Glycine max L.) and sorghum (sorohum bicolor L.). Doran et al. (1984) observed that complete removal of residue harvested resulted in average grain and biomass yields of malze (Zea mays L.) and soybeans (Giycine mäx L.) falling by 22 and 24% respectively below the plots where residues were not removed. As long as there was a residue mulch cover of 50% or more of the original cover. the yielde were not affected. Sorohum isorotium bicolor L.) yields were not at all affected by residue management manipulation. Yield reductions for maize and soybean resulted primarily from decreased soil water storage and excessive surface soli temperatures where residues were completely removed. Sorghum displays a tolerance to water deficit and hiah temperatures that maize can hardly
withstand (e.g. Konate. 1984: Norman et al. 1984). Sorahum 13 thererore suited to be orown in semi-arid areas. like Laikipıa distrıct.
(iii) Effect of mulching and tillage on soil physical

characteristics

Skidmore et al. (1986) have demonstrated that management of sorghum (Sorohum bicolor L.) and winter wheat (Trıticum aestivum L.) residues. to influence soil physical properties by residue burning. residue baling and hauling. Incorporation of once and twice the amounts produced from the plots. reduced erosion and increased yields but had no effect on the soil under the wheat crop. However. the effects of these managements differed between crops. The methods of residue management to lmprove the soils had been more effective under sorohum than urder winter wheat. The soil aggregates under sorohum were smaller. more fradile, less dense, less stable when dry and more stable when wet than the soll under winter wheat. The size distribution of the Ap horizori (ploughed surface soil) under sorahum plots was more conducive to infiltration than under the winter wheat.

In addition to soil moisture conservation and sold temperature moderation some mulches influence soil rigidjty, prevent massive cracking (especially in vertisols) and induce friability (Quashu and Evane. 1967: Liniger. 1991). Lass compaction has been ubserved towards the end of a crop growing season under a special slow decomposina mulch than under bare soil (Liptay and Tiessen. 1970). Soil compactaor: influences root growth and crop yields (Gerald et a1.. 1982. Harrison. 1987). A combination of mulching and minimum tillage. however. chandes the structure of the soll through lowering the bulk density and
prevention of crusting in clayey soils.
Papendick et al. (1973) observed that applying mulches just before the main rains resulted in hioher maize yields since mulches provided maximum soll protection adainst erosion. compaction ard soli water loss through evaporation. Mulches applied at the onset of the rains delays development of strong surface seals by limiting rain impact on the soil le.g. Papendick et al.. 1973. Bristow and Abrecht. 198: Abrecht and Bristow. 1990).

Under semi-arid conditions soil moisture could also be conservec through deep tillage. The deep tillage breaks the capillary connection to the surface and acts as a mulch in conserving soil water in lower layers (Wilken. 1972: Papendick et al.. 1973: Unger. 1987: Freebairr. 1992). Deep tillage conserves water under dry land conditions by providing maximum resistance to vapcur and liquid water 110 w and alsc maximum thermal insulation.

Deep tillage is very enerory intensive and exposes the bulk of the top soil (surface layer clods) to atmospheric evaporative forces (Tyler and Overton, 1982). In so doing the exposed surface clods dry out while the non-tilled layer remains relatively moist because of the clods mulch (e.g Wilken. 1972: Papendick et al.. 1973: Nicoullaud et al.. 1994). Deep tillage therefore provides maximum soil moisture conservation in the non-tilled layer. The amount of water lost as a result of tillage depends on the soil's moisture content. the amrount of soil disturbance (depth of tillag̣e) and atmospheric conditions.

On the other hand. no-tillage ivariously known as zero-taliace. slot plant. direct drilling or chemical tillage-tilling land whose vegetation cover has been killed chemically by sprayina) conserves more
soil water in the whole soil profile up to the surface. It could therefore conserve more water in semı-arid areas than tillage methods (deep and minimum tillage). At the latest meetang of the Camission for Agricultural Meteorology (Havana. Cuba). the Commission encouraged its members to continue to provide agro-meteorological input to the development of multiple cropping systems. The Commission further supported the development of the systems which conserved soll moisture and the adoption of zero-tillage procedures (WMO. 1995). This method allows live vegetation. stubble and crop residue to remain intact anc act as mulches. The live vegetation. nevertheless. has to be maintained at low height to minimize competition for light and solar radiation (Finch. 1988) as well as water and nutrients. Clean weeded plots remain worse at conserving soil moisture as opposed to mulched plots (Linager. 1991).

Prelminary results at Matanya showed that boch maize stalk and leaf residue mulch could restrain rainfall runoff to nil. although a low density of mulch (which covered only 60\% of surface) was applied. even though the former are light and are easily blow away by strond winds or Get readily eaten by termites. Infiltration rates were increased which enhanced soil water recharge resulting in hagher yields of maize/beans intercrops. The previous season crop residues provided the basie mulching materiais in addition to fallen leaves and deccimposed branches from Grevillea robusta trees (Liniger. 1991).

2.3.2 Strong winds

2.3.2 (a) Overview

Unplanned and uncontrolled land-use in the semi-arid areas e.g. overstocking. overorazing and over-cultivation of farms interferes with soil physical and chemical properties (e.g. Russell. 1961). These operations lay bare the top soil which then gets exposed to strong wards and strong radiational heating and volatilization of inorganic chemicals in the soil. Such soils are exposed to erosive winde which then reduce the survival. growth. yield and quallty of agricultural cmps.

Natural vegetation of Lajkipia district is very sparse and consists of scattered thorny trees. shrubs and orasses te.g. Jatzold and Schmidt. 1983). Explaitation of these nemz-arid areas by immjorant small-scale farmers for crod and livestock production and nabitation. after the exat of the whate highland settlers, the original ranch owners, necessitated growing of trees (together with annual crops) and live-fences to:
(i) indicate farm boundaries:
(ii) exclude intruders:
(iii) provide fuelwood:
(iv) provide building posts;
(v) provide fodder:
(vi) provide food (fruits): ard
(vi) provide protection from strono winds. irradiation and
rainfall (e.g. Flury, 1996: Liniger. 1991: Moges. 1991).
These trees and live-fences. therefore. conserve suls by restraining erosive winds as well as consequences from erratic torrential rains. They also conserve soll moisture in the upper horizons by reducing wind speeds. advective heat and direct solar heating by
shading of soil and crop le.g. Harrison. 1987: Stigter. 1988: Oteng i. 1994). The strong winds are troublesome since they shuffle for redistribute) applied mulches. making it impossible to retain mulch cover on the soil surface for a reasonably long time for effective sorl moisture conservation (Liniger, 1991).

Hazards caused by strong winds to aoricultural operations in Laikipia district could be ranked second only to that caused by higti rainfall variability (Berger. 1989). Strong winds come as a result of:
(i) relatively strond seasonal winds blowing from a particular direction, say, S.E. (see Fig. A7);
(ii) vortices of discrete rotational winds e.g. gusts. dustdevils, etc.

These two systems of air movement contribute to primary and secondary damages of soil and plants. Most important is the occurrence of strong winds in relation to the growing periods.

In Laikipia district. including Matanya. the haghest wind speede normally occur towards the end of the long rains orowing season. juneSeptember and may start earlier than usual in some years. resulting in desiccating effects on crops at earlier orowth stages. The high speeds are due to the S.E. trade winds which occur from June to September. that get channelled (or funnelled) between the Aberdares Mts. and Mt. Kenya (e.g. Griffiths. 1972: WMO. 1981: Berger. 1989: Liniger. 1991). These channelled winds affect Matanya as they blow from between south east ana south west directions during this period. These winds interact with the mountain-valley circulation between the two mountain systems to preduce diurnally varying winds of considerable strength and persistence land sometimes varying direction) (MacHattie and Schnelle. 1974).

2.3.2 (b) Role of winds in soil degradation

Wind is a great destroyer of the top soil as weil as an agent of deposition and soil formation. It sorts the soil by removing the finer and loghter constituents, leaving behind the coarser and denser ones. These are transported according to their sizes from the smallest to the largest. This size selective process is the mair similarity between wand and water erosion because water erosion also takes place in a sizeselective manner (e.g. WMO. 1983: WMO. 1989: McTaish et al.. 1992). This sorting mechanism has transformed some fertile solls into sandy wastelands. In removing, the wind carries and scatters the top soil hundreds of kilometers. In depositing, it forms various forms of aecliar materials representing extensive areas of loess soils. In mixing. it carries the soil across the land, creating surprising uniformity of minerals in the soils (WMO. 1983. 1985 \& 1989 and thou. et al. 1992).

Soil eromion is due to the interplay of three maln factors: the slope and structure of the soil: the erosive power of wind and rain: and (intervening between the previous two) the amounr of protective veqetation cover (Harrison. 1987). Particularly loose. dry and firely granulated soil $1 s$ vulnerabie to wind erosion. Soil surfaces that are smooth. with sparse or no vegetation cover over a sufficiently large area highly susceptible to wind erosion 1e.g. Harrison. 1987: Lyles. 1988).

Loss of top soll through wind erosion reduces lts nutritive value and affects its hydraulic properties (e.g. soil texture and structure and hence its water holding capacity). When wind blows off the top so1s surface. it auments loss of soil moisture by evaporation from the soil surface. Low proportions of clay and organic matter give rise to great
vulnerability to wind's sifting. Even wind speeds of 2-4 $0 / 5$ are capaide of taking away particles and fine dust (loam and clays) on which the soll structure depends resulting in textural impoverisnment. The erosive winds physically remove from the field the most fertile portaon of trie bare. loose and finely granulated soil (Lyles. 1988). Complete loss of the upper horizons (that contain organic matter) exposes lower horizors to runoff. thus substituting wind erosion by water erosion.

Cuantitative evaluation of monthly wind erosion could be estimated from the index of Chepil and Woodruff (1963) given in Eq. 6 below

where C is the wind agogressivity or erosivity.
$P E=(P-E I P)$ for P)EIP is the efficiency of precapitation lor minamad remaining soil moisture without runoff correction).
P is monthly precipitation (mm).
EIP is the monthly potential evaporation (m).
U is monthly average wind speed in m / s.
The wind agqressivity. C. is inversely proportional to the minimal remaining soll molsture. PE for P, EIP. The erciability $1 s$ at ats mexamum in dry moide, wion may be taken as thoae contaznano beep than thard of the wilting point soil moisture lCheps1 and Woodruff. 19031. It drops ofl with increasing molsture content to the wilting point. Beyond that it remains unchanged.

Wind erosion may be controlled by reducind forces at the soll surface or by creating surface conditions more resistant to wind forces.

Wind erosion could be controlled:
(i) by reducing field widths (by strip cropping. by
establishing barriers, by establishing and maintaining vegetation or vegetative residues, stubble residues. etc.l to protect the soil:
(1i) by producang or brinaina to the surface stable adareates or clods large enough to resist the wind force: and
(iii) by roughening the soil surface to reduce wind velocity and trapping drifting soil (e.a. Tibke. 1988: Chepil and Woodrutf. 1963).

This reduces soil 'avalanching'. which is the soll flown with tris distance downind. The AF methods of wind protection and soll management control include sinale and multiple shelterbelts. windbreaks. as weil as scattered trees. sometimes combined with crop strips on the upstrean (Tibke. 1988). Wind erosion control is necessary in areas with low and variable rainfall. high winds, high temperatures, high evaporation and nence frequent droughts. Paez and Rodriguez (1992) compared conservation requirements for swall-scale farms with eificiency of land-use. including management systems and conservation practices. They found that the best conservation alternative for cropping systems was minumur tillage with contour planting and support of veretative barriers. The effect of minimum tillage alone as a protective measure against strona winds is debatable as it is acainst the general rule mentionea above. unleme clod atructure romains.
2.3.2 (c) The effect of wind on plants (crops and trees)

In the semi-arid areas strong and ousty winds may cause primarn damages such as deformation or blow down of trees and lodging of theid
crops. Wind also controls the direction of fires (an forest and orassland areas). pollen. seeds. spores and insects (Machattie and Schnelle. 1974). Fires. pests (mainly insects) and diseases may therefore cause secondary plant and tree injuries caused by winds.

The primary effects result in direct mechanical damages to plants and trees. Such damages may affect whole plants and/or parts of plants and trees. Those that affect whole plants include: swaying. shaking. uprooting, bending and lodging. Those that affect plant and tree parts include: premature shedding of fruits. flowers and pollen. branch andi petiole breakages, bruises. lesions and abrasions due to mechanicas stress caused by asymmetrical air oressure acting on plants le.a. Grace. 1977: 1988: Stigter. 1985b: Stigter, 1988: Sturrock. 1988: Karnkwa. 1991: KaınKwa and Stıater, 1994).

Damages due to secondary effects include: rubbing of leaves by soll or other leaves, or scouring by carried particles (1.e. objects and particles carried by wind causing) damage to plants. as in saltation ano creep transport of soil particles by wind le.g. Harrison. 1987: Grace. 1977: 1985: 1988: kainkwa. 1991). There are other secondary injury effects of wind such as stress in plant-water relations, for anstance by evaporation stress and/or soil moisture depletion. and stresses in mineral nutrition due to blown off top soil. in metabslism due to extermal offects and in photosynthesis when carbon dioxide is limitina due to external effecte (e.g. Grace, 1977: Oke. 1987). Uthers inctupe cold air drainage or not air stresses resulting in very low or very high temperatures respectively.

For inetance, velley and mountain winde desconding ircm hsen altitudes into an enclosed valley where both horizontal and vertical mixing are poor and hence resulting in very low temperatures at niant
and frost damage le.g. Hesketh. 1972: MacHattie and Schnelle. 1974: Oke. 1987).

Strong winds deplete leaf and soil moisture. thus causing moisture stress to plants and reduced plant growth and development. Strong hot wind decreases leaf and field boundary layers resulting in temperature gradients where the leaves nave only slightly lower temperatures thar the hot air. or sometimes even higher, due to closed stomates. when the increase in the energy flow towards the leaves ancluding radiation is much more than that used for evaporation.

Wind collects and carries such agents of plant dawage as salt. pathogens and insects. Desert locust iSchistocerca oregaria Forsk in the family of (yrtacanthacris) and army worm damaqes are reqular. particularly in the ASAL areas of East Africa. where they are blown $2 n$ from breeding places in the Sahelian region (Symmons. 1989). These pests may wipe out large areas of planted land within hours.

A knowledge of the ventilation of leaves at different canodv levels is essential in the calculation of photosynthesis and exchanare processes in individual leaves. Declining photosynthetic and translocational activities are due to reduced carbon dioxide availability to leaves damaged by wind, resulting in retarded dry matter accumulation and reduced yield 1e.g. Allen et al.. 1976: Grace. 19771. Light winde cauee high carbon dicxide concentration available for photosynthesis in plants.

2.3.2 (d) The role of windbreaks in protection against winds

Agroforestry trees. live-fence shrubs and tall orasses in a semlarid environment protect soil and crops against erosive winds. by
breaking the force of wind, and act against strond advective heat ie.a. Hesketh. 1972: McNaug̣hton. 1988). A live-fence planted around AF plote protects the crops depending on the height and porosity of the tence. the strength of the approaching winds. and the angle of approach of the wind to the side facing it (e.g.Van Eimern et al., 1364: Grace. 1977: Finch. 1988). The effect of the live-fence is greatest when the windwarcl side meets the approaching wind perpendicularly. The protected zone dwindles when the angle of incidence decreases le.g. Van Eimern et al.. 1964: Grace. 1977). Even if the wind approaches a barrier at rioht angles. it will "cut-in" around the edges. thus reducing the area effectively protected. The sheltered reaion (or quiet zonel may extend to about $10 \mathrm{XH}(1 . e . \mathrm{H}=$ shelter height) behind a long windbreak 2 r near-neutral conditions with the wind perpendicular to the barrier le.a. Grace. 1977: Heisler and Dewalle. 1988: McNaựton. 1988: Stioter et a1.. 1989: Onyewotu et al.. 1994).

The protected zone associated with wind breaks is directly proportional to the height of the windbreak. The number of windbrear:s that is required to provide protection for a given field $i s$ directly related to the average of the tallest trees or shrubs in the windbreak. Generally. the tallest and best-adapted species for a given site should be selected to minimize the number of the windbreaks required. The windbreak height should be at best two to three times the heaght of the crop to extend the protected or the qulet zone le.a. Van Elmern et al.. 1964: Finch. 1988). The protected zone 18 swaller 3 ir unstable conditions.

It is necessary to desion, for semi-arid areas. winclbreaks of several tree and shrub species with different shapes to include tree
species that improve the soil. such as Acacia sdo. Prosodis cinerarla. Azadirachta indica le.g. Connor. 1983: Rachie. 1983: Burley. 1985: Young. 1989).

Live-fences (hedges) of varıous densities differ in the decree of turbulerice land kind of eddres) they create in the flow on the leeward (cropland). The eddies increase with the density of the barriers. Windbreaks present an obstacle to the wind that deflects it upwards and compresses the streamlines of the flow over the top. This increases wird speeds over the top and eddies on the leeward side behind the quiet zone (e.g. Finch, 1988: McNaughton. 1988).

The protective (or shelter) effect. E. also known as effectiveness index (e.g. Konstantinov. 1966: Heisler and Dewalle. 1988) of a livefence windbreak can be estimated from Eq. 7. with $u(x)$ and $u(x)$ as wird speeds at any point in the protected zone and in the open respectively (e.g. Van Eimern et al. 1964: Kaınkwa. 1991: Kaınkwa and Stıöter. 1994)

$$
\begin{equation*}
E=1-u(x) / u(r)=1-R \tag{7}
\end{equation*}
$$

The last term in Eq. 7 is the relative mean wind speed. $\bar{k}=$ $u(x) / u(r)$, variously called wind ratio or horizontal averace wind speed ratio or wind speed deficit or wind speed reduction ratio (Chepil and Woodruff. 1963: Van Eimern et. al.. 1964: Chepil. 1965: Kainkwa. 19911.

In natural environments airflow 13 hardly constant and hardly unidirectional. Temporal wind variability could be estimated from standard deviation (sd) or coefficients of variation (CV) to bring out the anomalies in the wind protection brouaht about as a result of its
structure in the open. Kainiswa (1991) worked out the anomalles in wind reduction ratio using normalized standard deviation (Fisd) (or normāilzed coefficients of variation (RcV)) as expressed in Eqs. 8 and 9.

$$
\begin{equation*}
R s d=\frac{s d(x)-s d(x)}{R} \tag{8}
\end{equation*}
$$

or

$$
\begin{equation*}
R C v=\frac{C v(x)-C V(r)}{R} \tag{9}
\end{equation*}
$$

where $s d(x)$ and $s d(r)$, and $c v(x)$ and $c v(r)$ respectively are standard deviations and coefficients of variation at the distances x and $r . R$ is the wind reduction ratio already defined. The important aerodvnamic features of flow around obstacles include: inclination of flow, roils and separation of flow and formation of roll eddies upstream and downstream of barriers (e.g.jloyne. 1955: WMO. 1981: Oke. 1987). Gloyne (1955) obeerved what are now commoniy known as the wind structures related to obstacles. that is:
(1) the area of increased turbulence behind a shelterbelt moves closer to the belt the denser it is (e.q. Van Eimern et al.. 1964: 1968: McNauahton. 1988):
(ii) behind dense shelterbelts the vertical distribution of wind speed up to the belt height (H) above the ground varies much more than behind porous belts. In the much smaller quiet zone the wind speeds vary much more with height but in the turbulent "wake zone" much less:
(iji) the wind speed on the jeeward of the hedge facing the wind is largely affected by the pornsity of the hedge to
airflow (e.g. Hessler and Dewalle. 1988): and
(iv) the range of wind reduction increases with increasina surface roughness and increasing air stability.

Farms fenced with rectanoular hedges are more protected aqainst strong multidirectional winds (Van Eimern et al.. 1964: Rocheleau et al. 1988: Kainkwa. 1991). Much of the early knowledge on properties of wind structure with respect to shelterbelts and windbreaks was summarized by Van Eimern et al. (1964). The reduced wind speed on the cropland (as a result of hedges with sufficient density) decreases evapotranspiration (both potential and actual) depending on the radiation enerory received by the leaves (e.g. Grace, 1985: 1988).

Grace (1988) contends that high cold and humid winds olowing over brightly irradiated leaves may even cause a decline in transpiration rates and hence in evaporation. He further states that differences between leaf and air temperatures may decrease which would cause reduction in the difference between mesophyll saturated and air vadour pressures (the draving gradient). Thus an increase in wind speed has two effects: the decline of aerodynamic resistance which tends to increase transpiration): and. the decline in driving gradient (which tends to decrease transpiration). However. increased turbulence behind too dense hedges causes increased evapotranspiration in the "wake" zone beyond abcut 10 X H.

Because turbulent eddies may form in an alr stream when rather dense barriers are encountered. benefit to easily bruised crops (such as citris fruits. bananas etc.l expected from the reduction in wind soeeds caused by such barriers can be cancelled out by the damage caused bv oddies beyond the quiet area (e.g. Acland. 1971: McNauarhton. 1988:

Rocheleau et al.. 1988).
The most tangible shelter benefit is to enhance crop yield by the shelter around the cropland, reducing (all the) negative effects (e.g. Acland. 1971: Davis and Norman. 1988; Grace. 1988). Shelter confers some physiological advantages on plants because sheltered plants may yield more than non-sheltered plants under similar non-limiting soll moisture conditions. It was observed in Uganda that planting bananas in blocks surrounded by a hedge of another banana variety. called kisubi. provided protection against strong winds (Acland. 1971).

Barriers may be classified into
(i) open barriers (density. $d<40 \%$).
(ii) medium dense barriers (40\% < d < 80\%).
(iii) dense barriers (d > 80\%) (Oke. 1987).

Average medium dense barriers (density of about 60\%) are long known to give the best results against physical damage (e.g. Van Eimern et al.. 1964). It allow air to filter through. thus avoiding complete stagnation and producing a minimum speed equal to on average of about 20\% of its speed in the open (Gloyne. 1955: Oke. 1987). For fiothtina heat advection a denser barrier should be selected. In summary: a rectanoular barrier (or hedofel enclosing a crop and AF trees affects:
(i) air and soll temperatures:
(ii) balance and exchange of heat by forced and free convection and by radiation:
(iii) evaporation before crop emeraence. so moisture content of the air: (iv) water loss from both ssil and plants (through evapotranspiration after crop emergence):
(v) erosion transport and deposition of small particles generally soil. insects. spores. bacteria and pollution (e.g. WMO. 1985: Finch. 1988: Heisler and Dewalle. 1988: Tibke. 1988: Kalnikwa. 1991).

Factors influencing selection of trees and shrub species for windbreak plantings include: species adaptabilaty; solls: climate: hardiness: wind firmness: reauired density: required heiaht: passible crown spread: competitiveness: compatibjlity with adjacent crops and pest problems (e.g. Cunningham. 1988).

Factors influencing wind reduction by protective hedaes ariclude:
(i) porosity.
(ii) shape and width of the hedge.
(iii) roughness of the ground.
(iv) thermal stratification of the air. and
(v) height above the ground (e.g Nagaeli. 1953: Glowne. 1955: Lawrence. 1955: Van Eımern et al.. 1964: Kainkwa. 1991).

The ground roughness in a large area in front of the hedge to a oreat extent determines the vertical increase in wind speed near the ground. Laroge gaps and small gaps in live-fences can act as nozzles when their sizes are about the height of the hedge. At the channels provided by these gaps. the wind speeds can even be higher than that in the open (Naegeli. 1953: Van Eimern et a1. 1964). Naedell (1953) found an increase in wind speeds in the channel of up to 120% over that in the open beginning at $5 \times \mathrm{H}$ on the wind ward side and continued to be noticed on the leeward side at 14 to $18 \times \mathrm{Hin}$ the relatively large sluices (regulatory gaps).

2.3.3 Solar radiation

2.3.3 (a) Overview

Interactions between the tree comprent la relative stable comprnent. althouah winds have a large influence) and solar gecmetry produce the solar climate of a treeicrop sygtem. These interactions and their effects include:
(i) interception of radiation by the tree gtands of various densities (stem dersities. brarich densities and leaf area indıces ard armle (lasses):
(ij) tree age:
(iii) canopy stiuctures:
(1v) rows and alley-ways orjentation and tree spacirị:
(v) latitude and time of fay and year (i.e. solar altitude and azimuth): (vi) spertial quality of sunlight under partia! shade le.a Jact:son. 1983: 198Gb: Jacksen amd Falmer. 1989: Reifsnyder. 1989: Otena' i. 1904: Otend'i et al.. 1995).

The tree canopies shade soil and crops. reduce evapsration from crops and soil. and lower scill and alr temperatures. [mpending on crop and tree components. the econcmic yields are influenced by radiation response of different crop scecies. types of yields le.g. biomass ol seeds), and the tree-crop comatibility (Hazra. 1085). The effect of shade could be divjded into asperts of protection (Dositive interaction) and of competition ineaative interact1on) (Stioter. 1904).

Shading āe maragement and manipulation of solar radiatich has a wide rande of diverse intentional effects le.a. Stiater. 1984a: 1984b). These inclurde decteasing evaporation as well as matchino arowth almul d available nutrients. preventing sericus watel and nutrient stresses. decreasina plarit. arimal or sojl temmoldates in dav-time and ancreasuna
these temperatures at night, protecting crops against rain. hail and wind impacts. decreasing airflow. influencing water vapour-. heat- and CO_{2}-transport from or to the surface and reducing weed growth and preventing sunscorch. Some of these effects may be unintentional consequences of management and manipulation options. such as chances of temperature and humidity away from optimums or towards conditions that increase vulnerability for diseases.

The traditionally used shading materials can be classified into two broad categories: (i) natural and (ii) artificial shades (e.g. Stioter. 1984a: 1984b). Artificial shading materjals can further be classified into organic and inorganic shades. Natural shading materials used traditionally in Tanzania and many other African countries le.g. Acland. 1971: Stigter. 1984a: 1984b) include: trees, high crops (intercropping and multi-storey gardens). shrubs or plants. creeping plants. leaves and standing stubble. Artificial shading marerials include materials collected by a farmer and spread over part or all of the soil surface. These include: stems. branches and twigs. large leaves. orasses, left overs from weeding. pruning or harvestirg. saw dust and wood shavings. decomposed materials and manure from aung. Roofing provided by large broad leaves stuck. in the oround and bent over seedlings and roofs raised on poles, a framework or cage covered with cloth. lattice, orass branches are also used to shade crops. The roottype shades are more advantageous in cases where drying is impertant than mulch-type shades because they allow for free flow of air passing the crops while the latter creates a layer in which air $1 s$ largely stamant or moves slowly by convection.

In microclimate management and manipulation of shade the interest 13 the modification of the enerory balance at the soil suraice. a crop
canopy. a mursery surface or individual plant organs like leaves. stems. flowers or fruits (Stigter. 1984b). Solar radiation 13 the driving force of the enerory balance. Shading 3 mplles reflection and absorption of excess solar radiation. transmitting only the requirements of soil. seedling. plant or crop. This transmitted radiation $1 s$ used for photosynthesis. heatind and evaporation (including drying).

These properties of shade in a tree/crop system have a wide range of $A F$ application and can be exploited for beneficial use by man in $A F$ systems to protect crops from extremes of radiational load (Acland. 1971). improve water use efficiency and exclude weeds from the tree/croo intercrop (e.g. Jama et al.. 1991: Budelman. 1988).

In East Africa. Jama et al. (1991) obtained up to 90% reduction in weed biomass under Leucaena leucocephala alley cropoino in allevs of width 2, 4 and 8 m in Mtwapa. Kenya. This resulted in an increase of 24 to 76\% in maize yields in the alleys compared to crop-only. nonagroforestry (NAF) controls. The 2 m alleys had the highest weed reduction. as it closed its canopy earliest thereby limitina liant interception by the weed component.

It was also found out in East Africa that in the absence of nitrogenous fertilizers, shade increased tea yields by cuttind-out some PAR to match the limited nutrient supply. This was reversed at heavy fertilizer supply of $135 \mathrm{~kg} / \mathrm{ha}$ ratem as shade reduced the yzeld by $10-$ 25\% (Acland. 1971). This resulted in Kenya into excludina shade frem tea completely for quality tea which deperds on fertilizer supply. However. more recent interpretations of older data revealed that mild shadino would be beneficial also to fertilized tea due to a compensatory assimilation mechanism from which the tea leaves to be narvested benefit
(Othieno and Stigter. personal comm.). Banana plants and scattered forest trees have been used to protect coffee in most parts of Tanzania and Uganda (Acland. 1971). However. it was found that bananas somewhat reduced coffee yields because of a negative interaction with coffee which resulted from reduced photosynthetically active radiation (PAR). The reduction in PAR resulted in reduced production of flower buds.

In West Africa. Lawson and Kano (1990) usina maize and cowpea grown in alleys of Leucaena leucocephala, Gliricidia sepium. Alchornea cordifolia and Acica barteu on an eroded Egbeda soil serıes loxic paleustaff observed decreased yields of maize and cowpea per ha. crown in sequential cropping. wher the total dry matter of pruning from shrubs increased under decreasing hedgerow separation. (Palaniappan (1985) defines "sequential cropping" as "The growing of two or more crops in a sequence on the same field in a farming year. in wich the succesding crop is planted after the preceding one has been harvested"). The shading from Leucaena spp. was more pronounced. Acloa spp.. the least prolific, had the highest waize yield. This clearly demonstrated the extent of interference between pairs of components in this system with respect to light interception. In order to modify radiation microciamate Lawson and Kang (1990) suggested that the between hedgerows space in Leucaena spp. be increased to reduce the effect of shading and the resultant depressing effect on yields through reduction of cropi tree interface per cropped area.

In India. Hazra (1985) working on red loamy sand (alfiscls) at the research farm of the Indian Grassland and Fodder Fesearch institute using four forage winter crope: barloy (Hordeum nloares L.). cats (Avena sativa L.). Chinese cabbag̣e (Erassica campestris L.) and
safflower (Carthamus tinctorius i.) in association with individual agroforestry tree species components of Albizzia lebek. Acacia tortilis and Leucaena leucocephala found hiohest total bi'smass yields (relative to yields in openl in the four crops in Albizeia spp. and lowest in Leucaena spp. The forage yields (average of all crops) matched the amount of radiation intercepted by the understorey crop. The yjelds from the seeds were highest in Leucaena spp. suggesting more dry matter partitioning into the seeds at low radiation levels.

2.3.3 (b) Dry matter production and solar radiation

When water $1 s$ not limiting. the total dry matter producec by vegetation is linearly related to intercepted solar radiation. in the photosynthetically active (PAR) range (0.4-0.7 um). and the duratzon of its growth in accordance with Eq. 10 (Allen et d.. 1976: Und. 1989).

$$
\begin{equation*}
D M=S * f * \theta * \sum d t \tag{10}
\end{equation*}
$$

where DM is the total dry matter produced by the vegetation (t / ha):
S is the total radiation (mean of daily totals) ($\mathrm{MJ} / \mathrm{m}^{2}$):
f is the fraction of mean dally insolation intercepted by the canopy:

- is the amount of dry matter formed per unit of radiation intercepted (conversion coefficient) ($(\underline{M} / \mathrm{MJ})$:

2dt is the duration of crop growth in days:

The value of S varies from 12 to $30 \mathrm{MJ} / \mathrm{m}^{2}$ in the tropics. The leat area of the vegetation determines f at any time and f can be related to the leaf area index by an extinction coefficient that depends only on the orientation and distribution of foliage.

More temporal sharing of light has been reported in intercropping systems when each component makes its demand at different times of the orrowing period to improve light interception (Stigter and Baldy. 1994). As an example, it was shown that at ICRISAT each component of a groundnut/pigeonpea intercrop. where the intercrop plant density was the sum of the sole crop densities, intercepted 15% more PAR than did solecropped pigeonpea because the rapidly growing groundnut canopy intercepted a maximum of the mean dally PAR in 45 to 50 davs re.g. Willey et al.. 1986: Ona. 1989). The slower-chrowina pigeonpea took 90 to 100 days to intercept its maximum.

Biomass production in some intercropping systems also increases due to improvement of the amount of dry matter formed per unit of PAF intercepted, by a spatial sharing of solar radiation le.g. Willey et a1.. 1086: Ona. 1989). A combination of one of millet and three rows of oroundnut resulted in a 28% increase in biomass. larogely due to a 27% improvement in the dry matter formed per unit of PAR intercepted. As a management measure it was recommended to manipulate the macroclimate by allowing the tree canopy to intercept radiation during the early part of the growing season when the water supply is favarable but the crop is too open to intercept more than small eneray. Once the crop canopy becomes nearly closed. the trees should be pruned. This pruning of trie trees is done so that a fast orowing crop like millet can intercept most of the solar radiation during the rainy season. The tree is then allowed
to regrow after removal of millet during the dry season.
In the dry matter production model of Allen et al. (1970) (Eq. 10). solar radiation is the only environmental factor. If the proportion of PAR intercepted and the flux density of PAR on the crop are monitored over the period of crop orowth and the dry matter measured at harvest. the conversion efficiency of each crop could be determined. The remainder of experimental treatments and field management could then be interpreted in terms of their effect on e and f.

This analytical approach could help to determine production in natural ecosystems and aoricultural crops using solar radiation data alone. The interpretation comes from increased early interception of PAR. increased canopy duration and longer periads of photosyrithesis and/or increased efficiency of conversion of PAR to dry matter. These obvious interpretations also exist in evaluation of dry matter production by intercrops in acroforestry systems 1e.a. Jacksor. 1989b: Oke. 1987).

2.3.3 (c) Interception of phetosynthetically active radiation (PAR) by

 trees and cropsPAR is transmitted throuan leaves and between leaves. thus resulting in sun-fleck and shadow patches. PAR is therefore relativeiy less in the periphery of the sun-fleck and in the shade that fall on the understorey crop. This mode of transmission changes the spectral composition rapidly with depth in the canopy (Szeicz. 1974a: Delta-I Devices Ltd.. 1988). Its soectral quality $1 s$ modified. although very minimally in the sun-fleck areas. Radiation in the shade areas is strongly depleted of photosunthetically actave component (PAF). On the
average for the sun-fleck and shade areas the PAR content of the total solar radiation rapidly diminishes with depth (Szeicz et al.. 1964). The trees which form the taller component (or the upper storey) with haoher canopies in an agroforestry system reduce the PAR in the total solar radiation that falls on the lower canopy crop component le.g. Szeicz. 1974b. Monteith and Unsworth. 1990).

Mathematical solar radiation interception models for trees and crops have been developed by many workers over the years le.g. Szelcz et a1.. 1064: Szeicz. 1974a: 1974b: Monteith. 1977: Jackson. 1983: 1989b: Jackson and Palmer. 1989: Monteith and Unsworth. 1990: Ong. 1989).

Transmitted and modified light through a crop volume of one unit of leaf area thick and depletion through layers of such units is given by Beer's law (Monsi and Saeki. 1953) as in Eq. 11:

$$
\begin{equation*}
\frac{I}{I_{0}}=\exp \left(-k^{\prime} L\right) \tag{11}
\end{equation*}
$$

where I_{0} is the radiation arriving at the top of the canopy and I total irradiance at the depth considered. with L accumulated leaf area andex (LAI) above that level. L is meaoured LAI downards from the top of the canopy. For a small incremental leaf area 'dL' is used. If K 'maniA $1 s$ the shadow cast by a unit area of leaf (i.e. A is area of a horizontal leaf assumed to be perpendicular to the oun rays and An area of shadow). the product $\left(A_{n} / A\right) * \mathrm{dl}$ is the shadow area index. which $1 s$ the area of horizontal shadow per unit ground area. The parameter k ' $1 s$ known as extinction coefficient which depends on the leaf angle

83

distribution of the canopy elements and the zenith anale of the sun (e.g. Szeicz. 1974b. Monteith and Unsworth. 1990). This model 15 basea on Beer's exponential law of diminishing light as it passes through the atmosphere.

The fraction of radiation transmitted by unit leaf area without interception is called sunfleck parameter. S. and the secondary transmission through leaves is called leaf transmission. τ. Using these parameters the equation then becomes

$$
\begin{equation*}
\frac{I}{I_{0}}=(1-(1-\tau)(1-S))^{L} \tag{12}
\end{equation*}
$$

Eas. 11 and 12 use different assumptions with respect to the leat overlap. Hence, k^{\prime} and S are not simply related. However. for swall L . say $L=1$. $k=(1-T)(1-S)$ for large S or τ. For large L. say $L \geqslant 2$. and S and τ small. k^{\prime} and S very much differ le.g. Szeicz. 1974b: Monteath and Unsworth. 1990).

Jackson (1983: 1989b) and Jackson and Palmer (1989) have develcod. light interception models. based on Beer's exponential law. that could be used in $A F$ systems with any level of complexity. in shade resbonses of different crops, growing seasons and cropping patterns. to guide the direct planting of $A F$ trees and experımentation with planting systems in AF systems.

Allen et al. (1976). Jackson (1983: 1989b): Jackson and Palmer (1989) and Ong (1989) discuss the models developed. taking inte account complexities belonging to the acroforestry systems as far as bant
interception is concerned. In crop and yie.j improvement studies in agroforestry systems, examination was necessary of two versions of these models:
(1) based on Beer's Law 1e.̣. Jackson. 1983: 1989b and Jackson anc Palmer, 1989): and
(ij) multiplicative models (e.g. Allen et al.. 1976: Ong. 1989).
Light interception in discontinuous multistorey canopies. say crop and tree canopies. in agroforestry (AF) systems could be divided anto (i) the fraction of light that misses the tree canopies completely but gets intercepted by the crop canopy. and (ii) the fraction that passes through the tree canopy to reach the undercrop. as given in Eq. 13 le.g. Jackson. 1983: 1989b: Jackson and Palmer. 1989).

$$
\begin{equation*}
\Psi=\Psi_{f}+\Psi_{c}=\Psi_{f}+\left(1-\Psi_{f}\right) \bullet x p-k L^{\prime} \tag{13}
\end{equation*}
$$

where $\boldsymbol{\Psi}=$ total penetration of liont to the undercrop:
Ψ_{1} - light which misses the trees completely to reach the undercrop:
$\Psi_{c}=$ light which passes through the tree canopy:
$L^{\prime}=L\left(1-\Psi_{f}\right)$, the tree leaf area per unit of oround which it potentially shades. that is, the unit area enclosed by the outline of the projected cast shadows of trees in the direct light:
$k=$ extinction coefficient.
Eq. 13 could be reduced to give the fraction (F) intercepted by the tree canopies alone as $F=F_{\text {max }}-F_{\text {max }}{ }^{-+C L}$.

Spectral quality of the transmitted PAR changes when radiation passes through layers of leaves due to differential reflection ard absorption by leaves. These changes affect plant photomorpnogensc processes (e.g. Allen et al.. 1976: Monteath. 1977).

2.3.3 (d) Radiation interception by individual tall trees

The shadows of a system of tall trees intercropped with shorter crops in an agroforestry system sweep dajly across the field. depending or the sun's zenith angle, Of the 12 hrs of daylaght in Matanya for example, we estimated the Grevillea robusta crown shadows to sit on the AF plot for more than 50% of the time. taking into account trie plot orientation and the spacing between trees. At low sun for larder zenith angles) the shading from trees increases. The shadows extend in area as they become elongated. The shading effect of tree shadows aiso vary with the sun's seasonal declination (e.g. Monteith and Unsworth. 1990: Jackson and Palmer. 1989). The amount of direct solar radiation intercepted by trees. that is. When they are not shadina each other. could be evaluated as suggested by Monteith and Unsworth (1990).

Management and manipulation methods that minimize competition for light between crops and trees so that they put more effort anto producing seeds. fruits and biomass (leaves, stems. branches and roots) are the most ideal. That way more plants will reach their full vield capacity to increase productivity in an agroforestry system.

Grops normally avoid siades by elongating their stems. In doing so they utilize eneroy which would otherwise have gone to productaon of the economically important parts of the plant. The shade avoidance response is actually a response to the presence of far red light of which
wavelengths are too long to be visible to the human eyes. Wrien pianits grow closely together. this far red light is mostly reflected by them. Receptors in the plants which receive reflected far red light trioger. the production of phytochrome B which stimulates the plants to orow upwards (Smith. 1995). In cultivated crops competition simply leads to unproductive growth as the plants try to out-do each other ie.g. Fearcy et a1.. 1981: Pearcy. 1989: Tieszen. 1983). However. under natural conditions this competition is advantageous to the tall plants (Smith. 1995).

2.3.4 Soll temperature

2.3.4 (a) Overview

The rate of absorption of heat resulting from the solar radiation load to the soil surface and its transport to deeper lavers vary for different soils (under identical weather conditions) depending on their composition (1.0. a1r, water, eolid mateer and abedol. The gecmery of the surface cover indeed also affects the rate of heat absorption and this ancludes the method of tillage.

Tillage results in soil lumps (clads) of different eizes coverino deeper contimous soil layers. Tillage alters the thermal properties of the soil by increasing the air content of the upper layer. which generally decreases thermal conductivity . λ. more than therwal capacity. C. and therefore thermal diffusivity. λ / C. The soil surface broken by tillage also acts as mulch on the underlying non-tilled continuous layer and diminishes communication of this layer with what happens above it (see section 2.3.1c). The clods act as a better insulating layer than the originally undisturbed soil surface layer by reaucing the amount of
heat that enters the underlying soil layers. The damping depth (D) isrelated to the thermal constants of the soll. λ and C. via E0. 14 icwill be explained later):

$$
\begin{equation*}
D=[2 \lambda / C \omega]^{1 / 2} \tag{14}
\end{equation*}
$$

It follows from the above that tilled soil gets a smaller. D. which is the depth at which the amplatude of the diumal temperature wave reduces to e^{-1} of its values at the surface. than the underlyina more compact soil (van Wijk. 1965). We will mathematically deal with that below.

The rate of heat transfer shows up in the change of the temperature amplitudes with depth. In dry soils D is strongly dependent on the (low) moisture content leg. Othieno et al.. 1985: Van Wijk. 1965). Hence. from the dynamics of soil temperature alone one 15 able to establish the thermal and soil molsture conditions of various solls. including the influence of mulches.

2.3.4 (b) Diurnal variations of soil temperature

The diurnal variation of soil temperature is oreatest on clear days when neither solar radiation nor terrestrial long wave radiation $1 s$ intercepted by clouds. On such days the variation is essentially sinusoidal in character. and even more so in the tropics with near 12 hour periods of day and night time. For that case the soll temperature. I (z.t). at soil depth. z, and at any time . t. is given by Eq. 15:

$$
\begin{equation*}
T(z, t)=T+A_{0} \exp (-z / D) \sin \left(\omega t+\phi_{0}-z / D\right) \tag{15}
\end{equation*}
$$

where $\bar{T} 1 s$ the $24-\mathrm{hr}$ average soil temperature for the day in ouestion. This $\overline{\mathrm{I}}$ for a certain day. week or month 18 approximately the same at all depths shallower than 30 cm . the depth at which the sold temperature amplitudes start to be less easily discernible. As is the diurnal amplatude of the temperature wave at the soil surface. It is half the full range of diurnal temperature variation. Because D is proporionai to the square root of the thermal diffusivity. a $=\lambda / C$ (see Eq. 14), the damping depth can be used to calculate thermal diffusivity. In Eq. 15. ' ω is the circle for radial) frequency which is 2π times the reciprocal of the diurnal period: thus $\omega=2 \pi / 24=0.261904 \mathrm{hr}^{-2}=7.27513 \mathrm{~s}^{-1}$. $\boldsymbol{\phi}_{0}=$ 'whs is a phase constant determined by the time scale used ie.g. van Wijk et al.. 1959: van Wijk. 1965: Stiọter et al.. 1984a: 1984b).

The term A- Asexp (-2/D) in Eq. 15 means that the amplitude of the temperature wave decreases exponentially with depth. When the depth $=$ equals D. the amplitude has reduced to $1 / e=1 / 2.78=0.36$ of 1 ts value at the surface. Ao. Thermal capacity depends on soil composition li.e. water, air and soil solids itexture and structurel). C may be decomposed into ats constitutional form as in Eq. 16 below.

$$
\begin{equation*}
c=c_{0} x_{0}+c_{0} x_{2}+c_{2} x_{2} \tag{16}
\end{equation*}
$$

where suffixes s. w and a stand for solid, water and air.

2.3.4 (c) Effects of homogeneity of the soil on D-values

Homogeneity of the soil may be demonstrated by determining dampina depth values at various z values shallower than the 30 cm reference depth. Mwampaja (1983) used soil temperature data for Kericho (kenya) to demonstrate that the damping depths obtained from two methods discussed by van Wijk (1965), that is. one based on the amplitude term (Ac $\exp (-2 / D)$ and the other on the time of maximum or minamum temperature in the trigonometric term (\sin fot $+\boldsymbol{b} / \mathrm{D} / \mathrm{I}$) were close to each other in that soil. proving this way that the soil concerned was homogenecus.

In principle. vegetation shade may be estimated by comparing sold temperatures near the surface (e.g. Mwampaja. 1983: Mungai. 1991: Onyewotu et al.. 1994). Mwampaja (1983) found that 60% tea canopy cover provided supplementary shade but did not act as supplementary muich. Mungai (1991) observed that Cassia hedge shade could be monitored through soil temperature data taken at 7.5 cm depth. Vandenbeldt and Williams (1992) demonstrated that shade induced reduction of soil surface temperature (at 2 cm depth). particularly at the time of millet crop establishment. contributed to the better growth under the Fajdherbia albida AF trees. The authors proposed greater use of shade in the semi-arid areas of Niger to reduce soil temperatures to the benefit of. the crops. Onyewotu et a1. (1994) showed that an increase of dry soli temperature with distance to a Eucalyptus camaldulensis shelterbelt was in the first 12 m immediately related to the diminashing shading.

Mechanistic models of heat and water transfer at hourly intervals in a soil/unchopped mulch system, to simulate soil temperatures and water content changes in coupled heat and mass transier. and of
radiative and convective exchanges in the mulch layer. have recently been developed (Eussjere and Cellier. 1994). These authors validated the model with soll temperature measurements taken at two depth (i.e. 2 cm and 20 cm) in mulched and bare soils. They found that the mulch anduced lower daily temperature amplitudes and decreased average temperatures by 60 C at 2 cm and 20 C at 20 cm depths. This thermal effect of the mulch was estimated using Stigter's ratio $\mathrm{Retr}=\mathrm{D}_{20} / \mathrm{D}_{\mathrm{wi} 1}$ and Eqs. 14 \& 15. where $D_{b o}$ and $D_{m 1}$ are respectively the differences between the (for example monthly mean) daily temperatures at any time and depths and actual averages at the same time and depths of the bare and mulched soils (Stigter et al.. $1984 \mathrm{a}, \mathrm{b}$: Othieno et al.. 1985). They obtaıned large Roti for thinner grass mulches and small Reti for very dry conditions.

Eq. 14 and 16 suggest that soil traction, that is. working the soll by hoeing or ploughing. could reduce D. Extremely high rainfall influences soll compaction at the surface and erosion of the top soil. thereby increasing D. Eq. 14 and 16 also show that increase irs water content of the soil. which reduces its alr content. increases C. However, ג. will increase even more and therefore D will increase.

2.3 .4 (d) Surface cover effects on soil temperature parameters

 Changes of conditions at the soil surface or of the soil's physical properties influence soil microclimate. Soll microclimate is therefore also influenced by irrigation or sprinkling. drainage. shading, soil tillage and windscreen (windbreaks and shelterbelts) (van Wijk. 1965). It is an interesting question whetner all these manipulations may be seen as a form of mulching and may in one way oranother also be represented by changes in the diurnal temperature behaviour.

2.3.4 (e) Mulching effects on soil temperature

Mulch reduces the range of diurnal soil temperature variations by reducing the temperature maxima and increasing temperature minima. If the reflection of the soil is lower when the surface is covered by plants than in the case of bare soil. this results in increased absurbed radiation. The albedo of a fully covered green surface is approximately equal to 25\%. A dry sandy light coloured soil may therefore have a larger albedo. The mulch becomes the effective surface at which the radiant energy is absorbed (van Wijk. 1965: Stigter et al.. 1984a: 1984b).

In the soil covered by aniform mulch layer of the same albedi. which in principle only applies to a layer of another homogeneous soll or other comparable material. We could use the theory of neat conduction in an infinite homogeneous medium since it's thermal properties are assumed to be approximately constant with depth (e.g. [uin. 1956: van Wijk, 1965: van Wijk et al.. 1959). If A be the amplitude of the soll temperature at the surface of an unmulched homogeneous soil possessing the same thermal conductivity. λ, and thermal capacity. C. as the soll under the mulch. the ratio of the amplitude of the mulched soll to that of the unmulched soil would be presented in Eq. 17 or its moditized form

$$
\begin{align*}
\frac{A_{m}}{A_{u}}= & {\left[\frac{\left[r^{2} \exp \left(-2 d / D_{1}\right)+2 r \exp \left(-2 d / D_{2}\right)\right.}{\left[r^{2} \exp \left(-4 d / D_{1}\right)-2 r \exp \left(-2 d / D_{1}\right)\right.}\right.} \tag{17}\\
& \left.\frac{\left.+\exp \left(-2 d / D_{1}\right)\right]\left[\lambda_{2} C_{2}\right]}{\left.+\cos \left(2 d / D_{1}+1\right)\right]\left[\lambda_{1} C_{1}\right]}\right]^{1 / 2}
\end{align*}
$$

$$
\begin{equation*}
\frac{A_{1}}{A_{u}}=\left[\frac{\lambda_{1} C_{1} \exp \left(4 d / D_{1}\right)+2 r\left[\exp \left(2 d / D_{1}\right)\right] \cos \left(2 d / D_{2}\right)+r^{2}}{\lambda_{2} C_{2} \exp \left(4 d / D_{1}\right)-2 r\left[\exp \left(2 d / D_{1}\right) \cos \left(2 d / D_{1}\right)+r^{2}\right.}\right]^{1 / 2} \tag{18}
\end{equation*}
$$

$$
\begin{equation*}
r=\frac{\left(\lambda_{1} C_{1}\right)^{1 / 2}-\left(\lambda_{2} C_{2}\right)^{1 / 2}}{\left(\lambda_{1} C_{1}^{\prime}\right)^{1 / 2}+\left(\lambda_{2} C_{2}\right)^{1 / 2}} \tag{19}
\end{equation*}
$$

in Eq. 18 (van Wijk et al.. 1959): here $\left(\lambda_{1} \& \lambda_{2}\right)$ are the thermal conductivities of the mulch layer and the soil respectively. C_{2} and C_{2} are their respective volumetric heat capacities. D_{2} is the dampang depth of the mulch layer. The parameter r is defined by the expression in Eq. 19.

The weakness of the above approach is that it cannot be used in practice but in a few rather particular cases. The albedo of mulches 15 normally different from that of the soil and nomogeneous mulches are exceptional. Therefore the approach with an apparent radiation change. where the enerory absorbed under the mulch is dealt with as if only the albedo changes 15 much stronger (Stioter et al.. 1984).

Soil temperatures and water losses under chemically kalled vegetative mulch canopies in no-tillage crop production have been examined using a numerical dynamic model of soil. canopy and lower
atmospinere coupling. ancluding iiquid and vapor movement in the soll. and free and forced convection in the canopy (Ross et al.. 1985a: 1985b). For example, mulch canopies that intercepted 80 and 50% of incoming radiation could keep the soil temperatures within 10 and $20^{\circ} \mathrm{C}$ respectively of ambient temperaturesin a situation where the bare soll temperatures could rise to $30^{\circ} \mathrm{C}$ above ambient. The model also found that a moderate wind could reduce soil temperatures under mulch only a few degrees but cooled the canopy much more. Roughening surface could help cool the surface.

On the mulched soil. mulch acts as a shade as well as an insulating layer. both reducing the amount of heat that enters the so11. A lesser fraction of incident radiant eneroy $1 s$ converted into heat at the surface if the reflection coefficient of the mulch exceeds that of the unmulched soil. However. in partly transparent mulches the heat from net transmitted radiation is spatially very differently converted ints heat. The emission cofficient for terrestrial long wave radiation is assumed to be practically the same for the soil and for the mulch layer. Evaporation is reduced by dry mulch, because of less heat being available. Hence. a smaller fraction of the total heat generated at the surface is used as latent heat of vaporization (van Wijk et al.. 1959. Stigter et al.. 1984a).

Stigter et al.(1984a: 194b) derived a relationshid known as Stioter's ratio. Roti. for two homogeneous solls with identical thermal properties but different (apparent) albedos where the neat reaching the soll is considered as diminished by albedo changes only. with averaọe temperature. $T(z, t)=7 . \quad\left(D_{\text {nos }}\right.$ and $D_{m 1}$ were abbreviations used in sections 2.3 .4 (c) for a comparison of a bare soil and a mulched soll).

$$
\begin{equation*}
R_{s e 1}=\frac{1-\rho_{2}}{1-\rho_{2}}=\frac{T_{1}(z, t)-\overline{T_{1}}}{T_{2}(z, t)-\overline{T_{2}}}=D_{b s} / D_{a l} \tag{20}
\end{equation*}
$$

Eq. 20 is valid for harmonic variations. At the soil surface this relation applies also to the amplitudes $\left(A_{\circ_{1}}\right.$. $\left.A_{\circ 2}\right)$ of the surface temperature waves at two sites, one of which for example being completely bare. Eq. 21 therefore becomes

$$
\begin{equation*}
R_{e t \pm}=\frac{A_{01}}{A_{o 2}} \tag{21}
\end{equation*}
$$

This ratio of the amplitude of the soll temperatures in the homogeneously mulched to that of the unmulched soils was earlier used by Duin (1956), van Wijk et al. (1959) and van Wijk (1965) in the mulch more limited approach as given in Eqs. 17 \& 18. to quantify the effect of a homogeneous non-transparent mulch on the soil temperatures. where the heat flux entering the unmulched and mulched soils is uniform and the heat exchange takes place identically. This ratio is similar to the one later derived by Stigter et al. (1984a: 1984b) in Eq. 20 for two homogeneous soils with identical thermal properties but difierent: albedos. However. that methodology was subsequently extended. by the use of apparent albedos. to all mulches for which the heat enterina the original but now covered soll surface could be expressed as due to an apparent change in albedo alone. These ratıos (Eq. 20 and Eq. 21) were
used by Othienc et ab. (1985) to demonstrate thermal efficiency of different grass mulches that were used for erosion prevention in young tea.

At the CSIRO Davies Laboratories in Australia. Eristow (1988) observed that mulch architecture (horizontal and vertical-chemically killedi influenced soil temperatures only after the solls under different mulching architecture nad dried significantly after a neavy storm (or irrigation). The soil temperatures under both systems of mulches differed markedly with the soil temperatures in the bare soll. This was attributed to the slow effect of mulch architecture on enerory balance (that is differences in spatial heat exchange) which became apparent only after significant drying had taken place. which was after 12 days. This sort of change could not anfluence seed germination. which takes about 7 days to occur.

It has been observed that rainy periods may even resuit in negative daily heat fluxes near the surface whale positive fluxes occur during intervening dry spells (Krıshnan and Kushwaha. 1972).

CHAPIER THREE

3 Materials and Methods

3.1 Crop

3.1.1 Materials

3.1.1 (a) Matanya experimental site

On-station experiments were carried out at Matanya LPP station situated 25 km southwest of Nanyuki town. on the slopes of Mt. Kienya. The station is located on latitude $0^{\circ} 04^{\prime} \mathrm{S}$ and longitude $36^{\circ} 57^{\prime} \mathrm{E}$ at an altitude of 1840 m a.s.1. (see Figs. 1 and 2). The land at the station has a slope of 4-5\%.

Although the bulk of the work was started in the long rains (March-June) of 1992 (LR92). Wher the actual exmerimental layouts to measure various parameters were set in place. in order to familiarize ourselves with the existing problems. we did some prelimanary field work in the short rains of 1901 (SR91).

We put all plots in same treatment by deep-tilling and mulcned all the plots at 3 t/ha crop residue (Plate 1). The experimental plots had been used by LRP. the host institution. ever since the station was started in 1986. Placing all Dlots under the same treatment (1.e. deeptilled and mulched with 3 t/ha crop residue). for the SR91. was meant to do away with differences that might arise as a result of usage of past years and to lessen compaction. Results of SR91 were therefore meant to show the effect on crop orowth and development as well as on blomass and grain yields of the crop component in the agroforestry system under mulching and deep tillage which was the same for all plots. The Gevilles robusta root pruning exercise had to continue for the assessment of competition for soil moisture between the intercrop and AF
trees and live-fence. The plots hitherto used and their lavout are presented in Figs. 7. 9 and 10 (for agroforestry plots) and Fia. 3 for the entire Matanya station. They are:
(i) mulched control (replicated three times) (M1. M2 \& M3).
(ii) Local control ireplicated three times) (Li. Li \& L3).
(iii) agroforestry (AF) plots (root-pruning and unpruned replicared once for each).

Note that some plots which were still used by the iRF during our experimental periods are marked 'NU' in Figs. 8 and 12 meaning 'not used by us'. Farm-yard manure was not applied in SR91 because the same had been applied LR91 at 10 t/ha and was considered adequate even for SR91.

3.1 .1 (b) Experimental layout in agroforestry (AF)

For LR92 and later seasons. the part of $A F$ with Grevillea robusta trees. which measured 25 m by 30 m . was divided into four strips (AFM1. AFM2. AFLI and AFL2) each of 30 m by 5 m paraliel to the shortest sade of the entire $A F$ plot. which measured 55 m by 30 m . The strips run roughly east-west. The four strips are shown in the lavout IFigs. g \& il and Plate 2). Two plots (AFM1 \& AFM2): one in the oruned (AFM1) and another in the unpruned (AFM2) portions of the AF plot. were treated to 3 tha mulch plus minimum tillage. AFM1 and AFM2 were minimum tilled by tilling a depth of 4 to 5 cm and then mulched with 3 t/ha crop residue from the previous season. Two other plots (AFL1 \& AFL2): auain one in the pruned (AFL1) another in the unpruned (AFL2) portions of the $A F$. were treated to deep tillage but without mulch. AFLI and AFLL were deeD tilled by tilling a depth of 20 to 25 cm . All of the plots at the station were treated with a low rate of farm-yard manure at 5 t /ha each Season. except SR91. Root-pruning was done by digging a trench of 30 cm

- grevillea robustaunprunned
o grevillea robustaprunned
X fruit trees
- occess tubes

Fig. 7. A layout of access tubes installed at 94,188 and 376 cm from Grevillea robosta trees in agroforestry plots at Matanya.

Plate 1. The first land proparation for a Short Rains growing season (SR91) during which all plots were deep tilled and mulched.

Flate 2. LR92 showing two plots of Mulch plus minimum tiliaçe and plots of Local plus deep tillage in the AF plot.
deep and 20 cm wide. starting at a distance 50 cm around Grevillea trees stem (Fig. Al).
3.1.1 (c) Experimental layout in non-agroforestry (NAF)
Iuring LR92 we opened up rew control plots (1.e. Local control marked LA and L5 and Mulched control marked M4 and M5 in Fig. 8 \& 13) in addition to those given in (i) and (ii) of section 3.1.i above. because we had found that the old control plots (marked L1. L2. L3 \& M1. M2. M3) were not uniformly exposed to the prevailing strong winds. Whicn is a oreat menace in the area between June and September. This was meant to try to homogenize control plots. given their historical backar ound. Each of these new plots measured 12 m by 3 m on a fallow area of 25 m by 13.5 m . wath a footpath of 0.3 m between them. The desion of the new NAF plots was sucn that muich pius minimum tillage and unmuicned plus deen tillage were repljcated twace in dagonally opposite plots (Plate 3 ard Fig. 81. A one metre wide butter area planted with a row of maze. was created around these plots. For practical reasons the averages of alj Local control plots (L1, L5) and Mulched control plots (Mi. M5) will hereafter be referred to Local (L) and Mulched (M) respectively.

Although all plots at Matanya had been put under the same treatment for SR91 as explaned above. contrary to the AF plots. that previously had identical treatments. pruning apart, for LR92 and later seasons the control llocal: L1. L2 \& L3 and Mulched: M1. Mz \& M3il reverted to the same treatments as previously used by LRe. This was meant to avojd heterogeneities that would result from chanazng treatments. It should therefore noted that in the AF/NAF combar isons during our experimental period, yield comparisons were made between AF

 घAた).

Plate 3. LR92 showing diagonally opposite Mulch and Local treatments in the new control plot site. Mulched plots were minimum tilled and Local plots were deep tilled

Plate 4. Author explaining to assistant the method of harvesting of beans on 5 th Jan.. $19 \overline{9} 2$.
plots that previously only had pruning as difference in treatment but from LR92 onwards got our treatments. (including again pruning/ not pruning). and NAF plots that received these treatments already prior to SR91.

3.1.1 (d) Crop varieties. spacings and direction of sowing

The sowing of the maize H 511 and rosecoco beans was done in the entire field along the contours and made an angle of 20° with the north and south, that is. 340° from true north isee dotted lines in Fags. 10 and 15. The spacings were: maize in 94 cm by 60 cm and beans in 94 cm by 20 cm . all with two seeds per hole.

Twenty plants in each of the plots. that is what would the following year become Local (L) controi and Mulched control (M) Dlots and agroforestry plot (AF) were observed for phenological phases every week.

3.1 .1 (e) Measurement of maize heights and grain and biomass yields of maize.

The following data were measurec on weekly basis: mazze olant heights and phenological phases of both maize and beans for all six seasons: Short rains of 1991 (SR91). Long rains of 1992 (LR92). Short rains of 1992 (SR92). Long rains of 1993 (LR93). Short rains of 1993 (SR93). Long rains of 1994 (LR94) and Short rains of 1994 (SR94).

Fig. 9 displays 31 maize rows numbered from 1 to 28 and Thi-TR 3 and five Grevillea rabusta tree rows (A. B(TR1). C(TR2). D(TR3). E1. Three of the tree rows $(B(T R 1) . C(T R 2) \& D(T R 3))$ are in the maddle of $A F$ Dlot and two (i.e. A \& E) alono the eastern and western sides of the
live-fence. The interspaces between tree rows are given in Taule 9 as $A-B, B-C, C-D$ and $D-E$. There are 7 rows of maize and 7 rows of beans in each space between two rows. Fig. 9 also has two rectargles. PGFi, covering maize rows 8-12 and beans rows 9-13. on the upper leasternl ani $P^{\prime} Q^{\prime} R^{\prime} S^{\prime}$ covering maize rows 17-21 and beans yows $20-24$, on the lower (western) parts of AF. These rectangles enclose the areas where we took weekly maize height measurements as mentioned in Chapter 3. We also berid these rectangles for harvesting of LR92 maize and beans biomass and beans seed yields.

Four rectanoular areas running east-west in each of the treatment plots AFM1. AFL1. AFM2 and AFL2 leaving a buffer of 60 cm from the border of two adjacent plots. were used for harvesting in SRG2 when we had a successful season. For LRg2 we harvested total bumass ber row in each plot in the two rectanoular areas, in the upper (PORS) and lower (P'Q'R'g') parte of the AF plot shown in Fig. 9. The walze rowe were at the distances of 94, 188. $282,376 \& 470 \mathrm{~cm}$ Irom each of the two tree rows. $B(T R 1)$ and $D(\operatorname{TR} 3)$, because we want to understand the ratule of biomass yield differences and gradients symmetrically from two tree rows in the middle of the $A F$ plot. For the control plots we also harvestedi per row rotals in smaller areas of 9 m by 2 m in each plot.

Glustantial maize grain and cob yields and biomase from stover wert obtained only in SR92. Of the seven seasons we worked at Matanya. the remaining seasons produced only maize stover biomass yielde but no grain yleids. Maize orrain and cob narvesting were done plant by plant in the perceived area of the high Grevillea influence. The four AF plots (AFM1. AFM2. AFL1 \& AFL2) were narvested this way leaving four rows nexi to the western/lower andeastern /upper hedges. The four rows nextto the

5

Fig. 9. Agroforestry plot showing five rows of Grevilleas (A, B(TRI);; E) maize rows (beans rows betveen maize rows are not show) SR92 harvesting model (rour E-H rectangles) and areas or mize beight measurements and LR92 harvest (PQRST \& $\left.P^{\prime} Q^{\prime} R^{\prime} S^{\prime} T^{\prime}\right)$. Dote that $a a^{\circ}, c^{\circ}, e^{\circ}$, and are lines joiaing all first holes in plots AFM1, AFL1, AFME and APL2 while ub, dd ${ }^{\prime}$. ff and hn° ore lines iojaing all fourth holes in the same while
hedges and the remaining parts of the crop area. including NAF. were harvested line-by-line .

The following parameters were measured:
(i) number of plants per nole.
(ii) number of cobs per plant and the weights of the same at narvest.
(iii) the weights after several days of drying in the open (sundry).
(iv) the weights of the same after 24 hrs in the oven (oven-dry).

Maize cob weight (COW) and grain weight (GOD) at oven-dry were worked out using the ratios as follows:

Cob Ovendry Weight $(C O W)=$ head weight at harvest (HW) X molsture change of heads from harvest to sundry (76.4\%) X ratio of cob to head weight 121%) X molsture change of heads from sunary to ovendry $(82.4 \%)=H W * 76.4 \% * 82.4 \% * 21 \%=H W * 0.764 * 0.824 *$ 0.21 - KW * 13.2%.

So cob weight after drying in the oven for 12 hrs was Iound to be 13.2% of head welght at harvest (HW).

Grain Óvendry Weight (GOD) - head weight at harvest (HW) X molsture change of heads from harvest to sundry (76.48) X ratio of orain to head welọnt (79\%) X moisture change of heads from sundry to ovendry (82.48) = HW * 76.4\% * 82.4\% * 79\% = HW * 0.764* 0.824 * $0.79=$ HW * 49.7\%.

So grain weight after oven drying for 12 hrs was tound to be 49.7\% of head weight at harvest (HW). The results are presented in section 4.1

Harvestind of beans for seed and remainind biomass yields ibicmass after the beans seeds were removed frow the pods after harvesting and weighed separately) was done line by line. thereby giving line totals. and a buffer of one bean row was left at the end of every plot in AF. In

NAF harvesting was done within a rectangle of 2 w by 9 m in all the plots (Plate 4). It should be noted that where we mention beare biomasi yields. this always means that the seeds have already been removed.
3.1 .1 (f) Maize and beans intercrop experiments in two on-farm sites. On-farm experiments were done in the seasons: SR93. LR94 and Sk94 at Kiahuko-A and Kiahuko-B as explained below.
(i) Kiahuko-A on-farm

On-farm live-fence experiment was done at Kiahuko-A. about 6 km from Matanya on-station on a Coleus barbatus live-fence which surrounded the farm and the farmer's homestead. Three sides (northern. southern and eastern) of the live-fence and the farmer's homestead are shown in Fig. A2 (not to scale). The farmer's homestead was on the western part of the farm and therefore we could not use the western side of the live-fence (see Appendix Fig. A21. The treatments of prunirg and not pruning used these three sides of the live-fence. The treatments were replicated three times. centred where access tubes had been installed. that 18 pruning ($A L F$. BLLF \& CLF) and not-pruning (DLF. ENF \& FLF) (see appendix Fig. A21. A general control treatment (GC) around a control access tube located in the middle of the farm was used as the control. Fruning was done by digging a 30 cm deep trench at a distance of 50 cm from the live-fence.

Planting was done by the farmer at the same time as on-station using his own planting density. which we measured to be on average 100 cm by 58 cm . which was not much different from the on-station one. The entire farm was mulched and tilled by the farmer in accordance with has
normal practice．
After seedlings emerged areas of 10 maize plants per fiw （P1．．．F1O）in 5 maize rows（I．II．．．．．IV）around access tubes replicated three times were taken for phenoloqical．helants and yield measurements in the same way as the on－station．Yields and headits calculations were done for distances from the live－fence of $0-120$ ．120－ 300 and $300-600 \mathrm{~cm}$ centred around access tubes installed at $90.18 u$ and 360 cm from and perpendicular to the live－rience．The results arr reported in Chapter 4．It should be noted that this farmer alwavs planted maize crop in rows that were perpendicular to the live－ience on all sides．where ELF has to be seen as an extension of ELF．This is a traditional method that allows little competition for water between the luve－fence and the nearby plants．

It should be noted that stover yields were obtained for the $5 R 93$ and SR94 only．The stover biomass for LR94 was incidentally taken by the farmer．to feed his livestock．before measurements．The bicmass harvesting in SR93 and SR94 was done row by row．There were no oraar yields from these seasons maize crope．

At Kiahuko－A beans were planted by brcadcasting method which mace it impossible to quantify the yields thereirom．

（ii）Kiahuko－B on－farm

On－farm aproforestry $(A F)$ experiment was done at Kiahuko－B at $\overline{\mathrm{B}} \mathrm{k} ⿴ 囗 十$ from Matanya．on mostly 9 year ald Grevillea rabusta trees．The trees were planted in six rows（marked P to U in Appendix Fia．A3）．wath the between row spacing on the shorter side of the $A F$ Dlot varying irom 3.0 ＊to 4.8 m and the longer opposite side varying from 3.2 to 6.4 m ．The

AF plot thus forms a far-like confiouration (Appenaix Fig. Ajı. The within row tree spacings also varied in each row.

This AF experiment sumewhat replicated the on-station AF experiment. but with a hiọher tree density. The half of this AF Diot was pruned and half was left unpruned as indicated in Appendix A3. The half that was pruned was further divided into two plots. that is mulched with winimum tillage (AGM1) and Local with deep tillage (AGLl). The half that was unpruned was also divided into two plots. that is mulched with minimum tillage (AGM2) and Local with deep tillage (AGL2) as shown in Fig. A3.

An area with four control plots (NAF), that $1 s$ mulched and Local replicated two times. was established 200 m away from AF plot.

Planting of maize and beans intercrod in the AF was done in the same direction as the tree rows as indicated by a sample of dotted lines in Fig. A3.

Bean yiolds were only obtained for LRG4 at Kıahurio-B in the control plots as the heavy tree shades in $A F$ resulted in no yzelds from AF plots while late olantino was the main reason for total bean crod failure in SR93 and SR94. The direction of sowind in NAF was done according to the $A F$.

Calculations on maize and beans yields and heights were done by working out data for crop rows in these distances from tree rows. that is I for rows from tree rows till 90 cm away and II for rows between 180 and 270 cm from tree rows. These were considered to follow soil molsture gradient as monitored by the access tubes installed at 90 cm and 200 cm from the trees as shown in Fig. A3.

3.2 Soil Moisture measurements with neutron probe

3.2.1 Calibration of neutron probes (CPN 501 and CPN 503)

We did neutron probe calibration experiments for Matanya solls on 19.2.92 (for the dry calibration) and on 18.6 .92 (for the wet calibration). The two calibration experments were done to establisn a calibration curve for soll molsture from count ratios (ratio of individual counts to standard count). to be corrected for the influence of bulk density. using its regression on cravimetric soil moisture.

Two neutron probes (types CPN 501 and CPN 503) were callbrated for the Verto-luvic phaeczem soils at Matanya. The calibration equations so developed were also used for on-farm (at Kiahuko-A and Kiahukc-B) soil. the two sites with same soil properties.

The soil layer in which the soil moisture was measured was that which could interact with the atmosphere through the soil-plantatmosphere system. The neutron probes were calibrated acrainst gravimetric sampling concurrently taken. The soil moisture data were collected at seven depths 18, 30, 60, 90, 120, 150 and 170 cm . The probe count rates were divided by the standard count to vield count ratios. The gravimetric data were regressed on the count ratios to produce a rearession equation.

The dry calibration experiment was done on 19 February 1992 to establish the lowest point of the soil moisture scale. leading to the determination of the wiltind point (Linger, 1991). The wet calibration experiment was done on 18 June 1992 to establish the hagher points that lead to the determination of the field capacity point (Liniger. 1991). The two calibration exercises were then used to determine the soil water available to the inter-crops of maize and beans and to the Grevillea

111

robusta trees. February, beina the driest month of the vear in kienya. was chosen at a time when the orass was visibly dry and the whole so1d depth was at or below wilting doint (WP). The maize in cropiand and the grass on the unused land were completely water stressed and had actually attained or slightly passed the permanent wilting point at the time of the dry calibration.

Wet calibration was done after soaking the soil thrbugh irfigation for one and half months in order to attain field capacity. This allowed enough time for oravitational draining of the water. The followina items forming the soll moisture calibration kit were used:
(a) two neutron probes (CFN 501 and CPN 503)
(b) a pre-installed aluminium access tube
(c) two soll augers.
(d) two volume sampler augers.
(e) five volume sampler rings of 5 cm diameter
and 5 cm hejunt per depth.
(f) one mattock
(g) one pick
(h) one hoe for jembe)
(i) one knife
(j) five plastic bags der each of the seven deptis sampied.

Ten standard counts were taken at the beginning and ten at the end of the experiment. with each neutron probe sensor inside the housing by placing the meter on the ram of the pre-installed access tube. Four count rates were taken at each dedths of interest: 18. 30. 60. 90. 120. 150 and 170 cm before beginning to excavate around the tube to taike soll samples. The five ring samples were taken from each dedth around the
tube after levellang the soil at these depths. The samoler ranas were draven into the soll so that the middle of the rano neiohts coincided with the depth from which the soil was taken. The samples were taren to the LRP laboratory. where they were weighed and over-dried at a temperature of $105^{\circ} \mathrm{C}$ for 24 hours. The dried samples were weighed again and differences in weight was taken as the gravimetric water content which was converted to the volumetric water content (8) from the known volumes of the samples rings. The count ratios from each neutron probe were recrressed against the volumetric water released by heating the soll samples collected. These yielded calibration curves presented in Fios. 122 and 123 in section 4.2 on soll moisture residts.

The bulk densitjes (Bd) of the samples were abtarned frov the dimensions of the sampler rinas and the dry weights of the sold that filled the rings. Five rang samples were collected at each depth during excavations. Each of the samoler rings was 5 cm in diameter and 5 cm high. The volume of each ring was 98.13 cc . The densities (Bd 's) were calculated from the dry weionts divided by this volume. The densities were recressed on the gravimetrically observed volumetrac soil moisture content (\% vol.) obtained during iry and wet calibrations isee Tables 45 a \& 45b). The calibration equations presented in Chapter $4 \operatorname{section} 4.2$ (Fiogs. 124-130 and Table 45) were developed by recressing Ed on ubserved θ at each measuring depth.

3.2.2 Correction for minimum depth to start neutron probe readings

In Matanya a standard depth of 18 cm was chosen by LNP ILinager. 1991) as the shallowest depth to beain neutron probe measurements for beith dry and wet periods and the deepest depth measured was 170 cm . Th3s was meant to cover the rooting-depth of most crods arown in the area

113

wrilch included crop such as maize, beans. potatoes. aơroforestry trees e.g. Grevillea robusta and live-fences e.g. Coleus barbatus (Liniger. 1991 and Moges. 1991).

The radius of sphere of importance $\left(Q_{3}\right)$ of neutron orobe described in chapter 2 was used to determine a minimum measuring deptin at matanya. Qs had a maximum value of 19.1 cm during the periods of air high humidity, that is during Long kains season. A maximum value of Q_{1} was safely taken to be 20 cm as the radius of a sphere of neutrons reflected to detector of the probe (type CPN 501) during wet seasons. The equation of volume of a sphere $\left(V=4 \pi r^{3} / 3\right)$ with r taken to be 20 cm for wet seasons and 26.8 cm (at VSMC of 23.3% see Table 45a) for dry season as given by Eq. 3 was compared with the original depth of 18 cm which was being used by LRP (e.g. Liniger, 1991: Moges. 1991). It was found. using equation of volume of a sphere. that in the driest part of the wet seasons Q_{1} extended by 2 cm into the open air, thereby overestimating soil moisture by 1.9 per cent. Iruring a dry season. When air humidity was 10 w . Q, extended by 8.8 cm into the open air. thereby underestimating the soil moisture by 20.3 per cent. For these heteroceneous vertisols. It was advisable to take oravimetric samples as close to the access tubes as possible for soil moisture data that accurately compares with those taken with the neutron probe. Such a destruction within the spnere of importance may. nowever. create problems when tubes are at a permanent position. Hence. in our case surface orravimetric soil molsture measurements were taken at 7.5 cm depth where could no longer use the neutron probe. The results are given in chapter 4.2.

3.2.3 The layout of access tubes in agroforestry (AF) plot

Fig. 7 and Table 3 display the layout of access tubes around ilve root pruned Grevillea mbusta trees marked PT1..... PT5 and ifve root unpruned trees marked UT1. UTS in the AF plots we used for our experiments. In the course of our data collection we had at one time. after LR92. excluded the access tubes installed around Grevillea robusta trees. PT3 and UT3. (1.e. A3. B3 and C3 around PT3 ana D3. E3 and F3 around UT3), because the PT3 was in the maddie of the pruned plot but on the border of Mulched (AFM1) and Local (AFL1). Similarly Ui3 was

Toble 3. Locations of access tubes in relation to the positions of Grevillea rebusta trees in the AF Dlot at Matanya station for the six seasons ii.e. LR92. SR92. LR93. SR93. LR94 \& SR94) of the exper1ment.

Plots with pruned trees				Plots with unpruned trees			
(1). Pruned trees				(1i). Unpruned trees			
Tree 1 - PT1				Tree 1 - UTI			
Tree 2 - PT2				Tree 2 - UT2			
Tree 3 - PT3				Tree 3 - UT3			
Tree 4 = PT4				Tree 4 = UT4			
Tree 5- PT5				Tree $5=$ UT5			
(iii) Access tubes around pruned trees				(iv). Access tubes around unpruned trees			
Distance (cm) from trees				Distance (cm) from trees			
Tree	94	188	376	Tree	94	188	376
PT1	A1	B1	C1	UT1	D1	E1	F1
PT2	A2	82	C2	UT2	02	EL	F2
PT3	A3	83	$\mathrm{C} 3(102)$	UT3	D3	E3	F3(-R2)
PT4	M1	N1	01	UT4	P1	Q1	R1
PT5	M2	N2	021-C3)	UTS	P2	Q2	$\mathrm{R} 2(-\mathrm{F} 3)$

115

in the middle of the unpruned plot but on the border of Muiched (AFMZ) and Local (AFL2). At that tame we thought this would introduce unnecessary variability in the VSMC due to surface cover. After thoroughconsultations we decided to include these tubes. We therefore did not collect soil moisture data for the above tubss for SR92. The trees lying on the border line between pruned and unpruned plots were half pruned. The half in the pruned plot was pruned while that in the unpruned plot was not pruned. This was thought to properly influence the soil moisture regime associated with the border trees.

The access tube readings around Grevillea robucta trees were used to determine the following at each of the seven depths (i.e. 18. 30. 60. 90. 120, 150 and 170 cm):
i. the effect of root pruning and residue mulching on soil misture distribution as presented by the average VSMC and deviations of the access tube readings from averages in the areas with
(a) root pruned Grevillea robusta trees (PT1. PT2. PT3. PT4 \& PT5).
(b) root unpruned Grevillea robusta trees (UT1. UT2. UT3. UT4 \& UT5).
(c) all access tubes in entire agroforestry plot
ii. VSMC gradients radially from pruned and unpruned Grevillea robusta trees.

The AF Dlot had seven out of sixteen lexcluding of course the trees along the live-fence) Grevillea robusta trees root pruned at 50 cm from the tree trunks dow to a depth of 30 cm . to assess the competition for soll moisture between trees and intercrops.

The influence of root pruning on soil moisture distribution was examined using individual tube readings at different depths and distances from the Grevillea nobusta trees in their relation to the

116

averages computed for the specific treatments. For the orowing seasons LR92. SR92. LR93. SR93. LR94 and SR94.

The deviations and differences of equivalent tubes. that are tubes at equal distances from the trees. were further averaged to determine the resultant deviations and differences among equivalent tubes in each treatment (pruned and unpruned) per depth.
3.2.4 The layout of access tubes in non-agroforestry (AF) plot

One access tube was installed in the middle of each of the old control plots (L1. L2 \& L3 and M1. M2 \& M3) in NAF. Two access tubes (A. B) were installed in the midale of each newly opened control plots ILA \& L5 and M4 \& M5) along a line parallel to the long sides of the plots. Access tubes LAA. LAB and L5A. L5B were installed Local plots marked LA and L5 in Fig. 8. Similarly access tubes M4A. M4B and M5A. M5B were instailed in Mulched plots marked M4 and M5 in Fig. 8.
3.2.5 The layout of access tubes in Kiahuko-A on-farm (Live-fence) plot

The access tubes were installea at 90.180 and 360 cm from the root pruned (coded as ALF. BIF \& CLF) and unpruned (coded as DLF. ElF \& FLF) portions of the live-fence. Tubes A1. Bl and Cl were installed at 90. 180 and 360 cm respectively from ALF. Tubes A2. B2 and C2 were installed at similar distances from BLF. Tubes A3. B3 and C3 were similarly installed from CLF (see Appendıx Fig. A2). Tubes D1. E1 and F1 were installed at 90,180 and 360 cm respectively from LiF. Tubes D2. Ez and F2 were installed at similar distances from ELF. Tubes D3. E3 and F3 were similarly installed from FLF (Fig. A2 and Table 4). The on-iarm naming of acceas tubes was meant to conform with the on-station naminu for ease of comparison and interpretation.

117

Table 4. Access tube positions with respect to root pruned and unpruned portions of live-rence at Kiahuko-A. durirg SR93. LR94 and SR94.

Drstance (cm) from live-fence				
(i)	Fruned portions	access tubes		
	ALF	A1	B1	C1
	BLF	A2	B2	C2
	CLF	A3	B3	C3
(ii) Unpruned portions				
	DLF	D1	E1	F1
	ELF	D2	E2	F2
	FLF	D3	E3	F3
GC - central part of plot				

3.2.6 The layout of access tubes in Kiahuko-B on-farm Grevillea robusta (AF) plot

Fig. A3 displays a layout of the on-farm plot with s1x rows (row P. row Q. row U). the Mulched/Local plots, and the farmers domicale (homestead). The dotted lines indicate the direction of sowina and the double dashed lines indicate the trench dividing the pruned and uripruned plots while the single dashed lines indicate the lines sedarating the replication/ treatment plots.

The Grevillea trees on-farm AF plot was divided into: (2) pruned Mulched and minimum tilled plot (AGM1): (11) pruned Local and deep tilled plot (AGL1): (iji) unpruned Mulched and minamum tilled piot: (AGM2): and (iv) unpruned Local and deep tilled plot (AGL2). The distance between tree rows were relatively larger on the side of the plots bordering the homestead and smaller on the opposite side isee Fig. A3). The smallest distance between the tree rows was 3.0 m and the jargest was 5.4. These distances allowed oniv two access tubes to be

118
installed at 90 and 200 cm Irom each experımerital tree for radıal measurement of soll molsture radially from each tree.

Due to the spacing between rows of Grevilled trees. we could oniy install two access tubes at the distances of 90 and 200 cm fricu the Grevillea robusta trees of interest. In our experiment we therefore used six tubes in pruned (1.e. three in mulch and three in Local) and $s 3 \% 15$ unpruned (three in mulch and three in Local) (see Table 5 and Fiụ. A3).

Table 5. Access tube positions wath respect to pruned and unpruned Grevillea robusta trees at Kiahuko-B. during SR93. LR94 and SR94.

3.3 Wind measuremente

3.3 .1 (a) Instrumentation

(j) The CR1O data-logger and WAU electrical anemometers

A CR10 data-logger (Campbell Scientific. 1990) and 15 cup
anemometers were used together with two Woelfle anemooraphs $\quad W^{W}=\mathrm{Sr}$.

Nr. 341836 and 'WB' = Sr. Nr. 31587). The anemometers were manutactured by the Department of Meteorology mechanical Workshop/Laboratory. The former combination will be called hereafter as 'CR10'. The CR1O wind system plus its accessories at Matanya site consisted of:
(a) 15 WAU electrical cup anemometers (type WV 100R)
(b) 1 Campbell Scientific data-logger (type CR10)
(c) 1 Compaq laptop computer (type SLT 286)
(d) 13 cable reels each with 150 m long cables
(e) 13 stainless steel masts of 2.0 m long
(f) 13 mast extensions of 0.5 II long
(9) 13 arms holding the anemometers
(h) 13 connecting blocks
(i) 13 (sets of 3) soil pins. that is a pin for each mast
(j) 13 sets of 3 fixing rings and ouy winders
(k) 13 sets of guys each with, 3 wires
(1) There were three peas for each mast to connect wires

Items (i) to (k) were used to erect the masts vertically and put them firmly into the ground. The WAU electrical anemameters that we used had opto-diodes consisting each of a pair of light emittina and light receiving diodes (or photo-diodes). The latter recelves light from the former. interrupted by the rotating cups. and these pulses are registered as counts. As the cups revolve, these pulses are received at the rate determined by the rate of revolution. which are then converted anto wand speeds from the number of revolutions usand the formula $u=a$ $+b * n$. Where u is the wind speed in m/s. $n 18$ the number of counts per second (counts/s) (Campbell Scientific. 1990).

The waU electrical cup anemometer has a threshold value labove whach the rotor movesl of about $0.20 \mathrm{~m} / \mathrm{s}$. With a stalling speed which

youveesity of inaiacbl librant

120

lies between 0.1 and $0.15 \mathrm{~m} / \mathrm{s}$. The threshold of an anemometer 2 s the lowest wind speed at which the device begins to vorate while the stalling speed is the wind speed at . ich the devace stops to operate. The stalling speed $1 s$ usually lower than the threshold speed. The sutput cable of the WAU electrical cup anemometer is 2.1 m long. The cups have a diameter of 5.0 am and are hemispherical in form. The small arms from the cups to the centre of rotation of the instrument are 2.5 cm long. The diameter of the each sup ariemometer was therefore taken as 2 . $(5.0+2.5)=15.0 \mathrm{~cm}$.
(ii) The Campbell Scientific data-logoer (The CR10).

The CR10 panel board could accommodate 10° electrical anemometer and 16 PT100 platinum resistance thermometer plugs. The temperature pluags were numbered from 1 to 16 and the wind plugs from 17 to 32. We used only the wind pluags 17 to, 29 for 13 wind measuring points. 12 in AF and 1 in NAF. The CRIO was connected to the Compaq laptop computer with a serial interface $\operatorname{IRS} 2321$ cable. The proaramme " term lug3.dld" which was modified from the original one "term logi.dld" was downloaded from the laptop to the CR1O immediately after off-loading the reconded data from the latter. We used a modified prooramme "edlog log3" to adıust ardi include the relevant calibration factors in "term loa3.dld" whenever we chanced an anemometer.

(iii) The wind measurements with the CR1O

The CR1O was initialized using prooramme "term loa3.dld" in the laptop to calculate and store (in random access memory (RAM) of the CRIU processor). for each of the 13 anemometers, the average wind speed over the past 15 minutes. The 15 - minute wind speed data were oft-lcaded
weekly or fortnightly. The LOTHS import command was used to convert the CR10 data into LOTUS data and store them in 3.5 inch diskettes.

3.3.1 (b) Evaporimeter system as an auxiliary anemometer

(i) The Piche atmometer system

We attached a shaded Piche evaporimeter to each mast on which an electrical cup anemometer was installed. The open end of the Piche was adjusted to the same level as the centre of the anemometer cups. The Piches were tested for thenr ability to interpolate or extrapolate wirid speeds. The Piches (type C.F. Casella \& Co. Ltd) used consisted of a 33 Cm glass tube of 1.4 cm extemal and 1.1 cm intermal diameter filled with distilled water. Piches are hung up-side-down and its flat white circular piece of blotting paper of 3 cm diameter. backed in tine centre by a metal disc of again 1.4 cm diameter. prevents the water from escaping except by evaporation through the filter paper. In this way $11.0 \pm 0.04 \mathrm{~cm}^{2}$ of evaporating wet filter paper 15 exposet to the onvironmental conditions of lona wave and reflected solar radiation. temperature. wind and humidity. The metal disc is tightened by a cild to keep the blotting paper in place at the tube end. The metal disc is provided with a small hole of less than 0.2 cm for pressure equalizins purposes (ea. Stiọter and U1so. 1981: Var, Zyl and Ie Jager. 1987 ary Kainkwa. 1991). Evaporation wnich was read every morning at 09nco was expressed in mm of depth of water evaporated in one hour.

(ii) The shade for the Piche atmometer

The shade for the Piche evaporimeter consists of circular plates of 25 cm diameter made of 2 cm thick tempex sand-witched between tw round plates of a few mm of wood. The plates have a hole of 1.4 cm
diameter at the centre. in which the Piche tube hargs with a protrusion of 7 cm at the bottcm. The arm for mounting the shade system was fixed on a vertical mast. The upper surface of the shade was glued with aluminized Mylar (polyester) material. to opticaily retlect incident radiation with a high lono-wave emission coefficient. to keep the temperature of the top surface of the shade fairly low. The surface of the shade facing the soll was painted dully white ikainkwa. 1991. Van Zyl and De Jager. 1987). Van Zyl and De Jager (1987) found that under their conditions in Orange Free State. South Afraca. their shaded Fiche with a different type of shade was 1.4 times more sensitive to wind speed than the screened routire Piche. However. the main reason not to have Piches as auxiliary wind meters in the routine screen is the boss of direction independence and the influence of neiothbouring instrumerits (Stioter. et al.. 1995).

3.3.1 (c) The Woelfle anemographs

Two height adjustable woelfle anemooraphs (Ser Nr. 341838 in AF and Ser. Nr. 360842 in NAF) and two other but height non-adjustable Woelfle anemooraphs marked 'WA' (Ser. Nr. 341836 in NAF) and 'WB' (Ser. Nr .31587 in AF), which were fixed at 2 m neiọht, were used to reocord instantaneous wind speed and direction on a strip of a monthiy chart. Woelfles 'WA' Sr. Nr. 341836 and 'WB' Sr. Nr. 31587 were marked that way for the purpose of their use during calibration exercises at Fmbor (Plate 5), explained above. The instrument consists of (i) a wind vane to sense wind direction and (ii) a rotor with three rotatina cups to measure wind run.

The vane and the rotor move due to differences in wind pressure. Each element is independently connected to worm recordina rollere via
separate shafts, wheels, ard gears. The rollers se separate traces on a continuous mechanical clock driven strip chart trom which wind run and direction were decoded. The clock was monthly wound up by hand. Each instrument was supplied with a calibration "ladder rule" by the manufacturers, to calculate average hourly wind speeds. The ward direction for a desired period. say 1 hr . could be estimated from the traces on the chart by the wind direction recording rollers. According to Lambrecht, the mechanical wind recorder can be used in the wind velocity range of 0 to $60 \mathrm{~m} / \mathrm{s}$. The threshold of the Woelfle instruments is about $0.5 \mathrm{~m} / \mathrm{s}$ and the dynamic zero is unknown.

3.3 .1 (d) Calibration site

Inter-comparisons of cup anemometers were conducted at a site on the Wanor Embori farm on the slopes of Mt. Kenya at an elevation oi 2650 m a.s.1. The site was 45 km east of Nanyukı and 70 km east of Matanva. our main experimental site. The geographical location of the Emborı sate was $0^{\circ} 02^{\prime} \mathrm{N}$ and $37^{\circ} 19^{\circ} \mathrm{E}$. The calibration and experimental sites at Emborl and Matanya are shown in Fig. 1. This site was farly norizontal and secure. as it was in the vicinity of a LRP observatory. It had a slope of 2-3\%. About 200 m away to the east of the site there was a deen valley whose influence was later found to complicate the uniformity of the wind structure. The winds at Embori from February to March were mainly from ENE direction. The hourly wind speeds ranaed from 1 to 11 m/s during this period.

The fifteen Wageningen Aoricultural University (WAU) electrical cup anemometers were supplied to us with the calibration factors after they had been intercompared in a controlled laminar airtlow in a wind tunnel at the Jepartment of Meteorology. WAU-The Netherlands. The

Whelfle cup anemographs were If la by Lambrecht Manufacturing Instruments (Germany).

We had to dynamically calibrate cup anemometers in a natural homogeneous lor near-homogeneous) wind field in a fairly flat (or horizontal) site. We had to do this to check their dynamical response $2 n$ natural turbulent conditions in the field. It should be noted that cup anemometers integrate air movement with an angle till aout 45° with the horizontal in which the cups rotate.

3.3.1 (e) Experimental set up at Embori calibration site

The first calibration experiment (Col) was conducted from 15 February to 8 March 1993. the second (C02) irom 14 May to 28 May ig94 and the third (CD3) from 25 January to 3 February 1995. Col and Cby tock. place during periods of very hiọh wind speeds while cb2 took place during a period of low wind speeds.

(1) Comparison of anemometers in February-March 1993 (Cb1)

Four stainless steel masts of lenath 2.5 meach were connected to a soil pin and erected vertically at a distance of 2.4 m apart. The row formed by the anemometers was orjented in the NWW-SSE dilecilon perpendicular to the orevalling wind direction. They were firmly heid to the ground with guy wires tied to steel peas. Some horizontal mast parts were firmly tied to each other horizontally (end-to-end) with rubber bands cut out off car tubes las connecting blocks were not ernourinl to form a lond norizontal mast of lenoth 7.3 m . jets of quys were used to adjust for verticality. Cables reels were connected to a CRIO datalogger which was 70 m from the spot where the masts were noisted. The cable reels were rewound and connected to the anemoneters. The reels
were placed neatly near the Gio.
Using connecting blocks. 13 arms of a length of 0.5 al were mounted horizontally on three horizontal bars, each of 2.5 cm . connecting the masts. They were placed at a distance of 0.6 m apart. protruding 0.4 m from the long horizontal par. their row facing the ENE wind that blew at this time of the year. At a height above the oround of 2 m . we mounted 13 anemometers (10, 11, 12, 13, 14, 15, 38, 39. 40, 41. 43. 44. 552π that order) at a time. since we had only 13 cable reels instead of 15 co match the number of anemometers we had. We installed for comparison two Woelfles at 2 m above the oround. One at each end of the long horizontal bar made by connecting the three masts. Woelfle Ser Nr 341836 (marked 'WA') was installed at 0.7 m from cup 10 while Wolfle Ser $\mathrm{N}^{\text {. }}$ 31587 (marked 'WB') was installed at 0.7 m from cup 55. 'WA was installed on the northern side of the bar while 'WB' was anstalied on the southern side. Plate 5 shows some of the detalls in set un with three masts which was used for Cb3.

The cup anemooraphs were mainly used for wind direction determinations. The substandard (cup 40) which had been kept indiors prior to this experiment was used to compare the rest. The wind soeeds collected from the substandard were first intercompared with those from the Woelfles and then with other anemometers and rearessions and correlations generated.

When retrieving the data of the anemometers. the compan computer (laptop) was connected to the Campbell Scientific CRio. The laptop was Dowered from a recharaeable NiCd battery (tvod P240-10 SLT). The cattery was recharged as often as necessary using a 240 V A.C. adaptor serjes 2681. A solar panel (type Siemens 12 V) continuousiy charged the maintenance free lead acid/chloride car battery (12 V. 45 Amp). which
was used to supply power to the data-lcaroer.

(1i) Comparison of anemometers in May 1994 (Cb2)

We also conducted a second. similar comparisan but wath the distance over which the anemometers were installed halved. to try to exclude the influence of the valley on the structure of the wind field. The winds this time blew from a NW direction and were rather weak. ranging from 0 to $5 \mathrm{~m} / \mathrm{s}$. The electrical anemometers were now installed on a horizontal bar between 3 masts. 1.5 cm apart. separated frov each other this time by a distarice of 0.3 m . The distance between the last anemometers and the anemomraphs was now 0.7 m . The distance between the two outermost cups was therefore now 3.6 m . The distance between the horizontal connecting bar and the cup rotors was 0.35 m . Three outer anemometers were interchanged after 9 days. However. the Grio malfunctioned and the exercise was not very successful. Cupe 44 aria 39 had developed problems as their phoro-diodes collapsed. This necessitated the thard calibration exercise (C03). The battery for the CR10 also malfunctioned thus affecting the flow of charges.

The second calibration (Cb2) was more-or-less a failure. so it became necessary to do a third calibration (Cb3). as already mentioned. [uring Clo3 we had exactly 13 WAU Cup anemometers. Cups Sr. Nrs. 39 and 44 had developed probiems and were removed from the field durina the Cb2. as their photodiodes häd malfunctioned. We therefore had no spare cup anemometer to deplov as a substandard. We had to compare each aremometer to the widdle one in the sequence. cup 10. 11. 12..... 61. 55 and exchanoed three outer cups later on. The sedaration between the
was used to supply power to the data-loager.
(ii) Comparison of anemometers in May 1994 (Cb2)

We also conducted a second. similar comparisen but wath the distance over which the anemometers were installed halved. to try to exclude the influence of the valley on the structure of the wind field. The winds this time blew from a NW direction and were rather weak. ranging from 0 to $5 \mathrm{~m} / \mathrm{s}$. The electrical anemometers were now installed on a horizontal bar between 3 masts. 1.5 cm apart. separated from each other this time by a distance of 0.3 m . The distance between the last anemometers and the anemomraphs was now 0.7 m . The distance between the two outermost cups was therefore now 3.6 m . The distance between the horizontal connecting bar and the cup rotors was 0.35 m. Three outer anemometers were interchanged after 9 days. However. the trio malfunctioned and the exercise was not very successful. Cups 44 ardi 39 had developed problems as their photo-diodes collarsed. This necessitated the third calibration exercise (003). The battery for the CR10 also malfunctioned thus affecting the flow of charges.
(iii) Comparison of anemometer in January to February 1995 (Cb3)

The second calibration (Cb2) was more-or-less a failure. so it became necessary to do a third calibration (Cb3). as already mentioned. Luring CDS we had exactly 13 WAU cup anemometers. Cups Sr. Nrs. 39 and 4 had developed problems and were removed from the field during the Cb2. as their photodiodes had malfunctioned. We theretore had no spare cup anemometer to deplov as a substandard. We had to compare eacn aremometer to the middle one in the sequence, cup $10,11,12, \ldots .61$. 55 and exchariged three outer cups later on. The sedaration between tne
outer cup anemometers on the extreme ends of a bar was 3.6 m and between two adjacent ones it was 0.3 m . The mountiry was the same as in cuc except that the middle cup anemometer (cup 38) was used for comparisors (see Plate 5). We compared each anemometer to the madde one in the sequence. cup 10. 11. 12. 61. 55 and then interchanged the tnree outer cups on 1/2. The length of comparisons were 90 hrs ard the ilrst arrangement and 28 hrs after the interchange.

3.3.2 Materials for field measurements of wind reduction at Matanya

3.3.2 (a) Experimental site

(i) The Coleus barbatus Live-fence around Matanya AF plot

The agroforestry (AF) plot at Matanya measures 50 m by 30 m . It 1 s surrounded by a live-fence of Coleus barbatus which acted as a windbreak. The eastern and the western sides measured 50 m lono. The southern and the northern sides were both 30 m lona. The western. the eastern and northern sides of the live-fence were planted in 1980° winle the southern side was planted in 1991. The southern side was therefore the youngest. Half of the AF plot was occupred by cirevillea robusta. The other half was occupied by the fruit trees whilch bordered the Grevillea robusta piot to the north. The frult trees (loquats. ouavas etc.) ana the Grevillea trees were planted in 1986. This experiment was conducted in that part of AF that was occupled by the Grevillea robusta. The truree live-fence sides of interest were: western hedoge (wH). easterr hedoe (EH) and southern hedge (SH).
(ij) The Grevillea robusta trees in AF plot
The crowns of the Greviliea robusta trees were cone shapea with

 (see Plate 5). We compared nech
arewconter be the alitily The in the sequence. cup 10. 11. 12. 61. 39 art elon
 arranvement and 28 hrs atter the interivilugg
3.3.2 Materials for $\$ 101 d$ meamuresente of vind reavetimen of natwnt

3.3 .2 (a) Experimental ale

(j) The Coleus barbatu Live-fence erand meerso w ples

 southern and the northern ascee were boen 30 in land, the mexth wh eastern and northerr sides of the $18 v e-8$ ence were slomes in ileif wiit the southern side was planeed in 1901 . The soullem atie motratart
 other half was occupied by the srust treer which burberes sion lywim robusta plot to the north. The pruse treen liocuts, pieme uth it mill the Grevillea trees were planted in 1986. Miln exerinent an cowuinal in that Dart of AF that was occuptes br eno inorsiles rushels he lurt live-fence sides of anterest were woinn hoces thil suism teli (EH) and southert hedoe 19 HI .
(ii) The Grevillea robueta enow in N olos The crowns of the Grevilies robuts treet
the diameter ($C d$) of the crown base assumed to be the diameter of the canopy. The neight of the cone (Crh) represented crown helaht isee Appendix Fig. A1). The taller the crown height and the larger the diameter of the crown base the more effective the tree is in protection against strong winds. The Grevillea trees in AF here shown in Plate 7 were planted in five rows. Their geometry is given in Table A8. Which presents the results of the Grevillea tree measurements mide on 17/5/93 before the onset of strong winds at Matanya and on 20/8/93 when the winds had attained their full strenoth. It is illustrated in a diacram in Appendix Fig. Al. Figs. 7. 8, 9 and 10 show positions of Grevillea robusta trees in the $A F$ plot. Fig. 9 shows that rows $A \& E$ were planted along eastern and western sides of the Coleus barbatus live-fence. Rows $\mathrm{B}(\mathrm{TR} 1) . \mathrm{C}(\mathrm{TR} 2)$ \& $\mathrm{D}(\mathrm{TR} 3)$ were planted within the AF plot at 7.5 m .15 m and 22.5 m from the eastern side of the live-fence while row C was planted in the middle of the plot. These Grevillea robusta trees were at a staggered spacing of 7.5 m by 5 m when viewed from an east-west. direction. All the Grevilleas at the coleus barbatus ilve-rence were root pruned. Some of the Grevilleas inside the AF plot were pruned while others were not as indicated in Table A8. The Grevilleas in the AF plot were playing a complementary role to the Coleus barbatus live-fence as scattered trees wind break. From Appendix Table A8 we see that the diameters of the Grevillea tree trunks ranged from 0.4 m to 0.6 m and had negligible wind protective effects even cumulatively downind. We see from Appendix Table A8 that the Grevillea robusta crown helohts (the difference between the whole trees lencth and the nerant of the jowest branch) for ROW A averaged $4.6 \pm 0.3 \mathrm{~m}$ with a diameter of $3.2 \pm 0.6 \mathrm{~m} \mathrm{~m}$ May. and $4.7 \pm 0.4 \mathrm{~m}$ with the same diameter in August. The crown helaht

Plate 5. The layout of the wind measuring system
during the calibration period (25/1/-3/2/1995)

Plate 6. A picture of the upper half of AF at matanya showing electrical cup anemometers in row 3; on the background are tube solarimeters.
for row $B(T R 1)$ averaged $5.9 \pm 0.5 \mathrm{~m}$ with a diameter of $4.0 \pm 0.6 \mathrm{~m}$ in May and $6.1 \pm 0.4 \mathrm{~m}$ with a diameter of $3.9 \pm 0.7 \mathrm{~m}$ in Aucust. The crown height for row C(TR2) averaged $4.9 \pm 0.1 \mathrm{~m}$ with a diameter of 3.6 ± 0.6 m in May and $5.0 \pm 0.1 \mathrm{~m}$ with a diameter of $4.1 \pm 0.8 \mathrm{~m}$ in Auc̣ust. while those for row $D(T R 3)$ averaged $6.1 \pm 0.1 \mathrm{~m}$ with a diameter of $3.3 \pm$ 0.8 m in May and $5.7 \pm 0.8 \mathrm{~m}$ with a diameter of $3.4 \pm 0.5 \mathrm{~m}$ in August. The crown heights for row E averaged $5.0 \pm 0.3 \mathrm{~m}$ with a diameter of 3.4 $\pm 0.4 \mathrm{~m}$ in May and $5.2 \pm 0.3 \mathrm{~m}$ with the same diameter in August. From these results we observe that most wind protection may be expected in rows $B(T R 1)$ and $D(T R 3)$ and least protection in rows A and E. whose growth had been affected by competition for soil moisture and nutrients between the trees and the live-fence. from the time they were young. and by the root pruning along the hedges to exclude a combined system of Grevilleas and Coleus barbatus roots from extracting soil moisture in the cropland.
(iii) The neighbourhood of the experimental site.

A block of LRP staff houses is situated in the S.W. corner and at 10.4 m from the AF plot. Next to the house is a single Acacia tree about

6 in tall. The house is next to the boundary between the station and the southern - southwest neighbourhood. This boundary, the longest side of the main Matanya station plot. is 157 m and is marked by a planted hedge of kale apple thorny shrub (Fig. 8 and Plate 7).

On the other side of this hedge there is a neighbour's home with five nouses. the nearest of which 15 about 50 m from the $A F$ live-fence. To the southwest, that is behind LRP staff houses at about 100 m . are an assortment of tree woodlots about the age of the $A F$ Grevillea trees. The
tallest of theses trees is a eucalyptus tree al. $1 t 12 \mathrm{~m}$ tall. To the northwest is a woodlot of old eucalyptus trees about 25 m tall at about 400 m from the AF plot. The aerodynamic influence of these old trees during June to September is directly away from the AF plot as SE/SW winds dominate. Therefore most of these features do not influence the SE to SW winds that dominate during this period, leaving the lave-fence to be more exposed and making the Coleus barbatus live-fence all the more useful as a protective windbreak. When the SW wind blows, the southwest woodlot, the staff houses and the western part of the hedge appear to act as one continuous shelter-belt which lifts the wind making it descend somewhere in the middle of plot. This was observed from streaks of smoke from a charcoal stove placed on the roof of the staff house block.

3.3.2 (b) Experimental Layout of wind system

Figs. 8 and 9 and appendix Table A7 show the layout of wind measuring instruments in the arroforestry plot at Matanya. We installed twelve anemometers (A1. A2..... A12) in three rows (4 in each rows making 4 transect lines) in $A F$ at within row spacing of 5.2 m and between row spacing of 11 m .

In row 1. which was $2 H$ (H is height of hedge) or about 4 m from the western side of Coleus barbatus live-fence. we installed four anemometers. namely A1. A2. A3 and A4 (i.e. cups 10, 11, 12, and 13) at respective distances of 14.6 . 19.8. 25.0 and 30.2 m from the southern side of the live-fence. In the central row (Row 2). which was 15 m from elther the western or eastern live-ience sides. we installed 4 anemometers, namely A5. A6. A7 and A8 (i.e. Cups 14, 15, 38 and 39) at
12.3. 17.5, 22.7 and 27.9 from the southern side of the live-fence. Tr.:s row coincided with the central raw of Grevillea rubusta erees. ine anemometers were therefore installed at the centre between twi adjacent trees. Similarly in row 3. which was 4 m lalmost 2 H) from the oastern for 26 m from the western live-fencel we anstalled 4 cup anemometers, that is A9. A10. A11 and A12 li.e. cups 40. 41. 43 and 441 at 10.0 . 15.8. 21.0 and 26.2 from the southern side of the live-fence isee Plate 6). The above anemometers also formed transect lines composed of Line 1: anemometers A1. A5. A9 (cups: 10. 14 \& 40): Lane 2: anemometers A2. A6. A10 (cups: 11. 15. 41): Line 3: anemometers A3. A7. A11 (cups: 12. 38. 43) and Line 4: anemmeters A4. A8. A12 (cups: 13. 39. 44) isee Fig. 10). The thirteenth anemometer. cup 55 (the control. seen in Fig. 8). was installed in NAF in the oper, and exposed to the undsturbed wind field at a distance of about 70 m on the eastern side of $A F$ plot.

The anemometers were initially set at 1.0 m . at the beginning of the growing season. They were thereafter adjusted to frow with the maize crop but maintain 20 cm above the top of the nighest nearby maize plant in both $A F$ and $N A F$. In cases where the NAF maize plants orew faster than the $A F$ ldue to increased competition in $A F$ between the trees and the crop during periods of low moisture availability). the anemometers in NAF were adjusted to grow with the hionest maize plants in NAF and similarly those in AF were adjusted to grow with the highest maice plants in AF. Appendix Table A5 shows anemometer height adjustment an AF in the course the strong winds periods durind LR93 and LR94.

3.3.2 (c) The Woolfle mechanical anemographs

The AF (WB) and NAF (WA) anemographs were instailed at 2 m height to measure wind directions (see Fig. 8).

3.4. Radiation

3.4.1 Instruments for radiation me rements.

3.4.1 (a) General

We started experiments on radiation and shade measurements oy comparing long tube solarimeters and Kipp solarimeters in an open area at Matanya between $20 / 10 / 91$ and $31 / 10 / 91$ to standardize the cube solarimeters. We used thirteen 1 m long tube solarimeters type TSL mãae by Delta-T Instruments 1td (Delta-T 1td.. 1988: 1989) two k.10 solarimeters Sr Nr. 2091 and Sr. Nr. 3080 from Delta Ltd. Une of trie thirteen TSL we marked as Tb was used together with the two kipps lkol a kp2) solarimeters at 50 cm above the oround in an opers area to act as reference radiometer. The area did not have trees nearby to cast snadows on the instruments (see Plate 8). The 12 TSLs consisted of 4 (E1. W1. Si E NI) which were to be installed around the unpruned Grevillea robusta tree 1 (marked UT1) at 94 cm .4 (E2. W2, S2 \& N2) at 188 cm and 4 (E3̃. W3. 53 \& N3) at 376 cm from the tree trunk (see Fig. 11). The TSLs were to be placed to the east, west. south and north of UT1 for the seasons SR91-SR93 and of PT2 for the seasons LR94 \& SR94. The two trees had irregular conical canopies. Thev were located in AFMZ arn AFL1 plots. both of them were in tree row B(TR1) in the upper Dart or AF' (see Flas. i5 \& 71. The thirteenth tube (marked Tb) was to be placed side by sade with the two Kidps in an open area throudhout the experimental periva. as the reference radioneters for the TSLs.

Long unfiltered detectors. namely Delta-T Tube solarimeters (Long). or TSLs. were used for spatial and temporal inteoration of the Deasured radiation (Szeicz et al.. 1964: Delta-T Devices Ltd.. 1988). Iwo Kipps (kpl and kp2) (Kipp \& Zonen. 1977) and one tube (Tb.
solarimeter were installed in the open and taken as the substandard instruments against which the tube solarimeters used in AF wore Ealibrated (see Plate 8).
3.4 .1 (b) Tube solarimeters (unfiltered) (TSL)-Tube pyranometers

(i) Factory specifications and calibration

The tube solarimeter sensor is made up of a copper-constantan Ehermopile whose junctions axe embedded in a detector. The detector consists of alternate matt black and whate sections whilch reach iifferent equilibrium temperatures when exposed to shortwave radiation. The 60 junctions of the thermopile embedded in the black and whate sections respond to the temperature differences between these two surfaces and generate a millivolt output which is directlv provortaonai to Ehe irradianice.

The detector measures 85.5 by 2.2 cm . It is enciosed in a proex borceilicate glass tube which is transparent to most of the vasibie and near infra-red $(<2.5 \mathrm{um})$ solar radiation. This ulass 25 not trarsdas ent to long-wave radzation from the surrounding or the atmosphere. The pries glass transmits visible and infra-red radiation of waveienoths U. 5 to 2.5 mm . The pyrex glass tube has an exterrial diameter of 2.6 cm and a Chickness of 1.5 mm . The entire instrument 1997 cm lona lleita-T Devices Ltd. . 1984). To ensure that the detectors were mounited norizontally. reference platforms were machined on the end of the sclarimeters. Bubble levels were supplied fitted to these plations. The leveling platform at each end was also used to check that the aetector elesent was not twisted.

The solarimeters are sumplied calibrated. With their sensitivaties at justed to 15 mV per kWm^{-2}. The TSL lack symetry and their sensitavity
solarimeter were installed in the open and taken as the swistandard instruments adainst which the tube solarimeters used in AF were calibrated (see Plate 8).

3.4.1 (b) Tube solarimeters (unfiltered) (TSL)-Tube pyranometers

(i) Factory specifications and calibration

The tube solarimeter sensor is made up of a copper-constantan thermopile whose junctions are embedded in a detector. The detector consists of altemate matt black and white sections which reach different equilibrium temperatures when exposed to shortwave radiation. The 60 junctions of the therwople embedied in the black and whate sections respond to the temperature differences between these two surfaces and generate a mililvolt output which is directly prowortionial to the irradiance.

The detector measures 85.5 by 2.2 cm . It is enciosed in a pyrex borosilicate glass tube which is transparent to most of the visibie and near infra-red ($<2.5 \mu \mathrm{~m}$) solar radiation. This पlass 15 not transpar ent to long-wave radiation from the surrounding or the atmosphere. The pyrex glass transmits visible and infra-red radiation of waveienaths 0.35 to 2.5 um . The pyrex giass tube has an exterrial diameter of 2.6 cm and a thickness of 1.5 mm . The entire instrument 1897 cm lona (Leleita-T Devices Itd. . 1984). To ensure that the detectors were mourited horizontally. reference platforms were machined on the end of the solarimeters. Bubble levels were supplied fitted to these platiorms. The levellino platform at each end was also used to check that the detector element was not twisted.

The solarimeters are supplied calibrated. With their sensitivities adJusted to 15 mV per kWm^{-2}. The TSL lack symmetry and their sensitivity
 the staff houses and some of the surrounding nouses and part of the kale appie hedge.

Flate 8. The layout of tube (TSLs) and kipps (kp2) solarimeters during calibration (intercomparisons) in the open next to the solar panel which provided power for the electrical cup anemometers. in October 1991 at Matanya in Cb3 (21/4/1994).

Calibration of tube solarimeters was done to exclude inaccuracies due to:
a. moisture condensation inside the tubes;
b. erratic performance of integrators:
c. deviations from horizontality of tubes and detector elements

(iii) Vacuum pump flushing of Tubes

Initial flushing (or drying) of tube solarimeters was done just before SR91 on 26/9/91 at the Department of Crop Science. Field station. Kabete campus. University of Nairobi (DCS). The silica gel through which the flushing air passes was oven dried after the flushing of each rube to ensure complete drying. A vacuum pump was used to drive air chrough the hot silica gel and through the tube for 15 to 20 minutes. Thereafter both ends of the flushed tube were promptly sealed with the screws smeared with the silicon rubber sealant.

Subsequent flubhing was done at Matanya experimental station usiria motor cycle tube as pump. An inflated motorcycle tube was connected to a glass tubing, through a rubber tube which was fixed with a clip to stop the air from rushing out. The tube was then immersed into the bottom of a conical (flat-bottom) flask filled with silica qel. The silica gel was again used to absorb moisture from the air which passed throuah it. The now dry air was then led out of the flask throuxh another tube into the tube solarimeter. The cubes were flushed until the moisture condensation disappeared. then the clips were closed very tightly to avoid any moisture leakage.

The following materials were needed for such a ileld experiment (compare also Kaınkwa, 1983).

- bicycle foot pump
- silica del
- a two way flat-bottomed flask (or a conical flask)
- a motorcycle tube (modified wath one way only bucvcle valves)
- two right angled glass tubes
-4 rubber tubinars (diameter 0.8 cm$)$
- 4 clips
- 2 bicycle valves
- a screw draver

3.4.1 (c) The Kipp solarimeters

This Kipp solarimeter (also called Moll - Gorczynski pyranometer, has a 14 - junction manganin-constantan thermopile in the form of a 10 by 14 mm rectande (HMS. 1956). The sensitivities of different kipp solarimeters are provided by the manufacturers for resistances of approximately 10 ohms. The sensitivities of the two kidps used at Matanya. with To as substandand, with which to check the rest of the TSLs were $12.3(k p 2)$ and 13.99 (kp1) $\mu V W^{-2} m^{-2}$ for ser. Nrs. 773973 and 892505 respectively.

The blackened surface of the thermopile is covered by twi concentric glass hemiepheres (domes) of 3 and 5 cmi 2 n drameter. The space between the hemispheres is evacuared to limit sensible neat transfer by convection and advection. To avoid condensation on the inside of the glass domes, the interior of the solarimeter is kedt dry by means of a built-in cartrjdge filled with silica gel pellets or othel suitable drying chemicals (HMS. 1956). The Kipp has a 998 response time
 compensated and has a remperature coefficient of -0.28 per ded C.

E1. W1, S1. N1 located at 94 cm from UTI E2. W2. S2. N2 located at 188 cm from UTI
E3. W3. S3. N3 located at 376 cm from UTI
_ _ _ - direction of maize, beans and Grevilleo rows.

Fie. 11. A layout of tube solarimeters around one (UT1) of the two (UTI \& PTR) Grevillea mbume treos in AF plot whosa mhaden were monitored.
for use as it was accidentally lost in computer during processina. Tnree solarimeters (two Kıpps (kpi \& kp2) and one two) were instailed in the oben area for the experimental period. but Sr. Nr. 892505 (kpl) was later on removed because of malfunctioning.

Halverson and smith (1974) developed a FORTRAN propram that calculates the length of the shadow cast by a tree on any slope aria azimuth. Quesada et al. (1989) developed a program wratten in Microsort BASIC that plots the distribution of shadows from a specified plot ot trees. Using the works of Halverson and Smith (1974) and Quesada et ai. (1989). the shade effects of the entire AF can be quantufied by knowing the shade benaviour of only two trees.

3.5 Soil temperature measurements

3.5.1 Instruments for measuring soil temperatures
3.5.1 (a) Soll temperature thermietors (sensing devices).

We used thermistors (type U) as sensors to measure soll temperature. The thermistors (thermally sensitive resistors of semaconductors). which were buried in the oround at an appropriate depth. were connected to each of the Grant data-logger channels througri cables, which passed the information on to the data-lagaer memery. The temperatures thus locged were read into the perscnal computer (PC) using a LOTUS 1-2-3- Iransfer prooramme. The two sets of thermistors: were mini-thermistors (type U") from Grant Instruments Ltd. The rirst set nad been used at Machakos in kenya (Mungal. 1991). nence compar isch with the newer set (TM2) was necessary to test their inteority. The results are presented in section 4.5.1.

3.5.1 (b) Grant Squirrel datalog (logging devices)

Hourly soil temperature readings were obtained from two GRANT Ebit 16-temperature channels. Squirrel dataloggers (type SQ32-16U) for three plots (agroforestry (AF), non-agroforestry (NAF) and a 2 w by 2 iu bare soil plot (BS)), One Grant (Sr Nr 7317). With a reading range of $10^{\circ}-80^{\circ} \mathrm{C}$. was used in AF and the other (Sr Nr 11402) with a reading range of $0^{\circ}-50^{\circ} \mathrm{C}$. in NAF and BS. The Grant datalogaers were housed in two wooden boxes lined with polythene sheets to protect theil from rain and other weather vagaries. Insulating materials. that is cotton wool and small pieces of paper. were laid on the bases to protect theifil iroil very low temberarures that sometimes occurred at night.

Plate 9. The layout of TSLS on wooden stands under an experimental Grevillea robusta tree in the AF (UT1) plot.
3.5.2 Calibration of soil thermistors in a Temperature-Humidity Chamber at the Kenya Meteorological Department (Nairobj).
Calibration of thermistors was carried out before they were deployed in the field for SR91. The sensors were calibrated in the Temperature-Humidity Chamber of the Kenya Meteuroloaical Department. Jagoretti-Corner. Namrobi. The first set of fifteen soll thermistors (TM1) was calibrated on $4 \& 5 / 6 / 91$ while the second set (TM2) if eighteen which were received later from The Netheriands. Were calibrated on 17/9/91. The almost 1:1 regression lines of TMZ on TM1 (Fig. 332) and the thermistors response to chamber temperature curves obtained durinc callbration exercises in the Temperature-Humidity chamber are presented in Chapter 4 section 4.5 .

3.5.3 Experimental layout

3.5.3 (a) Agroforestry plot (AF)

Fig. 12 presents the soil temperature thermistor layout in the agroforestry plot (AF). Like NAF. the acrotorestry thermastors (AiMs and BTMs) in AF were installed at two depths of 7.5 cm and 15 cm . Eight of the sixteen thermistors (AIMs) were installed at a distance of 94 cm fram the Grevillea trees (four at each of the 7.5 cm and 15 cm depths). Simalarly, the remaining eiant (BTMs) were installed at a distance of 376 cm from the Grevilleas (again four at each of the 7.5 cm and 15 cm depths). There were four different plots in tne AF. Each glot had two trees centered along ats longatudinal line. The Greviliea trees in two of these were root-pruned and the other two had unpruned trees. Une of the pruned and one of the unpruned plots were mulched. The other two were unmulched.

Two pruned (PT1 and PT2) and two unpruned (UT4 and Ui5, Grevilleas fiad thermistors (ATMs and BTMs) installed at the distance of 94 cm and $370^{\circ} \mathrm{cm}$ from the tree truniks. It was expected that the soil structural and textural gradients that occur from nigher to lower parts of the AF as given by its siope will be reflected. together with the influences of rreatments. in the behaviour of soil temperatures.

3.5.3 (b) Non-agroforestry plot (NAF)

The entire NAF plots where soil temperature readinas were taken beasured 13.5 m by 25 m . This was divided into eiant 12 m iny $\overline{\mathrm{g}} \mathrm{m}$ replication plots. four of which were not used by us isee section 3.i.i. i (c)). The other four nad the malze (H 511)/ bean (rosecocol intercrup. We installed soll temperature sensors in intercropped piots oniy as shown in Fig. 13. Fourteen thermistors (TMs) were installed in NAF. two at. each site at the depths of 7.5 and 15 cm . along the diagorials of each plot making four per plot with the 7.5 cm depth in position AM5 and one at 15 cm depth in position BM5. exception of plot M5 (positions AM5 arus BMF) which had one thermistor each. Thermistors TMi5 and TM10 whiscr would have been used in these NAF plots were deployed in the bare soil plot (BS).

During the preparatory experiment in 1991. a short preliminary measurement period was conducted. prior to March 1992. in the old control plots (L1. L3. M1 \& M3), before we moved all thermistors to new plots.

3.5.3 (c) Bare soil plot (BS).

A bare soil plot. measuring 2 m by 2 m . was set aside tor measuring the effect of unimpeded solar hearino on the soll temperatures

Fig. 12. Agroforestry plot at Matanya showing the layout of soil temperature thermistor (ATM) positions installed at 94 and 376 cm alstances from Orevillea robusta trees. Note that thermistors marked with odd numbers were used to measure soil temperatures at 15 cm depth and those with even numbers at 7.5 cm depth.
at the two depths 17.5 and 15 cmi . The thermistors were 1 ristallec at the centre of the BS plot. The bare soil plot was on an open site tar from high objects which would cast shadows on it. It was kept extremelv bare all the time.

		NU
NU		
NU	围	
		NU

Pig. 13. Non-agroforestry plot (NAF) showing the layout of aoil temperature thermistor ('TY) positions in the mulched and Local plots. TMs marked with odd numbers (TM1; ...; TM15 except 'TMh) were used al 15 cm depth. 'Mhose marked with even numbero except l'M13, were uced at $\% .5 \mathrm{~cm}$ depth.

LEGEND

娄 inslrument pox
x position of thermistors
...... diagonals of sub-plots
HIU not used

CHAPTER FOUR

4. Results and discussion

4.1 Results on maize and beans intercrops

4.1.1. Short Rains season 1991

4.1.1 (a) Rainfall and evaporation climate during growing season

The maize/bean intercrop was planted on 15th October. 1991, after a cumulative rainfall total of 30.3 mm was recelved against 22.5 mm of pan evaporation in the 4 days immediately before planting. The rainfall throughout the four months of the season was below the long term mean except for October. which received 8.7 mm above its long term mean (see Fig. 14 \& Table 6). Pan evaporation for October was 18.5 mm below the long term mean. November, with a rainfall of 43.9 mm below its long term mean had the highest nedative value followed by December and January. 1992. which had 29.8 and 16.6 mm respectively. November had the highest positive evaporation deviation of 31.8 mm from its long term mean for that month (Table 6).

The rainfall received in October was only adequate for seeding emergence and initial growth. There was a good initial start and bad ending. Inadequate rainfall in November and December resulted in plants attaining the permanent wilting point fairly fast. by January 1992. Beans were harvested on $5 / 2 / 92$ and malze that remained in the field was dryang quite fast. The plants did not attain their optimum height of 2 m this season.

4.1.1 (b) Maize and beans phenology and soil fertility variation

Of the plants 15% in the plots that would the following year become Local control (L) and in the plots that would the following year become Mulched control plot (M). as well as 20% in aorroforestry (AF).

Table 6. Seasonal monthly rainfall (mim) and pan evaporation rates (mm) for 1991-1994 Short Rains growing seasons and deviations from their long term averages.

-	monthly		long term (1942-94)		actual deviations from long term mean	
	rainf	evapo	rainf	evapo	raint	evapo
SR91						
Oct	88.0	137.4	79.3	155.9	8.7	-18.5
Nov	91.4	147.1	135.3	115.3	-43.9	31.8
Dec	50.6	148.6	80.4	133.7	-29.8	14.9
Jan' 92	35.7	158.2	52.3	151.2	-16.6	5.0
Str92						
Oct	48.5	159.6	79.3	155.9	-10.8	3.7
Nov	137.6	120.6	135.3	115.3	2.3	5.1
Dec	146.8	122.8	80.4	133.7	66.5	-10.9
Jan' 93	204.7	105.2	52.3	151.2	152.4	-46.0
SR93						
Oct	65.2	168.2	79.3	155.9	-14.1	12.3
Now	117.2	115.8	135.3	115.3	-18.1	0.5
Dec	48.3	174.7	80.4	133.7	-32.1	41.0
Jan' 94	3.1	172.5	52.3	151.2	-49.2	21.3
SR94						
Oct	98.0	137.0	79.3	155.9	18.7	-18.9
Nov	155.2	95.2	135.3	115.3	19.9	-20.1
Dec	60.3	115.3	80.4	133.7	-20.1	-18.4
Jan' 95	13.9	167.9	52.3	151.2	-38.4	16.7

Table 7. Seasonal monthly rainfall (mm) and pan evaporation rates (mm) for 1991-1994 Long Rains growing seasons and deviations from their long term averages.

	monthly		$\begin{aligned} & \text { long term } \\ & (1942-94) \end{aligned}$		actual deviations from long term means	
	rainf	evapo	rainf	evapo	rainf	evapo
LR92						
March	49.8	166.6	60.6	160.6	-10.8	6.0
April	99.7	141.7	122.2	138.3	-22.5	3.4
May	18.1	170.8	46.6	158.0	-28.5	12.8
June	5.2	180.9	47.5	154.3	-42.3	26.6
R93						
March	38.6	145.6	60.6	160.6	-22.0	-15.0
Apr 11	84.7	138.2	122.2	138.3	-37.5	-0.1
May	90.4	154.4	46.6	158.0	43.8	-3.6
June	32.3	146.1	47.5	154.3	-15.2	-8.2
1594						
March	29.5	177.0	60.6	160.6	-31.1	16.4
April	190.5	154.0	122.2	138.3	68.3	15.7
May	73.7	148.2	46.6	158.0	27.1	-9.8
Sune	47.5	131.0	47.5	154.3	0.0	-23.3

Fig. 14. Deviations (in mm) of three seasons of Short Rains (1991-1995) monthly seasonal rainfall and evaporation from long term means at Matanya.

Pig. 15. Deviations (in mu) of three seasons of long Rains 1991-1995 monthly seasonal rainfall and evaporation irom long term means at Matanya.
had emerged by 10 days after planting (DAP). By 14 DAF 80% of the plants in L. 90% in M and 85% in AF had emerged. Emergence attained 100% level by 21 DAP. These differences in emergence later contributed to marked differences in biomass yields. Although it was not possible to explain differences in emergence, the history on soil fertility levels at the time we did our test experiment in SR91 and soil chemical analysis done later in 1993 (Table 8) suggested that there were substantial inhomogeneities in exchangeable ions, especially phosphorus. which varied in the layer $0-10 \mathrm{~cm}$ (surface) from 96.8 ± 5.5 in L to 40.7 ± 2.0 in $A F$. We can see from Table 8 that these solls are acidic with a pH of about 6.3 ± 0.3 in the surface layers. Variations were observed in K . Mn and Mg . At the surface $(0-10 \mathrm{~cm}$ of the soil) Mg . for example. varied from 4.1 ± 1.1 and 5.9 ± 1.5 in the centre of $A F$ and in the areas closer to the live-fence respectively to 1.8 ± 0.2 (m.e. \%) in L. In the layer $20-30 \mathrm{~cm}$ it varied from 5.6 ± 0.8 and 6.0 ± 1.8 in $A F$ and cluser live-fence respectively to 2.1 ± 0.3 (m.e. \%) in L and M plots. Variations of such magnitude were inherent in the soil at the time we started our experiments in SR91 and had persisted throughout our experimental period. These variations were off set by the farm yand manure that we sdded at the rate of $10 \mathrm{t} / \mathrm{ha}$ every Long Rains (LRs) season.

Soil moisture level had dropped by 63 DAP and molsture stress induced premature tasselling in 10% of the plants by 78 DAP. Marze plants did not have problems with pests, diseases and weeds. The plants started drying up after tasselling. We only harvested blomass and no grain yields from the intercrop.

Table 8. Soil chemical composition at Matanya of examples taken during study period.
(a) Chemical composition in the layer $0-10 \mathrm{~cm}$ depth

	local	Mulch	Agrof	Livefe	average
pH. soil	6.3 ± 0.5	6.6 ± 0.2	6.1 ± 0.1	6.0 ± 0.5	. 3 ± 0.3
Na m.e. \%	1.1 ± 0.3	0.9 ± 0.1	0.9 ± 0.1	1.0 ± 0.3	1.0 ± 0.2
K m.e. \%	2.1 ± 0.8	1.9 9 ± 0.2	1.8 ± 0.4	1.5 ± 0.6	2.2 ± 0.5
Cam.e. \%	11.9 ± 0.9	9.8 ± 0.2	7.9 ± 1.4	9.4 ± 3.1	9.8 ± 1.4
Mg m.e. \%	1.8 ± 0.2	2.1 ± 0.2	4.1 ± 1.1	5.9 ± 1.5	3.5 ± 0.8
Mn m.e. \%	0.8 ± 0.2	0.8 ± 0.1	1.3 ± 0.2	1.2 ± 0.0	1.0 ± 0.1
P p.p.m.	96.8 ± 5.5	53.3 ± 33	40.7 ± 2.0	88 ± 71	69.7 ± 27.4
N \%	0.3 ± 0.1	0.2 ± 0.0	0.3 ± 0.2	0.2 ± 0.1	0.3 ± 0.1
C \%	2.4 ± 0	.	. 1 ± 0.2	1.5 ± 0.3	1.6 ± 0.3

(b) Chemical composition in the layer $20-30 \mathrm{~cm}$ depth local Mulch Agrof Livefe average

pH. soil	5.5 ± 0.2	6.5 ± 0.2	6.3 ± 0.3	6.1 ± 0.6	6.1 ± 0.3
Na m.e. $\%$	1.2 ± 0.2	0.8 ± 0.2	0.9 ± 0.1	1.0 ± 0.3	1.0 ± 0.2
K m.e. $\%$	2.4 ± 0.7	1.5 ± 0.2	1.6 ± 0.1	1.5 ± 0.6	1.8 ± 0.4
Ca m.e. $\%$	11.6 ± 0.9	8.5 ± 0.8	9.8 ± 2.5	8.8 ± 1.5	9.7 ± 1.4
Mg m.e. $\%$	2.1 ± 0.3	2.1 ± 0.2	5.6 ± 0.8	6.0 ± 1.8	4.0 ± 0.8
Mn m.e. $\%$	0.8 ± 0.1	0.7 ± 0.1	1.0 ± 0.1	0.9 ± 0.1	1.0 ± 0.1
P p.p.m.	86.5 ± 0.6	28.5 ± 9.0	42.0 ± 0.0	95 ± 90	63.3 ± 26.4
$\mathrm{~N} \%$	0.2 ± 0.1	0.4 ± 0.5	0.2 ± 0.0	0.2 ± 0.1	0.3 ± 0.2
$\mathrm{C} \%$		1.7 ± 0.2	1.4 ± 0.1	1.8 ± 0.3	1.1 ± 0.1
	1.5 ± 0.2				

NB:
ph. soil-degree of acidity or alkalinity:
Na. K. Ca. Mg \& Mn m.e. \% - per cent molar equivalent of these chemicals in the soil:
P p.p.m. - parts per million of phosphorus in the soil:
N \& C \% - per content in the soil.

By 14 DAP. 85% of the beans in L and $A F$ and 100% in M plots had emerged. By 44 DAP. 10% of the beans in L and AF and 20% in M plots had flowered. Flowering was completed by 49 DAF. The plants started wilting
by 77 UAP due to lack of moisture di by 83 DAP they were drying en 23sse. Again there were no problems associated with pest. diseases. and weeds before soil noisture level dropped.

The biomass and seed yields from beans were harvested on 110 DAF $12 / 2 / 92)$. We here therefore present the following results for this season: (i) maize heights in control (L and M) plots and $A F$: (il) grain and biomass yields in each of these plots.

4.1.1 (c) Maize heights

Fig. 16 displays growing maize heights during SR91 in the those plots that would in the following year become Local (L) and in the those plots that would in the following year become Mulched (M) and AF plots. The time scale adopted here is the julian day (i.e. successive number of days in a year (DOY) : 1-365 days), which we will use for most parts in this thesis. The maize heights were measured in centimetres.

We see from Fig. 16 that the plants in the Mulched plots had outorown those in the AF and Local respectively. However. the whole pleture of Fig. 16 indicated that plants were growing at uniform rate within $\pm 15 \mathrm{~cm}$. Although the final differences remain small $(\pm 7-8 \mathrm{~cm}$. if agroforestry is taken up as the average), the difference between Mulched and Local future plots. is largest. Given the equal treatment in SR91. a small inherent fertility difference (explained in Table 8) due to previous seasons. with mulch application may be behind this difference. because that may not fully vanish by deep tillage.

Fig. 16. SR91 maize heights for three plots: Local, Mulched and agrofrestry at Matanya, equally treated (deep tilled plus mulching).

119. 17. Average SR91 malze biomass yields per row in equally treated (deep tilled plus mulching) pruned and unpruned plots in the AF, and mean yields for all pruned and unpruned plots respectively (horizontal lines).

4.1.1 (d) Biomass yields of maize and beans

Table 9 summarizes the biomass yields relative to the average Yields of each future control treatment (L \& M). Mulched control (M) yielded 1.27 ± 0.10 t/ha and the Local control (L) $0.93 \pm 0.19 \mathrm{t}$ /ha (Table 9) Which difference was significant. There was higher biomass yield in pruned $A F$ than in the unpruned. The percent relative yields in both Mulched and Local AF plots were therefore higher than those in the unpruned. Lower part of $A F$ (i.e. interspace C-D. D-E) had less actual as

Table 9. SR91 maize biomass yields (t/ha) in AF and relative to the control plots. (a) root pruned. (b) root unpruned. (c) NAF control plots. Note that there were 28 maize rows intercropped with 32 beans rows. that is 7 maize was in the space (interspace) between two Grevillea robusta tree rows. This layout was used for all seasons except LR92.

Between		average maize rows	malze rows	yields (t/ha)
\% of M	\% of L			

(a) root pruned	Grevillea robusta tree plot			
A-B	$1-7$	1.08 ± 0.29	85	116
B-C	$8-14$	0.98 ± 0.21	77	105
C-D	$15-21$	0.97 ± 0.15	76	104
D-E	$22-28$	0.93 ± 0.25	73	100
A-E	$1-28$	1.00 ± 0.23	79	108

b) root unpruned Grevillea robusta treo plot

$A-B$	$1-7$	1.01 ± 0.30	80	109
$B-C$	$8-14$	0.89 ± 0.15	70	96
$C-D$	$15-21$	0.81 ± 0.15	64	87
$D-E$	$22-28$	0.85 ± 0.28	67	91
$A-E$	$1-28$	0.91 ± 0.24	72	98

(c) control plots

Local (L)	0.93 ± 0.19	73	100
Mulched (M)	1.27 ± 0.10	100	137

rell as percentage relative yields than the upper part (i.e. A-B. B-C).
A comparison of pruned versus unpruned plots indicate the yields were higher in the former than in the latter byabout 10\% (Fig. 17 and Table 9). The root pruning somewhat reduced competation for soll moisture between the trees and the maize in the intercrop, resulting in more biomass yields in the pruned portion of the AF. Termites had built their nests in the lower part of $A F(<2 \%$ of $A F$ plot). thereby affecturg the soil homogeneity, root penetration and hence crop growth and resultant biomass yields. This area was excluded from further analysis.

Figs. 18 \& 19 show the beans biomass and seed yields for the SR91 in pruned and unpruned plots. Bean rows were not shown in Fig. 9, only maize rows were shown. Also bean rows did not coincide with the tree rows in the intercrop but maize rows did. The gaps in the graphs therefore denote positions of the tree rows relative to the bean rows. The results of the beans biomass and seeds yields are also presented as the row averages in pruned and unpruned plots.

According to Fig. 18 there were only small differences in average blomass yields between the pruned and unpruned plots. although the former appeared to have somewhat more. In the lower half of the AF , the unpruned had more biomass than the pruned. although the overall average yield for the pruned plot was 6.7% higher than for the unpruned plots. These higher biomass yields in this part of the unpruned $A F$ were probably due to more soil moisture in the surface layers of this part than in the pruned part of the plot. which bordered the fruit trees whose roots might partially have colonized this part of the plot. The bean plants have shallow roots and may also have been affected less by iermite nests in deeper layers of the soil than the maize plants with deeper roots. Hence maize biomass yields were lower than bean biomass

Fig. 18. Average SR91 beans biomass yields per row in equally treated (deep tilled plus mulching) pruned and unpruned plots in the AF, and mean yields for all pruned and unpruned plots respectively (horizontal lines).

Pig. 19. Average SR91 beans seed yields per row in equally treated (deep tilled plus mulching) pruned and unpruned plots in the $A F$, and mean yielde for all pruned and unpruned respectively (horizontal ines).
yields in the lower half of $A F$.

4.1.1 (e) Beans seed yields

There was considerable increment of the seed yields in pruned over the unpruned plots. Again here root pruning (trenching) reduced competition for soil moisture and soil nutrients between the beans in the intercrop and the Grevillea robusta trees (Fig. 19). Seed ylelds per row as a per cent of plant weight were higher in the pruned than in the unpruned plots (Fig. 20 and Table 11). Given the biomass results for the pruned plot relatively more of the bean dry matter must have gone into seeds under the SR91 conditions than into pods. Seeds are agronomically more important than the remaining dry matter although pod residues may be used as fodder (!). The average seed yıeld as percentage of plant werght was 38.9% in the pruned and 27.4% in the unpruned (Tables 10 \& 11). This might have been due to higher soil moisture in pruned plots than in unpruned plots in the soil layer where the bean roots ramify. because water stress influences seed formation negatively (Norman et al. 1984). The per cent yields. relative to the Local and Mulched control plots. were higher in the pruned and in the Mulched plots than in the Local and unpruned ones (Table 11). Again from the beans seed yields. it follows that the same two factors may be involved as in the case of maize. as far as the future Mulched control plots (M) is concerned. The M had again a higher emergence land also flowered earlier) and they had higher yields due to this and possibly Mulch/Local differences due to longer use of these plots under the same treatments. Hence these significant differences in control plots which were observed in maize biomass yields. (Table 9) and in beans blomass yields (Table

Fig. 20. SR91 beans seed weight as a percentage of total plant weight per row in the same pruned and unpruned plots in the AF of Fig. 17.

Pig. 21. Maise helghte at 94 cm from Grevilleá robusta row (row 1 of malze) in AF plots for LR92, for four differently treated series of plots (pruned and unpruned Local and Mulched) and the control plots.

Table 10. SR91 beans seed yields ($t /$ ha) in $A F$ and relative to the control plots. (a) root pruned. (b) root unpruned. (c) NAF control plots. Note that there were 32 bean rows intercropped with 28 maize rows. that is 8 beans rows in each interspace. This layout was used for all seasons except LR92.

Between		average bean seed yields (t/ha)	\% of M	\% of L
$\begin{aligned} & \text { tree } \\ & \text { rows } \end{aligned}$	bean rows			
(a) root pruned Grevillea robusta tree plot				
A-B	1-8	0.37 ± 0.11	84	128
B-C	9-16	0.44 ± 0.10	100	152
$C-D$	17-24	0.43 ± 0.12	98	148
D-E	25-32	0.25 ± 0.02	57	86
A-E	1-32	0.37 ± 0.13	84	128
b) root unpruned Grevillea robusta tree plot				
A-B	$1-8$	0.26 ± 0.07	59	90
$B-C$	9-16	0.28 ± 0.02	64	97
C-D	17-24	0.29 ± 0.02	66	100
D-E	25-32	0.22 ± 0.06	50	76
A-E	1-32	0.26 ± 0.05	59	90
(c) control plots				
Local (L)Mulched (M)		0.29 ± 0.03	66	100
		0.44 ± 0.04	100	152

10) must be due to the long use of these plots under the same Mulch Local treatments by the host institution.

Table $11(a-c)$ shows that on the average with respect to Lacal control plot. the difference in beans biomass yields between pruned mulched AF plot and the future Local control plot (L) was 0.06 ± 0.22 tha and that between unpruned Mulched AF plot and L was 0.02 ± 0.21 t/ha. while with respect to Mulched control, the difference between pruned Hulched AF plot and the future Mulched control plot (M) was 0.12 ± 0.29 t/ha and that between unpruned Mulched AF plot and M was 0.16 ± 0.28 t/ha.

Table 11. SR91 beans biomass yields (t /ha)
in $A F$. (a) root pruned. (b) root unpruned.
(c) control

Interspace	(a) pruned	(b) unpruned
A - B	0.69 ± 0.22	0.44 ± 0.07
B C C	0.63 ± 0.05	0.51 ± 0.16
C D	0.58 ± 0.12	0.67 ± 0.09
- E	0.42 ± 0.12	0.58 ± 0.16
A - E	0.58 ± 0.17	0.54 ± 0.16

(c) control

Local (L) 0.52 ± 0.05
Mulched (M) 0.70 ± 0.12

These differences were much smaller than their error
margins and therefore should be considered agronomically irrelevant.

4.1.2 Long Rains season 1992

4.1.2 (a) Rainfall and evaporation climate during growing season

The intercrop of maize and beans for the Long Rains 1992 (LR92) growing period was planted on 23th March, 1992 after a total rainfall of 24.3 mm was recelved in 9 days against pan evaporation of 33.2 mm prior to the sowing date at Matanya station. An additional rainfall amount of 13.4 mm was obtained on the day of planting. Seedling emergence and establishment was very poor. There were few seed yields for beans and no grain yields for maize during LR92. There were some biomass yields for maize and beans albeit in reduced tonnage per hectare. The maize did not reach the tasselling and silking phases.

The rainfall totals for March. April. May and June (LR92) were way below their long term means (see Fig. 15 \& Table 7). Increasing/ negative deviations were expersenced from the beginning to the end of the season. The months of May and June received 28.5 and 42.3 mm respectively below their long term means. March and April at the beginning of the season received 10.8 and 22.5 mm respectively below
their long term mean values. The actl deviations of pan evaporation were all positive in the four months. The highest deviation, of 26.6 mm above the long term mean. was experienced in June and the minimum of 3.4 mm in April. Matanya received a total moisture deficut of 487.2 mm for the four months of these Long Rains. The rainfall therefore fell short of that expected to support crop production.

4.1.2 (b) Maize and beans phenology

By 30th March (i.e. 7 DAF) 30% of the maize seedlings in the AF and 20% in the other treatments (control plots) had emerged. Emergence of 100% was attained by 15 DAP. The soil moisture level had dropped soon after emergence. although the plants had survived for some time before starting to wilt. The wilting began by 57 DAP before tasselling and silking phases were reached. We assessed the general conditions as unsatisfactory on 56 DAP.

By 7 DAP 20% of the beans bean seedlings in the control plots and 30% in the AF emerged. Emergence of the beans seedlings reached 100% by 15 DAP. 50 DAP complete flowering had been achieved. Plants started experzencing water stress by 64 DAP. Ripening was completed at the same time as the plants were drying up. by 85 DAP. Due to water stress and attack by fungal diseases, mainly smut. the plants were in unsatisfactory condition. Both the seeds and biomass were harvested on 7-9th July. 1992 (near the 105 DAP).

Like for the SR91. we present results of maize heights and blomass yields for both maize and beans, and seeds for beans alone. in the intercrop in the (i) Mulched and Local control and AF plots. (ii) four AF sub-plots with pruned and unpruned Grevillea robusta trees. There were no grain yields for maize.

4.1 .2 (c) Maize heights

Fiog. 21 presents malze neiơnts at 94 cm from Greviliéa rowe iv.e row 11 in the AF plots. The plants in the pruned Local at ay $1+7$ ark bevona were about 8 cm or less taller than those in the unvruned Local. The plants in the pruned Milched plot rad a siow initiai drowti compared to those in the ururuned Mulched plots in the beoinuruo but attained and remaired at the same height by day 140. In fact Lu0 deve onwards. in the AF plots oniy unpruned Local showed a difference wath the others. The plants in rows 188 cm from tree rows drew at the watur rate irom $[0 Y Y 119$ till 132 when those in AFL2 remanned behina and frum Doy 140 the AFM2 plants overtook the rest (Fig. 22). The plante in tife rows at 282 cm from the tree rows (i.e. row 3. Fig. 23) had an initial nead start in the pruned jocal plot but were frow day 147 onwarty overtaken by those in pruned Mulcned plot. Particularly the Erama differences betwen urpruned and prund Mulched plote. in order of 20 ow from day 147 onwards. 13 striking. In the Local piotis this difference was less than 10 cm at maximum.

Fig. 24 presents the average neights for plants in rows it at 376 Cll frow tree rows. We can see here that the piants an urorured Loce. (AFLz') plot. nad intial head start. reachino 10 cm more at maximum ama remalned ahead throughout. The were followed by those in brund Licit |AFLi) and then by those in AFM2. but these differences are ever smaller.

A comparison of AF sub-blots with the control Dlots (Flas. 21-24) reveals that for all the distances plants in botn concris treatimentes (Mulchet controi and Local oontrol) had slow initial arowth but thev overtook the others towards the end of the season by [oy 132. Flants 111 Mulched NAF plots were must often the tallest in three cases 1 mmediate: v

Fig. 22. Maize heights at 188 cm from Grevillea robusta row (row 2 of maize) in the same AF plots as in Fig. 21 for LR92.

Fig. 23. Maize heights at 282 cm from Grevillea robusta row (row 3 of maize) in the same AF plots as in Fig. 21 for LR92.

Fig. 24. Maize heights at 376 cm from Grevillea robusta row (row 3 of maize) in the same AF plots as in Fig. 21 for LR92.

Pig. 25. Average LR92 maize yields per row in Mulched pruned (AFM1) plot. LW and UP are respectively average yields in the lower (rows 17-21) and upper (rows 8-12) parts of AFM1. PL is average yield for entire AFM1 plot.
followed by those in pruned Mulched (AFM1). Local control and the unpruned Local (AFL2) plots \& the pruned Local (AFL1) did not difrer much but indeed unpruned AFM2 performed rather badly but the height difference remained close to $10 \mathrm{~cm}(i . e .12 \mathrm{~cm})$. Pruned Mulch 15 higher ibut negligibly so) than pruned Local from the beginning, till day 132. The differences between pruned and unpruned Local in Fig. 23 is also 20 CIII at the end.

4.1 .2 (d) Maize Biomass yields

Figs. 25-28 present the biomass yield curves for the upper and lower areas shown in Fig. 9. The two horizontal lines in each graph indicate an overall average (PL) for each treatment plot (AFM1. AFMZ. AFL1 \& AFL2) and one average for the upper (UP) and another for lower (LW) areas. We observe from each of these curves that the average yjelds in PQRS were always lower than those in P'O'R'S'. LW was always higner than PL and UP was always lower than PL.

From the start of the LR92 we observed that intercrop heights were always depressed in the area covered by PQRS (see Plate 10). We suspected various reasons for this depression, for example (i) more severe competation for soll water and nutrients between unpruned Grevilleas and the intercrop. (ii) strong winds descending into the area. (iii) termites building nests in the area. (iv) compaction by persons working on the plot.'(v) the land slope of $4-5 \%$ which would introduce gravitational drying up-slope and others.

Reason (i) was proved. but not fully, in the results on so1l moisture in section 4.2. The possibility of strong wirds descending into the area affecting plant growth. reason (ii). was investigated by Figs.

Fig. 26. Average LR92 maize yields per row in Mulched unpruned (AFM2) plot. LW and UP are respectively average yields in the lower (rows 17-21) and upper (rows 8-12) parts of AFM2. PL is average yield for entire AFM2 plot.

Pig. 27. Average LR92 maize yields per row in local pruned (AFLI) plot. LW and UP are reapectively average yields in the lower (rows 17-21) and upper (rows 8-12) parts of AFLI. PL is average yield for entire AFLl plot.

Fig. 28. Average LR92 maize yields per row in Local unpruned (AFL2) plot. LW and UP are respectively average yields in the lower (rows 17-21) and upper (rows 8-12) parts of AFL2. PL is average yield for entire AFL2 plot.

19. 29. Maize heights in pruned Mulched (AFM1) and pruned Local (AFL1) plots in AF and controls (M \& L) for SRO.

Flate 10. SREe harvestind of the only maize crop in the seven seas uat of field work at Matarivá a Emle accompanies such a narvec

placing a charcoal stove on the roof of the staff house in Fig. 8. There was marked subsidence in the area as demonstrated by smoke streaks. making us believe that wind down-wash could after all be most affecting the yields in the $A F$. For reason (iii) termites were eradicated by mixtures of insecticides but this action did not improve crop growth in this area. Reason (iv) infiltration experiments were done all over the station to try and identify any extraondinary infiltration rates. Apart from high rates in cracks in Vertic soil. infiltration rates were uniform throughout the area including AF. Reason (v) the gravitational drying up-slope was identified in soil moisture results but not per se concentrated in the area of cur concern. We had therefore only reason (i1) as the major causative factor for this problem. This is because of thigmo-morphogenetic responses of plants to mechanical stimuli iStigter. 1985) which was due to the descending winds over the nearby buildinas and neighbouring high trees onto the AF plot as studied by the smoke crails. Very little is known about such thigmo-morphogenetic responses 11.e. plants response to wind: wind stressed-plants becoming more resistant to wind injury as the plants become stunted in growthi in plant growth to mechanical stimuli (e.g. Stigter. 1985: Grace. 1988), 15 very common in areas surrounded by structures such as buildings.

Figs. 25-28 also would show the influence of tree rows irows B(TR1) \& D(TR3)) on the maize biomass yuelds especially in uncruned plots (Fios. 26 \& 28). Looking at the two to three maize rows closest to the trees this is especially the case in unpruned Local conditions. but the average there is higher.

Table 12 presents maize blomass and how they relate to the average yields in each of the control treatments (Local \& Mulched). We see from Table 12 that the Mulched pruned plot (AFM1) had on the average the

Table 12. LR92 maize biomass yields (t/ha) in AF and relative to the control plots. (i) - (iv) and (M \& L).

Between tree average		\% of L	\% of M
$\begin{aligned} & \text { malze } \\ & \text { rows } \end{aligned}$	$\begin{aligned} & \text { ylelds } \\ & \text { (t/ha) } \end{aligned}$		
(a) Agroforestry plot (AF)			
(i) Pruned Mulched (AFM1)			
$\begin{array}{cr} \text { PQRS } & 8-10 \\ P^{\prime} Q^{\prime} R^{\prime} S^{\prime} & 17-21 \end{array}$	$\begin{aligned} & 0.46 \pm 0.12 \\ & 0.61 \pm 0.10 \end{aligned}$	$\begin{array}{r} 92.7 \\ 123.4 \end{array}$	125.7 167.2
Average	0.54 ± 0.13	108.1	146.5

(ii) Unpruned Mulched (AFM2)

PQRS	$8-12$	0.27 ± 0.06	54.4	73.8
$P^{\prime} Q^{\prime} R^{\prime} S^{\prime}$	$17-21$	0.39 ± 0.06	78.2	106.0
Average	0.33 ± 0.08	66.3	89.9	

(iii) Pruned Local plot (AFL1)

PORS	$8-12$	0.32 ± 0.03	63.7	86.7
P' O'R'S' $^{\prime} 17-21$	0.38 ± 0.06	75.8	102.7	
Average	0.35 ± 0.06	69.8	94.5	

(iii) Unpruned Local plot (AFL2)

PRRS $P^{\prime} Q^{\prime} R^{\prime} S^{\prime}$	$8-12$ $17-21$	$\begin{aligned} & 0.35 \pm 0.05 \\ & 0.48 \pm 0.20 \end{aligned}$	$\begin{aligned} & 71.0 \\ & 96.4 \end{aligned}$	$\begin{array}{r} 96.2 \\ 130.6 \end{array}$
	Average	0.42 ± 0.16	83.7	113.4

Local (L)	0.50 ± 0.11	100.0	135.5
Mulched (M)	0.37 ± 0.08	73.8	100.0

highest per cent yields relative to the yields in each of the controls. The positive effect of mulching on the yields could be realized yields in all the four treatments, but the that of effect of pruning could not easily be discerned as the unpruned Local (AFL2) had higher relative yiolds than unpruned Mulched (ii) or but lower than pruned Local (ii1)
plots although the differences remained small. The thigmo-morphogenetic effects as mentioned àk. affected mostly the AFMZ plot resulting in lower yields there than in AFL2. However, we can clearly see that a combination of mulching with minimum tillage and pruning was beneficial to the maize biomass (dry matter) accumulation.

A comparison of controls themselves shows that Local 10.50 ± 0.11 t/hal yielded more biomass than the Mulched $(0.37 \pm 0.08$ t/ha) plots Table 12). This as earlier mentioned could be attributed more to a longer use of these plots under the same mulch/Local treatments and to variations in soil nutrients in newly opened up plots. as seen in Table 8. than in soll molsture avallability.

4.1.2 (0) Beans biomass yields

Table 13 presents beans biomass ylelds for LR92 in the AF and control plots. As we have indicated above, the beans performance was unsatisfactory. The Grevillea robusta root pruned Mulched plot with

Table 13. Long Rains 1992 beans biomass yields (t/ha) compared to the controls.
(a) Agroforestry Dlots

Between tree beans rows rows	average biomass yields (t/ha)	\% of L	\% of M
(i) unpruned Mulched (AFM2)			
$\begin{array}{lr} \text { PORS } & 9-15 \\ P^{\prime} Q^{\prime} R^{\prime} S^{\prime} & 20-24 \end{array}$	$\begin{aligned} & 0.16 \pm 0.03 \\ & 0.20 \pm 0.05 \end{aligned}$	$\begin{array}{r} 84.2 \\ 105.0 \end{array}$	$\begin{aligned} & 48.5 \\ & 60.6 \end{aligned}$
Average	0.18 ± 0.04	94.7	54.5

(ii) pruned Mulched (AFM1)

$\begin{array}{lr} \text { PQRS } & 9-13 \\ \text { P' }^{\prime} Q^{\prime} R^{\prime} S^{\prime} & 20-24 \end{array}$	$\begin{aligned} & 0.26 \pm 0.04 \\ & 0.21 \pm 0.04 \end{aligned}$	$\begin{aligned} & 136.8 \\ & 110.5 \end{aligned}$	$\begin{aligned} & 78.8 \\ & 63.6 \end{aligned}$
Average	0.24 ± 0.04	126.3	72.7

(iii) unpruned Local (AFL2)

$\begin{array}{lr} \text { PQRS } & 9-13 \\ P^{\prime} Q^{\prime} R^{\prime} S^{\prime} & 20-24 \end{array}$	$\begin{aligned} & 0.20 \pm 0.03 \\ & 0.25 \pm 0.03 \end{aligned}$	$\begin{aligned} & 105.0 \\ & 131.6 \end{aligned}$	$\begin{aligned} & 60.6 \\ & 75.8 \end{aligned}$
Average	0.23 ± 0.03	121.1	69.7
(iv) pruned Local (AFLI)			
$\begin{aligned} & \text { PQRS } \\ & P^{\prime} Q^{\prime} R^{\prime} S^{\prime} \\ & 20-13 \end{aligned}$	$\begin{aligned} & 0.24 \pm 0.01 \\ & 0.26 \pm 0.04 \end{aligned}$	$\begin{aligned} & 126.3 \\ & 136.8 \end{aligned}$	$\begin{aligned} & 72.7 \\ & 78.8 \end{aligned}$
Average	0.25 ± 0.03	131.6	75.8
ib) Control			
(i) Local (L)	0.19 ± 0.02 0.33 ± 0.07	100.0	57.6 100.0

minimul tillage (AFM1). which was our best bet for the maize biomass yields. was the worst for the beans biomass yields. although differences are small and error limits overlap. The two unpruned plots (AFM2 \& AFL2) had hagher yields compered to the two pruned ones (AFLI \& AFM1), but for the Local treatment the difference was negligible. The M control plot had the highest biomass yield of $0.33 \pm 0.07 \mathrm{t} / \mathrm{ha}$ while L had a biomass yield of $0.19 \pm 0.02 \mathrm{t} / \mathrm{ha}$.

The poor performance of the pruned plots (AFM1 \& AFL1) must have been due to invasion of the crop land by the neighbouring fruit tree roots in the absence of the Grevillea tree roots which were restrained by pruning. This invasion was not foreseen. The fruit trees comprising loquats and guavas bordered the pruned Mulched plot (AFM1) on one long side and the pruned Local (AFLI) was on its other side. We demonstrated
this influence by digging during land preparation for the subsequent LR93. We dug 50 cm deep trenches at the borders between AFM1 and the frust trees and between AFL1 and AFM2 to exclude the roots from the loquat and guava fruit trees and unpruned Grevilleas in the adjacent plots from Invading the pruned Grevilleas area of the AF plot.

In an agroforestry system, tree roots from farms or woodlots may cause interference in neighbouring farms. For soil water conservation measures to succeed. one should try to exclude the threat of invasion of tree roots from the neighbouring plots.

Table 14 presents LR92 bean seed yields. Like the biomass yıelds. we had the highest seed yields from the Mulched unpruned plot (AFM2). The other yield differences in $A F$ were overall very small. The Local control had clearly the lowest averace yield of all. 0.03 ± 0.03, while the Mulched control had $0.14 \pm 0.04 \mathrm{t} / \mathrm{ha}$. of which the error limits overlap all AF averages.

4.1.3 Short Rains season 1992

4.1 .3 (a) Rainfall and evaporation climate during growing season

SR92 was the most successful season of the seven seasons we worked in Lalkipia district when a good harvest was obtained (see Plate 11). The Short Rains came early. on 29th September 1992. The SR92 maize/beans intercrop was planted on 4th October 1992 after a total amount of rainfall of 74.3 mm was received against evaporation of 34.5 mm . On the sowing day a rainfall amount of 4.9 mm was received.

From there on and throughout October and November rainfiall occurrences were quite few. Rainfall amounts for SR92 were above the long term means for November and December. 1992, and January. 1993. by

Fig. 30. Maize heights in unpruned Mulched (AFM2) and unpruned Local (AFL2) plots in AF and controls (M \& L) for SR92.

F1g. 31. Maize heights in pruned Mulched (AFMI) and unpruned Mulched (AFM2) plots in AF and controls (M \& L) for SR92.

Fi4. 32. Maize heights in pruned Local (AFLl) and unpruned Local (AFL2) plots in AF and controls (M\& L) for SR92.

Fig. 33. Maize heights in different rows of pruned Mulched (AFMI) plots in AF and Mulched control (M) for SR92.

Table 14. Long Rains 1992 beans seed yields (t/ha) relative to the controls.
(a) Aoroforestry Dlots

| average
 between
 tree
 rows | biomass
 beans
 rows | yields
 (t/ha) | \% of L |
| :--- | :--- | :--- | :--- | \% of M

2.3. 66.5 and 152.4 mm respectively (Fig. 14 and Table 6). Rainfall for October was below its long term mean by 10.8 mm . The season's rainfall was concentrated in the last two months (i.e. December and January).

The evaporation rates were consequently somewhat higher than their long term means during October and November but lower during December
and especially January. The average for the January evaporation rate was 46.0 mm below its long term mean. This was the lowest for all the seven seasons. Iuring SR92 Matanya received a moisture surplus over evaporation of 331.6%. The actual monthly rainfall of 137.6, 146.8 and 204.7 mm for November. December and January respectively were quite high (but the value for November is normal).

4.1.3 (b) Maize and beans phenology

By 12 th October (i.e. 8 DAP) 30% of the maize seedlings in the $A F$ and 28% in the other treatments (control plots) had emerged. Emergence of 100% was attained by 16 DAP (20th October 1992). Due to less rainfall in the months of October and early November. seedling emergence and early growth did not well. Nevertheless the rainfall in December and came at the right time. just before the critical phases of malze tasselling and silking (Todorov. 1977) and rescued what otherwise would have been a crop failure. There was a lot of rain in January. 1993 which delayed attanment of maturity as the ground as very wet and the alr was very cold. By 92 DAP (4th January. 1993) complete (100\%) tasselling was attained and by 97 DAP (10th January. 1993) complete silking (100\%) phase was reached. We assessed the general conditions as excellent on 110 DAP. Wax ripeness (soft grain, milky sap oozing out when pressed) was reached on 121 DAP and full ripeness (hard grain) was attained on 142 DAP. Harvesting of maize grain. cob splint and biomass were carried out on 176 DAP (29th March 1993).

By 7 DAP 32% of the beans seedlings in the AF plots and 26% in the control (NAF) had emerged. Emergence of the beans seedlings was completed (100\%) that is 8 days later on 19th October (i.e. 15 DAP). By 55 DAP (28th November. 1992) complete flowering had been reached. We
assessed the plants on 71 DAP and found them to be in very satisfactory condition. Ripeness was completed and complete dryness od the bean seeds were reached by 90 DAP (2nd January, 1993). Both the seeds and biomass were harvested on 20th January. 1993 (on 108 DAP).
4.1.3 (c) The offect of mulching and root pruning on maize heights Intercomparisons were made of the effect of mulching (Figs. 29 \& 301 and of Grevillea root pruning (Figs. $31 \& 32$) on the growth of maize heights in AF and control plots for SR92.

The plants in the pruned Mulched plot (AFM1. Fig. 29) and the pruned Local plot (AFL1. Fig. 29) in the AF plot had grown taller than those in the control plots (L \& M) . in particular for the Local treatment. The plants in the unpruned Local plot (AFL2. Fig. 30) in the $A F$ plot were taller than those in the control and unpruned Mulched (AFM2) plots. This suggested that plants in AFM2 were more affected by thigmo-morphogenetic responses to turbulent subsiding air mass than in AFL2, which reduce their growth rate (see chapter 5). Plants in the Mulched NAF (control) grew taller than those in the Local NAF.

We observe the effect of pruning in Figs. 31. 32 \& 33. Intercomparisons of plants in the Mulched plots (AFM1 \& AFM2) show that the pruned Mulched (AFM1) had grown somewhat taller than the unpruned Mulched (AFM2) (Fig. 31). This was also the case with the Local plots (AFL1 \& AFI2) where the pruned Local (AFL1) had grown a very bit taller than the unpruned Local (AFL2) (Fig. 32), but only towands the very end of the season. Of the Mulched plots presented in Fig. 33. we observe that by DOY 315 till 364 the Local control had grown taller by about 10 CII than any of maize rows in distances to trees in Mulched pruned plot

Pig. 34. The total number of plants and cobs per row in the AFM1 plot for SR92.

Pig. 35. The total number of plants and cobs per row in the AFM2 plot for SR92.

Fig. 36. The total number of plants and cobs per row in the AFL1 plot for SR92.

Fig. 37. The total number of plants and cobs per row in the AFL2 plot for SR92.
(AFM1). Fig. 33 proves that differences with distance to trees are small in pruned conditions. those further away are somewhat depressed.
4.1.3 (d) The number of maize plants per hole and of cobs per plant

We used particularly this SR92, as the best season, to collect data necessary to develop strateqies for soll moisture conservation measures for the small scale farmers in Laikipia ASAL.

We harvested line by line in the first four rows (i.e. rows $1-4$) and the last four rows (i.e. rows $25-28$). The harvesting of maize was done plant by plant in the area perceived to have high Grevillea influence on the intercrop (1.e. rows 5-24). We therefore present here the results on maize on: (i) the number of plant per hole. (ij) the number of cobs per plarit. (iii) the cob plus grain weights per plant and (IV) the total biomass yields. In this work we refer to 'cob' to mean 'cob without grains'. after shelling (i.e. removing of maize grains) or cob splint.

Tables 15 \&:16 summarize results of the number of plants per hole (NPH) and of cobs per plant (NCP). for the first and fourth holes respectively, of rows 5-24 of the treatment plots in the four plots (AFM1. AFM2. AFLI \& AFL2) in AF which were harvested plant by plant. Columns 10 and 11 of Tables 15 \& 16 present the same parameters as row totals for the same area (see Fig. 9). The first holes in each row per plot are joined by the transverse lines aa'. $C C^{\prime}$. ee' and go' in Fig. 9 whle the fourth (or the middle) holes are joined by the transverse lines bb^{\prime}. dd'. ff' and hh'.

The $N P H$ was considered as an indicator for the spatial plant establishment (i.e. seedling emergence) and the number that attained
maturity to produce cobs. The NCP was used as a measure of growth vigour for individual plants when moisture did not limit plant growth. Planting was done with two seeds per hole. Three plants per hole came about as the result of a third seed drcpping in a hole by mistake and managing to germinate because moisture was adequate. Only two rows had two plants with 3 cobs each.

We observe in Table 15 row 13 and tree row TR3 in AFM1 and row 12 in AFLI did not have plants in the first holes. In a comparison of number of plants per hole in the first hole of every plot in AF. we learn from Table 15 that of 23 rows in each plot. five rows in AFM1: 11 rows in AFL1: 7 rows in AFM2 and 4 rows in AFL2 had one plant per first hole. AFL2 had the fewest rows with single plants per first hole while AFM2 had the most. The cases of single plants per hole in AFM1 are found at the upper edge around tree TR2 and around TR3. It is evident that tree row TR2 might have affected emergence of the plants around it. Of the 23 maize rows displayed in Table 15 we see that 16 rows in AFM1. 11 rows in AFL1. 16 rows in AFM2 and 19 rows in AFL2 had two or more plants per first hole. These indicate that only 4 rows in AFL2 did not have all plants at the time of harvest. More plants at the time of harvest were found in the lower part of AF in rows 15-24 and in rows 7-12 and 16-21 of AFM1. In AFM2 all plants at the time of harvest were found in rows $7-$ 11 and 14-20. AFL1 had least plants per row. All plants in the four plots in AF had one cob each. except in few cases where one plant had two or none. This showed that each seedling that emerged and reached maturity had a cob, when rainfall was adequate.

Comparison of number of plants per hole in the fourth (middle) nole of every plot in AF. (see Table 16) show that of out 23 rows in each plot, 9 rows in AFM1: 8 rows in AFL1. 5 rows in AFM2 and 9 rows in

AFI2 had one plant per hole. Here AFM2 had the fewest rows with single

Table 15. SR92 number of plants per hole (NPH) and of cobs NCP) per plot plant for the first hole (aa', cc', ee' and gg').

Plant row	AFM1		AFL1		AFM2		AFL2		Total	
	NPH	NCP	NPH	NCF	NPR	NCP	NPH	NCP	NPH	${ }^{N+P}$
5	1	1	1	0	2	2	2	2	6	5
6	1	2	2	1	1	1	1	1	5	5
7	2	2	2	2	2	3	2	1	8	8
TR1	2	1	1	1	2	3	2	2	7	7
8	2	2	2	3	2	1	1	1	7	7
9	2	2	2	3	2	2	2	2	8	9
10	2	3	1	1	2	2	3	1	8	7
11	2	1	1	1	2	2	2	3	7	7
12	2	2	0	0	1	1	2	3	5	6
13	0	0	1	1	1	1	2	1	4	3
14	1	2	1	1	2	2	1	1	5	6
RT2	2	2	1	1	2	2	1	1	6	6
15	1	1	2	3	2	2	2	4	7	10
16	2	3	2	3	2	3	2	1	8	10
17	2	2	2	3	2	2	2	3	8	10
18	2	3	1	1	2	2	2	2	7	8
19	2	3	1	2	2	2	2	2	7	9
20	2	1	2	2	2	3	2	2	8	8
21	2	2	2	2	1	1	2	2	7	7
TR3	0	0	2	2	2	1	2	2	6	5
22	1	1	1	1	1	1	2	4	5	7
23	2	2	2	4	1	1	2	2	7	8
24	2	2	1	2	1	1	2	1	6	6

plants per hole in the fourth holes while AFM1 and AFL2 had the most. The single plants per hole cases in AFM1 are again found at the upper edge near the eastern live-fence (rows 5-TR1) and west of TR2. Fewer plants at harvest were found around tree row TR3 in AFM1. The interspace between tree rows TR2 and TR3 till maize row 22 seemed to have been affected by the trees. Of the 23 maize rows shown in Table 16 we see that 12 rows in AFM1. 15 rows in AFL1. 17 rows in AFM2 and 13 rows in AFl2 had two or more plants per fourth hole in each plot. This shows that AFM1 was last with respect to the number of plants found at harvest in each middle hole in per row. In AFM1. AFM2 and AFL2 number of plants
found at harvest matched the seeds that were planted but in AFL1 more plants were found between maize rows 13 and 18. Again all plants that emerged in the four plots in $A F$ had one cob each, except in few cases where one plant had two or norie.

The middle (hole 4) holes of AFM1. AFM2 and AFL2 respectively did not have plants in rows 21 and TR3, TR1 and IR2. Fow 24 had 3 plants per hole and 4 cobs per plant.

Figs. 34-37 present the total number of cobs and plants per row obtained by harvesting row by row instead of plant by plant. We notice that the number of plants was small in rows 2, 4, 11, 20, 21 and 22.

The total number of cobs were more than that of plants in 15 out of 28 rows in AFM2 (Fig. 35). In AFL1 15 out of 24 rows had more cobs per row than the number of plant (Fig. 36). There was a bigger proportion of plants with more than one cob in AFL2 compared with single cobbed plants (Fig. 37). The middle holes in each row of AFL2 (rows 1318) had few cobs per plant.

From the foregoing we can infer that in seasons with adequate rainfall, which are very rare, water conservation measures may not be necessary for good maize yields. This can be seen from the fact that during SR92 unpruned treatments AFM2 \& AFL2 with less water conservation weasures had more plants per nole with more cobs per plant than pruned treatment. AFM1. which had all necessary measures (see Chapter 5).

4.1.3 (0) Maize yields for SR92

Figs. 38-45 and Tables 17-21 present some of the results on biomass yields. oven-dry weights of grain and cobs (after shelling) per hole per row in each treatment plot (i.e. AFM1. AFM2. AFL1 \& AFL2) in the AF. Fig. 38 shows that cobs from Mulched pruned plot (AFM1)

Pig. 38. Shelled cob (cob splint) and grain weights in first hole (hole 1) per row in AFM1 for SR92.

Fig. 39. Shelled cob (cob splint) and grain weights in middle hole (hole 4) per row in AFM1 for SR92.

Fig. 40. Shelled cob (cob splint) and grain weights in first hole (hole l) per row in AFLl for SR92.

Fig. 41. Shelled cob (cob splint) and grain weights in aldde hole (hole 4) per row in AFLl for SR92.

Table 16. SR92 number of plants per hole (NPH) and of cobs NCP) per plot plant for the fourth hole (bb'. dd'. ff' and hh')

Plant row	AFM1		AFL1		AFM2		AFL2		Total	
	NPH	NCP	${ }^{\mathrm{N} P \mathrm{H}}$	NCP	NPH	NCP	NPH	NCP	NPH	NCP
5	1	1	1	1	2	1	2	3	6	6
6	1	0	2	1	2	3	2	2	7	6
7	2	3	2	0	2	2	1	1	7	6
TR1	1	1	2	3	0	0	2	2	5	6
8	2	2	2	3	2	3	1	1	7	9
9	2	2	1	1	2	1	3	4	8	8
10	1	1	2	3	2	2	1	2	6	8
11	1	1	1	1	2	2	2	3	6	7
12	2	2	1	2	2	1	2	3	7	8
13	2	2	3	3	1	1	1	0	7	6
14	2	1	2	2	2	2	2	2	8	7
RT2	2	2	2	2	2	2	0	0	6	6
15	1	1	2	1	2	1	1	1	6	4
16	1	2	2	1	2	3	1	1	6	7
17	2	1	2	2	1	2	2	2	8	7
18	2	3	2	3	1	1	1	1	6	8
19	1	0	1	1	2	1	2	2	6	4
20	2	2	2	2	2	2	2	1	8	7
21	0	0	1	1	1	2	2	2	4	5
TR3	0	0	1	0	2	2	2	2	5	4
22	1	2	2	4	1	1	2	1	6	8
23	2	2	1	1	2	2	1	1	6	6
24	3	4	2	1	2	2	1	1	8	8

weighed more in rows 8-10 and TR2. 23 and $24.16-19$ than in other rows. From Table 15 we see that rows 13. 7 and IR3 had no plants. Rows 5 and IR1 had less grain and cob weights. In hole 4 (middle of plot AFM1. Fig. 39) higher grain yields were obtained from rows 7. 8, 9. 13, 16, 18, 20. $23 \& 24$.

First holes in Local pruned plot (AFL1. Fig. 40) did not have plants in rows 7. TR1. 12. 15 and 20. Fourth holes did not have plants in rows 7 and TR3. Rows 6. 10. 11. 13. 14, 17 and 22 in first holes of AFLI (Fig. 40) had proportionately much more grain than cob weights. although it was true for all rows. Low weights were generally observed in rows 5. 8. 9. TR2. 16. $23 \& 24$ in plot AFL1 (Fig. 40).

Fig. 42. Shelled cob (cob splint) and grain weights in first hole (hole 1) per row in AFL2 for SR92.

Fig. 43. Shelled cob (cob splint) and grain weights in middle hole (hole 4) per row in AFL2 for SR92.

Fig. 44. Shelled cob (cob splint) and grain weights in first hole (hole 1) per row in AFM2 for SR92.

Fig. 45. Shelled cob (cob splint) and grain weights in middle hole (hole 4) per row in AFM2 for SR92.

Table 17. SR92 maize biomass (stover BOD) yields in pruned and unpruned Grevillea robusta relative to control plots.

Between tree rows	average biomass yields (t/ha)	\% of M	\% of L
(a) Root pruned Grev. + mulch + minimum till (A.MMI)			
A-B	2.84 ± 1.05	117.36	119.32
B-C	2.60 ± 0.47	107.44	109.24
C-D	3.08 ± 0.64	127.27	129.41
D-E	3.24 ± 0.54	133.88	136.13
A-E	2.93 ± 0.75	121.07	123.11

(b) Root pruned Grevilleas + Local + deep tillaqe (AFL1)

$A-B$	2.32 ± 0.57	$95 . \overline{87}$	97.48
$B-C$	2.52 ± 0.59	104.13	105.88
$C-D$	2.90 ± 0.59	119.83	121.85
$D-E$	2.81 ± 0.46	116.12	118.07
$A-E$	2.64 ± 0.60	109.09	110.92

c) Unpruned Grev. + mulch + minimum till (AFM2)

$A-B$	2.34 ± 0.78	96.69	98.32
$B-C$	2.15 ± 0.61	88.84	90.34
$C-D$	2.42 ± 1.31	100.00	101.68
$D-E$	2.90 ± 0.36	119.83	121.85
$A-E$	2.45 ± 0.52	101.24	102.94

(d) Unpruned Grevi11eas + Local + deep tillage (AFL2)			
A-B	3.25 ± 0.57	134.30	136.55
B-C	2.88 ± 0.77	119.01	125.21
C-D	2.87 ± 0.54	118.60	120.59
D-E	3.13 ± 0.39	129.34	131.51
A-E	3.03 ± 0.63	125.21	127.31

(e) Control
plots

Local (L)	2.38 ± 0.46	100.00	101.68
Mulch (M)	2.42 ± 0.40	98.35	100.00

Table 18. SR92 maize grain (GOD) yields in pruned and unpruned Grevillea robusta relative to control plots.

Between tree rows	average grain yields (t/ha)	\% of M	\% of L
(a) Root pruned Grev. + mulch + minimum till (AFM1)			
A-B	1.33 ± 1.35	83.10	102.30
B-C	1.60 ± 0.46	100.00	123.10
C-D	1.46 ± 0.38	91.30	112.30
D-E	1.82 ± 0.14	113.80	140.00
A-E	1.54 ± 0.39	96.30	118.50
(b) Root pruned Grevilleas + Local + deep tillage (AFL1)			
A-B	0.99 ± 0.25	61.90	76.20
B-C	1.46 ± 0.30	91.30	112.30
C-D	1.67 ± 0.30	104.40	128.50
D-E	1.57 ± 0.35	98.10	120.80
A-E	1.42 ± 0.40	88.80	109.20
(c) Unpruned Grev. + mulch + minimum till (AFM2)			
A-B	1.31 ± 0.32	81.85	100.77
$\mathrm{B}-\mathrm{C}$	1.22 ± 0.30	76.30	93.90
C-D	1.00 ± 0.20	62.50	76.90
D-E	1.19 ± 0.22	74.36	91.34
A-E	1.18 ± 0.26	73.75	90.77
(d) Unpruned Grevilleas + Local + deep tillage (AFL2)			
A-B	1.47 ± 0.20	91.90	113.10
B-C	1.15 ± 0.46	71.90	88.50
C-D	1.32 ± 0.28	82.50	101.50
D-E	1.26 ± 0.24	81.30	100.00
A-E	1.30 ± 0.33	81.30	100.00
(e) Control plots			
Local (L)	1.30 ± 0.34	100.00	81.25
Mulch (M)	1.60 ± 0.37	123.00	100.00

Table 19. SR92 maize cob (COW) yields in pruned and unpruned Grevillea robusta relative to control plots.

Between tree rows	average biomass yields (t/ha)	\% of M	\% of L
Tai Root pruned Grev. + mulch	+ minimum till (AFM1)		
A-B	0.35 ± 0.09	87.50	109.40
B-C	0.42 ± 0.12	105.00	131.30
C-D	0.39 ± 0.10	97.50	121.90
D-E	0.48 ± 0.04	120.00	150.00
A-E	0.41 ± 0.10	102.50	128.10

(b) Root pruned Grevilleas + Local + deep tillage (AFLl)

$A-B$	0.26 ± 0.07	65.00	81.30
$B-C$	0.39 ± 0.08	97.50	121.90
$C-D$	0.44 ± 0.08	110.00	137.50
$D-E$	0.42 ± 0.09	105.00	131.30
$A-E$	0.38 ± 0.11	95.00	118.80

(c) Unpruned Grev. + mulch + minimum till (AFM2)

A-B	0.36 ± 0.08	90.00	112.50
B-C	0.32 ± 0.08	80.00	100.00
C-D	0.27 ± 0.05	67.50	84.40
D-E	0.34 ± 0.06	85.00	106.30
A-E	0.32 ± 0.08	80.00	100.00

(d) Unpruped Gnovidloas + Local + deen tillege (AFL, 3)

A-B	0.39 ± 0.05	97.50	121.90
B-C	0.31 ± 0.17	77.50	96.90
C-D	0.35 ± 0.07	87.50	109.40
D-E	0.33 ± 0.06	82.50	105.10
A-E	0.35 ± 0.09	87.50	109.40
(e) Control			
plots			

In AFL2 (Figs. 42 \& 43) low cob and grain weights were obtained from around TR3 which extended to 470 cm on either side the tree row. We also harvested low grain and cob weights around TR1. Higher grain
weights in hole 1 of AFL2 were obtained from rows 11. 12.15 and 17 wath relatively light cobs. Hole 4 of AFL2 had plants missing in rows 13 and TR2 (Fig. 43). Here again the rows within 470 cm from TR2 had lighter cobs and less grain weight. SR92 had enough rainfall evenly distributed in the later half of the season. This evened out any factors that would tend to retand plant growth, such as competition for water between tree roots and crops.

In Figs. 44 \& 45 the cob weights in hole 1 of plot AFM2 were generally low in rows $13-16$ with exception of rows 15 in hole 1 and row 14 in hole 4. This suggests that the unpruned Grevillea trees did compete for resources with the maize. The rows close to the unpruned Grevillea trees had low cob and grain weights, except rows 5-TR1. Rows 9-18 had generally low cob weight in hole 1 except row 14, TR2 \& 16 (Fig. 45).

Tables 17-19 present respectively SR92 maize biomass (stover). Maize grain and maize cob yields in the AF and NAF. We can see from Table 17 that the lower half of AFM1. AFL1 and AFM2 had higher maize stover yields than the upper part, but in AFL2 the two parts obtained approximately the same yields. All the plots had higher stover yields than the controls. Unpruned Local had the highest stover yields because the depression that one observes in the upper half of the other AF plots (Plate 10) did not occur here. Mulched pruned plot (AFM1) was next. Therefore only in good rainy season did AF do better than NAF.

Table 18 presents SR92 maize grain yiolds in pruned and unpruned AF plots. Like in the case of maize stover yields (Table 17). the lower half of AFM1. AFL1 and AFM2 plots produced higher maize grain yields than the upper half. Again like Table 17 the lower and upper halves of

AFL2 nearly had the same yields. Of course Table 18 is more important than Table 17 because grain yield is the most important yield component. In the upper half of AF. large grain yield depression could only be observed in the Local pruned plot. Being unpruned appears of most importance for overall grain yield depressions. In the depressed pruned parts mulching does particularly help in the upper half of the plot. There was more maize grain in the Mulched control than in the Local control. which was not the case with stover yields.

In respect to maize cob (cob splint) yields (Table 19), the differences were relatively unimportant, certainly given that this is the least interesting yield component. Nevertheless, there was a tendency for higher cob yields in AFM1 and AFL1 than for AFM2 and AFL2.

4.1.3 (f) Maize weight components

Fige. 46-49 and Table 20 show the per cent yield components of maize (i.e. cob. grain and biomass weights) and their averages for every replication in AF (AFM1. AFL1. AFM2 and AFL2) and the same in the control plots. We observe a ratio of per cent weight of cob. grain and biomass in the total weights produced per row to be nearly 1:3:6 for all four diagrams (Figs. 46-49). The per cent component weights tend to fluctuate around this ratio in all the treatments/replications. The iluctuations around this ratio occur in the opposite direction between the per cont biomass on one hand and the per cent grain and cob weights on the other. The per cent cob and orain weights are directly related to each other and inversely related to the per cent biomass weights. An increase in per cent stover biomass tend to result in corresponding reduction in per cent cob and grain parts. The cob weights tend to be more stable around their mean values than the orain and biomass weights.

Fig. 46. Weights of maize cob splints, grains and biomass as percentages of total dry matter weight of maize in pruned Mulched plot (AFM1) for SR92.

Fig. 47. Weights of maize cob splints, grains and biomass as percentages of total dry matter weight of maize in unpruned Mulched plot (AFM2) for SR92.

Fig. 48. Weights of maize cob splints, grains and biomass as percentages of total dry matter weight of maize in pruned local plot (AFLI) for SR92.

Fig. 49. Weights of maize cob splinte, grains and biomass as percentages of total dry matter weight of maize in unpruned Local plot (AFL2) for SR92.
which means that stover and grain fluctuates in opposite directions. This also applies in the comparisons with the control plots.

The percentages for (a) till (d) in Table 20 do differ roughly from 60-65\% (biomass): 28-32\% (grain) and 7.5-8.5\% (cobs). In (e) for the Local control the figures fall (just) within these limits but the grain percentage. particularly compared with the biomass (stover). is of its own class with a high 36% against only 55% for stover. Indeed in grain yields (absolute) the Mulched control was above all and the Local control was no good as the pruned Mulched and Local plots, while in biomass L and M were below all (see Table 18).
4.1.3 (g) Mulch effect on maize biomass and grain weights in pruned and unpruned tree plots

Figs. 50 \& 51 and Table 21a compare the effects of mulching on the maize biomass weights in each row respectively the total of the pruned (AFM1. AFL1) and unpruned (AFM2 \& AFL2) plots.

The pruned Mulched plot (AFM1) had more maize biomass yields per row than the pruned Local (AFL1) by 14.5%. (Fig. 50 \& Table 21a). because more rows but certainly not all (10 rows defied the rule) had higher yields in AFM1. In the unpruned (AFL2 \& AFM2) plots the Local plot had almost everywhere higher biomass weight than the Mulched plots by 18.1% (Fig. $51 \&$ Table 20a). A very important result is the very large fluctuations per row around the average. that we observe throughout component and total yields. This shows how difficult interpretations are, due to these iluctuations of average results. This inhomogeneity can be due to soil. input. treatment and microclimate fluctuations and is therefore very difficult to interpret.

Fig. 50. Average maize biomass yields per row in pruned Mulched (AFM1) and pruned Local (AFL1) for SR92.

Fig. 51. Average maize biomass yields per row in unpruned Mulched (AFM2) and unpruned Local (AFL2) for SR92.

Fig. 52. Average maize grain yields per row in pruned Mulched (AFM1) and pruned Local (AFL1) for SR92.

Fig. 53. Average maize grain yields per row in unpruned Mulched (AFM2) and unpruned Local (AFL2) for SR92.

Fig. 54. Average cob splint yields per row in pruned Mulched (AFM1) and pruned Local (AFL1) for SR92.

Fig. 55. Average cob eplint yields per row in unpruned Mulched (AFM2) and unpruned Local (AFL2) for SR92.

Figs. 52 \& 53 and Table 21a compare the mulching effects on the maize grain weights in each row respectively the total of the pruned (AFM1, AFL1) and unpruned (AFM2 \& AFL2) plots. Again the pruned Mulched plot (AFM1) and most of the rows had more grain weight than the pruned Local (AFL1), for the total plot by 8.5\%. The unpruned Mulched (AFM2) was superseded by unpruned Local (AFL2) by 9.2%. These two last treatments are not viable in semi-arid AF systems in case of inadequate rainfall due to intense competition for limited soil molsture and nutrients between root unpruned trees and the associated crops. Once we decide that mulching and pruning in minimum tillage $A F$ system have both to be done, these two treatments become appreciably less important.

Figs. 54 \& 55 and Table 21a show the effect of mulching on the maize cob splint weights in rows respectively the total of the pruned (AFM1. AFL1) and unpruned (AFM2 \& AFL2) plots. Again the pruned Mulched plot (AFM1) had more cob weight than the pruned Local (AFL1) by 7.9%. The unpruned Local (AFM2) superseded the unpruned Mulched (AFL2) by 8.8\%. The difference of only 10% in maize yields may not be worth the trouble of soil conservation measures within agroforestry systems like ours. It would be more worthwhile for beans than for maize isee also below). However. it may well be that over a long period of time. say more than 10 years, of these measures the cumulative effect would make a much larger difference.
4.1.3 (h). Root pruning effect on maize biomase and grain weights in

Mulched and Local af plote

Figs. 56 \& 57 and Table 21b compare the effect of Grevillea robusta root pruning on the maize biomass weights in each row of the

Fig. 56. Average maize biomass yields per row in pruned Mulched (AFM1) and unpruned Mulched (AFM2) for SR92.

Fig. 57. Average maize biomase yields per row in pruned Local (AFL1) and unpruned Local (AFL2) for SR92.

Fig. 58. Average maize cob splint yields per row in pruned Mulched (AFM1) and unpruned Mulched (AFM2) for SR92.

Fig. 59. Average maize cob splint yields per row in pruned Local (AFL1) and unpruned Local (AFL2) for SR92.

Fig. 60. Average maize grain yields per row in pruned Mulched (AFM1) and unpruned Mulched (AFM2) for SR92.

Fig. 61. Average maize grain yields per row in pruned Local (AFL1) and unpruned Local (AFL2) for SR92.

Table 20. SR92 per cent by weight of maize stover biomass.
grain and cob in pruned and unpruned Grevillea robusta.

Per cent components			
	\% Biomass	\% Grain	\% Со.
(a) Root pruned Grev. + mulch + minimum ti\|l (AFM1)			
A-B	\| 61.28 ± 10.88	30.59 ± 8.60	8.13 ± 2.28
B-C	57.37 ± 7.12	33.68 ± 5.63	8.95 ± 1.50
$C-D$	62.71 ± 1.14	29.46 ± 4.06	7.83 ± 1.08
D-E	58.04 ± 4.97	33.14 ± 3.92	8.81 ± 1.04
A-E	59.91 ± 7.81	31.67 ± 6.17	8.42 ± 1.64
(b) Root pruned Grevilleas + Local + deep tillage (AFL1)			
A-B	64.46 ± 7.75	28.08 ± 6.13	7.46 ± 1.63
B-C	57.44 ± 5.49	33.63 ± 4.34	8.94 ± 1.15
$C-D$	57.69 ± 5.42	33.42 ± 4.28	8.88 ± 1.14
D-E	58.62 ± 8.42	32.69 ± 6.65	8.69 ± 1.77
A-E	59.58 ± 7.44	31.93 ± 5.88	8.49 ± 1.56
(c) Unpruned Grev. + mulch trminimum till (AFM2)			
A-B	57.59 ± 7.50	33.50 ± 5.93	8.91 ± 1.58
B-C	57.78 ± 6.47	33.37 ± 5.11	8.87 ± 1.36
C-D	65.64 ± 5.69	27.14 ± 4.50	7.21 ± 1.20
D-E	66.39 ± 2.69	26.55 ± 2.12	7.06 ± 0.56
A-E	61.70 ± 7.26	30.26 ± 5.73	8.04 ± 1.52
(d) Unpruned Grevilleas th Local + deep tillage (AFL2)			
A-B	63.19 ± 3.34	29.08 ± 2.64	7.73 ± 0.70
$\mathrm{B}-\mathrm{C}$	66.68 ± 8.34	26.32 ± 6.59	7.00 ± 1.75
$C-D$	63.36 ± 2.19	28.95 ± 1.73	7.70 ± 0.46
D-E	66.27 ± 5.82	26.65 ± 4.60	7.08 ± 1.22
A-E	64.83 ± 5.69	27.78 ± 4.49	7.39 ± 1.19
(e) Control Plots	Mulch (M)		Local (L)
	\% grain \% cob \% biom		* grain \% cob
1	$55.4 \quad 35.5$	8.966 .5	26.76 .7
2	50.739 .3	9.962 .6	$29.9 \quad 7.4$
3	$53.0 \quad 37.4$	9.460 .6	31.47 .8
4	$62.1 \quad 30.5$	7.354 .8	36.38 .8
5	$53.4 \quad 37.4$	9.056 .8	$34.7 \quad 8.4$
Average	$54.9 \quad 36.0$	8.960 .3	$31.8 \quad 7.8$

Table 21. Effects of Mulched and pruning within AF plots on maize grain, cob and biomass weights (a) Mulched (b) pruning SR92

treatments average biomass (t/ha)		Average grain (t/ha	Average cob (t/ha)
a) Mulched			
AFM1	$3.01 \pm 0.6 \mathrm{~S}$	1.54 ± 0.40	0.41 ± 0.11
AFL1	2.63 ± 0.62	1.42 ± 0.39	0.38 ± 0.10
\% increase for mulched	14.45	8.45	7.89
AFM2 AFL2	$\begin{aligned} & 2.44 \pm 0.62 \\ & 2.98 \pm 0.62 \end{aligned}$	$\begin{aligned} & 1.18 \pm 0.29 \\ & 1.30 \pm 0.33 \end{aligned}$	$\begin{aligned} & 0.31 \pm 0.08 \\ & 0.34 \pm 0.09 \end{aligned}$
\% decrease for mulched	-18.12	-9.23	-8.82
(b) Pruning effect			
AFM1	3.01 ± 0.69	1.54土0.40	0.41 ± 0.11
AFM2	2.44 ± 0.62	1.18さ0.29	0.31 ± 0.08
\% increase for pruned	23.36	30.5	32.26
AFLI AFL2	$\begin{aligned} & 2.63 \pm 0.62 \\ & 2.98 \pm 0.62 \end{aligned}$	$\begin{array}{l\|l} 2 & 1.42 \pm 0.39 \\ 2 & 1.30 \pm 0.33 \end{array}$	$\begin{aligned} & 0.38 \pm 0.10 \\ & 0.34 \pm 0.09 \end{aligned}$
\% decrease or increase for pruned	-11.74	9.23	11.76

Mulched (AFM1. AFM2) and Local (AFL1. AFL2) plots for SR92. Figs. 58 \& 59 compare the effect of Grevillea robusta root pruning on the cob weights while Figs. 60 \& 61 compare the pruning effect on grain reights. AFM1 had more biomass than AFM2 by 23.4% and for some grain and cobs this was 30.5 and 32.4% respectively. From Table 21 b we see that AFL2 this time yielded more biomass than AFL1 by 11.7% whereas AFLI had now more grain and cob weights than the AFL2 by $9.2 \pm 1.2 \%$ and 11.8% respectively.

4.1.3 (j) Bean yields for SR92

(i) Mulch effect on bean biomass and grain weights in pruned and unpruned Grevillea plote

Figs. 62-65 and Table 22a compare the effects of mulching on the bean biomass weights in each row of the pruned (AFM1 \& AFL1) and unpruned (AFM2 \& AFL2) plots.

The pruned Mulched plot (AFM1) had more per cent biomass than the pruned Local (AFL1) by 47.5% even at this low crop residue mulch rate of 3 tha (Fig. 62 \& Table 22a). In the unpruned plots (AFL2 \& AFM2) the Mulched plot again had higher per cent biomass yield than the Local by 31.6% (Fig. 63 \& Table 22a).

Figs. 65 \& 66 and Table 22 b compare the pruning effects on the bean seeds per cent weights in each row of the pruned and unpruned plots (AFM1. AFL1. AFM2 \& AFL2). Again AFM1 had more per cent seed weights than AFL1 by 12.1%. AFM2 had higher yields than AFL2 by 10.0%. Also here the fluctuations over rows have to be considered large. certainly for the same reasons as in maize.

Mulched (AFM1. AFM2) and Local (AFL1. AFL2) plots for SR92. Figs. 58 \& 59 compare the effect of Grevillea robusta root pruning on the cob weights while Figs. 60 \& 61 compare the pruning effect on grain weights. AFM1 had more biomass than AFM2 by 23.4% and for some grain and cobs this was 30.5 and 32.4% respectively. From Table $21 b$ we see that AFL2 this time yielded more biomass than AFL1 by 11.7% whereas AFL1 had now more grain and cob weights than the AFL2 by $9.2 \pm 1.2 \%$ and 11.8% respectively.

4.1.3 (j) Bean yiolds for SR92

(i) Mulch effect on bean biomass and grain weights in pruned and unpruned Grovillea plots

Figs. 62-65 and Table 22a compare the effects of mulching on the bean biomass weights in each row of the pruned (AFM1 \& AFL1) and unpruned (AFM2 \& AFL2) plots.

The pruned Mulched plot (AFM1) had more per cent biomass than the pruned Local (AFL1) by 47.5% even at this 10 crop residue mulch rate of 3 t/ha (Fig. 62 \& Table 22a). In the unpruned plots (AFL2 \& AFM2) the Mulched plot again had higher per cent biomass yield than the Local by 31.6\% (Fig. 63 \& Table 22a).

Figs. 65 \& 66 and Table 22 b compare the pruning effects on the bean seeds per cent weights in each row of the pruned and unpruned plots (AFM1. AFL1. AFM2 \& AFL2). Again AFM1 had more per cent seed weights than AFLI by 12.1\%. AFM2 had higher yields than AFL2 by 10.0\%. Also here the fluctuations over rows have to be considered large, certainly for the same reasons as in maize.

SR92 Beans BIOMASS weight in Agrof plot

Fig. 62. Average beans biomass yields per row in pruned Mulched (AFM1) and pruned Local (AFLI) for SR92.

Fig. 63. Average beans biomass yields per row in unpruned Mulched (AFM2) and unpruned Local (AFL2) for SR92.

Fig. 64. Average beans seed yields per row in pruned Mulched (AFM1) and pruned Local (AFLl) for SR92.

Fig. 65. Average beans seed yields per row in unpruned Mulched (AFM2) and unpruned Local (AFL2) for SR92.

Fig. 66. Average beans biomass yields per row in pruned Mulched (AFM1) and unpruned Mulched (AFM2) for SR92.

Pig. 67. Average beans biomass yields per row in pruned Local (AFL1) and unpruned Local (AFL2) for SR92.

Fig. 68. Average beans seed biomass yields per row in pruned Mulched (AFM1) and unpruned Mulched (AFM2) for SR92.

Fig. 69. Average beans seed biomass yields per row in pruned Local (AFL1) and unpruned Local (AFL2) for SR92.

Table 22. Effects of Mulched and pruning on bean seed and biomass weights (a) Mulched (b) pruning SR92

treatments	average seed weights (t/ha)	Average biomass weights ($t /$ ha)

$\begin{aligned} & \text { AFM1 } \\ & \text { AFL1 } \end{aligned}$	$\begin{aligned} & 0.71 \pm 0.10 \\ & 0.63 \pm 0.12 \end{aligned}$	$\begin{aligned} & 0.68 \pm 0.20 \\ & 0.46 \pm 0.09 \end{aligned}$
\% increase for mulched	12.1	47.5
AFME AFL2	$\begin{aligned} & 0.63 \pm 0.18 \\ & 0.57 \pm 0.26 \end{aligned}$	$\begin{aligned} & 0.50 \pm 0.17 \\ & 0.38 \pm 0.16 \end{aligned}$
\% increase for mulched	10.0	31.6

(b) Pruning effect

AFMI AFM2	0.71 ± 0.10 0.63 ± 0.18	0.68 ± 0.20 \% increase for pruned$\| 13.4$
AFL1 AFL2	0.63 ± 0.17	
\% increase for pruned	11.3	36.0

(C) Control Dlote

Local (L)	1.02 ± 0.24	biomass yields
Mulch (M)	1.18 ± 0.21	0.96 ± 0.30

(ii) Root pruning effect on bean biomass and seed weights in

Mulched and Local AF plots

Figs. 68 \& 69 and Table 22 b compare the effect of Grevillea rabusta root pruning on the beans biomass weights in each row of the Mulched (AFM1 \& AFM2) and Local (AFL1 \& AFL2) plots. AFM1 had higher per cent biomass and seed yields than AFM2 by 36.0% and 13.4% respectively (Figs. 68 \& 69 and Table 22b). AFLI had more biomass and seed than the

AFL2 by 20.4% and 11.3% respectively (Figs. $67 \& 69$ and Table 22b). On the average much more beans biomass was received from the pruned than the unpruned plots. The bean plants, like the maize plants. were also responsive in seed yields to mulching and pruning treatments (both in the order of 10\%). These water conservation measures might have been useful to the beans at the early stage of their growth in October and November as they flowered before the onset of the heavier rains in December and January. 1993. The heavier rainfall at flowering may even have deflowered (made the plants drop the flowers) the plants resulting in poor pollination. Nevertheless an increase in both bean seed and total biomass is worth the trouble of conservation measures, within agroforestry systems like ours in a season with adequate water.

Results for the bean seed yields given in Table 22 c with reaard to the Mulched AF plots (AFM1 \& AFM2) indicate that on the average, the pruned Mulched AF plot (AFM1) gave 0.31 ± 0.34 t/ha less than the Local control plot (L) and 0.47 ± 0.31 tha less than the Mulched control plot (M). while unpruned Mulched AF plot gave 0.39 ± 0.42 tha less than the Local control and 0.55 ± 0.39 t/ha less than the Mulched control (M) plots reapectively. This confirms that with little exception NAF yielde were higher than $A F$ yields, due to more moisture running off in the AF plots.

Table 22c with regard to the Local AF plots (AFL1 \& AFL2) indicate that on the average, the pruned Local AF plot (AFL1) gave 0.39 ± 0.36 t/ha less than the Local control plot (L) and $0.55 \pm 0.33 \mathrm{t} / \mathrm{ha}$ less than the Mulched control plot (M), while unpruned Mulched AF plot gave 0.45 ± 0.50 tha less than the Local control and 0.61 ± 0.47 tha less than the Mulched control (M) plots respectively. The conclusion therefore is the same as given above for the mulched case. This also applies to the biomass differences between $N A F$ and $A F$.

4.1.4 Long Rains season 1993

4.1.4 (a) Rainfall and evaporation climate during growing season

The maize/bean intercrop was planted on 14th April. 1993, after cumulative rainfall total of 22.5 mm was received against 66.5 mm of pan evaporation spread over 13 days prior to planting date. The rainfall throughout the four months of the season was below the long term mean except May which received 43.8 mm above its long term mean (see Fig. 15). We see in Table 7 that the rains were concentrated in April and May. which received 84.7 and 90.4 mm respectively. April with rainfall of 37.5 mm below its long term mean had the highest negative value followed by March and June. 1993 with 22.0 and 15.2 mm respectively below their long term means. The pan evaporation rates for April and May were 138.2 and 154.4 mm respectively. May. 1993 had pan evaporation of 3.6 mm below the long term mean. All pan evaporation rates were below their long term means pointing to high cloudiness. March had the highest negative deviation of 15.0 mm below its long term mean value.

The rainfall that was received in April was only adequate for seedling emergence and initial growth. Like earlier seasons (SR91 and LR92) there was a good initial start and a bad ending. Inadequate rainfall and onset of strong winds in June, and after. resulted in plants attaining the permanent wilting point rapidly, by mid July. Beans were harvested on 27/7/93 and maize that remained in the field was drying quite fast.

4.1 .4 (b) Malze and beans phenology

Of the maize seedlings 30% in AF plots and 20% in Local and Mulched controls had emerged by 7 DAP (by $21 / 4 / 93$). By 15 DAP 85% in the Local control plots. 85% in the Mulched control and 90% in the AF plot

Fig. 70. Average maize heights in pruned Mulched (AFM1) and pruned Local (AFLI) for LR93, compared with the control plots.

Fig. 71. Average maize heights in unpruned Mulched (AFM2) and unpruned Local (AFL2) for LR93, compared with the control plots.

Fig. 72. Average maize heights in pruned Mulched (AFM1) and unpruned Mulched (AFM2) for LR93.

Fig. 73. Average maize heights in pruned local (AFLi) and unpruned Local (AFL2) for LR93.
had emerged. Emergence attained 100\% level by 22 DAP. These differences in emergence may have contributed to marked differences in yields of LR93 maize biomass. The emergence advantage in AF over the control plots may have come as a result of a shading effect by the $A F$ trees and the live-fence which somewhat moderated soil temperature and reduced evaporation from the soil thereby enabling the seedings in $A F$ to receive near optimum conditions for emergence.

Relatively heavy rains in May had induced tasselling but strorg winds soon dried soil and crop and the plants became water stressed by 68 DAP before the silking phase could be attarned. Hence the plants generally had vegetative growth without producing coibs. The strong winds mostly affected the control plots due to their immediate exposure since they were in open area. The plants dried up by 103 DAP (i.e. 26/7/93).

By 7 DAP 85\% of all the beans in plots (M. L \& AF) had emerged. By 45 DAP 15% of the beans in AF and 10% in the control had flowered. By 50 DAP 100% of the plants had flowered. By 68 DAP 30% of the beans in AF and 15% in the control had attained the ripeness phase. The plants started wilting by 80 DAP due to lack of soil moisture as the soil was being dried rapidly by the strong winds.

The biomass and seed yields from beans were harvested on 104 DAP (27/7/93). We here therefore present the following results for this season (i) maize heights and "stover" biomass in control (Local and Mulched) plots and AF plots (ii) bean seed and biomass yields in each of these plots.

4.1.4 (c) Maize heights: The offect of mulching and root pruning on maize heights

Intercomparisons were made of the effect of mulching (Figs. 70 \&

Fig. 74. Average maize biomass yields per row in pruned Mulched (AFM1) and pruned Local (AFLl) for LR93.

Fig. 75. Average maize biomass yields per row in unpruned Mulched (AFM2) and unpruned Local (AFL2) for LR93.

Fig. 76. Average maize biomass yields per row in pruned Mulched (AFM1) and unpruned Mulched (AFM2) for LR93.

Fig. 77. Average maize biomase yields per row in pruned Local (AFL1) and unpruned Local (AFL2) for LR93.

Table 23. LR93 maize biomass yields in pruned and unpruned Grevillea rabusta relative to control plots.

Between tree rows	average biomass yields (t/ha)	\% of M	\% of L
(a) Root pruned Grev. + mulch + minimum till (AFM1)			
A-B	1.40 ± 0.56	55	48
B-C	1.69 ± 0.10	66	58
C-D	1.79 ± 0.52	70	61
D-E	1.18 ± 0.50	46	40
A-E	1.52 ± 0.54	60	52
(b) Root pruned Grev. + Local + deep tillage (AFL1)			
A-B	0.99 ± 0.60	39	34
B-C	0.91 ± 0.40	36	31
C-D	1.15 ± 0.62	45	39
D-E	0.39 ± 0.28	15	13
A-E	0.87 ± 0.58	34	30
(c) Unpruned Grev. + mulch + minimum till (AFM2)			
A-B	0.25 ± 0.19	10	9
B-C	0.08 ± 0.13	3	3
C-D	0.65 ± 0.59	25	22
D-E	0.75 ± 0.47	29	26
A-E	0.42 ± 0.48	16	14
(d) Unpruned Grov. + Local + deep tillage (AFL2)			
hro	0.6430 .35	25	22
$\mathrm{B}-\mathrm{C}$	0.48 ± 0.23	19	16
C-D	0.68 ± 0.20	27	23
D-E	0.70 ± 0.29	27	24
A-E	0.62 ± 0.29	24	21
(e) Control plots			
Mulch (M)	2.55 ± 0.85	100	115
Local (L)	2.93 ± 0.28	87	100

Table 24. Effects of Mulching and pruning on maize biomass weights for LR93 (a) Mulched (b) pruning.

treatments	average biomass weights (t/ha
a) Mul ched	
AFMI	1.52 ± 0.54
AFLI	0.87 ± 0.58
\% increase for mulched	74.7
AFM2	0.42 ± 0.48
AFL2	0.62 ± 0.29
decrease for mulch of	32.3
(b) Pruning effect	
AFM1	1.52 ± 0.54
AFM2	0.42 ± 0.48
\% increase for pruned	261.9
AFL1	0.87 ± 0.58
AFL2	0.62 ± 0.29
\% increase for pruned	40.3

Table 25. Effects of Mulching and pruning on beans seed \& biomass weights (a) Mulched (b) pruning LR93

treatments average biomass (t/ha)		Average seed (t/ha)
(a) Mulched		
ALtis	0.41 ± 0.12	0.53 ± 0.16
AFLI	0.33 ± 0.16	0.39 ± 0.15
\% increase	24.2	35.9
AFM2	0.19 ± 0.14	0.20 ± 0.14
AFL2	0.31 ± 0.11	0.37 ± 0.12
\% increase	-38.7	-46.0

(b) Pruning offect		
AFM1	0.41 ± 0.12	0.53 ± 0.16
AFM2	0.19 ± 0.14	0.20 ± 0.14
\% increase for pruned	115.79	165
AFL1	0.33 ± 0.16	0.39 ± 0.15
AFI2	0.31 ± 0.11	0.37 ± 0.12
\% increase for pruned	6.5	5.4

$71)$ and of Grevillea root pruning (Figs. 72 \& 73) on the progress of maize heights in $A F$ and control plots. From the date of emergence, the plants in the control plots were growing faster than those in AF (shown in Figs. 70 \& 71).

We can observe the effect of mulching in Figs. $70 \& 71$. The plants in the pruned Mulched plot (AFM1. Fig. 70) in AF had grown taller than those in the pruned Local plot (AFL1). The plants in the unpruned Mulched plot (AFM2. Fig. 71) in AF were, nowever, shorter than those in the unpruned Local plot (AFL2). Also those in the Mulched NAF grew taller than those in the Local NAF. This confirmed the superiority under L893 conditions of mulching with minimum tillage to other treatments that small-scale farmers may use on their farms.

We observe the effect of pruning in Figs. 72 \& 73. Intercomparisons of the Mulched plots show that the pruned Mulched (AFM1) maize had orown especially taller than the unpruned Mulched (AFM2) maize. This was also the case with the Local plots, where the pruned Local (AFL1) had grown taller than the unpruned Local (AFL2) (Fig. 73). This again confirmed the superiority of pruning to the unpruned treatment, for the LR93 conditions.
4.1.4 (d) Maize biomass yields: Effects of Mulched and pruning on maize biomass weights

We hereby present comparisons of effects of mulching on stover biomass weights in pruned and unpruned plots in the $A F$ plots for the LR93 (Figs. $74 \& 75$. Tables $23 \& 24$).

We observed in several cases very strong effects of both mulching and pruning during this season. The effect of mulching was positive and much higher in the pruned (AFM1. AFL1) than the negative effect in the unpruned (AFM2, AFL2) plots. There was more biomass harvested from the pruned Mulched with minimum tillage (AFM1) than from the pruned Local with deep tillage (AFL1) by 74.7\%. The situation reversed in favour of the Local deep tilled treatment in the unpruned plots in which the Local unprused plot (AFL2) had more biomass than the Mulched one by 12.5%. but at appreciably lower yield levels. As we have already mentioned earlier. this last case is not so interesting for us once we decide to advise pruned Mulched with minimum tillage for adoption by farmers. which would be logical given the yield levels of LR93.

The offect of pruning was most evident in Mulched plote when the pruned had more stover biomass than the unpruned by more than 261.9% (Figs. 76 \& 77), Table 24). This trend was maintained for the Local plots as the pruned plots recorded more biomass weight than the pruned by 40.3%. This was of course also reflected in the actual yields. although particularly the unpruned Mulched yields were rather low. A lange maize biomass yield with no grain as in LR93 confirms. in the ultimate limit. our observation that cob and grain weights are inversely related to stover blomass. Hence a large biomass may result in little or no cob and grain yields if rainfall distribution is not favourable.

Because we have illustrated sufficiently the large fluctuations of yields per row with the data of previous seasons but ultimately deal with totals yields have longer given such data here and in the remaining seasons.

4.1.4 (0) Beans biomass and seed yields

Tables 25 and Table 26 present the effects of mulching and pruning on the bean biomass and seed yields for the LR93. We can see in Table 25. that bean biomass and seed yields from Mulched plots were more than from the Local plots by 24.2 and 35.9% respectively. in pruned plots.

In unpruned plots mulch application had a negative effect on the beans biomass and seed yields, just as in the case of maize. as the unpruned Local plot (AFL2) had 38.7 and 46.0% more biomass and seed yields than the Mulched plot (AFM2) (Table 25). This was particularly the case through depressed yields in the unpruned Mulched plots.

In unpruned plots mulching (with minimum tillage) must have improved soil conditions favourably for increased root ramification in which tree roots competed vigorously with the maize/beans intercrop for soil resources (i.e. for water and nutrients) thus affecting both biomass and grain yields.

The effect of root-pruning was assessed by comparing plots under the same surface cover treatments (Mulched or Local) in the AF. From Table 25b we learn that root-pruning was more effective as a control measure in the pruned Mulched plot (AFM1) than in the unpruned Mulched plot (AFM2. Table 25b) for both biomass and seed yields.

Of the Mulched (plus minimum tillage) plots, the pruned plot (AFM1) produced more bean biomass and bean seed yields than the unpruned one (AFM2) by 115.8 and 165% respectively (Table 25 b). In the Local
(deep tillage) plots the pruned plot produced more biomass and grain yields than unpruned Local. but only by a negligible 6.5 and 5.4% respectively.

Comparing the biomass and seed yields from AF plots with the controls (Tables 26 and 27) we find that more and seed yields were obtained from AFM1, particularly from the lower part of the AF plot between TR3 and tree row E (see Fig. 9), which is the only plot with yields comparable to the controls. AFM1 biomass yields. although

Table 26. LR93 beans biomass yields in pruned and unpruned Grevillea robusta relative to control plots.

Between tree rows	average biomass yields (t/ha)	\% of L	\% of M
(a) Root pruned Grev. + mulch + minimum tillage (AFM1)			
A-B	0.39 ± 0.11	64	58
B-C	0.39 ± 0.10	64	58
C-D	0.37 ± 0.08	61	55
D-E	0.49 ± 0.12	80	73
A-E	0.41 ± 0.12	67	61
(b) Root pruned Grev. + Local + deep tillage (AFL1)			
A-B	0.22 ± 0.03	36	33
B-C	0.20 ± 0.05	33	30
C-D	0.32 ± 0.10	52	48
D-E	0.51 ± 0.21	84	76
A-E	0.33 ± 0.16	54	49
(c) Unpruned Grov. + mulch + minimum till (AFM2)			
A-B	0.13 ± 0.06	21	19
B-C	0.07 ± 0.04	11	10
C-D	0.21 ± 0.08	34	31
D-E	0.35 ± 0.15	57	52
A-E	0.19 ± 0.14	31	28

(d) Unpruned, Gev. + Local + deep tillage (AFL2)			
A-B	0.30 ± 0.04	49	45
B-C	0.31 ± 0.05	51	46
C-D	0.25 ± 0.05	41	37
D-E	0.38 ± 0.18	62	57
A-E	0.31 ± 0.11	51	46
(e) Control			
plots			
Local (L)	0.67 ± 0.25	110	100
Mulch (M)	0.61 ± 0.27	100	91

Table 27. LR93 beans seed yields in pruned and unpruned Grevillea robusta relative to control plots.

Between tree rows	average seed yields (t/ha)	\% of L	\% of M
(a) Root pruned Grev. + mulch + minimum ti 11 (AFM1)			
A-B	0.43 ± 0.15	67	72
B-C	0.57 ± 0.17	89	95
C-D	0.53 ± 0.11	83	88
D-E	0.61 ± 0.17	95	102
A-E	0.53 ± 0.16	83	88
(b) Root pruned Grov. + Local + deep tillage (AFLI)			
A-8	0.31 ± 0.05	48	52
$\mathrm{B}-\mathrm{C}$	0.38 ± 0.08	59	63
C-D	0.48 ± 0.12	75	80
D-E	0.39 ± 0.23	61	65
A-E	0.39 ± 0.15	61	65
(c) Unoruned Grov. + mulch + minımum e111 (AFM2)			
A-B	0.14 ± 0.07	22	23
B-C	0.09 ± 0.04	14	15
$C-D$	0.32 ± 0.13	50	45
D-E	0.27 ± 0.13	42	
A-E	0.20 ± 0.14	31	33
(d) Unpruned Grev. + Local + deep tillacye (AFL2)			
A-B	0.43 ± 0.07	67	72 67
$\mathrm{B}-\mathrm{C}$	0.40 ± 0.07	63	67
$C-D$	0.38 ± 0.07	59	45
D-E	0.27 ± 0.16	42	
A-E	0.37 ± 0.12	58	62

(e) Control plots			
Local (L)	0.60 ± 0.21	94	100
Mulch (M)	0.64 ± 0.20	100	106

superior to the other treatments. did not come even close to the values of the controls and the lower half was only marginally better. Pruned Local and unpruned Mulched had both much more seed and biomass yields in the lower half of the plots with the exception of AFL1 where this effect was smaller. There was marginally more beans biomass yield and manginally less bean seed yield from the Local control than from the Mulched control plots. On the average. the control plots produced both more seed and biomass yields than the averaged AF plots.

4.1.5 Short Rains season 1993

4.1 .5 (a) Rainfall and evaporation climate during growing season

The maize/bean intercrop was planted on 16th October. 1993, after a rainfall total of 14.4 mm was received against 8.9 mm of pan evaporation in the period preceding the planting date. The rainfall throughout the four months of the season was below the long term mean while pan evaporation rates were above their long term means (Fig. 14). The rains were concentrated mainly in November which recejved 117.2 mm . January 1994. with rainfall of 49.2 mm below its long term mean, had the highest negative value followed by December and November. 1993. which had 32.1 and 18.1 mm too low respectively. The pan evaporation rates for November. December and January were 115.8, 174.7 and 172.5 min respectively. All pan evaporation rates were above their long means. with December having the highest positive deviation of 41.0 mm above its long term mean.

Fig. 78. Average maize heights per row in pruned Mulched (AFM1) and pruned Local (AFLI) for SR93, compared with the control plots.

F1g. 79. Average maize heighte per row in unpruned Mulched (AFM2) and unpruned Local (AFL2) for SR93, compared with the control plots.

Fig. 80. Average maize heights per row in pruned Mulched (AFM1) and unpruned Mulched (AFM2) for SR93, compared with the control plots.

Fig. 81. Average maize heights per row in pruned Local (AFL1) and unpruned Local (AFL2) for SR93, compared with the control plots.

The rainfall received in October and November was only adequate for seedling emergence and early growth. Like earlier seasons (SR91. LR92, LR93) initial growing made a good start, but lack of rain. from late November to January. 1994. resulted in plants attaining the permanent wilting point rapidly, by early December. Beans were harvested on 107 DAP (i.e. on $31 / 1 / 94$) and maize biomass that remained in the field was drying fairly fast.

4.1.5 (b) Maize and beans phenology

Of the maize seedlings 35% in $A F$ plots and 22% in Local and 25% in Mulched controls had emerged by 7 DAP (by 23/10/93). By 14 DAP. 90% in Local. 93% in Mulched and 95% in AF had emeroged. Emergence attained 100% level by 21 DAP in all plots. These differences in emeroence may again have contributed to in marked differences in maize biomass yields in SR93. Again the shading effect by the $A F$ trees and the live-fence may have been of influence. as we have mentioned in section 4.1 .4 (b) above.

The plants attained 10-20 \% tasselling by 72 DAP (i.e. 27/12/93). However. this tasselling phase appeared to have been prematurely induced by water stress, as the plants had started wilting just before tasselling started. that is before 65 DAP . and were completely dry two weeks later (i.e. 86 DAP).

By 7 DAP 90\% of the beans in all the plots (M. L \& AF) had emerged. By 44 DAP 16% of the beans in $A F$ and 12% in the control had flowered. By 51 DAP 100% of the plants had flowered. By 75 DAP. 35% of the beans in $A F$ and 20% in the control plots had attained the ripeness phase. The beans attained 100% ripeness by 86 DAP. The bean blomass and bean seed yields were harvested on 107 DAP (27/7/93).

Fig. 82. Average maize biomass yields per row in pruned Mulched (AFM1) and pruned Local (AFL1) for SR93.

Fig. 83. Average maize biomass yields per row in unpruned Mulched (AFM2) and unpruned Local (AFL2) for SR93.

We present the following results for this season (i) maize heights and stover biomass yields in control (Local and Mulched) plots and in AF plots (ii) bean seed and bean biomass yields in each of these plots.

4.1.5 (c) Maize heights

Figs. 78 \& 79 present maize heights in pruned Mulched and pruned Local (AFM1 \& AFL1) unpruned Mulched and unpruned Local (AFM2 \& AFL2) in AF plots and the same in NAF plots.

The influence on marze heights by Mulched at 3 t/ha crop residue was demonstrated by comparing heights for the pruned Mulched (AFM1) with the pruned Local (AFL1) plots (Fig. 78) and heights for the unpruned Mulched (AFL2) with the unpruned Local plots (AFL2) (Fig. 79). All were compared with the Mulched and Local control plots (Figs. 78 \& 79).

The maize plants in both. Mulched plots in pruned AF (AFM1) and the Mulched control (Mulched control), had grown taller by 65 DAP (i.e. by DOY 354, Fig. 78). The Mulched control had the tallest plants. The two Local plots (Local control and AFL1) had shorter plants than the two Mulched plots. AFL1 had the shortest plants. The maize plants in the unpruned plots were much shorter than those in the control plots. with the unpruned Mulched plot having the shortest maize. Here again Mulching (in combination with pruning) was demonstrated to be the best feasible water conservation measure in dry-land farming.

The influence on maize heights by Grevillea root pruning was demonstrated by comparing the pruned Mulched plot (AFMI) with the unpruned Mulched (AFM2) (Fig. 80), and the pruned Local plot (AFL1) with the unpruned Local (AFL2) (Fig. 81). Again all were compared with the Mulched and Local control plots (Figs. $80 \& 81$).

In the Mulched plots. plants were appreciably higher in the pruned Mulched (AFM1) than in the unpruned Mulched (AFM2) plots (Fig. 80). Also plants in the pruned plots were erally higher than those in Local control plot (Fig. 80). In Fig. 81 ve observe shorter plants in the $A F$ plots than in NAF Local control plots. AFLI had grown somewhat taller than AFL2. Indicating higher competition for soil moisture between trees and the intercrop in AF during SR93. even in the pruned area. than within intercrops in the control plots.

4.1 .5 (d) Maize biomass yields

Figs. 82 \& 83 (for row details) and Table 28 a present results of the intercomparison of maize biomass yields for SR93 as influenced by crop residue mulch application. The maize biomass yields were generally higher in the Mulched pruned (AFM1) than in the Local pruned (AFL1). The highest yields were obtained in the intercrop rows 19-27. The average maize biomass yields in the pruned plots (AFM1 \& AFL1) were hagher in the Mulched (AFM1) than in the Local (AFL1) plot by 85.5% (Table 27a. details per row in Fig. 82). In the unpruned plots (AFM2 \& AFL2) application of mulch appeared to have depressed the biomass yields since the unpruned Local had 41.3 \& more yields than unpruned Mulched (see Table 28a \& Fig. 91). We observed such trends already earlier in this thesis and it could even be observed visually easily. The only reason we can forward is the damage done by larger scale turbulent eddies shown by smoke trails to particularly affect this area. About such thigmomorphogenetic responses in plant growth to mechanical stimuli little is known (see Chapter 5).

Fig. 84. Average maize biomass yielde per row in pruned Mulched (AFM1) and unpruned Mulched (AFM2) for SR93.

Fig. 85. Average maize biomass yields per row in pruned Local (AFL1) and unpruned Local (AFL2) for SR93.

Table 28. Effects of Mulched and pruning on maize biomass weights for SR93 (a) Mulched (b) pruning.

treatments	average biomass weights (t/ha)
a) Mulched	
AFM1	AFL1 0.54 ± 0.68 \% increase 85.5 AFM2 0.47 ± 0.33 AFL2 0.80 ± 0.27 \% increase -41.3 (b) Pruning effect AFM1 1.54 ± 0.68 AFM2 0.47 ± 0.33 \% increase 227.7 AFL1 0.83 ± 0.37 AFI2 0.80 ± 0.27 \% increase 3.8

Figs. 84 \& 85 and Table 28b present results of the intercomparison of maize biomass yields for SR93 as influenced by arevilled robusta root-pruning in AF plots. The Grevilled root pruning was more effective in the Mulched plot with minimum tillage (AFM1) than in any other treatment. The AFM1 plot had higher biomass yields than AFM2 by 227.7% (Fig. 84 \& Table 28b). In the Local plots, the pruned Local (AFL1) had a marginal so negligible biomass yield advantage over unpruned Local (AFI2) by 3.8% (Fig. 85 \& Table 28b).

Further comparison of AF maize biomass yields with those of the control plots confirms the fact that the pruned Mulched plot with minimum tillage (AFM1) gave the highest yields of 78 and 77% relative

Table 29. SR93 maize biomass yields (t/ha) in pruned and unpruned Grevillea robusta relative to control plots.

(c) Unpruned Grev. + mulch + minimum till (AFM2)

$A-B$	0.44 ± 0.14	22	22
$B-C D$	0.19 ± 0.10	10	10
$C-D$	0.44 ± 0.30	22	22
$D-E$	0.81 ± 0.31	41	41
$A-E$	0.47 ± 0.33	24	24

(d) Unpruned Grev. + Local + deep tillage (AFL2)

A-B	0.95 ± 0.24	48	48
B-C	0.54 ± 0.18	27	27
C-D	0.95 ± 0.15	48	48
D-E	0.80 ± 0.24	41	40
A-E	0.80 ± 0.27	41	40
(e) Control			
plots			
Local (L)	2.00 ± 0.74	96	100
Mulch (M)	1.97 ± 0.76	100	102

to Mulched (M) and Local (L) control plots respectively (Table 29). AFL1 with 42% relative to both M and L, was second to AFM1. Where there was
no tree competition, in the control plots. mulch application gave only a very marginal increase compared to the Local by 2\%. From Table 29 we see that the lowest yields in all the AF plots (AFM1. AFL1. AFM2 \& AFL2) were obtained between tree rows TR1 and TR2 (i.e. interspace B-C). The highest yields were received in all AF plots. except AFM2. between tree rows TR2 and TR3 (i.e. interspace C-D see Table 29). This is for the unpruned plots in line with LR93.

Table 30. Effects of Mulched and pruning on beans seed \& biomass weights (a) Mulched (b) pruning SR93

treatments average	Average
biomass (t/ha)	grain (t/ha)

a) Mulched

AFM1 AFL1	0.29 ± 0.09	0.15 ± 0.07
\% decrease for mulched	-14.7	25.0
AFM2 AFL2	0.22 ± 0.12	0.08 ± 0.06
\% decrease for mulched	-8.3	-20.0

(b) Pruning effect

ARM1 AFM2	0.29 ± 0.09	0.15 ± 0.09
\% increase for pruned	31.8	87.5
ALI	0.34 ± 0.11	0.12 ± 0.05
AFL2	0.24 ± 0.08	0.10 ± 0.05
increase for pruned	41.7	20.0

Table 31. SR93 Beans biomass yields (t / ha) in
pruned and unpruned Grevillea robusta relative to control plots.

Between tree rows	average biomass yields (t/ha)	\% of M	\% of L
a) Root pruned Grev. + mulch t minimum till (AFM1)			
A-8	0.38 ± 0.05	56	- 41
B-C	0.26 ± 0.08	38	28
C-D	0.26 ± 0.08	38	28
D-E	0.28 ± 0.07	41	30
A-E	0.29 ± 0.09	43	31
(b) Root pruned Grev. + Local + deep till (AFL1)			
A-B	0.42 ± 0.13	62	45
B-C	0.33 ± 0.13	49	35
$C-D$	0.30 ± 0.06	44	32
D-E	0.30 ± 0.05	44	32
A-E	0.34 ± 0.11	50	37
(c) Unpruned Grev. + mulch + minimum till (AFM2)			
A-B	0.19 ± 0.12	28	20
$\mathrm{B}-\mathrm{C}$	0.11 ± 0.07	16	12
C-D	0.28 ± 0.08	41	30
D-E	0.30 ± 0.10	44	32
A-E	0.22 ± 0.12	32	24
(d) Unpruned Grev. + Local + deep till (AFL2)			
A-B	0.32 ± 0.11	47	34
B-C	0.21 ± 0.03	31	23
C-D	0.19 ± 0.02	28	20
D-E	0.23 ± 0.07	34	25
A-E	0.24 ± 0.08	35	26
(e) Control plots			
Local (L)	0.93 ± 0.33	137	100
Mulch (M)	0.68 ± 0.46	100	73

Table 32. SR93 Beans yields (t/ha) in pruned and unpruned Grevilis a robusta relative to control plots.

Between tree rows		average yeans seed yields (t/ha)	\% of M	\% of L
(a) Root pruned Grev. + mulch + minimum till (AFM1)				
A-B	0.15 ± 0.08	48	58	
B-C	0.14 ± 0.05	45	54	
C-D	0.18 ± 0.05	58	69	
D-E	0.10 ± 0.06	32	38	
A-E	0.15 ± 0.07	48	58	
(b) Root pruned Grev. + Local + deep till (AFL1)				
A-B	0.12 ± 0.03	39	46	
B-C	0.15 ± 0.06	48	58	
C-D	0.14 ± 0.03	45	54	
D-E	0.08 ± 0.03	26	30	
A-E	0.12 ± 0.05	39	36	

(c) Unpruned, Grov. + mulch + minimum till (AFM2)

4.1.5 (e) Beans, biomoss and seed yields

Tables 30a. b present the effects of mulching and pruning on the beans biomoss and seed yields for the SR93. We can see in Table 30a that

AFM1 had less beans biomass yields than AFLI by 14.7% but more bean seed yields by 25%.

In unpruned plots mulch application had negative effect on both beans biomass and seed yields, as the unpruned Local plot (AFL2) had 20 and 8.3% respectively more seed and biomass yields than the Mulched unpruned plot (AFM2) (Table 30a). The pruned plot (AFM1) produced more biomass and seed yields than pruned Local (AFL1) by 41.7 and 20.0% respectively.

Table 30b shows that a combination of root-pruning with muiching (AFM1) was a more effective water conservation measure than a combination of not pruning with mulching (AFM2. Table 30b). In AF, in the Mulched (plus minimum tillage) plots the pruned Mulched plot (AFM1) produced more beans biomass and seed yields than the unpruned Mulched (AFM2) by 31.8 and 87.5% respectively (Table 30 b). In the Local (plus deep tillage) plots the pruned Locald plot (AFL1) produced more beans biomass and seed yields than the unpruned Local (AFL2) by 41.7 and 20.0% respectively.

We notice from Tables 31 and 32 that in the upper part of $A F$ there were higher biomass yields between tree rows $A-B(T R 1)$ than between B(TR1)-C(TR2) in all upper halves of the plots (see Fig. 9), but this did not apply to seed yields. Comparing the bean biomass and bean seed yields from AF plots with the controls (Tables 31 and 32). while there were more bean biomass and seed yields from the Local control than from the Mulched controls, on the average the control plots produced appreciably more both seed and biomass yields than the AF plots. again due to severe competition for soil moisture between the trees and the intercrop as compared to absence of the same in NAF.

4.1.6 Long Rains season 1994

4.1.6 (a) Rainfall and evaporation climate during growing season

The intercrop of maize/beans for LR94 was planted on the 13th April. 1994. after a cumulative rainfall total of 33.4 mm spread over 12 days before the planting, day against total pan evaporation of 70.9 mm . The rainfall totals in two months out of four. that is April and May, 1994, in this season were above their long term means (see Fig. 15). Pan evaporation for April was 15.7 mm above the long term mean. April. with rainfall of 68.3 mm above its long term mean, had the highest positive value followed by May with 27.1 mm . March had the highest negative value of 31.1 mm below the long term mean. March had the highest positive evaporation deviation of 16.4 mm from its long term mean for that month. while June had the highest negative deviation of 23.3 mm (see Fig. 15).

On the planting day. there was no rain but a total of 60.2 mm against evaporation of 73.7 mm was recorded in the three days following the planting day. This season was relatively wet but too short for a complete maize growth cycle. The strong winds started too early. in late May 1994, and dried the soil and lodged most plants. observed visually, resulting in no orrain harvest from maize.

We present the following results: maize heights and maize biomass yields, and bean seed and remaining biomass yields. There were no grain yields from maize.

4.1.6 (b) Maize and beans phenology

In the control plots. 16% of the maize plants in Local plots and 20% in Mulched plots. as well as 25% in AF plots had emerged by 8 DAP. By 10 DAP 80% in Local. 85% in Mulched and 90% in AF had emerged. Eroorgence attained 100% level by 22 DAP. Differences in maize biomass

Fig. 86. Average maize heights in pruned Mulched (AFM1) and pruned Local (AFLI) for LR94, compared with the control plots.

Fig. 87. Average maize heights in unpruned Mulched (AFM2) and unpruned Local (AFL2) for LR94, compared with the control plots.

Fig. 88. Average maize heights in pruned Mulched (AFM1) and unpruned Mulched (AFM2) for LR94, compared with the control plots.

Fig.89. Average maize neights in pruned Local (AFLI) and unpruned Local (AFL2) for LR94, compared with the control plots.
yields may have resulted partly from differences in emergence and partly from post-emergence response of plants to environmental physical quantities, which included strong June-September winds.

Strond June-September winds that set in by 75 DAP caused a lot of water loss from soil and plants as the exposed soil and plants were drying. By 70 DAP 20% of the plants in the control and 30% in the AF had tasselled. Maize plants did not have problems with pests, diseases and weeds. The plants started drying up after tasselling.

By 8 DAP 85% of the beans in the control plots and 90% in AF plots had emerged. By 40 DAP 10% of the beans in Local and AF and 15% in Mulched plots had flowered. By 46 DAP (i.e. 23/5/94) the beans attained 100% flowering phase. The beans attained complete (100\%) ripeness by 81 DAP. The biomass and seed yields from beans were harvested on 104 DAF (i.e. $26 / 7 / 94$). We here therefore present the following results for this season (i) maize heights in $A F$ and in control (Local and Mulched) plots and (ii) maize and remaining beans biomass as well as bean seed yrelds of maize and beans in each of these plots.

4.1 .6 (c) Maize heights

Figs. 86 \& 87 present intercomparisons of LR94 maize heights in AF and NAF as influenced by the Mulched and Local treatments in the Grevillea robusta root pruned (AFM1 \& AFL1) and unpruned (AFM2 \& AFL2) plots.

The plante in the Malched pruned plot (AFM1) and in the Mulched control plot had grown taller, at about the same rate, by 54 DAP (i.e. by DOY 164. Fig. 86). The two Local plots (Local control and AFL1) had shorter plants. those in the Local control being slightly taller than those in the AFL1. The plants in the unpruned plots were shorter than

Fig. 90. Average maize biomass yields per row in pruned Mulched (AFM1) and pruned Local (AFL1) for LR94.

Fig. 91. Average maize biomass yields per row in unpruned Mulched (AFM2) and unpruned Local (AFL2) for LR9 4.

Fig. 92. Average maize biomass yields per row in pruned Mulched (AFM1) and unpruned Mulched (AFM2) for LR94.

Fig. 93. Average maize biomass yields per row in pruned Local (AFL1) and unpruned Local (AFL2) for LR94.
those in the controls, with the unpruned Mulched plot having the shortest (Fig. 87).

The effect of root pruning in the Mulched plots was such that much higher plants were observed in the pruned plot (AFM1), while plants in the Mulched control plot were as high as the former and much higher than those in the Local control plot (Fig. 88). In Fig. 89 we Observe slightly shorter plants in the $A F$ (AFL1 \& AFL2) plots than an the NAF Local control plots but the plants in the Mulched control plots were much higher than all of them.

4.1 .6 (d) Maize biomass yields

Figs. 90 \& 91 and Table 33a present results of the intercomparison of maize biomass yields for LR94 as affected by crop residue mulch from the previous season's intercrop. Generally there were higher yields in the lower parts of plots with the exception of rows 20-25 in AFL1 and 11-TR2 in AFL2. This is confirmed by Table 34. The average biomass yields in the pruned Mulched plots (AFM1) was higher than in the pruned Local (AFL1) plot by 37.2% (Table 33a. Fig. 90), while in the unpruned plots (AFM2 \& AFL2) application of mulch once again depressed the biomass yields in AFM2 by 40.5% as compared to AFL2 (see Table 33a \& Fig. 91).

Table 33. Effects of Mulched and pruning on maize biomass yields for LR94
(a) Mulched (b) pruning.

treatments	average biomass yields (t/ha)
(a) Mulched	
AhMI	2.69 ± 1.10
AFWI	1.96 ± 1.07

\% increase	
AFM2	1.28 ± 1.2
AFL2	2.15 ± 0.80
\% decrease	-40.5
(b) Pruning effect	
ArMI	2.69 ± 1.10
AFM2	1.28 ± 1.00
\% Increase	110.2
AFL1	1.96 ± 1.07
AFL2	2.15 ± 0.80
\% decrease	-8.8

Figs. 92 \& 93 and Table 33b present results of the intercomparison of maize biomass yields for LR94 as influenced by Grevillea robusta root-pruning in $A F$ plots. Again pruning was most effective in the mulch with minimum tillage plot (AFM1). AFM1 had higher biomass yields than the unpruned mulch (AFM2) of 110.2% (Fig. $92 \&$ Table 33b). However. between Local plots (AFL1 \& AFL2). AFL2 had slightly higher biomass yields than AFL1. by 8.8% (Fig. 93 \& Table 33b).

Further comparison of AF maize biomass yields with those of the control plots confirms the fact that AFMl gave the highest yields with average of 2.69 ± 1.10 tha and AFM2 was the next highest with 2.15 ± 0.80 tha (Table 34). In the control plots the mulch gave higher yields relative to the Local by more than two and a quarter times. From Table 34 we see that the lowest yields in the four AF plots (AFM1. AFL1. AFM2 \& AFL2) were received in the first maize rows (i.e. interspace $\bar{A}-C$) which may have been due to the channelling effect by the deliberate gap and other protection differences (see section 4.3) from the strong southerly winds into the AF plot. Maize rows 15-28 lie in the lower half
of the AF where strong protective effects of the southern hedge and western hedge overlap to give maximum shelter to crops in $A F$.

4.1.6 (e) Beans biomass and seed yields

Table 35a \& 35b present the effects of Mulching and pruning on the beans biomass and seed yields for the LR94. We can see in Table 35a that mulching had a slightly suppressive effect on bean biomass yields. as Mulched plots (AFM1. AFM2) had less biomass yields than Local plots (AFL1. AFL2) by 5.6 and 42.4% respectively. The mulch application had a slightly positive influence on seed yields in pruned plots by 10.0% and a somewhat lower negative effect in unpruned plots of 30%. This again illustrates our earlier assertion that seed yields are inversely related to biomass yields. An increase in blomass tends to result in a decrease in seed yields. This was also true for maize biomass and maize grain yields as our result herein have shown.

Table 35b shows that a combination of root-pruning and mulch apolication on minimum tilled land in an agroforemtry mytem an in ArMi was more effective as a control measure than other combinations considered here (particularly in AFM2 and appreciably less in AFLl \& AFL2).

In the mulch (plus minimum tillage) plot. AFM1 produced more biomass and seed yields than AFM2 by 41.7 and 57.1% respectively (Table 35b). AFL1 produced less beans biomass than AFL2 by 14.3 but as much seed yields as AFL2.

Comparing the biomass and seed yields from AF plots (Tables 36/37) we observe that the unpruned Local (AFL2) plot had the highest yields. We notice from Tables 36 and 37 that the lower halves (between $C-D$ and D-E) of all AF plots (see Fig. 9). except AFM1. obtained higher beans
seed and biomass yields than the upper halves (between $A-B$ and $B-C$). The interspace $B-C$ in the upper half of all the plots obtained the lowest bean seed and biomass yields.

Table 34. LR94 maize biomass in pruned and unpruned Grevillea robusta relative to control plots.

Between tree rows	average biomass yields (t/ha)	\% of M	\% of L
(a) Root pruned Grev. + mulch + minimum till (AFM1)			
A-B B-C			
C-D	0.88 ± 0.97	14.0	31.3
D-E	3.51 ± 0.39	40.0	89.3
A-E	3.50 ± 0.85	51.7	115.3

(b) Root pruned Grev. + Local + deep tillage (AFL1)

A-B	1.00 ± 0.43	16.0	35.6
B-C	1.68 ± 0.43	26.8	59.8
C-D	2.73 ± 1.18	43.5	97.2
D-E	2.64 ± 1.00	42.1	94.0
A-E	1.96 ± 1.07	31.3	69.8
(c) Unpruned	Grev. + mulch + minimum till	(AFM2)	
A-B	0.50 ± 0.29	8.0	17.8
B-C	0.49 ± 0.24	7.8	17.4
C-D	1.52 ± 0.44	24.2	54.1
D-E	2.72 ± 0.68	43.4	96.8
A-E	1.28 ± 1.00	24	24

(d) Unpruned Grev. + Local	deep tillage (AFL2)		
A-B	1.33 ± 0.36	21.2	47.3
B-C	2.11 ± 0.94	33.7	75.1
C-D	2.20 ± 0.42	35.1	78.3
D-E	2.99 ± 0.31	47.7	106.4
A-E	2.15 ± 0.80	34.3	76.5

(e) Control

plote

Local (L)
Mulch (M)
2.81 ± 1.10

Table 35. Effects of Mulched and prurimg on beans seed E blomass yields (a) Mulched
(b) pruning for [RG4

treatments	average seed (t/ha)	Average icmass (t/ha
a) Mulched		
AFMI	0.22 ± 0.11	0.17 ± 0.07
AFL1	0.20 ± 0.09	0.19 ± 0.10
\% increase /decrease for muiched	10.0	-5.6
AFM2	0.14 ± 0.08	0.12 ± 0.08
AFL2	0.20 ± 0.09	0.21 ± 0.08
\% decrease for mulched	-30.0	-42.9
(b) Pruning effect		
AFM1	0.22 ± 0.11	0.17 ± 0.07
AFM2	0.14 ± 0.08	0.12 ± 0.08
\% increase for pruned	57.1	41.7
AFI1	0.20 ± 0.09	0.18 ± 0.10
AFL2	0.20 ± 0.09	0.21 ± 0.08
\% increase /decrease for mulched	0.0	-14.3

There were more beans biomass and seed yields from the Mulched control than from the Local control. The control plots pruduced in most cases appreciably) more both seed and biomass yzelds than the AF plots.

4.1.7 Short Rains season 1994

4.1.7 (a) Rainfall and evaporation climate during growing season The intercrop of maize/beans for $5 R 94$ was planted on thse 10 h October 1994. after a cumulative rainfall totai of 19. an auganer total pan evaporation of 16.3 mm was received in 3 days before the planting day.

Table 36. LR94 Beans biomass yields in pruned and unpruned Gisillea robusta relative to contr. plots.

Betweer, tree rows	average biomass yields (t,hà)	\% of M	\% of L
ia) Root pruned (irev. + muich + mininum till (AMMi)			
A-B	0.42土0.08	57.9	66.1
B-C	0.12 ± 0.03	31.6	36.4
$C-D$	0.17 ± 0.06	44.7	51.5
D-E	0.17 ± 0.05	44.7	51.5
A-E	0.17 ± 0.07	44.7	51.5

(b) Root pruned Grev. + Local + deep tillage (AFL1)

A-B	0.15 ± 0.07	39.5	45.5
B-C	0.08 ± 0.03	21.1	24.2
C-D	0.19 ± 0.10	50.0	57.6
A-E	0.30 ± 0.05	78.9	90.9
(c) Unpruned	0.18 ± 0.10	47.4	54.5

$A-B$	0.08 ± 0.06	21.1	24.2
$B-C$	0.07 ± 0.03	18.4	21.2
$C-D$	0.11 ± 0.08	28.9	33.3
$D-E$	0.22 ± 0.05	57.9	66.7
$A-E$	0.12 ± 0.08	31.6	36.4

(di Unpruned Gre. + Local + deep tillage (AFLL)

$A-E$	0.24 ± 0.07	63.7	72.7
$B-C$	0.12 ± 0.06	31.6	36.4
$C-D$	0.199 ± 0.07	50.0	57.6
$D-E$	0.28 ± 0.04	73.7	84.8
$A-E$	0.21 ± 0.08	55.3	63.6

(e) Control

Table 37. LR94 Beans seed yields in pruned and unpruned Grevillea robusta relative to control plots.

Between tree rows	average beans seed yields (t/ha)	$\%$ M	$\%$ I
a) Roct prunec arev. + muich	minimum tili (ALM1)		
A-D	0.29 ± 0.55	67.4	87.7
B-C	0.15 ± 0.03	34.9	45.5
C-D	0.20 ± 0.08	46.5	60.6
D-E	0.24 ± 0.09	55.8	72.7
A-E	0.22 ± 0.11	51.2	66.7

(b) Root pruned Grev. + Local + deep tillage (AFL1)

$A-B$	0.21 ± 0.10	48.8	63.6
$B-C$	0.13 ± 0.05	30.2	39.4
$C-D$	0.20 ± 0.08	46.5	60.6
$D-E$	0.28 ± 0.06	65.1	84.8
$A-E$	0.20 ± 0.09	46.5	60.6

(c) Unpruned Grev. + mulch + minimum till (AFM2)

$A-B$	0.09 ± 0.05	20.9	27.3
$B-C$	0.05 ± 0.02	11.6	15.2
$C-D$	0.16 ± 0.06	37.2	48.5
$D-E$	0.21 ± 0.03	48.8	63.6
$A-E$	0.14 ± 0.08	32.6	42.4
(d) Unprined (iveV. + Local	deep tillaje (AFI工)		
A-I	0.22 ± 0.04	31.2	60.7
B-C	0.11 ± 0.04	24.6	33.3
$C-D$	0.15 ± 0.06	34.9	45.5
$D-E$	0.30 ± 0.04	69.8	90.9
$A-E$	0.20 ± 0.09	46.5	60.6

(e) Control
plots

Local (L)	0.33 ± 0.11	76.7	100
Mulch (M)	0.43 ± 0.18	100	130.3

Fig. 94. Average maize heights in pruned Mulched (AFM1) and pruned Local (AFL1) for SR94, compared with the control plots.

Fig. 95. Average maize heights in unpruned Mulched (AFM2) and unpruned Local (AFL2) for SR94, compared with the control plots.

Fig. 96. Average maize heights in pruned Mulched (AFM1) and unpruned Mulched (AFM2) for SR94, compared with the control plots.

Fig. 97. Average maize heights in pruned Local (AFLI) and unpruned Local (AFL2) for SR94, compared with the control plots.

The rainfall totals in two minths out of four. that is October and November. 1994. in the SR94 season were above their long term meath (see Fig. 14). The pan evaporation for the four SR94 months wele below the ar long term means. Pan evaporation for october was 18.9 in beluw its iong term mean. November with rainfall deviation of 19.9 matove ats long term mean had the highest negative deviation of pan evaporation of 20.1 \min below its long term mean. January 1995 had the highest negative Geviation of rainfall of 38.4 mabove the long term wean surarat a positive pan evaporation of 16.7 mm (see Fig. 14).

4.1 .7 (b) Maize and beans phenology

In the contral plots. 20% of the maize plants in Lucal and 25835 Mulched, as well as 25% in agroforestry had emerged by 7 IAP. By 10 DAF 35\% in Local. 90% in Mulched ard 95% in AF had emerged. Emergence attained 100\% level by 22 DAP. The malze plants attaired 10 : tasseiling by 65 DAP and 15% by 70 DAF. The plants were water stresseci ardi started wilting by 76 DAF (i.e. 25/12/94) meaning that tassellirg in the NAF plets may have been induced by lack of water. By 97 DAP there was a mere 2 silking in NAF control plots and nore at all ir AF due to irocreased competition betweni AF trees with the maize/bean intercrou wher soid moisture is low. Maize plants did not have problems with pests. diseases ard weeds. The plants in $A F$ started drying up after tasselling. We only harvested biomass and negligible (on the average less than 0.01 thal grain yolds NAF froill the SR94 intercrop.

By 9 DAP 95% of the beans in the control piots and 908 in Ar had Ewerged. By 11 DAP 100\% in ail plots had emerged. By 46 DAF 20% of the Leane in controi and 30% in $A F$ plots hat flowered. Tre fiowering phase erded by 76 DAP (i.e. $25 / 12 / 94$) as the plants starteci waltarag.

Fig. 98. Average maize biomass yields per row in pruned Mulched (AFM1) and pruned Local (AFL1) for SR94.

Fig. 99. Average maize biomass yields per row in unpruned Mulched (AFM2) and unpruned Local (AFL2) for SR94.

We harvested both seeds and biomass on 109 DAP (27/1/95).
We again present the following results for this season: (1) maize heights in control (Local and Mulched) plots and AF. (ii) grain and biomass yields of maize and beans in each of these plots.

4.1 .7 (c) Maize heights for SR94

Figs. 94 \& 95 present intercomparison of SR94 maize heights in AF and NAF as influenced by mulching and Local treatments in the Grevillea robusta root pruned (AFM1. AFL1) and unpruned (AFM2. AFL2) plots. The pruned plots were compared within themselves and with the control to see the effect of mulch application on maize heights growth rates IFig. 94). We can see in Fig. 94 that plarits in Local control dominated the growth right from 25 DAP (i.e. 319 days) to 97 DAP (i.e. 351 days). thereafter those in Mulched control took over. The plants in AFMi. AFLI and Local control had grown at the same rate from 11 DAP to 55 DAP ii.e. 349 days).

The situation changed when AFM2 was compared AFL2 in Fig. is as AF12 grew faster than AFM2 from 25 DAP. When compared with the control plots we see that Mulched control again dominated the later growth stages (Fig. 95).

Similar results were observed when Mulched plots were compared within themeelves and with the control plote to establimh the offect ef root-pruning on crop heights (Fig. 96). However, we see in Fig. 97 that when AFL1 was compared With AFL2 the two were growing at the same rate all the way from day 351 (i.e. 97 DAP), thereafter because of having been root-pruned AFL1 overtook AFL2 (Fig. 97).

Fig. 100. Average maize biomass yields per row in pruned Mulched (AFM1) and unpruned Mulched (AFM2) for SR94.

Fig. 101. Average maize biomass yields per row in pruned Local (AFL1) and unpruned Local (AFL2) for SR94.

Table 38. SR94 maize biomass in pruned and unpruned Grevillea robusta relative to control plots.

Between tree rows	average biomass yields (t/ha)	\% of M	\% of L
(a) ROOT pruned Grev. + mulch + minimum till (AFM1)			
A-B	2.44 ± 0.66	50.5	63.8
$\mathrm{B}-\mathrm{C}$	2.55 ± 0.71	52.7	66.6
C-D	3.13 ± 0.71	64.8	81.9
D-E	2.90 ± 0.83	59.9	75.8
A-E	2.75 ± 0.78	56.9	72.0
(b) Root pruned Grev. + Local + deep tillage (AFL1)			
A-B	1.94 ± 1.10	40.2	50.9
$\mathrm{B}-\mathrm{C}$	2.00 ± 0.65	41.3	52.2
$C-D$	2.09 ± 0.38	43.1	54.6
D-E	2.66 ± 0.51	55.0	69.5
A-E	2.17 ± 0.77	44.9	56.8
(c) Unpruned Grev. + mulch + minimum til			(AFM2)
A-B	1.34 ± 0.32	27.6	35.0
B-C	0.46 ± 0.30	9.5	12.0
C-D	1.63 ± 0.87	33.7	42.7
D-E	1.84 ± 0.30	38.1	48.2
A-E	1.32 ± 0.75		
(d) Ur.pruned Grev. + Local + deep tillage (AFLL)			
A-B	1.71 ± 0.20	35.4	44.8
B-C	1.50 ± 0.37	31.1	39.4
C-D	2.43 ± 0.41	50.2	63.6
D-E	1.68 ± 0.33	34.7	43.9
A-E	1.83 ± 0.49	37.9	47.9
(e) Control plots			
Local (L)	3.82 ± 1.14	126.4	100.0
Mulch (M)	4.83 ± 1.83	100.0	79.1

4.1 .7 (d) Maize biomass yields

Figs. 98 \& 99 (for row details) and Tables 38 \& 39 present results of comparing maize biomass yields for SR94 as affected by crop
residue mulch from the previous seasons. Table 38 and Figs. 98 \& 99 snow that the upper half of AF obtained less maize stover blomass yields in all the four treatments. In the unpruned plots that gave lowest yields overall the area $B C$ gave ag̣ain lowest yields and CD hiahest. The control plots gave higher stover biomass yields than the $A F$ plots. Of the $A F$ plots the hrohest stover biomass yieid of $2.75 \pm 0.78 \mathrm{t} / \mathrm{ha}$ was obtarned from AFM1. which was 43.1\% less than Mulched control (i.e. 56.9% of M) but 28.0% less than Local control (i.e. 72.0% of L) (Table 39). The next highest average yield of 2.17 ± 0.77 t/ha came from AFLi Table 38 \& 39. We see from Table 39 that the intercrop resique mulch contriouted to increased biomass yields in Mulched pruned plot in AF since AFMi aave more yields than AFL1 by 26.7%. However in unpruned plots application of residue mulch made no difference betweer AFM2 and AFL2 as biomass vields were only 0.5% apart in favour of AFM2 (Table 39a).

Fias. 100 \& 101 and Table 38 \& 39 present results of the comparisons of maize biomass yields for SR94 as iniluenced by Grevillea robusta root-druning in $A F$ plots. Again pruning was most eifective in combination with the mulch with manimum tillage treatment (AFMi). AFMi had higher blomass ylelds than the unpruned mulch (AFMZ) by 49.5% 'Table 39). The same direction of the pruning effect was true for the Locai Dlote as AFLI had more biomass violde than AFLL by 18.6\%. Thue in both cases in SR94 pruning had advantage over not pruning.

However. when compared to the control Dlots. Mulched control gave the highest yield of 4.83 ± 1.83 t/ha followed by Local control with 3.82 ± 1.47 t/ha and then only third was AFM1. In the control plots the mulch had hioher yields relative to the Local by 126.5\%. From Table 39 we see that although clearly the lowest blomass vields in the four AF
plots (AFM1. AFL1. AFMZ \& AFL2) were received in the upper half (i.e. interspace $A-C)$, this was not as extreme as in LR94 when the channelling effect of the strong southerly winds into the AF plot. as a result of the deliberate gap, most likely caused crop damage through shaiking. lodging and higher evaporation rates from the soil and plarits isee section 4.3). Higher biomass yields in all AF plots were obtaned in the lower half of $A F$ (i.g. D-C \& D-E) thar in the upper hali (Table 38). The highest yields in the lower half. interspace ' $\bar{C}-D$ '. may be due to gravitational run on water, due to the sloping land (at a slope of 4-5\%) where this area is dowr slope. and to protection from strong winds in

Table 39. Effects of Mulched and prunang on maize biomass yields
(a) Mulched (b) pruning for SR94

creatments	Average blomass (t/he)
(a) Mulched	
$\begin{aligned} & \overline{A F M 1} \\ & \text { AFL1 } \end{aligned}$	$\begin{aligned} & 2.75 \pm 0.78 \\ & 2.17 \pm 0.77 \end{aligned}$
\% increase for mulched	26.7
AFM2 AFL2	$\begin{aligned} & 1.32 \pm 0.75 \\ & 1.83 \pm 0.49 \end{aligned}$
\% decreasefor Mulched	
b) Prunim effect	
AFM1 AFM2	$\begin{aligned} & 2.75 \pm 0.78 \\ & 1.84 \pm 0.30 \end{aligned}$
\% increase for pruned	49.5
AFL1 AFL2	$\begin{aligned} & 2.17 \pm 0.77 \\ & 1.83 \pm 0.49 \end{aligned}$
* 1ncrease for pruned	18.6

the region between 7.5 and 15 m from the western hedge, where no interference of roots from the nearest hedge plants will cause differences.

4.1.7 (e) Beans biomass and seed yields

Table 40a \& 40b present the effects of Mulched and pruning on the beans seed and biomass yields for the SR94. The Mulched treatment did not do well in this season. In the pruned plots AFL1 had more biomass and seed yields than AFM1 by 19.1 and 54.5% respectively (Table 40a). In the unpruned plots AFL2 produced more seed yields than $A F M 2$ by 54.5% but less biomass albeit by a mere 3.8%.

Even pruning was not any better with regard to grain yields as the treatments had equal yields (Table 40a). Differences were observed with respect to biomass production as pruned plots produced more than unpruned plots. AFM1 Droduced more biomass than AFM2 by 40.7% while AFLi had more biomass than AFL2 by 80.8%. Comparing the bean biomass and seed yjelds from AF plots with the controls (Tables 41 and 42) we observe equal differences relative to the controls as both Mulched and Local controls received equal orain and biomass yields.

Table 40. Effects of Mulched and pruning on beans seed \& biomass yields (a) Mulched (b) pruning for SR94

treatments	average seed (t/Ma)	Average biomass (t/ha)
(A) Mulched		
AFM1	$\|c\|$ AFL1	0.05 ± 0.03
\% decrease	-54.5	0.38 ± 0.12
AFM2	0.05 ± 0.06	0.47 ± 0.12
AFL2	0.11 ± 0.05	-19.1

\% decrease	-54.5	$3 . \varepsilon$
b) Pruning effect		
AFM1	0.05 ± 0.03	0.38 ± 0.12
AFM2	0.05 ± 0.03	0.27 ± 0.11
$\%$ increase	0.0	40.7
AFL1	0.11 ± 0.06	0.47 ± 0.12
AFL2	0.11 ± 0.05	0.26 ± 0.07
\% increase	0.0	80.8

Comparison of the upper and lower half of each plot in AF indicates that in AFM1 they had almost the same biomass but its lower half had more seed yields. AFL1 and AFM2 obtained more bean blomass and bean seed yields in the lower than in the upper half of AF plot. While in AFL2 plots such a phenomenon did not occur.

4.1.8 Results of on-farm live-fence experiment at Kiahuko-A

4.1.8 (a) Rainfall and evaporation climate during growing season

The maize/beans intercrop for SR93 on-farm was pianted on 17/10/93 after a total rainfall amount of 19.5 mm was recejved in four consecutive days preceding the planting day that marked the onset of the short rains for 1993. The rainfall continued for one and a half months and then soil moisture level had dropped and the intercrop could not survive. The rainfall amounts for November and December as read from the on-farm rain gauge installed on 2/10/93 were 104.1 and 78.3 mm . The intercrop emeroence was observed on 24/10/93 (i.e. 7 DAP). The crop orew well for some time whereafter soil moisture level had dropped and the episode of crop failure followed.

Fig. 102. Average maize heights as a function of distance from pruned (left) and unpruned (right) portions of Coleus barbatus live-fence at Kiahuko-A on-farm plot for SR93.

Fig. 103. Average maize neights as a function of dstance irom pruned (left) and unpruned (right) portions of Coleus barbatus live-fence at Kiahuko-A on-farm plot for LR94.

Fig. 104. Average maize heights as a function of distance from pruned (left) and unpruned (right) portions of Coleus barbatus live-fence at Kiahuko-A on-farm plot for SR94.

Fig. 105. Average maize neights in Mulched and Local treaments in AF and NAF plots at Kiahuko-B on-farm for SR93.

Table 41. SR94 Beans biomass yields in pruned and unpruned Grevillea robusta relative to control plots.

Between tree rows	average biomass yields (t/ha)	\% of M	\% of L
(a) Root pruned Grev. + mulch + minimum till (AFM1)			
A-B	0.38 ± 0.12	63.0	63.0
$\mathrm{B}-\mathrm{C}$	0.39 ± 0.15	65.0	65.0
C-D	0.40 ± 0.09	66.7	66.7
D-E	0.34 ± 0.08	56.7	56.7
A-E	0.38 ± 0.12	63.3	63.3
(b) Root pruned Grev. + Local + deep till (AFL1)			
A-B	0.42 ± 0.12	70.0	70.0
B-C	0.40 ± 0.09	66.7	66.7
$C-D$	0.55 ± 0.10	91.7	91.7
D-E	0.53 ± 0.11	88.3	88.3
A-E	0.47 ± 0.12	78.3	78.3
(c) Unpruned grev. + mulch + minimum till (AFM2)			
$\bar{A}-\mathrm{B}$	0.22 ± 0.11	67.7	36.7
B-C	0.23 ± 0.11	38.3	38.3
C-D	0.28 ± 0.12	46.7	46.7
D-E	0.34 ± 0.07	56.7	56.7
A-E	0.27 ± 0.11	45.0	45.0
(d) Unoruned Grev. + Local + deep till (AFL2			
A-B	0.30 ± 0.07	50.0	50.0
B-C	0.23 ± 0.07	38.3	38.3
C-D	0.26 ± 0.04	43.3	43.3
D-E	0.25 ± 0.06	41.7	41.7
$A-E$	0.26 ± 0.07	43.3	43.3
(e) Control plots			
Local (L)	0.60 ± 0.2	100.0	100
Mulch (M)	0.60 ± 0.2	100.0	100

Table 42. SR94 beans seed yields in firuned and unpruned Grevillea robusta relative to control plots.

Between tree rows	average bean seed yields (t/ha)	\% of M	\% of L
a) Root pruned Grev. + mulch + minimum till (AFM1)			
A-	0.03 ± 0.00	15	15
$\mathrm{B}-\mathrm{C}$	0.04 ± 0.02	20	20
C-D	0.08 ± 0.02	40	40
D-E	0.04 ± 0.04	20	20
A-E	0.05 ± 0.03	25	25
(b) Root pruned Grev. + Local + deep till (AFL1)			
A-B	0.07 ± 0.05	35	35
B-C	0.07 ± 0.05	35	35
C-D	0.14 ± 0.03	70	70
D-E	0.16 ± 0.03	80	80
A-E	0.11 ± 0.06	55	55
(c) Unoruned Grev. + mulch + minimum till (AFM2)			
A-B	0.03 ± 0.04	15	15
B-C	0.01 ± 0.02	5	5
C-D	0.07 ± 0.04	35	35
D-E	0.10 ± 0.06	50	50
A-E	0.05 ± 0.06	25	25
(d) Unpruned Grev. + Local + deed till (AFL 2)			
A-B	0.10 ± 0.04	50	50
B-C	0.10 ± 0.04	50	50
C-D	0.14 ± 0.03	70	70
D-E	0.10 ± 0.06	50	50
A-E	0.11 ± 0.05	55	55
(e) Control plote			
Local (L)	0.20 ± 0.10	100	100
Mulch (M)	0.20 ± 0.10	100	100

The on-farm intercrop for LR94 was planted on 25/4/94 and for SR94 it was planted on $22 / 10 / 94$ and again these seasons' low soil moisture
level did not allow the maize to reach maturity. The rainfall totals and distributions did not favour the intercrop (see Appendix Table A3).

4.1 .8 (b) Maize heights

Figs. 102-104 give maize heights as measured from the farmers plot at Kiahuko-A in the live-fence experiment. The heights in the open part of the plot (GC-Garden Centre) are repeated in both parts of each orapin for every season as a control. Other heights measurements are then gauged against it. The distances 0-120, 120-300 and 300-600 cm were determined with soil moisture oradients in mind. as monitored weekly by the neutron probe in the access tubes installed at 90.180 and 360 cm from the live-fence.

We notice for SR93 (Fig. 102) that the plants close to the unpruned Coleus barbatus live-fence and at 120 cm away were seriousiy depressed by competition for water with the live-fence. The plants in the same area near the pruned live-fence were growing normally. In fact the plants near the unpruned live-fence had outgrown those in the oper: by day 4 of January. 1994, but they all ended up equally. The plants in the unpruned area beyond 120 cm were also orowing at rates like the others.

Similar competition was observed for the LR94 crop 1Fig. 103). We further notice plants in the pruned plots at the distances of 120-300 and 300-600 cm orrowing even taller than those in the middle (GC) part. This was attributed to strong winds that affect the exposed cerrtre of the on-farm plots during this time of the year and to competition for water between the crop and a mature Eucalyptus tree growing near the centre of the farm. During SR94 the winds were light and plants in the

GC (middle) area orew taller than the rest. Meanwhile competition between the crop near to the fence and the unpruned live-fence was evident for the SR94 crop (Fig. 104).

4.1.8 (c) Maize biomass (stover) yields

As we have already pointed out in section 3.1.1 (f). the stover biomass for LR94 was taken by the farmer. before could taken measurements. We were therefore unable for LR94 to deterwine whether the picture of the values of relative height performance was returning in biomass yields.

Table 43(i) presents results of maize biomass vields for SR93 as a function of the distance from the Coleus barbatus live-fence. In the pruned area maize biomass yields slightly decreased lalthough error limits overlapl away from the live-fence. that is in the range $0-120 \mathrm{~cm}$ to $120-300 \mathrm{~cm}$. and then increased for $300-600 \mathrm{~cm}$ away. The yields ir unpruned were the same every where. The height picture was not repeated in the biomass yields as all were higher. in biomass, than GC and only $300-600 \mathrm{~cm}$ from the fence in the pruned area were the yields different. Given the error margins, the differences are almost negligible but for the total areas there is about 0.5 t /ha more yields in the area in front of the pruned fence. Comparing the biomass yields closest to the coleus barbatus live-fence in the pruned area with the unpruned areas we found that pruning accounted for 0.4 tha or almost 10% increase in biomass yields. which must be considered a small increase. comparing it to the orror maropins concerned wher real, this increase, though email as far as relief measures are concerned. may provide to the farmer in such a dry environment as Matanya a bonus to his livestock or provide mulching
materials. There was also an in ease in biomass yields of 1.0 t /ha or 23.3\% in the area near the pruned fence over the area near the unpruned fence in the range $300-600 \mathrm{~cm}$ away, which might have been caused by the crop residues the farmer had heaped in the pruned area as his mulching materials. The biomass yieids in open General Control (GC) were lower than closer to the live-fence due to exposure to the aerodynamic and evaporative effects. There was no windbreak effect in this part of the farm and it was therefore exposed to wind and other microclimatic stresses. Also competition for water between the crop and a mature Eucalyptus tree growing near the centre of the farm. as mentioned earlier. affected the biomass yields.

The biomass yields for SR94 (Table 44(i)) were much lower than for $\operatorname{SR93}$. This was due to less rainfall received during early crop establishment and growth in SR94 than in SR93. However. we observe the same trend in SR94 as in SR93. In the pruned area the maize biomass yields slightly decreased from the live-fence (in the range $0-120 \mathrm{~cm}$) to 120-300 cm although error limits strongly overlap and then slightly increased in the range $300-600$ cll away, but these differences are marginal. In the unpruned area there was again lower yields on average. by a bit less than 0.2 t/ha or almost 25%.

Comparing the SR94 biomass yields closest to the Coleus barbatus live-fence in areas near the pruned and the unpruned fence. We see that pruning accounted for 0.27 tha or 34.2% increase in bicmass yields. Which is a substantial increase. although strongly overlapping error margins remain. The farmer would be very comfortable with such an increase.

General Control (GC) part obt ined this year the average highest yield of 1.82 ± 0.27 tha. Reiative 1 GC the pruned area obtained 58.2% at $0-120 \mathrm{~cm} .52 .8 \%$ at $120-300 \mathrm{~cm}$ and 57.6% at $300-600 \mathrm{~cm}$ from the lavefence while unpruned area had 43.4% at $0-120 \mathrm{~cm} .51 .1 \%$ at $120-300 \mathrm{~cm}$ and 44.0% at $300-600 \mathrm{~cm}$. These now relatively lower yields compared with GC. in the worst rainfall season are in line with the review of Norman et al. (1984) that under rainfed conditions long-term orowth. water use and particularly (grain) yields may depend on soil water availability. The openness and the shacie of the Eucalyptus tree nearby must have influenced plant growth differentiy from the other piants. as Fig. 190 confirms for soil moisture. Norman et al. (1984) contend that low maize (grain) yield in the tropics is attributed to dry matter distrioution within the crop and to the sensitivity of both net photosynthesis and partitioning to environmental stress. particularly water deficit. Thus it is not unlikely that therefore GC plants were shorter but had relatively higher biomass yield.

The beans in Kiahuko-A were broadcast. as they normally did before we started on-farm experimentation, and were not planted in rows nence we were unable to quantify the yields.
4.1.9 Results of Mulching and pruning experiments at Kiahuko-B

4.1.9 (a) Maize and beans performance

The maize/beans intercrop for SR93 on-form was pianted on 17/10 193. The intercrop for LR94 was planted on 25/4/94 and for SK94 it was planted on $22 / 10 / 94$. Like for Kiahuko-A. the rainfall totais and distributions were expected not to favour the intercrop isee appendix Table A3). but surprisingly the maize crop did much better in LRo4 at

Kıahuko-y compared to Kiahuko-A.

4.1.9 (b) Maize heights

Fig. 105 gives maize 5 F 93 heights independently from any distance to trees. in Mulched and Locai on-farm AF plots. as compared with the NAF̄ control iocal and control Mulched plots on-iarm. we see in Fig. 105 that Mulched had retarded growth of plants. towards the end especially in the $A F$ plots. The $A F$ tree canopies were really heavy and mulching could not improve that situation, although the final height difference was only 10 am . The plants in the Local control orew the fastest

Table 43. Un-iarm yjelds (tha) iorain and biomass) at kianuko-A and Kiahuro-B: (i) SN93 maize biomass from live-fence experiment at kianuko-A. (ij) yields at kianuko-B: (a) SK93 maize biomass at Kiahuko-B. (b) LR94 maize biomass at Kiainuko-B. and (c) LRG4 beans yields at Kiahuko-b.

(i) SR93 maize biomass irom live-fence experiment at kiahuko-A				
live-fence (cm)	avg pruned	$\begin{aligned} & \text { yleids } \\ & \text { is of GC } \end{aligned}$	undruned	\% of GC
-0-120	4.5 ± 0.5	122.6	4.1 ± 0.4	110.6
120-300	4.2 ± 0.2	113.5	4.2 ± 0.4	113.5
300-600	5.3 ± 0.8	143.2	4.3 ± 0.4	110.2
GC	3.7 ± 0.9			

(ii) Maize yields at Kiahuko-B

(i) LR94 maize bıomass at kiahuki- B

(c) LR94 beans yields at Kianuko-B.

	Seed	Biomass	\% or L \% of M
Loc cont (L)	0.11 ± 0.02	0.09 ± 0.02	100 ¢ 8.8
Mui cont (M)	0.09 ± 0.02	0.14 ± 0.18	122.2100

followed by those in the Muiched control plots. that. however. ended up very closely to the Local one.

The effect of muiching (Figs. 106 (pruned) \& 107. (unprunedi) indicates Mulched plots in AF and liAF were the slowest in orrowng as compared to their Local neignbours. It 15 ciear irom Fig. 106 that. for LR94. in pruned area maize heigints in muiched plots decreased wilie those in Local area increased with the distance from the trees. Maize plants for LR94 (Fig. 107) in Locai unpruned plot are somewnat nigher than those in Mulched unoruned plot. In Mulched plot (see Fiog. 108) only at 200 cm from trees do pruned and unpruned differ but in opoosite direction to what we would expect. Only for pruned do helghts differ with the distance. For unmulcned AF Diot isee Fig. 1091 malze helohts in unpruned are less than the pruned with respect to distances. the neights at 200 cm are sliogtly higher.

We can see in Fig. 110 for SR94 that in the area with pruned Grevilleas. at 90 cm (left) maize in the Local pruned orew tailer than in the mulched pruned. whijle they attamed same firial hejohts at 90 cm (left) and $180-270 \mathrm{~cm}$ (riont). In the unoruned area (Fig. ild for 5k941

Fig. 106. Average maize heights at distances of 90 cm and 180-270 cm from root pruned Grevillea robusta trees in Mulched and Local treaments in AF and in NAF plots at Kiahuko-B on-farm for LR94.

Fig. 107. Average maize heights at distances of 90 cm and 180-270 cm from unpruned Grevillea robusta trees in Mulched and Local treaments in AF and in NAF plots at Kiahuko-B on-farm for LR94.

Fig. 108. Average maize heights, at distances of 90 cm (left) and 180-270 cm (right) from pruned and unpruned Grevillea robusta trees in Mulched plots in AF, and in NAF plots at Kiahuko-B on-farm for LR94.

Fig. 109. Average maize heights, at distances of 90 cm (left) and 180-270 cm (right) from pruned and unpruned Grevillea robusta trees in Local plots in AF and in NAF plots at Kiahuko-B on-farm for LR94.

Fig. 110. Average maize heights at distances of 90 cm (left) and 180-270 cm (right) from, pruned Grevillea robusta trees in Mulched and Local treatments in AF and in NAF plots at Kiahuko-B on-farm for SR94.

Fig. 111. Average malze neights at distances of 90 cm (left) and 180-270 cm (right) from unpruned Grevillea robusta trees in Mulched and Local treaments in AF and in NAF plots at Kiahuko-B on-farm for SR94.

Fig. 112. Average maize heights at distances of 90 cm (left) and $180-270 \mathrm{~cm}$ (right) from pruned and unpruned Grevillea robusta trees in Mulched plots in AF and in NAF plots at Kiahuko-B on-farm for SR94.

SR94 MAZ HGTS kiahukO-B: PRUNING EFFECT

Fig. 113. Average maize heights at distances of 90 cm (left) and $180-270 \mathrm{~cm}$ (right) from pruned and unpruned Grovillea robusta trees in Local plots in AF and in NAF piuts at Kiahuko-B on-farm for SR94.
maize in the Local unpruned grew taller than in the muiched unpruned at the two distances, that is 90 cm (left) and $180-270 \mathrm{~cm}$ (rıght). From Fig. 110 (pruned) and 111 (unpruned) we see that malze heights in mulched plots increased with the distance from the trees while those in Local plots attained the same heights at the two distances.

In the mulched AF plots (Fig. 112 for SR94) marze in the pruned mulched grew taller than in the unpruned mulched at 90 cm (left) ard $180-270 \mathrm{~cm}$ (right). The same trend was observed in the Local AF plots (Fig. 113 for SR94) although the Local AF plots attanned higher firai yields than the mulched AF plots. From Fig. 112 (mulched plot) we see that maize heights increased with the distance from the trees. Najze 16 . the Local AF plots attained the same heights at two distances $f 100 \mathrm{~m}$ the trees (Fig. 113).

The mulch effect in the SRO4 therefore showed that in unpruned (Fig. 111) plots plarts in the Local plots grew taller thar those in Mulched plots. In Mulched plots the plants near the trees, at 90 cm (left) in the unpruned area were adversely affected by tree competition. The pruning effect (Figs. 112 \& 113) also confirmed this.

4.1.9 (c) Maize biomass yields

Table $43(i i)$ a presents results of maize buomass yieids for SR93. in the or-farm experiments at kiahuko-B as affected by crop residue mulch from the previous seasons. in both AF and the controls. and by Grevillea root pruning in $A F$.

A comparison of maize biomase yields in pruned Mulched plots in AF with those in Mulched contral plots for SR93 (Table 43(1i)a)) gaves a yield reduction of 1.4 ± 0.7 t/ha in pruned Mulched plots. This substantial reduction in yield can be attributed to shading by the $A F$
trees and this makes tree root pruning appreciably less effective under such conditions. The comparison of yields in Mulched control plots with those in unpruned Mulched plots in AF gives a reduction of 1.8 ± 0.5 tha. which again is a substantial decrease we attribute to shading by the trees and competition for water between the crop and unpruned trees.

The comparison of yields in pruned Mulched with those in unpruned Mulched plot in AF gives a reduction of $0.4 \pm 0.6 \mathrm{t} / \mathrm{Aa}$. Here there was only a slight improvement, if ary. in yields gained by root pruning in Mulched AF plots, possibly due to heavy shading that out played acturs.

The comparison of yields in Local controls with those in pruned Local plot in AF gives a reduction of $3.1 \pm 0.9 \mathrm{t} / \mathrm{ha}$. Again the differerice $1 s$ substantial and is due to heavy shading in $A F$ which reduced the effects of other factors such as pruning.

Table 43(11)b presents results of maize biomass yields for LR94 at Kiahuko-B on-farm in the control and $A F$ plots.

A comparison of maize biomass yields for LR94 in pruned Mulched plots with those in Mulched control plots shows the latter gave wore yields by 1.91 ± 0.52 tha. This was a large difference. given the errux margins. which we again attribute to heavy shading, which reduced the effect of root pruning in the pruned Mulched plots in AF. The comparison of yields in Mulched control with those in unpruned Mulched plot an AF for LR94 shows that the unpruned Mulched plots have hardly any yeleld. and this substantial difference is again due to heavy tree canopy shading. worsened by competition for water between the crop and unpruned trees.

The comparison of yields in pruned Mulched in $A F$ with truse in unpruned Mulched plot gives a reduction of 0.8 ± 1.0 tha. Here there was substantial improvement in yields gained by root pruning in Mulched AF
plots. but both yields remained low due to heavy s. ng that out played other actors.

The comparison of yields in Lecal controls with these in pruned Lencal plots in $A F$ gives a reduction of $1.06 \pm 0.44 \mathrm{t} / \mathrm{ha}$. Again the difference 15 substantial and is due to heavy shading in $A F$. The comparison with the Lúcal unpruned yields gives an almost identical result.

As we have already pointed out, the previous seasons did not produce grain. An average grain yield of 0.61 ± 0.39 tha was obtanned from pruned Mulched plots in AF in SR94 while the pruned Local had $0.69 \pm 0.42 \mathrm{t}$ /ha which gave a decrease of $0.08 \mathrm{t} / \mathrm{ha}$ and an error margin of 0.81 t ha. Given the error margins, which are large. no or only slight improvewent accurred when mulching (for the pruried maize grair yzelds). In the unpruned plots grain yields for SR94 were 0.07 ± 0.07 t/ha in Mulched compared to $0.12 \pm 0.11 \mathrm{t}$ /ha in Local plots, again a slight decrease when mulching in biomass yields of 0.05 tha with an error margin of 0.18 t/ha. so with little agronomical importance.

The reduction in grain yields in SR94 was also observed relative to the control plots (Table 44(ii)a). The control plots produced $1.43 \pm 0.59 \mathrm{t} / \mathrm{ha}$ for the Mulched and $1.60 \pm 0.50 \mathrm{t} / \mathrm{ha}$ for the Local control plots.

Among the control plots Muiched controls gave 0.17 tha more the Local controls. Given the error margin of 1.09 tha. We see here that ro difference with a real meaning importance in grain yields was obtained by mulching.

Table 44(ii)b shows clearly that no improvement in cob splint yields for SR94 was obtained by both pruning and muiching in AF piots. and control plots with respect to mulching. Similarly the results for the maize stover biomass in Tables 43(ii)c and 43(ii)d have iarge error
margins which covers all yield differences in both contral plots and if plots. The yield differences between and within plots are therefore marginal which proves that pruning and mulching gave no improvemerrs $2 r i$ biomass yields in AF and the control plots.

The above analysis is strengthened by fully identical trenis an Sn94 cob splint (primary) yields. stover yields and then of couse totai biomass yields as given in Tables 44 (ii) b, c ard d.

4.1 .9 (d) Beans seed and biomass yields at Kiahuko-B on-farm

Table 43 (ii)c presents results of bean seed and bicmass yuelds for LR94 at Kiahuko-B on-farm in the control plots unly. as seedlings in the $A F$ did not germinate, possibly due to late planting. rodents (rats eating seeds before they germinated) and heavy shading. These

Table 44. On-farm yjelds (t/ha) (orain and biomass) at kiatuko-A arnd KiahukorB; (i) SRGA maize biomass from live-fence expermment at Kiahuko-A. (ij) mazze yselds at Kiahuke-B on-faru: (ai SRS4 maize grain yields. (b) SR94 maize cob splint or shelled cob). (c) SR94 maize stover yields and (d) SR94 total dry matter yields.

Distance from live-fence (cm)	avg yields pruned \% of GC		avg unpruned	$\begin{aligned} & \text { yuelds } \\ & \% \text { of GC } \end{aligned}$
0-120	1.06 ± 0.35	58.2	0.79 ± 0.47	43.4
120-300	0.96 ± 0.20	52.8	0.93 ± 0.28	51.1
300-600	1.05 ± 0.24	57.6	0.80 ± 0.37	44.0
GC	1.82 ± 0.37			

(ij) Maize yields at Kiahuko-B
(a) SR94 maize grain yields

	pruned \% of M	\% of I unpruned	\% of M\% of L
Mulched (AF)	0.61 ± 0.39 42.7	$38.1 \quad 0.07 \pm 0.07$	$4.9 \quad 4.4$
Local (AF)	$0.69 \pm 0.4248 .3$	$43.1 \quad 0.12 \pm 0.11$	$8.4 \quad 7.5$
के of M \% of L Mulch contr (M) 1.43 ± 0.59 100 112 Local contr (L) 1.60 ± 0.50 89.3 100			

(b) SR94 maize cob splint yields

(c) SR94 maize stover yields

(d) SR94 total biomass yields

	pruned \% of M\% of I	unpruned \% of M \% of L
Mulch (AF)	$2.42 \pm 1.2333 .7 \quad 33.6$	$0.82 \pm 0.50 \quad 11.712 .7$
Local (AF)	$3.23 \pm 1.1644 .9 \quad 44.8$	$2.08 \pm 0.63 \quad 28.9 \quad 28.8$
\% of M \% of L		
mulch contr (M) $7.19 \pm 2.20 \quad 100.0 \quad 99.7$ Local contr (L) $7.21+1.36100 .3100 .0$		

control plots performed disastrously.
A comparison of bean seed yields in Mulched control plats with those in Local corntrol shows that the former gave neqiagibly wore yieloz by $0.02 \pm 0.04 \mathrm{t}$ tha. A comparison of bean biomass yuelds in Mulched
control plots with those in Local control shows that the latter gave more yields by 0.05 ± 0.20 thia which again is negligible.

4.1.10 Intercomparison of yields in the on-farm (Kiahuko-A \& B and on-station (Matanya).

From Tables 43. 44 and Appendix Table A2.1 we can only cumpare results for SR93. LR94 and SR94. For the effect of Grevillea robusta root pruning we compare yields in pruned and unpruned trees. From Tables 43(ii)a and Appendix Table A2.1 we see that for SR93. the difference in maize biomass yields between pruned Mulched plot (AFMi) at Matanyá (1.54 $\pm 0.68 \mathrm{t} / \mathrm{ha}$) and pruned Mulched at Kiahuko-B (1.4 $\pm 0.4 \mathrm{t} / \mathrm{ha}$) was $0.14 \pm 1.08 \mathrm{t} / \mathrm{ha}$. which was appreciably less than the error margin and therefore two locations have supposed to have equal yieids. The difference in the unpruned Mulched plots (0.47 ± 0.33 and $1.0 \pm 0.2 \mathrm{t} / \mathrm{ha}$) in the two locations was 0.53 ± 0.53 tha which means that error margins of two locations just tough. so Kiahuko-B produced more blomass ir. the * order of twice as much maize biomass in SR93 (Tables 43(ii)a and Appendix Table A2.1).

The differences in the pruned and unpruned Local plots in the twi locations (for pruned: 0.83 ± 0.37 and 0.7 ± 0.3 tha; for unpruned: 0.8 ± 0.27 and $1.4 \pm 1.2 \mathrm{t} / \mathrm{ha}$) for $5 R 93$ were respectively 0.13 ± 0.67 t/ha and 0.6 ± 1.47 tha which due to large error margins means that the two locations must be supposed to have equal maize biomass in SR93. wath a tendency for higher on-farm biomass in the unpruned case. like in the mulched comparison.

The differences in the Mulched control and Local control plots in the two locations for SR93 (for mulched: 1.97 ± 0.76 ard $2.8 \pm 0.3 \mathrm{t} / \mathrm{ha}$: for

Local: 2.0 ± 0.74 and $3.8 \pm 0.6 \mathrm{t} / \mathrm{ha}$) were respectively 0.83 ± 1.06 tha and 1. $8 \pm 1.34 \mathrm{t}$ /ha which again, although with iarge error margiris. Show a tendency of higher biomass yields on-farm in SR93. These differerices were almost equal to those with the control plot (GC) at Kialuko-A (Local control yields $3.7 \pm 0.6 \mathrm{t} / \mathrm{ha}$). This shows that the SR 1993 low soil moisture affected Matanya and Kiahuko areas rather equally but with a tendency of higher on-farm biomass.

From Tables 43 (ii)b and Appendix Table A2.1 we see that for IR94. the difference in maize biomass yields between pruned Mulched plot (AFM1) at Matanya ($2.69 \pm 1.10 \mathrm{t} / \mathrm{ha}$) and pruned Mulched piot at Kiahuko-B 10.11 ± 0.08 tha) was $2.58 \pm 1.18 \mathrm{t} / \mathrm{ha}$ which was remarkably in favour of Matanya. Thus Matanya pruned Milched plots produced a mulch higher mäize biomass yield than Kiahuko-B. This difference may be attributed to heavier Grevillea shading at the Kiahuko-B AF than at Matanya. The differerice in the unprused Mulched plots (1.28 ± 1.00 and 0.03 ± 0.02 t/há) in the two locations for LR94 wäs 1.25 ± 1.02 tha which again remarkably in favour of Matanya.

The differences in the pruned (1.96 ± 1.07 and 0.13 ± 0.09 t/hal ard uripruned $(2.15 \pm 0.80$ and 0.09 ± 0.03 t/ha) Local plots in the two locations for LR94 were respectively 1.83 ± 1.16 tha and $2.06 \pm 0.83 \mathrm{t}$ /ho whach were again remarkably in favour of Matanya (Tables is (1i) L and Appendis: Taile A2.1).

The differences in the Mulched control (6.27 ± 1.77 and 2.02 ± 0.44 t/ha) and Local control (2.81 ± 1.10 ard $1.19 \pm 0.35 \mathrm{t} / \mathrm{ran}$) plots in the two locations for LR94 were respectively 4.25 ± 2.21 t/ha and 1.62 ± 1.45 tha which are not negligible. We can therefore infer here that now Matanya had certainly higher maize biomass yields in LR94 than Kıahuki-8, due to heavy shading in AF at Kiahuko-B. This is opposite to the trend of $\operatorname{SR93}$.

This already proves that even over a small distance of a few kllometres, rainfall and therefore (biomass) yields can vary greatly under Laikipia conditions.

From Tables 44 (ii)a and Appendix Table A2.1 we see that for SF94. -here was maize grain yields at Kiahukom while Kiahuko-A and Matanya.. plots produced only maize biomass. We therefore compared the total yields (including stover and unshelled cobs) at Kiahuko-B to the biomass at Matanya and Kiahuko-A. A comparison of maize biomass yields in pruned Mulched plot (AFM1) at Matanya ($2.75 \pm 0.78 \mathrm{t} / \mathrm{ha}$) to the pruned Mulched plot at Kiahuko-B $(2.42 \pm 1.23 \mathrm{t} / \mathrm{ha})$ shows that there was a small difference of 0.33 ± 2.01 t/ha of biomass yields in favour of Matanya. This was really a negligible increase, given the error maruins. indicating that the two locations had almost the same biomass in the mulched pruned AF plots. Heavy Grevillea shading at Kiahuko-B may have reduced the biomass yields to a level where it equalled the bromass yield at Matanya despite a supposedly good season at Kıanuko.

A comparison of maize biomass yielde in unpruned Mulched plot (AFM2) at Matanya (1.32 $\pm 0.75 \mathrm{t} / \mathrm{ha}$) to the unpruned Mulched piot at Kiahuko-B ($0.82 \pm 0.50 \mathrm{t} / \mathrm{ha}$) shows that there was a difference of 0.5 ± 1.25 tha yields in favour of Matanya. This was really a slight difference given the error margins but heavy shading affected Kiahuko-B biomass.

The differences in the pruned Local (2.17 ± 0.77 and $3.23 \pm 1,16$ tha) and unpruned Local (1.83 ± 0.49 and $2.08 \pm 0.63 \mathrm{t} / \mathrm{ha}$) plots in the two locations for SR94 were respectively $1.05 \pm 1.94 \mathrm{t} / \mathrm{ha}$ and $0.25 \pm 1.12 \mathrm{t}$ /ha which differences are negligible in the unpruned case but in favour of Kiahuko- B for the pruned case. be it that the error margin is very large (Tables 44 (ij)d and Appendix Table A2.1).

The differences in the Mulched control (4.83土1.83 and 7.19土2.20 t/ha) and Local control (3.82 ± 1.47 and $7.21 \pm 1.36 \mathrm{t} / \mathrm{ha}$) plots in the two locations for LR94 were respectively 2.36 ± 4.03 t/ha and 3.39 ± 2.53 t/hä. The differences in control plots at the two locations were clearly 10 favour of the on-form yields. the lange error margins notwithistanding. Kiahuko-A controls had less biomass yield differences with Matanya. nevertheless appreciably less biomass yields than both Matanyá and Kiahuko-B. To this comparisun should be added that only kiahutio-B onfarm maize yielded actual grain yields. of very much importance to the farmer.

4.2 Results of soil moisture

4.2.1 Relationship between observed and calculated volumetric soil moisture content (VSMC. (\%).
4.2.1 (a) Results of calibrations of neutron probes for Matanya soils.

The simultaneously obtained calibration results for the two instruments (CPN 501 and CFN 503) done for dry and wet seasons on 19/2/92 and 18/6/92 respectively are presented in Figs. 114 and 115 and regression equations $22 \& 23$.

$$
\begin{equation*}
\theta_{c a l c}=70.37 * C r-2.14,(r=0.982) \tag{22}
\end{equation*}
$$

and

$$
\begin{equation*}
\theta_{\text {calc }}=27.20 * C I-10.74,(I=0.963) \tag{23}
\end{equation*}
$$

where $\theta_{\text {oalo }}$ is calculated VSMC and Or is count ratio. that is the ratio of the probe reading to the standard count.

These calibration equations were used to convert the weekly probe readings to VSMC. CPN 503 and its calibration equation (Eq. 23) were used only when CPN 501 broke down.

Tables 45a \& 45b present observed and calculated soil moisture during dry and wet calibrations in 1992 using CPN 501 and 503. The relationshjp between observed and calculated VSMC were very high ir = 98.2% for CPN 501 and $r=96.3 \%$ for CPN 503). The positive per cent deviations of observed from calculated VSMC indicated that the calibration equation for CPN 501 ($r=98.2 \%$) slightly underestimated VSMC under dry conditions at 30 cm depth and below. The surface layers

Fig. 114. Calibration of neutron probe (type CPN 501)

Fig. 115. Calibration of neutron probe (type CPN 503)
are left with few free hydrocen atoms after evaporation but there are those bound to the clay particles.

The two calibration equations overestimated $\boldsymbol{\theta}$ in wet conditions at 30 cm depth and below (Täble 45a \& 45b). Negrative per cent deviatzons were observed in comparison of calculated values below 90 cm during wet calibration and positive values in the shallower depths.

Table 46 was obtained by reqressing gravimetric soll moisture on probe reading ratios at each of the seven measuring depths given above Isection 4.2 .1 (a)). The equations in Table 46 were used to estimate $\boldsymbol{\theta}$ for each measuring depth in the soil profile. The equations gave more accurate θ than the single calibration equation (Eq. 22 or 23) used for the whole profile. The correlation coefficients. r. were very high. The highest r of 0.995 was obtained near the surface at 18 cm depth. a condition which was possible only during wet seasons when the clay soll swelled and sealed the shrinikage cracks. The r values were decreasing slightly with depth from 0.995 at 18 cm to 0.957 at 150 cm depthe (Eq. 22 or 23).

The available θ at each depth in Table 47 was obtained from the dry and wet calibration data as in Tables 45a \& 45b. The W.P. was taken as the lower limit of $\boldsymbol{\theta}$. taken under extremely dry conditions when the soil surface lost all its vedetative cover of mainly orass and the F.C. was considered as the upper limit. The difference between the upper and lower limits was the available soil water capacity (Gardner. 1988).

We notice from Table 47 that the layers $0-75 \mathrm{~cm}$ contain more thar, 50% of available water for the crop between the uncorrected makimum and minimum values of available water at the time of calibration. The buik Of the plant roots reside in this layer. The calibration curves (Eas. 22 \& 23 and Figs. 114 \& 115) could therefore with reascnabie accuracy

Table 45. Comparison of observed and calculated per cent
VSMC (θ) and the radius of sphere of the importance.
Qs (Eq. 3), for the range of calculated VSMC (θ).
(a) for CPN 501. (b) for CFN 503

Calib dates	Depth (cm)	Cr	$\begin{aligned} & 8 \text { del } \\ & \text { Obs. } \\ & \theta \end{aligned}$	$\begin{aligned} & \text { Viat. } \\ & \text { Calc Obs } \end{aligned}$	from alc	Q, (cmi
(a) for CPN 501						
$\begin{aligned} & \text { Dry } \\ & 9.2 .92 \end{aligned}$	18	0.361	21.95	23.26	-5.97	26.84
	30	0.423	28.52	27.62	+3.14	24.02
	60	0.385	26.35	24.95	+5.31	25.67
	90	0.384	25.34	24.88	+1.82	25.72
	120	0.441	28.62	28.89	-0.95	23.32
	150	0.438	29.48	28.68	+2.72	23.43
	170	0.451	30.93	29.59	+4.32	22.94
$\begin{aligned} & \text { Wet } \\ & \text { 18.6. } 92 \end{aligned}$	18	0.706	49.44	47.54	+3.83	16.25
	30	0.712	50.77	47.99	+5.47	16.13
	60	0.593	39.72	39.60	+0.31	18.66
	90	0.577	35.53	38.40	-8.21	19.07
	120	0.614	39.56	41.04	-3.73	18.17
	150	0.622	39.50	41.66	-5.47	17.97
	170	0.587	37.63	39.18	-4.13	18.80

(b) for CPN 503

Iry	18	1.251	21.95	23.27	-6.01	26.83
19.2. 92	30	1.446	28.52	28.59	-0.26	23.48
	60	1.340	26.35	25.70	+2.45	25.19
	90	1.369	25.34	26.48	-4.50	24.70
	120	1.484	28.62	29.63	-3.53	22.92
	150	1.370	29.48	26.52	+10.05	24.68
	170	1.406	30.93	27.50	+11.09	24.10
Wet	18	2.101	49.44	46.42	+6.12	16.55
18.6 .92	30	2.132	50.77	47.25	+6.94	16.33
	60	1.883	39.72	40.46	-1.87	18.36
	90	1.837	35.53	39.21	-10.35	18.79
	120	1.885	39.56	40.52	-2.44	18.34
	150	1.920	39.50	41.47	-4.99	18.03
	170	1.877	37.63	40.31	-7.11	18.41

estimate water requirement by the intercrop at every stage of its development.

The complications due to shrinkage cracis. as the verto-luvic phaeozem soils dry up during hot-dry seasons cause reterogeneity of the
soils by reducing hydrogen atoms in the cracks as they become filled with air. It should be noted that a correction for constitutional

Table 46. Regression constants for observed and calculated VSMC ($\boldsymbol{\theta}$) at the measuring depths at Matanya. $\left(\theta_{\text {ca } 10}=a * C r+b\right)$.

Depth (cm)	b	std err of $\theta_{\text {ost }}$	r	No obs.	a	std ent of a
18	-9.62	1.58	0.995	6	83.77	4.12
30	-2.30	1.53	0.992	6	74.04	4.68
60	-0.55	1.43	0.988	6	70.30	5.39
90	-5.32	2.28	0.970	7	77.03	8.62
120	2.27	0.81	0.992	7	61.79	3.52
150	3.17	1.88	0.957	7	62.81	8.52
170	-0.87	1.58	0.973	7	69.69	7.40

Table 47 Calculations of available water from
(a) abeerved (rang samples) and (b) calculated (regression line. Eq. 22 for CPN 501) soil moisture. (NB: 1% vol. water $=1 \mathrm{~mm}$ of water per 10 cm soll depth).

Lepth (cm)	thick. (cm)	Field capac	Wilt. point	Avail. water	mim water	$\begin{array}{\|c\|} \text { cumul. } \\ \text { wates } \end{array}$	$\begin{gathered} \% \\ \text { vol. } \end{gathered}$
-0-25	25	47.5	23.3	24.3	61	61	22.2
25-45	20	48.0	27.6	20.4	41	101	14.9
45-75	30	39.6	25.0	14.7	44	145	i6.0
75-100	25	38.4	24.9	13.6	34	179	12.4
100-130	30	41.0	28.9	12.2	36	216	13.3
130-160	30	41.7	28.7	13.0	39	255	14.2
160-180	20	39.2	29.6	9.6	19	274	7.0
Total 100.0							

hydrogen was not applied because the montmorillonite content of our clay soils was not krown. However, this correction is smald for our type of soil (Ibrahim. 1992). The only correction applied was that for a chanọe of Eulk denaity wath doptri, whach apponed almo to bo amald (mee below).

4.2.1 (b) Relationship between bulk density (Bd) and soil moisture at

Matanya

We could propose the following from the results obrained by directly rearessing bulk density (Bd) on soll molsture using calibration data (see Fiơs. 116-122 and Table 48):
(i) that on averaơe the higher scatter of dry bulk derisity at lower VSHC (0) than at hidher VSMC (0) must be due to contraction of the Vertomluvic phaeozem soils on drying thereby forming shrankage cracks and lumps (clods) which get filled with air thus inducing heterogenelty in dry seasons and relatively more homogeneous soil under wet conditions.
(ii) dry bulk density slightly decreases with increasing VSMC (8) due to swelling of the vertisols. For example. the change in bulk density at 18 cm and 170 cm with soil molsture content was relatively

Fig. 116. Bulk density versus soil moisture at 18 cm depth

Fig. 117. Bulk density versus soil moisture at 30 cm depth

Fig. 118. Bulk density versus soil moisture at 60 cm depth

Flg. 119. Bulk density versus soll moisture at 90 cm depth

Fig. 120. Bulk density versus soil moisture at 120 cm depth.

Fig. 121. Bulk density versus soil moisture at 150 cm depth

Fig. 122. Bulk density versus soil moisture at 170 cm depth

Fig. 123. Weekly VSMC ($\%$) for the cool dry season and SR92 obtained from soll samples and oven-dried at a temperature of $110^{\circ} \mathrm{C}$ taken at 7.5 cm depth in $A F$ and the control plots.
240% and 180% more than at 120 cm.
(iij) there exists poor relationship between ury bulk density and VSMC (8) in the layer $30-120 \mathrm{~cm}$.
(iv) dry bulk density slightly increases with VSMC 18 at 90 cm depth due to lime and manganese concretions in this layer. because they contain low concentration of hydrogen atoms and high pH (e.g. Liniger. 1991. EUROCONSULT. 1989).

4.2.2 Choice of depth to start measurements with neutron probe.

The depth at which we start to take soil moisture measurements with a neutron meter (probe) depends on the sphere of importance. Q1. of the probe. From Eq. 3 the radius of the sphere of importance 15 inversely proportional to 0 . Tables $45 a \& 45 b$ (columns 5 and 7) show that during very dry conditions in Matanya there was more soil moisture in the deeper than in shallower lavers. with exceptions at 30 cm depth isee calibration results of 19.2 .92 in Tables $45 a$ \& 45 b). The reverse was true (in the first 30 cm) in the case of the very wet conditions isee calibration results of 18.6 .92 in Tables $45 a \& 45 b$). This suggested that the deeper layers could not sufficiently reach dryness even during the dry periods. Q, was therefore larger near the surface than in the deeper layers. Again the reverse was true for the wet perjod.

From Table 45a. we see that when the calculated θ near the surface dropped to 23.3% (swallest value in dry season) during a dry season. as occurred in February 1992. the minimum depth we could get accurate soill water measurements was 26.8 cm below the surface. The largest 0 , of about 26.8 cm could be obtained durang extremely dry conditions only. when the soil surface would lose all its vegetation cover made up of mainly grass. In fact the wilting of such grass indicates the wilting
point in the layers in which they root.
During the wet calioration exercise. we simulated an extremeiy wet seascins. which. though extremely rare. occurs in 1 out of 5 years. according to the local farmers. The lowest θ calculated under such very wet conditions was 38.4% (smallest value in wet season) at 90 cm depth. The Qs calculated for this VSMC was 19.1 cm . The minimum depth the IFN 501 could measure accurately. had such conditions occurred. could be 19.1 cm below the surface.

Table 48. Relatioriship between dry bulk density (Ed) and VSMC (8) obtanned during calibration exercise. 10 samples at each depth (i.e. 5 for dry and 5 fior wet calibrations), $\left(\mathrm{Bd}=\mathrm{c}^{*} \boldsymbol{\theta}+\mathrm{d}\right)$.

Depth (cm)	Bd	std err of Bdaret	r	$c^{s t d}$	err.
18	1.85	0.098	0.897	-0.017	0.003
30	1.61	0.104	0.626	-0.011	0.005
60	1.58	0.068	0.781	-0.011	0.003
90	1.22	0.086	0.351	0.006	0.005
120	1.40	0.066	0.469	-0.005	0.003
150	1.54	0.067	0.747	-0.008	0.002
170	1.76	0.102	0.504	-0.014	0.009
0-170	1.64	0.101	0.6 .36	-0.011	0.002

The shallowest depth used by LRF in routine soll moisture measurement at their stations. including Matanya was 18 cm . This would De equivalent to a $\boldsymbol{\theta}$ of 41.56%. if the sphere of importance would touch the surface. In a semi-arid area like Matanya. this could be approached during a very good rainy season. Wher, the soils are verv wet. Otherwise. for most of the seasons this would not be correct. The neutron probe measurements taken at 18 cm depth were therefore sublected to 1.9 and 20.3% errors for wet and dry conditions respectively.

For continulty and convenience we continued taking neutron pribe bata fram 18 cm depth and making appropriate adjustments in the 18 cm lepth data for weekly soll sampling in the $A F$ and NAF plots. In ract wit should have used 30 cm in the dry season ard 20 cm in the wet seasun.

4.2.3 Soll moisture sampling at Matanya

4.2.3 (a) VSMC at different depths and distance from

Grovillea robusta trees.
(i) Variations of weekly VSMC with depth and distance from

Pruned trees for 1992.
We examined VSMC for different years and six seasons. each for the seven depths already mentioned above aria came to the conclusion that LR92 represents the driest season while SR92. the only season when we harvested majze orain yields and had the hiohest beans rields. represents the wettest season of our study period. For the biader part of thas section we present results of these two seasors but where desirable. we do make reference to the other four.

Fig. 123 gives weekly VSMC at a depth of 7.5 cm (surface) for the cool dry season (CD) and Short Rains of 1992 (SR92) as ibtalned from soil samples that were taken in experimental plots in $A F$ and controi and oven dried at a temperature of $110^{\circ} \mathrm{C}$. The general Dicture nere shuws that the soil at 7.5 cm depth was very dry during and as expected Guite wet during 5R92. We can notice from this fioure that the control plots were drier than the AF plots during $C D$. but became wetter durino early periods of SR92. The dryness durıno CD may nave been due to strong winds which desiccated the top soil in the unsheltered control plots. This also made CD have lower soil moisture at the surface than the hot
dry season (January-early March) HD. This was also observed in 1993 data presented in Appendix Fig. A4 and Appendix Table A4. Relative weekly USMC in AF show that pruned AF plots (AFM1 \& AFL1) had less VSMC than unpruned. It should be noted here that soil samples were taken at the edges of each AF plots to avoid perforating the soll next to the trees and therefore interfering with the whole exercise. Pruning effects at this edges were not noticed.

Figs. 124-129 give variations of weekly VSMC with days of the year and distance from pruned G. robusta trees for the year 1992. These cover also weekly VSMC for LR92 and SR92 and two dry seasons (i.e. hot dry season (HD) of January-early March. LR92 and cool dry season (CD) from mid-Jure to end of September for the four depths of agronomic importance which have highest concentrations of bean and maize routs. namely 18. 30. 60 and 90 cm . From climatological estimates (e.g. Oteng'i. 1982) we here take $H D$ to be DOY: 1-75. CD to be DOY: $168-274$. LR to be DOY: 76167 and SR to be DOY: 275-365. Calibration eqs. $22 a$ \& $22 b$ were used to obtain calculated VSMC. Note that there were no data on DOY 276 as our neutron probe broke down and had to be repaired.

We see in Fig. 124-129 that at 94.188 and 376 cm from pruned tree PT1. in upper part of AF. the VSMC was low at all the depths except 30 Cm. The highest VSMC at 18 cm depth was recorded during iR92 between DOYs 122 and 157. At this time the intercrop which was planted on DoY 83 was in flowering phase (see section 4.1). The VSMC having passeri the Deak on DOY 129 was sharply dropping causing water stress which was evident on the plants by DOY 153. VSMC at 30 cm depth continued to be hioh for the three distances from PT1. The VSMC at 30 cm deviated very little from its mean values prior to DOY 280 even during LR92 rainy

Fig. 124. 1992 weekly VSMC (\%) for 18 till 90 cm depths taken at the distance of 94 cm from G. robusta trees, PT1, in pruned plot (AFM1).

F1g. 125. 1992 weekly VSMC (\%) for 18 till 90 cm depths taken at the distance of 188 cm from G. robusta trees, PT1, in pruned plot (AFM1).

Fig. 126. 1992 weekly VSMC (\%) for 18 till 90 cm depths taken at the distance of 376 cm from G. robusta trees, PT1, in pruned plot (AFM1).

Fig. 127. 1992 weekly VSMC (\%) for 18 till 90 cm depths taken at the distance of 94 cm from G. robusta trees, PT4, in pruned plot (AFM1).

Fig. 128. 1992 weekly VSMC (\%) for 18 till 90 cm depths taken at the distance of 188 cm from G. robusta trees, PT4, in pruned plot (AFM1).

19. 129. 1992 weokly VSMC (\%) for 18 till 90 cm depths taken at the distance of 376 cm from G. robusta trees, PT4, in pruned plot (AFM1).
season most likely because of high constitutional hydrogen in the clayey fraction at 30 cm depth. VSMC values especially in the shailow layers (1.e. 18 and 30 cm) increased considerably during SRg2. At the depth of 90 cm there was hardly any increase over the previous weeks.

Figs. 127-129 show varıations of weekly VSM with depth and distance (at 94.188 and 376 cm) from pruned from FT4. in the lower part of $A F$. It should be noted here that all the access tuhes in the lower AF. that is around trees PT4. PT5. UT4. UTS were installed later in year 1992 after DOY 73 in readiness for LR92 and later seasons. Like in the upper part of AF very high VSMC values were recorded at 18 cm depth durang LR92 between DOYs 115 and 143 which peaked on DOY 136 and suddenly dropped. Six weeks prior to the period of hacnest values the weekly VSMC were very low and contanued that wav but with considerable fluetuation thereafter. High fluctuations at 18 cm were moximum values at the distance of 188 cm from PT4. The weekly VSMC at 30 cm depth was still the niọnest except during the two weeks when the values at 18 cm depth superseded them which continued even durina SR92 and differed minimally between each succeeding week. The weekly VSMC especially in the shallower layers (i.e. 18 and 30 cm) increased corsiderably durino SR92. This tame in the lower part of AF there was considerable fluctuations an weekly VSMC at 188 cm and $370^{\circ} \mathrm{cm}$ from prurred PT4 in the deeper layers represented here by 90 cm depth.
(1i) Variations of weekly VSMC with depth and distance from unpruned trees for 1992.

Figs. 130-135 give varıations of weekly VSMC as above out for unpruned G. robusta trees. We see in Fig. 130-132 that at 94. 188 and

Fig. 130. 1992 weekly VSMC (\%) for 18 till 90 cm depths taken at the distance of 94 cm from G. robusta trees, UT1, in unpruned plot (AFM2).

Fig. 131. 1992 weekly VSMC (\%) for 18 till 90 cm depths taken at the distance of 188 cm from G. robusta trees, UT1, in unpruned plot (AFM2).

Fig. 130. 1992 weekly VSMC (\%) for 18 till 90 cm depths taken at the distance of 94 cm from G. robusta trees, UT1, in unpruned plot (AFM2).

Fig. 131. 1992 weekly VSMC (\%) for 18 till 90 cm depths taken at the distance of 188 cm from G. robusta trees, UT1, in unpruned plot (AFM2).

Fig. 132. 1992 weekly VSMC (\%) for 18 till 90 cm depths taken at the distance of 376 cm from G. robusta trees, UT1, in unpruned plot (AFM2).

Fig. 133. 1992 weekly VSMC (\%) for 18 till 90 cm depths taken at the distance of 94 cm from G. robusta trees, UT4, in unpruned plot (AFM2).

 taken at the distance of 188 cm from G. robusta trees, UT4, in unpruned plot (AFM2).

[^1]376 cm from unpruned tree UT1. in upper part of AF . the weekly VOMC at 18 and 30 cm depths prior to SR92 fluctuated more than in the pruned tree case. The 30 cm depth vaiues continued to be the haghest except at 94 cm from UTI on DOY 122 when it was overtaken by the 18 cm value. The weekly VSMC around this unpruned UT1 at 94 cm in the upper part of AF attained minmmam values during $H D$ and $C D$ seasons and hiọn values durino Lfige and SR92 (Fig. 130). Frior to SR92 there were very high fluctuations of weekly VSMC at 376 cm from UT1 at all the depins considered. During SR92 these fluctuations were mainly confined to the surface depths (i.e. 18 and 30 cm).

Figs. 133-135 show variations of weekly VSMC with depth and distance (at 94. 188 and 375 cm) from undruned from UT4. in the lower part of $A F$. Like in the upper part of AF the very hagh VSMC values were recorded at 18 cm depth between DOYs 101 and 150 . hence included the perica experienced under UT4. The highest VSMC were aualn recorded at 30 CII throughout the year except the DOYs 108-136 in LR92 at 94 cm irom UT4 when the values at 18 cm overtook them (see Fig. 130). Lepth 90 cm recorded the lowest most of the year.

We observe from Figs. 124-129 and 130-135 that the weekly VSMC values at 188 cm from both pruned and unpruned trees and 30 cm were always the highest even during SR92.
(iii) Woekly VSMC in pruned and unpruned trees for 1992.

Figs. 136-138 compares weekly VSMC around pruped (PT1 \& FT4) with that arcund unpruned (UT1 \& UT4) G. robusta trees at 94.188 and 376 cm distances in Mulched plots (AFM1 \& AFM2). We can see in Fig. 136 that weekly VSMC at 94 cm from prurued PI1 was the highest for most of the

Fig. 136. 1992 weekly VSMC (\%) for 18 cm depth taken at the distance of 94 cm from G. robusta trees (PT1, PT4, UT1 \& UT4) in pruned and unpruned plots (AFM1 \& AFM2).

Fig. 137. 1992 weekly VSMC (\%) for 18 cm depth taken at the distance of 188 cm from G. robusta trees (PT1, PT4, UTI \& UT4) in pruned and unpruned plots (AFM1 \& AFM2).
year except a month in LR92 (IDOYS 108. 115. 122 \& 129) and two weeks in SR92 (DOYS 283 \& 290) when it was overtaken by undruned UT4. During LR92 and SR92 there was relatively more soil water due to rains and the effect of pruning could not easily be delineated. This was also observed at 376 cm (Fig. 138) away from the trees. The lowest weekly VSMC during HD were observed at 376 cm from PT4.

Average VSMC values, in addition to the weekly data we gave above. may be considered an integration of soil moisture behaviour for the period concerned at the depths of measurement. This means that their averages as given in Tables 49 and 50 are giving indications of average soil moisture as a function of distance to the trees. Accuracy limits are those combinations from the values averaged, where each value has a maximum error of $\pm 10 \%$, but of course each measurement done in one weekly sampling is independent of the others. Therefore standard deviations would only be a measure of fluctuations over time. including those due to measuring errors. but not a measure of accuracy.

4.2.3 (b) Average VSMC in pruned Grevillea robusta trees
 in AF plots AFM1 \& AFL1 during LR92.

Table 49a presents average VSMC for each tube in the AF for the experimental period 20/3/-29/5/92 during Long Rains growing season (LR92) at three distances, namely: (i) 94 cm. (ii) 188 cm . and (iji) 376 cm . from the pruned Grevillea robusta trees.

We see in Table 49a (i) that. at 94 cm from the pruned trees. the largest average VSMC of 33.11 was observed at 170 cm depth in tube A3 around Grevillea tree PT3 in the middle part of the agroforestry plot (AF). The soil moisture in such a depth may not be of any use to the
intercrop whose maximum rooting density hardly goes below 60 cm . PT3 was situated on the border between mulched (AFM1) and Local (AFLI) plots isee Fig. 9). The smallest VSMC of 24.78 was observed at 18 cm depth in tube M2 in the lower part of AFL1.

Intercomparisons of the tubes at 94 cm from the pruned trees in the first four lavers, that is 18. 30. 60 and 90 cm depths (see Table 49a(i)) we notice that the largest VSMC of 32.78 was recorded in tube A3 around PT3 at 30 cm depth at the AFM1/AFL1 border while the smallest VSMC of 24.78 was recorded at 18 cm depth in tube M2 around pruned PT5. Tube A1 at PT1 had generally high average VSMC, that 1532.05 at 18 cm depth. 32.66 at 30 and 30.17 at 60 cm depths. In comparison M2 had generally the lowest VSMC values especially in the first four depths which had maximum intercrop root density. Considering all the seven depths higher values were found in the first four depths and at below 90 cm depth which was beyond the beans rooting depth and only reached by few maize roots. The lowest VSMC values were at 90 cm depth. On the whole we observe from Table 49 that at 94 cm from the pruned Grevillea trees VSMC was higher at the deeper layers for M2 but not per se for the other trees. The surface layers above 90 cm . except 30 cm depth with an average VSMC of 31.37. had lower VSMC than the deeper layers. The maximum average VSMC of 31.96 was observed in the deeper lavers at 120 cm depth, the minimum at the top.

We see in Table 49a(ij) that at 188 cm from the pruned trees the average VSMC of 33.03 recorded at 30 cm depth in tube B1 around PT1 was the largest for that distance in pruned area at the first four depths. The smallest VSMC at 188 cm was recorded at 18 cm in tube N2 around PTE in AFL1. Tubes B1. B2 and B3 in the upper part of AF had generally high VSMC values in the first three depths. In comparison tubes around PT4
and P15 tended to have lower values in the upper layers than those tubes around PT1. PT2 and PT3. Again for the seven depths hagh average VSMC values were found in the first three depths and below 90 cm depth whach was of little agronomic value to the intercrop especially beans. The lowest VSMC values were at 90 cII depth. On the whole we observe from Table 49a(ii) that at 188 cm from the pruned Grevillea trees the deeper layers had more soil moisture than the shallower layers. Again. and even more pronounced. the exception was 30 cm depth with an average of 32.18. The same inference may be observed in Figs. 124-129 and 130-135. The other values are close to the average with 60 and 90 cm somewhat lower. The lower VSMC in the layers $60-90 \mathrm{~cm}$ depths are due to soil texture. We earlier pointed out in chapter 2 that these layers are composed of alkaline soils mainly of lime. These soils have a tendency to retain fewer hydrogen atoms and drains fairly fast during dry rainy seasons, hence more useful to crop in terms of soll water conservation.

We observe in Table $43 a(111)$ at 376 cm from the pruned crees that both the larqest and smallest average VSMC of 33.60 and 28.61 respectively were recorded in tube O1 around Grevillea tree PT4 in the lower part of mulching plot (AFM1) at 120 and 90 cm depths respectavely (see Fig. 9). Intercomparisons of the tubes at 376 cll from the pruned trees for the first four depths shown in Table 49a(111) the hionest VSMC of 33.25 was recorded at 18 cm depth in tube C1. The smallest VSMC of 28.61 was recorded at 90 cm in tube 01 around PT4 in AFM1. Most tubes recorded average VSMC of more than 30% in the depths shallower than 90 Cm. Most sojl water had drained opravitationally into the deeper layers where it was of little aaronomic value. Of the four depths of arroncmic importance the 18 and 30 cm depths had hiaher moisture content than 60 and 90 cm depths. The tubes around PT4 and PT5 had higher VSMC at 18 and

60 cm depths than in the layers 90 and 150 cm deeper.
4.2 .3 (c) Average VSMC in unpruned Grevillea robusta trees
in AF plots AFM2 \& AFL2 during LR92
Table 49b presents average VSMC for each tube for LR92 at the same three distances. namely: (i) 94. (i) 188. and (i) 376 cmi . from the unpruned Grevillea robusta trees.

We see in Table 49b (i) that. at 94 cm from the unpruned trees the average VSMC of 34.14 recorded at 30 cm depth in tube D2 was the largest For the first four layers shallower than 90 cm inclusive. The soll moisture at 60 cm and above is of great agronomic value for both maize and beans. The smallest VSMC in the first four layers was 25.77 observed at 90 cm depth in tube P1 around UT4 in the lower part of AFML. Again average VSMC less than 30 was recorded at 60 and 90 cm depths in all the tubes. On the whole we again observe from Table 49b(i) that at 94 cm from the unoruned Grevillea trees VSMC was higher at the deeper layers for all the tubes.

We see in Toble 49b (11) that at 188 cm from the undruned trees the average VSMC of 34.16 recorded at 30 cm depth in tube Q1 around UT4 was the largest for that distance in unpruned area in the first four depths. The smallest VSMC at 188 cm was recorded at 90 cm in tube EO around UT3 in AFM2. In comparison tubes around UT2 and UT3 had generally lower values in the upper layers than the rest of the tubes. Again higher VSMC values were found below 90 cm depths althouah such values have little aoronomic value to maize/beans intercrop. especially the beans. Again relatively low VSMC values were found at 60 and 90 cm depths. On the whole we observe from Table 49b(ii) that at 188 cm from
the unpruned Grevillea trees the deeper layers had more soil molsture than the shallower layers.

We observe in Table 49bliii) at 376 cm from the unipruned trees that the laroest and smallest average VSMC of 33.40 and 28.25 respectively were recorded in tubes R2 at 30 cm depth and R1 at 90 cm . The two tubes were at 376 cm from Grevillea trees UT5 and UT4 respectively (R2 same tube as F3 around UI3). Adain most tubes recorded average VSMC of more than 30.00% in the depths of agronomic sionificance shallower than 90 cm .

Table 49. Average VSMC at different depths and distances from Grevillea robusta trees. (a) pruned (AFM1 \& AFLl).
(b) unpruned (AFM2 \& AFL2) plots for LR92
(period: 20/3/-29/5/92).
(a) Pruned AF (AFM1 \& AFL1)

318

(iii)								
tube	18	30	60	90	120	150	170	
C1 avg	33.25	32.67	30.01	29.87	30.59	30.30	30.92	
C2 avg	29.35	32.11	30.62	29.58	31.32	32.42	33.33	
C3 avg	30.66	33.18	28.67	28.64	32.64	31.28	30.30	
O1 avg	32.03	32.13	30.50	28.61	33.60	30.37	30.77	
O2 avg	30.66	33.06	28.81	28.64	32.67	31.20	30.24	
Avg tub	31.19	32.63	29.72	29.07	32.17	31.11	31.11	

(b) Unpruned AF (AFM2 \& AFL2)

- same tube serving two tree replications UT5 and UT3

Because averages are close to each other, and standand deviations meaning that fluctuations and errors remains (see earlier remarks).

4.2.3 (d) Average VSMC in pruned Grevillea robusta :rees

 in $A F$ plots AFM1 \& AFL1 during SR92Table 50a presents seasonal average VSMC for each tube $2 n$ the AF as discussed above but this time for the experimental period 9/10/9229/1/93 within the SR92.

We see in Table 50 (1) that, at 94 cw trom the pruned erouw, the 1 argest averade VSMC of 40.28 was recorded at 30 cm depth 1 n tube A_{1} around Grevillea tree PT1 in the mulched plot. We can see in Figs. 124129 and Figs. 130-135 that the 30 cm depth had the hiọhest soll molsture throughout the year in dry as well as wet seasons at all distances from the trees, except a few weeks in LR92 as pointed cut above. The smallest VSMC of 28.25 was observed at 150 cm depth in twoe M2 $1 n$ the lower part of AFL1 around FT5.

As for LR92 we generally cbenrve low average VSMC valuea in SR92 at 90 cm depth and high values at 30 cm depths. Tubes A1 at PTi and Mi at PT4 had generally high average VSMC at all depths. In comparison M2 had generally the loweet VSMC values eepecially at $60-90 \mathrm{~cm}$ laver and 150-170 cm layers. Considering all the seven depthis hagher values were fourd in the furst four depths and also below 90 cm depth. Lepth 90 cII had the lowest VSMC values. The first four depths had hianer averade VSMC than the deeper layers with 30 cm depth recorduria the hagnest of 36.80 followed by 18 cm depth which had 35.52 and then 00 cm depth with 32.10. This was unlike the LR92 when the deeper layers had more soll water than the shallower layers. No wonder then that we had the best season in SR92 since more soil water was conflned to the shallower layers.

We see in Table 50 (ii) that at 188 cm from the oruned trees the average VSMC of 41.39 recorded at 30 cm depth, in tube Nl around PT4 was
the largest for that distance in pruned area in the first four deriths. The smallest average VSMC at this distance from the trees was of $\angle 8.0 j$ recorded at 90 cm in tube Bl around PT1 in AFMI in the upper part of AF. Like for the other cases all the tubes recorded their hiofhest VSMC at 30 Cmin depth. Like at 94 cm distance the lowest VSMC values were at 90 cm depth. Again unlike LR92 we observe irom Table 50a (i1) that at 188 cm from the pruned Grevillea trees the shallower layers had more soll moisture than the deeper layers. Again 30 cm depth with an average of 35.98 was more pronounced than any other depth.

We observe in Table 50a (11i) at 376 cm from the pruned trees that both the largest average VSMC of 41.19 was recorded at 30 in tube Ci around Grevillea tree PTI in the upper part of mulcining piot (AFM1). The smallest value of 28.91 was recorded at the 90 cm depth in tuibe 0 around PT4 in lower part of AFL1 (see Fig. 9).

In general we observe that the tubes at 376 cm from the pruned trees for the first four depths of more arroriomlc significance nad highest VSMC for SR92 in the layers above 90 cm . This are the layers of more agronomic importance for both maize and beans.

4.2.3 (e) Average VSMC in unpruned Grevillea robusta trees

in AF plots AFM2 \& AFL2 during SR92

Table 50b presents averages of VSMC for the tubes in AF plots having root unpruned Grevillea robusta trees (AFMz \& AFL2). durina the SR92.

At 94 cm from unpruned Grevillea robusta the lardest VSMC of 40.50 was observed at 30 cm in tube P1 around unprunied tree UT4 in mulched Dlot (see Table 50b(i)). The smallest VSMC of 25.68 was ubserved also in
tube P1 but at 90 cm depth. The layers above 60 cm had more 5011 moisture than those below. the 30 cm depth as adain being proriounced like in the case of the pruned area.

When we compare the whole unpruned area (AFMZ \& AFL2) at in cm the laraest average VSMC of 39.23 of all tubes was recorded at 30 cm depth. The smallest value of 27.98 was recorded at 90 cm depth. Both of these depths are agronomically important to the maize/beans intercrop particularly maize as it can root down to past 90 cm depth.

The results of averages of tubes in AFM2 and in AFL2 of 32.09 and 31.90 respectively indjcate that there was more soll mossture in AF mulched than in the AF Local plots at 94 cm from the unpruned Grevilled robusta trees.

On the whole there was more soll moisture in the shallower layers at 94 cm from the unpruned trees than in the deeper soil layers.

At 188 cm from unpruned Grevillea robusta trees the laraest VSM of 39.26 was again recorded at 30 cm but in tube $Q 1$ around unpruned tree UT4, in the lower part of mulching plot (AFM2) (see Table 50b(i1)). The lowest value of 27.13 was observed in tube E2 around unoruned tree $1 \mathrm{Ti}^{2}$ in the upper part of the Local plot AFL2. For the whole unpruned area (AFM2 \& AFL2) at 188 cm the largest VSMC of 38.59 was again recoraed at 30 cm depth. This time the smallest value of VGMC of 28.18 was recuraed at 150 cm depth. the depth of least agronamic importance to the intercrop. The averages of tubes in AFM2 and in AFL工 of 31.90 and 31.17 respectively indicate that there was more sois moisture in AF mulched than in the AF Local plots at 188 cm from the unpruned Grevillea robusta trees although these values are maropinally different and may not explain yield differences in the mulched and Local treatments. This difference
is so small that it must be considered neuliaible. In such cases yield differences may be explained through soil moisture distribution withan The growing season as given in section 4.2 .3 (a), in response to rainfall occurrences.

At 376 cm from unpruned Grevillea robusta trees the largest VSW of 38.99 was obtained in tube R1 around UT4 in muiching plot (AFM2) and the smāllest of 28.38 in tube F1 around UT1 also in mulchang plot (AFME) (see Table 50b(iji)). Again for the whole unpruned area 30 cm depth hac the largest VSMC of 38.39 .

From the foregoing we learn that SR92 tubes had more soil molsture than the LR92 tubes at all the three distances from the Grevillea robusta trees. The 30 cm depth had most pronounced soll molsture amounts throughout the year 1992. The marainal differences in average VSM: between pruned and unpruned seemed to be amplified in yield differences between the two treatments.

Table 50. Average VSMC at different depths and distances from Grevillea rabusta trees. (a) pruned (AFM1 \& AFLl).
(D) unpruned IAFM2 \& AFL2) plots for SR92 (Deriod:

9/10/92-29/1/93) and (a) Pruned AF (AFM1 \& AFLl).

All tubes	35.71	38.69	33.91	29.45	31.76	29.42	30.02	
(ili)	Average of tubes at	370	cm					
cube	18	30	60	90	120	150	170	
C1 avg	40.77	41.19	33.58	30.73	32.28	29.43	29.88	
C2 avo	34.01	36.72	34.43	29.73	32.14	30.14	31.58	
O1 avg	37.06	38.71	34.74	30.24	32.87	30.50	29.77	
O2 avg	34.70	39.02	33.09	28.91	33.60	30.11	29.62	
All tubes	36.63	38.91	33.96	29.90	32.72	30.04	30.21	

(b) Unoruned AF (AFM2 \& AFL2)

(i) Average of tubes at 94 cm							
tube	Depths						
	18	30	60	90	120	150	170
D1 avg	35.34	38.63	35.19	28.82	31.04	29.24	29.28
D2 avg	36.34	39.59	36.31	28.76	30.13	27.94	26.97
P1 avg	37.95	40.50	33.61	25.68	28.22	26.46	29.35
P2 avg	35.16	38.22	30.01	28.66	30.28	29.31	28.93
Avg tub	36.20	39.23	27.98		29.9228 .24		28.63
(11) Average of tuber at 188 cm							
cube	18	30	,	90	120	150	
El	34.72	39.12	33.33	29.13	31.20	27.84	29.54
E2	34.63	37.31	30.23	28.68	29.27	28.92	27.13
Q1	34.74	39.62	33.00	28.44	29.14	27.34	30.22
02	34.65	38.30	31.17	29.71	28.96	28.63	28.78
Avg tub	34.68	38.59	31.93	28.99	29.64	28.18	28.92
111) Average of tubes at 376 cm							
tube	18	30	60	90	120	150	170
F1 avg	35.59	38.72	32.28	31.19	30.83	28.38	29.58
F2 avg	35.01	37.02	31.26	28.55	29.24	29.81	29.17
R1 av	37.65	38.99	31.81	28.58	30.33	29.39	30.33
	35.62	38.83	30.89	30.87	30.46	29.40	30.16
Avg tu	35.97	38.39	31.56	29.80	30.22	29.25	29.81

4.2.4 intercomparison of the VSMC in the mulch and Local AF in the whole soil profile for the six seasons

4.2.4 (a) Soil moisture distribution in the whole soil profile

Table 51 presents averages of tubes in the (1) mulched ana Locai pruned (AFM1 \& AFL1): and (i1) mulched and Local unpruned (AFM2 \& AFLi:

Grevillea robusta tree plots for the entire soll profile (18-170 cml for the six seasons already discussed above.

We see in this Table 51 that. With the exception of few seasons. the mulch plots had more soil moisture than the Local plots in the $A F$ at all the three distances from either pruned or unpruned Grevillea robusta trees. even though Table 51 includes VSMC at the deeper layers of lattle agronomic importance and hence should be considered together with Fias. 124-129 and 130-135 to explain yield differences.

We can therefore notice that in pruned plots (AFM1 \& AFLI) 17 out of 18 (i.e. 94.44 \%) of the cases (i.e. mulching versus Local) the mulched area had more soll moisture than the Local area. In unpruned area 10 out of 18 (i.e. 55.56%) of the cases the mulch area had more soil moisture than the Local in AF .

Table 51. Intercomparisons of VSMC averages in AF mulched with $A F$ Local plots for the $18-170 \mathrm{~cm}$ soll profile and distance from Grevillea robusta trees for the six seasons: (a) pruned (b) unpruned trees.

Treatments						
(a) Pruned						
	LR9.	SR92	LR93	SR93	LF94	SR94
(i) 94 cm distance						
Mulching (AFM1)	30.83	33.28	34.34	30.41	31.16	33.93
Local (AFL1)	30.27	31.15	31.31	29.47	29.70	31.77
(ji) 188 cm distance						
Mulching (AFM1)	30.62	33.49	35.49	30.80	31.41	33.07
Local (AFL1)	30.65	31.92	32.66	30.20	30.42	33.04
(iij) 376 cm distance		*				
Mulchina (AFM1)	31.12	33.70	35.68	30.77	31.72	33.90
Local (AFLi)	30.92	32.70	34.23	30.20	31.51	33.70

(b) Unpruned						
(1) 94 cm distance						
Mulching (AFM2)	30.45	32.09	31.85	29.90	30.63	33.16
Local (AFL2)	30.78	31.90	32.40	30.14	29.91	32.99
(ii) 188 cm distance						
Mulching (AFM2)	30.48	31.96	32.74	29.69	29.84	33.24
Local (AFL2)	29.58	31.17	33.24	29.85	29.61	31.73
(iii) 376 cm distance						
Mulching (AFM2)	30.51	32.40	33.42	30.21	30.26	34.42
Local (AFL2)	30.70	31.88	33.13	30.21	30.40	33.48

There was apparently more soil moisture in LR93 and SR94 (columis 3 \& 6 in Table 51) than SR92. However, the LR93 and SR94 soll moisture was mainly confined to the deeper layers as periods between each ranfall occurrences were large and gave enough time for the soll water to be used up in the layers holding the roots (see section 4.2 .4 (b)). Hence acronomically the two seasons could not produce crop yields making SR92 stand out as the only season we had maize orain yields.

The above Enowe that our earlier exercise (section 4.2 .3 (al) or agronomically important depths and the agronomically important deviations was giving a picture in which the consequences of rainfall distribution were correctly covered. The calculations with averages over the whole profile and season are masking what $1 s$ available to the crops. However. it also shows that varieties of maize with hioner rooting depths would do better in seasons with irrequiar rainiali that percolates into deeper layers.

4.2.4 (b) Effects of mulching on VSMC

Figs. 139 \& 140 present the results on the effect of mulch on VSMC at 94.188 and 376 cm from pruned and unpruned Grevillea robusta trees during the six seasons.

As expected the pruned mulch plot (AFM1) (Fig. 139) had more VSMC than the pruned Local plot (AFL1) at all distances from the Grevilled robusta trees during the six seasons. There was a lot of moisture in the soil, mainly confined in the deeper layers where it could not be reached by intercrop roots during LR93. hence there was no maize yields. This points to the fact that rainfall distribution was not even throughout the season as it gave a lot of time for deep percolation to take place. In fact 36.7 and 17.3 mm of rain fell on $18 / 4 / 93$ and 19/4/94 respectively thereafter there was no rain until $21 / 5 / 93$ when 61.3 mm was received and then 12.0 mm on 11/6/93. For the intercrop planited on 14/4/93. these showers were rather fairly heavy but erratic and could not help crop growth.

Similarly high VSMC were recorded during SR94 but no grain weids for maize in the intercrop. Rainfall was not evenly distributed to support maize growth to maturity. The intercrop of for SK94 was planted. as already mentioned, on 10/10/94. A look at weekly soil misture for the years 1993 and 1994. of the type discussed above in section 4.2.3(a). showed the response of soil moisture charges to rainfall occurrences within LR93 and SR94. Reasonably heavy rains of 14.0 . 0.8 and 55.5 mm fell on 20/10/94. 21/10/94 and $22 / 10 / 94$ respectively. These were followed by fairly heavy rains between $27 / 10 / 94$ and $4 / 11 / 94$ of 23.8 on 5/11 and 11/11/94 each and 43.8 mm on 13/11/94 raisirg people's hopes of a good season which it never became as long dry spell which followed

Fig. 138. 1992 weekly VSMC (\%) for 18 cm depth taken at the distance of 376 cm from G. robusta trees (PT1, PT4, UT1 \& UT4) in pruned and unpruned plots (AFM1 \& AFM2).

Fig. 139. Mulch effect on soil moisture in pruned plots (AFM1 \& AFL1)

Fig. 140. Mulch effect on soil moisture in unpruned plots (AFM2 \& AFL2)

Fig. 141. Mulch effect on soil moisture at 94 cm from Grev. in LR92 \& SR92 in pruned plots.
dispelled these hopes. We can see here that LR92. SR93 and LR94 were very dry seasons with respect to soil moisture status in the soll.

In unpruned plots (Fig. 140) at 94 cm VSMC was hagher under mulched soil in SR92. LR94 and SR94 than under the Local suri. Hagh VSMC could also be observed under the mulch in LR92 at 188 cm and 2 n §R92. LR93 and SR94 at 376 cm . In this whole section the same reasoning olven at the end of the previous section applies.

4.2.4 (c) Mulch effect on vertical soil moisture distribution

The mulch effect on soil moisture distribution in pruned area was obtained by comparing the soil moisture in pruned Mulched plot (AFM1) with that in the pruned Local (AFL1) as giver in Table 48 and 49 the averages of ail tubes in each treatment for LR92 and SR92. In that case root pruning being common in the two plots was taken as a constant and the only thing that varied was mulch and no mulch. Figs. 141-144 present the results of the effect of mulch on soil moisture distribution with depth at 94 and 376 cm in the pruned (AFM1 \& AFL1. Fias. 130 \& 131) and unpruned (AFMZ \& AFL2. Figs. 143 \& 144) plots for the chosen representative dry and wet seasons (i.e. LR92 and SR92).

We see from Fig. 141 that at 94 cm from the Grevillea mousta trees average VSMC was very high in the pruned mulched plot (AFM1) from depths 18 to 60 cm during SR92. The so1l moisture in these depths is of oreat agronomic sionificance as the root of the intercrop components reside in these layers. The drier season (LR92) had higher average VSMC in the deeper layers than the wetter season SR92. although the difference was small. The high moisture in the deeper lavers is of little agronomic value to crop like beans with shallow roots. The soll

Fig. 142. Mulch effect on soil moisture at 376 cm from Grev in LR92 \& SR92 in pruned plots.

Fig. 143. Mulch effect on soil moisture at 94 cm from Grevillea robusta trees in LR92 \& SR92 in unpruned plots.

Fig. 144. Mulch effect on soil moisture at 376 cm from Grevillea robusta trees Grev. in LR92 \& SR 92 in unpruned plots.

Fig. 145. Pruning effect on soil moisture in mulched plots for six seasons at 94,188 \& 376 cm from Grevillea robusta trees.
moisture was higher nearer the surface in the wetter season than in the drier season. In the lowest layers. the mulched plot (AFM1) had hagher VSMC than the Local plot (AFL1), but the difference are sagmificantly small. At 376 cm from the Grevillea robusta trees. the arulched plot again had higher VSMC in the layer 18-90 cm than the Local for the wetter season (SR92. Fig. 142), but only at 180 and 30 cm which was really substantial. In the lower layers below 120 cm depth the drier season had higher values of VSMC. but with little exception the differences were too small to be meaningful. At 376 cm from the Grevillea robusta trees AFL1 had higher VSMC than it had at 94 cm . at most of the two lowest depths.

Similar trends could be observed in unpruned plots (AFM2 \& ArL21 (Figs. 143 \& 144) although the VSMC in the two plots were for each season ratner comparable throughout. with at 94 cm the hionest differences this time at some deeper layers.

4.2.4 (d) Grevillea rabusta root pruning effect on
 vertical soil moisture distribution

Figs. 145 \& 146 present the results on the pruning effects on the VSMC at 94, 188 and 376 cm from Grevillea robusta trees in mulched and Local plots.

The effect of pruning on soil moisture distribution in mulched area was obtained by comparing the averages at each depth of soil molsture reconded by access tubes in pruned Mulched olot (AFMli with averages of the tubes in the unpruned Mulched (AFM2) as were worked out from Tables 49 and 50 (see Fig. 9) for all tubes in each treatment for LR92 and SR92. In that case mulching is common in the two plots and was
moisture was higher nearer the surface in the wetter season than in the drier season. In the lowest layers, the muiched plot (AFMi) had nagher VSMC than the Local plot (AFL1). but the difference are sigrificantly small. At 376 cm from the Grevillea robusta trees. the mulched plot
again had higher VSMC in the layer 18-90 cm than the Local for the wetter season (SR92. Fig. 142). but only at 180 and 30 cm which was really substantial. In the lower layers below 120 cm depth the draer
season had higher values of VSMC. but with little exception the differences were too small to be meanirgful. At 376 cm from the Grevillea robusta trees AFLI had higher VSMC than it had at 94 cm . at most of the two lowest depths.

Similar trends could be cioserved in unpruned plots (AFM2 \& AFL2) (Figs. $143 \& 144$) although the VSMC in the two plots were for each season ratner comparable throughout. With at 94 cm the naariest differences this time at some deeper layers.

4.2.4 (d) Grevillea rabusta root pruning effect on

vertical soil moisture distribution

Figs. 145 \& 145 present the results on the pruning effects on the VSMC at 94. 188 and 376 cm Irom Grevillea robusta trees in mulched and Local plots.

The effect of pruning on soil moisture distribution in mulched area was obtained by comparing the averages at each depth of soll moisture recorded by access tubes in pruned Mulched plot (AFM1) wath averages of the tubes in the unpruned Mulched (AFM2) as were worked out from Tables 49 and 50 (see Fig. 9) for all twbes in each treatment for LR92 and SR92. In that case mulching is common in the two plots and was

Fig. 146. Pruning effect on soil moisture in Local plots for six seasons at 94 , $188 \& 376 \mathrm{~cm}$ from Grevillea robusta trees.

Fig. 147. Mulch effect on soil moisture in control plots for LR92 \& SR92 seasons
taken as a constant.
Higher VSMC were observed in the pruned mulched (ASM1) tharı the mulched unpruned (AFM2) plots (see Fjg. 145) in all seasons and at the three distances from the Grevillea robusta trees. althouah differences were sometimes very small, and only occasionally larọer (an LR93. LF94. SR94 in reducing order).

Again LR93 and less pronounced. SR94 had hioner VSMC than SR92 (the only season that produced very good maize yields) due to insufficient soil moisture in the intercrop root zone because of the problem of rainfall distributions already discussed above.

A comparison of Local plots for all the seasone revealed that AFLI had lower VSMC than AFL2 especially closer to the Grevillea ribusta trees at 94 cm (Fig. 146). The same was reflected at 188 cm in LRỉ3, at 376 cm in LR93 and SR93. The hion VSMC at 94 cm shows that by var:ue of unrestricted rooting pattern of unpruned Grevillea robusta trees in the AFL2 they easily oet water from more soil layers. and save it in the surface layer. The lower values of VSMC in the pruned Local. AFLL, was due to \mathcal{G}. robusta root behaviour that bringe unpruned rcots of the pruned trees to the surface beyond 50 cm from the tree trurk. It ooes without saying that in this whole section the same reasioning given at the end of the previous section applies.

distribution in the control plote
Fig. 147 presents the results of the effects of mulchano on vertical soil moisture distribution in the control non-annoiorestry plots for the representative seasons (LR92 \& SR32). Comparina LR92 and

SR92 which behaved differently with respect to soil molsture distribution we see that VSMC was haghest at 30 cm depth and quite low at 18. 90 and 120 cm depths in both the seasons. Here again. as expected. there was more moisture in the soil under the mulch than in the unmulched (Local). As we have already seen, the wetter seasen nad higher VSMC values nearer the surface than the drier season winle in the deeper depths the mulched plots among each other and the Local amono each other become rather equal, the mulched plot bemg hugher in molsture content. This has been explained already several times above.

4.2.4 (f) Root pruning effect on soil moisture distribution with depth

For this part we present only results for the 94 and 376 cm distances from the Grevillea trees. We deliberately left out results for 188 cm distance from the trees as we noticed that the variations there were within the limits for 94 and 376 cm distances.

Figs. 148-151 present the results of the effect of crevilled robusta root pruning on soll moisture distribution with depth at is and 376 cm in the mulched (AFM1 \& AFM2. Figs. 148 \& 149) and Local (AFL1 \& AFL2. Figs. 150 \& 151) plots for the chosen typical dry and wet seasons (1.e. LR92 and SR92).

We could observe a small positive effect of pruning at 18 cm and a larger effect from 90 cm depths till 150 cm at the distances of 94 cm from the Grevillea robusta trees in the wetter season 1Fig. 1481. In the drier season the higher positave effect of pruning could be feit in the 90 and 120 cm depths as the VSMC were higher in the AFM1 than in the AFM2. but a smaller negative effect occurred at 18 and 30 cm . At 37 cm

Fig. 148. Pruning effect on soil moisture at 94 cm from Grev in mulched plots- LR92 \& SR92. AFM1 in the pruned plot and AFM2 in the unpruned plot.

Fig. 149. Pruning effect on soil moisture at 376 cm from Grev in Mulched plots - LR92 \& SR92. AFM1 is the pruned plot and AFM2 is the unpruned plot.

Fig. 150. Pruning effect on soil moisture at 94 cm from Grev in Local plots -LR92 \& SR92. AFLl is the pruned plot and AFL2 is the unpruned plot.

Fig. 151. Pruning effect on soil moisture at 376 cm from Grev in Local plots - LR92 \& SR92. AFLl is the pruned plot and AFL2 is the unpruned plot.
in the SR92 the VSMC was higher in the AFM1 than in the AFM2 all the way till 150 cm inclusive (Fig. 149). The VSMC for LR92 for the onuned plot (AFM1) was particularly higher at 120 cm depth. and a bit less riggher at 60 and 170 cm .

In the Local plots (Figs. $150 \&$ 151) the unpruned Local piot (AFL2) had by far the highest VSMC at 94 cm from Grevillea robusta trees in the layer $18-60 \mathrm{~cm}$ depths and the lower in the layer $90-170 \mathrm{~cm}$ in the SR92 (Fig. 150). A similar trend was observed in the LR92 as the unpruned Local (AFL2) had higher values of VSMC at 18 and 30 cm than the pruned Local (AFL1), but the opposite was true at 120 and 170 cm depths.

At 376 cm from the Grevillea robusta trees (Fig. 151) the situation changed as the AFL2 had comparable VSMC with AFL1 at 30 cm but exceeded it at 18 cm in both seasons. while it was lower at 60 cm also in both seasons, with the exception of 90 cm . In a dry season the pluned plots had higher moisture at higher depths. In the wet season, bevond 60 cm only at 90 cm the pruned plot was appreciably higher and at 170 cm also with a non-negligible amount. Of course agronomically important conclusions for the present intercrop) were already drawn earlier wnen limiting ourselves to depths of importance to the present crop.

4.2.5 Soil moisture deviations

4.2.5 (a) VSMC deviations from pruned area for the whole soil profile

Figs. 152-155 present the results of analysis of deviations of each tube from the average of tubes in pruned (AFM1 \& AFLl. Figs. 152 \& 153) and unpruned (AFMZ \& AFL2. Figs. 154 \& 155) for the whole so11 profile for the representative seasons (LR92 \& SR92). In the forthcoming presentation it is understood that only depths till 90 cm anclusive were

Fig. 152. LR92 VSMC deviations from the means in pruned plots (AFM1 \& AFLI) for whole profile

Fig. 153. SR92 VSMC deviations from means in pruned plots (AFM1 AFL1).

Fig. 154. LR92 VSMC deviations from the means in unpruned plots (AFM2 \& AFL2)

Fig. 155. SR92 VSMC deviations in unpruned plots (AFM2 \& AFL2).
agronomically important in our experiments.
We see from Fig. 152 that during LR92 tubes A1. N1. C1 and O1 in mulch plot (AFMI see Table 3 part iji) had positive VSMC devations. The highest positive deviation was obtained from $C 2$ and the highest neaatuve deviation was obtained from M2 (see Table 3 part iii). M1 and B1 were the only tubes in the AFM1 that had negative deviations from the pruned average (AFM1 and AFL1). All the deviations were within $\pm 1.0 \%$.

Thus for the LR92 we could not tell the effect of mulching in retaining more soil moisture than the average in the pruned plots. All tubes at 376 cm had VSMC small values above the mean.

From Fig. 153 we see that at the three distances from the prured Grevillea robusta trees all the tubes (i.e. A1. M1. B1. N1. C1 \& O1) in the mulched plots reaistered VSMC values till a maximum of 1.5% above the profile averages for the pruned area during SR92. In contrast all the tubes in the Local plot (AFL1) had VSMC values below the mean for pruned area. till a maximum of 2.5%. We could therefore discern the effect of mulching in the pruned area durang SR92 season. although these effects do not seem to be large enough to make considerable difference in final biomass yields.

In LR92 (Fig. 154), at three distances from unpruned Grevillea robusta trees, of the tubes in mulched plot (AFM21 anly D1 and Q1 had values above the mean till a maximum of 0.9% for the unpruned area. The rest had VSMC values below the mean till a maximum of 1.0\%. It was once again difficult to tell the effect of mulching in the LR92 season in unpruned area.

In SR92 (Fig. 155). 5 out of 6 tubes in mulching plot had vasues above the average for the unpruned area. but the deviations are around
0.5% at maximum (AFMZ \& AFLZ). The 5 tubes were Di. Ei. U1. Fi and Ki (see Fig. 7 and Table 3). Only P1 in mulching area nâd neqative value. Most tubes which had VSMC values below the mean were in the Lucai for unmulcned) plot (AFL2).

We therefore infer from the results of the two seasone (LR9C and SR92) that during the period of high rainiall the crod reszaue mulch effectively conserved some soll moisture but couid not do so during the dry season in the unpruned plot. This was due to the fact that durang the dry period the crop residue muich could not cover the soll sufficiently since some of it was eaten by termites and ants wiereas some was easily blown away by wand and got redistrabuted. More-aver. if run-off prevention is with this type of mulch more amportant trian evaporation reduction. rainfall distrifution is again the must determanng factor.

4.2 .5 (b) VSMC deviations from the means at each depth during LR92 and SRS2

We relied here mostly on the benaviour of the access tubes ile. aiove or below the mean vaiues) in the mulchang diots as crateria for the success of crop residue mulch to conserve soll molsture in thas envirorment. The positive per cent deviations from the mean values at the concerned depth in mulching was considered as a basis for mulcn effectuveness.

Fias. 156-158 \& 168-170 present results of analysis of wel cent deviations of VSMC from the mean values at tirree distances: jin. $18 \mathrm{~s}_{\mathrm{s}}$ arid 376 cm from the pruned and unpruned Grevillea sobusta trees. and the der cent deviations of the tubes in the pruned area from the means of the
entire AF plot at each deptri.
We see from Fias. 150-158 that durand L592. Of tine tubes an the prurec area at 18 cm depth. all those in muiched piot $\langle A F M 1$: A1: Mi: Bi: C1: 01) had per cent VSMC above the mean values except tube ill isee Fig. is and Table 31. At 30 cm depth ali the tubes $3 n$ AFMi. except Gi. were above average. At 60 cm depth ail the tubes in ArM1. except 31. were above average. At 90 cm tubes A1. B1 and ill nad swall. larore and medium negatave per cent deviations respectiveiy.

At 94 cm from pruned grevillea roinsta trees the laraest positive per cent devation of +8.9 was regastered around fil by tute Ai at le cim deptn. The largest neaative per cent deviation or -15 . 8 was recurcaed around tree PT5 by tube Miz at 18 cm depth. The luwest deviations wole generaliy registered at 90 and 120 cm depths.

At 188 cm from pruned Grevillea robusta trees the lardest pusitive per cerit devaation of +5.8 was reastered around PT2 by tube B 2 at 18 cm depth while the largest neqative deviation of -7.2 was recorded ar ourud tree PTS by tube $N 2$ again at 18 cm depth. The lowest devaatacirs were ac̣ain reaistered at 90 and 120 cm deptis.

At 376 cm away the largest positive per cent devaation of to. was reg̣stered around PTl by tube Cl at 18 cm deoth wraie the Car aest reatave valu\% of -i.0 was recorded around tree PTa bo tupe dia aisan an 18 cm dedrh.

This confirms that. as expected. mulchina was more eifentave in the layers closer to the surface than in the deener denths. We notice here that tube MZ at 94 cm Irom FTS nad been consistent in reaistering negative deviations at all depths except. thoụn marginaliy. at 120 cm depth.

Fig. 156. LR92 per deviation of VSMC in pruned.

Fig. 157. LR92 per cent deviation in pruped plots.

Fig. 158. LR92 per cent deviations in pruned.

Fig. 159. LR92 per cent deviations in unpruned.

Fig. 160. LR92 per cent deviations in unpruned.

Fig. 161. LR92 per cent deviations in unpruned.

We see from Figs．159－161 that during LR92．of the tubes an the unprined area at 18 cm depth．three tubes in mulched plot（AFMZ：01：F1： Pil nad somewhat neaative per cent deviations of VSMC from the means values at each depth（see Fia． 9 and Table 44）．At 18 cm depth tupes 01 and Fl reaistered neqative per cent deviations．At 30 cm depth tures Fi and Pl had nequative per cent deviations．At 60 cm diepth orily P1 riäd negative per cent deviations．

At 94 cm from unpruned Grevillea rabusta trees in muiched plot the per cent deviations varied from +6.01 in tube I1 at 90 cm depth to－ 11.02 in tube P1 again at 90 cm ．Values in unmulched plots were iower．

At 188 cm from unpruned Grevillea robusta trees the per cent devjations varied from -13.89 in tube E3 around UT3 at 120 CI to +7.8 in tube Q2 around UT5．At 376 cm it varied from +5.23 in tube $R 1$ at 18 CII to -6.9 again in tube R1 at 90 cm depth．

4．2．5（C）Per cent VSMC deviations of tubes in pruned（AFM1 \＆AFLI）
 from the means of entire AF plot for LR92

We see in Figs．162－164 that the per cent deviations of the tubes in the pruned area from the mean values at each deoth for the eritire AF plot（AFL1．AFL2．AFM1 \＆AFM2）for LR92 gave a sumewhat different picture from that for the andividual pruned／unpruned areas．

At 18 cm depin tubes M1 and N1 in AFM1 reaietered nearave per cent deviations with respect to the eritire AF plot means．the rest in ARM1 and AFMZ had positive per cent deviations．At 30 cm depth all the three tubes around PT4（1．e．M1．N1 and O1）at 94． 188 and 370 cm and Cl at 376 cm ．from PTI（Fias．159－161）had（relatively smail）neqative per cent VSMC wath respect to the entare AF plot．At yo c⿴囗⿰丨丨⿱一⿴⿻儿口一寸 depths tube

01 arouric PT4 reaistered nearative per cent deviations.
Limiting ourselves to the surface layers. we notace nere that two tubes around PT5 (1.e. M2 \& N2) have consistently recorded larde negative per cent deviations in the 18 and 30 cm deptris. A comparison with the tubes in uripruned area we see that fewer tubes $2 n$ pruned mulched (that 15 i3) than in unpruned mulched (that 1517) had necrative per cent deviations. Adoin fewer tubes in mulched than in Locai plots (that $1 s 17$ against 21 for unpruned and 13 against 17 for pruried) had negative values. This $1 s$ also true for 18 and 30 cm depths. Thus muich enabled the tuices in mulched plots to recond more soll moisture at higher depths than the average values for the entire plots.

4.2.5 (d) Per cent deviations from the means in pruned AF plote (AFM1 and AFL1) for SR92

Fige. 165-167 \& 108-170 present results of anabysis of par cent deviations of VSNC from the mearı values of eacn depth durina SK92 at three distances: 94. 188 and 370 cm from the pruned (Fias. 165-107, and unpruned (Figs. 176-178) (irevilled rabusta trees. Figs. 171-173 oresent the VSAC per cent deviations of the tubes in the prused area frow the means of the entire AF plot at each depth.

We see from Figs. 165-167 that all the tubes in pruned AFMi (A1. B1. C1. M1. N1 \& O1) around PTI and PT4 had realstered positive per cent VSAK deviatzons with respect to mean values at 18 cm deptin. At $3 u \mathrm{~cm}$ depth tuce $O 1$ recorded per cent VSMC below the average value. Tube B1 (Fig. 165) had neqative values at 60 and 90 cm while Ci . (Fig. 167 h had negatave values at 90 cm with respect to the eritare Ar plant. thougn nealigibly smáll.

Fig. 162. LR92 per cent deviations of pruned in Entire at 94 cm from Grevillea robusta trees.

Fig. 163. LR92 per cent deviation of pruned in Entire at 188 cm .

Fig. 164. LR92 per cent deviations of pruned in Entire at 376 cm

Fig. 165. SR92 per cent deviations of pruned means of pruned at 94 cm from Grevillea robusta trees.

Again most tubes (that is 10) in the Local (AFLi, around FT2 a Fi5) had negative values. The tubes around PT5 (1.e. MZ. NZ \& UZ) read mostly below the average vaiues with tube M2 reading nerative all throudn except maroginally positive at 120 cm depth. Even at 188 cm tuhe N . reái negative values in the $18-30 \mathrm{~cm}$ depths. At 376 cm tube 02 read regative values in the depths $18-90 \mathrm{~cm}$ with a marginal positive at 30 cm depth. A simlar picture could ide seen for tubes around PT2 li.e. tubes A2. BĆ \& C21.
4.2.5 (e) Per cent deviations from the means in unpruned AF plot (AFM2 and AFL2) for SR92

From Fig. 168-170 we see that: of the tubes in unpruned mulciarig plot (AFM2) tube D1 had reqative deviations at 18 and 30 cm deptns whale tube F1 had negative values at 18 and 150 cm depths. The rubes arcund UT4 (i.e. P1. Q1 \& R1) had positive per cent deviatiors in the laver 1890 cm except P1 which had negative values below 90 cm and R1 which nad all positive values. save for the 90 cm depth. At 60 cm deptn ali tubes in AFM2 read above the average.

Intercomparison of three tubes (i.e. B1. C1 \& 01) in pruned mulched (AFM1) against five (i.e. D1.F1, P1, Q1 \& R1) in the unpruriea mulched (AFM2) recorded negative per cent deviations. We were therefore Justified from these results to infer that pruning with mulching was superior in as fiar as soll molsture conservation was concerned. Both methods seemed superior to the Local with or without pruning as urist tubes in the Local read below the average values.

Fig. 166. SR92 per cent deviations of VSMC in pruned plots from the average of the pruning treatment at 188 cm from Grevillea robusta trees.

Fig. 167. SR92 per cent deviations of VSMC in pruned plots from the average of the pruning treatment at 376 cm from Grevillea robusta trees.

4.2.5 (f) Per cent VSMC deviations of tubes in pruned (AFM1 \& AFL1) from the means of entire AF plot for SR92

From Figs. 171-173 we see that the during SR92 deviations of all the tubes in AFM1 rrom the average of the entire $A F$ piot were positive in the depths $18-60 \mathrm{~cm}$. Only Bi read below the average at 90 cm depth. This confirmed the observations already pointed out above.

Four tubes (i.e. D1. E1, Q1 \& F1) in AFM2 (unprwred muichear) read below the average of the entire plot for the 18 cm depth. At 30 cmall tubes in the mulched unpruned plot read above the average for that depth. At 60 cm two tubes (i.e. F1\&R1) read below the average for that depth and at 90 cII 5 (i.e. D1. P1. E1, Q1 \& R1) out of 6 tubes read delow the average for the depth. Only Fl read above the average for this depth.

From the foregoing we conclude that crop residue mulching was more effective as a water conservation method when applied in $A F$ plots that had been root pruned and under the minimum elllace. Apporently in combination with minimum tillage is necessary for soil minsture conservation in semi-arid acroforestry systems.

4.2.6 Differences among equivalent access tubes for LR92 and SR92

4.2.6 (a) General

in section 4.2.5 we learnt that the per cent deviations of sume access tubes from the mean values at varıous depths and distances from Grevillea rabusta trees were often either positive or neqative. For anstance the tubes arcund PT5 (i.e. M2. N2 \& O2) recorded generally VSMC values beluw the means in the shallower "depths. that is. at 90 cm and above. Those tubes around PT1 (i.e. A1. Ei \& C1) and UT1 (1.e. Di.

Fig. 168. SR92 per cent deviations of VSMC in unpruned plots from the average of the unpruned treatment at 94 cm from Grevillea robusta trees.

Pig. 169. SR92 per cent deviations of VSMC in unpruned plots from the average of the unpruned treatment at 188 cII from Grevillea robusta trees.

Fig. 170. SR92 per cent deviations of VSMC in unpruned plots from the average of the unpruned treatment at 376 cm from Grevillea robusta trees.

Fig. 171. SR92 per cent deviations of VSMC in pruned plots from the average of Entire $A F$ at 94 cm from Grevillea robusta trees.

Fig. 172. SR92 per cent deviations of VSMC in pruned plots from the average of Entire $A F$ at 188 cm from Grevillea robusta trees.

Pig. 173. SR92 per cent deviations of VSMC in pruned plots from the average of Entire AF at 376 cm from Grevillea robusta trees.

El \& F1) from the Grevillea robusta trees in order that the soll moisture distributions in the agroforestry plot could be properly mapped out.

The entire experimental field at Matanya has a gradient of 4-5\% sloping westwand. It therefore follows that gravity could confine soll moisture to the lower (i.e. western) parts of the AF during dry season.

From the results we have already seen this was the case except the area around PT5 in the lower part of AF which consistently nad a moisture deficit shown by tube M2, N2 \& O2. On the other hand FTI and UTI on the upper part of AF tended to be in the molsture surplus area. Local differences near the access tubes that are not representative for that part of plots in which they were mounted may be a reason out in this case yields show that this moisture distribution may be very real.

4.2 .6 (b) LR92 pruned Grevillea rabusta trees (PT1. PT2. PT4 \& PT5)

Figs. 174-176 and Tables 52a-52c \& 54a-54c present results of the analysis of the differences between access tubes equidistant from the pruned (Figs. 174-176) Grevilled robusta trees in the AF for LRGZ. Of the pairs of access tubes being subtracted negative differences indicated more VSMC for the second than for the first tubes in the parr. These differences generally decreased with depth, being larger in the shallower (i.e. above 90 cm) than in the deeper (i.e. below 120 cm) layers.
(i) 94 cm distance from pruned Grevillea robusta trees

We notace from Fig. 174 and Table 52a that during LR92 at 94 cm the largest positive difference was that of $A 1$ and M2 which gave tube
difference of VSMC of +7.25 at 18 cm . indicaring wore moisture 1 n Ai located in the mulched area trian in M2. in the Local piots. All these differences with mulched plots are high in the surface layers. The largest negative difference of -3.55 was between Mi ard Ma. Here tube M2 in Locai had at 170 cm depth more molsture than Mi in the muicried plots. This will have little aorronomic consequences. The average of the differences of pair of tubes for the whole soll profile between Al and M2 was +2.18 . which $1 s$ mainly due to the surface iayer. so remarkable agronomically. This value is almost three times the orrand average ii.e. average of differences of tubes $1 n$ pruned and unpruned $A F$ at that distance from the treesl difference in VSMC of 0.82 . These differences were mainly positive in all soil depths except 90.120 and 170 cm where negative values dominated. The differences mainly aecreased witn deptin for the two distances. that is. 94 and 186 cm . At 376 cm (F2g. 176) this trend broke down as mixed higner and lower values could be round even for lower deptns. Fig. 174 results in higher molsture up slope and also towards the mulched plots, particularly in the surlace layers.
(ii) 188 and 376 cm distance from pruned Grevillea robusta

Figs. i75 \& 176 and Tabies 52b \& 52c show that. for LR92 the tubes were on the averade at the same soil molsture levels. because as the average differences for all the pairs at 188 cm was 0.03 and at 370 cm was 0.19. Like for the 94 cm distance. the aosoiute values of the differences at 186 cm decreased wath depth. At 188 cm (Fig. 175, the largest positive difference of 3.85 was between $B 2$ and N2 in the surface layer. The largest neaative difference of -2.42 was between Bi aria $N_{1} \mathrm{~m}$ the 90 cm layer: both twbes were in mulched plot. (AFMi) near FTi and

Fig. 174. LR92 differences in VSMC among equivalent access tubes at 94 cm from Grevillea robusta trees in pruned plots.

Fig. 175. LR92 differences in VSMC among equivalent access tubes at 188 cm from Grevillea robusta trees in pruned plots.

Fig. 176. LR92 differences in VSMC among equivalent access tubes at 376 cm from Grevillea robusta trees in pruned plots.

Fig. 177. LR92 differences in VSMC among equivalent access tubes at 94 cm from Grevillea robusta trees in unpruned plots.

Fig. 178. LR92 differences in VSMC among equivalent access tubes at 188 cm from Grevillea robusta trees in unpruned plots.

Fig. 179. LR92 differences in VSMC among equivalent access tubes at 376 cm from Grevillea robusta trees in unpruned plots.

PT4 respectively. The Fig. 175 confirms more moisture up-slope in the surface layers and particularly down-slope. somewnat more morsture in the muiched plots. However. especially in the 60-120 cm iayers trends are often opposite. Aoronomically this could mean little overall difference at least for maize but most likely also for beans molsture availability, but lack of knowledge on root density distribution snouid make the yields the best indicator of all parameters.

At 376 cm (Fig. 176) the VSMC differences did not only decrease with depth but have no orderly trend. The largest positive difference of +3.90 was between C1 and C2, again a mulching effect being noticed. The largest negative difference of -3.01 was between $C 1$ and 01 but at 120 Cm . which is agronomically not really important. At 376 cm in the surface layers the mulched plots have more molsture. but this $1 s$ upslope much more significant. Between up-slope and down-slope in the agronomically important layers there are no very sigrijficant differences. Overall at the three distances trends are certanniy not identical but any existing trends give more moisture in the mulched plots and. up-slope more moisture closer to the trees. At 30 cm and 60 Cm given that we work with seasonal averages, more than 28 difference may be taken as meaningful agronomically.
4.2 .6 (c) LR92 unpruned Grevillea rabusta trees (UT1, UT2, UT4 \& UT3)
(i) 94 and 188 cm distance

Figs. 177 \& 178 and Tables 53a \& 53bshow that. for LR92 the overall profile differences between any pair of tubes at 94 and 188 cm were generally low and lay between -0.77 and +1.37 for the former and 0.84 and +0.90 for the latter distances from Grevillea robusta trees.

There were no orderly decreasing trends as for the prunied Grevilleu robusta plots. The largest positive difference between any two pair of tubes at 94 cm distance was 5.05 at 90 cm depth between D 1 and P 1 . The largest negative was -3.79 between P1 and P2 again at 90 cm depth. The largest positive difference at 188 cm was +2.04 at 60 cm depth betweer, E1 and E2 and largest negative was -2.69 between Q1 and Q2. again at 90 cm . There was therefore more moisture around UT1 (at 188 cm) and UT5 (at 94 cm particularly) than the rest of the trees (see Figs. 185 \& 186). However, outside these exceptions the moisture in different layers shows opposite differences. making them agronomically most likely unimportant.

(ii) 376 cm distance

Fig. 179 and Table 53c show the differences between pairs of access tubes at 376 cm from Grevillea robusta trees for LR92. The results show that the largest positive difference at 376 cm was +2.63 which occurred at 90 cm depth between F1 and R1. The largest negative was -3.73 again between F1 and R1 at 18 cm depth. There was therefore more moisture around UT4 \& UT5, at this distance than for the other trees (see Fig. 179). These differences were particularly strong in the surface layer $(18 \mathrm{~cm})$ and dittle or no compensation in the deeper layers. Cverall thee moisture around UI4 is surprising. and the position down-slope could be the main reason. Also particularly surprising are such consistently high values at 90 cm for $\mathrm{P} 2, \mathrm{O} 2$ and R 2 . This can be no incidental picture, but the reason would be dure a soll physical one than an agronomic one or have to do with tree root density in such a layer. in combination with less crop roots.
4.2.6 (d) SR92 pruned Grevillea rabusta trees (PT1. PT2. PT4 \& PT5)

Figs. 180-182 \& 183-185 and Tables 54a-54c \& 55a-55c present results of the analysis of the differences between access tubes equidistant from the pruned (Figs. 180-182 and unpruned (Figs. 183-185 Grevillea robusta trees in the AF during SR92. We want to note that generally. when comparing Figs. 174-176 and 177-179 as well as the Tables 52 and 54. there is much striking similarity between general trends. Crops have changed but trees and soil much less. It appears as if we can see the crop water availabillty as a function of depth and distance bearg $2 n$ first instance determined by pre-sowing tree root and soil water conditions and the presence of mulch. As a final decisive factor rainfall distribution is subsequently determining crop development and yielde.

(1) 94 cm distance

We notice from Fig. 180 and Table 54a that for SR92 at the distance of 94 cm the largest positive difference was between A1 and M2 which was +9.38 at 18 cm depth, exactly the same position as in LR92. The largest negative difference of -2.54 was betweer A2 and M1 at 30 cm depth. as the tube A1 in the mulched plot had more molsture. The laroest average of the differences of pair of tubes for the whole soil profile was +3.63 which was between A1 and M2. again the same was true in LR92. These differences were mainly positive when the first tubes of the parr of addends were in mulched plots. indicating more soil molsture in mulched than in the Local plots. The differences manrily decreased with depth for the two distances. that is, 94 and 188 cm . This trend again did not extend to 376 cm from the trees, where only differences in the
surface layer were really important. The same conclusions on molsture distribution hold here as found for 94 cm in LR92. the latter being somewhat smaller in range.

(ii) 188 and 376 cm distance

Figs. 181 \& 182 and Tables 54 b \& 54 c show that for $5 R 92$ positive differences between pairs of tubes almost equalled the neqative ones as the average of +0.20 was close to zero. comparable to LR92. The larouest
positive difference of +5.41 was between N 1 and N 2 at 30 cm in mulching and Local plots respectively. The minimum of -6.68 was between B2 and N1 at 60 cm depth. Here again we find that tube N1 in mulched plot had a higher VSMC value. The absolute values of the differences at 188 cm for SR92 actually increased somewhat with depth with 60 cm having generally larger differences between pairs of tubes than other depths. Compared to Fig. 172 the differences in Fig. 178 are larger. for which a higher moisture rande over that wet' season must be responsible. Up-slope the situation in the Local plots is again wetter in the surface layers but this is no longer true in the mulched plots. Where of course the surface layer must be different from the previous season. There is less compensation between moisture in different layers as in LR92. Particularly N1 has a lot more moisture relatively than N2 and the sojl around B2 is relatively much drier at agronomically important depths.

At 376 cm (Fjg. 190) the largest pasitive difference of +6.76 was between mulched C1 and Local C2. as in the case of LR92. Both tubes were on the lipper part of pruned $A F$. The largest negative difference at 376 Cm was -3.05 between Local C2 and Mulched 01 but here at 18 cm depth. where also à large difference occurred in LR92. Differences are agàn generally larger in SR92.
surface layer were really important. The same conclusions on mojsture distribution hold here as found for 94 cm in LR92. the latter belng somewhat smaller in range.

(ii) 188 and 376 cm distance

Figs. 181 \& 182 and Tables 54b \& 54c show that for SR92 pasitive differences between pairs of tubes almost equalled the negative ores as the average of +0.20 was close to zero. comparable to LR92. The larơest positive difference of +5.41 was between N 1 and N 2 at 30 cm in mulchang and Local plots respectively. The minimum of -6.68 wäs between B 2 and N 1 at 60 cm depth. Here again we find that tube N1 in mulched plot had a higher VSMC value. The absolute values of the differences at 188 cm for SR92 actually increased somewhat with depth with 60 cm having generally larger differences between pairs of tubes than other depths. Compared to Fig. 172 the differences in Fig. 178 are larger. for which a higher moisture range over that wet' season must be responsible. Up-slope the situation in the Local plots is again wetter in the surface layers but this is no longer true in the mulched plots. where of course the surface layer must be different from the previous season. There is less compensation between moisture in different layers as in LR92. Particularly N1 has a lot more moisture relatively than N2 and the soil around B2 is relatively much drier at agronomically impurtant depths.

At $376 \mathrm{~cm}(F i g .190)$ the largest positive difference of +6.76 was between mulched C1 and Local C2, as in the case of LR92. Both tubes were on the upper part of pruned $A F$. The largest negative difference at 376 cm was -3.05 between Local C2 and Mulched 01 but here at 18 cm depth. where also a large difference occurred in LR92. Differences are again generally larger in SR92.

Fig. 180. SR92 differences in VSMC among equivalent access tubes at 94 cm from Grevillea robusta trees in pruned plots.

Fig. 181. SR92 differences in VSMC among equivalent access tubes at 188 cm from Grevillea robusta trees in pruned plots.

Fig. 182. SR92 differences in VSMC among equivalent access tubes at 376 cm froin Grevillea robusta trees in pruned plots.

Fig. 183. SR92 differences in VSMC among equivalent access tubes at 94 cm from Grevillea robusta trees in unpruned plots.

Table 52. Infferences between pairs of access tuhes at the measuring depths and equidistance trom the Grevillea robusta trees in pruned AF plots 1 AFM1 \& AFL1) at (a) 94. (b) 188. and 375 cm for LR92. (a) 94 cm . Differences of more than 2.0% and hence high agronomic consequences are iridicated with *

4.2.6 (e) SR92 unpruned Grevillea rabusta trees (UT1, UT2. UT4 \& UT5)

(1) 94 and 188 cm distance

At 94 CII the similarity between SR92 and LR92 is appreciably less strikirg though not completely absent. It is again better at $18 \overline{\mathrm{c}} \mathrm{cm}$. and somewhat in between at 376 cm . It appears as if pruning of the trees makes samjlarity between moisture patterrs for coritrasting seasuns

Fig. 184. SR92 differences in VSMC among equivalent access tubes at 188 cm from Grevillea robusta trees in unpruned plots.

Fig. 185. SR92 differences in VSMC among equivalent access tubes at 376 cm from Grevillea robusta trees in unpruned plots.

Fig. 186. LR92 VSMC gradients from pruned Grevillea robusta trees.

Fig. 187. LR92 VSMC gradients from unpruned Grevillea robusta trees.
nigher. The ciearly higher soil wionsture differences in SR92 in the pruned plots are not returning either in the unpruned cases. fiowever. the muiched plots remain moister in the surface layers comprared to LR92.

Figs. 183 \& 184 and Tables $55 a$ \& 55b show that for Sk92 the average of all the differences between pairs of tubes for varrous deptris for the whole soll profile at 94 cm from the frevallea robusta trees were comparable to the $1 R 92$ orders of magnitude. These averages randed from +0.17 (smallest). for tube P1 and P2. to +0.99 (largest). Ior D1 and P2. so across the Lacal plot. While it occurreci identically across the mulched plot in LR92. The larogest positive difference at 94 cm was +6.30 recorded at 60 cm depth between D 2 and P 2 and the largest negative one was -2.98 between P1 and P2 recorded at 90 cm . exactly the same satuation as in LR92 (see Fig. 175).

At 188 cm the averages of the differences at the measuring deptns for the whole soil profile ranged from -0.91 . for tubes E_{c} and Qi. to +1.25 . for tubes E1 and E2. The laropest positive difference between any two pair of tubes at 188 cm distance was +3.11 recorded at 60 cIl depth between $E 1$ and $E 2$. as this was also the case in LR92. The largest negatave was -3.10 between $E:$ and $Q 1$ recorded at 170 cm depth isee Fig. 184). Which has no agronomic consequences. The opposite irrections withan the suriace layers as found for $L R 92$ are also stall inere. assisted by opposite direction with agronomicaily important depth at the same distance. However. the muiched plots remain moister in the surface layers.
(ij) 376 cm distance
Fig. 185 and Table 55 c snow for $\operatorname{SR92}$ the differences between pars
of access tuices at 376 cm from trevillea robusta trees. The results show the largest positive difference at 376 cm to be +2.64 reccirded at 90 cm depth between $F 1$ and $F 2$. but the one between $F i$ and Fl wath +2.61 35 also close and that one 15 the same as the maximum ior Lric. The largest negative difference was -2.64 between $F 2$ and R1 recorded at 18 cm depth, which was also strongly negatuve in LR92. The averages of the differences at the measuring depths for the whole soli profile ranaed from -1.00. for tuhes F2 and R1, to +0.93. for tubes F1 ard F2. srowing again molster mulched plots. There was therefore more molsture at 370 cm from UTS than the other trees (see Fig. 182). again un iane wiath Lrig2 situation. The same surdrising resuit as in LRGZ occurs in SR9] with respect to the monsture around UT5. Exactly the same hagh valuee cocur here at F2. 02 and R2 at 90 cm depth. These are no coincidences bur show the similaraties between molsture profiles in these two contrastang seasons. It snouid. however. remain in mind that seasonal averages obscure consequences of rainfall distribution that acronomically can be disastrous and lead to high yield differences and even yield behaviour (yes orain. no oram).

4.2.7 Soil moisture gradients from the Grevillea rabusta trees

Figs. 186\& 187 and 188 \& 189 and. Tables 500 \& $50^{\circ} \mathrm{b}$ snow the behaviour of soll moisture (VSMC) with the distance (1.e. i4. 188 and $\left.370^{\circ} \mathrm{cm}\right)$ frcill the Grevillea robusta trees in the AF plot for the representative seasons LR92 and SR92. These madicate the oradients of soil moisture from the Grevilleas trees for the access tubes arstalled at 94.188 and 376 from these trees (see Fig. 9 \& Table 3).

Table 53. Differences Detween pairs of access tubes at the measuring deptns and equadistance from the Grevillea robusta trees in unpruned AF plots (AFM2 \& AFL2) at (a) 94. (b) 188. and 376 cm for LR92. Differences of more than 2.0% and hence high agronomic consequences are indicated with *

(a) 94 cm								
tubes	18	30	60	90	120	150	170	avg
D1-D2	-1.45	-0.56	0.70	1.12	0.08	-0.71	0.32	-0.07
D1-P1	-1.40	0.57	1.52	5.05+	1.71	$2.06{ }^{+}$	-0.40	1.30
D1-P2	-2.44+	-0.27	2.05+	1.26	0.23	0.87	$2.04+$	0.53
D2-P1	0.04	1.12	0.81	3.93+	1.63	$2.76{ }^{+}$	-0.72	1.37
D2-P2	-0.99	0.29	1.34	0.15	0.14	1.58	1.71	0.60
P1-P2	-1.03	-0.84	0.53	-3.79*	-1.49	-1.18	$2.44{ }^{+}$	-0.77
average	-0.96	0.23	1.11	1.34	0.53	1.07	-0.45	0.41
(b) 188 cm								
tubes	18	30	60	90	120	150	170	
E1-E2	0.58	0.89	2.04*	-0.03	1.35	0.05	1.40	0.90
E1-Q1	-0.63	-1.02	0.64	1.53	0.40	0.73	0.22	0.27
E1-22	-1.28	-0.39	1.19	-1.16	1.06	0.01	0.95	0.05
E2-Q1	-1.22	-1.91	-1.40	1.57	-0.95	0.68	-1.18	-0.63
E2-22	-1.86	-1.28	-0.85	-1.12	-0.30	-0.04	-0.45	- - 04
Q1-Q2	-0.64	0.63	0.55	$-2.69+$	0.66	-0.72	0.73	-0.21
average	-0.76	-0.54	0.20	-0.15	0.23	0.14	0.14	-0.10
(c) 376 cm								
tubes		30					170	avg
F1-F2	-1.20	0.15	0.63	1. 36	-0.70	-0.22	3.67	0.24
F1-R1	-3.73*	-0.38	0.45	2.63*	0.02	-0.16	0.04	-0. 0.16
F1-R2	-2.75*	- -3.90	1.23	-0.46	-0.77	-0.34	0.34	-0.52
F2-R1	-2.53+	-0.54	-0.18	1.27	0.72	0.06	-1.62	-0.41
E2-R2	-1.54	-1.06	0.00	-1.83	-0.07	-0.12	-1. 33	-0.77
R1-R2	0.98	-0.51	0.78	$-3.09+$	-0.79	-0.18	0.30	-0.36
average	-1.60	-0.47	0.45	0.07	-0.17	-0.13	-0.19	-0.29

Taule 54. Dufferences between pars of access tures at the measuring deptns and equadistance from the जrevillea robustá trees in pruned AF piots (AFMi \& AFL1) at (a) 94, (b) 188, and 376 cmior SF92. (a) 44 cm . Differences of more than 2.0% ard herice high agronomic consecuences are indicated

(a) 94 cm							
tubes	1830	60	90	120	150	170	
A1-A2	$2.80^{+} 3.85{ }^{+}$	$3.57{ }^{+}$	0.15	0.94	-1.20	0.35	-1.50
A1-M1	$3.49{ }^{+} 1.31$	1.19	-0.41	0.54	-1.03	0.93	30.86
A1-M2	$9.38{ }^{+} 8.78{ }^{+}$	4.94+	0.57	0.29	1.06	0.38	3.63+
A2-M1	$0.68-2.54^{+}$	$-2.38{ }^{+}$	-0.56	-0.40	0.17	0.58	-0.64
A2-M2	$6.58{ }^{+} 4.94^{+}$	1.37	0.42	-0.66	$2.26{ }^{+}$	0.03	2.13+
M1-M2	$5.90^{+} 7.48^{+}$	3.75+	0.98	-0.25	$2.09+$	-0.55	2.77+
(b) 188 cm							
tubes	1830	60	90	120	150	170	avg
B1-B2	0.11 3.36+	$2.54{ }^{+}$	-0.64	$3.35+$	1.24	-0.44	1.36
B1-N1	0.03-1.02	-4.14+	$-3.92+$	$3.45+$	0.56	0.22	-0.69
B1-N2	$3.29+4.39+$	-1.33	-1.15	1.87	1.63	-1.07	1.09
B2-N1	$-0.09-4.39+$	$-6.68+$	$-3.28+$	0.10	-0.68	0.66	-2.05+
B2-N2	$3.17^{+} 1.03$	$-3.87+$	-0.51	-1.49	0.40	-0.63	-0.27
$\mathrm{N} 1-\mathrm{N} 2$	$3.26{ }^{+} 5.41^{+}$	$2.81{ }^{+}$	$2.77{ }^{+}$	-1.59	1.08	-1.29	1.78
(c) 376 cm							
$\begin{array}{llllllll}\text { tubes } & 18 & 30 & 60 & 90 & 120 & 150 & 170\end{array}$							
$\mathrm{C} 1-\mathrm{Cl} 2$	$6.76{ }^{+} 4.48^{+}$	-0.84	0.99	0.15	-0.71	-1.70	1.30
C1-01	$3.72+2.49^{+}$	-1.16	0.49	-0.59	-1.07	0.11	0.57
$\mathrm{Cl}-\mathrm{O}_{2}$	$6.07+2.18{ }^{+}$	0.49	1.82	-1.32	-0.67	0.26	1.26
C2-01	-3.05+-1.99	-0.31	-0.51	-0.73	-0.37	1.81	-0.73
C2-02	$-0.69-2.30{ }^{+}$	1.34	0.82	-1.47	0.03	1.96	-0.04
O1-02	$2.35+-0.31$	1.65	1.33	-0.74	0.40	0.15	0.69

Table 55. Differences between pairs of access tukes at the measuring depths and equidistance trom the Grevillea robusta trees in unpruned AF Dlots (AFM2 \& AFL2) at (a) 94, (b) 188. and 376 cm for SR92. Differences of more than 2.0% and hence high agronomic consequences are indicated with *

(a) 94 cm							
tubes	18	$30 \quad 60$	90	120	150	170	0
D1-D2	-1.01	-0.96-1.12	0.06	0.91	1.29	2.31	1-0.21
D1-F1	-2.62+	-1.87 1.57	$3.13+$	2.82	2.78*	-0.07	7 0.82
D1-P2	0.18	$0.415 .17^{+}$	0.15	0.76	-0.08	0.35	3 0.99
D2-P1	-1.61	-0.91 2.70+	$3.08{ }^{+}$	1.91	1.48	-2.38	8-0.61
D2-P2	1.19	1.37 6.30*	0.10	-0.15	-1.37	-1.97	$7 \quad 0.78$
P1 +2	2.80	2.28 +3.60*	$-2.98{ }^{+}$	$-2.06{ }^{+}$	-2.85*	- 0.41	10.17
(b) 188 cm							
tubes	18	$30 \quad 60$	90	120	150	170	avg
E1-E2	0.08	1.81 3.11+	0.45	1.94	-1.08	2.42	1.25
E1-Q1	-0.02	-0.50 0.33	0.69	2.06*	0.50	-0.68	0.34
E1-Q2	0.07	0.82 2.16 ${ }^{+}$	-0.58	$2.24{ }^{+}$	-0.79	0.77	0.67
E2-Q1	-0.11	$-2.31+-2.78{ }^{+}$	0.24	0.12	1.58	-3.10^{+}	-0.91
E2-02	-0.01	-0.99 -0.94	-1.03	0.31	0.29 -	-1.65	-0.57
Q1-02	0.09	1.321 .84	-1.27	0.18	-1.29	1.45	0.33
(c) 376 cm							
tubes	18	$30-60$	90	120	150		
F1-F2	0.58	1.691 .02	$2.64+$	1.59	-1.42	0.40	
F1-R1	-2.06*	-0.27 0.47	2.61 *	0.50	-1.00	-0.75	-0.07
Fl-R2	-0.02	-0.11 1.39	0.32	0.37	-1.02	-0.58	-1.00
F2-R1	-2.64*	-1.97-0.55	-0.03	-1.09			
F7-R2	-0.61	-1.81 0.37	-2.33+	-1.22	0.40 -0.02	-0.98	0.12
R1-R2	$2.03{ }^{+}$	0.160 .92	$-2.30+$	-0.13	-0.02		

4.2.7 (a) Pruned Grevilled rabusta trees (PT1, PT2, PT4 \& PT5) for LR92 and SR92

Figs. 186 \& 188 and Table 56a display the VSMC behaviour in pruned plots (AFM1 \& AFL1). We consider here general direction of molsture with distance from the trees. The differences between tubes at 94 and 188 and between 188 and 376 cm had to be more than 1.5% for LR92 and 2.08 for SR92 to be considered of agronomic consequences. Again considering the rooting depths of beans and maize the surface layer. 18, 30. 50. 90 ard marginally 120 cm become agronomically important. Here again we find general striking similarity between general trends for LR92 and SR92.
(i) FT1 (i.e. tubes A1, B1 \& C1)

For LR92. at 18. 60 and 90 cm depths the VSMC decreased somewhat between the distances 94 and 188 cm from PTI and then increased between 188 and 376 cm to the same level for 90 and 60 cm and to the haghest level for 18 cm depths. Only at 90 cm and 18 cm were there trends numerically important (Fig. 186 \& Table 56a).

The SR92 trends were the same in the agronomicaily important layers (Fig. 188 \& Table 56a).
(ii) PT2 (i.e.tubes A2, B2 \& C2)

For LR92, at 18 cm depth there was decrease of VSMC with distance from the PT2 beyond the 94 cm level while at 60 cm a general increase was ubserved. The trends at 30 and 90 cm depths were unimportant agronomicaily as they were smaller than $\pm 1.5 \%$ limit (Fig. 186 \& Table 56a).

The SR92 trends for 18 cm and 60 cm were the same as for LR92 above, except that the two depths had lange differences at 94 cm and 188 cm but attained the same moisture status at 376 cm (Fig. 188 \& Table 56a). Again other trends in agronomically important layers were smaller than $+2.0 \%$ and therefore not useful agronomically.
(iii) PT4 (i.e.tubes M1. N1 \& O1)

For LR92. at 18 and 150 cm depths the VSMC decreased between 94 and 188 cm from FT4 and then increased between 188 and 376 cm for agronomically important depth of 18 cm and marainally important depth of 120 cm . The trend at 30 cm was too small to be of any agronomic consequence while the trend was generally decreasing at 90 cm depth between 188 and 376 cm distances from PT4 (Fig. 186 \& Table 56a).

The SR92 VSMC behaved similar to LR92 for the 30.60 and 120 cm depths. The trend at 18 cm was very small and had no agronomic consequences but increased between 94 and 376 cm . For the 90 cm depth it increased between 94 and 188 cm but decreased at 376 cm to 1 ts level at 94 cm (Fig. 188 \& Table 56a).

(iv) PTS (i.e.tubes M2, N2 \& O2)

For LR92, at 18 and 30 cm depths the VSMC increased between 94 cm to 376 cm from PT5 with the 30 cm being the most striking increase. At 90 cm depth there was decrease in VSMC between 94 and 376 cm but had little agronomic consequences. At 60 cm depth the VSMC increased between 94 and 188 cm from PT5 and then decreased at 376 cm to 2 ts level at 94 CII. Other changes in VSMC trends with distance from P:5 had negligible agronomic consequences (Fig. 186 \& Table 56a).

The SR92 VSMC behaved similar to LR92 at ali deptris e:xcept 120 cm depth where it increased between 94 and 376 cm from PT5 as appused to LR92 trend of a decrease followed an increased (Fig. 180 \& Taile 50́a).

4.2 .7 (b) Unpruned Grevillea robusta trees (UT1. UT2, UT4 \& UT5) for LR92 and SR92

Like in the case of the pruned trees Figs. $186 \& 187$ and Tamie 56io display the behaviour of VSMC in unpruned plots (AFM2 \& AFL2).
(i) UT1 (i.e.tubes D1, E1 \& F1)

Mast of the trends for the VSMC around UT1 in LR92 were of juttle agronomic importance. This condition may have come about as the result of depletion of moisture in the upper layers by the unpruned trees. Nevertheless though of little value agronomically the most irends decreased between 94 and 376 cm from UT1. with 30 cm being cleariy the hignest (Fig. 187 \& Table 56b).

The decreasing trend observed in LR92 could only de repeated at 60 CWI depth 3 SR92. Utnerwise the picture for the SR92 was sowewriat different from the LR92 one. (Fig. 189 \& Table 56b).
(ii) UT2 (i.e.tubee D2, E2 \& F2)

In LR92. at UT2 except for the 90 cm depth. VSMC generally decreased between 94 and 188 cm and then increased fram 188 to 376 cm at all acronomically important depths. At 90 cm depth it tock the ondceite trend by ancreasing from 94 to 188 cm and then decreasing thereafter to 376 cm from UT2 (Fig. 187 \& Table 56b).

Fig. 188. SR92 VSMC gradients from pruned Grevillea robusta trees.

Flg. 189. SR92 VSMC gradients from unpruned Grevillea robusta trees.

Fig. 188. SR92 VSMC gradients from pruned Grevillea robusta trees.

Fig. 189. SR92 VSMC gradients from unpruned Grevillea robusta trees.

The trends observed for LR92 in the agronomically important deptris 18. 30 and 60 cm were repeated in SR92. From 90 to 150 cm depths things were different, as at 90 and 120 cm depths the VSMC decreased between 94 and 376 cm from UT2 (Fig. 189 \& Table 56b).
(iji) UT4 (i.e.tubes P1, Q1 \& R1)
The trends of agronomic importance were observed in LR92 at 18. 30 and 90 cm depths. At 18 cm depth the VSMC decreased between 94 and 188 cm and then increased from 188 to 376 cm from UT4. Both increases were more than $\pm 2.0 \%$ and agronomically important. At 30 cm there was a positave trend and a decrease to almost its initial level at 376 cm fram UT4. At 90 cm the VSMC had a steep increase between 94 and 188 cm and then negligible increase at 376 cm (Fig. 189 \& Table 56b).

The trend obeerved for $5 R 92$ at 18 cm depth was serikingly similar to the LR92 one except of magnitude of the increase between 188 and 376 Cm . The 90 cm depth trend was repeated in SR92. but less prominently. Negligible increase were observed at 30 and 60 cm depths UT4 iFia. 189 \& Table 56b).
(iv) UTS (i.e.tubes P2, Q2 \& R2)

During LR92. at 18 and 120 cm depths the VSMC decreased between 94 and 188 cm from $U 5$ and then increased from 188 to 376 cm . At 30 cm depth it decreased between 94 cm and 376 cm while at 60 it increased between 94 to 188 cm and decreased 188 and 376 cm from UT5. At 90 cm it increased all the way outward from the tree (Fig. 187 \& Table 56b).

There were little similarities in the trends between SR92 and LR92. as the VSMC increased all the way from 94 to 376 cm from 18 to 90 cm depths. The trend of LR92 was repeated for 90 and 120 cm depths only

Table 50 . Directare of soll moisture wath distance incull the Grevillea robusta trees fus Lise arki snge. ia prured (b) unfuried. Note that $(-+1$ means VomC decreasing wath diecance oetween 94 and 188 cm and then ancreasinu betwern 18 and 370 cm . (t -1 mears VEMC riccreasura with distance between 94 and 188 cm ard then decieasind u tween 186 and $376 \mathrm{~cm} .1++1$ or $(--)$ mears Viam increasara os decreasing all the way from 44 to 376 cm . Trends that would give suomuticant aoronomuc corsequences are shownt with deild sigris (- or +).

	18	30	60	30	120	150	170
PTi :	¿R92	+ -	- +	- +	+ -	- -	-
	SR92	+	- +	- +	+		+
FT2:	LR9C	+ -	+ +	+ -	- +	- +	- +
	3 S92	+	$+$	+ -	- +	- +	+ +
PT4:	LR92 - +	+ -	+.	-	-+	-	+ +
	$5 R 92+$	+ -	+	+	- +	+	+ +
515	LR92 + +	+ +	+ -	-	- +	+	+ -
	SR92 + +	+	+ -	- -	+ +	+	+ -
(b) Undruned							
U1i:	16	30	00	90	120	150	170
	LR92	+	-	- +		- +	+ + + +
UT2:	LR92 - +	- +	- +	+ -	- +	- +	- +
	SR92 - +	- +	+	- -	- -	+ +	
U14:	LR92 - +	+ -	+ -	+ +	+	+ +	+ +
	$5 R 92$ - +	- -	- -	+ +		+ +	
UT5	LR92 - +	- -			- +	+ +	
	SR92 + +	+ +	+ +	+ +		+	

(Fig. 189 \& Table 560).

4.2.8 On-farm soil moisture experimentation at Kiahuko- \AA
 and Kianuko-B for SR93, LR94 and SR94

4.2.8 (a) Effects of Coleus barbatus livefence root pruning on

Soil molsture distribution in cropland at kiahuko-A
Figs. 190 \& 191 present results of aqaiysis of sorl moustiare variatione wath dastarices ixcm (a) pruned (b) unpruried coisus bributus
 of the on-farm experimentation.

Fig. 190. VSMC gradients from pruned livefence at Kiahuko-A on-farm in SR93, LR94 \& SR94

Fig. 191. VSMC gradients from unpruned livefence at Kiahuko-A on-farm in SR93, LR94 \& SR94.

Fig. 192. VSMC gradients from pruned Grevillea trees (AGM1 \& AGL1) at Kiahuko-B on-farm in SR93, LR93 \& SR94

Fig. 193. VSMC gradients in unpruned Grevillea robusta trees at Kiahuko-B on-farm in SR93, LR94 \& SR94.
(i) Soil moisture variations in root pruned portions

We can see from Fig. 190 that the soil molsture (VSMC) was most often iaghest in the tubes closest to the prumed portaons of the liverence (i.e. tubes: A1. A2 \& A3). The VSMC in all the tubes decreased or remanned close thereafter with the distance irom the livefence. In portion ALF tube Bl read the least of the three tubes for seasons $5 R 93$ and LR94 and then rapidly increased between 180 and 360 cm from the livefence.

Comparison of seasons shưed the VSMC at portions ALF. BLF and IIF was highest during SR94 followed by SR93 for portions BLF and CLF. The three tubes of portion ALF (i.e. A1. B1 \& C1) read lowest VSMC durina SR93 only.
(ii) Soil moisture variations in unpruned portions

It should first be noted from Figs. 190 and 191 that the only parallei between pruned and unpruned cases occurs for LR94 and SR94 between A1 and B1 as well as between D1 and E1 respectively. There $1 s$ similarity between places for different seasons among pruned and unpruned respectively within the treatments like on-station. There $2 s$ no similarity between pruned and unpruned live-fences. with the exception of SR94 and LR94 at 90 cm distance. between A 1 and $\mathrm{B1}$ and between $\mathrm{D1}$ and El respectively. The measurement places have reproducible patterns (to a reasonable hig̣h extent) as observed on-station. This is equally true fur pruned/unpruned data.

From Fig. 191 we see that the soil molsture situation in the unpruned portions of the livefence was indeed different. All tukes closest to the livefence (i.e. tube D1. in position DLF. tube D2 in portion ELF and tube D3 in portion FLF) showed that there was the least
soil moisture at 90 cm from the unpruned livefence compared to the otner two distances away from 1t. Comparing BLF. ELF. CLF. and FiF. any important trends in unpruned were opposite to their pruned equivalents. In these portions (ELF and FLF) the farthest tubes (1.e. tubes F2 and F3) had the higinest VSMC. particularly SR93 (for F2) and LR94 (fur both). It is only in comparing plots ALF and DLF that the pruned plot appears clearly to have more molsture. Comparing BLF and ELF only AZ was significantly larouer than D2 in LR94. but F2 sianificantly larger than C2 for the three seasons while E2 wäs larger than 82 for $5 R 93$ only. Comparing CLF and FIF A3 was slomificantly larger than D3 only for SRis. no where was $B 3$ darger than $E \dot{F}$ with any significance, and even F3 was larger than C3 for LR94 only with some significance.

It should be noted that for DiF. for LR94 and SR94. the VSMC was highest closest to the liverence, because the farmer had neapea dead vegetation he had weeded from the field on thas part of the livefence to compost $1 t$. This interfered with the soll molsture status of the soll by increasing moisture closer to the hedge. This strenothens the influence of pruning on the soil moisture close to the hedge.

Comparison of VSMC in the unpruned plots durang the three seasuns show that again there was mast soil moisture for SR94 at DLF and FLF portions and also at the control tube (GC). Whach was in the open centre of the plot. These seasons (Figs. 190 \& 191) show that LRO4 was the driest season of the three with respect to moisture status in the soll in on-farm plot. However, as for AiF. also in DiF that season was nigher in molsture than SR93. be at not at 360 cm . Of course agaan. the averaging of seasoris gives only a limited picture. For the full picture the influence of rainfall distribution only follows from data broken down over the season.

4.2.8 (b) Effects of Grevillea robusta tree root pruning on Soil

moisture distribution in cropland at Kiahuko-B

Figs. 192 \& 193 present results of soll moisture variations watn the distance from the Grevillea robusta trees under the on-rarm conditions at Kiahuro- \bar{B} for the three seasons (1.e. SR93. [R94 \& SRO4).

The two distances (i.e. 90 and 200 cm) from the grevillea rabusta trees at which access tubes were installed gave us the two data points per line that appear in Figs. 192 \& 193. The furst point from the leit was the tube closer to the tree at 90 cm while the second point was the tube farther from the tree at 200 cm .
(i) Soll moisture variations in root pruned Grevilleas

We can see from Fig. 192 in the root pruned trevilled robusta trees that VSMC was higher in same tubes nearer to the trees (1.e. tube A3M at tree P7. tube A1L at R6 and (unimportant) A2L at 061 than those farther away (i.e. tube B3M at tree P7. tube B1L at Fō and B2L at 00°). However. pruning did not seem to work for some otner trees: ivery unimportant) 77 (I.e. AlM \& B1M) and (with only one sianificant season) R8 (i.e. A2M \& B2M) as the VSMC was lower closer to the tree than farther away for all the three seasons, while at P6 (i.e. A3L and B3L) pruning was marginally effective during SR94 only. It must be appreciated that only in three cases an appreciable difference llarger than 1.5\%) sccurred because of pruning and margirul differences in two cases. Opposite to expectation was one case.with one marginal case as well.

Comparing sold molsture in the three seasons we see VSMC was for all cases fiaghest for SR94 and lowest for LR94 (see Fig. 192). The
highest effect of pruning on soil molsture (between 3 ard 3.5\%) was however realized in SR93 and LR94 near one tree oniy. as it was very high only next to trie pruned tree (R6) at 90 cm (tube AlL) and was lower farther away at 200 cm (tube BiL). The all over assessment must be that there is on the average a small effect.

We see in Figs. 192 and also Fig. 193 that there is reasonable symmetry between seasors. In most cases where either molsture is hagher or lower near the trees. this is true for all seasons. Oniy where all distances are small or marginal this is not true in all cases.
(ii) Soil moisture variations in unpruned Grevilleas

From Fig. 193 we notice that all unpruned Grevillea robusta trees had the same effect on soil moisture with the distances from them. as the tubes closer to the trees (at 90 cm) read lower VSMC than those further away (at 200 cm). This is larger than 1.5% in more cases. The highest effect (of 3.5\%) was realized for tubes DIL and EIL at tree 32 . It should be observed that pruning appears more successful when comparing it with the opposite trend in molsture with distance to the trees in unpruned plots.

Comparison of VSMC for different seasons shows that overall SRg4 had the hioghest soil moisture status whale LR94 had the lowest.

From these results we were not able to discern the effect of mulching on soil moisture status of the soil. Finally the spacarig between adjacent Grevillea rows enabled the canopies to close up and almost completely shade the oround, thereby reducing direct evaporation from the ground. reduce soll temperatures considerably and decreasing this way the effect of mulchang. Secondly the Grevillea robusta trees
themseives shea their leaves and therefore added substantai leaf auicn to the urmuiched (Local) plots arid to the muiched ones too. ajaur. decreasing any existing differences. This can be seen in Fig. 19i which compares pruned and unpruned mulchang̣ (AGM1 \& AGMZ̈) watin prured ano unpruned Local (AGLi \& AGL2). The pruning effect was only pronouricei in the mulched piots as AGMz had the least VSMC.

However, une finaınu we ciserved here as well as at Matanya A今s Wäs thät unpruned muiching with minımum tillage hãd jess soll mossture than unpruned las weil as pruned) Local with deep tillage. This ianding came up repeatedly for most of the Matanya data. The seasonai averaunan does not snow this ciearly as it dies not indicate whether this was márily the case towarcis the end of the season (where at coula be a consequence of both vegetative prowth earlier in the season or tinroughout the seasori). Termites could be involved aiso.

The VSMC in the adrororestry plots was appreciably $1 e s s$ than that in the control plots (CTRL-MLI, and CTRL-LOC). The Mulched plot ari the control had nevilaibly hiatier VIMC than the Lucal piot. In barie with the otner plots. Sigit had again the hagest ISMC in the control plots. AGME appears to be less than marolnally different from all veneis. adart Irom three cases with respect AGL1. So thas andeed mearis mi muich eftects 10 arroforestry treatments nor in control. It looks as if oruned muicned 13 most successful wath respect to unpruned mulched. but the Local pruned and unpruned differ little amono eacis other and lattle with prunea mulched.

Fig. 194. Average VSMC for three seasons at Kiahuko-B onfarm for 90 and 200 cm from Grevillea trees and Control plots

4.3 Wind results: Calibration at Embori and strong winds at Matanya

4.3.1 Calibration of Wind system at Embori

4.3.1 (a) Wind speeds and directions during calibration periods

Figs. 195-197 show hourly wind speeds averaged from fifteen mınute records at Embori measured with WAU electrical cup anemometers Sr Nrs 10. 15 and 15 \& 38 for first. second and third calibrations respectively. These calibrations periods were earlier referred to as $\mathrm{Cb} 1 . \mathrm{Cb} 2$ and C03 respectively (see Chapter 3). We notice in Figs. 195 \& 197 that during Cb1 and CD3 the high wind speeds more than or equal to 4 m/s occurred in Cb1 from 08 h 00 to 20 h 00 (and sometimes even beyond) and in Co3. with some exception, between the same times. We further notice that highest winds ranged from between $7 \mathrm{~m} / \mathrm{s}$ and more than $8 \mathrm{~m} / \mathrm{s}$ during COl and Co3. All the WAU electrical cup anemometers displayed similar trends.

During C02 the winds at Embori were generally light. below $4 \mathrm{~m} / \mathrm{s}$ (see Fig. 196). These light winds were mainly influenced by local topography. especially the nearby Mt. Kenya slopes and also valleys around the calibration site. The relatively high winds more than or equal to $2 \mathrm{~m} / \mathrm{s}$ occurred between 10 h 00 and 16 h 00 during daytime and from $20 h 00$ to 06 h00 during nighttime (Fig. 196). The nighttime higr winds were as a result of increased katabatic flow down the cold Mt. Kenya slope on the south east (S.E.) of the calibration site.

Figs. 198-207 present the relative per cent frequency wind direction roses for Embori worked out fral hourly wind directions recorded with the woelfle anemograph Sr. Nr . 31587, hereafter referred to as WB. during the calibration periods. These wind direction roses showed that the wind at Embori for the CO1 (Figs. 198-201 and C03

F1g. 195. Hourly wind speeds for Embori for DOY 55-59 of 1993 as read with cup anemometer 10.

Fig. 196. Hourly wind speeds for Emborl for Doy 134-146 of 1994 as read with cup anemometer 15.

Fig. 197. Hourly wind speeds at Embori for DOY 32-34 of 1995 as read with cup anemometers 15 and 38.

Wind Calib. in May 1994
 Embori: Night Sr. No. 31587

Fig. 203

Figs. 202 \& 203. Day- and night-time relative per cent wind direction frequencles taken at 2.0 m during calibration periods at Embori in May 1994.

```
Wind Calib. in Jan }199
    Embori: Day Sr. No. }3158
```


Fic. 204

Wind Calib. in Feb 1995
Embori: Day Sr. No. 31587

feb
以 jan

Fig. 206

Wind Calib. in Feb 1995

Fig. 205
Wind Calib. in Jan 1995
Embori: Night Sr. No. 31587

Embori: Night Sr. No. 31587

ig. 207

Figs. 204-207. Day- and night-time relative per cent wind direction frequencies during calibration periods at Embori in JanuaryFebruary 1995.
(Figs. 204-207) blew mainly from north east (NE) (with the frequency of up to 90\%) during the day and from the north east to the south east (with the frequency of east of up to about 65\%) during night-time. During Cb2 the wind was mainly northerly (of about 30% frequency) with some NW. NE. SE and SW components (of between 10 and 20% frequencles) during the day and wholly SE (of up to 100% frequency) during the night (Figs. 202 \& 203). Results from Woelfle anemograph Sr. Nr. 341830° (to be referred to as 'WA') were all similar to WB ones as the distance between the two instruments was only 5.1 m .
4.3.1 (b) Intercomparieone of WAU electrical anemometers during daytime (07n00 - 20n00) winds
(i) Comparison with the substandard (cup 40) during Cb1

For the Cb1 the WAU electrical anemometers las dependent variables) were compared with the substandard anemometer (cup 40) (as independent variable) for 100 hrs from day 55 to day 62 during high daytime wind speeds. The scatter plots of two pairs of outer cups, that is cups 10 and 11 (NNW of cup 40) and cups 44 and 55 (SSE of cup 40). on the substandard cup 40 are given in Figs. 208-211 and Table 57. The cups were arranged in descending /ascending order starting with cup 10 close to WA and ending with cup 55 close to WB. Throughout this first calibration the cup anemometers were kept in the same sequence corder also given in Table 57).

We can see from Table 57 that the intercept values decreased in magnitude the nearer the anemometers were to the substandard (cup 40). The intercept values were positive on the north and negative on the south of cup 40. These two observations suggest that the nearby valley influenced the behaviour of the wind field. The values ranged from -0.06

Fig. 208. The scatter plot and 1:1 line of hourly wind speeds for WAU electrical cup anemometer 10 against substandard 40 for the day-time period (07h00-20h00) at Embori for 55-62 of 1993.

Fig. 209. The scatter plot and 1:1 line of hourly wind speeds for cup anemometer 11 against substandard 40 for the day-time period (07hoo-20h00) at Embori for 55-62 of 1993.

Fig. 210. The scatter plot and 1:1 WAU electrical cup anemometer 44 against substandard 40 for the day-time period (07hoo-20h00) at Embori for 55-62 of 1993.

Fig. 211. The scatter plot and 1:1 line of hourly wind spoede for WAU electrical cup anemometers 55 against substandard cup 40 for the day-time period (07h00-20h00) at Embori for 55-62 of 1993.

Table 57. Intercomparison of WAU electrical cup anewometers with the substandard (cup 40) at HIGH (daytıme: 07h0020 h 00) wind speeds for days 55-62 of 1993.

cup	const a	$\begin{aligned} & \text { std err } \\ & \text { Yoet } \end{aligned}$	$\begin{aligned} & \text { coeff } \\ & b \end{aligned}$	$\begin{gathered} \text { std err } \\ b \end{gathered}$	$\begin{aligned} & \text { corr } \\ & \text { coef, } r \end{aligned}$
10	0.28	0.18	0.99	0.01	0.9888
11	0.21	0.24	0.98	0.02	0.9808
12	0.13	0.12	1.00	0.01	0.9946
13	0.11	0.05	1.01	0.00	0.9992
14	0.12	0.04	0.99	0.00	0.9994
15	0.05	0.03	1.01	0.00	0.9997
38	0.08	0.02	1.01	0.00	0.9999
39	0.06	0.01	1.01	0.00	1.0000
40*	0.00	0.00	1.00	0.00	1.0000
41	-0.03	0.03	1.02	0.00	0.9998
43	$\rightarrow 0.02$	0.03	1.02	0.00	0.9997
44	-0.01	0.04	1.01	0.00	0.9995
55	-0.06	0.06	1.01	0.00	0.9989

Table 58. Intercomparimon of WAU olectrical cup anomametore With the middte oup (oup 38) at HIGH (deytimel UThOO20h00) wind speeds for days 25-32 of 1995. * is middle cup

cup	const a	std err Yowe	$\begin{gathered} \text { coeff } \\ b \end{gathered}$	$\underset{b}{\text { std } e r r}$	$\begin{aligned} & \operatorname{corr} \\ & \operatorname{cosf} . r \end{aligned}$
55	-0.158	0.048	1.047	0.004	0.9992
61	-0.095	0.036	0.966	0.003	0.9995
43	-0.066	0.036	1.034	0.003	0.9995
13	-0.040	0.020	1.037	0.002	0.9999
14	-0.108	0.017	1.041	0.002	0.9999
15	-0.152	0.011	1.019	0.001	1.0000
$38 *$	0.000	0.000	1.000	0.000	1.0000
60	-0.096	0.016	1.039	0.002	0.9999
40	-0.157	0.020	1.029	0.009	0.9998
41	-0.084	0.024	1.049	0.002	0.9998
12	-0.055	0.028	1.011	0.003	0.9997
11	-0.123	0.030	1.019	0.003	0.9997
10	-0.155	0.037	1.021	0.003	0.9995

to 0.28

We can also see from Table 57 and Figs. 208-211 that the gradient of the linear relation between individual cups (dependent variable) and cup 40 (independent variable) was within a range of 1.01 ± 0.01. The correlation coefficients, r. between individual cups and the substandard were very close to 1.000 and somewhat decreased with the distance from cup 40 to 0.9808 for cup 11 . On the whole. all the cup anemcmeters satisfied equation $Y=a+b * X$ with intercept ' a ' close to zero and the coefficient ' b ' close to one. The r values were all close to 1.00 .

(ii) Comparison with cup 38 during Co3

Figs. 212 \& 213 present scatter diagrams and 1:1 lines for daytime high wind speeds for cups 10 and 55 on cup 38 (cup 38 was the middle cup anemometer) for two arrangements. namely: (i) before exchanging six outer cups three on either side of the horizontal bar (22/1/-1/2/95 for 90 hrs$)$ and (1i) after exchanging the outer cups (1/2/-3/2/95 for 28 hrs) (see first columns of Tables 58 \& 59).

Figs. 212 \& 213 and Tables 58 \& 59 and 62 \& 63 show that intercept values did not now decrease in magnitude the nearer the anemometers were to the middle cups as observed in Cb1. There was also no change in sign for the cups on the northern or southern sides of the central cup. The intercept ' a ' values however approached zero in both cases. The correlation coefflcient between cups was very high. This suggests that the topographic influence which we initially suspected to be due to the nearby valley during Col calibration was now eliminated by halving the distance Figs. 212 \& 213 over which cup anemometers were installed. The gradient of the linear relation between individual cups idependent variable) and cup 38 (independent variable) was within a range of 1.022
± 0.022.

4.3.1 (c) Comparisons of WAU electrical anemometers during night-time

 (21h00-06h00) winds(i) Comparison with the substandard (cup 40) during Cb1

Figs. 214-217 show the results of the comparison of individual anemometers 10. 11. 44 (later replaced with 61 for Cb 2 and CO 3) and 55 to the substandard cup anemometer (cup 40) for 70 hrs from day 55 to 62 in the LOW night-time $(21 \mathrm{~h} 00-06 \mathrm{~h} 00)$ wind speeds. Here the nighttime conditions (Taile 60) were the reverse (in sign) of intercepts compared to the day-time ones (Table 59). The intercept values were negatuve on the north and positive on the south of the substandard. The values ranged from -0.34 to 0.23 . We can also see from Table 59 and Figs. 214217 that the gradients of the linear relations between individual cups (dependent variabile) and cup 40 (indupendent variable) were withan a range of 1.03 ± 0.05. The correlation coefficients. r. between individual cups and the substandard were very close to 1.00 but varying between 0.832 and 1.00 with the distance 1 rom cup 40 . Again. all the cup anemometers satisfied equation $Y=a+b * X$ with intercept ' a ' close to zero and the coefficient 'b' close to unjty. However. here. in nighttime conditions, 'a' and 'b' were respectively. further from zero and from one than in day-time conditions reported in section 4.3.2 above.

The higher wind speeds within the nighttime range scattered a bit above the $1: 1$ diagonal line and more so for the cup anemometers north of the substandard (see Figs. 214 \& 215). This aspect of the scatter was also attributed to more topographic influence for the slower nighttime

Fig. 212. The scatter plot and 1:1 lines of electrical cup anemometers $10 \& 55$ against middle cup 38 for daytime ($07 \mathrm{hOO-20h0}$) conditions at Embori for DOY 25-32 of 1995.

Fig. 213. The scatter plot and 1:1 lines of electrical cup anemometers $10 \& 55$ against middle cup 38 day-time (07h00-20h00) conditions at Embori for DOY 32-34 of 1995.

Fig. 214. The scatter plots and $1: 1$ line of hourly wind speeds for WAU electrical cup anemometer 10 against cup 40 for night-time (21n00-06noo) conditions at Embori for DOY 55-62 of 1993.

Fig. 215. The scatter plots and hourly wind speeds for WAU electrical cup anemometer 11 against substandar cup 40 for night-time ($21 \mathrm{~h} 00-06 \mathrm{hOO}$) conditions at Embori for days 55-62 of 1993.

Fig. 216. The scatter plots and 1:1 line of hourly wind speeds for waU electrical cup anemometer 44 against substandard cup 40 for night-time (21h00-06h00) conditions at Embori for DOY 55-62 of 1993.

Fig. 217. The scatter plots and $1: 1$ line of hourly wind speeds for WaU electrical cup anemometer 55 against substandard cup 40 for night-time ($21 \mathrm{~h} 00-06 \mathrm{~h} 00$) conditions at Embori for Embori for 55-62 of 1993.

Table 59. Intercomparison of WAU electrical cup anemciueters with the middle cup (cup 38) at HIGH (daytime: 07h00$20 h 001$ wind speeds for days $32-34$ of 1995.

cup	const a	std err Yoet	$\begin{aligned} & \text { coeff } \\ & b \end{aligned}$	std err b	corr coef. r
10	-0.228	0.041	1.029	0.005	0.9996
11	-0.164	0.025	1.012	0.003	0.9999
12	-0.085	0.015	1.012	0.002	1.0000
13	-0.046	0.018	1.037	0.002	0.9999
14	-0.103	0.015	1.039	0.002	1.0000
15	-0.150	0.014	1.018	0.002	1.0000
38.	0.000	0.000	1.000	0.000	1.0000
60	-0.098	0.023	1.037	0.003	0.9999
40	-0.146	0.014	1.025	0.002	1.0000
41	-0.032	0.026	1.040	0.003	0.9999
43	-0.066	0.036	1.037	0.005	0.9997
44	-0.078	0.036	0.928	0.003	0.9998
55	-0.129	0.048	1.022	0.006	0.9995

Table 60. Intercomparison of WAU electrical cup anemometers with the substandard cup (cup 40) at LOW (nighttime: 21h00-06h00) wind speeds for days 55-62 of 1993.

cup	const a	std err Yner	$\begin{aligned} & \text { cooff } \\ & b \end{aligned}$	$\underset{b}{\text { std } e r r}$	$\begin{gathered} \text { corr } \\ \text { coet. } r \end{gathered}$
10	-0,34	0.14	1.14	0.03	0.9832
11	-0.26	0.12	1.10	0.02	0.9863
12	-0.28	0.11	1.10	0.02	0.9886
13	-0.23	0.09	1.09	0.01	0.9917
14	-0.15	0.07	1.06	0.01	0.9943
15	-0.14	0.05	1.06	0.01	0.9969
38	-0.05	0.03	1.04	0.01	0.9987
39	-0.02	0.02	1.03	0.00	0.9996
40*	0.00	0.00	1.00	0.00	1.0000
41	0.04	0.02	1.00	0.00	0.9993
43	0.11	0.04	1.00	0.01	0.9980
61	0.18	0.06	0.97	0.01	0.9950
55	0.23	0.08	0.94	0.02	0.9911

winds than for the faster daytime ones. The r values were close to 1.000. There appear to be no cups that dot not fit a picture due to the environmental conditions.
(ii) Comparison with cup 38 during $\mathrm{Co3}$

Figs. 218 \& 219 present scatter diagrams and 1:1 lines of wind speeds for cups 10 and 55 on cup 38 (the middle cup anemometer) for night-time LOW wind speeds during two cup arrangements (22/1/-1/2/95 for 70 hrs and $1 / 2 /-3 / 2 / 95$ for 20 hrs . see section 4.3 .1 (b) (ij)) in Cb3. These show night-time conditions for section 4.3 .1 (b) (11) above (see first column of Tables 61 \& 62).

Again we see in Tables $61 \& 62$ that there was no decrease in the intercepts towards the middle cups, as observed during Col. There was a marked trend of the intercepts towards zero (origin) in both arrangements. The correlation coefficients (r) between cup anemometers was again very high. This confirmed the absence of valley topographic influence. This influence was eliminated by reducing the distance over which cup anemometers were installed to half of that in CD1. The gradients 'b' of the linear relations between individual cups (dependent variable) and cup 38 (independent variable) were within a rance of 1.019 ± 0.023 for days $25-32$ and 1.000 ± 0.029 for days $32-34$.

Tables 63 and 64 show the bulked (day-time plus night-time) wind speeds for days $25-32$ and $32-34$ during Cl 3 . We observe very high r values even for the bulked as well as for the individual day/night-time periods. The gradients ' b ' of the linear relations between individual cups (dependent variable) and cup 38 (independent variable) for the bulked data were within a range of 1.024 ± 0.022 for days $25-32$ and 1.017 ± 0.031 for days $32-34$. This indicated less influence of the local topographical features with decrease in distance over which the cups were installed for calibration. as observed for unbulked data.

Fig. 218. The scatter plot and 1:1 line of hourly wind speeds for WAU electrical cup anemometers 10 \& 55 against middle cup 38 for night-time (21h00-06h00) conditions at Embori for DOY 25-32 of 1995.

Fig. 219. The scatter plot and 1:1 line of hourly wind epeeds waU electrical cup anemometers 10 \& 55 against middle cup 38 for night-time (21h00-06h00) conditions at Embori for days 32-34 of 1995.

408

Table 61. Intercomparison of WAU electrical cup anemometers with the middle cup (cup 38) at LOW (nighttime: 21h0006 hOO) wind speeds for days 25-32 of 1995.

cup	const a	std err Yoet	coeff b	std err b	corr coef.
55	0.020	0.071	0.982	0.009	0.9969
61	0.002	0.044	0.953	0.006	0.9988
43	-0.029	0.036	1.021	0.005	0.9993
13	0.217	0.028	1.012	0.004	0.9995
14	-0.061	0.018	1.021	0.002	0.9998
15	-0.169	0.013	1.018	0.002	0.9999
$38 *$	0.000	0.000	1.000	0.000	1.0000
60	-0.111	0.022	1.036	0.003	0.9997
40	-0.153	0.021	1.020	0.003	0.9998
41	-0.070	0.034	1.040	0.004	0.9994
12	-0.080	0.039	1.020	0.005	0.9991
11	-0.191	0.045	1.035	0.006	0.9989
10	-0.245	0.053	1.046	0.007	0.9985

Table 62. Intercomparison of WAU electrical cup anemometers with the middle cup (cup 38) at LOW (naghttame: 21 hOO 06 h 00) wind speeds for days 32-34 of 1995. $\mathrm{N}=20 \mathrm{hrs}$

cup	const a	std err	$\begin{aligned} & \text { coeff } \\ & \mathrm{b} \end{aligned}$	$\underset{\mathrm{b}}{\mathrm{std}} \mathrm{er}$	corr coef. r
10	0.014	0.085	0.947	0.027	0.9927
11	-0.028	0.035	0.966	0.011	0.9988
12	-0.054	0.017	1.002	0.005	0.9998
13	0.079	0.025	0.992	0.008	0.9994
14	-0.017	0.015	1.007	0.005	0.9998
15	-0.146	0.054	1.014	0.006	0.9997
$38 *$	0.000	0.000	1.000	0.000	1.0000
60	-0.019	0.023	1.007	0.007	0.9995
40	-0.116	0.017	1.009	0.005	0.9998
41	0.026	0.024	1.010	0.008	0.9995
43	-0.044	0.023	1.040	0.007	0.9995
61	-0.037	0.035	0.923	0.011	0.9987
55	-0.064	0.030	1.025	0.009	0.9992

Table 63. Intercomparison of WAU electrical cup anemometers with the middle cup (cup 38) for bulked data (nighttime
plus daytime) wind speeds for days 25-32 of 1995.
$\mathrm{N}=160$ hrs

cup	const a.	std err Yoar	coeff b	std err	corr coef.
55	-0.148	0.071	1.040	0.004	0.9988
61	-0.031	0.040	0.964	0.002	0.9955
43	-0.064	0.037	1.033	0.002	0.9967
13	-0.044	0.029	1.036	0.002	0.9998
14	-0.119	0.023	1.041	0.001	0.9999
15	-0.173	0.013	1.022	0.001	1.0000
38*	0.000	0.000	1.000	0.000	1.0000
60	-0.129	0.021	1.044	0.001	0.9999
40	-0.182	0.023	1.032	0.001	0.9999
41	-0.099	0.099	1.051	0.002	0.9998
12	-0.056	0.033	1.012	0.002	0.9997
11	-0.154	0.039	1.024	0.002	0.9996
10	-0.185	0.046	1.027	0.003	0.9995

Table 64. Intercomparison of WAU electrical cup anemometers with the middle cup (cup 38) for bulked data (mghttime plus daytime) wind speeds for days 32-34 of 1995. $\mathrm{N}=48 \mathrm{hrs}$

cup	const a	std err Yoet	$\begin{gathered} \text { coeff } \\ b \end{gathered}$	$\begin{gathered} \text { std err } \\ \mathrm{b} \end{gathered}$	corr coef. r
10	-0.212	0.072	1.025	0.006	0.9991
11	-0.152	0.036	1.009	0.003	0.9998
12	-0.078	0.016	1.011	0.001	1.0000
13	-0.045	0.030	1.035	0.003	0.9999
14	-0.105	0.021	1.038	0.002	0.9999
15	-0.151	0.016	1.018	0.001	1.0000
38*	0.000	0.000	1.000	0.000	1.0000
60	-0.106	0.027	1.038	0.002	0.9999
40	-0.165	0.019	1.027	0.002	0.9999
41	-0.065	0.032	1.044	0.003	0.9998
43	-0.030	0.032	1.032	0.003	0.9998
61	-0.041	0.031	0.922	0.003	0.9998
55	-0.072	0.044	1.032	0.004	0.9997

4.3.1 (d) Intercomparison of Woelfle anemographs and the WAU cups

(i) Calibration during Cb 1

Figs. 220 \& 221 show comparisons of Woelfle anemographs on the north and south of the electrical anemometers during daytime and nighttime in Col. WA was installed on the northern side of the horizontal bar of anemometers at 1.0 m from cup 10 . WB was installed on the southern side at 1.0 m from cup 55 (see Plate 13). We can see from Fig. 220. which relates the two instruments during daytime $107 \mathrm{~h} 00-$ 20h00), that the two were very highly correlated with each other (with $r=0.9795$) they were only 9.2 m apart. This r value 15 , nevertheless, smaller than among the electrical cup anemometers, but in the same order of magritude as a comparison between the outermost electrical cups would be at night. During the low night-time winds (Fig. 221) the relationship was still good but the correlation was relatively low (with $r=0.9510$). This is appreciably smaller than for the electrical cup anemometers at night. The bulked data (day-time plus night-time) winds were also nighly correlated (with $r=0.9818$) but the regression constants remain influenced by the local terrain. We derived the linear regression equations between WA and WB. These are given below:
(a) high daytime winds ($07 \mathrm{~h} 00-20 \mathrm{~h} 00$):

$$
W B=0.04+0.97 * W A \cdot r=0.9795
$$

(b) low nighttime winds (21h00 - 06h00):

$$
W B=0.57+0.87 * W A, r=0.9510
$$

(c) bulked (day \& night times) data (07800-06h00):

$$
W B=0.23+0.95 * W A . r=0.9818
$$

The two instruments correlating better in the high daytime winds than in the low night winds. at night the intercept values receded from zero and the gradient from one, as in (b). The bulked data equation was

20. The scatter plot and 1:1 line of hourly wind for Woelfle anemograph (WB, Ser. Nr. 31587) t anemograph (WA, Ser. Nr. 341836) for day-time $-20 h 00$) conditions for DOY 57-67 of 1993.

221. The scatter plot and $1: 1$ hourly wind speeds for !le anemograph (WB, Ser. Nr. 31587) against rgraph (wA, Ser. Nr. 341836) for night-time ltions for DOY 57-67 of 1993
influenced by the conditions of low wind speeds. Which was in turn influenced by the local terrain. We therefore infer that the high daytime winds were favourable for the two instruments to relate to each other. The low night-time winds suffered more of local terrain (e.g. the nearby valley on the east of the calibration site) influence on the instruments. Thus the daytime conditions suffice to compare the two Woelfle anemographs, given that hourly average wind speeds did not get lower than $2.5 \mathrm{~m} / \mathrm{s}$.

(ii) Calibration during Co3

Figs. 222-225 show comparisons of Woelfle anemographs (WA \& WB) on the north and south of the electrical anemometers during day-time and nighttime for two arrangements in CO3 mentioned above (i.e. 25/1/-1/2/95 and $1 / 2 / 3-3 / 2 / 95$). WA was installed on the northern side of the horizontal bar of anemometers at 0.75 m from cup 10 for the first arrangement and from cup 55 for the second arrangement and vice versa for WB. (Plate 13). We can see from Fig. 222, which is a day-time (07h00-20h00) scatter plot and reopression of WB on WA. that the closeness of readings from the two instruments had improved by reducing the separation distance between them from 9.2 m during Cb to 5.1 m during CD3.

The two Woelfle cup anemographs were highly correlated with each other (Figs. 222 \& 223) during daytime. with $r=0.9784$ for first period and $r=0.9807$ for the second. This correlation is. again nevertheless. smaller than among the electrical cup anemometers and also smaller than for a comparison between the outermost electrical cups at night. During the low night-time winds (Figs. 222 \& 223) the relationship was still good but the correlations were much lower but

Fig. 222. The scatter plots and 1:1 line of hourly wind speeds for Woelfle anemograph (WB, Ser. Nr. 31587) against anemograph (WA, 341836) for day-time for DOY 2532 of 1995.

Fig. 223. The scatter plots and 1:1 line of hourly wind speeds for Woelfle anemograph (WB, Ser. Nr. 31587) against anemograph (WA, Ser. Nr. 341836) for day-time for DOY 32-34 of 1995.

Fig. 224. The scatter plots and 1:1 of hourly wind speeds for Woelfle anemograph (WB, Ser. Nr. 31587) against anemograph (WA, Ser. Nr. 341836) for night- time for DOY 25-32 of 1995.

Fig. 225. The scatter plots and $1: 1$ line of hourly wind speeds for Woelfle anemograph (WB, Ser. Nr. 31587) against anemograph (WA, Ser. Nr. 341836) for night-time for DOY 32-34 of 1995 .
better than during Cb1 (with $r=0.9339$ now for first period and $r=$ 0.9646 for the second). The correlation coefficients ($r=0.9481$ for the first and $r=0.9778$ for second arrargements) between Woelfles for the bulked (daytime plus nighttime) winds data was less for Cb3 than for Co1 (with $r=0.9818$), but the two instruments were stall very haghly correlated. The linear regression equations between WA and WB were found to be:
(i) high daytime winds (07h00 - 20h00):
(a) first arrangement (25/1/-1/2/95):

$$
W B=0.0681+0.984^{*} W A, r=0.9784
$$

(b) second arrangement (1/2/-3/2/95):

$$
W B=0.0344+0.9986^{*} W A, r=0.9807
$$

(ii) low nighttime winds (21h00-06h00):
(a) first arrangement (25/1/-1/2/95): $W B=0.2814+0.9136 * W A . r=0.9339$
(b) second arrangement (1/2/-3/2/95); $W B=-0.0084+1.0085 * W A . r=0.9646$
(iii) bulked (day \& night times) data (07h00-06h00):
(a) first arrangement (25/1/-1/2/95): $W B=0.3383+0.9157 * W A . r=0.9481$
(b) second arrangement (1/2/-3/2/95); $W B=0.0327+0.9942 * W A . r=0.9778$

4.3.1 (e) Comparison of Woelfle anemographs with electrical anemometers

 at Embor:(i) Comparison of WA \& WB with WAU cups during Cbl Tobles $65(\mathrm{a} \& \mathrm{~b})$ and $66(\mathrm{a} \& \mathrm{~b})$ show the comparisons of electrical anemometers with the Wowlfle anemographs at Embori during

Table 65. Intercomparison of WAU electrical cup anemometers with Woelfle anemographs during HIGH (daytime: 07hou20h00) winds at Embori(days 55-62 of 1993). (a) woelfle (WA) as independent variable. $N=98 \mathrm{hrs}$ and
(b) woelfle (WB) as independent variable. $N=76 \mathrm{hrs}$.

cup	const a	std err Yoar	$\begin{gathered} \text { coeff } \\ b \end{gathered}$	$\underset{b}{\text { std err }}$	corr coef, r
10	0.120	0.28	0.83	0.02	0.9715
11	0.040	0.31	0.84	0.02	0.9661
12	-0.002	0.27	0.84	0.02	0.9749
13	0.018	0.28	0.85	0.02	0.9728
14	0.038	0.28	0.83	0.02	0.9723
15	-0.051	0.28	0.85	0.02	0.9727
38	-0.018	0.28	0.85	0.02	0.9728
39	-0.031	0.28	0.85	0.02	0.9728
40	-0.094	0.28	0.84	0.02	0.9727
41	-0.131	0.29	0.86	0.02	0.9721
43	-0.119	0.29	0.85	0.02	0.9720
44	-0.102	0.29	0.85	0.02	0.9714
55	-0.149	0.30	0.85	0.02	0.9697

cup	const a	std err Yoat	$\begin{gathered} \text { coeff } \\ b \end{gathered}$	$\begin{gathered} \text { std err } \\ \mathrm{b} \end{gathered}$	corr coef. r
10	0.332	0.173	0.813	0.014	0.9892
11	0.286	0.162	0.805	0.013	0.9900
12	0.225	0.164	0.817	0.013	0.9901
13	0.226	0.165	0.823	0.014	0.9901
14	0.232	0.161	0.812	0.013	0.9903
15	0.138	0.159	0.830	0.013	0.9910
38	0.165	0.157	0.829	0.012	0.9912
39	0.147	0.154	0.828	0.013	0.9915
40	0.077	0.152	0.822	0.013	0.9915
41	0.038	0.149	0.843	0.012	0.9923
43	0.048	0.147	0.843	0.012	0.9925
44	0.051	0.141	0.836	0.012	0.9931
55	-0.013	0.139	0.839	0.011	0.9932

Table 66. Intercomparison of WAU electrical cup anemometers with Wollifle anemographs during LOW Inighttime: 21h00OōhOO) winds at Embori(days 55-62 of 1993). (a) woelfle (WA) as independent variable. No 70 hrs and (b) woelfle (WB) as independent variable, $N=50 \mathrm{hrs}$.

(a) WA (Sr. Nr. 341836) as independent variable						
cup	const a	std err Your	coeff b	std err b	corr coef. r	
10	0.340	0.228	0.771	0.030	0.9526	
11	0.425	0.221	0.738	0.029	0.9515	
12	0.417	0.223	0.737	0.029	0.9508	
13	0.476	0.223	0.730	0.030	0.9495	
14	0.552	0.221	0.708	0.029	0.9475	
15	0.580	0.224	0.698	0.029	0.9447	
38	0.675	0.226	0.686	0.030	0.9422	
39	0.705	0.226	0.674	0.030	0.9401	
40	0.715	0.226	0.653	0.030	0.9366	
41	0.772	0.236	0.653	0.031	0.9317	
43	0.840	0.239	0.642	0.031	0.9277	
44	0.913	0.249	0.625	0.033	0.9919	
55	0.963	0.254	0.604	0.033	0.9099	

cup	const a	std err $Y_{\text {ont }}$	$\begin{aligned} & \text { coeff } \\ & \mathrm{b} \end{aligned}$	std err b	corr coef. r
10	-0.012	0.293	0.865	0.049	0.9307
11	0.045	0.278	0.834	0.047	0.9323
12	0.015	0.275	0.837	0.046	0.9345
13	0.045	0.268	0.835	0.045	0.9371
14	0.103	0.257	0.816	0.043	0.9392
15	0.089	0.248	0.812	0.042	0.9426
38	0.152	0.236	0.805	0.040	0.9456
39	0.167	0.230	0.797	0.038	0.9485
40	0.180	0.220	0.774	0.037	0.9495
41	0.190	0.217	0.782	0.036	0.9519
43	0.248	0.212	0.773	0.036	0.9529
44	0.300	0.212	0.759	0.035	0.9515
55	0.326	0.208	0.742	0.035	0.9508

day- and night-time respectively. The correlation coefficients between anemometers and anemographs were generally again higher for the daytime than for the night time winds. All anemometers were more highly
correlated with the southern Woelfle (WB). (with an average r of 0.9914 ± 0.0011) (Table 65b) than with the northern Wnelfle (WA) (with an average r of 0.9719 ± 0.0021) for the day time winds (Tables 65a).

Table 66 a \& 66 b show r for night-time wind speed data during Cb1. As expected the anemometers closer to WA were more correlated with the former than those farther away ($r=0.9526$ for cup 10 to $r=0.9099$ for 55 nearest to WB) (see Table 66a). Conversely the anemometers closer to WB were more correlated with WB ($r=0.9529$ for cup 43 to $r=0.9307$ for cup 10) than those farther away. The conditions were more pronounced during night- than day-time.

(ii) Comparison of WA \& WB with WAU cupe during Cb3

Tables 67a \& 67b and 68a \& 68b show the comparisons of electrical anemometers with the Woelfle anemograph (WA) at Embori during day- and night-time respectively for the first arrangement (25/1/-1/2/95) and for second arrangement $(1 / 2 /-3 / 2 / 95)$ as indicated in section 4.3 .1 (b) (ii) Here again the correlation coefficients between anemometers and WA were generally higher for the daytime than for the nighttime winds. However. the values of the correlation coefficients between WAU cup anemometers and the woelfle anemographs were lower for the Co3 than for Col. when the cup anemometers were barely four months old. The reduction in correlation values between the electrical cup anemometers and the Woelfle anemographs was more therefore due to ageing of the anemographs which have been in use mucb longer before they were deployed for this exercise. The ageing of anemographs seemed more likely than other factors such: instrument type. shape of cups. round-off errore. offects of threshold and dynamic zeroes of the latter whth also give same response. The comparison of WAU electrical anemometers with

Toble 67. Intercomparison of WAU clectrical cup anemometers with Woelfle anemographs (WA) during HIGH (daytime:
07h00-20h00) wands at Emborl (a) for the period 25-32 of 1995. $N=87 \mathrm{hrs}$ and (b) for the period 32-33 of 1995. N= 31 hrs .

(a) HIGH: for the period			25-32 of 1995. $\mathrm{N}=87 \mathrm{hrs}$		
cup	const a	std err Yone	$\begin{aligned} & \text { coeff } \\ & \mathrm{b} \end{aligned}$	$\begin{gathered} \text { std } \mathrm{err} \\ \mathrm{~b} \end{gathered}$	$\begin{aligned} & \text { corr } \\ & \text { coef. r } \end{aligned}$
55	-0.218	0.340	0.996	0.032	0.9595
61	0.086	0.305	0.920	0.028	0.9616
43	0.072	0.329	0.984	0.031	0.9611
13	0.097	0.333	0.987	0.031	0.9604
14	0.030	0.336	0.990	0.031	0.9601
15	-0.019	0.328	0.970	0.031	0.9603
38	0.129	0.321	0.952	0.030	0.9605
60	0.040	0.336	0.989	0.031	0.9599
40	-0.019	0.334	0.978	0.031	0.9595
41	0.058	0.344	0.997	0.032	0.9587
12	0.017	0.328	0.962	0.031	0.9596
11	0.012	0.332	0.968	0.031	0.9591
10	-0.018	0.336	0.970	0.031	0.9585
WB	0.068	0.242	0.984	0.023	0.9784
		$=a+b$	X		

(b) HIGH: for the period				32-34 of 1995, $\mathrm{N}=31$		

the WB gave average correlation coefficients (r) for daytime conditions of 0.9549 ± 0.0017 for $N=87$. for the first arrangement in $C 03$ before the outer cups were interchanged and 0.9578 ± 0.0025 for $N=31$, for the second arrangement CD3 after the outer cups were interchanged. The average r between cup anemometers and WB for night-time conditions were obtained as 0.8949 ± 0.0025 for $N=64$. for the first arrangement in Cl 3 and 0.8468 ± 0.0062 for $N=26$. for the second arrangement in Cb3 (Tables 66 and 67) .

When the day-time and night-time data were bulked (pooled) the average r of cup anemometers with $W B$ anemograph were 0.9468 ± 0.0013 for $\mathrm{N}=151$. for the first arrangement and 0.9509 ± 0.0020 for $\mathrm{N}=57$. for the second arrangement both in Cb3. Tables 69a \& 69b present comparisons of WA with cup anemometers for the bulked wind speed data during the two periods indicated above. We again observe high correlations during this period. As already pointed out the electrical cup anemometers were correlated better with the Woelfle anemographs during daytime than during nighttime.

Intercomparisons of WAU electrical cup anemometers ITable 70, shows the ratios of cup anemometers to the substandard (cup 40) during Col for day (D) and night (N) conditions to lie in the range $1.02 \pm$ 0.01 . On the mean. cups read 2% more than the substandard (cup 40). This range also applies to all individual cups (Tables 70). The intercomparisons with extreme cup 10 during Cb2 (Table 70) show the ratios to lie between 0.99 ± 0.02 and 1.03 ± 0. Q2 . Most cups were reading within 2% of cup 10 . The intercomparisons with the middle cup (cup 38) during Cb3 Table 68a \& 68b show the ratics to lie between 0.99 ± 0.01 and 1.01 ± 0.01 for most cups for day and nighttime conditions. On the whole the electrical cups were very close to each other. within a range of 1%.

Table 71 shows the ratios of anemographs to the mean hourly wind speeds during the calibration periods $\mathrm{Cb} 1 . \mathrm{Cb} 2$ and Cb 3 (a \& b). The anemographs compare reasonably well with the WAU electrical anemometers. The mean ratios show that cup anemographs were reading $10-11 \%$ more than the WAU electrical anemometers. Kainkwa (1991), working under Indian Ocean beach conditions in Dar es Salaam. found also that anemorraphs read 10% more than electrical anemometers, although he used Bottemanne conical cups of 21 cm diameter. In our case we have used wAU conical cup anemometers of 15 cm diameter.

The electrical cup anemometers which we used here, as well as the Bottemanne anemometers of Kainkwa. Were made by the Mechanical Workshop/ Laboratory of the Physics and Meteorology Department of Wageningen Agricultural University (The Netherlands). They were calibrated in the same wind tunnel. The nature of terrain used by Kainkwa (1991) was very different from our Embori site. In the Embori case there was inevitably a lateral difference in the loss of momentum close to the valley foreground especially at lower wind epeode during night time. Of course cup anemometers measure wind speeds at angles upto about 45° with the horizontal without errors. The main reason for the ratio is a higher speeds in m / s. Our calibrations show that no corrections were necessary to individual electrical cup anemometers during periods between or otherwise close to the times of calibrations and acceleration and a lower deceleration of the cups of the Woelfle anemographs. Also the anemographs have higher stalling speeds.

Smaller reasons for higher readings with anemographs as compared to electrical anemometers (also observed by Kainkwa. 1991) are roundoff or subjectivity errors when manually evaluating the hourly wind speeds from the strip charts of the Woelfle mechanical wind recorders

Table 68. Intercomparison of WAU electrical cup anemometers with Woelfle anemographs (WA) during LOW (night-time: $21 \mathrm{~h} 00-06 \mathrm{~h} 00$) winds at Embori (a) for the period 25-32 of 1995. $N=64 \mathrm{hrs}$ and (b) for the period 32-34 of 1995. N= 26 hrs.

cup	const a	std err Yont	$\begin{gathered} \text { coeff } \\ \text { D } \end{gathered}$	$\underset{b}{\text { std err }}$	corr coef. r
55	0.030	0.390	0.933	0.062	0.8865
61	0.013	0.375	0.904	0.060	0.8878
43	-0.016	0.404	0.969	0.064	0.8869
13	0.048	0.400	0.957	0.064	0.8860
14	-0.030	0.405	0.963	0.064	0.8852
15	-0.131	0.405	0.960	0.064	0.8845
38	0.042	0.398	0.939	0.063	0.8838
00	-0.059	0.414	0.97 i	0.066	0.8823
40	-0.103	0.409	0.957	0.065	0.8820
41	-0.003	0.412	0.969	0.066	0.8204
12	-0.010	0.411	0.950	0.065	0.8794
11	-C.116	0.410°	0.96:	0.066	0.8797
io	-0.100	0.422	0.969	0.067	0.8783
WE	0.231	0.280	0.914	0.044	0.9339

(b) Lin: for the persod $3 \overline{\mathrm{~L}}$-34 or 1395. $\mathrm{N}=26 \mathrm{hrs}$

cup	corst	std err Yot	$\begin{gathered} \text { coeit } \\ \text { o } \end{gathered}$	std err	corr coef. r
10	-0.093	0.402	0.948	0.087	0.9117
11	0.113	0.414	0.883	0.050	0.8950
12	-0.053	0.431	0.966	0.094	0.9033
13	0.138	0.429	0.936	0.093	0.8991
14	0.069	0.437	0.941	0.095	0.8966
15	-0.032	0.438	0.940	0.095	0.8962
38	0.097	0.435	0.930	0.094	0.8954
60	0.009	0.437	0.960	0.095	0.9002
40	-0.042	0.441	0.946	0.096	0.8962
41	0.039	0.436	0.968	0.095	0.9009
43	0.105	0.456	0.930	0.099	0.8869
61	-0.4i3	0.413	1.016	0.090	0.9179
55	0.055	0.446	0.945	0.097	0.8959
W0	-0.063	0.259	1.008	0.056	0.900°

Table 69. Intercomparison of WAU electrical cup anemometers with Woelfle anemographs (WA) for BULKED data (daytime plus nighttime) winds at Embori (a) for the period 25-32 of 1995. $N=151 \mathrm{hrs}$ and (b) for the period $32-34$ of 1995. $\mathrm{N}=57 \mathrm{hrs}$.

cup	eornet	ltd orr	$\begin{aligned} & 0008 E \\ & b \end{aligned}$	ata or	earr coef. r
55	-0.042	0.444	0.956	0.025	0.9534
61	0.071	0.410	0.884	0.023	0.9536
43	0.048	0.442	0.947	0.025	0.9530
13	0.071	0.445	0.948	0.025	0.9526
14	-0.001	0.449	0.953	0.025	0.9523
15	-0.057	0.441	0.935	0.025	0.9521
38	0.115	0.432	0.914	0.024	0.9519
60	-0.006	0.454	0.954	0.025	0.9513
40	-0.060	0.450	0.943	0.025	0.9510
41	0.027	0.460	0.960	0.026	0.9506
12	-0.066	0.443	0.924	0.025	0.9505
11	-0.029	0.450	0.934	0.025	0.9501
10	-0.059	0.453	0.937	0.026	0.9498
WB	0.338	0.451	0.916	0.025	0.9481
$y=a+b * X$					

cup	const	std err Yome	coeff	std err	corr conf.
10	-0.315	0.415	1.016	0.037	0.9660
11	-0.252	0.423	0.994	0.037	0.9634
12	-0.167	0.422	1.000	0.037	0.9638
13	-0.140	0.433	1.022	0.038	0.9635
14	-0.197	0.438	1.024	0.039	0.9629
15	-0.237	0.433	1.004	0.038	0.9622
38	-0.084	0.426	0.987	0.038	0.9623
60	-0.197	0.437	1.025	0.039	0.9630
40	-0.256	0.436	1.014	0.038	0.9626
41	-0.161	0.437	1.032	0.039	0.9637
43	-0.117	0.450	1.015	0.040	0.9603
61	-0.106	0.414	0.909	0.037	0.9529
55	-0.172	0.437	1.018	0.039	0.9626
WB	0.033	0.325	0.994	0.029	0.9778

Table 70. Ratios of mean wind speeds recorded with WAU electrical cup anemometers to substandard (cup 40), to extreme cup (cup 10) and to middle cup (cup 38). during calibration periods (Cb1. $\mathrm{Cb} 2 \& \mathrm{Cb} 3 \mathrm{a}$ \& Cb 3 b) at Embori. Cb1 is calibration done from 28/2-6/3/1993. Cb2 is calibration done from 4-28/5/1994. Cb3 is calibration done from 25/1-3/2/1995 (a \& b are first and second arrangement for Cb3 see Text). D is daytime (07h0020 h 00) and N is nighttime ($21 \mathrm{~h} 00-06 \mathrm{~h} 00$).

ratios	cups/cup40		cups / cup 10		cups/cup38				avera
calib. periods	CD1		$\mathrm{Cb} 2$		C Cb3a		Cb3b		
Day/night-time	D	N	D	N			D	N	
ratios	1.02	1.02	0.99	1.03	1.01	0.99	1.00	0.99	1.01
std dev	0.00	0.01	0.02	0.02	0.00	0.01	0.01	0.01	0.06

Table 71. Ratios of mean wind speeds recorded with Woelfle anemographs (WA \& WB) to those recorded with WAU electrical cup anemometers during calibrations at Embori. Cbl is calibration done from 28/2 $-6 / 3 / 1993$. Cb 2 is calibration done from $4-28 / 5 / 1994$. Cb3 is calibration done from $25 / 1-3 / 2 / 1995$ (a \& b) are first and second arrangement see Text). D is daytime (07h00-20h00) and N is nighttime ($21 \mathrm{~h} 00-06 \mathrm{~h} 00$).

ratios	Cbl		C 02		C03a		C03b		avarg
Day/night-time	D	N	D	N	D	N	D	N	
WA/cups	1.19	1.21	1.08	1.26	1.01	1.06	1.03	1.07	1.11
std dev	0.06	0.08	0.14	0.17	0.02	0.03	0.01	0.02	0.06
WB/cups	1.18	1.21	1.03	1.16	1.02	1.06	1.04	1.08	1.10
std dev	0.04	0.07	0.15	0.25	0.01	0.04	0.03	0.05	0.08
Average ratio	1.18	1.21	1.06	1.21	1.02	1.06	1.04	1.08	1.11
std dev	0.05	0.08	0.14	0.20	0.02	0.03	0.02	0.04	0.07

(anemographs). Kainkwa (1991) used a datalogger which read wind speed data after every 30 minutes in printed form to two decimal places. In ar case the CR10 read 10 sec wind speed data and stored their 15 minute averagee for future retrieval. The data were then later retrieved with the Lap-top computer and imported into the LOTUS work-sheet. Expersence has show that when using electrical cup aneqmometers to measure wind speeds one should pay particular attention to:
(i) the type of instruments to use with regard to manufacturers.
(ij) the shape of the cups (conical or hemispherical or otherwise).
(iij) the threshold and the dynamic zero of the anemometers.
(iv) the sampling period.
(v) the type of terrain.

In the actual field measurements we used Woelfle anemographs mainly as wind direction indicators and WAU anemoweters to measure wind speed.

4.3.2 Strong winde at Matanya

4.3.2 (a) Experimental periods for wind measuremente

Table А̄́ (Apperdix) gives the experimental periods: 93P1. 93P10 for 1993 and 94P1, 94F10 for 1994 at Mataniva. The calerdar dates and days of the year (DOY) corresponding to these experimental periods are also giveri in Table A6. These periods cover the efascitio of strong winds of June-September. The waU cup anemumeters were initially eot to 1.00 a at the planting time. The anomoneters were enereafter adjusted as the maize plant increased in height, to remain at 0.20 m above the tallest plant element in the vicinity. The heights to which WAU cup anemoneters were adjusted and dates are given in Appendix Table A5. Fig. 8 gives the set up of the entire Matanya station durirg the periads of our experiments. including positions of cup anemometers in agroforestry (AF) and non-agroforestry (NAF). Fig. 10 and Appendix Table A7 give the layout of WAU electrical cup anemometers and a Woelfle cup anemugraph (WB) in the $A F$ plot at Matanya. The $A F$ plot bordered fruit troes in the north. The remaining three sides were fenced with a nedge of a shrub known as coleus barbatus, which we refer to as a live-fence. Cups in positions A1. A2. A3 and A4 (i.e. cup 10. 11, 12 and 13) were ingtalled at $2 H$ (where $H 1 s$ the height of the coleus barbatus livefence) from the western side (WH) of the live-fence (Fig. 8) and 3.5 m

426
from nearest tree row (shown in Fig. 9 as D(TR3)). Cups in positions A5. A6. $A 7$ and $A 8$ (1.e. cups 14. 15.38 and 39) were installed in the centrai part of AF plot between Grvillea sobusta trees at 7 H from elther the western (WH) or the eastern (EH) sides of the live-fence. Each cup was installed at 2.5 m from the nearest Grevillea robusta tree. Cups A9. A10. A11 and A12 (cup 40. 41. 43 and 44. later 61) were installed at 2 H from the eastern (EH) side of the lave-fence and 3.5 m from nearest tree row (shown in Fig. 9 as B(TR1)). WAU cup anemometer 95 was installed in the open area at 60 m (or 30 H) from the eastern hedge and 68.8 m (or 34.5 H) from the nearest WAU anemometer in the AF (Fig. 8). The within cup anemometer row spacing was 3 H and the between cup row spacing was 5 H .

Flg. 10 shows five small gaps (GP1. GP5) and one bagger gap (DGP) in the live-fence around Grevillea robusta trees. Table 72 give the relative sizes of the gaps in the live-fence. GP1 was in the western side of the live-fence (WH). GP2 was a swall gap at the corner between SH and WH. These two gans could play a role in airflow into the AF . According to Table 72. We think the gaps were too small to have had any major impact on general protection by this side of the live-fence.

Table 72. Relative sizes of gaps in the live-fence around Matanya AF. IWH. Ei and SH refer to the western. eastern and southern sides of the live -fence. The northern side borders the frust trees and has no role in the AF Grevillea side). H is the hedge helght which is about 2.0 m .

| | Gaps | width | area |
| :--- | :--- | :--- | :--- | :--- |
| WH | GP1 | $0.3 H$ | $0.3 H \times 1 H$ |
| WH | GP2 | $0.2 H$ | $0.2 H \times 1 H$ |
| EH | GP3 | $0.2 H$ | $0.2 H \times 1 H$ |
| EH | GP4 | $0.4 H$ | $0.4 H \times 1 H$ |
| EH | GP5 | $0.3 H$ | $0.3 H \times 1 H$ |
| SH | LGP | $2 H$ | $2 H \times 1 H$ |

GP1 measured 0.3 H wide whlle GP2 had a width of 0.2 H . Other three small gaps (GP3. GP5) were on the eastern side (EH) of the live-tence. which had lodged due to the strong outflow of air from the AF, which lowered a part of EH by 0.25 H for a width of 1 H on the lee. This side was leeward of the approachıng wind and it was obvious that these gaps and the lodang only influenced the airflow out of the AF but not the inflow. The gap of main importance that caused major tunnelling effects into the AF was the deliberate gap (DGP). Whach we nad left for access into the AF plot. The farmers in Matanya area also leave such gaps for access into their small-scale farms. When such gaps become problematic because of persistent strona winds the farmers seai them up and open new ones on the leeward sides. as long as these new ones do not lead to their nelghbours farms. The DGP measured 2 H wide. The area of DGP exposed to the southerly winds was therefore $2 \mathrm{H} \times 1 \mathrm{H}$. The smaller gaps became relatively wider in the dry season llate January to early March. which was not in the season of strong winds) when there was less follage. because the leaves dried and fell off due to lack of water. The gaps partially filled up in rainy seasons (LR \& SR) as the new foliage grew. thereby reducing porosity of the live-fence. The DGP was generally unaffected even in the dry seasons.

4.3 .2 (b) Monthly wind directions

The results of relative per cent wind direction frequency roses at Matanya. taken at a heıght of 2.0 m . are given in Fias. 226-231 \& 238-245 in the open (control) area and in Figs. 232-237 \& 246-253 in the $A F$ plot. The results include the period of strong destructive winds that blew from between south and south-east from June to September of 1993 and 1994. Sometimes strong winds blow from south-westerly directions. as
in July of 1994 (see Fig. 239).
The results presented here were worked out from the strip charts of the two Woelfle cup anemographs (WA \& WB). These two instruments were also used in the calibration exercises at Embori.

We learn from 1993 results (Figs. 226-231 \& 232-237) that the winds which blew over Matanya from June to September were predominantly southerly. with rather small south-easterly components. The 1994 results for the NAF (i.e. with WA. Sr. Nr. 341836) show that the strong winds blew mainly from between south and south-west in June (Fig. 246). In July 1994 the strong wands blew from between south-west, south and south-east (Fig. 239) and mainly from south-east with frequencies of up to 100% in August and September (Fig. $240 \& 241$). It contanued blowing from south-east in Octcber and November. albelt with variable frequency as it reversed to become northeriy and then north-easterly components from December through January (Figs. 244-245). The 1994 results for the WB (i.e. Sr. No. 31587) AF show that in Matanya AF the strong winds were blowing predominantly from the south between June and October (Figs. 246-250). with a small south-easterly component in July. The strong winds continued to blow from between south-west and south-east in October and November as it changed direction to become northerly and north-easterly from December through January (Fig. 251-253). The southerly. south-easterly and south-westerly winds which blow over Matanya area from June to September, as already discussed above. were very strong and therefore very destructive. They originate from the south-east monsoon winds which normally blow from the Indian ocear towards the Arabian desert (Grıffiths. 1972. see appendix Fig. A5). A they pass over the Kenyan hiohlands they get channelled between Mt Kenya and Aberdare Mts. becoming very strong over eastern parts of

Wind in Jun 1993
HT. 2.0 Matanya Sr. No. 341836

Fig. ${ }^{2} 8$
${ }^{\text {sxa }}$ jun

Figs. 226-229. Relative per cent monthly wind direction frequencies for April till July 1993 at Matanya taken with MA at 2.0 m height in the open (NAF).

Figs. 230 \& 231. Relative per cent monthly wind direction frequencies for August and September 1993 at Matanya taken with WA at 2.0 m height in the open (NAF).

Wind in Apr 1993
HT. 2.0 Matanya Sr. No. 31587

Wind in Jun 1993
HT. 2.0 Matanya Sr. No. 31587

Fig. 234
四jun

Wind in May 1993
HT. 2.0 Matanya Se No. 31587

Fig. 233
果may

Wind in Jul 1993
HT. 2.0 Matanya Sr. No. 31587

Fig. 235

Figs. 232-235. Relative per cent monthly wind direction frequencies for April till July 1993 at Matanya taken with WB at 2.0 m height AF.

Figs. 236 \& 237. Relative per cent monthly wind direction frequencies for August and September 1993 at Matanya taken with WB at 2.0 m height AF.

Laikıpia district around Matanya area. Compared to Ficas. 226-229 there was a slight shift in westwand in Figs. 232-237 and a slig̣ht shift eastwand in Figs. 236 \& 237. Compared to Figs. 236-241) there is in June/July a sliant shift in eastward in Figs. 246-253 but in August/September the shift is clearly westward (from SE to S dominance). Compared to Figs. 242-245 there is a slight westward shift continued for October and November. In December no shift shows up and in January. if any. it 20 eomewhat eastward. These shafte are novortholoes eomall that measurements in the control would have been sufficient for wind directions.

4.3.2 (c) Choice of representative experimental periods

We have already seen in Figs. 226-253 that the strong destructive winds from between south to south-east occur in Matanya area between June and September. These winds start to build up as early as mid-May. The results of the analysis of representative windy conditions in Matanya presented here cover the windy seasons of June-September 1993 and 1934 (see appendix Table A6). Fiọs. 254-256 \& 257-259 and Tables 73 \& 74 show mean daily wind speeds for experimental periods at 09h00-08h00 (local time) the following day to colncide with the dally Piche readirigs.

As we have seen in section 4.1 the LR93 and LR94 maize crops were planted on $15 / 4 / 93$ and $14 / 4 / 94$. The plants attained therr maximum heights in the fourth and third weeks of June respectively for 1993 and 1994 crops (appendix Table A5). Due to pocr rainfall distribution the plants could not grow taller than 2.4 ani 2.2 m in LR93 and LR94 respectively. The strong winds from Junt :0 September dry the soll further and lodge the plants. tear and snap the r ally drying leaves

Wind in Oct 1994 HT. 2.0 Matanya Sr. No. 341836
Fig. 242

Wind in Dec 1994
 HT. 2.0 Matanya Sr. No. 341836

Fig. 244
致dec

Fig. 243
■nov

Figs. 242-245. Relative per cent monthly wind direction frequencies for October 1994 till January 1995 at Matanya taken with WA at 2.0 m height NAF.

Fig. 248

Wind in Jul 1994

HT. 2.0 Matanya Sr. No. 31587

Fig. 245

Wind in Sep 1994
HT. 2.0 Matanya Sr. No. 31587

Fig. 249
asep

Figs. 246-249. Relative per cent monthly wind direction frequencies for June 1994 till September 1994 at Matanya taken with WB at $\overline{2} . \overline{0} \mathrm{~m}$ height AF.

Wind in Dec 1994
HT. 2.0 Matanya Sr. No. 31587

Fig. 252
橉dec

Wind in Nov 1994
HT. 2.0 Matanya Sr. No. 31587
Wind in Jan 1995
HT. 2.0 Matanya Sr. No. 31587

Fig. 251
Binnov

Fig 253
渵jan

Figs. 250-253. Relative per cent monthly wind direction frequencies for October 1994 till January 1995 at Matanya taken with WB at 2.0 m height AF.
and stems and remove and re-distribute mulch materials in mulched plots.

The maize biomass which was left in the field to dry was harvested at the end of August on both occasions. In the months of June to August. these strong winds overlapped with the late stages of maize growth and maize blomass stubble left in the field to dry before harvesting. According to the criteria of Heisler and Dewalle (1988). Seginer (1975) and Sturrock (1969) only cups in row 1 were effectively protected by the live-fence wind-break as their protective effect. E. was ogreater than 0.2 (i.e. E ≥ 0.2). This can partly explain the differences in biomass yields in $A F$ for 1993 and 1994. The LR maize crop in the lower half of $A F$ were taller and yielded more biomass than in the upper half. Similarly in AFM1 plot (section 4.1. Figs. 74-77 and Figs. $90 \& 92$). Maize rows 17-29 (Fig. 9) in all the four plots AFM1. AFM2. AFL1 \& AFL2) were in the lower half of $A F$. The maize blomass were higher than those in the upper half of the AF . The sheltering effects of sparse Grevillea robusta tree stems and the canopies of these trees and other high maize plants cumulatively decreased wind speeds from line 1 (positions A1, A5 \& A9) downwind to line 4 (positions A4. A8 \& A12) (Table A5). Position A12 recorded the lowest wind speeds as compared to positions A9. A10 and A12. Similarly positions AB recorded the lowest wind speeds compared to positions A5. A6 and A7 in row 2. The plants in this parts of the field (lower half and in AFM1) had higher biomass ylelds as we can see in section 4.1. This was the time when maize was growing and had not reached the maximum height of 2.4 m in 1993 and of 2.2 m in 1994.

To determine the effects of strong winds on the maize crop we chose three representative experimental periods (93P4. 93P7 \& 93P10) in

Fig. 254. Intercomparison of mean daily wind speeds recorded by cup anemometers (cups $10,11,12 \& 13$) in row 1 in $A F$ and control during windy season at Matanya in 1993 (Fig. 102b).

Fig. 255. Intercomparison of mean daily wind speeds recorded by cup anemometers (cups $14,15,38 \& 39$) in row 2 in AF and control during windy season at Matanya in 1993.

Fig. 256. Intercomparison of mean daily wind speeds recorded by anemometers (cups $40,41,43$ \& 44) in row 3 in AF and control during windy season at Matanya in 1993.

Fig. 257. Intercomparison of mean daily wind speeds recorded by cup anemometers (cups 10, 11, 12 \& 13) in row 1 in AF and control during windy season at Matanya Matanya in 1994.

Fig. 258. Intercomparison of mean wind speeds recorded by cup anemometers (cups $14,15,38 \& 60$) in row 2 in AF and control during windy season at Matanya in 1994.

Fig. 259. Intercomparison of mean daily wind speeds recorded by cup anemometers (cups $40,41,43 \& 61$) in row 3 in AF and control during windy season at Matanya in 1994.

LR93 and three (94P1, 94P2 \& 94P4) in LR94 (see appendix Table A6). These periods were chosen on the basis of: (i) early June when marze plants had not attained maturity. The anemometers were at the helghts of 1.0 and 1.2 m till June 4th 1993 and June 10 th 1994 respectively. They were on these dates adjusted to $1.4 \& 1.5 \mathrm{~m}$ (the whole of 93P4 \& one week into 94P1) respectively in 1993 and 1994. to be always 0.2 m above the tallest maize elements (Table 2.1). (ii) At the end of June the fast growing maize attained final heights of 2.2 m and 2.0 m 1993 and 1994. which therefore was valid for July (93P7 \& 94P2): and (iii) marze biomass was harvested at the end of August. The plants were still at heights they attained at the end of June (93P10 \& 94P4) (see also Figs. 254-259).

4.3.2 (d) Average wind speeds during strong wind season.

(i) Daily wind speeds and wind direction.

We can see in Figs. 254-259 and Tables 73 \& 74 that the cups in row 1 (i.e. in positions A1. A2. A3 \& A4) recorded lower wind speeds than those in row 2 (i.e. in positions A5, A6, A7 \& AB). Row 3 cups (i.e. in positions A9, A10, A11 \& A12) read the highest wind speeds. All cups in row 1 recorded less wind speeds than cup 55 in the open (see Fig. 8). The wind direction during the whole of 1993 windy season was mainly southerly with S.E. component from June to August in the strong winds period as indicated above (Figs. 228-230 and 234-236). The wind direction during 1994 windy season in NAF was southerly with south west in June (Figs. 238) and both southwest and southeast components in July (Figs. 239). From August to November the winds were generally south easterly which shifted to become north-easterly in November and mainly Northerly in December (Fig. 240-245). In the AF the wind direction in

1994 was mainly southerly from June to October. Novenber was transition period as the wind direction seemed to be diffuse and later in December and January blew from mainly north with north easterly component in January (Figs. 246-253).

We learn from the results presented here that WAU cup anemometers were progressively protected from the southerly and south-easterly winds by the Coleus barbatus live-fence sides SH and WH (Fig. 10) and Grevillea robusta tree stems. Row 1 cups were most protected, with little difference among them. followed by row 2 position A8 becoming progressively somewhat more protected during periods of strong winds and then row 3 position A12 becoming somewhat better protected than the others during periods of strong winds. The intercomparison was done using cup 55 as the control. The cups on the leeward side of each row of Grevillea robusta trees were additionally and progressively protected by tree stems and canopies, but that influence appears to have only little difference among the places monitored.

We can see from Figs. 8 \& 10 that positions A1. A5 \& A9 in line 1 were located in unpruned local plot, AFL2. Positions A2. A6 and A10 in line 2 were located in unpruned mulched plot. AFM2. Positions A3. A7 \& Al1 in line 3 were located in pruned Local plot. AFL, while positions A4. A8 and A12 in line 4 were located in pruned mulched plot. AFM1. During this period wind speeds in the open did not run higher than $4 \mathrm{~m} / \mathrm{s}$ in 1993 and 4.5 in 1994.

The microclimate on the leeward side of the windbreak shelter differed significantly (maximum of $1.1 \mathrm{~m} / \mathrm{s}$ for a wind speed near $4 \mathrm{~m} / \mathrm{s}$ for 1993 and of $2 \mathrm{~m} / \mathrm{s}$ a wind speed near $4.5 \mathrm{~m} / \mathrm{s}$ in 1994) from that of unsheltered areas. At the larger DGP gap, largest changes occurred in

Table 73 Average wind speeds and standard deviations at Matanya for experimental periods of 1993. (1 -cup 40 kept in field office to act as substandard during calibration)

		"Posititions of WhO Cup anenoneters in the AP plot													
		Yow 1				row 2				row 3				avg	control
period	DOY	A1	12	13	14	45	16	17	18	19	A10	111	12		55
93P1	119-126	1.63	1.65	1.59	1.57	2.16	2.11	2.03	2.15	2.27	2.15	1.98	1.69	1.70	2.05
		0.37	0.38	0.39	0.39	0.60	0.56	0.54	0.64	0.68	0.65	0.61	0.83	0.47	0.56
93P2	133-147	1.52	1.52	1.47	1.46	2.01	2.09	2.03	1.91	2.15	2.25	2.10	1.88	1.60	2.12
		0.40	0.41	0.41	0.40	0.57	0.62	0.60	0.54	0.63	0.68	0.64	0.58	0.46	0.74
93P3	148-153	1.70	1.70	1.63	1.54	2.24	2.37	2.25	1.70	1	1.70	1.63	1.54	1.43	2.24
		0.75	0.79	0.71	0.67	0.85	0.92	0.90	0.75	1	0.79	0.71	0.67	0.61	0.85
93P4	154-165	1.41	1.38	1.35	1.31	1.89	1.94	1.85	1.67	1.99	2.00	1.86	1.58	1.44	1.81
		0.60	0.59	0.53	0.50	0.70	0.74	0.71	0.63	0.73	0.75	0.70	0.60	0.55	0.79
93P5	165-175	2.04	1.96	1.90	1.88	2.64	2.71	2.54	2.31	2.82	2.77	2.56	2.19	2.02	2.69
		0.54	0.52	0.48	0.46	0.60	0.64	0.61	0.55	0.65	0.67	0.61	0.53	0.49	0.81
93P6	175-182	2.44	2.37	2.37	2.38	3.11	3.09	2.96	2.78	3.41	3.20	2.99	2.81	2.42	3.37
		0.49	0.47	0.14	0.14	0.62	0.63	0.61	0.57	0.68	0.64	0.58	0.62	0.48	0.96
93P7	182-209	2.27	2.22	2.24	2.27	2.95	2.91	2.78	2.59	3.26	3.01	2.81	2.65	2.28	3.20
		0.22	0.21	0.20	0.20	0.31	0.30	0.28	0.25	0.35	0.32	0.28	0.28	0.23	0.33
$93 \mathrm{P8}$	209-216	2.79	2.71	2.70	2.69	3.53	3.56	3.34	3.11	3.93	3.63	3.40	3.24	2.76	3.88
		0.32	0.30	0.27	0.27	0.12	0.12	0.39	0.36	0.46	0.41	0.40	0.38	0.31	0.46
93P9	216-225	2.06	2.02	2.08	2.07	2.62	2.62	2.48	2.30	2.93	2.72	2.54	2.14	2.06	2.95
		0.38	0.37	0.36	0.36	0.51	0.52	0.48	0.14	0.58	0.53	0.49	0.19	0.39	0.63
93 P 10	229-236	2.24	2.19	2.22	2.20	2.78	2.82	2.68	2.50	3.12	2.87	2.72	2.65	2.21	3.25
		0.67	0.64	0.61	0.58	0.74	0.77	0.72	0.68	0.85	0.81	0.75	0.74	0.61	0.90
	avg	2.01	1.97	1.95	1.94	2.59	2.62	2.49	2.30	2.88	2.63	2.16	2.35	2.01	2.79
	std	0.47	0.47	0.44	0.43	0.59	0.61	0.58	0.54	0.62	0.63	0.58	0.57	0.47	0.70

Table 74. Average wind speeds and standard deviations at Matanya for experimental periods of 1998.

period		"Positions of wdo cup anenoneters in the 1 F plot												avg	control 55
		row 1				row 2				row 3					
	DOY	Al	12	A3	14	15	16	17	18	19	10	411	112		
$94 \mathrm{P1}$	155-174	1.11	1.16	0.96	1.02	1.73	1.71	1.63	1.33	1.73	1.82	1.74	1.45	1.24	1.75
	std	0.58	0.59	0.51	0.19	0.83	0.83	0.80	0.26	0.80	0.89	0.88	0.74	0.59	0.88
94 P 2	185-196	1.70	1.73	1.73	1.70	2.50	2.39	2.23	2.01	2.65	2.67	2.50	2.25	1.86	2.62
	std	0.69	0.66	0.62	0.59	0.90	0.88	0.80	0.76	0.91	0.95	0.90	0.84	0.68	0.93
94P3	196-215	1.72	1.72	1.73	1.66	2.51	2.39	2.24	2.01	2.66	2.67	2.53	2.34	1.87	2.64
	std	0.67	0.64	0.61	0.57	0.89	0.87	0.82	0.75	0.92	0.95	0.93	0.88	0.68	0.96
94P4	216-235	1.65	1.63	1.66	1.60	2.39	2.27	2.13	1.93	2.58	2.57	2.43	2.31	1.80	2.71
	std	0.60	0.57	0.54	0.51	0.79	0.77	0.72	0.66	0.82	0.81	0.82	0.78	0.60	0.94
94P5	235-243	2.20	2.16	2.17	2.08	3.21	3.07	2.90	2.64	3.47	3.48	3.32	3.17	2.42	3.79
	std	0.63	0.60	0.57	0.54	0.74	0.73	0.69	0.68	0.78	0.80	0.79	0.77	0.59	0.94
94P6	256-258	1.37	1.37	1.42	1.37	1.89	1.82	1.75	1.64	2.12	2.07	1.99	1.88	1.48	2.49
	std	0.65	0.63	0.62	0.60	0.82	0.81	0.77	0.72	0.90	0.89	0.90	0.83	0.65	1.15
9487	264-271	2.26	2.25	2.33	2.32	2.95	2.88	2.90	2.82	3.34	3.32	2.82	3.08	2.38	4.29
	std	0.75	0.74	0.75	0.73	1.00	1.00	0.97	0.94	1.13	1.14	1.55	1.05	0.84	1.45
9488	271-284	1.33	1.35	1.37	1.33	1.61	1.60	1.63	1.61	1.68	1.74	1.19	1.62	1.29	1.98
	std	0.73	0.74	0.76	0.74	0.87	0.90	0.91	0.89	0.93	0.96	1.09	0.93	0.75	1.20
94P9	284-291	1.30	1.36	1.37	1.34	1.72	1.77	1.81	1.78	1.81	1.96	1.92	1.81	1.43	2.34
	std	0.73	0.75	0.76	0.74	0.93	1.00	0.99	0.99	1.01	1.13	1.14	1.08	0.80	1.46
94 P10	292-311	1.02	1.04	1.06	1.03	1.30	1.31	1.35	1.34	1.32	1.43	1.38	1.33	1.07	1.66
	std	0.55	0.57	0.58	0.55	0.69	0.75	0.74	0.74	0.75	0.84	0.86	0.83	0.60	1.12
	avg	1.57	1.58	1.58	1.55	2.18	2.12	2.05	1.81	2.59	2.37	2.18	2.12	1.69	2.63
	std	0.66	0.65	0.63	0.61	0.85	0.85	0.82	0.74	1.00	0.91	0.99	0.87	0.69	1.10

wind structure and furthest away from wh turbulence which extended some distance on the lee of the southern (SH) and the western (WH) side of the Coleus barbatus live-fence. The cups which were directly opposite DGP (A9: A10; A11 positions in that order as well as A5: A6: A7 positions in that order and particularly earlier in the measuring periods) read occasionally even higher wind speeds than the control (cup 55 in the open). Al2 was again most protected. The fact that A5. Á and A7 were indeed protected shows that also WH protection must be involved. The high speeds resulted from the tunnelling and turbulent kinetic energy that was created at the DGP. The relatively calm areas with wind speeds below the open must have benefitted somewhat the plant water relations (e.g. Baldy. 1963: Radke and Hagstrom. 1976). As we have already pointed out in the introduction, rainfall was a major liniting factor in Matanya area. The protective role provided by the live-fence must have increased water use efficiency (WUE) somewhat. Higher wind speeds at DGP resulted in induced turbulence, negatively affecting maize plant nearest the gap where maize plants were more bent than away from the DGP.

(ii) Spatial variations of wind speeds within and between rows.

In this section we have chosen the month of July for the period in Table A6 as the central month of the season with strong winds to present the results of spatial variations of average daily wind speeds within and between rows in AF in 1993 and 1994. The results for the other months of the strong winds season were similar to the July ones.

Figs. 260 \& 261 and 258 \& 263 show variations of wind speeds within and between rows 1. $2 \& 3$ in July 1993 and 1994. At this stage we
take a difference of $0.5 \mathrm{~m} / \mathrm{s}$ (which is twice more than the error limit of the instrument). We observe in Fig. 260 unimportant differences within the rows and between row 2 and row 3. In both Figs. 260 \& 261 (in 1993) we see that row 1 was different from nows 2 and 3 but significantly different only in lines A1. A5. A9 and A2. A6. A10. and marginally in line A3. A7. A11. The middle row (row 2) was taken as an average parallel row measured at the distances of 6 H .9 H .12 H and 15 H from the southern hedge (SH). We again observe in 1994 (Figs. $262 \& 263$) unimportarit differences within the rows and between rows 2 and 3. Row 1 was different from rows 2 and 3 but significantly different only in lines A1. A5. A9 and A2. A6. A10, and marginally in other lines. The transect lines 1, 2. $3 \& 4$ shown in Figs. 261 and 263 confirm the above observation.

(iii) Mean hourly wind speeds

Figs. 264-267 \& 268-271 present results of hourly wind speeds for the same periods of July 1993 (93P7) and 1994 (94P2) respectively. For comparison purposes the results of the wind speeds in the control were also plotted in each graph along side the AF ones. The wind speeds were recorded with cup anemometers in row 1 (Figs. 264 \& 268), row 2 (Figs. 265 \& 269) and row 3 (Figs. 266 \& 270). We can see from Figs. 264-271 that the winds attained their maximum values at 17700 and their minima at $22 h 00$ local time. in both years.

As in our previous explanations the wind speeds reconded in the open were also diurnally always the highest in comparison to the wind speeds recorded by positions A1. A2. A3 and A4 in row 1 (Figs. 264 \& 268). Positions A5, A6, A7 and A8 in row 2 recarded higher wind speeds than those recorded in row 1. although they were still lower than those

Fig. 260. Intercomparison of mean daily wind speeds in row 1, $2 \& 3$ at 2.4 m height in AF as function of the distance from SH for July 1993 (DOY 182-209) during windy season at Matanya.

Fig. 261. Intercomparison of mean daily wind speeds in lines $1,2,3 \& 4$ at 2.4 m height in AF as function of the distance from SH for July 1993 (DOY 182-209) during windy season at Matanya.

Fig. 262. Intercomparison of mean daily wind speeds in rows 1, 2 \& 3 at 2.2 height in AF as a function of the distance from SH for July 1994 (DOY 185-196) during windy season at Matanya.

Fig. 263. Intercomparison of mean daily wind speeds in lines $1,2,3 \& 4$ at 2.2 m height in AF as function of the distance from SH for July 1994 (DOY 185-196) during windy season at Matanya.
reconded in the open (Figs. 265 \& 269). Positions A9. A10, A11 and A12 in row 3 recorded higher wind speeds than those reconded in row 2 (Figs. $266 \& 270$). Position A9 recorded almost the same wind speeds as the control and occasionally even higher while positions A1O. A11 and A12 recorded lower than the control. Cups in line 4 particularly in positions A8 and A12 are confirmed to be best protected. Figs. 267 \& 271 compares the overall average wind speeds in the $A F$ with the control. We see here that on the average AF had lower wind speeds than the open area. indicating sheltering effect provided by the live-fence to the intercrop in $A F$ against strong winds. The channelling effect occasioned by the wide deliberate gap (DGP) (see Fig. 10) was the main cause of the high windspeeds which affected rows 2 and 3 in the $A F$ as observed above, but the reduction of shelter of WH must have played a role as well. otherwise row 2 would be protected better. Again we observe that the cups in row 1 were the most sheltered. Position A9 in row 3 was the least sheltered as it was directly in front of DGP. The southerly winds reaching position $A 12$ and position A8 were reduced by all the elements mentioned above. The maize plants around the more sheltered cups (i.e. row 1 and line 4) were therefore somewhat protected from the direct effect of the strongest winds by these elements.

4.3.2 (e) Sheltering (protective) effect against mean daily wind speeds in rows and transect lines

The protection provided by coleus barbatus live-fence and Grevillea robusta trees against the strong seasonal southerly winds. with south-easterly and south-westerly components. was the main reason for wind measurements at Matanya and forms the core results in this

Fig. 264. Intercomparison of hourly wind speeds recorded by cup anemometers (cups 10, 11, 12 \& 13) in row 1 and control at 2.4 m height in AF for July 1993 (DOY 182-209) during windy season at Matanya.

Fig. 265 Intercomparison of hourly wind speeds recorded by cup anemometers (cups $14,15,38 \& 39$) in row 2 and control at 2.4 m height in AF for July 1993 (DOY 182-209) during windy season at Matanya.

Fig. 266. Intercomparison of hourly wind speeds recorded by cup anemometers (cups $40,41,43 \& 44$) in rows 3 and the control at 2.4 m height in AF for July (DOY 182-209) during windy season at Matanya.

Fig. 267. Comparison of overall average hourly wind speeds in AF with control for July 1993 (DOY 182-209) during windy season at Matanya.

Fig. 268. Intercomparison of hourly wind speeds recorded by cup anemometers (cups 10, 11, $12 \& 13$) row 1 and control at 2.2 m height in AF for July 1994 (DOY 185-196) during windy season at Matanya.

Fig. 269. Intercomparison of hourly wind speeds recorded by cup anemometers (cups 14, 15, 38\&60) in row 2 and control at 2.2 height in AF for July 1994 (DOY 185-196) during windy season at Matanya.

Fig. 270. Intercomparison of hourly wind speeds recorded by cup anemometers (cups $40,41,43 \& 61$) in row 3 and control at 2.2 m height in AF for July 1994 (DOY 185-196) during windy season at Matanya.

Fig. 271. Intercomparison of overall AF average of hourly wind speeds with control for July 1994 (DOY 185-194) during windy season at Matanya.
section. The main sheltering elements that affected these wAU cup anemometers during this strong winds season were southern (5H) and western (WH) sides of the Coleus barbatus live-fence. Grevillea robusta tree stems and canopies, and upwind plants affecting downwind plants (roughness effect of the crop itself). These are discussed in chapter 3. The sheltering efficiency. variously called protection effect or protective efficiency of the sheltering elements (see Eq. 7) is defined as the efficiency by which a shelterbelt or windbreak can reduce wind speeds on its leeward side to a fraction of those in the open area. It was mentioned in chapter 2 that till a certain minimum permeability. relatively denser windbreaks are more efficient as windbreak than the less dense ones.

Jensen (1954) and Bean et al. (1975) suggested the use of E20.1 (i.e. reduction ratio. $\mathrm{R} \leq 90 \%$ of the wind in the open see eq. 7) as a criteria to determine the effective distance (in multiples of shelter height. H) from the shelter to the down-wind point where shelter effect ends (or beains in case of wide gap in the shelter). Heisler and Dewalle (1988) and Sturrock (1969) suggested the use of $E \geqslant 0.2$ (i.e. reduction ratio. $R \leq 80 \%$ of the wand in the open) rather than $E \geq 0.1$ as a better alternative.

We have divided the sheltering effects provided by the live-fence around Matanva AF plot into three categories, that is (i) strong protection area: where the protective effect. E. exceeded 0.35 (i.e. E20.35). (ji) medium protection area: where E lay between 0.2 and 0.35 (i.e. O.2,Es0.35), and (1ii) low protection area: where Ex0.2. We are below quantifying siomificance of protection as quantitatively already handled in previous sections.
(i) Experimental periods in June 1993 (93P4) and 1994 (94P1)

On the protection provided by the western hedge (WH) (Fig. 10) we learn here that transect line 4 (cups in positions A4. A8 \& A12) had the highest protection as it was also remote to SH and might also have been protected by the Grevillea tree stems and the uowind maize plants (plants in AFL1. AFM2. AFL2 \& AFM3 and buffer - see Fig. 10) in AF.

Figs. 272 \& 274 present results of the protective effects of the Coleus live-fence against destructive strong winds which occurred during experimental periods 93P4 and 94P1 of June 1993 and June 1994 (see Table A6). We observe here very high protection provided by the live-fence. with protective efficiencies. E. higher than 0.35 (E 20.35) as recorded by the cup anemometers in row 1 in June 1994 (Fig. 274). The positions A9. A10. A11 and A12 in row 3 situated in the upper part of AF reconded the lowest protection in AF. especially in June 1993 (Fig. 272 \& 273) which extended to include positions in row 2 except A8. Only position A4 in line 4 and row 1 had E>0.2 had high protection while positions AB \& A12 (in 1993 \& 1994) had E less than 0.2 in both years indicating low protection against strong winds in the pruned AFM1 where they are located (Figs. 273 \& 275).

We can infer here that for the month of June 1994 the positions. A1. A2. A3 \& A4. in row 1 were in the well protected zone (Fig. 275. position A2 marginally). Positions A5. A6. A7 and A9. A10 \& A11 were influenced by turbulent flow resulting from the DGP and other turbulence provoking plant elements during June. 1993 and 1994. They all read close to the same wind speeds as cup 55 in the open (Figs. 273 \& 275). It should be noted that cups can pick up only partly the turbulent components. which means that damage may occur in Ar for winds speeds not

Fig. 272. Intercomparison of Grevillea robusta trees and Coleus barbatus live-fence protective effect, E, for rows 1,2 \& 3 as function of distance from WH for June (DOY 154-165) 1993.

Fig. 273. Intercomparison of Grevillea robusta trees and Coleus barbatus live-fence protective effect, E, for lines $1,2,3 \& 4$ as function of distance from wh for June (DOY 154-165) 1993.

Fig. 274. Intercomparison of Grevillea robusta trees and Coleus barbatus live-fence protective effect, E, for rows $1,2 \& 3$ as function of distance from SH for June (DOY 155-174) 1994.

Fig. 275. Intercomparison of Grevillea robusta trees and coleus barbatus live-fence protective effect, E, for lines $1,2,3 \& 4$ as function of distance from WH for June (155-174) 1994.
yet equally damaging because of lack of protection in the control. Positions A5. A6 and A7 situated at 7 H from WH and $6 \mathrm{H}, 12 \mathrm{H}, 18 \mathrm{H}$ from SH therefore at increasing distances in the leeward of SH and equally leeward of WH but also influenced by some trees. where the resulting wind speed in AF almost equalled that in the open (EsO.1). Similarly. cups 40. 41 and 43 (positions A9. A10 and A11) in row 3 situated 12 H from WH read also E values close to zero in June 1993 and June 1994 (Fig. 273 \& 275).
(ii) Experimental periods in July 1993 (93P7) and 1994 (94P2)

Figs. 276 \& 277 and 278 \& 279 present the same way results on the effect of mean daily wind speed protective effects in rows 1. 2 \& 3 during the month of July 1993 and 1994 which are mirror images of wind speeds in Figs. 260 \& 261 and 262 \& 263. Again positions A1. A2. A3 and A4 in row 1 situated in the lower part of $A F$ indicated the highest protection in AF of E>0.2 for July 1993 and July 1994. None of the positions in AF did satisfy the criterion of E>0.35 for strong protection. implying that the whole of the plot was low to medium protected (Figs. 277 \& 279). Positions A5. A6. A9 and A10 had E<0.1 which was unimportant for wind protection.

(iii) Experimental periods in July 1993 (93P10) and 1994 (94P4)

Figs. 280-283 respectively present the effects of the sheltering elements on the mean daily wind speeds for the August periods 93 P10 of 1993 and 94P4 of 1994 (see Table A6). Here again the protective effect. E. was very high in row 1 in both years with E20.35 in 1993 and E20. 35 in 1994. This implied relatively high wind reduction by the protective elements in the lower haif of AF. All positions had EsO. 35 in 1993 which

Fig. 276. Intercomparison of Grevillea robusta trees and Celus barbatus live-fence protective effect, E, for rows $1,2 \& 3$ as function of distance of distance from SH for July (182-209) 1993.

Fig. 277. Intercomparison of Grevillea robusta trees and Coleus barbatus live-fence protective effect, E, for lines, 1, 2, 3 \& 4 for July (DOY 182-209) 1993.

Fig. 278. Intercomparison of Grevillea robusta trees and Coleus barbatus live-fence protective effect, E, for rows $1,2 \& 3$ as function of distance from SH for July (DOY 185-196) 1994.

Fig. 279. Intercomparison of Grevillea robusta trees and Coleus barbatus live-fence protective effect, E, for lines 1-4 as function of distance from WH for July (185196) 1994.
again implied that the whole of $A F$ was low to medium protected. In 1994 all positions (A1. A2. A3 \& A4) in row 1 had strong protection as they experienced E20.35. Only positions in A9 and A10 were not protected in 1994 as they had E<0.1.

4.3.2 (f) Daily wind fluctuations in $A F$ during strong winds season

After identifying areas that had strong, medium and low (no or even endangered) protection in the $A F$ plot. from the strong JuneSeptember winds. we now proceed to find variations in wind directions as well as serious differences in wind speed redistributions. Such variable winds appreciably move protective and other plant parts differently. that are in turn influencing such values. Just ordinarily turbulence does not affect these averages. This was done to confirm. or otherwise. these observations by presenting our findings using wind normalized standard deviations (Rsd) of average daily wind speeds worked out using Eq. 8 in chapter 2.

Table 75 presents the results of the wind speed anomalies referred to above. From the averaged values of the three seasons presented in Table 75 we see that cups in row 1 (positions A1. A2. A3 \& M4) Figs. 278 \& 279 registered the highest wind fluctuations as assessed from the normalized standard deviations (Rsd) on a daily basis in 1993 and 1994. We can see in this Table 75 that the average Rsd for individual experimental periods do not differ very much from the overall average Rsd in AF. Rsd values for 1994 were generally higher than those for 1993 just as the Ewere also higher for 1994 than for 1993. This was due to the influence of stronger winds in 1994 than 1993 and also the increasing density with time of sheltering elements due to growth. The average Rsd values for cups row 1 were the highest in the plot. The Rsd
for positions A3 and A4 (cups 12 and 13) were 0.32 and 0.35 in 1993, and 0.58 and 0.64 in 1994 respectively. This implied that for the AF plot the highest daily fluctuations were often found around row 1. with positions A3 and A4 registering even larger daily fluctuations. In row 2 positions $A 7$ and $A 8$ had relatively higher fluctuations in this row (1.e. Risd of 0.12 for position A7 and 0.19 for position A8 in 1993 and 0.17 for position A7 and 0.42 for position A8 in 1994). In row 3 position A12 had the highest Rsd in both years although still lower than those in row 1.

The southerly flow met the SH. where the DGP was located. most regularly at right angle. This induced strong streamlined flow similar to that in the open area up to 12 H along row 3 and 9 H aiong row 2. This affected the cups at these distance as we have already mentioned. with Rsd<0.1.

The daily relationship of fluctuations differs little, in the sense that for nearly constant direction no protection means constant relationships between daily fluctuations in the open and in the AF and therefore low Rsd's. However, many things mechanically influence daily average wind speeds with trends (increasing biomass. changing biomass influence wind speed and wind angle) that increase the Red-values.

The positions A7. A3 and A4 have many changing influences because of influence of SH. WH. gaps and trees. Such changes even include differences in maize height because of long (changing) wind paths before the air reaches these positions.

Aerodynamic features of flow around live-fence. Grevillea tree stems and canopies could induce fluctuating air movement and formation of turbulent eddies down-stream of these obstacles which then might have been picked up by the cup anemometers. thus registering relative higher

Table 75. Mornalized standard deviations for average daily wind speeds for six representative periods during strong winds season in 1993 and 1994.

		"Positions of WAD Cup anemoters in the AP Plot												avg
		row 1				row 2				row 3				
period	DOY	11	12	A3		A5	16	17	18	19	10	111	112	
93P4	155-174	0.24	0.26	0.35	0.39	0.08	0.04	0.08	0.17	0.05	0.03	0.08	0.21	0.14
93P7	185-196	0.16	0.18	0.19	0.18	0.02	0.03	0.07	0.11	-0.02	0.02	0.05	0.06	0.08
93 P10	196-215	0.34	0.39	0.43	0.18	0.20	0.15	0.23	0.29	0.05	0.11	0.19	0.20	0.22
average		0.24	0.28	0.32	0.35	0.10	0.08	0.12	0.19	0.03	0.05	0.11	0.16	0.15
YEAR	1994	rov 1				row 2				row 3				
period	DOY	1.	12	13	14		16	17	18	19	110	111	112	avg
94P1	155-174	0.47	0.41	0.67	0.66	0.05	0.05	0.09	0.81	0.08	-0.01	0.00	0.17	0.25
94 P2	185-196	0.38	0.42	0.16	0.53	0.04	0.06	0.15	0.23	0.02	-0.01	0.03	0.10	0.17
94 P3	196-215	0.44	0.49	0.54	0.62	0.07	0.10	0.17	0.27	0.04	0.01	0.03	0.09	0.21
94P4	216-235	0.56	0.62	0.65	0.73	0.17	0.20	0.28	0.39	0.12	0.10	0.14	0.19	0.30
	average	0.47	0.49	0.58	0.64	0.08	0.10	0.17	0.12	0.06	0.02	0.05	0.14	0.23

anomalies (as assessed via Rsd). This benefitted the plants by excluding lodging and respirational losses from strong destructive flow that was channelled into the plot through DGP. The maize in the areas with larger Rsd grew taller and had higner biowass yields. This gave high correlation between high Rsd-values. strong protection and high diomass yields.

4.3.2 (g) Shaded Piches with cup anemometers at Matanya: Comparison of shaded Piche with WAU electrical cup anemometers.

We present in Tables 77 and 78 the comparisons of ine weekiy wind speeds derıved from daliy evaporation data from shaded Ficne evaporimeters with weekiy wind speecis frow waiu electricai cup anemumeters at Matan;a for June-Auoust 1993 and 1994 respectiveiy. In1s covered only the time of overiap ar the strong wincis (Jure-Sejtember, season witn Lono Faırs (iर) crop season (Aprıl-August). Whii eientrıcai cup anemoueters were palred with shajed Piches on the same masts jut on trie opprsite sides of the masts at the same heights. The main $\mathrm{B}: \mathrm{m}$ of comparing shaded Fiches with the more accurate wAi eiectricai cup anemometers was to rest the adaptability of shaded Fiches as auxiilary anemometers for interpolation and extrapolation purposes in inhomogeneous agroforestry conditions Kainiwa. 199i: Kainika and Sidoter. 19941.

In this section we refer to some of the findings from riariowa (1991) and Karnikwa and Stigter (1994) on their work in jyaringri and jetchet. Tanzania. wnicn we fini dertinent under Matanva curi:-ions. halrikwa (1901) comyared the evaporation froll shadec Fisches nistr the souare-root of averaye wind speed for Lyamunols and Setcher as given in Eu. 24.

Fig. 280. Intercomparison of Grevillea robusta trees and Coleus barbatus live-fence protective effect, E, for rws 1-3 as function of distance from SH for August (229-236) 1993.

Fig. 281. Intercomparison of Grevillea robusta trees and Coleus barbatus live-fence protective effect, E, for lines 1-4 as fuction of distance from WH for August (229236) 1993.

Fig. 282. Intercomparison of Grevillea robusta trees and Coleus barbatus live-fence protective effect, E, for rows 1-3 for August (DOY 216-235) 1994

Fig. 283. Intercomparison of Grevillea robusta trees and coleus barbatus live-fence protective effect, E, for lines $1-4$ as function of distance from wh for August (DOY 216-235) 1994.

$$
\begin{equation*}
E_{b}=a \sqrt{u}+b \tag{24}
\end{equation*}
$$

where E_{p} (in $m m$) is evaporation from shaded Piche, u is average wind speed in m / s and a and b are regression constants with b close to zero under ideal conditions. Kainkwa (1991) demonstrated that periods with relatively higher wind speeds gave higher correlation coefficients (r) between the square root of mean wind speeds and the shaded Piche evaporation than those with lower wind speeds. For a period of nearly one day, in which maximum and minimum wind speeds were respectively 1.36 and $0.79 \mathrm{~m} / \mathrm{s}$ he obtained the correlation coefficient of 0.98 . For two periods of about two days in which the ranges from maximum to minimum wind speed were very comparable to above case he obtained r of 0.99 and 0.95 respectively. For two sets of data of four day periods in which mean wind speeds ranged from 1.11 to 0.64 and 0.95 to $0.53 \mathrm{~m} / \mathrm{s}$ he obtained r to be 0.96 and 0.83 respectively. He observed that factors such as rainfall, temperature and humidity which affected evaporation from Piche evaporimeters also affected the correlation coefficient values. He pointed out that for periods of more than one week it was not advisable to adapt Piche as auxiliary anemometers as the possibility of incorporating rainfall periods was high. which would give splash on the exposed Piche discs, thereby interfering with the correlations. Piche was therefore weak in this regard as auxiliary anemometers, but wind speeds are normally not very important during rainfall. so periods between such events can be used. High atmospheric humidities. as a result of low wind speeds approaching zero (very calm conditions especially at night). lead to very low evaporation from the piche.
slowing down to a halt. The zero wind speeds correspond to zero evaporation values from the Piche. At high relative humidities and small temperature gradients between Piche surface and the air the zero wind speed correspond to the zero evaporation values from the Piche. Inclusion of this point increased r-values, except in the open area (control) where very little decrease was observed for 1993 data. The same observation was also made by Kainkwa (1991) for Lyamunou and Setchet in Tanzania.

In determining airflow at point X relative to a reference point, r. say in the open (or at a point in AF). the interest is on ratio. $R(x)$, of $u(x)$ to $u(r)$. We assume here that the square root of mean wind speed relation of Eq. 24 holds. If $u(x)$ is known. the ratio, $R^{\prime}(x)$. of the square of piche evaporation (mm) data at X to the square of the same at r, that is $\left(E_{p}(x)\right)^{2}$ to $\left(E_{p}(r)\right)^{2}$ can be used to estimate the wind at a point X relative to that at r, if a and b can be worked out. Basically this is true for simultaneously measured data.
$R(x)$ was correlated with $R^{\prime}(x)$ for average weekly wind and piche evaporation data with cups 55 and 38 (position A7 in row 2) as reference points. Cup 55 was used on the basis that it was exposed to appreciably different air movements and conditions of air temperature and humidity from the cups in AF. Cup 38 (position A7) was taken on the basis of similarity in exposure to the same conditions as other cups in $A F$.

The weekly data in $A F$ and in the open were subjected to a number Of manipulations to test piche atmometers as auxiliary anemometers in agroforestry situations. These are reported here as case 1 till case 8. The results are given in Table 76 for 24 weeks (i.e. June-August) for pooled data of LR93 and LR94.

Case 1: $R(x)=u(x) / u(r)$ was correlated with $R^{\prime}(x)=\left(E_{p}(x)\right)^{2 /}$
$\left(E_{\rho}(r)\right)^{2}$ taking cup 55 as reference for all cups in AF.
Case 2: $R(x)=u(x) / u(r)$ was correlated with $R^{\prime}(x)=\left(E_{0}(x)\right)^{2} /$ $\left(E_{p}(r)\right)^{2}$ taking cup 38 (position A7 in row 2) as reference for all cups in AF.

Case 3: case 1 was repeated with row 2 left out.
Case 4 case 2 was repeated with row 2 left out.
Case 5: case 3 was repeated for odd numbered weeks.
Case 6: case 3 was repeated for even numbered weeks.
Case 7: case 4 was repeated for odd numbered weeks.
Case 8: case 4 was repeated for even numbered weeks.
We see in Table 76 that reasonably high correlation cucfficients (r) were obtained for the correlation of $R(x)$ with $R^{\prime}(x)$. for cup 55 used as reference ($r>0.830$, except case 1) without point (0.0), and very high r values ($r>0.990$) after point (0.0) was added. The r's associated with cup 38 as reference (identical exposure) were always higher than 0.990, even when the zero point was not added as data point. This is despite the fact that weekly average periods included varying air temperatures and air humidities from week to week. These factors affect evaporation from piche evaporimeters as found by Kainkwa (1991).

We can see in Table 76 that for all the 8 cases the relative wind reduction ratios $(R(x))$ are highly correlated with the piche evaporation reduction ratios $\left(R^{\prime}(X)\right)$ during the strong winds overlap period, with higher correlation values obtained for cup 38 (position A7) than for cup 55 in the open.

In case 1 , taking cup 55 as reference, the averages of all cups gave correlation coefficient (r) between $R(x)$ and $R^{\prime}(x)$ as 0.762 . For the same averages and cup 38 as reference (case 2) r was 0.920 . When

Table 76. Reorression coefficients of comparison of weekly wind speeds for 1993 and 1994 recorded by WAU electrical anemometers during overlap period with those derived from Piche atmometers. a is the slope of the regression line and b is the intercept. EY is the standard error of Y estimate. EX is the standand error of X coefficient. r is the correlation coefficient. N is number of weeks in the period the June-aupust. Italics values are reorression coefficients where point (0.0) was added as a measuring point. Or is the per cent increase/ decrease in r when point (0.0) is added. Cup 55 in the open and cup 38 (position A7) in AF were taken as reference anemometers.

point $(0,0)$ was added. r for case 1 increased by $+30.1 \%$ to 0.991 while that for case 2 increased by $+8.5 \%$ to 0.998 .

In cases 3 and 4. row 2 was omitted and the correiation of $\bar{R}(x)$ with $R^{\prime}(x)$ obtained for rows 1 and 3 as explained above. The correlation coefficient of $R(x)$ with $R^{\prime}(x)$ for cup 55 as reference before point
(0.0) was added increased as compared to case 1. r for cup 55 as reference was now 0.832 which increased by +19.48 to 0.993 when point (0.0) was added. In case 4 also there was a slight increase compared to case 2 and small increase of $+5.0 \%$ was obtained when point (0.0) was added.

In cases 5 and 7 odd numbered weeks (wk1. wk3. wk23) were used to correlate $R(x)$ with $R^{\prime}(x)$ as explained above. The r values for cup 55 as reference again increased slightly ($r=0.845$) compared to case 3. When point (0.0) was added r again leapt by $+17.9 \%$ to 0.996 . For case 7 cup 38 as reference r was 0.986 which marginally increased by +1.48 to 1.00 . In fact for cup 38 there was no need to add point (0.0) as r values were even very high without inclusion of the zero point.

In cases 6 and 8 even numbered weeks (wk2. wh4. wk24) wore used to correlate $R(x)$ with $R^{\prime}(x)$ again this is explained above. Again r for cup 55 as reference was lower than r for cup 38 as reference (case 8). The r values for cup 55 as reference again increased by $+17.4 \%$ from 0.849 to 0.997 . Again for case 8 there was a slight increase in r by $+4.1 \%$ when point (0.0) was added.

We find in case 5 and 7 for cup 55 as reference that r increased slightly when a sample size was reduced, say by using only odd or even numbered weeks. In such cases the intercepts decreased markedly while the gradient increased to approach 1 fairly fast with addition of point (0.0). The results in Table 76 are indicative of very high correlations between shaded piche evaporation and wind speeds, which makes the shaded piche a good instrument for use in anemometry from which to extrapolate and interpolate wind speeds. especially under strong wind conditions in eemi-arid agroforentry syetome. Under condition of a ahaded Piche. evaporation from this atmometer is solely a function of air movement.
temperatures and humidity and there is little influence of related and other environmental radiation (Ibrahim et al.. 1989). The correlations were more stable for cup 38 than in the open area position. The largest shift in r values obtained by including point (0.0) was $+8.5 \%$. This was less than half of the smallest shift for the open area position of +17.4\%.

The regression coefficients in Table 76 obtained by regressing observed wind speed reduction ratios $(R(x))$ on the piche evaporation reduction ratios $\left(R^{\prime}(x)\right)$ were used to calculate wind reduction ratios as in Eq. 25.

$$
\begin{equation*}
R(x)=a * R^{\prime}(x)+b \tag{25}
\end{equation*}
$$

where a and b are regression constants and $R^{\prime}(x)=\left(E_{p}(x)\right)^{2 /\left(E_{p}(r)\right)^{2}}$ gives the evaporation reduction ratios for piches in positions A5. A6. $A 7 \& A 8$ in row 2. $R(x)$ are the calculated wind reduction ratios and a and b are constants for cases 1 till 8 in Table 76. Once $R(x)$ is known we then use $R(x) \sim(x) / u(r)$ to calculate weekly wind speeds for each cup. where $u(r)$, the wind speed of the reference cup (cup 55 or cup 38). is known. $u(x)$ can be calculated.

Tables 77 and 78 present the results of wind speeds and wind reduction ratios for cup anemometers in row 2 (positions A5. A6. A7 and A8) calculated using the above approach. The measured wind speeds and the associated wind reduction ratios for cup 55 as reference are presented in Table $77(i)$ and (ii). Appendix Tables A9 \& A10 give the same. but for smaller samples taken as odd and even numbered weeks. whose regression coefficients were as presented in Table 76. The over
als piftre 00 in cheos Tables is that calculated values were very dine tie the semed velues given in Table 7 (ii). It is interesting to vet then the assernces between the calculated and measured wind ewo inv barkly looe than 58 . even in what appeared as the worst case 11. ine 1 vilucut poine (0.01). Table 76 (11i) shows that the largest F ome alpference. Of 4.45. betwoen the calculated and the measured - .an senedr in ceen 1. without point $(0,0)$, was abtained for position 4. in row 2. The mellet assference was obtained for position A7 rcup Tin sime in row 2. The scond seallest difference. of $+1.48 \%$ for pollian 10 (0 9 39), vidensa to +5.10 on inclusion of the zero point. War in : fou cemes wach as case 3 (appendix Table A9 (i)) did the Alfferne bend nugativ. Fairly large differences. of 6.64% and 6.62% por noes if end 15 an hrom for cace 5 in Table A9, were obtained for
 Nillunt to 5.20 an adistion of the zero point. In fact all through the en newre wive the differonce becase bigger by including point E.0. The remile for oven nubered woek however generally decreased ofer pint $(0,0)$ men eloed to the dola. The largest difference and Berstore the rorse con wee oblasned in case 6 for position A6 (cup 15i pellows by position 25 (cup 14). However. Inclusion of point (0.0) tebiest un esfserenct betwoen moosured and calculated wind speeds. Thelen 77 and 70 also mow that the nethod of using a reference filit in en com arse vas for a sufficient somple inferior to using one Ot The moeition in uno $N=0$ roference wich has similar micro-climatic thesisione of as teaperature and husidity. As we can see in Table 76. in ase 1 clll cone 8. Uno reiernence taken in the open was just as good tr mailer mioplee and bocoes varso for larger samples.

Table 77. Cup 55 as reference. (i) vind reduction ratios fron measured wind speeds (ii) measured wind speeds (iii) case 1-0: calculated wind speeds with eero excluded. (iv) case $1-0$: wind reduction ratios fron calculated wind speeds with zero point excluded: (v) case 1 to: vind reduction ratios fron frol calculated wind speeds with rero point included: and (vil case 1 to: calculated vind speeds with zero point included: a and b are coefficients given in Table 76. Hote that (1) is average vind speeds of the 24 weeks and (2) is standard deviations (3) is per cent difference of the average of the calculated from the average of measured vind speeds.

Table 77. continued.

(v) Calculated reduction ratios point (0,0) included				(vi) calculated wind speeds point (0,0) included			
case 1 to $a=0.97 \mathrm{~b}=0.02$				case $1+$		$\mathrm{a}=0.97$	$b=0.02$
cup14 cupl5	cup38	cup39		cupl4	cup15	cup38	cup39
0.991 .02	0.99	0.85		2.15	2.22	2.15	1.85
0.900 .99	0.90	0.78		1.77	1.95	1.78	1.54
0.790 .81	0.88	0.76		2.21	2.24	2.46	2.12
1.001 .01	0.95	0.95		2.98	2.99	2.82	2.81
0.88	0.85	0.78		2.80	2.70	2.71	2.19
0.950 .86	0.86	0.81		2.84	2.55	2.55	2.42
0.980 .86	0.89	0.84		3.28	2.89	2.96	2.80
0.770 .76	0.87	0.74		2.50	2.47	2.83	2.39
0.970 .97	0.84	0.86		3.37	3.38	2.91	2.99
0.900 .91	0.82	0.78		2.73	2.76	2.50	2.36
0.860 .76	0.83	0.73		2.79	2.19	2.70	2.39
0.830 .82	0.80	0.74		3.06	3.01	2.95	2.71
0.660 .90	0.84	0.79		1.22	1.66	1.55	1.46
0.891 .01	0.84	0.64		1.29	1.17	1.22	0.93
1.201 .00	0.90	0.58		2.83	2.35	2.13	1.37
1.131 .23	0.86	0.84		3.22	3.52	2.44	2.39
1.141 .02	0.90	0.89		2.31	2.08	1.82	1.81
1.020 .95	0.90	0.91		2.89	2.68	2.51	2.56
0.890 .95	0.86	0.77		2.35	2.19	2.25	2.01
0.860 .71	0.81	0.74		2.28	1.89	2.21	1.95
0.800 .72	0.76	0.65		2.47	2.23	2.34	2.01
0.820 .81	0.75	0.69		2.07	2.07	1.91	1.75
0.810 .81	0.76	0.63		2.79	2.79	2.61	2.15
$0.81 \quad 0.74$	0.75	0.74		3.01	2.75	2.78	2.74
			(1)	2.55	2.18	2.38	2.17
			(2)	0.56	0.49	0.45	0.51
			(3)	0.86	1.86	0.09	5.10

Table 78. Cup 38 as reference. (i) case 2-0: calculated wind speeds with vith sero excluded. (ii) case $2-0$: calculated wind speeds with point excluded. (iii) case 2 to: wind reduction ratios calculated (iii) case 2 to: wind reduction ratios from calculated wind speeds vith zero point included: (iv) case 2 to: calculated wind speeds with zero point included:

(1) calculated reduction ratios point $(0,0)$ not included case 2-0 $\quad \mathrm{a}=0.86 \mathrm{~b}=0.11$ cup 38 as refence cupl1 cupl5 cup 38 cup39				(ii) calculated vind speeds point $(0,0)$ not included case $2-0 \quad a=0.86 \quad b=0.11$ cup 38 as refence				(iii) calculated reduction ratios point (0,0) included case 2 to $\quad a=0.99 \quad b=0.00$ cup 38 as refence cup14 cup15 cup 38 cup 39				(iv) calculated vind speeds point (0,0) included case 2 to $\mathrm{a}=0.99 \mathrm{~b}=0.00$ cup 38 as refence cup14cup15 cup38 cup39				
0.97	1.00	0.97	0.85	2.05	2.11	2.05	1.79	0.99	1.02	0.99	0.85		2.09	2.16	2.09	1.80
0.97	1.05	0.97	0.85	1.72	1.88	1.73	1.52	0.98	1.09	0.99	0.86		1.76	1.94	1.77	1.5
0.88	0.89	0.97	0.85	2.21	2.24	2.43	2.12	0.89	0.90	0.99	0.85		2.22	2.26	2.48	2.13
1.02	1.02	0.97	0.97	2.90	2.91	2.76	2.75	1.05	1.05	0.99	0.99		2.98	2.99	2.82	2.81
1.00	0.97	0.97	0.90	2.75	2.66	2.67	2.17	1.02	0.99	0.99	0.91		2.82	2.72	2.72	2.50
1.07	0.97	0.97	0.93	2.80	2.53	2.53	2.42	1.11	0.99	0.99	0.94		2.89	2.59	2.59	2.45
1.08	0.95	0.97	0.92	3.07	2.74	2.80	2.66	1.10	0.97	0.99	0.93		3.16	2.79	2.86	2.70
0.87	0.86	0.97	0.83	2.40	2.38	2.68	2.30	0.87	0.86	0.99	0.83		2.41	2.39	2.74	2.30
1.11	1.11	0.97	0.99	3.30	3.31	2.89	2.96	1.15	1.15	0.99	1.02		3.12	3.43	2.95	3.03
1.05	1.06	0.97	0.92	2.68	2.71	2.47	2.35	1.09	1.10	0.99	0.93		2.77	2.79	2.52	2.38
1.00	0.90	0.97	0.87	2.66	2.40	2.58	2.31	1.02	0.91	0.99	0.87		2.72	2.42	2.64	2.32
1.00	0.99	0.97	0.90	2.98	2.91	2.89	2.68	1.03	1.01	0.99	0.91		3.06	3.00	2.95	2.76
0.78	1.03	0.97	0.92	1.22	1.61	1.52	1.44	0.77	1.06	0.99	0.93		1.21	1.66	1.55	1
1.8	1,68	8.977	8.76	\$2.38	1, 12	\$, 20	1:3\%	1.38	1.20	0.09	8.75		8.38	8,50	1.24	
1.25	1.36	0.97	0.95	3.05	3.31	2.37	2.32	1.31	1.11	0.99	0.97		3.20	3,50	2.12	
1.21	1.10	0.97	0.96	2.09	1.90	1.69	1.67	1.26	1.13	0.99	0.98		2.19	1.97	1.72	1.1
1.09	1.02	0.97	0.98	2.64	2.46	2.34	2.36	1.13	1.05	0.99	1.00		2.73	2.53	2.39	1
1.01	1.07	0.97	0.68	2.23	2.36	2.15	1.95	1.03	1.10	0.99	0.88		2.24	2.14	2.19	. 1
1.00	0.84	0.97	0.87	2.18	1.83	2.11	1.89	1.02	0.84	0.99	0.87		2.23	1.83	2.16	
1.02	0.93	0.97	0.85	2.15	2.23	2.33	2.03	1.05	0.94	0.99	0.85		2.51	2.27	2.38	
1.04	1.04	0.97	0.89	2.04	2.03	1.89	1.74	1.07	1.07	0.99	0.90		2.10	2.09	1.93	1.1
1.03	1.03	0.97	0.82	2.75	2.75	2.59	2.18	1.06	1.06	0.99	0.81		2.83	2.8	2.64	
1.04	0.96	0.97	0.96	2.95	2.71	2.74	2.70	1.08	0.98	0.99	0.97		3.04	2.96	2.8	
							2.12						2.53	2.47	2.36	2.
				(2) 0.53										0.50	0.4	
					5.07		7.04									6.

470

 cervil of exexing a roformat posibion in un ocen.

4.4 Results on radiation and Grevillea rabusta shading in AF

4.4.1 General

Although agroforestry systems may be considered a feasible alternative in dry-land farming, competition between crop and trees for resources such as soil moigture, sunlight and nutrients affects seed and biomass yields of the crop component. The aim of quantifying the shade effects of two representative Grevillea robusta trees (UT1 \& PT2) on the under-crop at Matanya was to identify sectors around the trees where their shades concentrate for most of the maize (and bean) crop growing season and to mathematically relate the yields in that sector(s) to radiation received there. This may enable us to better understand the role of tree shading in yield reduction or yield improvement in an agroforestry system. We hypothesize that in dry months under semi-arid conditions, such as in Matanya. tree shades may have beneficial (protective) effects for growing crope with respect to reducing excessive water loss through evaporation and decrease water stress. The Grovillea tree shades may protect the intercrop from too high radiation load and accompanying high temperatures leading to yield improvement in shaded areas. However, in wet months we suspect that shade may be too heavy and plants may not be able to receive all the PAR that it can use which may lead to growth impairment. We need to establish which of the two (yield reduction or yield improvement) was stronger in the case of Matanya AF. We started by first standardizing the radiometers by intercomparing them in the open.

4.4.2 Comparison of thirteen tube solarimeters and two Kipp

solarimeters in the opon in October, 1991
Figs. 284-286 show daily tube and Kipp solarimeter readings during the intercomparison period (i.e. 20/10/91-31/10/91) in the open. We can see from Figs. 284-286 that the tubes for 94.188 and 376 cm from UT1 gave almost identical radiation readings with $T b$ \& kp2. All solarimeters were giving similar readings within ± 0.28 of the average. wing the oalibration oonetente of the manufacturorm.

Figs. 287 \& 288 present regression constants of Tb (5r. Nr. 2087) and kp2 (Sr Nr. 2091) on kpl (Sr. Nr. 3080) of the daily solar radiation data. Regression equations derived during calibration exercise for the molarimeters for use in open as standard and substandard (in case of Tb) were as follows: Tb on kpl was $\mathrm{Tb}=-0.22+1.01$ kpl (r-99.96\%): kp2 on kp1 was kp2- $-0.31+1.01 * k p 1$ ($r=99.93 \%$) while Tb on kp2 was $\mathrm{Tb}=0.10+1.00 * \mathrm{kp} 2(\mathrm{r}-99.89 \%)$. The gradients of the two equations were the same but their intercepts differed by 28.2% (Fig. 287). That meant that kpl responded to solar radiation at a lower initial value than both Tb and kp2 radiometers. Fig. 288 show that Tb is directly related to kp2 by the ratio $1: 0.998 * 1: 1$. The $T b$ responded to solar radiation at a
 sensitive to radiation in its off-set value but closer to kp 2 than kp .

The canopy of the tall UT1 tends to intercept PAR before it can reach the shorter maize/beans intercrop. This has negative yield implications, as long as other resources like water: nutrients are not limiting. However. the shade beneficial effect. that is a protective (for the intercrop) or complementary (tree yield) effect to the maize/beane intercrop may be expected to be high in the eector where tree shading was maximum because of limiting water and nutrients

4.4.2 Comparison of thirteen tube solarimeters and two Kipp

solarimeters in the open in October, 1991
Figs. 284-286 show daily tube and Kipp solarimeter readings during the intercomparison period (i.e. 20/10/91-31/10/91) in the open. We can see from Figs. 284-286 that the tubes for 94.188 and 376 cm from UT1 gave almost identical radiation readings with $T b$ \& kp2. All solarimeters were giving similar readings within $\pm 0.2 \%$ of the average. wing the oalibration conatente of the manufacturorm.

Figs. 287 \& 288 present regression constants of Tb (9r. Nr. 2087) and kp2 (Sr Nr. 2091) on kp1 (5r. Nr. 3080) of the daily solar radiation data. Regression equations derived during calibration exercise for the solarimeters for use in open as standard and substandard (in case of Tb) were as follows: Tb on $\mathrm{kp1}$ was $\mathrm{Tb}=-0.22+1.01 * \mathrm{kpl}$ ($\mathrm{r}-99.96 \%$): kp2 on kp1 was kp2= $-0.31+1.01 * k p 1 \quad(r=99.93 \%)$ while Tb on $\mathrm{kp2}$ was Tb=0.10+1.00*kp2 ($r=99.89 \%$). The gradients of the two equations were the same but their intercepts differed by 28.2% (Fig. 287). That meant that kpl responded to solar radiation at a lower initial value than both Tb and kp2 radiometers. Fig. 288 showe that Tb is directly related to kp2 by the ratio 1:0.998 * 1:1. The Tb responded to solar radiation at a Lower initial value than $\mathrm{kp2}$. by $0.1 \mathrm{M} \mathrm{mm}^{-\mathrm{a}}$. The Tb was fairly more sensitive to radiation in its off-set value but closer to kp2 than kp1.

The canopy of the tall UT1 tends to intercept PAR before it can reach the shorter maize/beans intercrop. This has negative yield implications, as long as other resources like water: nutrients are not limfting. However. the shade beneficial effect. that is a protective (for the intercrop) or complementary (tree yield) effect to the maice/beans interarop may be expected to be hith in the eoctor whore tree shading was maximum because of limiting water and nutriente
resources. The isolated trees such as those in AF in Matanya cast shadows that move over a sunny ground. Since, under limiting water conditions, the tree shades protect under-crops from excessive high temperatures and high atmospheric evaporative demands. crop yields in AF therefore are expected to reflect more a protective effect of shade than competition for light.

We have already seen in section 3.1 that maize total biomass harvesting was done row-by-row. The separation distance between maize rows was 94 cm . The maize yields obtained in the first row on either side of the tree rows were taken to correlate with light that was representatively measured in a straight line 94 cm from UT1. Similarly for the maize yields at 188 cm and the third and fourth rows at 282 and 376 cm respectively from the tree rows. The effect of radiation falling on a straight line passing 94 cm from the tree therefore were matched to the yields. The TSLs were installed at 94.188 and 376 cm . Because radial yields could not be taken. the offect of radiation falling on a circle 94 cm from the tree was therefore correlated with the yields of the row passing at 94 cm as the best approximation of yields depending on shade.
4.4.3 Solar radiation received by intercrop under UT1 during SR91:

Effect of UT1 shade on daily radiation totals.
Variations of daily total radiation. that is at 94 cm from UT1 ((NE)1. (SE)1. (SW)1 and (NW)1). at 188 cm from UT1 ((NE)2. (SE)2. (SW)2 and (NWIL and at 376 cm from UT1 ((NE)3. (EE)3. (SW)3 and (NW)3) aro displayed in the Appendix Figs. A6-A26. for the periods of November and December 1991. Apr11 and May 1992 and October-November 1992. We observe from the variations in these figures that total radiation was affected
by the UT1 canopy shade and its position with respect to the tree stem in different seasons. superimposed on the seasonal and daily fluctuations of incoming solar radiation.

We here below deal in detail with the effect of radiation totals on the maize under the UT1 canopy and PT2 canopy using the radiation received by maize plants at 94,188 and 376 cl as fraction of the radiation in the open, herein referred to as fractional radiation.

Reifsnyder (1989) contends that transmission of solar radiation through tree canopies in the middle latitudes is not linear when looked at as function of crown closure or tree density but near linear (or nearly linear) in the tropics. He found that a stand with 50% crown closure transmitted less than 20% of the incident solar radiation. a rather open stand with only 10% crown closure reduced radiation reaching the ground by about 25\%. From these findings he concluded that sparse stands would offer considerable protection from excessive radiation loads. On the other hand a crown closure of only 1/3. a rather open stand. would reduce radiation by $2 / 3$ (to be precise roughly 60\%) which might result in too little radiation for some crops.

The solar radiation which was recorded by the tube solarimeter in the open (Tb) is equal to that which fell on the top of the Grevillea canopy. Total solar radiation transmission (penetration) to the undercrop was taken to be the sum of radiation which missed the trees completely to reach the ground (or intercrop) and that which passed through the tree canopies according to Eq. 13. The total fraction was the radiation read by the tube solarimeters (TSLs) under the tree

Fig. 284. Solar radiation readings during comparison of TSLs in the open in October 1991 for TSLs to be installed at 94 cm from experimental Grevillea robusta tree.

Fig. 285. Solar radiation readings during comparison of TSLs in the open in October 1991 for TSLs to be installed at 188 cm from experimental Grevillea robusta tree.

Fig. 286. Solar radiation readings during comparison of TSLs in the open in October 1991 for TSLs to be installed at 376 cm from experimental Grevillea robusta tree.

Fig. 287. A scatter and a $1: 1$ line of Tb and kp 2 on kpl during comparison in the open in October 1991.

Fig. 288. A scatter plot and 1:1 line of Tb on kp2 during comparison in the open in October 1991.

Fig. 289, Average monthly radiation for TSLs under UT1 as fractions of radiation read with Tb in the open area (fractional radiation) during November 1991.
divided by the radiation read by Tb in the open (1.e. TSLs/Tb). The fraction TSLs/Tb may be taken as parameter $\&$ in Eq .10 and used to relate solar radiation to total dry matter produced in the AF system. The degree of canopy shade concentration was reflected in relative magnitude of the fraction that was read by the sensors. The higher the shade concentration the smaller was the fraction.

Fig. 289 presents a November. 1991, bar-chart of fractional radiation in each sector with respect to UT1. We see from Fiof. 289 that at 94 Cm from UT1 the shade was concentrated in NE and NW. Sector (NE)1 received 0.80 of radiation recorded by To. whereas (NW) had 0.81 . while the other sections received 0.88 . Maximum fractional radiation reduction to 0.82 for the tubes at 188 cm was observed in sectors $(S W 12$ and (NW)2, but here (SE)2 and (NEI2 remained also with 0.83 and 0.84. The highest radiation reduction to 0.82 for the tubes at 376 cm was observed in sectors and (SE)3.

From Fig. 289 therefore we can see that in November 1991 on the average the UT1 canopy shade was hichest in the NE sector at the three distances together $(94.188$ and 376 cm$)$ from UT1. following rather closely by SE and NW and again relatively closely to that by SW.

4.4.3 (b) Fractional radiation received by the inter-crop in December

Fig. 290 presents a bar-chart of fractional radiation in four sectors: NE. SE. SW and NW of UT1 in December. 1991 (see Fig. 11). We see from Fig. 290 that at 94 cm the highest reduction to 0.76 of that in the open was in $(N W) 1$ of $U 1$ which also had a similar reduction for (NW)2 at 188 cm . NE recelved 0.80 of radiation in the open throurh the canopy. Thus the canopy shade was concentrated mainly in area between NE ard NW. SW Sector also received low radiation rates unly at 188 cm . In

Fig. 290. Average monthly radiation for TSLs under UT1 as function of fractional radiation during December 1991.

Fig. 291. Average fraction radiation of Short Rains 1991 (SR91) for TSLs under UT1.
all the UII canopy reduced solar radiation by between 0.09 and 0.24 . The least reduction at 94 cm was 0.09 which occurred in the SE sector.

From Fig. 290 therefore we can see that. with more emphasis than in November. in December 1991 the UT1 canopy shade was rather concentrated in NW and NE sectors at the three distance 194. 188 and 376 cm) from UT1 together. At 188 cm shading is heavier than at 94 cm . and the overall 376 cm falls in between.

4.4.3 (c) Fractional radiation received by the inter-crop during SR91

Fig. 291 gives the fractional radiation during the maize crop growing period. The growing period does not cover January since the crop will have stopped growing as it will have reached maturity. At that stage radiation will have no effect on dry matter accumulation. The October data were not available as that was the month when calibration in the open took place. We can see from Fig. 291 that the fractional radiation received by the TSLs at 94 cm from UT1 ranged from 0.78 in (NW) 1 to 0.89 in (SE)1. At 188 cm it ranaed from 0.79 in (NW)2 to 0.83 in (SE) 2 and at 376 cm the reverse was the case as it ranged from 0.82 in (SE)3 to 0.86 in (NW)3.

The canopy shading for SR91 was therefore concentrated in NW up to 188 CD from UT1. and in NE. Particularly (SE)1 and (SW)1 recesve somewhere less shade. making overall shade at 188 cm higner than at the two other distances.

4.4.4 Solar radiation received by intercrop under UT1 during LR92
 4.4.4 (a) Fractional radiation received by the inter-crop in April

Fig. 292 shows a bar-chart of fractional radıation in each sector of UT1 in Apri1. 1992 (Fig. 11). We see from Fig. 292 that at 94 cm the

Fig. 292. Average monthly radiation for TSLs under UT1 as function of fractional radiation during April 1992.

Fig. 293. Average monthly radiation for TSLs under UT1 as function of fractional radiation during May 1992.
highest radiation reduction to 0.76 of that in the open occurred 3 r sector (SE) 1 of UT1. The next hianest reduction. to 0.78 of that in the open, occurred in the (SW)I sector. The least canopy shading at 94 cm occurred in sector NW. which Sector had the highest shading in SR91. The fraction received at 94 cm from UT1 was therefore between 0.76 in sector (SE) 1 and 0.88 in sector (NW)1. The radiation received at 188 cm from UT1 was between 0.83 of that in the open in sector $(5 W) 2$ and 0.86 in sector (NE)2. At 376 cm the tubes recorded radiation fraction between 0.87 and 0.92 . This was a smaller reduction range than that reconded for this distance overall in SK91.

Thus the Grevillea robusta (UT1) canopy shade was neaviest in the area between SW and SE sectors (Fig. 292). and clearly heaviest at 94 cm . followed by 188 cm and 376 cm in that order.

4.4.4 (b) Fractional radiation received by the inter-crop in May

Fig. 293 shows a bar-chart of fractional radiation in each sector of UT1 in May. 1992 (Fig. 11). We see from Fig. 293 that at 94 cll the heaviest radiation shading resulted in reduction to 0.80 of that in the open in sector (SE)I of UT1. Sectors (NE)1 and (SW)I each received 0.88 of the radiation in the open. The least canopy shading occurred at 94 cm . resulting in receipt of 0.96 of the radiation in the open. again in sector NW. Fraction received at 188 cm from UT1 was between 0.85 of that in the open in sector $S W$ and 0.89 in sector NE. At $370^{\circ} \mathrm{cm}$ the tubes recorded radiation between 0.87 and 0.89 in sectors $N W$ and $S E$ respectively.

In the month of May. 1992 the Gnevillea robusta (UT1) canoov shade was overall heavier in the SE sector between 94 and 188 cm . followed by

SW (over all distances) (Fig. 293). Differences between distances were overall very small. with 188 cm getting a bit more shade than the other two distances.

4.4.4 (c) Fractional radiation received by the inter-crop in June

Fig. 294 presents the results of fractional radiation received in each sector of UT1 in June, 1992. We see from Fig. 294 that at 94 cm the heaviest radiation shading resulted in reduction to 0.81 of the radiation in the open in sector SE of UT1. The least canopy shading averred at 94 cm , resulting in receipt of 0.92 of the radiation in the open. again in sector NW. Fractional radiation received at 188 cm from UT1 was between 0.81 of that in the open in sector SE and 0.89 in sector NW. At 376 cm the tubes recorded radiation between 0.87 in NE and 0.91 in sectors SW and SE.

In June. 1992 the UT1 canopy shade was heavier in the SE and NE sectors at the distance of up to 188 cm from the tree (Fig. 294), with 188 cm getting somewhat some share.

4.4.4 (d) Fractional radiation received by the inter-crop during LR92

Fig. 295 gives the fractional radiation during the maize crop growing pericd in the LR92 season. We can see from Fig. 295 that the iractional radiation received by the TSLs was the lowest in sector SE at 94 cm from UT1. The fractional radiation received ranged from 0.79 in SE to 0.92 in NW sectors. At 188 cm it ranged with little change from 0.84 in both SE and 5 S to 0.87 in both NE and NW . At 376 cm again the reverse was the case as the fractional radiation of 0.90 in SE was the highest while lowest of 0.87 was recorded in NW. but differences were small again.

Fig. 294. Average monthly radiation for TSLs as function of fractional radiation under unpruned Grevillea robusta tree (UT1) during June 1992.

Fig. 295. Average monthly radiation for TSLs as function of fractional radiation under unpruned Grevillea robusta tree (UT1) for the entire LR92.

The canopy shading of solar radiation for LR92 was therefore concentrated in SE followed by SW. both up to 188 cm from UT1. At 376 cm the shade was clearly less. while it was identical overall at 94 cm and 188 cm.

4.4.5 Solar radiation received by intercrop under UT1 during SR92

4.4.5 (a) Fractional radiation received by the inter-crop in October

Fig. 296 shows a bar-chart of fractional radiation in each sector of UTI in October. 1992. We see from Fig. 296 that at 94 cm from UT1 the heaviest shading shifted to sector (NE)1 resulting in a
receipt of 0.76 of the radiation in the open. Sectors (NW)I and (SE) 1 received 0.80 and 0.84 of the radiation in the open. The position of least canopy shading at 94 cm also shifted to 5 W which received 0.88 of that in the open. Radiation received at 188 cm from UT1 lay between 0.80 of that in the open in both NW and NE and 0.82 in both $S E$ and SW. At 376 cm the tubes reconded radiation fractions between 0.84 and 0.89 in (NE) 3 and (SW) 3 sectors.

In the month of October. 1992 the Grevillea robusta (UT1) canopy shade was concentrated mainly in the northern part of UT1 between NE and NW (see Fig̣. 296), with 188 cm receiving a bit more shade than 94 cm but both comparably more than 376 cm distance.

4.4.5 (b) Fractional radiation received by the inter-crop in November

Fig. 297 shows a bar-chart of fractional radiation in the four secturs of UT1 in November. 1992. We can see from Fig. 297 that at 94 cm from UTl the heaviest radiation shading was in the NE sector. wirch had $0 . B 4$ or its value in the open. Other sectors had much lighter canopy

Fig. 296. Average monthly radiation for TSLs under UT1 as function of fractional radiation during October 1992

Fig. 297. Average monthly radiation for TSLs under UT1 as function of fractional radiation during November 1992.
shading, with SW receiving even 0.96 of its value in the open. Radiation received at 188 cm from UT1 lay between 0.81 of that in the open in SW and 0.90 in NE. At 376 cm the tubes recorded sectorial radiation of between 0.89 and 0.92 . In the month of November. 1992. the Grevillea robusta (UT1) canopy shade was heaviest overall in the NW part of UT1. but also at 188 cm in the between SW and NW of UT1 (see Fig. 297).
There was overall more shade at 188 cm .
4.4.5 (c) Fractional radiation received by the inter-crop in December

Fig. 298 displays a bar-chart of fractional radiation in the four sectors of UT1 in December. 1992. We can see from Fig. 298 that at 94 cm from UII the heaviest radiation shading was in the NE sector which had 0.83 of its amount in the open. We notice from Fig. 298 that the centre of UI1 canoDy snading has moved to 188 cm NW and SW and extended to cover 376 cll in those sectors. Sectors SE and SW had very lught canopy shading at 94 cm distance. With $5 W$ receiving the highest fractional radiation of 0.93 of its value in the open. Fadiation received at 188 cm from UT1 lay between 0.80 in $N W$ (and 0.82 in SW) and 0.92 in SE. At 376 cm the tubes reconded sectorial fractional radiation of between 0.78 in (SE)3 and 0.93 in (NE)3. There was therefore a reduction of between 0.07 and 0.22 of its value in the open.

We can therefore conclude for December. 1992. that the Grevillea mousta (UT1) canopy shade was heaviest in the northern and western parts of UT1 between 188 and 376 cm (see Fig. 298). which overall received close to the same sinade.

Fig. 298. Average monthly radiation for TSLs under UT1 as function of fractional radiation during December 1992.

Fig. 299. Average monthly radiation for TSLs as function of fractional radiation under unpruned Grevillea robusta tree (UT1) for the entire SR92.

4.4.5 (d) Fractional radiation received by the inter-crop during SR92

Fig. 299 gives the sectorial fractional radiation during the maize crop growing period in the SR92 season. We can see from Fig. 299 that the fractional radiation received by the TSLs at 94 cm from UT1 was lowest in sector NE. The fractional radiation received at 94 cm ranged from 0.81 in NE to 0.92 in SW sectors. The fractional radiation received at 188 cm ranged from 0.81 in NW to 0.87 in both SE and NE sectors. At 376 cm the fractional radiation recelved was between 0.85 in SW and 0.90 in NE.

The canopy shading of solar radiation for SR92 was ạ̣ain heaviest between NE through NW and SW. with NW being most shaded overall among them. For the whole season. Ilke in October and November. the 188 cm distance received more shade.

4.4.6 Comparison of thirteen tubes (Tb \& TSLs) and one Kipps (kp2) solarimeters in the open in April-May. 1993

Comparison of the radiometers in the open and cailoration of Delta-T solar integrators and tube flushing was done frow 14/4/ to 31/5/93. Figs. 300-302 displays these comparisons at a short time interval of six days, that is from 19/4/-24/4/93. The short period data plots in Fjgs. 300-302 were meant to show clarity of comparisons. During this comparison we also calibrated Delta-T solar intearators and removed some tubes whose painted white sensing elements had cracked paint on their surfaces and were beainning to snow erroneous readings when compared in the open to Kipp solarimeter. The thirteen tube lone To \& twelve T5Ls) and one kipp (kp2) solarimeter (since kpl had been removed and it could not be repaired) were installed at 50 cm above the oround in an open area. without trees nearby to cast shadows on them. As in
1991. calibration of the 12 TSLs consisted of 4 (E1. W1. S1 \& N1) which were to be installed around the unpruned Grevillea robusta tree 1 (marked UT1) at 94 cm .4 (E2. W2, S2 \& N2) at 188 cm and 4 (E3. W3. S3 \& N3) at 376 cm from the tree trunk (see Fig. 11). We can see from Figs. 300-302 that the tubes for 94,188 and 376 cm from UT1 gave almost identical radiation readings with Tb \& kp 2 to within about $\pm 0.1 \%$ on the average.

4.4.7 Fractional radiation received by the inter-crop in June. 1993

After calibration of the instruments in the open. as presented in section 4.4.5. the tube solarimeters (TSLs) were taiken back and installed in AF under UT1 as in Fig. 11. while the Tb and $k p 2$ were installed in the open as before.

Fig. 303 presents results of fractional radiation received above the maize crop under UT1 in the four sectors (see Fig. 11) during the middle of LR93. in June 1993. which was the only month of data for this LR93 season. We can see from Fig. 303 that UT1 canopy had grown thicker than it was in SR92, as there was generally quite substantial reduction (i.e. $16-39 \%$) in solar radiation transmitted to the sensors. The cold and cloudy period in Kenya. when most non-precipitating clouds cover the sky thereby shielding the ground. begins in June and ends in September. This also might have contributed to low radiation reaching the sensors. but would affect even Tb and $\mathrm{kp2}$ and the fraction would be unchanged. Hence leaving us with the first mentioned reason for reduced fraction. It means nevertheless that total solar radiation 15 an important input next to the iractions when correlations with blomass take place. The region of heaviest radiation canopy snading had moved further from tree stem and affected mainiy the area around 188 cm and beyond.

Fig. 300. Daily radiation totals for TSLs for 94 cm during part of comparison in the open: 19/4/-24/4/93.

Fig. 301. Daily radiation totals for TSLs for 188 cm during part of comparison in the open: 19/4/-24/4/93.

At 94 cm from UT1. sector NE received 0.79 of the radation in the open which was the lowest at that distance. Sector SW received the highest fraction of 0.84 . Sectors SE and NW recelved 0.81 and 0.82 Fiạs. respectively of the amount in the open.

At 188 cm from UT1. sector SE received 0.63 of the radiation in the open which was the lowest at that distance. Sector NW received the highest fraction of 0.74 . Sectors $S W$ and NE received 0.69 and 0.68 respectively of the amount in the open.

At 376 cm from UT1. sectors NW and SW each received 0.61 of the radiation in the open which were the least overall indicating that the canopy shade at distance 376 cm was somewhat heavier west of UT1. For June 1993 as a whole there are hardly any differences between sectors in shade received. The shade at distances 188 and 376 cm were again much heavier than the shade at 94 distance. with 376 cm havino most.

4.4.8 Solar radiation received by intercrop under UII during SR93

4.4.8 (a) Fractional radiation received by the inter-crop in October

Fig. 304 presents results of fractional radiation received above the maize crop under UT1 in the four sectors isee Fig. 11) durina October. 1993. We can see from Fig. 304 that UT1 canody nad orown even thacker than in June 1993 as the range of the reduction in sular radiation transmitted to the sensors had increased (i.e. 0.16-0.47). So the canopy shading in October 1993 was heavier than in June 1993. The realion of heaviest canody shading had now shifted to the northern and western part of UT1 to affect NE and NW sector. especially at 94 cm (where in fact all sectors are involved in the heaviest shade as SW and even SE have appreciable shade). At 188 cm distance from the tree stem.

Fig. 302. Daily radiation totals for TSLs for 376 cm during part of comparison in the open: 19/4/-24/4/93.

Fig. 303. Average radiation as a function of fractional radiation for TSLs under UT1 during LR93, June.

It is particularly the NW and a bit less NE sector. but overall shadina at 396 cm is equal to that of 188 cm be it more evenly spread over sectors.
4.4.8 (b) Fractional radiation received by the inter-crop in November

Fig. 305 presents results for November. 1993. We can see from Fig. 305 that the UT1 canopy had reduced compared to October 1993 as among other things the range of the reduction in solar radiation transmitted to the sensors had reduced (i.e. 0.15-0.42). So the canopy shading in November was somewhat lighter than in October 1993. The region of heaviest canopy shading was still in the northern part of UT1 and affected most heavily the NE and NW sectors. and most serious at 188 cm distance from the tree stem. where the other sectors recelved more radiation. Overall. particularly 376 cm distance received less shade.

At 94 cm from UT1 sector SE received 0.68 of the radiation in the open which was the lowest and 0.05 higher than the October 1993 value at that distance from the tree in the same sector. Sector NW received the highest fraction of 0.75 which again was 0.17 higher than the October value. Hence the canopy shading had reduced. Sectors NE and $S W$ on the average received close to 0.70 respectively of the amount in the open.

At 188 cm from UT1 sector NW received 0.58 of the radiation in the open which was the lowest at that distance. This was hlogher than the October 1993 value by 0.05 in that sector and at that distance from the tree. Sector SE received the highest fraction of 0.81 which was 0.03 lower than October 1993 value in that sector.

Fig. 304. Average monthly radiation as a function of fractional radiation for TSLs under UT1 during October 1993.

Fig. 305. Average monthly radiation as function of fractional radiation for TSLs under UT1 during November 1993.
4.4.8 (c) Fractional radiation received by the inter-crop in December Fig. 306 presents results for December. 1993. The solar radiation transmitted was from 0.19-0.39. The area of the heaviest canopy shading was still in the northern part of UT1 and affected mainiv NW and NE sectors. especially at 188 and 376 cm distance from the tree stem. The other sectors had relatively more shade at 94 cm . Overall there was little difference between distances, but at 94 cm it was more uniformly over the sectors.

At 376 cm from UT1 sector NW received the lowest fraction of 0.64 . less than in November, and sector SE received the highest fraction, of 0.76, appreciably less than in November. Sector $5 W$ received 0.75 while NE received 0.66 of the amount in the open. together also less than in November.
4.4.8 (d) Fractional radiation received by the inter-crop during SR93

Fig. 307 gives the sectorial fractional radiation during the maize crop growing period in the SR93 season. We can see trom Fig. 307 that the fractional radiation received by the TSLs at 94 cm from UII was lowest in sector NE where 0.65 of radiation in the open was received and 0.69 in SW sectors. This was less than the fraction recesved in SR92 (see Fig. 299) which ranged from 0.81 in NE to 0.92 in SW sectors. indicating than that UTl canopy had orown in thickness. thereby reducino the fractional radiation received at 94 cm by between 0.16 and 0.23 in these two sectors.

The fractional radiation received at 188 cm in SR93 ranged from 0.57 in NW to 0.82 in SE sectors. This was less than that received in SR92 (see Fig. 299) which ranaed from 0.81 in NW to 0.87 in SE and NE sectors confirming that the UT1 canopy had orown in thickness thereby

Fig. 306. Average monthly radiation as a function of fractional radiation for TSLs under UT1 during December 1993.

Fig. 307. Average radiation as a function of fractional radiation for TSLs under UT1 during SR93.
reducing the fractional radiation received at 188 cm by between 0.05 ana 0.24 . for the sectors $S E$ and $N W$.

At 376 cm the fractional radiation received was between 0.65 in NW and 0.77 in SE. This was again less than that received at 376 cm in $\operatorname{SR9} 9$ which within 0.85 in $S W$ and 0.90 in NE so again with less radiation received by the sensors at that distance.

The canopy shading of solar radiation for SR93 was concentrated mainly between NE through NW, with SW following at some distance. At s4 cm shading was hiah throughout and at 188 cm particularly in the NW sector. This was followed again here by $N E$. The comparable overall shading at 376 cm was more evenly distributed over the sectors.

4.4.9 Solar radiation received by intercrop under PT2 during LR94

4.4.9 (a) Fractional radiation received by the inter-crop in May

As mentioned in section 4.4.1. solar radiation measurements for LR94 and SR94 were done under the canopy of the root pruned Grevillea robusta tree marked PT2 according to the layout presented in F1a. 11.

The position of PT2 in relation to otier Grevilled robusta trees in the AF plot at Matanya may be seen in Fig. 9. The two Grevillea trees. one root pruned (PT2) and another root unpruned (UT1). were planted at the same time in 1986. However, the root-pruned PT2 had a smaller canopy than the unpruned UTI and consequently transmitted more radiation than UT1. although the tree sectors affected by the canopy shades are of course the same.

Fig. 308 presents results for May. 1994. Note that the data for April of that year were not avallable. We can see from Fig. 308 that the PT2 canopy had transmitted appreciably more fractional radiation than

Fig. 308. Average monthly radiation as a function of fractional radiation for TSLs under PT2 during May 1994.

Fig. 309. Average monthly radiation as a function of fractional radiation for TSLs under PT2 during June 1994.

UT1 in December 1993 and in June 1993. where it varied from 0.19Figs. respectively 0.16 to 0.39 in both months. The fractional radiation received by the sensors in May 1994 ranged from 0.74 to 0.91 . The PT 2 canopy therefore reduced the fractional radiation that fell on it by between 0.09 and 0.26 . The area of the heaviest canopy shading had
shifted to affect the NE part of PT2 most heavily. followed by SE sector at 94 cm (evenly distributed) and particularly at 188 cm distance from the tree stem. Shading at 376 cm was less. particularly the compared to 188 cm distance.

Comparing UT1 and PT2 canoples we find that NW and NE are the sector of heaviest canopy shading by the UT1 in Vecember and there was an even distribution in June 1993 while the heaviest shading had shifted in May 1994 to NE. Overall the shading the was much lighter under the PT2 canopy than under the UT1 canopy. While the shadina had also shifted towards the stem now.

4.4.9 (b) Fractional radiation received by the inter-crop in June

Fig. 309 presents results for June. 1994. We can see from Fia. 309 that the PT2 canopy had transmitted even more fractional radiation in June 1994 than in May 1994 in all sectors except SW at 94 and 376 cm . The solar radiation received by the sensors ranged from 0.68 to 0.92 . The PT2 canopy therefore transmitted more fractional radiation that fell on it in June 1994 by between 0.01 and 0.06 compared to May. 1994. in all sectors except SW. The highest overall transmission was in SE in June. 1994 compared to SW in May. 1994. For the heaviest overall shadina for June was in the SW sector while it was NE in May. The shade becomes again relatively heavier towards the stem.

4.4.9 (c) Fractional radiation received by the inter-crop during LR94

Fia. 310 gives the sectorial fractional radiation durina the mazze crop growing period in the LR94 season. We can see from Fiq. 310 that the fractional radiation received by the $T 5 L s$ at 94 cm Irom PT2 was lowest in sector $S W$ where 0.76 of radiation in the oden was received. The fractional radiation received in LR94 at 94 cm ranaed to 0.86 in the NW sector. This was more than the fraction recelved in SR93 isee Fig. 315) which ranged from 0.65 in NE to 0.69 in $S W$ sectors indicating that the PT2 canopy was now thinner than the UT1 canopy and hence transmatted more fractional radiation at 94 cm . The fractional radiation received at 188 cm in LR94 ranged from 0.80 in NE to 0.90 in SW sectors. This was much more than that received in SR93 (see Fig. 3061 which randed from 0.57 in NW to 0.82 in SE sectors again indicatina that the PT2 canopy was thinner than UII canopy and allowed in more fractional radiation at 188 cm.

At 376 cm the fractional radiation received was between 0.84 in 5 W and 0.89 in NE and NW. This again was more than that received at 376 cm in SR93 which was within 0.65 in NW and 0.77 in SE resulting in increase in fractional radiation received at 188 cm . The canopy shading of solar radiation for LR94 was heaviest in the 5 W . where 94 cm and 376 cm had their lowest fraction. followed by $N E$. where 188 cm has its lowest fraction. Overall most shade was received at 94 cm distance from the tree. followed by 188 cm .

4.4.10 Solar radiation received by intercrop under PT2 during SR94

 4.4.10 (a) Fractional radiation received by the inter-crop in OctoberAs mentioned in section 4.4.8. solar radiation measurements for

LR94 and SR94 were done under the canopy of the root pruned Grevilled robusta tree marked PT2 according to the layout presented in Fig. 11. Fig. 311 presents results of fractional radiation received above the maize crop under PT2 in the four sectors during October. 1994. We can see from Fig. 311 that PT2 canopy had orown thicker as it had transmitted relatively less solar radiation in uctober 1994 than it did in June 1994. The range transmitted in October was between 0.64 in NW to 0.81 in the SW sectors. However the canopy shadina was somewhat more overall distributed in October than in June 1994. There was a shıft of the shaded area to the NW and NE sectors of PT2. Darticularly at 94 cm . but for the NW sector also at 188 cm and for the NE sector also at 376 cm distance.

At 94 cm from PT2, sector NW received the lowest fractional radiation of 0.64 of its value in the open. This was 0.24 lower than the June 1994 value in the same sector. Sector $5 E$ received the hiahest fraction at 94 cm of 0.78 which was 0.09 lower than that recelved in June 1994 in the same sector. Sectors SW and NE recelved fractional radiation of 0.74 and 0.68 respectively. which was 0.06 hagher and 0.19 lower than for June 1994 respectively. Hence the canopy shadina under PT2 in October. 1994 was heavier than in June 1994 by about 0.12 at 94 cm , on the average.

At 188 cm from PT2. sector NW received 0.70 of the radiation in the open which was the lowest at that distance in October. 1994 and again lower than the June 1994 value by 0.16 in that sector and at that distance from the tree. Sector $5 E$ received the highest fraction at 188 cmo of 0.79 whach was lower than the June 1994 value by 0.11 in that sector. There was therefore a net decrease in canopy shading by about

Fiog. 310. Average radiation as a function of fractional radiation for TSLs under PT2 during LR94.

Fig. 311. Average monthly radiation as a function of fractional radiation for TSLs under PT2 during October 1994.
0.13 of that in the open. Sectors NE and SW received 0.75 and 0.74 respectively of the amount in the open. 0.10 and 0.18 lower than in June.

At 376 cm from PT2 the NE sector receaved 0.69 which was the lowest at that distance from PT2 in October. 1994. Sector SW received the highest value of 0.81 of the amount in the open. On the average the fraction was much lower than in June.

A comparison with October 1993 (UT1 canopy) confirms the shading to be lighter under PT2. particularly in the sectors SW and NW. with an overall average of 0.08 , the difference being higher at 94 cm .

4.4 .10 (b) Fractional radiation received by the inter-crop in November

Fig. 312 presents results of fractional radiation under PT2 in the four sectors during November. 1994. We can see from Fig. 312 that the FT2 canopy had become relatively thinner than in November 1994 in October 1994 as it had transmitted relatively more fractional radiation in November 1994 than it did in October 1994. The range transmitted in November was from 0.72 in SE and SW at 94 Cll to 0.89 in the SW at 376 cm sectors. So the canopy shading in Uctober was heavier than in November 1994. and it was heaviest around the tree trunk at 94 cm distance from PT2. throughout all sectors.

At 94 cm from PT2 sectors $S E$ and $S W$ each recelved the lowest fractional radiation of 0.72 of its value in the open. This was 0.06 and 0.02 respectively lower in sectors SE and SW than the October 1994 values in these sectors. Sector $N E$ received the highest fraction at 94 cm of 0.74 which was 0.06 nigher than that received in October 1994 in the same sector. sector NW received iractional radiation of 0.73. 0.09 hagher than the previous month. Hence the canopy snadina under PT2 in

514

November. 1994 was a very little bit lighter than in October 1994 by about 0.05 on the average.

At 188 cm from PT2 sector NW received 0.78 of the radiation in the open which was the lowest at that distance in November. 1994 but more than the October 1994 value by 0.08 in that sector and at that distance from the tree. Sector SE received the highest fraction at 188 cm of 0.81 which was higher than the October 1994 value by 0.02 in that sector. Sectors NE and SW received 0.80 and 0.79 respectively of the amount in the open. both 0.05 hagher than October. There was therefore a net decrease in canopy shading at 188 cm by about 0.05 of that in the open on the average.

At 376 cm from PT2 the NW sector received 0.81 which was the lowest at that distance from PT2 in November. 1994. Sector SE received the hignest value of 0.89 of the amount in the open. All values were again higher than in October.

A comparison with November 1993 (UT1 canopy) gives the same average overall picture of 0.08 more fractional radiation received under PT2, here particularly, in the NE and NW sectors, but now with the least difference at 94 cm from stem.

4.4.10 (c) Fractional radiation received by the inter-crop in December

Fig. 313 presents results of fractional radiation under PI2 in the four sectors during December. 1994. We notice from Fig. 313 that the PT2 canopy had orown relatively thicker in December. 1994 than it was in November 1994 in the NE and SW sectors but had become thinner in SE and NW sectors, be it total shade increased overall. The range transmitted in December 1994 was from 0.49 in $5 W$ at 94 cm to 0.97 in the $5 E$ at 376 Cm .

Fig. 312. Average monthly radiation as a function of fractional radiation for TSLs under PT2 during November 1994.

Fig. 313. Average monthly radiation as a function of fractional radiation for TSLs under PT2 during December 1994.

At 94 cml from PT2. sectors $S W$ received the lowest fractional radiation of 0.49 of its value in the open. This was 0.23 lower than the November 1994 value in the same sector. Sector SE and NW each received the highest fraction at 94 cm of 0.77 which was 0.05 and 0.04 higher than that received in November 1994 in the respective sectors. Sector NE recelved fractional radiation of 0.73 . only 0.01 lower than in the previous month. Hence the canopy shading under PT2 at 94 cm in December. 1994 was comparatively heavier than in November 1994 by about 0.04 on the average.

At 188 cm from PT2. sector 5 W received 0.73 of the radiation in the open which was the lowest at that distance in December. 1994 and lower than the November 1994 value by 0.06 in that sector and at that distance from the tree. Sector SE received the highest fraction in December 1994 at 188 cm of 0.82 which was hiọher than the November 1994 value by 0.01 in that sector. There was therefore only a meager net increase in canopy shading at 188 cm by about 0.01 of that in the open. Sectors NE and NW recejved 0.76 and 0.81 respectively of the amount in the open. respectively 0.09 lower and higher than in November.

At 376 cm from PT2 the NE sector received 0.69 whach was the lowest at that distance from PT2 in December. 1994. The highest fraction of 0.97 was recelved in the SE sector. This was 0.08 more than the Novemier value received in that sector. but overall at this distance the difference was neglagible. Concentration of shade was in the SW. followed at some distance by the NE. While lowest radiation was received at 44 cm throughout with an exception in this NE sector at 376 cm distance.

A comparison with December 1993 (UT1 canopy) shows a 0.065
in the NW sector but appreciably more shade in the $S W$ sector. Cverall most additional radiation 13 received at 376 cm .

4.4.10 (d) Fractional radiation received by the inter-crop during SR94

Fig. 314 gives the sectorial fractional radiation received by the sensors under PT2 in SR94 season. We notice in Fig. 314 that the fractional radiation received by the TSLs at 94 cm from PIL was lowest in sector $5 W$ where 0.65 of radiation in the open was received, ranging to 0.76 in the SE sector. This was less than the iraction received in LR94 (see Fig. 310) which ranged at this distance from 0.76 in 5 W to 0.86 in NW sectors. indicating that the PT2 canopy had grown much between the two seasons. This is true throughout the comparison of these two seasons but particularly heavy at 94 cm .

The fractional radiation received at 188 cm in SRG4 ranged from 0.76 in NW to 0.81 in SE sectors. This was adain less than that received in LR94 which ranged from 0.80 in NE to 0.90 in $S W$ sectors again indicating that the PT2 canopy had grown between the two seasons at that distance.

At 376 cm the fractional radiation recelved was between 0.73 in NE and 0.86 in SE. This agaln was less than that received at 376 cm in Lry4 which ranged from 0.84 in $S W$ and 0.89 in both $N E$ and NW. resulting in decreased fractional radiation received at 376 cm by the sensors. The overall canopy shading of solar radiation for SR94 was again heaviest in the $5 W$, particularly at 94 cm .

We also confinm here that the canopy of the pruned PT2 as expected allowed in more radiation overall. to reach the sensors than the canopy of the unpruned UT1, as we may see from a comparison with SR93 iFig. 307). The same intercomparison learns that particularly more radiation

518

reached the NE and NW sectors under the root pruned tree. ana particularly at distances 188 cm and 376 cm from the tree more radiation was received by the inter-crop under noot pruned conditions. Thus. root pruning enhances radiation reaching the inter-crop. which may benefit from radiative enrichment as long as the increased radiation does not cause higher temperatures which are lethal to the plants. or increase evaporation significantly under dry conditions.

4.4.11 Shading effects of Grevillea robusta canopy on maize dry matter yield at Matanya

4.4.11 (a) General

We have hitherto presented the fractional radiation received by the intercrop under the Grevillea robusta trees (UT1 \& PT2) with respect to that in the open. In the following sections we use this fractional radiation to relate radiation interception in the dominant sector(s) with the total maize blomass yields for the season studied. The maize biomass yields used have already been presented in section 4.1. We did not deal with bean yields as radiation intercepted by bean plants had been transmitted by the tree and maize plant canoples before reaching the beans. Hence tracking such radiation amounts was a complex matter that we did not have the capacity to deal with. Only with ceptometers this can these days be done with a reasonable speed.

The fractional radiation at TSL levels installed at a neiant of 2 m under UT1 and PT2 were used to relate total maize yield (1.e. total dry matter) produced to intercepted radiation by the maize croD after transmission through the tree canopy for the two plots in which these trees stood that were selected for radiation measurements. The
fractional radiation may be taken as f in Eq. 10. We have already seen that according to Eq. 10 the total dry matter. DM. produced, when water is not limiting. depends on: the amount of dry matter formed per unit radiation intercepted (also known as conversion efficiency, e), the total PAR radiation (mean of daily totals). S. and duration of crop growth t. The two components of temporal radiation interception are therefore the duration of the crop cycle and the rate of leaf area development between emergence and attarnment of an adequate value of leaf area index (total leaf area over total area of ground) to intercept most light. According to Keating and Carberry (1993) the leaf area index of 3 marks the lowest limit (L23 Eq. 13) as an adequate value for crop interception of light.

By recressing maize total dry matter (biomass plus ograin). in this case per row of 5 m in the treatments where the selected trees were and as a function of distance to the trees. produced on the total radiation for a crop season in the selected sectors. we obtain a gradient of the reorression line which is a function of s, e and t and an intercept which depends on other factors like temperature. and evaporation. Net biomass accumulation (i.e. gross photosynthesis less respiration) under optimal orowth conditions has been linearly related to cumulative light interception for a number of crops (Warren, 1969: Kiniry et al.. 1989: Sinclair and Horie. 1989). The slope of this relationship, the amount of DM produced per unit of intercepted solar radiation is also termed the crop radiation-use efficiency (RUE) (Keating and Carberry. 1993). For our purpose RUE is calculated using above-ground biomass and the fractional radiation intercepted by the maize crop. Consequently the daily increase in above-qround biomass (YLD) can be estimated using Eq.
fractional radiation may be taken as f in Eq. 10 . We have already seen that according to Eq. 10 the total dry matter. DM. produced. when water is not limiting. depends on: the amount of dry matter formed per unit radiation intercepted lalso known as conversion efficiency. el. the total PAR radiation (mean of daily totals). S. and duration of crop growth t. The two components of temporal radiation interception are therefore the duration of the crop cycle and the rate of leaf area development between emergence and attainment of an adequate value of leaf area index (total leaf area over total area of ground) to intercept most light. According to Keating and Carberry (1993) the leaf area index of 3 marks the lowest limit ($\mathrm{L} \geq 3 \mathrm{Ea} .13$) as an adequate value for crop interception of light.

By regressing maize total dry matter (biomass plus grain). in this case per row of 5 m in the treatments where the selected trees were and as a function of distance to the trees. produced on the total radiation for a crop season in the selected sectors, we obtain a gradient of the regression line which is a function of S. e and t and an intercept which depends on other factors like temperature. and evaporation. Net biomass accumulation (i.e. gross photosynthesis less respiration) under optimal growth conditions has been linearly related to cumulative light interception for a number of crops (Warren. 1969; kiniry et ai.. 1989: Sinclair and Horie. 1989). The slope of this relationship. the amount of DM produced per unit of intercepted solar radiation is also termed the crop radiation-use efficiency (RUE) (Keating and Carberry. 1993). For our purpose RUE is calculated using above-oround bicmass and the fractional radiation intercepted by the malze crop. Consequently the daily increase in above-ground biomass (YID) can be estimated using Eq.

$Y L D=E * R d+C$

where YLD is increase in above-around blomass over time: E. the gradient of the line, 15 RUE : Rd is fractional radiation intercepted by maize crop and C is the intercept of the reqression line.

The results in Figs. 315-325 relate total biomass to fractional radiation incident on the maize plants after transmission throuan UII or PT2 canopies. as a function of distance to the trees. We have already mentioned elsewhere in section 4.1 that harvesting of LR92 biomass was done in the area enclosed by PGRST and P'Q'R'S'T' in Fig. 9. The maize biomass on the eastern side of UT1 was not harvested for LR92. This gave us fewer points than expected for $L R 92$ to relate to the radiation recelved by the maize plants, but did not affect accuracy.

4.4.11 (b) Maize dry matter yield estimated from solar radiation at

Matanya for LR92-SR93

Figs. 315-317 present linear relations between inal maize biomass yields per row in the AFM2 plot and fractional radiation transmitted by the UT1 canopy at 94.188 and 376 cm . We observe in Fig. 315 that at 94 cm from the UT1 stem there was a rather low correlation coefficient ($r=63.0 \%$) between dry matter produced by the maize crop and radiation measured by the $15 L$. which was assumed equal to the radiation received by the maize canopy. High ' r ' would mean that radiation lialing on TSL was virtually the only determining factor for the maize crop to produce dry matter. Based on the criterion of low 'r'we may infer
inefficient use of the captured radiation resource by the maize. We observe a wider scatter of the data at higher radiation. for $\operatorname{SR92}$, than at lower values for SR93 and LR93 (Fig. 315). There was hạ̣her dry matter production at higher radiation in SR92, when we had enough rainfall. than in any other seasons. From Table 79 we see that the errors of estimate (err of YLDoet $=1.69 \mathrm{t} / \mathrm{ha}$ and Rd coefficient $=6.44$ t/ha) in yields are quite high. indicating high variability of bromass produced per unit of radiation resource captured. This was expected as dry matter production depends on many production factors lor resource capture ability of the crop), solar radiation being only one of them. Keating and Carberry (1993) believe that the issue of capture and use of resources in an intercropping system is essentially one of a managed degree of competition between component crops. We know that efficient use of resources is the major reason for intercropping.

We can see in Fig. 315 that calculated dry matter generally increased with increase in fractional radiation towards that observed in the open. Alternatively dry matter production decrease with decrease in fractional radiation until about 0.65 where it virtually stopped. Radiation below that ratio at 94 cm from the tree stem was found to be too little for maize to produce any dry matter. However. there was also a case of very low yields and relatively high radjation, were another factor must have been limiting.

We observe in Fig. 316 that at 188 cm from UT1: stem. the correlation coefficient ($r=52.2 \%$) decreased compared to 94 cm distance from the tree. We see in Table 79 that the errors of estimate lerr of YLDeat $=1.69 \mathrm{t} / \mathrm{ha}$ and Rd coefficient $=8.37 \mathrm{t} / \mathrm{ha}$) in yields have remained (relatively) the same. The scatter was even wider here for SK9Z than at 94 cm for hicher radiation values. At 188 cm from the UT1 stem.

Fig. 315. The effect on mazze dry matter yiedds of transmatted radiation through UT1 canopy at 94 cm frorn the tree durang iR92-SR93 seasons.

Fig. 316. The effect on maize dry matter yields of transmitted radiation through UT1 canopy at 188 cm from the tree during LR92-SR93 seasons.

Fig. 317. The effect on maize dry matter yields of transmitted radiation through UTI canopy at 376 cm from the tree during LR92-SR93 seasons.
dry marter production decreases with decrease in fractional radiation until also about 0.65 where it virtually stopped. Again. radiation below that ratio (TSLs/Tb) was found to be too little for maize to produce dry matter at 188 cm from the tree stem. Again cases with other inmiting factors are clear.

We observe in Fig. 317 that at 376 cm from UTI's stem, the correlation coefficient ($r=65.48$) increased slightly compared to 94 cm distance from the tree. This slight increase was also reilected in the regression coefficients ' a ' and ' b ' and in the error of estimate Isay err of YLDost $=1.47 \mathrm{t} / \mathrm{ha}$ and Rd coefficient $=5.53 \mathrm{t} / \mathrm{na}$) of yields
(see Table 79). The scatter in higher values. In which hign biomass produced at high radiation in SR92. was still wide. At 376 cm from the tree stem. shading was less and direct solar radiation was higher. At 376 cm irom UT1 stem dry matter production decreased with decrease in fractional radiation until about 0.65 again it virtually stopped. Again radiation below 0.65 at 376 cm from the tree stem was found to be too little for malze to produce dry matter.

From the buiked data of the three distances from UII we observe in Fig. 318 that the correlation coefficient was close to 60%. The scatter in higher values was less wide in the bulked picture. but there was higher biomass produced at high radiation in SR92 and lower biomass at high radiation in LR92 and also in two of the six cases in LR93. The dry matter production for the bulked data decreased with decrease in fractional radiation until about 0.65 . as measured for all distances individually, when no more production could occur. Fractional radiation below about 0.65 for the three distances trom the tree stem was found to be too little for maize to produce much dry matter.

525

From the foregoing results it is obvious that the majze crop under Matanya conditions would not produce any crop if heavy tree shade resulted in fractional radiation dropping beiow about 05% of that in the open area. The orradients and intercepts of the rearession lines for the three distances from UT1 were conservative and averaged $11.28 \pm 0.4 \hat{2} \mathrm{t} / \mathrm{ha}$ and $-7.40 \pm 0.30 \mathrm{t} / \mathrm{ha}$ respectively. This suggested that dry matter produced per unit increase in intercepted radiation was a conservative quantity under UT1-type shading.

4.4.11 (c) Maize dry matter yield estimated from solar radiation on the eastern and western sides of U11 in LR92-SR93

The gradient of the rearession line for the eastern side of UT1 was 17.23 t/ha (Fig. 319) which widely differed from that for the western side. which was 7.47 t/ha (Fig. 320 and Table 79). The dry matter produced per unit radiation intercepted in the eastern side of UT1 was different from the western side. The eastern side of UT1 produced more dry matter per unit of radiation intercepted than the western side by $9.76 \mathrm{t} / \mathrm{ha}$. This meant maize plants on the eastern side of UT1 were more efficient in utilization of radiation than the western side by a factor of $10 \mathrm{t} / \mathrm{ha}$. These differences were refiected in thear intercepts which also differed by 7.02 tha.

The reason is likely to be that on the western side of UII there was crop heiant depression (see Plate 11), which led to an open intercrop canopy whose likely causative factors have been discussed in sections 4.2 and 4.3. The plants there did not develod optimum canopy structure to intercept radiation, convert absorbed eneroy into photosynthate and partition assimilates between plant components to give total dry patter yields. In otner words the crop canopy in the depressed
area west of UT1 did not develop adequate canopy to cover the ground that would intercept optimum amount of incident radiation. For this matter the result for the western side is considered inaccurate. hence no inference may be drawn from it.

4.4.11 (d) Maize dry matter yields estimated from seasonal solar radiation in LR92 \& LR93 and SR92 \& SR93

The gradients of the regression line for Long rains period (LR92 \& LR93) was 0.81 t/ha (Fig. 321) which oreatly differed from that for Short rains (LR92 \& LR93) period of 19.96 tha (Fig. 322 and Table 79). The amount of dry matter formed per unit radiation intercepted (also known as conversion efficiency. el. was much higher during the seasons of Short rains than during the seasons of Long rains. The Short rains crops produced more dry matter per unit of radiation intercepted than the Long rains crops by 19.15 t/ha. The Short rains maize crops were more efficient in utilization of radiation than the Long rains crops by a factor of about $20 \mathrm{t} / \mathrm{ha}$. The correlation coefficient berween radiation and dry matter produced was also very high during the Short rains seasons $(r=93.6 \%)$ than during Long rains $(r=40.0 \%)$. These differences were also reflected in their intercepts as -13.35 t/ha for the Short rains and -0.39 t /ha for the Long rains seasons. The intercepts therefore differed by $12.96 \mathrm{t} / \mathrm{ha}$ which was again very hioh.

The r for the eastern side. only for the Short rains, was 0.926 while that for the western side only was 0.940 . When the dry matter produced in the control under full radiation load was included. r reduced to 0.545 in the eastern and to 0.638 in the western sides of UT1 (see Flgs. 322 \& 323 and 324 \& 325). This shows that full radiation load was counter-productive with regard to dry matter production. The Dlants

Fig. 318. The effect on maize dry matter yields of transmitted radiation through UT1 canopy for all the three distances (bulked data) from the tree during LR92SR93 seasons.

Fig. 319. The effect on maize dry matter yields of transmitted radiation through UT1 canopy on the eastern side of UT1 during LR92-SR93 seasons.

Fig. 320. The effect on maize dry matter yields of transmitted radiation through UT1 canopy on the western side of UT1 during LR92-SR93 seasons.

Fig. 321. The effect on maize dry matter yields of transmitted radiation through UTl canopy during two Long Rains seasons (LR92 \& LR93).

529

in the control may have succumbed more to higher radiation load than those in the AF plot. The gradients of the reqression ines for the eastern and western sides before inclusion of the dry matter produced in the control under full radiation load were respectively 22.01 and 17.78
t/ha isee Table 79). We may therefore infer that the dry matter
produced per unit increase in intercepted radiation was higher in the eastern side of UT1 than on the western side. This again points to the fact that the intercrop on the western side of UT1 did not develop enough canopy to adequately cover the ground to intercept radiation (see in Plate 9). However, the was still a relatively high r of 0.940 between dry matter production and radiation received by the intercrop.

The intercepts for the eastern and the western of UII were -14.98 and $-11.68 \mathrm{t} / \mathrm{ha}$ which shows that the eastern side lost more dry matter to respiratory processes at nil radration. The standard error of estimate $Y_{\text {eer }}=0.94$ for the eastern side and $Y_{\text {oert }}=0.72$ for the western side. When dry matter at full radiation load in the control was included there was more scatter on the eastern (Yoet-1.72) than on western side (Yat=1.33). The intercepts for both western and eastern sides remained relatively close, that $15-4.57$ on the eastern and $-4.10 \mathrm{t} / \mathrm{ha}$ on the western sides.

The following reasons were likely to be the cause of these differences: (i) Matanya received more rains during Short rains seasons (i.e. SR92 \& SR93) than during the Long rains seasons (i.e. LR92 \& LR93). The plants in the Short rains seasons therefore developed better canopy structures to intercept radiation. convert absorbed enerory into photosynthate and partition assimilates between plant components which gave higher total dry matter yields in the Short rains seasons than in the Long rains seasons. (ii) Matanya had stronger wind speeds in the

Fig. 322. The effect on maize dry matter yields of transmitted radiation through UTl canopy during two Short Rains seasons (SR92 \& SR93).

Fig. 323. The effect on maize dry matter yields of transmitted radiation through UT1 canopy and full radiation in Mulched control (M) during Short Rains seasons (SR92 \& SR93).

Long rains seasons (LR92 \& LR93) than in the Short rains seasons il.e. SR92 \& SR93). We have mentioned elsewhere above that high irequency of leaf flutter in relation to the strength of the wind speeds affects light capture and enzyme kınetics effects as explained by Allen et al. (1976). Apart from bending the plants thereby increasirig the rates of plants respiration. the strong winds also mechanically tear the leaves thereby destroying the photosynthesizing cells. The strong winds also increase rates of transpiration and evaporation from plants and soils.

4.4.11 (e) Maize dry matter yield estimated from solar radiation under PT2 in LR94 \& SR94

The pruned Grevillea robusta tree (PT2) had a more open and smaller canopy (or crown) than the unpruned Grevillea robusta tree (UT1). although the two were adjacent (in positions $\operatorname{Tr} 3$ and $\operatorname{Tr} 4$) and on the same tree row. B(TR1) (see appendix Table A8 and Fig. 91.

The gradient of the regression line for SR94 under PIC was 4.93 t/ha (Fig. 325) which was a little more than that for LR94 of 3.08 tha (Fig. 324 and Table 79) by 1.85 t/ha. The same trend under UT1. where the short rains crop produced more biomass than the Long rains. was also observed under PT2 for same reasons given above in section 4.4.10 (c). However under the PT2 canopy the maize plants were more efficient in utilization of radiation in SRg4 than in LR94 by this small margin indicating that their conversion efficiency. e. had dropped under PI2 as compared to under UT1. In both cases (i.e. SR94 \& LR94) the fractional radiation was hiqher under PT2 canopy than under UT1. The high radiation loads under the PT2 canopy may have lowered the efficiency of conversion to dry matter. The correlation coefficients

Fig. 324. The effect on maize dry matter yields on the east of UT1 of transmitted radiation through UTl canopy during two Short Rains seasons (SR92 \& SR93).

Fig. 325. The effect on maize dry matter yields on the east of UT1 of transmitted radiation through UT1 canopy and full radiation in Mulched control during two Short Rains seasons (SR92 \& SR93).

Fig. 326. The effect on maize dry matter yields on the west of UTl of transmitted radiation through UTl canopy during two Short Rains seasons (SR92 \& SR93).

Fig. 327. The effect on maize dry matter yields on the west of UT1 of transmitted radiation through UTI canopy and full radiation in Mulched control during two short Rains seasons (SR92 \& SR93).

534

Fig. 328. The effect on maize dry matter yields on the east of PT2 of transmitted radiation through PT2 canopy during two rainy seasons of 1994 (LR94 \& SR94).

Fig. 329. The effect on maize dry matter yields on the east of PT2 of transmitted radiation through PT2 canopy and full radiation in Local control (L) during two rainy seasons of 1994 (LR94 \& SR94).

Fig. 330. The effect on maize dry matter yields on the west of PT2 of transmitted radiation through PT2 canopy during two rainy seasons of 1994 (LR94 \& SR94).

Fig. 331. The effect on maize dry matter yields on the west of PT2 of transmitted radiation through PT2 canopy and full radiation in Local control (L) during two rainy seasons of 1994 (LR94 \& SR94).

Table 79. Recression coefficients of calculation of mazze total blomass yields from solar radjation data for LR92-SRY3 under UT1 and LR94 \& SR94 under PT2. YLUeer is calculated maize biomass yield. Rd is fractional radiation. a 15 an intercept of the regression line. b is the gradient of the reoression line. Other rearession terms have already been met in earlier sections and their meanings are the same even here. The coefficients satisfy a linear equation of the type:
YLDost $=a+b * R d$

position wrt Seasons tree contro	YLD const	std err or N YLD.	coeff of Kd	std err coeff Rd	corr
LR92-SR93: under UT1 canopy					
(i) 94 cm -	- 7.49	$7 \quad 1.69$	11.68	6.44	0.630
(11) 188 cm -	- 7.72	$7 \quad 1.69$	11.46	8.37	0.522
(iii) 376 cm	- 6.99	$7 \quad 1.47$	10.70	5.53	0.654
(iv) Eulked	- 7.03	$21 \quad 1.47$	10.85	3.44	0.586
(v) East	-11.73	$9 \quad 1.45$	17.23	5.73	0.751
(vi) West	-4.71	$12 \quad 1.41$	7.47	4.10	0.499

SR92 \& SR93: under UT1 canopy

(i)	East $\&$							
West	-	-13.35	12	0.73	19.96	2.37	0.936	
(1i)	East	-	-14.98	6	0.95	22.01	4.49	0.926
(iji)	East	$+M$	-4.57	8	1.72	8.22	5.10	0.545
(iv)	West	-	-11.08	6	0.72	17.78	3.23	0.940
(v)	East	$+M$	-4.10	8	1.33	7.37	3.03	0.636

LR92 \& LR93: under UT1 canopy

(i) East	-0.39	$12 \quad 0.20$	0.81	0.09	0.400
Year 1994: LR94 \& SR94: under PT2 canopy					
(1) SR94: East \& West (ij) LR94: East \& West	-1.99 -1.27	$\begin{array}{ll}6 & 0.91 \\ 6 & 0.31\end{array}$	4.93 3.08	6.58 4.54	0.351 0.321
LR94 \& SR94:					
(i) East -	-7.35	$6 \quad 0.46$	10.34	3.99	0.792
(11) East +L	-8.47	$8 \quad 0.48$	11.73	1.88	0.931
(iji) West	4.86	$6 \quad 0.27$	-5.10	1.67	0.836
(iv) West +L	-4.68	$8 \quad 1.05$	7.18	3.57	0.635
(v) Buiked	2.34	$12 \quad 0.56$	-0.98	2.79	0.110

under PT2 were very 10 w indeed ($r=32.1 \%$ for LR94 and $r=35.1 \%$ for SR94) (see Table 79). Low conversion efficiencies, e. under PT2 (Fias. 3 L 4 \& 325) meant that very higher fractional radiation and therefore very nigh radiation amounts were needed to attain lowest cut-orf limit, which may

537

lead to high radiation loads and crop physiological damage uncer such canopies. However, in Matanva water as a major limiting factor may have drastically influenced e. The bulked data in Figs. 326 \& 327 snowed even gloomier picture than each of the season values. The open canopy under PT2 allowed in more radiation than the level necessary which may have led to increased respiration and destruction of dry matter with every added unit of radiation, hence the negative gradient, -0.98 . The correlation between dry matter produced (or destroyed) and radiation was very small (i.e r= 11.0\%).

Examining the dry matter produced on the eastern and western sides of PT2 with and without control plots data (Figs. 328 \& 329 and 330 \& 331) we see that r for the eastern side of PT2 was 0.792 which increased by 17.6% to 0.931 . However. r for the western side of PT2 (which also did not develop full intercrop canopy coverl was 0.836 which dropped by 16.8% to 0.635 when dry matter data for the Local control were included. The latter. decrease in r when data in the control were added. was consistent with the fandings for the SR92 \& SR93 seasons discussed above. Again this suggested the effect of open canopy of the solar radiation received by the plants.

We observe in both for the LR94 and SR94 that there was higher dry matter produced per unit radiation intercepted in the eastem than in the western sides of PT2 before and after adding data in the control plots. The gradients of the regression lane for the eastern side was $10.34 \mathrm{t} / \mathrm{ha}$ which slightly improved to 11.73 t /ha when data in the control were added. However. on the western side every added unat of radiation decreased dry matter by $5.10 \mathrm{t} / \mathrm{ha}$. This nevertheless changed the trend which increased when the control data were included. This change of the trend points to the fact that other factors such as water
are much more important. Higher radiation when water 15 avallable. as for the SR92, increased dry matter production.

We may conclude here that only Short rains seasons have a chance for a sensible correlation between radiation and biomass yields if no depressions, for other reasons other than radiation, occur. A part Irom SR92 other seasons suffered from drought.

539
 CHAPIER FOUR

4.5 Results on soil temperature at Matanya

4.5.1 Results of thermistor calibration

We can see from the results of calibration in the Calibration Chamber as given in Fig. 332 that the two sets of instruments were very close. The correlation coefficient ($r=0.999$) of the resistances was very high and close to one. The gradient of the regression line of TM2 on TM1 was 1.05 while the intercept was -0.25 . They responded very closely to the thermostat temperature in the calibration Chamber. Fig. 333 shows an asymptotic inverse quadratic curve of thermistor resistance versus the chamber temperatures.

The high relationship between the sensors implies that temperatures measured are nearly the same and any irregularity is not because of differences in the sensors but other factors.

4.5.2. Average weekly soil temperatures (AWT) at Matanya

Soil temperatures. like other parameters. respond to between season changes in the factors that influence surface and near-surface temperatures and temperature gradients (e.g. Mungai. 1991. Bussiere and Cellier, 1994). Hence. interpretation of soil temperature data for an experimental area may require a knowledge of these factors. The factors include: atmospheric conditions. soil molsture content and soil porosity, soil as well as surface cover. Others are soil albedo (be it as a minor factor). long wave radiation emissivity, volumetric heat capacity and thermal conductivity. all of the near surface soil and the surface cover. such as mulch.

Fig. 332. The correlation curve for the old (TM1) and new (TM2) sets of Grant thermistors

Fig. 333. The correlation curve for the old and new sets of Grant thermistors against temperature in the Temperature-Humidity Calibration Chamber.
4.5.2 (a) AWT in agroforestry plot (AF).

Soil temperatures under mulched minimum-tilled and Local deeptilled soil are examined in the context of the distance from the rootpruned/ root-unpruned Grevillea robusta trees in the intercrop of maize/beans in AF in comparison to bare soil and the control plots for SR91. LR92. LR93 and SR93.
(i) Short rains growing season of 1991 (SR91)

All plots were mulched with 3 t/ha crop residue and deep tilled for SR91 as reported in section 4.1. A surface mulch of relatively larae, non layered elements loses intercepted water rapidly and only somewhat limits the heat and water vapour exchanges between the soll and the atmosphere. The kind of mulch existing of maize stalks is expected to prevent more run-off than evaporation. The mulch and kind of tillage used affect all components of the energy balance and so net radiation. soil heat flux. as well as the sensible and latent heat fluxes at the soil and mulch surfaces.

Fig. 334 presents average weekly soil temperatures (AWT) for SR91 for thermistors ATM2 and ATM4 at 7.5 cm depth and ATM1 and ATM3 at 15 cm depths at 94 (in positions AM1) and 376 cm (in positions BM1) from pruned tree PT1 (see appendix Table A11). PTI was located in the upper tree row (see Figs. 8 and 11) in pruned plot (AFM1). From week wikl to wk9 the average weekly temperatures (AWT) remained relatively stable at around $18.7^{\circ} \mathrm{C}$ after which they started increasing as January approached. AWT in AM1 and BM1 were sometames haghest at 15 cm depth. but the temperature differences are initlally small. We can see from Fig. 334 that AWI in positions AM1 and BM1 were generally on the upward trend
after wk9. AWT in position BM1 decreased rather more rapldly after wik6 than AWT in AM1. AWT in position AM1 increased somewhat faster arter wk9 than AWT in BM1.

The increase after wk9 was assoclated with expected high temperatures during the hot dry season (HD) which occurs from late December to early March before the onset of the Long Rains season (March-June) (see section 4.1). High AWT in week wk3 were associated with a drier (more sunny) week while low AWT in WK9 were associated with a less sunny wetter one. The AWT at AM1 decreased rather slowly with time after wk5 because the tree canopy impeded radiative exchange between the sky and the soll surface with respect to both long wave radiation, most important during night-time, and short wave radiation during day-time. This exchange affected differently the heat bolance of the soil next to PT1 in position AM1 and further away in position BM1. Thermistors in BM1 were further from PT1. hence heat loss to the atmosphere through radiative cooling, evaporative cooling and sensible heat loss (surface cooler or warmer than air above it) tend to be more in position BM1 than in position AM1.

Fig. 335 presents average weekly soil temperatures (AWT) for thermistors ATM5. ATM6. ATM7 and ATM8 in positions ALI and BL1 from PT2 for SR91 (see appendix Table A11). PT2 was located in pruned (AFL1) plot in the same tree row as PT1.

AWT for PT2 behaved in a similar way to AWT for PT1. However AWT in wk9 was stall lower at 7.5 cm compared to those at 15 cm . but then the ones at 94 cm were more. Again wk3 had generally hach AWT while wk9 had low AWT for the same reasons already advanced.

AWT in the lower part of AF (Fig. 336) at unpruned tree UT4 in plot AFM2 had similar trend to AWI at tree PT1 although the temperatures

Fig. 334. Weekly average soil temperatures at the depths of 7.5 and 15 cm at the distances of 94 and 376 cm from pruned tree PT1 in Mulched plot (AFM1) during SR91.

Fig. 335. Weekly average soil temperatures at the depths of 7.5 and 15 cm at the distances of 94 and 376 cm from pruned tree PT2 in Local plot (AFL1) during SR91.
decreased less in wik9 than in the earlier weeks. Fadiative heatang ana cooling was minimal here compared to PT1 and PI2 in the upper part of $A F$. This may have been because in the lower part of $A F$ the western hedge (WH) and nearby staff houses influenced the surface neating negatavely. especially in the afternoon when their shadows tended to fall on this part. As result the AWT at BM2 (376 cm from UT4) increased almost at the same rate as the AWT at $A M 2(94 \mathrm{~cm}$ from UT4). Also wind reauction was appreciable near UT4 compared to PT1/PT2 (see section 4.3). This explains the higner temperatures gradually reached. In unpruned area (AFL2) (Fig. 337) there was more evidence of radiative neating and cooling at BL2 than at AL2 (thermistor ATM16 for 7.5 cm was faulty. So we did not instal it in the field). The behaviour of AWT at 15 cm depth (ATM15) pointed to more radiative cooling at BL2 than at BME. Fol the equally treated plots of SR91. the variables were onnina/ not pruning and wind reduction /non wind reduction. The soll moisture status in the periphery of the pruned tree was supposed to be higher than in the unpruned area as the shallow root of the unpruned trees take more water. The thermal capacity of the soll next to pruned soll would be higher resulting in higher temperatures according to Eq. 16. The opposite appears to be true when comparing Figs. 342-345. This must be due to the important role of wind reduction in the area of the unpruned erees isee section 4.3). It should well be reminded that all plots had been ureated equally with mulch and soll temperature differences had to come from differences in shading, pruning and reduction of wind.
(ii) Long rains growing season of 1992 (LR92)

For iR92 the AF plot was sub-divided into four strips running East-West. two of which were mulched and minimum tilled to a depth of

545

$4.0-5.0 \mathrm{~cm}$ winle the other two were unmulched and deep tasied to a deprn of $20.0-25.0 \mathrm{~cm}$ as we have aiready seen in section 4.1.2. The thermistors were installed before land preparation for the commi Growing season and remained in place througnout that seasors ald the dry seasun that followed. Inatialization problems. nowever. resulted iram Irequent removal of the Grants to downicad the data and chanoe the batteries. This somewhat caused some instabllity in temperature fiuctuations as at would take one to two days before trese iluctuations wouid tabilize ađãin. We did soll temperature measurements irı füus experımentai perıods: P1. P2. P3 and P4. Weeks wki-wkj were in P1. wk 4 wh8 were in P2. wiky-wkli were P3 and wki2-wki5 were in P4 (see apunalx Table Al2 for the dates of these weeks).

Fig. 33 ó presents AWI for LTश9 at PTi in orunea. nuw Mulched and manimum-tilied plot (AFM1). Perlods P1 and F4 had generally buwer AW1 than periods F2 and P3. In P1 hıon AWI were observed at 15 cim aeptn $1 r_{1}$ Dositions AMI and BMI. In positions $A M i$ and $\overline{\mathrm{BL}}$. we observe smald temperature dafferences. nughest AWT at 15 cm depth and the sowest at 7.5 cm deptri. with the nuanest differences even at 94 cm . The lowest temperatures at 7.5 cm were most likely due to a difference in mulch effect. differences in soll molsture between the two distances aral differences in damping depths discussed. Comparına Fias. 340 ard 347 both the above arouments are strenathened. Under non-mulched conditions and deep tillage 94 cm remains below 370 cm at buth debths but particularly at 15 cm . We also expect influence from als mass temperatures que to scuth east monscion. tnat flows in wom the induari Ucean during this tame of the year. as seen in Fig. A5 wirastiths. ATíl and from day time radiation as shown by strona reactions in wh7. Iri Fa (wk4-wkB) the situation was very different. High Awr were ooserved

Fig. 336. Weekly average soil temperatures at the depths of 7.5 and 15 cm at the distances of 94 and 376 cm from unpruned tree UT4 in Mulched plot (AFM2) during SR91.

Fig. 337. Weekly average soil temperatures at the depths of 7.5 and 15 cm at the distances of 94 and 376 cm from unpruned tree UT5 in Mulched plot (AFL2) during SR91

Fig. 338. Weekly average soil temperatures at the depths of 7.5 and 15 cm at the distances of 94 and 376 cm from pruned tree PT1 in Mulched plot (AFMI) during LR92.

Fig. 339. Weekly average soil temperatures at the depths of 7.5 and 15 cm at the distances of 94 and 376 cm from pruned tree PT2 in Local plot (AFL1) during LR92.
closer to pruned tree (PT1) in position AM1 at both depths (7.5 and 15 cm).

This suggested that there was heavier PT1 canopy cover in P2 than in period P1 as the same was increasing in density since new follage continued to develop with the progression of the Long rains. Thas might have reduced radiative cooling thereby making the 7.5 cm warmer than 15 cm . In position BLI radiative cooling dominated. This was more what could be expected with respect to comparison of 94 cm and 376 cm .

The general increase of average weekly soll temperatures P2 was due to among others higher cloud cover. which impeded radiative heat loss to the atmosphere and increased long wave counter radiation from the clouds, even though there was some radiative input during day-time. Mulching assisted in keeping the soil warmer and molster. Rainfali during wk7 and night-time air mass (katabatic winds) from the surrounding high mountains (Mt. Kenya and Mts. Aberdares) and also cool south-easterly winds must have caused lower AWT. The strong. mainly southerly winds also enhance latent heat (or evaporative) cooling. The delayed effect in the soil of cloud cover on radiative cooling showed up in P4 (wk12-wk15).

As Fig. A5 shows the high temperatures may not have resulted from warmer air mass which normally originates from the Arabian desert in December till early March. Hence, we find that the only plausible reason for high AWT in P3 (wk9-wk11). was thackening of non-precipitating low level strato-cumulus clouds that cover the whole of East Africa from June to early August of each year (Griffiths. 1972). These clouds come with S.E. Winds that blow from the Indian ocean during this time. but not deep enough to precipitate (Griffiths, 1972). Such clouds impede long wave radiation loss to the atmosphere.

Fig. 340. Weekly average soil temperatures at the depths of 7.5 and 15 cm at the distances of 94 and 376 cm from unpruned tree UT4 in Mulched plot (AFM2) during LR92.

Fig. 341. Weekly average soil temperatures at the depths of 7.5 and 15 cm at the distances of 94 and 376 cm from unpruned tree UT5 in Local plot (AFL2) during LR92.

Deep-tillage resulted in big clods which evaporated and dried up quite fast as observed in Fig. 339. The soil at ALi was cooler than ar BL1. Now everywhere AWT at 94 cm were lower than at 376 cm . showing a trend of increasing and then decreasing radiation with distance from trees.

In the lower part of AF. like in Fig. 338, we see from Fig. 340 that AWT at UT4 in AFM2 were higher at 15 cm depth than at 7.5 cm depth at both distances from the tree. Both AFM1 and AFMZ were mulcied and Minimum-tilled, though AFM2 was in unpruned area in tree row D (TR3) (see Fig. 9). The common treatments PT1 and UT4 were mulch cover and minimum tillage. Lower AWT at 7.5 cm at both trees (PTI \& UT4) and distances (94 and 376 cm) were therefore due to these common treatments. particularly mulch cover.

The pictures are roughly identical, but 15 cm depth at $376 \mathrm{~cm} 1 s$ the only exception, where the AWT were relatively higher throughout. while at 7.5 cm they remained low. Again there was a delayed reaction to cloudiness especially at 376 cm . We can see in Fig. 341. like in Fig. 339. lower AWT at 376 cm than at 94 cm associated with a delayed cooling effect of the soil from increasing cloud cover.

(1i1) Long rains growing season of 1993 (LR93)

Figs. 342-345 show results of AWT taken during two experimental periods of LR93. The first period included weeks wkl-wk5 and the second weeks included wk6-wk9.

We can see from Fig. 342 that at the pruned tree (PT1) in Mulched and manimum-tilled plot (AFM1) there was a general drop in AWT from wkl to reach minimum in wk2 as hot dry season receded and the Long Rains season of 1993 (LR93) set in. In the first period (wk1-wk5) the hionest

Fig. 342. Weekly average soil temperatures at the depths of 7.5 and 15 cm at the distances of 94 and 376 cm from pruned tree PTI in Mulched plot (AFMI) during LR93.

Fig. 343. Weekly average soil temperatures at the depths of 7.5 and 15 cm at the distances of 94 and 376 cm from pruned tree PT2 in Local plot (AFL1) during LR93.

Fig. 344. Weekly average soil temperatures at the depths of 7.5 and 15 cm at the distances of 94 and 376 cm from unpruned tree UT4 in Mulched plot (AFM2) during LR93.

Fig. 345. Weekly average soil 士emperatures at the depths of 7.5 and 15 cm at the distances of 94 and 376 cm from unpruned tree UT5 in Local plot (AFL2) during LR93.

AWT were obtained at 15 cm depth in position BM1 (i.e. 376 cm). The lowest AWT were observed at the same depth but 94 cm PTI . All differences are less than $1^{\circ} \mathrm{C}$. At 7.5 cm depth AWT in position AMI were higher than AWI in position BM1. AWT were hiohest in AMI in wk2 and continued to be the highest through the period. After wh3 the AWI nearer to the tree (PT1) in position AM1 continued to be higher than in position BM1 (i.e. 376 cm). This was associated with a combination of surface maize straw mulch. Grevillea robusta canopy. now fully developed intercrop canopy cover and low cloud coverage over Matanya. The combined effect of these factors impeded radiative cooilng and resulted in the high temperatures in the second period as they affected radrative. sensible. latent heat exchanges. In the second period (wk6-wk9) the AWI at 94 cm and at 376 cm had very small differences but with a tendency to increase.

At the pruned tree (PT2) in the Local deep-tilled plot (AFL1) we observe only that for a short while 7.5 cm at 94 cm was more than $0.5^{\circ} \mathrm{C}$ lower (Fig. 343). There was faster cooling at 94 cm surfiace near to trees than at 15 cm depth as a result of sensible and latent heat iluxes between the surface immedately in contact with the air. whicn are exacerbated by unmulched deep-tilled soil conditions. Thas was because of more neat exchange closer to the tree due to wind reduction effect of the trees and less radiation received closer to the trees. The generally high AWT in the second period (wk6-wk9) were again associated with a combination of deep tilled ground with high clods that acted as surface mulch and miniature wind breaks, Grevillea rabusta canody. now fully developed intercrop canopy cover and low cloud coverage over Matanya. Tnese factors comined impeded radiative cooling and resulted in the
high temperatures in the second period (wk6-wk9). The AWT nearer PT2 (at 94 cm) continued to fall whereas those at 376 cm (position BLI) continued to rise after wk7. The cooling next to PT2 was as a result of thickening tree canopy as new leaves emerged and expanied laterally. The canopy then impeded more than before radiative but because of strong wind through the deliberate gap (DGP. see Fig. 8) building up latent and sensible heat flux exchanges with the atmosphere were little affected. The temperature in control Local plots (Fig. 352) were negligibly small just as in agroforestry Local (AFL1) where PT2 is situated. In both cases there were slight increases in the AWT differences. The actuai temperatures for AFL1 increased in the last half of the measuring periods while in the control Local they decreased. All other tinugs being equal this points to the fact that tree canopy develop and cut-off out going long wave radiation which effect reduced radiative heat exchange with the atmosphere, causing higher temperatures.

At unpruned UT4 in the lower part of mulched AFM2 (Fig. 344) in position BM2 at 376 cm the AWT from wk2 to wk5 in the first period at 15 cm higher than those at 7.5 cm . The AWT at 7.5 and 15 cm at 94 cm distance (at AM2) were close to those at 15 cm depth and 376 cm from PT2. In second period both the AWT at both sites were very close but those at AM2 significantly differed from those at BM2. This may de associated with wind protection in this part of the plot. differences in soil moisture conditions and the influence of the tree shades. The sliont variations of AWT at UT4 in unpruned from AWT in PTI in pruned Day be associated with differences in soil molsture conditions at both sites due to root pruning of PT1. The AWI at 376 cm had dropped faster than at 94 cm as the LR93 approached lower temperatures near the surtace further from the trees, while temperatures first fell then rose. in a
mulched plot. which must be falling/ rising temperatures above the mulches. These plots are wind protected. making radiation exchange relatively more important than in the upper part of the plot. At 376 cm more radiation may reach the soil in day time and leave the plot at night. The AWT at both sites had dropped sharply between wk1 and wik2 due to a factor associated more with instrument initialization problem than with changes in the thermal properties of the soil.

At unpruned UT5 in the lower part of Local AFI2 (Fig. 345) AWT dropped suddenly between wk1 and wk2 and started rising but stayed very close till wk3. With the same exposure. the differences must come from surface treatments only the 376 cm are having some differences between each other of some significance. After all only the 376 cm differ in reaction, the one at the surface (7.5 cm depth) remaining higher from wk3 onwards till wk9. This is a normal reaction against a possible change in the energy balance.

(iv) Short Rains growing season of 1993 (SR93)

Fig. 346 shows AWT for Short Rains growing season of 1993 (SR93) in pruned Mulched plus minimum tillage plot at tree PT1. We see here that in position AM1 (94 cm) higher AWI were observed at 7.5 cm depth than at 15 cm while the reverse was the case in position BMI (at 376 cm) (although they come together in the end). These differences all remain within one degree. The AWT generally decreased from wkl in October to December. The AWT values were lowest in November and but higher in December as the hot dry month (HD) approached. In wk4 these values were sliantly hagher than the preceding weeks or later weeks. This may have been due to the PTI canopy cover playing a part in reducing the escape of long wave radiation into the sky. However. due to the wetness of the

Fig. 346. Weekly average soil temperatures at the depths of 7.5 and 15 cm at the distances of 94 and 376 cm from pruned tree PT1 in Mulched plot (AFM1) during SR93.

Fig. 347. Weekly average soil temperatures at the depths of 7.5 and 15 cm at the distances of 94 and 376 cm from pruned tree PT2 in Local plot (AFL1) during SR93.
ground because of rainfall, soil temperatures generaliy proceeded to drop.

In Fig. 347 we see that AWT in the pruned Local plot at PT2 were relatively stable in position ALl (at 94 cm) throughout this experimental period at both depths. differences between depths remainina within $0.5^{\circ} \mathrm{C}$. In position BL1 (at 376 cm) the highest AWT were observed in October. Wk1 and wk2. which dropped within two weeks to attain near stable values that remained between wik 4 and wk8. In position Ail the AWTs were nagher at 15 cm than at 7.5 cm , but never more than $0.5^{\circ} \mathrm{C}$. The stable temperatures at 94 cm from PI2 were due to the tree carropy whicn shielded the unmulched deep-tilled soil from excessive heat load. As SR93 prooressed the wetter conditions caused a drop of temperatures. which was for BLI faster at 7.5 cm . so nearer the surface. We have already discussed above higher AWI at 15 cm than at 7.5 cm .

We can see from Fig. 348 that AWT were hiah at both depths in the soil at AL2 from UT4. There was a general decrease of AWT between October and the first week of December. as in the earlier figures of this season. The differences in AWT between the two depths was neqligible from wkl to wk6. In position BL2 (at 376 cm from UT4) 15 cm depth still had hianer AWI than 7.5 cm depth. but this remained within $1^{\circ} \mathrm{C}$. The AWT in position BL2 were on the overall generally lower than those at AMŻ. but maximum differences were in the order of $2^{\circ} \mathrm{C}$.

We again observe general decrease of AWT under unpruned UTS on Local plus deep-tilled soil between Uctober and early December in Fia. 349. The picture is close to that of Fig. 347, maximum differences. With oniy one exception. remaining within $1.5^{\circ} \mathrm{C}$. The decrease in position AME (at 94 cm from UT5) was gradual at both depths while that at BM2 (376 (m) was more sudden. especially between wk3 and wk 4 . We have seen that

Fig. 348. Weekly average soil temperatures at the depths of 7.5 and 15 cm at the distances of 94 and 376 cm from unpruned tree UT4 in Mulched plot (AFM2) during SR93.

Fig. 349. Weekly average soil temperatures at the depths of 7.5 and 15 cm at the distances of 94 and 376 cm from unpruned tree UT5 in Local plot (AFL2) during SR93.
the area around UT5 is a wind protected area. hence radiation 15 more likely to influence soll temperatures in addition to the general trena. due to alr mass temperatures.
4.5 .2 (b) AWT in non-agroforestry (NAF) control plots and bare soil
(i) Short Rains growing season of 1991 (SR91)

The old control plots were used for this season. see section 4.1. The plots were treated equally for SR91. as presented in section 4.1. although the effect of the previous mulch application inow incorporatina [llifng) was stili showing in most results. including soll temperatures. The bare soll however remained as such. It had just been created as bare soil.

Fig. 350 presents AirT for SR91 for the old concrol plots. The AWT were as expected haqnest in the bare soil (BS) followed by local control (L). The Mulched control (M) had the lowest AWT of all piots. The Mulched control had higher AWI at 15 cm depth than at 7.5 cm depth. apart from the start. This was due to warmer conditions in October 1991 than in November. These made the soil temperatures at 7.5 cm warmer than at 15 cm due to surface heating. November is normaily the central month of the short rains season. which makes the soll surface moister in November than in October. leading to a drop in AWT values. The second week of the experiment (wk2) had some rainfall episodes resulting in general fall in AWT. but only at 7.5 cm . The Mulched soll remarned somewhat cooler tnrougnout the experimental period (wikl-wk4).
(ij) Long Rains growing season of 1992 (LR92)
Fia. 35i presents AWT in the control plots for the months of June and July 1992. Althouah June and July fall outside the desianated Lona

Fig. 350. Weekly average soil temperatures at the depths of 7.5 and 15 cm in the control and bare soil plots during SR91.

Fig: 351. Weekly average soil temperatures at the depths of 7.5 and 15 cm in the control and bare soil plots for June and July 1992.

Rains period these months demonstrated fairly well the behaviour of the soil temperatures with regard to increasing cloudiness and other factors (minus tree shades) as discussed in section 4.5 .2 (a) above. However. again all differences are within $1.0^{\circ} \mathrm{C}$, and at the end even within $0.5^{\circ} \mathrm{C}$. This means that they are agronomically of no importance.

The AWT values at 7.5 cm for June and July were always somewhat higher than at 15 cm depths. except for mulched soll. but differences are small. These AWT generally rose from wk1 to reach maximum in wk 3 and then oradually dropped to minimum values in wh7 because of rainfall occurrence in that week. As expected Mulched plots had lower AWT values than the Local. In wik3 the Mulched controls had AWT values at 7.5 cm of $21.7 \pm 0.6^{\circ} \mathrm{C}$ (that is average soil temperature plus standard deviation as error maroin) while BS had $22.1 \pm 1.0^{\circ} \mathrm{C}$. This suggested that under cloudy windy conditions when net long wave radiation cannot escape to the outer atmosphere. the mulched soil is less than a degree lower than the bare soil at 7.5 cm depth.

(iii) Long Rains growing season of 1993 (LR93)

We can see from Fig. 352 that. like the AWT for June/July of LR92 discussed above. the AWT for LR93 dropped as the same approached and reached minima in wik3 and wk5 of the first experimental period (wkiwk6). This was followed by a rise in wk5. AWT for BS was this time much higher than the AWI for the controls plots. which shows that radration must have been involved. Mulched control had the lowest AWI at both depths, but the differences were generally within $1.0^{\circ} \mathrm{C}$. The differences between AWT at 7.5 and those at 15 cm were visibly also very small. In the second experimental period (wk7-wk10) the differences between deptns had very slightly widened especially in the Mulched control plots as the

Fig. 352. Weekly average soil temperatures at the depths of 7.5 and 15 cm in the control and bare soil plots during LR93.

Fig. 353. Weekly average soil temperatures at the depths of 7.5 and 15 cm in the control and bare soil plots during SR93.
shallower layer responded faster to the heat exchange forcing factors already discussed. These differences were too small to be of acronomical significance.

(iv) Short Rains growing season of 1993 (SR93)

Fig. 353 shows slightly higher but falling AWT in October (wkiwk3) than in November and December (wik4-wik12). after which it slug̣htly rose. From Table 8. section 4.1. we learnt that October was the rainiest of the three SR93 months, causing the drop in temperature. Fiod. 353 also shows a clear delineation among the treatments from wiki to almost wiku and for BS throughout. The BS had still the hiahest AWT at both depths. because of direct solar heating on a clean weeded sonl. although this must have resulted in large latent heat fluxes during ana after rainy days. The Mulched plot nad the lowest temperature at both deptns frow wk1-wk10.

4.5.3. Soil temperature characteristics at Matanya

4.5.3 (a) Maximum, minimum, average monthly soil temperatures and their amplitudes

Figs. 354-365 and Appendix Tables A13 and A14 present monthly djurnai variations and soil temperature stat1stics for SR91. LF92. LR93 and SR93 in AF, NAF and bare soil plots. In Tables A13 \& A14 the effect of mulcn application and minimum thllage in comparison to Local deen tillage on soil average, maximum and minımum temperatures at 94 cm from pruned trees PT1 and PT2 is demonstrated by comparing the results in the first column under AFMi (i.e. in Dosition AM1) wath those in the first column under AFLl (1.e. in position ALIl. Similarly at 376 cm from the trees the effect of mulching $1 s$ demonstrated by comparing the results

Fig. 354. Monthly diurnal patterns of soil temperatures at 15 and 7.5 cm depths as a function of distances (94 and 376 cm) from pruned PT1 in Mulched plot (AFM1) for March 1992.

Fig. 355. Monthly diurnal patterns of soil temperatures to show mulch effect in AF at 15 and 7.5 cm depths and a distance of 94 cm from PTl in AFM1 and PT2 in AFLl for March 1992.

565

in the second column under AFMi (2.e. in position BM1) with those $2 n$ the second column under AFL1 (i.e. in position BL1) and so on.

The effect of a Grevillea canopy shadina. such as of PTI. $1 s$ demonstrated by comparing the results at 94 cm (say position AM1) with those at 376 cm (say position EM1) under the same tree land same treatment e.g. AFMI) in Appendix Table A13.

We find from Appendix Taile A13, for equally treated plots of 1991 Short rains period (SR91). at 94 cm from Grevillea robusta tree, that the maximum soil temperatures in both future mulcned pruned and future mulched unpruned plots were lower than in the future Local pruned and future Local unpruned plots respectively. While the reverse was true at 376 cm . A few exceptions to the above rule include: (1) at 94 cm in December 1991 in pruned plots at 7.5 cm . (ii) at $370^{\circ} \mathrm{cm}$ in October and November in unpruned plots at 7.5 cm and (iji) at 376 cm in December in pruned plots at both depths. These exceptions mav have arisen from unevenness in mulch spread and also from tillage.

The maximum soll temperatures for October 1991 (all plots were treated equally in SR91 see section 4.1) in future pruned Mulcned in AFMI at 94 cm from PTI and 15 and 7.5 cm depths were 19.7 and $20.1^{\circ} \mathrm{C}$. The corresponding values in the future pruned Local in AFLl were 20.23 and $23.0^{\circ} \mathrm{C}$. Differences in maximum soil temperatures between the two pruned trees of 0.6 and $2.9^{\circ} \mathrm{C}$ were observed at respectively 15 and 7.5 CII depths. We attributed this to general differences in the Grevillea tree canopy densities to which possibly different influences of prurisng contributed. At 376 cm from the same trees the values at 15 and 7.5 cm deptins were 19.6 and $20.4^{\circ} \mathrm{C}$ in AFM1 and 19.2 and $20.1^{\circ} \mathrm{C}$ in AFLi. The little differences may have been due to differences in radiative cooilna
or the equally treated soll at this distance irom the trees. due to canopy differences of the trees and perhaps urevenness in musch spread at the two sites, which we found to be common wath large malze stovel residue mulches. In future unpruned Mulched in ArM2 at 94 cm from PTL and 15 and 7.5 cm depths maximum soll temperatures were 19.5 and $20.4^{\circ} \mathrm{C}$. The corresponding values in the future unpruned AFLí were 19.9 ana $21.1^{\circ} \mathrm{C}$. The differences were 0.4 and $0.7^{\circ} \mathrm{C}$ at 15 and 7.5 cm deptins which again we attributed to differences between the two trees and uneverness in maize stover mulch. A larger difference for the pruned tree case above was attrıbuted to canopy differences which alsü were observed un unpruned trees.

In comparison with SR91. differently treated plots of 1993 Short rains period (SR93). in Appendix Table A13 (d) at both distances from Grevillea robusta tree (94 and 376 cm). the maximum soll temperatures in both minimum tilled mulched pruned and minimum-cilled muiched unpruned plots were lower than in the deep-tilled Local pruned and deep-tilled Local unpruned respectively. Again few exceptions to the above suse include: (i) at 94 cm in October 1993 in unpruned plots. and (11) at 94 cm in November in unpruned plots at 15 cm depth.

For the differently treated olots in AF and NAF the maximum 3011 temperatures. say for October 1993 (Tables A13d \& A14). In the prured Mulcned manimum-tilied soil in ArM1 at 94 cm from PI and 15 and 7.5 cm depths were 19.0 and $19.1^{\circ} \mathrm{C}$. The correspondina values in the pr unea unmulched deep-tilled (AFL1) were 20.0 and $21.0^{\circ} \mathrm{C}$. We attributed the reductions of 1.0 and $1.9^{\circ} \mathrm{C}$ at 15 and 7.5 cm depths to mulch depressing effect on maximum soil temperatures. However. adain tree canody differences may be involved, as the same was true in SR91 for equally
treated plots. At 376 cm from the same trees the values at 15 and 7.5 cm depths were 20.2 and $21.1^{\circ} \mathrm{C}$ in AFM1 and 21.9 and $24.3^{\circ} \mathrm{C}$ in AFLi. Acialn the reductions of 1.65 and $3.2^{\circ} \mathrm{C}$ at 15 and 7.5 cm depths may De attributed to mulch depressive effect on soil temperatures. The october 1991 maximum temperatures for bare soil were at 20.0 and $20.2^{\circ} \mathrm{C}$ at 15 and 7.5 cm depths. The November 1991 maximum temperatures fior bare sols were at 20.2 and $20.9^{\circ} \mathrm{C}$ at 15 and 7.5 Cm depths. The October 199 j maximum temperatures for bare soil were at 22.6 and $20.0^{\circ} \mathrm{C}$ at 15 and 7.5 cm depths. The November 1993 maximum temperatures for bare soil were at 21.7 and $28.7^{\circ} \mathrm{C}$ at 15 and 7.5 cm depths. The maximum temperatures for 376 cm distance from AFM1 and AFL1 were therefore higher than the maximum soll temperatures in the bare soil for October but lower in November in SR91 and SR93.

From Table A13 (b) we observe in LR92 that maximum soll temperatures were nıgher at 94 cm in pruned Mulched plots than in pruned Local plots at 15 cm depth. although differences were small. and lower at 376 cm . where differences. were between 0.5° and $2^{\circ} \mathrm{C}$. At 7.5 cm the reverse tended to be the case.

For instance in March. May. June July and August 1992 maximum soll temperatures in position AM1 (i.e. at 94 cm from PTll at 15 cm in the Mulched plot were $22.2^{\circ}, 24.1^{\circ}, 22.4^{\circ}, 25.1^{\circ}$ and $22.3^{\circ} \mathrm{C}$ respectively. The corresponding values in position AL1 at the same depth were 22.0°. $23.8^{\circ} .21 .6^{\circ}, 24.8^{\circ}$ and $22.3^{\circ} \mathrm{C}$ which were slightly lower than those in position AM1. Similar results were obtained for LR93 in the same positions at 15 cm depth in April. June. July and August.

In the same months as above the maximum soil temperatures in position AM1 for LR92 (1.e. at 94 cm from PTI) at 7.5 cm in the Mulched plot were 24.5°, $28.1^{\circ} \mathrm{C} 25.0^{\circ}$, 29.4° and $25.4^{\circ} \mathrm{C}$ respectively. The
correspondind values in position Ail at the same depth were 24.75 . 28.8* $23.3^{\circ} \cdot 31.5^{\circ}$ and $26.9^{\circ} \mathrm{C}$ which witn the exception of jure were hagher tinan those in position AMi. The maximum sold temperarures in position BM1 for LR92 (i.e. at $370^{\circ} \mathrm{cm}$ Irom PT1) at 7.5 cm in tne Muicned plot were $22.2^{\circ} \cdot 24.1^{\circ}, 22.4^{\circ} \cdot 25.1^{\circ}$ and $22.3^{\circ} \mathrm{C}$ respectively. The corresponaing values in position ELI at the same deoth were $23 . \mathrm{i}^{\circ}$. $24.0^{\circ} \cdot 22.8^{\circ}, 24.8^{\circ}$ and $22.0^{\circ} \mathrm{C}$ which with the exception of June were nigher tnan those in position AM1. For BMi/BLI comparison at 15 Im depth for 376 cm distance results in LR92 and LR93 are the same 1 n that the Mulched plots nad maxima below that of the Local plot. For 7.5 cm the LR93 results are the same as the for 15 m . wlthout exceptions.

The results for LR93 give opposite plcture from the LR92 at 7.5 cm . Now higher maximum soil temperatures were observed in position AM1 than in position ALI. up till $2.5^{\circ} \mathrm{C}$.

The slightly lower maximum soll temperatures in the Local piots at 24 cm durina LR92 and LR93 (Appendix Tables A14 (b) \& (c)) may be attributed to canopy differences of the trees and increased evaruration Irom the unmulched deep-tilled soil. assisted by hioher wind soeeds in the course of the Long Kains. At $370^{\circ} \mathrm{cm}$ the reverse was the case as the Mulched pıot reastered lower values than the Lucal for botn Lǐ92 ani LR93. In tne unpruned area there were generally lower maximum soll temperatures than the Local. June 1992, however. was an excedtion $1 n$ that at all depths and distances from the trees the maximum soll temperatures were hagner in the Mulcned than in the Lucal Diots. except BM1 and BLi at 15 cm depth. Where the reverse was the case. Jurie 1992 nad the lowest rainfall amount of the season. of 5.2 mm and the hiuhest Dan evaporation of 180.9 mm (Table 8). Thas inaicated that evapuration from the unmulched deep-tilled plot was at its hiunest since it was
assisted by the net radiation balance and canopy differences of the trees in the strongly protected $A F$ zone. especially at 376 cm away from 1T4. By the end of June the malze/beans intercrop was still in the fleld. as beans harvesting was done one week later (7-9th July. 1992). The malze Diants were 2.4 m high and bent by strong winds. The bean leaves were dryina up and were blown away by strona winds. thus exposing the unmulched soil to atmospheric evaporative demands (see section 4.1.2 on results on crop). Lower maximum soil temperatures, in the other months. in Mulched than in Local Dlots (in Tables A13 ana A14) may have Deen due to shading by the mulch. taking the antercrops as a common factor in both cases.

Pruning affects the rates of soll molsture extraction by the trees. It may well be that deeper roots compensate for these losses. because the evaporative demand from the leaves basically does not charge. When there is enough water in the deeper layers this may be (Dartly) the case. Under water limiting conditions. the situation is of course different. The pruned trees lase the contribution of the roots in the shaliow sayers ($t 11130 \mathrm{~cm}$ deep) that have been cut off. These in turn may affect soil temperatures in the periphery of the roots when more water remains. The maximum soll temperatures in the same plots but at different distances from the trees show that at PT1 maximum temperatures were lower at 376 cm than at 94 cm from the trees for all the seasons and plots.

We can see in Tables A13 \& A14 that high minimum temperatures were observed at depths where low maximum temperatures were observed. with differences between treatments at equal distances from the trees. In Short Rains seasons the maximum temperatures tended to be higher in Iecember than in October. and November. The hot dry season (HD)
approached. while minimum temperatures tended to lower. This resulted in nigh monthly diurnal soil temperature ranges in Decemider. However. in the Long Rains seasons the diumal soll temperature ranges tended to be smaller as the windy cold season of June-September approached.

On the other hand average soil temperatures were mostly lower in the Locai plot than in Mulched plot at the same distance from the trees for all the seasons except SR93. The differences between temperatures near the trees under the same wind regime must have been due to geometry differences of canopies of the trees. of crops or of mulch.

The soil temperarure amplitudes are affected in the process of moderation by the mulches and tree canopy shadina. In Tables A13 \& A14 and Fias. 354-365 we observe lower soll temperature amplitudes in Mulched plots (AFM1 \& AFMZ) than Local plots (AFLi \& AFL2).

For the months of SR91 (Table A14) the respective maximum temperatures for October 1991 at 15 and 7.5 cm depths in the Local control were 20.1° and $21.1^{\circ} \mathrm{C}$ and in the Mulched control were 19.5° and $20.1^{\circ} \mathrm{C}$. The maximum s011 temperatures for the bare 5011 were 20.0° and $20.2^{\circ} \mathrm{C}$. The maximum temperatures were therefore lowest in the Mulched control and highest in the Local control at 7.5 cm . While at 15 cm depth the bare soil temperatures were the hoghest. The same was true for November 1991 temperatures.

For the months of LR92 (Table A14) the maximum temperatures for June 1992 at 15 and 7.5 cm depths in the Local control were 24.0° and $26.2^{\circ} \mathrm{C}$ and in the mulched control were 23.0 and $23.5^{\circ} \mathrm{C}$. The respective maximum soll temperatures for the bare soll were 23.9 and $25.9^{\circ} \mathrm{C}$. Thereiore. for June maximum temperatures were lowest in the Mulched controi and nagnest in the Local control at bath depths. For July and August. nowever. the bare soll had tne niọhest maximum temperature at

Fig. 356. Monthly diurnal patterns of soil temperatures at 15 and 7.5 cm depths as a function of distances (94 and 376 cm) from pruned PT1 in Mulched plot (AFMI) for April 1993.

Fig. 357. Monthly diurnal patterns of soil temperatures to show mulch effect in AF at 15 and 7.5 cm depths and a distance of 94 cm from PT1 in AFM1 and PT2 in AFL1 for April 1993.

Fig. 358. Monthly diurnal patterns of soil temperatures at 15 and 7.5 cm depths as a function of distances (94 and 376 cm) from pruned PT1 in Mulched plot (AFM1) for June 1992.

Fig. 359. Monthly diurnal patterns of soil temperatures to show mulch effect in AF at 15 and 7.5 cm depths and a distance of 94 cm from PTl in AFM1 and PT2 in AFLl for June 1992.

Fig. 360. Monthly diurnal patterns of soil temperatures at 15 and 7.5 cm depths as a function of distances (94 and 376 cm) from pruned PT1 in Mulched plot (AFM1) for June 1993.

Fig. 361. Monthly diurnal patterns of soil temperatures to show mulch effect in AF at 15 and 7.5 cm depths and a distance of 94 cm from PTl in AFM1 and PT2 in AFL1 for June 1993.
both depths. followed by the Local plot.
For the months of LR93 (Table A14) the maximum temperatures for April 1993 at 15 and 7.5 cm depths in the Local control were 21.6° and $23.1^{\circ} \mathrm{C}$ and in the Mulched control were 19.9° and $21.4^{\circ} \mathrm{C}$. The respective maximum soil temperatures for the bare soil were 23.4° and $24.2^{\circ} \mathrm{C}$. Therefore. for April the maximum temperatures were lowest in the mulched control and highest in the bare soil at both depths. In June. the Local control had the highest maximum temperature at 15 cm while the Mulched control had the highest at 7.5 cm depth. For the July and August however, the Local control had the highest maximum temperatures at both depths followed by the bare soil plot. The main reasons for these differences (for SR91. LR92 \& LR93) have been the radiative balances and the weather situation in each period and the surface cover of these treatments. As a result the soil temperatures in the Mulched control were the lowest.

Figs. 354-365 present monthly diurnal soil temperatures at the distances of 94 and 376 cm from PT1 and PT2 and the depths of 15 and 7.5 CD (i.e. Dp15 \& Dp7.5) for LR92 and LR93 which demonstrate diurnal soll temperature changes with depth. distances from the trees and in Mulched/Local plots. All the figures show significant decrease of so1l temperature amplitudes with depth between 7.5 and 15 cm depths. From Figs. 354-365 we observe that the time of attalnment of maximum temperatures at 15 cm depth lagoed that at 7.5 cm by approximately 4 hrs. This tame tended to be constant. The time of attainment of soil temperature minima for at 15 and 7.5 cm depths differed by $1-3 \mathrm{hrs}$. The fact that these times were different shows that other factors other than sky conditions were involved.

Fig. 362. Monthly diurnal patterns of soil temperatures at 15 and 7.5 cm depths as a function of distances (94 and 376 cm) from pruned PT1 in Mulched plot (AFM1) for July 1992.

Fig. 363. Monthly diurnal patterns of soll temperatures to show mulch effect in λF at 15 and 7.5 cm depthe and a distance of 94 cm from PT1 in AFM1 and PT2 in AFLl for July 1992.

Fig. 364. Monthly diurnal patterns of soil temperatures at 15 and 7.5 cm depths as a function of distances (94 and 376 cm) from pruned PT1 in Mulched plot (AFMI) for July 1993.

Fig. 365. Monthly diurnal patterns of soil temperaturea to show mulch effect in AF at 15 and 7.5 cm depths and a distance of 94 cm from PT1 in AFM1 and PT2 in AFL1 for July 1993.

4.5.3 (b) Soil temperature damping depths (D)

(i) Damping depths in $A F$

Interpretation and forecasting of soil temperature patterns is only possible if the soil is thermally homogeneous or has such layers. This means homogeneous with respect to soil thermal properties (so moisture content) and constant average temperatures under each treatment or average temperature being a linear function of depth. Within the error margins given by the standard deviations, the average soil temperatures at Matanya at each depth (15 cm and 7.5 cm depths) are constant. The damping depth values presented here are obtained from monthly averaged diurnal temperature patterns under a malze/beans intercrop in an agroforestry system.

Average monthly and seasonal damping depths (D) (e.g. Stigter. 1984c: 1985a) are summarized in Table 80. Table 80 shows D for each treatment for Short and Long Rains seasons: SR91. LR92. LR93 and SR93. We can see from Table 80a(i) that average D for SR91 in AF in positions AM1. AL1. AM2 and AL2 at 94 cm from PT1. PT2. UT4 and UT5 were respectively: $8.1 \pm 0.5 .6 .7 \pm 0.7,8.6 \pm 0.4$ and 7.6 ± 0.5. The corresponding D values in positions BM1. BL1 and BM2 (note that position BL2 missed a thermistor as the same were not enough in SR91) at 376 cm from PT1. PT2 and UT4 were $7.3 \pm 0.1,8.6 \pm 0.5,8.4 \pm 1.7$. Taking the error margins into account we see that D varied rather little between treatments and hence may be considered constant in space and time during SR91 season. The magnitudes of D did not reflect the effect of G. robusta shading on soil temperature patterns at 94 cm from the trees compared to 376 cm during SR91. because there is no systematic difference between the two distances.

We can see from Table 80a(ii) that average D for LR92 in AF in positions AM1. AL1. AM2 and AL2 at 94 cm from PT1. PT2. UT4 and UT5 were respectively: $\quad 7.0 \pm 0.5, \quad 8.9 \pm 3.2,12.7 \pm 3.4$ and 12.4 ± 2.3. The corresponding D values in positions BM1. BL1. BM2 and BL2 at 376 cm from PT1. PT2. UT4 and UT5 were 9.7 $\pm 2.2,11.4 \pm 1.8,6.5 \pm 0.6$ and 6.9 ± 3.5. Here we see a pattern where the D values at 94 cm from pruned trees (PT1 and PT2) are smaller than the D values at 376 cm and these 94 cm values are larger for unpruned trees at 94 cm (UT4 and UT5), but the values at 376 cm at the unpruned trees are smallest of all. With respect to soil surface cover D values in pruned mulched at 94 cm from PT1 (position AM1) are smaller than those in pruned Local (position AL1) and the same applies at position EMI compared to BLI. Similarly in unpruned plots D values in unpruned Mulched (position AM2) are smaller than those in unpruned Local (position AL2). We observe here that mulch cover reduced D. but only below pruned trees.

Table 80a(iii) shows that average D for LR93 in $A F$ in positions AM1. AL1. AM2 and AL2 at 94 cm from PT1. PT2. UT4 and UT5 were respectively: $6.9 \pm 0.2,8.7 \pm 0.4,10.8 \pm 0.4$ and 6.9 ± 0.4. The corresponding D values in positions BM1. BL1. BM2 and BI2 at 376 cm from PT1. PT2. UT4 and UT5 were $9.2 \pm 1.5,10.1 \pm 2.6,4.3 \pm 0.9$ and 8.7 ± 2.1. Ag̣ain we see a pattern where the D values at 94 cm from pruned (PT1 and PT2) and unpruned (UT5) trees are smaller than the D values at 376 cm . Unpruned tree (UT4) then had a malfunctioning thermistor at 15 cm . that was later replaced. so the value 4.3 is not used. Again with respect to soil surface cover. D values in pruned mulched at 94 cm from PT1 (position AM1) were found to be smaller than those in pruned Local (position AL1). The same applies at 376 cm . Similarly in unpruned plots D values in unpruned Mulched (position AM2) for 376 cm are smaller than those in
unpruned Local (position AL2). Here again the effect of mulch cover in reducing D was observed.

Table 80a(iv) shows that average D for $5 R 93$ in $A F$ in positions AM1. AL1. AM2 and AL2 at 94 cm from FT1. PT2. UT4 and UT5 were respectively: $10.5 \pm 1.2,8.6 \pm 0.5,10.9 \pm 1.9$ and 10.0 ± 0.9. The corresponding D values in positions BM1. BL1. BM2 and BL2 at 376 cm from PT1. PT2, UT4 and UT5 were: $7.9 \pm 0.1,7.5 \pm 0.5,6.4 \pm 0.3$ and 10.2 2 ± 1.3. SR93 did not seem to have any definite pattern in D values with respect to distance from the trees and the effect of mulch cover as did LR92 and LR93. If any trend, D values tended to be higher at 94 cm than at 376 cm and also higher in mulched than in Local treatments. which is appropriate to the $L R$ seasons. D varied between 6.4 ± 0.3 and 10.9 ± 1.9 and had an overall average of 9.0 ± 1.5.

(ii) Damping dopths in NAF

We can see from Table $80 \mathrm{~b}(\mathrm{i})$ that average D for $\operatorname{SR91}$ in NAF in the Mulched control (M). Local control (L) and Bare Soil (BS) plots were respectively $9.3 \pm 0.3,9.2 \pm 2.8$ and 9.3 ± 0.8. The old control plots were used for soil temperature measurements during preliminary exercises and then the measurements were transferred to the new control plots for LR92 and later seasons. The D values in SR91 were nearly the same, except for the larger error margin for L than either $B S$ and M plots. This proves that the soil in NAF was homogeneous.

Table 80b (ii) shows average D for LR92 in NAF in the new control plots. The D values for Mulched control (M). Local control (L) and Bare Soil (BS) were respectively $14.4 \pm 2.3,12.9 \pm 3.4$ and 9.4 ± 0.3. The D values for LR92 for the bare soil was still the same as for SR91. However. high D values were found for the newly opened control plots. The soll of the
newly opened control plot had a lot of humus and was still easy to work. The BS site had been opened up earlier in the experimental period in SR91 and since the surface was kept bare it settled easily. The soll of the newly opened control plot was still dispersed due to a lot of humus. Hence homogeneity was still observed in the new plots, but they were different from the old ones.

Table 80b (iii) shows that average D for LR93 in NAF in the new control plots: Mulched (M) control. Local control (L) and Bare Soil (BS) were respectively $7.7 \pm 1.3,18.5 \pm 8.5$ and 8.3 ± 0.5. The D values for LR93 for the bare soil had not changed much from the SR91 and LR92 values. The soil under the mulch in the newly opened up plots had settled quite first, giving relatively lower D than previously. However, the control plot still had very high D values.

Table 80b (iv) presents average D for SR93 in NAF in the new control plots. D values for M. L and $B S$ were respectively 8.1土1.5. 7.5 ± 0.3 and 5.3 ± 0.9. The D values for SR93 for the bare soil had dropped a bit from the SR91, LR92 and LR93 values. The soil under the control plots had now settled and were proving to be thermally homogenous. Their values were in the same onder of magnitude (between 8 and 10) as the soil in the agroforestry plot.

The drop of D in the $B S$ may be due to extreme dryness of very bare soll which received direct solar heating and very high evaporative losses while NAF and AF had vegetative cover during this time of the year.

4.5.3 (c) Phase shifts

Table 81 presents phase shifts ($\$$) of monthly diurnal soil temperature waves during SR91-SR93. We see in Table 81a (i) that the values for $\operatorname{SR91}$ range from 3.4 ± 0.9 to 4.7 ± 1.2 hours. We did not notice

Table 80. Lamping depth (D) in cm for each treatment and each month during SR91. LR92. LR93 and SR93. D was calculated by the method of reducing amplitudes of the temperature wave between 7.5 and 15 cm depths in the soll.
(a) agroforestry. (b) non-agroforestry plots.

Plots：
（ii）LR92－From this season plots treated differently． also different control plots

Jun 13．7 $\quad 1.8$	14.9 ± 5.5	9.8 ± 0.2
Jul 12．7さ4．9	13.9 ± 5.1	9.1 ± 0.1
Aug $\quad 12.1 \pm 6.0$	11.5 ± 0.8	9.4 ± 0.4
Average 12．9土3．4	14.4 ± 2.3	9.4 ± 0.3
（iii）LR93		
Plots：L	M	BS
Apr 19．6 ± 9.6	9.8 ± 3.5	7.9 ± 0.4
Jun 19．0 ± 8.4	7.3 ± 1.1	9.1 ± 0.5
Jul 17．9さ8．0	7.1 ± 1.1	7.8 ± 0.1
Aug 17．5 ± 8.1	6.5 ± 0.5	8.3 ± 0.2
Average 18．5ı8．5	7.7 ± 1.3	8.3 ± 0.5
（iv）SR93		
Plots：L	M	BS
Oct $\quad 7.0 \pm 1.4$	6.2 ± 0.4	6.6 ± 0.5
Nov $\quad 7.7 \pm 1.5$	8.2 ± 1.6	4.8 ± 0.7
Dec $\quad 7.8 \pm 1.8$	9.8 ± 1.7	4.6 ± 0.8
Average 7．5士0．3	8.1 ± 1.5	5.3 ± 0.9

any pattern related to eventual differences in tree shading．We likewise did not find a pattern related to mulch cover because all had same cover in SR91．Table 81a（ii）shows that values LR92 range from 4.0 ± 0.4 to 4．6 ± 1.5 ．Table 81a（iii）shows that values LR93 range from 3.4 ± 1.0 to 4.9 ± 0.3 while those for $5 R 93$ range from 3.8 ± 0.4 to 4.3 ± 0.3（Table 81a（iv））．In all these seasons we did not notice any pattern related to tree shading nor mulch cover．The AF values were comparable to the NAF values（Tables $81 b(i)$ ．（ij）．（iij）and（iv））indicating thermal homogeneity of the vertisols in the control and $A F$ plots at Matanya．it could pernaps be observed that the high variability（error margins）of the phase shifts point towards large irregular interventions of elther clouds or other changing shades over the plots．in long term and short term periods．

Table 81. Phase shift (ϕ) in hours for each treatment during SR91. LR92. LR9Э. SR93. LR94 \& SR94. 中as calculated by knowing the time the temperature wave attains its maximum and minimum temperatures at 7.5 and 15 cm depths in the soil. (a) agroforestry. (b) non-agroforestry plots (see Fig. 13)

4.5.3 (d) Stigter's ratios (Rati)

Stigter's ratios as calculated from Eq. 20 were used to estimate the thermal effect induced by intercrop residue mulch and G. robusta

584

canopy shading that altered soil temperature amplitudes and averages, hence the intercrop response to these changes. The monthly diurnal soil temperatures used for calculating Reti were chosen according to Stigter et a1. (1984): temperature differences in the bare soil and the test plot at the same depth must be larger than $1^{\circ} \mathrm{C}$ although in our cases evaporation from the soil was not negligible as per the second requirement. even not in mulched soil, because (i) maize staiks mulch used was more effective in run-off control rather than evaporation form the soil: (ii) soil temperature data used covered strong winds season which increased evaporation from the soil. Only the data for 7.5 cm depth satisfied this criterion for all the seasons chosen. The data for 15 cm depth did not, hence we did not use them.
(i) Stigter's ratios (Roti) in Mulched AF (AM1. AM2) and control Mulched (M) plots

Table 82a(i) presents average Reti values for $5 R 91$ in Mulched plots (AFM1 \& AFM2) in AF. Average Roti in position AM1 at 94 cm from PT1 was smaller than the Reti in position BM1 at 376 cm from the same tree. Similarly average Reei in position AM2 at 94 cm from unpruned UT4 was smaller than the Roti in position EM2 at 376 cm from the same tree. Here G. robusta tree canopies must have influenced $R_{\text {eri. }}$.

Table 82a(ii) presents average Reet values for LR92 in Mulched plots (AFM1 \& AFM2) in AF. Again Rees in position AMI at 94 cm from pruned PT1 was smaller than the Reti in position BMI at 376 cm from the same tree. However this time in average Roti in position AM2 ar 94 cm from unpruned UT4 was larger than the Roti in position BM2 at 376 cm from the same tree. Again G. rabusta tree canopies had influence on

585

average Roti.
Table 82a (iii) presents average Reti values for LR93 in Mulched AF plots (AFM1 \& AFM2) in AF. Again Roti in position AM1 at 94 cm from pruned PT1 was significantly smaller than the Reei in position BM1 at 376 cm from the same tree. Again in average Roti in position AM2 at 94 Cm from unpruned UT4 was larger but not significantly than the Reri in position BM2 at 376 cm from the same tree. Again G. robusta tree canopies must had influence on average $R_{\text {ets }}$. The SR93 results present the same picture as the SR91 although the surface cover for the two seasons was different as the plots during the latter season were equally treated while for the latter were differently treated.

The relative magnitudes of Reri with distance from trees show that tree canopy shade can be significant in modifying soil temperatures closest to the trees. Roti values were higher in $5 R 93$ than in previous seasons studied. Tables 83b (i-iv) for mulched NAF plots also show higher average Rets than the previous seasons studied with the highest of 3.23 ± 0.95 being comparable to that of $A F$ in position AM1 at 94 cm from PT1 of 3.04 ± 0.59. This was due to higher soil mo1sture in SR93 than in the other seasons as more rainfall was received in the latter than in the previous seasons studied and higher soil moisture conserved nearer to the pruned trees (see in Tables 7 \& 8 of section 4.1).
(ii) Stigter's ratios (Reti) in Local AF (AL1, AL2) and control Local (L) plots
Table 83a(i) presents average Reti values for SR91 in Local AF plots (AFL1 \& AFL2) in AF. Average Reti for SR91 in position AL1 at 94 cm from PT2 was smaller than the Reet in position BL1 at 376 cm from the
same tree. This was also true for LR92 but not for LR93 and SR93. In SR91 the average $R_{\text {eti }}$ in position AL2 at 94 cm from unpruned UI5 was relatively larger than the Roti in position BL2 at 376 cm from the same tree. The same picture was seen in LR92 and LR93 while in SR93 Rori at 94 cm from UT4 was smaller than at 376 cm away although not significantly different. Again G. robusta tree canopies must had influence on average Reti.

Like for the Mulched case Rets values were higher in $5 R 93$ than in previous seasons studied. Tables 83b(i-iv) for Local NAF plots also show higher average $R_{\text {oti }}$ than the previous seasons studied with the highest of 2.62 ± 0.94 being 0.06 smaller than the highest in $A F$ of 2.68 ± 0.94 experienced in position BL 2 at 376 cm from UT5. Again as pointed out above higher rainfall in SR93 caused this difference.

- The damping depths, in their variations but also in their consistency under same conditions. confirm the modifications due to the treatments as well as the differences due to earlier induced and natural inhomogeneity (e.g. slope etc.) of the $A F$ plots and the change in control plots. Although certain consistent differences between seasons may be due to the difficulty to determine shallow depths in worked soil surfaces, differences in soil moisture are clearly the most determining factor for between season and within season differences in damping depths. Another factor confusing the picture $1 s$ variable shading as far as it does not average out as an environmental constant over longer periods. Many factors were met in the previous section that induced such changes, such as mulch blown over plots. wind induced movement of tree crowns and crops. as well as the annual growth of the latter.

Table 82. Thermal effect of G. rabusta canopy shades and crop residue mulch plus minimum tillage as estimated from Stigter's ratios $\mathrm{K}_{\text {er }}$: $R_{\text {et }}=D_{T}=/ D_{T o}$ where $D_{T o}$ and $D_{T o}$ are differences between the monthly and actual averages of diurnal temperature pattern at the same depth for bare soil and the Mulched soil respectively. (a) agroforestry (b) non-agroforestry Mulched plots, and the bare so11.

Table 83. Thermal effect of G. robusta canopy shades and not mulching plus deep tillage estimated from Stigter's
 differences between the monthly and actual averages of of diurnal temperatures patterns at the same depth for bare soil and the Local plot respectively.
(a) agroforestry (b) non-agroforestry Mulched plots. and the bare soil.

(iv) SR93	
October	1.40 ± 0.23
November	2.78 ± 0.38
December	3.69 ± 0.16
Average	2.62 ± 0.94

It is these fluctuations and varlations that somewhat spoll the use of Stigter's ratio as an indicator of thermal efficiency af 'mulches' under shade. However, the strong reaction of the $R_{\text {et }}$: values under moisture, as shown in SR93, is revealing, but with this trend in mind the difference between pruned and unpruned plots cannot be understood. The difference between Mulched and Local plots should give lower values for the non-mulched plots, which is fully true for SR91: where Reti reveals residual effects from former use. of which the existence is this way independently confirmed. It is true for LR92 for the unpruned situation only. and for LR93 only for the 376 cm in the same situation. For SR93. however. it is only true for the pruned situation. For the NAF plots it is true everywhere. apart from SR91 where it is equal and no different residual effects occur. The fact that NAF plots and SR91 give Reti values that can be understood, while the other seasons give changing variations. indeed points to local factors. residual as well as environmental, that influence the values too much in an unknown way. In combination with the earlier mentioned fluctuations and variations this leads to inconsistencies that cannot be explained from other data that we took. The inconsistency is laraer in Local plots. which is very understandable because the "mulch" is the deep tillage treatment and inhomogeneity with depth and horizontally occurs. The data obtained from Mulched plots are much more consistent. particularly under dry conditions for which Rees was developed. Under
the latter conditions the relatively little variation between seasons. even more so under pruned situations, reveals that even our mulches even with our tree canopy treatment differences. contributed together wath pruning, to a thermal homogenization not found in other plots. This $1 s$ an important finding.

CMAPTER FIVE

5 Discussions and conclusions

5.1 Maize and beans intercrope

5.1.1 Comparison within and between seasons

Table A2.1 shows that for the equal treatments of SR91. a rather dry season apart from the very beginning. the future mulched control plot (M) had 0.34 t/ha more maize yields than the future Local (L) control plots and 0.27 tha and 0.36 tha more than future pruned AFM1 (for SR91: AFM1 plus AFL1) and future unpruned AFM2 (for SR91: AFME plus AFL2). for yields in the order of 1 t/ha. These differences. themselves. similar within the error margins. were bigger than any standard deviation error margins associated with each mean yield. but the lower error maroin of M was either close to or just within the upper error margins of the other. For bean seeds a rather similar yield picture occurred with oniy the pruned plots doing better than in the case of maize. now coming halfway the mulched controls and the others. with its lower error margin only just lower than the lowest two averages. The better results in beans for plots with pruned trees 13 due to competition of maize and neighbouring fruit trees till SR92 inclusive.

The differences between M and L control plots are due to their history as respectively mulched and unmulched treatments. under which they were placed by the host institution prior to our experiments and in which role thev continued. In the $A F$ plots the differences must be due to pruning versis unpruning of Grevillea robusta trees plus. possibly. inhomogeneous climatic parameters associated with agroforestry systems such as ours.

As early as SFi91. when trees were still young. results from UT1 show that shading was mainly concentrated in NW. This, and the roots from the nejoghbouring fruit trees. may have slaghtly contributed to reduction in yields in AF plots in contrast to the control plots. The tunnelling effect of the mainly strong southerlv winds by the deliberate gap in the southern hedge (SH) for LR92 had not yet been introduced. The SH was planted in LR92 and the problem of tunnelling effect came only when the hedge had grown taller (by SR93). Termite infestation also may have exacerbated the problem but was less severe than these other factors. However. pruning is likely to be the most important factor within the AF plots.

Maize and beans yield measurements for LR92. which was the driest (in total rainfall) of the seven growing seasons of the study period. gave lowest yields for all seasons throughout the control plots. as indicated in review Table A2.1 (a). This table also shows that the minımum tilled pruned mulched plot (AFM1) had the haghest maize blomass yield closely followed by Local control (L) wile the manimure tilled unpruned mulched plot (AFM2), the deep tilled pruned Local and the Mulched control had the lowest. This driest season 13 the only one where the Mulched control majze gives substantial lower yields than the Local control although also have lower and upper error maroins that overlap.

This coincides with the only season in which beans blomass and seed yields are both substantially higher for the mulched plots than for the Local plots, be it that also these yields are the lowest of ail the seasons. It is very likely that beans took much of the early falling precipitation but then also relatively failed. That is why beans bicmase yields are substantially higher than seed yield. The Mulched control plot had the highest bean seed and biomass yield shared in beans seed
yields by the mulched pruned plots. While AFM2 had the lowest among AF plots (see Table A2.1 (b)). In beans biomass Local control shared these low yields while the bean seed yields were far the lowest of ail the Local control. In NAF more moisture was conserved in the mulched control plot than in the Local control. This difference between M and I was substantial and was apparently soil moisture driven. This led to a bit more seed yields but less maize yields.

Yield comparisons between upper and lower halves of the AF plots in LR92 indicated consistently, higher values. from 20% to 25% hagher in pruned plots till 35% to 45% higher in unpruned plots. the hioner values belonging to the mulched plots. the error margins being in the orcler of magnitude or smaller than the differences. We will come to the causes of these differences later on.

The conclusions to be drawn from the above results in the driest season of all suggest that in soil moisture conservation by the two methods of mulching and root pruning. only one was operatively effective in LR92, that is mulching in NAF beans and in pruned $A F$ maize and beans. in the latter for seed only. For LR92 pruning was not yet operatively effective in the quality of $A F$ yields, pruned and unpruned. while only mulch gave a difference between pruned and unpruned. In the NAF mulching in maize was not effectave because of competition from beans. Competition (in this season between beans and maizel may induce water strese to which bean plants are not tolerant: as stamates close at a moderate leaf moisture deficit of -0.5 MPa (Norman et al.. 1984). An additional effect of radiative heating may be suggested by the very low value of bean seed yield in NAF Local plot. Results show that a high biomass may not necessarily produce a higher seed yjeld as under these
drying up conditions more dry matter may remain in the vegetatave phase than may go to fruit (or seed) parts. Norman et al. (1984) contend that more leaf area (or increased biomass) does indeed not necessarily increase seed yield. Seed yield is correlated with the number of pads per plant and rumber of plants surviving to maturity (Norman et $a l$. . 1984). both negatively influenced by increasing water stress.

For SR92. the wettest of the seven growing seasins of this study. apart from the very beginning, the results of maize bjimass and grain yields, and bean biomass and seed yields presented in Table A2.1 (a) show that with no exception the $A F$ yields were the highest obtained. only in AFLL shared for beans with SR94. The effect on maize and beans biomass yield and grain respectively, bean seed yields of mulchirg existed. although only large for maize biomass and perhaps for beans biomass in unpruned $A F$ as well as for grains and seeds in NAF control plots.

If we may infer a pruning effect from the comparison of Local yields. for maize biomass the effect is opposite to that for bean biomass and perhaps of maize grain and bean seed yield. but all effects are small compared to the error margins. It seems that under the wetter conditions again mulching is more operative than pruning. but the latter additional effects. This is confinmed by the comparison of mulched AF plots.

The results of the weights of cobs in AF (see Table 19) show that low weights obtained for cobs from plants next to unpruned trees also suggest that there was some competition for soil water between undruned Grevilleas and maize plants during the period of adequate rainfall like SR92.

The effect of mulch on water conservation are well known isee chapter 2). The competition for soll moisture between trees and crops brought about by the overlapping of depletion zones iroot system sorption zone and root surface sorption zonel of the intercrop and tree root systems. The 'root system sorption zone' refers to the volume of soil occupied by roots as determined by using a seoment of a sphere with a mean radius of root spread and depth of rooting (Armson. 1977). This gives a quantitative approximation of the total soil volume of root exploitation. 'Root surface sorption zone' is the volume of soil within one centimeter of any root surface determined by calculating the volume of soil associated with root lengths by diameter classes. This is an indirect measure of rooting intensity. This according to. for example. Palaniappan (1985) may cause over-crowding of the roots (from the two systems) in the soil where the surface area of the root system becomes larger than that of the shoot. resulting in higher competation for soil resources. The uptake of water and nutrients by the roots from the soil establishes a concentration gradient along which these substances diffuse or move by mass flow to the roots. These movements soon depletes the soil around the roots of these substances resulting in slowerd down growth. Experjence has learnt that the depletion zone for water for a single root extends to a radius of 25 cm . This applies to the "additional effect" of pruning that we observe. Reot pruning. which affects 30 cm of the upper soil layer only. helps to reduce lateral competition within these layers. However, when roots have to go beyond 30 cm in search of soll resources. this depth beciones too shallow to be effective.

The results of the measurements of the per cent yield components of maize (i.e. cob, grain and bjomass weights) for SR92 in both AF and

NAF suggest that the ratio by weight of cob. grain and biomass in the total weights produced per row were on the average nearly $1: 3: 6$. The cob and grain weights per row were directly related to each other and inversely related to the biumass weights. An increase in stover biomass tends to result in a corresponding reduction in the welghts of cob and grain components. The cob weights per row tended to be more stable around their mean values than the orain and blomass weights. This and a quantitative idea or the enormous fluctuations in yields in AF plots per row and within rows were among the most important results obtained from SR92 data and could be used to model maize yields for the sem1-arid areas from weather parameters.

Results for LR93. which was particularly dry in the first two months. maize biomass and bean biomass and seed yields presented in Table A2.1 show that there was more of each yield in the NAF than in AF plots. This will repeat itself from now onwards in all seasoris. The effect is now more substantial because of root pruning of the neighbouring fruit trees from LR93 onwards. Within the NAF plots yields were more or less equal. Given the error margins and the differences concerned. If anything. a slight depression in maize biomass is noticed for the mulched plot. but this does not repeat itself in the seasons of the same kind. This may have been due to physical damage by termites which reside in and eat mulch materials and sometimes small roots of the intercrop plants during the time when there is little molsture avaliable even for the termites. The first two months were relatively drier in LR93 than in the other two seasons. The termites were often absent in unmulched plots and in mulched plots during rainy periuds.

The fruit trees comprising loquats and guavas were bordering the pruned mulched plot (AFM1) on one lono side and by the pruned Local
(AFL1) on the other side. We demonstrated this by digging durino land preparation for LR93. We dug 50 cm deep trenches at the borders between AFM1 and the fruit trees and between AFL1 and AFM2 to exclude the roots from the loquat and guava fruit trees and unpruned Grevilleas in the adjacent plots from invading the pruned Grevilleas area of the AF plot.

In $A F$ plots pruned mulched with minimum tillage (AFM1) had most maize and bean yields. Only for maize biomass this will repeat itself in all further coming seasons. differences becoming more and more substantial with time. They show the trend and cumulative advantage of mulch application and pruning with time ftree roots becoming more and more developed) to increase yields. be it initially swall. whose cumulative effects makes such increases important. For maize the effect of pruning on the Local control plots appears not to remain as strong as in LR93 but a depressive effect in the mulched unpruned plots 15 also returning in all the seasons after LR93. This has slowly built up from the beginning of the experiments and was for example also already visible in maize orain yields of the previous season. It occurs also in bean yields, be it not always as strong as in LR93 and there it occurs particularly in bean seed yields. The reasons for this yield depression in AFM2. that particularly occurs in the upper half of plots may be due to aging of trees that expand their roots iwhich decrease relative yields in both AFM2 and AFL2) and the effect of hioher turbulence and wind. The latter effect comes from two sources effective in the upper half of plots. The increased turbulence due to the environment outside the AF plots visually disturbs plant growth particularly in AFM2. during LR where this effect was largest. This combined more and more wath the effect of the orrowing southern hedge (that was planted early in the
experiment (LR92), the gap in which increasingly negatuvely anfluenced the upper parts of both AFM2 and AFL2. It also should be recalled that from LR93 onwards AFM1 and to a lesser extent AFLl yields increase because of root pruning of the neighbouring fruit trees. For $S R$ seasons it must be the same increased wind/turbulence effects acting before sowing, decreasing the available sojl mojsture before the rainy season, actually starts. In AFM2 an effect of termites adds to the above. but Given the results in AFM1. they must in that case have had more influence on otherwise weakened plants. In both unpruned AF plots a bit more shading may also be an additive factor but the difference between Local plots do not confirm this. Throughout the last four grawing seasons. pruning has very little effect on bean seed production and only occasionally on bean biomass production. Also the iniluence of mulching on bean biomass and seed yields reduces after LR93. This appears to be a prove that in AF conditions maize competition is effective in the upper layer. where most bean roots are. That thas competition apparently occurs less in NAF plots. given the overall hioher yields there throughout. must be due to the higher soll moisture in NAF plots. Apparently, although all indications give higher yields due to more sojl moisture (and other effects) in the lower parts of AF plots. there is still soil moisture runing off the AF plots. after which less 19 left for which competjtion between beans and maize is particularly strong.

From the results of LR93 and all seasons beyond we can also conclude that competition between the intercrop (maize and beans) and the AF trees with increased root growth for soil moisture. resulting in overall lower yields in AF than in NAF. is evident during a season with less rainfall. Plant residue mulching as applied is more effective in pruned and minimum tilled soil than in NAF in particularly the driest
seasons. which must be due to the slope of the AF land. After new control plots were added any residual effects appeared small.

The SR93 season is covered by the above. Results for LRS4 maize biomass yields as presented in Table A2.1 show this time exceptionally large differences in maize biomass within the NAF themselves, where M had more than twice more biomass than L. The differences within NAF plots showed how the NAF yields in Matanya can fluctuate even within the seasons themselves. It is andeed particularly the mulched control that is out of tune in the between season and within season comparisons. It is clear from Table A2.1 that both last seasons. LR94 and SR94. are the better ones after SR92. which is confirmed by the rainfall data. Mulching in NAF plots therefore becomes overwhelmingly important. The picture for the other treatments. in $A F$. remains relatively the same for these two seasons as before. With mulching not effective for beans in AF plots in SR94.

The decrease in bean ylelds over the last three seasons due to strong competition with maize and related water stress way have been due to plant mortality and fallure of flowers to produce mature pods. due to this water stress which occurred at different stages of their development as reported in the phenology sections of this thesis. This may have resulted in abscission of flowers and failure to set and fill pods (Norman et al. 1984). Also here tree roots from farms or woudlot may cause interference in neighbouring fanms. For soil water conservation measures to succeed. One should try to exclude the threat of invasion of tree roots from the neighbouring plots

From the monitoring of phenological phases of maize hybrid H511 we used in this study, we can only draw conclusions from the SR92 results. For the remaining six other seasons the maize crop falled and therefore
full phases were not reached. SR92 was a good year although plant growth was interrupted in the earlier stages as rainfall disappeared only to come late and salvage the intercrop. The oround was wet and the atmosphere was cold. The plants, which were planted on 4th October were harvested 176 days later on 23th March when the LR92 crop would have been in the ground. This interfered with land preparations for the LR92 season although even here rainfall came rather late. In this regard perhaps hybrid $H 511$ is not appropriate as it takes too long before reaching maturity when conditions such as experienced in SR92 prevall. The periods from planting to harvesting of beans (Table Al) ranged from 104 days for LR93 and LR94 to 110 days for SR91 and generally tended to be somewtiat longer during SRs than during LRs. However these difterences were aorronomically not marked.

In the on-farm situations the small-scale farmers try other hybrids such as H626 which they do dry-plant one for twol monthis) before the main rains in the hope that should such conditions as SR92 come the crop will mature just before the onset of the next season. They often lose their seed through such trial and error methods.

A conclusion to be drawn from these overall results is that well planned water abstraction and rain water harvesting would be a solution for limited irrigation to grow maize varieties that require less rainfall and can grow faster than the H511 that is currently being used.

It has been pointed out in Chapter 2 that water stress in maize influences both vegetative and reproductive growth resulting in limitation of maize yield. Even with more abundant vegetative growth. drought can prevent grain yields to occur. It should also be considered that where water stress cannot be avoided maize should be replaced by
sorghum and pearl millet. the two crops which according to Norman et al. (1984) have lower water requirements than malze. The problem, however. with such a statement is that food habits will for the time being prevent such changes.

5.1.2 Comparisons of on-station and on-farm results

5.1 .2 (a) On-farm results

(i) Kianuko-A

The results for Kiahuko-A on-farm for SR93. the comparison of the biomass yields in the pruned part of Coleus barbatus live-fence with the unpruned part. show that closest to the fence pruning accounted for 10% increase in biomass yields. which increase though small as far as reliet measures are concerned, may provide the farmer in such a dry environment as Matanya a bonus to his livestock or provide mulching matersals. The biomass yields in the open General Control plot (GC) were lower than closer to the live-fence due to exposure to the aerodynamic and evaporative effects in this part of the field which has no wandoreak effect. Additionally competition for water between maize and a mature Eucalyptus tree growing nearby may have affected the yields negatively.

The maize biomass yields for SR94 were much lower than for SR93 due to less rainfall received during early crop establishment in SR94 than SR93. However the same trends are observed. Comparing SR94 maize biomass closest to the live-fence in pruned and unpruned fence. we see that pruning accounted for 34.28 increase in biamass yields. which 18 a substantial increase. although error margins strongly overlad. The farmer would be very pleased with such an increase, although he would still need grains to avert hunger. The GC obtained the highest biomass
yields although it had shorter piants: which according to Norman et al. (1984) is due to dry matter distribution within the crop and to the sensitivity to water stress of both net photosynthesis and partitioning of assimilates.

(ii) Kiahuko-B

The results of the comparisons of maize biomass yields in pruned and unpruned plots with those in mulched control plots for SR93 and LR94 give substantial yield reductions attributable to shading by the Grevillea robusta trees in the Kiahuko-B on-farm (see Table $A \overline{2} .2$). Which made root pruning appreciably less effective under such conditions and competition for water between the unpruned trees and the crop less operative.

Similarly comparisons of Local plots in AF with the Local control give yield reductions which again we attribute to heavy shading which reduced the effect of other factors such as pruning and mulching.

The same conclusions cars be drawn for LR94 seasons as shading by the trees became heavier with the age of the trees. pruning and mulching became less effective.

SR94 as the only season that produced some malze grain was again affected by shading. which reduced the yield differences beiween different treatments thus nullifying the positive effects of these treatments in both AF and the control plots (see Table A2.2). The error mardins indeed overlap althount the differences are always in the same direction. Only the effect of mulching seems fully nullified by the heavy shading. but the effect of pruning. although numerically appreciable and within the large error limits. is certainly diminished
and does not bring sufficient relief ese Table 12.23)
The same conclusions hold for the bean stets and there were no yields in AF plots due to substantial differences among treatments in $N \mathbb{N F}$ plots
5.1.2 (b) On-farm and on-station comparison

A comparison of the effect of Grovillea robure tres not il.....
at Matanya (Table A2.1) with that at Kialuko-B (Table Mi 21 Mo r En indicate that the differences between two butcher plows ans its error margins. which showed that the two ploce pis equal niter os unpruned mulched plots Kıahuko-B produced more brogan than minis 8 differences in the pruned and unpruned Local plots who that out the locations produced equal maize biomass yields given their inn and margins. with the tendency for higher biomass in on-tarn oundiliart

In LR94 the differences in pruned and unpruned mulches pics med pruned and unpruned Local plots in the two locations enow that Exine produced markedly higher maize biomass than the Kiohiko-b antlers ant the lower yields in the latter was attributed to Tables A2.1 \& A2.2). The differences in maize blesses in milt and Local control in the two locations were not reglight infers with certainty that Matanya overtook production in LR94 because of heavy shading in yields in $A F$ in Kiahuko- B were proportionally Matanya because the heavy shade factor in yields. The situation for LROA was opposite rainfall variations over a small distance of a fed
turn manifests in variations in biomass in Laikipio

Comparisons of different treatments in Matanya AF (Table Aż.1) and Kiahuko-B AF (Table A2.2) show that in SR94, a supposedly good season at Kiahuko-B. shade reduced the biomass yjelds in the on-farm to a level where it equalled the biomass yjelds in Matanya. The blomass yjelds differences in the control plots at the two locations were clearly in favour of the on-farm yzelds. Only Kiahuko-B on-farm malze gave actual grain yields of paramount importance to the farmer.

The on-farm results compared to the simultaneously obtained onstation results for yields therefore show that appreciable differences may occur between the control plots at the different sites. For the best on-farm season (SR94) heavy shading in Kiahuko-B reduced these differences and for the worst on-farm season the already bad onifarm results were clearly worsened by this heavy shading. One may therefore conclude that with the shading reduced the remarkable bucomass and other yield differences observed over very short distances would have come out in AF plots as well.

5.2 Soil moisture

Results from the calibration of neutron probes at Matanya show that on average there was a hugher scatter of dry bulk density at lower values of volumetric soil moisture content, VSMC (8). than at higher values. which was due to contraction of the Verto-luvic phaeozem solls on drying. thereby forming shrinkage cracks and lumps (clads) which get filled with air. thus inducing heterogenelty in dry seasons and becoming relatively more homogeneous under wet conditions. The conclusion that may be drawn from this is that in the dry season. when the vertic soils become too dry. such that they form shrinkage cracks. the neutron probe may not measure soil moisture accurately as the radius of sphere of
importance of the meter becomes very laroge. The cracks also exposed somewhat deeper soil to desiccating strong winds during the LRs and strong radiative heating which depleted the soil of moisture in the upper layers even more. as shown by soil moisture results during dry seasons and in LRs more than in SRs. for example LR92. when top so1l layers had less moisture than the deeper layers.

From results of soil woisture measurements from gravimetric samples for 1992 we learn that the soil surface (at 7.5 cm depth) became very dry during the cool dry season (CD) and very wet during SR92 that followed. The control plots were drier than the $A F$ plots during $C D$ but became wetter during SR92. The dryness was caused by strong winds which desiccated the top soil in the unsheltered control plots.

Results for VSMC near pruned and unpruned AF trees show that during the seasons of maize crop fajlures (all seasons except SR92) the soil water was mainly confined to the deeper layers. Deeper percolation occurred during a short number of days that the whole prolile was above field capacity. which was followed by direct evaporation at the very top of the profile and through plants. The periods between rainfall occurrences were large and allowed enough time for the water to be used up in the layers holding the roots. The wetter season had more permanently higher VSMC values nearer the surface, when rainfall distribution was not skewed, than the drier seasons (or wetter seasons with skewed rainfall distribution). Hence the six seasons could not produce majze yields. making SR92 stand out as the only season that gave maize grain yields.

Average VSMC measurements with the neutron probe during SR92 indicated more soll moisture than during LR92 at all the deptis and
distances from the Grevilleas. The 30 cm depth had wost pronounced sold moisture amounts during both LR92 and SR92. The marginal differences in average VSMC during SR92 between pruned plots (AFM1 \& AFLl) and unpruned plots (AFM2 \& AFL2) and M and L were in the AF plots amplified in small yield differences between the treatments. With prined Mulched minimum tilled plot (AFM1) and unmulched deeply tilled Local plot (AFL2) havano the highest maize biomass and in the former the highest beans bismass and beans seed yields of the AF plots in SR92. as indicated in Table A2.1. The yield differences are higher in beans because the top soll has highest fluctuations of and competition for soil molsture, particularly between maize and beans. of which the latter are susceptible. AFMI and AFLl are almost equally wind protected during strong winds which occur in the course of LRs.

Results of agronomically important deviations of soil moisture from averages and differences between access tubes of different agronomically important depths show that soll moisture in the AFMI had generally highest positive deviations while AFL2. our suppcsed worst case, particularly for beans, had generally highest negative devzations. although rather some deviations were too small to be of agronomic value. It may be noted that soil moisture averages over the full soil profile till 170 cm . over the full season gave for example in LR93 ard SR94 values that indicate that maize varieties with deeper roots would have had more chance to yield grain as sufficient water still was avallable in layers beyond the present rooting depths. The results of agronomically important differences of soil moisture show that in SR92 between up-slope and down-slope in the agronomically important layers there are not very remarkable differences. Overall. at the three
distances from trees trends are certainly not identacal but any existing trends give more molsture in the Mulched pruned plots and. up-slope. more moisture closer to the trees. Again a confirmation of somewtat more yields in AFM1 as influenced by increased molsture due to pruning. mulching and minimum tillage in AFM1, although the roots of the fnust trees have certainly reduced these effects because these roots were only pruned in the LR93 season.

We therefore conclude here that crop residue mulch was more effective as a water conservation method when applied in the somewhat sloping AF plots that had been root pruned and manimum tilled. Apparently as combination of minimum tillage. mulching and root-pruning this method is ideal for soil moisture conservation in semi-arid agroforestry systems. However. for the last four seasons the depressing effects of maize on bean yields in AF plots land in NAF this apolied also to SR92 for beans) and the higher yields in all NAF plots show that with the small amount of crop residue that we used soil moisture was still lost through run off beyond the AF plots.

We can conclude finm the results of analysis of equavalent access tubes for LR92 and SR92 that at the three distances from the trees due to gravity more soll moisture was found down-slope in the lower half of $A F$ than in the upper half and within $A F$ this phenomenon was stronger in mulched plots than in the Local plots. Up-slope more soll molsture is found closer to the trees. There was surprisingly very little difference in soll moisture trends between the driest season (LR92) and the wettest season (SR92).

From the results of soll moisture trends with the distance from the pruned Grevilleas (PT1 \& PT4) in the Mulched and minamum tilled plot
(AFM1) we observe a general decrease of soil molsture with the distance from the trees between 94 cm and 188 cm and then an increase between 188 cm and 376 cm in the acronomically important layers li.e. 18-90 cm depths) for both LR92 and SR92. Soll moisture trends with distance from the trees (FT2 and PT5) in the pruned Local Plot (AFL1) show that soll moisture increased between 94 cm and 188 cm and then decreased beyorid 188 cm . with most striking increase being at 30 cm depth. For unpruned cases the soil moisture was lowest closer to the irees and increased with the distance from the trees although very inconsistently so in the layers of agronomic significance. Integrating these opposite trends it would support the finding that low yields were found closer to the unpruned trees where moisture was low and high yields closer to the pruned trees where moisture was rather high. the differences in seasonal distribution notwithstanding.

The LR94 and SR94 results for the on-farm live-fence experiment at Kiahuko-A show that competition for soll moisture between crop and fence roots may be substantially reduced by root pruning. There was similarity between places for different seasons among pruried and unoruned respectively within the treatments like for the Grevilleas in the on-station. All tubes closest to the live-fence in the unpruned area showed that there was least soll moisture at 90 Cll from the unpruned live-fence compared to the other two distances away from it.

The conclusion on our hypothesis with respect to the soll moisture will be given after the yields results are also concluded on.

The LR94 and SR94 results for the on-form Grevilles experiment at Kiahuko-B show that pruning on the on-farm was marginally amportant agronomically as the trees were very close togetner. The small spacing
between adjacent Grevilled rows and within such rows enabled the canopies to close up and almost completely shade the ground, thereby reducing plant photo-synthesis. direct evaporation from the ground and soil temperature gradients. aided by leaf mulches that fell on all plots, thus making the effect of our intervention with mulch ineffective. The soil moisture in the agroforestry plots was appreciably less than that in the control plots but mulch did not improve the control situation. Also here within season distributions could change the picture but given the canopy influence this is not very likely here.

The application of our hypothesis for soil water conservation implied that increased final yields could be obtained by application of crop residue mulch at $3 \mathrm{t} / \mathrm{ha}$. by pruning of agroforestry trees and livefence and by minimum tillage. This was proved wrong for all but the driest and the wettest seasons. In the latter only the maize grains although the AFM1 plot. Which was minimum tilled and mulched and had trees that were pruned, had hiaher final yjelds than the other AF pluts (AFL1. AFM2 and AFL2). The combination of the mentioned rellef measures resulted in higher yields in the NAF plots for those seasons. Remaining competition for water must be the spoiling factor in our set-up. However, for maize grain in the wettest season SR92 hagh and low yjelds are comparable in AF and NAF plots and the same applies to maize blomass in LR92. And for beans blomass (lowest values) and bean seeds (highest values) in LR92.

5.3 Strong winds at Matanya

It is amportant that we could conclude from the three calibration exercises that no corrections were necessary to individual electrical
cup anemometers during periods between or otherwise close to the tames of calibrations. because the instruments did not deteriorate with time during experimental periods at Matanya.

We may conclude from the results of wind direction studies tor the period of strong winds (June-September). that these wands blow over Matanya irom mainly southerly direction. and have rather small soucheasterly and southwesterly components.

From the results of protectave effects of the elements in the AF we find that according to the criteria of Helsler and Dewalle (1988), Seginer (1975) and Sturrock (1969). only crops in the lower part of AF (row 1) were effectively protected as the protective effect of the hedge. E, was measured to be greater than 0.2 there (1.e. Ez0.2). The sheltering effects of the coleus barbatus hedge. assisted by Grevilled stems and canopies and the roughness of other maize plants. cumulatively decreased in AFMI wind speeds from the first tree line (i.e. west to east from near SH) downwind to the last tree. This way partly explain the differences in bicmass yields in AF for 1993 and 1994. The LR maize crops in the lower half of AF, were taller and yıelded more blomass than in the upper half. We learn from the results presented here that the crops were progressively protected from the southerly and southeasterly winds. The crops on the leeward side of each row of Grevilled were additionally and progressively protected by tree stems and canopies. but that influence appears to have only little difference among the places monitored.

The results from normalized wind speeds (Rsd) in AF show that the highest fluctuations were experienced in the protected areas. dependino on the dearees of protection. with the highest Rod observed for the
positions with the highest protection and therefore lowest wind sperds. Many things mechanically influence dally average wind speeds with trends that increase the Rsd-values: increasina blomass of the protective elements. that is increasing blomass of hedge. the canopies and malze plants during rainy periods. when there $1 s$ increase in foliage. cnange biomass influence with wind speed and wind angle.

It is important that results for the use of Piche evadorimeters as auxiliary anemoneters gave very high correlation coefficients (r) Detween wind speed reduction ratios and Piche evaporation reductions. The over-all pacture 13 that calculated values of wind speeds were very close to the measured values. thus confirmina the Fiche as a cheap alternative for wind speed extrapolation and interpolation in semi-arid aoroforestry systems. Differences between the calculated and measured wind speeds were mostly less than 5\%. even in what appeared as the worst case. wathout point (0.0). The results also show that the method of using a reference point in an open area (like cup 55) was for a sufficient sample inferior to using one of the positions in the AF as reference (like cup 38 position A7). Which had similar macro-climatic conditions of air temperature and air humidity as most other Piches.

The application of our nypothesis for protection of the AF plot from scrong winds implied that AF trees and live-fence land nearby structures) provided sufficient protection to cropped lana and nerice increased intercrop yields. This could be proved although yields was hagher in the well protected lower part of AF and in the areas occupied by AFM1 and AFL1. where protection from the strona june-Seotember winds was adequate. It is, however, very likely that without root competition wind protection would have shown up as being effective.

5.4 Solar radiation

It is important that the tube solarimeters between themselves and in comparison with two Kipp solarimeters were very close to one another with correlation coefficients of nearly 100%. although the tube solarimeters appeared more sensitive to low amounts of radiation in their off-set values than the Kipp solarmmeters.

From the results on solar radation received by the intercrop we learn that the deoree of canopy shade concentration was well reflected in the relative magnitude of the fractional radiation recorded. The magnitude and direction of concentration of tree canopy shade of course follows the sun's declination (position of the sun with respect to the equator).

Prior to LR94 UT1 canopy shade was measured. in LR94 PT2 canopy shade during the SRs. the region of heaviest canopy shading affected Darticularly NW and NE sectors of the tree canopy with the former getting the highest degree of shading. This picture was clear in SR92. where differences were a lot smaller. while in SR93 and SR94 the SW sector had also a lot of shade. in SR94 even most of all sectors. Juring LRs the reaion of heaviest UT1 canopy shading affected $S W$ and $S E$ sectors of the tree canopy somewhat more in LR92, but in LR93 (June only) and LR94 the shade distribution was more even. with the SW having more shade in LR94. As to relative shade with distance to the stem. from SR91 till LR93 inclusive. shade was overall highest at 188 cm . shared with in LR93 by 94 cm and in LR93 by 376 cm . From SR93 onwards 94 cm took over as being the distance where most shade occurred. The PTA canopy shading was lighter than the UT1 shadina. so more radiation was recelved by the inter-crop under root pruned conditions. This shows that pruning enhances radiation reaching the inter-crop. which may berefit
from radjative enrichment by increasing PAR resultina in haqher maize biomass yields. if other limiting ractors do not intertere. close to the ylelds received in NAF plots. which had higher maze bjomass vields most of the seasons. Of course less wood comes from oruned trees.

From the results of blomass yaelds (YJ) correlated with Iractional radiation received by malze plants. we learn that VU decreased with decrease in fractional radiation until about a fraction of 0.60 till 0.65 . below which dry matter production virtually stopped. In SR92 there was higher YD produced at higher radiation levels because rainfall was adequate to produce malze biomass and grain yields. We also learn that gradients and intercepts of the rearession lines for the three distances from the trees were conservative. suggesting that the dry matter produced per unit ancrease in intercepted radiation was a conservative quantity. The conversion efficiency. e. in which other limiting factors radiation are hiding as well. was much higher during $5 \mathfrak{F}$ than during LR. The SRs crops produced more dry matter per unit of radiation intercepted than the LRs crops.

We may conclude from the results of comparing of yields in AF and NAF. that for Matanya low radiation loads below a fraction of about 0.6 of the open area total radiation were more harmful to maize plants in $A \bar{r}$ than high radiation loads with a fraction above this value. The application of our hypothesis for plant protection by shade from AF trees amplied success only with no reduction of final vields bw cuttino of PAR. This could mot be proven right or wrond although the NAF control plots (particularly Mulched control. M) gave consistently hagher yuelds than the AF plots, suagesting the shade level was too hagh. However. matching of PAR and avallable nutrients only comes in $1 f$ soll molsture $1 s$ adequate. Therefore management aspects of pollardina and lopping may
increase yields by increasing the PAR that falls on the intercrop canopy only in cases of adequate soil moisture and nutrients.

5.5 Soil temperature

We may conclude from the results of the analysis of extreme temperatures that although mulching at 3 tha was light it was useful in moderating extreme soil temperatures by affecting the temperature amplitudes and time to respond (phase shifts). The canopy differences. especially closer to the trees. and hioner wind speeds in the course of the LRs. which results in changes in soil water status, were all involved to produce differences in soil temperatures of at least $\pm 2.0^{\circ}$ C. This might have brought about differences in the number of tillers produce per plot. which in turn could have influenced grain filling (Norman et al.. 1984). However, because such influences are superimposed on direct soil moisture effects. it is unlikely that temperature has been of influence in other than extreme cases such as in the occurrino (cumulative) drouaht periods.

Earlier work on mulches at Matanya indicated that 3 t/ha muichina rate did not have simificant influence on the average soil temperature although it significantly influenced infiltration and soll moisture status (Liniger. 1991). Given the above. this depends on whether the soil was wet or dry and on the apparent albedo of that surface. It also depends on tree/hedge shading. which reduced the effects of additional mulch and air movement. It is likely that the temperature effect for shaded relatively wet soils was small and the mulch effect of run-off diminishing was appreciably more important.

The dampina depths confirm the modifications due the treatments as well as the differences due to earlier induced (residual) and natural
inhomogenejty of the AF plots and the change in control plots. The fluctuations and variations that the damping depth values show are also somewhat spoiling the use of Stigter's ratio. However. the Rori values independently confirm the existence of non-negliaible differences in residual effects. The fact that NAF plots and SR91 aive for values that can be understood confirw the damping depths results. It is nevertheless possible to draw one important conclusion. mulching as well as orunino. even with our mulches and tree canopy differences. induce strona thermai homogenization effects not found in other plots.

Soil temperature charges at Matanyà as obtained from our study may well be managed through the relief measures proposed in the weather advisory (section 5.6). The application of our hypothesis for seediang protection by crop residue mulch and tree shade. through moderating soll temperature thereby resulting in better plant performance. could be proved right for mulch. The plants in Mulched NAF plots and AFM1 grew taller and had higher yields as well compared to their unmulched variants. It is likely that it would be proven riant for tree shade as well in case of ample water in AF plots.

5.6 Weather advisories and further research

5.6.1 Weather advisories

Weather advisories are policy recomendations for actual tarming conditions issued as results of the identified weather related problems that are solved through field research.

From the scientific point of view most parts of Laikipia district including Matanya area are not suitable for arriculture. But the smallscale farmers moved in to this area because of land scarcity in the high potential areas where they originated. They do not want to move again
and our role $1 s$ therefore to help them through scientific research to survive on their parcels of land.

Given the cropping systems that the farmers of the area know well. and the relatively low temperatures during good rainy seasons. for the time being no altematives will be easily introduced. unless supplementary irrigation would be available. In ariy desion withan the limits of the system we researched. It will ne necessary:

- to root prune agroforestry trees and hedges:
- to plant agroforestry trees with suitable economic returns and with canopy spacings and crown densities (after pruning of roots and eventually branches) that combromise between crop protection throuah shading from too strong solar radiation and throughfall of sufficient light to match in the best rainy seasons the rate of photosynthesis allowed by the fertility of the farmer's plots. Our data indicate that well spread shade of 30 to 40% would be optimal. Pruning should have more influence on soil moisture improvement than shading lother than from mulch):
- to prevent run off by all means: which points to more conservation on steeper slopes. even when we talk about slopes smaller than 10\%:
- to use (residue) mulch. of preferably more than 3 t/ha. for soll moisture improvement, particularly on somewhat sloping lard. Where runofif prevention appears essential. More mulch would also mean a higher contribution for soil fortility:
- to combine mulching with minimum or low tillage to improve physical soil properties near the surface:
- to design hedge and tree configurations that maximize wind protection preferably 235%. and do not introduce tunnelling throuin gaps. The plot environments should not generate turbulence that can narm the
crops and/or hedges and trees:
- to utilize the observed spatal differences in seasonal rainfall over short distances lof a few kilometresi:
- to try drought resistant maize varieties with shorter orowing seasons. that are acceptable to the local farmers.
- to try maize varieties with higher rootina dedths that would use percolated water in deeper layers in seasoris with irregular rainfall.

5.6.2 Further research

In the context of the weather advisories developed. the followind future research will be recessary together with as many participatino farmers as possible:

- to find more sultable agroforestry trees. in addition to the sultable Grevilleas. that combine economic returns from their products with optimal properties for root and branch pruning to obtain the shadino compromise we indicated to be necessary:
- to find ways of obtaining additional mulch from outside the system or other means to prevent run off (and soil evaporation where the shade is low) and moderately improve soil fertility:
- to find the most suitable tillage method for amprovement of top soll physical conditions in combination with different levels of mulching:
- to find hedues that optimize wind protection while root pruned and do not contribute to forming of harmful turbulence. Hedges with additional economic advantages should be tried out first:
- to find strategies. to utilize the observed spatial differences in seasonal rainfall over short distances. of either a community type or an individual land distribution type. Also 1 mproved storage or
marketing systens could be part of such strategies.
- to find ways of on-farm research in the reaion in which the history of yaeld variations of plots can play its own positive role. Without attempts to nullify such differences at the beainnano of experiments.
- to find drought resistant malze varieties. with shorter arowing season. that can withstand cold conditions in the study area during growing seasons and are acceptable to the local farmers.

References

Abrecht. D.G.. and Eristow. K.L.. 1990. Masze seeding response to soll environment at varying distance from a muiched soll-bare soil boundary. Soil \& Tillage. 15: 205-216.

Acland. J.D.. 1971. East African crops. Lonoman Group Limited: 252 po.
Allen. L.H. . Sinclair. Jr.. I.R. and Lemon. E.F.. 1976. Radzation and microclimate relationship in multiple cropoing systems. In: R.I. Fapendick. F. A. Sanchez and G. B. Irıplett (Eds). Multiple cropoina. Amer. Suc.Apron., Crod Sci. Soc. Amer, and Soil Sci. Soc. Amer.. Wisconsin. U.S.A.

Armison. K.A.. 1977. Forest soil: Properties and orocesses. Toronto: University of Tononto Press. 390 pp .

Baldy. C.H.. 1963. Cultures associate'es et productivite' de l'eau. In: Ann. agron., 14(4): 489-534.
Bean. A.. Alperi. R.W.. and Federer. C.A.. 1975. A metnced of categorizing shelter porosity. Aoric. meteorol.. 14: 417-312

Bennett. J.M.. Jones. J.W. Zur.. B. and Hammond. L.C.. 1986. Interactive effects of nitrogen and water stresses on water relations of field-arown leaves. Agron. J.. 78: 273-280.

Berger. P., 1989. Rajnfall and agroclimatology of the Laikipia plateau. Kenya. Geopraphica Bernenola. African study series. A7. Berne: 47: 102 pp .

Blacklow. W.M. . 1972. Influence of temperature on germination and elongation of the radicle and shoot of corn (Zea mays. L.). Crop Science. 12: 647-650.

Bohn. H.. B. McNeal and O'connor. G.. 1979. Soll chemistry. John Wiley and sons. Inc. 329 pp .

Bowden. L. . 1979. Development of present dryland fanming systems. In: A.E. Hall. G.H. Cannell and H.W.Lawton (Eds.). Agriculture in Semi-arid environments. Ecoiogical Serdes 34; New York: 45-72 pp.

Braun. H.M.H., 1980. Exploratory soll map and aoro-climatic zone map of Kenya. Ministry of agriculture. Nairobi. 30 pp.

Bristow. K.i.. 1988. The role of mulch and architecture in modifying soil temperatures. Aust. J. Soil Res., 26: 269-280

Bristow. K.L.. and Abrecht. D.G.. 1989. The physical environment of two semb-arid tropical soils with partial suriace cover. Aust. J. Soli Res. 27: 577-587.

Brown. D.M.. 1976. Response of maize to environmental temperatures: A review. In: Froc. Symp. Agramet. majze (corn) crod MMU No. 48. Iowa state Univer. Ames. Iowa U.S. A 5-9 July 1976: 15-26.

Budelman. A.. 1988. The performance of the leaf mulches of Leucaena leuccocephala. Flemingia macrophylla and Glaricidia sepum in weea control. Aaraforestry Systems. 6(2): 137-145.

Budelman. A.. 1989. The performance of selected leaf mulches in temperature and soll moisture conservation in the upper soll stratum. Agroforestry Systems, 8: 53-56.

Bur lev. J.. 1985. Global needs and problems or the collection. storaqe and distribution of multipunpose tree dermplasm. ICRAF Science and Fractice of agroforestry 2. 179 pp.

Bussiere. F.. and Cellier. P.. 1994. Madification of the so1d temperature and water content regimes by a crop residue mulcn: experiment and modelling. Aaric. For. Meteorol. 68: i-28.

Campbell Scientific Ltd.. 1990. CR10 measurement and control module. Operator's manual. Koenders Instruments. England.

Chepil. W.S. . and Woodruff. N.P.. 1963. The physics of wind erosion and its control. Adv. Acron., 15: 211-302.

Chepil. W.S. 1965. Transport of soil and snow by wand. In: Meteoroloqical monooraphs, 6: 123-132.

Chui. J.N. . and Nadar. H.M.. 1983. Effect of spatial arrangement on the yield and other agronomic characters of maize and leoume intercrops. E.A. aqric. For. J. ispecial issuel. 44: 137-140.

CIAT. 1978. Annual Keport. 1977. Bean prooram. Cali. Colomba: Centro International de Aorricultura Tropical. 85 pp .

CIAT. 1979. Annual Report. 1978. Bean proorram. Call. Colomba: Contro International de Aoricultura Tropical. 75 pp .

Connor. D.J.. 1983. Plant stress factors and their influence on production of adroforestry plant associations. In: P.A. Huxley, ed.).. Plant research and arroforestry. ICRAF. Nairobi.

Cunningham. R.A.. 1988. Genetic improvement of trees and shrubs used in windbreaks. Aoric. Ecosystems Environ. 22/23: 483-496.

Da Costa. J.M.N. Fosenberg. N.J.. and Verma. S.B.. 1986. Joint influence of air temperature and soil moisture on CO_{2} release by a soybean crop. Agric. For. Meteoro1.. 32: 219-227.

Davies. J.M.. 1975. Mulching effects on plant climate and yield. WMu Tech. Note No. 136 , WMO. Geneva: 92 pp .

Davis. J.H.C. . and Garcia. S.. 1987. The effects of plant arrangement and deneity on intercropped beans (Phaseolus vilgar15 L.) and maize. I. Iraits related to dry matter and seed productivity. Field Crops Res.. 16: 105-115.

Lavis. J.H.C., Roman. A., and Garcia. S. . 1987. The effects of piant arrargement and density on intercropped beans IFhaseolus viloar 19 L. $)$ and maize. II. Comparison of relay intercropping and simultaneous planting. Field Crops Res.. 16: 117-128.
[avis. J.E. . and Norman. J.M.. 1986. Effects of shelter on ol a n t water use. Agric. Ecosystems Environ.. 22/23: 393-402.

Delta - T Levices. 1984. Tube solarimeters manuai. [elta-T Devjces Ltd.

Delta-I Devices Ltd.. U.K. 1988. The Decagon sunfleck ceotometer user manual. CEP-UM-8.

Delta-T Devices Ltd. 1989. Instruments for environmental science. Lelta I Levices Ltd.. U.K.
jenmead. O.T.. and Shaw. R.H.: 1960. The effects of soll molsture stress at different stages of growth on the development and yzeld of corn. Agron. J.. 52: 272-274.

Lesaules. A., 1980. The sojls of Mt. Kenva semi-a id Northwest Footzone and their arricultural siltabllity. Fh.D. tnesis. University of Berne. Switzerland.

Ihyanı. S.K.. P. Narain and Singh. R.K.. 1990. Studzes on rovt distribution of five multipurpose tree species in Loon Valley. India. Agroforestry systems. 12(2): 149-161

Doran. J.W.. W.W., Wilhelm. and Power, J.F.. 1984. Crop residue removal and soil productivity with no-till corn. sorghum, and soybean. Soil Sci. Soc. Am. J., 48, (3): 640-645.

Duin. R.H.A.. 1956. On the influence of tillage on condition of heat diffusion of air and infiltration of water ir the soil. Wageningen. Versl. Landbouwk. onderz. 62 pp.

Eastin. J.A.. 1969. Leaf position and leaf function in corn: Carbon-14 iabelled photosynthate. In: Froceedings of the ith Annual Corr and sorohum Research conference Amerıcan Seed Trade Association: 181-189.

EUROCONSULT (Eds.1. 1989. Aarjcultural compendium: For ruraj deve lopment in the tropics and subtropics. The Netherlands Ministry of Agriculture and Fisheries. The Haorue. Amsterdam. 740 pp .

FAO. 1979. A provisional methodoloon for sold dearadation assessment: FAO. Rume (person. comm.): 143 pp .

Finch. S.J.. 1988. Field windbreaks: Design criterıa. Agrac. Ecosystems Environ. 22/23: 215-228.

Flury. M.. 1986. Semi-arıd Highlands of Laikipia (kerva):
Small-scale farmers in maroinal environment. Thange of land-use and contribution of appiled research to adapted development planning. African Mountain Workshop (Ethiopia): 18-27 Octoher. 13 pp .
Flury. M. . 1987. Rain-red agriculture in the central division of Laikipıa distrıct. Kenya: suitabılıty. constrajnts and potential ior providing fond. Geographica Bernensia. Vol. 0 , Berne. Switzerland.

Flury. M. . 1988. Frecipitation. growina periods. adro-ecological suitability for small-scale rain-fed farmino liakipıa district. Kenyal. Workina paper WF5. Lalkipla Research Frooramme, Nanyuki, Kenya.

Freebairn. D. . 1992. Improving the storage and use of rannfail Less tlllage - Less Risk. Conservation farmina information centre and Ual by /Wamboand Jondarvan Landcare Warra and Mt. Iyson. 13-14 Juiv 4-22.

Gachathi. F.N.. 1989 Kikuyu dictionary of olant names and uses. University of Nairobi. Nalrobi, kenya.

Gardner. E.A.. 1988. Soll water. In: Understandina solls and soil data. Australian society of soil science Inc.. Brisbane. Australia.

Gates. D.M.. 1965. Radiant eneray. its receipt and disposal. In: Agric. Meteorol. Monooraphs. $\underline{\underline{\sigma}(28):} 26 \mathrm{pp}$.

Gerald. C.J.. Sexton. P.. and Shaw. R.H.. 1982. Fhysical factors influencing soil strenoth and root growth. Aaron. J. . 74: 875-879.

Gilbert. E.. 1995. The meaning of the maize revolution in sub-Sanaran Africa: Seeking ouidance from past mpacts. Agriculfural administration (Research and Extension) Network. Network pacer 55. Odi : 52 pp .

Gloyne. R.W.. 1955. Some effects of sheiterbelt and windbreaks. Met mad.. 84 (999): 272 - 281.

Gopdman. M.. 1976. Maize. Zea mays (Graminae-Maydeae). in: N.W. Simmonds (ed.). Evolution of crop plants. Lonoman Londen: 128-136.

Gosh. K.L. and Rao. V.S. . 1972. Chemical constituents of Grevilied rubusta bark. Indian Forester. 98: 32-35.

Grace. J.. 1977. Plant response to wind. Academic Fress Lond.: 204 pp.
Grace. J. . 1985. The measurement of wind apead. In B. Marmhall and F.I. Woodward (Ed.): Instrumentation for Envaronmeritaj Physiolooy. Soczety for experımental Blology, Semınar serzes 22. Cambridge Unjvergity Fress, Lond.

Grace. J. . 1988. Plant response to wind. Aaric. Ecosystems Environ. 22/23: 71-88.

Greacen. E.L. (Ed.). 1981. So11 water assesswent by the neutron method. CSIRO. Divsion of Soils. Adelaide: $1-140 \mathrm{pp}$.
Griffiths. J.F.. 1972. Climates of Afraca. In: J.F.Griffaths led.1. World Survey of climates. 10: 604 po.

Hall. A.E. Foster. K.W. and Wanes. J.G.. 1979. Crop adaptation to semi-arid environments. In: A.E. Hall. G.H. Cannell and H.W.Lawton (Eds.). Aoriculture in Semi-arid environments. Ecological Series 34: New York: 148-179 pp.

Hal verson. H.G. . and Smith. J.L.. 1974. Controllina sular ilght and heat in a forest by manaqing shadow sources. USTA Forest Service Research Paper PSW-102.

Hanway. J.J.. 1963. Growth stages of corn. Aaron. J.. 55: 487-492.
Harder. H.J.. Carlson, R.E., and Shaw. R.H. 1982. Yield. yield components and nutrient content of corn orrain as influenced by post-silking moisture stress. Agron. J.. 74: 275-278.

Harrison. F.. 1987. The areenına of Afrıca: Breaiking Enrouan in the battle for land and food. An intern. Instut. Environment and Development-EARTHICAN STUUY: 380 pp.

Harrison-Murray. R.S.. and Lal. R.. 1979. High soll temperature and the response or maize to mulching in the lowland humid tropics. In: R. Lal and D.J. Greenland (eds.). Soil physical properties and crop production in the tropics. Wiley. New York: 285-304.

Hartfield. J.L., 1976. Liant response in maize: A review. In: Proc. Symp. Aoromet. maize (corn) crod WMÜ No. 481 , Iowa state Univer. Ames. Iowa U.S. A 5-9 July 1970: 199-200.

Harworod. C.E. (ed.). 1989. Grevillea robusta: an annotated bibl Iography. ICRAF/CSIRO/ACIAR. 123 pp.

Harwocd. C.E.. 1992. Natural distribution and ocolagy of Grevidlea robusta. In: ․ E. Harwood led, i; ज̈revillea rajuta $1 n$ agroforestry and forestry. Proc. Intern. Worksnod. ICRAF/CSIRO/AIDAB/ACIANT: 21-28.

Hazra. C.R.. 1985. Forage and seed vield of crops under adrororestry production systems-Radiation and temperature relations. Jourri. Aaron. \& Crop Sci.. 155: 186-192.

Hessler. G.M. and Lewalle. D.R.. 1988. Effects of windirreak structure on windflow. Aoric. Ecosystems Environ, 22/23: 41-09

Hesketh. H.E. . 1972. Understanding and controlling air poliution. Ann Arbor Science Fublishers. Inc.. Michigan.

HMS. 1956. Handbook of meteoroloaical instruments. Part 1 Instrumerits for surface observations. London: 458 pp .

Hofstra. G.. and Nelson. C.D.. 1969. The translocation or photosyntheticaliy assimilated ${ }^{4} \mathrm{C}$ in corn. Canadian J. Botany. 47. 1435-1442.

Huxley. P.A. . Akunda. E., and Repollo. A. 1987. Climate and plant response: the use of phenological data to match with the choice of woody species for agroforestry systems. In: W.S. Relfsnvder and T. O. Darmhofer (eds.) Meteoroloary and arroforestry. Froc. Intern. Workshod on ADplication of meteorcloay to Aoroforestry sysrems planning and management 9-13 Feb.. Narrobj: 99-113.

Ibrahim. A.A.. Stigter. C.J.. Adeeb. A.M., Adam. H.S. and Jansen. A.E. . 1989. Development and validation of a shaded Fiche evaporimeter for the tropics to replace numidity and wind speed data in the aerodyriamic term of the Penmann equation. In: Proceedinos of the Fourth Technical Conierence in irstrumentsard Methods of ubservation (IECIMO IV). inscruments and ubserving Methods Report No. 35. WMO/TU Nio. 303, Geveva: 147-152.

Ibrahim. A. A.. 1992. Water use efficiency of dura and oroundinut under traditional and non-traditional irriation practices in the Gezira Scheme. Sudan. Ph.D thesis University of Gezira: 395 pp.
jackson. I.J.. 1989a. Climate. Water and Atriculture in the trodics. Longman Scientific \& Techn. John Wiley \& sons Inc. New York: 377pp.

Jackson. J.E.. 1983. Liont climate and crop-tree mixtures. in: P.A. Huxley (ed.). Plant Research and Acroforestry. ICRAF: 365-378.

Jackson. J.E.. 1989b. Tree and crop selection and management to optimize overall system productivity, especially light utilization. in agrororestry. In: Meteoroloay and Agroforestry. Reifsnyder. W.S. and Iarnhofer. I. O. (eds.): 163 - 173.

Jackson. J.E.. and Falmer. J.W.. 1989. ilatht avallability at the tree / crop interface. Ini Metearoiogy and Agroforestry. Feifinvder. W.S. and Darnhofer. T.O. (eds.): 391 - 400.

Jama. B.. Getahun. A.. and Nougi. D.N.. 1991. Shading effects of ailey cropped Leucaena leucocephala. On weed biomass and malze yield at Mtwapa. Coast Province. Aoroforestry systems, 13: 1-11.

Jatzold. R. . and Schmidt. H.. (eds.). 1983. Farm management handbook of Kenya, vol. II/B, Central Kenya: Nairobi and Trier.

Jeffrey. C.. 1973. Biological nomenclature: Special topics in biology series. 5 pp.

Jeffrey. C.. 1982. An introduction to Dlant taxonomy (second edition). Cambridge University Press. 63 pp .

Jensen. M.. 1954. Shelter eifect. Investigations anto the Aerodynamics of shelter and its effects on climate and crops. The Janish Technical Fress. Copenhagen: 263 pp.

Jerrara. H.G.. and Mchieill. U.E.. 1972. A dictionary of Scientafic units. Chapman and hiall. London (3 Fa edition). $\bar{i} i 2 \mathrm{pp}$.

Jones. J.W.. Zur. B. . and Eennett. J.M. . 1986. Interactive effects of water and nitroden stresses on carbon and water vapor exchange of corrı canopies. Aoric. For. Meteorol.. 38: 113-120.
ñarnkwa. R.K.M. . 1983. Snortwave radation effects of shadira witn a review of snade use in Tanzariza farmina. M.Sc. Inesis. University of Iharts-Salaam, Iepartment of Fhysics. Ianzania.

Kiainkwa. R.R.M. . 1991. Shelter efficiency of some craditionai windoreaks in Ianzania. A Fh.D. thesis. University of Lar es Salaam. 300 pp .

Kainkwa. R.R.M., and Stigter. C.J.. 1994. Wind reduction downind tr:m a savanna woodland eage. Nether 1. J. Aor 1c. Sc1. 4Z-2: 145-157.
kay. D.E. . 1979. Foud jequmes. Lond: Tropical Froducts Instit. . 435pp.
Keating. B.A.. and Carberry. F.S.. 1993. Resource capture and use 1 n intercropping: solar radiation. Field crobs research. 34: 273-301.
kerkhor. P.. 1986. Aoroforestry manual for Tajta-Iaveta district, hienva. DANIDA/kenya Forest Department /Ministry of Aoriculture. 151 pp .

Kerkhof. F.. 1990. Agroforestry in Atrica: In: G. Folev and G. Barnara, (eds.). A survey of project experience: 216 pD .

Kiniry. J.R., Jones. C.A.. O'Toole. J.C.. Elanchet. $\overline{\text { K. . Cabelouenre. M. . }}$ and Spanel. D.A.. 1989. Radıation-use efficiency in bıomass accumulation prior to grain-fililing for five orain-crop species. Fjeld crod Res.. 20: 51-64.

Kipp and Zonen. 1977. Solarımeter for outdoor 1nstaliation. Kipp \& Einen. The Netherlands.
kipp and Zonen. 1988. User manual solar anteqrator COiZ (8002).
Kohler. I.. 1987. Landuse in transition. aspects and problems of small-scale farming in a new environment: the examples of Laikipia district. Kienya. Georraphic Bernensia. African studies. vol. A5. Berme. Switzerland.

Konate. M.. 1984. Limate of sorgnum and millet cultivation zones of the semi-arid tropical regions of west Atrica. In: ICRISAI. AOrometeoroiogy of sorahum and millet in the tropics: Froc. Of the Intern. Symposium, 15-20 Nov 198 . ICRISAI center. India Patancheru.
honstantinov. A.R.. 1960. Evaporation in nature. Iransiated trom Fussian by Israel Program ior Scientific Translation. Nat. Sci. Found.. Washinoton. DC.: 523 pp .

Ǩrıshnan. A. and K.S. Kushwaha. 1972. Study of average neat iluxes 16 various layers of the soll and tnemr seasonal variations int Jodhpur. india. Arcn. Met. jeopn. Brokl. Ser. B.. 22: 247-250.

Jerrard. H.G. . and McNeili. D.E. . 1972. A dictionary of Scientific
unjts. Chapman and Hall. Londori (3-d edition). 112 pp .
Jones. J.W., Zur. B. . and Bennett. J.M. . 1986. Interactive effects of water and nitrocen stresses on carbon and water vapor exchange of corti canopies. Agric. For. Meteorol.. 38: 113-120.

> kainkwa. R.K.M. i983. Sortwave radiation effects or shadina witn a review of shade use in Tanzania farmana. M. Sc. Ihesis. Uriversity of Dar-es-Saiaam, Uepartment oi Fhysics. Ianzania.

Kainkwa. R.R.M. . 1991. Shelter efficiency of some craditional windurgaks in Janzania. A Fn.D. thesis. University of Lar es Salaam. 300 pp.

Kiainkwa. R.R.M., and Stigter. C.J.. 1994. Wind reduction downind ircom a savansa woodland eage. Netnerl. J. Agrıc. Sel. 42-2: 145-157.

Kay. D.E. . 1979. Food lequmes. Lond: Tropical Products Instit.. 435pp.
Keating. B.A.. and Carberry. F.S.. 1993. Resource capture and use 1 ri intercroppirg: solar radiation. Field craps research. 34: 273-301.

Kerkhof. P.. 1988. Agroforestry manual for Tajta-Taveta distrıct, Kienva. DANIDA/kenya Forest Lepartment/Ministry of Aoriculture. 151 pD.
kerkhof. F.. 1990. Aoproforestry in Africa: In: G. Folev and G. Earnara, leds.1. A survey of project experience: 216 po .

Kiniry. J.R.. Jories. C.A.. O'Tole. J.C.. Blanchet. K.. Cabelouenre. M.. and Spanel. D.A.. 1989. Radiation-use efficiency in bromass accumulation prior to grain-fililno for five orain-crop species. Field crop Res.. 20: 51-64.

Kipp and Zonen. 1977. Solarımeter for outdoor 2nstaliatzon. Kipp \& Zonen. The Netherlands.

Kipp and Zonen. 1988. User manual solar inteorator ©
Kohlex. I. . 1987. Landuse in transition. aspects and problems of small-scale farming in a riew environment: the examples or Laikipla district. Kienya. Geouraphice Bernensia. African studies, vol. A5. Berne. Switzerland.

Konate. M.. 1984. Cimate of sorghum and millet cultivation zones of the semi-arid tropical regions of west Atrica. In: ICRISAI. Aorometegroiary of sorahum and millet in the tropics: Froc, of the Intern. Sympesium, 15-20 Nov 198i. ICRISAI center. India Patancheru.
honetantinov. A.R.. 1965. Evaporation in nature. Iransiated from Fussian by Israel Frooram ior Scientific Iranslation. Nard. Sci. Found. Washinoton, DC.: 523 pp.

Krıshnan. A. and K.S. kushwana. 1972. Study of averade neat sluxes 1 n various dayers of the soll and tneir seasonal variations 1 ri Jodnpur. India. Arcn. Met. Geopn. Biokl. Ser. B.. 22: 247-350.

Jerrand. H.G. . and McNie111. U.E.. 1972. A dictionary of Sclentifıc units. Chapman and Hiall. London (3ra edition). 212 pp.

Jones. J.W. . Zur. B. . and Eennett. J.M. . 1986. Interactive effects of water and nitrogen stresses on carbon and water vapor exchange of corri canopies. Agric. For. Meteoral.. 38: 113-120..
ñalnkwa. R.K.M. . 1989. Snortwave raalation effects of shadina witn a review of snade use in Tanzarila farming. M.SC. Thesis, University of Uar-es-Saiaam, Iepartment of Fhysics. janzanla.

Kainkwa. R.R.M. . 1991. Shelter efficiency of same traditionai windoreaks in Tanzania. A Fh.D. thesis. Unaversity of Lar es Salaam. 300 pp .

Kainkwa. R.R.M. . and Stig̣ter. C.J.. 1994. Wind reduction downind irism a savanna woodland eqge. Nether1. J. Aar 1c. SC1. 42-2: 145-157.

Kay. D.E. . 1979. Food lequmes. Lond: Tropical Froducts Instit.. 435pp.
keating. B.A.. and Larberry. F.S.. 1993. Resource capture and use 2 r intercroppind: solar radiation. Fieid crops research. 34: 273-301.

Kerkhor. P.. 1988. Aaroforestry manual for Taita-Taveta distrıct, kienva. DANIDA/kenya Forest Lepartment /Ministry of Agriculture. 151 pp .

Kerkhof, F.. 1990. Aoroforestry in Atrica: In: G. Foley and G. Barnard. (eds.). A survey of project experience: 216 pp .

Kiniry. J.R.. Jories. C.A. O'Toole. J.C.. Blanchet. \bar{K}. . Cabelouenre. M.. and Spanei. D.A.. 1989. Radiation-use efficiency in Diomass accumulation prior to grain-filiano for five grain-crop species. Fleld crop Res.. 20: 51-64.

Kipp and Zonen. 1977. Solarimeter for outdoor installation. Kipp \& Zunen. The Netherlands.

Kıpp and Zonen. 1988. User manual solar inteon ator COiz (8ठ̈u2).
kohler. I.. 1987. Landuse in transition. aspects and problems of small-scale farming in a new environment: the examples or Laikipia district. Kenya. Georraphica Bernensia. African studies. vol. A5. Berne. Switzerland.

Konate. M.. 1984. Cimate of sorcinum and millet cultavation zones of the semi-arid tropical reaions of west Atrica. In: ICRISAI. Aorometeoroloory of sorahum and millet in the tropics: Froc. of the Intern. Sympasium, 15-20 Niov 1982. ICRISAI center. India Patancheru.
honstantinov. A.R.. 1966. Evaporation in nature. Iransiated Irom Fussian by Israel Frooram for Scientific iransiation. Nath. Sci. Found. Washington, DC.: 523 pp.

Kirishnan. A. and K.j. Kushwaha. 1972. Study of average heat Iluxes 1 r . valılous layers of the soll and their seasonal variations ir, Jodnpur. India. Arcn. Met. Geopn. Blokl. Ser. B.. 22: 247-250.

Krishnan. A. and G.G.N. Rao. i979. So1l temperature regime in ine arıd zone of India. Arch. Met. Geoph. Biokl. Ser. E. . 27: 15-2i.

Kristensen. K.J.. i973. Jepth interval and too sosl mossture measurement with the neutron proie. Nardic hydrolcon. 4: 77-83.

Lal. R.. 1979. Fhysical characteristics of soils of the trooncs. determiriation and management. In: $\bar{K}, \dot{L a l}$ and L. J. Greenland IEds. 1. Sol1 pnysical properties and production in the trcetcs. Ionn Wiley, Cnicnester. Ch. 1.2, 7-44.

Lal. R.. 1987. Managing the soils of subsaharan Afrıca. Scıence, z50: 1069-1076.

Lawrence. E.N.. 1955. Efrects of a windoreak on the speea and direction of wand. Met maq.. 84 (998): $244-251$.

Lawson. T.L.. and kang. B.T.. 1984. Resource use in alley cropping. In: IITA Annual Report. 1983. Ibadan. Nigeria: 181-182.

Lawson. T.L. . and kiana. B.T.. 1990. Yield of maize and cowpea in ailey cropping system in relation to available light. Agric. For. Meterrol. 52: 347 - 357.

Lind. E.M. . and Tallantıre. A.C.. 1975. Some common fiowerıra Dlants of Uqanda. Uxford University press. ind ed.. Nairubi.

Liniger. H.P.. 1991. Water conservation for rainfed farming in the semi -arid Footzone northwest of Mt. Kenya (Laikipla himhlands). Consequences on the water balance and the soli productavity. jaikiola - Mt. Kenva papers. i-3. Ser. I. discussion papers: 174 pp .

Liptay. A.M. and Tiessen. H. 1970. Influences of poivethylene-coated paper mulch on soil environment. J. Amer. Soc. Hort. Scı. 95: 395-398.

Lomas. J. . and Lewin. J.. 1977. Water use efficiency of maize and 1 ts response to physical parameters of the environment. in: proc. Symp. Aaromet, maize (corn) arop WMO No. 481. Iowa state Univer. Ames, Iowa U.S.A 5-9 July 1976: 156-173.

Long. I.F. and French. B.K.. 1967. Measurement of soil moisture in the field by neutron depth probe. J. Soil Sci. 18(1): 149-160.

Lundaren. B.O. 1978. Soil conditions and nutrıent cyclana under natural and plantacion iurests in Tanzaman hagnlands. Feports ars forest ecology and forest solls No. 31. Sweden Unıvers. Aorric. Sci.. Uppsala. Sweden. $420^{\circ} \mathrm{pp}$.

Lundoren. B.U.. and Fiantree. J.B. . 1983. Sustained agroforestry. Aoricultural Research for Development. Potentiais and Chailenges in AsIa. The Haque ISNAR. ICRAF, reorint No. 3: 26 pp .

Lyles. L.. 1988. Basic wind erosion processes. Agric. Ecocsystems Environ.. 22i23: 91-101.

Machattie. L.B.. and Schneile. F.. 1974. An introciuction to agrotopoclimatology. Tech. Note No: 133. WM: Geneva: 131 po.
McArthur. J.D.. 1976. some general characteristics of tarmino in a tropical environment. In: H. Futheriberg. Farmino systems in the tropics. Clarendon Press-jxiord: iy- 27.
McNauanton. K.G.. 1988. Effects of windbreaiss on the turbulent transport and macroclimate. Aarlc. Ecosystems Environ. i2/<3: 17-39.

McTaish. G.H. . Rose. C.W.. Ukach. G.E. . and Fails. F.G.. i992. Water and wind erosion sirilarities ard differerices. In: H. Hurn. and k Tato (Eds.1. Ercsion conservation and small - scale Farmina, oth intern. soil conserv. cont. of the ISCu Ethapold ara Kenva $0-18$ Nov. 1989: 107-119.

Moges. A.. 1991. Water conservation and production under two agroforestry systems: A Laikipia district case study. M.Sc.thesis. University of Nairobi. 136

Mong1. H.O. and Huxlev. F.A.. 1979. Solls researen in arrutorestry. Froc. Expert Consultaiton. ICRAF: 584 pp .

Mons1. M.. and Saeki. T.. 1953. On the liotht factor in plant commuristies and its significance for dry matter production. Jap. J. Eot.. i4: 22-52.

Monteith. T.i.. 1977. Climate and the efficiency of crop production in Britain. Pinl. Trans. R. Soc. Lond.. b 218: 277 - 294.

Monteitn. T.i.. and Unsworth. M.H.. 1990. Principles of environmental physics: 36-100.

Muchena. F.N.. 1979. Use of scil physical characterist.jes for land evaluation. In: R. Lal and L.J. Greenland (Eds.). Soj. pnysical properties and crop production in the tropics. $+27-437$.

Mưaha. J.O. . 1983. Rooting characteristics of water extraction by hatumani maize composite B maize under varying molsture rearmes. E.A. aoric. For. J. (special $1 s 5 u e$). 44: $86-87$.

Mungai. D.N. . 1991. A micrometeorological investigation of vield differences in aliey cropoing irjals in the semb-aria areas if Machaikos district, Nenya. Fh. D. Thes1s, Unjversity 21 Najrobi: 404 pp.
Mungai. D.N. and Stloter. C.J.. 1994. The use of weather and clamate information in planning and production in Africa under condistions of increasing climate variabillty. African Meteorol. Soc. ispectal issue): 595-600.

Mutinda. M. N.. 1095. The influence of an adroforestry system on latat competition. biomass production and nutritive value for srieep. M.Sic. University of Egerton (under preparation).

Mwampaja. A.R.. 1983. Soil temperature effects of שulcning and an example of soil temperature under mulched :ed in hierjcha, henve. M.Sc. thesis. Fhysics Dedartment. University of iar es Salaam.

Nadar. H.M. . 1983. Intercroppıng and intercrop component anteraction under varying rainiall conditions in East hienva. I: maizelbean intercrop. E.A. agrıc. For. J. (specıai 1ssue). 4; : ióó-175.

Nadar. H.M.. ana Faupnt. W. A. ${ }^{\text {S }}$ 1983. Maize yield resconse to different levels of nitrogen and phosphorus rertilizer appilcation: A severr season study. E.A. acric. For. j. ispecial issuel. 4: 147-150.

Nagaeli. W. . 1953. The brakind effect of a forest on wind. Interti. Unioni. Forest. Res. and Urgan., ilth Conf., Fome, section 11: $12-17$.

Nair. P.K.R. 1984. Soll productivity aspects of adroicorestry. Sclence and practice or acroforestry 1. ICEAF. Nairobl. 85 po.

Nair. P.K.R.. 1988. Aorroforestry and firewood production. In: D.U. Hall and R.F. iverend. R.P. ieds.1. Eiomoss. John Wiley \& Sons Ltd. : 367-386.

Neumann. I.F.. 1983. Use of trees in small-holder acricuiture in tropical highlands. In: W. Lockertz, (ed.). Environmentaliy sound arriculture. New York: 351-376.

Nicoullaud. B.: King. D. and Taraieu, F.. 1994. Verticai distribution of maize roots in relation to permanent soil characteristics. Plant and soil. 159: 245-254.

Norman. M.J.T., Fearson. C.J. and jearle. P.G.E. . 1984. The ecology of tropical food crops. Cambridge University Press, London. $30 y$ pp.

Oke. T.R. . 1987. Boundary layer climates. Methuen. Lond. 435 pp.
ong. C.k. 1989. Interaction of light. water and nutraents in agraforestry systems. In: M.E. Avery. M. $\overline{9}, \bar{R}$ Canseil and bin. üna. leas.). Ejophysical Research for Aszan acroforesery; Wariorock Intern. USA \& S. Asla books, USA: 107-124.

Gronugo. P.O. . 1992. Place of Grevillea robusta in National Agroterestry and wood production Policies and Flans. in: C.E. Manwod ie.j. I. irevilled rabusta in Aoroforestry and Forestry. Froc. Interth. Workshod. ILFAF. 29-36.

Onyewotu. L.O.Z. . Voigiriai. M.A.. and Stig̣ter. C.J.. 19:44. A study or competitive effects between a Eucalyptus camaldulensis shelterbelt and an adjacent millet (Fennisetum tyahoidesi crop. Agrac. Ecosyst. and Environ. 51: 281-286.
Uteno i. S.B.B.. 1982. The reljability of pentad rainfall in honya. IMIk research report No. 2/82: 41 pp .

Citend 1. S.B.B. . 1994. Maize straw and acroforestry 1 nfiluence on the mıcrometeorology of mazze/beans jnitercrop or, the western footzone of Mt. Kienva. The Secona National worksnod on Meteorological Research Applications and Services. 5-9th Dec. Nairobi: 17 pp .

Oteng'1. S.B.B.. No and'a. J.K., Munai. U.N.. Stjgter. C.J.. and Liniger. H.F.. 1995. An investigation of the effect of mulching and adroforestry systems on the microcilwatic cormitions aflectina soll molsture for malzeibean intercrop: In: C.J. Stioter. F.J. Hanq'atl. J.K. Nq'ana a, ard I.N. Munaaj leds). The TMMI-Frolect and the 'FICNIC model: An eva.uat jon of aporpacnes and resuits and of prospects for ITMI-urits. 124-135.

Uthzeno. C.O. Stıater. C.J.. and Mwampaja. A. use of Stigter's ratio expressing the thermal efficiency of orass mulches. Expl. Agric.. 21:169-174.
Owanc. F.. 1992. Trends in orowind and utilization of Grevilied as an exotic. In: こ.E. Hiarwood led.1: Grevillea robusta in agrotoreatry and forestry. Froc. Interti, WorikshoD. ICRAF/CSIFO/AIDAB/ACIAR: 17-19.

Paez. M.i. and Rodriơuez. R. . 1992. Erosion and corservation assessment on arable lanios in Venezueia. In: H. Hurn and K. Tato IEds.) Erosion conservation and small - scaio Farmina: oth Intern. sojl conservation conf. of the ISOU Ethiopja and Kenya ó - 18 Nov . 1989: 39-49.

Palaniappan. S.P.. 1985. Cropping systems in the trooles: Frincidies and management. Wiley East. Ltd lNew Delh11 \& Tamıi Nadu Aoricuiturai Univers. (Colmoatore). 215 pp .

Papendick. K.I., Lindstorm. M.J.. and Cochran. V.i.. i973. Soid muich effects on seedbed temperature and water during fallow in eastern Washington. Soil SC1. Soc. Amer. Proc. 37: 307-314.

Parkes. M.E. . and Siam. N.. 1979. Errors associated with measurements of soll molsture by neutron probe. J. aoric. Eng. Fes. . 148-160.

Fearcy, R.W.. 1989. Radiation and 11atht measurements. In: R.iW. Pearcy, J. Enieringer. H.A. Mooney and P.W. Rundel (Eds. is Plant physiologicai Eculacy: Fleld metnois and instrumentation. Chapman and Ha11, London: 97-116.

Fearcy. R.W.. Tumosa. N. and Willians. K.. 1981. Relationsmips between growths. photosyrithesis and competitive interactions for a C_{3} and à C4 plant. Gecoioqia. 48: 321-326.

Fereira. H.C., 1979. Hyarological and soll conservation aspects of agroforestry. In: H.O. Monal and P.A. Huxley IEds. 1 . S011 researcn in acroforestry: 315-326. ILRAF. Nairobi.

Quasnu. H.K. and Evans. D.U.. 1967. Effect of black oranular mulch on soll temperature. water content and crusting. Soll Scl. Soc. Amer. Proc. 31: 429-435.

Quesada. F.. Sumarriba. E.. and Varqas. E. . 1989. Simulation of trae shadows in agroiorestry systems. In: h.E. Fejfsnyder anc Ti Darnhofer (eds. 1. Meteorciocy and acroforestry. Frecuintert L Worksion or Appiacation of meteoroiogy to Aarciforestry systeme plannina and manaqement 9-15 reb. Naurobi: 157-161.

Rächie. K.O.. 1983. Intercropping tree lequmes with annual crcos. in: Plant Fesearch and Agroforestry, ICRAF: Muxley, F.A. ed. I

Radke. J.K.. and riagstrom. R.T.. 1970́. Strip antercroppina for wina protection. In: R. I. Fapendıck, P.A. Sanchez, G.E. Tr 1 Diert Eds. 1: Multiple croppina. ASA Special Fub!ication No. 127. Madison. U.S.A.

Rao. M.R. . 1986. Cereals in multiple crooping. In: C.A. Francis iea.1. Multiple cropping systems. Macmillan Publishing iompany New York: 96-132.

Ratlift. L.F.. Ritchie. J.T.. and Cassell. D.K.. 1983. A survev or treld measured limits of soll water avallability and related faboratory measured properties. So11 Sc1. Soc. Am. J.. 47: 770-775.

Reddy. A.N.Y.. 1992. Grevillea robusta an coffee plantations of Känataka. In: L..E. Harwood led.), Garevilled robusta in Agroforestry and Forestry. Froc. Intern. Warkshop. ICRAF: 59-05.

Feifsnyder. W.E.. 1989. Control of solar radiation in aaroforestry practice. In: W.E. Relfsnyder and T.O. Darninofer leds.l. Meteoroloav and adrotorestry. Froc. Intern. Workshod on Application of meteoroloay to Aoroforestry systems planning and management 9-13 Feb., Nairob1: 141-156.

Reijnt les. C. Haverkort. B.. and Waters-Baver. A.. 1992. Farmino for the future: An introduction to low-external-inout and sustainable aorlculture. ILEIA. Macmillar. Netherlands: 250 pp.

Republic of Kenya, 1981. On National Food Policy. Kenya Government Printers.

Kepublic of Kenya. 1983. Development Plan 1984-1988. Kenya Government Printers.

Republic of Kienva. 1986. Sessional Faper No. 1. On Economic Manausment for Renewed Growth: 177 pp .

Repuolic of kenya. 1994a. Sessional Paper No. 2. Un Natzunal Food Policy. Kienya Government Pranters: 56 pp .

Republic of Kenya. 1994b. National Population Census Statıstıcs of 1989. Keriya Government Printers.
Rocheleau D. Weber. F. and Field-Juma A. 1988. Agroforestry in divland Africa. Scıence and practices of aproforestry, 3: 311 pp .

Ress. P.J.. Williams. L. . and McCown. R.L.. 1985a. Soll temperature and energy balance of vegetative mulch in the semj-arad tropics. I. Static analysis of radiation balance. Aust, J. Soll Res., i3: 493-514.

Foss. P.J.. W11lJams. L. . and McCown. K.L. . 1985b. S011 temberature and energy dalance of vegetative mulch in the semi-aria tropics. ii. [ynamic analysis of the total eneroy balance. Aust. J. Soli Res.. 23: 515-532.

Ruthenberg. H.. 1976. Fanming systems in the tropzcs: : Clarendon press -Oxford. 366 pp .

Russell. E.E.. 1901. Soil conditions and Dlant orvowth. English Lanouage Ecck Soc. Longmans breen and Co. Lid.

Russel. M.B.. 1980. Frofile molsture dymamics of soll in Vertisois and Alfisols. ICKISAI. In: Froc, intern. Warkstive on the Aorcelimatolocical Research needs of the semi-arid trcolcs. 22-24 Nov. 1978, Hyderabad. Indıa.

Saffell. R.A.. Cambbell. G.S.. and Camblell. E.C.. 1979. An amproved macropower counting inteorator. Adricuitural meteoroiocy, zu: 393-396.

Seginer. I.. 1975. Flow around a windbreak in oblique wind. Boundaryiaver meteorol.. 2: 323-333.

Shaw. R.H. . 1977. Water use and water recuirements of malze. In: Froc. Symp. Acromet. maize (corn) crop WMO Nio. 481, Iowa state Univer. Ames. Iowa U.S.A 5-9 July 1970: 119-134.

Sinclair. T.R. . and Horie. T., 1989. Leaf nitrogen. phriosynthes1s. and crop radiation use efficiency: a review. crop sci.. 29: 90-98.

Skidmore. E.L., Layton. J.B.. Armorust, D.V., and fooker, M.L. 1980. Soil physical properties as influenced by cropping and residue management. Soil Sci. Soc. Am. J., 50(2): 4i5-419.

Smartt. J. . 1969. Evolution of American Phaseolus under domestication. In: P.J. Ucko \& G.W. Dimblehy iedsi. The dometstication and exploitation of plants and animals. London: [uckworth: 451-46..

Smith. H., 1995. Success in the shade. SPORE 54 page 12.
Sombroek. W.G., and Braun. H.M.H., 1974. The solls of the A r o a: Frciperties and water resources. In: MMO: ACnochapotolocy of trie hignlands of East Atrica. Proc. Tech. Conf. 1-5 Oet.. 1973, Nalrob1: 96-96.

Spiers. N. and Stewart. M. . 1992. Use of Grevillea rojusta in Embu ana Meru districts of Kenya. In: C.E. Harwood 100.1: Grevillea subusta in acroforestry and forestry. Proc. Intern. Workshoo. ICRAEICSIEM AAIDAB/ACIAR: 37-48.

Squire. G.f.. ung. C.K.. and Monterth. J.L. . 1987. Crod ofrowth in sem1arid envircnments. In: proceedinas of the Internatzonal pear-1 millet workshoo. 7-11 ADr11, 1986. Hyderabad. Ind1a: ICRISAI: 219-231.

Stewart. J.I.. 1982a. Research on rainfall and yield responses to water arid natrocen in different environment for oujding crop selection and farm practices in semi-arid areas of kenya. In: Froc. Intern. Symo. Semi-ar 19 tropics. Ulinda. Pernambuco: Aug. 16-20.

Stewart. J.i.. 1982b. Crop yields and returns under different suld moisture reqimes. 3rd FAO/SIDA Seminar on Field crops in Airica and the Near East. Nairobi, Kenva 0-12 June: 19 pp .

Stiơter. C.J. ispia. Traditional use of shade: a detion of micrer clumate management. Arch. Meteorol. Geoch. Ejoci. B. i4: 203-210,

Stiger. C.J.. 1984b. Shading: a traditional method of microciamate manipulation. Neth. J. aaric. Sci.. 32: 81-86.

Stioter. ‥J.. 1984c. Mulching as a traditional method of micrachmate mänagement. Arch. Meteorol. Geoph. Biocl. B. 35: 147-154.

Stigter. C.J.. 1985a. Physics of mulching with particuiar emphasis on grass mulches. Intern. Colloquum on enerory flux at the sosil atmosphere interiace. Irieste. Italy. ILTP: il pp.

Stigter. C.J.. 1985b. Wind protection in traditional macroclimate manauement and manipulation - examples from East Africa. Effects of shelter on the physiology of plants ard anmais. In: Grace. J.. (od.1: Promess in bicmeteorolony. 2: 145-154.

Stigter, C.J.. 1987. Mulching with organic materiais: Knowledge 15 power. ILEIA Newsletter, 3(3): 10-11.

Stıoter. C.J.. 1988. Microclimate maragement and manipulation in agroforestry. In: K.F. Wiersum (Ed.1. Viewoonts on Aaroforestry. Agricuitural University Waqenınger., The Netheriands: 145-108.

Stagter. C.J.. 1990. Un some experience within the MMi-Project. COI Agricuitural Administration (Fesearch and Extension) Network Newsletter: 9 pp.

Stioter. C.J.. 1994a. Management and manipulation of macro- cliwate. Ini Griffiths (Ed.) Handbook of agricultural meteoroioon. Uxtord University Fress: 273-284.

Stioter. C.J.. 1994b. Corditions. recuirements and needs for outdcor measurements in developina countries: The case of Acrometeorology arua Afroclimatolooy. Invited Faper presented at the wMi Iecrinjca: Cont. on Instruments ana Mernods of Ubservation. TE00-94, wM.. Geneva. Extended Abstract in instruments and Observational Methods. Report No. 57. WMO/TO-NO, 588: FP. 1-2.

Stioter. C.J.. 1995. The "PICNIC" aridel and TIMI research: Successes. railures and development consequences of two annovative apprcachee in third worla university research education. In: C.J. Stiuter, F.J. Wang'at 1, J.ï, Ng'ang a and U.N. Mungal iEis. 1. The ITMIproject and the "PICNIC'-wodej: an ariterrial evaluation of approaches and results and of prospects for TMMI-Units. Wageningen Aariculturai University.

Stigter. C.J.. and Darnnofer. T.U.. 1989. Uuantitication of macroclimate near the soll suriace. In: J.M. Anderson and I.S. Inoram lecis.). Irodical bjoluay and sujl Iertility. A fiandbook of mechode. IUESANESQU (MAB). C.A.B. International. Wallinaford (UK): 144-157.

Stioter. C.J. and Baldy. Ch.M.. 1994. Manipulation of the macroclimate by intercropping: Making the best of servaces rendered. Presented at the Intern. Meetina on Ecopnvsioloay in TroDical Intercroppina. Gudeloupe, December 1993. INFA Antilles
-Guyana. 13 pp .
Stigter. C.J.. Miunou. Y.B.. and Waryoba. J.M.. 19B4. unt drior demonstration experiment on the effects of soli aibedo on sols surface temperatures. Am. J. Phys. 52(28): 74え-744.

Stioter. C.J.. Jernhofer. T.O.. and Herrera. S.i. . 1989. Croo protection from very strono winds: recommendatigis ircu a iusta Rican agroforestry case studv. In: Meteoralooy and Anrotorestry. In: W.E. Keitsnvider and I. O. Darnhoter leds.l. Heteorolocy and aqroforestry. Frac. Intern. Worksncup on Application of meterrolany to Acmoforestry systems Dlanning and management 2 -1j Feb. Fiairobi ± 521 - 529 .

Stioter. C.J.. Uthieno. C.O. Coulson. C.L and the kenyan MMi-team. 1987. Mulching with organic materials: Kincwledge 19 power. Microclimate management. ILEIA. 3(3). 10-il.

Stigter. C.J. . Mıungu. Y.B.. Luteae. M.. Waryoha. J.M., Útnieric. C.Ü. and Mwampaja. A.R.. 1984b. Relationships between so1l albeaus and soil and air temperatures. Neth. J. aorıc. Sc.1. 32: 33-42.

Stigter. C.J.. Wand'ati. F.K.. No ang'a. J.K.. and Munai. I.M. . 1995 a. The TIMI-Frolect and the 'PICNIC model: An evaiuation of approaches and results and of prospects for TiMI-units.

Stigrer. C.J.. Mungai. D.N.. J.K.. Ng'ang a. Oterg'1. S.B.E.. ard TIMI-team in Kenya. Nigeria. Sudan and Tanzania. 1995 t. Moving research ever cioser to rural reality: a comparison of two TMMI-projects phases. Submitted for publication in ILEIA.

Stofella. R.J.. Sandsted. R.F.. Zobel. F.W. \& Hymes. W.L. . 1979. Ruvt characteristics of black beans: II. Crop Science. 19: 820.-8ju.

Stoker. R.. 1974. Effect on awari Deans of water staress at different phases of orowtn. New Zealana Journal of experimental acriculture. 2. 13-15.

Sturrock. J.W.. 1969. Aerodynamics studies of shelterbelts in New Zealand: Low to medium height snelterbelts in Mid-Caterbury. N.Z. J. Sci.. 12: 754-776.

Sturrock. J.W.. 1988. Shelter: Its management and promotion. Aarjc. Ecosystems and Environ. 22/33: 1-13.

Swan. D.. Browt. D.M. and Coligado. M.C., 1981. Leaf emergence rates of corn (Zea mays. L.) as affected by temperature and photoperica. Aqric. Meteoro1. 24: 51-73.

Symons. P.M.. 1989. Aspects of biology. behaviour and population dynamics of the absent locust relevant to present activities. FAci plant protection Bulietin. 37: 5-15.

Szeicz. G.. Monteith. J.L.. and Dos Santos. J.M., 1964. Tube scilarimeter to measure radiation amono plants. Journ. Appi. EcO1.. 1: 10-174.

Szeicz. G.. 1974a. Solar radiation for plant growth. Journ. Apol. Ecol.. 2: 617-036.

Szeicz.G. . 1974b. Solar radiation in crop canopies. Journ. ADol. Ecol. 2: 1117 - 1150.

Tarner C.E. Feterson. A.E. . and Love. J.F.. 1960. Radiant energy exchange in a corn fiela. Aaron. J. . 52: 373-379.

Tibke. G.. 1988. Basic principles of wind erosion control. Aoric. Ecosystems Environ. . 22/23: 103-122.

Tieszen. L.L. . 1983. Photcsynthesis systems: Implications for aoroforestry. In: F.A. muxley (ed.). Piant Fesearch and Acroforestry. ICRAF: $365-378$.

Todorov. A.V.. 1977. Guide-Eook tor agrometeorojogical observatjung. East African Meteorolouicai [epartment. Nairool. 151 pp .

Trenbath. B.R.. 1976. Plant interactions in mixed crop cromunities. in: F.I. Fapendick. P.A. Sanchez and G.B.Triolett (Eds). Multiole Cropping. Amer. Soc. Agron. irod Scl. Soc. Amer. and Soll Scz. Soc. Amer. Wisconsin. U.S.A.

Trerbath. B.R.. 1986. Resource use by intercrops. In: C.A. Francis (ed.). Multiple crciopina systems. Macmillan Publishing Camrany New York: 57-81.

Trolldenier. G.. 1988. Intluence of cultivation measures on soll life. Flant research and development. 26: 114-120.

Tyler. D.D.. and iverton, J.R.. 1982. Non-tillage advantaces for soybean seed quality during drought stress. Agron. J. . 74, 34 - 346.

Umaya. G.0.. 1991. The spatial and temporal distribution of the active rcots of Cassia siamea Lam. and Lea mays L. ICV. Katumanz Composite El. in alley cropping under semi-arid conditions in Machakos district. Kenya. M.Sc. thesis, University of Narrobi. Botany Vept. : 98 pp .

Unger. F.L.W.. 1987. Fossibilities of zero-tillage for small-scaie farmers in the tropics. The TDMI-Froject: ILEIA. 3131: 7-8.

Van Bave1. C.H.M.. Nixon. P.R.. and riauser. V.L.. 1ড63. Soil morsture measurements with the neutron method. Aorz2C. Res. Serv., U.S.A. Depart. Acric.: 1-38.

Van de Wea. R.F.. 1978. Field quidelines for the annotation of the sol! profile description form. Renya Soll Survey. IC17. Najrobi. henya.

Vandenbeldt. R.J. and willams. J.H.. 1992. The effect of soil surlace temperature on the growth of millet in relation to the effect of Faidherbia albida trees. Adric. For. meteorei.. 00: 93-100.

Van Eimern. J. . karschom. R., Razumuva. L.A., and Robertsori. G.. 1900^{4}. Windoreaks and shelterbelts. WMO Tech. Note 59: 188 pp .

Van Eimern. J.. 1968. Some experiences cbtained in masolno the locai wind pattern. In: Froc. the requonal hio traming semimar an acorometeorolooy. WMC and aoricuitural University or Wageninuen.
Van Wijk. W.R.. 1905. Soil microclimate its creation. observation and modification. In: Meteorol, monaraons, oi(28): 59-72.

Van Wijk. W.R. . Larson. W.E., and Burrows. W.C. . 1959. Sold tempel ature and early growth or corn trom mulched and unmulched sonl. Soli Scl. Suc. Amer. Froc. 31: 428-434.

Van Zyl. W.H.. and De Jager. J.M.. 1987. Estimatıno evadoratıoni from wheat using weather measurements ard carborunaum or Fiche evaporimeter. Aaric. For. meteorol.. 41: 65-75.

Visvalingam. M., and Tandy. J.D.. 1972. The neutron method for measuring soil moisture content - a review. J.ATric. Scı. 23(4): 499-511.

Walker, G.K.. and Hartifield. J.L., 1979. Test of the stress degree-day using multiple planting dares of red kidney beans. Agronomy J.. 71: 967-971.

Warren. W.J.. 1969. Maximum yield potential. In. Froc. VIIth Colloqium. Int. Potash Inst. Bern Switzerland. 34-56.
webb. L.J.. Tracey, J.G., and Haydock. K.P.. 1967. A factor toxic to seedlinas of the same species assaciated with livira roots of the non-oregarious subtropical rainforest tree Grevillea robusta. Journ. Appl. Ecolocy. 4: 13-25.

Webster. C.C.. and Wilson. P.N.. 1960. Aoriculture in the tropics. Tropical agric. series. Lonogman Lond. 488 pp.

Wiersum. K.F.. 1988. Outlines of agrotorestry concepts. In; K.F. Wiersum (Ed.). Viewoints on Aorroforestry. Wagenjngen Aoricultural Unav.. The Netherlands: 1-26 pp.

Willey. R.W., and Usiru. D.S.O., 1972. Studies on maxtures of maize and beans (Phaseolus vilgaris) with particuiar reference to plant population. Journai of Acrjcuitural Science. 79: 517-529.

Willey. R.W.. Natarajan. M. . Reddy. M.S.. and Rao. M.R.. 1986. Cropping systems with orroundnut: resource use and productivity. In: Acrometeoroleoy of arcuninut. international sympoajum proceedinge, 21-26 Auc. 1980. Niamey. Niger: ICRISAT Sahelian Centre: 193-205.

Wihtelw. W.W. . Joran. J.W., ard Power. J.F. . 1986. Corn and soybean yieid response to crop residue management under no-tillage production systems. Aaron. J.. 7811): 184-189.
wilken, G.C.. 1972. Microclimatic management by traditional farmers. Geoor. Rev., 62 (4): 544-560.

W1lkes, H.G.. 1967. Teosinte: The ciosest relative of maize: Camoridge. Mass. Harvard university. The Bussey Institute.

WMO. 1981. Meteorolcoacal aspects of the utilization of wind as an enerory source. WMO Tech. Note No. 175: Geneva. 180 pp.

WMu. 1983. Meteorological aspects of certain processes affecturn sold deoradation - especiaily erosion. WWO Tech. Note No. 178: Gerveva. 149 pp.

WMO. 1985. Use of meteorological and hydrological ciata in the combat against desertification. WMO Special Feport. I: WMO Geneva. 24-36

WMO. 1986. Land use and agrosystem manaoement under severe climatic conditions. WMO Techn. Note No. 184: Geneva. 161 pp.

WMO. 1989. Lana management in arıd and semi-arid areas. WMO Tech Note. №. 180: Geneva. 148 pp .
wiki. 1995. Commission for Agricultural meteorology. Eleven Session. Abridged Final Repurt with Resolutions and Kecommendations. Whar No. 825. WMO. Geneva. 50 pp .

Young. A.. 1987. The potential of aproforestry for soli conservation and sustainable land use. In: J. nuzub (Ed.l. Seminar on land and water resources management. Washingtori, D.C.: Econcmic Development Institute of The Worid Bank. 10 Dp.

Yourig. A.. 1989. Adroforestry for soil conservation. ICrAF Scıerice and practices of acroforestry 4. C..A.E. Internationaj: 276 pp .

Ghou. F.J.. Wang. L.K. and Peng Xu. 1992. Wind ercsion on a coastal nilly soil in China. In: H. Fhurn and k. Tats Eds.i. Erosior: conservation and small - scale Farmino: 6th Interm. soij conservation conf. of the ISLO. Ethiopia and kenya, o-i8 iwiv. 1989: 121 - 131.

Figures and Tables in Appendix
Figures in Appendix

Fig. A1. A sketch of a root-pruned Grevillea robusta tree illustrating its geometry including its cone-shaped canopy used in wind protection and radiation shading effects (see Table A8 for meanings of abbreviations used).

Fig. A2. A layout of on-farm experiment on the effect
of live-tence rust priming on soil moisture at

Fig. A3. A layout of on-farm experiment on the effect of Grevillea robusta root pruning and mulcting on soil moisture at Kiahuko-B.

Fig. A4. 1993 soil moisture content at 7.5 cm depth obtained from soil samples.

Fig. A5. Mean wind patterns over Africa for July (a) and October (b). Note: North-easterly and south-easterly winds over Kenya during the two months (After Griffiths. 1972).

SHADE EFFECT AT UNPRUNED GREVILLEA -UT1
RAD 94 all zectore of Tb in Now 1991

SHADE EFFECT AT UNPRUNED GREVILLEA -UT1

Figs. A6-A8. Comparison of daily radiation in the four (NE, SE, SW. NW) of Grevillea tree (UT1) at 94, 188 and 376 cm from the tree stem and in the open in November. 1991

SHADE EFFECT AT UNPRUNED GREVILLEA -UT1

TIME IN DAYS (1/11-30/11/01)

- (NE)3 + (SE)S ○ (SW)J \triangle (NW)J ∇ TUBE IN OPEN Fig. A8

SHADE EFFECT OF UNPRUNED GREVILLEA - UT1

Figs. A9-A11. Comparison of daily radiation in the four (NE, SE. SW. NW) of Grevillea tree (UT1) at 94. 188 and 376 cm from the tree stem and in the open in December. 1991

SHADE EFFECT OF UNPRUNED GREVILLEA- UT1

Fig. A10

SHADE EFFECT OF UNPRUNED GREVILLEA- UT1

Fig. A11

SHADE EFFECT AT UNPRUNED GREVILLEA -UT1

Fig. A 12
SHADE EFFECT AT UNPRUNED GREVILLEA -UT1

- $(N D 2)+(S E) 2 \quad \circ(S W) 2 \quad \triangle(N W) 2 *$ TUBE IN OPEN

Fig. A13
Figs. A12-A14. Comparison of daily radiation in the four (NE, SE, SW. NW) of Grevillea tree (UT1) at 94. 188 and 376 cm from the tree stem and in the open in April. 1992

SHADE EFFECT AT UNPRUNED GREVILLEA -UT1

Fig. A14

SHADE EFFECT AT UNPRUNED GREVILLEA '92

Fig. A15
Figs. A15-A17. Comparison of daily radiation in the four (NE. SE. SW, NW) of Grevillea tree (UT1) at 94. 188 and 376 cm from the tree atem and in the open in
May. 1992

SHADE EFFECT AT UNPRUNED GREVILLEA '92

Fig. A16

SHADE EFFECT AT UNPRUNED GREVILLEA '92

Fig. A18

SHADE EFFECT OF UNPRUNED GREVILLEA -UT1

Figs. A18-A20. Comparison of daily radiation in the four (NE, SE, SW. NW) of Grevillea tree (UT1) at 94. 188 and 376 cm from the tree stem and in the open in October. 1992

SHADE EFFECT OF UNPRUNED GREVILLEA -UT1

Fig. A20
SHADE EFFECT OF UNPRUNED GREVILLEA -UT1

Fig. A21

SHADE EFFECT OF UNPRUNED GREVILLEA -UT1

Fig. A22
SHADE EFFECT OF UNPRUNED GREVILLEA -UT1

Fig. A23
Figs. A21-A23. Comparison of daily radiation in the four (NE, SE, SW. NW) of Grevillea tree (UT1) at 94. 188 and 376 cm from the tree stem and in the open in Novemer. 1992

SHADE EFFECT OF UNPRUNED GREVILLEA -UT1

Fig. A24
SHADE EFFECT OF UNPRUNED GREVILLEA -UT1

Fig. A25
Figs. A24-A26. Comparison of daily radiation in the four (NE, SE, SW. NW) of Grevillea tree (UT1) at 94, 188 and 376 cm from the tree stem and in the open in Decemer, 1992

SHADE EFFECT OF UNPRUNED GREVILLEA -UT1

Fig. A26

654
Tables in Appondix

Table A1. Sowing and harvesting dates (in DOY) of beans in on-station at Matanya for the seven experimental periods indicating duration beans crop cycle.

operation	SR91	seasor		ors LR93			$\xrightarrow[S H M]{ }$
Sowing	288	83	278	94	289	103	283
Harvesting	33	189	20	208	31	207	26
Duration	110	106	108	104	107	104	108

Table A2.1. On-station yields (t/ha) - review table: Marze and beans biomass and bean seed yuelds (t/ha) at Matanya for seven experimental periods in AF and NAF plots. (a) Maize biomass yields (note that the values in italics are maize grain yields for SR92), (b) beans blomass yields. (c) beans seed yields.

AF		NAF
Frunec	Unorureá	Controi diots
seasons AFM1 AFL1	AFM2 AFL2	M L
SR91 1.00 ± 0.23	$0.91 \pm 0.24-$	$1.27 \pm 0.100 .93 \pm 0.19$
LR92 $0.54 \pm 0.130 .35 \pm 0.06$	$0.33 \pm 0.080 .42 \pm 0.16$	0.37 $\pm 0.080 .50 \pm 0.11$
SR92 2.93 $\pm 0.752 .64 \pm 0.60$	$2.45 \pm 0.523 .03 \pm 0.63$	$2.42 \pm 0.402 .38 \pm 0.46$
$5 R 92$ 1.54 $\pm 0.301 .42 \pm 0.40$	$1.18 \pm 0.261 .30 \pm 0.33$	$1.00 \pm 0.371 .30 \pm 0.34$
LR93 $1.52 \pm 0.54 \quad 0.87 \pm 0.58$	$0.42 \pm 0.480 .62 \pm 0.29$	$2.55 \pm 0.85 \quad 2.93 \pm 0.28$
SR93 $1.54 \pm 0.68 \quad 0.83 \pm 0.37$	$0.47 \pm 0.330 .80 \pm 0.27$	1.97 ± 0.76 2.00 ${ }^{2}$ 20.74
$\begin{array}{ll}\text { LR94 } & 2.69 \pm 1.10 \\ \text { SRO4 } & 2.75 \pm 0.786 \pm 1.07\end{array}$	$1.28 \pm 1.002 .15 \pm 0.80$	$6.27 \pm 1.772 .81 \pm 1.10$
SR94 $2.75 \pm 0.782 .17 \pm 0.77$	$1.32 \pm 0.751 .83 \pm 0.49$	4.83 ± 1.83 j. 82 ± 1.47

AF		NAF
Pruned	Unpruned	Control olcts
seasons AFM1 AFL1	AFM2 AFL2	M L
SR91 0.58 ± 0.17 -	0.54 ± 0.16 -	$0.70 \pm 0.12 \quad 0.52 \pm 0.05$
$\left[\begin{array}{ll}R 92 & 0.24 \pm 0.040 .25 \pm 0.03\end{array}\right.$	$0.18 \pm 0.040 .23 \pm 0.03$	$0.33 \pm 0.070 .19 \pm 0.02$
$5 R 920.68 \pm 0.200 .40 \pm 0.09$	$0.50 \pm 0.260 .38 \pm 0.16$	$0.98 \pm 0.260 .96 \pm 0.30$
$\underline{L R 93}$	$0.19 \pm 0.140 .31 \pm 0.11$	$0.61 \pm 0.27 \quad 0.67 \pm 0.25$
$5 R 930.29 \pm 0.090 .34 \pm 0.11$	$0.22 \pm 0.12 \quad 0.24 \pm 0.08$	$0.68 \pm 0.460 .93 \pm 0.33$
$\underline{L R 94} 00.17 \pm 0.070 .18 \pm 0.10$	$0.12 \pm 0.08 \quad 0.21 \pm 0.08$	$0.38 \pm 0.130 .33 \pm 0.12$
$5 \mathrm{E} 9440.38 \pm 0.12 \quad 0.47 \pm 0.12$	$0.27 \pm 0.11 \quad 0.26 \pm 0.07$	$0.60 \pm 0.20 \quad 0.60 \pm 0.20$

Fruned ${ }^{\text {AF }}$	Undruned		NAF
			Fontrol plote
seasons AFM1 AFL1	AFM2	AFL2	M L
5K91 0.37 ± 0.13 -	0.26 ± 0.03	-	$0.29 \pm 0.03 \quad 0.44 \pm 0.04$
$1 R 920.16 \pm 0.030 .120 \pm 0.02$	0.10 ± 0.02	0.11 ± 0.04	$0.14 \pm 0.04 \quad 0.03 \pm 0.03$
SR92 $0.71 \pm 0.10 \quad 0.63 \pm 0.12$	$0.63=0.18$	0.57 ± 0.26	$1.18 \pm 0.21 \quad 1.02 \pm 0.24$
LR93 $0.53 \pm 0.16 \quad 0.39 \pm 0.15$	0.20 ± 0.14	0.37 ± 0.12	$0.64 \pm 0.20 \quad 0.60 \pm 0.21$
SR93 $0.15 \pm 0.07 \quad 0.12 \pm 0.05$	0.08 ± 0.06	0.10 ± 0.05	0.31 ± 0.16 0.26 0.13
LR94 0.22 $\pm 0.11 \quad 0.20 \pm 0.09$	0.14 ± 0.08	0.20 ± 0.09	$0.43 \pm 0.18 \quad 0.33 \pm 0.11$
SR94 $0.05 \pm 0.03 \quad 0.11 \pm 0.06$	0.05 ± 0.06	0.11 ± 0.05	$0.20 \pm 0.10 \quad 0.20 \pm 0.10$

Table A2.2. On-farm yields (t/ha) -review table: Marze blomass vaelds (t/ha) at Kinuko-A (a) \& maize bimmass yields b (i). malze orain yields D (ii) and seed yields b (iii). at Kıhuks-E.

(iii) Beans biomass ($t /$ ha)

Table A3. Monthly seasonal rainfall totals (mm) for SR93. LR94 and SR94 for the two on-farm gauges lat Kiahuko-A and Kiahuko-BI and Matanya station.

Season	Monch	Kianuko-A	Kiahuko-8	Matanya station
SR93	DCT NOV DEC JAN• 94	$\begin{array}{r} 104.1 \\ 118.0 \\ 78.3 \\ 4.5 \end{array}$	$\begin{array}{r} 105.0 \\ 109.2 \\ 62.1 \\ 5.2 \end{array}$	$\begin{array}{r} 65.2 \\ 117.2 \\ 48.3 \\ 3.1 \end{array}$
LR94	MAR APR MAY JUN	$\begin{array}{r} 26.5 \\ 119.1 \\ 37.8 \\ 42.1 \end{array}$	$\begin{array}{r} 29.3 \\ 174.9 \\ 50.0 \\ 42.6 \end{array}$	$\begin{array}{r} 29.5 \\ 190.5 \\ 73.7 \\ 47.5 \end{array}$
SR94	OCT NOV DEC JAN' 95	$\begin{array}{r} 99.2 \\ 150.6 \\ 59.3 \\ 17.7 \end{array}$	$\begin{array}{r} 121.2 \\ 184.7 \\ 35.1 \\ 44.6 \end{array}$	$\begin{array}{r} 98.0 \\ 155.2 \\ 60.3 \\ 13.9 \end{array}$

Table A4. Volumetric soil monsture content (\%) obtanned from oven dried gravimetric samples taken at various sites in the AF and control plots at 7.5 cm depth. ctr 1 M \& ctrl L are contral Mulched and control Local plots respectively. Uther terms are aiready defined in the text. - means data missing data.

$\begin{aligned} & 1993 \\ & \text { dates } \end{aligned}$	LOY	ctrl M	ctrl L	AFLI	AFL2	ARM1	AFM2
1/1	1	26.4	27.9	23.6	29.8	30.6	33.4
8/1	8	36.2	40.0	41.0	40.0	41.0	41.0
15/1	15	40.4	40.2	43.0	39.0	33.0	33.0
22/1	22	34.6	37.2	39.0	32.0	43.0	41.0
30/1	30	37.0	43.4	43.0	40.0	41.0	41.0
6/2	37	30.6	27.3	28.0	30.5	28.2	29.1
12/2	43	36.4	41.8	40.9	42.8	42.9	42.3
20/2	51	29.4	31.0	31.9	21.6	24.1	26.5
26/2	57	26.6	28.5	21.1	25.2	22.2	28.8
5/3	64	21.4	20.5	28.9	26.0	28.3	25.3
19/3	78	11.8	13.6	16.1	14.0	15.2	19.3
2/4	92	26.9	28.8	33.1	36.2	30.3	36.8
9/4	99	20.7	17.4	25.9	21.3	21.7	31.6
17/4	107	22.1	24.8	16.9	22.5	29.6	27.0
23/4	113	30.2	32.7	33.6	34.1	30.7	29.1
30/4	120	23.4	29.0	26.6	31.2	25.9	29.6
7/5	127	23.0	24.4	23.4	27.9	-	-
14/5	134	23.7	22.2	26.7	25.4	21.3	22.3
21/5	141	26.6	27.4	26.9	26.5	27.5	29.4
28/5	148	28.1	29.2	-	21.7	30.4	
4/6	155	20.3	20.4	22.6	21.7	30.4	27.8
11/6	162	18.6	18.6	22.5	25.7	20.8	24.1
18/6	169	18.2	16.8	12.6	16.8	27.8	20.1
25/6	176	15.8	17.4	15.6	17.9	19.4	16.5 10.7
2/7	183	12.3	11.0	10.2	9.1	13.3 10.5	10.7 14.2
9/7	190	9.8	9.4	13.4	10.2	10.5	14.2
16/7	197	7.1	7.9	8.5		8.5	8.9
23/7	204	9.0 6.5	9.7 6.0	8.5 6.6	8.3 8.2	8.1	9.5
30/7	211	6.5	6.0 7.9	6.6 16.2	8.2 10.8	5.1 7.5	8.5
6/8	218	9.7	7.9 7.0	16.2 7.6	10.8 5.7	7.5	8.5 9.0
13/8	225	7.0	7.0 8.1	7.6 9.9	10.7	9.8	12.4
20/8	232	8.5	8.1 10.7	7.9 15.3	10.7	12.7	15.9
27/8	239	10.9	10.7 9.3	15.3 10.1	11.7 12.3	12.7	15.9 9.8
10/9	253	10.7 12.9	9.3 15.7	18.9	15.6	17.9	19.6
$24 / 9$ $1 / 10$	267	12.9 23.8	15.7 17.3	17.0	18.2	27.4	20.7
22/10	295	21.9	18.5	9.7	13.7	19.5	25.2
29/10	302	18.5	15.7	12.9	17.8	16.8	17.8
5/11	309	29.6	30.1	31.1	37.9	34.0	22.3
12/11	316	28.9	33.6	28.8	34.3	29.7	37.7
19/11	323	26.0	22.7	22.5	24.9	23.0	28.7
26/11	330	28.9	31.0	34.4	33.5	33.1	34.1
3/12	337	27.7	29.5	35.0	34.6	35.1	31.4
10/12	344	27.2	28.8	27.1	28.6	23.5	32.5

Table A5. Heignts to which cup anemometers were adjusted in the field at Matanya in the course of strong winds periods (June-September) during the LF orowing season (malze still growing). (a) Long rains 1993 (LR93) (b) Long rains 1994 (LR94). Note that Cup anemometers (both Woulfle and WAU were to be at 20 cm above the highest maize element.

Table A6 Experimental periods covering strong wind speeds at Matanya during: (a) 1993 and (b) 1994.

(a) in 1993		
Experimental periods	calendar dates	Days of the year (Doy) (Julian days)
$93 P 1$	$29 / 4 /-06 / 5 / 93$	$119-126$
$93 P 2$	$13 / 5 /-27 / 1 / 93$	$133-147$
$93 P 3$	$28 / 5 /-02 / 193$	$148-153$
$93 P 4$	$03 / 6 /-14 / 6 / 93$	$154-165$
$93 P 5$	$15 / 6 /-24 / 6 / 93$	$165-175$
$93 P 6$	$24 / 6 /-01 / 7 / 93$	$175-182$
$93 P 7$	$01 / 7 /-28 / 7 / 93$	$182-209$
$933 P 8$	$28 / 7 /-04 / 8 / 93$	$209-216$
$93 P 9$	$06 / 8 /-13 / 8 / 93$	$218-225$
$93 P 10$	$17 / 8 /-24 / 8 / 93$	$229-236$
1 (b) in 1994		
$94 P 1$	$04 / 6 /-23 / 6 / 94$	$155-174$
$94 P 2$	$04 / 7 /-15 / 7 / 94$	$185-196$
$94 P 3$	$15 / 7 /-03 / 8 / 94$	$196-215$
$94 P 4$	$04 / 8 /-23 / 8 / 94$	$216-235$
$94 P 5$	$23 / 8 /-31 / 8 / 94$	$235-243$
94 P 6	$13 / 9 /-15 / 9 / 94$	$256-258$
$94 P 7$	$21 / 9 /-28 / 9 / 94$	$264-271$
$94 P 8$	$28 / 9 /-11 / 10 / 94$	$271-284$
$94 P 9$	$11 / 10 /-18 / 10 / 94$	$284-291$
$94 P 10$	$19 / 10 /-07 / 11 / 94$	$292-311$

Table A7. WAU cup anemometer layout in the AF plot at Matanya station (Figs. 8 \& 10) and their distances from western and soutnern hedies (the two windward sides of the live-fence) in metres (m) and in the hedge heights (H). (Note that the heights of the live-fence siaes were: western (WH) 2.1 m ; southern (SH) 1.9 m : and eastern 1.9 m . AF bordered fruit trees in the northern side).

	r cups		.44 	pos	W 2	3 A1. row	.A12)	dista from sou (m)	
	line 1	A1	10	A5	14	A9	40	12.3	
	line 2	A2	11	A6	15	A10	41	17.5	
	line 3	A3	12		38	A11	43	22.7	12 H
	line 4	A4	13	A8	39*	A12	44**	27.9	
from western (m) hedge (H)			42		15	$\begin{aligned} & 26 \\ & 12 \end{aligned}$			
				7					
cup 55 was 60 m or 30.8 H from eastern side Er. * - replaced by cup 60 during 1994 ** - replaced by cup 61 during 1994									

Table A8. The geometry of the Grevilled robusta trees (Included are three Grevillea rows B(TR1). C(TR2) \& DITR3)। in pruned and unpruned area in AF (Fig. 9). UT 13 root unpruned trees: PT is root pruned trees: - 18 data not taken: In is heaght of the whole tree: Boh is the helght of the lowest branch: Crh $1 s$ the height of the crown or cone: Cch is the canopy centre or centre of the carcular base of the cone: Cdl and Cda are canopy widtis measured along ano across the crop rows respectively: Ir is eree: Cd- (Cdl) Cda) $/ 2$ is mean canopy diameter: Circ is the circumference of the tree trunk measured at 0.2 m above the ground. Appendix Fig. Al illustrates a Grevillea robusta tree geometry. Ail measurements are in m.

Tree No.	Th (m)	Esh (m)	Crh (m)	Cch (m)	Cdl (m)	Cda (m)	Cd (m)	Circ (m)
(i) row A								
$\operatorname{Tr} 1$	-	-	-	-	-	-	-	-
$\operatorname{Tr} 2$	-	-	-	-	-	-	-	-
$\operatorname{Tr} 3$	6.4	2.1	4.2	4.9	2.5	2.3	2.4	0.4
$\operatorname{Tr} 4$	7.4	2.8	4.6	6.0	4.0	3.9	3.9	0.5
$\operatorname{Tr} 5$	8.0	2.9	5.1	5.4	3.2	3.4	3.3	0.5
$\operatorname{Tr} 6$	-	-	-	-	-	-	-	-
Average 7.3	2.6	4.7	5.5	3.2	3.2	3.2	0.4	
std dev 0.7	0.3	0.4	0.4	0.6	0.6	0.6	0.0	

(ii) row B

Tr1	-	-	-	-	-	-	-	-
Tr2 UT2	-	-	-	-	-	-	-	-
Tr3 UT1	9.1	3.1	6.0	7.1	3.8	3.6	3.7	0.5
Ir4 PT2	9.0	3.5	5.5	7.0	3.6	3.2	3.4	0.5
Tr5 PT1 10.3	3.8	6.6	7.2	4.9	4.6	4.7	0.6	
Ir6	-	-	-	-	-	-	-	-
Average	9.5	3.5	6.0	7.1	4.1	3.8	4.0	0.5
std dev	0.6	0.3	0.4	0.4	0.6	0.6	0.6	0.1

(iii) row C								
Tr1	-	-	-	-	-	-	-	-
Tr2	-	-	-	-	-	-	-	-
Tr3 UT3	8.6	3.6	5.0	6.6	4.1	3.9	4.0	0.5
Tr4	8.4	3.5	5.0	6.5	3.6	4.2	3.9	0.5
Tr5 PT3	8.1	3.1	5.0	6.0	3.8	3.6	3.7	0.5
Tr6	-	-	-	-	-	-	-	-
Average	8.4	3.4	5.0	6.4	3.8	3.9	3.9	0.5
std dev	0.2	0.2	0.0	0.2	0.2	0.2	0.1	0.0

Tr 1	-	-	-	-	-	-	-	
Tr 2 UT5	-	-	-	-	-	-	-	-
Ir3 UT4	9.4	3.4	0.0	5.9	4.0	4.2	4.1	0.5
Tr 4 FT5	9.4	3.0	0.4	5.9	3.0	2.9	3.0	0.5
Tr 5 FT4	4.3	1.9	2.4	3.0	1.6	1.1	1.3	0.3
Tro	-	-		-	-	.	1.3	0.3
Average	7.7	2.8	4.9	4.9	2.9	2.7	2.8	0.4
stā dev	2.4	0.6	1.8	1.4	1.0	1.3	1.1	0.1
(v) row E								
Tri	-	-	-	-	-	-	-	-
Ir 2	-	-	-	-	-	-	-	-
Tr3	8.1	2.9	5.2	3.9	3.7	3.4	3.6	0.4
Tr 4	7.7	2.7	5.0	3.0	2.7	3.1	2.9	0.4
Tr-5	8.1	2.9	5.2	3.8	3.9	3.6	3.7	0.4
Tro	-	-	-	-	-	-	-	-
Averacre	8.0	2.9	5.1	3.5	3.5	3.3	3.7	0.4
std dev	0.2	0.1	0.1	0.4	0.5	0.2	0.4	0.0

665

Table A9. Cup 55 as reference: Calculated wind speeds and wind reduction ratios for: (a) all 24 weeks case 3 with point (0. 0) not included (case $3,-0$) and with point $(0,0)$ included (case 3 +0) and odd numbered weeks (b) case 5 with point (0,0) not included (case 5. -0) and with point $(0,0)$ included (case $5+0$) and (c) case 7 with point (0,0) not included (case 7, -0) and with point $(0,0)$ included (case $7+0)$: a and b regression coefficients given in Table 76. Note that (1) is average wind speed of the 24 weeks and (2) is standard deviation and (3) 13 per cent difference of the average of the calculated from the averaye of measured wind speeds as given in Table 77 (a).
(a) case 3

(i)			
calculated wind speeds point (0,0) not included			
case $3-0$		$a=0.57 \mathrm{~b}=0.38$	
cupl	c	cup 3	39
2.06	2.10	2.06	1.89
1.77	1.87	1.77	1.
2.32	2.34	2.17	2.27
84	2.85	2.75	2.74
2.82	2.76	2.76	2.63
2.84	2.55	2.55	2.42
16	2.93	2.98	2.88
2.49	2.47	2.82	2.
3.26	3.26	2.99	3.03
73	2.74	2.59	2.51
. 84	2.66	2.79	2.6
16	3.12	3.09	2.95
39	1.65	1.59	1.5
29	1.40	1.25	1.08
53	2.25	2.12	1.68
2.94	3.12	2.4	2.46
11	1.97	1.82	1.81
74	2.62	2.53	2.54
34	2.43	2.29	2.15
2.32	2.09	2.28	2.12
2.59	2.15	2.51	2.32
2.16	2.15	2.06	1.96
2.90	2.90	2.79	2.53
3.14	2.98	3.00	

(1) 2. $2.49 \quad 2.43 \quad 2.30$
(2) $0.0 .47 \quad 0.47 \quad 0.49$
(3) 1. $1.81-2.03-0.52$
(ii)

Calculated reduction ratios point $(0,0)$ not included case $3 \mathrm{a}=0.57 \mathrm{~b}=0.38$ cup14 cup15 cup 38 cup 39 $\begin{array}{llll}0.95 & 0.97 & 0.95 & 0.87\end{array}$ $\begin{array}{llll}0.89 & 0.95 & 0.90 & 0.83\end{array}$ $\begin{array}{llll}0.84 & 0.84 & 0.89 & 0.82\end{array}$ $\begin{array}{llll}0.96 & 0.96 & 0.93 & 0.92\end{array}$ $\begin{array}{llll}0.89 & 0.87 & 0.87 & 0.83\end{array}$ $\begin{array}{llll}0.93 & 0.87 & 0.87 & 0.85\end{array}$ $\begin{array}{llll}0.94 & 0.88 & 0.89 & 0.86\end{array}$ $\begin{array}{llll}0.82 & 0.82 & 0.88 & 0.80\end{array}$ $\begin{array}{llll}0.94 & 0.94 & 0.86 & 9.87\end{array}$ $\begin{array}{llll}0.90 & 0.90 & 0.85 & 0.82\end{array}$ $\begin{array}{llll}0.87 & 0.82 & 0.86 & 0.80\end{array}$ $\begin{array}{llll}0.86 & 0.85 & 0.84 & 0.80\end{array}$ $\begin{array}{llll}0.76 & 0.90 & 0.86 & 0.83\end{array}$ $\begin{array}{llll}0.89 & 0.96 & 0.86 & 0.74\end{array}$ $\begin{array}{llll}1.07 & 0.95 & 0.90 & 0.71\end{array}$
$\begin{array}{llll}1.03 & 1.09 & 0.87 & 0.86\end{array}$
$\begin{array}{llll}1.04 & 0.97 & 0.90 & 0.89\end{array}$
$\begin{array}{llll}0.97 & 0.93 & 0.90 & 0.90\end{array}$
$\begin{array}{llll}0.89 & 0.93 & 0.87 & 0.82\end{array}$
$\begin{array}{llll}0.87 & 0.79 & 0.86 & 0.80\end{array}$
$\begin{array}{lllll}0.81 & 0.79 & 0.81 & 0.75\end{array}$
$\begin{array}{llll}0.85 & 0.85 & 0.81 & 0.77\end{array}$
$\begin{array}{llll}0.85 & 0.85 & 0.82 & 0.74\end{array}$
$\begin{array}{llll}0.85 & 0.80 & 0.81 & 0.80\end{array}$
(iii)

Calculated reduction ratios point $(0,0)$ included case $3 \mathrm{a}=0.98 \mathrm{~b}=0.01$ cup14 cup15 cup 38 cup 39

0.99	1.02	0.99	0.85
0.90	0.99	0.90	0.78
0.79	0.80	0.88	0.76
1.01	1.01	0.95	0.95
0.88	0.85	0.85	0.78
0.95	0.86	0.86	0.81
0.98	0.86	0.88	0.84
0.77	0.76	0.87	0.73
0.97	0.97	0.84	0.86
0.90	0.91	0.82	0.77
0.85	0.76	0.83	0.73
0.83	0.81	0.80	0.73
0.66	0.90	0.84	0.79
0.89	1.01	0.81	0.63
1.20	1.00	0.90	0.58
1.13	1.24	0.85	0.84
1.14	1.03	0.90	0.89
1.02	0.95	0.90	0.91
0.89	0.95	0.86	0.77
0.86	0.71	0.83	0.73
0.80	0.72	0.76	0.65
0.81	0.81	0.75	0.68
0.81	0.81	0.76	0.63
0.81	0.74	0.75	0.73

(iv)
calculated vind speeds point $(0,0)$ included case 3 to $a=0.9 \mathrm{~b}=0.01$ cup14 cup 15cup 38 cup 39
$2.152 .22 \quad 2.151 .85$
1.71 .951 .781 .54
2.212 .242 .452 .11
2.982 .992 .822 .81
2.802 .702 .702 .48
2.842 .552 .552 .12
3.282 .892 .962 .80
2.492 .472 .822 .38
3.373 .382 .912 .99
2.732 .762 .192 .35
2.782 .482 .702 .38
3.063 .002 .942 .71
1.211 .661 .551 .46
1.291 .471 .220 .92
$2.812 .35 \quad 2.131 .36$
3.223 .532 .142 .39
2.322 .081 .821 .81
2.892 .682 .542 .56
2.342 .492 .252 .01
2.281 .882 .211 .95
2.162 .222 .332 .00
2.072 .061 .911 .74
2.782 .782 .602 .14
3.012 .742 .772 .73
(1) $2.55 \quad 2.482 .38 \quad 2.16$
(2) $0.56 \quad 0.490 .450 .51$
(3) 0.951 .980 .275 .38

606

Table A9. continued
(b) case 5
(i)
calculated wind speeds point (0,0) not included case $5 \mathrm{a}=0.45 \quad \mathrm{~b}=0.14$ cup14 cup15 cup 38 cup 39
$\begin{array}{llll}1.93 & 1.96 & 1.93 & 1.80\end{array}$
$\begin{array}{llll}1.67 & 1.75 & 1.68 & 1.57\end{array}$
$\begin{array}{lllll}2.23 & 2.24 & 2.34 & 2.18\end{array}$
$\begin{array}{llll}2.66 & 2.66 & 2.58 & 2.58\end{array}$
$\begin{array}{llll}2.67 & 2.62 & 2.63 & 2.52\end{array}$
$\begin{array}{llll}2.84 & 2.55 & 2.55 & 2.42\end{array}$
$\begin{array}{llll}2.96 & 2.79 & 2.82 & 2.74\end{array}$
$\begin{array}{llll}2.49 & 2.47 & 2.82 & 2.38\end{array}$
$\begin{array}{llll}3.06 & 3.06 & 2.85 & 2.88\end{array}$
$\begin{array}{llll}2.58 & 2.59 & 2.47 & 2.40\end{array}$
$\begin{array}{llll}2.70 & 2.56 & 2.66 & 2.51\end{array}$
$\begin{array}{llll}3.01 & 2.98 & 2.96 & 2.85\end{array}$
$\begin{array}{llll}1.36 & 1.56 & 1.51 & 1.47\end{array}$
$\begin{array}{llll}1.23 & 1.31 & 1.19 & 1.05\end{array}$
$\begin{array}{lllll}2.33 & 2.11 & 2.00 & 1.65\end{array}$
$\begin{array}{llll}2.72 & 2.86 & 2.36 & 2.34\end{array}$
$\begin{array}{llll}1.95 & 1.84 & 1.72 & 1.71\end{array}$
$\begin{array}{llll}2.56 & 2.46 & 2.40 & 2.40\end{array}$
$\begin{array}{llll}2.22 & 2.29 & 2.17 & 2.06\end{array}$
$\begin{array}{llll}2.20 & 2.02 & 2.17 & 2.05\end{array}$
$\begin{array}{llll}2.18 & 2.37 & 2.11 & 2.26\end{array}$
$\begin{array}{llll}2.06 & 2.05 & 1.98 & 1.91\end{array}$
$\begin{array}{llll}2.77 & 2.77 & 2.68 & 2.47\end{array}$
$\begin{array}{llll}3.00 & 2.87 & 2.89 & 2.87\end{array}$
(ii)

Calculated reduction ratios point (0,0) not included case $5 \mathrm{a}=0.45 \mathrm{~b}=0.44$ cup14 cup15 cup38 cup 39
$\begin{array}{llll}0.89 & 0.91 & 0.89 & 0.83\end{array}$
$\begin{array}{llll}0.85 & 0.89 & 0.85 & 0.79\end{array}$
$\begin{array}{llll}0.80 & 0.80 & 0.84 & 0.78\end{array}$
$\begin{array}{llll}0.90 & 0.90 & 0.87 & 0.87\end{array}$
$\begin{array}{llll}0.84 & 0.82 & 0.83 & 0.79\end{array}$
$\begin{array}{lllll}0.87 & 0.83 & 0.83 & 0.81\end{array}$
$\begin{array}{llll}0.88 & 0.83 & 0.84 & 0.82\end{array}$
$\begin{array}{llll}0.79 & 0.78 & 0.83 & 0.77\end{array}$
$\begin{array}{llll}0.88 & 0.88 & 0.82 & 0.83\end{array}$
$\begin{array}{llll}0.85 & 0.85 & 0.81 & 0.79\end{array}$
$\begin{array}{llll}0.83 & 0.78 & 0.82 & 0.77\end{array}$
$\begin{array}{llllll}0.82 & 0.81 & 0.80 & 0.77\end{array}$
$\begin{array}{llll}0.74 & 0.85 & 0.82 & 0.80\end{array}$
$\begin{array}{llll}0.84 & 0.90 & 0.82 & 0.73\end{array}$
$\begin{array}{llll}0.99 & 0.89 & 0.85 & 0.70\end{array}$
$\begin{array}{llll}0.95 & 1.00 & 0.83 & 0.82\end{array}$
$\begin{array}{llll}0.96 & 0.91 & 0.85 & 0.84\end{array}$
$\begin{array}{llll}0.91 & 0.87 & 0.85 & 0.85\end{array}$
$\begin{array}{llll}0.85 & 0.87 & 0.83 & 0.79\end{array}$
$\begin{array}{lllll}0.83 & 0.76 & 0.82 & 0.77\end{array}$
$\begin{array}{lllll}0.80 & 0.77 & 0.78 & 0.73\end{array}$
$\begin{array}{lllll}0.81 & 0.81 & 0.78 & 0.75\end{array}$
$\begin{array}{lllll}0.81 & 0.81 & 0.78 & 0.72\end{array}$
$\begin{array}{lllll}0.81 & 0.77 & 0.78 & 0.77\end{array}$
(iii)

Calculated reduction ratios point $(0,0)$ included case 5 to $a=0.98 b=0.01$ cup14 cup15 cup38 cup39 $\begin{array}{llll}0.99 & 1.02 & 0.99 & 0.85\end{array}$ $\begin{array}{llll}0.90 & 0.99 & 0.90 & 0.78\end{array}$ $\begin{array}{llll}0.79 & 0.80 & 0.88 & 0.76\end{array}$
$\begin{array}{llll}1.01 & 1.01 & 0.95 & 0.95\end{array}$ $\begin{array}{llll}0.88 & 0.85 & 0.85 & 0.78\end{array}$ $\begin{array}{llll}0.95 & 0.86 & 0.86 & 0.81\end{array}$ $\begin{array}{llll}0.98 & 0.86 & 0.88 & 0.84\end{array}$ $\begin{array}{llll}0.77 & 0.76 & 0.87 & 0.73\end{array}$
$\begin{array}{llll}0.97 & 0.97 & 0.84 & 0.86\end{array}$
$\begin{array}{llll}0.90 & 0.91 & 0.82 & 0.77\end{array}$
$\begin{array}{llll}0.85 & 0.76 & 0.83 & 0.73\end{array}$
$\begin{array}{lllll}0.83 & 0.81 & 0.80 & 0.73\end{array}$
$\begin{array}{llll}0.66 & 0.90 & 0.84 & 0.79\end{array}$
$\begin{array}{llll}0.89 & 1.01 & 0.84 & 0.63\end{array}$
$\begin{array}{llll}1.20 & 1.00 & 0.90 & 0.58\end{array}$
$\begin{array}{llll}1.13 & 1.21 & 0.85 & 0.81\end{array}$
$\begin{array}{llll}1.11 & 1.03 & 0.90 & 0.89\end{array}$
$\begin{array}{llll}1.02 & 0.95 & 0.90 & 0.91\end{array}$
$\begin{array}{llll}0.89 & 0.95 & 0.86 & 0.77\end{array}$
$\begin{array}{llll}0.86 & 0.71 & 0.83 & 0.73\end{array}$
$\begin{array}{lllll}0.80 & 0.72 & 0.76 & 0.65\end{array}$
$\begin{array}{lllll}0.81 & 0.81 & 0.75 & 0.68\end{array}$
$\begin{array}{llll}0.81 & 0.81 & 0.76 & 0.63\end{array}$
$\begin{array}{llll}0.81 & 0.74 & 0.75 & 0.73\end{array}$
(iv)
calculated vind speeds point $(0,0)$ included case 5 to $a=0.9 b=0.01$ cup1 1 cup 15 cup 38 cup 39 $2.152 .22 \quad 2.151 .85$ 1.771 .951 .781 .54 2.212 .242 .452 .11 2.982 .992 .822 .81 2.802 .702 .702 .48 2.842 .552 .552 .12 3.282 .892 .962 .80 2.492 .172 .822 .38 3.373 .382 .912 .99 2.732 .762 .492 .35 2.782 .482 .702 .38 3.063 .002 .942 .71 1.211 .661 .551 .46 1.291 .471 .220 .92 2.842 .352 .131 .36 3.223 .532 .142 .39
2.322 .081 .821 .01
2.892 .682 .542 .56
2.342 .192 .252 .01
2.28 1.88 2.211 .95
2.162 .222 .332 .00
2.072 .061 .911 .74
2.782 .782 .602 .14
3.012 .712 .772 .73
(1) 2. $2.36 \quad 2.32 \quad 2.21$
$\begin{array}{llll}\text { (2) } & 0 . & 0.45 & 0.46 \quad 0.47\end{array}$
(3) 6. $6.62 \quad 2.47 \quad 3.16$
(1) $2.552 .482 .38 \quad 2.16$
(2) $0.56 \quad 0.490 .450 .51$
(3) 0.951 .980 .275 .38

Table A9. continued
(c) case 7

(i)			
calculated wind speeds			
point $(0,0)$	not	included	
case 7	$\mathrm{a}=0.7$	$\mathrm{~b}=0.22$	
cupl	cupl5	cup 38	cup 39
2.04	2.09	2.04	1.82
1.72	1.85	1.72	1.55
2.21	2.24	2.39	2.14
2.82	2.83	2.70	2.69
2.73	2.66	2.66	2.50
2.84	2.54	2.54	2.41
3.12	2.84	2.89	2.77
2.19	2.46	2.82	2.37
3.21	3.22	2.87	2.93
2.65	2.67	2.48	2.38
2.74	2.51	2.68	2.44
3.03	2.99	2.95	2.77
1.28	1.61	1.53	1.46
1.26	1.39	1.20	0.98
2.59	2.23	2.06	1.50
2.98	3.20	2.40	2.36
2.13	1.96	1.77	1.76
2.72	2.57	2.47	2.48
2.28	2.39	2.21	2.03
2.24	1.95	2.19	1.99
2.47	2.29	2.37	2.12
2.06	2.06	1.94	1.82
2.77	2.77	2.64	2.30
3.00	2.80	2.82	2.79

(1) $2.2 .42 \quad 2.35 \quad 2.18$
$\begin{array}{llll}\text { (2) } & 0 . & 0.46 & 0.45 \\ 0.48\end{array}$
(3) $3.4 .37 \quad 1.46 \quad 4.42$
(ii)

Calculated reduction ratios point $(0,0)$ not included
case $7 \mathrm{a}=0.72 \mathrm{~b}=0.22$
cup14 cup15 cup38 cup39
$\begin{array}{llll}0.94 & 0.96 & 0.94 & 0.84\end{array}$
$\begin{array}{llll}0.87 & 0.94 & 0.87 & 0.78\end{array}$
$\begin{array}{llll}0.80 & 0.80 & 0.86 & 0.77\end{array}$
$\begin{array}{llll}0.95 & 0.95 & 0.91 & 0.91\end{array}$
$\begin{array}{llll}0.86 & 0.84 & 0.84 & 0.79\end{array}$
$\begin{array}{llll}0.91 & 0.84 & 0.84 & 0.81\end{array}$
$\begin{array}{llll}0.93 & 0.85 & 0.86 & 0.83\end{array}$
$\begin{array}{llll}0.78 & 0.77 & 0.85 & 0.75\end{array}$
$\begin{array}{lllll}0.93 & 0.93 & 0.83 & 0.84\end{array}$
$\begin{array}{llll}0.87 & 0.88 & 0.82 & 0.78\end{array}$
$\begin{array}{llll}0.84 & 0.77 & 0.82 & 0.75\end{array}$
$\begin{array}{llll}0.82 & 0.81 & 0.80 & 0.75\end{array}$
$\begin{array}{llll}0.70 & 0.87 & 0.83 & 0.79\end{array}$
$\begin{array}{llll}0.87 & 0.96 & 0.83 & 0.68\end{array}$
$\begin{array}{llll}1.10 & 0.94 & 0.87 & 0.64\end{array}$
$\begin{array}{llll}1.04 & 1.12 & 0.84 & 0.83\end{array}$
$\begin{array}{llll}1.05 & 0.97 & 0.87 & 0.87\end{array}$
$\begin{array}{llll}0.96 & 0.91 & 0.87 & 0.88\end{array}$
$\begin{array}{llll}0.87 & 0.91 & 0.84 & 0.78\end{array}$
$\begin{array}{llll}0.85 & 0.73 & 0.83 & 0.75\end{array}$
$\begin{array}{llll}0.80 & 0.74 & 0.77 & 0.69\end{array}$
$\begin{array}{llll}0.81 & 0.81 & 0.76 & 0.72\end{array}$
$\begin{array}{llll}0.81 & 0.81 & 0.77 & 0.67\end{array}$
$\begin{array}{llll}0.81 & 0.75 & 0.76 & 0.75\end{array}$
(iii)

Calculated reduction ratios point $(0,0)$ included
case 7 to $\mathrm{a}=0.99 \mathrm{~b}=0.00$
cupl4 cupl5 cup 38 cup39

0.99	1.02	0.99	0.85
0.89	0.99	0.90	0.78
0.79	0.80	0.88	0.76
1.01	1.01	0.95	0.95
0.88	0.85	0.85	0.78
0.95	0.85	0.85	0.81
0.98	0.86	0.88	0.83
0.77	0.76	0.87	0.73
0.97	0.97	0.84	0.86
0.90	0.91	0.82	0.77
0.85	0.76	0.83	0.73
0.83	0.81	0.80	0.73
0.66	0.90	0.84	0.79
0.89	1.01	0.84	0.63
1.20	1.00	0.90	0.57
1.13	1.21	0.85	0.84
1.14	1.03	0.89	0.89
1.02	0.95	0.90	0.91
0.89	0.95	0.85	0.76
0.86	0.71	0.83	0.73
0.80	0.72	0.75	0.64
0.81	0.81	0.75	0.68
0.81	0.81	0.76	0.62
0.81	0.74	0.74	0.73

(iv)
calculated vind speeds point $(0,0)$ included case 7 to $a=0.9 b=0.00$ cup 14 cupl5cup38cup 39
2.152 .222 .151 .85
1.771 .951 .771 .53
2.202 .232 .452 .11
2.982 .992 .822 .80
2.792 .692 .702 .47
2.842 .542 .542 .11
$3.28 \quad 2.89 \quad 2.96 \quad 2.79$
2.492 .462 .822 .37
3.373 .382 .902 .98
2.732 .762 .192 .35
$2.782 .17 \quad 2.692 .37$
3.052 .992 .942 .70
$1.21 \quad 1.651 .551 .45$
1.291 .471 .220 .92
2.842 .352 .121 .35
3.233 .532 .142 .39
$2.32 \quad 2.081 .821 .80$
2.892 .682 .542 .56
2.342 .192 .242 .00
$2.281 .872 .20 \quad 1.94$
2.462 .222 .321 .99
$2.06 \quad 2.061 .90 \quad 1.73$
2.772 .772 .592 .13
3.002 .732 .762 .72
(1) $2.55 \quad 2.182 .372 .15$
$\begin{array}{lllll}\text { (2) } 0.56 & 0.49 & 0.45 & 0.51\end{array}$
(3) 1.042 .100 .445 .66

Table A10. Cup 38 as reference: Calculated wind speeds and wind reduction ratios for: (a) all 24 weeks: case 4 with point (0. 0) not included (case 4. -0) and with point (0. 0) included (case $4+0$) and even rumbered weeks: (b) case 6 with point $(0,0)$ not included (case $6,-0$) and with point (0 . 0) included (case $6+0$) and (c) case 8 with point (0 . 0) not included (case 8, -0) and with point (0, 0) included (case $8+0$): a and b regression coefficients given in Table 76. Note that (1) is average wind speed of the 24 weeks and (2) is standard deviation and (3) is per cent difference of the average of the calculated from the average of measured wind speeds as given in Table 78 (a).
(a) case 4

(i)

calculated reduction ratios point $(0,0)$ not included case 1 -0 $a=0.87 \quad b=0.10$ cule 38 as refence cupl4 cup15 cup38 cup 39

0.97	1.00	0.97	0.85	2.05	2.11	2.05	1.79
0.97	1.06	0.97	0.85	1.72	1.88	1.73	1.52
0.88	0.89	0.97	0.85	2.20	2.23	2.43	2.12
1.02	1.02	0.97	0.97	2.90	2.91	2.76	2.75
1.00	0.97	0.97	0.90	2.75	2.66	2.67	2.47
1.07	0.97	0.97	0.92	2.80	2.53	2.53	2.12
1.06	0.95	0.97	0.92	3.07	2.74	2.80	2.66
0.87	0.86	0.97	0.83	2.40	2.38	2.68	2.30
1.11	1.11	0.97	0.99	3.31	3.31	2.89	2.96
1.05	1.06	0.97	0.92	2.69	2.71	2.47	2.35
1.00	0.90	0.97	0.87	2.66	2.39	2.58	2.31
1.00	0.99	0.97	0.90	2.99	2.94	2.89	2.67
0.78	1.03	0.97	0.92	1.22	1.61	1.52	1.44
1.02	1.15	0.97	0.76	1.28	1.14	1.21	0.95
1.26	1.06	0.97	0.65	2.65	2.23	2.04	1.37
1.25	1.36	0.97	0.95	3.06	3.32	2.37	2.32
1.21	1.10	0.97	0.96	2.10	1.91	1.69	1.67
1.09	1.02	0.97	0.98	2.64	2.46	2.34	2.36
1.01	1.07	0.97	0.88	2.23	2.37	2.15	1.94
1.00	0.84	0.97	0.87	2.18	1.83	2.11	1.89
1.02	0.93	0.97	0.84	2.45	2.23	2.33	2.03
1.01	1.04	0.97	0.89	2.04	2.03	1.89	1.74
1.03	1.03	0.97	0.81	2.75	2.75	2.59	2.17
1.05	0.96	0.97	0.96	2.95	2.71	2.74	2.70
				(1)	2.46	2.40	2.31

(iii)
calculated reduction ratios point $(0,0)$ included
case 1 to $\quad \mathrm{a}=0.99 \mathrm{~b}=0.00$ cup 38 as refence
cup14 cup15 cup38 cup 39
(iv)
calculated vind speeds point (0,0) included case 1 to $\mathrm{a}=0.99 \mathrm{~b}=0.00$ cup 38 as refence cupl 1 cupl 15 cup 38 cup 39

0.99	1.02	0.99	0.85	2.09	2.16	2.09	1.80
0.98	1.09	0.99	0.86	1.76	1.94	1.77	1.53
0.89	0.90	0.99	0.85	2.22	2.26	2.18	2.13
1.05	1.05	0.99	0.99	2.98	2.99	2.82	2.81
1.02	0.99	0.99	0.91	2.82	2.72	2.72	2.50
1.11	0.99	0.99	0.91	2.89	2.59	2.59	2.45
1.10	0.97	0.99	0.93	3.16	2.99	2.86	2.70
0.87	0.86	0.99	0.83	2.11	2.39	2.74	2.30
1.15	1.15	0.99	1.02	3.12	3.13	2.95	3.03
1.09	1.10	0.99	0.93	2.77	2.79	2.52	2.38
1.02	0.91	0.99	0.87	2.72	2.12	2.64	2.32
1.03	1.01	0.99	0.91	3.06	3.00	2.95	2.70
0.77	1.06	0.99	0.93	1.21	1.66	1.55	1.46
1.05	1.20	0.99	0.75	1.32	1.50	1.24	0.93
1.32	1.10	0.99	0.63	2.78	2.30	2.08	1.33
1.31	1.44	0.99	0.97	3.20	3.50	2.12	2.37
1.26	1.13	0.99	0.98	2.19	1.97	1.72	1.71
1.13	1.05	0.99	1.00	2.73	2.53	2.39	2.11
1.03	1.10	0.99	0.88	2.29	2.14	2.19	1.96
1.02	0.81	0.99	0.87	2.23	1.83	2.16	1.90
1.05	0.94	0.99	0.85	2.51	2.27	2.38	2.03
1.07	1.07	0.99	0.90	2.10	2.09	1.93	1.76
1.06	1.06	0.99	0.81	2.83	2.83	2.64	2.17
1.08	0.98	0.99	0.97	3.04	2.76	2.80	2.73

Table A1O. continued
(b) case 6

(i)

calculated reduction ratios point $(0,0)$ not included case $6-0 \quad a=0.66 \quad b=0.27$ cup 38 as refence cup14 cup15 cup 38 cup39

0.93	0.95	0.93	0.84	1.96	2.01	1.96	1.77
0.93	1.00	0.93	0.84	1.65	1.78	1.66	1.50
0.86	0.87	0.93	0.84	2.16	2.18	2.33	2.09
0.97	0.97	0.93	0.93	2.76	2.76	2.65	2.64
0.95	0.93	0.93	0.88	2.62	2.55	2.56	2.11
1.01	0.93	0.93	0.90	2.63	2.43	2.43	2.34
1.00	0.91	0.93	0.89	2.89	2.64	2.68	2.58
0.85	0.85	0.93	0.83	2.36	2.34	2.57	2.28
1.04	1.04	0.93	0.95	3.09	3.09	2.77	2.83
0.99	1.00	0.93	0.89	2.53	2.55	2.37	2.27
0.95	0.88	0.93	0.85	2.53	2.33	2.48	2.27
0.96	0.94	0.93	0.88	2.84	2.80	2.77	2.61
0.78	0.98	0.93	0.89	1.23	1.53	1.46	1.40
0.97	1.07	0.93	0.77	1.22	1.34	1.16	0.96
1.15	1.00	0.93	0.69	2.42	2.10	1.95	1.15
1.14	1.23	0.93	0.92	2.79	2.99	2.27	2.24
1.11	1.03	0.93	0.92	1.93	1.78	1.62	1.61
1.02	0.97	0.93	0.94	2.47	2.34	2.25	2.26
0.96	1.00	0.93	0.86	2.13	2.22	2.06	1.91
0.95	0.83	0.93	0.85	2.07	1.81	2.03	1.85
0.97	0.90	0.93	0.83	2.33	2.16	2.23	2.01
0.99	0.98	0.93	0.87	1.93	1.92	1.82	1.70
0.98	0.98	0.93	0.81	2.61	2.61	2.48	2.17
0.99	0.92	0.93	0.92	2.79	2.60	2.63	2.60

(iii)

calculated reduction ratios point (0,0) included
case 6 to $\mathrm{d}=0.99 \mathrm{~b}=0.01$ cup 38 as refence
cup14 cup15 cup38 cup 39

1.00	1.03	1.00	0.86	2.11	2.18	2.11	1.82
0.99	1.10	1.00	0.87	1.78	1.9	1.78	1.54
0.90	0.91	1.00	0.86	2.25	2.28	2.50	2.15
1.06	1.06	1.00	1.00	3.01	3.02	2.84	2.83
1.03	1.00	1.00	0.92	2.85	2.71	2.75	2.53
1.12	1.00	1.00	0.95	2.92	2.61	2.61	2.18
1.11	0.98	1.00	0.94	3.19	2.82	2.88	2.72
0.88	0.87	1.00	0.84	2.14	2.12	2.76	2.33
1.16	1.16	1.00	1.03	3.15	3.16	2.98	3.06
1.10	1.11	1.00	0.94	2.99	2.82	2.55	2.10
1.03	0.92	1.00	0.88	2.75	2.15	2.66	2.35
1.04	1.02	1.00	0.92	3.09	3.03	2.98	2.73
0.78	1.07	1.00	0.94	1.23	1.67	1.57	1.47
1.06	1.21	1.00	0.76	1.33	1.51	1.25	0.95
1.33	1.11	1.00	0.64	2.80	2.32	2.10	1.35
1.32	1.15	1.00	0.98	3.23	3.53	2.14	2.39
1.27	1.14	1.00	0.99	2.21	1.99	1.74	1.72
1.14	1.06	1.00	1.01	2.75	2.55	2.12	2.14
1.04	1.11	1.00	0.89	2.31	2.46	2.22	1.98
1.03	0.85	1.00	0.88	2.25	1.85	2.18	1.92
1.06	0.95	1.00	0.86	2.51	2.29	2.40	2.06
1.08	1.08	1.00	0.91	2.12	2.11	1.95	1.78
1.07	1.07	1.00	0.82	2.86	2.86	2.67	2.20
1.09	0.99	1.00	0.98	3.07	2.79	2.82	2.78

(iv)

calculated uind speeds point (0,0) included case 6 to $a=0.99 b=0.01$ Cup 38 as refence
Cup 14 cupl5 cup 38 cup 39

(1)	2.33	2.29	2.22	2.07
(2)	0.48	0.41	0.43	0.46
(3)	9.42	9.68	7.00	9.30

(1)	2.55	2.49	2.38

$\begin{array}{lllll}\text { (2) } & 0.56 & 0.50 & 0.46 & 0.51\end{array}$
$\begin{array}{llll}\text { (3) } & 0.71 & 1.69 & 0.00 \\ 5.16\end{array}$

Table AlO. continued
(c) case 8

Table A10. continued.

(i)

calculated reduction ratios point (0,0) not included ase $8-0 \quad \mathrm{a}=1.04 \mathrm{~b}=-0.03$ ax 38 as refence aup14 cup15 cup 38 cup 39

1.01	1.05	1.01	0.87
1.00	1.11	1.01	0.87
0.90	0.92	1.01	0.86
1.07	1.07	1.01	1.01
1.05	1.01	1.01	0.92
1.13	1.01	1.01	0.90
1.12	0.98	1.01	0.95
0.89	0.88	1.01	0.84
1.18	1.18	1.01	1.04
1.11	1.12	1.01	0.95
1.01	0.91	1.01	0.09
1.05	1.03	1.01	0.92
0.78	1.08	1.01	0.95
1.08	1.23	1.01	0.75
1.36	1.12	1.01	0.63
1.35	1.18	1.01	0.99
1.29	1.16	1.01	1.00
1.16	1.07	1.01	1.02
1.06	1.13	1.01	0.90
1.04	0.85	1.01	0.88
1.07	0.96	1.01	0.86
1.10	1.09	1.01	0.92
1.08	1.08	1.01	0.82
1.10	1.00	1.01	0.99

(ii)
calculated wind speeds point (0,0) not included case $8-0 \quad a=1.04 \quad b=-0.03$ cup 38 as refence
cup14 cup15 cup 38 cup 39
(iii)
calculated reduction ratios point (0,0) included
case $8+0 \quad a=1.00 \quad b=-0.00$ cup 38 as refence
cup14 cup15 cup 38 cup 39

2.13	2.21	2.13	1.83
1.79	1.99	1.80	1.55
2.26	2.30	2.53	2.16
3.05	3.06	2.87	2.86
2.88	2.77	2.78	2.54
2.96	2.84	2.64	2.50
3.24	2.84	2.91	2.75
2.45	2.13	2.79	2.34
3.51	3.52	3.01	3.09
2.83	2.86	2.57	2.42
2.76	8.16	2.69	2.36
3.12	3.06	3.01	2.75
1.22	1.69	1.58	1.48
1.35	1.54	1.26	0.94
2.86	2.35	2.12	1.33
3.29	3.61	2.46	2.41
2.25	2.02	1.75	1.74
2.79	2.58	2.14	2.46
2.34	2.50	2.24	1.99
2.28	1.86	2.20	1.93
2.57	2.31	2.13	2.07
2.15	2.14	1.97	1.79
2.89	2.89	2.70	2.20
3.11	2.82	2.85	2.81

1.00	1.03	1.00	0.86
0.99	1.10	1.00	0.86
0.90	0.91	1.00	0.86
1.06	1.06	1.00	1.00
1.04	1.00	1.00	0.92
1.12	1.00	1.00	0.95
1.11	0.98	1.00	0.91
0.88	0.87	1.00	0.84
1.16	1.16	1.00	1.03
1.10	1.11	1.00	0.04
1.03	0.92	1.00	0.88
1.04	1.02	1.00	0.92
0.78	1.07	1.00	0.94
1.06	1.21	1.00	0.75
1.34	1.11	1.00	0.64
1.33	1.45	1.00	0.98
1.27	1.15	1.00	0.99
1.11	1.06	1.00	1.01
1.04	1.11	1.00	0.89
1.03	0.85	1.00	0.88
1.06	0.95	1.00	0.86
1.09	1.08	1.00	0.91
1.07	1.07	1.00	0.82
1.09	0.99	1.00	0.98

$\begin{array}{lllll}\text { (1) } & 2.59 & 2.52 & 2.41 & 2.18\end{array}$
$\begin{array}{lllll}\text { (2) } & 0.57 & 0.51 & 0.46 & 0.52\end{array}$
(iv)
calculated wind speeds point (0,0) included
case 8 to az1.00b $=-0.00$ cup 38 as refence cupl 1 cupl5 cup 38 cup 39

2.11	2.18	2.11	1.82
1.78	1.96	1.78	1.54
2.25	2.28	2.50	2.15
3.01	3.02	2.81	2.83
2.85	2.74	2.75	2.52
2.92	2.61	2.61	2.18
3.20	2.81	2.88	2.72
2.14	2.11	2.76	2.33
3.16	3.17	2.98	3.06
8.10	1.01	A.86	8.10
2.75	2.14	2.66	2.35
3.09	3.03	2.98	2.73
1.22	1.67	1.57	1.47
1.33	1.51	1.25	0.94
2.81	2.32	2.10	1.34
3.23	3.54	2.44	2.39
2.21	1.99	1.74	1.72
2.76	2.55	2.12	2.14
2.31	2.46	2.22	1.98
2.25	1.85	2.18	1.92
2.54	2.29	2.40	2.06
2.12	2.11	1.95	1.78
2.86	2.86	2.67	2.19
3.07	2.79	2.82	2.78
(1) 2.56	2.49	2.38	2.16
(2) 0.56	0.50	0.46	0.51
(3) 0.65	1.65	0.00	5.25

Table All. Soil temperature measuring positions in agroforestry plot (see Fig. 11). (i) pruned and (ii) unpruned. Note that we use (1, 2), (3, 4),..., $(15,16)$ to represent (ATM1, ATM2), (BTM3, BTM4),..., (BTM15, BTM16) for clarity in Fig. 11.

Distance from the Grevillea robusta trees			
Iree No depth (cm)		$94 \mathrm{~cm} \quad 376 \mathrm{~cm}$	
		$7.5 \quad 15$	1.515
		(i) Pruned	
PT1	Dosition	AMI	BM1
		ATM2 ATM1	BTM4 BTM3
	Dosition	ALl	BLI
		ATM6 ATM5	BTM8 BTM7
(ii) Unpruned			
UT4	position	AM2.	BH2
		ATM10 ATM9	BTM12 BTM11
UT5	position	AL2	BL2
		ATM14 ATM13	BTM16 BTM15

Table Al2. Weeks of soil temperature data in Matanya plots for (i) SR91, (ii) LR92, (iii) LR93, (iv) SR93.

(a)	Agroforestry (AF)
i.	sR91
wk $1:$	$18 / 10-21 / 10 / 91$
wk2:	$23 / 10-29 / 10 / 91$
wk3:	$30 / 10-05 / 11 / 91$
wk4:	$06 / 11-11 / 11 / 91$
wk5:	$12 / 11-18 / 11 / 91$
wk6:	$19 / 11-25 / 11 / 91$
wk7:	$26 / 11-03 / 12 / 91$
wk8:	$04 / 12-09 / 12 / 91$
wk9:	$10 / 12-16 / 12 / 91$
wk10:	$17 / 12-19 / 12 / 91$
wk11:	$20 / 12-26 / 12 / 91$
wk12:	$27 / 12-02 / 01 / 92$
wk13:	$03 / 12-09 / 01 / 92$

iii. LR93			iv. SR93
wk 1:	22/03-28/03/93	wk 1:	11/10-17/10/93
wk2:	29/03-04/04/93	wk2:	18/10-24/10/93
wk3:	05/04-11/04/93	wk3:	25/10-31/10/93
wk 4 :	12/04-18/04/93	wk4:	01/11-07/11/93
wk5:	19/04-25/04/93	wk5:	08/11-14/11/93
Wk6:	17/06-23/06/93	wk ${ }^{\text {c }}$	38/ग1-21/88/93
wk7:	24/06-30/06/93	wk7:	22/11-28/11/93
wk8:	01/07-06/07/93	wk8:	93
wk9:	07/07-13/07/93		
(b) Non agroforestry (MAF) plots			

(b) Non agroforestry (MAF) plots

1. SR91	11. LR92 June \& July 1992
wkl: 02/11-07/11/91	wkl: 03/06-09/06/92
wk2: 08/11-14/11/91	wk2: 10/06-16/06/92
wk3: 15/11-21/11/91	wk3: 17/06-23/06/92
wk4: 22/11-28/11/91	wk4: 24/06-30/06/92
	wk5: 01/07-07/07/92
	wk6: 08/07-14/07/92
	wk7: 15/07-21/07/92
	wk8: 22/07-28/07/92
	iv. SR93
wkl: 20/03-26/03/93	wkl: 05/10-11/10/93
wk2: 27/03-02/04/93	wk2: $12 / 10-18 / 10 / 93$
wk3: 03/04-09/04/93	
wk4: 10/04-16/04/93	wk 4: 26/10-01/11/93
wk5: 17/04-23/04/93	wk5: 02/11-08/11/93
wk5: 24/04-30/04/93	wk6: 09/11-15/11/93
wk7: 18/06-24/06/93	
wkoi 18/00-01/07/93	
wk9: 02/07-07/07/93	
wk10: 08/07-13/07/93	wk9: 03/12-09/12/93 w10: 10/12-16/12/93
wk10: 08/07-13/01/93	wk10: 10/12-16/12/93 wk11: 17/12-23/12/93

Pable 113 . Soil tenperature characteristics in Matanya agroforestry plot for (a) SP91, (b) LP92
(c) LR93, (d) SR93 (see also Table A11 \& Pig. 12)

1. SR91: October

	dep.	de	depl5 dep7	depl5 dep	dep15 dep7.5	depl5 dep7.5	dep15 dep7.5	15 dep
lverage	19.1618 .80	19.0618 .80	18.7618 .31	18.3317 .99	18.6818 .21	18.7818 .71	19.0718 .82	18.7015 .8
std dev	0.350 .88	0.421 .12	1.012 .77	0.601 .35	0.591 .42	0.571 .22	0.611 .54	0.603 .5
max	19.6520 .11	19.6420 .43	20.2323 .02	19.1520 .11	19.5020 .40	19.6020 .52	29.9321 .14	19.5022 .32
in	18.75 18.64 .15	14.15 18.48 18.18 17.215	19, 31.35	12, 18.4516 .38	13, ${ }^{1}$	27.18 17 17 3	18,18 18.20 10.181 36.15	11.50 17.50 11.818
Fira	3.152 .15	4.151 .15	1.1521 .15	2.1522 .15	3.1523 .15	3.150 .15	$3.15 \quad 0.15$	1.150 .1
uplitu	0.511 .29	0.581 .57	1.434 .02	0.851 .91	0.832 .03	0.831 .70	$0.86 \quad 2.15$	0.96

2. SRy1: Movenber
dep15 dep7.5 dep15 dep7.5 dep15 dep7.5 dep15 dep7.5/dep15 dep7.5 dep15 dep7.5 $^{\text {depp15 }}$ dep7.5 $/$ dep15 dep7.5

Average Std dev May fin Min He Maplitu

$\begin{array}{rr} 19.46 & 19.37 \\ 0.40 & 0.94 \\ 20.00 & 20.72 \\ 23.25 & 19.25 \\ 18.84 & 17.97 \\ 12.25 & 10.25 \\ 0.58 & 1.38 \end{array}$

-19.03	18.80	18.82	18.57
0.39	1.10	0.97	2.66
19.59	20.18	20.28	23.27
21.25	17.25	18.25	14.25
18.41	17.17	17.39	15.06
11.25	8.25	9.25	7.25
0.59	1.65	1.14	4.11

18.5518 .35	19.5819 .31	19.2719 .37	19.90
0.390 .91	0.671 .19	0.531 .32	0.711 .96
19.0719 .81	20.5321 .67	20.0221 .35	20.9123 .17
20.2517 .25	19.2517 .25	20.2517 .25	20.2516 .25
17.9316 .92	18.5617 .16	18.4117 .48	18.7617 .35
$10.25 \quad 8.25$	11.258 .25	11.258 .25	11.258 .25
0.571 .44	0.992 .26	0.791 .94	1.092 .91

| 18.90 | 16.39 |
| ---: | ---: | ---: |
| 0.51 | 3.92 |
| 19.63 | 23.32 |
| 20.25 | 12.23 |
| 18.13 | 11.35 |
| 11.25 | 6.25 |
| 0.75 | 5.99 |

3. SRS1: Decenber

dep15 dep7.5	dep15 dep7.5
20.8120 .97	19.9419 .94
0.571 .48	0.601 .65
21.6023 .17	20.7222 .35
22.0218 .02	22.0217 .02
10.04 10.93	36.05874
13.0210 .02	11.029 .02
0.832 .23	0.862 .45

dep15 dep7.5	dep15 dep7.5
20.4821 .19	19.6219 .73
$1.68 \quad 5.60$	0.831 .87
23.0023 .09	20.7822 .76
18.0214 .02	20.0217 .02
81.0014 .10	11.118 .00
9.027 .02	11.021 .02
2.488 .97	$1.18 \quad 2.86$

depl5 dep7.5	depl5 dep7.5	depl5 dep7.5
21.6821 .56	21.5622 .11	21.6622 .26
$1.02 \quad 2.38$	0.902 .86	1.113 .13
23.1125 .33	22.7827 .03	23.2427 .46
20.0217 .02	20.0216 .02	20.02 17.02
00.4611 .01	10, 1080.00	18,81817,4
10.021 .02	11.020 .02	11.029 .02
1.183 .65	1.314 .25	1.634 .78

Table A13. continued

3. LR92: June
dep15 dep7.5 dep15 dep7.5 dep15 dep7.5 dep15 dep7.5|dep15 dep7.5 dep15 dep7.5|dep15 dep7.5|dep15 dep7.5

dvarage	21.1121 .12
Std dev	0.702 .21
M 21	22.3625 .04
Yiv	19.2517 .25
uns	20.3418 .27
\%10	11.2510 .25
Anplitu	1.013 .39

| -19.17 | 19.39 |
| ---: | ---: | ---: |
| 1.01 | 2.02 |
| 20.79 | 22.84 |
| 18.25 | 15.25 |
| 1.50 | 16.57 |
| 10.25 | 10.25 |
| 1.65 | 3.11 |
| $-\cdots-$ | |

20.1120 .30
1.041 .87
21.6223 .33
20.2516 .25
18.22 17.70
11.2510 .25
1.702 .82

$|$| -17 | 1.39 |
| ---: | ---: |
| 20.15 | 17.39 |
| 1.56 | 1.92 |
| 22.79 | 22.22 |
| 17.25 | 14.25 |
| 17.71 | 13.78 |
| 10.25 | 23.25 |
| 2.52 | 1.22 |
| - | |

$|$| $\|c\| c \mid$ | |
| ---: | ---: |
| 20.13 | 20.13 |
| 1.29 | 2.11 |
| 21.93 | 23.77 |
| 18.25 | 17.25 |
| 17.68 | 17.16 |
| 10.25 | 10.25 |
| 2.12 | 3.30 |

19.57	19.78	20.05	20.11	19.01	20.16
0.99	1.27	1.27	0.96	1.17	3.37
20.12	28.30	21.79	21.50	21.98	26.61
19.25	14.25	18.25	20.25	15.25	11.25
17.61	15.40	17.66	18.30	16.16	16.27
11.25	6.25	11.25	11.25	11.25	7.25
1.60	6.45	1.96	1.60	2.91	5.17

4. LR92: July

	depl5 dap7.5
dverage	23.1523 .13
Std dev	1.253 .19
Max	25.0729 .44
Tire	18.1715 .17
Mia	21.3818 .90
Pive	10.178 .17
Amplitu	1.845 .27

dap15	dep7.5	depl5 depp.5	
22.17	22.85	22.60	23.12
0.82	2.47	1.44	4.37
23.78	27.06	24.84	31.48
19.17	15.17	18.17	15.17
21.33	19.75	20.61	18.20
10.17	8.17	10.17	7.17
	3.66	2.12	6.

depl5	dep7.5	dep15	dep 7.5
22.98	23.11	22.28	22.21
1.18	2.32	0.76	1.58
24.83	27.21	23.45	24.84
18.17	17.17	19.17	17.17
21.34	20.31	21.19	20.13
10.17	8.17	10.17	9.17
1.74	3.15	1.13	2.36
-			

dep15	dep 7.5
22.58	22.11
0.81	2.19
23.77	26.69
19.17	17.17
21.41	19.12
11.17	8.17
1.18	3.78
-	

depl5	dep7.5	depl5	dep7.5
22.97	23.50	22.43	17.27
1.77	3.19	0.69	3.77
25.76	29.61	23.81	23.89
17.17	16.17	18.17	14.17
20.18	19.08	21.20	12.60
9.17	8.17	11.17	6.17
2.64	5.27	1.31	5.64
\cdots			

5. LR92: August

average	20.8220 .52
Std dev	1.012 .78
Max	22.3025 .12
fine	19.1216 .12
Mis	19.3016 .91
five	20.127 .12
Aplitu	$1.50 \quad 4.26$

dap15 dep7.5	dop15 dep7.5
20.7620 .55	20.4820 .74
$0.92 \quad 2.42$	1.213 .40
22.1124 .86	22.2926 .89
18.4216 .42	19.12 15.12
19.1117 .57	18.7616 .50
9.127 .12	9.127 .12
1.353 .65	$1.76 \quad 5.20$

depls dep7.5	dopl3 dopp 7	depl3 dep 7.5	dopls dep7.5	depl5 dep 7.5
21.1621 .26	20.69 20.77	20.9720 .17	21.1721 .31	21.0821 .00
0.971 .85	0.942 .04	0.772 .29	2.134 .10	1.005 .87
22.5824 .25	22.0324 .05	22.0624 .35	21.8628 .97	22.6331 .60
18.1217 .12	19.4216 .42	19.4217 .42	17.1216 .12	10.1214 .12
19.7118 .66	19.2418 .01	19.7917 .13	18.5315 .62	19.4814 .25
$10.12 \quad 8.12$	7.128 .42	10.128 .12	8.128 .12	8.126 .12
$1.44 \quad 2.80$	1.403 .02	1.133 .46	3.176 .67	1.578 .7

Table A13. continued

(c) Long Rains growing season of 1993: LR93

1. LRO3: April
dep15 dep7.5

Average	18.7117 .98
Std der	0.611 .87
Nas	19.6120 .92
Pive	20.5416 .54
1 ln	17.7915 .16
Pive	10.54
4 plitu	0.912 .73

dep15 dep7.5
18.2017 .65
0.571 .13
18.9819 .29
19.5416 .54
17.3016 .10
10.549 .54
0.841 .59

dep7. 5	dep15 dep7. 5	dep15 dep7.5
18.4718 .00	18.7118 .50	19.2118 .65
0.731 .84	1.061 .82	0.661 .44
19.4720 .89	20.2721 .38	20.1920 .64
20.5416 .54	18.5416 .54	18.5416 .54
17.1215 .59	17.2016 .10	18.2616 .60
10.54	9.548 .54	8.5410 .54
1.022 .65	$1.53 \quad 2.61$	0.972 .02

15 dep7.5	dep 15 dep 7.5	depl5 dep7.4
18.7917 .97	18.5919 .14	18.5019 .23
0.582 .30	$1.30 \quad 1.65$	1.643 .48
19.6121 .12	20.1721 .40	20.9724 .80
19.5114 .54	17.5416 .54	16.5413 .54
17.9215 .30	16.6616 .90	16.0611 .94
11.546 .54	8.547 .54	$7.54 \quad 6.54$
$0.85 \quad 3.06$	1.902 .25	2.154 .93

2. LR93: June

dep15 dap7	depl5 dap7.5	dep15 dep7.!
19.7019 .96	20.1820 .55	19.1220
0.774 .33	1.100 .70	1.733 .39
20.8228 .32	21.7921 .48	21.9826 .61
19.2515 .25	18.2519 .25	15.2514 .25
18.6615 .40	18.6119 .40	16.7716 .27
11.256 .25	9.2511 .25	8.257 .25
1.086 .46	1.591 .04	2.605 .17

average	21.38
std der	0.76
14	22.46
P14	21.25
Hin	20.0
Pive	11.2
Leplitu	1.2

dep15 dep7.5 dep15 dep7.5 dep15 dep7.5 dep15 dep7.5 dep15 dep7.5

dyarage	21.0120 .52
std dev	0.571 .64
max	21.8523 .49
fin	21.0517 .05
Min	20.2218 .49
\%in	12.059 .05
applitu	$0.82 \quad 2.50$

4. LR93: August
dep15 dep7.5 dep15 dep7.5 $\operatorname{dep} 15$ dep7.5 dep15 dep7.5 dep15 dep7.5

average	20.0919 .59
std dev	$0.80 \quad 2.18$
Mas	21.2823 .46
IIm	19.5816 .58
Kı	18.9516 .66
Pim	10.587 .58
这plitu	1.173 .40

Table A13. continued
(d) Short Rains grouing season of 1993: SR93

1. SR93: October

	depl5 dep7.5	5	dep15 dep7.5	depl5 dep7.5	depl5 dep7.5	depl5 dep7.5	depl5 dep7.5	.
average	18.2517 .53	19.1018 .79	19.1218 .76	20.6420 .07	20.2920 .28	19.3218 .67	19.5619 .91	20.1020 .27
std dev	$0.52 \quad 1.03$	0.531 .42	$0.62 \quad 1.47$	0.812 .41	$0.92 \quad 2.10$	$0.42 \quad 1.33$	$0.72 \quad 1.63$	$0.56 \quad 1.01$
Max	19.0019 .07	20.2021 .05	20.0320 .97	21.8524 .29	21.5923 .55	$19.95 \quad 20.73$	20.6022 .59	20.8321 .69
Yise	18.2916 .29	18.2915 .29	19.2916 .29	18.2915 .29	17.2916 .29	19.2915 .29	19.2916 .29	21.2919 .29
Hid	17.4016 .03	18.6116 .88	18.1716 .73	19.3917 .05	19.0117 .19	18.6816 .86	18.1917 .72	19.2118 .72
Pise	9.297 .29	9.297 .29	10.298 .29	9.297 .29	10.296 .29	10.297 .29	10.298 .29	11.2910 .29
Lplitu	0.801 .52	0.792 .09	0.932 .12	$1.23 \quad 3.62$	1.293 .03	0.631 .94	1.052 .13	0.811 .49
2. SR9	3: Novenber dep15 dep7.5	depl5 dep7.5	dep15 dep7.5	depl5 dep7.5	depl5 dep7.5	depl5 dep7.5	depl5 depp.5	depl5 dep7.5
1varage	18.1817 .60	18.4617 .94	19.1418 .86	19.2417 .20	19.3219 .59	18.8118 .11	19.1620 .16	18.9918 .87
Std dev	$0.12 \quad 0.93$	0.491 .19	0.651 .60	0.861 .93	0.911 .67	$0.38 \quad 1.34$	0.701 .15	$0.51 \quad 1.24$
Hx	18.7619 .03	19.1519 .99	20.0621 .37	20.5121 .61	20.6322 .15	19.3920 .26	20.1822 .63	19.7221 .06
P100	18.2916 .29	19.2917 .29	19.2916 .29	17.2918 .29	17.2917 .29	20.2915 .29	18.2916 .29	21.2918 .29
11.	17.4916 .20	17.6916 .26	18.1416 .52	17.9915 .11	17.9317 .26	18.2216 .26	18.1418 .56	18.2317 .61
tive	9.297 .29	10.298 .29	10.298 .29	9.2910 .29	10.298 .29	10.297 .29	10.299 .29	11.2910 .29
Hplitu	0.631 .42	0.731 .86	$0.96 \quad 2.42$	1.263 .25	$1.35 \quad 2.14$	0.592 .00	1.022 .04	0.741 .72

Table A14. Soil temperature characteristics in matanya monaqroforestry plot for (a) SN91, (b) LP92 (c) LR93, (d) SR93 (for LR92-SR93 see also Rig. 13)

Soil tenperat -ure paraneters	Local control (L) \qquad 1. SRG1 Dep15 Dep7. 5			(h)	Bare soil (BS) Depl5 Dep7. 5		$\begin{aligned} & \text { local } \\ & \text { cont } \end{aligned}$		Mulct		re	(BS)						
			(a) $\mathrm{SR91}$ 1. SRE1: October						(c) L293 1. L293:April									
			Depl5	Dep7. 5					Depl5 Dep7. 5		Depl	Dep7.5	Depl5 Dep 7.5					
Average	18.93	18.16	18.60	17.88	19.60	19.23	19.3619 .36		$19.01 \quad 18.94$		21.3821 .19							
Std dev	0.83	2.07	0.66	1.50	0.33	0.77	$\begin{array}{rr} 1.53 & 2.40 \\ 21.64 & 23.12 \end{array}$		$\begin{array}{rr} 0.62 & 1.63 \\ 19.87 & 21.10 \end{array}$		$\begin{array}{cc}21.38 & 21.19 \\ 0.74 & 1.86\end{array}$							
Max	20.05	21.10	19.48	20.05	20.00	20.20			22.38									
Pine	19.50	23.50	17.00	20.50	18.5	21.5	$\begin{array}{\|ll} 21.64 & 23.12 \\ 17.25 & 16.00 \end{array}$				$\begin{array}{ll} 19.87 & 21.40 \\ 20.25 & 16.58 \end{array}$		21.25					
Min	17.65	15.13	17.58	15.60	19.07	17.95	17.1716 .04		$18.08 \quad 16.62$		$20.26 \quad 18.75$							
Tise	11.00	13.00	9.50	11.50	9.5	11.5	$8.75 \quad 8.00$		$\begin{array}{rr}10.25 & 8.58 \\ 1.16 & 2.1\end{array}$		$\begin{array}{rrr}11.25 & 9.25 \\ 1.06 & 2.74\end{array}$							
Anplitude	2.99				0.47	1.12	2.24 3.54 1.16 2.13 1.06 2.74											
	2. SR91: Novenber				Bare soi		2. LR93: June											
	15 Dep7.5		Dep15	Dep7.	Depl	Dep7.5	Dep15 Dep7.5		Dep15 Dep7.5		Depl5 Dep7.5							
Average Std dev Max Tine Min Tine Tinplitude	18.89	18.73	18.47	18.27	19.62	19.55	20.06		19.1618 .77		$21.62 \quad 21.74$							
	0.88	1.97	0.65	1.39	0.13	0.90	$1.78 \quad 2.06$		0.691 .37		0.75							
	20.16	21.83	19.39	20.14	20.18	20.86	$23.23 \quad 23.10$		$20.16 \quad 21.05$		$22.65 \quad 24.50$							
	18.88	16.38	18.88	15.88	21.38	18.38	$17.90 \quad 16.90$		19.0717 .07		21.1							
	17.61	16.02	17.51	16.34	18.91	18.18	17.6317 .26		$18.14 \quad 17.05$		$20.36 \quad 19.21$							
	9.88	7.38	9.88	7.88	11.38	9.38	$9.15 \quad 8.40$		$\begin{array}{rr} 10.07 & 9.07 \\ 1.01 & 2.00 \end{array}$		11.4							
	1.27	2.90	0.94	2.05	0.64	1.34	$2.70 \quad 3.07$											
Aiplitude	(b) LR92 1. LR92: June Dep15 Dep7.5 \| Dep15 Dep7.5	Dep15 Dep7.5						$\text { Dep15 Dep7.5 \| }{ }^{\text {D. Lep15 Dep7.5 }} \mid$				$\begin{aligned} & \text { BS } \\ & \text { Depl5 Dep7.5 } \end{aligned}$						
Average Std dev	21.75	21.95	21.48	21.12	22.17	21.83	$20.65 \quad 20.68$		19.5819 .25		21.0021 .18							
	1.43	2.64	0.99	1.32	1.16	2.18		2.06	0.65	1.41	0.65	1.56						
Hax	23.99	26.22	23.00	23.52	23.93	25.92	1.71 23.59	21.33	20.60	21.58	21.80	23.67						
Tine	18.75	16.75	20.33	18.00	20.00	17.00	17.58	17.08	19.00	17.66	21.33	17.33						
Min	19.79	18.59	20.14	19.64	20.19	18.54	18.55	18.14	18.67 10.33 0.97	17.52	20.12	19.00						
Tire	10.25	8.75	11.67	10.00	11.00	9.00	$\begin{aligned} & 9.08 \\ & 2.52 \end{aligned}$	8.33		$\begin{aligned} & 9.00 \\ & 2.03 \end{aligned}$	11.330.89	9.332.33						
Aplitude	2.10	3.81	1.43	1.94	1.72	3.69		3.10										
2. LR92: July Dep15 Dep7.5 \\| Dep15 Dap7.5 \| Dep15 Dep7.5							Dep15 Dep7.5		4. LR93: Augus		Depl5 Dep7.5							
Average	21.32	21.52	21.31	20.91	21.78	21.63	20.32	20.67	19.8120 .16		20.04	20.65						
Std dev	1.14	2.82	1.14	1.30	1.27	2.89	4.50	4.68	4.06	4.67	4.09	4.56						
Max	23.63	26.30	23.13	22.97	23.75	26.41	23.30	24.28	21.10	23.52	21.18	23.65						
rine	19.00	17.00	20.33	18.33	20	17	18.38	17.38	19.80	17.80	22.13	19.13						
1 in	19.35	17.95	19.75	19.15	19.97	17.85	17.89	17.70	18.46	17.31	18.80	17.78						
Pine	10.25	8.75	11.33	10.00	11)	9.38	9.13	10.46	9.80	11.13	9.13						
Applitude	2.14	4.17	1.69	1.91	1.89	4.30	2.70	3.29	1.32	3.10	1.19	2.94						

Table A14. continued

	3. LR92: August					
Average	20.55	20.63	20.23	20.38	21.30	21.01
Std dev	1.38	2.93	0.83	1.67	1.35	3.00
Hax	22.77	25.67	21.51	23.09	23.39	26.10
Tine	17.79	16.04	18.96	17.29	18.29	16.29
Hin	18.66	16.96	18.93	18.14	19.37	17.17
Tive	9.29	7.79	9.62	8.29	9.29	7.29
Anplitude	2.05	4.36	1.29	2.47	2.01	4.46

3. SR93: Decenber

	Dep15	Dep7.5	Dep15	Dep7.5	Dep15	Dep7.5
Average	19.30	19.30	19.05	18.83	21.32	21.77
Std dev	0.69	1.54	0.44	1.00	1.21	6.30
Max	20.26	21.63	19.64	20.30	23.04	32.20
Tine	20.43	17.43	21.18	18.18	19.18	13.18
Min	18.25	17.06	18.37	17.22	19.46	13.97
Tine	10.13	8.93	8.18	9.18	10.18	7.18
Anplitude	1.00	2.29	0.64	1.54	1.79	9.11

Abbreviations and acronyms

E	- direct evaporation from the exposed sojl surface
Elf	- unpruned portion of on-farm live-fence (15) parked E
ET	- canopy evapotranspiration
ETP	- actual evapotranspiration
f	- Iraction of mean daily inselation antercepted bv the canopy
F	- the fraction of light intercepted by the tree canopy alone
FAO	- Food and Agriculture Organization
F.C.	- Field Capacity
FIF	- unpruned portion of m-farm live-fence (1f) marked F
GC	- a general control treatment for live-fence experiment
GOD	- Grain oven dry weight
H	- height of shelterbelt or live-fence or barrier or windbreak
HD	- hot dry season (January - early March)
I	- toral irradiance at a depth of the canopy
Io	- the radiation arriving at the top of the canopy
ICRAF	- International Centre for Research in Agroforestry
ICRISAT	- International Crops Research Institute for the Semi-Arjd Tropics
ITK	- Indigenous technical knowledge
k	- extinction coefficient of radiation
K	- potassium
kg/ha	- kilograms per hectare
L	- Local or unmulched control plot for accumulated leaf area index)
LAI	- Leaf area index
Local	- used here for 'unmulched deep tilled plot(s)
LR(s)	- Long Rains Season(s) (mid March - late May)
LR90. IR91.	
LR93. LR94	- Long rains seasons for 1990 till 1994
LRP	- Laikipia Research Frogranme
M	- Mulched control plot
m.a.s.1.	- metres above mean sea level
mCi (or Ci)	- millicurie, (or curie): unit of radio-activity
Mana-2	- megagram per hectare
MPTS	- multipurpose trees
mrem	- a unit of lonizing radiation such as gamma radiation
Mt.	- mount
Mts	- mountain ranges
NAF	- non-agroforestry plot(s)
N	- nitrogen
NCP	- Number of cob per plant
NPH	- Number of plants per hole
$\theta\left(\mathrm{cm}^{3} \mathrm{~cm}{ }^{-3}\right)$	- volumetric water content of free water iwater released on drying at $105^{\circ} \mathrm{C}$ for 12 hour's)
B_{0}	- Constitutional hydrogen or equivalent water.
$\theta_{e}\left(\mathrm{~cm}^{3} \mathrm{~cm}^{-3}\right)$	- total hydirogen content
P	- phosphorus (P also used for precipitation or experimental period)
P1, P2.	- experimental period 1. 2. ..
PAR	- Photosynthetically active radiation
PE	- potentjal evapotranspiration
PPFU	- Photosynthetic photon flux density

PT1. PT2. PT3.
PT4. PT5 - Root pruned Grevalloa roburta trees i tall 5 for on-station agroforestry plot marked thus.
(P.) W.P.
q
$\phi_{c_{0}}$
Q_{1}
Q_{1}
γ
R

- (Penwanent) Wilting point
- water (g / kg) extracted in producing dry matcer
- phase shift of soil teaperature wave
- a pnase constant determinod by the tise scale
- the redius of aphere of 3 apartarice
- correlation cosfisicient
- wind speed reduction ratio for wind speed ratio or horizontal wind speed ratio or wind deficit radio or wind ratio)
Rcv - normalized coefficients of variation of wind speed
Rsd
- nommalized standard deviations of wind speed

Retr 1

- Stigter's ratio

S - Sulphur for sunfleck parameter or solid component of the soil or total radiation (MJm ${ }^{-a}$.)
SAT

- semi-arid tropics

Sd - saturation deficit (in kFa) (also standard deviation or saturation deficit)
SR(s)
SR90. SR91. SR92.
SR93. SR94 - Short rains seasons for 1990 till 1994
τ - leaf transpiration to radiation
Edt - the duration of crop growth in days
$\overline{\mathrm{T}}$ - the $24-\mathrm{hr}$ average soil temperature for the day in question.

TBY	- Total biomass yields
t/ha	- metric tonnes per hectare
IR	- tree row
TR1. TR2. TR3	- tree row 1. 2. 3
TSL(s)	- tube solarimeter(s)
TMMI	- Traditional Technique of Microclimatic Improvement
U (or u)	- monthly average wind speed (m/s)

UT1. UT2. UTY.
UT4. UT5
VSMC

- Root unpruned Grevillea robusta trees 1 t1ll 5 for on-station acroforestry plot maried thus.

WA: WB
WAU
wk (s)
wk1, wk2, ...
WMO
WUE . - water use efficiency of crop

- Volumetric soil moisture content
- radial frequency
- woelfle anemographs marked thus
- Wageningen Agricultural University
- week(s)
- week 1, 2, ... of experimental period
- World Meteorological Organization
- total penetration of light to the undercrop
- light which passes through the tree canopy
- light which misses the trees completely to reach the undercrop
- gamma particles in the rays
- thermal conductivity
- biomass yields
$\mathrm{Zn} \quad$ - Zinc

[^0]: Legend
 E.E. Elgeyo Marakwet
 U.G. Uasin gishu
 K.A. Kakamega
 B. Busia

 V̇. Vihiga
 KEF. Kericho
 KI. Kisii
 FYAK. Nyandarua
 TE. NT. Tharaka Nthi
 KIF. Kirinyage
 MAK. Maiweni

[^1]: HT4) in unpruned plot (AFMz).

