DETERMINANTS OF IMMUNIZATION COVERAGE AMONG CHILDREN AGED 11-23 MONTHS IN A REFUGEE CAMP: A CASE OF KAKUMA REFUGEE CAMP

BY

DR. KAMAU S. MACHARIA, M.B.C.H.B (U.O.N)

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE AWARD OF THE DEGREE OF MASTER OF PUBLIC HEALTH OF THE UNIVERSITY OF NAIROBI

2008
DECLARATION

I, Dr. Stephen Kamau Macharia declare that this thesis is my original work and neither has it been presented to any institution for the purpose of obtaining a degree nor been published in any journal.

Signed

H ' Date

Dr. Stephen Kamau Macharia, M.B.Ch.B (U.O.N)
APPROVAL

This thesis has been submitted for examination with our approval as supervisors.

INTERNAL SUPERVISORS:

1. Signed _________________________________ Date / 3

 Mr. L. Nyabola BSc, MSc, M.S, Dip. Epid.
 Senior lecturer, Department of Community Health
 University of Nairobi.

2. Signed _________________________________ Date / (J ^ ()

 Dr. P. Njoroge MBchB, MPH
 Senior lecturer, Department of Community Health
 University of Nairobi.

EXTERNAL SUPERVISOR:

Signed _________________________________ Date

Dr. Jagwer Gregory MBchB, M.P.H., MSc.
Deputy Chief of Party, CARE International in Tanzania
151 Ellis Street N.E.
Atlanta Georgia
30303-2440
USA.

APPROVED BY THE CHAIRMAN, DEPARTMENT OF COMMUNITY HEALTH,
UNIVERSITY OF NAIROBI.

Signed _________________________________ Date

Prof. M. A. Mwanthi
Chairman, Department of Community Health
University of Nairobi.
DEDICATION

This thesis is dedicated to my parents the late Nahashon and Naomi for their continuous support in my education, my wife Loise and our children Harrison, Naomi and Samuel who persevered my absence while I undertook my studies and provided support.
ACKNOWLEDGEMENTS

I wish to thank all those who helped me to accomplish this study. Special thanks to:

1. The Kenya Expanded Program on Immunization for professional guidance and providing
 the necessary baseline data, especially S.M. Kamau and Kiongo for providing technical
 support during proposal writing.

2. My Internal Supervisors Mr. Nyabola, Dr. Njoroge and External Supervisor Dr. Jagwer
 (external) for providing continuous guidance.

3. The entire International Rescue Committee (IRC) Kakuma program for their support.
 Special thanks to logistics department, community outreach manager (Eunice) and
 administration.

4. Mr. Kimani of the Ministry of Health, Afya House and Patricia Awour of KEMRI for
 their assistance in data entry and data analysis.

5. The research assistants for working tirelessly to ensure the right data were collected.

6. Finally, I would like to thank all the study participants for being patient during the
 interviews and providing the information for this study.
TABLE OF THE CONTENTS

<table>
<thead>
<tr>
<th>Title</th>
<th>i</th>
</tr>
</thead>
<tbody>
<tr>
<td>Declaration</td>
<td>ii</td>
</tr>
<tr>
<td>Approval</td>
<td>iii</td>
</tr>
<tr>
<td>Dedication</td>
<td>iv</td>
</tr>
<tr>
<td>Acknowledgement</td>
<td>v</td>
</tr>
<tr>
<td>Table of contents</td>
<td>vi</td>
</tr>
<tr>
<td>List of Acronyms</td>
<td>ix</td>
</tr>
<tr>
<td>List of tables</td>
<td>xi</td>
</tr>
<tr>
<td>List of figures</td>
<td>xiii</td>
</tr>
<tr>
<td>Definition of terms</td>
<td>xiv</td>
</tr>
<tr>
<td>Abstract</td>
<td>xvi</td>
</tr>
</tbody>
</table>

Chapter 1 Introduction and Background Information

1.1 Introduction
1.2 Background information
1.3 Research Problem
 1.3.1 Problem statement
 1.3.2 Justification
 1.3.3 Research question
1.4 Objectives
 1.4.1 Broad objective
 1.4.2 Specific objectives

Chapter 2 Literature review

Chapter 3 Methods and Materials

3.1 Study design
3.2 Study area
3.3 Study population
3.4 Sampling
 3.4.1 Sample size
 3.4.2 Sampling procedure
Chapter 4 Findings

4.1 Immunization coverage and KAP among mothers/guardians

4.1.1 Social demographic characteristics

4.1.2 Immunization coverage

4.1.2.1 Results of immunization

4.1.2.2 Factors that motivate or hinders immunization

4.1.3 Knowledge of mothers/guardian on immunization

4.1.4 Attitude of mothers/guardian towards immunization

4.1.5 Practice of mothers/guardians on immunization

4.1.6 Relationship between immunization status with the sex of a child—

4.1.7 Results of Logistic Regression Analysis

4.2 KAP among health workers

4.2.1 Demographic characteristics of health workers

4.2.2 Work experience of the health workers

4.2.3 Knowledge of health workers on immunization

4.2.4 Attitude of Health workers towards immunization

4.2.5 Practice of health workers towards immunization

Chapter 5 Discussion

Chapter 6 Conclusions and Recommendations

6.1 Conclusions

6.2 Recommendations

References
ANNEXES

Annex 1 Map

Map of Turkana District ... 62

Map of Kakuma Refugee Camp .. 63

Annex 2 Introduction and consent form

3.1 Mother/guardian 64

3.2 Health Workers 64

Annex 3 Questionnaires

Questionnaire for mothers/guardian ... 65

Questionnaire for Health workers ... 73

Annex 4 Criteria for assessing adequate Knowledge, Attitude and Practice ... 83

Annex 5 Sampling Technique Methodologies 88

Annex 6 Births from May 2000- May 2001 89
LIST OF ACRONYMS

AFP Acute Flaccid Paralysis
AIDS Acquired Immunodeficiency Syndrome
BCG Bacillus Calmette Guerin
COR Community Outreach
CORPs Community Own Resource Persons
DHMT District Health Management Team
DPHN District Public Health Nurse
DPT Diphtheria-Pertusis-Tetanus
EPI Expanded Program on Immunization
FP Family Planning
GOK Government of Kenya
GPV Global Programme for Vaccine and immunization
HIV Human Immunodeficiency Virus
HSO Head of Sub Office
IEC Information, Education and Communication
IMR Infant Mortality Rate
IRC International Rescue Committee
KAP Knowledge, Attitude and Practice
KDHS Kenya Demographic and Health Survey
KEMRI Kenya Medical Research Institute
KEPI Kenya Expanded Program on Immunization
KNH Kenyatta National Hospital
KRC Kakuma Refugee Camp
LQAS Lot Quality Assurance Sampling
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LWF</td>
<td>Lutheran World Federation</td>
</tr>
<tr>
<td>MCH</td>
<td>Maternal and Child Health</td>
</tr>
<tr>
<td>MOH</td>
<td>Ministry of Health</td>
</tr>
<tr>
<td>NCCK</td>
<td>National Council of Churches of Kenya</td>
</tr>
<tr>
<td>NGO</td>
<td>Non Governmental Organization</td>
</tr>
<tr>
<td>NIDs</td>
<td>National Immunization Days</td>
</tr>
<tr>
<td>OPV</td>
<td>Oral Polio Virus</td>
</tr>
<tr>
<td>PEI</td>
<td>Polio Eradication Initiative</td>
</tr>
<tr>
<td>PHC</td>
<td>Primary Health Care</td>
</tr>
<tr>
<td>RH</td>
<td>Reproductive Health</td>
</tr>
<tr>
<td>SDP</td>
<td>Service Delivery Point</td>
</tr>
<tr>
<td>SPSS</td>
<td>Statistical Package for Social Sciences</td>
</tr>
<tr>
<td>TBA</td>
<td>Traditional Birth Attendants</td>
</tr>
<tr>
<td>UNHCR</td>
<td>United Nations High Commissioner for Refugees</td>
</tr>
<tr>
<td>UNICEF</td>
<td>United Nations Children Education Fund</td>
</tr>
<tr>
<td>OVP</td>
<td>Open Vial Policy</td>
</tr>
<tr>
<td>WHA</td>
<td>World Health Assembly</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 2.1</td>
<td>Immunization coverage survey; 1987-1999</td>
<td>11</td>
</tr>
<tr>
<td>Table 2.2</td>
<td>Immunization coverage Turkana District</td>
<td>14</td>
</tr>
<tr>
<td>Table 2.3</td>
<td>Indicators of immunization services, KRC 1998-2000</td>
<td>14</td>
</tr>
<tr>
<td>Table 4.1</td>
<td>Demographic characteristic of mothers/guardian</td>
<td>21</td>
</tr>
<tr>
<td>Table 4.2</td>
<td>Distribution of children by presence of immunization card</td>
<td>22</td>
</tr>
<tr>
<td>Table 4.3</td>
<td>Immunization coverage</td>
<td>22</td>
</tr>
<tr>
<td>Table 4.4</td>
<td>Reasons for not immunizing children</td>
<td>23</td>
</tr>
<tr>
<td>Table 4.5</td>
<td>Hindrance to immunization</td>
<td>24</td>
</tr>
<tr>
<td>Table 4.6</td>
<td>Reasons for motivating mother to immunize child</td>
<td>25</td>
</tr>
<tr>
<td>Table 4.7</td>
<td>Relationship of respondent's level of knowledge and socio-demographic characteristics</td>
<td>28</td>
</tr>
<tr>
<td>Table 4.8</td>
<td>Attitude of mothers/guardians towards immunization</td>
<td>30</td>
</tr>
<tr>
<td>Table 4.9</td>
<td>Results of various socio-demographic characteristics and the attitude towards immunization</td>
<td>31</td>
</tr>
<tr>
<td>Table 4.10</td>
<td>Immunization status of children by sex</td>
<td>33</td>
</tr>
<tr>
<td>Table 4.11</td>
<td>Relationship of Immunization status of child and mothers/guardian characteristics</td>
<td>34</td>
</tr>
<tr>
<td>Table 4.12</td>
<td>Results of logistic regression</td>
<td>35</td>
</tr>
<tr>
<td>Table 4.13</td>
<td>Demographic characteristics of health workers</td>
<td>36</td>
</tr>
<tr>
<td>Table 4.14</td>
<td>Working aspect of health workers</td>
<td>37</td>
</tr>
<tr>
<td>Table 4.15</td>
<td>Level of knowledge of health workers on immunization</td>
<td>38</td>
</tr>
<tr>
<td>Table 4.16</td>
<td>Results on Knowledge on Immunization of Health workers</td>
<td>39</td>
</tr>
<tr>
<td>Table 4.17</td>
<td>Socio-demographic characteristics of health workers</td>
<td>41</td>
</tr>
<tr>
<td>Table 4.18</td>
<td>Social demographic characteristic of Health workers and attitude on immunization</td>
<td>44</td>
</tr>
</tbody>
</table>
Table 4.19 Relationship between practice and socio-demographic characteristic of health worker----------------------------------- 48
| Figure 4.1 | Reasons for lack of motivation among mothers/guardian | 25 |
| Figure 4.2 | Knowledge of mothers/guardians on EPI | 26 |
| Figure 4.3 | Knowledge of health workers on KEPI | 40 |
| Figure 4.4 | Reasons for poor coverage | 43 |
| Figure 4.5 | Supervisory visits | 45 |
| Figure 4.6 | Health topics covered during health education talks | 46 |
Definition of terms

Not immunized

A Child was defined as "not immunized" against a given disease if, at the time of the interview, she/he had not received any vaccine dose.

Fully immunized

A Child was classified as "fully immunized" if she/he had received BCG vaccine, 3 doses of DPT vaccine, 3 doses of OPV vaccine, and 1 dose of measles at the age of 12 months. Adherence to the recommended schedule for BCG, OPV, DPT and measles vaccines was estimated by calculating the proportion of children who had completed primary immunization by 12 months of age.

Immunization Schedule

"Immunization scheduled" according to the Ministry of Health (MOH) Kenya during the study period were BCG and birth Polio given at birth; DPT I and OPV I at week 6; DPT II and OPV II at 10th week; DPT III and OPV III at 14th week; and measles at 9th month.

Cluster

A "Cluster" was defined as a set of households in a randomly selected group within a zone, phase or block, which are 'administrative units' in the camp.

Household

A household was defined as person or persons staying together in the same compound or under the same roof or several roofs, answerable to the same head and sharing a common source of food or income.

Valid dose

Valid doses included only those doses given according to KEPI policy for age and interval of administration.
Invalid dose

Invalid doses were doses administered before the minimum age or after too brief an interval.

Missed opportunity

The child or mother attended an immunization session but was not given all of the doses which he or she was eligible.
Invalid dose

Invalid doses were doses administered before the minimum age or after too brief an interval.

Missed opportunity

The child or mother attended an immunization session but was not given all of the doses for which he or she was eligible.
ABSTRACT

Over 100 million children are immunized annually saving 3 million young lives a year, but 1.7 million unreached children still die each year due to the six immunizable diseases namely: Poliomyelitis, Tetanus, Diphtheria, Whooping cough, Tuberculosis, and measles. Since mid 90,s there has been a gradual decline in the immunization coverage in developing countries due to multiple factors. In response to this, African countries started immunization schedules for children. No study has been done to determine factors that affect immunization coverage in a refugee setting.

The study assessed immunization coverage and factors that determine immunization coverage in Kakuma Refugee Camp. A descriptive study was designed and the target populations were children aged 11-23 months, the mothers/guardians of those children and health workers. A total of 210 children were selected using standard EPI cluster survey methodology. Standard structured questionnaires were used to collect information. Chi test of significant and logistic regression analysis were applied to relate the factors and determine the effect of variables.

The study revealed that the immunization coverage was 76.2% which is higher than the national coverage of 51.5% and that of host community Turkana which is about 12%. About 63% of the mothers/guardians had inadequate knowledge and 22.7% had irrational attitude on immunization. However, religion and education of the mothers/guardians had statistical significance on immunization status of the child. The knowledge on EPI was low among the health workers with 78% having inadequate knowledge on immunization. The attitude (58%) and practices (58%) of the health workers were rational. There was statistical significance on the practice and the year of service of the health workers.
The coverage was impressive but effort should be increased to raise the coverage to the global target. The study recommended that health education awareness campaigns should be conducted in the camp and in the host community and that regular refresher trainings should be conducted for the health workers who should be involved in the churches and mosques to deliver health education on immunization to congregation by involving the leaders.
CHAPTER 1

1.1 Introduction

Immunization is the process of protecting a person from a specific disease. It is a proven cost-effective weapon in the control, prevention and even elimination of diseases.

Immunization can be active or passive. In active immunization, the vaccine is acting in place of a natural antigen. Antigens are biological substances made from bacteria or viruses and are either killed or live attenuated. In passive immunization, the body receives ready-made antibodies.

Vaccines have been used successfully in reducing the incidence of some diseases and this has given rise to Global Expanded Program on Immunization (EPI) against the six EPI target diseases, namely Poliomyelitis, measles, tuberculosis, tetanus, whooping cough and diphtheria. Elimination of smallpox by intensified immunization worldwide has given hope and encouragement in the fight against the EPI target diseases.

Immunization in emergency situation has been a challenge due to breakdown of health services in the country of origin of the refugees due to protracted war and destruction of the infrastructures. Kakuma Refugee Camp which hosts refugees from 8 African countries is more complex because some of the camp communities have come from countries with different EPI policies while others have come from the countries with no EPI services at all.

In Kakuma Refugee Camp the EPI policy adopted are those of Kenya and targets for 6 immunizable diseases namely Polio, measles, tetanus, Diphtheria, Whooping cough and Pertussis. According to the policy, the child should be immunized before the age of one year. EPI is implemented by International Non Governmental Organization (INGO) in partnership with District Medical Officer of Health (DMOH) Turkana District.
1.2 Background Information

The history dates back in 17th century when Lady Mary Montangu introduced the concept of *variolation*. She deliberately inoculated persons with smallpox material to prevent them from getting the diseases. Edward Jenner later demonstrated this in 1796 on an eight-year old boy, who he inoculated with cowpox material and showed that the boy became immune to smallpox. The word then changed to vaccination. The discovery of Jenner's vaccine spread around the world within a decade.

In 1974, the World Health Organization (WHO) established the Expanded Programme on Immunization (EPI). In 1977, the World Health Assembly (WHA) set 1990 as the target for universal child immunization. The aim was to immunize all children of the world against the EPI target diseases. The general programme policies were approved in resolution WHA 30.53, adopted in May 1977. The importance of EPI as an essential component of MCH and PHC was emphasized in resolution WHA 31.53, where 100 countries signed these resolutions and agreed to start EPI in their respective countries. It was adopted in May 1978, and in the Declaration of Alma-Ata in September 1978. In 1982, the WHA warned that progress would have to be accelerated to meet the 1990 goal and urged member states to take action programs (resolution WHA 35.31). The five-point action program called for the promotion of EPI within the context of Primary Health Care; the investment of human resources; the investment of adequate financial resources; to ensure continuous program evaluation and adoption to achieve high coverage and maximum reduction in cases and deaths; and the pursuit of operational research and development.²

The EPI Global Advisor Group (1985) recommended that in furtherance of the five-points action program endorsed by the 35th WHA in 1982, three general and four specific
actions be taken by national programmes, supported by WHO, to accelerate EPr progress.

The three general actions needed were to promote the achievement of the 1990 immunization goal at national and community levels through collaboration among ministries, organizations and individuals in both public and private sectors; adopt a mix of complementary strategies for programme acceleration; and ensure that rapid increase in coverage can be sustained through mechanisms, which strengthen the delivery of other PHC interventions. The four specific actions needed were: to provide immunization at every contact point; reduce dropout rates between first (BCG) and last immunization (measles); improve immunization services to the disadvantaged in urban areas; and increase priority for the control of measles, poliomyelitis and neonatal tetanus.

International Rescue Committee implements a comprehensive health services in Kakuma Refugee camp. EPI activities are implemented by a community outreach program, which has a network of community health workers who work closely with the clinic and hospital health staff. The Ministry of Health through Turkana District public health nurse supplies EPI vaccines. However, vaccines supply is usually interrupted by poor road infrastructure but IRC occasionally help in shipment of these supplies. Due to high personnel costs, community outreach program is run by trained CHW's whose role includes EPI, health education campaigns and referral of sick patients to the nearest health facilities. All health services are rendered free of charge and they are evenly distributed in the camp.
1.3 RESEARCH PROBLEM

1.3.1 Problem statement

Immunization coverage for children aged 11-23 months has dropped from 67% in 1998 to 51.5% in 2003 in Kenya according to KDHS36, 38. The trend for Turkana District remains the same according to KEPI17. Outbreaks of measles have been reported in Kakuma Refugee Camp during the years 1999 and 2000. IMR increased in Kakuma Refugee Camp, up from 60 per 1000 live births in 1998 to 81 per 1000 live births in 200043. Occasionally, there is a problem of lack of some antigens prompting the rescheduling of the visit. The supplies are received from district store in Lodwar District Hospital, 120 kilometers away. The camp receives new arrivals from Sudan, which is erratic and unexpected most of the time. At the reception center, all arrivals are screened for any disease and those not immunized get immunization. It is therefore difficult to estimate the number of the target population. Births are well distributed in the year with a slight peak occurring in the months of September. Routine immunization is done in the clinics as per the GOK schedule on immunizations. Statistics in Kakuma show high level of antigen coverage though no immunization survey has been conducted to assess the fully immunized children in the camp35.

1.3.2 Justification

EPI diseases are preventable and can be controlled by raising the immunization coverage. The camp receives refugees from a number of countries in which the immunization services have been disrupted by war. Many children are not fully immunized by the age of 12 months as per the immunization schedule. The high antigen coverage may lead to misconception that the coverage is good whereas this may be due to many missed opportunities described above. The level of education and age of the mother/guardian is
low in Kakuma refugee camps compared to other area in Kenya. Furthermore, the refugee community is disadvantaged because of trauma by war or conflict from their countries. The cadre of health worker involved in the EPI is Community Health Workers who have been equipped with EPI skills.

The camp has high antigen coverage, but the percentage of those who are fully immunized by age of 12 months is not known. No immunization coverage survey has been conducted among the refugees to assess the coverage of fully immunized children. It is therefore of necessity to design a study to look into factors that determine immunization coverage in Kakuma Refugee Camp so that intervention program can be planned to increase the coverage, prevent the outbreaks of immunizable diseases, and reduce IMR.

1.3.3 Research Questions

What is the immunization coverage in Kakuma Refugee Camp? Is there any interaction between personal characteristic of mother/guardian and the immunization of children that could help in the development of better approach to EPI in complex emergency situations?
1.4 OBJECTIVES

1.4.1 Broad objective

To determine immunization coverage and factors that influence immunization in children aged 11-23 months in Kakuma Refugee Camp.

1.4.2 Specific objectives

1. To determine the immunization coverage of children aged 11-23 months.

2. To assess the knowledge, attitude and practice of mothers with children aged 11-23 months on immunization.

3. To assess the knowledge, attitude and practice of the health workers on immunization.

4. To relate the immunization status of the children with mothers/guardian knowledge and attitude on immunization.
CHAPTER 2

Literature review

Over 100 million children are now immunized annually, saving 3 million young lives a year, but 1.7 million unreached children still die each year from the six EPI target diseases. In 125 countries, as many as 80% of young children have been immunized. There were less than 6500 polio cases worldwide in 1998, and polio eradication is in sight. The new Global Alliance for Vaccine and Immunization is committed to raise immunization rates and speed the introduction of new and underused vaccines, and promotion of safe injection practices in developing countries. The average cost of vaccines, syringes, needles, cold chain equipment and health worker training and salaries needed to immunize one child against the six major childhood diseases is estimated at $17. UNICEF has started the Vaccine Independence Initiative (VII), which requires the government to plan and budget for vaccines. It then helps the government to procure vaccines at the best possible cost.³

In Africa region, immunization remains among the top priority public health services. In 1995, the regional immunization coverage had stabilized at 69% for BCG, 54% for DPT3/OPV3 and measles, and 38% for two doses and more of tetanus toxoid⁴. This coverage shows a downward trend compared to early 1990s. However weak points have remained particularly in Africa due to geographical locations by impeding access to routine immunization, massive displacement of unvaccinated persons particularly in war torn countries, and low routine Immunization coverage '⁵

Achievements in immunization coverage for countries in Eastern and Southern epidemiological blocks of Africa were impressive. Seventy-five percent of the countries had developed a surveillance system for AFP and polio, measles, and neonatal tetanus by
1995. Eleven countries had reported "zero" incidence of poliomyelitis for the past four years. However, polio is endemic in most African countries and the risk of poliovirus importation and circulation remains significant in polio-free country. Supplemental immunization activities have been carried out through NIDS.

Neonatal tetanus rate of less than 1/1000 live birth was reported in 18 countries in 1993 but recent EPI assessment confirmed the decline in the cases due to improvement in Ante-natal services, improving Tetanus Toxoid coverage, and training and involvement of TBAs. Some countries have initiated strategies to supplement Tetanus toxoid immunization and improve clean delivery practices in the high-risk areas. BCG coverage shows an increase with impressive increase in immunization rates in several less developed countries as a result of increase EPI program though sustainability of EPI program has been affected by how immunization is perceived by lay population and the perception of utility and need effect demand. Some countries have reported as low as 30% immunization coverage.

However, the child immunization coverage has never reached the levels to curtail disease transmission and to reduce the morbidity burden with the target diseases due to factors related to acceptance, immunization service providers and organization of health services. Low immunization coverage has been found to be associated with certain neighborhoods, certain ethical groups, low socio-economic status and new arrivals. Health lessons have been found to be confusing parents and previous ineffective immunization program has made residents mistrustful of the current program in Yaounde. Sex and birth order of the child; marital status, age, occupation, education, knowledge, attitude and practice of the mother; and sending mothers without immunizing the child have been found to be factors that influence non-attendancy in the child.
immunization. Though traditional and religious beliefs can influence immunization coverage, a survey conducted in Zimbabwe indicated that the problem lay in the poor quality of EPI services. Mothers were well informed, highly motivated and may have suggestions on how services could be improved, but were rarely given opportunity to discuss them with the health workers. Negative correlation between outbreaks and routine coverage also affect immunization coverage.

Child health outreach programs have been shown to have an impact on the child vaccination among other factors. However, greater involvement of women in intervention program have a greater impact on the EPI since the target population are women who tend to blend well with traditional roles of child bearing and nurturing. Community participation/involvement is critical in sustaining health program. Lack of community participation, attitude of the health staff, intersectoral collaboration and health education have been shown to be important in EPI implementation.

Serological responses to EPI vaccines given in infancy have been shown to persist at very satisfactory levels throughout early childhood. Pediatric HIV infection should not be considered as a limiting factor in implementation and the progress of EPI worldwide. HIV infection attributable to medical injections is suspected to be low, although case-control studies have not provided definite results.

KEPI was launched in 1980 with the overall goal to strengthen immunization services in the country. It was introduced in the first pilot district in 1981 and expanded to the rest of the country by the end of 1986. The program's main objective is to immunize children aged 0-11 months against the six immunizable diseases. The main strategy to achieve this is to immunize daily from fixed centers and to supplement this by outreach centers.
Community Nurse and Public Health Technicians give immunization in over 3000 SDP (private, NGOs, and GOK). The staff is trained in KEPI operation to ensure that they have essential skills in EPI and knowledge needed to carry out these important services.

KEPI has implemented Global Polio Eradication Initiative by conducting four NIDS since 1996. Measles and vitamin A were included in NIDS (1999, 2000).

Surveillance system in EPI target diseases have been strengthened as a strategy to eradicate polio, eliminate neonatal tetanus, and control of measles.

Since its inception in 1980, KEPI has increased immunization of the target population, achieving and maintaining coverage of over 75% by the early 1990's.

Data on the immunization coverage for the displaced population and for the refugees are not available. However, in a number of countries, war related disruption of immunization services has triggered out-breaks of polio and other vaccine related diseases. One hundred and fifty cases of polio were reported in Russia Federation in 1995 following a 3-year disruption of immunization services, in Iraq there was an upsurge following Gulf war, 1996 in Albania, Angola, and Sudan. Elsewhere, the mobility of refugee populations and the Internally Displaced Persons continue to hamper efforts to organize and follow-up both routine immunizations, leaving many children only partially immunized and therefore unprotected. Cluster surveys conducted in 1996 estimated routine OPV 3 coverage among infants, in northern Somali to be under 30%, while coverage in the south of the country was estimated to be even lower; Democratic Republic of Congo reported 36% fully immunized; Angola 29%.

There are several refugee camps in Africa. However, in East and central Africa, many refugee camps are in the maintenance phase though they continue to receive new arrivals due to the continued war in the countries of origin. Many children come who are not
immunized and few partially immunized. Majority gets immunization past the recommended age.

In the two refugee camps in Kenya, namely Dadaab and Kakuma situated in Eastern and Rift Valley province respectively, the immunization coverage is unknown though the reported antigen coverage is high, which may be attributed to the children who are getting immunizations past the recommended age. There is no literature on the full immunization coverage in any of the refugee camps in Kenya.

The 1998 Kenya Demographic and Health Survey (KDHS) documented a significant decline in coverage of approximately 15% to coverage of approximately 60%. This has further declined to unacceptable level in the year 1999. There are marked disparities between districts and provinces, with Nyanza Province having coverage as low as 44.4% and Western Province 51.2%.

Table 2.1: National Immunization Coverage from 1987-1999

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>BCG</td>
<td>91%</td>
<td>93%</td>
<td>96.3%</td>
<td>94.6%</td>
<td>95.9%</td>
<td>86.8%</td>
</tr>
<tr>
<td>DPT3</td>
<td>74%</td>
<td>85.8%</td>
<td>86.9%</td>
<td>85.8%</td>
<td>79.2%</td>
<td>72.7%</td>
</tr>
<tr>
<td>OPV3</td>
<td>75%</td>
<td>85%</td>
<td>86.7%</td>
<td>85.5%</td>
<td>80.4%</td>
<td>66.8%</td>
</tr>
<tr>
<td>Measles</td>
<td>60%</td>
<td>81.2%</td>
<td>83.8%</td>
<td>80.7%</td>
<td>79.2%</td>
<td>72.1%</td>
</tr>
<tr>
<td>Fully Immunized</td>
<td>51%</td>
<td>76.7%</td>
<td>78.7%</td>
<td>76.1%</td>
<td>65.4%</td>
<td>51.5%</td>
</tr>
<tr>
<td></td>
<td>(Survey)</td>
<td>(Survey)</td>
<td>KDHS</td>
<td>(Survey)</td>
<td>KEPI</td>
<td>(KDHS)</td>
</tr>
</tbody>
</table>

Major measles outbreaks throughout the country in 1998-1999 may have contributed to this significant decline in coverage according to KEPI reports from 1996 to 1999.
In 2006, Kenya reported its first case of polio in 22 years, marking a setback in global efforts to eradicate the crippling disease. The case was reported among the refugee community in Dadaab Refugee Camp in North Eastern Province. The existing WHO policies and guidelines for EPI has not been fully adopted in Kenya. This coupled with a slow pace in policy formulation at the national level and poor communication of policies to first level health workers, have resulted in lack of clarity on those policies and on implementation. The effects are clearly noted in the lack of clear policies on monitoring quality of vaccines and of importation of vaccines, especially outside KEPI, implementation of Open Vial Policy and reduction of vaccine wastage and the inclusion of new antigens is most apparent; supplies of cold chain equipment and other essential EPI supplies are irregular because of inadequate GOK funding and due to ad-hoc funding by donors. This problem is further aggravated by the lack of a comprehensive inventory system at the district and facility level; and due to the irregular maintenance of equipment. Funds are not allocated for the procurement of spare parts for the cold chain at the District level; and supplies are therefore erratic; funding of EPI has historically been substantially on donor supported since inception, the dependence that has made the programme vulnerable to the whims of donors who at times exercise unsure leverage on the performance of the programme. There is need to alter this dependence to assure the programme of funding under government sources. Human resource development is vital for sustainability of EPI. Historically, EPI training has been offered in-service. The high cost of training, and the lack of adequate resources for training and training materials, and high staff turnover has resulted in an inadequate number of KEPI trained health workers to offer EPI services. This has had an adverse effect on the quality of EPI services in the key areas such as cold chain/ logistics, programme management and disease surveillance.
and control. Immunization coverage is closely linked to the quality of services offered. For the coverage to be increased and sustained, the following critical areas of quality of immunization must be addressed: Missed opportunities\(^{39}\) and high dropout rates; Unsafe injection practices\(^{25}\); and Adverse effects following immunization.

The high decline in immunization coverage and the consequent problems is unacceptable. The interventions proposed include resource mobilization for EPI; effective service delivery; capacity building, will be done through training of service providers for sustainability and enhancement of quality of care; and advocacy and social mobilization to improve the participation of the beneficiaries (parents/caretakers) and other stakeholders at all levels. This will help achieve overall objectives through IEC\(^{40}\).

In a quantitative survey done in 1992 on the factors that promote and hinder immunization activities in South Nyanza districts, the knowledge of immunization activities among mothers was considerably higher compared to men and local leaders. Mothers believed that they receive good services from the health facilities though they had complaint about them. The frequently mentioned factors that affect immunization were procrastination (the tendency to postpone action for no apparent reason), child is sick, health staff scold mothers, immunization postponed, clinic is far, other commitments and child will be bewitched. The knowledge on immunizable diseases was relatively low, with measles being the best-known immunizable disease\(^{41}\).

In immunization coverage survey conducted by KEPI in Nero, Kilifi, and Suba Districts (April, 2000) to evaluate KEPI activities, it was shown that Nyeri had high immunization coverage with 97% of children 11-23 months being fully immunized as compared to Suba with 37%. Kilifi had 77% of children fully immunized\(^{42}\).
Turkana District immunization coverage has been low according to the KEPI reports. Fully immunized children under 1 year have been between 12-38%. See table 2.2 below.

Table 2.2: Turkana District Immunization Coverage 1994-March 2001

<table>
<thead>
<tr>
<th>Year</th>
<th>BCG</th>
<th>DPT3</th>
<th>OPV3</th>
<th>Measles</th>
<th>Fully Immunized Child <1yr</th>
</tr>
</thead>
<tbody>
<tr>
<td>1994</td>
<td>108%</td>
<td>62%</td>
<td>66%</td>
<td>55%</td>
<td>33%</td>
</tr>
<tr>
<td>1995</td>
<td>52%</td>
<td>36%</td>
<td>34%</td>
<td>33%</td>
<td>16%</td>
</tr>
<tr>
<td>1999</td>
<td>95%</td>
<td>62%</td>
<td>60%</td>
<td>57%</td>
<td>28%</td>
</tr>
<tr>
<td>2000</td>
<td>101%</td>
<td>88%</td>
<td>80%</td>
<td>97%</td>
<td>38%</td>
</tr>
<tr>
<td>2001</td>
<td>34%</td>
<td>29%</td>
<td>28%</td>
<td>20%</td>
<td>12%</td>
</tr>
</tbody>
</table>

Source: Ministry of Health, Kenya Expanded program on Immunization report 2001

Statistics in Kakuma refugee camp show high level of antigen coverage that may be high due to missed opportunities and new arrivals, majority of whom are over 12 months. DPT coverage is 86% but there is no recent information available on the number of fully immunized in the year 2000 (Table 2.3).

Table 2.3: Indicators of the immunization services, Kakuma refugee camp 1998-2000

<table>
<thead>
<tr>
<th>Year</th>
<th>BCG</th>
<th>OPV 3</th>
<th>DPT 3</th>
<th>Measles</th>
<th>Fully Immunized Child < 1 yr</th>
</tr>
</thead>
<tbody>
<tr>
<td>1998</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>1999</td>
<td>85%</td>
<td>92%</td>
<td>92%</td>
<td>106%</td>
<td>.</td>
</tr>
<tr>
<td>2000</td>
<td>82%</td>
<td>82%</td>
<td>82%</td>
<td>86%</td>
<td>.</td>
</tr>
</tbody>
</table>

CHAPTER 3

METHODS AND MATERIALS

3.1 Study design

The study design was descriptive conducted in Kakuma Refugee Camp.

3.2 Study area

The study was carried out in Kakuma Refugee Camp which is located in Northern Rift Valley Province of Kenya in Turkana district, 120 kilometers North of Lodwar Town. Kakuma refugee camp has a population of about 85,000\(^4\), 82% from South Sudan, 15% from Somalia and the rest from Ethiopia, Eritrea, Rwanda, Burundi, Uganda, and the Democratic Republic of Congo. The camp is divided into 8 zones. The Sudanese are in all the zones. However in zone 7 and zone 8 majority are Somalis. Zone 5 has a mixed nationality (Annexes 1 and 2).

3.3 Study populations

The population studied was children aged 11-23 months at the time of the survey, among the residents of Kakuma Refugee Camp. The children were selected from the birth register (Annex 5). Children aged 11-23 months were included in the sample in accordance with the Kenya National Immunization coverage surveys. Child welfare card or when this is not available, verbal autopsy confirmed the age by asking mother/guardian. Also included in the study were mothers/guardians with children aged 11-23 months as well as all health workers in the community and those delivering immunization services in the clinics and hospitals.
3.4 Sampling

3.4.1 Sample size

The number of children included in the study was 211 according to the WHO EPI cluster survey methodology. EPI Survey using cluster sampling technique have been developed and widely applied.\(^48\) The use of total number of births as a sampling frame permitted accurate selection of clusters with the appropriate sampling weights. The inclusion of children randomly selected from each cluster ensured representativeness (Annex 6).\(^{49,50}\)

3.4.2 Sampling procedure

A standard EPI cluster survey methodology involving systematic sampling from a cumulative population list was used to select 30-cluster sites\(^{44}\). Two stage cluster sampling procedure was used. Kakuma refugee camp is divided into 3 camps, namely Kakuma I, Kakuma II, and Kakuma III. Each camp is divided into zones or phases. Each zone or phase is divided into groups and each group is constituted by households.

A list of all groups with populations of children aged 11-23 months was developed using the birth register (Annex 5). The cumulative population was then prepared. The sampling interval was estimated by dividing the total population of children aged 11-23 months by the number of clusters (i.e. 30).

A random number between 1 and the sampling interval gave a random start and the cluster was chosen by adding the sampling interval to this random number in the cumulative population list until 30 clusters were selected.

In each cluster, a random direction was chosen by spinning a bottle. The number of houses was counted in a straight line to the perimeter of cluster (group). A random house was chosen, and the next nearest until 7 children/guardians were seen in the cluster. The
immunization status of children 11-23 months was recorded and mothers/guardians interviewed on KAP.

Health workers covering the clusters (group) selected and those in the clinics and hospital were also interviewed on KAP (Annex 2).

3.5 Data collection

Personal interview method using two sets of structured questionnaires was applied. The first questionnaire had 3 parts,

a) Part 1 collected information on the immunization status of the children aged 11-23 months.

b) Part 2 collected information on reasons of completion or not completing immunization schedule.

c) Part 3 collected information on KAP of mothers/guardian with children aged 11-23 months.

The second questionnaire had 3 parts and collected information from the health workers in MCH/FP clinic.

a) Part 1: Identification of the health worker

b) Part 2: Personal characteristics of the health workers

c) Part 3: KAP on immunization among the health workers.

The questionnaire for mothers/guardians was pre-tested on the mothers with children 11-23 months in some groups, which had been excluded from the study and in the host population. The Kenya Enrolled Community Nurses were trained as the research assistants and assisted in the supervision of data collection. Enumerators were recruited from CHWs and trained on data collection and handling. The principal investigator supervised the exercise. Data collection took 4 days between 24th and 27th June 2002.
3.6 Data processing, analysis and presentation

Data entry and analysis was done in Kakuma and Nairobi. Data were analyzed using SPSS statistical software. Proportions and confidence intervals were computed taking into account the design effect. The denominator in the calculation of immunization coverage was all children whose mothers/guardians were interviewed. The chi-square (X^2) test of significance was applied to determine factors that are related to Mothers and Health workers knowledge, attitude and practice on EPI. The effect of socio-demographic characteristics on immunization coverage was analyzed using logistic regression analysis. In addition, logistic regression analysis was done to determine the effect of each of the considered variables on knowledge, attitude and practice on immunization status of the child independent of the other factors. The level of significance chosen for comparisons was 5%. Descriptive statistics were also determined during analysis.

3.7 Minimization of error and biases

Selection bias

Number of children may vary due to mortality, relocation to new camps, voluntary repatriation to country of origin and resettlement to the third country. Using random clustering technique minimized selection bias.

Non-response bias

Non-respondents in a sample may exhibit characteristics, which differ systematically from the characteristic of the respondents. Differential and non-differential misclassification can occur due to enumerator difference in the questioning approach and misunderstanding of the questions by the respondents. This type of error was minimized by pre-testing the questionnaire to ensure that the questions were well understood by the
respondents, and training the enumerators so that they used the same technique in gathering information.

3.8 Ethical consideration

The research proposal was submitted to the UNHCR, through International Rescue Committee for approval. The information given was confidential and the names were not asked for during the exercise. However, the mothers of the children who were not fully immunized were given health education on immunization and referred to the nearest facility for immunization. Consent was required from the respondents before collecting any information. Those not willing to join the study were excluded.

3.9 Study limitation

The camp consists of 8 nationalities with multicultural practices. The language barrier was a major limitation and therefore a translator was required at all stages of interview. Since the study was designed to examine the refugee profile, it faces limitations in generalizing the results in the national perspectives. Moreover, the study is restricted, by its small sample size, particularly the health workers.
CHAPTER 4 ' FINDINGS

This chapter presents results of the survey. It is divided into two sections: Results of immunization coverage of children aged 11-23 months and knowledge, attitude and practice of mothers/guardians towards immunization are presented in section I; and section two, compares the knowledge, attitude and practice among various cadre of health workers towards immunization on the EPI diseases.

4.1 IMMUNIZATION COVERAGE AND KAP AMONG MOTHERS/GUARDIANS

4.1.1 Social Demographic Characteristics

A total of 211 respondents were interviewed. All mothers/guardians interviewed were registered refugees in Kakuma Refugee Camp. Demographic information relating to the respondents is summarized in Table 4.1.

Age was not specified for 8 of the respondents. Of the remaining 203 respondents, the mean age was 27.2 years with a range of 15-49 years. Mothers/guardians were relatively young with 61% aged 25 - 34 years.

Ninety five percent of the respondents were females while only 4.8% were male. The majority of respondents 94.1%, were married, 4.9% widowed and 1% were single.

Only about 8% of the respondents were in salaried employment, while 7% were in business. The majority 85% were unemployed.

Of the respondents surveyed, 62.1% had no formal education, 31.3% had primary level of schooling (primary 1-8) while 4.3% had been to secondary school. Most of the respondents (79.1%) were Christian by religion: Catholic (39.8%) and Protestant (39.3%). Muslims represented nearly a fifth of the respondents (20.9%).

20
Table 4.1: Demographic Characteristics of Respondents

<table>
<thead>
<tr>
<th>Variable</th>
<th>Classification</th>
<th>Frequency</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (in years)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><19</td>
<td></td>
<td>15</td>
<td>7.4</td>
</tr>
<tr>
<td>20-24</td>
<td></td>
<td>48</td>
<td>23.6</td>
</tr>
<tr>
<td>25-29</td>
<td></td>
<td>61</td>
<td>30.0</td>
</tr>
<tr>
<td>30-34</td>
<td></td>
<td>63</td>
<td>31.0</td>
</tr>
<tr>
<td>35-39</td>
<td></td>
<td>10</td>
<td>4.9</td>
</tr>
<tr>
<td>>40</td>
<td></td>
<td>6</td>
<td>3.0</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>203</td>
<td>100.0</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td></td>
<td>10</td>
<td>4.8</td>
</tr>
<tr>
<td>Female</td>
<td></td>
<td>198</td>
<td>95.2</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>208</td>
<td>100.0</td>
</tr>
<tr>
<td>Marital status</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single</td>
<td></td>
<td>2</td>
<td>1.0</td>
</tr>
<tr>
<td>Married</td>
<td></td>
<td>191</td>
<td>94.1</td>
</tr>
<tr>
<td>Widow</td>
<td></td>
<td>10</td>
<td>4.9</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>203</td>
<td>100.0</td>
</tr>
<tr>
<td>Occupation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Salary</td>
<td></td>
<td>16</td>
<td>7.6</td>
</tr>
<tr>
<td>Business</td>
<td></td>
<td>15</td>
<td>7.1</td>
</tr>
<tr>
<td>Unemployed</td>
<td></td>
<td>179</td>
<td>85.2</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>210</td>
<td>100.0</td>
</tr>
<tr>
<td>Education</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>None</td>
<td></td>
<td>131</td>
<td>62.1</td>
</tr>
<tr>
<td>Adult education</td>
<td></td>
<td>1</td>
<td>0.5</td>
</tr>
<tr>
<td>Primary 1-8</td>
<td></td>
<td>66</td>
<td>31.3</td>
</tr>
<tr>
<td>Secondary</td>
<td></td>
<td>9</td>
<td>4.3</td>
</tr>
<tr>
<td>College/university</td>
<td></td>
<td>2</td>
<td>0.9</td>
</tr>
<tr>
<td>Others</td>
<td></td>
<td>2</td>
<td>0.9</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>211</td>
<td>100.0</td>
</tr>
<tr>
<td>Religion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Catholic</td>
<td></td>
<td>84</td>
<td>39.8</td>
</tr>
<tr>
<td>Protestant</td>
<td></td>
<td>83</td>
<td>39.3</td>
</tr>
<tr>
<td>Muslim</td>
<td></td>
<td>44</td>
<td>20.9</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>211</td>
<td>100.0</td>
</tr>
</tbody>
</table>

4.1.2 Immunization Coverage

4.1.2.1 Results of Immunization Coverage

Analysis of the distribution by age of children was possible for 206 of the 211 children for whom age was reported. The mean age was 16.3 months. The male to female ratio of
children was almost 1:1. Virtually all the children (96.7%) had immunization cards (Table 4.2).

Table 4.2: Distribution of Children by Sex and Presence of Immunization Card

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Frequency</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>95</td>
<td>47.5</td>
</tr>
<tr>
<td>Female</td>
<td>105</td>
<td>52.5</td>
</tr>
<tr>
<td>Total</td>
<td>200</td>
<td>100</td>
</tr>
<tr>
<td>Immunization card</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Present</td>
<td>202</td>
<td>96.7</td>
</tr>
<tr>
<td>Absent</td>
<td>7</td>
<td>3.3</td>
</tr>
<tr>
<td>Total</td>
<td>209</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Immunization cards and histories verified the immunization status. About three-quarters (76.2%) of the children were reported to be fully immunized according to immunization cards and mothers/guardian histories while 22.4% were partially immunized (Table 4.3). Some 75.6% of the children were immunized before the age of one year. This is consistent with the KEPI policy to immunize majority of children before they celebrate their first birthday.

Table 4.3: Immunization Coverage

<table>
<thead>
<tr>
<th>Immunization status</th>
<th>Frequency</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not Immunized</td>
<td>3</td>
<td>1.4</td>
</tr>
<tr>
<td>Partially immunized</td>
<td>47</td>
<td>22.4</td>
</tr>
<tr>
<td>Fully Immunized</td>
<td>160</td>
<td>76.2</td>
</tr>
<tr>
<td>Total</td>
<td>210</td>
<td>100.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>When were fully immunized</th>
<th>Frequency</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before 1 year</td>
<td>152</td>
<td>95</td>
</tr>
<tr>
<td>After 1 year</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>Total</td>
<td>160</td>
<td>100.0</td>
</tr>
</tbody>
</table>
4.1.2.2 Factors that Motivated or Hindered Immunization

Respondents with children who were not fully immunized were asked to state the reasons for not immunizing the children. "Immunization time passed" was cited by 26.1% of the respondents; while 13% of the respondents stated that they were unaware of the need for immunization; 10.9% were unaware of the need to return for 2nd and 3rd dose; and 13% did not know the place/time of immunization as tabulated in Table 4.4.

Table 4.4 Reasons for not Immunizing Child (N=46)

<table>
<thead>
<tr>
<th>Reasons for not immunizing the child</th>
<th>Frequency</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Immunization time passed</td>
<td>12</td>
<td>26.1</td>
</tr>
<tr>
<td>Unaware of the need for immunization</td>
<td>6</td>
<td>13</td>
</tr>
<tr>
<td>Not knowing the place/time of immunization</td>
<td>6</td>
<td>13</td>
</tr>
<tr>
<td>Unaware of the need for return for 2 & 3 dose</td>
<td>5</td>
<td>10.9</td>
</tr>
<tr>
<td>Mother & child sick</td>
<td>5</td>
<td>10.9</td>
</tr>
<tr>
<td>Fear of side reaction</td>
<td>3</td>
<td>6.5</td>
</tr>
<tr>
<td>No apparent reason</td>
<td>3</td>
<td>6.5</td>
</tr>
<tr>
<td>Had travelled out of the camp</td>
<td>3</td>
<td>6.5</td>
</tr>
<tr>
<td>Others</td>
<td>2</td>
<td>4.3</td>
</tr>
<tr>
<td>Immunization time passed & staff was rude</td>
<td>1</td>
<td>2.2</td>
</tr>
<tr>
<td>Total</td>
<td>46</td>
<td>100</td>
</tr>
</tbody>
</table>

Respondents were also asked to state factors that hindered them from taking their children for immunization. Major reasons given were: inconvenient time of immunization (20.9%), vaccine not available (16.7%), child ill and when taken to the clinic was not immunized (14.6%) and mother too busy (12.5%). Other reasons given were reported with decreasing frequencies. Table 4.5 show factors given by the respondents that hindered them from taking children for immunization.
Table 4.5: Factors that Hinder Immunization (N=48)

<table>
<thead>
<tr>
<th>Factors that hinder immunization</th>
<th>Frequency</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inconvenient time of immunization</td>
<td>10</td>
<td>20.9</td>
</tr>
<tr>
<td>Lack of vaccines</td>
<td>8</td>
<td>16.7</td>
</tr>
<tr>
<td>Refusal by health worker because the child is sick</td>
<td>7</td>
<td>14.6</td>
</tr>
<tr>
<td>The mother/guardian is too busy with other activities</td>
<td>6</td>
<td>12.5</td>
</tr>
<tr>
<td>Family problem e.g. mother ill</td>
<td>5</td>
<td>10.4</td>
</tr>
<tr>
<td>Child is sick and not taken for immunization</td>
<td>3</td>
<td>6.3</td>
</tr>
<tr>
<td>Distance of immunization center (far)</td>
<td>2</td>
<td>4.2</td>
</tr>
<tr>
<td>No health worker at duty station (Vaccinator)</td>
<td>2</td>
<td>4.2</td>
</tr>
<tr>
<td>Waiting time too long</td>
<td>1</td>
<td>2.1</td>
</tr>
<tr>
<td>Health worker refusing to give immunization because the mother/guardian lost the Immunization card</td>
<td>1</td>
<td>2.1</td>
</tr>
<tr>
<td>Health workers are rude</td>
<td>1</td>
<td>2.1</td>
</tr>
<tr>
<td>Forget the return date</td>
<td>1</td>
<td>2.1</td>
</tr>
<tr>
<td>Traveled out of the camp</td>
<td>1</td>
<td>2.1</td>
</tr>
<tr>
<td>Vaccinator absent & vaccine not available</td>
<td>1</td>
<td>2.1</td>
</tr>
<tr>
<td>Total</td>
<td>48</td>
<td>100</td>
</tr>
</tbody>
</table>

Respondents were also asked why they were not motivated to have their children immunized. Of the 48 respondents, more than a half (56.3%) stated that they postponed immunization till another time without apparent reason; while 10.4% cited rumours that the vaccine causes sickness and about 23% could not provide any answer (Figure 4.1).
Respondents with children who had received some or all the immunizations were asked to state what motivated them to doing so. The reasons given for motivation are summarized in Table 4.6. About a quarter (26.4%) of the respondents said that they benefited from the integrated health services; while 26.4% had desire to raise a healthy child. About 18% of the respondents said that they took the child for immunization because of prior exposure to immunization program.

Table 4.6: Reasons Motivate Respondents to Immunize Children (N=163)

<table>
<thead>
<tr>
<th>Reasons that motivate to immunize children</th>
<th>Frequency</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benefit of integrated health services</td>
<td>43</td>
<td>26.4</td>
</tr>
<tr>
<td>Desire to raise a healthy child</td>
<td>43</td>
<td>26.4</td>
</tr>
<tr>
<td>Prior exposure to immunization</td>
<td>29</td>
<td>17.8</td>
</tr>
<tr>
<td>Others</td>
<td>28</td>
<td>17.2</td>
</tr>
<tr>
<td>Benefit of child card at hospital, school, birth certificate</td>
<td>10</td>
<td>6.1</td>
</tr>
<tr>
<td>Clear understanding of immunization</td>
<td>6</td>
<td>3.7</td>
</tr>
<tr>
<td>Availability of experts at the health facility</td>
<td>3</td>
<td>1.8</td>
</tr>
<tr>
<td>Distance to health facility</td>
<td>1</td>
<td>0.6</td>
</tr>
<tr>
<td>Total</td>
<td>163</td>
<td>100</td>
</tr>
</tbody>
</table>
4.1.3 Knowledge of Mothers/Guardians on Immunization

The survey information was also gathered to assess knowledge, attitude and practice of mothers/guardians with children aged 11-23 months. On knowledge only 2.8% of the respondents knew all the six immunizable diseases. Five percent knew 5 EPI diseases, 11.4% knew 4 EPI diseases, and 28% knew 3, 20.9% knew 2 and 19% knew only 1 EPI disease. Overall 12.8% did not know any immunizable disease (Figure 4.2). Of the 211 respondents, 59.7% mentioned having had experience with immunizable diseases. Measles and polio were mentioned more frequently. Health workers are the main source of information (84%) in the hospital, clinics and community.

About 74% (n=155) of the respondents knew that the child completes immunization at age of 9 months and 63.5% (n=134) said that a child is taken for immunization five times before completing immunization schedule.

Figure 4.2: Knowledge on EPI Target Diseases
Asked about the side effects of vaccination, hotness of the body 64% (135) was the most common mentioned reaction that occurs after the child is immunized. Other mentioned reactions included child crying the whole night (6.2%), swelling at the site of injection, restlessness and vomiting. Two or more of the above reactions were mentioned by 18% (38) of the respondents. 6.2% (13) did not know any reaction that can occur after a child has been immunized.

When asked about what they do when a reaction occurs, 57.8% said that they return the child to the health facility or consult CHW. However, 12.3% would give drugs at home and 9% would only observe the child. Nine percent did not know what to do after the reaction has occurred. Sixty-three percent of the respondents felt that the child should not be immunized when sick and 19.9% did not know whether a child should be immunized when sick or not. Ninety percent knew that the child is protected from the EPI diseases when immunized. However, 10% did not know the benefit of immunizing the child.

Relationships on Level of Knowledge on Immunization and Mothers/Guardian Characteristics

Respondents were asked several questions to assess their knowledge on immunization. The responses were categorized into adequate and inadequate knowledge (see Annex 4). Out of a total of 17 scores, respondents were classified to have adequate knowledge if they had a total of 8 scores or more (i.e. if they scored more than a half); and inadequate knowledge if they had a total score less than 8. Of the total respondents, 74 (36.5%) had adequate knowledge and 129 (63.5%) had inadequate knowledge.
Analyses were then done to determine the association between socio-demographic characteristics and knowledge on immunization. The relationships are summarized in table 4.7 below.

Table 4.7: Relationship on Level of Knowledge and Socio-demographic Characteristics of Mothers/Guardians

<table>
<thead>
<tr>
<th>Age group</th>
<th>Level of knowledge</th>
<th>Total</th>
<th>X² statistic</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Inadequate</td>
<td>Adequate</td>
<td></td>
<td></td>
</tr>
<tr>
<td><19 years</td>
<td>8 (53.3)</td>
<td>7 (46.7)</td>
<td>15 (100)</td>
<td>0.841</td>
</tr>
<tr>
<td>20-24 years</td>
<td>30 (62.5)</td>
<td>18 (37.5)</td>
<td>48 (100)</td>
<td></td>
</tr>
<tr>
<td>25-29 years</td>
<td>40 (65.6)</td>
<td>21 (34.4)</td>
<td>61 (100)</td>
<td></td>
</tr>
<tr>
<td>30+ years</td>
<td>51 (64.6)</td>
<td>28 (35.4)</td>
<td>79 (100)</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>129 (63.5)</td>
<td>74 (36.5)</td>
<td>203 (100)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Occupation</th>
<th>Economic Activity</th>
<th>Total</th>
<th>X² statistic</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Unemployed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>19 (61.3)</td>
<td>12 (38.7)</td>
<td>31 (100)</td>
<td>0.211</td>
</tr>
<tr>
<td>Unemployed</td>
<td>118 (65.6)</td>
<td>62 (34.4)</td>
<td>180 (100)</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>137 (64.9)</td>
<td>74 (35.1)</td>
<td>211 (100)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Education</th>
<th>None</th>
<th>Primary 1-4</th>
<th>Primary 5-8</th>
<th>Total</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>93 (69.4)</td>
<td>41 (30.6)</td>
<td>134 (100)</td>
<td>137 (64.9)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>24 (66.7)</td>
<td>12 (33.3)</td>
<td>36 (100)</td>
<td>74 (35.1)</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td>20 (48.8)</td>
<td>21 (51.2)</td>
<td>41 (100)</td>
<td>211 (100)</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>137 (64.9)</td>
<td>74 (35.1)</td>
<td>211 (100)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Religion</th>
<th>Catholic</th>
<th>Protestant</th>
<th>Muslim</th>
<th>Total</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>64 (76.2)</td>
<td>20 (23.8)</td>
<td>84 (100)</td>
<td>137 (64.9)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>46 (55.4)</td>
<td>37 (44.6)</td>
<td>83 (100)</td>
<td>74 (35.1)</td>
<td>0.016</td>
</tr>
<tr>
<td></td>
<td>27 (61.4)</td>
<td>17 (38.6)</td>
<td>44 (100)</td>
<td>211 (100)</td>
<td></td>
</tr>
</tbody>
</table>

In parentheses are percentages
The proportion with adequate knowledge tends to fall with rising age (except age 30+ years). However, the difference was not statistically significant; ($X^2 = 0.841$, df=3; $p=0.84$).

The occupations were collapsed into two because of the small numbers namely: Economic activity (those in salaried employment and in Business) and unemployed. It is seen that respondents in the survey who were engaged in some economic activity (employed/ business) were marginally more likely to have adequate knowledge on immunization (39%) compared to those who were unemployed (35%). However, the difference was not statistically significant.

Knowledge on immunization tended to increase with increase in education. Clearly, respondents with upper primary and higher were more likely to have adequate knowledge on immunization (51.2%) compared to those with no formal education (31%). The difference was statistically significant.

Protestant Christians were found to be more likely to have adequate knowledge on immunization (45%) compared with Catholics (24%) and Muslims (17%), the difference was statistically significant.

4.1.4 Attitude of mothers/guardians towards immunization

The questions on attitude were assigned scores depending on correct responses recorded. The aggregate scores were 7 points. Those respondents who obtained at least four points (more than half) out of the seven were considered to have rational attitude. Otherwise respondents with scores less or equal to three were considered to have irrational attitude towards immunization. The survey showed that nearly three quarters of the respondents (77.3%) could be said to have rational attitude towards immunization (Table 4.8).
Table 4.8: Attitude of the Respondents on Immunization.

<table>
<thead>
<tr>
<th>Attitude</th>
<th>Frequency</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Irrational attitude</td>
<td>48</td>
<td>22.7</td>
</tr>
<tr>
<td>Rational attitude</td>
<td>163</td>
<td>77.3</td>
</tr>
<tr>
<td>Total</td>
<td>211</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Analysis of the data revealed that fifty two percent of the respondents knew that a child who is not immunized can bring about a public health problem, and 27% were concerned that the child can spread disease to others if not immunized. Only 6.6% (111) knew of a child who had not been immunized of whom 78.6% (11) had tried to talk to the mother about immunization. Among the respondents, 73.3% (15) had no reason why the child had not been immunized. However, 20% (3) gave distance as a reason why the child had not been immunized.

About 88.0% (181) of the respondents get worried if a child misses immunization and 43.1% (78) of them would take the child for immunization the earliest possible time. About 34.0% (89) would not know what to do if the child misses immunization. Out of all the respondents, 92.0% (193) always carry immunization card any time they go for services at the health facility. However, 93.8% consider it necessary to carry the child immunization card. Of the 185 respondents, 60% said that the card is a requirement at the health facility whereas 14% know that the card gives details of health status of the child.

About 66.0% of all the respondents consider immunization to be important.

Relationships of Attitude on Immunization and Mothers/Guardian Characteristics

Results of relationships of various socio-demographic characteristics and the attitude towards immunization are shown in table 4.9. The results show that the association between age and attitude towards immunization is generally weak. Among the
respondents aged under 25 years, 77.8% of them were classified to have rational attitude compared to 78.7% of the respondents aged 25-29 years and marginally falling to 77.2% among respondents aged 30 years and over. The difference was not statistically significant.

Table 4.9: Relationship on Socio-demographic Characteristics and Attitude on immunization.

<table>
<thead>
<tr>
<th></th>
<th>Attitude</th>
<th>Total</th>
<th>X^2 statistic</th>
<th>P-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Irrational</td>
<td>Rational</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age group</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Under 25 years</td>
<td>14 (22.2)</td>
<td>49 (77.8)</td>
<td>63 (100)</td>
<td>0.043</td>
</tr>
<tr>
<td>25-29 years</td>
<td>13 (21.3)</td>
<td>48 (78.7)</td>
<td>61 (100)</td>
<td></td>
</tr>
<tr>
<td>30+ years</td>
<td>18 (22.8)</td>
<td>61 (77.2)</td>
<td>79 (100)</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>45 (22.2)</td>
<td>158 (77.8)</td>
<td>203 (100)</td>
<td></td>
</tr>
<tr>
<td>Occupation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Economic Activity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unemployed</td>
<td>8 (25.8)</td>
<td>23 (74.2)</td>
<td>31 (100)</td>
<td>0.193</td>
</tr>
<tr>
<td></td>
<td>40 (22.2)</td>
<td>140 (77.8)</td>
<td>180 (100)</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>48 (22.7)</td>
<td>163 (77.3)</td>
<td>211 (100)</td>
<td></td>
</tr>
<tr>
<td>Educational level</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><=Primary 1-4</td>
<td>39 (22.9)</td>
<td>131 (77.1)</td>
<td>170 (100)</td>
<td>0.018</td>
</tr>
<tr>
<td>>=Primary 5-8</td>
<td>9 (22)</td>
<td>32 (78)</td>
<td>41 (100)</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>48 (22.7)</td>
<td>163 (77.3)</td>
<td>211 (100)</td>
<td></td>
</tr>
<tr>
<td>Religion</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Muslim</td>
<td>6 (13.6)</td>
<td>38 (86.4)</td>
<td>44 (100)</td>
<td>18.7</td>
</tr>
<tr>
<td>Catholics</td>
<td>32 (38.1)</td>
<td>52 (61.9)</td>
<td>84 (100)</td>
<td></td>
</tr>
<tr>
<td>Protestants</td>
<td>10 (22)</td>
<td>73 (88.0)</td>
<td>83 (100)</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>48 (22.7)</td>
<td>163 (77.3)</td>
<td>211 (100)</td>
<td></td>
</tr>
</tbody>
</table>

In parentheses are percentages

The level of education has no significant effect on the attitude towards immunization, which seems to be more or less similar among the respondents with 77.1% of these with
primary 1-4 and below being assessed as having rational attitude compared with 78.0% with upper primary 5-8 and above.

Protestant and Muslims (88.0% and 86.4% respectively) were found to be more likely to have rational attitude on immunization compared with Catholics (61.9%), the differences were statistically very significant ($X^2 = 18.7$, $p=0.001$).

Occupation was re-classified in "economic activity" to combine salary and business due to small numbers. It is noted that the difference in attitude levels by occupation was not statistically significant. {Odds Ratio (OR) = 0.8, 95% CI: 0.31 - 2.12}.

4.1.5 Practice of Mothers/Guardians on Immunization

The immunization centers are within a walking distance. About 68% (n=147) are within 1 kilometer. Almost all 98.6% (n=208) walk to the health. If a child misses immunization, 73.9% (n=153) would take a child to the health facility at a convenient time for advice. The problem encountered when the respondent takes a child for immunization includes too long immunization process 47.4% (n=93), lack of vaccine 17.3% (n=34), unwelcoming staff and language barrier. About 10.0% felt that there is no problem with the system. More health staff and additional facilities were some of the mentioned solution to the above-mentioned problems. Other solutions include increase in vaccines and supplies, and motivation of the staff. Some of the respondents felt that going to the clinic early would solve the problem of long waiting time.

Discussion of immunization with spouses/friends was mentioned in 51.7% (n=106) of the respondents and information shared includes benefits of immunizing the child, next visit and growth monitoring of the child. Of those who do not share information thought that they would be bothering others and some said it was because of family problem 40%
(n-40). Some of the respondents gave the reason of staying alone while others do not have adequate knowledge on immunization.

Relationships on Practice and Level of Education of Mothers/Guardians

Relationship between immunization status of the child with the level of education the mother/guardian was determined. Table 4.10 shows the immunization status of children surveyed according to education of the respondent. Children of respondents with primary level of education and above have higher fully immunization coverage level (80%) than children of respondents with no formal education (74%). The difference was, however, not statistically significant, ($X^2 = 1.092, df=2, p=0.58$).

4.1.6 Relationship on Immunization Status with Sex of Child and Mothers/Guardians Characteristic

Table 4.10 shows no significant difference in immunization status between sexes, 74.7% of the male being fully immunized compared to 78.1% for the females ($X^2 = 0.313, p=0.575$), Odds Ratio=1.21, 95% CI: 0.6 - 2.44.

Table 4.10: Immunization Status by Sex of Child

<table>
<thead>
<tr>
<th>Sex</th>
<th>None/Partial</th>
<th>Fully Immunized</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>24 (25.3)</td>
<td>71 (74.7)</td>
<td>95 (100)</td>
</tr>
<tr>
<td>Female</td>
<td>23 (21.9)</td>
<td>82 (78.1)</td>
<td>105 (100)</td>
</tr>
<tr>
<td>Total</td>
<td>47 (23.5)</td>
<td>153 (76.5)</td>
<td>200 (100)</td>
</tr>
</tbody>
</table>

In parentheses are percentages

Table 4.11 shows that there was statistically significant difference on immunization status of the child with mothers/guardian religion, knowledge and attitude. Muslims are more likely to take a child for immunization compare to a Christian.
<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Immunization status</th>
<th>Total</th>
<th>X* statistic</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>None</td>
<td>Partially</td>
<td>Fully</td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 25 years</td>
<td>1 (33.)</td>
<td>12 (27.9)</td>
<td>49 (31.4)</td>
<td>62 (30.7)</td>
</tr>
<tr>
<td>> 24 years</td>
<td>2 (66.7)</td>
<td>31 (72.1)</td>
<td>107 (68.6)</td>
<td>140 (69.3)</td>
</tr>
<tr>
<td>Total</td>
<td>3 (100.0)</td>
<td>43 (100.0)</td>
<td>156 (100.0)</td>
<td>202 (100.0)</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>0 (0.0)</td>
<td>2 (4.3)</td>
<td>8 (5.1)</td>
<td>10 (4.8)</td>
</tr>
<tr>
<td>Female</td>
<td>3 (100.0)</td>
<td>44 (95.7)</td>
<td>150 (94.9)</td>
<td>197 (95.2)</td>
</tr>
<tr>
<td>Total</td>
<td>3 (100.0)</td>
<td>46 (100.0)</td>
<td>158 (100.0)</td>
<td>207 (100.0)</td>
</tr>
<tr>
<td>Education</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< Primary 5</td>
<td>2 (66.7)</td>
<td>40 (85.1)</td>
<td>128 (80.0)</td>
<td>170 (81.0)</td>
</tr>
<tr>
<td>> Primary 4</td>
<td>13 (3.3)</td>
<td>7 (14.9)</td>
<td>32 (20.0)</td>
<td>40 (19.0)</td>
</tr>
<tr>
<td>Total</td>
<td>3 (100.0)</td>
<td>47 (100.0)</td>
<td>160 (100.0)</td>
<td>210 (100.0)</td>
</tr>
<tr>
<td>Occupation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unemployed</td>
<td>2 (66.7)</td>
<td>44 (93.6)</td>
<td>132 (83.0)</td>
<td>178 (85.2)</td>
</tr>
<tr>
<td>Economic Activity</td>
<td>1 (33.3)</td>
<td>3 (6.4)</td>
<td>27 (17.0)</td>
<td>31 (14.8)</td>
</tr>
<tr>
<td>Total</td>
<td>3 (100.0)</td>
<td>47 (100.0)</td>
<td>159 (100.0)</td>
<td>209 (100.0)</td>
</tr>
<tr>
<td>Religion</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Muslims</td>
<td>0 (.0)</td>
<td>4 (8.5)</td>
<td>40 (25.0)</td>
<td>44 (21.0)</td>
</tr>
<tr>
<td>Christians</td>
<td>3 (100.0)</td>
<td>43 (91.5)</td>
<td>120 (75.0)</td>
<td>166 (79.0)</td>
</tr>
<tr>
<td>Total</td>
<td>3 (100.0)</td>
<td>47 (100.0)</td>
<td>160 (100.0)</td>
<td>210 (100.0)</td>
</tr>
<tr>
<td>Attitude</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Irrational attitude</td>
<td>1 (33.3)</td>
<td>19 (40.4)</td>
<td>28 (17.5)</td>
<td>48 (22.9)</td>
</tr>
<tr>
<td>Rational attitude</td>
<td>2 (66.7)</td>
<td>28 (59.6)</td>
<td>132 (82.5)</td>
<td>162 (77.1)</td>
</tr>
<tr>
<td>Total</td>
<td>3 (100.0)</td>
<td>47 (100.0)</td>
<td>160 (100.0)</td>
<td>210 (100.0)</td>
</tr>
<tr>
<td>Knowledge</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inadequate</td>
<td>2 (66.7)</td>
<td>38 (80.9)</td>
<td>97 (60.6)</td>
<td>137 (65.2)</td>
</tr>
<tr>
<td>Adequate</td>
<td>1 (33.3)</td>
<td>9 (19.1)</td>
<td>63 (39.4)</td>
<td>73 (34.8)</td>
</tr>
<tr>
<td>Total</td>
<td>3 (100.0)</td>
<td>47 (100.0)</td>
<td>160 (100.0)</td>
<td>210 (100.0)</td>
</tr>
</tbody>
</table>

In parentheses are percentages
A mother with adequate knowledge and rational attitude is more likely to have a fully immunized child. The other characteristic have no statistical significance.

4.1.7 Results of Logistic Regression Analysis

Logistic regression analysis was done to determine the effect of mother/guardians knowledge, attitude and socio-demographic characteristics on immunization status of the child. Mother/guardians with rational attitude and being a Muslim are more likely to take the child for immunization. There was significant statistical difference on religion and attitude. Other factors had no significant statistical difference. The results are shown in table 4.12 below.

Table 4.12: Results on Logistic Regression Analysis

<table>
<thead>
<tr>
<th></th>
<th>B</th>
<th>S.E.</th>
<th>Wald</th>
<th>df</th>
<th>Sig.</th>
<th>Exp(B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Religion</td>
<td>-1.316</td>
<td>0.64</td>
<td>4.225</td>
<td>1</td>
<td>0.04</td>
<td>0.268</td>
</tr>
<tr>
<td>Occupation</td>
<td>1.372</td>
<td>0.727</td>
<td>3.559</td>
<td>1</td>
<td>0.059</td>
<td>3.943</td>
</tr>
<tr>
<td>Education</td>
<td>-0.235</td>
<td>0.552</td>
<td>0.181</td>
<td>1</td>
<td>0.67</td>
<td>0.79</td>
</tr>
<tr>
<td>Sex</td>
<td>-0.446</td>
<td>0.886</td>
<td>0.254</td>
<td>1</td>
<td>0.614</td>
<td>0.64</td>
</tr>
<tr>
<td>Age</td>
<td>-0.198</td>
<td>0.412</td>
<td>0.232</td>
<td>1</td>
<td>0.63</td>
<td>0.82</td>
</tr>
<tr>
<td>Knowledge</td>
<td>0.672</td>
<td>0.424</td>
<td>2.506</td>
<td>1</td>
<td>0.113</td>
<td>1.958</td>
</tr>
<tr>
<td>Attitude</td>
<td>1.009</td>
<td>0.412</td>
<td>5.989</td>
<td>1</td>
<td>0.014</td>
<td>2.743</td>
</tr>
<tr>
<td>Constant</td>
<td>-0.23</td>
<td>1.088</td>
<td>0.045</td>
<td>1</td>
<td>0.833</td>
<td>0.795</td>
</tr>
</tbody>
</table>
4.2 KAP AMONG HEALTH WORKERS

4.2.1 Demographic characteristics

A total of 50 health workers consisting of nationals and refugee incentive workers, were interviewed. Their demographic characteristics are presented in table 4.12.

Table 4.13: Demographic characteristics of the health workers

<table>
<thead>
<tr>
<th>Variable</th>
<th>Classification</th>
<th>Frequency</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age group (years)</td>
<td><24</td>
<td>11</td>
<td>22.0</td>
</tr>
<tr>
<td></td>
<td>25-29</td>
<td>15</td>
<td>30.0</td>
</tr>
<tr>
<td></td>
<td>30-34</td>
<td>20</td>
<td>40.0</td>
</tr>
<tr>
<td></td>
<td>>35</td>
<td>4</td>
<td>8.0</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>50</td>
<td>100.0</td>
</tr>
<tr>
<td>Sex</td>
<td>Male</td>
<td>35</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>15</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>Religion</td>
<td>Catholic</td>
<td>17</td>
<td>34.7</td>
</tr>
<tr>
<td></td>
<td>Protestant</td>
<td>27</td>
<td>55.1</td>
</tr>
<tr>
<td></td>
<td>Muslim</td>
<td>5</td>
<td>10.2</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>49</td>
<td>100.0</td>
</tr>
<tr>
<td>Marital status</td>
<td>Married</td>
<td>28</td>
<td>57.1</td>
</tr>
<tr>
<td></td>
<td>Single</td>
<td>20</td>
<td>40.8</td>
</tr>
<tr>
<td></td>
<td>Widow</td>
<td>1</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>49</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Seventy percent of the health workers were aged between 25 and 34 years. The mean age was 28 years (range 19 - 44). Males accounted for 70% of the health workers interviewed. Slightly over a half of the health workers interviewed were married (57.1%) while 40.8% were single. Most health workers interviewed (89.8%) were Christian -
Catholic (34.7%) and protestant (55.1%). Muslims accounted for 10.2% of the health workers interviewed.

4.2.2 Work Experience of Health Workers

Thirty-percent of the health workers have served for less than three years while at the other extreme, 26% have served for more than six years. Majority were holders of certificate grade (93.9%), who include Medical assistants, enrolled community nurses, nurse assistants, CHWs, and TBAs. Forty percent of the health workers interviewed have had special training on EPI (Table 4.13).

Table 4.14: Working Experience of Health Workers

<table>
<thead>
<tr>
<th>Variable</th>
<th>Classification</th>
<th>Frequency</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Years of service</td>
<td><3 years</td>
<td>15</td>
<td>30.0</td>
</tr>
<tr>
<td></td>
<td>3-5 years</td>
<td>22</td>
<td>44.0</td>
</tr>
<tr>
<td></td>
<td>6-8 years</td>
<td>8</td>
<td>16.0</td>
</tr>
<tr>
<td></td>
<td>9+ years</td>
<td>5</td>
<td>10.0</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>50</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Training	Diploma	1	2.0
	Certificate	46	93.9
	None	2	4.1
	Total	49	100.0

4.2.3 Knowledge of Health Workers on Immunization

A number of questions were asked to assess the level of knowledge on immunization.

For each question answered correctly, a score of one was assigned with a maximum score
of 23 points. Respondents who scored an aggregate score of 13 points and over were considered to have adequate knowledge on immunization. Overall, only 22.0% of all the health workers surveyed were classified to have adequate knowledge.

Table 4.15: Level of Knowledge of Health Workers on Immunization (N=50)

<table>
<thead>
<tr>
<th>Level of Knowledge</th>
<th>Frequency (n)</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inadequate</td>
<td>39</td>
<td>78.0</td>
</tr>
<tr>
<td>Adequate</td>
<td>11</td>
<td>22.0</td>
</tr>
<tr>
<td>Total</td>
<td>50</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Most of the respondents, 96% (n=48) knew that immunization prevents children from diseases. Of the 50 respondents, only 28% knew that BCG is live vaccine, 46% knew the correct dose (0.05ml), 68% knew that BCG is administered intradermally, and 14% knew that the vaccine is stored at 0-8°C at the service delivery point.

On DPT, only 14% (n=7) knew that the vaccine is a toxin, 48% (n=24) knew the correct dose of 0.05ml, 78% (n=39) knew that the vaccine is administered intramuscularly, 12% (n=6) knew the storage temperatures of 0-8°C, 68% (n=34) knew that the vaccine losses potency when frozen and 42% (n=21) knew that DPT 3 is given at 12 weeks.

On OPV, 26% (n=13) knew that it is a live vaccine, 64% (n=32) knew that it is given as 2 drops, 80% (n=40) knew that it is administered orally and 36% (n=18) knew that OPV 3 is given at 12 weeks.

On measles, 26% (n=13) knew that it is a live vaccine, 42% (n=21) knew the correct dose (0.5ml), and 74% (n=37) knew that the vaccine is administered intramuscularly. Eighteen percent (n=9) knew that the vaccine is stored 0-8°C and 74% (n=37) knew the age at
which the vaccine is given (9 months). Only 18% (n=9) knew that the vaccine should be kept for 6 hours after opening the vial (Table 4.15).

Table 4.16: Results on Correct Knowledge of Vaccines (N=50)

<table>
<thead>
<tr>
<th>In percent (%)</th>
<th>BCG</th>
<th>DPT</th>
<th>OPV</th>
<th>Measles</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of vaccine</td>
<td>28</td>
<td>14</td>
<td>26</td>
<td>26</td>
<td>23.5</td>
</tr>
<tr>
<td>Dosage</td>
<td>46</td>
<td>48</td>
<td>64</td>
<td>42</td>
<td>50.0</td>
</tr>
<tr>
<td>Route of administration</td>
<td>68</td>
<td>78</td>
<td>80</td>
<td>74</td>
<td>75.0</td>
</tr>
<tr>
<td>Storage</td>
<td>14</td>
<td>12</td>
<td>-</td>
<td>18</td>
<td>14.7</td>
</tr>
<tr>
<td>Age at which the vaccine is given</td>
<td>86</td>
<td>42*</td>
<td>36*</td>
<td>74</td>
<td>59.5</td>
</tr>
</tbody>
</table>

•DPT 3 and OPV 3

Of the 50 respondents, only 28% knew that there is no contraindication to EPI vaccination. About 92% knew the target group for the immunization (children < 1 year and pregnant mothers). About 96% (n=48) could mention information included in the child health card. Most frequently mentioned were dates of current immunization and date for the next visit and the information is given while the child is being immunized.

Among the health workers, 82.0% know about the existence of KEPI policy on immunization. Integrating immunization into MCH/FP/PHC program was the most frequently mentioned policy (63.4%), while, use of sterile needles and syringes was mentioned by 17.1% of the health workers. Other policies mentioned included keeping vaccines on the ice pack during vaccination session (12.2%) and holding vaccination sessions daily in a fixed facility (7.3%). Figure 4.3 below shows the distribution of knowledge in KEPI policy among the respondent.
The benefits of policy on EPI were mentioned. The most frequent were helping the health worker to view the mother holistically in 27.9% (12) of the respondents, control of cross infections in 27.9% (12), health education to mothers in 25.6% (11) and use of vaccines more effectively and efficiently in 18.6% (8). Eighty-eight percent of the respondents carry vaccines as part of supplies during the vaccination exercise. However, only 4% (2) remember to carry syringes and needles, and 8% (4) carry IEC materials. Out of 20% of the respondents who said they knew immunization coverage of Turkana District, only 1 person mentioned the correct district coverage. The reasons given by those who did not know about the district coverage include lack of feedback for surveys done 55.6% (n=20) and failure of supervisors to share reports in 25.0% of the respondents. However, 16.7% gave the reason of not having worked for long in the EPI program.
Relationships on level of Knowledge and Characteristics of Health Workers

Statistical tests were carried out to assess the relationships between socio-demographic characteristics and knowledge on immunization as shown in Table 4.16.

Table 4.17: Socio-demographic characteristics of health workers verses knowledge on immunization

<table>
<thead>
<tr>
<th></th>
<th>Level of knowledge</th>
<th>Total</th>
<th>X^2 statistic</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Inadequate</td>
<td>Adequate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Religion</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Catholic</td>
<td>13 (76.5)</td>
<td>4 (23.5)</td>
<td>17 (100)</td>
<td>0.029</td>
</tr>
<tr>
<td>Protestant</td>
<td>21 (77.8)</td>
<td>6 (22.2)</td>
<td>27 (100)</td>
<td></td>
</tr>
<tr>
<td>Muslim</td>
<td>4 (80)</td>
<td>1 (20)</td>
<td>5 (100)</td>
<td></td>
</tr>
<tr>
<td>Years of service</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Less 3 years</td>
<td>10 (66.7)</td>
<td>5 (33.3)</td>
<td>15 (100)</td>
<td>1.604</td>
</tr>
<tr>
<td>3 years and over</td>
<td>29 (82.9)</td>
<td>6 (17.1)</td>
<td>35 (100)</td>
<td></td>
</tr>
<tr>
<td>Level of training</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diploma</td>
<td>0 (0)</td>
<td>1 (100)</td>
<td>1 (100)</td>
<td></td>
</tr>
<tr>
<td>Certificate</td>
<td>36 (78.3)</td>
<td>10 (21.7)</td>
<td>46 (100)</td>
<td>4.047</td>
</tr>
<tr>
<td>No training</td>
<td>2 (100)</td>
<td>0 (0)</td>
<td>2 (100)</td>
<td></td>
</tr>
<tr>
<td>Age group</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 24 years</td>
<td>8 (72.7)</td>
<td>3 (27.3)</td>
<td>11 (100)</td>
<td>0.23</td>
</tr>
<tr>
<td>25 years and over</td>
<td>31 (79.5)</td>
<td>8 (20.5)</td>
<td>39 (100)</td>
<td></td>
</tr>
<tr>
<td>Marital Status</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single</td>
<td>16 (76.2)</td>
<td>5 (23.8)</td>
<td>21 (100)</td>
<td>0.04</td>
</tr>
<tr>
<td>Married</td>
<td>22 (78.6)</td>
<td>6 (21.4)</td>
<td>28 (100)</td>
<td></td>
</tr>
</tbody>
</table>

In parentheses are percentages
The analysis show that one in three health workers who have served for less than three years had adequate knowledge on immunization compared to about one health worker in five (17%) who had served for three year or more. The difference was however, not statistically significant ($X^2 = 1.6$, $p=0.205$). It will be noted that the size of the latter group was small. The analysis yielded an odds ratio of 0.414, 95% confidence interval: $0.103<\text{OR}<1.66$.

There was no significant difference in the knowledge on immunization among the health workers by religion, ($X^2 = 0.029$, $p=0.98$).

The proportion of respondents aged 24 years and below with adequate knowledge on immunization was marginally higher than that of respondents aged 25 years and over. The former group was however small. The difference was not statistically significant.

On marital status, no significant difference was found between married and single (including widowed) respondents of whom 23.8% and 21.4% had adequate knowledge on immunization respectively ($X^2 = 0.04$, df1, $p=0.84$; Odds Ratio= 0.83, 95% CI: 0.23 - 3.4).

4.2.4. Attitude of health workers towards immunization

Attitude is a very important aspect in the provision of health care. Immunization coverage in the camp was not seen as a problem by 61.2% of the respondents. Of those who thought there was a problem in coverage (38.8%), the causes of poor coverage were mentioned as lack of knowledge among the refugee community 52.6%, lack of vaccines and supplies 21.1%, cultural beliefs 10.5%, lack of qualified staff (5.3%), negative attitude by refugee community (5.3%), and lack of coordination. Figure 4 below shows the distribution of the causes of poor coverage.
Figure 4.4: Reasons for Poor Coverage

About 78% of the respondent said they are willing to work in the MCH/FP clinic. The reason given for the willingness was to acquire more knowledge on immunization and to gain experience in providing EPI services 54.2% (n=26). Of those not willing was because they are working in other departments (2.1%) and others is because they have not been trained on EPI.

Relationships of Attitude on Immunization and characteristics of Health Workers

A number of questions were asked to assess attitude on immunization. For each question answered correctly, a score of 1 was assigned. Respondents who scored an aggregate score of 3 points and over were considered to have rational attitude on immunization. Respondent who had a rational attitude were 29 (58%) and those with irrational attitude were 21 (42%). The proportion of respondents aged 24 years and below with rational
attitude on immunization was marginally higher than that of respondents aged 25 and above years.

Statistical tests were performed to show the relationship between socio-demographic characteristics of health workers and attitude on immunization (Table 4.18).

The difference was statistically significant. However, there was no significant difference in the attitude on immunization among the health workers by religion, year of service, level of training and marital status.

Table 4.18: Socio-demographic characteristics of health workers verses attitude on immunization

<table>
<thead>
<tr>
<th>Level of attitude</th>
<th>Total</th>
<th>X^2 statistic</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Irrational</td>
<td>Rational</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Religion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Catholic</td>
<td>7(41.2)</td>
<td>10(58.8)</td>
<td>17(100)</td>
</tr>
<tr>
<td>Protestant</td>
<td>11(40.7)</td>
<td>16(59.3)</td>
<td>27(100)</td>
</tr>
<tr>
<td>Muslim</td>
<td>3(60.0)</td>
<td>2(40.0)</td>
<td>5(100)</td>
</tr>
<tr>
<td>Years of service</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Less 3 years</td>
<td>6 (40.0)</td>
<td>9 (60.0)</td>
<td>15 (100)</td>
</tr>
<tr>
<td>3 years and over</td>
<td>15(42.9)</td>
<td>20 (57.1)</td>
<td>35 (100)</td>
</tr>
<tr>
<td>Level of training</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diploma</td>
<td>0 (0)</td>
<td>1 (100)</td>
<td>1 (100)</td>
</tr>
<tr>
<td>Certificate</td>
<td>20 (43.5)</td>
<td>26 (56.5)</td>
<td>46 (100)</td>
</tr>
<tr>
<td>No training</td>
<td>1 (50)</td>
<td>1 (50)</td>
<td>2 (100)</td>
</tr>
<tr>
<td>Age group</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 24 years</td>
<td>2 (18.2)</td>
<td>9 (81.8)</td>
<td>11 (100)</td>
</tr>
<tr>
<td>25 years and over</td>
<td>19(48.7)</td>
<td>20 (51.3)</td>
<td>39 (100)</td>
</tr>
<tr>
<td>Marital Status</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single</td>
<td>9 (42.9)</td>
<td>12 (57.1)</td>
<td>21 (100)</td>
</tr>
<tr>
<td>Married</td>
<td>12 (42.9)</td>
<td>16 (57.1)</td>
<td>28 (100)</td>
</tr>
</tbody>
</table>

In parentheses are percentages
4.2.5 **Practice of health workers towards immunization**

Almost all the respondents 96% consider supervision of EPI activities important. However, the EPI supervisor visits on daily basis in only 14% of the respondents. Most of the respondents 51.1% (22) said that they are supervised once per week. Figure 4.4 below shows the distribution of the visits by the COR manager.

Figure 4.5: Distribution of Supervisory Visits

About 60.0% of the respondents go for the outreach services and almost half on weekly basis. For those not going for outreach, the reason is because they are also assigned other duties in the hospital and clinics (50%). Other reasons given were lack of motivation by the supervisors 18.3% and lack of adequate knowledge on EPI 6.3%.

Source of information on EPI is received from COR manager 52.1% (n=25), immunization manual in 27.1% (n=13), through refresher training and colleagues 12.6% (n=6), and electronic and own initiative 8.2% (n=4).
Lack of adequate knowledge to effectively carry out immunization was mentioned as a major problem encountered during immunization in 50% (n=25). Other problems include transport 19%, lack of supplies 19%, inadequate staff 2.4%, language barrier 2.4% and fear of accidental prick 2.4%.

Provision of training 34.9%(n=15), provision of transport 20.9% (n=9), community mobilization 18.6% (n=8), improved supervision 9.3% (n=4), hiring of interpreters 4.7% (n=2), and universal precaution were given as possible solution to the above-mentioned problems.

Figure 4.6: Health Topics covered during Health Education Talks
In order to improve the immunization coverage in the camp, 83.7% (n=41) of the respondents said that an active approach was more practical. However, both active and passive approach should be employed.

Almost 50% of the respondents have been involved in the community immunization campaigns i.e. measles and polio campaigns. About 88.0% (n=44) are involved in health education talks but only 63.4% (n=26) gives it on daily basis. Among the topic given include prevention of EPI diseases 31.8%, cause and transmission of EPI diseases 20.5%, and personal hygiene 11.4%. Other topics include side effects of EPI vaccines 6.8%, nutrition 6.8%, breastfeeding 6.8%, belief and attitude on EPI 4.5%, follow-up dates 6.8%, and family planning 2.3% (Figure 4.6). About 72.0%) are involved in the EPI disease surveillance.

Relationships on Practice on immunization and Characteristic of Health Workers

A score of 1 was assigned for each question on practice answered correctly. Respondents who scored an aggregate score of 3 points and over were considered to have rational practice on immunization. Out of 48 respondents 58.0% (n=28) had rational practice and 42.0% (n=20) had irrational practice. (See table 4.20).

Statistical analysis showed that rational practice is proportional to the number of years in service. The finding was statistically significant (chi-square = 4.21, p=0.04). There was no statistical significant difference in practice on immunization among the health workers by religion, level of education, age and marital status. (See table 4.20).
<table>
<thead>
<tr>
<th>Religion</th>
<th>Level of Practice</th>
<th>Total</th>
<th>X^2 statistic</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Irrational</td>
<td>Rational</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Catholic</td>
<td>9 (52.9)</td>
<td>8 (47.1)</td>
<td>17 (100)</td>
<td>1.86</td>
</tr>
<tr>
<td>Protestant</td>
<td>10 (40.0)</td>
<td>15 (60.0)</td>
<td>25 (100)</td>
<td></td>
</tr>
<tr>
<td>Muslim</td>
<td>1 (20)</td>
<td>4 (80.0)</td>
<td>5 (100)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Years of service</th>
<th>Level of Practice</th>
<th>Total</th>
<th>X^2 statistic</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Irrational</td>
<td>Rational</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Less 3 years</td>
<td>3 (20.0)</td>
<td>12 (80.0)</td>
<td>15 (100)</td>
<td>4.21</td>
</tr>
<tr>
<td>3 years and over</td>
<td>17 (51.5)</td>
<td>16 (48.5)</td>
<td>33 (100)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Level of training</th>
<th>Level of Practice</th>
<th>Total</th>
<th>X^2 statistic</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Irrational</td>
<td>Rational</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diploma</td>
<td>0 (0)</td>
<td>1 (100)</td>
<td>1 (100)</td>
<td>3.68</td>
</tr>
<tr>
<td>Certificate</td>
<td>17 (38.6)</td>
<td>27 (61.4)</td>
<td>44 (100)</td>
<td></td>
</tr>
<tr>
<td>No training</td>
<td>2 (100)</td>
<td>0 (0)</td>
<td>2 (100)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Age group</th>
<th>Level of Practice</th>
<th>Total</th>
<th>X^2 statistic</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 24 years</td>
<td>3 (27.3)</td>
<td>8 (72.7)</td>
<td>11 (100)</td>
<td>1.21</td>
</tr>
<tr>
<td>25 years and over</td>
<td>17 (45.9)</td>
<td>20 (54.1)</td>
<td>37 (100)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Marital Status</th>
<th>Level of Practice</th>
<th>Total</th>
<th>X^2 statistic</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Irrational</td>
<td>Rational</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single</td>
<td>11 (57.9)</td>
<td>8 (42.1)</td>
<td>19 (100)</td>
<td>3.07</td>
</tr>
<tr>
<td>Married</td>
<td>9 (32.1)</td>
<td>19 (67.9)</td>
<td>28 (100)</td>
<td></td>
</tr>
</tbody>
</table>

In parentheses are percentages
CHAPTER FIVE: DISCUSSION

It is the right of every child to be immunized and the duty of every parent/guardian to ensure that the child is fully immunized. A child was considered fully immunized if he/she had received BCG vaccination, three doses of OPV, three doses of DPT and a dose of measles. The study in the Kakuma Refugee Camp showed reasonably impressive full immunization coverage of 76.2%. The coverage has significantly improved compared to immunization coverage by cluster done in 1992, which had shown that the coverage was at 28.2%. KDHS 2003 results showed that 51.5% of children aged 11-23 months had been fully immunized according to vaccination card or mother's report. The good performance in the camp can be attributed to reliable funding by donors and continued support from KEPI. The results in the camp are reliable because most of information was derived from the cards. Card retention in the refugee population is high with over 96%. The survey conducted in 1992 had shown that card retention in refugee community was significantly lower than in the general population. Studies have also shown that ignoring mother's reports can result in a serious underestimation of the true vaccination coverage.

Although access to routine immunization, massive displacement of unvaccinated persons particularly in war torn countries and low immunization coverage have been shown to be limitation, this study has shown that refugee camps in care and maintenance phase have better coverage than in the refugee country of origin and the host community. This may be as a result of availability of free health services which are accessible to the refugees and the host community.
It is evident that the immunization coverage increases with the increase in mothers/guardians education. This broadly falls in line with the observation that education enhances the knowledge of mothers/guardians to effectively prevent, recognize and seek treatment of childhood illnesses. This study has shown that the education level has no effect on immunization coverage in Kakuma Refugee Camp. This is in contrast to Kenyan situation (KDHS 2003) where the education of the mother was shown to have a significant effect with better coverage observed in educated mothers. The observation in the camp is encouraging taking into consideration that most mothers are not formally educated and yet the coverage is high. Therefore, there are other factors that might be involved. A demographic factor that might be expected to operate here is that illiterate women, being older, are of higher average parity and consequently may be more experienced mothers with a greater likelihood of having their children immunized. The study showed that most mothers/guardians are motivated by other factors which include integrated health services, desire to raise a healthy child and prior exposure to immunizable diseases. Community outreach program may be contributing to high immunization coverage in the camp as has been shown in other studies.\(^\text{20}\)

Other studies have shown that health workers are the most important source of information on immunization to many mothers while spouse is the most single important person a mother turns to for advice on immunization.\(^\text{53}\) However, this study has shown that health workers do not have adequate knowledge on EPI. This can affect the quality of health education because of poor health messages as has been shown in study conducted in Yaounde Cameroon which showed that confusing health messages have a
negative impact on immunization coverage. Efforts should be made to ensure that the health workers receive necessary skills to improve their knowledge on immunization.

Factors that hindered mothers/guardians from taking child for immunization were mentioned with logistical problem coming out more commonly. These included among others lack of vaccines and vaccinator being absent. However, administration issues like lack of vaccinator at the immunization post also featured. However, some mothers had a feeling that immunization time was inconvenient. A study done in Nyanza province in Kenya showed that the frequently mentioned factors that affect immunization were tendency to postpone immunization for no apparent reason, child sick, rude health staff, immunization postponed due to lack of vaccine and own commitments. It has been observed that distribution of food and non-food items affect the health seeking behaviour of the refugees including immunization services. The immunization exercise should be improved in terms of waiting time. This can be done through expanding the services by increasing the number of staff, as evidently came out of this study.

Though 88% of the respondents knew at least 1 of the six immunizable diseases; only 2.8% knew all the six. On the other hand, almost 60% have had an experience with immunizable disease. Similarly, in a study done in the rural community in Nyanza province in Kenya showed that knowledge on immunizable diseases was low; with measles being the best known, as seen in this study. Measles has high fatality rate especially for those not immunized and has frequent outbreaks. These two findings suggest that most mothers/guardians have learned through experience (having seen a sick person). This approach is poor and health staff should take an active role in educating mothers/guardians on EPI program.
Child should complete immunization by age of 1 year as has been shown in this study. This is not surprising as the mothers/guardians closely monitor the milestone and would like the child to be vaccinated for all antigens before 1 year of age. Knowledge on side effects was adequate with 66% mentioning hotness of the body. Majority knew the action to be taken when the child gets the side effect of vaccine. It was observed that as a routine, children are given antipyretic whenever they get immunized. However, this practice is not common and it is not recommended by the EPI. One of the serious defects was that mothers/guardians thought that the child should not be immunized when sick. There is no contraindication to immunization against the childhood illness. Majority know that the benefit of immunizing the child is to protect them against diseases.

The study has shown that Protestant and Muslims have rational attitude on immunization compared to Catholics whereas Protestants were found to have relatively adequate knowledge compared to Catholics and Muslims. Religious beliefs and practices have been shown to have an influence on immunization status of a child as seen in a study conducted in Zimbabwe. The attitude of mothers/guardian's ways to promote correct and future efforts to improve the immunization coverage in the camp and when repatriated back in the country of origin. Mothers when well informed can suggest on how services can be improved. However, some attitudes developed on the basis of requirement by health, like carrying the cards as a requirement, may impact negatively on the immunization program due to misconception about immunization card.

The study showed that the facilities in the camp are accessible to the refugee community. Though vaccination process is long and sometimes lack of vaccines and supplies, KEPI
in partnership with UNHCR and INGO have improved on vaccine delivery in the camp by establishing a cold chain at camp level. This is in line with KEPI strategy to have immunization being integrated in the PHC activities and have the services offered daily at fixed facilities. However, based on the location of Kakuma refugee camp, logistics has been a big challenge since all the vaccine has to be supplied by District Health Office in Lodwar town.

Kakuma Refugee Camp involves health workers from the community in the delivery of the health services. Most of the outreach health workers are from the refugee as well as host communities. This ensures that all communities and religions are represented because of cultural diversity among the refugees. Most of the health workers are certificate holders having being trained in the camp and in the country of origin to deliver services to refugee community in the camp. The male predominance can be explained by the fact that among the refugee communities in the camp, education of girl-child is not emphasized and this affected education level of women. It is therefore difficult to get women with minimum education to enable them compete favorably with the men counterparts. Majority of health workers have been trained in the camp and on-job. The study has shown that the knowledge on antigen is low. This finding suggests that the training on EPI is not done regularly and the topics do not cover all aspects of immunization. The knowledge also suggests that the respondents tend to remember activities routinely done. Things that are routinely done are easy to remember.

The health workers who have served fewer years have adequate knowledge compared to those who have served longer. This can be explained by the fact that the newly employed
staff are fresh from training and therefore have higher chance of remembering things taught compared to those who have stayed in service for long and tend to do things as a routine. However, efforts should be made to include EPI training in the curriculum for the routine training. Refresher training should be given to all irrespective to the number of years they have serviced. Rational attitude of health workers is encouraging because it enhances the interaction between the mothers and the health workers however the older health workers have relatively irrational attitude. This could be related to the low knowledge found in the same group, which could be because of failure to up-date their knowledge on EPI.

Since the study was designed to examine the refugee profile, it faces limitations in generalizing the results in the national perspective. There are indications that increased coverage may be due to the availability of free immunization, backed by accessible refugee health services and general awareness among the refugee community. In this context, there emerge some important questions. Is the coverage sustainable in the Camp? If funding agencies shift their priority from EPI, can the government continue with the immunization programme? Published data suggest that once donor countries withdraw their support or when private market forces are allowed to play a major role in the provision of immunization, there is a decline in coverage.
CHAPTER 6 CONCLUSIONS AND RECOMMENDATIONS

6.1 Conclusions

1. This survey done in Kakuma Refugee Camp showed reasonably impressive immunization coverage of 76.2%. The immunization coverage is higher than that of Turkana District of between 12 - 38 % and that of Kenya of 51.5%. •

2. The level of knowledge on EPI is low among the mothers/guardians but the attitude and practices are rational. However, this varies with the level of formal education and religion.

3. The knowledge on EPI is low among the health workers but the attitude and practices were rational though the difference was not significant except for the practice which is dependent on the year of service.

4. Religion has influence on the uptake of immunization in the camps. In Kakuma Refugee Camp, religious has been shown to have effect on immunization through varying attitudes and level of knowledge among different religion.
6.2 Recommendations

1. Though immunization coverage is high in the camp, there is need to increase public demand for immunization by creating awareness in the refugee community. Attempts should be made to convince women that there is no contraindication to immunization. The importance of completing immunization schedule should also be emphasized. The community outreach officer IRC in the camp with liaison with District Public Health Nurse Turkana district should organize for joint awareness campaign in the camp and in the host community.

2. The Knowledge on EPI for mothers/guardians should be increased through designing of quality health messages on immunizable diseases. The COR manager should involve the community in the camp in designing IEC material that is suitable for KRC. An intervention program should also be designed to promote health and prevent diseases through creating awareness in churches/Mosque in liaison with the church leaders and Imams.

3. In general, KAP on EPI among the health worker should be improved by ensuring regular refresher trainings on immunization policies for all Health Workers by the MOH-KEPI in collaboration with IRC. Refresher training should be given to all health workers and efforts should be made to include EPI training in the curriculum for routine training. Community outreach officer in the camp with liaison with Ministry of Health should organize for TOT training for health workers to ensure that the camp has sufficient own resource persons to conduct the training internally.
4. Religion of mother/guardian has an influence in the immunization status of the child.

Since all the mothers/guardians have a religion affiliation, the health worker in the camp should utilize the religious fraternity to reach mother/guardians with immunization messages.
Reference:

3. The Programme 2000 of Nation. UNICEF.

36. Kenya Demographic and Health Survey, 1998

38. Kenya Demographic and Health Survey, 2003

41. Nicholas, Joyce Olenja, 'Knowledge, attitude and practice in Kisumu’, 1992

53. Ministry of health, National Immunization Coverage Survey, 1992; pg 8
Kakuma Refugee Camp Zones
ANNEX 2

2.1 Introduction and consent for mothers/guardians

Hello, my name is Macharia, a master in Public Health Student at University of Nairobi. I am here to carry out a study to assess the factors that influence immunization coverage in children in Kakuma Refugee Camp.

I will ask you some questions about immunization status of your child and reasons for completing/not completing immunization, knowledge, attitude and practice related to immunization. I will not record your name because I want to maintain confidentiality. I am asking questions to many mothers/guardians in the group.

Your answers will help us to analyze the problem facing immunization and we will recommend solutions that can improve our coverage.

Sign.

2.2 Introduction and consent for Health Workers

Hello, my name is Macharia, a master in Public Health Student at University of Nairobi. I am here to carry out a study to assess the factors that influence immunization coverage in children in Kakuma Refugee Camp.

I will ask you some questions on your background, knowledge, attitude and practice on EPI diseases in relation to immunization. I will not record your name because I want to maintain confidentiality. I am asking the questions to many health workers in the camp.

Your answers will help us to analyze the problems facing immunization and the areas that need training and recommend solutions that can improve our coverage.

Sign.
ANNEX 3
1. QUESTIONNAIRE FOR MOTHERS/GUARDIANS

Parti
Identification
Serial number

Group No.

Date of interview

Personal characteristics

1. Age

2. Sex 1. Male 2. Female

4. Occupation
 1. Salary
 2. Farmer
 3. Business
 4. Unemployed
 5. Others
 specify

5. Education
 1. None
 2. Primary 1-4
 3. Primary 5-8
 4. Secondary
 5. College/university
 6. Others
 Specify

6. Religion
 1. Catholic
 2. Protestant
 3. Muslim
 4. Others
 Specify
PART II
Child immunization status

1. Date of birth of the child

2. Age in months

3. Sex 1. Male 2. Female

4. Immunization card 1. Yes 2. No
 1. BCG Date given
 2. DPT 3 Date given
 3. OPV 3 Date given
 4. Measles Date given

5. Immunization status
 1. Not immunized
 2. Partially immunized
 3. Fully immunized

6. Was the child fully immunized before 1 year 1. Yes 2. No
 If Yes, go to Q 10 if No, go to Q 7.

Part 2
Reason for not immunizing the child

7. What reasons do you give for not immunizing the child?
 1. Unaware of the need for immunization
 2. Unaware of the need to return for the 2nd and 3rd dose
 3. Not knowing the place and / or time of immunization
 4. Fear of side reaction
 5. Immunization time passed
 6. Did not see the need to
 7. No apparent reason
 8. Others specify.

8. Why are you not motivates to take the child for immunization?
 1. Postpone until another time
 2. No faith in immunization
 3. Rumor
 4. No reason
 5. Others specify
9. What hindered you from taking the child for immunization?
 1. Place of immunization too far
 2. Time of immunization inconvenient
 3. Vaccinator absent
 4. Vaccine not available
 5. Mother too busy
 6. Family problem e.g. mother ill
 7. Child ill, not taken to the clinic
 8. Child ill, taken to the clinic but not given immunization
 9. Long waiting time
 10. Immunization denial because card got lost
 11. Too expensive transport
 12. Health staff rude
 13. Users fee
 14. Others
 specify

Reasons that motivated the mother to immunize the child

10. What reasons can you give that made/caused you to take the child for immunization?
 1. Prior exposure to immunization
 2. Benefit of integrated health services
 3. Desire to raise a health child
 4. Clear understanding of immunization
 5. Benefit of the child card at the hospital, school, and birth certificate
 6. Neighbour example
 7. Distance to health facility
 8. Good relation with the health staff
 9. Husband support
 10. Availability of experts at the health facility
 11. Others specify

Knowledge on immunization

11. Which immunizable diseases do you know?
 1. Polio
 2. Measles
 3. Whooping cough
 4. Diphtheria
 5. Tuberculosis
 6. Tetanus
 7. Don't know
 8. Others
 Specify
12. Have you ever had an experience with an immunizable Disease?
 1. Yes 2. No.
 If Yes, go to Q 13. If No, go to Q 14.

13. If Yes, Which one
 Specify.

14. From which source did you get this information?
 1. Health worker
 2. Community health worker
 3. Radio
 4. Students
 5. Posters
 6. Administration
 7. Public baraza
 8. Others specify

15. At what age should a child complete immunization?
 1. Less than 9 months
 2. At 9 months
 3. 10-12 months
 4. Over 12 months
 5. don't know

16. How many times do you take a child to a health facility to complete all the
 immunization?
 1. 1
 2. 2
 3. 3
 4. 4
 5. 5
 6. Don't know
 7. Others
 Specify

17. What reaction may occur after a child has received immunization?
 1. Hotness of the body
 2. Vomiting
 3. Skin rash
 4. Child cry that whole night
 5. Swelling at immunization site
 6. Convulsions
 7. Don't know
 8. Others
 Specify
What should you do after a reaction has occurred?
1. Return the child immediately to the health facility
2. Consult CHW
3. Consult herbalist
4. Observe a child
5. Don't know
6. Others
 Specify.

When should a child not be immunized?
1. When child is too sick
2. When advised by health staff not to do so
3. When a child has had the disease being immunized for
4. Don't know
5. Others
 Specify.

What are the benefits of immunizing a child?
1. Protect a child against diseases
2. To cure diseases
3. Don't know
4. Others
 Specify.

Practice

What is the distance to the nearest immunizing center?
1. <1Km
2. 1-5 Km
3. 5-10 Km
4. >10 Km
5. don't know

How do you get there?
1. Walking
2. Bicycle
3. Vehicle
4. Others
 Specify.

How long do you take to get there?
1. <1 hr
2. 1-2 hrs
3. 2-3 hrs
4. 3-4 hrs
5. 4-5 hrs
6. > 5 hrs
24. What should you do when your child has missed an immunization or you have been late to take the child for immunization?
 1. Take a child at early convenient time to a health facility for advice
 2. Ignore the missed immunization
 3. Go to another facility for the immunization
 4. Get a new card to continue
 5. Stop taking child for immunization
 6. Don't know
 7. Others
 Specify

25. What problems do you encounter when you take your child for immunization?
 1. Unwelcoming staffs
 2. Lack of vaccine
 3. Lack of needles and syringes
 4. Process take too long
 5. Others
 Specify

26. What do you think should be done to solve the above problem?

 If Yes go to Q 28, If No go to Q 29.

28. What kind of information do you share?

29. If No to Q. 27, which reasons do you give?
 1. May think that I am bothering them
 2. Family difference
 3. Don't care
 4. Others
 (Specify)
Attitude

30. Do you consider not taking your child for immunization a public health problem?
 1. Yes 2. No
 If No, go to Q31. If Yes go to Q 32.

31. If No, give reasons.

32. If yes, why?

33. Do you know of a child who has not been immunized? 1. Yes 2. No.
 If Yes, go to Q34. If No, go to Q 36.

34. Have you tried to talk to the mother about immunization?
 1. Yes 2. No.
 If Yes, go to Q35. If No, go to Q 36.

35. What reason did she give for not having the child immunized?
 1. Distance
 2. Lack of transport
 3. Lack of money
 4. No reason
 5. Others Specify

 If Yes, go to Q. 37. If No, go to Q 38

37. What do you do about it?

38. If No to Q 36, what reasons do you give?
 1. The child is not sick
 2. I can take the child any other day
 3. The vaccine has not effect
 4. Don't care
 5. No reason
 6. Others (Specify)

39. How often do you carry your child health card when going to health facility for any other reason apart from immunization?
 1. Always
 2. Have to be reminded
 3. Occasionally
 4. Don't have one
 5. Others Specify
 If Yes, go to Q. 41. If No, go to Q 42.

41. If Yes, give reason(s).

42. If No to Q. 40, give reason(s).

43. Which immunization do you consider most important to your child?
 1. All
 2. Measles
 3. DPT
 4. OPV
 5. BCG
 6. None
 7. Don't know
 8. Others
 Specify ________________________________
II: QUESTIONNAIRE FOR HEALTH WORKERS

Identification

Serial number

Name of health facility

Sector of health facility

Date of interview

Personal characteristic of the health worker

1. Age

2. Sex 1. Male 2. Female

3. Religion
 1) Catholic
 2) Protestant
 3) Muslim
 4) Others specify

5. Year of first appointment

6. Working number of years

7. Training level
 1. University
 2. Diploma
 3. Certificate
 4. Others specify

8. Cadre of health worker
 1. Doctor
 2. Clinical officer
 3. Nurse
 4. Others specify

9. Do you have special training on EPI? 1. Yes 2. No

10. What training have you received on KEPI?
 1) Integrated in the diploma and certificate courses training
 2) In-service training on KEPI
 3) Community Outreach Program
 4) Others Specify
Knowledge on EPI Diseases

11. What is the purpose of immunization?
 1. To prevent diseases
 2. To cure diseases
 3. Don't know
 4. Others
 Specify.

12. What type of vaccine is BCG?
 1. Toxin
 2. Live
 3. Don't know
 4. Others
 Specify.

13. What is the dosage?
 Specify.

14. How is BCG administered?
 1. Oral
 2. Intradermally
 3. Intramuscularly
 4. Don't know
 5. Others
 Specify.

15. How is BCG stored?
 1. Deep freezer
 2. 0-8 °C
 3. Ice park
 4. Don't know
 5. Others Specify

16. At what age is the BCG vaccine given?
 1) At birth
 2) 4 weeks
 3) 8 weeks
 4) 12 weeks
 5) 9 months
 6) Don't know
 7) Others
 Specify.
17. What type of vaccine is DPT?
 1. Toxin
 2. Live
 3. Don't know
 4. Others
 Specify

18. What is the dosage of DPT vaccine?
 Specify.

19. How is DPT vaccine administered?
 1) Orally
 2) Intradermally
 3) Intramuscularly
 4) Others
 Specify

20. How is BCG vaccine stored?
 1) Deep freezer
 2) 0-8 0°C
 3) Ice park
 4) Don't know
 5) Others Specify

21. What are the risks of storing DPT in extreme temperatures below 0°?

22. At what age is DPT 3 vaccine given?
 1) At birth
 2) 4 weeks
 3) 8 weeks
 4) 12 weeks
 5) 9 months
 6) Others Specify

23. What type of vaccine is OPV?
 1) Toxin
 2) Live
 3) Don't know
 4) Others
 Specify
24. What is the dosage of OPV vaccine?

25. How is OPV vaccine administered?
 1) Oral
 2) Intradermal
 3) Intramuscularly
 4) Don't know
 5) Others
 Specify

26. At what age is OPV 3 vaccine given?
 1) At birth
 2) 4 weeks
 3) 8 weeks
 4) 12 weeks
 5) 9 months
 6) Don't know
 7) Others Specify

27. What type of vaccine is measles?
 1) Toxin
 2) Live
 3) Don't know
 4) Others
 Specify

28. What is the dosage of measles vaccine?
 Specify

29. How is measles vaccine administered?
 1) Oral
 2) Intradermarlly
 3) Intramuscularly
 4) Don't know
 5) Others
 Specify

30. How is measles vaccine stored?
 1) Deep freezer
 2) 0-8 °C
 3) Ice pack
 4) Don't know
 5) Others Specify
31. How long should you keep measles vaccine after opening?

32. At what age is measles vaccine given?
 1) At birth
 2) 4 weeks
 3) 8 weeks
 4) 12 weeks
 5) 9 months
 6) Others
 Specify

33. Are there contraindications related to the six EPI vaccines? 1. Yes 2. No. If No, go to Q 35.

34. If Yes, which ones.

35. Who are the target groups for KEPI immunizations?
 1) Children under one year
 2) Pregnant mothers
 3) People with cut wounds
 4) Health workers
 5) Don't know
 6) Others
 Specify

36. What process do a mother go through before the child is immunized?
 Briefly describe the process.

37. What information do you record in the health card?
 1) Weight of the child
 2) Date of immunization
 3) Date of next visit
 4) Don't know
 5) Others
 Specify
38. What information do you give to the mother?
 1) Whether the child is growing well
 2) Advice on the diet
 3) Importance of completing the immunization
 4) Side effects after immunization and how to go about it
 5) Next visit
 6) Don't know
 7) Others
 Specify

39. How do you give the information to mothers?
 1) Group talk before immunization
 2) Talking to the mother at vaccination table
 3) At the next visit
 4) Not at all
 5) Don't remember to talk to mothers
 6) Don't know
 7) Others specify

Attitude

 If Yes, go to Q 41. If No, go to Q 43.

41. If Yes, what does it say?
 1) Integrating immunization into MCH/FP/PHC program
 2) Sterilizing all immunization equipment using steam sterilizer for 20
 minutes
 3) Use one sterile needle and syringe per injection to prevent cross infection
 4) Use potent vaccine kept at 0-8 degrees
 5) Keep vaccine on the ice pack during vaccination session to maintain
 potency
 6) Discard all opened and used vaccine at the end of the day
 7) Hold vaccination session daily in fixed facilities from 8.00am to 5.00 pm
 supplemented by outreach services where appropriate.

42. How does this knowledge help you?
 1) Helps to view the mother whollistically
 2) Prevent cross infections
 3) How to use vaccines effectively and efficiently
 4) How to discard sharps materials to prevent contamination of
 instrument
 5) Skills to administer health education to mothers
 6) Others (Specify)
43. What supplies do you carry during immunization exercise?
 1) Vaccines
 2) Sterilizer
 3) Syringes and needles
 4) Dressing materials
 5) IEC materials
 6) Others Specify

44. Do you know the immunization coverage of your district? 1. Yes 2. No.
 If Yes, go to Q 45. If No, go to Q 45.

45. If Yes to Q 43, what is the coverage?

46. If No to Q 44, which reasons would you give?
 1) No feedback of surveys done in the camp
 2) Monthly reports not distributed to health workers
 3) No time to read through reports
 4) Concentrating in other health activities
 5) Don't care
 6) Others (Specify)

 If Yes, go to Q 48. If No, go to Q 49.

48. If Yes to Q 47, what do you think is the cause of the poor coverage?
 1) Lack of knowledge among the refugee community
 2) Cultural reasons of the refugee community
 3) Lack of vaccines and equipments
 4) Lack of qualified staffs
 5) Negative attitude of staffs towards refugee community
 6) Others (Specify)

49. What is the magnitude of the problem in immunization in this country?
 1) Serious
 2) Moderate
 3) Mild
 4) Don't know
 5) Others
 Specify

50. Are you at any one time willing to work in the MCH/FP clinic?
 1) Very willing
 2) Reluctant
 3) No
 4) Other
 Specify
51. Give reason for your response to Q. 50.

52. Do you consider outreach services important in the camp? 1. Yes 2. No. If Yes go to Q 53. If No, go to Q 54.

53. If yes, why?
1) Reach more children
2) Identify defaulters and immunize them
3) Give health education to refugee community
4) Others (Specify)

54. If No, give reasons
1) Waste of time and resources
2) Clinics are accessible
3) No fee for service
4) Community well educated
5) Others (Specify)

Practice

55. Do you consider supervision important in KEPI activities? 1. Yes 2. No. If yes go to Q. 56. If No, go to Q. 57.

56. How often do the COR manager supervise you?
1) Once a month
2) Twice a month
3) Three times a month
4) Four times a month
5) Others Specify

57. If no to Q. 55, give reasons?
1) Waste of time
2) Supervisors not motivating
3) Too frequent
4) No information disseminated
5) Others (Specify)

58. Do you go for outreach services in your catchment area? 1. Yes 2. No. If yes, go to Q 59. If No, go to Q 60.

59. How often do you go for outreach services?
1) None
2) Weekly
3) Every two weeks
4) Monthly
5) Others Specify___________________________
60. If No to Q 58, give reason.
 1) Lack of transport
 2) Lack of personnel
 3) Community do not respond
 4) Lack of motivation from the COR Managers
 5) Others

61. Where do you get information on immunization?
 1) COR Manager
 2) Immunization manual
 3) Colleagues
 4) Own initiative
 5) Others
 Specify

62. What problems do you encounter as you go about your duties on immunization?
 1) Lack of syringes and needles
 2) Lack of equipments
 3) Lack of facilities
 4) Lack of adequate knowledge
 5) Inadequate number of staff
 6) Others
 Specify

63. What do you think should be done to solve the problems to Q. 62?

64. In your view, which approach is practical in your catchment area to increase the immunization coverage?
 1) Passive approach
 2) Active approach
 3) Both approach
 4) None
 5) Don't know
 6) Others
 Specify

 If Yes, go to Q 66. If No, go to Q 67.
66. If Yes, which one?
 1) Polio campaign
 2) Measles campaign
 3) Others
 Specify

67. Do you normally give health education to mothers in the MCH clinic?
 1. Yes 2. No
 If yes, go to Q. 68. If No, go to Q 70.

68. How often is the health education carried out?
 1) Daily
 2) Twice a week
 3) Once a week
 4) Others
 Specify

69. What do you include in your topic?
 1) Cause and transmission of EPI diseases
 2) Clinical features of EPI diseases
 3) Prevention of EPI diseases
 4) Side effects of EPI vaccines
 5) Beliefs and attitude on EPI
 6) Others
 Specify

 If Yes go to Q 71. If No, go to Q 72.

71. If Yes to Q. 70, how do you go about it?
 1) Refer the case to the outpatient department
 2) Fill in the case record form and send it to officer in charge of the facility
 3) Notify the DPHN
 4) Others
 Specify

72. If No to Q. 70, why?
Annex 4
CRITERIA FOR ADEQUATE KNOWLEDGE, ATTITUDE AND PRACTICE

1 MOTHERS AND GUARDIAN

1. Which immunizable diseases do you know?
 - Polio 1 score
 - Measles 1 score
 - Whooping cough 1 score
 - Diphtheria 1 score
 - Tuberculosis 1 score
 - Tetanus 1 score

2. At what age should a child complete immunization? At 9 months - 1 score

3. How many times do you take a child to a health facility to complete all the immunization? 5 times - 1 score

4. What reaction may occur after a child has received immunization?
 - Hotness of the body - 1 score
 - Vomiting - 1 score
 - Skin rash - 1 score
 - Child cry that whole night - 1 score
 - Swelling at immunization site - 1 score
 - Convulsions - 1 score

5. What should you do after a reaction has occurred?
 - Return the child immediately to the health facility - 1 score
 - Consult CHW - 1 score

6. When should a child not be immunized?
 - No indication - 1 score

7. What are the benefits of immunizing a child?
 - Protect a child against diseases - 1 score

Total Score 18 scores
Adequate Knowledge 9 and above
Inadequate Knowledge < 9 scores

Attitude

1. Do you consider not taking your child for immunization a public health problem? Yes - 1 score

2. Do you know of a child who has not been immunized? Yes - 1 score
3. Have you tried to talk to the mother about immunization?
 Yes - 1 score
4. Do you get worried if your child misses immunization?
 Yes - 1 score
5. How often do you carry your child health card when going to health facility for any other reason apart from immunization?
 Always - 1 score
6. Do you consider carrying child immunization card necessary?
 Yes - 1 score
7. Which immunization do you consider most important to your child?
 All - 1 score

Total Score 7 score
Adequate Attitude 4 and above
Inadequate Attitude <4

Practice

1. How do you get there?
 Walking - 1 score
 Bicycle - 1 score

2. What should you do when your child has missed an immunization or you have been late to take the child for immunization?
 Take a child at early convenient time to a health facility - 1 score

3. Do you ever discuss about immunization with your spouse/friends?
 Yes - 1 score

Total scores 4 scores
Adequate positive practice 2 and above
Inadequate positive practice <2 scores
II HEALTH WORKER
Knowledge

1. What is the purpose of immunization?
 To prevent diseases - 1 score

2. What type of vaccine is BCG?
 Toxin - 1 score

3. What is the dosage?
 0.5 ml - 1 score

4. How is BCG administered?
 Intradermally - 1 score

5. How is BCG stored?
 0-8 0°C - 1 score

6. At what age is the BCG vaccine given?
 At birth - 1 score

7. What type of vaccine is DPT?
 Toxin - 1 score

8. What is the dosage of DPT vaccine?
 0.5 ml - 1 score

9. How is DPT vaccine administered?
 Intramuscularly - 1 score

10. How is BCG vaccine stored?
 0-8 0°C - 1 score

11. What are the risks of storing DPT in extreme temperatures below 0°?
 Losses potency - 1 score

12. At what age is DPT 3 vaccine given?
 12 weeks - 1 score

13. What type of vaccine is OPV?
 Live - 1 score

14. What is the dosage of OPV vaccine?
 2 drops - 1 score

15. How is OPV vaccine administered?
 Oral - 1 score

16. At what age is OPV 3 vaccine given?
 12 weeks - 1 score

17. What type of vaccine is measles?
 Toxin - 1 score

18. What is the dosage of measles vaccine?
 0.5 ml - 1 score
19. How is measles vaccine administered?
 Intramuscularly - 1 score

20. How is measles vaccine stored?
 0-8 °C - 1 score

21. How long should you keep measles vaccine after opening?
 6 hours - 1 score

22. At what age is measles vaccine given?
 9 months - 1 score

23. Are there contraindications related to the six EPI vaccines?
 No - 1 score

24. Who are the target groups for KEPI immunizations?
 Children under one year - 1 score
 Pregnant mothers - 1 score
 People with cut wounds - 1 score

25. What information do you record in the health card?
 Weight of the child - 1 score
 Date of immunization - 1 score
 Date of next visit - 1 score

26. What information do you give to the mother?
 Whether the child is growing well - 1 score
 Advice on the diet - 1 score
 Importance of completing the immunization - 1 score
 Side effects and how to go about it - 1 score
 Next visit - 1 score

Total score on Knowledge
34 scores
Adequate knowledge
20 and above
Inadequate knowledge
< 20 scores

Attitude
1. Have you ever heard about immunization policy in Kenya?
 Yes - 1 score

2. Do you know the immunization coverage of your district?
 Yes - 1 score

3. Is immunization coverage a problem in the camp?
 No - 1 score

4. What is the magnitude of the problem in immunization in this country?
 Moderate - 1 score

5. Are you at any one time willing to work in the MCH/FP clinic?
6. Do you consider outreach services important in the camp?
 Yes - 1 score

Total scores

<table>
<thead>
<tr>
<th>Adequate attitude</th>
<th>Inadequate</th>
</tr>
</thead>
<tbody>
<tr>
<td>= 6 scores</td>
<td>= 3 and above</td>
</tr>
<tr>
<td>= < 3 scores</td>
<td></td>
</tr>
</tbody>
</table>

Practice

1. Do you consider supervision important in KEPI activities?
 Yes - 1 score

2. Do you go for outreach services in your catchment area?
 Yes - 1 score

3. In your view, which approach is practical in your catchment area to increase the immunization coverage?
 Passive approach/Active approach - 1 score

4. Have you been involved in a community immunization programme?
 Yes - 1 score

5. Do you normally give health education to mothers in the MCH clinic?
 Yes - 1 score

6. Are you involved in surveillance of EPI diseases?
 Yes - 1 score

Total scores

<table>
<thead>
<tr>
<th>Adequate</th>
<th>Inadequate</th>
</tr>
</thead>
<tbody>
<tr>
<td>= 6 scores</td>
<td>= 3 and above</td>
</tr>
<tr>
<td>= < 3 scores</td>
<td></td>
</tr>
</tbody>
</table>
A direction will be picked by spinning a bottle. All households in the chosen direction with children 11-23 months will be visited until 7 children are included in the study. Health Workers in the groups and clinics will be selected for the interviews.
Annex 6: Births from July 2000 to July 2001

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>33X</td>
<td>19</td>
<td>535</td>
<td>65</td>
<td>2</td>
<td>1088</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>34</td>
<td>33</td>
<td>568</td>
<td>66</td>
<td>1</td>
<td>1089</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>2</td>
<td>35</td>
<td>9</td>
<td>577</td>
<td>67</td>
<td>18</td>
<td>1107</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>2</td>
<td>36X</td>
<td>30</td>
<td>607</td>
<td>68</td>
<td>0</td>
<td>1107</td>
</tr>
<tr>
<td>5X</td>
<td>12</td>
<td>14</td>
<td>37</td>
<td>3</td>
<td>610</td>
<td>69</td>
<td>1</td>
<td>1108</td>
</tr>
<tr>
<td>6</td>
<td>26</td>
<td>40</td>
<td>38</td>
<td>6</td>
<td>616</td>
<td>70</td>
<td>1</td>
<td>1109</td>
</tr>
<tr>
<td>7</td>
<td>15</td>
<td>55</td>
<td>39</td>
<td>14</td>
<td>630</td>
<td>71X</td>
<td>13</td>
<td>1122</td>
</tr>
<tr>
<td>8</td>
<td>37</td>
<td>92</td>
<td>40</td>
<td>10</td>
<td>640</td>
<td>72</td>
<td>5</td>
<td>1127</td>
</tr>
<tr>
<td>9</td>
<td>42</td>
<td>134</td>
<td>41</td>
<td>0</td>
<td>640</td>
<td>73</td>
<td>15</td>
<td>1142</td>
</tr>
<tr>
<td>10XX</td>
<td>115</td>
<td>249</td>
<td>42</td>
<td>1</td>
<td>641</td>
<td>74</td>
<td>8</td>
<td>1150</td>
</tr>
<tr>
<td>11X</td>
<td>33</td>
<td>282</td>
<td>43</td>
<td>0</td>
<td>641</td>
<td>75</td>
<td>0</td>
<td>1150</td>
</tr>
<tr>
<td>12</td>
<td>23</td>
<td>305</td>
<td>44</td>
<td>0</td>
<td>641</td>
<td>76</td>
<td>12</td>
<td>1162</td>
</tr>
<tr>
<td>13</td>
<td>14</td>
<td>319</td>
<td>45X</td>
<td>38</td>
<td>679</td>
<td>77</td>
<td>2</td>
<td>1164</td>
</tr>
<tr>
<td>14</td>
<td>28</td>
<td>347</td>
<td>46</td>
<td>18</td>
<td>697</td>
<td>78XXX</td>
<td>125</td>
<td>1289</td>
</tr>
<tr>
<td>15X</td>
<td>33</td>
<td>380</td>
<td>47</td>
<td>6</td>
<td>703</td>
<td>79</td>
<td>7</td>
<td>1296</td>
</tr>
<tr>
<td>16</td>
<td>15</td>
<td>395</td>
<td>48X</td>
<td>15</td>
<td>718</td>
<td>80</td>
<td>4</td>
<td>1300</td>
</tr>
<tr>
<td>17X</td>
<td>25</td>
<td>420</td>
<td>49</td>
<td>18</td>
<td>736</td>
<td>81</td>
<td>7</td>
<td>1307</td>
</tr>
<tr>
<td>18</td>
<td>10</td>
<td>430</td>
<td>50X</td>
<td>31</td>
<td>767</td>
<td>82</td>
<td>9</td>
<td>1316</td>
</tr>
<tr>
<td>19</td>
<td>6</td>
<td>436</td>
<td>51</td>
<td>12</td>
<td>779</td>
<td>83</td>
<td>4</td>
<td>1320</td>
</tr>
<tr>
<td>20</td>
<td>11</td>
<td>447</td>
<td>52</td>
<td>0</td>
<td>779</td>
<td>84</td>
<td>5</td>
<td>1325</td>
</tr>
<tr>
<td>21</td>
<td>11</td>
<td>458</td>
<td>53</td>
<td>9</td>
<td>788</td>
<td>85</td>
<td>3</td>
<td>1328</td>
</tr>
<tr>
<td>22</td>
<td>1</td>
<td>459</td>
<td>54</td>
<td>0</td>
<td>788</td>
<td>86</td>
<td>3</td>
<td>1331</td>
</tr>
<tr>
<td>23</td>
<td>0</td>
<td>459</td>
<td>55</td>
<td>0</td>
<td>788</td>
<td>87</td>
<td>0</td>
<td>1331</td>
</tr>
<tr>
<td>24</td>
<td>0</td>
<td>459</td>
<td>56</td>
<td>27</td>
<td>815</td>
<td>88</td>
<td>0</td>
<td>1331</td>
</tr>
<tr>
<td>25</td>
<td>0</td>
<td>459</td>
<td>57X</td>
<td>41</td>
<td>856</td>
<td>89</td>
<td>1</td>
<td>1332</td>
</tr>
<tr>
<td>26</td>
<td>0</td>
<td>459</td>
<td>58XXX</td>
<td>196</td>
<td>1052</td>
<td>Kak II XXX</td>
<td>211</td>
<td>1543</td>
</tr>
<tr>
<td>27</td>
<td>0</td>
<td>459</td>
<td>59X</td>
<td>1</td>
<td>1053</td>
<td>Kak III XXX</td>
<td>186</td>
<td>1729</td>
</tr>
<tr>
<td>28</td>
<td>0</td>
<td>459</td>
<td>60</td>
<td>3</td>
<td>1056</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>0</td>
<td>459</td>
<td>61</td>
<td>18</td>
<td>1074</td>
<td>0</td>
<td>145</td>
<td>1874</td>
</tr>
<tr>
<td>30</td>
<td>0</td>
<td>459</td>
<td>62</td>
<td>5</td>
<td>1079</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31X</td>
<td>16</td>
<td>475</td>
<td>63</td>
<td>5</td>
<td>1084</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>41</td>
<td>516</td>
<td>64</td>
<td>2</td>
<td>1086</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

X= Cluster