RISK FACTORS
FOR CARDIAC DYSFUNCTION
IN CHILDREN ON
TREATMENT FOR
CANCER AT
KENYATTA NATIONAL
HOSPITAL
A dissertation in part fulfilment for the degree of Master’s of Medicine in Paediatrics and Child Health, University of Nairobi

BY

DR. MAKEBA SHIROYA - WANDABWA (MBChB University of Makerere, 1999)
DEPARTMENT OF PAEDIATRICS
UNIVERSITY OF NAIROBI.
DECLARATION

This dissertation is my original work and has not, to my knowledge, been published or for any degree in any other university or forum.

Signed ___________________________ Date ___________________________

DR. M. SHIROYA - WANDABWA

We certify that this dissertation has been submitted for examination with our approval as university supervisors:

1. DR. C. JOWI,
 PAEDIATRIC CARDIOLOGIST,
 SENIOR LECTURER,
 DEPARTMENT OF PAEDIATRICS,
 UNIVERSITY OF NAIROBI.

 Signed ___________________________ Date 4.12.2007

2. PROF. R. NDUATI,
 PAEDIATRICIAN AND EPIDEMIOLOGIST,
 ASSOCIATE PROFESSOR,
 DEPARTMENT OF PAEDIATRICS,
 UNIVERSITY OF NAIROBI.

 Signed ___________________________ Date 11.12.2007

3. DR. J. GITHANGA,
 HAEMATO-ONCOLOGIST,
 SENIOR LECTURER,
 DEPARTMENT OF HAEMATOLOGY & BLOOD TRANSFUSION,
 UNIVERSITY OF NAIROBI.

 Signed ___________________________ Date 5.12.2007
DEDICATION

For the Glory of God and Honour of this country’s children.

To my husband, Andrew for his constant support and encouragement.

To my parents for their unwavering pride, love and belief in me.

To our daughter, Neema, the joy of our lives.
TABLE OF CONTENTS

CONTENTS

Title
Declaration
Dedication
Acknowledgements
Table of contents
List of abbreviations
List of figures and tables
Abstract

INTRODUCTION AND LITERATURE REVIEW

1

STUDY JUSTIFICATION AND UTILITY

18

STUDY OBJECTIVES AND RESEARCH QUESTION

20

Research Question
Study Objectives

MATERIALS AND METHODS

21

Study Design
Study Area
Study Population
Patient Selection
Study Definitions
Data Management

RESULTS

30

REFERENCES

49

APPENDICES

Appendix I: Patient Data Sheet
Appendix II: M-Mode Echo Date Sheet
Appendix III: Sample Echocardiograms I
Appendices IV: Sample Echocardiograms II
Appendices V: Sample Echocardiograms III
Appendices VI: Calculation of Left Ventricular Indices
Appendices VII: Consent Form

Page
i
iii
iv
v
vi
vii
viii
x

21
21
21
21
22
25
27
30
49
51
52
53
54
55
56
57
LIST OF ABBREVIATIONS

ABVD - Adriamycin Bleomycin Vincristine Darcabazine
ALL - Acute Lymphoblastic Leukaemia
AML - Acute Myeloblastic Leukaemia
ASE - American Society of Echocardiography
BL - Burkitt's Lymphoma
CML - Chronic Myeloblastic Leukaemia
CHOPP - Cyclophosphamide Adriamycin Vincristine Procarbazine Prednisonone
DNA - Deoxyribonucleic Acid
ECG - Electrocardiography
ECHO - Echocardiography
EF - Ejection Fraction
FS - Fractional Shortening
Hb - Haemoglobin
HL - Hodgkin's Lymphoma
KNH - Kenyatta National Hospital
LVIDd - Left Ventricular Diameter in end diastole
LVIDs - Left Ventricular Diameter in end systole
LVDV - Left Ventricular end diastolic volume
LVSV - Left Ventricular end systolic volume
NHL - Non-Hodgkins Lymphoma
NH - Non-BL - Non Hodgkins, non-Burkitt's Lymphoma
OR - Odd's Ratio
RNA - Ribonucleic Acid
UON - University of Nairobi
VAC-Cis - Vincristine, Adriamycin Cyclophosphiamide & Cisplatin
LIST OF FIGURES

1 Figure 1.0: Sex distribution by case and control 32

LIST OF BOX PLOTS

1 Box Plot 1.0: Age distribution by case and control 33
2 Box Plot 2.0: Cumulative Anthracycline Dose 37
3 Box Plot 3.0: Cumulative Cyclophosphamide Dose 39

LIST OF TABLES

1 Table 1.0: Cumulative anthracycline dose and frequency of cardiotoxicity 7
2 Table 2.0: Adriamycin dose for treatment of various malignancies 8
3 Table 3.0: Procedures for diagnosis of doxorubucin – induced cardiomyopathy 17
4 Table 4.0: Frequency of patients with cardiac dysfunction in various malignancies 31
5 Table 5.0: Summary of univariate for continuous risk factor for cardiac dysfunction 36
6 Table 6.0: Summary of univariate of categorical risk factor for cardiac dysfunction 37
7 Table 7.0: Logistic regression 38
8 Table 8.0: Proportion of patients with other ECHO abnormalities 39
9 Table 9.0: Association of various cardiac abnormalities with left ventricular function 40
10 Table 10.0: Logistic Regression 41
ABSTRACT

Introduction: Management of paediatric malignancies requires a multimodal approach to treatment. Modalities include combination of various antineoplastic drugs and radiotherapy. This multimodal approach puts patients at risk of multi-organ toxicity especially the heart. Knowledge of the local risk factors for cardiac dysfunction in paediatric oncology patients on treatment may facilitate strategies that reduce morbidity and mortality.

Objective: To assess the risk factors for cardiac dysfunction in paediatric oncology patients on chemotherapy at Kenyatta National Hospital (KNH).

Design: Descriptive cross-sectional study with a nested case control study.

Setting: The Kenyatta National Hospital General Paediatric Wards, including Paediatric Oncology Ward & Paediatric Opthalmolgy Ward.

Subjects: Paediatric patients admitted to Kenyatta National Hospital with established diagnosis of cancer and who have started chemotherapy.

Procedure: The subjects underwent 12 lead Electrocardiography (ECG) and Echocardiography (ECHO). Children were classified as having cardiac disease if the ejection fraction and fractional shortening was < 55% and < 29% respectively.

Study Duration: February 2006 – April 2006

Results: A total of 111 patients were enrolled of whom 32 had abnormal cardiac function and therefore were classified as cases and 79 with normal cardiac function who were classified as controls. The point prevalence for cardiac dysfunction in paediatric oncology patients on chemotherapy was 29% (95%CI21.2-37.9%). Cumulative anthracycline dose was also an important risk factor with Odd’s ratio 1.005 (95% CI 1.001-1.009), p value= 0.02. Associated echocardiographic abnormalities included
diastolic dysfunction 26(23%), pericardial effusion 21(19%), valvular abnormalities 10(9%) and tumour infiltrates 7(6%) of the total study population.

Conclusion:

This study showed that about a third (point prevalence 29%) of paediatric cancer patients on chemotherapy at KNH have cardiac dysfunction as exemplified by left ventricular dysfunction. Cumulative anthracycline dose is a risk factor for cardiac dysfunction in paediatric oncology patients on chemotherapy at KNH. Above the cumulative dose of 200mg/m2 the attributable risk percentage of cardiac dysfunction is 77%.

Recommendation:

Serial echocardiography should be done on oncology patients undergoing chemotherapy where anthracyclines are part of the treatment protocol. With an attributable risk percentage of 77% above cumulative anthracycline dose of 200mg/m2, alternative non-anthracycline based treatment protocols are recommended above this level. Lastly, a meta-analysis of published studies and randomised clinical trials should be done to further establish the safety of anthracyclines and to further assess the other risk factors in our population.
1. Literature Review

1.1 Introduction

It is estimated that the annual frequency of childhood cancers at Kenyatta National Hospital (KNH) is 125 cases per year. A review of some childhood cancers at KNH by Macharia in 1996 [1], found hospital based prevalence to be 1.27%.

The most common childhood cancers were:

- Lymphomas were the most frequently occurring childhood cancer accounting for 51% of cases (Burkitts Lymphoma 34%, Hodgkin’s Lymphoma 11.8%, Non Hodgkin Lymphoma 5.2%),
- Leukemias 22.3% (acute lymphocytic 13.4%, Acute myeloid 6.5% and chronic myeloid 1.4%) Nephroblastoma 8.5%,
- Rhabdomyosarcoma 5.3%
- Neuroblastoma 3.3%, Kaposis sarcoma 1.5%, ovarian cancers 1.4%, osteogenic sarcoma 1.3% and miscellaneous 6.2%.

However, the study did not look into retinoblastoma and brain tumours that are common childhood cancers.
1.2 Treatment of childhood malignancies

The most common approach to cancer treatment is by combination therapy in which various combinations of surgery, radiotherapy and chemotherapy are used to eradicate both the primary neoplasm and metastatic lesions.

At Kenyatta National Hospital, a multimodal approach is used for the treatment of the various paediatric cancers. Cyclophosphamide, adriamycin, prednisone, procarbazine (CHOPP regime) are used for the management of Hodgkin’s lymphoma. Drugs used in the management of non-Hodgkin’s and Burkitt’s lymphoma include vincristine, cyclophosphamide, adriamycin and prednisone. Doxorubicin is used in the induction and consolidation phase of both Acute Myeloid Leukemia (AML) and Acute Lymphoid Leukemia (ALL). Vincristine, Adriamycin, Cyclophosphamide & Cisplatin (VAC –Cis) are commonly used in the treatment of solid tumours. Radiotherapy is one of the multimodal therapies used in the management of Hodgkin’s Disease (HD), Non-Hodgkin’s Lymphoma (NHL), solid tumours and ALL.

During treatment cytotoxic chemotherapy drugs exert their effect by inhibiting cell proliferation. All proliferating cells, whether normal or malignant cycle through a series of phases: Synthesis of DNA (S phase), Mitosis (M Phase) and rest (G 1Phase). Noncycling cells are quiescent in the G 0 Phase [2]. Cell Cycle Non-specific Anticancer drugs are known to kill cells regardless of their phase, an example are the alkylating agents. Cell Cycle (Phase) Specific anticancer drugs are known to kill only cells that are actively cycling, for example. Ideally these actions should be limited to cancer cells but unfortunately the effects extend to normal cells hence producing unwanted side effects and toxicities.
Cancer chemotherapeutic agents can be broadly classified into:

- Antibiotics such as anthracyclines, actinomycin and bleomycin
- Alkylating Agents such as cyclophosphamide, dacarbazine and busulfan
- Antimetabolites such as methotrexate, fluorouracil and 6-mercaptopurine
- Natural products such as vincristine, dactinomycin and etoposide
- Hormones and Antagonists such as prednisone, tamoxifen and diethylstilbestrol
- Miscellaneous agents such as cisplatin, procarbazine and hydroxyurea.

Anthracycline antibiotics are isolated from Streptomyces peuitus var caesius. The two commonly used anthracyclines - daunorubicin and doxorubicin differ only by one hydroxyl group in their biochemical structure. Doxorubicin is the main anthracycline used at KNH. Their anti-cancer activity is due to their ability to inhibit nucleic acid synthesis by binding to both parts of the deoxyribonucleic acid (DNA) helix thereby blocking the normal function of the ribonucleic acid (RNA) and DNA Polymerase [3]. Both the RNA and DNA undergo hepatic metabolism and biliary excretion. There is rapid uptake by the heart, lungs, kidney and spleen but they do not cross the blood brain barrier.

Generally, anthracyclines antibiotics remain one of the most potent antineoplastic agents and have contributed enormously to the excellent treatment results seen in some childhood tumours worldwide [4]. They however do have some unwanted systemic side effects. These include:

- Cardiovascular changes that include congestive heart failure; transient cardiomyopathy (abnormal ECG or arrhythmias); chronic cardiomyopathy which is dose dependant and progresses to congestive heart failure; cardiorespiratory decompensation and facial flushing.
- Central nervous system symptoms that include fever and chills.
• Dermatologic changes that include alopecia, hyperpigmentation of nail beds, urticaria and photosensitivity.

• Endocrine changes that include hyperuricaemia, infertility and pre-pubertal growth failure.

• Gastrointestinal changes including stomatitis, oesophagitis, nausea, vomiting, anorexia, diarrhoea, ulceration and necrosis of the colon.

• Genitourinary changes include discolouration of the urine (red/orange), cystitis, haematuria, and urinary frequency.

• Haematological changes include leucopenia, thrombocytopenia and anaemia.

• Hepatic changes include transient elevation of liver enzymes.

• Local signs include tissue necrosis on extravascation, erythematous streaking if given too fast and phlebitis.

• Ocular symptoms such as lacrimation [5].

Pathogenic mechanisms involved in anthracycline cardiotoxicity are not fully understood but are thought to include:

• Production of free radicals derived from the chemical reduction of anthracyclines through metabolic pathways catalyzed by iron;

• Abnormalities in mitochondrial energy metabolism;

• Intracellular calcium overload by stimulation of sacroplasmic reticulum calcium release[3].

The anthracyclines and/or their metabolites may also alter adrenergic balance and trigger the release of endogenous substances such as histamine, arachidonic acid metabolites, platelet activators and calcium all of which are potentially toxic to the myocardium.
The clinical use of these drugs involves carefully weighing benefits against toxicities. Associated toxicities with alkylating agents include bone marrow depression with subsequent leukopenia, thrombocytopenia and anaemia. Use of antimetabolites such as methotrexate can lead to severe mucositis. Drugs such as daclomycin may lead to bone marrow suppression and skin eruptions. Use of purine antagonists may lead to hyperuricemia predisposing to nephrotoxicity and gout.

1.3 Definition of Cardiac Dysfunction

Based on the Report of the Cardiology Committee of the Children’s Cancer Study Group, cardiac dysfunction is defined by left ventricular function deterioration[6]. This dysfunction is monitored by an echocardiography or radionuclide angiography. Significant left ventricular deterioration by echocardiography is defined as the fractional shortening below 29% or a left ventricular ejection fraction below 55%. Significant left ventricular deterioration by radionuclide angiography is defined as, a left ventricular ejection fraction below 55% or a decrease in radionuclide angiographic that is, a left ventricular ejection fraction with stress.

1.4 Risk Factors for Cardiac Dysfunction in children with malignancies

Several risk factors are known to increase the risk of cardiac dysfunction in children with malignancies.

1.5.1: Cumulative Anthracycline Dose

Published literature shows that cumulative anthracycline dose as well as maximal or peak dose of >50mg/m² are important risk factor for anthracycline related cardiotoxicity. Krischer et al carried out a retrospective cohort study on 6493 children with cancer who had received anthracycline chemotherapy and found that cumulative anthracycline dose had a 5.2 relative risk of
cardiotoxicity above a cumulative dose of 550mg/m2 [3,7,8]. They also found that above a maximum anthracycline dose of 50mg/m2, the relative risk of toxicity was 2.8. The various types of cardiotoxicity include:

- **Acute cardiotoxicity** which may develop during therapy after a single dose. It is often subclinical, manifested by vasodilatation, hypotension and reversible ECG changes including arrhythmias. It occurs in 30% of patients within hours of intravenous infusion.

- **Early cardiotoxicity** may occur during treatment or within one year of completion of treatment. This is thought to be as a result of myocyte damage or death which results in depressed left ventricular contractility. Early cardiotoxicity presents as left ventricular dysfunction, myocardial infarction, pericarditis-myocarditis syndrome or sudden death. Early cardiotoxicity is one of the greatest risk factors for development of late cardiotoxicity.

- **Late cardiotoxicity** occurs beyond a year of completion of anthracycline treatment. This probably due to both depressed contractility and an inappropriately thin left ventricle wall which results in persistent elevation of ventricular wall stress which progressively decreases the left ventricular systolic function. There is also evidence of fibrosis due to myocyte degeneration. It presents as dilated-hypokinetic cardiomyopathy, pericardial effusion, left ventricular dysfunction or low-output heart failure [3,7,9].
Table 1.0: Cumulative anthracycline dose and frequency of cardiotoxicity

The table 1.0 below shows the relative risk of cardiac toxicity at various anthracycline cumulative doses [5].

<table>
<thead>
<tr>
<th>Cumulative Dose (mg/m²)</th>
<th>Relative Risk (%) for myocardial toxicity</th>
</tr>
</thead>
<tbody>
<tr>
<td><300mg/m²</td>
<td>1-2%</td>
</tr>
<tr>
<td>400mg/m²</td>
<td>3-5%</td>
</tr>
<tr>
<td>450mg/m²</td>
<td>5-8%</td>
</tr>
<tr>
<td>500mg/m²</td>
<td>6-20%</td>
</tr>
</tbody>
</table>

The risk of cardiotoxicity is lower at cumulative doses <300mg/m² i.e. 1–2%. This increases to 20% at cumulative doses > 500mg/m². It is on this basis that most treatment protocols set a maximum anthracycline cumulative dose of 450 mg/m² in their regimes. The risk of cardiotoxicity at lower cumulative doses is increased if patients had a prior history of mediastinal irradiation or concurrent use of cyclophosphamide [5]. Hence most treatment protocols that combine cyclophosphamide and/or mediastinal irradiation set a maximum cumulative dose of 360mg/m² [3].
Table 2.0: Adriamycin dose for treatment of various malignancies

Table 2.0 below depicts the various cumulative anthracycline doses set for each tumour depending on the regime.

<table>
<thead>
<tr>
<th>Malignancy</th>
<th>KNH Regime 1 Cumulative Dose</th>
<th>KNH Regime 2 Cumulative Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leukemia</td>
<td>550</td>
<td>300</td>
</tr>
<tr>
<td>Lymphomas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NHL/BL</td>
<td>440</td>
<td>410</td>
</tr>
<tr>
<td>HL</td>
<td>300</td>
<td>360</td>
</tr>
<tr>
<td>Solid Tumors</td>
<td>360</td>
<td>420</td>
</tr>
<tr>
<td>Wilms</td>
<td>250</td>
<td>80</td>
</tr>
</tbody>
</table>

The adriamycin cumulative dose for KNH chemotherapy protocols which range between 80 – 550 mg/m² depending on the type of cancer.

Perhaps as a result of better more sensitive diagnostic tools and methods, the frequency of cardiac dysfunction in treated paediatric oncology patients has been noted to be increasing. Mohta et al, found 29.7% of their cohort to have cardiac dysfunction at a mean anthracycline dose of 365 mg/m²[10]. Their retrospective cohort evaluated forty-seven (47) children who received anthracycline as part of their chemotherapeutic regime over a 2-year period. Using guidelines set by the cardiology committee of the children with cancer study group, they evaluated left ventricular function and found 14 out of the 47 subjects to have cardiac dysfunction [6].

There are other additional risk factors that increase the occurrence of anthracycline related cardiotoxicity in children on anthracyclines possibly through an effect modification. These include:

a) **Pre-existing Heart Disease:** Pre-existing heart disease has been identified as a risk factor for anthracycline induced cardiotoxicity. Von Hoff et al carried out a retrospective analysis of 4018 patient records in an attempt to identify potential risk factors for development of anthracycline cardiotoxicity. They found that the
probability of developing doxorubicin-induced heart failure versus the total dose of anthracycline was higher in patients with previous heart disease or hypertension, as compared to all other patients [11].

b) Female Sex: Gender has been reviewed as a risk factor for cardiac dysfunction in children with cancer. Female patients have a higher risk than their male counterparts. Lipshultz et al carried out a retrospective cohort by examining echos of 120 children and adults who had cumulative anthracycline doses of between 244 and 550 mg/m² for the treatment of ALL or osteogenic sarcoma in childhood [12]. They evaluated the fractional shortening, contractility and after load and compared the cohort patients with age and sex specific normal ranges. They found that female sex was associated with depressed contractility. They also found that there was an interaction between female sex and cumulative anthracycline dose producing a dose modification effect. They postulated that females might be at higher risk due to:

- Sex-related differences in body composition. Since some cardiotoxic drugs such as anthracyclines are poorly absorbed in fat, their cellular concentrations would be higher in nonadipose tissues e.g. the heart. In their study, the median age at diagnosis for ALL was 4.8yrs while for osteogenic sarcoma was 14yrs. A limitation in this study was the fact that the study population included pre-adolescent and adolescent patients. Only in the former does one finds higher body fat.
- Differential expression of multidrug-resistance gene which governs cellular excretion of some chemotherapeutic drugs such as the anthracyclines.
e) Trisomy 21: This is a clinical syndrome where the presence of an extra chromosome number twenty one (21) results in clinical abnormalities comprising Downs syndrome or mongolism. Krischer et al carried out a retrospective cohort study on 6493 children and found relative risk of cardiac dysfunction to be 3.4 times more in children with Downs syndrome [8]. He suggested that this might be due to the underlying cardiac and endocrine abnormalities found in this syndrome. These include:

- Congenital cardiovascular malformations found in Downs syndrome.
- Undetected hypothyroidism, that can impair myocardial function.
- Cor pulmonale and pulmonary hypertension, which are more common in these children, because of associated pulmonary hypoplasia, frequent and recurrent respiratory infections, hypotonic skeletal muscles of respiration and tracheomalacia.

d) Black Race: Studies have been carried out to consider whether race is a factor in cancer incidences. The retrospective cohort study by Krischer at al, found black race to be a risk factor. They postulated the increased risk to be due to the two to threefold increased risk of idiopathic dilated cardiomyopathy amongst black race and hence increased susceptibility to cardiotoxic chemotherapeutic agents [8]. Clearly more studies need to be done to establish the increased susceptibility.

e) Young Age: Patients who were younger at the time of diagnosis and treatment were at greater risk of cardiac dysfunction primarily as result of their chemotherapy and/or radiation. Anthracyclines, for example, cause thinning of the left ventricle which leads to an elevated ventricular afterload [9].

d) Nutritional Status: It is postulated that nutrition plays a role in cardiac dysfunction amongst children with malignancies. It is thought that the micronutrients – selenium and vitamin E ameliorate the cardiotoxic effects of the anthracyclines [13]. This suggested
that deficiency of micronutrients may predispose patients on chemotherapy to cardiac dysfunction.

Mohta R et al reviewed 47 children who had received anthracycline cumulative dose as part of their treatment for cancer [10]. They measured left ventricular function by ECHO and found that children with low height for age had poorer cardiac tolerance to anthracyclines (p=0.0269).

1.5.2 Type Of Malignancy

Cancer contributes to cardiac dysfunction by any one of the following mechanisms:

- Extrinsic compression of a coronary artery or tumour embolization leading to myocardial infarction
- Metastatic tumours affecting cardiac valvular function by invasion, direct compression or nonbacterial thrombotic endocarditis; and
- Direct tumour extension into the great veins and cardiac chambers [7].

Primary and secondary (metastatic) tumours to the heart are more likely to put patients at risk of cardiac dysfunction. Based on large series on childhood cancers, the incidence for primary tumours was 0.3% and secondary tumours was 1.1%. Non – Hodgkin’s Lymphoma, Wilms Tumour, soft tissue and bone sarcomas were the most common cause of distant metastases [14].

A study by Kariuki, evaluated the cardiac status of children with cancer at KNH by comparing them with children who did not have cancer. Echocardiography and electrocardiography were done to evaluate left ventricular function. Lowered cardiac function was found in patients with cancer and was attributed to the presence of malignancy [15].
1.5.3 Radiotherapy

Therapeutic radiation can cause heart damage by injuring various structures either acutely or chronically. Studies show that acute or early changes due to radiation include cytoplasmic damage, capillary injury, Von Willebrand factor release and acute inflammatory reaction. Chronic changes include cell death, fibroblastic proliferation, thickening of pericardium, valvular heart disease and arrhythmias [7].

These changes often lead to a wide range of clinical sequelae including acute pericarditis, chronic pericarditis, coronary heart disease, myocarditis, valvular defects and conduction delays [16].

1.5.4 Other potentially cardiotoxic drugs

Other antineoplastic cardio toxic drugs include:

- **Cyclophosphamide**: is cardio toxic via its active metabolite. The most probable mechanism involves endothelial damage, followed by extravasation of the toxic metabolites causing myocyte lesion, oedema and severe hemorrhagic cardiac necrosis. Cyclophosphamide causes clinical cardiotoxicity when administered in massive doses (120 – 240 mg/kg over 1 to 4 days) usually in preparation for bone marrow transplantation. Studies show that reduction of cumulative dose of cyclophosphamide to 1.55 g/m2/day may be associated with some reduction of cyclophosphamide cardiotoxicity.

- **Amsacrine**: is an acridine derivative with antileukaemic effects is potentially cardiotoxic.

- **Cytarabine and 5 – Fluouracil**: are potential cardio toxic based on case reports. ECG findings of the latter suggest coronary spasms with cardiotoxicity presenting as myocardial ischaemia [3,4,14].
1.6 Strategies for mitigating against anthracycline cardiotoxicity

Some of the preventive strategies of anthracycline cardiotoxicity include:

- Early detection cardiotoxicity followed by reductions in anthracycline dose or variation of treatment regime;
- Lowering of peak blood levels by variations in the methods of delivery, for example, prolonged continuous infusion rather than by bolus injection;
- Lowering of peak dose through the use of different treatment schedule or using alternative anthracycline derivatives, for example, liposomal anthracyclines may be less cardiotoxic than other types of anthracyclines [4].

There are some trial cardioprotective agents. A randomised clinical trial by Lipshultz et al found dexrazoxane when given to children who were to receive doxorubicin was associated with reduction in myocardial injury as measures in terms of the troponin T level [17]. Dexrazoxane is thought to reduce the cardio toxic effects of anthracyclines by binding free and bound iron thereby reducing the formation of anthracycline – iron complexes and the subsequent generation of reactive oxygen species. These strategies reduce cardiotoxicity but do not eliminate anthracycline related cardiomyopathy.
TECHNIQUES FOR ASSESSING CARDIAC FUNCTION IN CHILDREN ON ANTHRACYCLINE CHEMOTHERAPY

Recognizing the different side effects of drugs used in cancer management, the cardiology committee of the children's cancer study group formulated recommendations for standardized non-invasive monitoring of children on anthracycline treatment [6]. These include:

a) **Electrocardiography**: This is a graphic recording of electric potentials generated by the heart. The signals are detected by means of metal electrodes attached to the extremities and chest wall and are then amplified and recorded by the electrocardiograph. Its advantages include safety, availability and practical. Arrhythmias, flattening of T wave, prolongation of QT Interval and decrease in R wave voltage have been used to indicate toxicity. However these changes are non-specific, are reversible and can be produced by extracardiac thoracic processes such as pericardial or pleural effusions, chest wall oedema and anterior masses. Acute ECG changes are not predictive of the degree of anatomic or physiologic impairment due to the anthracyclines. Thus ECG is not an appropriate sole monitoring technique.

c) **Echocardiography**: This is a form of cardiovascular imaging using the principles of ultrasonographic reflection of cardiac structures to produce images of the heart. Two dimensional (2D) and M-mode Echo have been used in many centres to show preclinical deterioration of cardiac function permitting dose modification and reducing the incidence of congestive cardiac failure. Parameters used to assess left ventricular function on Echo include fractional shortening, end diastolic internal diameter and systolic time intervals on 2 Dimensional Echo and more recently rate-corrected velocity of circumferential fibre shortening with end systolic wall stress. Digitised M-Mode echocardiography and doppler flow cardiography can be used to assess ventricular filling rate, a parameter defining diastolic function. Echo is a good tool for
children who have less costal calcification and hence easily obtainable imaging windows. Paediatric echocardiography does not expose the patient to irradiation and there are portable machines that allow bedside assessment of very sick children.

d) **Radionuclide Angiocardiography:** In this diagnostic method an isotopic dye is injected into the patient. Photons are then emitted radionuclide imaging is then obtained using a special camera. It has the added advantage of providing a volumetric measurement, independent of geometric assumptions of ventricular shapes. Whereas echocardiography provides uni-dimensional or two-dimensional measurements, this technique compared to ECHO often affords a more easily obtainable and accurate image during stress. Images maybe obscured by poor uptake of the nuclear isotope by the red blood cells or albumin and competitive in bones and other organs particularly in children. The borders of sampling regions of interest are less precisely on radionuclide angiocardiography than are the endocardial surfaces from ECHO, particularly in small children where ventricular – atrial separation and septal definition are more difficult. With smaller ventricles, imprecision of margins produces a greater percentage of error. There is also a small biologic hazard presented by the small amount of total body irradiation from the isotope. The process allows analysis of diastolic filling rates and hence measurement of diastolic function. However sensitivity, specificity and predictive accuracy of radionuclide angiocardiography to predict anthracycline cardiotoxicity is not available, because there is no 'gold standard' such as contrast ventriculography used in children undergoing chemotherapy.

d) **Endomyocardial Biopsy:** This involves obtaining a tissue specimen from the heart for anatomical evaluation, cardiac toxicity screening and histopathological assessment [6]. The degree of damage, is expressed in terms of a standardized grading scale this
permits comparison of degrees of anatomic damage by different drugs. On histopathology, for example, hemorrhage and edema are seen with cyclophosphamide cardiotoxicity while with acute anthracycline cardiotoxicity there is predominance of vacuolisation. Fibrosis is more prevalent with chronic anthracycline cardiotoxicity. It has been used to clarify the role of chemotherapy in producing clinical decompensation such as abnormality of ventricular function or congestive cardiac failure.

Risks of endomyocardial biopsy include cardiac perforation, cardiac arrhythmias, coronary – cardiac fistula, pneumothorax, hemothorax and endocardial stripping. The use of endomyocardial biopsy is on the decline since magnetic resonance imaging (MRI) can identify the type of cardiac damage and quantify the extent.
Table 3.0: Procedures for diagnosis of anthracycline-induced cardiomyopathy

The table below summarises the various diagnostic procedures and their utility.

<table>
<thead>
<tr>
<th>Diagnostic Procedure</th>
<th>Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical examination and history taking</td>
<td>• Lack of specificity</td>
</tr>
<tr>
<td>Electrocardiography: arrhythmias, flattening of T wave, prolongation of QT interval, decrease in R wave voltage.</td>
<td>• Lack of specificity</td>
</tr>
<tr>
<td></td>
<td>• Level of risk: None</td>
</tr>
<tr>
<td>Transthoracic Echocardiography: Serial measurement of left ventricular ejection fraction.</td>
<td>• High reliability</td>
</tr>
<tr>
<td></td>
<td>• Wide use and availability</td>
</tr>
<tr>
<td></td>
<td>• Level of risk: Transthoracic M Mode echocardiography has class one level of risk and this is consider almost nil.</td>
</tr>
<tr>
<td>Angiography with radiolabeled antimyosin antibodies</td>
<td>• High sensitivity for cell necrosis</td>
</tr>
<tr>
<td></td>
<td>• Low specificity</td>
</tr>
<tr>
<td></td>
<td>• Level of risk: exposure to irradiation</td>
</tr>
<tr>
<td>Angiocardiography with methiobenzyl guanidine</td>
<td>• High sensitivity for myocardial neural integrity & cardiac function</td>
</tr>
<tr>
<td></td>
<td>• Low specificity</td>
</tr>
<tr>
<td></td>
<td>• Level of risk: exposure to irradiation</td>
</tr>
<tr>
<td>Endomyocardial biopsy</td>
<td>• Greatest reliability</td>
</tr>
<tr>
<td></td>
<td>• Relatively high expense</td>
</tr>
<tr>
<td></td>
<td>Level of risk: cardiac perforation, cardiac arrhythmias, coronary – cardiac fistula.</td>
</tr>
</tbody>
</table>
• The management of paediatric malignancies requires a multimodal approach to management. Treatment modalities include use of various combinations of antineoplastic drugs and radiotherapy. This multimodal approach puts patients at risk of multi-organ toxicity especially to the heart.

• The current prevalence of cardiac dysfunction in children accessing treatment for cancer and the associated risk factors for cardiac dysfunction such as chemotherapeutic drugs (in particular anthracyclines), radiotherapy and type of malignancy is unknown at KNH.

• Anthracyclines are the backbone of cancer treatment at KNH. Anthracycline cardiotoxicity is affected by black race, female sex, pre-existing heart disease and nutritional status. Paediatric cancer patients at KNH are universally of African race; a factor already identified as a risk factor for adverse cardiac events following treatment with anthracyclines and is in an environment of widespread malnutrition. These factors may lead to an effect modification of anthracycline metabolism and possible toxicity.
STUDY UTILITY

- The results of the study may demonstrate the magnitude of cardiac dysfunction amongst paediatric cancer patients so that those who take care of these patients may be advised to take preventative measures or where this is not possible to investigate for these complications and institute remedial measures.

- The results may demonstrate important risk factors for cardiac dysfunction in children with malignancy that may be modified and hence reduce morbidity and mortality related to cancer.

- The results of the study may be used as baseline for other follow-up prospective studies for evaluation of cardiac function in children with malignancies.
STUDY OBJECTIVES AND RESEARCH QUESTION

RESEARCH QUESTION

What is the prevalence of cardiac dysfunction in paediatric oncology patients on treatment at KNH? What predisposes these patients to cardiac dysfunction?

PRIMARY OBJECTIVE

1) To determine the point prevalence of abnormal cardiac function among paediatric oncology patients on chemotherapy at KNH

2) To assess the risk factors for cardiac dysfunction in paediatric oncology patients at Kenyatta National Hospital.

SECONDARY OBJECTIVE

3) To describe associated echocardiographic cardiac abnormalities in paediatric oncology patients at Kenyatta National Hospital.
MATERIALS AND METHODS

STUDY DESIGN

Descriptive Cross-sectional Study with a nested Case Control.

STUDY AREA

The study was carried out on patients from the Kenyatta National Hospital (KNH) general pediatric wards including, ophthalmology and pediatric oncology wards. KNH is a teaching hospital for the University of Nairobi and is also the major referral hospital for all pediatric cancer patients in Kenya.

STUDY POPULATION

The population of interest were in-patient children below the age of fifteen (15) years admitted with an established diagnosis of cancer on chemotherapy at Kenyatta National Hospital and whose parents or guardian gave us a signed consent. Children admitted to KNH with cancer are referrals from district, provincial, mission and private hospitals. Some patients are also referred from the KNH pediatric general and specialized clinics. Patients with leukaemia, lymphomas, nephroblastoma, neuroblastoma and other solid tumors are admitted to a specialized pediatric oncology ward, which holds on average of twenty five (25) – thirty (30) patients. Due to the high number of patients the four pediatric general wards holds an average of ten (10)- fifteen (15) patients each.
Patients with retinoblastoma and osteogenic sarcoma are admitted to the ophthalmology and pediatric surgical ward respectively while patients with brain tumors are admitted to the pediatric neurosurgical ward.

STUDY SITE
Paediatric oncology ward (ward 1E), general paediatric wards and ophthalmology ward.

INCLUSION CRITERIA
- Paediatric patients below 15 yrs with an established diagnosis of cancer;
- These patients must have begun chemotherapy;

EXCLUSION CRITERIA
- Patients whose parent or guardian did not give consent;
- Re-admissions who were recruited in the study in a previous admission.

STUDY METHODOLOGY
Patient Selection
Paediatric cancer patients who meet the above inclusion criteria and whose parent or guardian gave consent where sequentially recruited from the paediatric oncology ward (ward 1E), the paediatric general wards (wards 3A, 3B, 3C & 3D) and the ophthalmology ward (ward 9C) until the minimum required sample size of 111 patients (with a case: control ratio of 2:5 was attained) was attained.
Study Procedure

Diagnosis of cancer was made by bone marrow, fine needle aspirate, open biopsy and by various biochemical markers depending on the type of cancer supported by various radiological investigations in conjunction with a team of specialist paediatric oncologists and haematologists. This information was obtained from the patient’s medical records. A general examination and patient history was taken. Patient data including anthropometric measurements, cumulative anthracycline dose, cumulative cyclophosphamide dose and history of irradiation were entered into a patient data sheet (Appendix I).

Patients were then taken to KNH cardiology department where a twelve lead surface electrocardiography (ECG) and rhythm strip was done on all the study subjects by the investigator assisted by the ECG technologist using a manual cardiofax ECG machine model number 6353 and serial number 00553, Nihon Kohden Corporation, 31-4 Nishiochiai Shinjuku-ku, Tokyo 161, Japan.

2-D Echocardiography also was carried in the cardiology department using an echocardiography machine LOGIQ 500 model 2116533-2, serial number 669772YM6 with frequency of 33/02.5MHz. Manufactured by GE Yokogama Medical Systems LTD, Tokyo, Japan. Subcostal, parasternal, apical and suprasternal views were used. The modalities of echocardiography used were two-dimensional real time, M-mode, pulsed wave doppler and continuous wave Doppler echocardiography. 2D-real time echocardiography was used to assess the cardiac measurements, visual contractility and any abnormal findings like pericardial effusion, valvular abnormalities and cardiac masses. M-mode echocardiography was used to assess the relative chamber sizes and to calculate the indices of cardiac contractility. Spectral pulsed wave Doppler with sample specimen taken at the tips of the
mitral valve leaflets was used to assess diastolic function. The figure below shows how the pulsed wave Doppler looks in normal and abnormal diastolic function. The first wave is the E wave (excursion) and the second wave is the A (apposition) wave.

Diastolic function is measured by peak early velocity (E wave), peak atrial velocity (A wave), E wave/A wave ratio (E/A), E deceleration (EDEC) and Isovolumetric relaxation time (IVRT).

Continuous wave Doppler was used to assess the tricuspid regurgitation. Pulmonary pressures were derived from tricuspid regurgitation using the Bernoulli’s equation, \(P = 4V^2 \), where \(P \) is the pulmonary pressure and \(V \) is the maximum velocity of the tricuspid regurgitation gradient to estimate the pulmonary pressures.

M-Mode Echocardiography investigations were carried out separately by a team of three (3) cardiologists in the presence of the investigator using a uniform methodical protocol based on the set guidelines to reduce interobserver error [19]. On average 3 – 5 Echos were done per day allowing us to complete the date collection over a period of about 3 months.
DEFINITIONS

Cancer patient was defined as one suffering from a malignant tumour arising from abnormal uncontrolled division of cells that then invade and destroy the surrounding tissues.

Child was defined as any individual below the age of 15 yrs as per the Kenyatta National Hospital takes the cut off definition. Age of the child was verified from the bio statistical information in the patient’s file.

Cases were defined as paediatric oncology patients who met the inclusion criteria and on echocardiography they had left ventricular systolic dysfunction as manifested by:

- Left ventricular ejection fraction < 55% OR
- Left ventricular fractional shortening < 29% [6].

Controls were defined as paediatric oncology patients meeting the inclusion criteria and on echocardiography they did not have Left Ventricular Systolic dysfunction as manifested by:

- Left ventricular ejection fraction > or = to 55% OR
- Left ventricular fractional shortening < or = to 29%.

Pericardial effusion is the presence of fluid in the pericardial space demonstrable on 2D-echocardiography. It could be anterior, posterior or circumferential. A diagnosis of cardiac tamponade was made when there was a pericardial effusion with diastolic collapse of the right atrium or right ventricle with poor inspiratory collapse of the inferior vena cava.

Pulmonary Hypertension is said to be present when the mean pulmonary pressure is higher than 30mmHg. This is assessed by Doppler echocardiography of tricuspid regurgitation and a mean atrial pressure of 5-10 added to the tricuspid regurgitation.
Electrocardiography was considered normal when no abnormality was noted. ECG tracings were read using a standard method with scoring criteria. The tracings that were probably within normal limits (PWNL) when one minor abnormality was noted. A borderline tracing (BT) was considered if two minor abnormalities were noted. Probably abnormal tracing (PAT) was considered when one major abnormality was noted. A tracing was considered definitely abnormal (DAT) if two major abnormalities were noted.
SAMPLE SIZE DETERMINATION FOR PRIMARY OBJECTIVE 1

The sample size determination was based on the primary objective 1 to determine the point prevalence of cardiac dysfunction in children with cancer on chemotherapy at KNH.

Fisher’s formula for sample size calculation used was: \[n = \frac{Z_{1-\alpha/2}^2 P (1 - P)}{d^2} \]

- \(n \) minimum sample size.
- \(Z_{1-\alpha/2} \) is the normal deviate corresponding to a confidence interval of 95% Confidence interval
- \(\alpha = 0.05 \) the level of significance (5%)
- \(d = 0.075 \) the level of precision
- \(P \) = estimated prevalence of cardiac disease in children with cancer is sixteen percent (16%) at KNH. This prevalence of cardiac dysfunction in children with cancer at KNH was obtained from a local study by Kariuki [21]. She evaluated the cardiac status of children with cancer by comparing them with children who did not have cancer and found prevalence of cardiac dysfunction to be 16%.

\[n = \frac{1.96^2 X 0.975 X 0.16 X 0.84}{0.075^2} = 90 \]

Thus the minimum number of paediatric cancer patients recruited in this study to obtain the point prevalence was ninety (90). This gave the study 80% power and 95% contingency to determine the true point prevalence of cardiac dysfunction in the stated source population.
SAMPLE SIZE FOR PRIMARY OBJECTIVE 2

Sample size determination was based on the primary objective 2 to assess the risk factors for cardiac dysfunction in paediatric oncology patients on treatment at KNH.

\[
\left\{Z_{1-\alpha/2}\sqrt{2P(1-P)} + Z_{1-\beta}\sqrt{P_1(1-P_1) + P_2(1-P_2)}\right\}^2
\]

\[(P_1 - P_2)^2\]

Using the above formula for 2-sample comparisons of proportions for case control where;

\[P\] = number of cases

\[1.96\] is the normal deviate corresponding to a confidence interval of 95%

\[0.05\] (level of significance)

\[0.20\]

\[P_1\] = proportion of cases with anthracycline cumulative dose \(>350\text{mg/m}^2\) i.e 0.30 [10]

\[P_1\] was the proportion of those with the risk factor (anthracycline cumulative dose \(>350\text{mg/m}^2\)) amongst the cases. Based on a retrospective study in India the proportion amongst the cases who developed cardiac dysfunction above cumulative dose of 300\text{mg/m}^2 was 30\% or 0.30.

\[P_2\] = proportion of controls with anthracycline cumulative dose \(>350\text{mg/m}^2\) i.e. 0.08

\[P_2\] was the proportion of those with the risk factor (anthracycline cumulative dose \(>350\text{mg/m}^2\)) amongst the controls. This was an arbitrary estimate since there was paucity of data in this area.

\[P\] = pooled proportion with anthracycline cumulative dose \(>300\text{mg/m}^2\)

\[= (P_1 + P_2)/2\]

Thus \[n = 1.087 + 0.448 = 32\]

\[(0.22)^2\]

minimum number of cases (n) was 32.

Taking a 2:5 ratio for case:control minimum number of cases was 32 and 79 controls.
Data Analysis

All data emanating from this study was entered into a patient data sheet and then recorded into a computer database. It was analysed using SPSS (Statistical Package for Social Sciences software 11.0).

Continuous variables were evaluated by t-tests while Pearson Chi-Square tests were used to evaluate binary variables. Non-parametric test (Mann Whitney Test) were used to evaluate skewed continuous variables.

ETHICAL CONSIDERATIONS

The study was undertaken after approval by the Department of Paediatrics, University of Nairobi (CON) and the Ethical and Scientific Committee Kenyatta National Hospital (KNH). Informed consent was sought from the parent or guardian (Appendix IV / Kiambatanisho IV). No patient suffered delay of treatment by inclusion into this study and emergency care and resuscitation took priority over any other procedure. Costs of the tests were borne by the investigator. Results of the tests were availed to the child’s primary doctor. Parent/Guardian could withdraw the patient at any stage without any obligation and the management of the child was not compromised. All patient information was treated with strictest confidence.
RESULTS

During the study period February and May 2006, a total of 111 children were evaluated. Their median age was 6 years (Range 0.25-14yrs) with 64% of them being males and 36% of them being females thus a male:female ratio of 1.8:1. Fifty-four (54%) percent of the study population were stunted with height/age Z score less than -2, while 42% had less than -2 Z score weight age. The median duration of chemotherapy treatment was 4 months (Range 0.25-24 months).

The spectrum of cancers seen include leukaemia in 25(23%) children, followed by 22(20%) children with Wilms tumour, 19(17%) children with Burkitts lymphoma 7(6%) children with retinoblastoma, 8(7%) children had rhabdomyosarcoma & Hodgkins lymphoma, 5(4.5%) had osteogenic sarcoma and 4 (3.5%) had neuroblastoma & non-hodgkins lymphoma.

PREVALENCE OF CARDIAC DYSFUNCTION IN CHILDREN ON TREATMENT FOR CANCER AT KNH

Out of the 111 children enrolled 32 had abnormal cardiac function and were classified as cases. This gave a point prevalence of 29% (95%CI 21.2 – 37.9%). The other 79 children with normal cardiac function were the controls.
Table 4.0: Frequency of patients with cardiac dysfunction in various malignancies

There was an abnormal cardiac function in 36% of the children with leukaemia, 23% in those with Wilms tumour and 32% among those with Burkitts lymphoma. There was a high prevalence of cardiac dysfunction in children with rhabdomyosarcoma (50%) and at least 20% in most of the other tumours, with the exception of teratomas and sarcomas that had no patients with cardiac dysfunction. However, the estimates had very wide confidence intervals because of the small numbers as shown in table 4.0 below.

<table>
<thead>
<tr>
<th>Malignancy</th>
<th>Proportion with abnormal cardiac function (95% Confidence Interval)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leukaemia</td>
<td>9/25 [36% (CI 20–55%)]</td>
</tr>
<tr>
<td>Wilms</td>
<td>5/22 [23% (CI 10–43%)]</td>
</tr>
<tr>
<td>Burkitts Lymphoma</td>
<td>6/19 [32% (CI 15.4%-54%)]</td>
</tr>
<tr>
<td>Rhabdomyosarcoma</td>
<td>4/8 [50% (CI 21.5%-78.5%)]</td>
</tr>
<tr>
<td>Hodgkin’s Lymphoma</td>
<td>3/8 [38% (CI 13.7%-69.4%)]</td>
</tr>
<tr>
<td>Retinoblastoma</td>
<td>2/7 [29% (CI 18-64%)]</td>
</tr>
<tr>
<td>Osteogenic Sarcoma</td>
<td>1/5 [20% (CI 3.6%-62.5%)]</td>
</tr>
<tr>
<td>Non Hodgkins Lymphoma</td>
<td>1/4 [25% (CI 4.6%-70%)]</td>
</tr>
<tr>
<td>Neuroblastoma</td>
<td>1/4 [25% (CI 4.6%-70%)]</td>
</tr>
</tbody>
</table>
RISK FACTORS ASSOCIATED WITH ABNORMAL CARDIAC FUNCTION

SEX

Sex distribution was similar amongst cases and controls. Cases had 69% males, while controls had 62%. Females in cases were 31% while in controls they were 38% with OR 0.8 (95% CI 0.3-1.8) p value 0.7.

Figure 1.0: Sex distribution by case and control

The figure below shows sex distribution by case and control
B. AGE

Age distribution was similar among cases and controls. Cases had mean age of 6.2 yrs while controls mean age 6.8 yrs. Age was not statistically significant by independent t-test p value 0.4.

Box Plot 1.0: Age distribution by case and control

The box plot shows that cases and controls were comparative.

Key for controls:
- Minimum age = 0.25 yrs
- 25th percentile = 4 yrs
- 50th percentile = 6 yrs
- 75th percentile = 9 yrs
- Maximum age = 14 yrs

Key for case:
- Minimum age = 1 yrs
- 25th percentile = 3.6 yrs
- 50th percentile = 6 yrs
- 75th percentile = 9 yrs
- Maximum age = 12 yrs

Both had a twenty-fifth percentile of approximately 4 yrs, fiftieth percentile (median) of 6 yrs and seventy-fifth percentile of 9 yrs

I went a step further and categorized age to further explore age as a risk factor. There was no association between age and frequency of cardiac dysfunction hence age was not a risk factor in this study population this is depicted in table 6.0.
The main cardiotoxic drugs used in KNH cancer treatment protocols are the anthracyclines (Table 2.0) and cyclophosphamide.

Plot 2.0: Cumulative Anthracycline Dose

The median dose was 128mg/m2 (Range 0 - 500 mg/m2) in cases and 88mg/m2 (Range 0 - 374 mg/m2) for controls as shown in box plot 2.0 below. The mean cumulative anthracycline dose was 16mg/m2 (95% CI 117.5-211.4 mg/m2) in the cases and 106mg/m2 (95% CI 84.1-129.9 mg/m2) in the controls.

This difference was statistically significantly at $p=0.02$. Using percentiles, I further explored anthracycline cumulative dose as a risk factor. Above cumulative anthracycline dose of 201mg/m2 there was a 4.4 increased odds of cardiac dysfunction with an attributable risk percentage of 77% this is depicted in Table 6.0.
Box plot 3.0: Cumulative Cyclophosphamide Dose

The box plot below describes cumulative cyclophosphamide dose in cases and controls. The median was 2050 mg/m2 (Range 0 - 9363 mg/m2) for cases and 1510 mg/m2 (0-10300 mg/m2) for controls.

![Box plot](image)

Key for controls:
- Minimum dose (mg/m2) = 0
- 25th percentile = 309 mg/m2
- 50th percentile = 1510 mg/m2
- 75th percentile = 3135 mg/m2
- Maximum dose (mg/m2) = 10300

Key for case:
- Minimum dose (mg/m2) = 0
- 25th percentile = 666 mg/m2
- 50th percentile = 2050 mg/m2
- 75th percentile = 5109 mg/m2
- Maximum dose (mg/m2) = 9363

Mean cumulative cyclophosphamide dose was 2880 mg/m2 (95% CI 1804.0-3515.2 mg/m2) in cases and 2248 mg/m2 (95% CI 1758.2-2874.9 mg/m2) in the controls. This difference was significantly associated with cardiac dysfunction at $p = 0.3$.

Table 5.0: Summary of Univariate Analysis for Continuous risk factors for cardiac dysfunction

<table>
<thead>
<tr>
<th>Variable</th>
<th>Case</th>
<th>Control</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age in years Median (range)</td>
<td>6(1-12)</td>
<td>6(0.25-14)</td>
<td>0.4</td>
</tr>
<tr>
<td>Duration of treatment Median (range)</td>
<td>4(0.3-24)</td>
<td>4(0.13-13)</td>
<td>0.7</td>
</tr>
<tr>
<td>Cumulative anthracyclines dose (mg/m²) Median (range)</td>
<td>128(0-500)</td>
<td>88(0-374)</td>
<td>0.02</td>
</tr>
<tr>
<td>Cumulative cyclophosphamide dose (mg/m²) Median (range)</td>
<td>2050(0-9363)</td>
<td>1515(0-10300)</td>
<td>0.3</td>
</tr>
</tbody>
</table>

There was however no association between age in years, duration of treatment and cumulative cyclophosphamide dose with cardiac dysfunction. There was an association between anthracycline cumulative dose and cardiac dysfunction (p value=0.02)
Table 6.0: Summary of Univariate Analysis of Categorical Risk Factors for Cardiac Dysfunction

The table below summarizes the categorical risk factors analysed in this study.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Category</th>
<th>N= 111</th>
<th>Case N=32</th>
<th>Control N=29</th>
<th>Odd ratio (95% CI)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex</td>
<td>Male</td>
<td>71</td>
<td>22</td>
<td>49</td>
<td>0.7 (0.3-1.8)</td>
<td>0.7</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>40</td>
<td>10</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>0-3.5</td>
<td>25</td>
<td>8</td>
<td>17</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.6-7.5</td>
<td>43</td>
<td>13</td>
<td>30</td>
<td>0.9 (0.3-2.7)</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>7.6-11.5</td>
<td>33</td>
<td>9</td>
<td>24</td>
<td>0.8 (0.3-2.9)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11.6-77.5</td>
<td>10</td>
<td>2</td>
<td>8</td>
<td>0.5 (0.1-3.1)</td>
<td>0.7</td>
</tr>
<tr>
<td>Nutritional status</td>
<td>< -2</td>
<td>60</td>
<td>17</td>
<td>43</td>
<td>1 (0.5-2.5)</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>> -2</td>
<td>47</td>
<td>14</td>
<td>33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>< -2</td>
<td>51</td>
<td>16</td>
<td>35</td>
<td>0.8 (0.4-1.8)</td>
<td>0.7</td>
</tr>
<tr>
<td></td>
<td>> -2</td>
<td>60</td>
<td>16</td>
<td>44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type of cancer</td>
<td>Leukaemia</td>
<td>25</td>
<td>9</td>
<td>16</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Lymphoma</td>
<td>31</td>
<td>10</td>
<td>21</td>
<td>0.8 (0.3-2.6)</td>
<td>0.8</td>
</tr>
<tr>
<td></td>
<td>Nephroblastoma</td>
<td>22</td>
<td>5</td>
<td>17</td>
<td>0.5 (0.1-1.9)</td>
<td>0.4</td>
</tr>
<tr>
<td></td>
<td>Other solid tumours</td>
<td>33</td>
<td>8</td>
<td>25</td>
<td>0.6 (0.2-1.8)</td>
<td>0.4</td>
</tr>
<tr>
<td>Anthracyclines (cumulative dose mg/m2)</td>
<td>0-30 (up to 25th percentile)</td>
<td>29</td>
<td>5</td>
<td>24</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>30.1-94 (up to 50th percentile)</td>
<td>26</td>
<td>9</td>
<td>17</td>
<td>2.5 (0.7-8.9)</td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td>94.1-201 (up to 75th percentile)</td>
<td>30</td>
<td>6</td>
<td>24</td>
<td>1.2 (0.3-4.5)</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>> 201 (> 75th percentile)</td>
<td>25</td>
<td>12</td>
<td>13</td>
<td>4.4 (1.3-15.4)</td>
<td>0.02</td>
</tr>
</tbody>
</table>

There was no association between sex and frequency of cardiac dysfunction. Using the youngest age category as a reference, we further explored age as a risk factor by categorization. There was no association between age and cardiac dysfunction. Overall, nutritional status (Wt/Age or Ht/Age) was not a statistically significant risk factor for cardiac dysfunction.

A comparison was done of the proportion of children with abnormal cardiac function among the various types of malignancies. For this analysis children with leukaemia were taken to be the comparison group. There was no difference in risk for cardiac dysfunction by type of malignancy.

Categorized cases and controls into quartiles and using the lowest quartile as a reference we compared risk in each quartile. Above cumulative anthracycline dose of 201mg/m2 there was a 4.4 increased risk of cardiac dysfunction (OR 4.4, 95% CI 1.3 - 15.4, p value 0.02) with an attributable risk percentage of 77%.
MULTIVARIATE ANALYSIS

Table 10.0: Logistic Regression

In order to explore interaction, anthracycline cumulative dose which was an important risk factor in univariate analysis and cumulative cyclophosphamide dose which was a potential confounder as it is clinically cardiotoxic especially at doses >120 – 240 mg/m², were put in the logistic regression model below:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Odds Ratio</th>
<th>95%CI</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anthracycline cumulative dose</td>
<td>1.005</td>
<td>1.001 – 1.009</td>
<td>0.02</td>
</tr>
<tr>
<td>cumulative dose (mg/m²)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cyclophosphamide cumulative dose</td>
<td>1.0</td>
<td>1.0 – 1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>cumulative dose (mg/m²)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Anthracycline cumulative dose remained an important risk factor for cardiac dysfunction in children on treatment for cancer at KNH. For every 1mg/m² increase in anthracycline cumulative dose there was a 1.005 increased odds of cardiac dysfunction.
DESCRIPTION OF ASSOCIATED ECHOCARDIOGRAPHIC ABNORMALITIES

In addition to measurement of left ventricular function by M-Mode Echocardiography, other abnormalities were noted as documented in the table below.

<table>
<thead>
<tr>
<th>Abnormality</th>
<th>Frequency N = 111</th>
<th>Proportion with abnormality 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pericardial Effusion</td>
<td>21</td>
<td>19% (13 – 27%)</td>
</tr>
<tr>
<td>Diastolic Dysfunction</td>
<td>26</td>
<td>23% (17 – 32%)</td>
</tr>
<tr>
<td>Valvular Abnormalities</td>
<td>10</td>
<td>9% (5 – 16%)</td>
</tr>
<tr>
<td>Cardiac Infiltrates</td>
<td>7</td>
<td>6% (3 – 12%)</td>
</tr>
</tbody>
</table>

The commonest abnormality was diastolic dysfunction in twenty six (23%) children. Eighteen (90%) of these had restrictive pattern. Of the ten patients with valvular abnormality mitral valve abnormality was found in six (60%) and the remaining four (40%) had tricuspid regurgitation.
Table 12.0: Association of various cardiac abnormalities with left ventricular function

<table>
<thead>
<tr>
<th>Cardiac Abnormality</th>
<th>Cases N=32</th>
<th>Control N=79</th>
<th>OR (95% CI)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pericardial effusion</td>
<td>12/32 (38%)</td>
<td>9/79 (11%)</td>
<td>3.5 (1.3-9.2)</td>
<td>0.02</td>
</tr>
<tr>
<td>Diastolic dysfunction</td>
<td>14/32 (44%)</td>
<td>12/79 (15%)</td>
<td>4.6 (1.8-11.8)</td>
<td>0.002</td>
</tr>
<tr>
<td>Valvular abnormalities</td>
<td>4/32 (13%)</td>
<td>6/79 (8%)</td>
<td>1.4 (0.4-5.2)</td>
<td>0.07</td>
</tr>
<tr>
<td>Tumour infiltration</td>
<td>5/37 (16%)</td>
<td>2/79 (3%)</td>
<td>5.6 (1.0-30.6)</td>
<td>0.04</td>
</tr>
</tbody>
</table>

This analysis was restricted to the subset of patients with left ventricular dysfunction. Paediatric oncology patients on chemotherapy with pericardial effusion were three (3) times more likely to have abnormal cardiac function as measured by left ventricular function (OR 3.5 95% CI 1.3-9.2, p value=0.02) while those with diastolic dysfunction were four and a half (4.5) times more likely to have abnormal cardiac function as measured by left ventricular function (OR 4.6 95% CI 1.8-11.8, p value = 0.002). The presence of tumour infiltrates lead to a five (5) times more likely chance of abnormal cardiac function as measured by left ventricular function (OR 5.625 95% CI 1.036-30.542, p value = 0.040).
Sinus tachycardia was the commonest ECG abnormality.

<table>
<thead>
<tr>
<th>Abnormality</th>
<th>Case</th>
<th>Control</th>
<th>OR (95% CI)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low limb voltage</td>
<td>4/32 (12.5%)</td>
<td>5/79 (6%)</td>
<td>1.7(0.4-6.6)</td>
<td>0.5</td>
</tr>
<tr>
<td>ST Changes</td>
<td>3/32 (9%)</td>
<td>8/79 (10%)</td>
<td>0.7(0.2-2.9)</td>
<td>0.7</td>
</tr>
<tr>
<td>Ventricular Hypertrophy</td>
<td>5/32 (15.6)</td>
<td>6/79 (7.5%)</td>
<td>1.7(0.5-6.2)</td>
<td>0.5</td>
</tr>
<tr>
<td>Sinus tachycardia</td>
<td>11/32 (34%)</td>
<td>27/79 (34%)</td>
<td>0.7(0.3-1.7)</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Of the nine (9) patients with low limb voltages, four (4) patients had pericardial effusion, two (2) had features suggestive of myocarditis while one (1) had features suggestive of pericarditis. The mean haemoglobin level for cases was 8.5 mg/dl and for controls 9.2g/dl. Overall, ECG changes were similar amongst cases and controls and none were statistically significant.
DISCUSSION

Childhood cancers continue to be an important area in paediatrics. The harmful side effects of the various chemotherapeutic agents versus their useful anticancer effects present in management a challenge. With regard to long-term survivors, the possible late effects of treatment and their consequences for the quality of life are a major concern.

In this study left ventricular function was evaluated in a total of 111 paediatric cancer patients. All the patients were recruited from the paediatric wards and were on treatment for cancer. Standard guidelines set by the Cardiology Committee of Children’s Cancer Study Group were used to measure abnormal left ventricular systolic function. Patients with Ejection Fraction <55% or Fractional Shortening <29% were grouped as cases and those with Ejection Fraction >55% or Fractional Shortening >29% were grouped as controls. Various risk factors were evaluated including type of tumour, duration of treatment and chemotherapeutic agents such as use of anthracyclines and cyclophosphamide [6]. Other cardiac abnormalities seen on ECHO/ECG, such as, diastolic dysfunction, pericardial effusion, valvular abnormalities, tumour infiltrates and ECG abnormalities were also documented.

The point prevalence for cardiac dysfunction in children on treatment for cancer was 29% (95%CI 21.5-37.9). This represents about third of the patients on treatment and is at a higher frequency than previously documented (Table 1.0). Cumulative anthracycline dose was also an important risk factor OR 1.006 (95% 1.001-1.012), p value 0.02. The relative risk of cardiotoxicity at cumulative dose <300mg/m\(^2\) has been documented as 1-2% (Table 1.0). But in our study the relative risk above 200mg/m\(^2\) was 4.4% (OR 4.4, 95% CI 1.3-15.4, p value= 0.02) suggesting increased susceptibility amongst our population. It is worth noting that black race has been noted
be a risk factor for anthracycline cardiotoxicity. This maybe due to perhaps due to race related differential pharmacogenomics. Since all our study patients were black this risk factor could not assessed in our study.

As shown in other studies, young age at diagnosis is one of the strongest predictors of a thin left ventricular wall which leads to an elevated afterload in patients treated with anthracyclines [4,9]. In the logistic regression model, young age was not statistically significant at p value 0.098. However analysis as a categorical variable (Table 5.0) showed the Odd’s ratio for cardiac dysfunction appeared to be reducing with increasing age suggesting that young may be a risk factor for cardiac dysfunction in children on treatment for cancer. The linear tread for p-value was however not significant. The small number of subjects analysed may have been the limiting factor.

Nutritional status, by Z Scores, was not a risk factor for cardiac dysfunction among the study patients. Z Scores are measure mainly of macronutrient status. Mohta R et al in New Delhi India, carried out a retrospective cohort on 47 children who had received anthracycline as part of their treatment and found that patients who developed anthracycline related cardiomyopathy had lower height for age (p=0.03) [10]. They however did not use standardized nutritional scoring methods such as Z scores and used mean value as tool for comparision. It is postulated that it is mainly the micronutrients – selenium and vitamin E that ameliorate the cardiotoxic effects of the anthracyclines [4]. These were not evaluated in this study and perhaps further research should go into this to expound the role of micronutrients in cardiotoxicity in our setting.
In addition to left ventricular systolic assessment of on ECHO other cardiac abnormalities were described. These include diastolic dysfunction, pericardial effusion, valvular abnormalities and tumour infiltration. Diastolic dysfunction was found in 26 (23%) of the total study patients with 18 (70%) of these having restrictive type. Bullock et al, carried out a cross sectional echocardiographic study of left ventricular function on 236 survivors of childhood cancers and compared with paired control data matched for body surface area and showed that diastolic dysfunction was a consequence of anthracycline induced cardiac damage [20]. They also found normal diastolic function – restrictive type to be the predominant type. He was unable to clearly show any clear relationship with systolic left ventricular dysfunction.

Some scholars have found quite the opposite. Drop et al carried out a prospective cohort study on 20 ALL survivors and 110 Wilms Tumour survivors who had undergone investigation of diastolic function at various stages of their treatment [21]. They compared their diastolic and systolic function in bid to find any correlation or predictive association. They showed a relation between increased cumulative anthracycline dose and reduced E and prolonged IVRT hence suggesting that cumulative anthracycline dose was a risk factor for diastolic dysfunction. Diastolic dysfunction—impaired relaxation was the predominant type in their study population. As a predictive tool, Dorup et al suggested that E velocity had a low sensitivity for predicting abnormal systolic function, although normal E velocity was a highly specific determinant.

Pericardial effusion was the second most common associated cardiac abnormality amongst our study patients. Twenty one (19%) of study patients were found to have pericardial effusion.
tinoblastoma and the lymphomas each had six (29%) patients with pericardial effusion. Leukaemias had five (24%) with pericardial effusion and only 1 (5%) patient with teratoma had an effusion. It is not possible to establish the exact aetiology of the pericardial effusions. One of the features of late cardiotoxicity is the development of pericardial effusions [7]. However we cannot rule out the role of tumour per se as being the cause of the pericardial effusion. Myocardial biopsy would offer useful histopathologic information.

Ten patients were found to have valvular abnormalities. Six (60%) of the ten children had mitral valve involvement. All these valves showed thickening, two had prolapsed, one had calcification with intracardiac tumour deposits. Primary involvement with mitral valve may suggest pre-existing rheumatic heart disease. The remaining four (40%) children with valvular abnormalities had tricuspid regurgitation with increased pulmonary pressures suggesting pulmonary hypertension. Previous research has suggested that pre-existing heart disease, including valvular disease, is a risk factor for cardiac dysfunction. Perhaps the number of patients screened with valvular heart disease was too small for use to sufficiently draw conclusions on the risk of cardiac dysfunction in a patient with valvular heart disease on treatment for cancer.

Tumour infiltrates were observed in seven (6%) of the total study patients. Three (43%) of these were leukaemic patients and two (29%) had neuroblastoma. Hodgkins lymphoma and rhabdomyosarcoma each had a one (14%) patient with tumor infiltrate. It is not possible to establish the exact aetiology of these intracardiac tumours but most probably they were secondary metastasis.

Although serial echocardiography monitoring of left ventricular function will allow for early identification of individuals susceptible to cardiotoxicity and hence early intervention, increases in
Blood troponin levels and myocardial uptake of radiolabeled antimyosin antibody are now emerging as the most sensitive and specific indicators of myocardial-cell injury [18]. Troponin levels and uptake of antimyosin antibody are elevated in patients with acute doxorubicin-induced cardiotoxicity, even in the absence of a reduced ejection fraction, and they correlate significantly with histological scores for doxorubicin-induced cardiotoxic effects and with echocardiographic abnormalities in these patients nine months later [22,23].
Strengths of the study

Study design was appropriate to answer the study questions. All patients had ECG and Echo done by blinded paediatric cardiologists.

Study Limitations

The study did not have baseline or serial ECHO available for patient reference. The study may not have had the study power to fully assess all the risk factors. The study design did not include taking urea & electrolytes and hence most ECG changes could not be directly ascribed to any of the risk factors. Lastly, there were no post chemotherapy patients, for example, those on radiotherapy or those who had completed treatment to assess cardiac dysfunction.

Conclusions

1. This study has shown that about a third (point prevalence 29%) of paediatric cancer patients on chemotherapy at KNH have cardiac dysfunction as exemplified by left ventricular dysfunction.

2. Cumulative anthracycline dose is a risk factor for cardiac dysfunction in paediatric oncology patients on chemotherapy at KNH. Above the cumulative dose of 200mg/m² the attributable risk percentage of cardiac dysfunction is 77%.

Recommendations

1. Serial echocardiography should be done on oncology patients undergoing chemotherapy where anthracyclines are part of the treatment protocol.

2. With an attributable risk percentage of 77% above cumulative anthracycline dose of 200mg/m², alternative non-anthracycline based treatment protocols are recommended above this level.

3. Lastly, a meta-analysis of published studies and randomised clinical trials should be done to further establish the safety of anthracyclines and to further assess the other risk factors in our population.
REFERENCES

12. Lipshultz SE, Lipsitz SR et al. Female Sex and High Drug Dose As Risk Factors For Late Cardiotoxic Effects Of Doxorubicin Therapy For Childhood Cancers. NEJM; 332: 1738-1744

APPENDIX I: PATIENT DATA SHEET

Case Control Study To Determine Risk factors For Cardiac Dysfunction In Children With Malignancies At Kenyatta National Hospital

Name: ___________________________ IP No: ___________________________

Study No: _______________ Recruitment Site: _______________

Age: _______________ Weight (Wt): _______________

Sex: _______________ Height (Ht): _______________

Date of assessment: _______________ Z Score Wt / Ht: _______________

Malignancy: ________________________ Stage of malignancy: _______________

Treatment Regime: ________________________ Date Rx Started: _______________

1. Cumulative dose of Doxorubicin _______________

 Daunorubicin _______________

2. History of Spinal or Mediastinal Irradiation _____ Amount in Rads _______

3. Cumulative Dose of Cyclophosphamide _______________
APPENDIX II: M-Mode Echo Data Sheet

M-Mode Echo For Patients enrolled in ‘ Case Control Study Of Cardiac Dysfunction In Children With Malignancies At KNH ’

Name: ___________ IP No: ___________ Ward: ___________

AO: ___________ RVD: ___________ IVS: ___________ EF: ___________

LA: ___________ LVDd: ___________ LVDs: ___________ FS: ___________

CO: ___________ HR: ___________ LVPW: ___________ SV: ___________

Diastolic Dysfunction:

E wave = ___________
A wave = ___________
E/A Ratio = ___________

Conclusion: ____________________________

Other Comments: ____________________________

NOTE: Based on the American Cardiology Committee of children with cancer study group. Cardiac dysfunction is defined as any one of the following:

- Ejection Fraction < 55%
- Fractional shortening < 29%

Echo done by ___________ Investigator: Dr. M. Shiroya-Wandabwa
APPENDIX III: SAMPLE ECHOCARDIOGRAMS I

Sample I: Two dimensional echocardiogram showing a large anterior and posterior pericardial effusion with left atrial tumour infiltration.

Key:
- RV = Right ventricle
- LV = Left ventricle
- RA = Right atrium
- LA = Left atrium

Conclusion: large pericardial effusion, left atrial tumour infiltration.
APPENDIX III: SAMPLE ECHOCARDIOGRAM II

Sample II: Pulsed wave Doppler assessing diastolic dysfunction.

Pulsed waved Doppler shows:

E wave = 2 ms
A wave = 5 ms
E/A ratio = \(\frac{2}{5} = 0.4 \)

Conclusion: diastolic dysfunction concurs with abnormal relaxation type.
APPENDIX III: SAMPLE ECHOCARDIOGRAM III

Sample III: Two dimensional parasternal long axis view showing thickened and calcified mitral valves.

Key:
AM: Anterior mitral leaflet
PM: Posterior mitral leaflet
RA: Right atrium
AO: Aortic orifice
LV: Left ventricle
LA: Left atrium

Conclusion: mitral valve calcification.
APPENDIX IV: CALCULATION OF LEFT VENTRICULAR INDICES

The cardiology committee of the children cancer study group [6] defines Cardiac dysfunction as:
- Left ventricular ejection less than 55%
 OR
- Left ventricular fractional shortening below 29%

Echocardiography

Diastolic and systolic dimensions of left ventricle (LV) will be measured using M-mode echocardiography. The standard indicators of LV function are Fractional Shortening (FS) and Ejection Fraction (EF).

Fractional Shortening (FS) will be calculated as follows:

\[
FS = \frac{LVIDd - LVIDs}{LVIDd}
\]

LVIDd: left ventricular diameter in end diastole
LVIDs: left ventricular diameter in end systole

Ejection Fraction will be calculated as follows:

\[
EF = \frac{LVDV - LVSV}{LVDV}
\]

LVDV: left ventricular end diastolic volume
LVSV: left ventricular end systolic volume

The values of ejection fraction below 55% and fractional shortening below 29% assessed by Echo will be considered significant deterioration in cardiac function as per the guidelines of Cardiology Committee of the Children Cancer Study Group, USA.

Electrocardiography

A rest 12-lead ECG will be taken on all study patients.
will continue to review the patient as and when necessary in consultation with the primary clinician. Where possible and in consultation with the haemato-oncologist patients with cardiac dysfunction may have their treatment regimes reviewed.

PROCEDURE
If you volunteer child to participate in this study, I will ask you questions concerning your child’s health and carry out a physical examination on your child. After this you will be given an appointment day and time when your child, accompanied by a study assistant and myself will be taken to a room within the confines of Kenyatta National Hospital where specialist doctors will look at the way the heart of your child is working using a special machine (Echocardiogram, ECHO) and the rhythm of the heart (Electrocardiography, ECG). This information will be coded and entered onto a patient data sheet.

RISKS, STRESS OR DISCOMFORT
ECG and ECHO are painless, non-invasive method of assessing the function of the heart. There will be no physical pain, emotional or psychological stress during these procedures.

OTHER INFORMATION
Participation is voluntary. There will be no extra cost to you for ECHO or ECG. The results of the tests will be kept confidential with all information and availed to your child’s primary doctor only. The information obtained will allow appropriate remedial measures, where possible, to be started for your child and it will beneficially influence treatment protocols for children with cancer in the future. On going care of your child will always take first priority and at no time will participation in this study interfere with your child’s primary care.
You may quit the study at any stage without any obligation or penalty and the management of your child will not be compromised.
APPENDIX V: CONSENT FORM

For Subject Participation In Study for “Risks Factors of Cardiac Dysfunction In Children with Cancer at Kenyatta National Hospital”

IP NO.: _____________________________

STUDY NO.: ___________________________

INVESTIGATOR’S STATEMENT
My name is Dr. M. Shiroya (Investigator) of the Paediatrics Department University of Nairobi. I am carrying out a study to look at the functioning of the heart in children on treatment for cancer and what influences this functioning.

PURPOSE OF THE STUDY
There are different ways of treating cancer including use of medications (chemotherapy) and use of radiation (radiotherapy), these methods of treatment can sometimes affect the work of different organs including the heart.

By carrying out this study I seek to establish which drugs or combination of drugs are more likely to influence the heart and at what dosages. I want to establish if there is any risk associated with the nutritional status of the children, their baseline liver or renal function tests.

BENEFITS OF THE STUDY
This will information will in the future serve to help clinicians establish protocols for early detection of cardiotoxicity in paediatric oncology patients perhaps through regular and routine echocardiography, followed by reduction in cardiotoxic drugs where possible or variation in treatment regimes.

Information of your child’s cardiac status obtained by ECG and ECHO will be given to your child’s primary doctor. The management and care of your child will continue to be multidisciplinary. ECHO and ECG will serve as baseline for subsequent monitoring. Where cardiac disease is established, for example, pericardial effusion, cardiac arrhythmias, the attending cardiologist will immediately prescribe the appropriate treatment. The cardiologist
SUBJECT'S STATEMENT:

The study described above has been explained to me. I agree to volunteer my child to participate in the study. I have had a chance to ask questions. I have been told that if I have future questions about the research or about my rights as a subject, I can ask the Investigator. I have been told that I am free to withdraw my child from the study at any time without medical management of my child being compromised.

Name____________________________________ Date __________________________

Name of Child: ____________________________

Signature of Parent / Guardian____________________________