

Growth, Health and Nutritional Status
of Sacondary Schan Children (15 m 18 years)
in Machakos District as affected by
certain factors. \||
b.j
C. M. KEA

A thosis submitted in part fulfilment for the degree of Master of Science (Nutrition), Univarsity of Nairobi.

This thesis is my original work and has not been presented for a degree in any other University.

C. M. Kea

This thesis has been subinitted for examination with my approval as University Supervisor.

$$
\int=H B+t
$$

Prof. F. J. Bennett
Page
Preface i
Surmary ijむ
CHAPMER 1 1
INTRODUCTION 1
1.1. General Introduction 1
l.2. Historial Background of Nutrition 2
1.3. Definition of Terms Used 5
CHAPRER 2 11.
REVIEN OF IHE PKOBLEM FROM ITTERATURE 11
2.1. Adolescence and puberty (General physical growtis) 11
2.2. Nutrition of the adolescent 14
2.3. Studjee or nutritional etatue of adolescents 19
2.4. Conclusion 59
CHAPYER 3 62
PJRPOSE OF SIUDY, OEJECPIVES, HYP(Mm
THESES AND IHEORETICAL PROBLEM 62
3.1. Introduction 62
3.2. Purpose of Study 62
3.3. Objactives of the Study 65
3.4. Nescarch hypotheses 66
CHAPTER 4 68
MACHAKOS DISTAICT IN GENEREL 68
4.1. Selection of the area 58
4.2. Information on Machakos District 69
CHAFTER 4 (conta.) Page
4.3. The Attitudes, Beliefs, Custons and Practices of the Wakamba 74
4.4. The Selected Schools 82
CHAPMER 5 92
Methods 92
5.1. General 92
5.2. Selection of the sample (subjeats) 94
5.3. Collecting Data 94
5.3.1. First Examination 94
5.3.2. Second Examination 100
5.4. Questionnaires 102
5.5. Food Intake 104
5.6. Home Visiting 105
CHAlMER 6 107
RESULTS 107
6.1. The First Examination 107
6.1.1. Selection of the subjects 107
6.1.2. Clinical signs 107
6.1.3. Anthropometric findings 107
6.1.4. Weight gain 107
6.1.5. Anthropometric assensuent according to the standards of referonce 107
6.1.6. Hb levels 1.07
6.1.7. Stool Results 107
6.1.3. Conclusion 107

CHAPTER 6 (conta.) Page
6.2. Second Examination 107
6.2.1. Developmental Stages (sex
maturity) of the boys 107
6.2.2. Clinical signs in developmental stages

107
6.2.3. Anthropometry - mean values and
standard deviations 107
6.2.4. Anthropometry - number and percentage of those below the Btandards of reference$10 ?$

6.2.5. Hio levels, means and
standara deviations 107
6.3. Questionnajres 108
6.3.1. Onset of menstruation 108
6.3.2. Knowledge of nutrition of the students 208
6.3.3. Know? ${ }^{\text {w }}$ dge of nutrition of the mothers 108
6.4. Food Consumptions 108
6.4.1. Food Availability 108
6.4.3. Food Purchase 108
6.4.3. Food pattern and menus forboarders108
6.4.6. Food pattern for day stuçonto 108
6.4.5. Nutritive value and a.dequacy of the diets 108
CHAPTER 6 (contd.) rage
6.5. Home Visiting 108
6.5.1. Education level of the Parente 108
6.5.2. Occupation of the household head 108
6.5.3. Hygienic Practices 108
6.5.4. Types of Houeing 108
6.6. Relationship betweon the socio-economic factors and the anthropometric measure- ments and clinical signs of the children 109
6.7. Conclusion 109
CHAPTER 7 215
DISCUSSION 215
CIIAPIER 8 226
CONCLUSION AND RECOMMENDATIONS 226
CHAPRER 9 235
ACKNOWLEDGEMENTS 235
CHAPRER 10 237
RBFERENCES 237
APPENDICES 248

Table 1 Numbers of children, delected,
excluded and remaining according
to schools and sex

Table 2 Prevalence of deficiency signs
for boys and girls 113

Table 2.1. Provalence of deficiency signs day students vorsus boarders114

Table 3 Mean values for anthropometric measurements for boys and girls117

Table 3.1. Mean valuee for weights(kg) for boarders and non-boarajers according to ages118

Table 3.2. Mean valueb for heirhts (cm) for boarders and non-boarders according to ages

Table 3.3. Mean valuee for arm circumferonce (cm) for boarders and non-boarders according to ages

Table 3.4. Mean values for skinfold thickness (mm) for boarders and nonboarders according to ages

Table 4 Mean weights and standard deviations of boarders at the beginning and end of a term

Table 5 Weight according to of standard of the adolescont boys and girls accurding to ase

Table 6 Weight according to \% of standard of adolescent boys according to age and location

Table 7 Weight according to \% of standard and adolescent girls according to age and location

Table 8 Height according to \% of atandard of adolescent boys and girls according to age

Table 9 Height according to \% of atandard of adolescent boys according to age and location

Table 10 Height according to \% of etandard of adolescent girls according to age and location

Table 11 Weight for height according to \% of the standard of adolescent boys and girls accordjing to age and location

Table 12 Weight for height according to \% of standard of adolescont boys according to age and location

Table 13 Weight for height according to \% of standard of adolescent girle according to age and location

Table 14 Arm circumforence according to \% of the standard of adolescent boys and girls according to ages

Table 15 Arm circumference according to \% of standard of adolescent koys according to age end locatiou 134

Table 16 Arm circumference according to \% of standard of adolescent boys accordine to age and location 135
Table 17 Arm circumference according to \% of standard of adolescent girls accordine to age and location
1.36

Table 18 Skinfold thickness according to \% of the standard of adolescent boys and girls according to age 137

Table 19 Skinfold thickness according to \% of the standard of adolescent boys according to age and location 138
Table 20 Skinfold thickess accordjing to \% of the standard of adolescent girls occording to age and location 139
Table 21 Percentages of adolescents below selected anthropometric standards according to location and sex 140

Table 22 Mean baemoglobin content (in $\mathrm{g} / 3.00 \mathrm{ml}$) and standard deviations for boys and girls according to ages 143

Table 23 No. of students examined for present of parasites for each school and number prosent and percentage

Table 24 Presence of parasites and percentages as observed in firls and boys

Table 25 Presence of parasites, types and percontages as seen in boarders and non-boarders

Table 26 Parasite infection seen together with other conditions in students (15-18 years)1.46

Table 27 Summary of Bignificant difference in clinical signs, anthropometry, haemoglobin levels and presence of parasites1.48

Table 28 Boye grouped in their different stages of development151.

Table 29 The means du meights (kg) ana heights (cm), arm circumference (cm) and skinfold thickness (m) of the boys at different stages 151

Tąble 30 Prevalence of deficiency sicne .53
Table 31 Mean values and standard deviations for the anthropometric measurements for the mid-adolescent and postadolescent boyr154

Table 32 Percentages of mid-adolescents and post-adolescent boys below selected anthropometric standards according to locations

Table 33 Mear hacmoglobin (g/100 ml) and standard deviations mid-adolescent

Table 34 Age at which menarche appeared for gixls in Machakos District 159

Table 35 Frequency of answers to each question 161
Table 36 The level of education of mothers 163
Table 3 ? Type of foois purchased by families per week and their frequency 170

Table 38 Foods eaten by the day students (24 hour recall) 174

Table 39 Table used for Recommended daily intakes of nutrients 177

Table 40 Averaga nutrient intake and percentage adequacy per student per day 178

Table 41 Relative distribution of the parents of 62 day scholars, according to kind and duration of education 185

Table 42 Occupation of the fathers of the
day scholars
Table 43 Level of education in relation to occupation of fathers 188

Table 44 Frequency distribution of families according to the type of water supply
Table 45 storage facilities for cooked foods and frequency of families291

Table 46 Storage facilities of raw foods and frequency of familios191

Table 47 Number and froquency of rooms in the visited homes193

Table 48-1 Reiationship between occupation of the Household head (H/H) and weight for age of the children

Table 48-2 Relationship between occupation of H / H and height for age of the children 196

Table 48-3 R ationship between occupation of H / H and weight for height of children

Table 48-4 Relationship hetween occupation of H/E and arm circunference for age of childron197

Table 49-1 Relationship between education level of the H / H and weight for age of children198

Table 49-2 Relationship betwoen education level of the H / H and height for age of childron198

Table 49-3 Relationship between education of the H / H and weight for height of children199

Table 49-4 Relationship betwean education of the H / H and arm circumference for ege of children

Table 50-1 Relationship between family size and weight for age of the children

Table 50-2 Relationship between size of family and hoight for age of the children 200

Table 50-3 Relationship between size of family and woight for height of the children

Table 50- Melationship between size of the family and arm circumerenco for age of the children

Table 51-1 Relationship between type of housing and meight/age of the children

Table 5l-2 Relationship between type of housing and height/age of the children

Table 51-3 Relationship between type of housing and weight/heright of children

Table 51-4 Relationship botweer type of housing and arm circumference/ age of children

Table 52-1 Rolationship between marital status of the mothers and weight/ age of children

Table 52-2 Rolationship between marital status of the nothers and hoight/ age of children

Table 52-3 Relationship between marital statur of mothers and weight/ height of children

Table 52-4 Relationship between marital status of mothers and arm circumference/age of children

Table 53-1 kelationship between occupation of the H / H and presence of clinical signs of chilaren 207

Table 53-2 Relationship between education of H / H and the presence of the clinical signs of children 208

Table 5z-3 Relationship between sizo of the family and clinical signs of the children

Table 53-4 Relationship between the type of housing and the clinical signs of children

Table 53-5 Relationship between marital status of the mothers and the clinical signs of the students

Table 54 Relationship between the presence of parasites in the children and hygiemic practices in the homes 210
Map 1 Hap of Kenya showing the position of the study area70
Map 2. Machakos District (study area) 71
PICTURES
Picture 1 \& 2 Some healthy adolescents inthe sample from Kangundo Hich Sch.83
Picture 3 One of the schools in the study showing a neat and healthy school ervironment 86
Plcture 4 Health school girls from
Machakos Girls' High School 86
Picture 5 \& 6 Kyanguli Secoidary School and some of the students in the sample 90
Picture 7 A market place ai Rangundo in Machakos District 169
FIGURES
Fig. 1 Distribution of children in classes 93
FYg. 2 "Line of Flow" General order of the first examination in each school 95
Fig. 3 Assessing midmpoint of upper arm 98
Fis̃. 4 Measurement of mid-upper armcircumference98
Fig. 5 Measurement of triceps skinfold with
harpender calipers 93
Fig. 6 Average contribution of various foods to the total intake of different nutrients in two boarding schools in Machakos District 1976180

PREFACE

Many boys and giris pass through puberty in the last years of primary school but some mature sexually and physically in secondary school. The stresses of greatly increased growth at adolesm cence and of social, cmotional and soxual derselopment, then take place in this critical transition phase between primary and secondary school or in the early years of secondary school. When studying a secondary scbool child we are actually atuaying an adoloscent with his problems.

Adolescence is characterized by a series of biochemical, anatomical and mental changes that are not found in members of other age groups. It is these sapid, extensivo changes that difforentiate adolescents from children and from adultz and make this a special and an interesting group to study. And these differences must be taken into account when adolescents and theis hoalth problems are being given attention. Since the adolescents differ phyelologically and psychologically from children and adults, these differences should be better understood and analysed. Only Ehen this has been done, mill it be possible to toke acequate account of such factors as the rapid growth of
adolescents, their high dogree of activity, the interrelationship of their growth and theie endocrine systems, their high nutritional requirements and their requirements for a healthy personality development.

It is therefors hoped that this study will provide valuable and neaded information on the adolescents, their health, growth and nutrition and feeding habits; and the findings therefore will motivate further research in other areas of interest related to this group.

The first thres Chapters of the study are on general motivation as stimulated by sources such as ifterature on previous studies done on adolesm cents, mostly in schools and institutions in other areas. As this study щas done in Machakos District in Kenya, a brief outline of this district, its geographical aepects, its medical and educational facilities, and oi its pecple, the Akamba nith their customs and bebaviour is given in Chapter Four. Chapter Five, Six and Seven contain the methods used for collecting the data, the findings and discussions on the findings of the study. The final Chapter is on conclusions and recommendations.

Chronological age is a poor index of growth and maturation during adolescence because of the wide variation in stage of development among persons of the same age. A study done in four secondary schools in Machakos District, Kerya in 1976-77 on boarding school children and day studonts of ages between 15-18 years has brought out thie fact clearly. Of the 102 girls who had to fill out questionnaires to show whether they had had menarche, 98% of them had had thair menarche. This showed they wefe in physical doveiopment already adult female. Whereas of the 80 boys examined physically we find that 5% ware still in stage $0-1$ of their sexual maturation, 4% were in stage 2 , 26% in stage $3,31.3 \%$ in stage 4 and 43.8% in stage 5. This shows only 43.8% of the boys were adults compared to 98% of the girls in the same age group. From the boys anthropometric measurements, it ie observed that between stage 1 and otage 5 thare is an increasc of 18.5 kg . mean weight and 19.6 cm . in mean height.

Of the clinical disorders of the adolescent, anaemia was found in 4% of the girls and 5% of the boys. However the differnce was not significant.

Pallor was more significant in girls than in boys. The fir levels were found to bo higher in boys than in girls in all agos. Goitro and obesity of milder forms vere more significant in girls than in boys. Cheilogis of lips was the most comon deficiency sign found in both sexes; 30.6% of the girls and 39.5% of the boys. More day girls were obese compared to the koarding girls.
52.6% of the boarding boys and 33.3% of the day boys were found to be underwelght for age compared to 4.3% boarding girls and 3.4% day girls. Of the boys 66.6% mid-adolescent boarding boys, and 41.2% mid-adolescent day boys were found to be underweight for age compared to 22.2% postmadolescent boarding boys and 15.5\% post-adoleacent day boys.

A total of 25.5% of the studenis examined had parasite infections, of these 59% showed clinical signs of nutritional deficiencies as well. 41. 5% of the baarding girls had intestinal paiam sites compared to 16.7% day girls, 21.6% boarding and 23.5\% day boys. A significant difference in the presence of intestinal parasites existed between the boarding and day girls. Schistosomiasis mansoni was present in 12.4% cases, पookworm 6.5\%, Ascaris 4.6% and Trichuris Trichura in 2% cases.

Through questionnaires, it was seen that these adolescerits had a very poor knowledge of the caumes of malnutrition and the nutritional needs of the vulnerqble groups. Mothers' answors to their questionnaire revealed that they had an idea of the nutritional needs of the members of the families.

Moal patterns of the day students revealed a very low intake of meat and fruits in their diets. For the boarders, 2 very low intake of vitamin A is rovealed in their diets. Girls getting 8.7% and boys getting 15.9% of their recome mended allowances. Other low intakes are Calcium, riboflavin and niacin, Protein, Thiamin and Ascorbic acid intake for both sexes exceeded the recommended allowance. 14\% of the total protein intake was from animal source, and maize was the main contributor of the protein.

Of the 62 homes visited 37% of the fathers and 55\% of the mothers had had an formal education. 45.2\% of the fathers were farmers, and only 6.5\% were employed in high skilled jobs. Of the fathers who had had no education approximatoly 48% vere farmers, 25% were employed 3.8 unskilled labourers. Thus housing conditions examined protrayed a low
level of living conditions as seen in the number of roome, building materials and type of fuel used. This is expected when considering that quite a number of the fathers are lowly paid peopie.

This study was therefore done in a community where the children in secondary school come from mostily poor agricultural backgrounds and it is thus fairly representative of much of rural Kenya.

CHAPMER I

INTRODUCTION

1.1. General Introduction

Today it is clearly recognized in most Airican countries that no saccessful econimic development can be achieved by people who live under conditions of poor health and nutrition. Much has beon done in Kenya by the Government, and private (viluntary) national and inter. national ork inzations to improve the health of families through medical aervices and nutrition education. Nutriticnal rehabilitation centres, for exauple, have sprung up in nost parts of Kenya. Thesg were established apecifically to improve the health of the ralnourished preschool child and the health and nutritional knowledge of the mothers.

Nutrition, in some secondaxy schools is given as a subject and a sot syallabus is given by the Governcent. This shows the concern of the Government in trying to improve the health and nutrition of its people. The Ministry of Health has a special nutrition section which conducts research and sometimes distributes D.S.M. (milk), all in the bid to improve the nutritional status of the people. School lunch programeds are also run by bodies such as the

National School Feeding Council and the Government in various parts of the country.

Research nas bean dcne by the Government, through the Ministryes of Health, and Housing and Social Services and voluntary bodies to study the nutritional problems of various groups. Mast of the groups studied have besn the pre-school child, infants and expestant mothers. The study of the nutritional. status of the adolescent has somehow been left out.

This stuoy looks at the autritional status of the secondary school child who is passing through his adolescence in Kenva today. The srea chosen is Machakos District. The parameters used are the height, weights arm circumference, ard triceps skinfold. In addition clinical examination was done, biochemical and leboratory tests carried out and dietary habits and food consumptioa were examined. The hones wore visited to determine the level of living.

1.2.Historical Backrround of Nutrition

To show the importance for good health in rood and nutrition a brief historical outline of the subyect seems appropriate。

Man's interest in food bogan before the dawn of civilization and it has continued to grow throughout the ages. However, this interest did not develon into a distinct science of nutrition until the aineteenth century.

Scheidner (Gothrie 1967) has very aptly divided the history of nutrition into 3 eras:

1. the naturalistic era (400 B.C. - 1750 A.D.)
2. the chemical analytical era (1750 A.D.-1900)
3. the biological era (1900 to the present): During the aaturalistic cra poople had vague ideas about the quality of food, most of which revolved around taboos, magical powers or the medisinal value of food. In Biblical times Daniel observed that men who ate pulees and drank water thrived better than those who ate at the King's food and Shank wine. Hippocrates, the father of medicine, in his discuscion of fnod in health and disese in 400 B.D. considered focd one univercal nutrient. Sanctorius, Italian physician made observations on body weight. Harvey and Apallan zani both with their interest in circuiation and digesm tion, made observations that eventually facilitated the study of nutrition In 1747 Lind, a British physician made the first controlled nutrition experiment to find a cure of scuris from twelve soldiers with six different substances. He determined that either lemon or lime juice was more effective than others in curing the disease.

The chemical - analytical era in the study of nutrition was initiated in the l8th century by Lavoisier, a Franch fcientist wo bocame interested in the study of metabolism or what becones of the food
after it is digeeted. Lavoisier was followed in the nineteenth century by illustrious men such as Liebig, Voit and Rubner.

Early in the 20th century research workers in food chemistry and in physiology in Europe, America and Japan demonstrated the need for goodquality protein for the growth of aniwals. Later the concept of the number and the type of minerals needed for growth came to include trace elemants, as well as those present in larger amounts. At the same time other workers had shown the presence and the need for certain "accessory food factors", later called vitamins. Then followed in rupid suceession studion of amino acids, essential fatty acids, hormones, onzymes, chemical regulators and intermediary products of digestion and metabolism.

Kesearch methods and scientific tools have kept pace with changing concepts. Nutrition restarch today encompasses more and more facets requiring teams of scientists from several disci= plines. Survey teams conducting nutritional status studies may require a physician, a nutritionist, a nurse, a biochemist, an anthropologist and a laboratory technician. New methods and tools for research have permitted progress from the oarlier and sometimas crude animal experiments to more accurate cbecrvations on humans.

Abstract

The importance that political leaders attach to nutrition is best illustrated by the fact that the firsi asency authorized within the Unjted Nations (U.N.), was the Food and Agricuitural Organization, comonly known as FAO. In 1945 it was charged with the responsibility of devising ways to improve the nutritional status of the morld's population as ono of the major pathways to peace. Since thon interest in international nutrition problems has increased rapidly. Numerous conferences are devoted to discussion of efforts to improve the nutritional status of the expandizf world populations. The necescity of making maximum use of inतigenous food producta to provide a level of nutrition caydble of supporting the health and promoting individual productivity is an over-present challenge to nutritionists and planners.

1. 3. Defjnitions nf terms used

In order to come to a common understanding of certain of the terms to be used in this study, it secms well to consider what is meant by various relatod terms.

1.3.1. Nutrition

Turner, D. (1965) defined autrition as: "Combination of prom cesses by which the living organism receiven and utilizes the materials (food) necessary for the maintenanco of its functions and for the growth and renewal of its components".

The same definition applies
in this stualy.
1.3.2. Nutritional Status

Turner (1965) dafines nutritiow nal status "Ihe condition of the body resulting from the utilization of the essential nutrients available to the body".

It may be good, fair, or poor, depending on the intake of dietary essentials, on the relative need for them, and of the body's ability to utilize them.

Good nutritional status is noted when man benesits from the intake of a well-balanced diet.

Good nutrition is essential for norraal orgen development and functions for normal reproduction; growth and
maintenance; for optimum activity and working efficiency; for resistance to infection, and for ability, to reoair bodily damage or injury.

Poor nutritional status results when man is deprived of an adequate amount of the essential nutrients. This is relative. Domands may go up at times 0.g. as in illness, and intake being constant, may become inadaquate.
1.3.3. The Pathogenesis of Deficiency

A nutritional deficiency disease ultimately develops when inadequate amounts of essential nutrients are provided to the cells for their normal metabolic functions. The nutritional deficiency may be (a) primary nutritional inadequacy caused by a faulty diet i.e. one that lacks essential nutrients either in kind or amount or provides an imbalance of mutrients.
(b) Secondaxy or conditioned nutritional
inadequacy resulting from factore that
interfere with the ingestion, absorption, or utilization of nutrients as well as from metabolic or functional conditions that increase the requiroment for or
cause unusual destruction or abnormal excrem tion of nutrients. (Jolliffe, N. 1962).
2.3.4. Malnutrition

Malnutrition has recently been defined as a pathological state resulting from a relative or absobute deficiency or excess of one or more essential nutrients, this state being clinically manifested or detected only by biochemical, anthropometric or physiolnaical tests (JGlliffe 1966).
1.3.5. Undernutrition the pathological state resulting from the consumption of an inadequate quantity of food over an extended period of time.
1.3.6. Spocific deficiency - tho pathological state resulting from a relative or absolute lack of a spacific nutrient.
1.3.7. Overnutrition - the pathological strits resulting from the consumption of an excesm - sive quantity of food, and hence $\&$ calorie excoss, over an extendod period of time.
1.3.8. Puberty and Adolescence

The term puberty is used in the medical and legal literature to deacribe several slightly different phases of sexual maturation lying betweon childhood anci adulthovd.

The term 'adolescent' was used by Ellis and others to refer to girls who had passed mezarche (the first menstruation) but not yet reached maturity and to boys in a roughly similar stage. (Mitchell, 2950). Both the terme adolesm cence and puberty are used interchangeably in this study. In general, it may be stated that girls reach puberty about one to th. se years sooner than boys. The menarche is often msed as a dividing line betweer pre and post puberty in the femaio. No such sharp division can be used in boys (Watson 1967).

1.3.9. Nutrionte

Nutrients in food are those chemical components that perform one of thrse roles in the body: to supply energy, to regulate body processes, or to promote the growth and ropair of body tiscue.
1.3.10. Health

Health can be defined as "soundness of body", "state of bodily or mental and social well-being". Health is in fact, a variable condition of body 28 in good, bad, poor or. ill health. At its best it is" "that state of being in which all parts
and organs are sound and in proper conditions; that condition of the body and its various parts and functions which conduces to efficient and prolonged life." It implies moreover, the ability to produce and rear offspring fitted to live efficiently to perform the ordinary functions of their specieb. This optimum state of being can be attained, whes, but only when, the animal organism is adequately nourishew.

CHAPTER 2

REVIEH OF THE PROBLEM

2.1. Adolescence and Puberty (General Physical Gronth)

Rates of Growth
Krause (1966) pute the rates of growth in four simple phases: a period of very rapid growth in both height and weight during infency (birth to 1 year); a pericc of clowgr but faixly uniform gain throughout early and middlo childhood (1 year to 12 yearrs); a period of marked acceleration during adolescence (13 years to 19 years); and a period of gradual decline of grovth until its cessation (20 years and on).

This study is on adolescence (age 15-18), and will therefore concentrate on the stage of marked acceleration of growth in adolebcenco. By general usage the term adoleacence is absociated with the last stage of growth, the deyelope ment of secondary sexual characteristics and the decelerzting growth pattern which follovs. It represents the period of change from childhood to adulthood. Puberty is a narrowor span of time which marks the beginning of sexual maturation and occurs, usually, a little before the midpoint of adolesconce. It should be recalled that growth is not complete until several years after
full sexual development, but the final sharp advance is followed by a marked deceleration and is apparently conditioned by the attainnent of sexual maturity. This period of physical change is accompanied by paychological developments. The Adolescent Growth Spurt or Pubertal Spurt

During the period of adoloscence there are two years in both sexes which are maxked by acceleration of growth and this is known a.5 adom lescent gre ih spurt or pubertal spixt. The adolescent growth spurt is a constant phenomenon; and its onset varies from one child to another. Both Sinclair (1973) and Tanner (1962) agrea that the spurt begins about tine age $201 / 2$ to 13 years in woll nourished girls and $12 \frac{1}{2}$ to 15 years in well nourished boys, though wide variations are possible. In both sexes the spurt lasta for 2 to $21 / 2$ years. In boys the spurt is responsible for a height sain of about 20 cm . (range 10-30 cm.) recompanied by a gain in weight of about 20 kg . (range 7-30 kg.). Girls gain about 16 cm . in height and 16 kg . in weight during the spurt. The difference in size between adult men and women is to a large extent the result of this difference in adolescent growth spurt.

After the spurt, growth decelorates rapidly, girls reach 98 per cont of thejr final boight by
the average age of $161 / 2$, whereas boys do not reach the same stage until the age of about $17 \frac{7}{7}$ yearss again there is a wide variation around the means. Up to the adolebcent spurt there is little difference between the average heights of boys and girls, but because the spurt begins earlier in females there is an ege at which girls become taller (and heavier) than boys of the same age.

Although noticeable growth in height stops about 18 in the fomale and 20 in the male, there is evidence to show that in some individuals growth continues for some years after this. Like beight, woight may incroase after maturity has beon reachsa, but this increase is to a certain oxtent within the control of the individual. An adult can put on weight by exercising the muscles while at the same time eating a diet which is satisfactory in quantity and quality, or by eating too much especially a diet containing excess calories.

Many children put on excess fat just before the adolescent spurt, and this may lead to emotional problems. During the male spurt the fat on the limbs decreases and is not gained back until the late twenties. In birls there is no such decrease, additional deposition of fat may temporarily be interrupted. In both sexes fas on the trunk conti. nues to increase fairly steadily, but in girls
additional fat is laid down in a secondary sex distribution pattern.

Practically all skeletal and muscular dimensions take part in the adolescent spurt. At adolescence a marked increase in athletic ability occurs particularly in boys. Not only the macles increase in aiza and strength, the vital cepacity of the lungs, that is the amount of air they will held on maximun inspiration less the amount retainec sfter maximal expiration; also shows a pronounced increase in boys. The number of red blood cells, and hence the amount of haemoglobin i:l the blood, also rises sharply in boye, but not in giris.

Though the main change at puberty is in body sizo, there is also a considerable change in body shape. The shape changes differs in the two sexes, so that boya acquire the wide shoulders and muscular neck of the ram, and girls the relatively wide hips of the woran. Thus at adolescence there is a great and sudden increase in body size and strength and a change in many physiological functions beside the reproductive огеъ.
2.2. Nutrition of the adolascent

As previously stated, the sdolescent ysars are the second period of rapid rate of growth, but vary greatly for individuals even of tho same chronological age. Thesc years are also about the
most active period of life, noting that athletic ability expecially in boys occurs here. Because of the double demands of activity and growth, food. needs are high.

The nutritional requirements of the adolege cent are conditioned primasily by the "spurt" in growth which occurs at puberty. The additional food requirements are indicated to the adolescent by his increased appetite and should ke met by providing sufficient of the necessary nutriente, If this is not dono the adolescent satisfies his appetite by snacks between meals, as is clearly indicated by investigations of the caloric consumpre tion of boys at boarding schools. Unfortunatel.y the character of the snack foods is usually such that they do not contribute materially to the balanced mutrient intake of the day. According to * Toverud and her collaborators: "During adolescence, nutritional requirements are increased not only by nore rapid growth and greater activity but aleo by the imbalance existing during these years in metabolic processes and in rates of development of different organs. Thus, the growth of the skeleton is at times more rapid than of the organic matrix. a situation which oftan mokes mobility of the young awkward and ecconpanied by many unnocessary movements.米

In addition to the imbalance in physical developuent of various parts of the bory, the adolescent girls and boys are usually emoticually unstable, which has a bearing on nutritional requirsments, food intakes, absorption, and utilization." 2.2.1. Food and eating habits

Physical and psychosocial pressures influence eating habits. Eating what their classmatos eat, and enjoying food in their company, satisfies an emotional need and helps to develop the eating pattern at this period. By and large the adolescent boy fares better than the giri. His lerge appetite and the sheer valume of fcod it leads him to consume usually assure his intake of adequate nutrionts. Girls, while watching their figures are likel.s to omit or restrict essential nutpients. Although individual needs vary, girls consume fewer calories than boyb (from 2,000 to 2,500 a day; boys need 2,500 to 3,000 a day). Somotimes the large appetite characteristic of this growth period lasds an adolescent to satisfy his hurger with carbohydrate foods and to neglect essential protein foods.

Protein needs for adolescent growth are large, especially during pubertal cham nges, and for developing nuscle mass in boys. Frou 50 tc 60 g . of protein sustain daily noeds and maintain nitrogen reserves (Refer to table 39).

Minerals particularly needed are calcium and iron. Menstrual iron losses in the adolescent girl predispose her to simnle irou deficiency anaemia. In some aroa where dodized salt does not ensure sufficiont iodine for the increased thyroid activity associated with growth, a deficiency state may result (Refer to tabie 39).

Vitamins are necessary regulators of metabolic activity. The B vitamins are neoded in increased amounts, especially by boys to meet the oxtra demands of onergy metabolism and muscle tissue devem lopment. Intakes of reeded vitamin A and C may be low because of erratic food intake (Refer to table 39).

Three well balanced meals, including liberal amounts of the protective foods, and also concentrated sources of energy;
should be included in an 'ideal' adolescent diet. Besides the three regular meals a day, additional food such as an after-school snack, may be advisable or necessary providing there is considerable exercise or outdoor activity. Snacks should be considered as a part of the day's food and should contribute to the total nutrient intalse. In addition to oupplying snergy for activity and meeting the demands of rapid growth, good food habits in growing-up years contribute to the individuad's good health and well-bcing as an adult. As parents of tomorrow? these young people will be bettor able to bear children and teach thoir own children sound food hatits.

In the case of early pregnancy, in adolesm cence, not much information on dietary neads of the pregnant adolescent is available as yet. But resulting from surveys done by baackburn and Calloway (1974) and Kinğ, Calloway ond Margen (1973) it was recommended that protein allowance for the pregnant adolescent girl should be increased by 30 E . per day and energy requirement be increased by 300 calories per day. (McLaren and Burman 1976). Specific attertion has not yet beer directed towards the increased needs in vitam mins and minerals of the pregnant adolescent.

2.3. Studies on nutritional status

This section will examine various studies done in Africa and other countries on the digtary habits and the offects of the resulting nutritional status on the appearance and adjustment of the individual. It is hoped that this will bring out a better undersm tanding of the scope of nutritionel probleme occurring during adolescence. A summary of these atudies is included at the end of the section.
2.3.1. Studies done in other countrias
2.3.1.1. Nutritional Status of children VI Blood scrum vitamin A and carotenoids by Pobinson, A. ot al (1948)

Sampling 348 children 2-18 years old from five Michigan child-caring agencies.

Metnodology

1. Measuremente were made at different seasons and on buc= cessive days to permit ovaluatior of the influence of seasonal cbanges in the dietary pattern and the extont to which daily variation in fasting
blood serum protein may be expected in children. In addition it was possible to analyse for sitamin A and carotene the food consumed by selected subjects during the periods of blood sampling. 2. A blood serum was analysed for vitamin A and carotenoids by the methods of Bessey and comworkers using Beckman apectrophctometer adapted to examination of small quantities of coluticn. Analyses were made in duplicate. Food composites wore analysed for vitanin A by the Carr-Price reaction。
2. Only 27% of the group had serum carotenoid levels above 160 mcg per $100 \mathrm{cc}$. , but after $4-5$ weeks 55% hed risen to that level. 2. Few of the subjects ware entirely dependent upon the usual dietary sources of vitamin A. 3. The various groups of children differed markedly in level of blood carotenoids, suge gesting differences in dietary pattern. 4. A seasonal difference was evident for vitamin A, and autumn values being higher than spring. :
3. Rises in lefels of serum carotenoids and vitamin A were found in response to favourable circumstances and ample supplies of fresh.
green and yelloy vegetables provided during a six meok camping experience.

2.3.1.2. Nutritive intake of adolescents

 by Wharton, M.A. (1963)Sampling: 421 adolescent boys and girls aged betweel $13-18$
years from 3 schools in Scuthern Illinois.

Methodology

1. 3 day dietary records kept by the subjects.
2. Questionnaire regarding food habits, food list for "liked", "disliked" and "never eaten"

Poods. Dietary records were collectod on Tuesday, Wednesday, and Thursday. Data was collected in the Springs of 1956, 1957
and. 1958.
Findings

1. Calcium, iron, vitamin A
and ascorbic acid were consumed
in the lowest amounts.
2. Boys' diets ware signifi-
cantly higher than the girls' diets for protein, calcium, phosphorous, iron and riboflavin.
3. Girls consumed a greater portion of the Recomm mended Dietary fllowances for calories, niacin and ascorbic acid.
4. The older adolescents had a higher intake of vitamin A.
5. The nutritive intake of the Negro group was significantly better than for the whites for calom ries, iron, vitamin A, thiamin and niacin.
6. The Negroes consumed $35-38 \%$ of their calories a.s fat and the White students $40-48 \%$ 。 7. The girls ate more snacks than that of the boys. 8. Coefficients of correlation were presented for ail individual intakes of all pairs of nutrients. The relationship between most nutrients were high except for vitamin A and ascortic acid.
2.3.1.3. Gingivitis - Ascorbic acid 氏eficiency in
the Navailo by MeDonald, B.S. 1963
Sampling - 283 boys and girls aged 1.1-22
years from Intermount Indian School in Navajo.

Methodology

1. Dental Officers of the school health centre selected 283 pupils in the folloring Way: m inflmed gum condition described as hemornhagic hyperplastic gingivitis was
the basis for selectirg 186 students. For each 2 students with inflamed gums, 1 student without gingivitis was chosen as a control i.e. e total of 97 controls. Cases of severe gingivitis due to poor oral hygiene were not included.
2. Blood samples ware taken to determine ascorbic acid of white blood cells.
3. Those with gingivitis were divided into Group I and II matching age, sex and ģm condition. The controls were divided into group III and IV in a similar way. Group I and III recuived 300 mg , ascorbic acid in tablet form daily for $2 l$ days. Group II and IV received placebos.
4. At the ond of 3 week period dental examinations were repeated and second blood sampios taken.
5. Six months later, the students were reexamined and third blood sample taken.
6. Group II received an ascorbic acid supm
plement for 3 weeks following the study period.
An additional blood sample was taken of those
children at the end of that timo.
7. All others received ascorbic acid only
from food sources during the 6 months.
8. Ascorbic acid in mixed dishes was calcuiated as students kept dietary records of their individual food intake in the day before the study begun and on 5 days of 21 day period. All completed their dietary records.

Findithga

1. Moan dietary ascrobic acia intake mas 69 rng . The average for the 160 girls was 62 mg ; for the 122 buys, 78 mg . Thexo wore no significant differences in intake between any study group.
2. 17% of the studentes had food intakes meeting their recommended allowance for ascorbic acid. 24% consumed less than $2 / 3$ of their allowance.
3. More children with adequate intalos wero
in the year ll-l2. year group.
4. The percentage of subjecte having
deficient intakes of ascorbic acia
increased with age, reaching 27% in the 16-19 year age group.
5. More boys met their allowance than girls.
2.3.1.4. Influence of broakfast on total day's
food intake by Ohslon, MoA. and Hart, B. P. (1963)

Sampling: 15 girls betwoen agos 14-16 years all pubescent in America.

Methodology

1. 3 breakfaots were planned with from 9-24 gm. protein and 553-650 calories. The higher caloric value of "breakfust 3 " was related to the increased intake of fat from the animal protein, oven though the fat spread for the bread was reduced to the least acceptable amo.ant. 2. The 25 subjects were randomy assiga ned to the experimental breakfasts. A Eiven breakfast wus eaten for 6 dajs after which a second breakiast was served for 7 days. The study terminated for each stucent after breakfast on the last day thus providing complete food intake reco= rds for 2 , six-day periods for each subject. Breakfast was served in the metam bolic ward between 7 and 7.40 a.m. The studgnts chose the food caten during the rest of the day according to taste.
2. Each kept a detailed notebook of
all foods eaten away from the ward for the entire period.

Finding

1. In general the younger girls tended to eat more food than the older girla.
2. Hean nutrient intake for bach group approximated or exceeded the allowancos except for calcium and iron.
3. Protein intakes met or excesded the
allowances in all cases.
4. Food groups rich in iron and thiamine
in approciable cuantities were oaten
regularly but ia small daily amounts, but
despite this there was no obvious evim dence of iron deficiency in these girle.
5. A preliminary check of food records
sugessted high intake of snack and sweeto.
2.3.1.5e Dietary Survey of Adolesconts in the

Virgin Islands by Spauve, MoE. anc
Dodds, M.L. (1965).
Sampling - 68 subjects - 22 boys and 46
girls in the eleventh and twelfth grades
in two secondary schools at St. Thomas.
in the Virgin Islands.

Methodology

1. Soven-day records of foods eaten recorded by the subjects.
2. Questionnaire schedules on personal data. Findings
3. The diets provided $2 / 3$ of recomended nutriente with the exception of calories and calcium. Mean calcium intake of tho 22 boys was slightly below $2 / 3$ of the allowance and average caloric intake of the 46 girl.s was Iowa
4. Average intakes or both boys and firls exccoded the vitamin A and Ascorbic acid allom wances. The mean intake of vitamin A of the girls was almost twice the recommendation.
5. Native dishes contributed 14% of total calories and 16% of total protein for boys; and 11% of total calorion and 14% of total protein for girls. 4e Orily 32% of the boys in the study had an average dajly intake of calcium that met or exceoded $2 / 3$ of the recomended allowance due to fow consumption of milk.
6. Mean intakes of calcium and vitamin A were greater lor boys eating lunch at echool $^{\text {g }}$
then for boys mating lusich at home.
2.3.1.6. Teenace food habits by Schorr, B.C. ot al (1972)

Sampling - 118 students from grade 7-12
from a school in a small village in
Western New York State.

Methodology

1. 3 day dietary intake recorded by the students.
2. Queationnaires were filled in order that information could be obtained concerning:
a) lifemstyie characteristics of the teen-agers and their families and the adolescents' food preferencers.
b) list of the kinds of foods and drink they "liko most", 'like least of all": and have "never tastea".

Findlugs

1. Complexity of an adolescont's diet increased significantly with an increa.bs of his father's and mother's occupational level, his mother's educational level, the oxtent of his social participation and with his employment bit was not reisted to his age, sox, family size and the number of his nutrition fnformation channole.
2. Dietary complexity also increased as intakes of caiciun, iron ancorbic acid and vitamin A rose. The percentages of subw jects consuming less than $2 / 3$ of their ascorbic acid, calcium, vitamin A and iron allowances mere $21,44,51$ and 69 respectively.
3. The nutritive intake of boys was consio derably superior to that of the girls. 4. The subjects liked many good sources of all the nutrients escept vitamin A. 2.3.1.' Nutritional Status of Children by Coonerm stock. M: et a. 1948

Eampling - 99 children 6-15 years, from underprivileged families, all of Michigan were selected, to spend 6 wooks at Bay Cliff Health Camp on the shore of

Lake Superior about 40 miles frcm Michigane Methods

Each child was examined by a paediatrio cian at admission to the camp and the supervisory staff noted variations in eating hahits.

Those chosen fell into the following catesories; cardiak involvement, speech and hearing defects, orthopaedic ailments, general maliutrition.

Results

The examination on admission showed oach child to have some oral abnormality or infection, e.g. dental caries, excessive dental repair, gum bypertrophy, gingivitis. 61 children in addition showed evidence of inferior nutaitional status designated as: undernutiition, pallor, granvlation of eyelids, smooth tonguo, foll,icular conjunctivities $3 x$ rough dry skin.

93 of 99 children increased their weights by 0.1-25.1\% durise the six weeks. Ghad net weight Insses.

After $3-4$ woeks at the camp determinam tions of 61 children showed rone with serum vitamin C value below $0.4 \mathrm{mg} \cdot \mathrm{j} 5 \mathrm{with}$ values of 1.0 mg or more; 5 from $0.8-1$ vo mg . and only 5 below 0.8 mg . per 10 cc cc
2.3.1.3. Nutritional Status of Chilciren: XII Haemoglobin by Kaucher, M. et al. 1948.

Maierials and Kethods
llaemoglobin vas ietermined in fasting: Fhole blood from 392 children $2-18$ years, old in the care of 5 Michigan agencies, by a micro-method (determined by tho alkaline method developea by Bessey and Lowry).
$10 \mathrm{cu} . \mathrm{mm}$. of fresh whole blood were placed in 4 sc of 0.5% solution of concentrated ammonia. IThe resulting colour intensity at a wave length of 540 microns wae measured in a Beckian spectrophom tomoter.

Doterminations were obtained in both spring and the fall for 155 of the children.

Results

Values for all subjects ranged from $10.5-18.0 \mathrm{gin}$. of haemoglobill por 100 cc . of blood averaging 13.5 gm .
32% of the values were below 13.5 gm .
16% were below 12.5 gm .
4% were below 12.0 gm .
No significant differences were found among values for the different groups of childiren or between determination in the fall and in the spring.

Average values of girls rose from 12.4 gm - at 3 years to 13.4 gm . per 100 cc . at 10 years, followed by a slight increase in level but no evidence of consistent change for older girls.

Values for boys increased from 12.4 gm. at 3 years to 13.8 gm . during the 14 th yoar to 14.7 gm . of hb . per 100 cc . in the 17 th year.
2.3.1.9. Nutritional Status of Children by Beach, E. F. (1950)

Materials and Methods
61 adolescent boys $14-16$ years old from Boyr Republic in Michigan were selected.

Height and weight measurements were
obtained. A physician made a thorough medical examination of each boy.

Bloud samples were collected from finger~pricks for microdeterminations of haenoglobin, serum protein, vitamin A, carom conoids, vitamin C and alkaline phonphotase.

1 hour fasting samples of urine were obtained for thiamine, riboflavin, creatire, .creatinine and aitrogen analyses.

Thiamine was determined by the thiom chrome method (described by Hennessy) and Riboflavin by the Forroboe procedure with modificatione.

Results

No extreme underweight only 1 instance of gross overwoight was notod.
+
Mean haomoglobin level was $13-15=14 \cdot 78$.
Considering age and weight, mean daily intakes of calories, fat, protein and carbohydrates were adequate when compared with recommended allowances.
Mean serum protein was $6.7 \mathrm{~g} / 100 c \mathrm{c}$.
Vitamic A ($42 \mathrm{ccg} / 100 \mathrm{cc}$)
Urinary riboflavin values reflected dietary intakes which were greater than those recommended.
1 dical examination showed boys to be nutritionally good, although there were some carly, mild deficiency sympo toms surgestive if inadequate intakes of vitamin A, riboflavin and vitamin C.
2.3.1.10. Diet and Nutritional Status of Iowa School Children by Eppripht, E.S. and Roderuck, C. (1955).
Material and Methods
A random sample of 1,200 children aged 6-18 years were chocen from 61 schools in Iowa.
Onder the supervision of a qualified dietitian 7 day dietary records wore kept by the children or their mothers.
5 body measurements were made of each child and semples of finger-pirick blood were taken for the determination of haewoglobin

For approximately 700 children in cities and suall tomns determinations were made of the serum concentrations of ascorbic acid, carotenoid and alkaline phosphotase.

Dental and meáical examinations were made of approximately 300 children. Findings

The mean daily intake of calcium was low due to low intake of milk.

Vitamin C and A intake were low due to low intake of fruits and vegetables.

Oversized girls were found to have poor diet, thus body sime was unrelated to their apparent intake of most nutrients.

Princieal heaj.th problems with nutrim tional implication were dental carries for all children and weight control, particularly for the teonage girls.

Physical measurements and haomoglobin concentrationo of the blooc indicated a fairly satisfactory state of nutrition.
2.3.1.11. Nutriture of school girls of different phyeiaues by Gschneidnex, M.P. and Roderuck, C. 1960

Material and Mothods
Nutritional etatus of 183 girle in 4 consolidated echools in Story Country, Ioma was studied over a period of 3 years.
61% of the families rorrosented by 283
girls lived on farms.
4\% lived in rural non-farm locations.
30\% lived in small towns.
The gixls were measured in November 2953. Again in April and September 1954.

The weights and heighta were plotted on the Wetzel grid.

For this study 251 girls remained in the same physique groups during first year; 27 in the very heavy or obese group 96 in the thin group; and 28 in the thin group.

The remsining 32 girls moved from one group to another during the year.

At intarval. 6 throughout the atudy beight pas measured to the nearest $1 / 10$ th of an inch ard weight to the nearest half pound. Skinfold thickness were made with a Glogan vernier caliper 4 times during the study. Skinfolds were measured on the left lower chest and in the left sub scapular area on the back.

2 day records of food intakes several
times a year were taker by the girls, the caloric value of the daily foods was done.

4 times during the investigation each girl recorded her physical activity for one day.

7 times during the investigation, blood samples were taken and analyzod by microchemical methods for haemoglobin, serum ascorbic acid, and serum alkaline phosphotase.

Rosults

The heavy girls gained mors wight than the medium sized girls during the first interval, but tho medium sized girls gained more during the 5th and 6th intervals.

Gains di 'ng vinter months eqceeded those during summer except for the medium sized girls during the first interval.

After 3 years the medium girls averaged 1 inch taller than the heavy giris.

Heavy girls matured earliar than thinner ones.

Both the heavy and medium girls averaged the same hours for activities during the day.

Similar mean values were found for the two physique groups for blood haemoglobin, serum ascorbic acid, and serum carotenoide. Difforences betwoen the t wo groups in mean concentrations of eorum alkaline phosphate were statistically significant.
2.3.1.12. Standards for subcutaneous fat in Britirh childrea. Percentiles for thickness of skinfold over triceps and below scapula by Tanner, J.M. and Whitehouse, R.H. (1962)
Materials and Methode
A sample of 5-16 year old children. 1,000 childreu of sach sox at each age wa.s selected from the London County Council.
Two measuremonts of subcutaneous skinfolds, triceps and subscapular were taken by Harpenden Skinfold Calliper. Findings

The boys' triceps akinfold reaches its lowest value (for the 50th percentile) at about $\&$ years and then rises to reach a peak between 12 and $121 / 2$ years. (This is the so called pre-adclescent fat wave described by Tanuer 1962.

The girls' triceps skinfold shows its
lowest value at 7 yearb, a year earlier
than the boys. The same rise then occurs
as in boys but not the sane fall. At
age 12 the amount of fat increases again
in girls.
Tho boys' subscapular skinfold has +
its lowest value at about 7 years and
thereafter rises, but with a slight plateau visible at a.ge ll-l2 years. After the plateau the curve rises again.

The girls' subscapular skinfold has its lowest value at $6 \infty 7$ years and thereafter rises steadily without any interruption at adolescence.
2.3.1.13. 1 cross-Bectional and anthropometric study, with an interval of? years, an 611 young adolescent school children by Durmin, J.V.G.A. et al 1974

Materials and Methode
A study of food intake for 7 consecum tive days was made of 192 boys and girla aged 14 years attending Glasgow schcols in 1964 was taken.

A similar study was done in 1971 on 419 boys and girls of the same age. The children came from the various socio-economic backgrounds and were subdivided into 4 social groups.

Heights and veights were taken in both groups.

Result ${ }^{\text {B }}$
Percentage contribution of fat to the bods weight had increased in the boys.

Between 1964 and 1971 there had been a decreasd in the mean energy intake of both boys and girls of between 0.8-1.0 MJ (200-250 KCal). A similar proporticnate decrease had also occurred in the protein, fat, carbohydrates, calcium and iron content in the diet.

No individual had low protein intake.
Only boys of the poorest social group showed lower intake of nutrionts than the other groups. There were almost no differences between the girls from the djefforent socio-economic groups.

Eating school neals did not affect levols of total energy and nutrient intake.

There was a consistently lower energy
intake in all social groups by the fattect girls.
2.3.2. Studies done in Africa
2.3.2.1. An investi.gation of the daily intake of individual boys at a boarding school in Uganda by Sckwartz, R. and Dean, R.F.A。 (1955)

Materials and Methods

1. Those who took part were volum ntears agea between $9-20$ years from
a school in Buganda Proviace about 11 miles from Kampala.. 24 boys
were in primary and 8 were in secondary. This sample is approximately $1 / 10$ of the school population which had 303 boys.
2. Food intake was measured daily for 7 days, using a spring balance, any left overs were also weighed and recorded.
3. Most of the extra items bought by the boys were weighed at meal times, especially in the two tea breaks. Foods eaten in the dormitories wa.s weighed by a kouse prefect provided with a balance. 4. Food values were calculated from tables of fock composition (Fiatt, 2945) HoCance 1946, Chatfield 1953), the factors 4.1, 9.3 and 3.75 being used for calorie value of protein, fat and carbohydrates respectively.
4. The findings were compared with earlier studies done on British boys.

Findings

1. Total carbohydrates eaten by firican and British boys were oqual. Total protein was lower for African boys. Animal protain and fat was oven much lower.
2. In the school diets, the contributions of animal protein and fat were very small. Carbohydrates was respasible for 3 of total calories. 3. The calories obtained from the school diot were supplemented by the extras bought by the boys.
3. The mean amount of extra sugar eaten in a week was about $420 \mathrm{~g} \cdot 300 \mathrm{~g}$. were supplied by school. Therofore making a total of 720 g . sugar per weok.
4. There was a low calorie intake of the childicen probably due to small amounts of food given to children as there were no left overs.
5. There were no clinical signs of underm nutrition in the children who took part in the investigation.
6. All boys supplemented school sood mainly augar, chicfly in afternoor tea in large quantities.
2.3.2.2. Incidence of endemic goitre in Kenya and outline for its provention. by Bohdul. Mo. Gibbs. N.E. and Simmons, $1 \mathrm{H} . \mathrm{K}$. a WHO/FAO/ UNICEF aseisted project 1968

Sampling Total of 28,520 school children in 103 schools in Kenya.

Methodology
Clinical examination of the schcol children

Findings

1. Total incidence of goitre in school children in 1962-64 is as follows:

lst degree	21.95%
2nd degree	7.13%
3rd degree	1.14%
Total	30.22%

2. In Machakos District 21.4% of the childxen examined had gojitre (grade 1).
2.3.2.3. WhO Nutrition Team Conducted the stud.y men the incidence of iluoresis in 1963-1964 under

Dr. Munoz
Matertals and Method
A total of 18,997 school children in 72 achools in lenya pere examined.

Findinga

1. The enderaic dental fluorosis of degrees $3-6$ were diagnosed in 8,382 pupils i.e. 44.1%
2. The degree of fluorosis had no significant influence on the incidonce of caries. 3. The group with fluorosib and carieb were surprisingly high.
3. The incidence of fluorosis was bigher in younger children (lower forms).
2.3.2.4. The Pattern of disease and aciidente in Nigerian childron of school age by Oduntan, S.0. (1.973) Methodolopy

A totyl of 1\%,006 health resords for schonl age children were snalysed from various medical centrea in Ibadan City。

ㅍinding

1. Ulcers and abrabions, parasitic and infoctious disease including malaria, totams and tuberculosis were shom to be the most important diagnoses mado. Other diseases such as otitis media, conjunctivitis and the pnelmonias were also commonly seen.
2. The main causes of death were malignant discases mainly Burkitt's tumour, bronchom pneumonia, tetanus and tuberculosis. 3. The majortiy of diesases that affected these chilisen were potcatially preventable and remedial o.g. high frequency of intectinal helminths and gastroenteritis and were related to their way of life and the low standard of public and personal hygiene. in the community.
2.3.2.5a. Health Survey of primary school ohilaren in Upancia: Incidence of Anaeria, Splenomegaly, Hookworm and Malaria by Brown R.E., Wilks, N.E., and Allan, D.M. (1970).

Materials and Methods
2,899 African school children in grades
1-'7 were oxamined in 14 randomly selected schools in fganda. Two trirun merg malo and they wore composed of mure than 35
different tribal groups represented. The school children were aged $4=20$ years.

Examingtion team consisted of $3-5$ physicians, 3 laboratory technicians and several recorders. Thick and thin slides of capillary blood were made from overy child and two heparinized microhaematocrit capillary tubes were filled with blood from the same finger prick.

The thin blood slides were fixed with mothyl alcohol and stained with Giemsa. These were exam mined for the percentage of eosinophils by counting 100 loucocytes and recording the number of cosingephils present.

Thick films were stained and examined by experienced hematology technicians for malarial parasites.

Within several hours of collections, the capillary tubes ere spun, using a Hawksloy microhaematmerit centrifuge at $2,500 \mathrm{Mom}$, and the packed cell volume read with a Coleman microhae matrocrit roader. The capillary tubes were then put in a refrigerator and maintained at $70^{\circ} \mathrm{C}$. for subsequent determination of malaria antibody titres by means of the indirect fluorescent technique.
. 45 .

A stool specimen was obtained from most children, kept refrigerated at $4^{\circ} \mathrm{C}$. and examined by skslled technicians who recorded ova and parasites found by means of the direct saline smear-technique。

To analyse the information collected, a punch card was devised in which the slgnificant data for each child were lirst coded and subsequently recorded on an 80 column punch card. These cards wers electonically sorted, counted, and then analysed for poseitle correlations. Findinces

1. Overall mean haematoclit wae not depressed.
2. Thare wos found to be an association between haemotocrit levels and age, the older children having higher packed cell volumes, and between malaria incidense and the prasence of hookvorm.
3. Older children were \&enerally found to bo better nourished and to have higher haemotocrit values.
4. Areas with lov incidences of both malaria and hookworm disease had children with higher mean haematocrit levels.
5. Children over age of 13 years tended
to have lowe hookporn incidence than those
who rere younger.
6. The presence of malaria parasites on thick films was closely correlated with spleen rates, and with malaria antibody titres.
7. No selationship was established between the incidence of hookworm in the stools and presecce of a latrine at home.
2.3.2.5h. Health survey in Uaandan Primary Schools
an approach to heal th education by Brom, R.E. and Wilks.N.E. 1956
Methods and Materials
2,900 children of ages 4-20 years
from 14 schools in Uganda wero selected. $2 / 3$ of the sample were boys.
Questionnaires filled fer sociom economic data.
Phyeical examinations were carricd out.
Laboratory tests were done. Samples of blood wero collected by a fingermprick and thin and thick blood slides prepared. Capillary tubes were filled for haenatccrit end moasurements of malaria antibody titres.

-

Stool. samples were collected for para-
sites.

Findines

Average number of children in each family was 8.

The children travelled in average of 2.1 miles to school, majority coming on foot.
43.3% children, when askod, had had nothing to eat for breakfast.
33.8% had drunk nothing. The majority of those who had had breakfast, had cold plantains some blook or porridge, very few had fruit, milk or other protein,

Water vas obtained from either well, spring, or municipal supply. Over 83% had latrine, majouity being pit latrines.

Palpable spleens were correlated with the presence of malaria on thick films or a higher than average malaria antibody fitre.

Anaemia was more common among the young children living in areas where ej.ther hookworm or malaria was frequent.
28% of the sample had hookworm.
13% of roundworm infection.
Overall malaria incidence was 21.4%. Very little tapeworm (0.9%) and Bilharzia (0.3%) was present.

2.3.2.6. Sexual maturation and variation in the

height and weight growth of Bantu girls in
Dueban by Kark, E. 1957.
Materials and Mothods
First examination of the Birls was carried out in June, 1950, and thereafter periodic examinations took place in November and December just before the wintor vacation of the years 1950, 1951 and 1953.

The initial examingtion includod 365 girls. As new girls entered the school each term they were included in the stuciy, making a total of 578 girls by Decomber 1952, when this aspect of investigation was concluded.

Results of 1,983 individual examination was available for analysis.

Measuremont of weight and height at six months intervals was done.

Assessment of Progress in Sexual maturation, by observations in breast development, pubic and axillary hair growth was made at 6 monthly intervals, at the same time each girl was interviewed as to the occurrence of the menarche in prem
menarched girls, or the periodicity of menses of those girls with menarcho.

Maturity Grading - girls were classified thus:

Non-pubescenti- those girls who showed no evidence of developrent of socondary sex characters and had not attained manarche. Pubescents- those girls who showed development of any of the seoondazy sex characters (breast enlargement, pubic or axillary hairgrowth), but had not attained the merarcho. Adolescence:- Those girls who had attained the menerche. They also evidenced further maturation in breast development, pubic and axillary hair growth.

Maturity grading was assessed at the initial examination.

The mean heights and weights of the girl is shown:-
a) in relation to their cbronological age
and b) in relation to chronological age and maturity grade.

Findinge

The age groun of girls who had not yet manifested any signs of pubescende was from 8-13 yeare.

By age of 11 years, 72.5% were pubescent. Anong 23 year old 30% were adolescents.

14 year olds 61.8% were adolescents.
25 year ulds 93.8% were adolescents.
16 year olds, all girls were adolescents.
Thus within the age range of $9-15$ years
there were a number of girls of same chronological age but at different level of aaturation.

While the measurements according to chronom
logical. age indicato increased growth rates from 11-14 years, it is only when this is considered in texres of maturity grade tinat the significance is revealed.

Pubescent girls in each halfmyear group between 10 and 12 years are taller and heavier than the less mature non-pubescent girls in the same age group.

Similarly adolescent girls between $13-15$ years are taller and heavier than pubescent girls of the same age.

In each age group the more mature girls are at least $1 / 2$ times in advance of their less mature schood mates.

2.3.2.7. The diet of some Uganda school girls by Burgess. A.P., Norton, C. and Burgess, H.C.I. 1962.
 Sampling
 4 groups each of 10 girls were studied from Gayaza Secondary school.
 Group 1 - consisted of 'mature' girls in the form before the highest in secondary school.

Their diets were measured at the end of October 1959 neax the middle of the term。

Group II - from 3 ciasses in the socom ndary school and had been menstruating from 12-18 monthe. Their average oge was 15 years.

Food pas neasured in 3 rd week of tomn September 1960.

Group III- vere in the top class of the Primary school and who, according to data obtained at the school (Burgess 1962)
would not be expected to menstruate until
12-18 nonths later. Average age was 11
years 11 montins.
Their, diets were measured in midmerm June, 1950.

Group IV consisted of new girls in first class of the Primary School. Average age was 7 years 5 months.

Their diets were measured in the second and third weoks of term in Fobruary 1960. Mothode

7 dajs diets wero measured and analysed, All wastes and extras were measured.

The nutritive value of composite recipes was calculated by using food tables after weighing the prepared raw foods and the final cooked dish so that contribution of ouch ingrodient could be estimated.

The nutritive value was compared with the diets of British caildren.

Data on height and weight for afe and the age at which menstruation begins had been collected easlier from the school.

Rosilits
Total calories intakes of the children in group I, II and III rere very like those of the British children. Those in Group IV had 300 calories less than Britisin childrena

Less protein end lat is taken than British children but rore, carbohydrates is takon by the Arrican children.

Total calorie intakes of African children increased with age.

The istakes of older children were less than those of British children after theonset of menstruation.

Groups I and II had about 4% of total calories in the form of animal proteing Groups III and IV had about 6%.

In all groups l2-13\% of calories wore doxived from total protoin, 23 m 30% from fat and 53-63\% from carbohydrates.
2.3.2.8. Endemj.c fioitre in Kenya an intermediato evaluation of an experimental control programme by Hanegras. T.A.C. 1977

Materials and Methods
Three study groups comprising the
total number of pupils of one cr more primary sdhools in three geographically and tribally different areas of Rift Valley Province, selected in 1969 for their known and obvious presence of endemic goitre. The areas ares
i) Eburru comoperative settement scheme situated between Lake Naivasha and Lake Elmentaita.

1i) Buret Location in Kerisho district which represents the larget and best know goitre area in Kenya. .
iii) Kaptumo (and neighbouring) Iocation which is situated in the south of Nandi Distifict, between the South Nandi forest and the Nyando Escarpment.

The sturies were done in the three years 1969, 1972 and 1974.

Resulting from a previous study by Murioz and the 2969 done by the author there was evidence that a moderate degree of iodine deficiency existo in Kenya's cetablished goitre areas, warranting the taking of national control measures.

Preventive measures started in 1970 by iodization of locally produced salt (degree of iodization 1:50,000). This programe was followed up in.1972.

Results werc uncatisfactory and in 1973 the degree of iodization was increased to $1: 33,000$. This was followed up in 1974. This is a report on the last surves.

All pupils present on that day of vieit to the schools under study were subject to a thyroid examination. All observations for all survoys were wade by the same person.

The results were tabulated on special forms shoming the goitre sizes according to age group and sex.

No record was kopt of the degree of absenteeism in school during the study visi.。

Goitro rates (GP) presented are the corabined percentages of grades 1,2 and 3 goitre; visible goitre rates (VaR) are the combined percentages of 2 and 3 grade goitres only.

Frorn subsamples in the three etudy groups comprising both sexes and various age groups, casnal urine samples vere collected in iodine - frec receptacles which yere sent to the Laboratory for Pathological Chemistry, University of Leiden, for iodine and creatinino detormination. Urinary iodine excretions per 24 h . being a fair measure of the dietary iodine intake, were derived from iodine! creatinine ratios of caaual sampøes and are presented as the arithmetic mean for each of the 3 study groups.

In 1969 and 1972 a small number of samples (ranging from $4=8$ per area per survey) were colledted for PBI) protein bound iodine) determination.

Findings

1. The overall goitre prevalence in Elcurru shomed a significant anf uniform decreace ($p<0.001$) through
the years of investigation (rate of decreass 3.4% annually).
2. There is no significant difference in the goitre ratcs in 1969, 1972 and 1974 in Buret, Kerieho ($p=0.20$) and Kaptumo, Nundi ($p=0.70$).
3. The visjble goitre rates (V®Q) show a highly significant decrease in all regions:
i) in Eburru the VGR decreased at a rato of 6.4% annually ($p<0.001$)
ii) in Buret the rate of decrease was 5.3% annually ($p<0.001$).
iii) in Kaptumo decreace was at a rate of 2.2% annually ($p<0.001$).
4. An analysis of varianco applied to the results
of the mean $24-\mathrm{h}$ iodine excretion per area shows uniformay rising values from 1959-19'74 in Fiurru ($p<0.001$) and Kaptumo ($p<0.001$) but no significant rises in Buret ($\mathrm{p}>15$).
5. The mean PBI values in all three study areas shifted from low marginal in 2969 well into the normal range in 1972, indicating normal thyroid function. Taking of blood was omitted in the 1974 survey.

2.3.2.9. The Growth pattern of Fsst Afrlcan Schcol girls by Burgese, A.P. and Burgobs Materials and Methods

All the girls in the school were measared a few days after the beginning, and within a fow days of the end, of each term from December 2959 until December 1962. Both height and weighta were taken.

Birtl. lates were obtained from birth cortificates, or, if those were not available, by questioning the girls and thoix parents. A total of 354 school giris of the Eantu Lpeaking Baganda tribe aged Gul years were studied for 3 years. Early in 1960 all the girls in the middle forms of the school, most of them 10-26 years, were asked whether or not they had had their first menstruation period. Reliable onswers vere given by 168 girls. The percentage af girls menstruating at each year of age was calculated by logit analysis.

Results

The mean age of menarche was calculated to be 13.40 ± 0.165 years. The preadolescent peak height volocity was 3.8 cm . a year and it occurred at about 11% years,
that is, two years before the mean age of menarcho. When their measurements are compared with girls of the same ages fron other countries it is noted that the Baganda girls were taller and heavier than South African Bantu speaking girls, and heavier than Nigerian Ibo giris; they reached menarche earlier than both these groups. Their height was slighly below that of Bri.tish girls althouth their weight was approximately the same and for a given height they wero heavier; they reached menarcho 0.3 years later.

2.4. Conclusion

Studies discussed in this chapter were done on adolescents using either advanced technological methods or simple fielc or dietary ourvoys in both developing African countries (namely Nigaria, Jganda and Konya) and developed countries namely America and Britain. The following has been chown by these studies:-

Io There are ${ }^{2}$ yeare in both sexes minich are marked by aceelerated growth kncm us the gronth spurt or pubertal spurt. This spurt begins at age $10 \%-13$ years in woll nous'shor girls and l2\% - 15 years in well sourished boyse This shows that girls mature earlier than boys. The growth opurt is responeiblc for a gain height of about 20 cm . in boys and 16 cra . in girla; and a weight gain of 20 kg . in woys and 16 kg . in girlm. After the spurt grouth decelerates rapidiy (Tanner 1952, Sinclair 1973).
2. Within age range of 9-15 year old girle。 there are a number of girls of same chronolom gicon age but at dificsent level of maturation i.0. some are noh-pubescento, some pubescents and some are adolescents (Kark, 1957).
3. Heavy girls maturs earlier than thinner girls (Gschneidner 1960, Fark 1957).
4. Because of the spurt, nutritional requirements are increased (Krause 1967), metabolic rate is relatively increased compared to other age groups (Watson and Lowrey 1969). 5. Nutritive intalse of boys is more superior than that of the girls (Mcdonald 1963, Beach 1950, Spauve 1965, Schorr 1972). 6. There is a low intake of the following nutrients; calcium, vitamin $\&$ and C (ypprieht and Roderuck 1955, Beach 1950, Spauve 1965). irun (Ohslon and Hart 1963) and calories (Wharton 1963, Spauve 1965).
7. The following nutritional distases are found among the adolesconts; anaomia (Brown and Wilks 1966) and goitre (Bohdal 1968, Hanegrauf 1977).
8. Presence of intestinal parasites (Brown and Wilks 1966, 1970, Oduntan 1973).
9. More carbohydrates is taken by the African children compared to Eritish children (Burgess, Norton and Burgees 1962), and the total
intakes of African children increase with age.

Total intakes of older children were less in African children than those of British children after onset of menstruation. 10. The girls ate more suacks than the boys (Wharton 1963).
11. Complexity of an adolescente' dict increased significantly with an increase of his father's and mother's occupational level, the extent of his social participation and with his employment but wes not related to his age, sex, family size and the zumber of this nutrition information channels (Schorr 1972).
12. Oversized girls were found to have poor diet, thus body size was unrolated to their apparent intake of most nutrients. (Eppright and Roderuck 1955, Durwin 1974).
13. Contributions of animal protein and fat are very small (Swartz and Dean 1955).
14. Presence of fluorosis in adolescents (Bohdal 1968), and dental carries (Bohdal 1968, Eppright and Roderuck 1955).
25. Majority of diseares which kill Nigerian childaren of school age are potentially preventable and remedial e.g. high frequency of intestinal helminths and gastroentoritis and were related to their waj of life and the low standard of public end personal bygience in the cominnity.

CHAPTER 3

PURPOSE OF SMUDY, OB JLCTIVES, AND HYPOTHESES

3.1. Introduction

> This study has been done to investigate some factors which affect the nutritional status and health of adolescents, specifically secom ndary school children in Machakos District. Factors investigated included occupation and education level of the parenta, and home environment of the day student. Diet was also one of the factors investigated, for both the day and the boarding students. As the boarders spend twomthirds of the year at school, the school environment has also been examined. By school environment here is meant the conditions of dormitories, the number of children por dormitory and size and manitary and dining facilities. The nutritional knowledge of both adolescents and mothers was also ovaluated using a questionnaire.

3.2. Purvose of Study

Soveral authors haye studicd the adolescent period, during human development; bit the role of nutrition during this period is a rolatively new
field of research. Adolescence we have seen, is a period of accelerated growth and development which preceeds and tollows puberty. The demands for nutrients during this transitional period from childhod to adulthood are increased. Menarche in girls enhances the need for iron and protein. Normal phzsical activity during adolescence adds another incromeni to nutritional requirements (see table 16).

In Kenya hardly any study has been done on nutritional status of adolescents in the rural areas. fiuch research has been done on irfants und the preschool child. The adolescente are somehow ignored, progably because the more sevare forms of protein energy malnutrition is rarely seen in this group. On the other hand Jelliffo (1966) states clearly that school childien in tropical regions are often undernourished with positive clinical signs and subnormal anthroponetric measurements, such as low weight for ineight and thin subcutaneous fat but without sufficient symptoms to warrant attendance at hospital or hoalth contre. Thie is likely to happen when children walk Iong diatances to school with little if any breakfact, when no school meals are provided, and winen asbistance with heavy wanual
household chores, such as chopping wood or herding animals, is expected of them when they return home in the evening.

Studies done, both in developed and developing countries have revealed that nutritional deficienciee among school children may occur. As already mentioned (2.3), in Nigeria, Tabruh and Harck (1963) revealed a high incicience of reduced haemoglobin, protein and riboflavin levels. It is well known that malnutrition opens the door for 0 . variety of infections and parasitic discases, such as tuberculosis, a diseass most prepalent in the teens, and linked to lower resistance caused by inadequate diet. Resistance to diseases in general is optimised by adequate diet, and recovery from disease is generally speaking better in a wellnourished individual. Anaemia caused by lack of iron, and lack of calcium have been found in studies of adolescents in the United States (Kraucher et al 1948, Evorson 2960). Other studics have revealed lack of various other hutrients such as Vitamin A, iodine and Nicotinic acid.

It is necessary to study the nutritional status of adolescents in order to prevent and cure eventual deficiencies. The adolesconts as 2 paet of thescomunity, are going through dramatic
physiological charges which increaso their needs.

Regrettably incidence of pregnancies (and lactation) among adolescents is on the increase. This being the cases ib is of paramount importance that young girls are in a good nutritional state to bo able t.o cope with pregnancy, and to eneure a healthy child.

It seems that a study of ncoleacsnts is quito appropriate in a country like Kenya which is concerned with the developm ment of its people as whole.
3.3. Obiectives of the study

Goneral Objectives
To study the nutritional status of adolescents as related to envirommental factors.

Specific Objectives

1. To examine family factors influancing the nutritionel status of the sdoloscents namely:
a) Economic Status of the family
b) Food availability
c) Narital Status of the father end
$+$
mother
a) Sinze and composition of the family
e) Formal education of parents
1) Environmental facilities at the home such as water supply, lighting: cooking, storage and sanitary faciIities.
g) Cultural background of the child concerning fcods and food habits.
2. To examine the possible relationship between nutritional status and disease.
3. To examine school factors such as boarding facilities, water supply, sanitary facilities, catering facilities, teaching of nutrition and health subjects and other facilities essentiel for kealth in the school.
3.4. Research hypotheses

This study will test the folluring

hypotheses:-

1. Thero will be a significant difference in nutritional status between students in boarding schools (provided with school meals) and those attending day schools (not providod with school meals).
2. There is a difference in nutritional status between the boys and the girls in all ages.
3. Because of the increased iron requirement in girls after puberty there will be more anacmia in girls than in boyc.
4. There will be a weight gain in the children at the beginning of the term compared to the end of term in boarders.
5. There will be a significant difference in nutritional status between those children who live under better socio-economic conditions and those whose parents have received formal education than among those who are less privileged.

CHAPTER 4

MACHAKOS DISTRICT IN GGMRRAL

4.1. Selection of the area

Various reasons l_{d} to the selection of
Machakcs District as a study area.

1. Transport from Nairobi to Machakos is very regular and easily obtaiced, so travelline to and from the research area was convenient. 2. Machakos bsing so near Nairobi whenerer help was $n \in$ lod from the Faculty of Medicine, Department of Community Health (Onivarsity of Nairobi) from doctors for the clinical asecssment of the secondary school childrex, it we.s readily obtained.
2. A district hospital ic available with a laboratory where microscopic examinations on stools to determine presence of intestinal parasites could be carried out without having problems of transporting samples to Nairobi. Treatment of those found sick or with presence of intestinal parasites could be provided at the hospital.
3. Much research and study of the area has been done by 4 th year medical students of the Nairobi University in the nutrition and health of communities and in health centres but little thas been done on the adolescents
as a community. In obtaining some information on nutrition and goneral health of the adolescents, this could holp increase the knowledge of the health situation of the area so that winen the Govornment bas decided to improve the nutritional condition of the dictrict it has dome completo information on the health coudition of the commaity of the whole bots. in schools and village of Machakos District. For the purpose of this stidy a samplo of boye and firls was sejected from four aecondaly schools in Niachakos District, three schools being Government and one being a Harambee Seccmdary school.
4.2. Information on Hiachakoe Di.Gtrict

Machakos District is one of the largeet districts in Kenya sovering an area of 14,156 eq. km. It is situated in the Eastern Provinco of Konya. A large part of Machakos District can be duscribed as ecrubland, and is very hot, ard has a very 20\% and unreliable rainfall of 381 to 600 mo annually.

A second zone known as Meximm Fotential Zono has also unreltable rajnfall of 762 mm to 2016 mm annually. A third area, viaich is

Map 1

Hap of Kenya showing the pusition of the study area.

Map 2

Fine Study rirea
the highland belt gound in the west and north of the district has an annual rainfall of 900 ma to 1270 mm , in two separate rainy seasons of the year.
4.2.1. Agriculture

Coffee is the main cash crop in the district, other cash crops are cotton and tobacco and sunflower. Fruits of various kinds lpassion fruits, quavas, peachess pawpuws, oranges, tomatoes are widely grown to meet the demand for local market as well as for export to Nairobi, Thika and Mombasa. The other staple foods such as maize, beans, wheat, cowpeas, sugar cane, pigeon peas, mangoes, bullrush millet, aud sorghum are also grown. One of the major occupations in the District especially in the AthiwKapiti plains is grazing cattio (for both beef and milk) as well $0 . B$ goats ard sheep. Small numbers of pigs and chickens are also kept.

4.2.2. Population Estimates and Distribution

The estimater population for Machakos District is approximately 887,674 inhabim tants scattered uneveily over an area of $24,156^{\circ} \mathrm{sq}$. ku. This is based ou the 1969
census record and annual population increase if 3.3% in Kenya. Population distribution in the district was influenced by histotical factors of land eettlement, migration patterns, availability of surface water, rainfall roliability and the nature of soils. Thue we have the highland zone around Iveti with a population density of over 300 persons per sq. km. While in the semi-arid zones of Kikumbulyu and Yatta Plateau, only 10 perm sons per gq. km.
4.2.3. Medical Facilitics

Machakor District Hospital is situated in the centre of Machakos Town. There is a total of 6 hospitals, 7 health centres and 30 dispensaries to provide medical services in the District.
4.2.4. Education
For vacious reasons, not all school age
children atterd school in Machakos District.
However education in the district is provided
by over 905 primary schools, with a total
enrolment of nearly 260,000 pupils. Seco-
ndary education is provided throughtout
the district by 14 Government schools; 24
Goverament Aifed Schools and the 73 are either
Harambee or P_{2} ivate Schools. A teacher training college, a Technical High School and a school for the blind are present within Machakos Town.

4.3. The Attitudes, Belicfs, Customs and

Practices of The Makamba
4.3.1. General Information
Historically, it has been Ehown
that the Akamba tribe who inhabit Machalos and Kitui Districts moved inland from the Coostal areas and fixet settled in Mbooni Hills. Latar on as the tribe became large and clans began to pitht among themm selves, some sections of the tribe moved out and stttled among other parta of Ukambani.
The main occupation of the tribe is tilling land, while those in drier areas specialise in cottle grazing. The majority however, combine both grazing of animals and tilling of land. Cther ooupations liko wood-carving and trading are also umportant. :

The tribe is dibided into several cians with members of one clar being related by blood. They look upon themselves as descendants of one common ancestor and therefore feel that marriage amone members should be exogamous (outside the clan). The tribe trace their descent through the father's line (patrineal) and after marriage children born to a couple take the father's clan. Hovever a married woman retains her father's clan even after marriage and consequently, change of domicile.

The relationship between parents and children is distant and rather restrined. The older children are not allowed to go near parent's bodroom as it is an incest taboo. The children would however be free, cordial and friendly with the grandm parents (Ndeti 1972).

In traditional circumstances learning among the Akamba is achieved unconsciously through play, gaines, hobbies, hunting and social ceremonies or informally through the media of work, imitation and oral literature. Most of this is acquired between the ages of 7 to 13 years. The girl leanas skills such as fetching firemood, and water, cooking , etc. and the boy learns herding; making bow and arrows, etc. Formal instructions we:e also given through the constant correctiors and
warcings to children by parente and peers.

4.3.2. Initiation Rites

Each individual undergoes a regular
cycle both formal and informaz stages, marked by rites. Through the Akamba rites a person became fully incorporatsd into the local community and hence into life of the nation; he learnt to participate in its duties, responsibilities, privileges and activitics. Although changes can be observed, this pattern of life is still basically the same (Mbiti 1966).

Both boys and girls are circumsized before the age of 10. This is an important social event for the child and his relatives. It is after circumcision that the young begin to feel and be recognized as full ruembers of the scciety. Local boys of tne ago set are circumsized in one batch, and they feel bound to one another for life.

At about age 15 boys and girls 50 through yet another initiation "second circumcision". This is an educational period which groups of boys and girls who were circumaized at the same time main in the woods separated from the rest of the famflies
to be given instruction about life of the nation for about 10 days and then return to rejoin relatives. Because of furmal scfooling, today second circumcisicn is omitted, but every boy must at least receive physical circuncision. This makes then respected members of the community and they can get married or become warriols At ago 40 they become ageing men. They have large fauilies, can belong to men's clubss drink beer and participate in ritual and jucicial matters.

As they become elders; they have grondchildren and are highly respected and give words of wisdom.

4.3.3. Marriaeo

Bride walth is given in the forn of cattle, sheep, goats, money, foodmetulifs, other gifts and labour given by the man hnd his relatives to the girl's and her relatives. When marriage is edtablishods divorce is virtually non-existent. Polysamy was, and is, an accepted and respectable institution.

Children are the glory of mariiago, and ARamba parents endeavour to havo as many as possible.

4.3.4. The family and the homestead

The family consists of parents, children, brothers, sisters, grandparents and often other relatives. Kinship through blood and betrothal plays an important rolo in Nkamba lire, and there are about a hundred kinship terns. Every person knows how he is related to бthers.

The t aditional homestead of a Kukamba is mado up of several houses and erain stores, belonging to a man's several wives and children. On the sam compound, or nearby, are the similar homesteads of his brothers and their families. The oldost member of the homestead, wh ther man or woman is technically the "head" of the homestead and is consulted in all matters affecting the welfare of tho family. The houses are round in shape, with their doors ficing the centre of the compound. A courtyard, as well a.s a cattle shed are situated in the centre of the homestead, At night the courtyard j.s used by men and boys for story-telling and for giving truditional education to the young. Vomen and girls op the other hand sit irside tho house.

The fields for growing food are scattered in different places. Men clear and burn the woods, women help in planting, young men and women help in scaring the birds and squirrels when seeds are growinge All the family clear the weods and harvest together. Neighm bours help each other sometimes in working in the field.
4.3.5. Diet and Entertainment

Milk was an essential part of the skamba dj.et. Hunting was cherished by the Akamba and they use wild animals for meat sometimes. Customarily wile entertaining friends a chicken, goat or even a bull could be slaughtered as an expression of hospitality. Beemeoping being one of the popular men's occupation means honey is obtained easily. This is eaten at home, some is given to friends and relatives and some is used for part of bridewealth, and some is used for brewing alcoholic beverages.

Food taboos are almost nonpexistent 0.) though certain sea foods such as fish, oystere and crabs are not accepted since
they are not commonly cound here.

4.3.6. Entertainment

Dancing is the chief form of exercise and entertainment for both the young and the old. Many of the traditional songs are accompanied by dancing or some form of rhythmic movernent. Dancing is normally done and enjoyed at niglit, when people have finished their work and have had their meals. Dancing is more frequent during the harvest period.

Games, sporte such as swimming, running, etc. are dore by the young people while chilaren play with toys mado of clay and wood. Story-telling is another form of entertainment.

4.3.7. Cultural Change

Like all other cultures in the world, the tribe is undergoing an era of social, economic and cultural changes. The traditional extondod family system is slowly giving way to the nuclear family system. These changes are bringing new norms of behaviour, values, beliefs, and attitudes. In parjiculur, the role of the eldest mas in the family winich was mainly to act as a
councellor and arbitrator in matters involving land, marriage and clan, is on the decrease. Novadays, the young, educated members of the family have assumad greater authority becausc of the prevailing economic conditions. The collective responsibility of an extended family unit in caring for the sick and the aged is beginninfs to be replaced by the individuals taking care of their health status with their wives and children.

Thoubh many customs and beliefs still persist even today, it is important to note that most do not retain the same teracity or consensus among all members of the tribe. The hiernachy of those on top of the ladder (Politicians, teachers, chiefs, the education urban elites) are by and large acquiring new normb, beliefs and practices as they mix with members of other cultures. The influence of the massmmedia, the aericultural extension agents and other forces are eroding tho traditional belie?s and practices of the tribe in verying rates depending on the degree of exposure and the capacity to absorb the changes by individuals or commanities (Muchunga i977).

4.4. The Selected Schools

The study was carried out between the months of March and Noveraber, 1976. 194 students aged 25 to 18 years ware solectea randomly from Wachakos Girls' High School, Mumbuni High School, Kyanguli High School and Kangundo High School all of Machakos Didtrict. Ey going through the school register, the first 15 . .udents in each class who fell in the ages $15-18$ years were picked, in order to make up the total number of students required for the sample. The selected students were irom Form I to Form IV. Of those selected 108 were girls; 50 girls from Machakos Girla' High School and 58 girls from Kyanguli Secondary School. 86 were bojs, 39 boys from Kangudno High School and 48 boye from Numbuni High School. 4.4.1. Kangundo High School

Kangundo High School ie a boys'
Government boarding school in
Kangando Location, Machakos District.
It is about two kilometres from
Kangundo Town, and about 60 miles
from Machakos 'Som. It has 440 stum dents and consists of students frow

Sose haolthy adoleseants in the sasple fron Kingrondo High sehool. In the background is aseen a nodem laboratory of the achool.

Form I to Form 6 double stream. 4 hostels varying in size consict of double deckers and single beds. Each hostel contains 110 students and all are rather crowded. Generally the school is quite neat and clean in both the hostels, the dining area und tio classrooms. Both pit and water borne lavatories are used in the school. Septic tanks and pits are used to get rid of dirty water and rubbish.

A matron trained in Institutional Management, supervises the cateriag Unit and has a small supply of espirins for treatront of headaches, etc. at the school. She actu as a cateress supervising the planning of meale and also as the school nurse treating ainor ailments such as headaches and treating wounds, and prom viding first aid to the studeate. Any major or serious illnesses are referred to the Kangundo Hospital which is 2 km . from the school. All students must have a medical check up before admission. Four cooks are incharge of preparing
 ample other equipment in preparing the meals. Adequate and clean arrangement has been aade for the storage of raw food and kitchen equipment. Food is delivered to the bchool by tender holders.

Sometimes the young farmers club provides cabbages from their garden, but this is not regular. There is no school canteen, but shops are about 50 yards away from the school in case the boys need any snacks. Biology is tre only subjoct taught in the echool which includes some health education. A radio and narispapers are available in tho school for recreation purposes. A careers master acts as a counsellor for the students. 4.4.2. Machakos Girls' Hieh School

This is a Government boarding school. It is about 2 km . from Machakos Town, and is in Iveti Location of Machakos District. It has 550 girls drawn from all parts of the Eastern Province. Majority of the girls are Kambas. The school has from Form i up to Form 6. 9 hostels of various sizes have an average of 30 double deckers for 61 girls. This actuolly makes the hostels rather crowded.

Adequate water borne lavatories and pit latrines are ueed in the school. An inginerator is present and cess pits are available for disposal of refuce. Tho + school as a mhole is quite neat both at the

4.

Pieture 3t Goo of the oohoole in the ntudy showing a nent
and hoalthy sohool onviponsent
Pieture ta Iloolttly achool girls frow Nachaiton Oirla* mith Dehool. gous the wehool elnsarootase
hostels, on the compound and in the classrooms. All girls at the achool are boarders and a coteress trained in Institutional Management is the one who supervises meals and preparation of these. 7 cooks prepare meals using 6 boilers and l ring. Two stores are available for storing dry groceries, and one for vegetables. The green groceries storage is not bery satisfactory, as it has no shelves or racks, but the food is kept on the floor. Storage of equipment is neatly done on shelves around the kitchen. Sowe of the food is dolivered to the school and the school sends its vans sometimes to collect supplies. A school garden provides some vegetables sometimes for tho school meals. There is no school shop or canteen at the school which could provide snacks or other necessities.

Two well equipped buildinge are available for the teaching of the home economics subjects (namely Food and Nutrition, Home Management ard Clothing and Textiles). Three qualified teachexs teach the subjects up to 'O' level. Biology is also one of the subjects taught at the school.

It might be interesting to note that before admission all first and fifth formers are taken a to Machakos Hospital for examination. The sick
are treated. All have to be physically fit on admission. A dispensary is availablo at the school with facilities for admission of the very sick students. Both a trained school nurso and matron are available to run the health unit. In case of very serious illnenses, Machakos District Hospital is about 1 km . oway, and these cases are referred there. Most teachere act as counsellore and holp the girls with their private problems. Visiting lecturers and speakers Buch as the Family Iife Education Group are often invitod in the school to give talks on health and sex education to the girls.

For recreation puryosea, a radio, televem sion and newspapers are provided for the girls. School clubs are also run as extra curricular activities.
4.4.3. Mumbuni Secondary School

The school is about 3 km . from Machakos Town. It is ir Iveti location. It is o. Government day school for boys, although some facilim ties are available for the fev students whose homes are far from the school. Ore domitory and a few beds are available for these few. Those boys who have to board there have to provide their
own meals individually. A few other students have rented roons at a shopping centre nearby and these also have to provide their own meals. Of the 330 students in the schools the majority are day scholars, and are Kambas by tribe. Pit latrines and rubbish pits are used as means of disposing of waste. A canteen is available at the echool which provides cold snacks for the students. Biology is the only subject taught at the school which could cover scue health education.

There is no dispensary at the school and all cases of sickness are referled to Machakos Hospital which is about three kilometres away.

Newspapers are provided for the students and school clubs are sinn to provide recreational activities.
4.4.4. Kyanguli Scconciary Ẽchool

This is a co-educational Harambee Secom ndaxy School. It is a double stream school from Form I to Form 4. It has 399 students, of which 276 are boys and 123 are girls. It is about 5 km . away from Nachakos Town, along the Machakos/Kangundo road, in Iveti Location.
5.

6.

Kyanguli Secoalturg Sohool - mome of the atudents in the asaple and the alanamoant.

The general appearace of the school is fair and the school hae 7 pit latrines available for the students and teacners. All the students are day scholars and there is no canteen available at the school, although a shopping centre is about half a mila from the school.

Health Science is the only health education eubject taught at the school alongside other subjects. Thare is no diopansary run by the school so all cases of sicknesses are referred to Machakos General Hospital, which is about 5 km . away, in Machakos Town The children are not provided with radio, television or newspapers for recreational purposes.

CHAPTER 5

METHODS

5.7. General

The investigation vas carried out betweon the months March to November 1976 only to be interrupted during the holidays. Physical examinations and interviews had to be done mostly on Saturdays or after school so that there was no interference in the adolescents' clossroom work. On only two occasions examirations were done during school time; thic was when the clinical tests were being carried out. This had to be done to ensure the full attendance and participation of the studente.

The headteachers in all schools visited were very understanding and comperative snü, apart from a few cases ob students disappearance and absenteaism, most of those students selected turned up for the quastionnaires and exarinations and measurements. Einpty rooms in the schools, a dispensary vere made available for the medical oxaminations to take place.

A baraza was arranged in the study area by the Chief and attended also by the sub-chief to explain to parents that their homes mero to bo visited in connection with their adolescents

Fig. I Distribution of children in classes

attending achools.
A week was spent to study the location of some of the eecondary echoolo. With the help of the District Educataon Officer at Machakos, the above schools vere selgcted considering the means and availability of transport.
5.2. Subjects

194 adolescents (108 girls asu 86 boys) from 15 to 18 years of age, eccording to the school admission register, were selected for the medical exaninations, and anthropometric measurements. By going through the schuol register all the names were picked of those whose ages fell in that range. Home visito were planned for a random sumple of 62 day scholars, Of the total sample 88 boarders' diets were investigated, in the boarding schools. Another 100 day-scholars' diets were done on estimates, using a 24 hour recall method.
5.3.2. First Exarination

The examination of the school children consicted of a systematic search for nutritional deficiency signs, a neries of body measurementis, and an s.nalysis of blood car:ple for haenoglobia.

Fig. 2 'Line of Flow' General Order of the First Examination in each school.

As the students entered the examination room, they had to place stool containere (eiven to thom the day before), with the atool in a box at the entrance. Thon they proceeded for anthropometric measurements; clinical examination (done by a medical doctor) and finally a blood sample from a fingerprick was takea and the haemoglobin concentration dotermined (by a qualifiod technician). No questionnaires wera filled on that day.
5.3.1.1. Deficiency signs mere looked for by a medical doctor on the basis of a checklist taken from Jellifie (1966). Sce Appendix I. The majority of the deficiency signs could be indicated by a plus (t) or a minur (-) mark. (Those found to be anaemic were given iron tablets).
5.3.1.2. Anthropometry

Anthropometry was limited to a number of body measurements that make it possible to distinguish some levels of poor nutritional status. According to Jelliffe (1966) simple, quick and easy measurements which will produco maxinum information concerning the rutritional status are nocessary.
5.3.1.2.1. Weight

A bathroom scale pas used in the taking of the boay weasurement. On one occasion a school lever balance Avery type 3306 ABW was used in taking the weights. This scale Was checked later against tho bathroom scale, and the difference in the Weighta rectipied. The students had their shoes and socks and cardigans removed. Girls had a skirt and blouse on the boys were weighed in their shorta and nylon shirts.
5.3.1.2.2. Height

In every school hoight was taken

- with a subject standing strajoght against a straight wall. The straightness of the wall was checked by using
a block of wood (Latham, M.C. 1965). A tape measure was fixed on the wall. All subjects wore asked to remove their shoos, and standing straight against the wall on a flat floor and feet parallel. The head held comfortably and arns hanging at the sides in a natural manner. (Jelliffe, 1966). A wooden block lowered gontly, crushing the hair and making contact with the top of the head. The height measurement was thus taken.
5.3.1.2.3. Arm Circumference

Arn circumperence wae mersuyed with a flexible tapo measure which was placed gently but firmly at the left side of the body halfway between the acromial process of the scapula and oiecranon process of the unna. (See Fig. 3).
5.3.1.2.4. Triceps-Skinfcld

Pricepe skinfold thicknoss was measured with a Harpenden skinfold caliper over the m. triceps at the eame level as the arm circumforence (see fig. 4).
5.3.1.3. Blocत Testa

> Blood samples were collected to determine haemoglobin content of the

Fig. 3
Assessing midpoint of upper arm (halfway between the acromial process of the scapula and the olecranon process of the ulna

Measurement of triceps skin-fold with harpenden calipers

Fig. 4

Measurement of mid-upper arm circumference
adolescents. The blood was collected from a finger prick. Haemoglobin estimation was done by using Spencer Haemoflobinometer.
5.3.1.4. Laboratory

Stool contadners ware numbered and preserved with forinalin 4\%. These were given to the students the day before the first examination so that they could be brought back witil atonl.

The stool wus taken to Machakos
Laboratory where the Rjitchie Tochnique was used in finding out the presence of: intestinal parasites.

Ritchie Techniaue (Ridlej Modification)
This method is used for protozoa and all helminth eegs.
(a) Enulsify with pestle and mortar 1 to 2 grams of faeces in 10 ml . 10% formal seline.
(b) Strain through 60 mesh Eievo through a small funnel into a centrofuço tuboo (c) Add 3 ml . of ether cork and shake vigorouely for 1 minute.
(d) Contrifuge, regulating the acceleram tion so that 2,000 r.p.m. is attained in 2 minutes then switch off and allow to come to rest.
(o) Loosen fatty debris at the junction of the liquids with a swab stick. (f) Pour away the whole of the supernatant togethor with the debris.
(g) Mix the small deposit with the remaine ing drop of Rluid.
(h) Extract drop with pipette, place on slide and cover with a No. 1 cover glass.

5.3.2. Second Examination

The second examination was done also by a medical doctor to determine the stager of development of the reproductive system. Tanner (1962) has put all ratings for genital. development and pubic hair on a Scak from 1 to 5. In this study only the boys were exarined and were rated in these 5 stages of development. Thus this examination was carried on in only two schools, nemel.s Mumbuni High school and Kangundo High Schoul. The girls were not examined, but were rated as to whether thoy had
reached their menarche or not, through a questionnaire (seo Appendix I).

According to Tanner the rater of development for both genital and pubic hair are as follows

Staze 1: Fre-adolescent.
Testes, scrotum and penis are of about the same size sud proportion as in early childhood. No pubic hair.

Stage 2: Enlargerent of scrotum and of testes. The ekin of the scrotum reddens (in those with light coloured skins) and changes in texture. Little or no enlargement of penie at this sta.go with sparse growth of hair, appearing chicfly at the bace of the penis.

Stage 3: malargement of penisu which occurs at first mainly in length. Further growth of testes and scrotum. Considerably coarser and more curled pubic hair spreading sparsely over the junction of the pubes.

Stage 4: Increased size of penis with growth in breadth and development of glans. Further enlargement of testes and scrotun; increased darkening of scrotal skin (in those with light colour). Putic hair cov resembles adult type but the area covered by it is still considerably
smallor than in the adult. No spread to the medial surface of the thighs. Usually appearance of axillary hair although there are a few exceptione. Facial hair begina to grow, especiully at the corners of the upper lip. This hair eventually spreads to complete the moustabke. First appearance of chest and abdominal hair. State 5: Genitalie adult size and shape. No further enla: ment takes place aft.ar atoge 5 is reached it aeoms on the contrary, that the penie size decreases sllghtly from the inmediadely post adelescent pork. The puhic hair is of adult in quantity, tyoe and distribution. Facial. hair also appears on the upper part of the cheeks and in the midline fust below the lower lip, finally along the sides and lower boarder of the chin.

5.4. Questionnajres

Several questionuire forms nere used (seo Appendices).
5.4.2. Onset of Menstruation

In order to find out whether ther girls in tho sample had had menarche, the following questions were asked (seo also appendix 2):

1. Do you have your menstruation pexiod?

2. If yes, when did you have the first period? $1970 \quad 1971 \quad 1972 \quad 1973$ 19741975

By asking these questions it was possible to see how many girls were post-adoloscent and how many girla were promadolescent. In addition it was oasy to find out the approm ximate ages whon they had their menarcho, thus be able to find average aga of menarche for Machakos Girls.
5.4.2. Questionnaire 3 (soe also Appendix 3)

In order to find out the ngtritioral knowledge of the edolescent, General nutrition questions were sat for the students in the sample.

In order to fird whether the students knew the nutritive value of foods commonl.j used in their area, 3 questions were asked $(1,2,3)$.

In order to find out whether the students know about malnutrition and the causes of
deficiency diseases common in their area 3 questions were abiked (4, 5 and 6), referring to anaemia, kwabbiorkor and iodine deficiency.

The last set of questions were asked in order to find out whether the students knew the nutritional noeds for people and special vulnerable groups of people (Questions 7-10).

5.5. Food Intake or Dietary Intake

In the two boarding schools, Machakos Girls High School und Kangundo High Schocl, the weights and measuren of the raw foods per day were obtained from the school's catcrass. In both the two schools the diet was the same each day of the week. The same quantities of food were used in each school everyday. Machakoc Girls High School however served rice once a waek on Sunday evening instead of Njenga (Founded maize), and an egg was added for braakfast on Sundays. In order to confirn the weights one of the days' weights and moasures were checked in each school while the coteress was doing it. Since the fruits were given twice per week, the 7 days' quantity was obtained for the whole \therefore -
school. The total number of the students in the school was ontained together with the total number of cooke who share the meals with them. The quentities for each student were then calculated from these figures. The methods and length of cooking were not taken into consieram tion. In addition, each student was asked to write down any extra bnacks taken at odd hours in that particular week. This war done in order to find out if any extra nutrients are obtained apart from the school meals, and to find the snack pattern of these students.

In the two day schoole, information on food intake was collected by means of 24 hours' dietary recall method winch is one of the more accurate procedures for short term analysis, provided that a sufficient number of persons be interviewed. (Marr: J.W. 1971, Young ot al 1960). The adolescents being old anough the information obtairod ie hoped to be reliable. Plates and mugs were used to ge an estimated quaxtity.
5.6. Home Visiting

Two assistants coming from the area who could speak Kikamba well, were used in home visitinge A week was used to go over the questiomnaire on
socio-*conomic data and questionnaire for mothers (see appendix 4 \& 5) and visiting three homes together. Emphasis was put on the kind of information expeted for each questionnaire, and the kind of observation to be done during home visiting. Two sets of questionnaires wero used to obtain information on standard of living and one on nutritional knowledge of the mother. 62 homes of we day studente mere visited.

As mothers filled in the questionnaire on standard of living $=$ observations were made on the condition and type of hores and furnitures, presence of a datrine and usage, storage facilim tios, number of rooms in use and whether kitchen. was separate fron the living room or not.

In addition to the above, information on food grown by the lamily and food purchased by the family was obtained. In accordance with Jelliffe, the following ${ }_{n}$ roups of foods were distimguishą: (Jelliffe 2968)

- cereals and starchy foods
- legumes
- vegetables
- animal prociucts.

CHAFIER 6

RESULIS

The results will be presented in various parte:Part 1 6.1. The First Examination
6.1.1. Selection of the Subjects
6.1.2. Clinical signs
6.1.3. Anthropometric findings - means and standard doviations
6.1.4. Weight gain
6.1.5. Antiropometric measures ascordm ing to the perceilage of the atandara
6.1.6. Hb Levels
6.1.7. Stool resulte
6.2.8. Conclusion summing up the above

Part II 6.2. Second Examination
6.2.1. Developmertal atages (sex matum rity of the boys
6.2.2. Cliaical signs in developmental stages
6.2.3. Anthropometry mean values and standard deriations
6.2.4. Anthropomatry - those below the standard, in their deve?oprental ases
*6.2.5e Hb Levels
6.2.6. Conclusion summing up the above

Part III 6.3. Questionnaires
6.3.1. Onset of menstruation (Appendix 1)
6.3.2. Knowledge of nutrition of tho students (Appendix 3)
6.3.3. Knowledge of nutrition of the mothers (Appendix 4)

Part IV 6.4. Food Consumption
6.4.1. Food Availability
6.4.2. Food Parchase
6.4.3. Food pattern and menus fox boarders
6.4.4. Food pattorn and monus for day students
6.4.5. Nutritive value and adequacy of the diets

Part V 6.5. Home Visiting
6.5.1. Education of the Parente
6.5.2. Occupation of the household
head
6.5.3. Hygienic Practices
6.5.4. Type of Housing

Part VI 6.6. Relationship between the sociom economic factors and the anthropometric measurements and clinical siens of the children.

Part VII 6.7. Conclubion

6.1. The First Examination at the School

A morning or an afternoon was selected
for the medical examination of the stulent. in each of the achools.

58 girls ware examined at Kyanguli Seconcary School.

50 girla were examined at Machakos Girla School.

48 boys were examined at Mumbuni High School and 38 boys were examined at Kangundo High School.
6.1.1. The Subjects

Five weaks ware devoted to the exanining of 194 students of the gour schools, the examinations being done at the doctor's convenierce. Table l shows the numbers of children eelecm ted, excluded and remaininge

Table 1: Numbers of Children Selected, Excluded, and remaining according to Schools and Sex.

Category	Kangundo Boys	Bearders Kachaikos Girls	Mubuni Kyanguli Boys Gj.rls	Total	
Selected	54	60	60	62	236
Sxcluded	16	10	12	4	42
Remaining	38	50	48	58	194

Data on 42 students yere unusable: Some were conm stantly absent in attending the medical examination and in filling the queeticnnaires. Others had not returned. from home due to lack of school fees as vas found at Kangundo Nigh School. One of tho girls at Kyancul. 1 Secondary School later left echool because she was pregnant, thus she was dropped from the sample. On the questionnaire to girls to find whether thoy had had their menarche, one girl from Mabakos Girls High School (15 years), and one giri from Kyanguli (15 years) had not had their menarche, so these two were also dropped from the sample. Thus data on 194 pupils ine. 82.2% of the nuriber selected was subjected to further analysisin The tests used in the study are the t-test and the Critácal Ratin Test。

6.1.2. Clinical Sions

Table 2: Prevalenco of deficiency signs for boys and girls.

Deficiency Signs	Girls No.	$\begin{gathered} N=108 \\ \% \end{gathered}$	Boys No.	$\begin{gathered} \mathrm{N}=86 \\ \% \end{gathered}$
Conjuncital Wrinkling	4	3.7	$?$	8.1
Bitot's Spots	1	0.0	1	1.2
Corneal Scarring	1	0.0	0	0.0
*Pallor of Cowjunctivae	10	9.3	2	2.3
" " Tongue	9	8.3	2	2.3
* Pallor of nail bed	7	6.5	0	0.0
Angular Stomatitis	3	2.8	1	1.2
Cheilosis of Lips	33	30.6	34	39.5
Spongy/bleedin/s gums	0	0.0	1	1.2
*Goitre (egrade l)	24	22.2].	1.2

Other signs of nutritional
signtficance

*Number of decayed teeth	1	6	5.6	13	15.2
	2	1	0.0	5	5.8
Number of miscing teeth	1	8	7.4	4	4.7
	2	2	1.9	0	0.0
	3	2	1.9	1	1.2
Number of filled teeth	1	1	0.0	2.	2.3
	2	1	0.0	0	0.0
Mottline of teeth		14	13.0	9	10.5
*Obesity (Erade J)		22	20.4	1	1.2
* = Difference significant between boys and girls at 5% level according to Critical Ratio Test (C. .T.T.)					
Rost commor deficiency sign is cheilosis of lips yith					
$33(30.6 \%)$ of the girls and $34(39.5 \%)$ of the boys.					

Table 2.1. Prevaience of deficiency signs - Day Students versus Boarders

Other signs of nutritional significance

		Girls				Boys			
		$\begin{aligned} & \text { Day } n=58 \\ & \text { No. } \% \end{aligned}$		$\begin{aligned} & \text { Boarders } n=50 \\ & \text { No. } \% \end{aligned}$		$\begin{aligned} & \text { Day } n=48 \\ & \text { No. } \end{aligned}$		$\begin{aligned} & \text { Boarders } s=38 \\ & \text { No. \% } \end{aligned}$	
No. of decayed teeth	1	3	5.2	3	6.0	7	4.2	6	15.0
	2	0	0.0	1	2.0	5	14.5	0	0.0
No. of missing teeth	1	5	8.6	3	6.0	2	4.2	2	5.3
	2	0	0.0	2	4.0	0	0.0	0	0.0
	3	0	0.0	2	4.0	1	2.1	0	0.0
No. of filled teeth	1	0	0.0	1	2.0	2	4.2	0	0.0
	2	0	0.0	1	2.0	0	0.0	0	0.0
Mottling of teeth		12	20.7	2	4.0	4	10.4	4	10.5
Obesity (grade 1)		17	29.3	5	20.0	1	2.1	0	0.0

There was a significant difference at 5% level between the boarding girls and the day cirls in mottling of teeth, obesity ank pallor of nail bed (C.R. T.). There is no signia ficant difference aniongst the girls in any other deificiency sign. Amonget the ciay boys and the boarding boys, it is found that there is a significant difference in number of decayed teeth. There is no significant difference in any other sign examined.
N.B. Goitre grado 1 in this context is according to Jelliffe (I966) namely: Porsons with paipable goitres. The thyroid is probably enlarged more tirn four to five timesy although not visible with the head in the normal condition. Most cases will be readily visible with the head thrown back and the neck fully extended.

6.1.3. Anthrowometry

As the children had no birth certificatos, the ages given on admission to the school. were confirmed, by asking each child in the sample his/her age. Host of the ages given by the childron were the same as the onos appearing in the school's register. Those who were found to be older or younger were dropped from the sample,

Tables 3, 3.1, 5.2.3.3, 3.4. show the mears and standard doviations of all the anthroporetric measures as well as the standard deviations of all the students in ages and various locations.

Table 3 : Mean values for anthropometric measuroments for boys and girls in ages

$\begin{aligned} & \text { Age } \\ & \text { (Years) } \end{aligned}$	Weichts (kg.)				Heights (cm) Arra Circumference							Skinfold Thickness				(mm)
	Boys		Girls		Boys		Girls	Boys		Giris		Boys		Girls		
	Meay	S.D.	Mear	S.D.	Mean	S.D.	Mean S.D.	Mean	S.D.	Mean	S.D.	Mean	S.D.	Mean	S.D.	
15	$\begin{aligned} & 41.6 \\ & (12) \end{aligned}$	$7 \cdot 9$	$\frac{51}{(9)^{3}}$	6.5	$\begin{aligned} & 154.1 \\ & (12) \end{aligned}$		$\begin{aligned} & 159.66 .7 \\ & (10) \end{aligned}$	$\begin{aligned} & 21.4 \\ & (12) \end{aligned}$	2.3	24 (10)	7.7	$\begin{aligned} & 7.8 \\ & (11) \end{aligned}$	3.71	$\begin{aligned} & 17.4 \\ & (10) \end{aligned}$	4.6	
16	$\begin{aligned} & 47.2 \\ & (13) \end{aligned}$	6.0	$\begin{aligned} & 50.7 \\ & (35) \end{aligned}$	5.1	$\begin{aligned} & 1600_{4} \\ & (13) \end{aligned}$	6.8	$\begin{aligned} & 156.65 .8 \\ & (35) \end{aligned}$	$\begin{aligned} & 22.6 \\ & (13) \end{aligned}$	1.6	$\begin{aligned} & 24.3 \\ & (35) \end{aligned}$	1.6	$\begin{aligned} & 7.4 \\ & (13) \end{aligned}$	1.6	$\begin{aligned} & 17.4 \\ & (35) \end{aligned}$	4.7	
17	(33)		(27)		(33)		(28)	(33)		(28)		(33)		(28)		
18	$\begin{aligned} & 52.8 \\ & (28) \end{aligned}$	5.2	$\begin{aligned} & 53.5 \\ & (32) \end{aligned}$	5.7	$\begin{aligned} & 166.8 \\ & (28) \end{aligned}$	5.6	$\begin{aligned} & 158.76 .0 \\ & (33) \end{aligned}$	$\begin{aligned} & 23.7 \\ & (28) \end{aligned}$	1.8	$\begin{aligned} & 25.3 \\ & (33) \end{aligned}$	$2,0$	$\begin{aligned} & 7 \cdot 8 \\ & (28) \end{aligned}$	2.4	$\begin{aligned} & 18.8 \\ & (28) \end{aligned}$	5.6	

Between () number of observations

In the table above, there is found to be a significant difference between the mean weight of boys and girle at age 15 ("t" $=2.99$) mean weights of ages 16,17 and 28.

A eignificant difference is found in the mean heights of boys and girls at ages 17 years ("th=3.43) and 18 years ("t" $=5.4$). There is no significant differance in mean heights at ages 15 and 16 years.

There is a significant difference in mean arm circumference betmeen boys and girls in all ages. ("t" = 3.27), at age 17 years ("t" $=3.82$) at 18 years ("t" $=3.47$).

A significant difference in mean triceps skinfold thickness between girls and boys in all ages. At age 15 ("t" $=5.66$), at $16(" t "=7.46)$, at 17 ("t" $=13.21$), at 18 ("t" $=9.65$).

Table 3.1. Mean values for weights (kg_{g}) for boarders and non-boarders according to ages.

$\begin{aligned} & \text { Ages } \\ & \text { (years) } \end{aligned}$	Girls				Boys			
	Boarders		Day		Boarders		Day	
	Hean	S.D.	Mean	S.D.	Mean	S.D.	Mean	S.D.
15	$\begin{aligned} & 52.1 \\ & (8) \end{aligned}$	6.5	50	9.5	$\begin{aligned} & 36 \\ & (1) \end{aligned}$	-	42.1	8.1
16	$\begin{aligned} & 48.6 \\ & (11) \end{aligned}$	7.5	$\begin{aligned} & 51.2 \\ & (24) \end{aligned}$	4.2	$\begin{aligned} & 47 \\ & (4) \end{aligned}$	5.7	$\frac{47 \cdot 2}{(9)^{2}}$	6.5
17	$\begin{aligned} & 52.8 \\ & (\mathrm{I} 4) \end{aligned}$	4.1	$\begin{aligned} & 53 \\ & (13) \end{aligned}$	7.5	$\begin{aligned} & 49.9 \\ & (22) \end{aligned}$	3.9	$\begin{aligned} & 51.6 \\ & (12) \end{aligned}$	6.5
18	$\begin{aligned} & 54.4 \\ & (1+5) \end{aligned}$	5.5	$\begin{aligned} & 52.9 \\ & (18) \end{aligned}$	5.9	$\begin{aligned} & 51.8 \\ & (i 1) \end{aligned}$	4.6	$\begin{aligned} & 53.3 \\ & (16) \end{aligned}$	5.8

Between () number of observations
Using the t-test there is no significant difference in mean weights beiween boarders and non-boarders in both sexes in all ades.
, Table 3.2 Mean values for heights (cm) for boarders and non-boarders according to ages

$\begin{gathered} \text { Aces } \\ \text { (years) } \end{gathered}$	Girls				Bcys			
	Boarders		Day		Boarders		Day	
	Mean	S.D.	Mean	S.D.	Mean	S.D,	Mean	S.D.
15	$\begin{aligned} & 259 \cdot 7 \\ & (9) \end{aligned}$	$7 \cdot 1$	$\begin{aligned} & 162.4 \\ & (3) \end{aligned}$	3.4	$\begin{aligned} & 150 \\ & (1) \end{aligned}$	-	$\begin{aligned} & 154.5 \\ & (11) \end{aligned}$	9.7
16	$\begin{aligned} & 154.5 \\ & (11) \end{aligned}$	$\begin{aligned} & 5.4 \\ & (24) \end{aligned}$	$\begin{aligned} & 157.1 \\ & (24)^{1} \end{aligned}$	5.6	$\begin{aligned} & 162 \\ & (4) \end{aligned}$	4.7	$\begin{aligned} & 159.6 \\ & (9) \end{aligned}$	7.8
17	$\begin{aligned} & 158.8 \\ & (15) \end{aligned}$	5.0	$\begin{aligned} & 157.4 \\ & (13) \end{aligned}$	6.8	$\begin{aligned} & \text { 」uj. } 6 \\ & (22) \end{aligned}$	4.0	$\begin{aligned} & 163.7 \\ & (12) \end{aligned}$	6.4
18	$\begin{aligned} & 161.7 \\ & (15) \end{aligned}$	$7 \cdot 3$	$\begin{aligned} & 156.1 \\ & (18) \end{aligned}$	$5 \cdot 3$	$\begin{aligned} & 165.7 \\ & (11) \end{aligned}$	6.1	$\begin{aligned} & 167.4 \\ & (16)^{4} \end{aligned}$	2.8

Between () number of observations
Significant different is found in mean heights between the boarders and non-buarders girls at age 18 ("t" $=2.53$). There is no significant difference in mean heights of boarders and non-boarders in other ages.

Table 3.3 Mcan values for arm circumierence (cm) for boarders and non-boarders according to ages.

Ages (years)	Girls				Boys			
	Boarders		Day		Boarders		Day	
	Mean	S.D.	Mear	S.D.	Mear	S.D.	Mean	S.D.
15	$\begin{aligned} & 24.4 \\ & (9) \end{aligned}$	1.4	$\begin{aligned} & 22.8 \\ & (3) \end{aligned}$	3.1	$\frac{18.5}{(1)^{5}}$	-	$\begin{aligned} & 21.6 \\ & (11) \end{aligned}$	2.2
16	$\begin{aligned} & 24.2 \\ & (11) \end{aligned}$	2.2	$\begin{array}{r} 24.2 \\ (24) \end{array}$	1.4	$\begin{aligned} & 21.8 \\ & (4) \end{aligned}$	0.9	$\begin{aligned} & 22.9 \\ & (9) \end{aligned}$	1.8
17	$\begin{aligned} & 24.9 \\ & (15) \end{aligned}$	1.2	$\begin{aligned} & 25.0 \\ & (13) \end{aligned}$	2.6	$\begin{aligned} & 23.7 \\ & (22) \end{aligned}$	1.7	$\begin{aligned} & 23.8 \\ & (12) \end{aligned}$	2.2
28	$\begin{aligned} & 25.5 \\ & (15) \end{aligned}$	2.9	$\begin{aligned} & 25.2 \\ & (18) \end{aligned}$	2.2	$\begin{aligned} & 23.8 \\ & (11) \end{aligned}$	1.5	$\begin{aligned} & 23.6 \\ & (16) \end{aligned}$	2.1

Between () number of observations
There is no significant difference in mean arm circumference between the boarders and nonboarders of both sexes at all ages, using the t-test.

Table 3.4 Moan values for skinfold thickness (mm) for boarders and non-boarders according to ages

Eetween () number of observations
There is a significant difference in mean skinfold thickness between the boardera and non-boarders girls at age 17 ("t" $=3.43$). There is no significant difference in mean skinfold thickress between boarders and nou-boariare in both sexes at others ages (15, 15. 18).

Tables 3.2. 3.3. and 3.4 shov man value and atac nafard doviationc for molets, arn oiromiforence and akinfold thicknese for beardery and momboardera Hecording to thoir ageB.

The follouiag is observeds
(a) Signifioant dizforesce is found in moan hoighte betweat tho bourdors and nomboardors ghrls at ase $18(0 \mathrm{gN}=2.53)$. Thoro 10 mo 51 gnt 120 ount ilfforonce in mean hoichte of beardore and aumboardore in other agos.
(b) there is no ofgnificant difforonce in meas are ctreunioronce botwen the boardors and nomo boarders of both noxes at 11 agee, resing tho t-test.
(c) There 10 a segifionst difforence in moas eletho fold thicknene between tho boarders and non boarding girle at the ago 27 (ngM - 3.43). Shere is no ifgnificant difforomee in mean eleinfold thicknose botmenn bomrdoro and mon-boardera in both sexes at other agee (25, 26, 18). 6.1.40 whtrht ratin To sizd mothor there io a woight gain in bourdere at the and of tern (mer thoy have bech led at school) and at the begianing of the torm (whon they have boom fod at homo) two molght measuremonts wore takos at the ond and bogtoning 08 a atori. The table below chowettho recmits.
ghble t Hoan Votert and standard Doviatlone of boardere at the bogtaring and and of tos.

Catogay	Hames				
		Mean	B.D.	Moan	B.D.
$\begin{aligned} & \text { Soarding } \\ & \text { cluts } \end{aligned}$	42	52.2	6.3	52.7	6.3
Soardiars Bog	38	50.0	4.7	48.8	4.7

Veing the paind tecot there 10 me elgatricent cisfarenco in fluyt and cocomd melght of boarding drio and of boarding boys. That io to any that those to 50
 when they are isd at home er when they are fol at cobeo:.

Btandorita of Beforance

A0 there are so loenl stondardo of roforomecm
for antropomotele monouremones. the asoccemat of
thoso to obtatiod from Frotouc mourcos. The ateo alneds 80 r matchis and molghte for agoe 25, 26, 19 and 18 mare obtatnod Erea Melaca, Vangh, Mokay (2966). the 50th peroctitio me them as tho etandart, and - cher atandarto (50\%, 80\%, 70\%, 60\% more anleulatod srom thle. two enfoht for holdat otandarla aro

Murvard sendarin (dolliffo, 2966). 5ryeopa detmo fold otandard are given by Jo111880 (2966) for ages
 elromicercney etanenris ere fran del11850 (1966;

Ios ago 18, adult mtandard wore meod.

```
Table 5 Weight according to % of Standard of the
    adolescent boys and girls according to age
```

$\begin{gathered} \text { AGO } \\ \text { (years) } \end{gathered}$	No. $\angle 60 \%$		$\begin{aligned} & \text { oㅡㅇ } \\ & \stackrel{1}{1} \\ & 88 \end{aligned}$	仿	$\begin{aligned} & \text { k } \\ & 0 \\ & 1 \\ & 1 \\ & \infty \end{aligned}$	$\begin{aligned} & 8 \\ & 0 \\ & 0 \\ & - \\ & -1 \\ & 6 \end{aligned}$	28 0 0 -1 1 -1 -1 H	$$
Boys								
15	12	2	2	2	4	2	0	0
16	13	0	3	3	5	1	1	0
17	34	0	3	1.0	18	2	1	0
1.8	2.7	0	1	10	10	6	0	0
Total	86	2	9	25	37	11	2	0
Girls								
15	1.1	0	0	0	4	2	2	3
16	35	c	0	2	8	15	7	3
17	27	0	0	1	4	13	7	2
18	32	0	0	1	5	13	8	5
Total.	3.05	0	0	4	21	43	24	13

At age $15 ; \mathrm{c}(16.7 \%)$ boye are undorweight $(\angle 60 \%) ; 4(33.3 \%)$ boys are mildly underweight $(60-80 \%) ; 6(50 \%)$ boys and $8(72.7 \%)$ giris are of normal weight (81-109\%) and 3(2.7.3\%) girls are overvaight.

At age $16 ; 6(46.2 \%)$ boys and $2(5.7 \%)$ girls are mildiy underweight (60.80%); $7(53.8 \%)$ boys and $30(85.7 \%)$ girls are of normal weight (80209\%); and $3(3.6 \%)$ girls are overweight.

At age $27 ; 23(38.2 \%)$ boys and $1(3.7 \%)$ girls are milaly underweight ($60-80 \%$); 21 (61.8%) boys and $24(88.9 \%)$ girls are of normal weight; 2(7.4\% girls are overweight.

At age 18; $11(40.7 \%$) boys and $1(3.1 \%)$ firls are mildly underweight ($60-80 \%$) ; $16(59.3 \%)$ boys $26(32.3 \%)$ girls are of normal meight; 5(25.6\%) pirle ere overweight.

Tablo 6 Weight according to \% of standard of ndoles= cent boys according to age and location.

$\begin{gathered} \text { Age } \\ (\text { ycars) } \end{gathered}$	No.	<60\%	$\begin{aligned} & \text { g } \\ & \text { ત } \\ & \text { ó } \end{aligned}$		$\begin{aligned} & \ddot{0} \\ & 8 \\ & 0 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$	8 8 - 1 1 -1		
Boarders								
15	1	0	1	0	0	0	0	0
16	4	0	1	1	1	1	0	0
17	22	0	1	10	10	1	0	0
18	11	0	0	6	3	2	0	c
Totaj.	38	0	3	17	14	4	0	0
Non Boarders								
15	11	2	1	2	4	2	0	0
16	9	0	2	2	4	0	1	0
17	12	0	2	0	8	1	1	0
18	26	0	1	4	7	4	0	0
Total	48	2	6	8	23	7	2	0

```
2(4.2%) of the day boys ame underweight,
their weight being below 60% of the Standard. Those
who are slightly undez weight (60-80% of Standurc)
are 20(52.6%) of the boarders and I4(29.2%) of the
day boys. I8(47.5%) of the boarders and 32
(66.7%) are of a noraal weight (80-110% of the
Standard).
```

Table 7 Weight according to \% of Standard and adolescent girls according to age and location

Boarders

15	8	0	0	0	2	2	2	2
16	1.1	0	0	2	5	2	0	2
17	14	0	0	0	2	7	4	1
18	14	0	0	0	3	3	6	2
To亡a1	47	0	0	2	12	14	12	7

Non Boardors

15	3	0	0	0	2	0	0	1
16	24	0	0	0	3	13	7	1.
17	13	0	0	1	2	6	3	1
18	18	0	0	1	2	10	2	3
Total	58	0	0	2	9	29	12	6

Among the girls none is below 60\%. Two (4.3\%) of the boarders and $2(3.4 \%)$ of the non-boarders are between 60~80\% (slightly underweight). Those who have a normal weight $80-109 \%$ are $38(80.99 \%)$ of the boarders and $50(86.2 \%)$ of the day studente. $7(14.9 \%)$ of the boarders and $6(10.3 \%)$ of the day studenis are overwsight. Table 8 Hoight courding to $\%$ of Standard of adolesm cont boys and girls according to age.

$\begin{gathered} \text { Age } \\ \text { (years) } \end{gathered}$	No.	$\begin{aligned} & \text { be } \\ & \text { o } \\ & \text { 1} \\ & \infty \end{aligned}$	8 8 -1 -1	$\begin{aligned} & \text { 灻 } \\ & \stackrel{y}{3} \\ & 1 \\ & 1 \\ & \underset{H}{-1} \end{aligned}$	$\begin{aligned} & \Lambda \\ & \text { 灻 } \\ & \text { ت } \end{aligned}$
Воуs					
25	12.	4	8	0	0
16	13	1	11	1	0
17	34	4	30	0	0
1.8	27	1	23	3	0
Total	86	30	72	4	0
Cirls					
15	22	0	6	6	0
16	35	1	29	5	0
17	28	2	22	5	0
18	33	2	23	8	0
Total	108	4	80	24	0

Using who Standards (1976)
At age $25 ; 4(33.3 \%)$ boyg are below the Standard
height (90%); 8(66.7\%) boys and all girls are of normaj. height.

At age $16 ; 1(7.7 \%)$ boys and $1(2.9 \%)$ Eirle are below
Standard height (90%); $12(92 \cdot 3 \%)$ and $34(97 \cdot 1 \%)$
girls are of normal height.
At age $17 ; 4(11.8 \%)$ boys and $1(3.6 \%)$ firls are below
Standard height (90%); $30(88.2 \%)$ boys and
$27(96.4 \%)$ Efils are of normal height.
At age $18 ; 1(3.7 \%)$ boys and $2(6.1 \%)$ Eirls ars below
Standurd height (90%); $26(96.3 \%)$ boys and
$32(93.9 \%)$ girls are of normal heicht.
Table 9 Height according to \% of Standard of adolescent boys according to aEe und location

$\begin{gathered} A_{E \mathrm{E}} \\ (\text { yoars }) \end{gathered}$		< 60%		$\begin{aligned} & \text { 胥 } \\ & \infty \\ & 1 \\ & H \\ & A \end{aligned}$	$\begin{aligned} & x \\ & 0 \\ & 6 \\ & 1 \\ & 1 \\ & \infty \end{aligned}$	8 8 - 1 - -	3 0 - H 1 -1 -1	1 3 0 0 -1 -1
$\begin{gathered} \text { Boarders } \\ 15 \end{gathered}$	1	0	0	0	1	0	0	0
26	4	0	0	0	0	4	0	0
17	22	0	0	0	2	20	0	0
3.8	11	0	0	0	1	8	2	0
Total	38	0	0	0	4	32	2	0
No:l Loarders								
15	3.1	0	0	0	3	8		
16	9	0	0	0	1	7	1	0
17	12	0	0	0	2	10	0	0
18	16	0	0	0	0	2.5	1	0

Taking 90\% of the Standard being the normal. height (yHC 2975) \%i find $4(10.5 \%)$ of the boarders and $6(12.5 \%)$ of the day students to be slightly below the Standurd beight. $34(89.5 / 3)$ of the boardere and 42 (87.5%) of the day boya of the normal height. Ioble 10 Height according to \% of Stanuard of adolescent girle according to age and location.

$\begin{gathered} A_{\text {GU }} \\ (y \operatorname{ars}) \end{gathered}$	No.	$\begin{aligned} & \text { Bै } \\ & \underset{\alpha}{1} \\ & \dot{1} \end{aligned}$	308	
Boarders				
15	9	0	5	4
16	11	0	10	1
17	15	0	12	3
18	15	0	9	6
Total	50	0	36	14
Non Boswders				
15	3	0	1	2
16	24	1	19	4
17	13	2	10	2
18	18	2	14	2
Total	58	4	44	10

Of the girls 4 (6.9\%) day gials are slightiy
below the Standard height. $50(100 \%)$ of the boarders and $54(9 \% .1 \%)$ of the day girls are of a normal hej.ght.

Table 11 Weight for height accordine to $\%$ of the Standard of edolescent boys and girls according to age and location

$\begin{gathered} \text { Age } \\ \text { (years) } \end{gathered}$	No.	$\begin{aligned} & \text { fo } \\ & 0 \\ & 1 \\ & \vdots \\ & 0 \end{aligned}$	$\begin{aligned} & \text { o } \\ & \frac{\gamma}{1} \\ & -1 \end{aligned}$	8 0 - 4 -1	$\begin{aligned} & \text { 合 } \\ & \text { - } \\ & \text { H } \\ & -1 \\ & -1 \\ & -1 \end{aligned}$	A B - H
Boys						
15	12	0	3	5	3	1
16	23	0	1	6	4	2
17	34	0	5	15	8	6
18	27	1	5	21	7	3
Total	86	1	24	37	22	12
Girls						
15	11	1	2	3	3	2.
16	35	0	2	6	8	19
17	27	0	3	3	6	15
18	32	0	2	3	11	16
Total	1.05	1	9	13	28	52

At age 15; 1 (1.2\%) girle is mildiy bolow standard $(70-80 \%)$; $11(91.7 \%)$ boys and $8(72.7 \%)$ girls are of normal Standard ($81-109 \%$); $1(8.3 \%)$ boy and $2(18.2 \%)$ Girls are above Standard. At age $16 \% 11(84.5 \%)$ boys and $26(45.7 \%)$ girls are of normal Standard ($80-109 \%$) ; $2(15.4 \%$) and $29(54.3 \%)$ girls are above the Standuid ($310 \%>$)。

```
At age 17; 28(82.4%) boys and 12(44.4%) girls are
of normaj Standard; 6(17.6%) boye and 15(55.6%)
girls are ahove the Standard (110% ).
At age 18% 1(3.7%) boy is milaly below Standard
(70-80%); 23(85.2%) boys and 15(50%) girls are of
norral Standard (80.-109%) and 3(11.1%) boys and
16(50%) girls are above the Standard,
Table 12 Weight for Height sccording to of of
    Standard of adolescent boys accoring to
    age and Iocation
```

$\begin{gathered} \text { Age } \\ (\text { yORYE }) \end{gathered}$	No.	$\begin{aligned} & \text { ro } \\ & \infty \\ & 1 \\ & d \\ & \end{aligned}$	$\begin{aligned} & \text { go } \\ & 0 \\ & 1 \\ & 1 \\ & \text { 1-1 } \end{aligned}$	$\begin{aligned} & \text { 8 } \\ & 8 \\ & 0 \\ & 4 \\ & \vdots \\ & -1 \end{aligned}$	$\begin{gathered} \text { o6 } \\ \text { i } \\ \text { H } \\ 1 \\ -1 \\ -1 \end{gathered}$	$\begin{aligned} & \wedge \\ & \text { x } \\ & \text { H } \\ & \text { H. } \end{aligned}$
Boarders						
15	1	0	0	1	0	0
16	4	0	1	2	J.	0
17	22	0	2	13	4	3
18	11	0	3	4	3	1.
Totaj.	38	0	6	20	8	4
Non Boarders						
15	11	0	3	4	3	1
16	9	0	0	4	3	2
17	12	0	3	2	4	3
18	16	1	\bar{z}	7	4	2
Total	48	1	δ	1.7	14	8

$1(2.1 \%)$ of the day boys is below the Standard ($\angle 80 \%$). $34(89.5 \%)$ of the boarders and $39(81.3 \%)$ of the duy boys are of the S tandard weicht for height. $4(10.5 \%)$ of the boardere and $8(16.7 \%)$ of the day boye are above the Standard.

Table 13 Weight for Height according to \% of Standard of adolescent girls according - age and location

$\begin{aligned} & \text { Age } \\ & \left(\begin{array}{l} \text { vears } \end{array}\right. \end{aligned}$	No.	$\begin{aligned} & \text { oઠ } \\ & \infty \\ & 1 \\ & \text { D} \end{aligned}$	$\begin{aligned} & 80 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \stackrel{\pi}{0} \\ & \stackrel{1}{1} \\ & \underset{\alpha}{4} \end{aligned}$	$\begin{aligned} & \text { rg } \\ & -1 \\ & H \\ & 1 \\ & H \\ & -1 \\ & -1 \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { 合 } \\ & \underset{H}{\prime} \end{aligned}$
Boarders						
15	8	c	2	2	2	2
16	1.1.	0	0	2	4	5
17	14	0	j	2	2	9
18	14	0	2	2	4	6
Total	47	0	$\cdot 5$	6	12	22
Non Boarders						
15	3	1	0	\square	1	0
16	24	0	2	4	4	4
17	13	0	2	1	4	6
18	18	0	0	1	7	10
Total	58	1	4	7	16	30

$I(1.7 \%)$ of the day girls is below the Standard. $23(48.9 \%)$ of the bcarders and 27 (46.6% of the day girls aro of thie normal istandard. 22(46.8\%) of the boarders end $30(53.7 \%)$ of the day eirls are above the normal Standard for weight for height.

T'able 14 Arm circumference according to \% of the Standard of adolescent boys and girls accordm ing to ages.

$\begin{aligned} & \text { Age } \\ & (\mathrm{years}) \end{aligned}$	No.	$\begin{aligned} & \text { ro } \\ & \text { d } \\ & \text { ód } \end{aligned}$	$\begin{gathered} \text { of } \\ \text { on } \\ \text { in } \end{gathered}$	$\begin{gathered} \text { if } \\ 0 \\ 1 \\ 1 \\ \infty \end{gathered}$	3 8 -1 1 1 9	$\begin{aligned} & \text { er } \\ & \text { o } \\ & \text { - } \\ & 1 \\ & -1 \\ & -1 \end{aligned}$	$\begin{aligned} & \text { A } \\ & 0 \\ & 0 \\ & -1 \end{aligned}$
Boys							
15	32	0	4	3	5	0	0
16	13	0	2	6	5	0	0
17	34	0	4	17	12	I	0
18	27	2	13	10	2	0	0
Total	86	2.	23	36	24	1	0
Girls							
15	12.	0	0	2	5	5	0
16	35	0	0	3	20	10	2
17	28	0	0	2	12	11	3
18	33	0	3	14	15	1	0
Total	1.08	0	3	21.	52	27	5

At age 15; $4(33.3, \%)$ boys are below tho Standard (70-80\%) $8(66.7 \%)$ boys and all the firls (100%) are of normal Standard.

At age 16; $\$(15.4 \%)$ boys are below the Standard $(70-80 \%) ; 11(84.6 \%)$ boys and $33(94.3 \%)$ girls are of normal Standard ($81-90 \%$); $2(5.7 \%)$ girls are above the arm circunference Standard.

At age 17; $4(11.8 \%)$ hoys are below Standard (70 $80 \%)$; $30(88.2 \%)$ boys and $25(89.3 \%)$ girls are of normal Standard. At age 18; (55.6\%) boys and 3(9.1\%) girls are bel.ow the Standard ($60-80 \%$); $3.2(4 \% .4 \%)$ boys and $30(90.9 \%)$ girls are of normal. Standard.

Table 15 Arm circumference according to \% of Standard of adolescent boys accorling tc age and locution

Bourdors

15	1	0	1	0	0	0	0
16	4	0	1	3	0	0	0
17	22	0	3	10	9	0	0
18	11	1	3	7	0	0	0
Total	38	1	8	20	9	0	0

Non Boarders

15	11	0	3	3	5	0	0
16	9	0	1	3	5	0	0
17	12	0	1	7	3	1	0
18	16	1	10	3	2	0	
Total	48	1	15	16	15	1	0
9(23.7\%) boarding boys and $26(33.3 \%)$ day boy are bolow norwal 5 tandard for arm circumference ($60-80 \%$); 29(76.3\%) boarding boys and $32(66.7 \%$) day boys are of Standard arm circumference.							

Tailo 16 Arm circuaference according to $\%$ of Standard of adolescent boys according to age and locution

$\begin{gathered} \mathrm{Ag}_{8} \\ (\text { years }) \end{gathered}$	No.	$\begin{aligned} & 38 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { B } \\ & 0 \\ & 1 \\ & \sim \\ & \sim \end{aligned}$	$\begin{gathered} 8 \\ 0 \\ 0 \\ 1 \\ 1 \\ 0 \end{gathered}$	$\begin{aligned} & x \\ & 0 \\ & 0 \\ & 1 \\ & 1 \\ & \text { - } \end{aligned}$	88 8 -1 -1 -1 -1 \sim	$\begin{aligned} & \Lambda \\ & \circ \\ & 0 \\ & -1 \\ & -1 \end{aligned}$
Boardera							
15	2	0	1	0	0	0	0
16	4	0	1	3	c	0	0
17	22	0	3	10	9	0	0
18	11	1	3	7	0	0	0
Total	38	2	8	20	9	0	0
Non Boarders							
15	21	0	3	3	5	0	0
16	9	0	1	3	5	0	0
17	12	0	2	7	3	2	0
18	16	0	10	3	2	0	0
Total	48	1	15	16	15	1	0

$9(23.7 \%)$ boardicg boys and $16(33.3 \%)$ day boys are below normal standard for arm circumference $(60-30 \%) ; 29(76.3 \%)$ boarding boys and $32(66.7 \%)$ day boys are of Standard arm cimomference.

- 135 -

Table 17 Arm circuraference according to \% of Standard of adolescent girls according to age and location

Boardars

15	9	0	0	5	4	0
16	11	0	2	5	3	1
17	15	0	0	8	7	0
18	15	2	5	7	1	0
Total	50	2	7	27	15	1
Nor Boarders						
15	j	0	2	0	1	0
16	24	0	1	15	7	1
17	13	0	2	4	4	3
18	13	1	9	8	0	0
Total	58	1	14	27	12	4

$2(4 \%)$ boarding girls and $I(1.7 \%)$ day girl
are below the Standard ($70-80 \%$); 47(94\%) boarding giris $53(91.4 \%)$ day girls are of normal Standard; $2(3 \%)$ boarding Eirl aud $4(6.9 \%)$ day girls are above the Standard for arm circumference:

Table 13 Skinfold Thickness according to of the Standard of adolescent boys and girls according to age.

$\begin{gathered} \text { fge } \\ \text { (years) } \end{gathered}$	No.	$\angle 60$	$\begin{aligned} & \text { o} \\ & \text { 人 } \\ & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { of } \\ & \infty \\ & 1 \\ & 1 \\ & \end{aligned}$	$\begin{aligned} & \text { xo } \\ & \text { o } \\ & 1 \\ & 1 \\ & \infty \end{aligned}$	$\begin{aligned} & 80 \\ & 0 \\ & 0 \\ & -1 \\ & -1 \end{aligned}$	$\begin{aligned} & 80 \\ & \hline-1 \\ & -1 \\ & 1 \\ & -1 \\ & -1 \\ & \hline 1 \end{aligned}$	$\begin{aligned} & A \\ & \text { R } \\ & -1 \\ & H \end{aligned}$
Boys								
15	11	0	0	1	1	2	1	6
16	13	7	3	2	1	0	0	0
17	$3!$	21	5	1	2	1	2	2
18	27	25	4	5	1	2	0	1
Total	85	43	12	9	5	4	3	9
Qirls								
15	1.2	0	0	0	0	1	0	26
16	35	0	5	2.	6	4	4	14
17	28	0	1	1	4	4	3	15
18	33	2	4	0	4	3	2	29
Total	108	1	10	3	14	12	9	59
At ege 15; 1 (9.1\%) boy ic mildly velow Standard								
(70-80\%); 4(46.4\%) hoys and I (8.3\%) girl 9re of nor								
mal standare. $(80-109 \%) ; 6(54.5 \%)$ boys and 11 (91.78								
girys are above the Standard.								
At aEe $16 ; 7(53.8 \%)$ boys are below 60% Standard;								
g(38.5\%) boys and 7(20\%) girlo are slichtly below								
the Standard ($60-80 \%$) ; $2(9.1 \%$) boy and $14(40 \%)$ girls								
are of the norual intandard; $24(40 \%)$ girls are above								
the staradarc.								

At age 17： $21(61.8 \%)$ boys are below 50% of the Standara； $6(17.6 \%)$ boys and $2(7.1 \%)$ girls are slightly below Standard（ $60-80 \%$ ）；5（29．4\％）boye and 11 （ 39.3% ）girle are of normal Standard；2（5．9\％） boys and $15(53.6 \%)$ girls are above the normal Standard．

At age $18 ; 15(55.6 \%)$ boys and $2(3.8 \%)$ girls are below 60% Standard；$(9(33.3 \%)$ boys and $4(12 . ; \%)$ girls are slightly belcw Standurd（60－30\％）；2（7．5\％） boys and $9(27.3$ ）firls are of normal Standard； $1(8.4 \%)$ boys ara $19(57.6 \%)$ girls are above the Standard．

Tamle 19 Sti道fold Thickness accordine to \％of the Standard of adoiescent boys according to age and location

$\begin{aligned} & \text { Age } \\ & \text { (years) } \end{aligned}$	No．	$\angle 50$	$\begin{aligned} & \text { 给 } \\ & \text { í } \\ & \text { de } \end{aligned}$	$\begin{aligned} & \text { 隻 } \\ & \infty \\ & 1 \\ & \text { A } \end{aligned}$	$\begin{aligned} & 00 \\ & o \\ & 1 \\ & 1 \\ & 1 \\ & \infty \end{aligned}$	x 0 0 1 1 -1 -1	$\begin{aligned} & 80 \\ & -1 \\ & -1 \\ & 1 \\ & -1 \\ & -1 \end{aligned}$	$\begin{gathered} \wedge \\ \underset{y}{3} \\ -1 \end{gathered}$
Boarders								
15	1	0	0	0	－	0	0	2
16	4	3	1	0	0	0	0	0
17	22	12	5	1	1	0	2	2
18	17.	5	3	2	0	0	c	1
Total	38	20	4	3	1	0	2	3
lion Boarders								
15	10	0	0	1	2	2	1.	5
16	9	4	2	2	1	0	0	0
27	12	9	0	0	2	1	0	1
18	16	10	1	3	1	1	0	0
Total	47	23	3	6	4	4	1.	6

$20(52.6 \%)$ boarding boys and $23(48.9 \%)$ day boys are below 60% Standord; $12(31.6 \%)$ boaraing boys and 9(19.1\%) day boys are slightly below the Standerd (60m80\%); 3(7.9\%) boarding boys and 9(19.19) day boys are of normal Standard; 3(7.9\%) bcarding boys and $6(12.8 \%$) day voys are abcve normal.

Table 20 Skinfold Thinkness according to \% of the Standara of adolescent cirls accoring to age and lucation

Boarders

15	9	0	0	0	0	0	0	9
16	11	0	2	0	3	0	1	5
17	15	0	1	1	4	2	2	5
18	15	1	2	0	3	0	1	8
Total	50	1	5	3	10	2	4	27

Non Boarders

15	3	0	0	0	0	1	0	2
16	24	0	3	2	3	4	3	9
17	13	0	0	0	0	2	1	10
18	18	0	2	0	1	3	1	11
Totaj.	58	0	5	2	4	10	5	32

```
\(I(2 \%)\) boarding girl is below \(50 \%\) Standard; 6(12\%) boarding girlt and \(y(12 . \%)\) day girls are slightly below the normad Standard (60-80\%); \(26(38 \%)\) boarding girls and \(19(3 \tilde{2} .3 \%)\) dgy girls are of the rox.e mai Standard; 27(54\%) boarding girle and 32(55.2\%) day cirls are above normal in triceps skinfold thickness.
```

Table 2.1 Perc-ntages of adolescents belor selected anthruponetric standarda accoriming to location and sex

Category	Weight/icight Wt/Ago Ht/sgo		Wt / H t	$\begin{gathered} \text { Arm Circum/ } \\ \text { Age } \end{gathered}$	Skinfola Thickness/ Ace
	80\%	90\%	80\%	80\%	80\%
	(\%)	(\%)	(\%)	(\%)	(\%)

Boarders

Boys (38)	52.6	10.5	0	23.7	71.1.
Girls(50)	4.3	0	0	4.0	14.0
Non- Boarders					
Boys (48)	33.3	12.5	2.1	33.3	68.1
Girls(58)	3.4	6.9	1.7	1.7	12.1

Between () total number of obsdrvations
From the ohservations above j.t show that more boys are found to be underweight than the girls, in both boarders and nonmboarder's. Whemeas weight for height slows very low percentages of malnourished cuses, the skinfold measures shows quite a high percentage of mainourished students especially the boys. A higher percentage of boarding boys are underweight compared to the nonmboarders.

6.1.6. Biochemistry

Anacmia is a not uncomon finding among the adolescents. There may be several dietary and/or other factors responsiblo, e.g. deficiency of iron or folates, hook worm, malaria, other jnfections, genetic factors, etc.

Kecontiy, new international haomow slobin standards have been astablished (MTO, 2968).
Age in years Sex Hb g/l00mı
0.5-6 Males 11

6-11 12
Adult Males 13
Adult Females nonpregnant 12

Aduit Females preg nant

12
Using the above table we find that $4(3.9 \%)$ giris and $5(4.7 \%$) boys to be anaemic. The difference is not significant.

Mean hagmoglobin values ars summarised in the folluwing table.

Table 22 Maan Haemoglobin content (in g/l00 mi) and standard deviations for boys and girls according to ages

Age (years)	Girls		Boya		
		S.D.	Mean	S.D.	
15	$13.8(10)$	0.4	$14.4(12)$	1.1	
16	$14.2(34)$	0.5	$14.9(13)$	1.2	
17	$13.8(27)$	1.6	$15.1(34)$	0.8	
18	$14.1(32)$	1.0	$14.9(27)$	0.4	

Eetween () number of observation
At agch age the mean Hb leval in boys is
higher than in girls. Using the t-test it is notice
that there is a consistent significart difference
in Hb levels between boys and girls: at age 15
("t" $=5.26$), at $16(" t "=2.8)$, at 17 ("t" $=4.06$), at 18 ("t" = 4).

Mean thb laveis of 58 day girls and 55 boaxding girls ware 14.4 and $1.3 .6 \mathrm{~g} / 100 \mathrm{ml}$. respectively. The difference of $0.9 \mathrm{~g} / 100 \mathrm{mi}$. is statistically significant ("t" $=2.78$). The maan Ho levels of 48 day boys and 38 boarding boys were 14.9 and $14.5 \mathrm{~g} / 100 \mathrm{ml}$. respectively. The difference is not signiricant.

6.1.7. Laboratory

Stool samples from 153 students were examined for parasite infestation. (cil ถamples from day boys, 37 from boarding boyn, 41 samples from boarding girls and 45 from day girls). $39(25.5 \%)$ samples showed ova on microscopic examination.

Table 23 Number of students examined for prexdnce of parasites for each schocl and number present and percentage

Category	Number Exa,ained	Positive for ova	Negative		
		No.	$\%$	No.	$\%$
Boarding girls	41	17	41.5	24	58.5
Day girls	54	9	26.7	45	83.3
Boarding boys	37	8	21.6	29	78.4
Day boys	21	5	23.8	16	76.2
Total	15.3	39	25.5	114	74.5

Using the Critical Ratio Test there is a significant difference at 5% level of significance in the presence of parasites between the boarding girls and the day girle kut there is no difference between the boardir:g buys and the day boys.

Table 24 Fresence of Parasites and Percentages as observed in girls and boys

Catogory	NumberPositive for ova on microscope	Negative for ova on microscope			
Girls	95	26	27.4	69	72.6
Woys	58	13	22.4	45	77.6

Using the Critical Ratio Test there is a significant djefurence betweon girls and boys of ages 25-18 years.

Table 25 Presence of parasites, lypes and percentager as seen in boarders and nor-boarders

$\begin{aligned} & \text { r} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		0 0 0 0 0 © 世 $\stackrel{0}{2}$ H0. \%	Ascaris No. \%	$\begin{aligned} & \text { 最 } \\ & \text { o } \\ & \frac{B}{0} \\ & \frac{0}{1} \end{aligned}$ No. \%	Sch. Mansoni ivo. \%	
Boarding gixls	41	1741.5	00	922	7 1\%.1	1.2 .4
Day girle	54	9 26.?	23.7	00	$6 \quad 13.1$	21.9
Boarding boys	37	821.6	$5 \quad 13.5$	00	25.4	12.7
Day boys	21	523.5	00	14.8	419.0	0 0
Total	153	3925.5	74.6	106.5	1922.4	32

Schistocomiasia mansoni was the most compion parasite found (12.4%) cases. Hookworm was found (6.5\%), followed by Ascaris 4.6\%. Only 3 (2\%) students had Trichuris Trichura.

Table 26 Parasite infection seen together with

$$
\text { othen conditions in students (} 15-18 \text { years) }
$$

			$\begin{aligned} & \text { d } \\ & 0 \\ & 0 \\ & \text { y } \\ & \text { y } \\ & \text { \% } \\ & \text { ciy } \\ & \text { on } \end{aligned}$		-
Pellor of Conjunctivao	1	-	1	-	2.
Palor of tongue	2	-	1.	-	2
Pallor of nail bed	1	-	1	-	2
Angular Stomatitis	1	**	-	-	1.
Cheilosis of lipe	3	2	7	1.	1.3
Sprongy/bleedirg guns	-	-	1	-	1
Goitre (grade 1)	2	-	2	1	5
Obesity (grade 1)	1	1	2	1.	5
Anaemia	1	-	3	-	4
Parasites but no Nutritional 52 ÉL	4	5	5	1	16

$39(25.5 \%)$ students had parasites infection, of these $23(59 \%)$ showed clinical signs of other deficiancies as weli. $16(42 \%)$ had just parasite infections aIone. 2.3 cases with parasites
infections had also cheilosis of lips. 4 cases with parasite infection had anaemia as well. 6 cases with parasite infections had pallod. Only 1 case of hookworm vas anaemic (Hb 10.7 g/l00 mi.) and 3 cases of hookwora haz pallor. One case of schictosomiasis mansoni. was seen together: with pallor as woll as anaemia ($\mathrm{mb} 8.5 \mathrm{~g} / \mathrm{I} 00 \mathrm{ml}$).

6.i.8. Couclusion

Below is a table showing a summery of the results found to be of significant difference. Table 27: Summary of significant difference in clinical signs, anthropometry, haemoglobin levels and presence of parasites

\%	Parameter Used	Boys	Girls	B. Girls vo	Day Girls	B. Boy	V. D. Boys
$\underset{\sim}{\underset{\sim}{4}}$	Clinical Siçus	Decayed teeth	Pallor of Conjunctivae		$\begin{aligned} & \text { Mottling of } \\ & \text { teeth } \end{aligned}$		Decayed teeth
1			P s of nail bed Goitre Obesity	Pallor of neil bed			
	Height	age 18 (Higher mean)	Age $1 ?$ (Eigher mean)	$A g \in 18$ (Figher mean)	-	-	-
	Weight	Age 15 (Higher mean)	-	-	-	-	-
	Arm Circum.	-	Age 15:16, 17 (Higher mean)	-	-	-	-
	Skinfold	-	$15,36,17,18$ (Higher mean)	-	Ase 17 (Higher mean)	-	-
	H.b. level	$\begin{aligned} & \text { Ages } 15,16, \\ & i 7,18 \\ & \text { (Hieher mean) } \end{aligned}$	-	-		-	-
	Stool	\checkmark	-	more tre cases			

From the table above, as far as the clinical s signs were concerned the girls showed more pallor (sign of anaemia), goitre and obesity and decaying of teeth. Mottling of teeth was more often found in the day girls and day boys and can probably be explained by a higher fluorine content of drinking water in the locality (whereas the boarders mostly come frora elsewhre).

Body measurements showed difference in arm circumference and skinfold thickness. As expected girle hed a higher mean than the boys in these ages. Others do not show mach difference in amy particular afe group. The standarde used for anthropomotric measurements reveal that more boys are found to be malnourished than the girls, in both boaxders and day nchoiari. A higher percentage of the boarding boys were underveight compared to the non-moarders.

The Ho levelts were higher in the boys than in the girle, however a test reveaicd that there was no significant difference between the sexes. A hicher mean $H D$ level was observed between the day and boaring girls.

From these observations; it can be seen that there was a silight difference between the boys abd the girls, and also a slight difference between the day and boaxding girls and the day and the boarding boys and day boys in their nutrjtional status.

6.2. SECOID EXAMINATION

"The statement that a boys is 14 is in most contexts hopelessly vague; all depenas, morphologically, physiologically and socjolom gically on whether ho is premadolescent, miduadoloscent or post adolescent." (Tanner, 2968).

The second examination which was done on the boys only to find out the rata of physical maturity other than chronological age. This was based on the dovelopment of the reproductive system as stated by (Tanner, 1952), (Waldo Nelson).

80 boys were examined and the table below shows the findings.
6.2.1. Table 28: Boys grouped in their different stage of dovelopment

| | Pre-Adolescent Mid-Adolescent | Post Adrlesm
 cent | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| | Stage 0-1 | St. 2 | St. 3 | St. 4 | Stage 5 |
| Number | 4 | 3 | 13 | 25 | 35 |
| $\%$ | 5 | 3.75 | 16.35 | 31.25 | 43.75 |

Table 28 shows that of the 80 boys examined aged 15-18 years, 4(5\%) were premadolesceuts (i.e. those who have not entered their pulertal epurt), 42 (51.25%) were mid-adolescents (i.e. those in pubertai spurt) and $35(43.75 \%$) were post-adolescents or adults. .

Table 29 shows the means in weights (in kg.) and heighte (in cra.) arm circumference of the boye at different stages.

Stages	Number	Weights (kg) Mean	Heights (cm) Mican	Arm Circum $=$ ference (cm) Mean	Skintold Thickness! nno Mean
0-1	4	35.8	146.7	21.0	9.6
2	3	38.3	153.5	20.7	7.4
3	13	46.6	160.9	22.5	7.8
4	25	48.1	161.8	22.0	8.1
5	35	53.3	166.3	23.9	7.1

It alsould be noted shat there is an heroace ofboth mons hoight and moan woight from ouo etogeto the otther. As ohildran creve oldor, they aicobooomo hoarier, 00 tho romlte in the tuble willbe cxpocted on theos bacte aloge. To frove thatchildren in disforent etagos 112805 in meanmelgit for the ame age then eace roud have tocortrol for age. min hae mot boen lomo hore.81moe the nymber of boye the ase pros
adolessent is vosy 10w, the rost of the rocult will
be exprecscl betwen the milnadoleceonto (theae

1. tho probertal mpert FI . staces 2, 3, and 4)
and the pont-adolamecates (ntace 5).
6.2.2. Deficiency Sisns

The frequency of the deficiency signs on the mid-adolescent boys and the post acolescent boys is summerized in Table 30.

Table 30 Prevalerice of diaficiency sions

Deficiency Signo	Mid-adolescents bоys $n=41$		```Post adoles. cents boys n=35```	
	No.	\%	No.	\%
Conjunctival Wriakling	2	4.9	4	31.4
Bitat's Spots	0	0	1	2.8
Corneal Scarring	0	0	0	0
Fallor of Conjunctivee	2	2.4	0	0
pallor of riongue	2	2.4	0	0
Pallor of nail bed.	0	0	0	0
Angular Stomatitis	2	2.4	0	0
Cheilosis of lips	12	29.3	14	40
Spongy/ioleeding gima	1	2.4	4	11.4
Goitse (grade 1)	0	0	0	0

Other signs of nutritional significance

No. of decsyed teeth	1	7	17.1	7	20
	2	1	2.4	4	11.4
No. of missing teeth	1	0	0	2	5.7
	2	0	0	0	0
	3	0	0	1	2.8
Ho. of ijilled teeth	0	0	2	5.7	
	2	0	0	0	0
Mottling of teeth	7	17.1	4	$1 J .4$	
Obesity. (srade 7)	0	0	0	0	

The most common deficiency sign jis cheilosis of lips, which was present in 12 midmadescent boys $(29.3 \%$) and 3.4 postmadolescent boys (40%) .

There is no Eignificant difference in any of the deficiency signe (C.T.R.). Quite a number of casss have decayed teeth and 9 cases (17.1%) midadolescent boys and 4 post-adojescent hoys (1.1. 4%) shom sighs of mottled testh.
6.2.3. Anthropometry

The following tablee give the mean values for all measurements for the midm adolescent boys and the post-adolescert boys.

Tablc 72 Moan values and Standurd Deviations for the anthropometric measurements for the midadolescent and post-adolescent boys.

Developmental Stage	Number	Weight (kg) Mean SD	Height (cm) Mean sid		Arr. Circumference		Sicinfola Thicknes	
					Mcan	SD	Mean	SD
Mid-adolescent	42	46.95 .4	160-9	6.0	22.1	5.3	8.0	2.4
Post-adolescent	35	53.34 .9	266.3	6.3	23.9	4.6	7.1	2.9

There is a significant difference in meights ("t" = 5.37) and heights ("t" = 2.1) betweon the midadolescent boys and the postmadolescent boys.
6.2.4. Anthropometry Assessment according to those below the Standard.

Table 32 Percentases of mid-adolescents and post-adolescents boys below selected anthropometric standerds according to locations

Category	Weight $\begin{gathered} 80 \% \\ \% \\ \hline \end{gathered}$	$\begin{gathered} \text { Height } \\ \text { \%0\% } \\ \% \\ \hline \end{gathered}$	$\begin{gathered} \text { Wit./IIt. } \\ 80 \% \\ \% \\ \hline \end{gathered}$	Arm Circumference 80% $\%$	$\begin{gathered} \text { Skinfold } \\ \text { Thickness } \\ 80 \% \\ \% \\ \hline \end{gathered}$
Eoarders					
Mid-adolescents (24)	66.5	22.5	0	29.2	17
Post-adolescents (9)	22.2	0	0	22.2	55.6
Non-boarders Mid-adolsscents (1?)	41.2	17.6	5.9	41.2	47.1
Post-adolescents (26)	15.4	13.3	7.7	26.9	62.5
The table shoris a adolescents, and boardex weight for height standar who seen to heve a higher	aizher - id-ado ds it perce	Between ercenta esceats the no ace of		number of observa iolescents to be u malnourished than both mid-adolesce ds.	riveight th on-boarders and post-

There is however no significant difference in arm circumference and triceps ckinfold thickness between the mid-adolescent and post-adolescent boys. 6.2.5. Bicchemistry

Table 33 Nean haemoglobin ($\mathrm{g} / 200 \mathrm{ml}$) and Standard Deviations lajaadolescent boys and portadolescent boys.

Category	Number	Hi (g/100 ml $)$ Nean	S.D.
Mid-adolescent boys	41	14.6	1.2
Post-gdolescent boys	35	15.3	6.0

Of the 41 mid-adolescent boys, 3 were anaemic (with $12.4 \mathrm{~B} / 100 \mathrm{ml},. 12.8 \mathrm{~g} / 100 \mathrm{ml} \cdot, 11 \mathrm{~g} / 100 \mathrm{ml}$), and the highest haemoglobin content being 17.0 E/100 ml. Only l post adolescent boy was anaemic (with $12.4 \mathrm{~g} / 100 \mathrm{ml}$.$) enci the highest haenoglobin$ content of $18.0 \mathrm{E} / 100 \mathrm{ml}$. However there is no siçnificant dirference in haamoglobin content between the post adolescent and mid-adolescent boys.

6.2.6. Conclusion

Secondary sex age is a more accurate Index of growth and maturation diring adolescence because apart from chronological. age, the stager of development among persons is taken into consideration. of the boye (aged $15-1.8$ Jears) examined, 5% were prem adolescent (mainly aged 15 and 26), 51.25\% were midmadolescents (mainly gged 17 and 18, fow caces of ages 15 and 16), and 43.75% were adyIts, or post-adolescents (mainly 17 and 18 , one case of 15 and two casers of 16 years).

Body measurcuints shomed an increasa in weight and height from one stage to the other. A difference of 18.5 kg . j.s seen between the mean redghis stage I and stage 5 and a difference of 19.6 cm. is seen between the mean heicats of stage 1 and stage 5. A signin ficant difference is seen in weights and heights betweon the mid-adulescent boys and post-adolescent boys. Then selected anthrom pometric stendards are used to determine the body measurements it is ohserved that a highar percentrage of miduadolescents are

Abstract

underweight compared to post-adolescents, and boarding mide-adolescents to be more malnourisned than the normboarders. When using weight for height stahdards, it is the nonmboasders, both mid-arciescente and pustmadolescents, Tho have a few cases of malnourished stadents and none in the boarding sehool.

There mas no ofgnificant difference in any clinical sign and in the fib levels between the mid-adolescent boys and post-adolescont boyso'

From the above obsorvations, it can be seen that thore was a slight difierence betweon the midnadolescent boys ard postmadoleaceat boyse especially as shown in the body measuxementso Post-acolescent boys having a slightly better nutritional status than the miamadolescent boyes

6.3. Questionnaires

Several questionnaines mere mado to find out some more informetion. The results are given in this section. 6.3.1. Onset of menstruation (Appendix 1)

Of the 108 girla who were given the questionnaires to complete, 102 filled and -aturned the question* nairas* 2. gjx 18 , one aged 15 yeara
and ane 16 years had not reached their menarche so these were dropped from the sample. 100 girls' questionnaires were finally enalysed.

Table 34 Age at which menarche appeared for girle in Machalsos District

Age at which
Menarhhe eppeared No, of Girls (yeara)

10	1
11	1
12	6
13	16
14	31
15	3 ?
16	11
17	2

From the table it appears that, menarche of these girls appeared betweon ages 10 to 17 years. The medion age was betreen ages 14 and 15 years. Average age of menarche is 14.25 years.
6.3.2. Knowleder of Nutrition of the

Students (Appendix 3)
Quostionnajses on simp?
nutrition were set to find out
the general knowledge of rutrio

- 159

tion of the students. 188 students answered at least two questions correctly. None of the studenta got all the answers corract.

Table 35 Frequency of answers to each question

Question	Correc No.	Answers \%	riro No.	Answers \%	Dont No.	Krod
1. Beans contain less procein than maize Yee/No	159	84	26	24	3	2
2. Frusts are a good souree of vitrmini C Yes/No	170	90	15	8	3	2
3. Tinner iruits asd vegetables are more nutritious than fresh fruite ard vegetables Yes/No	145	77	41	22	2	1
is. Anaemia may be due to a deficiency of one of the Collowing:- Calcium; Iodine; Iron	83	44	86	46	19	10
5. Kwashiorkor is a disease of young childrex brought about beause of lack of calories in the diet les/Mo	85	45	101	54	2	1
6. A lack of iodine in the diet could result in one of the folloning diseasesi anaemia; goitre; oedema	76	40	88	47	24	13
7. Freastfeeding alona does not provde sufficient nutrients for a buby aded 2 montise and therefor? should be supplemented with cowis milk, peniered milk and beme other milk product Yes/No	133	73.	46	24	9	5

Tablo 35 (contd.)

No.

more proteil Felabiro to calorie intakei- pre-school aged child, echool child, iard worker, iather, wother	42	22	133	71	13	7
A balanced diet is a diet containing all the nutrients necessary for bocy building, energy, giving and hodypprotection Yes/No	176	94	10	5	2	2
10. A pregaant moman needs more food intake then a non-pregnant woman Yes/No	43	23	141	75	4	2

From the table above, the first lot of questions ($1,2,3$) were bhe best answered questions (over 70% correct ancwers) with the excoption of question 9 , on balanced diet, whixh was the best overall question answered. This had 94% correct answers. A poor knowledge of malnutrition ank its causes was shorn by the students. The correct answors for number 4,5 and 6 being $44 \%, 45 \%$ and 40% respectively. Their knowlecge on nutritional needs of members of the family was very poor as sbown in tha ansmers given to questions 8 and 9 . Which had 22% and 23% respective correct answexsn

6.3.3. Knowleage of nutrition of the mothore

62 of the homes of the Btudents (day scholars) were visited. The mothers of these homes were interviewod to find out their level of education ana thair general ynowledge of nutrition. of 62 mothers intervierea $34(54.8 \%)$ had had no education at all. Oniy one of the mothers had had a form of training after standard eight; she wes a teaciner. Table 36 The lavel of education of the mothers

Level of Education	Number
Nil	34
Std. 2	5
Std. 3	3
Std. 4	6
Std. 5	3
Std. 6	3
Std. 7	4
Std. 8	8
College 1	1

Those who did only the lower primaxy are $12(19.4 \%)$, and those who did go to the upper primary i3(21\%) and only one mother (1.6%) had had colloge training. None of the mothers hed had secondary educstion. 58 (93.2%) of the mothers interviewed were uarriod; $4(6.5 \%)$ wors vidowed. None of the mothers were singie or dirorced or separated.

When questionnaire 4 was put to the mothers, the foliowing wers the answers cbtajned: Questinin:

What is the importance of protein foods? (This was enked by maraing the protsin foods).

Answers

Frounency
Mo buila the bodies of the children 32

To make the chjldren's bodies healthy axic strong 22

To make the child istrong 5

To provide goowth for the children a
To give enorgy to the childrex
1

To the question on whether childron
should be given egss, ali the 62 mothere agread that children should be given egge.
Question
If there was just a littie money left $10{ }^{\circ}$
housekeeping, which of the following rould youbuy and why?
Ancwers: Fond Freullericy
Maize flour 47
Meat 37
EgE 3 32
Sugar 17
Breaci 2Most of the mothers mentiened more thantwo foone. Mcize flour acemod to bo more popular,as some of the mothers stated clearly thatporridge was a moxe stistying food.Below are the reasens given as to why theobove foods were chosen:
Reason
Freguency
It makes one healthy and strong 21
It catisfies one 18
Inportant iuod fin the body 13
It is a good food 6
Money is too little to buy other foods 3
Cannot stey without tes 1

Quostion

```
    Thore is only a little meat left over
from yesterday'a supper, tc whom should you
give tho meat, and mhy?
Answere
% Reason
```

```
To the younger
    children
    93.5
    Nead to erow further
To the husband +
    Head whs providos
younger children 4.8 foods, Need to grov
Share equally to all Everybody neede
membere of the lamily L.E to build body
```


6.4. Food Consumptきon

6.4.1. Food Availability

During the home visiting in
the ú2 iomesteads of the day
scholars, a section was prepared
to find out from the families
which foode ano purchased and
What tho family gooms in their own
chambas and gardone. This nas
done in order to find out whether
the available foods are fully
utilized in the meale of the
students.

- 166 -

6.3.1. Cultivation

Cereals

Maize being the staple food wав cultivated by all famixies. Mis is grom mainly for consumption. Millet is cuitivated by $9(14.5 \%$) families.

Sorghum is cultivaited by $12(19.4 \%)$
families and finger millet and wheat by only 3 families.

Logume

Tho commen bean (kidsoy bear) was cultivateà by all families. This forms part of the staple focd (isio) and is mainly cultivated for home comemption. Other legumes cultivated by these families axe cowpoas by $39(62.9 \%)$ familics, peas by $26(41.9 \%)$ families, beanc by $4(6.5 \%)$ fanilies.

Stacehy pruits and tubers

Bananas, Irish and sweet potatoes; arrowroots and cassava were cultivated by most families. $40(64.5 \%$) of the families grov bananas, $37(59.5 \%)$ of the familiea grof sweet potatoes, $22(35.5 \%)$ of the
familics grow arron ronts and $39(62.9 \%$) of the fanilies grew cacaava.

Veretables

Cabbages vere grown by $53(85.5 \%$) families. 54(97\%) families grew tumatoes, 33(53.2\%) familiea grew purpkins, $33(53.2 \%$) families grow groen vegetables (sukuma miki and other wild spinachas). Other vegetab s such as onione, cucumber and carrots were grown by very fiew families. Fruits

Guavas ant bananas mere grown by some familios. $33(53.2 \%)$ of the fanilies had guava trees. Mangoes, orsnges, pincapples and sugarcane vere grom by pory few familice. Others

Coffee as a cash crop is grown by $23(37 \%)$ fanilies.
6.4.2. Food Furchase

All famiiles visited markete and shops regulaily, Karket days were hold twice a week, in addition to food crops, poultry, household objects, shambs equiprent and second hand clothee ware among the itens trades. Foods wexe mainly sold :

- 169 =

7

A nastiot plaes at Thagunito in Hachnicos Distriete Wlotise thot flood 4 mently plated on macke.
in household measures such as tins and gourds of dixferent sizeB. Fruits, tubers and vegea tables were sold in pilss ior fixed pricea. Additional foode were sold in abops, often near or by the market places and tutchors mould provide becf and goatsis meat.

The table 37 bej.0\% Ehome the foods bought per woek by femilies and the nunber of tho famiIies. IMis infommation mas obtained by questiona uing the 6? families on mhst foods they had pruchasec the previous week.

Table 37 Typs of foods purchased by familice par weel mad the frequency

Food	No. of positive ancwors
Meat	62
Sugar	57
Tea	47
Caubaces	46
Fat	46
Flour (Maize)	44
Rice	38
Tonatoes	20
Salt	15
Mheat flour	14
Malze (whole)	12
Beans	11
Milk :	11

Table 37 (contd.)

Fooc	No. Of Posi\&ive Answars
Gisesi vegetables	20
Irish potatoes	9
Cocos	6
Swet potatoes	4
Cofiee	4
Fruits	2
Eggs	2
Fish	1
Carcote	1
Bread	1

Meat was purchased by the whole group (ample). Sugar also proved to bo quite popular. Quite a number of families bought maize and beans which tiney alsc Erow.
6.4.3. Food Fattern and Monus for Boarders

Machakos Girls High School
Fixed Monu (Daily)
Breasfast: Tea (with milk and sugar) Bread
Break (10.15 a.m.) : Cocoz (rith milk and sugar)

Iumch: Boiled then frieá maize and beans (Icio)
Supper: Meat stew
Boilod Chenga (Broken ruaise)
Fried cebbeges and potatoes

Extras:

On howdays: a boiled egg added at breakfact
On Sundays: boiled rice in place of boiled
chenga
Fruit万: Twice a weok at supper a fruit pex person depending on season.

Kanreundo High Sichool

Fj.xer Menu

Broalefact: Moizemeal porricige (t eugar)
Break (11.00 a.m.) Tea (with powiered milk and sugar

Lunch: (3 times a woek): Boiled chence (broken walze) Fried veçetabies
(4 timos a meek) Boiled chenga, neat. and vegetable stemo

Supper: Maize and beans (Priod)

Exdras:

Fixits: On Sundsye ance wodnerdeys a fruit is given to everyona at supper depending on mat in in season.

Note: Isio is the staple food of tho Akamba peoplo. The main ingredierta are maize ana beans. Dry or grean maize is boiled together with dry benas until cooked. Host of the poor fanilies and probably in the home of these students they mould tako it boiled. At echool, howerer it $i s$ fried after boiling in wich case the caloric content is higher becaliso of tho cil or fat used for frying. 6.4.4. Focd Fattean for the Dry Sturentn 2'able below showe the types of foode which are eatan by the day atudants and the irsquency of the foods eatobe

Table 38 Foods eaten by the day students (24 hour reca.11)

Food
Frequency

Maizn and beans (Isjo) 64
Ugall and regetable stem 34
Miazeneal porrisge 32
Tea without milk 20
Bleck feffeo 15
Tea with bread 13
Msanciazi (fried fritters) \& tea 10
Cakes alone 10
Ten vita nilk 8
Eread atono 7
Bennnae 6

- 1.73 -

Table 38 (contd.)

Focd	Frequency
Ugali and sour milk	5
Utali alone	5
Milo or Cocoa	5
Guavar	4
Ugali ani leat atem	3
Chaputi and meat stow	3
Coffec with caks	3
Mangoes	3
Rice alons	2
Rice and vegetables	2
Chapati and tea	2
Chapati and vegetables	2
Tea with maize	2
Milk	2
Millet jorridge	1
Rico and meat stez	1
Caseava	1
Green bananas and potatces	1
Tea with uigali	1

From the fable above the mont popular dish served is sean to be Isio (maizo and beans). Thia Ls tine rain staple food of the Akamba. Jgirl with vegetables aiso ceern to bo very popilar dish. Moat is obserfed ouly on \mathcal{B} occabions served with

```
eithex ugali, rice or chacati. Fruits are also
rarel.y eaten, cul: }13\mathrm{ cases wore observed.
    Other obsedratious made from the diet of
these day sckolars is that snacks are rarely
eaten by the girls. Boys seam to bo trking
snucks in betweeम meais more ofton than tin
girls, but sij.11 this custom is not found in
many of the students. The majority of the
students do not tske anything betreen breakfast
and Iunch and between lunch and supper. I
student had no bxeaicfarst, 18 studomts had
oither black colfee or black tea aloaa. A
further ll students had tea or cocon or milo
with milk but without anything else. 3 stucients
Lad yo lunck at all. All students segmed to
have a meal for supper though. The fruits are
taken either ai breaktimo or after suppar. One
stucient clained to have taken only a banama
for breakfaEt. Saandazi (fried fritters) and
tea Eecm quite popular wima }11\mathrm{ students during
Iunch kour.
W'he foods takon by the day schol.ajs could bo put intu six groups when calculating the type ox nutrients consumad later oue
```

Cereale	Tubere and Roots arua
	Starch fruit
Maizo grains	Cassara
Maize flour	Irish potatosa
Millat flour	Green banaias
Rice	Fruite
What flcur	Ripe Lananas
Vegetables	Mangoes
Cabbages	Guavab
Sukuma wiki	Animal Producte
Compea Leaves	Milk (Iroch and sour)
Kidney baune	Meat
Cuions	Others
	Tea
	Coffes
	Fat
	Milo
	Cocua
	Salt
	Sessonin¢s

The averago number of meals per day
was 3. Out of 70 students only 1 student had had no breakfast. and only 3 studente had taion no lunch.
6.4.5. Nutrients content in menis and Bdoquacy of the diets

Ih boarding schools i.e. Kangundo Bigh School and Machakoz Giris Yigh School, it was possible to astimate tho
daily intake of the nutrients per studeat. Whe calculations were done as explained in Chapter 5(5:7). Methods and Lengths of cooking, food wabter and conditione of the raw foods were not taken into consiaeration. The calculations bolou are given from the raw foods some such se vegetableis unpeeled.

Table 39 Table used for Recomonded dasly intakes of sutricrits

Age (jrs.)	$\begin{aligned} & \infty \\ & 0 \\ & \text { ry } \\ & 0 \\ & 0 \\ & \text { H } \\ & 0 \end{aligned}$		$\begin{aligned} & \text { 淢 } \\ & \text { H} \\ & \text { נु } \end{aligned}$					
Childarem								
1-3	1350	40	0.5	9	2000	0.5	0.8	$9.6 \quad 0.5$
4-6	1830	50	0.5	10	2500	0.7	0.9	11.42 1.9
7-9	2.190	55	0.6	11	3000	0.8	1.2	1.3 .922
Male adolescents								
10.12	2600	60	0.7	24	3500	1.0	1.4	15.525
13-15	2900	70	0.8	17	3500	1.2	1.7	20.4 30
26-3.9	3070	80	0.8	27	4000	1.4	2.0	23.830
Female adol.esm cents $\begin{array}{llllllllll}10-12 & 2350 & 65 & 0.7 & 14 & 3500 & 1.0 & 1.4 & 10.5 & 25\end{array}$								
13-1.5	2490	70	0.7	19	3500	1.0	1.4	17.20
16-19	2380	70	0.7	19	4000	1.0	1.3	15.830
Adul.t mah (Moderately active)	3000	65	0.5	24	4000	1.3	1.8	21.125
Adult :\%owan (Koderately active)	2200	60	0.5	16	4000	0.9	1.3	15.225

The table above was composed of nutrient reguirewents from different litarature. The energy and protein requirements was from $8 . H . O$. Technical Repurt Series, Number 522 (1973), ant Latham, M.C. (1955). The calcium requiremert ic from Lathan, M.C. (1965). Rocuiromerta of Ascorbic Acid, and Iron from W.H.O. Tgchaical Report Semied No, 452 (i97c) and Latham, M.C. (1.965). Requirem mente of Vitumin A from Lahham, M.C. (1965). Roçuirsments of Thiamine, R1boflavin and Niacin from W. H. O. Mrechmical Roport lio. 362 (1967). Table 40 Avorage nutriont intake and percontace adecuacy per stuclant per day

Nutrient	Boarding Girls		Boarding Boys	
	Aphesge Intake	$\begin{gathered} \text { Adequacy } \\ \% \end{gathered}$	Average Intake	$\begin{gathered} \text { Adequacy } \\ \text { ais } \end{gathered}$
Calories	2068.0	89.5	2891.9	94.2
Proteins E6	72.5	103.2	95.5	119.4
Calcium g ,	0.3	42.9	0.3	37.5
Iron mg.	29.6	103.2	27.4	161.2
Vitamia A I.lu.	346.5	8.7	635.1	15.9
Thiamin mg.	1.9	190.0	2.5	178.6
Ribofjavin mg.	0.83	65.4	1.0	50.0
Najacin mg	12.9	81.6	19.9	33.6
Ascorbic Acia mg.	41.4	138.0	60.1	200.3

It should be noted from the table above that Protein iatake, Iron iatake, Thiamine and Ascorbic acid intake for both the girls and the boys are more than adequate.
\section*{Surces of Calories}
The principal source of calories is maize provjding 59\%. Beanc contributo 15\%. Other foods contril is very little quautities of calories.

Protis直品

The nutritive value of a protein dopeane to an important degrac on its amino acide camposition. Thera are about 22 amino acids recocुnized today as arising from the breakdown of proteine, that have been determincd as bcing physiologically important. Plants can zynthesizo all the amino acide they need from simple inorganic chemical compounds, but animals are unable to do this bocause they cannot synthesize the amino $\left(\mathrm{NH}_{2}\right)$ group; so in order to obtain the amino acids necessaxy for building protein they muct eat plauts or other animials which in their turu lived on plants. The human body has certain IKuitad poysrs of convarting one amino acid into another.

Fig. 6 Average contribution of various foods to the total intake of different nutrients in two boarding schools in Machakos District 1976

* Others = Eggs, Tea, Fruits
** Vegetatiles $=$ Onions, Cabuages, Carrots

There are oight amino asids mhich the body cannot make for itself and eo must be obtained from the diet. These are isoloucine, leucine, lyoine, methiomine, phenylalanine, threonine, tryptophan and valine. For growih in iufants histidine is also noedyds

Thus wo hava motein that contains all tre essencial anino ncidz in sufficient quantity and in the rigkt combination to maintain uitrogon equilibrim (and growih in children) known as complete protoirs or ptoteins of a high biolow gical value, mostly obtained from animels; and those that do not supply all the eecential amino acids 60 are unable to eupport nitrugen equilibrium (and growth in children) εs incomplete proteins or proteins of low blolugical value, mainly from tiae vegetables. However if proteine of a low biological value are tuben together, they supplement each other. For examples if s protein, deficient in one essential amino acid, is taken with another proteiu containm ing the missing smino acid in adequate amounts, N equilibrium and nomal nutrition can bo establ.iahed.

Therefore the efficiezcy with which a protein is used for crowth or maintonasce is the quality as determined by its amino compo sition; quąntity depending on the amount of food consumed and on the protoin content of the food; and tha availaoility as some might not be available if djgestion and absorption are not complete (as in the case of diarrioua or during processes of food (heat).

Sources of Protein
Of the actual totai protein intake 24% was from animal origin (milis, weat).

The uain sources of protein is maize which contributes 46% of the total protein intake. Beana contributo 31\%. Other foodo such as potatoes, vegetables contribute much smaller quantitios.

Gources of Cslcium
The principle source of calcium is beans which contributee 35% of the totai calcium intake. Milk coutributos 23% maizo contributes 15%, vegetables 13%, Other Icods such as meat contribute wery little calcium.

Sources of Iron

Maize and beans are main contributors of iron. Thoy contribute 44% and 37% of total inteke, respectirely, Meat contributes 8\%, egss, potatosi and vegetables cantritute very littlo irom. Sources of Vitamin A

The principle source of vitamin A in the form of carotene are vegotables, providing 75\% of the total intakə; ailk prorides 20\%. It should howerar be noted that vitamin A intake fa pery low in woth schools. Sources of mhdatine

Maize provides 53\% of total thiamine intake. Beans provide 24\%, railk 10%. Other foods are much suailer contributors. Sources of Riboflavin
46% of total riboflavin intake is ixor maize, 2.3% from beans, 28% from milk, vegetables contribute 5\%, other foods provide very littlo ribofiavia.

Sourceb of Nircin
The pancipie somrce of niacin is ingize whici provicies 47%, meat 21% Beans contribute
16%, potaices 6\%. Other contributors in small quantities are teans, potatoes, vege= tables and beverages.

Sources of Abcorbic Acia

Vegetables are the main contributors with 60% of total intaice. 20% is from potatoes. Milk, and fruits contributo very littie aecorbic acid:

Conclusion

As the day stulents' food intake was not moasure, the exact adequacy of the dietie in tho nutrients cannot be estimated. However the foods eaten are obtained from all the rood groups, cereals, vegetablos, fruits, tubors, roots ond starchy fruit, animal producte aud miscellancous. Horever less meat and fruit was taken by the day students.

On the vtber hand, the boarders' diot lor both girls and boys school oxceeded the 100% Level as rogards to proteins, iron, thiamine and escorbic acid, Low levele ure observed in calories and niacin.

[^0]
6.5. Home Visiting

In this section are to be giver the resulte of the part of the questionalire and ubservations mede during the home wisim ting of the 62 homes of the day sholares. The purpose of this home visiting was to find out the leval of living, hygionic practices, education and occupation of parents and kousing conditions. 6.5.2. Education of the paronte

The resultis with segard in the
kind and duretion of the oducation of paronts is sumarized is the tribie below.

Table 41 Relative dietribution of the parents of 62 day schol.ar. according to kind and duretion of educution

Kind of duration of education	Fathers Nc.	$\%$	hothara lion	$\%$

- 185 -

It should be ncted that more mothers had had no formal eaucation than tie fathers. Only 4(6\%) fathers had had secondary school education.
6.5.2. Occupation of the Fathers

Occupetions of the fathers were
classified in a limited number of catem
goxiee. This olaseification was drawn
up by nicans of estinate wage list for
different jobs.
Table 42 Occupation of the fatliers of the day scholars

Occupation	Number of Fothers	
	No.	$\%$
Farmer	28	45.2
Lomer skilled labour	26	25.8
Unskilled labour	10	16.2
Higher skilled jobs	4	6.5
Self employnent	4	6.5

Tise occupations of fathers were categories in tho following maner:

Unskiled Jahour: Farm labourer, herdsaja, watchan, Howspaners supplior, fitter.

- 186 -

Self employment: Shopkooper, hotel keoper
Lower skilled labour: Driver, clerk, forester,
printer, councillor, mechanic, ongineer, supplies officer, firemen, carpenter.

Hicher skilled jobs: Sub-chief, teacher, pustor.

Table 43 Level of education in relation to occupation of fathors

Level of Education	Farmer	Unskilled Labour	$\begin{aligned} & \text { Self Employ- } \\ & \text { ment } \end{aligned}$	Lomer Skilled Labour	Higher Skilled jobe
No education	14	ϵ	2	1	0
$1-4$	22	2	1	5	1
Std. 5-8	3	1	1	9	1
Form 1-4	-	1.	-	1	2

It should be noted that majcrity of the fathers who are farmers are those who had had no education at all. Quite a number of thess fathere mo had had ho formal education also are unskilled workers. The majority of the fathers who had had 1 - 4 years education are alsc farmers. Only 4 fathers are higher skilled workers and of these 2 had had scconcary education.
6.5.3. Aydienic Practices (related to parasites)

Thres questions were included, concerning hygienic practicec.

- presence and use of a latrine
- the type of mater supply
- storage facilities

Observations or the above was

also dona.

Presence and use of a latrine

Mcst of the families did have a latrine and used thom. (viz. 51 or 82% of the honies vieited). 8(12.9\%)
had latrines but did not use tham. Only $3(4.8 \%)$ of the families visited had no latrines at all and did not use any latrine.

Water Supply
Six sources of water were distinguished from the answere given to the questionnaires, namely spring, dam, well, river, roof and catchment.

50 farilies store their cooked foods in cupu boarts. Other places for storing cooked. foods are the jooking pots or coverea plates on tables.

Table 46 Storage facilities of fat foods and frequency of families

Storage Place	Frequency
In the store	56
In a room in living	
house	

All fin families have a special room or store for tho etorage of theis raw foocis.

- 191

6.5.4. Housing

With regard to housing, the matem rials for the construction of roof, floor, were cbserved. The number of rooms in the house was investigated as well 0.3 the presence of a separate kitchen. The typo and condition of ine furniture was slso observed and the lighting system. This wes done in order to find the level of living of the families visited.

Roof

Common materials used for the constriction of roois were corrugated irce shoets. $50(80,6 \%)$ of the houso tad iron sheets for roofs, $9(14.5 \%)$ had grass roofs, 2 houses had flattened tins and 1 house had both thatch and Plattened \&in。

Floor

Only two materials were observed
on the floors of the houses visited. $32(52 \%)$ of the flours ware cemented and $30(48 \%)$ of the floons wers mud $+$
130055.

Number of Rooms

The table below shows the number of 100 m in the visited houses, excluding the kitchen. Table 47 Number and frequency of rooms in the visited homes

No. of Rooms	Frsquency
0	1
1	3
2	12
3	16
4	20
5	3
6	5
7	1
12	1

Majority of the families nad either 4 or 3 rooms. 20 (32\%) housec had 4 rooms, 16 (25%) houses had 3 rooms apart froa the kitchen. One house had oniy one rooms which acted beth as a kitchen, living room and bedroom. One house had total of 12 rooms. 12 houses had two rooms.

Eeparate Kitchen

$55(88.7 \%)$ of the families had a separate kitchen. \%(1.2, 3\%) of the families had one room as a kitchan as woll as a living room.
Fuel used for cookingWoon seemed to be the most popular fuelused for cooking. $59(95 \%)$ of the familiesused kood as a fuel for cooking. 2 familiesused both mond and charcoal for cooking,and 1 family heed charcoal alone.
Li Rhting
Oil Jamps and electricity are used for
liglits in these homes. $60(96.8 \%)$ of thefamilies use oị lampe anả two families useeloctricity.
6.6. Ralationship botween secko-pconomic
factors to Anthropometric noasurements
and clinical signs of the children
The sociomeconomic factors examineddurine the home visiting were related tothe anthoopmetric measurements andclinical signss in order to fisd outwhether these factors have any bearingto the nutritional status of the adolesm.cents, whose homen were visited. A chisquare test was used to test these.
Ihe following tables show the resultse

For the sake of the calculation of the chi square test, the occupation of the household head has been split into two sections
i) namely unskillod labour which includes self employment and unskilled labour, i.e. those jobe which do not require traiaing and 11) skilled labour including lower skilled labour and higher skilled labc : - i.e. those jobs which require some training. Education has been dealt with in the following; those household heads who have had no formal education, and those who have sad formal edreation. Size of the family has been put into tro sections; the mediun sized families ($5-12$ mambers) and the lange inailies (13+ nembers). Arthropometric measures have been put into two sections 70-90\% and $91 \%>$. The combinaticns were necessary in order to bring the cell froquency to more than 5 for the expected value.

```
- Table 48-1 Relationship betmeen cccupation of the Household Head ( \(\mathrm{H} / \mathrm{H}\) ) and weight/age of the children. No. of the \(H / H=62\). No. of the children \(=62\)
```


Using the chi square test, there is a significant difference in helght for age of childron of these household heads who are unskillod labourers and those who are skilled labourers. $p<0.005\left(x^{2}=10.1\right)$. TabJ.e 48-3 Relationship between occupation of the H / H and weight/height of children. No. of $H / H=62$. No. of children $=62$

Occupation of H/iI	No.	Weight/Height of Children	
		70-90\%	91\% $>$
		No.	No.
Unskilled lobour	42	2	40
Skilled labour	20	2	18

There is no significant difference in
weight for height of children of those houson hold heads who are employed as unskilled
labourers and those who are skilled labourere.
Using the Odds ratio test.
Table 48-4 Relationship between occupation of the H / H and Arn circumference/fige of the children. No. of $H / H=62$. No. of students $=62$

Occupation of H / H	No.	Arm Circum./Age of Children	
		$\begin{gathered} 60-90 \% \\ \text { No. } \end{gathered}$	$91 \%>$
Unstilled labour	42	19	23
Skilled labour	20	8	12

Using the chi square test, there is ro			
household heads employed in the unskilled			
labour and those employed in skilled labour,			
in the arm circmiference for age of children.			
Taile 49m1 Relationship between Education			
level of the H / H and Weight/Age of			
No. of children $=62$			
		Weight/	chil
Education	No.	70-90\%	91\%
f H / L		No.	No.
Ni1	23	10	13
Some	39	11	28

Thero dis a ignificant difference in weight for age of children of those household heads Who have had no formal education and those who have had some formal education. $0.01>p<0.025$ $\left(x^{2}=5.7\right)$.

Table 49-á Relationship botween education level of the $H / I I$ and Height/Age of children. Ho. of $H / H=62$. No. of children $=62$

Education of H/B	No.	Hoight/Age of children	
		$\begin{gathered} 80-100 \% \\ \text { No. } \end{gathered}$	$\begin{aligned} & 100 \%> \\ & \text { No. } \end{aligned}$
Nil	23	18	5
Some	39	24	15

There is a difforence in height for age of children whose fathers have had no formal education and of the fathers who have had some education. Using a chi square tost.

Table 49-3 Rolationship betwoen education of the H / H and weight/height of children. No. of $\mathrm{H} / \mathrm{H}=62$. No. of children $=62$.

	Woight/Height of children		
Education of H / H	No.	$70-90 \%$	$91 \%>$
Ni工	23	1	22
Some	39	3	36

Using the chis square test and the odds ratio test there is no significant difforenca betweon the children whose fathers havo had no formel educacion and those whese fathers have had some formal education in weight for beight. Table 49-4 Relationship between education of the H/E and Arm circum/ago of children. No. of $\mathrm{H} / \mathrm{H}=62$. No. of childreu $=62$.

Education of Ho	Arm Circumo/Age of childron $60-90 \%$		
Nil	23	11	12
Som	39	15	2.4

Using the chi oquare test, there is no difference in arm circumference for age between chiluren whose fathere had had no formal education and those whose fathers had had some formal education.

Thable 50-1 Relationship betwoen size of family and weight/age of the childron. No. of families $=62$. No. of children 62.

Size of Family (members)	No.	Height/Age of children	
$5-12$	48	15	91%
$23+$	14	6	83

Using the chi square test, there is no difference ia weight for age between tho children who come from raedium sized families and those who come from Larga familics.

Table 50-2 Relationehip betwoon size of fumily and Hoight/Age of the children. No. of familite $=62$. No. of children $=62$.

Size of fanily (members)	No.	$\begin{aligned} & \text { Height } \\ & 80 \mathrm{~m} 100 \% \\ & \text { No. } \end{aligned}$	of children 101\% No.
5012	48	32	16
13.	3.4	10	4

Using the odds ratio test and the chi equare test (Yates Corraction) there is no difference in height for age betzeen childron who come from medium sized families and those who come from large families.

Table 50 m 3 Relatiooship betweon size of family and weight/Height of the children. No, of iamilies $=62$, No. of children $=62$.

Size of family (members)	Ne.	Woight/ileight of children	
$5-i 2$	48	3	$91 \%>$
$23+$	14	1	45

Using the odas xatic test, there is no siçificant difference in woight for height between those children who come from medium sized families and laxge sizod families.

Table 50-4 Relationship between size of family and Arm Circumolige of the childron. No. of families $=62$ No. of childrea $=62$.

Size of fami- ly (menbers)	No.	Arm Circum. Ago of childrea	
		60-90\%	91\%
5-2 \hat{c}	48	25	23
$13+$	14	3	11

Using the Odds ratio test (>2) and the chi square test Xates Correction. ($0.25>\mathrm{p}>0.05$). there is a eignificant difforence in arn circumference for age between childron who come from medium sized families (5 mic wembers) and those who come from large families (23* members).

Table 51-1 Rolationship between typo of housiag and weight/age of the childrea. No. of houses $\neq 62$, No, of children $=62$.

siguificant differenco in weight for ago between			
children living in temporary houses and those			
living in semi permanent and pernanent houses.			
Table 5l-2 Relationship botween type of housing and Hej.ght/Age of the children. No, of houses $=62$, No. of children $=62$.			
Type of Housing	No.	Height 80-10 No.	$\begin{aligned} & 10 \\ & \mathrm{~N} \end{aligned}$
Temporaxy	30	27	3
Semi permanent \& permanent	32	15	17

Odds Ratis Test - eignificant $x^{2}=13.4$ significart

Usilug the odds ratio teat (>2) and the chi square test (Yates Correction, $\left(x^{2}=13.4\right.$, $P<0.005$), there is a significant difforenco in height for age between those children living in tesmporary housee and those who live in permanent and emi-permanont houses.

Table 51-3 Relationship between type of housing and weight/height of children. No of houses $=62$. No. of children=62.

Type of Housing	No	Woight/Height of children $70 \sim 90 \%$ No.	$91 \%>$ No.
Temporary Semi permenent \& pernanent	30	4	30

Using the Odd ratio tost (>2) and the chi square test Yates Correction (PC0.005), ther is A significant difference botweon children living
in temporary houses and those living in perwanex.t or semi-permanent houses.

Tablo 51-4 Relationship betmeen type of housilit and arin circumo/ago of children. No. of houses $=62$, No. of children $:=62$.

Typo of Housing	Arn Circum/.Age		
	No.	$\begin{gathered} 60-90 \% \\ \text { No. } \\ \hline \end{gathered}$	$\begin{aligned} & 91 \% \\ & \mathrm{NO} \\ & \hline \end{aligned}$
Temporary	30	12	18
Semi-permanent \& Pexmanent	22	25	37

Using the chi oquare test, thero is no significant difference between those childrea living in tomporary houses and those living in perwanent or semi permaneat houses.

Table 52-1 Kelationship between marital statue of the mothers and weight/age of the children. No. of mothers $=62$, No. of children $=62$.

Marital Status of mothers	No.	Weight/Age of children $70 \mathrm{~m} 90 \%$ No.	$91 \%>$ Married Widow

Using the Odds ratio test, there is no sigki-a ficant difference in weight for age in cinildien of the married mothers and the children of widowed mothorse

Table 52-2 Relationship between marital etatus of the mothers and height/age of the children. No. of mothers $=62$ No. of children $=62$

Marital Status Of mothers	No.	Height/Age of chilaren Married Widow	$50-100 \%$

Using the Ouds ratio tost there is no signiticant datio in height for age between the children of married mothers and those of midowed mothers.

Table 52-3 Relationship between marital status of methers and weight/height of chiluren. Mo. of mothers $=62$ No. of chilaron = 62

Marital Status of mothers	No.	Weight/Hoight of Children	
Married	58	4	54
Widow	4	\sim	4

Using Odds ratio teat, there was no significant difference in weight for height between children of married mothers and those of widowed motbers.

Table 52-4 Relationship between marital status of mothers and arm circumderenco/age oi cnildren. No. of mothers $=62$ No. of childrex $=62$

	No.	Arm Circunference/ age of children	
Marital Status of mothers	$50-90 \%$	$91 \%>$	
Married Widow	5	27	31

Using the Cdds test (>2) and the chi square test Iates Correction $(P<0.005)$ thore is a significant differonco in tho arm circemference for ago between children of married mothers and those of widowod mothers.

According to Jolliffe (1966), a presence of 3 or more clinical signs is a sign of malnutrition. In this section, those who have 3 or more clinical signs are placed as malnourished and those with less than 3 signs are rogarded as wel. 1 nouriebed children. They are then related to the socio oconomic data collected in the study. The follow wing are the results of this relationship. Table 53-1 Reiationship between occupetion of the H/ll and presence of clinical signs of the children. No. of H. $\mathrm{H}_{\mathrm{C}}=62$ No. of chiluren $=62$

	Clinical Signe		
Occupation of H/H	No. Lass than 3		
No.			

Using thie Odds ratio test (> 2), there is o. significant difference in clinical signs between the children of fathers who are unskille labourers, and those whose fathers are skilled labcurere. The chi square test homover showed no significunt difference.

Table 53-2 Relationchip between educatiou of H / H and the presence of clinical signs of the children. No. of $H / H=62$ No. of children $=62$

Rducation of H / H	No.	Clinical Lese than 3 No.	$\begin{aligned} & \text { igne } \\ & 3+ \\ & \text { Nu. } \end{aligned}$
Nil	23	22	1
Some	39	34	5

```
Using the Odds ratio test \((>2)\) there is a significant difference in clirical signs between the children of fathers who had had no formal education and those whose fathers have had some education. The chi square test however showed no Rignificant difference between the two.
Tabie 53-3 Relationship between size of the family and clinical signs of the children. No. of families \(=62\) No. of children \(=62\)
```


Clinical Signs
Marital status Less than 3 3*

of mothers	No.	No.	No.
Harried	58	53	5
Hidom	4	3	1

Using the Odds ratio test (>2) the tent was sigrificant. The chi square test however showed no difference . In addition the presence of parasites in the students was related to the hygienic practicee in their homos, to see whether there is any re?ationship between the two. Table 54 Relationship between the presence of parmsites in the children and hygienic practices in the homes. No. of children $=62$. No. of hones a 62.

Hygienic Prautices	Presence of Parasitea	
Letrine		
Present and used	6	100.0
Mrter mourca		
River	1	26.7
Spring	1	16.7
Hell	4	66.6

Prosence or aboence of latrine at home has no effect on the presence of parasites in the children, whereas there is a relationship between the source of water supigy and the prosence of parasites in children. All those children whose homes were visited, who had parasitos, get water from unbyienic sources.

Conclusion

Level of education of father might
affect the type of occupation a father can do, thus affect the income and expenditure in the household. Of the 62 homesteads visited $23(37 \%)$ of the fathers had had no education and of these 14 wore farmers and 6 were employed a unskilled Iabourers. Low income means poor housizg conditions and poor diets. Thus housing couditions were examined, and nost of the housing conditions protrayed a low level of living conditions. Education of the mother might affect her knowledge of nutrition, and thus influence food/nutrient intake of the family. It will also affect hygienic practices, since she will insist on the uses of the latrine, proper storage of food and water and where to fetch water. fill these practices indiractly or directly affect the nutrition and health of the family members.

When bocio economic factors are related to the anthropometric firdings of tho children and the clinical sigas found in the
children, the following were found to be significant:

1. Relationship in height for age of children and occupation of housencid heads. Dnskilled labourers having more malnourished childrea than skil. Led Labourers.
2. Relationship bctween level of eciucation of the household head and meight for age of children. Hore underweight children beicnged to fathers who had had no formal education. 3. Felationship betwoen type of kousing and height for age 0 : the children. More mal~ nourished child.s. were found to be living in temporary hounes.
3. Holationship ootwoen type of housing and weight for height of children. More malnourished. children lived in temporary housee than permanent or $6 \mathrm{mi}-\mathrm{perman} e n t$ houses.
4. Rolationshiê between family sjze ard grm circumference of tho children. More malnourished chilaren were found in the modium sized families ($5-12$ members) than in large families $(13 t)$ E
5. Relationship betwean marital status of mothers and arm circumference for age of the children. There were more cases of malnoue rished children of marriea mothers than the widowed uothersic
6. Relationship between occupation of housem hold head and presence of climical sigis in children. There were more muinourished ahildren of skillea labourers than of unthilled labourers.
7. Rolaticaship between cducation oi the household head and presence of clinjecal signs in children. There were more malnoum riehed childsen of fathers who had had some education than of fathers who had had no formal oducation.
8. Relationship between marital status of the wothedes and tha clinical signs of the studentso

There pere moro malnourished childron of
widowed mothers than of married mothers.
From these observations we can see that
there is a slight difference in autritional
status between those childrer who live in

- 213
better sociomeconomic conditione and those
whose parents have received formal education
than among those who are lose privilegod.

7.1. Growth und Maturity

A cross-sectional growth atudy of the secondaiy schocl children in Machakos District (Kenya) has revealed that of the children between 15 to 18 years, a number of the boys are still in their pubertal epurto Some have not jet even reached this stage. In girls the average rge of menarche has bean ostimated to be 14.25 years. This can be comao pared to the Indian girls of Durben which is 13.56 years (Kark 1957), Bagarda eirle which is 13.4 jears (Burgess and Burgess 2954), Bundi firls of the New Guinea which is 17.4 years (Malcola 1970). In American White girls from 1940-55, age of menarche was given to be between 22.5 and 23.0 years, and in South England between 1950-60 the average age of menarchs was given to be 13.2 years (Tanner 2962).

Tanner (1962) and Sinclair (1973) give
the ages of the pubertal spurt to be 12.5-15 years for boys and $10.5-13$ years for the girls.

The late maturity in the boys and girle in Machakos District caz be said to be causod by socio-economic and onvirommental factors anci poor diets. Tanner (1962) also states that malnutrition during childhood delays growith. Previous studies in Machakos District have revealed quite a high number of cases of early childhood malnutrition.

7.2. Anthronometry

In both girls and boys the mean weight and upper ard circumfarance incremse with age. On the average girls are haviei than boys. Similar findings were repoxted on the weight of Baganda girls (Burgess and Burgess 1964), Bundi boys and givjes of Now Guinea (Malcolm 1970), Edinburgh children (Provis and Ellje 2970) of the Bame rger. However the Edinburgh girls are lighber than the Machakos girls and the Edinburgh boys heavier tian Machakos boys. An increase in beight is observed In s.ll ages studigd of the Machakos boyss Buadi (of New Guinea) shhool children.

Baganda girls and Edinburgh school childrea. The boys baing taller than the girle. This shows that there is etill growth by age 13 in bocil boys and girls. The Edinburgh boys and girls arc however taller than tho Machakos boys and eirls.

Although genetic factors play a role in determining e beighte of people, environ mental and socioreconomic factoris also play a big role fowards the growth of individuals (Tanner 1962). It can thus be said that since Edinburch childron como from better living conditione they are tallor than tho Machakos children. The fact that Nachakos girls are heaviar than mainburgh girls, is probably due to a higher caloric iateko。

When the meight for height percentage Ievel is observed, it can be seen that most of the girls and hoys are of either noralal standard or above, again this may point towards an excess intake of caluries.

Anthropometric assebsment according to tho standards of reference gives us an idua of cases of those malnourished. Ir this study only intornaticnal atandards ware used as there are no local onestavailable in Konya.

Since there were no birth certificates to confirm the ages of those children, referance in this section will be entirely based on the woight for height levels of the standards as these should be more reliable than the other anthropometric measures. Using this as a measure for the children's siate of health we fird that most of the girls and boye are of either normal standard or above, this may point tomaris an gaicese of calcries. Only 2.1\% and 1.7\% of the day boys and day cirls respectively are below tho standard in veigint for heighto 7.3. Biochemistry, Laboratory and Diet The mean haemogicoia valuos is satism factory in both girls and boys in all ages. Only $9(9 \%)$ were found to be anacmic. Physical examinatiou revealed $30(29 \%)$ casea of pallor (conjunctivae, nail bed and tonguo). Parabitic infestations have been regarded as one of the causes of anamia and $39(25.5 \%)$ of those examined were infested with parasites. The main Intestinal parasites found were hookworm, ascaris, trichuris trichura and schistosomiais mansoni without any annemia. It should also be noted
here that only $10(26 \%)$ caseb of thoge infesm ted had pallor or anaemia. This may be due to the fact that the diet of the boarding school pupils contained more iron than the required. The high adtitude may alss have played a part. The parasitic infestation does not seem to affect most of the etudents. No information on egg count wes availablea

There was also a low intako of caiories in the diet of the hoarders. Spauve and Dodds (1365) had a similar finding or aubjosts of Virgin Isiands, ecpecially the gixls. Tho adequacy of the caloris intake of tire day Bcholars is not known thus overweight as found in the day scholars could be either because of a high intake of calories, or because of lack of exereise. Howevor, it Bhould be noted that overweight in these girle is of a milder form.

Bowes (1955) cited calcium as being a nutrient most lacking in the diets of children betwoen ages 4 and 20. Wharton (1963). Spaure and Dodds (1965), Hinton et al (1963) 011 show a low intake of calcium in the
teenagers' diets. The Machakos students also show a law intake of calcium in their diet. Considering that milk is part of the traditional Akamba diet this should not have been the case with Machairos studenta.

Carctene intakes of teeragers were deficient according to Minton et al (1963), and Schorr et al (1972) found that this was due to a dislike of vegetables. Bohdal (1956-68) showed that there was an insufficient intake of vitamin A. Althougn there is also a vary low intake of vitamin A of the basarding achool girls and boys in Nachakos District this is due to the planning and preparation of the meals. A look at meal pattern of the day studentó also Ehows that vegetabies are not popular.

A high number of the Enbjects are observed with cheilosis of the lips, a deficiency caused by deficiency of riboflavin in the diet. A look at the diet of the boarders shows that riboflavin is actually inadequate.

The occurrence of goitre (mostly of minor form) espocially amongst gisls, can probably bo explained by a low intake of iodine accentuatod by acceloratod erowth (spurt),

7.4: Environmental Pactors

The boarders spend most of their tirne in echoole. Un the other hond the day echolars uliso spend quite a time at school. The gecondary school child is quite matured to bo able to notice and follow up things. If tho teachers and administrators introuce good hygienic habits in the school, the childrea will follow first conswiously and finslly habite axe formed which are good and beneficial to the ${ }^{m}$ Also eith the cultural changee, whers the olders can afford to sit and listen to the educated young, the gounc can have quite an influence on their ejders and families and intreducing good and healthy habitis.

All thie four bchools were neat and had sufficieut latrines (lavatorics), and two of the schools (boarding) had good sources of rater eupply from a tap or burehole. Hachakos Girls' School diet is a bit vaxied on Sundays, but still more variation could be introduced in the
diet, and a few new foods such as fish be introduced in the diet, in order to take into consideration other nutrienta which are deifcient and widen the girls' knowledge on food habits and nutrition. Only one schcol teaches nutrition as a subject. This subject should be introduced in all schools. Or if health subjects wore introduced to all schools, a section on Nutrition should be included. This will improve tho nutritional knowledge of all students which in turn will be commonicated to their families in their homes.

Discursion of Objectives and Iypotheses
This study was set up to investigete factors affecting the nutritional status and health of the secondary school ohildren in Machakos District.
Through home visiting, observations were
wade and questionnaires were filled by parents
in which the economic status of family based by
occupation rather than income were assessed.
As the incomes filled by most of the familien
was rather vague and looked suspicious, this
soction was left out. Information on education
level of the families, sizes of the families, housing facilities and marital status and food availability was obtainod. Information on schools, and school facilities and meal patterns of the boarders was obtained through visiting the schonls and questionnaires to the heads of the schonls (Appendix 6). Anthro pcmetric heasurements of the etudents were taken, clinicel examinations, blood and stool samples rere collected and tested for Ho levels and parasites respactively.

A slight differcuce was seon in the nutritional status, between the boys and Gir2s and betweun the boarding girls and day girls and the boarding boys and day boys. But tinese differences were not very significant as such. Boys' nutritional status being slightly better than the girls', and day girls having a better nutritional status than boarding girls.

Girls have more clinicel signs, showing more pallor of conjunctivae, pallor of nail bed,
goitre and obesity, whereas boys havo only one aign of decajed toetr. BoJe have hignar Hb levele than girls. Of the anthropometric measurements girls shcw signs of being haavier than the boys; more boys are found to be malnourished than giris, More boarding boys are found to be underweight than day boys. More boarding girls have intentinal parasitcs than day girle.

Although there is an increase in iron requirement in girls after puberty, thare was 120 significant difference between presence of anacmia it girls and buys as shown by 4 m levels. However judging from the prosence of palor, we find that a significant difference exists between pailor of the nail bed aad pallor of Coujunctivae.

But almee wo compartay mon of ib leval and percontages of tib the two are mot comperable ard thorofore no meaningful coneluelen can be drann fran thoseo

Measuretionts of tody weights wore taken anly twice, once at sn end ofthe terx aid once at tha beginning of term. No significant

```
                                    - 224 -
differences were shown in the two weights.
For this hypotheses to bo proved, nore weights
should be taken probably more than twice at the
ond of terms and more than twice at tho beginning
of terms.
    When the sociomeconcmic factors are releted
to the anthropometric findings, und tho clinical
findings, a slight difference is found in
nutritional status between those chilaren who
Iive in better rocio-0conomic conditions and
those whose parents have received formal
education than umong those who are less privi=
leged.
```


CHAPTER 8

CONCLUSION AND RECOMMENDAMIONS

Changing sosial conditions, demographie ard types of behaviour are producing nem social and health needs in all parts of the world. Adolescents in particular are assuming an increasingly slgaificant rolo and, in most doveloping societies, are beginning to constitute a strong social and econowic component.

In the past, many of the health needs of this age group wore neglected. Ij.ttile was known about them and little was done for theme It has gradually been realized that their needs are considerable, and are not only physical, but also mental (emotional) and socialc It is important therefore that the needs of adolescents ard their significance be acknowledged in a chenging world. It is equally important that mechanisms should bo developed to foresee these problems and to allow appropristo prom prammes to be developed to prevent them.
"Ihe school is one of the most important eathering placer for a large section of the popum lation and estit is a progressire part of the

Abstract

community, it might be the easiest place in which to introduce new ideas on nutrition and hygiene with some hope of acceptance and spread and continuation to the next generation." (Bennett and Lutwama, 2966). Other programon however shopld be organized to meet the needs of the adolescents who have not been lucky enough to be in schools.

Tha recommendations put forward in this chapter are those given by various authorg who have had the edolescents in mind in their rosearchese They are then conoidered against the findinge of the presont research.

1. The School Environment

Bennett and Lutrama (1966) recommended deep borcholes or other good sources of water in boarding schools, good ways of waste (excreta) disposal and sufficiently big and well ventilated classiooms. All the echools in the study seem to have been built with these viems in mind. The exception is in the dormitoriee in the boarding schools which were rather crowded. Hrobably lack of funds has led to this situation where, the schools have
been forced to havo a large intake, of students whereas the sleeping space has been the same. 2. Growth and development studies

Growth and development studies permit more effective planuing of lorg range healta care programmes for acolescents and should also yield further facts for improving medical teaching and for the assistance of those who plan educatjonal and vocational programmés

There is a need for standardization of methods of assessing growth and derelopmont, including cxiteris. for aaking arad analyzing meaeurementa. Only when such standards exist can comparativo cultural studies be really valid. Frecisc information on chronological age is essential for correct analysis and interpretation of growth data (WHO, 1965).

If a sinple growth chart is kept on each student for ench child right irom tho timo he/she starts schooling, growth studies would have been done easily, local standards for moasurements such as weights and heights cau easily be ostablished in the country by using such records. Crosemsection studies cannot

```
provide enough information to set local
standards. As it is, none of the schoole in
the study had any growth charts, and actually
tlese charts do not exist in any school in
```


Kenya.

It was therefore impossible to amsess tho growth pattern and standards of children from develi ad countries Fere used. Although the backgrounds of the two groups are completely differont, these standards can still ke used for comparative purposea.

3. The Schcol licale

In boarding schoole trained cateresses should bo emplnyed to plan the meals for boarders. Diets should be reviwed periodia cally because it is very easy for some vital Items to be omitted with subsequent doficiency diseaser developing in children. These meals should provide an educational situation which children learn about (new) foods and nutritional values. (Bennett and Lutwama, 1966). For the day studants arrangements should be made so that there is a school feeding programme in each secondary day school. The purposo + of this programo shouid be to provido iteras
which might be lacking in home diet e.g. vitamins, proteins or minerals, and to prom vide calories to improve the child's performance during a long day. It should be noted that some of these children come to school without breakfast, and some do not. have lunches at all and would be clad if a school lunch programe was provided.

A national policy or schocl meals could be established or this could be undertaken at the local school by interested parents and teachers. In addition to the setting of this procramme, adequate thought should be given to food storase, the kitchen, the dining place, utensils, water supply, seasonal. narketting difficulties, the staff required and budcetting.

The diets of both boarding schools examined, fell short of calories, some minerals and vitamins. Sprouting of beans for 2 to 3 days has been known to synthesize considerable amounts of ascorbic acid, and increase the amount of riboflavin and niscin,

This method if used in schools could bo a cheap way of increasing the vitamins in the diet. Although trained cateresses are found in both echools, it should be noted that the diets were rather monotonous: introduction of a fow new foods such as fish once in a while would have improved the diet considerably. 4. Tho teaching of Health sducation

Adolesconts must eventually assume adult responsibilities, among which is responsibility for theix own sealth and of other people.

An adolescents' health education should not be taught as something isclated from his past. It etarts in childhood with the example set by his parents with regard to their own health practices. Trained teachers, and health personnel should teach the subjects, and emphasis should be put on real existing problowi such as hazards of smoking, excessive drinking of alcohol, the abuse of drugs, and prevention of eccidents and vonereal diseases (WHO 1965). Hygiene and nutrition should be included in the syllabus and be related to real lifo. This
subject should be tsught in all achools for the benefit of the adolescents.

Amongst the schools in the study only one schovl toachss Health Science as a subject. two scbools teech biology (which should include bealth scicace) and one girls" school teaches biology and me economjes as health education subject. It ehould be noted that more hoalth education io noeded in all the schools in ordor to relate it with the studeats' living conditions. Host of these children in these schools coms from very poor backgrounds whero standards of hygiene are vory low. Schools could holp a lot in enforcing these aspecte.

5. Bxtra Curricular Programmes

Besides the academic subjecta in schools extra curricular programmes related to health, could be used vely essily to incroaso the health education of the adolescents. Clubs Euch as the First Aid Club, the Four K Club or the Young Farders Club, a school garden could be introduced where vegotables can bo grown and used in the school. A Cookery Club where
foods and nutritional value of foods ban be stressed while at the same time the children are enjoying themsulves in the cooking. All such clubs can increase the health awareness of the adolescentr.

Once in a while docturs, home economiste, family planning personnel, health workers in various fields could be invited to give talks on various interesting talks on heal.th hazards, and how to prevent them.

As it sppears that the number of pregnancies occurring in tarly adolescence is increasing, and there is ovidence that the infants born of those pregnancies tend to have low birth weighte and are cubject to neglect and unfavourable feelings from immature mothers sex education programraes should be incluaded in the curriculum of the secondary school children. These programaes should rot be limited to information on reproductive physiology but should be desigued to cover a far bruader range of topics including contraception, family life and parenthood. They should also dozl, as for

- 233 -
as possible, with questions of ethics in interpersonal relationships and responsibility in reproductive behaviour (WHO 1975). As it might be difficult to include these topics in en already tight school routine they could well be covered if personnel from the Tamily Life Education are invited every now and then to give talks in thsse areas.

From the observations made in the extra curricular activities of the schools in the studies, it seems that a lot has to be done in the area. What is being done is not adequate for the adolescente. This group needs special attention.

CHAPTER 9

ACKNO:MLEDGEMENTS

The scholarship making this study possible was granted by the Naizobi University. I am grateful for it.

I wish to express my gratitude to
Prof. F.J. Bennatt of Nairobi University gho was my aupervisor. He patientiy guidad me by offering constructive criticisms and usefui j.deas throlighout the study.

I alco wish to acknowledge the interest, encouragement and active help of Prof. M.C. Latham, who was a viciting professor of the University of Nairobi at the etart of my study, and to Dr. A.A.J. Jansen, Head o: Nutrition Department, Medical Research Centro.

Othor thanks go to all tho members of staff in Department of Community Health University of Nairobi who gave me much help and assjetance in various arpects of my atudy, Bernadette Ngoya who typed this thesis for me, Mr. Musgai of the Medical Research Centre who heipec me in the diagrams and graphs and
photography, Mr. B. Katiku who helped mo with accommodation at Hachakos during my ficld work. I also thank all the headmastors, teachers and participating students from Kangundo High School. Humbuni High School, Kyanguli High School and Machakos Girls High School for their co-operation and enthusiasil they showed to make this atudy pocsible, the Medical Officer of Health, Machakos IIvspitgl. who ireatod all the etudenta who had intestiaal parasiten, and the laboratory technicians at Machakon Hospital Laboratory for helping in the stcol analysis. Finslly, wy thanks are due to my husband James, and my four childron, Kalume, Kadii, Kahun ఓa and Kahaso who were so patieut with me, and who encouraged we throughout my study period.

- 236
 CHAPTES 10
 REFERENCES

1. Adams, B.G. and Maegraith 1971. Clinical Tropical Diseases. Sth Edition. Blackwell Sciontific Publications Oxford and Edinburgh pp. 161, 355, 513.
2. Beachs E.F. et al (1950). Natritionel Status of Children XI Food intakes and Biochemical and Medical Evaluations of Adolescent boys J. Amer. Dietet. Assoc. 26: 681.
3. Bennett, F.J. 1963. Health Education for the older child. J. Trop. Med. and Hyg. 66 No. 1:21.
4. Bennott, F. ${ }^{\text {. }}$. and Lutwamg, J.S. Organization of MCH Services in Developing Iogion I: Health Services for school children. J. Prop. Paed. 12 No. 1:16-21.
5. Eennett, F.J. (1974). Health in Secondary Schools in developing countries. Mrop. Geoce. Mod. 26: 96-98.
6. Blackburn, M.I. and Calloway, D.H. 1974. Bnergy expendituxe of pregnant adoleaconts. J. Amer. Dietet. Assoc. 65:24.
7. Bohdal, M., Gibbs, N.E. and Simmons, H.K. 2963. Incidence of endemic goitre in Kenya and outline for its prevention. Report to the

Ministry of Health of Kenya on the WHO/ FAOSUNICEF - assisted project, p. 103 1968.
8. Bohdul, M et al. Nutrition Survey and Campaign againet Malnutrition in Kenya 1964.58. Report to the Ministry of Health of Keaye on the wHo/ma/ONICEF assist.ed project, 1964-1969.
9. Brown, F.E. and Wiiks, N.E. 1966. Heolth Survey in : anda Primar; School, an approach to Merlth Education. Trop. Geogr. Med. 8 VoI. $3.8, \mathrm{No} .3: 183-220$.
10. Browa, R.E.s Wilks, NoE., AIIer, D.M. 1970. Healti. Survey of Primary School Chilaron Ln Ugarda: Incidenco of Anagmit, Splenomogaily. Hookworm and Malaria. E.A.N.J. Vol. 47 , No. 6: 302-318.
11. Burgess, A.P. and Burgesa, II.J.L. 1964e The growth of East fifican School sirls. Human miology z6: 177-293.
12. Burgese, A.P., Horton, C. and Burgess, ll.ü. L. 1962. The diet of some Uganda School. girls. E.A.M.J. 39: 464-477.
23. Burgess, J.H.C. and Burgess, A.P. 1955, The growth of some Uganda school girle. E.A.M.J. Vol. 42: 132-142.
14. Cooper, L.F. 1963. Nutrition in Health and Disoase. I4th Edition. Pitman Medical Publishing Co. Ltd., London J.B. Lippinm cott. Company Piniladelphia pp. $3-4$, 166-170.
15. Cooperstock, M. et al 1948. Nutritional Status of Childreol: III Blood Serum Vitamin C. Je Amor. Dietet. Assoc. 24t205.
16. Davidson, S. et al. 1973. Human Nutrition and

Dietetics. 5th Edition. The English
Languaga bnok society and Churchill
Livingetome. pp. 45-54.
17. Durnin, J.V.G.A. et al 2974. A cross sectional
and bnthropometric atudy, with an interval of 7 years, on 611 young adolescent
echool children. Brit. J. Nutr. 32;
169-179.
18. Eppright, E.S. \& Roderuck, C. 1955. Diet and
liutritional Status of Jowa School Chỉdrea
Amer. J. Fublic Health, Vol. 45:464.
29. FAO, Food Composition table for use in Africa.

Rome 2968.
20. Gschneidner, M.P. and Rodoruck, C.E. 1960.

Nutriture of school girls of difforent
physiques. J. Amer. Dietet. Assoc. 36:22.
21. Gurthrie, H.A. 1967. Introductory Nutrition. The C.V. Mosby Company, Saint Lous. pp. $4=7$. 22. Hanegraaf, T.A.C. 1977. Endemic Goitre in Kenya, an intermediate evaluation of an experimental control programme. E.A.M. .54 No. 42 167-173.
23. Hinton, M.À. et al 1953. Eating behaviour and Dietary Intake of Girle $12-14$ years old. J. Amer. Dietet. Assoc. 43:223.
24. Jelliffe, D.B. 1969. Child Nutrition in Develon ing Countries. Office of War on Hunger: Agoncy for International Development Uos. Department of State D.C. pp. 93.
25. Jellifee, D.B. 1966. The asbessment of nutritional status of the community. $/ H O$ Monom graph Series N. 53, Geneva.
26. Jolliffe, N. 1962. Clinical Nutrition. 2nd Fdi= tion. A Hoober Medical Bood. Harper and Brothere Fublishers. pp. 1.
27. Kark, E. Sex maturation and variation in the height and weight growth of Bantu in Durban. J. Trop. Paed. 3: 32-40.
28. Kark, E. 1953. Puberty in South Airican Gir2s. The meuarche in Indian Girls of Durban. S.foJ. of Clirstcal Science, Vol. 5 No. 1 March, 1953.
29. Kaucher, M. ct ai 1948. Nutritional Status of children: VII Haemoglobin. J. Amer. Dietet. Assoc. 24: 496.
30. King, J.C., Calloway, D.H. and Margen, S. 1973 Nitrogen retention, total body 40 K and woight gain in teenage pregnant girl.s. J. of Nutrition. 103:772.
31. Krause, M.V. 1966. Food, nutrition and diet therapy. W.B. Saundare Company, Phiiadela phia. pp. 450 m 46.
32. Latham, M.C. Human Nutrition in Trcpical firica. FAC/UNICFFKWHO. Rome 1973. pp. 242.261.
33. Malcolm, L.A. 2970. Growth and development in New Guinea. A study of the Bundi People of the Madang Dißtrict. Institute of Human Biology. Papua Guinea. Monograph Seriee No. 1. Surrey Reatty and Sons. Chipping Forton, N.S.W. pp. 51-52.
34. HcDonala, B.S. 1963. Gingivitis - ascorbic acia doficiency in the Navajo. J. Amer. Dietet. hвรос. 43:331.
35. NoLaren, D.S. and Buraan, D. 1976. Textbook of

Paediatric Nutrjtion. Churchill Livingstore Edinburgh, London and New Yoric. Longman Group Itta. ppo 84-88.
36. Mbiti, J.S. Akamba Stories. Thesis (PhD). University of Nairobi. 1966
37. Meme, J.S. 1971. School Health Programme;

Kangundo High School th Year Medical Students Report. University of Nairobi.
38. Ministry of Finance and Economic Plannings Statistic Division Kenya Population Census 1969, Nairobi.
39. Mitchell, R.G. 1970. Child Life and Health.

Eth Edition. J. And A. Churchill. Gloucester Place, London.
40. Muoki, M. 1971. School Health Programme:

Kangundo High School th Year Medical Students Report. University of Nairobi.
41. Ndeti, K. 1972. Elements of Akiamba Life. East African Publishing House, Nairobi Kenya. pp. 79, 85.
42. Ohlson, M.A. and Hart, B.P. 1965. Influence of breakfast on total day's food intake. J. Amer. Dieter. Assoc. 47:282.
43. Osoteyo, J. 1973. The physique of Urban

Nigerians in the adolescent period. J. Prop. Pad. and Env. Child Health, Vol. 18 no. 2 pp

Oduntan, S.O. (1973). The pattern of disease and and accidents in Nigerian Children of School
age. J. Trope. Med. Hg. 76, 28.
44. Platt, B.S. Tables of representative values of foods commonly used in tropical countries. Loadon, Her Majesty'ז Stationery Office 1962.
45. Roh, E. 1967. Manual on Household Food consumption Surveys FAO. Nutritional Studies no. 18, 1967.
46. Robinson, A, et al. 1948. Nutritional Status of hildron: VI Blood Serum vit. A and carotinoids. J.Amer. Diet. Asscc. 24:4.20.
47. Schorx, B.C. et 2.. 1972. Teerage food habits. J.Aner. Dietet. Assoc. 62:415.
48. Sinciair, D.C. 1973. Human Growth after birth 2nd edition. Oxfora Jniversity Prese, New York, Torcnto pp. 18-32.
49. Spauve, M.E. and Dodds, M.L. 1965. Dietary Survey of adolescente in the Virgin Isiands. J. Amer. Dietet. Assoc. 47:287.
50. Swartz and Dean, R.F.A. 1955. An investigation of the daily intake of individual boys at a bcarding school in Uganda. Britt. J. Nutr. 9, 230-244.
51. Tabrah, F.L. and Hauck, H.M. 1963. Some aspectes of health and nutritional status, Awo Oinama, Nigeria. J.Amer. Dieter. Kssoc. 43:321.
52. Tanner, J.M. Education and physical crowth 1968. University of London Press Limitede pp. 3 and 35.
53. Tanner, J.M. 1962. Growth at Adolcscence

2nd Edition. Balckwoll. Scientific Publication. Oxford London Edinburgh.
54. Tanner, J.M. and Whitehouse, R.B. 1962. Standards
for subcutanonus fat in British children.
Percentilas for thickness of skinfold
over triceps and bolow scapula. Brit.
Med. J. Vol. 1:446.
55. Thomas, J. and Call, D.L. 1973. Eating between
meals - a nutritional problem ancng teew

* nagers? Nutr. Eeview 31, No. 5:137。

56. Turner, D. 1965. Handbonk of Diet Therapy

4th Edition. Chicago Fress. pp. 208, 2 lt2.
5\%. Young, C.et al. 1960. Metnodology for dietary
studies in epidemiological surveys. II
Strongth and weaknesses of oxisting methods.
Amer. J. Public Health, 50.

*

Toverud et al
as quoted by
Martin E.A. Roberts' Nutrition work with the children The University of Chicago Press 1963 PP. 231

$$
-244-
$$

58. Nelsonhe E, Vaughan, Victor, C. 1969. Nelo zons Toxtbook of Paediatrics 9th Eaition. H.B. Saunders C. Philadelphia, U.S.A.
59. Walker, M.A. ot al 1973. Fruit and Vegom table acceptiance by students. J 。 fare Dietet.
60. Vard, M. et al 1950. Nutritional Status of children. X Feeding Practices in Child-caring Agencies: Communal Feeding of idoneecent Boys. J. Amer. Dietot. Assoc. 26:421. 61. Williameor, M.M. 1963. Endemic Dental Fluorosis in Kenya. \& preliminary report. E.A.M.J. 30:217.
61. Wharton, M.A. 1963. Nutritive intase o? adolescente. J. Aner. Dietet. Aceoc. 43:306.
62. Wilhelmy, O. Jr. et, al. 2950. Nutritional Statue Survey. Croton Township, New York. J. Amer. Dietet. Assoc. 26:868.

- 245 -

64. WHO Caicium requirements. Geneva WHO tech. rep. ser. 1962. No. 230.

65, ViHO Health Problems of adolescents. Genova. WHO tech. rep. ser. 2.965. No. 3,03 pp. 3, 6-7 16, 18.
66. WHO Requirements of vitamin A, thiamin, riboflavin and niacin. Geneva. HO tech. rep. sex. 1967 No. 362.
67. WHO Nutritional anaemia. Geneva. WHO tech. rep. ser. 405. 1968.
68. WHO Requirement of ascorbic acid, vitanin D, vitamin B, folate and irono Geneva, WHO tech. rep. ser. 1970 No. 452.
69. WHO Energy and protein requirement. Geneva. WHO tech. rep. ser. 1973 No. 522.
70. WHO Handbook of Human Nutritional Req̧uiru* ments. Monograph Series, No. 61 Geneva 2974.
71. WHO Pregnancy and abortion in adolescence. Geneva who tock. rep. ser. No. 533. pp. 9, 23.
72. wifl Methodolosy of Nutritional Surveil-
lance. Geneva. WHO tech. rep. ser. 1976 No. 593.

Marr J. ${ }^{\prime}$. Individual dietary surveys purposes and methods. World Revicw of Nutrition and Diotetics 13, 1971, 105-164

MUCHUNGA E.G. 1977 A guide book on Machakos District for general reference by the 4 th year Medical students during their fieldwork programme.

Clinical Testr (contd.)

Hottling of teeth:
Obesity $0 \quad 1 \quad 2 \quad 3$

Laboratory
Stool: Ascarie/Hookworm/(tiardia
Others: (otate)

Blooq date
Haemoglobin

Appendix 2

QUESTIONNAIRE FOR GIRLS

Name of Child:
Date:

Age:
School:
I. Do you have your menstruation period?

2. If yes, when did you start the first period:

1970	2971	1972
1973	1974	1975

1976
3. When you started period a how often did you have theme a) once every month
b) once after 2 months
c) once after 3 months
d) once after 4 months
e) once after 5 months
f) once after 6 months
4. When did you start having periods once every month?

1970	1971	1972	1973
1974	1975	2976	

Appendix 3

QUESTICNNAIRE ON NUTRITIONAL KNOWLEDGE OF TPE ADOLESCDHT

1. Beans contain less protein than majze Yes/lio
2. Fruits are a good source of vitamin C Yes/Ño
3. Tinned fruits and vegetables aro mora nuiri= tious than fresh fruits and vegetables lies/ivo
4. Anaemia may be due to a deficiency of one of the following:- Calciun: Iodine; Ixon*
5. Kwashiorkor is a disease of young children brought about because of lack of calories in the diet: Yeb/Nc
6. A lack of iodine in the diet could result in one of the following diseases:anaeria, goitre, oedema
7. Breactfeeding alone does not provide sufficient nutrionts for a baby aged 2 months and should therefore be supplemented with con"s milk, powdered milk or aome other milk product Yes/No
8. Which of the following member of the fauily needs more protein relative to culorie intakes= Eremschool see child; school child; lazid worker; father; mother.
9. A balanced diet is a diet containing all the nutriouts necessary for body buildines euergy giving and body protecticn. Yes/No
10. A pregnant moman meeds more food intake than
a. non-pregnant womar. Ies/No

Appendix\% 4

QUESTIONNAIRE FOR MOTHERS

1. Diatrict: Location:
2. Nance of Father:

Name of Mother:
3. Age of Father: Age of Mother:
4. Marital Status of Mother:

Married

Divorced

Widow

Single

5. Educational level of the parents:

Mother
6. a) What is the importance of protein foods
in the diet of oril.dnon?
Explain:
b) Should children be given eggs?

Yes

No

c) If there was just a little money left for housekeeping, which of the following would you buy? And why?
Sugar

d) There is only a little meat loft from yesterday's supper, to whom should you give the meat? find why?
The husband Yourself

OLder children Younger children

Appendix 5
QUESTIONNAIRE FOR PARENTS
District: Location:Sublocation:H/H No.:
Date:

Socio-Econonitc Data

1. Name of Household Head (H. H.)
2. Occupation of H.H./husband: ...
3. Edication of H.H./husband:
Years attended school:
4. No. of houcenold members:
5. Kitchen separate from living room:

Yes

 No

6. No. of rooms asciuding kitchen:
7. Type of roof:- Corrugated sheet Flattered tins Thatch
 Other
8. Type of floor:- Cement \square Earth \square Other:

9. Latrine:- Present and used

Present not used \square Not present

10. Water sources
Spring
 Well Roof \square Catchment \qquad Other

11. Fuel used for cooking: Charcoal

Hood

Other:

Appendix 5 (contd.)
13. Storage Facilitins Storage of food:
i) Cooken food
ii) Rary food
14. Types of food itern bought (previous weak) 2. Frod Cost

1
2
3
4

5
6
7
8
9
10
(If more foods continue overlead
15. Eize of the family:

Name
Age
Sex
(If more names continue overleat)

Appendix 5 (contd.)
16. Types of foods produced by the family:

1

7
8
9
10
11
12

Appendix 6

DATA OR SCHOOL FACTORS

QUESTRIOMIAIRES TO HEADMASTRRS/TEACHERS
Name of the School:
Size of the School:
No. of Boys:
No. of Girls:
No. of hostels (if boarding)
No. in each hostel:
Size of each hostel:
No, \& type of beds:

Sanitary Facilities in School:

Latrine (lavatories):
Laundry facilities:
Disposal of waste (dirty water and rubbish)
General Appearance of school Healthy

Unhealthy

CATERING FACILITIES

1. For day scholars
$\mathrm{Yes} \square$ No
Yes

\square
2. For boarders
3. Catorese/Matron
(a) If 3 present
(b) If 3 absent who plans meals:-
4. No. of cooks:
5. Size of kitchen:

Appendix 6 (contd.)

6. Equipment:
7. Cooking stoves:
8. Storage of food:
9. Storage of equipment:
10. Transportation of food to school:
11. General impression on catering (kitchen promises) Healthy IE No
12. Availal lity of canteen for day scholars?

OTHER INFORMATION ON HEALTH
In Teaching of Home Econoraics in School:

If Yes, which subjects:-
If Yea, facilities: Good Fair Y Poor Below Standard \square
(Collect syllabus if possible)
2. Other Health Education Subjects

If yes which? (Name)
JP yes facilities for subject:
Good
Fair \qquad Poor T Below standard \square (Collect syllabus if possible)
3. Any dispensary in the school: Yea/

Appendix 6 (contd.)
4. Presence of Doctor, Nurse, Matron in enol

If not other trained staff: Name
5. (a) Disyensary/Health Centre near School
Yes

No

(b) Distance from school:
6. Visiting Doctor in the school: Yes No \square
7. School Counselors Yes No \square
(a) If present, traineds Yes \square No L
(b) If absent, any other person acting as counsellor
8. Any other method used on Counselling/Guidance/ Health telks/talks from social worker, ec.

CHILDRETIS PERFORHANCA (IN GENERAL)
Collect result e on EACE for last 3 years. Good
 Satisfactory \qquad Poor
 Very Poor \qquad

EXTRA CURRICULAR ACTIVITIES
Radio: Present \square Absent

T.V. : Present

Absent

Newspapers for children:

No
School clubs
Yes \qquad No

If yes, any related to health:

[^0]: Very low intakes are observed in vitamin A content.

