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ABSTRACT

This research deals with the problem of missing data in multivariate 
analysis, in the sense that not all variables o f interest are measured on every 
unit or element of the sample. The emphasis of the thesis is on imputation 
techniques as a method of handling missing data problem in multivariate 
analysis. Special attention is paid to the method of Buck (1960) as a pi­
oneering imputation method for estimating the covariance matrix of any 
k-variate population in the presence of missing values.

We have extended Buck’s method to the case of units with more than 
one missing value and obtained the properties of the resulting estimators. 
A simplified procedure for the estimation of the bias of the variances of the 
observed and imputed data has also been developed. On the basis of the 
simplified procedure, a functional relationship between the relative bias and 
the coefficient of determination has been established. It has also been shown 
that for some patterns of missingness, Buck’s method makes maximum use 
of the available information.

The problems caused by imputation via Buck’s method in regression 
analysis are studied. It has been shown that the presence of the imputed 
values create serious biases in the obtained estimates.

For the case of the model-based strategy it has been shown that the 
factorization method of Anderson (1957) is equivalent to the special case of 
Buck’s method where units have one missing value subject to one variable. 
We have also shown that this equivalence of the two methods does not hold 
for the case of units with more than one missing value. It is also shown that, 
under normality assumptions, the EM algorithm is equivalent to an iterated 

version of Buck’s method.

x



Finally we have made an attempt to lay a foundation for extending 
Buck’s method to handle non-randomly missing data. With that in mind, 
the work of Nordheim (1978, 1984) has been extended by considering the 
case of non-random misclassification.

Throughout the thesis numerical illustrations and validation of the ob­
tained theoretical results are given using real data. The data are analyzed 
using SPSS and STATGRAPHICS statistical computer softwares.
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CHAPTER I

INTRODUCTION

LI AN OVERVIEW OF MISSING-DATA PROBLEM

Standard statistical methods have been developed to analyze data sets 
arranged in rectangular forms, often called data matrices. The rows of the 
data matrix represent individuals, cases, units or observations, depending 
on the context, and the columns represent variables measured for each unit. 
The entries in the data matrix are real numbers representing continuous or 
categorical measurements.

Missing values are phenomena in data that occur when measurements on 
some variables for some individuals (or units) are not available for whatever 
reason. Such data are referred to as incomplete data, fragmentary data, spoilt 
data, omitted data, missing plots, partial data, scarce data or missing data, 
depending on the statistical context. Statisticians have long appreciated 
that the existence of missing data can change an ordinary simple statistical 
analysis into a complex one.

Although the problem of missing data was discovered by Fisher and 
Yates in the 1920s, serious research in the area has flourished later in the 
early 1970s. This is mainly due to the developments in the computer tech­
nology that facilitated the previously laborious numerical computations of 
the subject. Since then the area has witnessed rapid advances in three areas 
of statistics, namely Survey Sampling, Experimental Design and Multivari­
ate Analysis. Although our emphasis in this thesis is on the last area, for 
completeness, we shall give a brief review of the problems created by the 

existence of missing values in the three areas.
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1.1.1 MISSING VALUES IN DESIGNED EXPERIMENTS

In many designed experiments, it may happen by chance or by some 
other reason that some of the observations are missing because they cannot 
be collected or they are simply not obtainable. For example, crops destroyed 
in some plots, a patient withdraws from the treatment, one or more animals 
die in the course of the experiment before measuring the treatment effect on 
them, etc., are common phenomena.

In such situations the designed experiment is no longer balanced and 
loses the orthogonality that it possesses when all observations are present. 
As a result the proper complete-data least squares analysis becomes com­
plicated. The least squares normal equations that are constructed for the 
analysis of the data, will not have the terms corresponding to the missing ob­
servations. Therefore some of the required parameters may not be estimable. 
The question of interest is how to analyze the data in such situations.

One possible solution to the problem is to repeat the experiment under 
similar conditions and obtain the values of the missing observations. How­
ever, such a solution, though ideal, may not be feasible economically and 
physically. The statistical literature provides two options for dealing with 

this problem.

The first option starts by assuming that the reasons for the occurrence of 
missing values in the response variable (Y) does not depend on any Y value. 
Then the complete-data least squares method is applied to the complete 
rows of the matrix of the factors (X ) by simply ignoring the rows of X  
corresponding to missing yj. The second option starts by imputing (filling- 
in) the missing values to restore the balance of the design and then proceed 
with the standard analysis. The first attempt to obtain imputed values for 
missing data was made by Allan and Wishart (1930). Three years later,
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Yates (1933) devised a least squares approach that enhances the analysis 
of replicated experiments when field results are incomplete. The method 
usually requires adjusting the degrees of freedom used in obtaining residual 
mean square error. Specifically, the imputed values are chosen in such a 
way that the standard residual sum of squares is minimized with respect to 
missing values. To illustrate the method, suppose that m of the n intended 

observations are missing. Without loss of generality, we take these to be the 
last m components of the observation vector y, which now become unknown, 
Uj,U2, . . .  ,um. Thus we may write

( 1.1)

where z((n — m )xl) contains the actually observed values of y and u(mxl) 
the unknown observations. In effect, we are presented with a fresh set of 
unknowns to estimate, in addition to the parameters of the model. To esti­
mate the value of u we apply the LS method to minimize the sum of squared 

residuals given by

s = (x- xej'te -  xe). (i.2)

S must now be minimized not only for variations in 0  but also for variations 
of u. Partitioning X  into (x2,x u)' conformably with the partition y =  (z,u)', 

we have

S =  (z -  x20 )'(z -  x20 )  +  (u -  xu0 )'(u -  xu0 ). (1.3)

Since only the second of the two non-negative terms of (1.3) depends on u, 

we reduce it to zero by putting
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U =  Xu©; (1.4)

thus S at (1.3) is reduced to its first term, which may then be minimized 
w.r.t. 0 .

From (1.2) an estimate 0 (u ) of 0  is obtained as

0 (u ) =  (X 'X ) - 1(X 'y) =  ( X 'X ) - '(X U  +  X^g), (1.5)

and using this in conjunction with (1.4), we have

y =  ?„© (y). (1-6)

Expression (1.6) states that each missing observation is to be equated to its 
estimated expectation in the original LS analysis. However, the degrees of 
freedom for the residual sum of squares must obviously be reduced, since we 

now have only (n — m) observations.
The literature provides ample discussion of the various strategies for 

deeding with the problem in designed experiments, e.g., Bartlett (1937), 
Tocher (1952), Dodge (1985) and Alvo and Cabilio, (1991, 1995).

1,1,2 MISSING VALUES IN SAMPLE SURVEYS

Nonresponse in Survey samples is a phenomena that occurs when a re­
spondent, for some reasons, refuses to answer some or all the questions of a 
survey. We can distinguish three categories of nonresponse. These include 
noncoverage, complete nonresponse, and item nonresponse. Noncoverage 
refers to the failure of the experimenter to include some units of a survey 
population in the sampling frame. Complete nonresponse is the case where 
a unit in the frame refuses to participate in the survey. Item nonresponse 
occurs when a respondent does not give answers to some of the survey ques­
tions. Details of the types of nonresponse and their remedies are discussed

4



by Kish (1965) and Cochran (1977). Of these three categories of nonresponse 
only item nonresponse will provide usable data for analysis.

To illustrate the problem created by the presence of nonresponse in 
sample surveys, we start by considering the complete-data randomization 
inference where

i- Units be selected by probability sampling where the sampling distribu­
tion is determined before the actual sample selection, and

ii- Each unit has a probability (strictly greater than zero) of being selected 
in the sample.

Let X  = (Xjj), i =  1 ,2 ,...,N ; j =  1 ,2 ,. . . ,k  where k variables are 
measured on the i-th unit. Suppose inferences are required for the population 
of N units. For the i-th unit, define the sample indicator function

f  1, if unit ‘i’ is included in the sample;
I. =  I t . (1-7)1. 0 , otherwise,

and

I = ( l ! .......I n ) ', (1-8)

then the sampling distribution for a SRS of size n can be defined, before any 

x value is selected, by

S i l l  A =  "5

otherwise.
(1.9)

where (^ ) is the number of ways n units can be chosen from the population, 

and,

7Tj =  Pr(I, =  1) > 0, for all i. ( 1.10)
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Then the objective of randomization inference is to estimate population pa­
rameters, such as the population mean X, by sample functions such as the 
sample mean x. This is based on the distribution of the sample quantities in 
repeated sampling from the distribution of I, f(I).

The fundamental property of the randomization approach, a known 

probability distribution governing which values are observed and which are 
not, is lost when some of the selected units refuse to respond. Suppose that 
n units are selected by SRS and let

f 1, if x; is selected in the sample and responds; 

10, otherwise,
(1.11)

and

R =  (R1, . . . , R n )#. ( 1.12)

Then the values of X are observed iff Rj =  Ij =  1. Thus, in the presence of 
nonresponse, it turns out to be impossible to define a statistic that is a func­
tion o f the recorded values and is unbiased estimate of the population quan­
tity with respect to the distribution of I. It follows that the complete-data 
randomization approach, outlined above is no longer valid in the presence of 

nonresponse.
The literature provides three main methods of solutions. The first is 

the quasi-randomization approach where a distribution for R is assumed. 
This is a direct extension of the randomization inference discussed above. 
The second method of solution is the model-based ML approach to survey 
nonresponse. Here, some modeling assumptions are made about the nonre­

sponding portion of the population (e.g., the means of X  in the responding 
and nonresponding units are equal). Details of this approach are given in
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Little and Rubin (1987). For a thorough discussion of the survey nonresponse 
from both randomization and modeling perspectives, see Madow et cd (1983), 
volume II. The third strategy is the multiple imputation technique which will 
be discussed in chapter II. A comprehensive discussion of the latter strategy 
is given by Rubin (1987). Other references include Efron (1994), Fay (1996) 
Shao and Sitter (1996) and Cook (1997).

1.1.3 MISSING VALUES IN MULTIVARIATE ANALYSIS

Many multivariate analysis techniques assume that one starts with an 
array of numbers Xjj representing the values of the j-th variable in the i-th 
observation. This will be for j  =  1,2 , . . . ,  k and i =  1 ,2 ,. . . ,  N if we have N 
observations and k variables. From these raw data one then forms a square 
matrix (a;j) of sum of squares and products defined by

aij = ] T x irxrj (1.13)
r

or more usually, by

ay =  5 Z (Xir ~ **)(xd ~ xj)> (114)
r

where

*i = E xii/N. (MS)
i

One then can proceed to a multiple regression analysis or any of the more 
specialized analyses such as principal component analysis, discriminant anal­

ysis, factor analysis, or interdependence analysis.

Problems arise when there are missing entries in the original data matrix; 

that is, if individual variables are missing in some observations. In particular,
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the existence of missing values in multivariate contexts, where more than one 
variable have missing values, creates more difficulties. The degree of difficulty 
depends on many factors that include the proportion of missing values, their 
pattern (distribution) among variables and the independence of the missing 
values of one variable from those of other variables including the variable 
itself.

Since most of the multivariate statistical analyses are based on an initial 
reduction of the data to the sample mean vector and sample covariance ma­
trix of the variables, the question of how to estimate these quantities from 
incomplete multivariate data is therefore an important one. The available 
literature suggests various strategies for dealing with this problem. One such 
strategy is to drop from analysis all units with missing values and to base 
the analysis on the completely recorded units. Obviously, this strategy is 
only valid under the assumption that the missing values are missing at ran­
dom. An alternative approach is to impute (fill-in) the missing values and 
then proceed with the analysis using both the observed and imputed data. 
A third approach is to obtain the estimates of the population parameters 
from the incomplete data by maximizing the likelihood function under cer­
tain modeling assumptions. In chapter II we shall discuss, in some detail, the 
various strategies for handling missing values in multivariate data analysis.

We conclude this overview by contrasting the problem of missing data 
in multivariate analysis and its counterparts in sample surveys and designed 
experiments. The following are some of the major differences:

1- Since in designed experiments the levels of the factors in an experiment 
are fixed by the experimenter, the missing values, if they occur, are 
more likely to be in the response variable T , than in the factors, X. 
Thus they are mostly univariate in nature. Moreover, the estimation of

8
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missing values is only needed for the restoration of the balance of the 
design. No extra information is contributed by the imputed values.

2- In sample surveys, though the missing data is multivariate in nature 
(occurring in more than one variable), yet the method of data collec­
tion plays an important role in guiding the analysis. For example in 
the randomization inference the population values are treated as fixed 
quantities and inferences are based on the distribution that determines 
the sample selection.

3- In multivariate analysis the MLE of the parameters from incomplete data 
(discussed in chapter II) are obtained by specifying a probability distri­
bution for the incomplete data and the missingness mechanism. The 
method of sample selection enters the analysis only indirectly through 
its influence on the choice of the distribution.

4- In sample surveys the population of interest is explicitly finite, thus the 
estimates are often finite population quantities, e.g., population means 
or totals. In multivariate analysis it is the estimation of population 
parameters which is of primary interest. Often inferences about param­
eters differ from inferences about finite-population quantities by finite- 
population correction factors.

As mentioned earlier, in this thesis we shall be concerned with the problem 
of missing values in multivariate data analysis. Therefore, in the next section 

we give a brief literature review of the subject.

L2 BRIEF LITERATURE REVIEW

While the widespread occurrence of incomplete data may be regarded as 
a “necessary evil” realistically associated with data collection, statisticians 
have responded to this challenge by developing methods which are suitable 

for the statistical analysis with missing data. In a broad sense, the studies
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mentioned in this literature review are grouped according to their underlying 
methods of analysis; that is as to whether they are using deletion, imputation 
or maximum likelihood techniques. Further classifications within each group 
are based on the nature o f the missingness mechanism.

Afifi and Elashoif (1966), Kim and Curry (1977) and Bello (1992) are 
some of the studies that give surveys of the literature on multivariate statis­
tical analysis with missing data.

Afifi and Elashoff (1966) provide a survey of methods dealing with miss­
ing observations in a regression context. The focus is on the method of least 
squares and the method o f maximum likelihood. The underlying model is

y = v +  X 0 +  e,

where y, v, and e are n-dimensional column vectors, X  is an nxp design 
matrix, and (5 is a p-dimensional column vector.

The vector v has identical elements each equal to py — /xi/3i — . . .  — /ip/3p. 
The random variables have means 0, common variances er2, and
are mutually independent of X. Further, it is assumed that all the parameters 

are estimable.

A variant of least squares in which imputed values for the missing values 

are used is then discussed.

In a series of subsequent papers Afifi and Elashoff (1967, 1969a, 1969b) 
compared the efficiency and sampling properties of various simple estimators 
in simple linear regression with missing values. Toutenburg et al (1995) dealt 
with the problem of missing values in regression analysis with nonstochastic 
regressor matrix. The mixed regression framework was the central method 
of the paper. Recently, Rao and Toutenburg (1995, chapter 8) gave a good

10



coverage of methods that deal with the problem of missing data in regression 
contexts.

The use of the estimating equations method in regression analysis with 
missing values has recently been considered by many scholars, e.g., Robins 
and Rotnitzky (1995), Robins et al (1995) and Zhao et al (1996).

Liu (1996) considered the Bayesian estimation of multivariate linear re­
gression with missing data using the multivariate t-distribution. A mono­
tone data augmentation algorithm for posterior simulation of the parameters 
and missing data imputation was presented. He considered the case of fully 
observed predictor variables and possibly missing values from outcome vari­
ables. Other studies in this area include Garrett (1996) and Jones (1996).

Kim and Curry (1977) reviewed the literature up to 1977. They also 
introduced a method for testing whether the missing observations are missing 

at random or not.

Buck (1960) devised a method for imputing missing values in multi­
variate data. The method is based on regression techniques. An interesting 
property of the method is that it is a combination of deletion and imputation 

strategies.

Dear (1959) developed a method for imputing multivariate missing val­

ues using principal component analysis.

Haitovsky (1968) compared the efficiency of complete-case analysis and 
available-case analysis. Using Monte Carlo simulations, various patterns of 
missing values were artificially created. The author then compared the biases 
of the two procedures in estimating regression coefficients. His conclusion is 
that the complete-case analysis is relatively better than available-case anal­

ysis.

11



Jackson (1968) and Chan and Dunn (1972) dealt with the problem of 
missing values in discriminant analysis. Jackson (1968) seems to be the first 
author to signal out the inappropriateness of the missing at random (MAR) 
assumption in her studies, and hence the need for developing more realis­
tic assumptions for the missingness mechanism. Chan and Dunn (1972), in 
a simulation study, compared the performance of various imputation tech­
niques and deletion strategies in linear discriminant analysis. The objective 
was to determine which method gives minimum probabilities of misclassifi- 
cation.

Bello (1992), in a simulation study, compared the performance of five 
single (deterministic) imputation techniques in regression and discriminant 
analyses. One of his conclusions is that none of the considered methods is 
the best overall in all circumstances.

Rubin (1978) developed the multiple (stochastic) imputation technique 
which is a powerful method specially in sample surveys. Application of mul­
tiple imputation techniques to incomplete multivariate normal data has been 
considered by Rubin and Schafer (1990). Brownstone (1991) considered the 
application of multiple imputations in linear regression models. A compre­
hensive study of multiple imputation techniques is given by Rubin (1987).

A common property of imputation techniques is that they impute the 
missing values first and then estimate the population parameters from the 
completed data. They also assume that the missing observations are missing 
at random (MAR). However, Greenlees et al (1982) use the stochastic cen­
soring approach to impute non-randomly missing values. TYoxel et al (1997), 
considered a method of weighted estimating equations for dealing with non- 
random missingness in regression analysis. The weights were taken to be 

equal to the inverse probability of being observed. Comparisons between

12



the weighted method and the unweighted (complete-case) analysis were per­
formed. The weighted method was found to give asymptotically unbiased 
estimates of the regression coefficients when the missingness probabilities 
depend only on the covariates.

Estimation of population parameters from incomplete data under the 
multivariate normality assumptions has been considered by many authors. 
Wilks (1932), and Rao (1952, pp. 161-165) have considered the estimation 
of the parameters of the bivariate normal distribution. Matthai (1951) con­
sidered the general multivariate normal population but gave results for the 
trivariate case. The obtained solutions in the above studies were not ex­
plicit. Edgett (1956) considered the trivariate normal population where only 
one variable is subject to missingness. However, he arrived at an explicit 
form of solution for the maximum likelihood equations. Anderson (1957) 
considered the same problem and showed that the methods of Lord (1955) 
and Edgett (1956) can be obtained using a factorization approach. Other 
studies in this area are given by Hocking and Smith (1968), Hartley and 
Hocking (1971), Orchard and Woodbury (1972) and Beale and Little (1975).

Dempster, Laird and Rubin (1977) formalized the ideas of Orchard and 
Woodbury (1972) and Beale and Little (1975) in what is now known as the 

EM algorithm.

In all the above mentioned ML-based studies, the assumption about the 
process causing missing data seems to be that each value in the data set is 
equally likely to be missing. However, Nordheim (1978, 1984) dealt with the 
problem of estimating the population proportion from categorical data with 

non-random missingness.

The statistical literature also discusses missing data that arise intention­
ally (not by accident, but by design), e.g., Trawinski and Bargmann (1964)
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and Hocking and Oxspring (1971).

Unlike the imputation methods, we note that the maximum likelihood 
approach is concerned with the estimation of the parameters and not the 
missing observation itself. It is worth noting that Little and Rubin (1983) 
have suggested a method for the joint estimation of the parameters and miss­
ing observations by maximizing the complete-data likelihood. However, the 
method has no or very little practical significance due to so many limitations. 
Details of the method and these limitations are also given in Little and Rubin 
(1987, chapter 5).

L3 MECHANISMS THAT LEAD TO MISSING DATA

A common practice in data analysis involves making structured and dis­
tributional assumptions about the data at hand at the outset of statistical 
analysis. When the data matrix is incomplete, further assumptions will be 
required: one for the missing values mechanism and the other for the distri­

bution of incomplete data.

Basically, there are two possible mechanisms that can lead to missing 
values, namely, missing at random (MAR) or missing completely at random 

(MCAR).

Let Y  =  (Y0bs, Ymis) where Y0bs denotes the observed values and Ymi» 
denotes the missing values. If f(Y  | 0 )  =  f(Y0bs, Ym;s | 0 )  denotes the joint 
probability density function of Y aba and Y m ia , then the marginal density of 

Yobs is given by

f(Y0bs | 0 ) =  J f(Yob„  Ymis)dYmig, (1.16)
Ymi.

and the likelihood function of 0  based on Y0ba is

14



L(Yob.,e),xf(Y<,i1,,e). (1.17)

More generally, we can include in the model the distribution of a variable 
indicating whether each component of Y is observed or missing. For example, 
suppose Y  =  (yij), an nxk matrix of n observations measured for k variables, 
define the indicator R =  (R;j) such that

{1, if yij is observed; 
0, if ŷ j is missing.

(1.18)

The model treats R  as a random variable and specifies the joint distribution 

of R  and Y  as:

f(Y , R  | 0 , * )  =  f(Y  | 0 ) .f (R  | Y , * ) ,  (1-19)

where, f(R  | Y ,^ ) denotes the distribution for the missing-data mechanism. 

The distribution of the actual data (Y0bs,R-) is obtained as follows:

f(Yoh8,R ,© ,* )  =  J f(Yobs,Yml8,©).f(R| Yob8,Ymi8,* )d Y mis, (1.20)

and the likelihood of © and ^ is

L(Yobs,R ,©, ¥) oc f(Yobs, R ,© ,* ). (1.21)

Then Rubin (1976) defines the missing data to be missing at random (MAR)

•f,

f(R I Yobs, Yrais,* )  =  f(R  | Yobs, »k), (1.22)
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and missing completely at random (MCAR) if,

f(R| Yob8,Y raia,¥ ) =  f (R ,# ) . (1.23)

A direct consequence of the MAR assumption is that the inference for 0  
can be based on (1.17) rather than (1.21), i.e., the missing data mechanism 
is ignorable in that the resulting likelihoods given by (1.17) and (1.21) are 
proportional.

In statistical analysis with missing data, the definition of the missing­
ness mechanism by the simple dichotomy (random versus non-random) is 
not sufficient. Knowledge of the nature of the random missingness (MAR or 
MCAR) is a key element in choosing an appropriate analysis (Rubin, 1976; 
Little and Rubin, 1987; and Bello, 1992). For example the deletion-pairwise 
strategy requires the strong MCAR assumption while the model-based ML 
approach is valid under the weak MAR assumption. This point will be dis­
cussed further in chapter II.

Unfortunately, in practice, the question of missing data mechanism is 
rarely answered carefully, in such cases an assumption is being made that the 
mechanism is ignorable, i.e., MAR or MCAR. Such an assumption, if proved 
incorrect, may have serious implications for the type of method adopted for 
analysis and subsequently on the final conclusions.

We should note that the methods of analyzing incomplete data are heav­
ily dependent on the assumptions of MAR and MCAR for the missingness 

mechanism. Questions that arise are:

i- What models of missingness and methods of analysis are to be adopted

for the analysis of non-randomly missing data?

ii- A more complicated case may arise if the missingness mechanism is not
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the same for all incomplete data, i.e., a mixture of MAR and/or MCAR, 
and non-random missingness. The literature seems to be rare in such 
aspects.

IA  TESTS FOR MISSING VALUES MECHANISMS

There are many approaches for testing the missing values assumptions 
MAR and MCAR. Commonly used methods are:

1- Examination of missingness pattern:

By the pattern of missing data we mean the frequency distribution of 
different categories of missingness such as missing only on X,-, missing on 
both X{  and Xj, and so on. For example, in an income survey, it could hap­
pen that high income earners exhibit a similar pattern of missing variables 
and low income earners another pattern of missing variables. The system­
atic difference among income earners, as may be revealed by the pattern of 
missing values, may be a pointer to a non-missing-at-random mechanism.

2- Kim and Curry’s (1977) approach:

This method is suggested for testing for MAR assumption. The idea 
is to consider the (k +  2) patterns of missing data where k is the number 
of variables with a substantial number of missing values. The patterns to 

consider are:

i- (3°, (t =  1, 2, . . .  ,k) which denotes the number of cases for which variable 

i is missing,

ii- flk+i which denotes the number of cases with missing values on two or 
more variables, and

iii- P°k+2 which denotes the number of cases with complete variables.

Then the expected frequencies of the (k +  2) patterns of missing values, under 

the assumption of MAR, are defined as follows
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(1.24)
k

Pi=n{<li n  p>)»
•*j=i

fc Jt

« + i - » ( i - n  « ) - £ # >  i1-25)
i= i i= i

k
« +2 =  » ( I I P i ) '  (126)

i=i

where g* and pi denote the proportion of missing and non-missing cases 
on variable i respectively, and n is the sample size of the data matrix. 
Significant difference between the observed /3f and the expected /3f, (i =  
1, 2, . . . ,  k -f 2) frequencies, evaluated by the ordinary x2(k +  1)> W'H indicate 
non-randomness.

3- Frane’s (1978) approach:

This is the first approach suggested for testing MCAR assumption. The 

method consists of the following steps:
i- Pick the variable that is closest to being missing for half of the cases.

ii- Divide all cases into two groups on the basis of whether the chosen 
variable is observed or missing for the cases.

iii- Then perform t-tests on the two groups formed in (ii) above.

4- Ratio of determinants method:

By MCAR assumption, there is no difference between cases with com­
plete variables and cases with partially observed variables. It therefore fol­

lows that the quantity

(1.27)
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must be equal to or near unity, for MAR or MCAR assumption to hold. Here, 
Sp denotes the sample covariance matrix of the incomplete data computed 
by all-available data method, and, Sc denotes the same matrix computed by 
the case-wise-deletion method. If A is sufficiently greater than unity, MCAR 

assumption is not appropriate.

5- The approach of Little (1988):

Let

J =  the number of unique patterns of missing-values, 

rrij =  the number of cases with missing-values pattern j, (j  =  1 ,2 , . . . ,  J), 

and,

Xobs,i =  the vector of values of observed variables in case i.

It follows that,

m>
=  (1.28)

»=i
is the mean vector of observed variables for pattern j ,  then Little (1988) 

proposes the statistic

J
d2 =  ̂  rn j(X 0bs,j ~ Pob.,j)£oi0tj(X oh,,j — fi0b»,j) > (1.29)

j' = i

where

= ( ^ r r )  W  (>M>

and fi'obsj and t 0bs,j are respectively the mean vector and covariance matrix

of the observed variables in pattern j .
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Asymptotically (as the sample size becomes very large), ct2 follows y2 
distribution with ~  P) degrees of freedom with pj being the number
of observed variables for cases in the j-th missing-values pattern and p is the 
total number of variables. MCAR assumption is rejected for large values 
of dr. Evidently, cP tests for systematic differences among all patterns of 
missing values.

Unfortunately, no single approach is completely adequate on its own. 
Perhaps a combination of two or more approaches may prove useful in en­
hancing the credibility of a final decision about the missingness mechanism. 
Rubin (1978) noted that the success of any of the above methods in reveal­
ing the randomness nature of missing data depends on the experience with, 
and historical knowledge of, the data. After all, the reason for missing data 
within a defined experiment may vary from one individual to another, as is 
often found in surveys where respondents are presumed to have answered 
questionnaires independently. Since no one can possibly ferret out the rea­
son why a respondent has refused to supply information to certain variables, 
the tests for missing-data mechanisms discussed above should be seen as a 
complementary means of getting an overall picture of randomness and not 

as an absolute criterion.

L5 OBJECTIVES OF THE STUDY

This thesis is concerned with the study of imputation techniques in 
multivariate analysis to achieve the following objectives.

1- To extend the method of Buck (1960) to the case of units with more 

than one missing value.

2- To prove that the conditioning of Buck’s method calculations upon the 
complete vector observations is valid under the missing completely at
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random (MCAR) assumption for the missing observations.
3- To set connections between imputation techniques and maximum likeli­

hood methods of estimation from incomplete data.
4- To develop some models that take account of the non-random nature of 

the missingness mechanism.

U> SUMMARY OF WORK DONE IN THIS THESIS

The focus of this thesis is to re-examine the method of Buck (1960) for 
estimating the covariance matrix of any k-variate population in the presence 
of missing values. A fundamental property of the method is that it combines 
two different strategies for handling missing data, that is, deletion strategy 
and imputation techniques. It is therefore a good representative of the two 
strategies.

To achieve the above mentioned objectives of the study, our approach is 
based on both theoretical investigations and numerical validation. The the­
oretical investigations concentrate on the study of the statistical properties 
of the post-imputation covariance matrix. These include the biasedness and 
the statistical consistency. Multivariate regression and multivariate analysis 
of variance (MANOVA) are the theoretical tools used throughout the thesis. 
As for the numerical validations we have considered some data collected by 
Bumpus (1898). Considerations that led to the adoption of Bumpus data for 
numerical illustrations, rather than other recent data sets, include the fact 
that it has a reasonable number of variables and cases. The more recent data 
that exist tend to have relatively small number of variables and cases. For 
this then Bumpus data was deemed to be more suitable for considering the 
various patterns of missingness required for numerical illustrations. The data 
consists of 49 samples of birds on which eight morphological measurements 
on each bird were taken. The data we have used are for five variables as 
shown in Manly (1986).

Throughout the thesis numerical illustrations and validation of the ob­
tained theoretical results are given as subsections in their respective chapters. 
These are obtained by considering seven patterns of missingness from the
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data of Bumpus (1898). The specific computations required for imputation 
of the missing values of each pattern, Bumpus (1898) data, and the data of 
the seven patterns of missingness are given in the appendix. The data are 
analyzed using SPSS and STATGRAPHICS statistical computer softwares.

We have started our study by giving an overview of the problem of miss* 
ing data in three important areas of statistics. These are: Sample Surveys, 
Designs of Experiments and Multivariate Analysis. Contrasts and compar­
isons between the problems created by the presence of missing data in these 
three areas have been considered.

We have then discussed various strategies for handling the problem of 
missing data in multivariate analysis. These strategies are; the deletion- 
pairwise strategy, imputation strategy and model-based strategy.

In the imputation strategy we have re-examined the method of Buck 
(1960) in some detail to allow for alternatives, modifications and extensions. 
The results are as follows:

For some patterns of missingness, Buck’s method makes maximum use 
of the available information.

A simplified procedure for the estimation of the bias of the variances of 
the observed and imputed data has been developed. Unlike Buck’s procedure, 
the simplified procedure does not require the computation of the inverse of 
the covariance matrix. Apart from its relative ease of computation, the 
developed procedure has the advantage of giving a functional relationship 
between the relative bias and the coefficient of determination. The statistical 
consistency of the estimate is also highlighted.

We have also investigated the biasedness in the covariance matrix of the 
observed and imputed data in the case of units with more than one missing 
value. The conclusion arrived at is that both the variances and covariances 
are biased. The bias of the covariances is found to be a function of the 
sample covariance of the residuals of the multivariate regression. The bias 
of the variances is shown to be inversely proportional to the coefficient of 
determination. These results are shown to be a general case of which Buck’s
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(1960) results for the case of units with one missing value are a special case. 
The statistical consistency of the estimates is also discussed.

The problems caused by imputation via Buck’s method in estimating 
the coefficient of determination, the t-statistic for testing the significance 
of the regression coefficients and the standard errors of the regression coef­
ficients are studied. The conclusion arrived at is that the imputed values 
create serious biases in these estimates. It is therefore recommended that 
the presence of imputed values as well as the method of imputation must be 
clearly documented.

For the case of the model-based strategy we have studied, in detail, the 
generalizations of Anderson’s (1957) factorization method to the multivariate 
normal distribution with one variable subject to missingness. We have also 
studied the generalization of Anderson’s method to the case of units with 
more than one missing value. These generalizations are later used to obtain 
some equivalence relations between imputation techniques and ML methods 
of estimation from incomplete data.

In order to set connections between the various strategies for handling 
the problem of missing data, we have shown that the factorization method 
of Anderson (1957) is equivalent to the special case of Buck’s method where 
units have one missing value subject to one variable. A necessary condi­
tion for this equivalence is the normality assumption. We have also shown 
that this equivalence of the two methods does not hold for the case of units 
with more than one missing value. It is also shown that, under normality 
assumptions, the EM algorithm is equivalent to an iterated version of Buck’s 
method.

Finally we have made an attempt to lay a foundation for extending 
Buck’s method to handle non-randomly missing data. With that in mind, 
we have reviewed Nordheim’s work of 1978 and 1984 on the estimation of the 
population proportions from categorical data with non-random missingness. 
We have then extended this work by considering the case of non-random 
misclassification.
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CHAPTER II

STRATEGIES FOR HANDLING MISSING VALUES IN 
MULTIVARIATE DATA ANALYSIS

2A INTRODUCTION

Unfortunately, despite great efforts by statisticians to solve the problem 
of missing data, there is yet no universal solution. This is mainly due to 
the fact that the choice of appropriate missing values strategy and its work­
ability depends to a great extent on the nature of the data missing and the 

statistical analysis required. The most crucial question is: when and under 
which conditions can one safely consider a missing data problem to be triv­
ial?. Obviously, the smaller the proportion of missing values; the larger the 
sample size; and the more random the missing values, the less complicated 
the missing data problems.

The choice of one missing-value strategy rather than another depends 
on many factors that include: the number of variables under consideration, 
the number of cases (units) with missing values, the interdependence between 
variables, the nature of the missingness mechanism, and whether the required 
statistical analysis involves recourse to the data after extracting summary 

statistics from them or not.

In this chapter we shall review more technically the procedures for han­
dling missing values in multivariate analysis. For each strategy we highlight 
the conditions and assumptions that validate its use. More importantly, we 
shall emphasize the statistical properties of the resulting estimates. This is 
particularly important since the wide spread o f statistical computer packages 
have led to the blind adoption of missing-values strategies without knowing 

their theoretical background.
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We present the strategies for handling missing data problem in multi­
variate analysis under three main headings: deletion-pairwise strategy, im­
putation strategy, and model-based ML approach.

22  DELETION-PAIRWISE STRATEGY

The basic idea of this approach is to estimate the population param­
eters (not the missing values) from the available information ignoring the 
missing values. Rubin (1976) showed that the application of this approach 
is only valid under the restrictive strong MCAR assumption for the miss­
ingness mechanism. Generally, if the sample size is large, as is often the 
case in sample surveys and the proportion of missing values is relatively 
small, probably the first options to consider for handling missing data is the 
deletion-pairwise strategy (also referred to as historical strategy). These are: 
case-wise-deletion method, variable-wise-deletion method, and all-available- 

data method.

2.2.1 CASE-WISE-DELETION METHOD

Consider the data matrix X = (x jj), where xtJ- is the value of the j-th 
variable for observation i, i =  1 ,2 ,. . . ,n ;  j  =  1 ,2 ,...,fe . Rearrange X  in 
such a way that the first m rows of X  represent the cases for which all 
variables are recorded (complete cases) and the next (n — m) rows represent 

the cases with missing values, i.e.,

'Xu
X21 Xl2

X22 ... Xlk'
... X2k

x = Xml Xm2
?

?

• • • xmk 
?

-Xni ? ? ••• xnk.
where, ? denotes a missing value. Then, analyses using the case-wise-deletion
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method (also called list-wise or complete-case analysis) confine the calcula­
tion of summary statistics to cases where all variables are present, ignoring 
all cases with one or more missing variables.

Clearly this method allows for the use of the complete data statistical 
analyses without modification. Also it allows for comparability of univariate 
statistics, since these are obtained on the same sample base. The disadvan­

tage of this method is that it sacrifices information , since each unit with at 
least one missing value is discarded from the analysis. To illustrate the point, 
assume that k=10 variables and that each variable in each case is observed 
or missing independently according to a Bernoulli process with probability 
of missingness equals to 0.1. Then the probability that case i is complete 
is .910 =  0.35. That is, 65% of the cases will be deleted and only 35% of 
the observed data will be retained for the analysis. Similarly, for k=20, only 
about 12% of the data will be retained. Thus the consequent reduction in 
sample size may be serious, particularly if k is large. Moreover, we note that 
this method may break down altogether, when, for example, every case has 

at least one missing variable in it.

A crucial concern is whether or not the selection of complete cases leads 
to biases in sample estimates. Under the MCAR assumption, the complete 
cases are effectively a random sub-sample of the original cases, and thus dis­
carding data in the incomplete cases does not bias estimates. However, in 
many real life situations the incomplete portion of the data differs systemat­
ically from the complete portion. For instance, in medical follow-up studies 
those individuals who missed the follow-up are often different from those who 
attended. In this case complete-case analysis is seriously biased and invalid 
since the MCAR assumption is violated. Generally, the nature of bias de­
pends on the missingness mechanism that leads to the specific selection of
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the complete-cases and the type of the required analysis.

To illustrate this point, let, k=2 denote the number of variables where 
Y\ =age and Y2=income are two variables measured in a survey. Suppose 
that either Yj or Y2 may be missing such that

Pr(yii missing, yi2 present | ytl, yi2) =  <foi{yu) (2.2)

and

Pr(y«i present, yi2 missing | yn , yi2) =  <fr0(y,2) (2.3)

hence,

Pr(yn present,yi2 present | y .i,y i2) =  1 -  <£oi(y»2) -  <Aio(y«2), (2.4)

where, <j>ox and </>10 are functions of y{2 but not yn- Hence, according to 
(1.22), Yi is missing at random (MAR) but Y2 is not.

Further, assume that the forms of 0oi and <fiJ0 are such that high- and 
low-income cases are more likely to be incomplete than those for middle- 
income individuals. Then marginal distributions of income and age based on 
a casewise-deletion method are severely biased towards the middle-income 
earners. Also this knowledge of missingness process indicates that the esti­
mation of the linear regression of Y2 on Y\ based on the complete cases is 
subject to bias since Y2 is non-randomly missing. However, the linear re­
gression of Y\ on Y2, is not subject to selection bias, since the selection is a 
function of the independent variable Y2 and not the dependent variable Yj. 
Hence, analyses based on the deletion-pairwise strategy are quite sensitive 
to the MCAR assumption for the missingness mechanism. A strategy for 
adjusting for the bias in the selection of the complete cases is to assign them
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case weights for use in subsequent analyses. Details of this is given by Little 
and Rubin (1987, chapter 4).

2.2.2 VARIABLE-WISE-DELETION METHOD

Here, all variables with missing values in (2.1) above are discarded from 
the data. This method may be reasonable to adopt if missing values are 
confined to a few number o f variables. The application of this method seems 
to be very rare. Its most popular application is found in Brothwell and 
Krzanowski (1974). This method of analysis can be very useful for some 
specific statistical analyses. For example, in regression analysis if a fully 
observed dependent variable is highly correlated with a partially observed 
variable, this method can help in eliminating the collinearity problem. How­
ever, in analyses that require a fixed number of variables measured on all 
cases in the population, the use of this method is not possible. For exam­
ple, in discriminant analysis, the construction of Fisher’s linear discriminant 
function using variable-wise-deletion method is impossible. This is because 
the method might retain g,- variables in the i-th population and qj in the j-th 
population, hence a discriminant function will be impossible.

2.2.3 ALL-AVAILABLE-DATA METHOD

The essential idea of this method is as follows: The covariance (or corre­
lation) between any two variables in (2.1) above is computed from as many 
cases as have values for both variables. This implies that cases with missing 
values on either (or both) variables are excluded from the computations. In 
particular, the pairwise covariances between the j-th and k-th variables are 

obtained as:

= nuk) n  ~ ~ (2-5)
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where, n (-,fc) is the number of cases with both Xj and observed and the 
means Xj, x* and the summation in (2.5) are calculated over those
cases.

Let 8}j- and skk denote sample variances of Xj and x̂  from available cases. 

Combining these with s]kk yields the following estimate of correlations:

r j k  ~
»jksjk (2.6)

The problem with (2.6) is that the estimated correlations can lie outside the 
range (-1,1). This difficulty is avoided by computing pairwise correlations -  
where variances are estimated from the same sample base as the covariances- 
as follows:

rjk = r j k  ~ (2.7)

The most serious problem of this approach is that it can yield covari­
ance and correlation matrices which are non-positive definite (has negative 
eigenvalues). To illustrate the point, consider the following hypothetical case 
on three variables each with 8 recorded observations and 4 missing values 

denoted by *?’ as follows:

X ! 1 2 3 4 1 2 3 4 ? ? ? ?

X2 1 2 3 4  ? ? ? ?  1 2 3 4

X 3 ? ? ? ?  1 2 3 4  4 3 2  1.

Expression (2.7) yields r\\ =  1, r}j =  1, =  -1 . These estimates are

clearly unsatisfactory, since

Corr(xi,x2) =  Corr(xi,x3) => Corr(x2,X3) =  1, not - 1 .  (2.8)
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In the same way, covariance matrices based on (2.5) are not necessarily pos­
itive definite.

The problem of non-positive definite (NPD) matrices in all-available-case

gested remedies are given by Dong (1985); and Knol and Ten Berge (1989).
Bello (1992) suggested the following method for handling an NPD matrix 

(correlation or covariance):

Let Ax >  A2 Ap be the eigenvalues of any symmetric pxp matrix and
S is a correlation or covariance matrix. Typically, if S is an NPD matrix, 
some A,- will be negative. Denote the non-positive eigenvalues by A“  and the 
positive eigenvalues by . Then,

1- Choose a minimum acceptable eigenvalue as S =  mm,- | A“ |,

analysis is a major impediment to the use of the method since many statisti­
cal analyses, including multiple regression require positive definite matrices. 
Details of the problem of non-positive definite matrices as well as some sug­

(i =  1,...,<7),<? < p.

2- Construct a modified eigenvalue AJ as follows:

(2.9)

where, rj is the number of eigenvalues that lies in (0,5) range and e is the 

number of negative eigenvalues.
3- And the modified matrix is

p

i=i
which is always positive definite and non-singular. Here, 7 ’̂s are the eigen­

vectors associated with A,- of the NPD matrix S.
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All-available-data estimates such as those given by (2.5)-(2.7) try to 
improve on the complete-case analysis by incorporating, in the analysis, 
some of the partially observed data. Thus one might expect the resulting 
estimates to be better than those obtained via casewise and variable-wise- 
deletion methods. Kim and Curry (1977) supported this conclusion in a sim­
ulation study under MCAR assumption and modest correlations. However, 
Haitovsky (1968), also in a simulation study had indicated the superiority of 
the complete-case analysis when the correlations are large.

In conclusion, we note that the problem with the use of casewise-deletion 
method is the considerable loss of data. On the other hand the use of all- 
available data method yields inconsistent covariance and correlation matrices 
in a multivariate context. More importantly, both methods do not address 
the problem of missing data itself. Thus it does not allow the data to be 
fully used for explanatory purposes. To this end, a more powerful strategy 
which overcomes the pitfalls of the previous strategy is needed. This involves 
estimating the missing values themselves via the imputation strategy.

£3  IMPUTATION STRATEGY

This is an approach which tries to overcome the limitations of the dele­
tion strategy. The basic idea of this approach is to estimate in the first step 
the missing values (not parameters) and then proceed to the estimation of 
the parameters. To have complete data sets is sometimes impossible due to 
cost or time constraints. Thus it would be economical and time saving to 
impute (fill-in) the missing observations. The advantages of this strategy 

include:
1- The parameter estimation is more efficient since a greater amount of the 

data is restored for the analysis.

2- It allows the use of the data for explanatory purposes.
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The main drawback o f this approach is that it requires iterative nu­
merical solutions, that makes it out-of-reach to most data analyst. This is 
because most of the imputation methods are not programmed in the existing 
statistical computer packages, e.g., SAS, SPSS, B M D P, ...etc.

The area of experimental designs had witnessed the discovery of the 
problem of missing data. Allan and Wishart (1930) seem to be the first to 
have used the idea of analyzing the experiment by estimating the missing 
values. They used a procedure of fitting constants to estimate the missing 
values. Yates (1933) is the first statistician who used the least squares method 
to estimate the missing values. The basic idea of Yates’s method is that 
the residual sum of squares is to be minimized with respect to both the 
regression coefficients and the missing values. This approach was extended 
to the problem of missing data in multivariate analysis by treating the missing 

values as parameters. Let

L(Yoba | Ymit,6) oc /(Y o6a,Ymi> | 9), (2.11)

be a function of (9, Y mis) for fixed Yobs, under MAR assumption. An estimate 
of 9 can be obtained by maximizing (2.11) over both 9 and Ym;s. The problem 
of this approach is that the number of parameters increases with the number 
of missing observations. Details of this approach and its limitations are given 

by Little and Rubin (1983).
To date, there is a wide variety of imputation techniques which could 

possibly be categorized as STOCHASTIC or DETERMINISTIC.
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2.3.1 SINGLE IMPUTATION TECHNIQUES

Deterministic imputation techniques are usually referred to as single im­
putation techniques. This is because it imputes a single value for each missing 
observation. The most popular deterministic techniques include: Imputing 
unconditional means, Imputing conditional means (Buck’6 method), Dear’s 
Principal Component Method (DPC), General Iterative Principal Compo­

nent Method (GIPC) and the Singular Value Decomposition Method (SVD).

2.3.1.1 UNCONDITIONAL IMPUTATION

This is the first imputation method to appear in the statistical literature. 
It is also referred to as the mean substitution method (MSM). The originator 
of this method is not known, but it is often attributed to Wilks. The basic 
idea involves replacing the missing values in a particular variable by the mean 
of the available data on the variable. Although many authors have adopted 
this method in their works, apart from Wilks (1932), there seems to be no 
serious investigation into the statistical properties of the method.

In this section we shall try to study the biasedness in the variance- 
covariance matrix obtained from the data completed via the MSM method.

Let Xj and Sjj be the mean and variance of the j-th variable after im­
puting the missing observations using the MSM method. Similarly, let x* 
and s*jj be the All-available-data estimate of the mean and variance of the 

j-th variable. Then we have the following results:

Lemma 2.1

Using MSM, the estimated post-imputation mean of the j-th variable is 
equal to the same estimate obtained via all-available-data method, i.e.,
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Proof

If the j-th variable is recorded for out of n observations, then the 
average of the observed and imputed values is

where

x)" -  „(>) (2.13)
n(i)

is the All-available-data estimate of the mean. Substituting (2.13) in (2.12), 
we have

Note that the above lemma says: The estimated mean vector via the uncon­

data method. However, for the covariance matrix this is not the case as is 

shown by the following theorem:

Theorem 2.1

Under MCAR assumption for the missing values, the variances and co- 
variances obtained via the MSM method are biased.

Proof

The All-available-data estimate of the variance of the j-th variable is

(2.14)

ditional imputation method is the same as the one obtained via All-available-

(2.15)

34



<;N'V£»,s
N * ' « o e ,

And the variance of the j-th variable after imputing the missing values 
using the MSM method is

S j j  =

(since from (2.14), Xj =  Xj)

8”  =  ~ T 1 ~ )2 +  H  (xu ~ *7)2
( n » >  n-nU)

(since $^n_ no)(x« ~ x f)2 =  0 due to imputation).

Hence

( n » >  - 1 ) . .  
”  (n — 1) "

(2.16)

which implies that the sample variance from the filled-in data underestimates 
the variance by a factor (n^) — l)/(n  — 1).

Similarly, for the covariances we have,

>ik =  nuk) i ]  { £  ^  )(x*  -  * * ) }  (2-17>

which is the All-available-data estimate of the covariance of the j-th and k-th 

variables, where x* and x£ are the all-available-data estimates of the means.
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is the number of cases with both and x^ observed. And the same 
estimate from the data imputed via the MSM method is

Sjk =  ~ T f  { X ^ x« “  xj)(Xik “  Xk)|

= ^  j ] D Xii -  *?)(** - Xw)|

n — 1 - * ) ( * - * )  +  Y  ( x y -x / ) ( x iW- x i )
n(^) n—n(Jk)

=  {  Y (x« “  * P ( X*  - * * ) }

(since ^ n-nCi*)(xg ~  * f)(xik -  x£) =  0 due to imputation)

Sjk =
-  1 

n — 1 >jk (2.18)
which implies that the sample covariance from the filled-in data underesti­

mates the covariance by a factor (n^*) — l ) /(n  — 1).

Thus the method underestimates both the variances and covariances. 
The resulting estimate of the j-th variable’s variance needs to be corrected 
for this bias by multiplying by the factor (n — l ) / ( n ^  — 1). Similarly the 
estimated covariance of the j-th and k-th variables is to be multiplied by the 

factor (n — l) /(n ^ fĉ — 1).

The main criticism of this method is that it does not make use of the 
intercorrelation that often exists among multiple variables in obtaining the 
imputed values. Consideration of this has led statisticians to think of condi­

tional imputation.
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2.3.1.2 CONDITIONAL IMPUTATION: BUCK’S METHOD

Buck (1960) appears to be the first author to give a comprehensive 
regression method that estimates the missing values and adjusts for the re­
sulting bias of the estimated parameters. Since then the method has been 
widely used by scholars dealing with the problem of missing data in multivari­
ate context. An interesting property of the method is that it is a combination 
of deletion and imputation strategies. Buck starts by using the complete ob­
servations to estimate the means of all variables, and also the covariance 
matrix. These values can then be used to estimate any missing value Xjj as 
linear functions of the variables that are known for this observation. If we 
then substitute the estimates for the unknown variables, we can build up the 
means vector and covariance matrix for the completed data.

Buck’s method is a useful improvement over the estimators found by 
unconditional imputation. However, the covariance matrix calculated by the 
method provides a biased estimate of the values that they would have taken 
if none of the data have been missing. Buck’s method therefore estimates 

this bias, and adjusts for it.

We have in this work given special attention to the method of Buck as a 
pioneering method in the area that combines both deletion and imputation 
strategies. In the next two chapters we shall introduce the method in some 
detail and give some contributions in some of its aspects.

2.3.1.3 DEAR’S PRINCIPAL COMPONENT (DPC1 METHOD

Dear (1959) developed a method for estimating multivariate missing 
values using principal component analysis. He obtained the first principal 
component from the nc-complete cases of the sample (i.e, X c). The method 

can be described in the following steps
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1- Calculate the sample covariance matrix, 5  =  (nc -  1)- 1XJ.XC. Note 
that the principal components which are based on sample covariance 
and correlation matrices will produce different results for the same data 
matrix. To avoid this, Dear (1959) standardized the elements of X c to 

Z c, where Zjk =  (xjk — xw)/v^wk. Thus S is now the correlation matrix 
obtained from Z c.

2- Calculate the largest eigenvalue of S, Ax =  max* (A*), and its associated 

eigenvector t/xk,(k  =

3- Let the first principal component for the i-th case be

p
7< ~  ^  * =  1 ,2 ,.. .,nc (2.19)

fc=i

so that the missing values in the i-th case are to be replaced by the 
nearest point on the first principal component as follows:

f Zik, if X;t is observed, 
if xik is missing. (2.20)

4- De-standardize Zc to X c.

2.3.1.4 GENERAL ITERATIVE PRINCIPAL COMPONENT (GIPCl 

METHOD

We can note that Dear’s principal component method, discussed above 
may collapse altogether if all cases have missing values in it. On the other 
hand, the method will result in poor estimate of S if the number of complete 
cases is relatively small. To avoid these difficulties an iterative principal 

component method is suggested as follows:

1- Use the all-available-data method of section 2.2.3 to calculate S. In case 
it is non-positive definite, modify it using the procedure given in the
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same section. Alternatively, use the unconditional imputation method 
after adjusting for bias as discussed in section 2.3.1.1, and calculate S.

2- Construct the first principal component from S and estimate the missing 
values with (2.20) above.

3- Recalculate S from the imputed data matrix and repeat 2 above.

4- Iterate between 3 and 2 until successive imputed values do not change 
significantly according to a certain convergence criteria.

2.3.1.5 SINGULAR VALUE DECOMPOSITION 1SVD1 METHOD

The singular value decomposition method is a technique by which an 
arbitrary real (nxp) matrix X , of rank k, can be expressed as the sum of k 
matrices of rank one. Good (1969) discussed the use of the method in least 
squares and principal component analysis.

Krzanowski (1987, 1988) was the first author to suggest using the meth­
od to impute missing values in multivariate analysis. Suppose that p variables 
X i , . . . ,x p are observed on each of n individuals (n > p), and the resultant 
values are displayed in an (nxp) data matrix X . Then the singular value 

decomposition of X  is defined by

X  =  U D V ' (2.21)

where U 'U  =  Ip, V 'V  =  I„, and D =  diag(dl5. . . ,  dp) with dx > . . .  > dp > 

0.
If the (i j)-th elements of the matrices X  and U are denoted by Xjj and 

Uy, respectively, decomposition (2.21) has its elementwise representation

p
Xy =  uitdtvtj. (2.22)

t=i
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Now assume that xjj is missing. Denote by X (“ *) and X*- -̂  the resulting 
matrices after deleting the i-th row and j-th column of X respectively. Then 
from (2.21), the singular value decompositions of the (n-l)xp matrix X*- '* 
and the nx(p-l) matrix X*~J) can be written as,

X (_<) =  U D V '  with U =  (u,t) ,V  =  (v ,t), and D = diag(d1, . . . , d p),
(2.23)

and

X (_i) =  UDV' with U =  (ust),V  =  (v,t), and D = diagfcU,. . .  ,dp).
(2.24)

An estimate of the missing value Xy is obtained by combining (2.23) and

(2.24), that is

t=i
For more than one missing value, the method starts with any initial imputed 
values and then uses (2.25) to update them. The process is then iterated 

until stability is achieved.

2.3.1.6 ON THE PERFORMANCE OF DETERMINISTIC 

IMPUTATION TECHNIQUES

Bello (1992), on the basis of a simulation study compared the perfor­
mance of some of the above methods as applied to discriminant and re­
gression analyses. The study concentrated on five deterministic imputation 
techniques: Mean Substitution Method (MSM), EM algorithm (EM), Dear’s 
Principal Component Method (DPCM), General Iterative Principal Compo­
nent Method (GIPCM) and Singular Value Decomposition Method (SVDM).
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It is worthnoting that Bello’s study considered the EM algorithm as an im­
putation technique and not ML method of estimation from incomplete data. 
This can be justified by the fact that Bello’s objective was to estimate the 
missing observations and not the population parameters.

100 observations were generated from a five-variate normal distribution 
with a fixed mean vector of zeros and covariance matrix, £  =  (pij) (t , j  = 
l , . . . ,p )  using NAG subroutines G05EAF and G05EZF. k(%) of the (nxp) 
data matrix was randomly deleted, with MAR mechanism. Each of the 
above mentioned five imputation techniques was then applied to the resulting 
incomplete data. Some of the results obtained are:

1- Although no single imputation technique is the best overall in all circum­
stances, MSM and DPCM behave erratically when the intercorrelation 
among the variables is moderate or high. They performed worse than 
the iterative imputation techniques (SVD and GIPC) which, under this 
condition, are equally efficient.

2- For the estimation of mean vector, results indicated that there is little 
or no evidence of superiority of one imputation technique over another. 

They are all virtually equivalent.

3- For mixture of continuous and categorical variables, DPC, GIPC and 
SVD methods can still be achieved straightforwardly. The EM algo­
rithm can still be used for this context, but unfortunately, this may 
involve quite a large number of parameters estimates and formidable 

computations.

4- The misclasification errors of the imputed data in linear, quadratic and 
kernel discriminant functions decrease with increasing sample size and 
decreasing proportion of missing values. This result was found to be 
true for the five imputation techniques considered in the study.
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5- There is insufficient evidence to discredit the use of the EM algorithm 
when the data markedly deviate from normality assumptions.

2.3.2 MULTIPLE IMPUTATION

The theory underlying multiple (stochastic) imputation was first pro­
posed in Rubin (1978), although the idea appears in Rubin (1977). The 
idea is to impute several times for each respondent, each imputation being 
a random draw (with replacement) from the set of respondents yt using a 
specified probability sampling model. To illustrate the main idea, suppose 
we want to estimate Y, the mean of a variable Y in a finite population of size 

N. Let y ,,i =  1, . . . ,  n be a SRS of size n from the population Yj, i =  1, . . . ,  N. 
Suppose now that because of nonresponse only m out of n values of y; are 
observed. Then, using multiple imputation we impute I times for each of the 
n — m missing values to form I complete-data sets. From these I complete- 
data sets we calculate I complete-data statistics. Denote the post-imputation 
sample means by y#1, . . .  ,y w and the sample variances by V .x ,. . . ,  V*/. 

With I imputations from the SRS model, the 95% interval for Y will be

y * ± 2 (W  +  V */n )1/2, (2.26)

where y A, V* and W are defined by employing the multiple imputation infer­
ence. Thus the center of the interval is the average of the I centers,

y .  = £ > . , / / ,  (2-27)
1

and the variance defining the width of the 95% interval is the average variance 
within the imputations plus the variance across imputations of the I centers; 
the average variance within the imputations is

(2.28)
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and the variance across imputations of the centers is

I
W =  £ ( y . i - y . ) 7 ( I - l ) -  (2-29)

1

Then Herzog and Rubin (1983) showed that using multiple imputation (out­
lined above) rather than single imputation reduces the estimated variance of 
Y (over repeated sampling and imputation procedures). This is because the 
mean of a multiple imputation interval has less variability than the mean of a 
single imputation interval. More importantly, they showed that the underes­
timation of the width of the 95% interval of Y when using single imputation 
is more serious than when using multiple imputation.

It is worth mentioning that multiple imputations are particularly useful 
in sample surveys and censuses where standard complete-data analyses are 
difficult to modify in the presence of nonresponse (Rubin, 1996). However, 
the principle of multiple imputation has been applied to multivariate analysis 

by Rubin and Schafer (1990) and Brownstone (1991).

2A MODEL-BASED ESTIMATION OF MISSING VALUES: MAXIMUM 

LIKELIHOOD APPROACH

The theory of ML estimation of the population parameters is clear in 
most of its aspects. Specifically, if f(x,0) is the joint p.d.f from which a 
sample of size n is generated, then the likelihood function is any function of 
9 proportional to the joint p.d.f with a factor which is independent of 0; i.e.,

n
Z (x ,0) =  H / ( * , * )  =  / ( * ,* )  (2-30)

»=1

where
i- L(x, 9) is differentiable and bounded above

43



ii- The sample values Xj ~  N(/i,<r2)
iii- Xi’s are iid random variables.

Then the ML estimate of 9 is obtained by maximizing L(x,0) or the loglikeli- 
hood function ((x, 0) with respect to the elements of 9. For the complete-data 
analysis, interval estimation is based upon the large sample property

( 9 - 0 ) ~  N(0,C )

where C is the covariance matrix for (9 — 9) such that

(2.31)

C  =  [£ { / ( «  | * )}]-* , (2.32)

and

1(9 | x) =
—52IogL

d92
(2.33)

is the observed information.
The basic idea of the ML estimation for incomplete data is the same as 

that of the complete-data case. The likelihood for the parameters based on 
the incomplete data is derived and ML estimates are found by solving the 
likelihood equation. The main difficulties however, are:

1- Asymptotic standard errors obtained from the information matrix given 
by (2.33) above are somewhat questionable. This is because the observed 
data, in the presence o f missing values, do not generally constitute an iid 
sample. Thus simple results based on (2.31) above that imply the large 
sample normality of the likelihood function do not immediately apply.

2- Complications arise from dealing with the missing data mechanism 
(MDM). Specifically, Rubin (1976) showed that ML estimation for in­
complete data requires the weak (i.e, MAR) assumption discussed in
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chapter I. The practical significance of this assumption is that it al­
lows the ignorability of the distribution of the missingness mechanism 
(R). To illustrate this point consider a simple univariate incomplete ex­
ponential sample of size n where yj, i =  are observed and
yi, i =  m + l , . . . , n  are missing. Then the joint density of the n expo­

nential random variables is given by

f ( y \ 6 ) = 9  " exp - ( £  * /# ) , i — 1.2....... n (2.34)

from which

/(yob. I 0) =  e m exp (2.35)

and the likelihood function ignoring the missing data mechanism is given by

L{6 | yQb») oc f(y0b. | 0) =  0 m exp - £ > / « ) (2.36)

Now, to incorporate the missing data mechanism, let

f 1, for i =  1, 2, . . . , m  
\ 0, for i =  m +  1, . . .  ,n

(2.37)

Further assume each unit is observed with probability ip, then the distribution 

of the MDM is given by

m  I y.V) =  (2-38)

which is MAR since it is independent of ymi..

Then the joint distribution of R and y can be written as
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/(R ,y  |0,v>) =  f ( y  I ^)f(R I y>VO
(2.39)

= e~njpm(l -  VOn~mexp

Thus the distribution of the actual observed data consisting of the variables 

(yob*,R) is obtained from (2.39) as

/(y o u , R 1 0,rP) =  f (R  I y0b„ VO f ŷ°bs I 6)
y m il

=  ^™(1 - -  $ > / « )
(2.40)

Thus incorporating the distribution of the MDM, the likelihood function is 

given by

L(0,xl> I ycb.,R ) a  / ( y 0bs,R  |

= V>m(l — ip)n~rn0~m exp -  X > i / « )
(2.41)

Now, the ML estimate 0 of 6 obtained from (2.36), which ignores the distri­
bution of the MDM is 0 =  yj/m, which is the same estimate obtained by 
maximizing (2.41) which incorporates the MDM. This is because the MAR 
assumption given by (2.38) has the effect of making (2.36) and (2.41) pro­
portional (differing by a constant -  rpn~Tn)) which is independent of
6. Thus the ignorability of the MDM is a direct consequence of the MAR 

assumption.

However, complications arise if the MAR assumption given by (2.38) is 
violated. To fix ideas let the incomplete data be created by censoring at
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some known censoring point c, so that only values less than c are recorded. 

Then

/(R  | %,<!•) =  J | f(Ri I yi-VO (2.42)
i=l

where

/  1, if ( R i  =  1 and y< < c) or (R , =  0 and y, > c);
/(R i =  i  _ ..L 0, otherwise.

Hence the joint density of the actual observed data f(y0b«, R) >s given by
m

/(y ob .,R | «) =  I I / ( y i ' Ri l « )
t=l
m

=n/<*> n  f(R ie>
«=1 i=m+l
m n

= n  I y.) n  Pr(yi > c)
»=1 

=  0~m exp

i= m + l
m

exp[—(n — m)c/9]-  £ ( * / » )  
t

since for the exponential distribution Pr(y, > c) =  exp c d̂ and f(Rj | yi) =  1 

from (2.43).

/(yob., R I #) =  # " ” exp j - f > i ) - ( n - m ) c j /0

(2.44)

from which a ML estimate of 6 is obtained as

0 =  ^ ( y i / m )  +  [(n -  m)c]/m (2.45)
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which is different from the one obtained from (2.36) by ignoring the distri­
bution of the MDM. This is because the distribution of the MDM given by 
(2.43) is no longer an MAR, hence nonignorable. Note that the last term 
of (2.45) reflects the effect of the non-random missingness on the estimated 
parameter. Also note that in the above censoring illustration the MDM is 
nonignorable but known. A more serious complication arises when the MDM 
is nonignorable but ip is unknown.

It is interesting to note that the MAR assumption in the ML estima­
tion of missing data plays a similar role to that of the MCAR assumption 
in deletion-pairwise strategy. In the former, MAR justifies the ignorability 
of the MDM, whereas in the latter MCAR justifies the discarding of the 
incomplete cases.

2.4.1 FACTORIZATION METHOD

The factorization method in the model-based approach to missing data 
problem can best be described by reviewing three pioneering papers in the 
area. These are by Lord (1955), Edgett (1956) and Anderson (1957). Lord 
(1955) considered three variables u, v and w from the trivariate normal dis­
tribution. In the available data, variable w is completely recorded; variables 
u and v are never jointly recorded. He obtained ML estimates for eight of 
the nine parameters since there is no information for the estimation of the 
partial correlation between u and v. Edgett (1956) considered the same case 
where only u or v is subject to missingness. He found the ML solutions in 

an explicit form.

Anderson (1957) was the first author to consider the factorization meth­
od. He considered the bivariate normal distribution and made generalizations 
to the trivariate and multivariate normal cases. To describe the method 
suppose N observations on x and y have a bivariate normal distribution
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with density f(x,y | ;p). Further assume that x is completely
observed while x and y are jointly observed on n observations; that is, N — n 
observations on y are missing. The data for this pattern of missingness are

Xl 9 • • • f Xn , Xq +  I y  • • • ,  XN , 

Vt V  ?  ?  ^

Then the key idea of the factorization method is 
and y can be factorized into two terms as

that the joint density of x

/ ( x , y  | =  f(* 1 Mx,**)f(y 1v +  0,xX,eT2) (2.46)

where
V  =  f l y  -  f i y x H x , (2.47)

P y x  =  /< ?x 1 (2.48)

<J2  = ( T y ( l  -  p ) 2 . (2.49)

Then the likelihood function can be written as:

L(x,y | Mx?My; 1  ; p) — Y i n * , *  I Mx>My! ax> ip)

N
• n  iMx.^x)
«s=n+l

W n
- n / < *  i ^ ^ x 2) n f^ i v + / 3 y x x ^ 2).

»=1 i—1
(2.50)

The ML estimates of fix,<rl,v,/3yX and <r2 are those values that maximize 
(2.50). A thorough discussion of the factorization method and its relation to 

imputation techniques (Buck’s method) is given in chapter V.
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Next, the generalization of the method to the trivariate normal case is 
considered. In Edgett’s case there are three variables w, z, and y. The data 

are

Wj , • • • , W„,  w n + i , . .  •, WN,

X j  ) • • • i xn, X n+ j  , . . . , X N ,
V i  V ?  ?  ^

The only difference between the previous case and this one is that x has been 
replaced by the pair (x,w). Since the same approach is used, we will only 
give the possible factorization of the likelihood function, which is,

n
L ( W , X , y  | H x , / i y ; C * , (Ty ; p )  =  / ( w i7Xi , y i  I / i w 7 /*X7 P-y \ a v> ° y> P '" * i  P w y i

i
N

P x y )  • J"J / ( wn x i I /^wj Pxi  a x'i Pwx) 
»=n+l 

N
—  | |  / ( w i 7 X ; , / i w , / i x , <7W 7 ) Pwx )

»=1
n

• n / ( ^ v ^ . x w i + ^ x i, 4 . x) (2-51)
i=1

In Lord’s case we have

X l  , . . • , X n 7 X n +  1 , • • • 7 X N  7

yi,...,yn, ?>•••» •>
n  O: • 7 Zn4-i , . . . ,  Zn •

The likelihood function can be factorized as follows:
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£(x,y  | /*x,/^;<7*,<^;pxy) =  J ] 7 ( Xi’ yi \ ^ ^ al^al^Pxy)
i= 1 
N

• n  /(**»*!
i=n+l

JV n

= n /(*
*~1 i=l
N

• n  /(* i l v«+A**i*^?ji )* (2-52)
»=n+l

Generalizations to the multivariate normal case are possible. Unfortunately, 
the method is not general in the sense that it cannot handle all patterns of 
multivariate missing data. For instance the method is inapplicable to the 
following set of data

X | , ? ,  ? ,  X „ , X n _f_ j , .  . . , X n  j

yi . ?»? ty» .yn+i»V • •

since the bivariate density of x and y cannot be written as the product of 
the marginal density of x and the conditional density of y given x. Anderson 
does not elaborate on situations that cannot be handled by his method. He 
only gave an example of two patterns of missingness that can be handled by 
the method. Conditions that lead to the collapse of the method were later 
given by Rubin (1976) in a theorem that shall be given later in this section.

A common property of the methods of Lord, Edgett and the factorization 
method of Anderson is that they completely ignore the missingness mecha­
nism. This property can only be explained by an implicit MAR assumption 
for the missing data. Otherwise the distribution of the MDM should be in­
corporated in the likelihood function as outlined in section 2.4. In fact, the
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implicit M AR/M CAR assumptions in the field of statistical analysis with 
missing data is a common property shared by almost all studies conducted 
before 1976. It is Rubin (1976) who gave a precise mathematical treatment 
of the MDM that makes it an important component in the analysis. On the 
light of this, Rubin (1976) formalizes the theory of Anderson’s factorization 
methods and its limitations as follows:

Theorem 2.2

Let 1(0 | Y0b») be the loglikelihood function based on the incomplete 
data Y0bs under MAR assumption. Then for a variety of models and incom­
plete data problems, an alternative parameterization (f> =  <t>(0), where <f> is 
a one-one monotone function of 9, can be found such that the loglikelihood 
decomposes into components

t(4> I Yob,) =  h(<f>i | Yob,) +  W 2 I Yobs) +  . . .  + W j I Yobs) (2.53) 

where
1- tj>\, 02, • • • are distinct parameters, in the sense that the joint pa­

rameter space of <f> =  (</>u<f>2 , '" ,4 > j)  is the product of the individual 
parameter spaces for <f>j, j  =  1 , . . . ,  J.

2- The components tj(<t>j | Y0b») correspond to loglikelihoods for complete 

data problems.

Then £(<i> | Y0bs) can be maximized by maximizing lj(<f>j \ Y„bs) separately 

for each j.
Remark

By the invariance property of the ML estimates, it follows that if 0 is 
the resulting ML estimate of <j>, hence the ML estimate of any function of (f> 

is 6 =  9(<i>). Differentiating (2.53) twice with respect to . . . ,  4>j yields

a diagonal information matrix of the form
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r n<t> 11 Yob,) 0
(2.54)m  i Y oh.)  = n<h i Y0b.),.

0 I (4j I Yob.)

Hence the covariance matrix C  is given by

f r x(Qx I Yob,) 0
C{6 | Yob.) = / ‘ l A  I Yob.),.

0 | Y0b«) J
(2.55)

The approximate covariance matrix of the ML estimate of a function 6 =  6{<f>) 

of 0 can be found using the formula

C (0 | Yoh.)  =  W ) C { 0  | Yob.)P #(0) (2.56)

where D is the matrix of partial derivatives of 6 with respect to 0. That is 

to say

where 9 is expressed as a column vector.
In practice the patterns of incomplete data often do not have the par­

ticular forms that allow the use of the factorization methods. Moreover, for 
some patterns of missingness a factorization may exist, but the parameters 
(f)j in the factorization may not be distinct. Consequently, maximizing the 
elements of (2.53) separately for each j does not maximize the likelihood. In 
such cases an alternative method of solution is the Expectation-Maximization 

(EM) algorithm.

(2.57)
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2.4.2 ITERATIVE METHODS: THE EM ALGORITHM

Recalling our notation of section 1.3, let

L(0 | Yob#) =  f  f(Yob#,Y mi, | 0)dYmu, (2.58)
Ymi.

be the marginal density of Y0bs under MAR assumption.
If (2.58) is differentiable and unimodal, ML estimates are obtained by 

solving the likelihood equation

(2.59)

When a closed-form solution of (2.59) cannot be found, iterative methods 
can be applied. Let 9 ^  be an initial estimate of 0, based on the completely 
recorded units. Let 0(0 be an estimate at the t-th iteration. The Newton-

Raphson algorithm is defined by

0(‘+D =  0<«> +  / - l (0<«> | Yob,)S (0(t) | Y0b»), (2-60)

where 1(6 | Y0b») is the observed information given by

1(6 | Yob,) =
d2l(6 | Yobs) 

06 06
(2.61)

If the likelihood is concave and unimodal, then the sequence of iterates 6{l) 
converges to the ML estimates 6 of 6. A variant of this procedure is the 
Method of Scoring, where the observed information in (2.60) is replaced by 

the expected information:

0<*+i) =  0(t) +  j-i(0<«>)S(0<*> | Yob,), (2-62)

where
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m  =  £ { /(#  | Yob.) ! « }  =  - /  3V(^ l̂ '“ *-) f(Ybb. I «)dYoh<. (2.63)

Both these methods involve calculating the matrix of second derivatives of 
the likelihood function. For general patterns of missingness, the entries in 
this matrix tend to be complicated functions of 6 especially when B is of high 
dimensions. As a result, the above methods might be too cumbersome for 

practical purposes.

An alternative iterative approach, which does not require the calculation 
of the second derivatives, is the Expectation-Maximization (EM) algorithm 

which is introduced below.

We start our discussion of the EM algorithm by introducing the Missing 
Information Principle of Orchard and Woodbury (1972). This is because the 
theoretical basis of the EM algorithm were first set in this earlier work of 
Orchard and Woodbury as we shall see below. The formulation given here 

appears in Beale and Little (1975).

Consider the vectors Y0bs and Ymis of random variables with a joint 
distribution depending on the vector 6 of parameters, where

Y0bs =  The complete observations and the known variables in the incom­

plete observations,
Ymi, =  The missing values in the incomplete observations.

We wish to find 0, the estimate of 6 which maximizes the likelihood function 

L(Yobs,0) ° r its log. However, 6 may not be obtained easily this way. Orchard 
and Woodbury (1972) came up with an alternative approach which is based 
on the Missing Information Principle. The central idea of this principle is to 
find the value of 6 which maximizes the expected value o /L (Y 0b»> Y mi9,0) by
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considering Y m j s  as a random variable with some known distribution. The 
appropriate formulae can be derived by imagining that the sample is repli­
cated an arbitrarily large number of times, with Yob8 taking the same value 
in all replications but with Y m i ,  having its known distribution. This idea is 
central to the Missing Information Principle which is now described.

Let / ( Ymu | Yob8;0) denote the probability density function (PDF) 
for the conditional distribution of Ymi, given Yob8 and 9, and as usual let 

/(Y mis | Yob«;0) denote ln /(Y mi8 | Yob8;0). Then

*(Ymi8, Yobs; 9) =  t (Yob8; S) +  / ( Ymi8 | Yobs; 9). (2.64)

Now take any assumed value 6a for 9. This, together with the observed value 
of Yobs, defines a distribution for Ymi8, and we can now take the expectations 
of both sides of (2.64) by integrating out with respect to Ymi8.

If the distribution of Yrais has a probability density element 
/ ( Y mi8 I Yob8;0A)dYmi8, then expectation of (2.64) becomes

J ^(Ymis, Yobs; 0)f(Ymis | Yob8; #A)dYraj8 =  J  ̂  Yob8; 0)f(Ymi8 | Yobs; #A)dYmj8

+  J ^(Ymu | Yob8;0)f(Ymi81 Yob8;0A)dYmi8 

=  /(Y ob.;0 )  +  E{*(Ymi8 | Yobs; 9) | Yobs;0A}- (2 65)

We can now find the value 9m of 9 that maximizes the left-hand side of 

(2.65). This may depend on 9a , so we can write

9m =  * (* a). (266)
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(2.66) represents a transformation from the vector 9 a to the vector 9m - We 
now define the Missing Information Principle.
The Missing Information Principle:

Estimate 6 by a fixed point of the transformation namely a value of 

9 such that
0 =  $ (0), (2.67)

which is called the “fixed point equation” .
We now apply the above theory to our problem of the multivariate nor­

mal missing data. Denote by X  the (Nxn) matrix of the nc-complete cases, 
by Pi the set of variables observed in the i-th unit, and by Pt the total set 
of variables observed, i.e., the n^-complete cases plus the observed variables 

in the i-th unit (Pi). Then in the above notation

9 =  (#x,E), 9a =  (p a , Z a), 0m  =  &(6a ) =  (p m -.'Em )-

The loglikelihood for the multivariate normal distribution is

^(X; p, E) = ^ ( x i j  - /ijK^Xik - /xk) ~ log(det E),
L i = i  j = i  k = i

where crik denotes the jk-th element of E_1. Taking expectations with 9 =  0a 

and the known variables fixed,

,  N  n n
E{t(X; n, E | PT; Ma .E a ) }  =  \ -  \ £  £  £ ] ( * « *  "  )(**** ~ Pk)

{ i=i j=i k=i

+  0jkA.Pt I '7''* ~ \ N  M d e t  E),

where
X i j A  =  E  {Xjj | Pj, f l A , E a }
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and

VjkA.Pi =cov{xi j ,x ik | Pi;/xA,S A}.

Maximizing with respect to p and E gives the analog of (2.66), i.e.,

1 N

»= 1

O-jkM =  Jj ^ 2  | ~  M;Al)(*ikA -  PI.m ) +  j ,
i=l '

for 1 <  j ,  k <  n. Now set p A =  pm  =  Pi S A =  Em =  £• The fixed point 

equations are

i tJ = £ { x g | P i;/J,E } ,  (2.68)

«  =  * £ * « ■  <2'69>
1=1

0jk =  ^  { ( * «  “  -  /**) +  ft}>  (2J °)
i=l ^

tfjfc.P* =  cov(xy,xik | Pi5/i ,S ). (2.71)

These are the formulae found by Orchard and Woodbury (1972). To find the 
maximum likelihood estimates we obtain initial estimates of p and E and 

iterate between (2.68) and (2.71) until we find no significant changes in the 
estimates between two successive iterations. At each iteration the data are 
completed by (2.68), and the means and sum of squares and products matrix 

found for the variables. This matrix is adjusted by adding (Tjk.Pi for every 
observation i to the jk-th element. This adjustment is zero unless both Xy 

and Xik are missing.
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Noting that the above process involves an expectation step and a maxi­
mization step, Dempster, Laird and Rubin (1977) proved a couple of the­
orems that justify (2.68) and called it the expectation-maximization “ EM” 
algorithm. They also discussed the application of the method to: grouped, 
censored or truncated data, finite mixture models, variance component esti­
mation, hyper-parameter estimation, iteratively reweighted least squares and 
factor analysis.

Details of the theory and application of the method are given by Hartley 
(1958), Dempster, Laird and Rubin (1977), and McLachlan and Krishnan 

(1997).

An interesting property of the EM algorithm is that it combines two 
seemingly different strategies for handling missing data, that is, imputation 
strategy and ML approach. The relationship between the EM algorithm and 
imputation techniques (Buck’s method) has been developed in chapter V.

2A  CONCLUSIONS

Three main strategies for handling missing data in multi variate analy­
sis have been discussed in this chapter; namely, deletion-pairwise strategy, 
imputation strategy, and maximum likelihood approach. Clearly, none of 
these strategies can be considered as a universal solution to the problem of 
missing data. The appropriate method of analysis depends on the specific 
situation under consideration. Buck’s method and the EM algorithm can 
be considered as combinations of the three main strategies. The former is a 
combination of deletion and imputation strategies and the latter is a combi­
nation of imputation and ML strategies. These hybrid methods have been 
specifically designed to overcome some of the limitations of the individual 

strategies.
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In the course of this thesis, special attention will be given to these hybrid 
methods. In the next two chapters a critical review of Buck’s method as well 
as some contributions shall be considered. The EM algorithm and Anderson’s 
factorization method and their relation to imputation techniques (Buck’s 

method) will be dealt with in chapter V.
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C H A PTE R  III

CRITICAL ANALYSIS OF BU C K ’S METHOD

M  INTRODUCTION

Estimation of statistical parameters from multivariate data with missing 
observations via the deletion-case-wise strategy may result in wasted infor­
mation. This is because units with incomplete data are rejected entirely as 
outlined in chapter II. This seems to be unsatisfactory especially if many 
variables are known for an incomplete unit. Also we have seen that the use 
of all-available-data method may result in inconsistencies in the covariance 
matrix. Moreover, this strategy does not address the problem of missing 
values itself in the sense that it offers no estimates for the missing values. 
Furthermore, the deletion strategies are only valid under the restrictive as­
sumption that the missing observations are missing completely at random 
(MCAR). This assumption is rarely satisfied in reality.

Maximum likelihood approach, on the other hand, seeks to estimate the 

parameters, not the missing values, under certain distribution assumptions; 

in most cases the normality assumptions.
This seems to be satisfactory for types of analyses that do not make recourse 
to the original data after estimating the parameters from them. This is 
particularly true for many multivariate statistical analyses including multiple 
regression, factor analysis, canonical correlation and discriminant analysis, 
but not explanatory data methods, e.g., construction of histograms.

Other limitations of this approach are:
i) It gives maximum likelihood estimators for certain special patterns of 

missing observations; thus the method is not very general.
ii) As the number of variables increases the maximum likelihood solution
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could become too involved for practical purposes and in most of the 
cases no explicit solutions can be found,

iii) The fundamental objection is that most multivariate data cannot be 
regarded as samples from multivariate normal distributions.

Taking into account the limitations given above, Buck (1960) developed 
a method for estimating missing values in multivariate data. An interesting 
property o f the method is that it is a combination of deletion and imputation 
strategies. It therefore allows for the estimation of both the missing values 
and the parameters. The purpose of the method as stated by the author is “ to 
give a method of estimating the variance-covariance matrix of any k-variate 
population” (Buck (1960), pp. 303, second paragraph). Thus the method 
does not make any assumptions about the distribution of the incomplete data 
nor about the missingness mechanism. The suggested method, as shown by 
the author, “gives unbiased covariances but the variances need correction for 
bias” (Buck (1960), pp. 302, first paragraph). Accordingly, he derived the 

bias and adjusted for it. 

jT2 SPECIFIC ISSUES

The method of Buck, as a pioneering work in the area of missing data 
has, however, been a subject of debate among different scholars at various 
times. The following are some of the issues that have been raised in the 

literature about the method

1- Afifi and Elashoff (1966) stated that: “Buck carries out his calculations 
conditional upon the complete vector observations. The particular rea­

sons for this conditioning are not clear” (see Afifi and Elashoff (1966), 

pp. 600, second paragraph).
2- Kim and Curry (1977) argued that: “ because his conclusion is based on 

the examination of a single data set (containing 72 cases and 4 variables
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from which he randomly deleted a few cases from each variable resulting 
in a total loss of 34 cases) and a single simulation, his conclusion should 
not be taken seriously” (see Kim and Curry (1977), pp. 222-223).

Little and Rubin (1987) stated that:

3- uThe filled-in data from Buck’s method yield reasonable estimates of 
means, particularly if the multivariate normality assumptions are plau­

sible”.

4- “ The sample covariance matrix from the filled-in data underestimates 
the sizes of the variances and covariances, . . . ”

5- 11 If we assume MCAR and ignore sampling variability of the estimates 
of p and £  based on the complete cases, then the conditional means 
imputed by Buck’s method are the best point estimates of the missing 
values in the sense of minimizing the expected squared error” .

(for 3, 4, and 5 above see Little and Rubin (1987), pp. 44-47).

Most of the above mentioned statements given by the various scholars 
were not supplemented by either rigorous theoretical proofs or repeated sim­

ulation runs that make them globally accepted.

It is our objective in this work to enter the debate about Buck’s method 
by trying to verify some of the above mentioned statements. Other results 
given by the author himself concerning the bias of the estimated parameters 

will also be examined.

To achieve this, in this chapter we introduce the method, illustrate its 
workability, and highlight the issues and reasons for disagreement. In the 
next chapter we start our investigation on some of the raised issues and give 
some contributions in some aspects of the method. Our approach will be 
based on both theoretical investigations and numerical validation.
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For the theoretical investigations, multivariate regression and multivari­
ate analysis of variance (MANOVA) are the main tools of analysis.

As for the numerical validation, we consider data collected by Bumpus 
(1898) who studied the effect of natural selection on sparrows by taking a 
sample of 21 survivors and 28 non-survivors. Eight morphological measure­
ments on each bird were taken. In our study we shall use the data for five 
of the variables given in the appendix, table A (l), which is extracted from 
Manly (1986).

3JJ BASIC IDEA OF BUCK’S METHOD

Let ( x j j ) ,  (i =  1 ,2 ,. . . ,n ;  j =  1 ,2 ,. . . ,k )  represent the sample of n 
units, on each of which it is desired to have measurements on k variables. 
The observations x  ̂ can be represented in the form of an nxk matrix, X , in 
which some of the elements are missing. Without loss of generality, assume 
that the last n -  nc units have missing entries. Thus we write

xu  x12 Xlk

X  = I* e l

xneJ+l
?

X n l  Xn2

vnekX n 

Xnck-H 
?

Xnk

(3.1)

where ? denotes a missing value, and

n = The total number of units (cases),

nc = The number of complete cases (i.e., with all variables observed). 

We can write (3.1) as

X  — (Xj , Xj, • • •, Xj,. ), (3.2)
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where

is the j-th (column) vector, for j =  1 ,2 ,. . . ,  k.

Let X (j) denote the matrix X  without the j-th column vector, i.e.,

j) =  (?1» 2̂> • • • * 1» ?j+l > • • • » Xfc )•

We should note that X  is nxk while X^j is nx(k—1).
Similarly, X (jfc) denotes the matrix X without the j-th and k-th columns.

The matrix (3.1) can also be written, in a partitioned form, as

where X c =  (xy), i =  1 , . . . , ^ ;  j =  1, — ,k is obtained from X  by consid­
ering its complete cases. And X n_ „c =  (xij), i =  ric +  1 ,.. . ,n; j =  1 , . . . ,  k 
gives the incomplete cases of X . In most cases, we assume that the columns 
of both X c and the completed (after imputation) data matrix X  are centered 

so that xj =  0 
Other notations are:

n^ =  The number of the recorded (available) observations in the 

j-th variable

nCik) =  The number of the recorded (available pairwise) observations in 

the j-th and k-th variables.

m ^ =  The number of missing observations in the j-th variable 

mUk) =  The number of missing (missing pairwise) observations in the j-th 

and k-th variables.

65



Then the problem is to devise a method for estimating the covariance matrix 
of the k-variate population on the basis of the incomplete data matrix X.

The basic idea of Buck’s method consists of estimating the missing values 
in the sample by regression techniques, based on the matrix of the complete 
cases (X c). The imputed values are then used to calculate a revised variance- 
covariance matrix. The method starts by calculating the expected values of 
xrj, for r =  1,2, by forming, for each value of j in X c, the multiple
regression of the j-th variable on the other k — 1 variables. Therefore, we 
obtain k regression equations which can be expressed in the form

■E'(Xrj) =  { x rl > x r2> • • •, Xr(j —1)> x r(j+ l)» x r(j+2)» • • • , Xrk} ,  j  l , . . . , k  (3 .3 )

where fj’s are taken to be linear functions.

Equations (3.3) are used to estimate the missing values as follows: If the 
i-th case has its j-th variable missing, we can estimate its value Xy, by using 
one of the equations (3.3) substituting Xy for xrj, i.e.,

^ ( X j j )  =  0  X'2> • • • > x i(j —1)> x i ( j+ l ) ’ X>(j+2)’  • " • > X>k}i j  l , . . . , k  (3 .4 )

The method is easily extended to the case in which the units (cases) 
have more than one missing value, as follows: If v variates are missing, then 
from X c we require to calculate the multiple regression equations for each 
missing variable on the remaining k — v other variates. If any combination 

of v variates may be missing, then,

k C - 0  ( 3 -5 )

possible regression equations have to be calculated, and a missing value is 
estimated by its expected value obtained from the correctly chosen regression

66



equation. Clearly, the method will collapse altogether if each case has a 

missing value.

Although the widespread use of personal computers and statistical pack­
ages have greatly facilitated the computation of the regression coefficients in 
Buck’s method, yet the method of Woolf will be considered, in some detail, 
in the next section. This is because most of the theoretical derivations in the 

subsequent sections are based upon this method.

3A COMPUTATION OF THE REGRESSION COEFFICIENTS:

WOOLF’S PROCEDURE

For the data matrix X, let A  be a kxk matrix that denotes the covariance 

matrix of X c, i.e.,

We can write A  as

A =

an a12 . . .  aik'

A =
a2i a22 . . .  a2k

-aki »k2 . . .  akk -

Tan
U t

s i"
C (s,j =  1

where

(3-6)

an =  V(xx)

« i  =  (ai2,ais,. -^aik)

and

C  =
a22 

- a*2 akk

(3.7)
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where A(i) is obtained from A  by deleting its first column. However, by 
symmetricity of A, this implies deleting the first row of A  also.

Then from X c, the regression coefficients of xj on X2, • • •, xk 41-6 given by

£ ' = a 'C - \  (3.8)

By writing X (1) =  (x2, x3, . . .  ,3^), of order nx(k -  1), we can estimate 
the value of x x for those cases which have xx only missing by taking

*i =  X (D&> (3‘9)

Generally, we estimate the value of Xj for those cases which have Xj only 

missing by taking

=  x (i)4-> (310)

where X(jj —- (xxtx2>• • •»?j—11 ? j+ i>?j+2>•••tJk)*
And, the regression coefficients of Xj on the remaining k-1 other variables 

are obtained from X c as

with

(3.11)

« ;  =  (aj.), s (^ j)  =  l ,2 , . . . ,k  (3.12)

and C is the covariance matrix of X (jj based on the ric complete-cases. We 
should note that we are using C =  A(j) for any j. However, it will be 
clear from the context which row and column will be deleted. We should 
also note that the application of Woolf’s method for the computation of the
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regression coefficients of xj on X<;) requires the determination of a ; and 
its corresponding C. The vector a • is obtained from the j-th column of A 
by deleting its jj-th element. The corresponding C  is obtained from A by 

deleting its j-th row and column.

3j> DETERMINATION OF BIAS IN THE VARIANCE-COVARIANCE 

MATRIX
3.5.1 THE VARIANCES

From (3.8) and (3.9) above we have,

V(x1) =  V (X (1)^ )  =  V (X (1)C - 12 l )

=  a ; C - 1V (X (1)) C - 1a 1 

=  a ,1C ~ 1C C _1o 1

=  a'1C - 1a 1. (3.13)

If we write

-i _  f cn  e'x
" U  F

(3.14)

where cn  is the first element in A  x, then since A A  '=1, it follows that

=  U  (3*15)an fti [ Cn £i
. —i c j Is. F

Hence,

and

a n cu  +  aU i -  1» 

ajCii +  Cet =  0.

(3.16)

(3.17)
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From (3.17) et =  - C  l <*iCn. Substituting this value in (3.16) we get

Cn =  (au - a i C

or

(3.18)

where Cn is the first element in A  1. 
Subsequently

V(51) =  V (x ,)-c r,1, (3.19)(3.19)

which implies that the variance of the estimated values of Xi is less than the 
variance of the actual values of Xi by the amount c f / .  This difference, in
terms of expectations, gives the biasedness of the post-imputation variance 
of Xi. Therefore, if the value of is missing for a proportion Ax of all 
units, and the predicted values are substituted and a new covariance matrix 
is calculated, then the obtained post-imputation variance ajt underestimates 
the actual variance, V ($j), by the amount Ajcfj1. Thus the post-imputation 
variance of Xj is to be corrected for bias by adding to it the amount Ax/cn.

The general correction to this bias is as follows:
If Xj is missing for a proportion Aj  of all units, then the obtained post­

imputation variance aj*j is adjusted to

ajj

where cjj is a diagonal element in A -1 and,

(3.20)

m (i) n  _  n U )

n n
is the proportion of missing values in the j-th variable,

70



where

n0) — The number o f the recorded values in variable j 

=  The number o f missing values in variable j

Remark

Note that for each Xj we have

0 < Xj < 1,

thus the amount of bias (Ajcjj1) is such that

Bias = <
r o,

i
y

> ^ icjj »

if \j =  0, 
if A, =  1, 

if 0 < Xj <  1.

Notice that Xj =  0 corresponds to the case of no missing values in Xj, and 
A j =  1 corresponds to the case where all values of xj are imputed. In other 
words, cjj1 can be viewed as the maximum amount of bias that occurs when 

all values o f xj are imputed.

3.5.2 THE COVARIANCES

To prove the unbiasedness of the covariances, Buck (1960) proceeded as 

follows: Recall that the covariance matrix of X c is given by

A =

all a12 ••• alk
®21 a22 • • • a2k

- akl ak2 akk

which can be written as
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A =  (a,j) _  fa n  « i
L a i c .

(s,j = 1, —  ,k),

where

an = V(xl)

S i  — ( a 12> a 13» • • • > a lk) — C o v ( X j  , X ( j ) ) ,  ( 3 . 2 1 )

thus a j gives the covariance of Xi and X(i) == (x2) X3 —  ’ -k) computed from 
the nc-complete cases. And

C =
a 2k

• a k2 • • • a kk -

is the covariance matrix of the complete cases of X (i) ~  (x2,x 3 • ••>Xk)> 

order (k-l)x(k-l).
We estimate the value of Xi for those cases which have x, only missing, 

by taking

*i =  x (1)£i> (3-22)

where the regression coefficients of on X (j) =  (x2, x3 . . . ,  xk) are obtained 

from X c as
£ = « ! C - ‘  (3 23)

From (3.22) and (3.23) we have

x t =  X (i)C -1 a 1. (3.24)
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from which the covariance of xx with =  (x2,x 3 . . . ,x k) is obtained as 

Cov(xj, X (1)) =  Oj C _ 1Cov(X(1))

= a;c_1c
=  QV (3.25)

Comparing (3.25) with (3.21) it follows that

Cov(x1, X (1)) =  Cov(x1,X (1)). (3.26)

That is, the expected values of the covariance elements in A are the same 

for both actual and predicted values of xi.

It is from here that Buck (1960) concluded that “ ...with, this method 
the resultant covariances are unbiased, but the variances need correction for 
bias”. As a numerical illustration of his method, Buck considered a set of 
data consisting of 72 units on which 4 variables were measured. From the 
total 288(72x4) observations, 35 observations were picked at random and 
considered as missing. It is from here that Kim and Curry (1977) concluded 
that the results of Buck should not be taken seriously since it is based on a 

single set of data.

The method of Buck has been a subject of some modifications at various 
times. Kasap (1973), in an unpublished M.Sc. thesis suggested the following 
modification: uafter substituting the estimated values for the missing observa­

tions, repeat the process until successive iterations fail to change materially. 
The values obtained at the final iteration are then taken as estimates o f the 

missing values”.

Another interesting imputation technique that looks very similar to the 
method of Buck was brought to our attention by Kasap (1973). Accord­
ing to Kasap, the method was studied in detail by Federspiel (1959) in an
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unpublished Ph.D. thesis. Obviously, the method was not meant to be Jin 
extension of Buck’s method as it was developed independently as indicated 
by the dates. However, for completeness, we present it here as a possi­
ble modification. The main idea of the method was summarized by Kasap 
(1973) as follows: “A variable for which there are missing observations is 
treated as the dependent variable for a regression analysis, using all other 
variables as independent variables with mean values substituted for missing 
observations. A new estimate o f each missing observation is calculated and 
substituted using this equation. This operation is done for each variable for 
which there are missing observations. The computation of regression equa­

tions and the substitution of new values is repeated until the coefficients for 
the regression equations in successive iterations converge. These procedures 
are known to have produced biased estimates of (3’s and its variances which 

cannot be regarded as sampling phenomena ”.

We note that this method starts with unconditional imputation and 
then proceeds as a conditional imputation method until convergence occurs. 
On the other hand Buck’s method starts with casewise-deletion method and 
proceeds as a conditional imputation method without convergence criteria.

It is clear that the modification of Kasap (1973) is an iterative Buck’s 
method, that is, the original method plus a convergence criteria. Kasap does 
not elaborate on the theoretical rationale of his modification. However, he 
compared the predictive efficiency of the original method and his modified 
version and concluded that his modified version does not improve the effi­

ciency of prediction.

74



3J> UTILIZATION OF THE AVAILABLE DATA IN BUCK’S 

METHOD

In section 3.3 we have seen that the imputation process in Buck’s method 
is based on the ric completely observed units. The partially observed units 
play no role in the estimation of the missing values, they are completely 
discarded from the analysis. This can be seen as waste of the available 
(recorded) information. In some extreme cases this might lead to the collapse 
of the method altogether. For instance, for a pattern of missingness where 
each unit has a missing value (it* =  0), the method is inapplicable. In this 
section we shall try to see how Buck’s method makes use of the available 
(recorded) observations in each variable. This will be studied by considering 
the following patterns of missingness which are seen to be exhaustive.

i- One variable is subject to missingness

ii- More than one variable are subject to missingness, but units can have 
only one missing value. For simplicity, this case will be referred to as 

“the case of units with one missing value” .
iii- Any combination of the k variables can be missing in each unit. This will 

be referred to as “the case of units with more than one missing value” .

Consider a sample X  =  (xjj), i =  1, . . .  ,n; j =  1, . . . , k of n units (cases), 
on each of which it is desired to have measurements on k variables. Assume 
that each unit can have more than one missing value, that is, case (iii) above. 

Recall our notation of section 3.3.

Then, for each j =  1, . . . ,  k we have

=  n — m^* (3.27)

Now let U(i)=  Number of units with ‘i’ missing values, i > 1.
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Then the number of units with the j-th variable observed and any combina­
tion of the remaining k — 1 variables missing is given by

Thus

n -  n̂  — ^  m(/) — ^ ( i  — l)U (l*.
tjtj i=2

(3.28)

k k—1
nc — n — + ^^(i — 1)Û '*

j = i  i=2

= n -  { £  m(<) + mw} + £ ( i  -  l)U(i) 
t*.j ‘=2

=  n «  -  £  m<<) +  £ ( »  “  (3-29)
t*i i=2

since n^ =  n — m^'.
Then for the case of one variable (the j-th variable) subject to missing­

ness we have

k k—l
Y ,  m(0 =  ]T ( i  -  l)U (i) =  0. (3.30)
l¥j >=2

Substituting (3.30) in (3.29) above we have

n<. =  n ^ .

Thus, for the case of one variable subject to missingness, Buck’s method 
makes maximum utilization of the available (recorded) observations in that 
variable. In other words, till the available observations in the j-th variable 

participate in the imputation o f the missing values.
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For the case of units with one missing value, the number of complete 
cases is obtained from (3.29) by setting (i — 1)U*'* =  0. That is,

ii* =  n^* — ^  ra(^. (3.31)
t*.j

Thus, in this case the number of complete cases is less than the available 
cases on the j-th variable by ra^ )  cases. In other words, the method
of Buck discards from the analysis m(<) available number of units on
the j-th variable. These non-missing values of the j-th variable play no role 
in the estimation of the missing values. Thus Buck’s method does not make 
full utilization of the available information. The same conclusion is also true 
for the case of units with more than one missing value as can be seen from 

(3.29) above.
The modification by Federspiel (1959), discussed in the previous section 

was actually an attempt to maximize the utilization of the available observa­

tions in Buck’s method by incorporating the (5Z^y m(/) -  XliWO ~ 1)U(,)) 
partially observed units in the imputation process. Clearly, this method is a 
good alternative for patterns of missingness where Buck’s method collapses 

when all cases (units) are partially observed.

Here, we suggest the following modification which was later found to 
have been considered by Chan and Dunn (1972) in the context of discriminant 
analysis. The idea is also to improve the utilization of the available data 
by incorporating the partially observed units in the analysis. This can be 

summarized as follows:
1- On the basis of the ^-complete units, impute the missing values for 

those units with one missing value (U(l)).

2- Use nc 4- U*1* to impute the missing values for those units with two
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missing values, and so on until the missing values for all patterns are 
imputed.

Obviously, this modification can be made iteratively by repeating the whole 
process until the imputed values in two successive iterations are not mate­
rially different. A simulation study might then help to compare the perfor­
mance of the original method and the modified version. It is worth men­
tioning that Chan and Dunn (1972) have conducted a simulation study to 
compare the performance of the above modification (without iterations) and 
the original method. Their conclusion is that there is no preference between 
the two methods in minimizing the probabilities of misclassification in dis­

criminant analysis.

37  REAL DATA ILLUSTRATIONS

Adopting the notation of section 3.4, the use of Woolf’s procedure in the 
method of Buck, and the determination of bias can be illustrated numerically 
as follows: From the data of table A (l) consider the following patterns of 
missingness (units with one missing value): Pattern (1), where 29 observa­
tions were picked at random and considered to be missing. Thus we were left 
with 20 complete samples, 6 cases with Xi missing, 7 cases with X2 missing, 
5 cases with X3 missing, 6 cases with X4 missing and 5 cases with X5 missing. 
Patterns (2), (3) and (4) were constructed respectively by randomly picking 
4, 5 and 7 observations from each variable and consider them to be missing. 
Thus the number of completely recorded units for patterns (2), (3) and (4) 

were 33, 24 and 21 respectively.
The resulting incomplete data as well as the summary statistics (means 

and covariance matrix) for the complete cases of each of the above patterns 
are given in the appendix. Also displayed in the appendix are the results 
of multiple regression analysis, required for the estimation of missing values
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in each pattern of missingness. The data are analyzed using SPSS and 

STATGRAPHICS.

For the missing data pattern (1) the regression coefficients of xi on 
X (1) =  (x2,x 3,X4,Xs) are obtained from the 20 complete cases by (3.8) as:

l ^ a i C T 1, h =  2,3 ,4 ,5

where C is the covariance matrix of X (1) =  (x2,xs,x4,x 6). 

From table A(2.2) of the appendix we have

A  =

■8.45000
4.6868
.3982
.2418
.4887

12.4500 
1.0534 .3510
.8813 .1268
.8861 .1856

.1571

.0698 .3373

Therefore

’ 12.4500 
1.0534 .3510
.8813 .1268 .1571

. .8861 .1856 .0698 .3373.

Thus, from A  we have

a'j =  (4.6868 .3982 .2418 .4887),

and

C 1

■ .15115 
-.103855 
-.675138 

.-.200218

-.103855
5.22325

-2.92833
-2.03668

-.675138
-2.72833
12.0035
.790914

-.200218- 
-2.03668 
.790914 
4.44772 .

Thus for h=2,3,4,5
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so that s
/Soi =  X i-  Y ,  A uX fc =  66.383,

h=2

which is the same result listed in table A(2.4) of the appendix obtained via 

the SPSS.

Similarly we obtain the regression coefficients of Xj on X(j),for j =  

2,3,4,5, by choosing from A the appropriate a  and C.

To obtain the amount of bias in the estimation of V(xj), using Buck’s 
procedure, we have to obtain the covariance matrix of the nc-complete cases 
and its inverse. Then the amount of bias is given by A,/cjj where Xj is the 
proportion of missing values in the j-th variable and cjj is the first element 

in A -1 , i.e.,

P hl =  a l c r 1 = (.406 -  .062 -  .961 .615),

■8.45000 “
4.6868 12.4500
.3982 1.0534 .3510
.2418 .8813 .1268 .1571

. .4887 .8861 .1856 .0698 .3373.

and its inverse is

A ' 1

.153757 
-.062419 

.951513jE7 — 02 
.147868

.-.9 4 6 3 0 4 # -0 1

.176489
-.107718 5.22384
-.735166 -2.71918 
-.161802 -2.04254

12.1457
.699908 4.50596.

Thus the amount of bias in the estimation of V (xi) is given by

=  (6/49)/.153757= .79638
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where Cn is the first element in A  x.

Similarly, the biases of the variances of all variables for the incomplete 
data patterns (2), (3) and (4) are obtained and displayed in the following 
table:

Table 3(11: BIAS OF THE VARIANCES FOR ALL PATTERNS OF 
MISSINGNESS

BIAS
xj PATTERN (1) PATTERN (2) PATTERN (3) PATTERN (4)
X l .7964 .3840 .4397 .3924
x2 .8095 .7531 .6045 1.2358
X3 .0195 .0211 .0226 .0256
x4 .01009 .0070 .0060 .0106
X6 .02265 .0537 .0508 .0532

M  CONCLUSIONS

In this chapter we have introduced the method of Buck and discussed 
the theoretical properties of the resulting estimates. The specific computa­
tions required for the application of the method have been illustrated using 
the procedure of Woolf (1951). Numerical illustrations of the method using 
Woolf’s procedure are also given. We have also reviewed some studies that 
give either similar methods or modifications to Buck’s method.

We have suggested a simple modification to Buck’s method which is later 
found to have been considered by Chan and Dunn (1972). The utilization of 
the available observations by Buck’s method is also studied. Moreover, we 
have enumerated and briefly described some of the major issues that have 

been raised in the literature about the method.

The verification of these issues of section 3.2 will be the subject matter 

of the next chapter.
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C H A P T E R  IV

SOM E C O N T R IB U T IO N S  T O  TH E M E T H O D  OF BU CK

4A INTRODUCTION

In this chapter we shall try to verify some of the unproved statements 
about the method of Buck given in chapter III. A simpler procedure for the 
determination of the biasedness in the variance-covariance matrix will also be 
derived. The developed procedure will enable us to determine the biasedness 
in the estimation of the variance of the j-th variable in the method of Buck 
with minimal computation. Apart from its relative ease of computation, 
the developed procedure has enabled us to create a functional relationship 
between the amount of bias, relative bias, and the coefficient of determination 
for each variable. Hence, the conditions under which the method of Buck 
gives better estimates (have minimum bias) can be highlighted on the basis 
of this functional relationship. Also some of the statistical properties of the 
obtained estimates will be discussed. For the covariances we shall re-examine 
the statement of Buck about its unbiasedness. The conditions under which 
the statement is true are given. A new formula for the correction of bias in 
the case of units with more than one missing value is outlined. The statistical 
consistency of the estimated covariances is also highlighted. The effect o f the 
imputed data via Buck’s method on estimating the correlation coefficient and 

the standard error of the regression coefficient are studied.

4J2 DETERMINATION OF BIAS IN THE VARIANCE-COVARIANCE 
MATRIX: UNITS WITH ONE MISSING VALUE

In this section we attempt to obtain and interpret the biasedness in the 
covariance matrix, obtained via Buck’s method, from the standpoint of re­
gression and analysis of variance techniques. The usefulness of this approach
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is that it will enable us to examine the effect of imputed values on the vari­
ance by examining its effect on the components of the variance; that is, by 
examining the sample variance of the residuals and the variance of the esti­
mated values. The case of units with more than one missing value will be 
studied separately as we shall approach it from the standpoint of multivariate 
regression and multivariate analysis of variance (MANOVA) techniques.

4.2.1 THE VARIANCES

The computation of the biasedness of the variances, as outlined in sec­
tion 3.5.1, requires the computation of c” 1, the inverse of the j-th diagonal 
element in A -1 . Specifically, we have to compute the covariance matrix of 
the nc-complete cases as well as its inverse. Then the amount of bias in the 
estimation of the variance of the j-th variable is taken as the product of the 
proportion of missing observations in the j-th variable and cjj1. However, 
the same result can be obtained, with relative ease of computation, through 

a procedure given by the following lemma.

Lemma 4.1

The inverse of the j-th diagonal element in A -1 , denoted by cjj1, is the 
sample variance of the residuals of the regression of the j-th variable on the 

remaining k—1 other variables that is,

<S‘ =  4>a

where

*iJ  =

( * j * i - g i X / ( j ) * i )

"c -  1
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Proof

Consider the regression of xx on X (i) =  (x2,...,X k ), « e-,

? i — X (i)4x>

which is based on the first nc rows of X (X). Then the total variability of the 

above model can be partitioned as

s is , =  [ £ x '„ , s ,  +  (5;x , -  £ x ' (,)* ,)]  . (4 1 )

where xxxx is the corrected total sum of squares, X (i)*i is the component 
of variance explained by the regression of xx on X (X), and (XjXj — ^ X ^ X j )  

is the residual sum of squares.

Dividing (4.1) by (ric — 1) we get

x'jXj _  4 xX (i)%l ~ ^xX (i)^i)
ric — 1 Ik — 1 nc — 1

Therefore,

(s is , — £ , x ; 1)s ,)  
- 1V (5,) = V (x ,) +  

and from (3.18) we have

a n  = < * XC  ‘ a x +  c lx

(4.2)

or

v ( * , ) = v ( s I) + c r 11

Comparing (4.2) and (4.3) it follows that

(s l I , - a x ; , , ; , )
= nc -  1

=  $11

(4.3)

(4.4)
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Hence, the amount of bias in the estimation of the variance of x t is 
actually a function of the sample variance of the residuals (based on (n̂  — 1) 
degrees of freedom) obtained from the regression of x, on X(j). Thus if jCj is 
missing for a proportion Ai of all units then the variance of the observed and 
imputed values of xx is to be corrected for bias by adding to it the amount 
A i$n . Here, note that is readily obtained from the analysis of variance 
table of the regression of the first variable on the remaining (k — 1) other 
variables by dividing the residual sum of squares by (ric — 1). Thus (4.4) 
will enable us to determine the bias without computing either the covariance 

matrix or its inverse.
Generally, the amount of bias in the estimation of the variance of Xj can 

be written as

(x-X: -  /?.X',nX:)

* * * « - * >  ’ (4 5 ) 

where X q) =  (xl5. . .  ,Xj_i,Xj+1, xj+2, . . . ,  xk) and A, is the proportion of 
missing values in the j-th variable.

Theorem 4.1

The amount of bias (Aj$ j j )  of the variance of the j-th variable in the 

method of Buck is given by

(*«)<"•» -  (4>/>)(" ) =  <4-6>

where ($ /j)*n<* and ($»)*"*  are the pre- and post-imputation sam­
ple variances of the residuals of the regression of the j-th variable on the 

remaining k—1 other variables respectively.
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Proof

Let X  =  (Xj|), (• =  1 , 2 , =  1,2,1,. . . ,k )  represent the sample of 
n units, on each of which it is desired to have measurements on k variables. 
Further assume that the j-th variable is

x ij> ( i  — 1>2 , . . . , i i c ,D c  +  1 , . . . , n ) ,

where the first Dc units on the j-th variable are observed and the next (n — n«) 
units are missing. Then using Buck’s method the (n — ii*) missing observa­
tions on the j-th variable are to be estimated from the regression equation of 

the observed values, i.e.,

xij =  X(j)/3j, X(j) = (xil,xi2*?fij-l>?ij+l> * * • >?ik)> i = (1> 2, • • •, nc). (4.7)
Using (4.7) we impute the (n -  nc) missing values on the j-th variable. Now, 
consider the regression equation of both the observed and imputed values, 

i.e.,

=  X(j)^., X(j) =  (3fi1,^ a ,x ij _ 1,x ij +1, . . . , x ik)> i =  ( l ,2 , . . . ,n ) .  (4.8) 

From (4.7), the pre-imputation sample variance of the residuals is

(* ” '  “  r*c — 1
and from (4.8) the post-imputation sample variance of the residuals is

(4.9)

( * « ) <n) =
S L , ( * u  - * u ) :

n — 1

E , =  l ( XiJ ~  * i j )2 , E " = n c-|-l(XU ~ ^ V i )2
n — 1 n -  1

e :=i (xu -  xu)2
n  -  1

(4.10)
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since $3n-nc(xiJ ~  xij)2 =  0 ^ue to imputation. This is because the imputed 
values are projected exactly on the regression line given by (4.7).
Thus

/ a  \ ( " c )  / * .  \(n) _  X ) i = l ( x U x i j ) 2 5 Z » = l ( x ij x u ) 2
{ ” } -  ne -  1 ~n — 1

=  | >  -  ^  { ^ z i  -  ;t= t)

_  » - " c  s r = i (xo -  xu)2
n  — 1 nc -  1

“  n - 1  {9 ’ j)
n — n
n -  1

£<f>. ( 4 1 1 )

It follows that if Xj is missing for =  (n —n^ )̂ of all units then the amount 
of bias in the estimation of its variance from the completed data is given by

n — n̂ * 
n — 1

4>}j- (4.12)

Note that (4.12) gives the difference between the pre- and post-imputation 
sample variances of the residuals. This difference, in terms of expectations, 
gives the bias of the post-imputation variance of the j-th variable.

Remark

Note that the only difference between this derivation and the one of Buck 
is that the adjusted sum of squares and products matrix is divided by (n — 1) 
instead of n to derive the estimated covariance matrix. For large sample sizes 
with missing observations this difference is of no consequence. However, for 
small sample sizes (n <  10) the difference becomes more significant. Also
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note that the amount of bias given by (4.12) above can be viewed as an 
estimate of the “missing” contribution of the imputed values to the sam­
ple variance of the residuals. It is worth noting that the contribution of 
the imputed values to the component of variance explained by regression is 

unaffected by imputation.

Theorem 4.2

— aij(l Rj )•>

where ajj is the variance of the j-th variable obtained from the nc com­
plete cases, and R? is the coefficient of determination of the regression equa­

tion Xj = X (j)/3., where X (j) =  (x ^ ,. . .  ,Xj(j_i),Xi(j+i)’ Si(j+2)’ • • • ’ £k)> 1 =  
1, — , n̂ .

Proof

From the regression equation

(413>

where Xy) =  (x ^ ,. . . , Xi(j_i)>Xi(j+i)>?i(j+2)>• • • >Xik)> * =  we have

Sj*>R? =  i -

Substituting the value of (x-Xj -  ^X J-jSj) from (4.5) we get

(4.14)

which implies

(nc -  l)4>jj

<b .. = X jX j( l  -  R j  )

1 ■n.
(4.15)
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We should note that x-Xj is the corrected total sum of squares of the regression 
equation given by (4.13), hence

(Sj*j/nc -  *) =  aii»

where ajj is the variance of the j-th variable obtained from the ric-complete 
cases. Therefore,

* j )  =  »ii(l -  R|)- (4.1«)

Thus, from (4.16), the correction for bias is given by

A ,* ,; =  Ai ajj( l  _  R j), (4.17)

from which the relative bias is given by

A;—  =  Aj ( l - R ? ) .  (4.18)
ajj

Note that (4.16) gives the maximum amount of bias in the estimation of 
the variance of the j-th variable as a function of two forces, namely, R? and 
the variance of the j-th variable (ajj) computed from the ric-complete cases. 
This formula plays an important role in the investigation of the missingness 
mechanism in the method of Buck which will be discussed in section 4.6. 
Moreover, (4.18) gives the relative bias in the estimation of the variance of 

the j-th variable. Specifically, formula (4.18) says:

1- For fixed A t h e  relative bias decreases as R? increases, and

2- For fixed R?, the relative bias increases as Aj increases.
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Theorem 4.3

The estimated variances via Buck’s method are inconsistent.

Proof

Since Xj — the amount of bias in the estimation of the variance of 
the j-th variable can be written as

\ =  _ __ *Vjj — Wn ]}

.’ . lim A =
n—voo

unless n̂ * =  n.
Thus the estimate of the variance given by Buck’s method is generally in­

consistent.

4.2.2 THE COVARIANCES

For this case of units with one missing value, the proof of the unbiased­
ness of the covariances was given by Buck (1960) as outlined in section 3.5.2. 
However, the biasedness of the covariances for the case of units with more 
than one missing value will be studied in section 4.4.1.

4.2.3 REAL DATA ILLUSTRATIONS

The equivalence of the results obtained via the alternative procedure 
and Buck’s procedure, for the determination of bias, and the verification of 
the fact that the relative bias is a decreasing function of R2 (for fixed A)— can 

be illustrated numerically as follows:
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To obtain the amount of bias in the estimation of V(xj), using Buck’s 
procedure, we have to obtain the covariance matrix of the nc-complete cases 
and its inverse. Then the amount of bias is given by A^cjJ1 where A, is the 
proportion of missing values in the j-th variable and c^ 1 is the inverse of the 
j-th element in A -1 . These were obtained in section 3.7 and the results were 
listed in table 3(1). However, using theorem 4.2 above, the amount of bias 
can be directly obtained using (4.17). The Bias =  Ajajj(l -  R?) where the 
quantities, required for the estimation of the bias are readily available from 
the results of the regression and analysis of variance listed in the appendix.

The biases of the variances of all variables for the incomplete data pat­
terns (1), (2), (3) and (4) are obtained and displayed in the following tables.

Table 4(1): COMPUTATION OF BIAS FOR THE MISSING DATA 

PATTERN (1)

*i aii A; Bias %Bias

Xl 8.4500 12.24% .23032 .7964 9.4%
X2 12.4500 14.29% .54486 .8095 6.5%
X3 .3510 10.20% .45431 .0195 5.6%
X4 .1571 12.24% .47568 .01009 6.4%
x5 .3373 10.20% .34182 .02265 6.7%

Table 4(21: COMPUTATION OF BIAS FOR THE MISSING DATA 

PATTERN (2)

91



Table 4(3): COMPUTATION OF BIAS FOR THE MISSING DATA 
PATTERN (3)

Table 4(41: COMPUTATION OF BIAS FOR THE MISSING DATA 
PATTERN (4)

Comparing the figures displayed in the above tables for the bias with those 
of table 3(1), it follows that our procedure gives exactly the same result 

obtained via Buck’s procedure.

From tables 4(1) through 4(4) it is clear that the % bias for fixed A;- 
(given in the last column of each table) is a decreasing function of Rj for 
all variables in all patterns of missingness. This result is particularly im­
portant for the users of the method. Since the bias is a decreasing function 
of R? then it is quite logical to impute the missing values of the j-th vari­
able from the regression of that variable only on those variables which are 
highly correlated with it. This will ensure the minimization of bias as Rj
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will be maximized. Also the volume of computation will be tremendously 
reduced since the imputation of the missing values of the j-th variable need 
not be based on the regression of the j-th variable on all the remaining k — 1 
variables, but only on a subset of it, say z where z < it — 1. The subset of 
variables which is highly correlated with the j-th variable can be determined 
from the correlation matrix of the nc-complete cases.

13  AN OVERVIEW OF MULTIVARIATE REGRESSION ANALYSIS

For the case of units with one missing value, we have seen that Buck’s 
method uses multiple regression as a tool for imputing the missing obser­
vations. In the next section we shall study some of the statistical proper­
ties of the post-imputation variance-covariance matrix for the case of units 
with more than one missing value. To achieve this, we shall view the post­
imputation covariance matrix from the standpoint of multivariate regression 
and multivariate analysis of variance (MANOVA). We shall therefore give a 
brief review of the theory of multivariate regression and MANOVA for the 

complete-data case.

Consider the model defined by

Y  =  X B  +  U (4.21)

where

Y(nxp) is an observed matrix of p response variables on each of n individuals, 

X(nxk) is a known matrix,

B(kxp) is a matrix of unknown regression parameters, and

U is a matrix of unobserved random disturbances whose rows for given X  
are uncorrelated, each with mean 0 and common covariance matrix £ .
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X represents a matrix of p “independent” variables observed on each of 
the n individuals. Usually the first column of X equals 1, namely X  =  (1, X i) 
to allow for an overall mean effect.

The columns of Y  represent “dependent” variables which are to be ex­
plained in terms of the “independent” variables given by the columns of X .

We should note that

E(yij) =  (4.22)

so that the expected value of y*j depends on the i-tli row of X  and the j- 
th column of the matrix of regression coefficients. The case of p = l, where 
there is only one dependent variable, is the familiar multiple regression model 

which we will write as

y =  X/3 + u (4.23)

In most applications U is assumed to be normally distributed, so that

U is a data matrix from Np(0, E ) (4-24)

where U is independent of X. Under the assumption of normal errors, the 

loglikelihood for the data Y  in terms of the parameters B and E is given by

/(B , E ) =  — nlog | 2ttE | ~ t r ( Y  -  X B J E '^ Y  -  X B )' (4.25) 
L «

For estimation of B to be unique we shall suppose that X has full rank p, 
so that the inverse (X 'X )-1 exists. Mardia et al (1979, pp. 158-159) proved 
that, for the loglikelihood function (4.25) the maximum likelihood estimates 

of B and E are
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B = (X 'X ) - 'X 'Y (4.26)

and

E -1 =  n-1 Y 'P Y (4.27)

where

P =  I - X ( X ,X )" 1X ' (4.28)

The multivariate analysis of variance for the multivariate regression 

model given by (4.21) can be performed by noting that

U =  Y  -  XB (4.29)

therefore

U 'U =  (Y  -  X B )'(Y  -  XB)

=  (Y  -  Y ) '(Y  -  Y )

=  Y 'Y  -  Y 'Y

which can be written as

Y 'Y  =  Y 'Y  +  U 'U  (4.30)

In other words, the total sum of squares and products (SSP) matrix Y  Y  
is partitioned into an SSP matrix Y 'Y  due to the multivariate regression 

model and an SSP matrix U'U about the regression model.
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Let

Y 'Y  =  Qt 

Y 'Y  =  Qh

U 'U  =  Qe

and assume that the values of Y  are centered so that the columns of Y  have 
zero means. Then the MANOVA table for the multivariate regression model 
given by (4.21) is given below.

Table 4(5): MANOVA TABLE FOR THE MULTIVARIATE REGRESSION 
OF Y  =  (x i,x2, . . . , x p) on X  =  (xp+i , . . . , xk)

S.V. d.f. SSP.

Reg. k - p Qt
Resid. By Subt. Qe

Total (corr.) n - 1 Qt
Note that dividing the elements of Qe by ( n - 1), its diagonal and off-diagonal 
elements give the sample variances and covariances o f the residuals of the 
elements of Y  respectively. Similarly, (n -1 ) -1 Qt gives the covariance matrix 
of the elements of Y . Also note that (n — l ) -1 Qh is the covariance matrix 

of the estimated values of Y .
Thus the multivariate linear regression and MANOVA will enable us 

to examine the expected effect of imputations on the elements of Q t by 
examining its effect on the corresponding elements of Qc and Qh-
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In the univariate regression model defined by (4.23), that is when p = l, 
we know that the squared multiple correlation coefficient R2 represents the 
proportion of variability in the dependent variable which is explained by the 

regression model, and from (4.23) and (4.30) we have

y ' y  =  y ' y  +  u 'u  (4 -3 1 )

where y is centered so that y =  0 and y'y is the component of variance 
explained by the regression model given by (4.23), thus

R ^ y 'y f y 'y ) - 1. (4.32)

Substituting the value of y'y from (4.31) in (4.32) we get

R 2 =  ( y 'y  -  u 'u ) ( y 'y ) _1 

=  1 -  u'u(y'y)-1

or
1 -  R 2 =  u ' u / ( y ' y ) .  ( 4 . 3 3 )

A similar measure for the multivariate correlation between matrices X and 

Y  in the model Y = X B + U  can be obtained as follows:

Note that

U'U =  (Y  -  X B )'(Y  -  XB)

=  Y 'Y  -  Y 'X B  -  B 'X 'Y  +  B 'X 'X B

and since B 'X 'Y  =  B 'X 'X B , it follows that

U 'U  =  Y 'Y  -  Y 'X B
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=  Y 'Y  -  Y ,X (X 'X ) - l X 'Y  

*  Y ,[ I - X ( X 'X ) - 1X ,]Y  

=  Y 'P Y . (4.34) 

Let

D =  ( Y 'Y ) " lU 'U . (4.35)

The matrix D is a generalization of 1 — R2 in the univariate case. Mardia 
et nl (1979, pp. 170-171) noted that U'U =  Y 'P Y  ranges between zero, 
when all the variation in Y  is explained by the model, and Y 'Y  at the other 

extreme, when no part of the variation in Y  is explained. Therefore

0 <  I -  D < I (4.36)

Remark

We should note that the relation given by (4.36) holds for the elements 
of the principal diagonal of I -  D. To investigate the existence of a similar 
relation amongst the off-diagonal elements of I — D we proceed as follows: 

Recall that the total variation of the multivariate regression model given 

by (4.21) has been partitioned by (4.30) as follows:

Y 'Y  =  Y 'Y  +  U 'U . (4.37)

For simplicity, assume that Y =  (x j,x 2). Then the off-diagonal element of 

(4.37) is given by

/ » /A , A/ A
X XX 2 =  xxx2 + U x u 2 . (4.38)
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Formula (4.38) partitions the total covariability of the model given by (4.21) 
into two components. The first term of the RHS of (4.38) gives the covari­
ability “explained” by the model while the second term gives the “unex­

plained” or residual covariability.
From (4.38) we can define the measure

xjx2
x;x2

Substituting XjX2 from (4.38) we get

or

X̂ X2 -  UiU2 
x 'xX2

u'lU2
xix2

(4.39)

Note that UjUa ranges between zero, when all the covariation in Y  =  (x i,x 2) 
is explained by the model, and x'xx2 at the other extreme, when no part of 

the covariation in Y  is explained. Therefore

0  <  R ? 2 <  1. ( 4 .4 0 )

Generally, for Y  =  (xj? xk), j, k =  1 , . . . , p we have

0 < R j k < l ,  j < k  =  l , . . .p .  (4.41)

Given (4.41), it follows that (4.36) can now be written as

0 < I -  D < l l \  (4 42)

where 11' is a unit matrix, i.e., 1' =  (1 1 ... 1).
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It is worth mentioning that we have sought to prove (4.42) by intu­
ition. However, further investigation on (4.42) that may lead to a rigorous 
mathematical proof is perhaps worthwhile.

COMPUTATIONAL REMARKS

We should note that Buck’s method, for the case of units with more than 
one missing value, applies the above mentioned complete-data multivariate 
regression technique to the complete-cases of the data matrix X. Missing val­
ues are then estimated by their expected values obtained from the correctly 
chosen regression equation.

It is worth mentioning that if any combination of v variables may be 
missing then the required number of regression equations in the method of 

Buck is given by

Number of regression equations — k

For the case of units with one missing value, v = l or no combination of 
more than one variable are allowed to be missing in the same unit.

Note that the required number of regression equations increases rapidly 
as k increases, e.g., for k=5; v=3 this number is 30 whereas for k=6 and v=3 

it increases to 60.

4A DETERMINATION OF BIAS IN THE VARIANCE-COVARIANCE 
MATRIX: UNITS WITH MORE THAN ONE MISSING VALUE

4.4.1 THE COVARIANCES
♦

Buck (1960) proved the biasedness of the variances and the unbiasedness 
of the covariances for the case of units with one missing value. This was shown 
in chapter III. It is our objective in this section to study the biasedness in the
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variance-covariance matrix for the case of units with more than one missing 
value.

Adopting our usual notation, let n be the total number of cases, nc the 
number of complete cases and the number of cases with both Xy and
Xik missing. Further, let ajk be the post-imputation covariance of the j-th 
and k-th variables and ajk be the same estimate based on the nc-complete 

cases.
The sample covariance of the j-th and k-th variables can be expressed, 

from the standpoint of the multivariate regression and M A NOVA as follows

*;k =  ~ ~  | ~  * u ) ( x ik ~  * ik ) +  “  xj ) ( * ik  -  xk) | ,
n 1 l i = i  i = i  J

(4.43)

where the first term of the R.H.S. is the sample covariance of the residuals of 

the multivariate regression of Xj, xk on X(jk) =  (xlt .. • , l j_ i,X j+ n • • ■ »?k-i)> 
and the second term is the component of variance explained by the regression 

of X j ,x k on X (jk). Formula (4.43) can be written as

a jk — --------- ” |  X 1 ( X U ~  X j j ) ( X j k * i k )  +  y  ] (X i j  X j j ) ( x ik X ik )

n ~  1  ̂ nc mOk)

+  X ] ( xu -  xi ) ( x<fc -  x* ) } -  (4-44)
»=1 '

The contribution of the imputed values to the component of variance ex­
plained by regression is incorporated in the last term of (4.44).

But

J ]  ( x u “  x i i ) ( x ik “  x ik )  =  0  ( 4 . 4 5 )

mW*>
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since the imputed values of the j-th and k-th variables — (xjj,x<*)—  lie ex­
actly on the regression line of Xj, xk on X(jk). In other words, the contribution 
of the m^k> imputed pairs of observations to the sample covariance of the 
residuals is effectively set to zero. Thus the residual covariance of the ob­
served and imputed values of the j-th and k-th variables is less than the same 
estimate obtained from the complete cases. To estimate this reduction we 
proceed as follows:
Let

X  = (xu) (i =  1 ,2 ,. . . ,n ; l  =  1 ,2 ,. . . ,k )

represent the sample of n units, on each of which it is desired to have mea­
surements on k variables. Further assume that the j-th and k-th variables 
are

îj>̂ ik> (i =  1 j 2 , . . . , nc,lie +  1 , . . . , n),

where the j-th and k-th variables are observed on the first nc units and 
missing on the next (n — nc) units. Then using Buck’s method the (n — nc) 
missing observations on the j-th and k-th variables are to be estimated from 

the multivariate regression equation of the observed values, i.e.,

(?jj! Xifc) =  X(jk)B; X(jk) =  (*il, *i2> * ' • >̂ i • • • > ^i,k-l)>

i =  l ,2 , . . . ,n e. (4.46)

Using (4.46) we impute the (n — nc) missing values on the j-th and k-th 

variables to have a completed data matrix.
Now, consider the regression equation of both the observed and imputed 

values, i.e.,

(Xjj, x,-fc) = Xyk)B; X(jk) =  (x ^ x ^  — >?ij—1>^»j+i> • • • >5i,k—l )»
i =  1 ,2 ,.. .,n . (4.47)
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From (4.46), the pre-imputation sample covariance of the residuals is

(n„) _  S n c(Xij *ij)(xik *ik )
nc -  1 (4.48)

and from (4.47) the post-imputation sample covariance of the residuals is

(* * )< " ’  =
- * i i ) ( » i k  ~  *ik)
n — 1

E n c ( Xt i - Xi i ) ( X j k - X ik) E n c+ l ( * U  -  X j j ) (x ik - X ik)

n — 1 n — 1

- £ n c(Xii ~ Xjj)(xik ~ *ik) 
n - 1

(4.49)

since r+ i(x«j ~ *ij)(xik — xik) =  0 due to imputation. This is because the 
imputed values are projected exactly on the regression line given by (4.46). 

Thus

(* ,.)< ”•> -  (* ,.)< " ’ =  £ - (xu ^nc i

Z ]n c ( XU ~ x i j ) ( x ik ~  x ik)
n — 1

=  £ (* U  -  * » )(* »  -  ** ) -  ^ n )
Tle

n  -  n c E n J XiJ ~  X» j)(Xik ~  * ik )

n — 1 nc — 1

=  !L l2 £  ( « ) ( » . ) .  (4.50)
n — i

It follows that if and xk are missing on (n -  n(jfc)) of all units then the 

estimate of their residual covariance obtained from the completed data is less
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than the same estimate obtained from the complete cases. The difference of 
the two estimates is given by

m<>*> 
n -  1

n — 
n — 1 (4.51)

This difference, in terms of expectations, gives the bias of the estimated 
covariances.

4.4.2 THE VARIANCES

Assume that the j-th and k-th variables are jointly missing on 
units. Further, let ajj and a£k denote the estimates o f the variances of the 
two variables obtained from the completed data. Then the sample variances 
of the j-th and k-th variables can be expressed, from the standpoint of the 
multivariate regression and MANOVA as follows:

where the first terms on the R.H.S. of (4.52) and (4.53) are the sample 
variances of the residuals of the multivariate regression of Xj, xk on Xyk) =  
(xj . . . ,  Xj_x, Xj+1. . . ,  xk_ t), and the second terms are the components of vari­
ance explained by the regression. Then (4.52) can be written as:

1
n — 1 *ij)2 +  X I  ”  *u)2 +

n-ne
(4.54)

where the contribution of the imputed values to the component of variance 

explained by regression is incorporated.
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But Y. (XU *y)2 — 0 (4.55)
n —nc

since the imputed values are projected on the regression line of Xj on X(jk). 
In other words, the contribution of the n — nc =  m^k) imputed observations 
to the sample variance of the residuals is effectively set to zero. Thus the 
variance of the observed and imputed values of the j-th variable is less than 
the same estimate obtained from the complete cases.

Putting k=j in (4.48) through (4.51) the resultant reduction in the vari­
ance of the j-th variable is obtained as:

n -  n»*> 
n — 1 (4-5S)

where (4>JJ-)̂ nc) is the sample variance of the residuals of the regression of 
the j-th variable on the remaining k — 2 variables. The same result applies 

to a£k.
This reduction in terms of expectations, gives the amount of bias in the 

estimation of the variances of the j-th and k-th variables.
The above discussion of sections 4.4.1 and 4.4.2 can now be formalized 

in the following theorem:

Theorem 4.4

If the j-th and k-th variables are jointly missing on m(Jk) units, then 
Cov(xj,xk) and V(xj), obtained via Buck’s method are biased. The bias of 

Cov(xj,xk) is given by

( j k )

and the bias of V(xj) is given by
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where

and are the pre- and post-imputation sample covari­
ances of the residuals of the multivariate regression of the j-th and k-th 

variables on the remaining k -2  variables, and

(* i i ) (" e) ^  ( * ; j ) (n) are the pre- and post-imputation sample variances 
of the residuals of the multivariate regression of the j-th and k-th variables 

on the remaining k—2 variables.

The various issues discussed, separately, in sections 4.4.1 and 4.4.2 as 
well as the results of Buck (1960) for the case of units with one missing value 

can be dealt with jointly as follows:

Let A be the covariance matrix of the nc-complete cases and A “ l , its 

inverse. Further, partition these matrices as follows:

m(Jk)

■ all a12 1 al3 . . .  a ik '
a21 a22 | a23 a2k

a31 a32 | a33 . . .  a3k ■
D u
d 12

D i2
d 22 (4.57)

- akl ak2 I aks . . .  akk.

[C n Cl2 1 Cl3 . . .  clk ‘
C21 C22 | C23 . . .  C2k

C31 C32 |
: i

C33 . . .  c3k 
• •

= B|2
B i2
b 22

(4.58)

-Ckl
•
Ck2 | Ck3

• • 
. . .  Ckk ■
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where D u  is the covariance matrix of those variables with jointly missing 
values. The corresponding elements of D u  in A -1 are given by B n . Then 

we can state the following:

Theorem 4.5

Under MCAR assumption for the missing values, the maximum biased­

ness of the post-imputation elements of D u  is

Recall that the variance-covariance matrix of the nc-complete cases is 

given by

(a-i 1 — o r jC  ( a i 2  — Q&C ' oli)

(ai2 — (a22 — Q^C xa 2)_

Proof

an ai2
&21 a22

aik
a2k

A  =

.aki ak2 ••• akkJ
We can write A as

an ai2 r*i
A  =  (asj) =  ai2 a22 (s> j — • • • >̂ )> (4.59)

«1 «2 C
where

an = V(xx) 

a22 = V(X2) 

a12 = Cov(xl t x2)

a x =  ( a i s ,  a i 4 , . . . ,  a ik )  

Q ;  =  (a23) a 24) • • • » a 2k)-
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Thus the elements of a' , j =  1,2 give the covariances of Xj and X (12) =  
(x3, . . . ,  xk) computed from the nc-complete cases, and

C =
'»33

- a k3

a3k

a kk -

Clearly, C is the covariance matrix of X(12) = (x3, x4, . . . ,  xk), of order 

(k—2)x(k-2).

Recalling our notation of section 3.4 and 4.3, we estimate the value of 
? ! and x2 for those cases which have xx and x2 only missing, by estimating 

the multivariate regression equation

Y  =  X (12)B, (4.60)

where Y  =  (xt ,x 2).
The regression coefficients of Xj on X (i2) =  (x3,x4,. , . , x k) are obtained by

Woolf’s procedure as:

i  =  1,2. (4.61)

Thus we have
i i  =  x (12)C 1a 1, (4.62)

and
x2 =  X (12)C 1a 2. (4.63)

Therefore the variance of Xj, j= l ,2  is given by

V (i,) =  V(X(12)£ .)  =  n x ^ C - 1̂ )
=  a;-C-1V (X (12))C -1ai 

=  a 'C ~ 1C C -1ai

=  « ; .C -1a i , (4-64)
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which can be written as

Cov(Xj,Xj) =  ajC laj. (4.65)

It follows that for k ^  j we have

C ov(ij,xk) =  ajC T 1̂ ,

where (xj,xk) are those variables with jointly missing values.

Thus,

If we write

Cov(x!,x2) =  a'jC ‘ a 2.

C ll Cl2 §1
Cl2 C22 -2

. Si §2 F

then, since A A " 1 =  Ik, we have from (4.59) and (4.68),

anCn +  ai2ci2 +  **i§i =  1

ai2cn -f a22ci2 +  <*2§i — 0 

o xcn +  «2 ci2 +  Cex =  0

(4.66)

(4.67)

(4.68)

(4.69)

(4.70)

(4.71)

and
auCi2 + a12c22 + 2 — 0

» i2ci2 +  a22C22 + « 2e2 = 1

a xci2 +  a^c22 +  Ce2 — 0.
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From (4.71) we have

Ce j =  - a 1cn - a 2cj2

or

§x =  - C - 1 2 x C U  -

Substituting (4.75) into (4.70), we have

a 12cll +  a22c12 ~  2 2 ^  —  a 2C  2c12 =  0.

That is,

a 12cll +  a22c12 ~  cll(®2^ ^ l ) -  c12( ^ 2 ^  *2 2 ) =  0 

or

c l l ( a 12 — 0.2^  * 2 i )  +  c 12(a 22 — 2 2C  *22  ) =  ^

from which we get

_  -C n (ai2 - o £ C  *2i)
(a22 ~ 2^C -!22)

Substituting (4.75) and (4.76) in (4.69), we get

auCu ~

+

- a l C  1a 1cnai2cn (ai2 ~ 22^  )
(a22 ~ 22^  *22) 

2 lC~1a2c11(ai2 -  o2C~1a1) _   ̂
(a22 — 22'C  *a2)

that is

Cu(an ~ 2 l C  *2i) —
Cn(a1 2 ~ 2 2^  12 i)[a1 2 ~ 2 lC  ’ 22]

(a22 -  2 2C - 122)

n o

(4.75)

(4.76)



from which we get

(4.77)

(4.78)

C e 2 =  - O i C i 2 -  < *2c22

or

e2 =  - C _1a xci2 -  C -1a2c22 (4.79)

substituting the value of e2 into (4.73), we have

a12c12 "h a22c22 — Q[2C 1®1<-12 — Qr2C ^2C22 =  1»

that is

C l2 (a 12 “  Q(l?C ~ la 1) +  C22 (a 22 — QL2C  *£*2 ) =   ̂

or

_  1 ~ Cl2(a12 — l— l)
C22 “  (a22 -  O^C-1̂ )  •

Substituting the value of C12 from (4.78), we get

_  __________________ (a22 ~ QL2̂  J9^)_______ __________
(an -  a /1C - 1a 1)(a22 -  a ^ C "1̂ )  -  (ai2 -  a i C " 1̂ ) 2 ’

since
a2C-1ori = a jC -1a2.

Substituting the value of cn  in (4.76), we get

___________________ (ai2 *9h)_________________
°12 (an -  a i C - 1a 1)(a22 -  o^ C -1^ )  -  (a12 -  a iC * 1̂ ) 2

To obtain the value of c22, we have from (4.74)
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c„  = ......-  ____________ (»II - a ' . c - ‘ a,)________________
( a „ - 2 '1c - ' s , ) ( » j 2 - ^ c - * a 2 ) - ( a » - a ' , c - * a 2)J '

Let

k =  (an — OjC )(a22 ~ ^2) — (ai2 — QLi  ̂ 1 a2)2

(4.80)

then

Therefore

Cll

C12

C22

a22 ~ Q&C la2 
k

~ (a12 ~
k

an ~
k

(4.81)

(4.82)

(4.83)

B n
Cll Cl2

_c 12 C22.
(a22 — ®2^ ^ 2)/^ 

- ( ai2 - a 2 C_12 i)/k
- ( a1 2 -0 2 C l« l ) A  
(an - a j C ^ a j j / k

(4.84)

Inverting B u , we have

1
c l l c22 ~ c i2

C22
-C 12

- C 12

C ll

__ T ( a 22 — ^ 2 ) A  ~(a12 — 0i2^ l °Ll)/k
~  [_ (ai2 - O j C - ^ J / k  (an  - a J C ^ a ^ / k

_  k  ̂1 [ (an - a i C _1a x) (a12 -  a^C-1 ^ ! ) !  
k k [ (a12 — QL2C  l^ l) (a22 — ' “ 2) ]

_  [ ( a i l - a i C - ' o J  ( a n - a ^ C -1^ ) !  
[ ( a n - a ^ C - 1̂ )  (a22 ~ ^ C - la2)\ '

This ends the proof.

(4.85)
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Remark

Theorem 4.5 can be generalized to the case of units with more than two 
missing values. Note that this corresponds to the case of more than two 
variables jointly missing on the i-th unit. For the case of units with l  missing 
values, 2 < l  < k, theorem 4.5 can be generalized as follows:

Re-arrange the elements of A given by (4.57) in such a way that the (  
variables with jointly missing values belong to D u . Recall that D u  is the 
covariance matrix of the l  variables with jointly missing values. Then the 
corresponding elements of D u in A -1 give B n . Hence theorem 4.5 can be 

generalized by the £xl matrix

Bn1 =

'(an  - a i C  ls l )

(ai2 -  «2 C_1£ i ) (a22 -  «2 C_1«2)
•  *  •• • •• • •

- ( a n ( a 2/ -  g£C_1a2) . . .  (a «  -  a jC -1^ ) .

A numerical illustration of this remark is given in section 4.4.3 

Theorem 4.6

The residual variances and the residual covariance of the estimated val­
ues of x: and x2 are less than the corresponding estimates obtained from the 
actual values of Xj and x2. The difference between the two sets of estimates 
is given by the elements of B^1. This difference, in terms of expectations, 
gives the bias of the post-imputation estimates.

Proof

Let
rzn
[zi2
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Then from (4.85)

C22
zn  — "  ~ ~ZT C11C22 ~  C12

= an -

which implies that

But from (4.64)

a ^ C  1g(1 =  a n  _  * 1 1  •

V(ij)

Therefore

V(xi) =  an -  zn-

Similarly,

C ll
Z22 — C11C22 -  c?12

=  a22 — -1 ®2’

which implies that

V(x2) =  a22 _  z22-

Next

Z12
-C 12

C11C22 _  c12 

=  ai2 — QL2 ̂  —i>

(4.87)

(4.88)

(4.89)

(4.90)

(4.91)
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which implies that

But from (4.66)

=  a i 2 — Z l2 -

Cov(xj,xk) =  a]C ^

Therefore

Cov(xj, Xj) =  ai2 -  z12. (4.92)

From (4.88), (4.90) and (4.92) we note that the residual variances and the 
residual covariance of the estimated values of xx and x2 are less than the 
corresponding estimates obtained from the actual values of Xj and x2. More­
over, from (4.87), (4.89) and (4.91), it follows that the differences between 
the corresponding elements of the two sets of estimates are given by the 
elements of Bj^1.

Remark

Note that the elements of BJ"/ give the maximum amount of bias in the 
post-imputation covariance matrix of Xi and x2. The maximum amount of 
bias, as mentioned earlier, corresponds to the case where all values of Xi and 
x2 are imputed. It therefore follows that if ^  and x2 are jointly missing on 

a proportion Ai2 of till units where

(n -  „<■*>)
Al2 =  n -  1

then their post-imputation variances (a ^ a ^ )  and covariance (ai2) obtained 

from the completed sample are to be adjusted to
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»u  +  ^12*111 

»22 +  ^12̂ 22

(4.93)

(4.94)

and

a 12 +  ^12® 12  ( 4 .9 5 )

where Zn,Z22 are the diagonal elements in BJ",1 and Zj2 is the off-diagonal 

element.

Corollary 4.6.1

The bias of the variance of Xi is given by the inverse of the first element 
in A -1 . And the covariance of xt and x2 is unbiased, i.e.,

Cj /  — an — <*iC

c22 ~  a22 — a 2C 1 Cf2 

cf2 =  a!2 -  a iC _ 1Q2 =  0.

Proof

The results immediately follow by substituting Ci2 =  0 in formulae 

(4.87), (4.89) and (4.91).
Note that these are the same results obtained by Buck (1960) for the 

case of units with one missing value given by formulae (3.18) and (3.26) of 

sections 3.5.1 and 3.5.2 respectively.
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Theorem 4.7

B n  =  (n c — l ) - 1 Q e ,

where

Qe — Y 'Y  — B 'X yk)Xyk)B

is the errors sum of squares and cross products matrix obtained from the 
multivariate regression of Y  =  (x j ,^ )  on the remaining k — 2 variables, and 
nc is the number of complete cases.

Proof

Denote the sample variances and covariance of the residuals of the mul­
tivariate regression of the j-th and k-th variables on the remaining k — 2 
variables by $ j j , <!>** and respectively. Then we have

.$jk
Qe

or

-^(x'Uk,xak,)4.

XjXk -  / 3 j ( X ( j k ) X (jlc )) /3 k XkXk -  ^ k ( X ( j k ) X ( jk ) ) / ? k

=  (nc -  l ) - 1 {x jx , -  4 '(X o k)X Ok) ) 2 j } . (4 96)

where x-Xj and ^ .(X [jk)X (jk))/3. are the corrected total sum of squares and 

the sum of squares due to regression respectively, X yk) =  (? i, • • •»£ j-i»S j+ i> 

. . . , x k_1).
The expression for Qjj given in (4.96) can be written as:

*■„ =  (n« -  l ) - 1 {x'Xj -  K  -  l t e 'C - ’ C C - 'a J
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since

C =  (X'(jk)X (jk))/(nc - l )

*jj =  (« C  -  1 )  1 { x -X j  -  (lie  -  l)gjCT ' a j }  

=  aij ~ —j  »

Replacing j by k we have

(4.97)

$kk — akk — «kC  a k (4.98)

Similarly,

$jk =  («c -  l ) -1 {? j?k  ~  ^ j(^ 0 k)^(jk))^k}

=  (nc -  1)_1 {xjxk -  (nc -  l j a j c -1^ }

=  ajk- a j C - 1ak. (4.99)

Therefore

[ * *  1
1__

nc — 1Qe

^  ~ 1 s-xk -  xkxk -  ^k(X ,(jk)X (jk))^k_

' ( a j j - a j C - 1̂ )  ( a jk - g jC - 1̂ ) *

.(»jk -  “ jC -1^ )  (akk -  a^C-1^ )

=  (4.100)
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Hence

H i? -  K  -  i r l Q ..

Therefore the elements of B ^1 are actually the sample variances and 
covariance of the residuals of the multivariate regression of the j-th and k-th 
variables on the remaining k — 2 variables. Note that the elements of Q e are 
readily obtained from the MANOVA table of the multivariate regression of 
the j-th and k-th variables on the remaining k — 2 variables.

The importance of this result is that it enables us to obtain the bias of 
the post-imputation covariance matrix directly from the MANOVA table of 
the multivariate regression of Xj,xk on the remaining k — 2 variables. Thus 
the actual determination of bias does not require the computations of A -1  

or B^1. These are only required for the theoretical derivation of the amount 
of bias.

Theorem 4.8

®jk — ajk(l Rjk)>

where ajk is the covariance of the j-th and k-th variables obtained from the nc 
complete cases. Rjk is the jk-th element in the matrix (R ) of the coefficients 
of determinations of the multivariate regression equation (x^x*) =  X (jk)B, 

where X (jk) =  (xix, .. • >¥i(j-i)>£i(j+i)>^i(j+2)> • • • 5*i(k-i))» * =  !>• • • i ^ .  

Proof

From the multivariate regression equation

(xi ,xk) =  X a k )B  +  U, (4.101)

we have
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f*S ’ T Y  O F
M B R A R Y '

d 2 _ ,  ( 3 & - ! ( X ' ak)X(« ) & )Kjk _  i — ----------------- ,
X j ? k

(4.102)

and from (4.99) we have

A (^ x k - | . ( x ^ ) X (jk))4 ) 
jk n, -  1 (4.103)

Substituting the value of (xjxk -  /3.(Xjjk)X(jk))/3k) from (4.103) in (4.102) 
we get

Kjk =  1 -
(n« -  l)$ jk

xjxk
(4.104)

which implies

XjXk(l -  R?k)
*jk  =  — r ~ -nc — 1

We should note that xjxk is the corrected cross product term of the regression 

equation given by (4.101), hence

(xjxk/n* -  1) =  ajk,

where ajk is the covariance of the j-th and k-th variables obtained from the 

nc-complete cases. Therefore,

* jk  =  * jk ( l  -  R jL ). ( 4 1 0 5 )

Thus if the j-th and k-th variables we jointly missing on m^k) units out of 
n units, then from (4.105), the correction for the bias of the post-imputation 
covariance of the j-th and k-th variables is given by
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A , =  Aifcajk(l -  Rjk), (4.106)

where A =  m^k̂ /n is the proportion of units with missing values on both
the j-th and k-th variables.
from which the relative bias is given by

A j * ^  =  A,*(l -  R?k). (4.107)ajj

Note that (4.105) gives the maximum amount of bias in the estimation of the 
covariance of the j-th and k-th variables as a function of two forces, namely, 
Rjk and the covariance of the j-th and k-th variables (ajk) computed from the 
complete cases . This formula together with (4.16) play an important role in 
the investigation of the missingness mechanism in the method of Buck which 
will be discussed in section 4.6.

Note that from (4.41) we have

0 < Rfk < 1.

Therefore, and from (4.107) it follows that

1- For fixed Ajk, the relative bias decreases as R?k increases, and

2- For fixed R?k, the relative bias increases as A increases.

Corollary 4.8.1

=  aij(l ~ Rj )>

121



Proof

The proof follows immediately by putting k=j in formulae (4.101) throu­
gh (4.105).

Note that corollary 4.8.1 gives the same result obtained by theorem
4.2 for the case of units with one missing value. Thus theorem 4.2 can be 
considered as a special case of theorem 4.8.

Theorem 4.9

If the j-th and k-th variables are jointly missing on m^k) units, then the 
post-imputation estimates, V(xj) and Cov(xj,Xk) are inconsistent.

Proof

Noting that the amount of bias in the estimation of the variance of the 
j-th variable and the covariance of the j-th and k-th variables are given, 
respectively, by

and

it follows that

m(j) -  nU)n -  n
n -zjj = $

n jj

muio „  _  „(;*)
------ zjk = ------------ <t>

n n jk

(4.108)

(4.109)

and

lim
n—><x>

[n — n
[ — *

n(j) ±  n (4.110)

lim \-— — — ^ 0, n(jfc) ^  n. (4-111)n—»oo [ n
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Thus the estimates of the variances and covariances given by Buck’s method 
are generally inconsistent.

4.4.3 REAL DATA ILLUSTRATIONS

In this section we shall be concerned with the numerical illustration and 
validation of theorem 4.5. This is because theorem 4.5 summarizes most of 
the findings of sections 4.4.1 and 4.4.2.

We shall consider two patterns of missingness. For the first pattern, 
11 observations on both xx and x2 were picked at random from the data 
of Bumpus (1898) and considered as missing. This shall be referred to as 
pattern (5). Pattern (6) is obtained by selecting at random 13 observations 
on x1?x2 and X5 from the data of Bumpus (1898) and consider them as 
missing.

The resulting incomplete data (missing data patterns (5) and (6)) as well 
as the summary statistics (means and covariance matrix) for the complete 
cases of the two patterns are given in the appendix. Also displayed in the 
appendix are the results of the multivariate regression analysis, required for 
the estimation of missing values in the two patterns. The data are analyzed 
using SPSS and STATGRAPHICS.
ANALYSIS OF MISSING DATA PATTERN (5)

Using the notation of section 3.3 we have, n =  49, nc =  =  38 and
m(jk) =  (n — n^k)) =  11. Further,

Xl x2 X3 X4 x5

 ̂13.7020 \

14.7866 26.9616

2.0257 2.5919 .6253

1.4102 2.1404 .3285 .3051

\ 2.2888 2.9774 .5419 .3907 1.0035/
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Xl X2 X3 X4 x5
/  .2221390 \

-.0821358 .11646

-.2802510 .0218064 4.5568100
-.011659 -.484985 -2.68933 11.7524

V -.1070820 .0188463 -.8391640 -1.657850 2.2834500/

And since only xi and X2 have joint missing values, it follows that

Xl X2 Xl x2

B u  =
(  .2221390 —.0821358 \ , n _!1 and B u  = /  6.08972 4.2949 \
\ -.0821358 .1164600 / V 4.2949 11.6157/

Using Woolf’s procedure, the quantities required for the estimation of the 
multivariate regression of Xj,x2 on x3,x4,x5 are

X fc =  (31.45,18.4763,20.7842), h =  3,4,5

and from A , we have

ai =  (2.0257 1.4102 2.2888), a 2 =  (2.5919 2.1404 2.9774),

and

x3 X4 X5

C =  f '6253 .3285 .5419

V .5419 .3907 1.0035

X3 X4

/  4.12549 -3.16905 -.993976 \
\ -.993976 -1.78139 2.226830/
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The estimated coefficients of the regression of xx on x3, x4, x5 are given by 

P'hx = « i C _1 =  (1.612998514 2.153959061 .571155143), h =  3,4,5 

so that

A,i =  X 1 - j : ^ 1X , =  55.577, h =  3,4,5
h

and the estimated coefficients of the regression of x2 on x3,x4,x5 are given

by

A 2 =  =  (.950358769 5.683521675 .240990092), h =  3,4,5

so that

/302 =  X2 - £ / 3 h2X/, =  101.1973, /* =  3,4,5
fc

then the missing values are estimated and a completed data matrix is created 

by imputing these estimates.
The quantities required for the estimation of the bias are

V(xj) =  a'xCT1̂  =  7.612224049 

V(x2) =  0 2  C_1a2 =  15.34576859 

Cov(xi, x2) =  a'xC _1a2 =  10.49162215

It follows that the maximum amount of bias in the estimation of V (xi), V(x2), 

and C ov(xi,x2) are given, respectively, by

*u =  an  -  a iC _ 1a x =  13.7020 -  7.612224049 =  6.0897

z22 =  a22 -  a 2C _ 1a2 =  26.9616 -  15.34576859 =  11.6158 

z12 =  ai2 -  a xC - 1a 2 =  14.7866 -  10.49162215 =  4.2950

125



which are the same figures displayed in Bfj1.

Thus the amount of bias is actually a function of the elements of Bj^1. 
And since only n — nbk) =  11 observations are jointly missing on xj and 
X2, it follows that the estimates obtained from the completed data for the 
variances a jt of x i , a|2 of x2 and the covariance aj2 of xt and x2 have to be 
adjusted for bias using (4.93) through (4.95).
Now, from the results of the analysis of the incomplete data pattern (5) the 
MANOVA table of the multivariate regression of x j,x 2 on the remaining k —2 
variables is given by the following table:

Table 4(61: MANOVA TABLE FOR THE MULTIVARIATE REGRESSION 
OF x 1 } x 2 on x 3 , X 4 , x 5

s .v . d.f. SSP.

Reg.

Resid.

3

34

1
"281.64428

388.18 567.79093

"225.32940
158.92 429.78802

=  Qh

Total (corr.) 37 "506.97368
547.1 997.57895 j =  Qt

thus

J_ _  J_ [225.32940 158.92 1
37^ '  ~  37 [ 429.78802 J

6.090 4.2951 '
11.6160

Therefore the computation of the amount of bias from the MANOVA table
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is straight forward. It does not require the computation of either A -1 or

Bn1-

ANALYSIS OF MISSING DATA PATTERN (61

Here, we have n =  49, nc =  n^kr> =  n̂ 126) =  36 and =  m*125* =
(n — n(l25*) =  13. Further, we re-arrange the elements of A so that those 
variables with jointly missing values belong to D u . Recall that D u i6 the 
covariance matrix of those variables with jointly missing values. And since 
we have xt,X2 and X5 with jointly missing values then,

X i  x 2 x 3 X4
/11.9714 

12.1524 23.9111 
1.4510 2.3035
.9129 1.8600

\ 1.9848 2.6079

Xi x2 x5

x 5

\

.5395

.2398 .2231 

.2777 .1984 .8739)

 ̂11.9714 12.1524 1.9848 N
D n =  12.1524 23.9111 2.6079 >

\ 1.9848 2.6079 .8739
so that the elements of D u  are the variances and covariances of those vari­

ables with jointly missing values. Also we have

Xi X2 *3 X4 x5

f 0.209501 \

-.0802344 .175021
A ^  = -.211635 -.0320269 3.92829

0.237497 -1.0062 -3.12201 15.2638

\ -0.223049 -0.101457 .0367256 -9.91235£ -  3 1.94423/
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X5

B u =

and

Xl x2
' 0.209501 -0.0802344

-0.0802344 0.175021
V -0.223049 -0.101457

Xl X2
( 7.45266 4.03417

= 4.03417 8.07554 0
 ̂1.06551 0.884225 0

1.94423 /

x 5

1.06551

Thus multiplying the elements of Bj 1̂ by the proportion of missing values 
we get the amount of bias in the corresponding elements of D u.

Now, from the results of the analysis of the incomplete data pattern (6) 
given in the appendix, the MANOVA table of the multivariate regression of 
x1?x2 and X5 on the remaining k — 3 variables is given by the following table:

Table 4(7): MANOVA TABLE FOR THE MULTIVARIATE REGRESSION 
OF x i,x 2,x 5 on x3,X4

s.v. d.f. SSP.

'158.15068
Reg. 2 284.15000 554.3019 =  Qh

32.18000 60.3400 6.69299

'260.84932
Resid. 33 141.19000 282.58699 =  Qe

37.29000 30.94000 23.89257

'419.000
Total (corr.) 35 425.340 836.88889 =  Qt

69.470 91.28000 30.58556
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thus

35

260.84932
141.19000 282.58699 
37.29000 30.94000 23.89257

7.4528
4.0340 8.073914 
1.0654 0.884000 0.682645

Thus the elements of B ^1 are actually the sample variances and covariances 
of the residuals of the multivariate regression of the elements of D u  on the 
remaining variables.

15  BUCK’S METHOD IN REGRESSION ANALYSIS

In this section we shall investigate the effect of imputation via Buck’s 
method on the estimated regression coefficients, coefficient of determination, 
and the standard error of the estimated regression coefficients in regression 
analysis. The discussion will concentrate on the case of one variable subject 
to missingness. Specifically, we shall assume that an incomplete multivariate 
data set was completed via Buck’s method and made available to the users. 
A user may wish to estimate regression functions on the basis of the com­
pleted data set. Our objective is to investigate the validity of the results and 

conclusions obtained by the data user.
Consider a sample X  =  (xy), (i = 1, . . . , n;j =  l , . . . ,k )  of n units 

(cases), on each of which it is desired to have measurements on k variables. 
Assume that each unit can have more than one missing value. Using the 

results of section 3.6, for each j == 1 . . . ,  k, we have
k k—1

n = nc +  mW +  £  m(/> -  £ ( i  -  l)U (i\ (4.112)
t*j 1=2
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where is the number of units with ‘i’ missing values, i > 1. That is, the 
n units on the j-th variable can be decomposed into: ric-complete units, m ^ 

units with xj only missing, and m<0 ~ 1^=2 (» “  !)U (l) units with xj
observed but any combination of the remaining k — 1 variables missing.

Note that the decomposition given by (4.112) above corresponds to the 
case of units with more them one missing value. The corresponding decom­
position for the case of units with one missing value is obtained from (4.112) 

by setting ]Xi=2 0  ~ 1)U^ =  0. Thus we get
k

n =  ric +  m ^ + ^  m^) (4.113)
t*J

and for the case of one variable subject to missingness we set
k k—l

^  =  £ ( i  ~ l)U (i) =  0 (4.114)
t± j i=2

in (4.112) above. Thus the n units are decomposed as

n =  =  n ^  (4.115)

Now, assume that the missing values of the j-th variable were imputed via 
Buck’s method as outlined in section 3.3. That is, from the model

k
Xjj =  /3p +  ^  Xjh/3hj €ij, i =  1, • • • ,nc (4.116)

Mj
we estimate the complete-case regression coefficients (3 by

^  =  (X ;X c) - 1X;xj ,ob9 (4.117)

by minimizing the complete-case residual sum of squares given by

t’« =  £ > i ,  -  *y )2, (4.118)
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so that

(4.119)

where X „ _ „ e is the matrix of the incomplete-cases.

Now, assume that a user of the completed data wishes to fit the model

k
xjj =  0O +  ^  ̂Xih/̂ hj d* Cij> i =  1, . . .  ,n c  . . .  ,n. (4.120)

Mj

Then we have the following results for the case of one variable subject 
to missingness:

Theorem 4.10
A A *

The pre- and post-imputation regression coefficients and /? ) of the 
regression of the j-th variable on the remaining k-1  variables are the same, 
that is,

Proof

Let SSEj be the residual sum of squares of the model given by (4.120). Using 

the decomposition given by (4.115), we can write

n
SSEj =  «  = -  *u)2

»=1

=  £ ( xii ~  *u)2 +  X f c u  ”  (4121)
nc mCi)

the proof follows by noting that the second term of (4.121) is already mini­
mized by imputations and the first term is minimized by /3C given in (4.117).
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Thus the Least squares estimates of the regression coefficients obtained 
from the completed data are the same as those obtained from the complete 
cases.

It is interesting to note that the above result does not hold for the case 
of units with one missing value. In the latter case, using the decomposition 
given by (4.113), the residual sum of squares can be written as

n
SSEj =  e'e =  ^ ( x j j  -  x^)2

i=l

=  £ ( xij "  *u)2 +  X ] ( xu ~ *u)2 +  ] L ( xu “  *ij)2 (4-122)
nc * m(J)

where * =

=  +  £ ( xu “  xu)2 (4123)
nc *

since the last term of (4.122) is minimized by imputations.
We should note that the first term of (4.123) is minimized by /3C given in 

(4.117). However, the second term of (4.123) is not minimized by imputations 
since it is independent of the imputed values. It therefore follows that

A * *

Similarly, using the decomposition given by (4.112), the same result can be 
shown to be true for the case of units with more than one missing value.

Theorem 4.11

The estimated standard errors of the regression coefficients are deflated 

by imputations.
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Proof

Let S(/3 ) be the dispersion matrix of the estimated regression coeffi­
cients of the model given by (4.120). Then we have

S(£*) =  (X 'X r ^ n  -  l ) -1SSEj (4.124)

substituting the value of SSEj from (4.121) we have

S(£*) =  ( X 'X r ^ n -  l ) _1SSEj

=  (X 'X )~ 1( n - l ) - 1 -  *u)2 +  ] L ( xvi

=  (X ,X )“ 1(n (4.125)

since ]Cm<j>(xu — *jj)2 — 0 by imputations.
Thus the estimated standard errors of the regression coefficients will 

tend to be misleadingly smaller due to imputation. Consequently,

Corollary 4.11.1

The conventional t-statistic for testing the significance of the individual 
regression coefficients is inflated by imputations.

Proof

We have

t= /9 jr / y ^ ^ W )  <4126>

The proof follows by noting that J v (P ’ ) will be misleadingly smaller 
due to imputations as shown in theorem 4.11 above. Hence type I error will be 
made more frequently. In other words, the individual regression coefficients 
will have more chances of being declared significantly different from zero.
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Theorem 4.12

The coefficient of determination (R?) of the model given by (4.120) above 
is unrealistically inflated by imputations.

Proof

R? can be written as

r 2 __ j __SSE_ _  SSE
J CTSS SSE + SSR/& (4.127)

where SSR//30 and CTSS are the corrected regression and total sums of 
squares respectively. The proof follows by noting that SSE is reduced due to 
imputation.

To avoid adopting the above mentioned misleading results, the sample 
variance of the residuals must be corrected for bias as outlined in section 
3.5.1.

However, the crucial question is whether or not the data user is aware 
of the existence of imputed values. If the answer is ‘no’ then the user will 
‘unconsciously’ adopt some or all of the above mentioned misleading con­
clusions. This situation is more likely to happen in cases where the data 
imputer and the data user are two distinct entities which is always true for 
public-use data bases which are shared by many users.

Hence the conclusion arrived at in this section is that the imputed ob­
servations should be clearly identified and the method of imputation must be 
well documented. This will minimize the possibilities of adopting misleading 

conclusions by the data user.

As a numerical verification of theorems 4.10-4.12 and corollary 4.11.1 
given above, the following pattern of missingness is obtained from the data of 
Bumpus by considering X4 and X 5 only. Then the missing data pattern (7), 
given in table A(8), is obtained by assuming that the last 15 observations

134



of X5 are missing. The missing observations are then imputed via Buck’s 
method. The results of the pre-imputation and post-imputation regression 
analyses are given in tables A(8.1)-A(8.4) of the appendix. Comparing tables 
A(8.2) and A(8.4) we note that:

1- The pre-and post-imputation regression coefficients are the same.

2- The post-imputation standard errors of the regression coefficients are 
deflated.

3- The post-imputation t-statistics are inflated.

4- The p-values at which Ho : (5 =  0 is rejected are decreasing.

And by comparing tables A(8.1) and A(8.3) we note that the coefficient 
of determination is inflated while its standard error is deflated. Moreover, 
comparing tables A(5.12) and A(5.14) we note that theorem 4.10 does not 
hold when more than one variable are subject to missingness.

4j6 BUCK’S METHOD AND THE MISSINGNESS MECHANISM

Most work on inference with missing data is based on the explicit or 
implicit assumption that the missing data are missing at random (MAR) or 
missing completely at random (MCAR). MCAR is the strong assumption 
of missingness which means that the process causing an observation to be 
missing is independent of the value of the observation (observed or missing) 
or the identity of the underlying population. On the other hand, the weak 

assumption o f missingness MAR means that the missing observation is inde­
pendent of its value but might depend on the value of an observed variable. 
A direct consequence of the MCAR assumption is that the joint distribution 
of any subset of the data is the same whether it contains missing values or 
not. Hence standard statistical techniques, under MCAR assumption, can 
be applied to the completely recorded data to obtain estimates of the missing
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observations or sample estimates of the corresponding population parame­
ters. While it is immaterial whether the MAR or MCAR assumption is used 
for imputation strategy, it makes a great difference in deletion-pairwise meth­
ods which require only MCAR for their validity (see Little and Rubin, 1987, 
chap. 3).

The method of Buck can be viewed as a two-stage process for the joint 
estimation of the sample missing observations and the corresponding popula­
tion parameters. In the first stage, using deletion-pairwise strategy, a subset 
of complete cases is obtained by deleting any case with at least one missing 
observation. The second stage applies regression techniques to the subset of 
complete cases obtained in the first stage to impute the missing data. Thus 
the weaknesses of both imputation and deletion-pairwise strategies are re­
flected in the method. Afifi and Elashoff (1966) stated that: “Buck carries 
out his calculations conditional upon the complete vector observations. The 
particular reasons for this conditioning are not clear”. (See Afifi and Elashoff
(1966), pp. 600, second paragraph). However, although Buck (1960) does 
not make any explicit assumptions about the missingness mechanism in his 
method, yet the application of the deletion-pairwise strategy in the first stage 
of the method is actually an implicit MCAR assumption for the missingness 
mechanism. In other words, the conditioning of Buck’s calculations upon the 
complete data vector is an implicit MCAR assumption for the missingness 
mechanism. It is only under MCAR assumption that the complete cases 
are a random sub sample of the original population. It is worth mention­
ing that the literature about the missingness mechanism, MAR and MCAR 
assumptions have only been developed in 1976 by Rubin, D. B.

Note that (4.16) expresses the bias of the j-th variable’s variance as a 
function of two forces, namely, R j and the variance of the j-th variable (a^)
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obtained from the nc-complete cases. Similarly, formula (4.105) expresses 
the bias of the covariance of the j-th and k-th variables as a function of R?k 
and the covariance of the j-th and k-th variables (aj^) obtained from the nc- 
complete cases. The dependence of the bias in the covariance matrix on aj ,̂ 
Rj, aj  ̂ and Rjk is actually a dependence on the nc-complete cases of X since 
these quantities are computed from them. Furthermore, the nc-complete 
cases are a result of a specific selection which is completely determined by 
the pattern (frequency distribution) of missing observations. For each pat­
tern of missing data we will have a different set of nc-complete cases. Each 
set of these nc-complete cases can be considered as a random sub sample of 

the original population if and only if there is no selection bias in considering 
the Tic-complete cases. If the pattern of missing values, that leads to the 
specific selection of the nc-complete cases, is not missing completely at ran­
dom then the nc-complete cases are not a random sub-sample of the original 
population. Thus all the estimates obtained, including a-, ajk and the con­
clusions arrived at will be biased towards the non-representative sample of 
the nc-complete cases. Thus formulae (4.16) and (4.105) actually state that 
the performance of Buck’s method i6 only valid if the missing observations 

are missing completely at random (MCAR).

4/7 CONCLUSIONS

Various issues about Buck’s method have been discussed in this chap­
ter. The theoretical and/or numerical verification of some of the statements 
about the method given by Buck and other scholars have been the prime 
objective. However, in the process of this verification many results have 
come up. In most of the cases, the discussion of the method came under two 
subheadings, one for the case of units with one missing value and the other 
for the case o f units with more than one missing value. This is because we
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believe that the statistical properties of the estimates in the two cases are 
quite different. Hence the theoretical derivations of the statistical properties 
of the estimates in the two cases require different methods of analysis. For 
instance, only univariate regression and analysis of variance are required in 
the case of units with one missing value. The case of units with more than 
one missing value requires, as tools of analysis, the multivariate regression, 
multivariate analysis of variance and covariance analysis.

Issues that have been discussed in this chapter include, the biasedness in 
the covariance matrix, missingness mechanism in Buck’s method and Buck’s 

method in regression analysis.

In the next chapter we shall try to set the context for some connections 

between imputation techniques (Buck’s method) and the maximum likeli­
hood methods of estimation from incomplete data.
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C H A PTE R  V

SOME RELATIONS BETW EEN IMPUTATION AND 
M A X IM U M  LIKELIHOOD METHODS OF ESTIMATION

5J. INTRODUCTION

In chapter II we have introduced three main strategies for dealing with 
the problem of missing data in multivariate analysis. These are: the deletion- 
pairwise strategy; the imputation strategy; and the maximum likelihood 
(ML) approach. For the ML approach, the factorization method of An­
derson (1957) and the EM algorithm were briefly introduced in sections 2.4.1 
and 2.4.2 respectively. We have already noted that the three areas are not 
mutually disjoint, in the sense that a single method can combine more than 
one strategy. For example Buck’s method is a combination of deletion and 

imputation strategies.
Unlike imputation techniques, the statistical theory of ML estimation 

from incomplete data is relatively well developed. This is because the cor­
responding theory in the complete-data case is well developed in most of its 
aspects. Moreover, most of the statistical literature on missing data consid­
ers each of the above mentioned three strategies as a distinct category. There 
seems to be very little research on the possible interactions between the three 

strategies of handling missing data.
The objective of this chapter is to investigate more on the possible links 

between the three areas. Specifically, we shall investigate the relationship 
between Buck’s method, as a deletion-imputation strategy, and

1- Anderson’s (1957) factorization method

2- The EM algorithm
as ML methods of estimation from incomplete multivariate data.
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5,2 RELATION BETWEEN ANDERSON’S AND BUCK’S METHODS: 
UNITS WITH ONE MISSING VALUE SUBJECT TO ONE 
VARIABLE

In section 2.4.1 we presented the theoretical aspects of Anderson’s (1957) 
factorization approach. The objective of this section is to establish the equiv­
alence between Anderson’s and Buck’s methods. To achieve this we apply 
the theory of Anderson’s method, introduced in chapter II, to the incom­
plete bivariate, trivariate and multivariate normal distributions to estimate 
the unknown parameters. Then these estimates are compared and contrasted 
with those obtained via the corresponding special cases of Buck’s method.

5.2.1 ANDERSON’S METHOD FOR THE BIVARIATE NORMAL 
DISTRIBUTION

Consider a bivariate normal sample (yii, yia), i =  1, . . .  ,n; where 
(yii,yi2), i =  l,...,n< . are i^-complete bivariate observations and yu,i =  
n<; +  l , . . . , n  are (n -  nc) observations with missing yi2. Thus we have ric 
bivariate observations on both yji and y;2 and (n—lie) univariate observations 

on yii, that is,

f(yu ,yi2) =  (2*) “*|E ^ “*1 (y* (y» -<*), (5.1)

and

f(yu) =  (2?r)
( ° - " e )  -

3 *11
- ± Y n£ * t—4\ =nc-f 1 •'ll (5.2)

Thus the joint density of a bivariate normal sample with bivariate (yu, yi2) 
observations and n — univariate yu observations is given by

f(Y0b» I /£, S) =  (2jr)~n'| s  r » « - *
(yj-m)*

.(2tt)
<«-nc) _-  i er.. J e'll He+I mn (5.3)
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Therefore the loglikelihood function (ignoring the missing data mechanism) 

is

<((f ,s  I Yob.) = -  y in  I £ I -g ) 'E  l(yi -ff) -  5(11-11. lino'll

-  E

i=l

(yi -  m)2
2 . ' 0ni=nc+l

(5.4)

Thus the maximum likelihood estimates of n and E can be found by maxi­
mizing (5.4) with respect to these values. The likelihood equations, however, 
do not have an obvious solution. A simpler approach to this maximization 

was suggested by Anderson (1957).

Anderson (1957) noted that the joint density of ya and yi2 can be fac­

torized into two terms, that is,

f(yu,yi2 | /f, S) = f(ya |/xi,<ru)f(yi2 | y i i > A t ? 2) (5.5)

where, by the properties of the bivariate normal distribution,

f(y*i | ~ N(/*i,cru),

f(yi21 y a jpo,0ij<r*) ~  N(/5C +  A y ii»^ 2)

and

A  =  Cxi/tTw, (5.6)

P o  =  M2 ~ (5-7)

=  022 ^12/^H’ (5.8)
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The likelihood function of the observed data Ycb* can be factorized as follows:

L (/i,S | Y obs) =  l i f e .  jyi2 l/f>£) f(yu |/*t**n)
i=l i=nc+l
nc n

= n f e .  Im ,^ n) f( yi2 1 yii,/f,S) J J  f(yu l/ii.^n)
4=1 i=n«-fl
n Dc

=  n ^  lMi»ffu ) I I f ( y i2 |yii,A>,A,<r2) (5.9)
t=i i = l

Then the ML estimates of Hi,<Tu,p0,Pi and <r2 are those values that maxi­

mize the individual terms of the RHS of (5.9).
Maximizing the first term of the RHS of (5.9) with respect to Mi and 

<Tii we have

i = l

I n
L(m i,<Th I yn) =  (2tt)^ ((T i i ) ^ E xp[ - —  -  Mi)2]

from which the loglikelihood is

^ ( M i ^ n  I y») =  - | l n ( 2ir) -  ^ l n ( < 7 n ) - ^ -  ~ (5 1 °)
i = l

Thus

d l 1 « r " ',  v n

or

and

Mi =  E T  =  yi (5,11)
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or

dt _ ___£ _  2 S ° =1(yii -  mi)2
d a n  2<ru  4 o j j

- n ^ i : L .. ( y n -M . ) 2 =  £ L , ( y H - y , )2
n n

Thus the ML estimates of the mean and variance of Yi are the usual ML 
estimates of the univariate normal distribution based on ‘n’ observations

(yn>- • • j yni )•
Maximizing the second term of the RHS of (5.9) with respect to (}„ , (i\ 

and <72 we have

M P o+P iY ii,<r2 | yu) = (27r)^1L(<r2)“^Exp[-^2 ^ ( y i2 -/30 -  Ayn)2]

from which the loglikelihood is

t ( • I y i i )  =  -  y l n ( 2 7 r )  -  y i n  a 2 -  ^  ^ ( y i 2  ~ P o  ~  PiYiiY ■ ( 5 . 1 3 )
i=l

Thus

d t  _  4<y2E°=i(yi2 -P o  -  Ayu) _  0  

dp0 4 <r4

from which

&=n-wi,(5.i4)

where y) =  £  2 " I ,  yn and %  =  £  £ “1, y.2- That is, yt and y j are the 

complete-case estimates of the means.
Similarly we have,

dl _  4<t2 yii(yia ~ Po ~ t o i )  
0A  4<r4
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On solving and substituting the value of 0O from (5.14) we get

Pi =  S12/S „  (5.15)

where

1 “c
S12 =  — J ] (y i i  -  ylKyia -  y|)

^  i=i
and

Sn =  —  £ ( y i i  - y t ) 2-
** i=i

That is, the ML estimates of the parameters of the conditional distribution 

f(yi2 | yii) are based on the nc-complete cases.

Finally,

a t m 2 ^ ° i i (y i 2 -  fl> -  A y;i)2 _ Q
d o2 2a 2 o 2

On solving we get

#  _  E ^ i(y ia  ~ 0 o  -  t o t )2
He

=  —  V (y i2 -  y u f  =  S22 -  (5.16)
" C i=1

Using the invariance property of the ML method of estimation, estimates of 
other parameters can then be obtained. In particular, from (5.7) above we 

have

02 = 0o +  0101

= (T 2 -0 i r i )+ 0 i0 i

=n+M ii - y i ) .  <5-17)
144



and from (5.8) we have

(5.18)

and finally, from (5.6) we have

d"i2 =  fh&n — c—®ii
(5.19)

5.2.2 ANDERSON’S METHOD FOR THE TRIVARIATE NORMAL 
DISTRIBUTION

Consider a trivariate normal sample (yu,yi2>yis)j > =  l ,- - - ,n ; where 
(yii,yi2,yi3), i =  l,...,n < . are nc-complete trivariate observations and 
(yii>yi2), i =  n«. +  are (n -  n*) bivariate observations with missing
yi3. Thus we have trivariate observations on both yu.yjj and y-,3 and 
(n — nc) bivariate observations on yn and ya, that is,

Thus the joint density of a trivariate normal sample with n<; trivariate 

(yii.yi2«yis) observations and (n —n^) bivariate (yu,yia) observations is given

by

and
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%  £ I Y o b . )  = -  ^  In I £  I - i  £ < y , -  £ ) '£ - ' ( *  -  /i)
z »=i

- y t a l E I - i  £  (y. -  (y, -  e ). (5.23)

Thus the maximum likelihood estimates of /i and E can be found by maxi­
mizing (5.23) with respect to these values. A simpler approach to this max­
imization is Anderson’s factorization method.

The joint density of yu,yi2 and y;3 can be factorized as follows:

f(y;i,yi2,yi31 £ ,£ )  = f(yii,y>2 1 ^,S).f(yi3 1 yii,yi2,/3o,A,/32,02) (5-24)
where, by the properties of the trivariate normal distribution,

f(yii,y.21 £,£) ~ N(/ii,/i2;̂ n,̂ 22),

f ( y i 31 y i i , y i 2, ^ 0 , / 3i , / 32, < T 2 )  ~  N ( / 30 - h  A y x i  +  & y i 2; 0 2 )

and

or

Therefore the loglikelihood function (ignoring the missing data mechanism)
is

[031 cr32 ] 

From which we have

cr\i 0 12

0 12 022

-1

=  (A  A ] .

A =
031022 — 032012 

2011022 ~ 0X2
( 5. 25 )
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032011 -031012
P2 ““ 2 ’ (5.26)

011022 -  012

A> =  /*3 ~ /?lA»l -  #2/^2 (5.27)

01lA +  012^2 =  013 (5.28)

012̂ 1 +  022^2 =  023- (5.29)

Note that the sum of squares due to regression SSf/^) is given by

s s ( & ) =

therefore, the variance of the estimated values of y3 is given by

nT 'ssfg,) =  [A  M
<J\2 0 2 2 .

=  +  2/3i /?2012 + /3|<T22-

011 012 'A '
.A .012 022.

Hence the model variance a2 is given by

0 2 =  033  — (/32011 +  2 /3i/320i2 +  0i< 7T i)' (5 .3 0 )

The likelihood function of the observed data Y0bs can be factorized in the 

following:
nc n

L(b z  I Ycb») =  n « « .  ,yi2,yi31 /£,S) JJ f(yu,yi21 /*,£)
i=l i=ne+l"c “

= n f<*> ,yia l/f»S)f(yis |yii,yia,ff,S). f(yii,yi2 1 b ^)
i=l i=ne+l

=  n f ( y i i > y i 2 1 s ) - I I  f (yis I A » + A y u  +  A s y i2 ,0 2 ) (5 .3 1 )
i=l i—1
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Then the ML estimates o f /*i,M2> and cr2 are those values
that maximize the individual terms of the RHS of (5.31).

Maximizing the first term of the RHS of (5.31) with respect to and 
axx we have the usual ML estimates of the mean and variance of the bivariate 
normal distribution, that is,

Mi Ey.i _
«=1

Ey>2 _
—  =  y2,

(5.32)

(5.33)
»=i

and

£"= i(y ii -  mi)2 £ L i (y i i  -  y i )2cru  =  ------------------------=  ------------------------
n n

E ”=i(yi2-M2)2 E “=,(yi2-y2)20r22 — —------------------ — = ---------------------n n

(5.34)

(5.35)

The likelihood function of the second term of the RHS of (5.31) is given

by

MA, +  /3iyii +(hy i2,<r2 | yii,yi2) =  (2x)~^ (a2)-**
1 °%

.E xp [- —  ^ ( y i3 -  A> -  P i y n  -  ^ y i 2 )2],
i=l

from which the loglikelihood is

t ( -1 yii,y;2) =  -  Y ln(27r) ~  Y 1™ 2 ~ 2^2 ~ P o- Piyu -  fayu?•
i=l

Maximizing (5.36) with respect to /30, A ,  A  and <r2 we get

Po =  T z~  PiTx ~ P ifi,

(5.36)

(5.37)
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where y  ̂ =  £  £ “=i yu , y| =  ^  yi2 and y*s =  £  E ^ i  yis- That is, y ',  
y  ̂ and y| are the complete-case estimates of the means. Also we have

where

A  =

(h =

S31S22 -  Ss2Si2 (5.38)
S11S22 — s j2

S32S11 — S31S12 (5.39)
SnSj2 - S ?2 ’

Sjk =  — £ ( y i j  -  yj)(yik -y £ ) , j  #  k »  l ,  2,3
i=i

and for j= k = l ,2 we have

Su =  - T i ? -

S22 =  -J- ^ ( y i2 -  y5)s-

That is, the ML estimates of the parameters of the conditional distribution 

f(yi3 | yii,yi2) are based on the ^-complete cases.

Finally,

_  E °^ i(y j3 -  0o -  (hyn  -  / t e )2
nc

=  ^  £ (y i3  -  yis)2

=  S33 — (/3f Su -f /3fS22 + VfhfcSw)) l< m  =  l , . . - k  — 1. (5.40)

Using the invariance property of the ML method of estimation, estimates of 

other parameters can then be obtained. In particular, from (5.27) above we
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have

fa =  A> + 0ifri +  $2^2

—  y l  ~  0\ y \  — P 2 T 2  +  A p i  +  A 2A 2 

=  y£ + A (£ i  - y t )  + /?2(A2 - y l )
2

=  5 l + 1 3 A (A i -y > ) ,  (5.4i)
j= i

and from (5.30) we have

<*33 =  <T2 +  0\d\\ +  20i 02&\2 +  02022 •

Substituting the value of a2 from (5.40), we have

033 =  S33 — /32Sn — 2A & S 12 — ^2̂ 22 +  /^lO'n +  20102&12 +  /3f <T22 

=  S33 +  0i (^u — Sn) +  2/31/32(<7i2 — S12) + $ 2(022 — ^22)- (5.42)
Finally, from (5.28) and (5.29) we get

and

<*13 =  01&u +  02&12
S31S22 -  S32S12 .

-^n +
S32S11

S11S22 -  s?
S31S12 . 

012 -

12 S11S22 — s 22
(5.43)

<*23 =  0\0\2 +  02&22
S31S22 ”  S32S12 . S32S11 — S31S12 -

-<*12 H----n S ------- 2̂----022-
S11S22 -  S 212 S11S22 — s?.12

(5.44)

5.2.3 GENERALIZATION OF ANDERSON’S METHOD TO THE 

MULTIVARIATE NORMAL DISTRIBUTION

The generalization of Anderson’s factorization method to the multivari­
ate normal distribution with one variable subject to missingness can be dealt 

with as follows:
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Consider a k-variate multivariate normal sample (yu>yi2> • • -»yik)> i =  
where (yn, - - . ,  yi.k—1), i =  1, . . . , ^  are ^-complete k-variate ob­

servations and (y ii,...,y i,k _ i), i =  nc + 1, . . .  ,n are (n -  ric) observations 
on k—1 variables with missing yik- Thus we have ric k-variate observations 

on (y ix> - • • ,y ik )  and (n — nc) observations on k-1  variables (y ^  . .  . , y i , k - i ) ,  

that is,

f(y a ,. . .  ,y u )  =  (2*)* E f *
(5.45)

and

(5.46)

Thus the joint density of a multivariate normal sample with nc k-variate 

(y u ,. .. ,yik) observations and (n — nc) k-l-variate (y ji ,. . . , yi^_i) observa­
tions is given by

f(Y„bs | g,S) = (2»)-S"-| E

(5.47)

Therefore the loglikelihood function (ignoring the missing data mechanism) 

is

% , s  I You) = -  y in  IEI - i  | >  -  (f)'s-'(y i -  a)

— y l n | E | - i  £  ( y i - g J ' E - ' f y t - e ) .  (548)
«=nc+ l
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Thus the maximum likelihood estimates of /z and S can be found by maxi­
mizing (5.48) with respect to these values. A simpler approach to this max­
imization is Anderson’s factorization method.

The joint density of (yu . . .  ,yik) can be factorized as follows:

f(yii • • • >yik I t £ i =  f(yu»• • • »yi,k— 1 1 /£> ̂ )-f(yik I yn» * --»y»,k— 1»

(5.49)

where, by the properties of the multivariate normal distribution,

f(y ii,---,y ijc -i I Af> ^) ~  N(/xi, . . . , /̂ k—1 1 • • • i i , k —i )>
k— 1

f(y*k I y ii,.-.,y itk-i,A),/3i,/32.” -,/?k-i.0'2) ~ N(A» + 5^ftyu;^2)
j=i

and

or

\Pl ... 0k—1 ] — [ <7fcl ••• 0k,k—l]

011 •••
• • •

<7*-l,l ••• ^k-l.k-1

-1

From which we have

0O =  ̂ 3 -  PiUi -  • • • ~  P k -lU k -l,

(5.50)

(5.51)

and

<7X1 <7l,k-l

[<7*l ... 0k , k - l ) ~ [ P l  ••• Pk- 1] . (5.52)

,<7fc— 1,1 ... 0k-l,k-\ .
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Note that the sum of squares due to regression SS(/3, ) is given by

ss(gk) =  2 '( x ; l)x (k))/3k,

therefore, the variance of the estimated values is given by

<*11 •••
n ;1ss (2 k) =  [ f t  . . .  A . , ]

' A  ’

A - i .
— +  • • • +  0 k -iak -i,k -i + / < m = 1, . . .,k  — 1.

Hence the model variance a2 is given by

o'1 =  crjtfc -  ( j S ? o r „  +  . •. +  +  20lp mo lm). ( 5 . 5 3 )

The likelihood function of the observed data Y0b, can be factorized in the 
following:

nc n

L(/x,E | Y0bs) =  J J f(y ii,...,y ik  | /x>£) U  f(yii, — , y i^ -i I s )
t=l i=nc+l
ne

=  lM>£)-f(y«k | y i i ,- . . ,y i fk -i,/£ ,S )
1

D
• II * * -»yj.k-x !/f>E)
»=ne+l
n n, k— 1

= 1 £ ’ E) - i i f(yik
i=l i=l j=l

(5.54)

Then the ML estimates of =  l , . . . , k  -  1 together with /3q and
a2 are those values that maximize the individual terms of the RHS of (5.54).
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Maximizing the first term of the RHS of (5.54) with respect to jij and Ojj 
we have the usual ML estimates of the mean and variance of the multivariate 
normal distribution, that is,

Hi =  = y >’ J = (5.55)
i=l

and

t — St=i(yu ~ Hi)2 _  H»=i (y«j yj) • ^Tjj -- -- y j  -- A, (5.56)

The likelihood function of the second term of the RHS of (5.54) is given

by

k—1
u a  +  i ' " !  I ....... y » - i )  =

j=l

.Exp[—  ̂ 2  E ( yik “  ”  E  A y u)*l»
i=l j=l

from which the loglikelihood is

. n« k -i
*(• I y u  -.,y$,k-i) =  - y l n ( 27r) -  y h u r 2 -  ^ 2  E ^ yi2 “  &  ”  E ^ yw ^ ‘

i=l j=l
(5.57)

Maximizing (5.57) with respect to /3o,/3j, j  =  1, • •., k — 1 and a2 we get

P o ^ T k - ^ P i T j*  (5-58)
i=i

where ŷ  =  £  £ “= iyy, j =  That is, y^, j  =  l , . . . , k  are the

complete-case estimates of the means. Also we have
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[/3i ... /?*_!] =  [Ski ... Sk,k-i]

-1

. (5.59)

where

Si! ... Si,k_! 

Sk-1.1 ••• Sk-ijt-i

1 “*
Sjm =  y " (yu yj)(yim ~ym)» j 7̂  na =  l , . . .,k

1,4 i=l

and for j =  m =  1, . . . ,  k — 1 we have

Sjj =  ^ - £ ( y u  - y j ) 2> j =  — i
“ * i=i

That is, the ML estimates of the parameters of the conditional distribution 

f(y,k | y ii,. . .  ,yi,k-i) are based on the r^-complete cases.

Finally,

«2 S»=i(y»k ~ 0o ~  / W 2a =  ------ ------------------ -----------------
nc

=  — £ (y ik  -  yik)2
^  i=i

=  Skk — 01^11 +  • • • > +/^k-lSk-l,k-l +  2/3|/3n,S|m),

1 < m =  1 ,.. .k — 1. (5.60)

Using the invariance property of the ML method of estimation, estimates of 
other parameters can then be obtained. In particular, from (5.58) above we 

have
k - 1

i*  i
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i- 1 i=i
fc-i

=  y* +  5 3  A'CAi -  y>)» (5.6i)

and from (5.53) we have

Vkk — d 2  +  (Z e d 'l l  +  • . .  +  f t \ _ x d u - i ,k ~ \  +  2 /? //?m d7m ). (5 .6 2 )

Substituting the value of a2 from (5.60) we get

k—l
*kk  =  SkV +  Y ,  k ( ° i i  -  Sii ) ■+ 2 A  A n  (ffln, ■- S in ,) ,  1 <  m  =  1 , . . . ,  k -  1. (5 .6 3 )

j=l

Finally, from (5.52) we get

* k , k - i  ] =  [ A A - i ]
>u

sk_ 1,1

Si,k-,

Sk-i.k-1.
. (5.64)

5.2.4 EQUIVALENCE OF BUCK’S AND ANDERSON’S METHODS

In this section we shall try to estabish the equivalence of Buck’s and 
Anderson’s methods. To achieve this we consider the following special cases 
of Buck’s method:

a- k = 2, 
b- k=3,
c- The multivariate case.

Where k is the number of variables. Moreover, in each of the above cases, 
(a), (b) and (c) we shall consider the case of units with one missing value

156



subject to one variable. Simply, this is the case of one variable subject to 

missingness.

Buck’s method for k=2

Let Xjj, (i =  1,2 , . . . ,  n; j =  1,2.) represent a sample of n units, on each 
of which it is desired to have measurements on k=2 variables. Assume that 
yii is fully observed but y*2 is missing on (n — lie) units, where n̂  is the 

number of complete cases, that is,

X =

■ yn yi2 *

ync yne3
yncl+i ?

- yni ?

(5.65)

For the data matrix X , let A  be a 2x2 matrix that denotes the covariance

A =

Then the regression coefficients of y2 on yi are given by

' 5

a n a i2

a 2i »22
(5.66)

P i  — a ^ 8! ! (5.67)

and

Po =  % -P \ y i -  (5-68)

The missing values of y2 are estimated by

y2 =  X (2 )Pi-
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or

y .2 = A ) +  Ayu,  i n (5.69)

and a completed data set is created by imputing the missing values of yi2.

Then, on the basis of the completed data set, we have the following results 
that establish the equivalence of the two methods.

Theorem 5.1

The estimated mean and variance of yi from the completed data are 
the same as the corresponding ML estimates obtained by (5.11) and (5.12). 

Specifically,

and

=  y*

. E L i(y »  £ " = , ( * . - y i ) :„ „  -------------- - • -  -  -  •

Proof

The proof follows by noting that yi is independent of the missing values. 

Theorem 5.2

The ML estimates of the parameters of the conditional distribution of 
yi2 given yjj, namely /30 and given by (5.14) and (5.15) are the same as 

those obtained from the completed data. That is,

Proof

See the proof of theorem 4.10.
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Theorem 5.3

The mean of y2 obtained from the completed data is the same as the 
ML estimate given by (5.17) above, that is,

y2 =  n“ 1 j ] T y i 2 +  £  yi21 = y$  +  /M /ii - f t )  \ i—1 i=ne +1 J

Proof

The estimated mean (y2) from the completed data can be written as

y2 t  * } •
C i = l  i=ne+ l  )

where

(5.70)

fc-i
y<2 =  y5 +  £ ^ ( yy _ y j)-

j=i

Substituting the value of yi2 from (5.71) in (5.70) we have

(5.71)

k—1

y2 = n  1 ^ncy|+  (y| +  £ ^ j ( y y  ~  Jj))
i=B o+l j = l

=  n -x
k - l  n

n ^  +  t n - e W  +  E A  £  (yU- y j)
j = l  i=nc +  l

= n 1 {  ny  ̂+ £  (yy -  ?})
j = l  i=ne+ l

= n -x <
k - l  n k - l

nyS +  £ #  £  yy - £ A ( n - nc)yj
j = l  i=nc+ l  j= l
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= n -x <

=  n_1

= n-1

=  n-1

k-X d oc k—1

n5l + £ # ( ] C y u  *  £ y y )  -  (" -  * ) £  %%
j=l i=l i— 1 j=l

k-1 k—1 k-1
nyt + £  A(n£j ~ iky?) -  n ^ fty ?  +  ik £/3jy?

j=i

k-1
j=l j=l

k-1 k-1 k-1
n^  + n Z ^ j  “ ^ 1 ] ^ - n S ^ y j  + * > «S 3 jy j

j=i j=i j=i j=i
k-1

ny 5 + n J ]/3 j( /i j - y ? )
j=i

fc-i
(5.72)

i= i

and the proof follows by putting k=2 in (5.72).

Buck’s method for k=3

Let Xjj, (i =  1 ,2 ,. . . ,n ;  j =  1,2,3.) represent a sample of n units, on 
each of which it is desired to have measurements on k=3 variables. Assume 
that yu and y ;2 are fully observed but yu is missing on (n - 1̂ ) units, where 
ric is the number of complete cases, that is,

yu yu yu

y«u» ync» ync
yn«,+i ynej + l ?

ym yn2 ?

(5.73)

For the data matrix X , let A  be a 3x3 matrix that denotes the covariance 

matrix of the nc-complete cases, i.e.,
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A =

We can write A  as

where

A = (»•>) =

'a n a12 a is '

a21 a22 a2s

.a 31 a32 a33 -

C «3 '
(s =

a33

(5.74)

(5.75)

and

a33 =  V(y3)

QL3 =  (a31ja32)

C =
all a12

_ a21 *22.

Then the regression coefficients of y3 on y i,y2 are given by

(5.76)

£ = S i C (5.77)

By writing X (3) =  (yi 5y2), o f order nx2, we can estimate the value of 

y3 for those cases which have y3 only missing by taking

i 3 =  x <3)i

y.s *A > +  X ]y iiA i>  i =  1» - - n (5-78)
hxl
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Then the equivalence of Buck’s and Anderson’s methods for this case 
(k=3) can be established by the direct application of theorems 5.1, 5.2 and 

by putting k=3 in (5.70) of theorem 5.3.

Buck’s method for the multivariate case

Let yjj, (i =  l , . . . ,n ;  j =  l , . . . , k . )  represent a sample of n units, on 

each of which it is desired to have measurements on k variables. Assume 

that (y ;i,. . .  ,yi(k-i)) are fully observed but y* is missing on (n -  lie) units, 
where nc is the number of complete cases, that is,

X  =

yn yi2 yi(k-i) yu

y»el yn., • •• ync(k_0 yn.k
ync+i yn .,+1 ••• yn.(k-,)+t ?

yni yn2 • • • yn(k—1) ?

(5.79)

For the data matrix X , let A  be a kxk matrix that denotes the covariance 

matrix of the nc-complete cases, i.e.,

'a n a12 . . . axic"

A  =
a2x a22 a2k

.akx ak2 akk.

We can write A  as

A  = (agj) =
[ 5 aS ‘ l <akk

s =  1,

where

(5.80)

(5.81)

akk =  V (xk)

QLk — (aid, ak2 , • • •, ak(k_i))
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and

C =
ai(k-i)

(5.82)
. a (k - l ) l  ••• a ( k - l ) ( k - l ) ,

Then the regression coefficients o f xk on X i , . . .  , Xk_i  are given by

— o lC -1 . (5.83)

By writing X (fc) =  (x1?. . .  ,xk_ 1), of order nx(k -  1), we can estimate the 
value o f xk for those cases which have xk only missing by taking

xk =  X (fe)/3fe,

or

fc-1
Xik — A) "h îh/^hl) 1 1, . . . ,  n. (5.84)

h = l

The equivalence of Buck’s and Anderson’s methods for this multivariate 
case follows immediately from theorems 5.1, 5.2 and 5.3.

Remark 1

Note that the ML estimates of the parameters of the conditional dis­
tributions given by Anderson’s factorization method (5.14-5.15; 5.37-5.39 
and 5.58-5.59) for the case of one variable subject to missingness are exactly 
the same quantities required for Buck’s imputations. Since the parameters 
of Buck’s regression equations, required for imputation, are Least-squares- 
estimtes, it follows that the normality assumption is a necessary condition 
for the equivalence of Anderson’s and Buck’s methods. It also follows that 
the estimated conditional distributions via Anderson’s method can be used
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for imputation purposes. The resulting completed data set will be exactly 
the same as the one created via Buck’s method.

Remark 2

It is interesting to note that the first terms of the right hand side 
of (5.16)-(5.19), (5.40)-(5.42), (5.60)-(5.63) and the second term of the 
right hand side of (5.64) are the estimates obtained from the complete- 
case analysis. Thus the remaining terms represent adjustments based on 
the additional information from the (n — ric) additional observations on 

yilf ( y i i , y i 2) and ( y n , . . .  ,yi(k-i)> respectively. In other words, the complete- 
case analysis estimates can be obtained as a special case of the corresponding 
ML estimates by ignoring adjustment terms in the latter.

Remark 3

For patterns of missingness that do not conform for Anderson’s factor­
ization method, conformability can be created by deleting some few obser­
vations and consider them as missing values. The following simple example 

illustrates the point.

y u y u yis

y2i y2i y23
ysi y 32 yss
y « y 42 y43
ysi y&2 ?
ysi 7 ?
y n ? ?
ysi 7 ys3
ysi ? y93-

Clearly, there is no possible factorization for this pattern. However, a possible 

factorization can be obtained by deleting ys3 and y93 and consider them as 

missing values.
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5J RELATION BETWEEN ANDERSON’S AND BUCK’S METHODS:
UNITS WITH MORE THAN ONE MISSING VALUE

In this section we shall study Anderson’s factorization method for the 
case of units with more than one missing value. We start our study with 
the trivariate normal distribution where units have two missing values. For 
this case we consider two different cases of missingness, case (1) and case (2). 
These two cases will also be generalized to their corresponding multivariate 
versions. The objective is to investigate the equivalence of these two cases 

with the corresponding versions of Buck’s method.

5.3.1 ANDERSON’S METHOD FOR THE TRIVARIATE NORMAL 

DISTRIBUTION: CASE (11

Consider a trivariate normal sample (yii,yi2>yi3)>i =  1,. ••»!>; where 
(yii,yi2 ,yi3 ),i =  l , . . . , n c are nc-complete trivariate observations and yn,i =  
nc +  l , . . . , n  are (n -  nc) univariate observations with missing y*2 and y;3, 

that is,

■ y n yiz y n '

X  = yDll
y^ci+i

yDlJ
?

yn„
?

- y««i ? ?

(5.85)

Thus we have n<; trivariate observations on both yii,yi2 and yjs and 

(n — ric) univariate observations on yu, that is,

and
f(yii) = (27T) -  ’ <XU ’  e *» (5.87)
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Thus the joint density of a trivariate normal sample with ric trivariate 

(yu,yi2,yi3) observations and (n — ric) univariate yn observations is given by

f(Yobs | fly's) =  (2 jr)“ t » - |  S

.(2tt)
( n - " g ) - Ln~,nt.i 

7 *11 1
n
»=■«+>

(7j -M)2
•n (5.88)

Therefore the loglikelihood function (ignoring the missing data mechanism) 

is

<((£. s  | Y .u ) =  -  £  In I E I £ > i  -  e ) 'E - ‘  (y, -
i-l

. 1 r .  ( j i  fi)1- - ( n ^  •2 .is=nc+ l

(5.89)

Thus the maximum likelihood estimates of fi and £  can be found by max­
imizing (5.89) with respect to these values. Using Anderson’s factorization 
method, the likelihood function o f the observed data Y0b» can be factorized 

in the following:
ne n

L(H,£ | Y ob8) =  n f(«> ,yi2,yis I a£,£) I I  I
»— 1 i=ne+l
He

I ^ i,^n)f(yi2,yi3 I yii,Mi>*n)
*=1

n
• f j  f(yii I ,^n)
*=ne+l

n Pc
- n o *  I JJf(yi2>yis I yu,Mi>*u)

«=i i=i
n Pc

= n « * .  I I A> d -A y n .*2)
*=1 i—1

f i  f(yi3 I A> +  A yii + ^ y i2,^ 2)- (5-9°)
i=1
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Then the ML estimates of /i ,Ojj, j  =  1,2,3; A ) >  (h,lh  and the corresponding 
model variances are those values that maximize the individual terms of the 

RHS of (5.90).

Maximizing the first term of the RHS of (5.90) with respect to fix and <ru 
we have the usual ML estimates of the mean and variance of the univariate 
normal distribution obtained in section 5.2.1

Maximizing the second term of the RHS of (5.90) we obtain the ML 
estimates of the parameters of the conditioned distribution f(y;2 | yu) as was 

also given in section 5.2.1.

Finally, the ML estimates of the parameters of the third term of the 

RHS of (5.90) are those given in section 5.2.2.

Remark 4

Case (1) above can be generalized to the multivariate normal distribution 
(units with more than one missing value). Since the approach is the same, 

we shall only give the possible factorization, which is as follows:

D
L(M,E|Yobs) =  n f(y ii> ---y * )

»=1
nc n

- n  >yik|/f>^) f(yii> — »ys.k-2 Im.£)
»'j=1 i=ne+l

=  JJf(yii,. • Myi.k-21 L).f(yitk-i,yik I y>i> • • • >yi,k-2iM’£)
i-1

n
• f(yil» • • • > yi,k—2
i=n*+l
n Qc

=  n « y — >y;.k-2 1 H ’^ ) ' I I ^ y i,k-i’^ ik I y*1*— *
»=1 '=1

yi,k-2,M»S)
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n n< k-2
=  JJ f(yu _! I A> 4- 5Z/3jyij;<T2).

t=l i=l j=l

nc k-1
• IJf(yi,k I A) +  X ] ^ y « ;<r2)- (5-91)
i=l i-\

5.3.2 ANDERSON’S METHOD FOR THE TRIVARIATE NORMAL 
DISTRIBUTION: CASE (2)

Consider a trivariate normal sample (yii,yi2i 3̂ 3)5i =  where
(yu,yi2,yi3),i =  l , . . . ,n c  are i^-complete trivariate observations; (yii,yi2),
i - n e +  l , . . . ,m a r e m  bivariate observations with yj3 missing and y,i,i =  
m + 1, . . . ,  n are (n — ̂  — m) univariate observations with y;2 and yi3 missing. 
That is,

y n yi2 yis

yncl yncJ y nc,

yn<i+1 yntj+2 ?

ynci + m yncj+in 7

ynci -f"in+l ? ?

ynl ? ?

(5.92)

Thus we have trivariate observations on both (yii,yi2,yis); m bivari­
ate observations on (yji,yj2) and (n —n<. — m) univariate observations on yu,

that is,

t (y » ,y a ,y a ) =  (2* ) -* -|  2  r * . * * (5.93)

n y « ,y a )  =  (2* r mi s  r
m2

n c -f m
ixne + 1 - m)* (5.94)
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and

(n-n« -m) ("-■« -in) _J r »  (>j-ft)*
f(yii) =  (2tt) ’ <Tn  2 e * 2-<i=nc+m+, *1, . (5.95)

Thus the joint density of a trivariate normal sample with ric trivariate 

(yu,yi2,yi3) observations; m bivariate (yii,yi2) observations and (n-n^ -m ) 
univariate observations is given by

f(Y0bs | /i,S ) =  ( 2 x )S n'\ E |-^e~>

, v (n-ng-m) _ (n-nt - mj.(27r) * <rn 3 e J -̂'nc+m+j *n .

(5.96)

Therefore the loglikelihood function (ignoring the missing data mechanism)
is

H e , s l Yob.) = - ^ In l E l -  \  £ (*  -  (* -  e )
nc+m

-  y  In | S  | - -  £  ( y i - ^ 'S - ^ y i  - £ )
«=nc+l

-  i (n  -  n* -  m)ln<rn -  ]■ ^  ^ — ^ -.(5 .9 7 )
2 . i~~l (Tili=ne+m+l

Thus the maximum likelihood estimates of /x and E can be found by max­
imizing (5.97) with respect to these values. Using Anderson’s factorization 
method, the likelihood function o f the observed data Y0b* can be factorized 

in the following:
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nc+m
L (/i,£  | Y0bS) =  n ^ i .  ,y i2,yis |/f,S) J J  f(yii,yi2 |/f,£)

*=i i=nc+l

• n  f(yn l^ l^ l l )
ne+m+l"c

=  n f(yil I /*i»au)i(yiatyi* I Y iu H u V u )
i~  1

n,+m
• I I  f(yii lMi^n)-f(yi2 ly u .^ i^ n )
t=ne+1 

n
• I I  f(y*» I mi.* u )
i=n<;+m+l
n ne

= n f( y  1 A i i ,* n ) .n f(y*>y* 1 y ii’ /4! * ^ )
<=i 

nc+m
i=l

• JI f(y«2 ly ii.M i^ u )
»=*»e+l
n n,

= n ^  1t -i 1=1
nc+m

•f(yi31 yii,y»2,/£.S). JJ f(yia I yii»Mi.^n)
i—n*+l

nc+m
=  J I f(yii I #*»»*«)• n  1 +  A y u . ^ 2)

»=1 i=l

f i f(yis I A) +  A yu +  A yi2, <r2)- (5-98)
i- l

Then the ML estimates of j =  1, 2,3; /%, A> A  ar,d the corresponding
model variances are those values that maximize the individual terms of the 
RHS of (5.98). These estimates are the same as those obtained in sections
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5.2.1 and 5.2.2.

Remark 5

The possible factorization for the multivariate generalization of this case 

is as follows:
n

L (/i,£  | Yobs) =  J J f(y ii,...,y ik )
i=l
nc nuc-fm

=  f(y il,. . • ,yik I JJ f(y>l> • * • >yi,k-l I /f) 53)
»=1 i=n*+l

n

»=ne-j-m f  1
nc

=  n f<y“ —  >yi,k-2 I Ah ^)-f(yi,k—l»yik I yilj • • • >yi,k-2?/f’ 53)
»=1

n,+m
■ IT (̂y>i>• • • >y>.k-21 M»^)-f(y».k-i I y '1’ • • ■’ y*.k~2)
t=n«+l

D
• f(yu,---»yi,k -21 
t'=ne+m+l
n ne

=  JJ f(y ii.,.--,y »>-21 / f ^ n ^ k - i . y *  I y>i»"->y«.k-2>^is ) 
«=1 ‘=1

n«+m
• JJ f(yi,k —1 I yil> • • • >yi,k-2>/f) 53)
*=nc+l
d **«

=  JJ f(y ii,...,y i,k -2 1 /£>53)fjf (y i,k -i I y i i , . . . ,y i jc -2,£ ,£ )
«=i >=i

n*+m
-f(yik I y*i» - - -»y»,k—i) IT  ^ y ^ - i  I yii>*-*»y*.k-2>/£*53)

i=nc+l
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k-2

-  n  - * - »yi.k-2 l & E )  n f(yi,k-i I A) +  ̂ /3jyu,cr2)
i=l i=l j=l

nc k—1
* I I  f(y».k I A) + J^ A yu *0'2)- (5-99)
»=i j= i

5.3.3 EQUIVALENCE OF BUCK’S AND ANDERSON’S METHODS

In section 5.2.4 we have established the equivalence of Buck’s and An­
derson’s methods for the case of units with one missing value subject to one 
variable. This result has been generalized to the multivariate normal distri­
bution with missing values on one variable. In this section we shall try to 
study the same equivalence for the case of units with more than one missing 
value. Specifically, we shall consider Buck’s method for case (1) and case (2) 
above. The equivalence shall then be studied by comparing the estimated 

parameters for case (1) and case (2) with their corresponding versions of 

Buck’s method.

Buck’s method for the TYivariate Normal Distribution: Case (1)

The data matrix for this case is given by

' y n yiz y u  ‘

X  = y ncl y nel ync3

y Del+l ? ?

- ynl ? ?

and the variance-covariance matrix of the nc-complete cases is given by

a n *12 *13
a2i *22 *23
*31 *32 *33
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Using our notation of section 4.4, we estimate the values of y and y.
— 2 —3

for those cases which have y2 and y3 missing, by estimating the multivariate 
regression equation

Y  =  X (2S)B, (5.100)

where Y  =  (y2,y 3) and X (23) =  yit, i.e.,

y.-2 = A )2 +  /W i i ,  i =  l , . . . ,n c ,  (5.101)

and

y*3 =  Aw +  /W ii>  i = l , . . . , n c . (5.102)

where /3i2 =  a12aj"11 and 1̂3 =  axsafj1.

Thus we have

yi2 =  A )2 +  3i2yii, i =  n c+ i,...,n , (5.103)

and

yi3 = A)3 + 3 i3yii, i s n e + 1, . . . ,n .  (5.104)

Note that Buck’s method estimates the jointly missing values on the 
second and third variables from the multivariate regression of those variables 
on the first variable. This is done on the basis of the n<. complete cases. 
However, the conditional distributions of Anderson’s factorization for this 
case, given by (5.90), do not correspond to Buck’s regression equations which 
are required for imputation. Specifically, the second term of the RHS of 
(5.90) allows for the imputation of the missing values of yi2. This is because 
the second term of (5.90) corresponds exactly to Buck’s regression equation 
required for the imputation of the missing values of yj2. However, the missing 
values of y;3 can never be estimated on the basis of the factorization since
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there is no corresponding term that allows for its estimation. In fact, the 
last term of the RHS of (5.90) does not allow for this imputation since it is 
conditioned on both yu and y;2■ Thus, unlike the case of missingness on one 
variable, Anderson’s method for the case of units with more than one missing 
value cannot be used as an imputation method. It therefore follows that there 
is no equivalence relation between Anderson’s and Buck’s methods for this 
case of units with two missing values. By extension, the same conclusion 
follows for the corresponding multivariate normal case.

Buck’s method for the Trivariate Normal Distribution: Case (2)

For this case, the data matrix is given by

yn yn yis

yn«, ync, y..«.
yn«:i+i yn*j+2 ?

yn*i+m yne2+m ?
yncl +m+l ? ?

ym ? ?

Similarly, we estimate the values o f y2 and y3 for those cases which have y2 
and y3 missing, by estimating the multivariate regression equation

Y  =  X (23)B, (5.105)

where Y  =  (y2,y 3) and X (23) =  Yii> > e.,

yi2 =  A)2 +  A 2yil> i= l> " * M nc> (5.106)
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and

Yi3 =  3os +  AsYii* i =  l , . . . ,n c .  (5.107)

where /312 =  a12aj\ and (3l3 =  ai3a^  .

Thus we have

y,2 =  A>2 +  /W i i ,  i =  nc+1, . . . ,n  (5.109)

and

yi3 =  A)S + A s y il , i =  n c+ ,,...,n . (5.109)

Here, note that (5.108) and (5.109) impute the missing values of y;2 and 
yi3 from the multivariate regression of those variables on y;i from the n*- 
complete cases. However, the second term of the RHS of Anderson’s fac­
torization given by (5.98) allows for the estimation of the missing values of 
yj2 conditioned on yu from the (r^ -I- m)-complete cases. In other words, 
all-available-data on y;2 are used for the estimation of the missing values of 
yj2. Similarly, the last term of the RHS of (5.98) allows for the estimation of 
missing y;3 only for those cases with yn and yj2 observed. It remains that the 
jointly missing values on both yj2 and yl3 cannot be estimated as there is no 
corresponding term in the factorization that can allow for their estimation. 
Hence, for this case, Anderson’s method cannot be used as an imputation 
method for creating complete data sets. It therefore follows that there is no 
equivalence betweeen Anderson’s and Buck’s methods for this case of units 
with two missing values. By extension, the same conclusion follows for the 

corresponding multivariate normal case.

5A RELATION BETWEEN ITERATED BUCK’S METHOD AND 

THE EM ALGORITHM

Let Xij, (i =  1 ,2 ,. . . ,  n; j =  1 ,2 , . . . ,  k) represent the sample of n units, 
on each of which it is desired to have measurements on k variables. The
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observations Xjj can be represented in the form of an nxk matrix, X, in 
which some of the elements are missing. Without loss of generality, assume 
that the last n — nc units have missing entries. Thus we write

' xu Xj2 • • • l̂k

Xnci
Xnci +1 ? • • • n̂ck

? X„2 * • • Xnlc -
where ? denotes a missing value. 

For the data matrix X , let

(5.110)

Pi =  The set of the observed variables in the i-th unit 

Pt =  The matrix of the complete cases 

jiA =  The vector of means of the complete cases (Pt )

2,4 = The variance-covariance matrix of the complete cases (Pt )

H — The vector of means of the completed data (after imputation) 

E =  The variance-covariance matrix of the completed data 

(after imputation).

Then using Buck's method, for the case of units with one missing value, 
we estimate the value of Xj for those units which have Xj only missing by 

talcing
X . j  =  E (X y  | X i i , . • •, X j ( j _ i ) ,  X j ( j+ i ) ,  . • •, Xiki > --'A  )

or
i y  =  E (x y  I P i . g j . E * ) .  (5 .111 )
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For those units with more than one missing value (say, v< k missing val­
ues) we estimate the missing values by estimating the multivariate regression 
equation given by

(x jj,. . . , Xjv) — E(xy,. . . , Xjv | • • • j xjk; Ea )

or

(xjj,. . . ,  Xjv) == E(Xy,. . . ,  Xjv | F i i E a ) (5.112)

(5.111) and (5.112) are the usual regression equations required by Buck’s 
method for the estimation of the missing values. The regression coefficients 
of these equations can be computed with relative ease using Woolf’s proce­
dure as outlined in section 3.4. The incomplete data matrix X can now be 
completed by imputing the missing values.

Using theorems 4.6 and 4.7, the elements of the estimated variance- 
covariance matrix from the completed data (<rjj,Oj*k), are to be adjusted for 

bias as follows:

*Ji =  05 +  Aj*ii (5.113)

and

<*jk =  <7jk + Ajk«f>j *, (5.114)

where 4>jj is the sample variance of the residuals of the regression of the j-th 
variable on the remaining (k — 1) variables, and $jk is the sample covariance 
of the residuals of the multivariate regression of the j-th and k-th variables 
on the remaining (k — 2) variables. Aj and Ajk are the proportions of missing 
values in the j-th variable and in the j-th and k-th variables respectively.
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(5.113) and (5.114) can be rewritten as

where

1 “

i=l

1 “
<7* =  -  “  A j ) ( x ik -  A k )  +  $ > * , < } >

(5.115)

(5.116)

( 4>jj, if the j-th variable is missing on the i-th unit 

1 0, Otherwise
(5.117)

*jk,i =

<t>jki

l o ,

if both the j-th and k-th variables are missing 
on the i-th unit

Otherwise
(5.118)

and 4>jfc are as defined above.

Now for the data completed via (5.111) and (5.112), let

Xy, if xjj is observed,

a linear combination of the variables observed in 
the i-th unit (Pj) if xy is missing.

(5.119)

Formula (5.119) reimputes (from the completed data) the previously 
imputed missing values. Thus (5.119) defines an iterated version of Buck’s 
method which is similar to the one obtained by Kasap (1973).

At each iteration the data are completed by imputations and the 
variance-covariance matrix is computed. This matrix is then adjusted for 
bias using (5.115) and (5.116). Specifically, at each iteration we have, for 
those units with more than one missing value
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(iy,. . . ,  X|V) — E(xjj,. . . ,  xjv | Pi,/£, E) (5.120)

which, for the case of units with one missing value (v=l) ,  reduces to

Xij =  E ( x j j  | P j , £ i ,  E ) .  ( 5 . 1 2 1 )

Then on the basis of the recompleted data, we have

/ij =  — Xjj, (5.122)
*=i

djj =  -  ^  {(xy — /ij)2 +  $/>,»} , (5.123)
n »=i

^  ̂  {(Xij -  £j)(*ik -  Mk) +  $;*.;} , (5.124)
11 i=l

where $ j j ti and $jk,i are as defined by (5.117) and (5.118), respectively.
The method iterates between (5.120)-(5.124) until the estimated param­

eters in two successive iterations are not materially different.

Remark 6

Assuming multivariate normality, the above formulation of the iterated 
Buck’s method is equivalent to the Missing Information Principle of Orchard 
and Woodbury (1972) and the EM algorithm, discussed in chapter II. In 
other words, the EM algorithm is equivalent to an iterated version of Buck’s 

method.

L5 CONCLUSIONS

In this chapter we have established some relations between imputation 
techniques and the ML methods of estimation from incomplete data. Specifi­
cally, some equivalence relations are established between Buck’s method and
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Anderson’s (1957) fatorization method on the one hand and Buck’s method 
and the EM algorithm on the other hand.

We have started by giving detailed generalizations of Anderson’s method 
to the trivariate and multivariate normal distributions with one variable sub­
ject to missingness. On the basis o f these generalizations, we have shown that 
Anderson’s method is equivalent to the special case of Buck’s method where 
units have one missing value subject to one variable. This equivalence holds 
under normality assumptions.

We have also studied, in detail, the generalizations of Anderson’s method 
to the trivariate and multivariate normal distributions where units have more 
than one missing value. For this case, we have shown the non-equivalence of 
Anderson’s and Buck’s methods.

As for the EM algorithm, we have shown that it is equivalent to an 
iterated version of Buck’s method under the multivariate normality assump­
tions.
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CHAPTER VI

ESTIMATION FROM NON-RANDOM LY MISSING 
CATEGORICAL DATA

6.1 INTRODUCTION

Most work on inference with missing data is based on the explicit or 
implicit assumption that the missing data are missing at random (MAR) or 
missing completely at random (MCAR). In chapter II we have discussed the 
assumptions for the missingness mechanism (MAR/MCAR) and the conse­
quences of each of these assumptions in relation to the required method of 
analysis as given by Rubin (1976). Specifically, we have seen that the MLE’s 
of the population parameters from incomplete data require the MAR assump­
tion for the missingness mechanism. On the other hand, the use of deletion 
strategy requires the MCAR assumption. A direct consequence of these as­
sumptions is that they allow the ignorability of the missingness mechanism. 
Hence standard statistical techniques, under MAR/MCAR assumptions, can 
be applied to the completely recorded data to obtain estimates of the missing 
observations or sample estimates of the corresponding population parame­
ters.

The process of collecting categorical data may lead to some observa­
tions that cannot be certainly classified to one of the underlying categories. 

Considerable attention has been devoted to the analysis of such partially 
classified data. Three pioneering papers dealing with estimation in this case 
are: Hartley (1958), Blumenthal (1968) and Hocking and Oxspring (1971). 
In these studies, the partially classified observations are considered to be 
missing from their respective categories. Moreover, all these studies make 

the explicit or implicit assumption that the partially classified (missing) ob-
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servations are missing at random MAR. In this context of categorical data, 
the MAR assumption implies that the process leading to partial classificar 
tion (missingness) does not depend on the identity of the true underlying
category.

In some problems, however, the process leading to partial classification 
may be non-random, i.e., depends on the category identity of the observa­
tions. In these cases, estimates based on MAR assumption do not give satis­
factory results. In particular, estimation of population proportions must take 
into account the non-random nature of the missingness mechanism. Pregibon 
(1977) provided a model for non-random missing data and applied it as a 
tool of imputation. Little (1980, 1982) indicated how prior odds can be used 
with non-randomly missing data and estimates can be obtained via the EM 
algorithm. Nordheim (1978) developed a model for the estimation of popu­
lation proportions for two categories for data subject to some non-random 
partial categorization. In a subsequent paper, Nordheim (1984) extended 

his original work of (1978) by considering misclassification. He also extended 
the work to the multicategory problem with non-random partial classification 

and misclassification.
The objective of this chapter is to explore the area of non-ranodm miss­

ingness with special emphasis to categorical data. Specifically, we shall try 
to extend the work of Nordheim (1978, 1984) to the case of both non-random 
partial classification and non-random misclassification. To achieve this, in 
section 6.2 we give a review of the original work of Nordheim (1978, 1984). 
In section 6.3 we consider the extension of Nordheim’s work of section 6.2 to 

the case of non-random misclassification.

182



6,2 ESTIMATION OF POPULATION PROPORTIONS FROM 
NON-RANDOMLY MISSING CATEGORICAL DATA WITH 

NON-RANDOM PARTIAL CLASSIFICATION

Suppose that 100 objects are to be classified to categories A and B. 
Suppose that 40 objects are classified to A, 40 are classified to B and 20 
objects are uncertainly classified to A or B. This situation is shown below

Example 1

Classification Number of Objects

A 40
B 40

A or B 20
Total 100

Under MAR assumption (for the uncertainly classified objects) the standard 
estimates of the proportions of the two categories are .5 for A and .5 for B. 
Furthermore, the missingness mechanism would be described as an entirely 
random process with probability .2 that an individual object is uncertainly

classified.
If, however, the MAR assumption is inappropriate, the above standard 

estimates are quite misleading. Thus a new procedure for the estimation of 
category proportions with different probabilities of uncertain classification is 

required.
To facilitate the development o f the procedure, the following notation is 

introduced:

nA =  Population proportion of category A 

ns =  Population proportion of category B
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Pao =  Probability that an object of category A is classified to category A 

PAab — Probability that An object of category A is classified to uncertain 

category A or B

PBb — Probability that an object of category B is classified to category B 

PBab =  Probability that an object of category B is classified to uncertain 

category A or B

Na =  Number of observations classified to category A 

Nb =  Number of observations classified to category B 

Nab =  Number of observations classified to uncertain category A or B

In this notation, capital letters in the subscripts refer to true categories while 
small letters refer to observed categories. The objective is to estimate na and
7Tfi.

The above quantities satisfy the following constraints 

nA +  nB =  1

Pao +  PAab =  PBb + PfloS = 1
Na +  Nb +  Nab =  N,

where N is the total number of observations.

The distribution of Na, Nb, Nab,nA, PAab and Pfiab is trinomial with 
probability distribution

L{N a, Nb, Nab;n A,PjM,PBab) <x jvj (^ P x a ) jV‘ ( ( l  -  *A)PBb)N'

C* A P A *  +  { l - * A ) P B a k ) " * • (6-1)

From which the loglikelihood is given by
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Iog i(.) ix N„ \oz(ltAPAa) +  jV , l o g  ( x f i P f l i )  + N a t h s  (irAPA, t + KtPBal) _

(6.2)

In general, there are two degrees of freedom in the observation (e.g., NaiNb) 

and three independent parameters (irA,P Aa and Peb)- Thus the estimation 
of 7ta requires the imposition of at least one additional constraint on the 
parameters.

In considering the constraint to be imposed on the parameters, this 

procedure utilizes the knowledge of the experienced analyst. It is anticipated 
that researchers can develop estimates of PAa and Peb by experiment or by 
experienced judgement.

Introduce the constraint

p  _  PBab (6.3)

Assume that R is known. Note that R=1 corresponds to the MAR case 
where the probabilities of uncertain classification are equal.

Inserting R in the last term of the R.H.S. of (6.2), the third term becomes

N ab log [nAP Aab + (1 -  *A )RPAab] = Nab log [nA P Aab + PPAab ~  * a R P A ab]
=  Nab\og[PAab{nA +  R -  *AR)\

= Nab^g[PAab{̂ A + Z2(l - TT*))]
=  Nab log PAaft +  Nab log [tTA +  R(l -  TT*)]

(6.4)
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Hence the loglikelihood given by (6.2) now becomes

log L(.) oc Na log nA +  Na log PAa +  Nb log(l -  nA) +  Nb log PBb

+  Nab log PAab +  Nab log [** +  R( 1 -  1tA )] . (6.5)

Maximizing log L as a function of nA, we have

dlogL  _  Na _  Nb Nab( 1 -  R) _  Q
dirA irA 1 -  x A nA + R ( \ - irA) ~

[</V«(l ~ * a ) ( * a +  R( 1 -  tta )) -  NbnA(nA + R 

(1 ~ )) +  Nab(l  -  R)xa( 1 -  nA)]

+  [ita(1 - * a ) ( * a  +  jR(1 -  *•*))] = 0. (6.6)

Manipulating (6.6) we get a quadratic equation

*\N{\ - R )  + nA [R(N  +  Na) -  (Na +  Nab)] - R N a =  0 (6.7)

which is to be solved numerically to obtain an interpretable root (between 0 
and 1) as an MLE of the population proportion nA.

Remark 1

Note that

d2 log L - N a Nb_________Nat(l -  R)2
d7cA nA (! -  * a )2 (*\4 + R( 1 -  Ka ))2

is negative for nA between 0 and 1 which ensures that the interpretable root 
is a maximum.
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Remark 2

Setting R=1 in equation (6.7), we get

TtA(N -  Nab) - Na =  0 

or

KA(Na + N ab) ~  N a = 0 
since N  = N a + N b + N ab.

Therefore
No

A Na +  Nb'

Which is the standard estimate obtained by ignoring the uncertainly classified 
objects (Nab) since they are missing at random (MAR). This is what occurs 
in obtaining the standard estimates of example 1, i.e., nA =  40/80 = nB =  .5 
ignoring the 20 uncertainly classified elements.

Remark 3

The framework developed in section 6.2 can be extended to include mis- 
classification. In this case some of the observations classified to category 
A(B) may actually belong to category B(A). The model to describe such 
data must include the conditional probabilities of misclassification, i.e., (PAb 
and PBa).

The quantities necessary for the two category problem with partial clas­
sification and misclassification satisfy

*A +  *B =  1

P ao +  PAb + PAab =  PBb +  PBa +  ^ B a6  =  1

N a +  N b +  Nab =  N.
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In obtaining the MLE of all the P’s are assumed known. The likeli­
hood is

L(.) oc(7rAPAa + (1 -  nA)PBa)N‘ .(nAPAb +  (1 -  nA)PBb)N'

•((1 -  Pjia -  P a ^ A  + (1 -  JTa)(1 -  PBa -  P Bb))K h .

From which the loglikelihood is

logL(.) <xNa log{nAPAa +  (1 -  nA)PBa) +  Nb\og(xAPAb +  (1 -  xA)PBb)

+  Nab log((l -  PAa -  PAb)nA +  (1 -  7r/t)(l -  PBa -  PBb)).

(6.9)

Solving dlogL/d7TA=0 leads to a quadratic equation for the MLE of nA. 

Remark 4

Putting PAb =  PBa =  0 in equation (6.9) we get

logL(.) cxNa \og{nAPAa) -f 7Vt log((l -  nA)PBb)

+  Nab\og(nAPAab + nBPBab) (6.10)

since 1 -  PAb =  PAab and 1 -  PBa =  PBab.

Which is the case of partial classification without misclassification given by 
equation (6.2).

Remark 5

Putting 1 — PAa — PAb =  1 -  PBb — PBa =  0 in equation (6.9) we get

logZr(.) aiVa log(7r4 P/la +  (1 -  nA)PBa) +  Nb\og(nAPAb +  {l -  nA)PBb)

(6.11)

Which is the case of misclassification without partial classification.
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The framework developed above, for the two category problem, can be 
extended to the multicategory problem with non-random partial classification 
and raisclassification. Nordheim (1984) noted that the multicategory problem 
can become very involved in practice owing to the difficulty of specifying 
values for the various probabilities involved in the formulation. Hence the 
utility of the model is limited to particular restricted situations.

ESTIMATION OF POPULATION PROPORTIONS FROM 
NON-RANDOMLY MISSING CATEGORICAL DATA WITH 
NON-RANDOM PARTIAL CLASSIFICATION AND 
NON-RANDOM MISCLASSIFICATION

In this section we shall extend Nordheim’s work of section 6.2 by consid­
ering the case of non-random misclassification. The extension was motivated 
by noting that if the probability of misclassification differs according to the 
true category then the standard statistical techniques are inappropriate to 
allow correct estimation of the population proportion of the two categories. 
In this extension, an object which is misclassified from either of the two cate­
gories is considered to be missing from both categories. Moreover, a separate 
category (M) for those individuals who are more likely to be misclassified 
is incorporated in the model. It is anticipated that the experienced ana­
lyst can help identifying the elements of (M). This is similar to the idea of 
Press (1968) who allowed the probabilities of misclassification to vary with 
observation-such as, for example, the assessment of an interviewer of the 

probability that an interviewee is telling the truth.

To illustrate the point consider the following simple example. Suppose 
that 100 objects are to be classified to categories A and B. Suppose that 30 
objects are classified to A, 30 are classified to B, 25 are uncertainly classified 

to A or B, and 15 are misclassified. This situation is shown below
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Example 2

Classification

A
B

A or B 
Misclassified 

Total

Number of Objects 

30 
30 
25 
15 

100

Under MAR assumption (for both uncertainly classified and misclassified 
objects) the standard estimates of the proportions of the two categories are .5 
for A and .5 for B. Furthermore, the missing data process would be described 
as an entirely random process with probabilities .25 and .15 that an individual 
object is uncertainly classified or misclassified respectively.

If, however, the MAR assumption is inappropriate, the above standard 
estimates are quite misleading. Thus a new procedure for the estimation 
of category proportions with different probabilities of uncertain classifica­
tion and misclassification is required. To enhance the development of the 
procedure we adopt the notation of section 6.2 and let

Nm — Number of misclassified observations.

Then we have the following constraints

+  *B =  1

P Aa +  PAb +  PAab =  PBb +  P bo +  Psab — 1
Na -\-Ni,-\-Nab-\-Nm = Af,

where N is the total number of observations.
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The distribution of Na, JVt, Nab,N m-,nA,P Aab,P Bab,P Ab and PBa is 
multinomial of order 4, i.e.,

iV!
1 ^  “ iV j'ty ! Nab\ Nm\(*APAa)Na^ 1 ~ * ^ PBb)Sk

•{‘* A F >A a b +  ( 1  —  It a )P B a b ) ^ “*

■(ltAPAb +  (1 ~  KA)PBo)Nrn■ (6.12)

And the loglikelihood is obtained from (6.12) as

log LCX Na log (7XAPAa) +  ATblog (nBPBb) + Nab log (itAPAab + *bPl3ab)

+  Nm\o%(nAPAb + irBPBa) • (6.13)

In general, there are three degrees of freedom in the observation (e.g., Na, Nb} 
and Nab) and five independent parameters (irA, PAa, PAab, PBb and PBab). 
Thus the estimation of itA requires the imposition of at least two additional 
constraints on the parameters.

In considering the constraints to be imposed on the parameters, this 
procedure utilizes the knowledge of the experienced analyst to provide rea­

sonable estimates of PAab, PAb,PBb> and PBab- 
Introduce the constraints

and

R = PBab
PAab

(6.14)

(6.15)

Assume that R and Q are known. Note that R=Q=1 corresponds to the 
MAR case where the probabilities of uncertain classification are equal and

those of misclassification are also equal.
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Inserting R and Q in the third and fourth terms of the R.H.S. of equation
(6.13) respectively, the third term becomes

Nab log {*APAab +  (1 -  *A)RPAab] =  Nab log [ltAPAab +  RPAab ~ * ARPAab]

= N a b  log [ P A a b ^ A  +  R -  TTyt̂ )]
=  Nab\og[PAab(lCA +  R{ 1 -  7TA))]

=  Ntb log PAab +  Nat, log [nA+

R( 1 -  * a )] (6-16)

Similarly the fourth term of equation (6.13) can be written as

Nm log [*aPab + (1 ~ *A)QPAb] =  Nm log [nAPAb +  QPAb ~ * AQPAb]

=  Nm log [PAb{*ji +  Q -  Q *a )\

=  Nm log [PAb(*A + Q( 1 ~ TTy*))]

=  Nm log PAb +  Nm log [nA+

Q{ 1 -  *a )] ■ (6.17)

Hence the loglikelihood for nA given by equation (6.13) now becomes

l o g  L oc. Na l o g  nA + Na lo g  PAa +  Nb l o g ( l  -  nA) +  Nb l o g  Peb +  Nab lo g  PAab 

+  Nab l o g  [tXa  +  R ( \  -  ^ > l)] +  Nm lo g  PAb +  Nm lo g  [irA +  Q( 1  -  7TA )] .

(6.18)

Maximizing log L as a function of 7rA, we have

dlog L _  JV* _  Nb Nab( 1 -  R) +  Nm(l -  Q) _ Q
d l t  a  *  A 1 A * A  +  R ( 1  ~  * a ) * A  +  Q (1 “  * a )
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or

JV0(1 -  xA)(*A +  *(1 -  nA)){*A +  Q(\ -  * A)) -  NhxA(*A + R 

(1 -  *A))(xA + (?(1 -  *A)) + Nab(l -  R)nA{ 1 -  x A)(irA 

+  Q( 1 -  TT/t)) + Nm(l ~ Q)7Ta(1 ~ *A){*A +  R( 1 -  ft a ))

XA (1 ~ ftA )(ftA + R{ 1 -  **))(* A + Q( 1 ~ *a)) =  0 .

That is,

Na ft\ -+- QftA{ 1 — ft a ) +  Rft a  +  ~  -  2Rft a ~  2RftAQ(l ft a )

- * * ( 1  - R ) - Q f t * A ( l - f t A ) ( l - R ) \

=  Na ft\ +  q Va _  Q n 2A +  R n A  + Q R - q R iIa  _  2/fcr’  -  2RftAQ +  C?

-  ft\ +  t\R -  + RQftA +  _  RQ^a

=  Nn nA +  Q^a -  ^Qft\ +  R^a +  - SQRftA — 2RftA + 3RQnAnA

+  f t \ R  + Q f t \ - R Q f t \  

f ta { Q  +  R -  $ Q R )  +  * i ( l  -  2 Q  -  2R +  3 R Q )  +  f tA ( R  +  Q  -  R Q  -  l )

+ Q /?j, (6 1 9 )

ft\ +  Rft A -  Rft\)(ftA +  Q(1 -  ^a ))

=  Na

and

- N b

=  - N b (ft\ +  Rft A -  Rft\){ftA + Q  -Q ftA )
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=  -N ,  

and 

+  Nab

=  Nab

=  ~N b nA +  nAQ -  7t\Q + RnA +  RnAQ -  Rn2AQ -  RnA -  RQn2A

+ R Q nA

RQnA + it2a (Q +  R -  2RQ) +  7^(1 - Q - R +  RQ) (6.20)

(nA +  ita R +  tx\R -  n2A){TtA +  Q -  * aQ)

n2A +  Q * a  ~ ~ R * a  ~  + * Q * a +  RirA +  RQ « \  ~ r Q * a

Q * \  +  <?*i]

=  Nab

and

+  Nm

=  Nm 

=  Nm

=  N„

QnA( 1 - R )  +  n\{\ - 2 Q - R  +  2RQ) + tt̂ (/? -  flQ + Q -  1)

(6.21)

(nA -  k a Q){1 -  * a ) (* a  +  R -  ^ 4 ) j  

(nA -  * a ~ na Q + t̂ a Q ^ a  +  R -  k a R) 

n\ +  R tta ~  RirA ~ nA ~  Rir\ + Rn\ ~ *\Q  ~  * a RQ + RQ^a

+ * a Q  + * a r Q  -  * A R Q

RnA( 1 -  Q) +  ^  (1 - 2 R - Q  +  2RQ) + ^ ( - 1  + R + Q -  *<?)]

(6.22)
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(6.19) +  (6.20) +  (6.21) +  (6.22) =  0. Hence 

-  4 ( 1  - Q - R  +  RQ)(Na +  Nb +  Nab + Nm)

+  JVa4 (  1 - 2 Q - 2 R +  3 RQ) -  Nbx\(Q +  R -  2 RQ) +  Nabir2A{ 1 - 2 Q - R  

+  2 RQ) + Nm7r2A{ 1 - 2 R - Q  +  2RQ)

+  * a Q.Va +  RNa +  3/?g/Va -  + QNab -  RQNab +  RNm -

+  flQAr, =  0

or

-  4 ( 1  -  Q -  R +  RQ)(Na + N b +  Nab +  Nm)

Na -  2QNa -  2RNa +  3RQNa -  QNb -  RNb +  2RQNh +  Nab

-  2QNab -  RNab +  2RQNab +  Nm -  2RNm -  QNm +  2/K?iVmj

+ 4

+  ?I\4 Q{Na +  7V„fc) +  fl(iVa +  Nm) -  RQ(3Na +  Nb +  Nab +  Nm)

+  RQNa =  0.

That is,

- 4(1 - Q - R  + RQ)(Na + N b +  Nab + Nm)

+ 4

+  *A

RQ(3Na +  2Nb +  2Nab +  2Nm) -  R{2Na + Nb +  Wofc +  2JV,,,) -  Q(2Na 

+  Nb +  2Nab + lVm)j

Q(Na +  Nab) +  R{Na +  Nm) ~ RQ(N +  2W„)J +  RQNa =  0
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or

*A [-**a { 1 - Q - R + R Q ) N  +  * 2a \RQ(2N +  Na) - R { N  +  Na + N m) - Q { N +

+  *A

+  Na ■+■ Nab) +  Na -f Nab + N„

Q(Na +  Nob) +  R(Na +  Nm) -  RQ(N + 2Na) +  RQNa =  0.

(6.23)

Thus, maximizing log L as a function of it a leads to a cubic equation for the 

maximum likelihood estimate of tta, i.e,

7T* (1 -  Q -  R  +  RQ)N  -  tt2 \r.Q{2N  +  Na) -  R{N +  Na + Nm)

-  Q (N  + Na +  Nab) +  Na +  Nab +  N„ ~  *  A

-  RQ(N  +  2Na) -  RQNa =  0

Q(Na +  Nab) +  R(Na + Nm)

(6.24)

The above equation is to be solved numerically to obtain an interpretable 
root (between 0 and 1) as an estimate of the population proportion lr*.

Remark 6

Note that

d2 log L - N a Nb Nab( 1 -  Rj1_________ Nm( 1 -  Q)2
d*2 ~  tt2 ( l - n A)2 ( * a  +  R(1 ~ ” a ) ) 2 ( * a  +  Q ( 1 ~ Q ) ) 2

is negative for ua between 0 and 1 which ensures that the interpretable root 

is a maximum.
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Special Case (1)

Setting Q =  1 (MAR case) in equation (6.24), we get

- [RN -  R N m  - N  +  N m ) - n A [Na + N ab - R N a + R N m  - RN] 

-  R N a = 0

=  —it2a N { R  —  \ ) - N m (R — 1) 

-  R N a = 0

-  X a - R ( N  + N a -  N m ) +  (Na +  N ab)

=

=  *A

(R -  1 ){N - N m )

— R N a = 0 

(1 -  R){Na + N b +  N ab)

R ( N  +  N a - N m ) + {Na + Nab)

j + *A R{Na +  N b +  Nab + N m  + N a - N m ) 

-  {Na + Nab)] - R N a  = 0.

Since N  - N m  =  N a + Nb + N ab-

= n: (1 -  R){Na +  N b + Nab) \ + * A) R { N a + N b+ N a b  +  N a ) - { N a

+ N ab) - R N a  = 0

= n2A N{ 1 -  R) + ff* [rt(JV + Na) -  {Na +  Nab)} - R N a = 0 (6.25)

Thus for Q=1 equation (6.24) reduces to equation (6.7) which gives Nord- 
heim’s MLE of irA for the case o f non-random partial classification without 

misclassification.

Special Case (2)

Putting N m  =  0 (which implies that PAb —  Rbo =  0)> ‘n equation (6.13) 

we get
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log I(.) <xNa\og(*APAa) +  Nb\og((\ -  -nA)PBb)

+  Nab log(7TAPAab + 7TBPBab)- (6 26)

Which is Nordheim’s case of partial classification without misclassification 

given by equation (6.10).

Remark 7

Putting PAab =  PBab = 0 in equation (6.13) we get

log L(.) <x Na log (nA P Aa) + Nb log {nsPBb) + Nm log (nA P Ab + nBPbo) •

(6.27)

Which is the case of misclassification without partial classification.

Remark 8

Setting R=Q=1 in equation (6.23), we get

- 7U [Nab -  ( N  -  N m )\ -  Na = 0

or

-  7U [Nab - N a - N b -  Nab] - N a =  0 

since N — Nm =  Na +  Nb + Nab-

Therefore

*A [Na +  Nb] =  Na

or
Na

Na + Nb'
(6.28)

Which is the standard estimate obtained by ignoring both the uncertainly 
classified objects (Nab) and the misclassified objects (Nm) since they are both 

missing at random (MAR).
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6A CONCLUSIONS

In this chapter we have been concerned with the problem of non-random 
missingness with special emphasis to categorical data. Specifically, we have 
extended the work of Nordheim (1978, 1984) to the case of non-random 
misclassification. Our extension can further be extended to the multicategory 
problem with non-random misclassification. As we can see, the developed 

procedure is heavily dependent upon the choice of the parameters R and Q. 
However, Nordheim (1984) performed a sensitivity analysis by determining 
a range of plausible values for 7r\ depending on the range of R deemed 
reasonable. The conclusion arrived at is that when non-randomly missing 
data exist, even a rough estimate of R can result in improved estimates for it a 
compared to those estimates obtained by assuming MAR, (R =l). We expect 
the same conclusion to hold for our extension. A final decision on this can 
be reached by performing a sensitivity analysis similar to the one performed 
by Nordheim (1984) for the case of non-random partial classification.

It is our hope that the underlying ideas of this chapter can help in 

developing more general non-random missingness models.
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CHAPTER VII

CONCLUDING REMARKS

In this thesis we have been concerned with the study of imputation 
techniques in multivariate analysis with emphasis to the method of Buck 
(1960). The importance of Buck’s method as an imputation technique stems 
from its pioneering nature and its extensive use in the literature of statistical 
analysis with missing data. Moreover, the method combines two of the three 
major strategies for handling missing data, namely deletion strategy and 

imputation strategy. For the remaining third strategy (ML methods), we 
have shown that, under certain conditions, Anderson’s (1957) factorization 
approach is equivalent to Buck’s method. We have also shown that, under 
multivariate normality assumptions, the EM algorithm is equivalent to an 
iterated version of Buck’s method. The method of Buck is therefore central 
to all strategies for handling missing data in multivariate analysis.

We have started by a critical review of the method in which the use of 
Woolf’s (1951) procedure for the construction of the regression equations, 
required for the application of the method, is illustrated. The utilization 
of the available data by the method of Buck is then studied. The various 
issues raised in the literature about the method are enumerated and briefly 

described.

A simplified procedure for the estimation of the bias of the variances 
for the case of units with one missing value is given. A particular property 
of the procedure is that it does not require the tedious computation of the 
inverse of the covariance matrix of the complete cases. Apart from its relative 
ease of computations, the developed procedure has the advantage of giving
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a functional relationship between the relative bias and the coefficient of de­
termination. We have shown that the bias in the estimation of the variances 
is a function of the sample variance of the residuals resulting from the re­
gression of that variable on the remaining variables. On the other hand, the 
relative bias is found to be an increasing function of the proportion of missing 
values and a decreasing function of R2. However, the resulting estimate is 
shown to be inconsistent.

The fact that the bias in Buck’s method is a decreasing function of R2 has 
led us to suggest a simple modification to the method. In this modification, 
the missing values of the j-th variable are estimated from a subset of the 

remaining k—1 variables rather than the whole set of the k—1 variables. The 
choice of this subset can make use of a procedure developed by Beale et al

(1967) for the determination of the best subset of variables that maximizes 

the coefficient of determination R2.

Given the fact that the amount of bias in Buck’s method is a decreas­

ing function of R2, one would expect the method to give better performance 
under linearity assumptions. However, The effect of multivariate normality 
assumptions on the performance of Buck’s method needs further investiga­
tion. This might require a simulation study where the amount of bias is 
compared for normal and non-normal incomplete samples. This simulation 
study may also be needed for the comparison of the method’s results with 
other imputation strategies. The latter has already been done by Haitovsky
(1968) . Therefore, the statement of Kim and Curry (1977), that the results 
of Buck cannot be taken seriously because it is based on the examination of 

a single data set, is lacking a bit of literature review.
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We have extended Buck’s method to the case of units with more than 
one missing value. Here, we disagree with Buck’s conclusion about the un­
biasedness of the covariances. On the contrary, we have shown that this is 
only true for the case of units with one missing value. In fact the conclusions 
of Buck (1960) about the biasedness are obtained as special cases of our for­
mulations. For the case of units with more than one missing value, we have 
shown that the bias of the variances is a function of their respective sample 
variances of the residuals obtained from the multivariate regression of those 
variables with missing values on the remaining other variables. Similarly, the 
bias of the covariances is a function of their respective sample covariances 

of the residuals obtained from the multivariate regression of those variables 
with missing values on the remaining other variables. These estimates of the 
variances and covariances via Buck’s method are shown to be inconsistent.

We should note that Buck has dealt explicitly with the case of units with 
one missing value; the case of units with more than one missing value was left 
as a generalization. From the application point of view this generalization is 
straightforward. However, the statistical properties of the resulting estimate 
of the covariance matrix in the two cases are quite different as we have shown.

The use of the completed data via Buck’s method in regression analysis 
is also studied. This is done for the special case of only one variable sub­
ject to missingness. The effect of imputations on the estimated regression 
coefficients and their precision, the coefficient of determination, and the con­
ventional t-test are investigated. A practical conclusion of this investigation 
is that the imputed values as well as the method of imputation should be 
clearly identified. The existence of unrecognized imputed values in a multi­
variate data set is shown to have caused very misleading conclusions. 1 his 
is particularly important in public-use data bases which are shared by many
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users who may not be aware of the presence of imputed values. In this 
concern, the study of the effect of imputed values in regression analysis for 
the cases of units with one missing value and units with more than one 
missing value is perhaps worthwhile.

More importantly, we have seen that the mechanism that leads to miss­
ing data is an important factor that determines the validity of the use of the 

method. This result agrees with the statement of Little and Rubin (1987) 
that says: “ Buck's method is only valid under MCAR assumption for the 
missing v a l u e s The practical implication of this result is that practitioners 
are advised against the blind application of the method without studying 
the missingness mechanism. Applying the method when the missing obser­
vations are not missing at random might give quite misleading results. Here, 
the important remark of Afifi and Elashoff (1966), that u...the specific reasons 
behind the conditioning of computations on the complete cases are not clear ” 
has been explained by relating it to the concept of missingness mechanism.

Some relations between the maximum likelihood strategy and imputa­

tion strategy for handling missing data in multivariate analysis have been 
established. Specifically, we have established some relations between An­
derson’s (1957) factorization method and the method of Buck, on the one 
hand, and Buck’s method and the EM algorithm on the other hand. To es­
tablish these relations we have started by elaborating on the generalizations 
of Anderson’s (1957) factorization method to the trivariate and multivariate 
normal distributions with one variable subject to missingness. These gen­
eralizations are then used to show that the special case of Buck’s method 
where units have one missing value subject to one variable is equivalent to 
Anderson’s factorization method under the normality assumptions. This 
equivalence leads to the interesting result that Anderson’s method, as a ML
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method of estimation, can as well be used as an imputation technique. This 
is because the conditional distributions of the factorization method corre­
spond exactly to the regression equations required for imputation by Buck’s 
method.

The above mentioned equivalence between Anderson’s and Buck’s meth­
ods for the case of units with one missing value has motivated us to study 
the same for the case of units with more than one missing value. To achieve 
this we have studied, in detail, the generalization of Anderson’s method to 
the case of units with more than one missing value. Unlike the case of one 
variable subject to missingness, no equivalence relation is obtained between 
Anderson’s and Buck’s methods for the case of units with more than one 
missing value. In fact, in this case Anderson’s method can be viewed as a 
partial imputation technique.

As for Buck’s method and the EM algorithm, we have shown that, under 
multivariate normality assumptions, the EM algorithm due to Dempster et 
al (1977) and the Missing Information Principle of Orchard and Woodbury 
(1972) are equivalent to an iterated version of Buck’s method.

The various relations that have been established above make it clear 
that the various strategies for handling missing data are not mutually exclu­
sive. For example, we have shown that Anderson’s method, as a ML method 
of estimation, can also be used as an imputation technique. Such type of 
relations might make it worthwhile to conduct further research on the pos­
sible relations between some other imputation techniques and ML methods 
of estimation from incomplete data. In particular, one can investigate the 
existence of possible relations between Dear’s principal component method 
and the singular value decomposition method, as imputation techniques, and 
Anderson’s method and the EM algorithm as ML methods of estimation from
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incomplete data.

The work of Nordheim (1978, 1984) has been extended to include the 
case of non-random misclassification where the probabilities of misclassifi- 

cation are not equal. This extesion is achieved by viewing the misclassified 
elements as missing from their respective categories. The extension can be 
viewed as a general case that, under certain conditions, reduces to Nord­
heim’s (1978, 1984) procedures. Our extension of Nordheim’s procedure can 
further be generalized to the multicategory problem with non-random mis­
classification.

In fact, the estimation of non-randomly missing data is an important 
area o f research. An extension of the method of Buck in such a way that it 
can handle the estimation of non-randomly missing data is perhaps a good 
suggestion for future research. The work of Nordheim (1978, 1984) and 
Pregibon (1977), who developed a similar method and employed it as a tool 
for imputation, might be a good starting point for this suggested extension. 
Moreover, the statement given by Haitovsky (1968) might also help in this 
extension. The statement goes as follows:

“ Albert E. Beaton, in conversation, has suggested assigning dummy vari­

ables for the missing values, and adding interactions between the dummy and 
the explanatory variables, to account for different slopes for the different 
groups of non-random missing observations or categories

Other potential areas for future research include: 

a- Development of hybrid methods where two or more strategies could be 
combined to overcome the limitations of an individual strategy (see for ex­

ample the EM algorithm and Buck’s method).

b- Comparison of the performance of various methods dealing with missing
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data would also be worthwhile. Specifically, one can study and compare the 
performance of Federspiel (1959), Buck (1960) and Kasap (1973) methods. 
This proposed study may also include an additional method: A version of 
Buck’s method that uses all-available-data for imputation (details of this 
aditional method are found in Buck, 1960).

In this thesis we have been confined to the derivation of point estimators 
and their statistical properties. Indeed, a complementary part of the story is 
the interval estimation and test of hypothesis. The latter has had very little 
development in the whole area of statistical analysis with missing data, e.g., 
Rao (1956), Li et al (1991) and Alvo and Cabilio (1995).

We conclude this thesis by giving the following general remarks:

i- Despite the enormous literature in the area of statistical analysis with miss­
ing data, there is little indication that survey researchers have paid much 
attention to the literature. When faced with missing data problems, most 
survey researchers are likely to choose one of the historical approaches (dele­
tion strategy), and then proceed to interpret the resulting statistics as usual. 
The resulting estimates often require ad hoc adjustments to yield satisfactory 

estimates.

ii- Most of the literature concerns the derivation of point estimates of pa­
rameters, with interval estimation and testing based on large-sample theory. 
Tests and interval estimates from small samples with missing values have had 
very little development (Little and Rubin, 1987).

iii- Often the complete data have a distribution belonging to the regular 
exponential family. Consequently, the complete data ML estimate is the 
unique solution of the likelihood equations and has the desired asymptotic 

properties. In contrast, the incomplete data often have a distribution outside
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the regular exponential family, and it is possible for the likelihood function 
to have multiple stationary values. Hence, one cannot always be certain 
that a given solution of the likelihood equation is the ML estimate (Murray, 
1977). In fact, very little work has been done on diagnostic tests on the 
validity of the assumed probability models when data are incomplete, or on 
the robustness of estimates derived from them, see for example Liu (1996).

iv* Asymptotic theory for incomplete data patterns is not highly developed. 
One complicating issue is how to generalize the notion of letting the sample 
size tend to infinity in the context of incomplete data patterns. A weak 
condition is to let the proportion of incomplete units tend to zero as the 
sample size increases (Press and Scott, 1976). A more appropriate asymptotic 
theory is obtained by allowing the proportion of units with each observed 
pattern of response to remain constant as the sample size increases (Little, 
1979).

v- We feel that there is a need for computer programmes for analyzing general 
incomplete data problems. These programs should be clearly documented 
with regard to robustness under distributional and missingness assumptions. 
This documentation will safeguard the practicing statisticians against the 
blind application of those programmes without knowing their underlying the­
oretical assumptions that may not be valid for the case under consideration.
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APPENDIX

Table A H ): THE DATA OF BUMPUS (1898)

Case#
1
2
3
4
56
7
8
910 11 
12
13
14
15
16
17
18
19
20 
21 
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

Xi X2 *3

156 245 31.6
154 240 30.4
153 240 31.0
153 236 30.9
155 243 31.5
163 247 32.0
157 238 30.9
155 239 32.8
164 248 32.7
158 238 31.0
158 240 31.3
160 244 31.1
161 246 32.3
157 245 32.0
157 235 31.5
156 237 30.9
158 244 31.4
153 238 30.5
155 236 30.3
163 246 32.5
159 236 31.5
155 240 31.4
156 240 31.5
160 242 32.6
152 232 30.3
160 250 31.7
155 237 31.0
157 245 32.2
165 245 33.1
153 231 30.1
162 239 30.3
162 243 31.6
159 245 31.8
159 247 30.9
155 243 30.9
162 252 31.9
152 230 30.4
159 242 30.8
155 238 31.2
163 249 33.4
163 242 31.0
156 237 31.7
159 238 31.5
161 245 32.1
155 235 30.7
162 247 31.9

*4
18.5 
17.9
18.4
17.7
18.6
19.0
18.4 
18.6
19.1
18.8 
18.6 
18.6 
19.3
19.1
18.1 
18.0
18.5 
18.2
18.5
18.6 
18.0 
18.0 
18.2 
18.8
17.2 
18.8
18.5
19.5
19.8
17.3 
18.0
18.8
18.5 
18.1
18.5
19.1
17.3
18.2 
17.9
19.5 
18.1 
18.2
18.4
19.1 
17.7
19.1

xs
20.5
19.620.6 20.2
20.3 
20.9 
20.2 21.2 
21.1 
22.0 
22.0
20.5 21.8 
20.0
19.8
20.3
21.6
20.920.1
21.9
21.5
20.7
20.6
21.7
19.8
22.5 
20.0
21.4
22.7
19.8
23.1
21.3
21.7 
19.0
21.3
22.2
18.6
20.5
19.3
22.8
20.7
20.3
20.3
20.8
19.6
20.4
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Case# Xl x2 x3 *4 x5
47 153 237 30.6 18.6 20.4
48 162 245 32.5 18.5 21.1
49 164 248 32.3 18.8 20.9

Number of cases=49
Source: Manly, B.F.J. (1986). Multivariate Statistical Methods: A primer. 
Chapman and Hall, London, pp. 2-3.

Table A (2 l: MISSING DATA PATTERN (1)

Case#
1
2
3
4
56
78
9
10 11 
12
13
14
15
16
17
18
1920 
21 
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

Xl
156.00000
154.00000
153.00000?????????
i55.6666o
163.00000
157.00000
155.00000
164.00000
158.00000
158.00000
160.00000 ?????????
i57 66660?????????
i 56.66660
158.00000
153.00000
155.00000
163.00000
159.00000
155.00000
156.00000
160.00000
152.00000 ?????????
i 55.66666
157.00000
165.00000
153.00000
162.00000
162.00000
159.00000 ?????????
i 55.66666
162.00000
152.00000
159.00000
155.00000

x2
245.00000
240.00000
240.00000
236.00000
243.00000 ?????????
238.66666
239.00000
248.00000
238.00000
240.00000 ?????????
246.66666
245.00000
235.00000
237.00000
244.00000
238.00000
236.00000
246.00000
236.00000
240.00000
240.00000 ?????????
232.66666
250.00000
237.00000
245.00000
245.00000
231.00000 ?????????
243.66666
245.00000
247.00000
243.00000?????????
?????????
242.66666
238.00000

x 3

31.60000
30.40000
31.00000
30.90000
31.50000
32.00000
30.90000
32.80000????????
3l 6666o
31.30000
31.10000
32.30000
32.00000
31.50000
30.90000
31.40000
30.50000
30.30000 ????????
31.56666
31.40000
31.50000
32.60000
30.30000
31.70000
31.00000
32.20000 ????????
30T6666
30.30000
31.60000
31.80000
30.90000
30.90000
31.90000
30.40000
30.80000 ????????

X4
18.50000????????
is^oooo
17.70000
18.60000
19.00000
18.40000
18.60000
19.10000
18.80000 ????????
i8!66666
19.30000
19.10000
18.10000????????
i8!5666o
18.20000
18.50000
18.60000
18.00000
18.00000
18.20000
18.80000 ???????? 
isisoooo
18.50000
19.50000
19.80000
17.30000
18.00000
18.80000
18.50000
18.10000
18.50000
19.10000
17.30000
18.20000
17.90000

x5
20.50000
19.60000
20.60000
20.20000
20.30000
20.9000020.2000021.2000021.10000 ????????
22.66666
20.50000
21.80000????????
i 6186666
20.30000
21.60000
20.90000
20.10000
21.90000
21.50000
20.70000
20.60000
21.70000
19.80000
22.50000
20.00000
21.40000
22.70000 ????????
23.16666
21.30000
21.70000
19.00000????????
22/26666
18.60000
20.50000
19.30000
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Case# Xl x2 *3 *4 *6
40 163.00000 249.00000 33.40000 ???????? 22.80000
41 163.00000 242.00000 31.00000 18.10000 20.70000
42 156.00000 ????????? 31.70000 18.20000 20.30000
43 159.00000 238.00000 31.50000 18.40000 20.30000
44 161.00000 245.00000 32.10000 ???????? 20.80000
45 155.00000 235.00000 30.70000 17.70000 19.60000
46 162.00000 247.00000 31.90000 19.10000 20.40000
47 153.00000 237.00000 ? ? ? ? ? ? ? ? 18.60000 20.40000
48 ■????????? 245.00000 32.56666 18.50000 21.10000
49 164.00000 248.00000 32.30000 18.80000 ????•????

????????? and ???????? indicate missing values
Tables Af2.11-A(2.2): SUMMARY STATISTICS FOR THE COMPLETE 

CASES OF THE MISSING DATA PATTERN (1)

Table A(2.1):

VARIABLE MEAN STD DEV CASES
X i 157.1500 2.9069 20
x 2 240.6500 3.5285 20
x 3 31.3450 .5925 20
x 4 18.4350 .3964 20
*5 20.7050 .5808 20

Table A12.2):
COVARIANCE MATRIX

-8.4500
4.6868 12.4500
.3982 1.0534 .3510
.2418 .8813 .1268 .1571

. .4887 .8861 .1856 .0698

Number of cases =  20
Tables Ar2.3l-A(2.13): RESULTS OF THE MULTIPLE REGRESSIONS

FOR THE MISSING DATA PATTERN (1)

Table A12.3L
Dependent Variable X\i total length

Multiple R 
R Square
Adjusted R Square 
Standard Error

.47991

.23032

.02507
2.87022
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Table A(2.4):
Variables in the Equation

Variable SE (0) T-Value SigT
*5 .615546 1.388361 .443 .6638
x4 -.960966 2.280632 -.421 .6795
x t -.062308 1.504425 -.041 .9675
*2 .405943 .255991 1.586 .1336
(Constant) 66.383457 47.1483885 1.408 .1795

Table A12.51:
Analysis of Variance

S.V DF Sum of Squares Mean Squares
Regression 4 36.97755 9.24439
Residual 15 123.57245 8.23816
Total 160.55000

= 1.12214, Signif F =  .3829

Table A(2.6):
Dependent Variable X 2 : alar extent

Multiple R .73814
R Square .54486
Adjusted R Square .42348
Standard Error 2.67911

Table A(2.7):
Analysis of Variance

s.v
Regression
Residual
Total

DF Sum of Squares Mean Squares
4 128.88575 32.2214
15 107.66425

236.55
7.17762

F =  4.48916, Signif F = .0139
Table A12.8):
Dependent Variable length of beak & head 

Multiple R
R Square .45431
Adjusted R Square .30879
Standard Error .49258
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Table A (2.9):
Analysis of Variance

s .v DF Sum of Squares Mean Squares
Regression 4 3.03002 .75750
Residual 15 3.63948 .24263
Total 6.6695

F =  3.12203, Signif F =  .0469 
Table A(2.101:
Dependent Variable X 4: length of humerus

Multiple R .68970
R Square .47568
Adjusted R Square .33587
Standard Error .32304

Table A(2.11):
Analysis of Variance

S.V DF Sum of Squares Mean Squares
Regression 4 1.42016 .35504
Residual 15 1.56534 .10436
Total 2.98550

F =  3.40218, Signif F =  .0360 
Table A (2.121:
Dependent Variable A j: length of keel of sternum

Multiple R .58465
R Square .34182
Adjusted R Square .16630
Standard Error .53032

Table A12.13):
Analysis of Variance

S.V DF Sum of Squares Mean Squares
Regression 4 2.19087 .54772
Residual 15 4.21863 .28124
Total 6.40950

F =  1.94749, Signif F =  .1547
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Table A(3): MISSING DATA PATTERN (2)
Case# Xl x2 x3 X4 X6
1 ? ? ? ? ? ? ? ? ? 245.00000 31.60000 18.50000 20.50000
2 154.00000 240.00000 30.40000 17.90000 19.60000
3 153.00000 ? ? ? ? ? ? ? ? ? 31.00000 18.400(H) 20.60000
4 153.00000 236.00000 30.90000 17.70000 20.20000
5 155.00000 243.00000 31.50000 18.60000 20.30000
6 ? ? ? ? ? ? ? ? ? 247.00000 32.00000 19.00000 20.900(H)
7 157.00000 238.00000 30.90000 18.40000 ? ? ? ? ? ? ? ?
8 155.00000 239.00000 32.80000 18.60000 21.20000
9 164.00000 248.00000 32.70000 19.10000 21.10000
10 158.00000 238.00000 31.00000 18.80000 22.00000
11 158.00000 240.00000 31.30000 18.60000 22.00000
12 160.00000 244.00000 31.10000 18.60000 20.50000
13 161.00000 246.00000 32.30000 ???????? 21.800(H)
14 157.00000 ????????? 32.00000 i 9.16666 20.000(H)
15 157.00000 235.00000 31.50000 18.10000 19.80000
16 156.00000 ????????? 30.90000 18.00000 20.30000
17 158.00000 244.00000 31.40000 18.50000 21.60000
18 153.00000 ????????? 30.50000 18.20000 20.90000
19 155.00000 236.00000 30.30000 18.50000 20.10000
20 ????????? 246.00000 32.50000 18.60000 21.90000
21 159.00000 236.00000 31.50000 18.00000 21.50000
22 155.00000 240.00000 31.40000 18.00000 20.70000
23 156.00000 240.00000 31.50000 18.20000 20.60000
24 160.00000 242.00000 ? ? ? ? ? ? ? ? 18.80000 21.70000
25 152.00000 232.00000 30.30000 17.20000 19.80000
26 160.00000 250.00000 31.70000 18.80000 22.50000
27 155.00000 237.00000 31.00000 18.50000 20.00000
28 157.00000 245.00000 32.20000 19.50000 ? ? ? ? ? ? ? ?
29 ? ? ? ? ? ? ? ? ? 245.00000 33.10000 19.80000 22.76666
30 153.00000 231.00000 30.10000 ? ? ? ? ? ? ? ? 19.80000
31 162.00000 239.00000 30.30000 18.00000 23.10000
32 162.00000 243.00000 31.60000 18.80000 21.30000
33 159.00000 245.00000 31.80000 ? ? ? ? ? ? ? ? 21.70000
34 159.00000 247.00000 30.90000 i 8.io666 19.00000
35 155.00000 243.00000 30.90000 ? ? ? ? ? ? ? ? 21.30000
36 162.00000 252.00000 31.90000 i 9.16666 22.20000
37 152.00000 230.00000 30.40000 17.30000 77??????
38 159.00000 242.00000 30.80000 18.20000 20.50000
39 155.00000 238.00000 ? ? ? ? ? ? ? ? 17.90000 19.30000
40 163.00000 249.00000 77??777? 19.50000 22.80000
41 163.00000 242.00000 77777??? 18.10000 20.70000
42 156.00000 237.00000 31.76666 18.20000 20.30000
43 159.00000 238.00000 31.50000 18.40000 20.30000
44 161.00000 245.00000 32.10000 19.10000 20.80000
45 155.00000 235.00000 30.70000 17.70000 19.60000
46 162.00000 247.00000 31.90000 19.10000 20.40000
47 153.00000 237.00000 30.60000 18.60000 20.40000
48 162.00000 245.00000 32.50000 18.50000 ???777??
49 164.00000 248.00000 32.30000 18.80000 20.90000

????????? and ???????? indicate missing values

223



Tables A (3.n -A (3.2): SUMMARY STATISTICS FOR THE COMPLETE
CASES OF THE MISSING DATA PATTERN (2)

Table A(3.1):

VARIABLE MEAN STD DEV CASES
157.8621 2.9069 29

x 2 240.9655 5.0743 29
x 3 31.3310 .6714 29
X < 18.4069 .4735 29
X  5 20.7690 .9551 29

Table AI3.21:
COVARIANCE MATRIX 

■11.4803
12.6379 25.7488 
1.1723 1.8333 .4508
1.0331 1.7002 .2016 .2242

. 1.6170 1.6525 .1671 .1881 .9122.

Number of cases =  29
Tables AI3.31-A13.12): RESULTS OF THE MULTIPLE REGRESSIONS

FOR THE MISSING DATA PATTERN (2)

Table AI3.31:
Dependent Variable X \ :  total length

Multiple R .79286
R Square .62862
Adjusted R Square .56673
Standard Error 2.23027

Table A(3.4):
Analysis of Variance

S.V DF Sum of Squares Mean Squares
Regression 4 202.06949 50.51737
Residual 24 119.37878 4.97412
Total 321.44827

F =  10.15605, Signif F =  .0001
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Table A13.51:
Dependent Variable X 2: alar extent

Multiple R .80106
R Square .64170
Adjusted R Square .58198
Standard Error 3.28078

Table A (3.6):
Analysis of Variance

S.V DF Sum of Squares Mean Squares
Regression 4 462.64179 115.66045
Residual 24 258.32373 10.76349
Total 720.96552

F =  10.74563, Sign if F =  .0000 
Table A(3.7):
Dependent Variable A 3: length of beak & head

Multiple R .65393
R Square .42763
Adjusted R Square .33223
Standard Error .54866

Table A(3.8l:
Analysis of Variance

S.V DF Sum of Squares Mean Squares
Regression 4 5.39752 1.34938
Residual 24 7.22455 .30102
Total 12.62207

F =  4.48264, Signif F = .0076 
Table A(3.9):
Dependent Variable A 4: length of humerus

Multiple R .78755
R Square .62023
Adjusted R Square .55694
Standard Error .31520
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Table AI3.101:
Analysis of Variance

s.v DF Sum of Squares Mean Squares
Regression 4 3.89420 .97355
Residual
Total

24 2.38442
6.27862

.09935

F =  9.79911, Signif F =  .0001 

Table A f3 .ll I:
Dependent Variable X&: length of keel of sternum

Multiple R .52784
R Square .27861
Adjusted R Square .15838
Standard Error .87621

Table Af3.12):
Analysis of Variance

S.V DF Sum of Squares Mean Squares
Regression 4 7.11634 1.77909
Residual 24 18.42573 .76774
Total 25.54207

F = 2.31731, Signif F =  .0863

Table A (4 j: MISSING DATA PATTERN (3)

Case# Xl *2 *3 *4 x5
1 156.00000 245.00000 ???????? 18.50000 20.50000
2 154.00000 ? ? ? ? ? ? ? ? ? 30.40000 17.90000 19.60000
3 153.00000 240.00000 31.00000 18.40000 20.60000
4 153.00000 236.00000 30.90000 17.70000 20.20000
5 155.00000 ????????? 31.50000 18.60000 20.30000
6 163.00000 247.00000 32.00000 19.00000 20.90000
7 ?•???????? 238.00000 30.90000 18.40000 20.20000
8 155.00000 239.00000 32.80000 18.60000 21.20000
9 164.00000 ????????? 32.70000 19.10000 21.10000
10 158.00000 238.00000 31.00000 18.80000 22.00000
11 158.00000 240.00000 31.30000 18.60000 22.00000
12 160.00000 244.00000 31.10000 18.60000 20.50000
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Case# x2 X4 x6
13 161.00000 246.00000 32.30000 9 ???9 ?9 ? 21.80000
14 ? ? ? ? ? 9 ? ? ? 245.00000 32.00000 19.10000 20.00000
15 157 00000 235.00000 31.50000 18.10000 19.80000
16 156.00000 237.00000 30.90000 18.00000 ????????
17 158.00000 244.00000 31.40000 18.50000 21.60000
18 ????????? 238.00000 30.50000 18.20000 20.90000
19 155.00000 236.00000 30.30000 18.50000 ???????7
20 163.00000 246.00000 32.50000 9 9 ???? ?? 21.90000
21 159.00000 236.00000 31.50000 18.00000 21.50000
22 155.00000 240.00000 ???????? 18.00000 20.70000
23 156.00000 240.00000 ???????•? 18.20000 20.60000
24 160.00000 242.00000 ???????? 18.80000 21.70000
25 152.00000 232.00000 30.30000 17.20000 19.80000
26 160.00000 250.00000 31.70000 18.80000 22.,50000
27 155.00000 237.00000 31.00000 18.50000 ??????99
28 157.00000 245.00000 32.20000 ???????? 2i.4o66o
29 165.00000 245.00000 33.10000 ???????? 22.70000
30 153.00000 231.00000 30.10000 17.30000 19.80000
31 162.00000 239.00000 ???????? 18.00000 23.10000
32 162.00000 ????????? 31.60000 18.80000 21.30000
33 159.00000 245.00000 31.80000 18.50000 21.70000
34 159.00000 247.00000 30.90000 18.10000 ? ? ? ? ? ? 9 ?
35 155.00000 243.00000 30.90000 ???????? 21.36666
36 ????????? 252.00000 31.90000 i 9.10000 22.20000
37 152.00000 230.00000 30.40000 17.30000 18.60000
38 ????????? 242.00000 30.80000 18.20000 20.50000
39 155.00000 238.00000 31.20000 17.90000 19.30000
40 163.00000 249.00000 33.40000 19.50000 22.80000
41 163.00000 242.00000 31.00000 18.10000 20.70000
42 156.00000 237.00000 31.70000 18.20000 20.30000
43 159.00000 238.00000 31.50000 18.40000 20.30000
44 161.00000 245.00000 32.10000 19.10000 20.80000
45 155.00000 ????????? 30.70000 17.70000 19.60000
46 162.00000 247.00000 31.90000 19.10000 20.40000
47 153.00000 237.00000 30.60000 18.60000 99??????
48 162.00000 245.00000 32.50000 18.50000 21.10000
49 164.00000 248.00000 32.30000 18.80000 20.90000

????????? and ???????? indicate missing values

Tables Af4.n-Af4.2h SUMMARY STATISTICS FOR THE COMPLETE
CASES OF THE MISSING DATA PATTERN (3)

Table A(4.1):

VARIABLE MEAN STD DEV CASES
X i 158.1250 3.8029 24
x 2 240.6667 5.7760 24
x 3 31.5167 .7772 24
X 4 18.3750 .5951 24
*5 20.8042 1.0050 24
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Table AI4.2L

COVARIANCE MATRIX

T 4.4620
18.2174 33.3623
1.9326 3.1884 .6041
1.7424 2.9870 .3665 .3541

.2.0690 3.8145 .4469 .4210 1.0100.
Number of cases =  24
Tables A(4.3)-A(4.12): RESULTS OF THE MULTIPLE REGRESSIONS

FOR THE MISSING DATA PATTERN (3)
Table A(4.31:
Dependent Variable X\: total length

Multiple R .83789
R Square .70206
Adjusted R Square .63934
Standard Error 2.28384

Table A(4.4):
Analysis of Variance

s.v DF Sum of Squares Mean Square
Regression 4 233.52249 58.38062
Residual 19 99.10251 5.21592Total 332.62500

F =  10.15605, Signif F =  .0001
Table A (4.5):
Dependent Variable Xi'- alar extent

Multiple R 
R Square
Adjusted R Square 
Standard Error

.90687

.82242

.78503
2.67803
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Table A(4.6):
Analysis of Variance

s.v DF Sum of Squares Mean Square
Regression 4 631.06798 157.76700
Residual 19 136.26535 7.17186
Total 767.33333

F =  21.99806, Signif F =  .0000 
Table A14.71:
Dependent Variable A 3: length of beak &: head

Multiple R .79571
R Square .63316
Adjusted R Square .55593
Standard Error .51793

Table A (4.8j:
Analysis of Variance

S.V DF
Regression 4
Residual 19
Total

Sum of Squares 
8.79665 
5.09669 
13.89334

Mean Square
2.19916
2.6825

F =  8.19828, Signif F =  .0005 
Table A(4.9l:
Dependent Variable A 4: length of humerus

Multiple R .91473
R Square .83673
Adjusted R Square .80235
Standard Error .26456

Table A14.10):
Analysis of Variance

S.V DF Sum of Squares Mean Squares
Regression 4 6.81514 1.70378
Residual 19 1.32986 .06999
Total 8.14500

F =  24.34227, Signif F =  .0000
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Table A(4.11):
Dependent Variable X$: length of keel of sternum

Multiple R .71236
R Square .50745
Adjusted R Square .40376
Standard Error .77601

Table A(4.12):
Analysis of Variance

s.v DF Sum of Squares Mean Squares
Regression 4 11.78789 2.94697
Residual 19 11.44169 .60219
Total 23.22958

= 4.89373, Signif F =  .0070

Table A (5): MISSING DATA PATTERN (4)

Case#
1
2
3
4
56
78
9
10 11 12
13
14
15
16
17
18
19
20 
21 
22
23
24

Xl
156.00000
154.00000
153.00000
153.00000? ? ? ? ? ? ? ? ?
i 63.66666
157.00000
155.00000?????????
i 58.66666
158.00000
160.00000
161.00000
157.00000
157.00000
156.00000
158.00000
153.00000
155.00000
163.00000
159.00000
155.00000
156.00000
160.00000

X2
245.00000
240.00000
240.00000
236.00000
243.00000
247.00000
238.00000
239.00000
248.00000
238.00000
240.00000
244.00000
246.00000
245.00000
235.00000
237.00000
244.00000
238.00000 ????????? 
?????????
236.66666
240.00000
240.00000
242.00000

x 3

31.60000
30.40000
31.00000
30.90000
31.50000 ????????
36:66666
32.80000
32.70000
31.00000
31.30000
31.10000
32.30000 ????????
3L56666
30.90000
31.40000
30.50000
30.30000
32.50000 ????????
31:46666
31.50000
32.60000

X4
18.50000
17.90000
18.40000??????? 9
i 8:6o66o
19.00000????????
????????
i 6:i6666
18.80000
18.60000
18.60000? ? ? ? ? ? ? ?
i6: i6666
18.10000
18.00000
18.50000
18.20000
18.50000
18.60000
18.00000
18.00000
18.20000
18.80000

x5
20.50000????????
????????
26:26666
20.30000
20.9000020.2000021.2000021.1000022.00000 ????????
26:56666
21.80000
20.00000
19.80000
20.30000
21.60000
20.90000
20.10000
21.90000
21.50000
20.70000
20.60000
21.70000
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Case# Xl *2 *3 *4 *5
25 152.00000 232.00000 30.30000 17.20000 19.80000
26 160.00000 ????????? 31.70000 18.80000 22.50000
27 ????????? 237.00000 31.00000 18.50000 20.00000
28 157.00000 245.00000 32.20000 19.50000 21.40000
29 165.00000 ????????? 33.10000 19.80000 22.70000
30 153.00000 231.00000 ???????? 17.30000 19.80000
31 ??????*??? 239.00000 30.30066 18.00000 23.10000
32 162.00000 243.00000 31.60000 ? ? ? ? ? ? ? ? 21.30000
33 159.00000 245.00000 31.80000 18.50000 21.70000
34 159.00000 247.00000 30.90000 18.10000 19.00000
35 155.00000 243.00000 30.90000 ???'???'?? 21.30000
36 162.00000 252.00000 31.90000 ???????? 22.20000
37 ????????? 230.00000 30.40000 17.30000 18.60000
38 159.00000 242.00000 ???????? 18.20000 20.50000
39 155.00000 238.00000 3 i .26666 17.90000 ????????
40 163.00000 249.00000 33.40000 19.50000 ????????
41 163.00000 242.00000 31.00000 18.10000 ?????'???
42 ????????? 237.00000 31.70000 18.20000 20.30000
43 159.00000 ? ? ? ? ? ? ? ? ? 31.50000 18.40000 20.30000
44 161.00000 245.00000 ? ? ? ? ? ? ? ? 19.10000 20.80000
45 155.00000 ????????? 36.70066 17.70000 19.60000
46 162.00000 247.00000 31.90000 19.10000 ? ? ? ? ? ? ? ?

47 153.00000 ????????? 30.60000 18.60000 26.46666
48 ????????? 245.00000 32.50000 18.50000 21.10000
49 164.00000 248.00000 ???????? 18.80000 20.90000

????????? and ???????? indicate missing values
Tables Af5.n-Af5.2fc SUMMARY STATISTICS FOR THE COMPLETE

CASES OF THE MISSING DATA PATTERN (4)

Table A(5.1fc
VARIABLE MEAN STD DEV CASES
*1 156.8571 2.4133 14
x 2 240.8571 4.4351 14
x 3 31.3357 .6209 14
x 4 18.3571 .5258 14
X s

Table A15.2):

20.7500 .8662 14

COVARIANCE MATRIX

■5.8242
7.0549 19.6703
.8670 1.3747 .3855
.7626 1.4473 .2278 .2765

. .5923 .7462 .2665 .2962 .7504.

Number of cases = 1 4
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Table A(5.3):
Dependent Variable X\: total length

Tables AI5.31-A(5.13l; RESULTS OF THE MULTIPLE REGRESSIONS
FOR THE MISSING DATA PATTERN (4)

Multiple R .72690
R Square .52838
Adjusted R Square .31877
Standard Error 1.99188

Table A(5.4):
Analysis of Variance

s.v DF Sum of Squares Mean Squares
Regression 4 40.00588 10.00147
Residual 9 35.70841 3.96760
Total 75.71429

F =  2.52079, Signif F =  .1148 
Table A15.51:
Dependent Variable X 2 : alar extent

Multiple R .74848
R Square .56023
Adjusted R Square ..36478
Standard Error 3.53484

Table A15.6):
Analysis of Variance

S.V DF Sum of Squares Mean Squares
Regression 4 143.25861 35.81465
Residual 9 112.45567 12.49507
Total 255.71428

F =  2.86630, Signif F =  .0873 
Table A(5.7):
Dependent Variable X$: length of beak & head

Multiple R .73174
R Square .53545
Adjusted R Square .32898
Standard Error .50864
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Table A(5.8):
Analysis of Variance

S.V DF Sum of Squares Mean Squari
Regression 4 2.68375 .67094
Residual 9 2.32839 .25871
Total 5.01214

F =  2.59340, Signif F =  .1082 
Table A (5.9):
Dependent Variable X 4 : length of humerus

Multiple R .85500
R Square .73103
Adjusted R Square .61149
Standard Error .32775

Table A(5.10):
Analysis of Variance

S.V DF Sum of Squares Mean Squares
Regression 4 2.62753 .65688
Residual 9 .96676 .10742
Total 3.59429

F =  6.11521, Signif F =  .0116 
Table A f5 .l l ) :
Dependent Variable X 5: length of keel of sternum

Multiple R .70969
R Square .50366
Adjusted R Square .28306
Standard Error .73347

Table A(5.12l:
Variables in the Equation

Variable P SE(/3) T-Value SigT
X , 1.300797 .607019 2.143 .0607
X x -.020018 .122562 -.163 .8739
x 2 -.064385 .065752 -.979 .3561
*3 .197336 .476158 .414 .6883
(Constant) 9.335119 14.510802 .643 .5361
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Table AI5.131:
Analysis of Variance

s .v DF Sum of Squares Mean Squares
Regression 4 4.91316 1.22829
Residual 9 4.84184 .53798
Total 9.75500

F =  2.28314, Signif F =  .1397
Table A f5.141: POST-IMPUTATION REGRESSION COEFFICIENTS 

OF X5 ON X 1,X 2,X 3,X 4 FOR THE MISSING DATA 
PATTERN (4)

Variable P SE(/3) T-Value SigT
X 4 .952540 .390821 2.437 .0189
X i .033641 .053748 .626 .5346
x 3 .098438 .233346 .422 .6752

-.026106 .046045 -.567 .5736
(Constant) 1.147089 6.044673 .190 .8504

Table A (61: MISSING DATA PATTERN (5)
Case#
1
2
3
4
56
78
9
10 11 12
13
14
15
16
17
18
19
20 
21 
22
23
24
25
26 
27

Xi
????????? 
i 54.66666
153.00000
153.00000
155.00000
163.00000
157.00000
155.00000 ?????????
i58.6666o
158.00000
160.00000
161.00000
157.00000
157.00000
156.00000 ?????????
i 53.66666
155.00000
163.00000
159.00000?????????
i56'.6666o
160.00000
152.00000
160.00000
155.00000

X2
?????????
246.66666
240.00000
236.00000
243.00000
247.00000
238.00000
239.00000 ?????????
238.66666
240.00000
244.00000
246.00000
245.00000
235.00000
237.00000 ?????????
238.66666
236.00000
246.00000
236.00000
246.66666
242.00000
232.00000
250.00000
237.00000

x3

31.60000
30.40000
31.00000
30.90000
31.50000
32.00000
30.90000
32.80000
32.70000
31.00000
31.30000
31.10000
32.30000
32.00000
31.50000
30.90000
31.40000
30.50000
30.30000
32.50000
31.50000
31.40000
31.50000
32.60000
30.30000
31.70000
31.00000

x4
18.50000
17.90000
18.40000
17.70000
18.60000
19.00000
18.40000
18.60000
19.10000
18.80000
18.60000
18.60000
19.30000
19.10000
18.10000
18.00000
18.50000
18.20000
18.50000
18.60000
18.00000
18.00000
18.20000
18.80000
17.20000
18.80000
18.50000

x 5

20.50000
19.60000
20.60000
20.20000
20.30000
20.9000020.2000021.2000021.1000022.0000022.00000
20.50000
21.80000
20.00000
19.80000
20.30000
21.60000
20.9000020.10000
21.90000
21.50000
20.70000
20.60000
21.70000
19.80000
22.50000
20.00000
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Case# *1 x2 x3 X* x5
28 ????????? ????????? 32.20000 19.50000 21.40000
29 165.00000????????? 245.00006 33.10000 19.80000 22.70000
30 777777777 30.10000 17.30000 19.80000
31 ????????? 77777777? 30.30000 18.00000 23.10000
32 162.00000 243.00000 31.60000 18.80000 21.30000
33 159.00000 245.00000 31.80000 18.50000 21.70000
34 159.00000 247.00000 30.90000 18.10000 19.00000
35 ????????? 7777? ? ? ? ? 30.90000 18.50000 21.30000
36 162.00000 252.00000 31.90000 19.10000 22.20000
37 152.00000 230.00000 30.40000 17.30000 18.60000
38 159.00000 242.00000 30.80000 18.20000 20.50000
39 ????????? 7???????? 31.20000 17.90000 19.30000
40 163.00000 249.00000 33.40000 19.50000 22.80000
41 163.00000 242.00000 31.00000 18.10000 20.70000
42 156.00000 237.00000 31.70000 18.20000 20.30000
43 159.00000 238.00000 31.50000 18.40000 20.30000
44 ????????? ????????? 32.10000 19.10000 20.80000
45 155.00000 235.00000 30.70000 17.70000 19.60000
46 162.00000 247.00000 31.90000 19.10000 20.40000
47 153.00000 237.00000 30.60000 18.60000 20.40000
48 ????????? ????????? 32.50000 18.50000 21.10000
49 164.00000 248.66660 32.30000 18.80000 20.90000

????????? indicates missing values.
Tables Af6.11-A(6.21: SUMMARY STATISTICS FOR THE COMPLETE

CASES OF THE MISSING DATA PATTERN (5)

Table A(6.11:

VARIABLE MEAN STD DEV CASES
157.9737 3.7016 38

X 2 241.1053 5.1925 38
X 3 31.4500 .7907 38
x 4 18.4763 .5524 38
x b 20.7842 1.0018 38

Table AI6.2):
COVARIANCE MATRIX

-13.7020
14.7866 26.9616
2.0257 2.5919 .6253
1.4102 2.1404 .3285 .3051

. 2.2888 2.9774 .5419 .3907 1.0035.

Number of cases =  38
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Table A(6.31:
Dependent Variable X\: total length

Tables A(6.3)-A(6.6): RESULTS OF THE MULTIPLE REGRESSIONS
FOR THE MISSING DATA PATTERN (5)

Multiple R .74535
R Square .55554
Adjusted R Square .51632
Standard Error 2.57436

Table A(6.4):
Analysis of Variance

S.V DF Sum of Squares Mean Squares
Regression 3 281.64428 93.88143
Residual
Total

34 225.32940
506.97368

6.62734

F =  14.16579, Signif F =  .0000 

Table A(6.5):
Dependent Variable X 2: alar extent

Multiple R .75443
R Square .56917
Adjusted R Square .53115
Standard Error 3.55539

Table A (6.6):
Analysis of Variance

S.V DF Sum of Squares Mean Squares
Regression 3 567.79093 189.26364
Residual 34 429.78802 12.64082
Total

=  14.97241, Signif F =  .0000

997.57895

236



Table A(7 ) : MISSING DATA PATTERN (6)
Case# *2 x s X4
1 ????????? ????????? 31.60000 18.50000
2 154.00000 240.00000 30.40000 17.90000
3 153.00000 240.00000 31.00000 18.40000
4 ????????? ????????? 30.90000 17.70000
5 155.00000 243.00000 31.50000 18.60000
6 163.00000 247.00000 32.00000 19.00000
7 157.00000 238.00000 30.90000 18.40000
8 155.00000 239.00000 32.80000 18.60000
9 164.00000 248.00000 32.70000 19.10000
10 ????????? ????????? 31.00000 18.80000
11 158.00000 240.00000 31.30000 18.60000
12 160.00000 244.00000 31.10000 18.60000
13 161.00000 246.00000 32.30000 19.30000
14 157.00000 245.00000 32.00000 19.10000
15 ????????? ???7 ??7 ?7 31.50000 18.10000
16 156.00000 237.00000 30.90000 18.00000
17 158.00000 244.00000 31.40000 18.50000
18 ????????? ????????? 30.50000 18.20000
19 155.00000 236.00000 30.30000 18.50000
20 163.00000 246.00000 32.50000 18.60000
21 159.00000 236.00000 31.50000 18.00000
22 ????????? ????????? 31.40000 18.00000
23 156.00000 240.00000 31.50000 18.20000
24 160.00000 242.00000 32.60000 18.80000
25 ????????? ????????? 30.30000 17.20000
26 160.00000 250.00000 31.70000 18.80000
27 155.00000 237.00000 31.00000 18.50000
28 ????????? ????????? 32.20000 19.50000
29 ????????? ????????? 33.10000 19.80000
30 153.00000 231.00000 30.10000 17.30000
31 162.00000 239.00000 30.30000 18.00000
32 162.00000 243.00000 31.60000 18.80000
33 159.00000 245.00000 31.80000 18.50000
34 ????????? ????????? 30.90000 18.10000
35 155.00000 243.00000 30.90000 18.50000
36 162.00000 252.00000 31.90000 19.10000
37 152.00000 230.00000 30.40000 17.30000
38 159.00000 242.00000 30.80000 18.20000
39 155.00000 238.00000 31.20000 17.90000
40 ????????? ????????? 33.40000 19.50000
41 163.00000 242.00000 31.00000 18.10000
42 156.00000 237.00000 31-70000 18.20000
43 159.00000 238.00000 31.50000 18.40000
44 161.00000 245.00000 32.10000 19.10000
45 ????????? ????????? 30.70000 17.70000
46 162.00000 247.00000 31.90000 19.10000
47 153.00000 237.00000 30.60000 18.60000
48 162.00000 245.00000 32.50000 18.50000
49 ???7 ?7 ?7 ? ????????? 32.30000 18.80000

????????? and ???????? indicate missing values

*6
??????7?
i^eoooo
20.60000
26:36666
20.9000020.2000021.2000021.10000????????
22:66666
20.50000
21.80000
20.00000
77777777
26:36666
21.60000
77777777
2036666
21.90000
21.50000
7777777?
26:60660
21.70000????????
22:56666
20.00000????????
????????
i 9.86666
23.10000
21.30000
21.70000????????
21:36666
22.20000
18.60000
20.50000
19.30000 ????????
26:76666
20.30000
20.30000
20.80000
?????7 7 ?
26:46666
20.40000
21.10000????????
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Table A17.1):

Tables A(7.1)-A(7.2): SUMMARY STATISTICS FOR THE COMPLETE
CASES OF THE MISSING DATA PATTERN (6)

VARIABLE MEAN STD DEV CASES
158.1667 3.4600 36

*2 241.4444 4.8899 36
31.4361 .7345 36

X 4 18.4750 .4723 36
*5 20.8389 .9348 36

Table A 17.2):
COVARIANCE MATRIX 

■11.9714
12.1524 23.9111
1.4510 2.3035 .5395
.9129 1.8600 .2398 .2231

. 1.9848 2.6079 .2777 .1984 .8739.

Number of cases =  36
Tables A(7.3)-A(7.8): RESULTS OF THE MULTIPLE REGRESSIONS

FOR THE MISSING DATA PATTERN (6)

Table AI7.31:
Dependent Variable X\\ total length

Multiple R .61437
R Square .37745
Adjusted R Square .33972
Standard Error 2.81150

Table AI7.4):
Analysis of Variance

S.V DF Sum of Squares Mean Squares
Regression 2 158.15068 79.07534
Residual 33 260.84932 7.90452
Total 419

F =  10.00381, Signif F =  .0004
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Table A(7.5V.
Dependent Variable Xi'- alar extent

Multiple R .81384
R Square .66234
Adjusted R Square .64187
Standard Error 2.92630

Table A (7.6):
Analysis of Variance

S.V DF Sum of Squares Mean Squares
Regression 2 554.30190 277.15095
R e s id u a l  3 3 282.58699 8.56324
Total 836.88889

F =  32.36519, Signif F =  .0000
Table Af7.7l: 
Dependent Variable A 5: length of keel of sternum

Multiple R .46779
R Square .21883
Adjusted R Square .17148
Standard Error .85089

Table A(7.8):
Analysis of Variance

S.V DF Sum of Squares Mean Squares
Regression 2 6.69299 3.34649
Residual 33 23.89257 .72402
Total 30.58556

F =  4.62212, Signif F =  .0170
Table A (81: MISSING DATA PATTERN (7)

Case# X4 xs X5 Estimated
1 18.50000 20.50000 20.94093
2 17.90000 19.60000 20.41826
3 18.40000 20.60000 20.85382
4 17.70000 20.20000 20.24403
5 18.60000 20.30000 21.02804
6 19.00000 20.90000 21.37649
7 18.40000 20.20000 20.85382
8 18.60000 21.20000 21.02804
9 19.10000 21.10000 21.46360
10 18.80000 22.00000 21.20226
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U N IV F ~.T  - y  f ? r  * '* » R O R ! L IB R A R Y

Case# X4 x5 X5 Estimated
11 18.60000 22.00000 21.02804
12 18.60000 20.50000 21.02804
13 19.30000 21.80000 21.63782
14 19.10000 20.00000 21.46360
15 18.10000 19.80000 20.59248
16 18.00000 20.30000 20.50537
17 18.50000 21.60000 20.94093
18 18.20000 20.90000 20.67959
19 18.50000 20.10000 20.94093
20 18.60000 21.90000 21.02804
21 18.00000 21.50000 20.50537
22 18.00000 20.70000 20.50537
23 18.20000 20.60000 20.67959
24 18.80000 21.70000 21.20226
25 17.20000 19.80000 19.80847
26 18.80000 22.50000 21.20226
27 18.50000 20.00000 20.94093
28 19.50000 21,10000 21.81205
29 19.80000 22.70000 22.07338
30 17.30000 19.80000 19.89558
31 18.00000 23.10000 20.50537
32 18.80000 21.30000 21.20226
33 18.50000 21.70000 20.94093
34 18.10000 19.00000 20.59248
35 18.50000 ???????? 20.94093
36 19.10000 ???????? 21.46360
37 17.30000 ???????? 19.89558
38 18.20000 ??7 ???7 ? 20.67959
39 17.90000 7777777? 20.41826
40 19.50000 ???????? 21.81205
41 18.10000 ???????? 20.59248
42 18.20000 ???????? 20.67959
43 18.40000 7 7 ?????? 20.85382
44 19.10000 ???????? 21.46360
45 17.70000 77777777 20.24403
46 19.10000 ???????? 21.46360
47 18.60000 77777777 21.02804
48 18.50000 ??7?77?7 20.94093
49 18.80000 77777777 21.20226

Number of cases read = 49 
???????? indicates missing values
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l^ Jes A (g.l)-A (8.2): RESULTS OF THE REGRESSION OF X5 on X.,
FOR THE MISSING DATA PATTERN (7)

Table A f8. l l :

Multiple R .50357
R Square .25358
Adjusted R Square .23096
Standard Error .83908

Table AI8.2):
Variables in the Equation

Variable 0 SE(/3) T-Value SigT
*4 .871120 .260168 3.348 .0020
(Constant) 4.825205 4.805532 1.004 .3226

Tables A(8.3)-A(8.4l: RESULTS OF THE POST-IMPUTATION
REGRESSION OF X5 on X4 FOR THE

MISSING DATA PATTERN (7)
Table AI8.31:

Multiple R .57704
R Square .33298
Adjusted R Square .31878
Standard Error .70309

Table A (8.4):
Variables in the Equation

Variable fi SE(/3) T-Value SigT
*4 .871120 .179843 4.844 .0000
(Constant) 4.825205 3.323113 1.452 .1531
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