ON THE THEORY OF RANDOM SEARCH

By
FREDRICK BERNARD ODHIAMBO ONYANGO

URIVERSITY OF NAIROE ITIROMO LIPRARY

This thesis is submitted in fulfillment for the degree of Doctor of Philosophy ir Mathematical Statistics in the Department of Mathematics.

DECLARATI O NATVERSTIY OR NATROn

This thesis is my original work and has not been presented for a degree in any other University.


```
This thesis hes been submitted for examination
fy foroval as diversity supervisor.
```

- signature (illictmbin) 4-8-94 PROF. J.W. ODHIAMBO, DEPARTMENT OF MATHEMATICS, UNIVERSITY OF NAIROBI, NAIROBI, KENYA.

CONTENTS

PAGE

Title i
Declaration ii
List of Contents iii
Summary of Contents v
Acknowledgement viii
CHAPTER 1: INIRODUCTION.

1. 1 WHAT IS RANDOH SEARCH? 1
1.2 BASIC CONCEPTS AND NOTATIONS 2
1.3 BRIEE LITERATURE REVIEW 13
1.4 STATEMENT OF THE PROBLEM 18
1.5 SIGNIEICANCE OF THE STUDY 19
CHAPTER 2: ON SEPARATING SYSTEMS OF A FINITE
SET.
2.1 INTRODUCTION 21
2.2 BINARY MINIMAL SEPARATING SYSTEMS 22
2.3 NON-BINARY SEPARATING SYSTEMS 29
CHAPTER 3: RANDOM SEARCH MODELS BASED ON
binary structigres.
3.1 INTRODUCTION 34
3.2 RANDOM SEARCH MODELS BASED ON FINITE PLANE PROJECTIVE GEOMETRIES: $\operatorname{PG}(2, s)$ 38
3.3 RANDOM SEARCH MODELS BASED ON FINITE P亡ANE EUCLIDEAN GEOMETRIES 46
3.4 SEARCH MODELS BASED ON RANDOM B-1 MATRICES 55
CHAPTER 4：DETECTING MORE THAN ONE UNKNOWN
ELEMENT．
4．1 INTRODUCTION 71
4．2 2－COMPLETE SEARCH DESIGNS 77
4．3 CONSTRUCTION OF 2－COMPLETE SEARCH DESIGNS 84
4．4 PARTITION SEARCH DESIGNS 96
4．5 DETECTIRG $t(t) 2$ ）UNKNOWN ELEMENTS 103
CHAPTER 5：DURATION OF THE SEARCH PROCESS FOR DETECTING TWO UNKNOWN ELEMENTS
5．1 INTRODUCTION 123
5．2 SOME EXAMPLES 123
5．3 DURATION OF THE SEARCH PROCESS $1 き 5$
CHAPTER 6：SEARCH IN THE PRESENCE OF NOISE．
6．1 INTRODUCTION $: 43$
6．2 SEPARATING SYSTEMS WHICH DETERMINE ONE UnkNOWN ELEmENT IN THE PRESENCE OF NOISE 144
6．3 DETERMIGING TWO UNKNOWN ELEMENTS IN THEPRESENCE OF NOISE USING A 2－COMPLETESEARCH DESIGN
6．4 DETERMINING TWO UNKNOWN ELEME日TS IN THE PRESENCE OF NOISE USING EERT－TIOR EEARCH GESIGISS ミヒも
CHAPTER 7：CONCLUDING REMARKS $1 f 0$
LIST OF REFERENCES
literature relevant to the problem under study is given, whereas Section 1.4 gives a concise statement of the problem together with a list of specific objectives of the study. The envisaged significance of the results of the study are mentioned in Section 1.5 .

Chapter 2 deals with the properties of separating systems of a finite set S_{n}. Some useful properties of separating system proved by Renyi (1965) are given in Section 2.1, whereas binary minimal separating systems and non-binary separating systems are discussed in Sections 2.2 and 2.3 respectively.

In Chapter 3 , randow search models based on binary structures are examined. Properties of binary search models proved by Renyi (1965) are given in Section 3.1. Section 3.2 deals with random search models based on finite plane projective geometries while random search models based on finite plane Euclidean geometries are discussed in Section 3.3. Search models based on random Ø-1 matrices are given in Section 3.4.

Chapter 4 is concerised with search rodels for detecting more than one unknown elereft frou s finite set. Section 4.1 introduces two types of search designs namely; the 2 -Complete search design and the partition search design. A detail study of the 2-complete search design is given in Sections 4.2 and
4.3. Section 4.4 considers construction and properties of the partition search designs. The problen of detecting more than two unknown elements from a finite set is discussed in Section 4.5.

In Chapter 5 duration of the search process for detecting two unknown elements is studied. Examples to illustrate the computation of the duration of the search process for detection of two unkriown elements using the 2 -complete search design and the partition search design are given in Section 5.2. In Section 5.3 some results concerning the duration of the search process for detection of two unknown elements are derived.

Search models for the detection of unkiown element(s) in the presence of noise are studied in Chapter 6. The possibility of an observed function being in error is introduced in Section 6.1. Section 6.2 deals with separating systems which determine one unkrown element in the presence of noise while Sections 6.3 and 6.4 deal with the problem of detecting tho unknown elements in the presence of noise usime a 2-complete search design and a partition search derien.

Chapter 7, contains a bzief sumbiary of sur. concluding remarks together with a list of some problems that require further investigation.

ACKNOWLEDGEMENT

It gives me great plessure to express ny deep and sincere gratitude to my supervisor Prof. J.W. Odhiambo. I an grateful for his diligence and excellent supervision which he showed by sacrificing a lot of his time to scrutinize my work and guide me in the best way.

I also record my thanks to my lecturers Prof. J.A.M. Ottieno, Dr. M.M. Manene and Mr. C. Achola whose interests encouraged me in my work.

Naturally, 1 am indetted to my hork mates for their suggestions, comments and criticisms. To all trese well wishers, 1 say THANK YOU.

I am also grateful to Miss Jane Adhiambo Oreng for sacrificing a lot of her time to help in the preparation of this thesis.

Finally, l would like to express my thanks to my wife Cyprine, my two children Kevin and \#jas:ze, my parents D. Onyango and G. Adhiambo for their unfailing encouragement and support throughout ny ary

CHAPTER 1

INTRODUCTION

1.1

WHAT IS RANDOM SEARCH?
Consider a set $S_{n}=\left\{a_{1}, a_{2}, \ldots . ., a_{n}\right\}$ containing n elements and a systen F of test-functions defined on S_{n}. Suppose that k,of the elements, say x_{1}, x_{2}, $\ldots . . . x_{k}(k<n)$ in S_{n} are not known. Then the problem of search is concerned with determining the identities of these unknown elements using the test-functions in F. It is assumed that it is not possible to observe these unknown elements directly but one can choose a sequence of functions $f_{1}, f_{2}, \ldots, f_{N}$ from the system F and observe the values of these functions at each of the elements $x_{1}, x_{2}, \ldots . . .$. and x_{k}, until enough information is obtained to determine the identities of these unknown elements.

A method for the successive choice of the test-functions $f_{1}, f_{z}, \ldots \ldots, f_{N}$ fron a systell F of functions, wrich lesds in the end to the determination of the unknown element(s) is called a strategy of esart. A strategy can either be pure or wixed. It is called fure if it uniquely specifies the choice of the test-functions and, it is called mixed if the choice of these test-functions depends on chance. In \bar{s} mixed strategy, test-functions are chosen according to some probability distribution. A mixed strategy is therefore called randow search. A pure strategy is said to be predetermined if the number N and the choice
of each of the test-functions is deterained before beginning the observation. It is called sequential if only the choice of f_{i} is determined in advance and the choice of $f_{k}(k \geq 2)$ is made only after observing $f_{1}(x), f_{2}(x), \ldots \ldots, f_{k-1}(x)$ and way depend on these observed values. When observed values may be in error due to noise the search process is called noisy. Otherwise the search process is called noiseless.

If the system F of functions contains a function which takes on different values for different elements of S_{n} ther a single abservation of this function at the unknown element(s) will identify the element(s). In practice the number of different values taken by a test-function in E is much srisller than N. In the speciai case where each function can take only two values D erid 1 , the system of functions F is called a binary search system. A search strategy based on F is then descrited as bimary search strategy.
1.2 BASIG CONCEPTS AND NOTATIONS.

Ytsozewng are some basic concepts and notations ?.... \because asefui in our disucsion of the search Frotie=:

TyFes of search systems.
A system E of functions defined on the set S_{n} is ceijed e separating system if for every pair of distinct elements $a_{i}, a_{j} \in S_{n}$ there exists a function f in F such that $f\left(a_{2}\right) \neq f\left(a_{j}\right)$.

A separating system F can also be defined as

follows:

Let

$$
M=\left(f_{i}\left(a_{j}\right)\right), \quad 2=1,2, \ldots . ., \quad j=1,2, \ldots, n
$$

denote an mon matrix whose ($i, j)-t h_{i}$ entry is $f_{i}\left(a_{j}\right)$. Then F is a separating system if and only if all the columns of the matrix M are distinct. We shall call M the search matrix of the system F. A system F of functions is said to be minimal separgting system if no proper subset of F is a separating system on S_{n}.

We shall aiso need the notion of homogeneity of a separating systen of functions in the situation where all the elements in S_{n} have the same chance of being the unknown element, that is, when we assume that,

$$
\operatorname{Pr}\left(x=a_{i}\right)=1 / n, \quad i=1,2, \ldots \ldots, n .
$$

For any choice of $k(2 \leq k \leq n)$ distinct elements a_{1}, $a_{L_{2}}, \ldots . s_{L_{y}}$ of S_{n}, let $R_{j_{k}}$ denote the number of functions f in F such that $f\left(a_{i_{1}}\right)=f\left(a_{L_{2}}\right)=$ $f\left(z_{k}\right)$. Then if R_{k} does not depend on the choice of the k elements, F is called a weatily homogerieous system of order k. The system F is called a strongly homogeneaus system of order k, if for every k distinct elements $a_{L_{1}}, a_{L_{2}}, \ldots, a_{i_{2}}$ of S_{n} and a sequence of k numbers $\quad y_{i_{1}}, y_{i_{2}}, \ldots \ldots . y_{i_{k}}$ where $Y_{L_{3}}$ s are values taken on by members of F and they are rot necessarily all different, the number
$R_{k}\left(y_{i_{1}}, y_{i_{2}}, \ldots, y_{i_{k}}\right)$ of functions f in F for which $f\left(a_{i_{1}}\right)=y_{i_{1}}, f\left(a_{i_{2}}\right)=y_{i_{2}}, \ldots, f\left(a_{i_{k}}\right)=y_{i_{k}}$, does not depend on the choice of elements $a_{i_{1}}, a_{i_{2}}, \ldots \ldots, a_{i_{k}}$ but may depend on the values of $y_{i_{1}}, y_{i_{2}}, \ldots \ldots, y_{i_{k}}$.

Efficiency of a separating system

Let the range of the function $f_{1}, f_{2}, \ldots, f_{m}$ in F be a finite set $Y=\left\{y_{1}, y_{2}, \ldots \ldots . ., y_{q}\right\}$ and let $k_{j \ell}$ be the number of points in S_{n} such that

$$
\begin{aligned}
f_{j}(a)=y_{\ell}, \quad j & =1,2, \ldots \ldots, \mathbb{T} \\
\ell & =1,2, \ldots \ldots, q, a \in S_{n}
\end{aligned}
$$

and

$$
\sum_{\ell=1}^{q} k_{j \ell}=n .
$$

If the element $a_{i} \in S_{n}$ is assigned probability p and the function $f_{j} \in F$ is assigned probability p^{\prime}, then the entropy of a $\in S_{n}$ is given by

$$
\begin{align*}
H(a) & =-\sum_{i=1}^{n} P_{T}\left(a=a_{i}\right) \log P_{r}\left(a=a_{i}\right) \\
& =-\sum_{i=1}^{n} p \log P \tag{1.1}
\end{align*}
$$

and the entropy of $f \in F$ is

$$
\begin{align*}
H(f) & =-\sum_{j=1}^{m} E_{r}\left(f=f_{j}\right) \log P_{r}\left(f=f_{j}\right) \\
& =-\sum_{j=1}^{m} P^{\prime} \log P^{\prime} . \tag{1.2}
\end{align*}
$$

Thus $H(a)$ and $H(f)$ give the average uncertainty
associated with the selection of a_{i} from S_{n} and f_{i} Prom F respectively.

The joint entropy of a and f is given by:

$$
\begin{equation*}
H(a, f)=H(a)+H(f) \tag{1.3}
\end{equation*}
$$

since the choice of any element $a_{i} \in S_{n}$ is stochastically independent of the choice of any function $f_{j} \in F$.

Now, the probability distribution of $f(x)$ conditional on $f=f_{j}$ is

$$
\operatorname{Pr}\left(f(x)=y_{i} \mid f=f_{j}\right)=\operatorname{Pr}\left(f_{j}(x)=y_{i}\right)=P_{j} t
$$

and so the conditional entropy of $f(x)$ given $f=f_{j}$ is given by

$$
H\left(f \mid f_{j}\right)=-\sum_{t=1}^{q} p_{j} \log P_{j t}, \quad \text { for } p_{j t} \neq \theta
$$

and

$$
H\left(f \mid f_{j}\right)=0, \quad \text { for } p_{3 \ell}=0
$$

Renyi (1985) has proved the inequality

$$
\begin{equation*}
\sum_{j=1}^{m} H\left(f \mid f_{j}\right) \geq \log _{2} n \tag{1.5}
\end{equation*}
$$

for any separating syster F on S_{n}. The ratio

$$
\begin{equation*}
\log _{2} n / \sum_{j=1}^{m} H\left(f \mid f_{j}\right) \tag{1.6}
\end{equation*}
$$

is used as a measure of the efficiency of the separating system F. The closer this ratio is to one, the wore efficient the system $\left\{f_{1}, f_{2}, \ldots f_{m}\right\}$ is
in separating the elements of S_{n}.

The Duration of a Search Process.

We shall first consider the duration of the search process for detecting one unknown element. Let F be a system of m functions defined on the set $S_{n}=\left\{a_{1}, a_{2}, \ldots a_{n}\right\}$ which separates the elements of S_{n}. Let x be ar unknown element in S_{n} and let us suppose that we search for x in the following way: we choose first a function from F at random so that each function of F has the sarie probability $1 / m$ to be chosen. We ouserve $f_{1}(x)$, the value of f_{1} at x and after this we choose again a function f_{2} from F so that the choice of f_{z} is indeperident of the choice of f_{1} and each element f of F has the same probability 1/m to be chosen as f_{2}. We observe $f_{2}(x)$ and continue with the process until f_{N} is selected and its value at x observed.

We shall denote the probability that the seorence $f_{1}(x), f_{2}(x), \ldots ., f_{N}(x)$ determines the urnnown elewent x by $P_{1}(N, x)$ and the probability that the process of detecting x termirates exactly at the Nth step by $p_{1}(N, x)$. The expected duration of the search process for detecting the unkrown element x is then given by:

$$
\begin{equation*}
E_{1}(x)=\sum_{N=0}^{\infty} N p_{1}(N, x) . \tag{1.7}
\end{equation*}
$$

Next, we consider the duration of the search process for detecting two unknown elements. Let F be
a systen of m functions defined on the set $S_{n}=\left\{a_{1}, a_{2}, \ldots . \ldots, a_{n}\right\}$ which separates any pair of elenents of ' S_{n}. Let (u, v) be the unknown pair of elements and let us suppose that we search for the pair of elements in the following way: we choose first a function f_{1} from F at, random so that each function of F has the same probability $1 / \mathrm{m}$ to be chosen. We observe f_{1} at u and v. Each observation specifies a subset of S_{n}, say $A_{i u}$ and $A_{i v}$ where

$$
A_{b u}=f_{1}^{-1}\left(f_{b}(u)\right)
$$

and

$$
\begin{equation*}
A_{I V}=f_{1}^{-1}\left(f_{1}(v)\right) \tag{1.8}
\end{equation*}
$$

Next, we choose f_{z} at random such that the choice of f_{2} is independent of the choice of f_{1} and each function f in F has the sane probability $1 / m$ of being chosen as f_{2}. Again by observing f_{2} at u and $v \quad w \in$ obtain subsets $A_{z u}$ and $A_{2 v}$. The process is contirued until we are able to determine the untran pair \{u.a\} uniquely; that is, until

$$
\begin{equation*}
\left[\bigcap_{i=1}^{N} A_{i u}\right] \cup\left[\bigcap_{i=1}^{N} A_{i v}\right]=\{v, v\} \tag{1.9}
\end{equation*}
$$

If this happens then we require the sequence $f_{1}, f_{2}, \ldots . . . f_{N}$ of functions in order to detect the pair $\{u, v\}$.

[^0]$f_{1}, f_{2}, \ldots f_{N}$ determines the pair (u, v) of the unknown elenents by $P_{1}(N, u, v)$ and the probability that the process of detecting $\{u, v\}$ terminates exactly at the Nth step by $p_{2}(N, u, v)$. The expected duration of the search process for detecting a pair of unknown elements is then given by:
\[

$$
\begin{equation*}
E_{1}(u, v)=\sum_{N=0}^{\infty} N p_{1}(N, u, v) . \tag{1.10}
\end{equation*}
$$

\]

The concepts and notations of the duration of the search process stated here will be useful in Chapters 3 and 5 , in the computation of the duration of the search process for detecting the unknown element(s).

Finite Plane Projective Geometries: PG(2,5).
In plane projective geometry, a point is defined by an ordered set of three elements (x_{0}, x_{1}, x_{2}) not all zeros belonging to $G F(s)$, where s is prime or power of prime and a line is defined by the equation

$$
a_{0} x_{0}+a_{1} x_{1}+a_{2} x_{2}=0, \quad a_{0}, a_{1}, a_{2} \in G F(s) .
$$

This georetry js denoted by $P G(2, s)$. Ifs flame projective geometry the following bssic properties hold.
(i) Two different points are incident with ane line, that is, given two points there exists only one line through them.
(ii) Two lines are incident with one point, that is, they intersect.
(iii) Not all points are incident with the same
line.
(iv) There are at least three different points in the same line.
(v) The number of points incident with at least one line is finite.

The following results are derived from the above properties of $P G(2, s)$.
(i) The total number of points is $s^{2}+s+1$.
(ii) The totsil number of lines is $s^{2}+s+1$.
(iii) Each line is incident with (s+1) points.
(iv) Each point is incident with (s+1) lines.

Let $n=s^{2}+s+1$, then with $P G\{2, s)$ we carl associate an nxn matrix $M=\left(\left(a_{2}\right)\right)$ where $a_{j}=0$ or 1 depending \therefore :. \quad ethes the th point is inciderit with the th line or not $(1=1,2, \ldots, n, \jmath=1,2, \ldots . n)$. This watrix M is the incidence matrix of $P G(2, s)$.

Finite Plane Euclidean Geometries: EG(2.s).
In plane Euclidean geometry, a point is defined by an ordered set of two eleaents $\left(x_{1}, x_{2}\right)$ bejonging to $G \Gamma(s)$, where s is prial or poner of prime ard a line is defzned ty the equation

$$
a_{0}+a_{1} x_{1}+a_{2} x_{2}=0 . \quad a_{0}, a_{1}, a_{2} \in G E(s) .
$$

This Eeometry is denoted by EG(2, s). In plane Euelidean geometry the following basic properties hold.
(i) Two distinct points are incident with one and only one common line.

Through every point not incident with a given line there passes one and only one line which has no common point with the given line. This line is said to be parallel to the given line. All other lines through the point have one common point with the given line.
(iii) Not all points are incident with the same line.
(iv) There are at least two distinct points on the same line.

The following results are derived from the above properties of $E G(2, s)$.
(i) The total number of points is s^{2}.
(ii) The total number of lines is $s^{2}+s$.
(iii) Each line is incidert with exactly s points.
(iv) Each point is incident with exactly (s+1) lines.

Let $m=s^{2}+s$ and $n=s^{2}$ then with $E G(2, s)$ we can associate an mxn matrix $M=\left(\left(a_{1 j}\right)\right)$, where $a_{1 j}=\square$ or 1 depending on whether the ith point is incidert with the sth line or not $\langle 2=1,2, \ldots, n, j=1,2 \ldots$, This matrix M is the incidence matrix of $E G(2, s)$.

We shall wake vise of the incidence matrices of $E G(2, s)$ and $P G(2,5)$ in the study of the homogetieity of separating systems in Chapter 3.

A t-Complete search design.
A syster $\left\{S_{1}, S_{2}, \ldots, S_{\tau}\right\}$ where $S_{1}(1=1,2, \ldots, \tau)$ is a subset of the set S_{n}. is said to be a t-Complete
search design if for every t distinct elements $a_{i}, a_{i_{2}}, \ldots, a_{i_{i}} \in S_{n}$, we can select subsets $\left\{S_{j}, j \in T\right\}$, where $T=\left\{j \mid a_{i_{k}} \not S_{j}\right.$, for $\left.k=1,2, \ldots, t\right\}$, such that

$$
\bigcup_{j \in T} S_{j}=S_{n}-\left\{a_{i_{1}}, a_{L_{2}}, \ldots, a_{i}\right\} .
$$

This definition was given by Bush and Federer (1984). A t-complete search design can also be defined in terms of the intersection of the subset $\left\{S_{j}, j \in T\right\}$. We shall use this approach to define a 2 -Complete search design in Chapter 4.

A Balanced Incomplete Block design

A balanced incomplete block (BIB) design is $8 n$ arrangement of v objects into subsets (blocks) such that each block contains k distinct objects, each object occurring in r different blocks, and each pere of distinct objects occurring together on λ different blocks. For construction of these designs see Hell (1967) and Bose (1969).

An arrangement of v objects in blocks such the Each block contains either k
objects and every pair of objects occurs int exsect.
biocks is called a pairwise balanced design of index λ. It is denoted by PWB $\quad\left(v ; \quad k_{i}, \ldots . . i_{m}\right.$; $\left.b_{1}, b_{2}, \ldots . ., b_{m} ; \lambda\right)$, where b_{1} derioter the robber of blocks of size k_{i}. All the blocks of size k_{1} for it the equiblock component D_{i} of the $P W B$ design IV. EWE designs in which all the objects have the same number
of replications are called equireplicated PWB designs． The balanced incomplete block designs and the related designs will be useful in the construction of 2 －Complete search designs in Chapter 4.

A $t-\left(v, k, \lambda_{\mathfrak{t}}\right)$ design．

An arrangement of v objects into b subsets （blocks）such that each block consists of k distinct objects is called a $t-\left(v, k, \lambda_{t}\right)$ design．A balanced incomplete block design is a special case of $t-\left(v, k, \lambda_{1}\right)$ design with $t=2$ ．

A $t-\left(v, k \lambda_{1}\right)$ design will also be useful in the construction of 2 －Complete search designs in Chapter 4.

Some cancepts from Coding Theory．
The basic concepts and properties of codes mentioned here will be useful in discussing error－correcting search systems in Chapter 6 ．

Consider the set $\left\{a_{1}, z_{2}, \ldots . . . a_{p}\right\}$ of p symbola． In coding theory，these symbols are referred to as cocis cha－acters．A finite sequence of onde charecters called a code word and the number of cade characters in a code word is the length of the code word．For examele the code word 1101100 has length seven．The collecta of all code words is called a code；and the collection of all code words of the same length is called a bloch＂． code．

The Ham⿴囗⿰丿㇄心⿴⿱冂一⿰丨丨丁口𧘇 distance between two code words v_{1} and
\underline{v}_{2} is the number of places in which they differ. The Haming weight is the number of non-zero co-ordinates in a code word. For example, the code word $\underline{v}=1101100$ has a Hamming weight of four. The minimum distance d of a block code is defined by:

$$
\begin{aligned}
d= & \text { minimum } d(u, v) . \\
& u, v \in \mathbb{v} . \\
& \underline{u} \neq \underline{v}
\end{aligned}
$$

The following two properties of block eodes will be useful in discussing error-correcting search systems.
(i) A block code with distance d is capable of correcting all patterns of t or ferer errors and detecting all patterns of t+j, $0<j<s$ errors if $2 t+s<d, \quad s>0$.
(ii) The minimum distance of a block code is the weight of the minimum weight cade word.

For a more complete discussion of trese results see for example Blake and Muliin (1975).

1.3 BRIEF LITERATURE REVIEW.

The problem of secroh was ir fle zoteces concerned with developine wactelsfor : En Efico problems. For example Bose and Nelscn (1982) constructed a network for sortine n E?E? an upper bound for minimum number of comparators needed in an n-element sortirg network and conjectured that this upper bound is the exact minimum number of comparators needed in such a
network. Subsequent construction by Floyd and Rnuth (1967) showed that this upper bound given by Bose and Nelson can be inproved for all $n>8$. In a later paper Floyd (1972) proved that the Bose-Nelson conjecture was correct for $n \leq 8$.

Other authors who developed models to solve specific problems include: Bose and Koch (1969) who studied combinatorial infornation retrieval systems for files with qultiple-valued attributes. They developed a model for filing systems which is capable of handling large volumes of data and permitting efficient information retrieval. Roch (1969) extended this bork by studying a class of covers for finite projective geowetries which are related to the design of combinatorial filing systems. He gave a method for selecting a certain subset of m-flats from a finite projective geowetry $P G(N, q)$ which cover all (t-1) flats. His results have application in the problem of derigning efficient information retrieval systems.

In an attempt to unify the various models that had tern fuposed before to solve specific problens, 1455,1989 , 1976) developed a mathematical model for a efieral search problem. He examined in detail the us of a rooted directed tree of degree g with n vertices as search syster with a sequential strategy fur noiseless search. He also defined separating systems of functions and introduced different notions of houggeneity of separating systems.

Ratona (1966) also studied the separating systems
of functions. He gave lower and upper bounds for the number of functions required to form a separating systen under sone specified conditions. Dickson (1969) later extended the concept of separating systen when he defined a completely separating systen. He considered the problem, of finding the cardinality of a minimal completely separating system and showed that this cardinality is asymptotic to the cardinality of a minimal separating system. The cardinalities of minimal binary separating systems and non-binary separating systems under various conditions is studied in chapter 2 of this thesis.

After developing a model which solves a general search protlem and introducing the concepts of separating systems and different homogeneities of separating systems, the next problem was the application of this model to solve specific problens and the construction of these designs. Chakravarti and Manglik (1972) considered the protlem of applying the random search model developed by Renyi (1965). They used binary search systems derived fror incidence ratrices of $\mathrm{FG}(2,2)$ and $\mathrm{PG}(2,3)$ to determine the identity of one unknown element in a finite set S_{n}. However, their study did not cover other known geometrical structures like Euclidean Eeometries, random 8-1 matrices or general projective geometries.

Manglik (1972) on the other hand studied the construction of different homeneities of separating systems. He related strongly homogeneous systems of
order 2 to incidence matrices of equireplicated pairwise balanced designs. He also studied and gave properties of keakly homogeneous binary systens of order 2. Strongly homogeneous and weakly honogeneous systens of higher orders were not considered in his paper.

An extension of the work done by Chakravarti and Kanglik (1972) and later by Manglik (1972) is given in chapter 3. The chapter wainly concentrates on areas not covered by the two papers, namely: the use of binary search systems derived from incidence matrices of Euclidean geometries, random 0-1 matrices and general projective geometries, to identify one unknown element in a finite set S_{n} and the relation of strongly homogeneous and weakly homogeneous systems of higher orders to incidence matrices of equireplicated pairwise balanced designs.

In applying Renyi's model to detect one unknown element in a finite set S_{n}, Chakravarti and Manglik (1972) assumed a noiseless search nodel. A noisy search was later studied by Chakravarti (1976). He constructed search systems and stratezies which are separating in the presence of noise. He also gave a statistical decision rule for identifying an unknown element which maximizes the probability of correct identification in the presence of noise. A combinatorial approach of solving this identification problen in the presence of noise is discussed in chapter 6 of this thesis.

After applying Renyi's model of search to detect one unkrown element in a finite set S_{n}, the attention wss directed at detecting two or more unknown elements in the set S_{n}. Tosic (1980) considered the problem of detecting two unknown elements in S_{n}. He developed an optimal search procedure which identifies two unknown elements in S_{n} by testing some subsets of S_{n} which may contain all the two unknown elements or just one of the unkrown elements. The same problea of detecting two unknown elements using subsets of S_{n} was later studied by Bush and Federer (1984). They examined the case where each subset of S_{n} contains the two unknown elements and called such a design a 2-Complete search desigr. They also discussed properties of these designs. Construction of 2 -Complete search designs which was rot considered by Bush and Eederer (1984) is Given in Chapter 4 of this thesis.

A mure general design for detecting more than one unknown element was given by Sebo (1988). He considered the protulea of detecting an unknown subset of cardinaiity $k(k=1,2 \ldots .$.$) of the finite s e t s_{n}$ and developed a probabilistic strategy of detecting the unknowr subsets u'sing minimum number of subsets. Although Sebo (1988) gave a gethod of detecting the urknown sutset of S_{n} with a small error probability, explicit detection of two or more unknown elements in the presence of noise kas not given. A model for detecting two or more unknown elements in the presence of noise is given in Chapter 6 of this thesis.

In this study we take up the problem of developing search strategies for identifying one, two and three unknown elements in a finite set. The search models will be based on logical extensions and generalizations of geometrical structures like projective and Euclidean geometries and 2-Complete, search designs.
1.4 STATEMENT OF THE PROBLEM.

The present study investigates some properties of binary and non-binary separating systems studied by Renyi (1965) and Katona (1966). The relationship between separating systems and incidence matrices of projective geometries, Euclidean geometries and random O-1 matrices are also investigated along the line of Chakravarti and Manglik (1972). Duration of the search process for detecting one unknown element in a finite set S_{n} using these incidence matrices as separating systems is also discussed.

The problem of detecting two unknown elements was studied by Tosic (1980). and later extended by Bush and Federer (1984) and Sebo (1988). The present study atterrts to develop search models for detecting more thar one unknown element. In particular, the study gives a method of constructing 2 -Complete search designs introduced by Bush and Federer (1984) and develops new designs which are capable of detecting two urknown elements. The duration of the search frocess for detecting two unknown elements using a 2-Complete search design and the newly developed
designs are also calculated.
Lastly, the study examines the problem of detecting one unknown elenent and two unknown elenents in the presence of noise.

SPECIFIC OBJECTIVES OF THE STUDY.
The specific objectives of the present study may be sumarized as follows:
(i) To obtain some useful properties of separating systems.
(ii) Touse the existing geometrical structures like projective and Euclidean geometries to construct search systems for detecting one unknown element in a finite set.
(iii) To compute duration of the search process for detecting one unknown element.
(iv) To develop nodels for detecting two unknown elements.
(v) To compute duration of the search process for detecting tho unknown elenents.
(vi) To investigate detection of one unknown element and tho unknown elewents in the presence of noise.
1.5 SIGNIFICANCE OF THE STUDY.

The results of the present study are expected to provide useful search models for detecting one or wore unknown elements in a set under investigation

Also, the results demonstrate further use of
projective and Euclidean geonetries as separating systems.

The search models derived in the study presume both noiseless and noisy conditions, thus widening the scope of practical applications of the results of the study.

Examples of practical problems in which the search models proposed in the study are expected to be usefully applicable include: identification of an unmarked chemical in a laboratory, searching for a mistake in a computer program, decoding a received wessage, searching for failure in a complicated mechanism, diagnosis of a disease by clinical tests, forensic identification and so on.

CHAPTER 2

on separating systems of a finite set

2.1

INTRODUCTION.

We recall here the two definitions of separating systems given in Chapter 1 as follows: (i) A systew F of functions $f_{1}, f_{2}, \ldots, f_{m}$ defined on a finite set S_{n} is a separating system if for every pair of distinct elements $a_{i}, a_{1} \in S_{n}$ there exists in F \& function f such that $f\left(a_{i}\right) \neq f\left(a_{j}\right)$.
(ii) A system F of functions $f_{1}, f_{2}, \ldots, f_{m}$ defined on S_{n} is a separating system if an mxn matrix whose (2,3) -th entry is $f_{i}\left(a_{j}\right)$ has distinct columns.

An example of a separating system is given
below.

Example 2.1: Consider a systea $F=\left\{f_{1}, f_{2}, f_{3}\right\}$

defined on the set $S_{3}=\left\{a_{1}, a_{2}, a_{3}\right\}$ as follows;

$$
f_{i}\left\{a_{j}\right\}= \begin{cases}\theta & \text { if } 2=j \\ 1 & \text { if } 2 \neq j, i=1,2,3 ; j=1,2,3,\end{cases}
$$

For any pair of distinct elements $\varepsilon_{i} \varepsilon_{j} \in S_{3}$ there exists a function f_{i} in F such that $f_{i}\left(a_{i}\right)=0$ and $f_{2}\left(\varepsilon_{j}\right)=1$, that is $f_{i}\left(a_{2}\right) x f_{i}\left(\theta_{j}\right)$. Thus, the system $F=\left\{f_{1}, f_{z}, f_{3}\right\}$ is a separating system.

The search matrix of this system is;

$$
M=f_{1}\left[\begin{array}{lll}
f_{1} & a_{2} & a_{3} \\
f_{3} & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right] .
$$

The columns of the matrix M are distinct as expected, since the system $\left\{f_{1}, f_{2}, f_{3}\right\}$ is a separating system.

Same properties of separating systems.
The following are some useful properties of separating systems; see Renyi (1965).
(i) Let F be a minimal separating system of functions separating the elements of the finite set S_{n}, having $n_{\text {a }}$ elements. If denotes the number of functions in F then n $\leq \pi-1$.
(ii) The minimum number of functions which separates n elements of the set S_{n} is $\left\{\log _{2} n\right\}$, where $\{x\}$ denotes the least integer greater than or equal to x.
2. 2 EINARY MINJMAL SEPARATING :YSEHM.

We call a system F of functions deFined on \&
finite set S_{n} a binary minimal separatirg systeiz if the system consists of the minimum number cf functions which separates any two elements of the set S_{n} and each function takes only two values \mathbb{E} and 1. It has been proved by Renyi (1965) that the
ninimal binary separating systen of a set of n elements has exactly $\left\{\log _{2} n\right\}$ functions, (Where $\{x\}$ denotes the least integer $\geq x$).

Example 2.2: The minimal separating system of a set consisting of. 8 elements has $\log _{2} 8=3$ functions and one possible search matrix of the functions which separates the 8 elements is

$$
M=\mathrm{f}_{1} \mathrm{f}_{2}^{a_{1}}\left[\begin{array}{llllllll}
\mathrm{f}_{3} & a_{2} & a_{3} & a_{4} & a_{5} & a_{0} & a_{7} & a_{0} \\
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 & 1 & 0
\end{array}\right] .
$$

A minimal separating system in which

$$
\begin{equation*}
\sum_{2=1}^{幺} H\left(f_{1}(x)\right)=\log _{2} n \tag{2.1}
\end{equation*}
$$

where $H(f)$ denotes the entropy of $f \in F$, is called an optimal separating system.

Lemma 2.1: Every optimal separating system is a mirimal separating system. However, a minimal separating system is an optimal separating system if ard chiy if the rondom functions $f_{s}, f_{z}, \ldots, f_{m}$ are indegendent.

Proof
Suppose the functions $f_{1}, f_{2}, \ldots . . . f_{m}$ form a minimal separating system, that is the vector $\left(f_{1}(x), f_{2}(x), \ldots, f_{m}(x)\right)^{\prime}$ which is a column of the
search matrix M of the functions $f_{2}, f_{2}, \ldots, f_{m}$ takes on different values for different values of $x \in S_{n}$. Assuming that the vector $\left(f_{1}(x), f_{2}(x), \ldots, f_{m}(x)\right)^{\circ}$ is equally likely to be any of the columns of the search matrix M, the probability that the vector $\left(f_{i}(x) \cdot f_{z}(x), \ldots, f_{m}(x)\right)^{\prime}$ is the ith column $(2=1, \ldots, n)$ of the matrix M is $\frac{1}{n}$ and the entropy of ($f_{1}(x), f_{z}(x), \ldots, f_{m}(x)$) is

$$
H\left(f_{1}(x), f_{2}(x), \ldots, f_{m}(x)\right)=\sum_{i=1}^{n} \frac{1}{n} \log _{2} n=\log _{2} n .
$$

Eut

$$
\sum_{i=1}^{m} H\left\langle f_{2}(x)\right) \geq H\left(f_{1}(x), f_{2}(x), \ldots, f_{m}(x)\right)=\log _{2} n
$$

with equality if and only if $f_{1}(x), f_{2}(x), \ldots f_{m}(x)$ are independent. Thus an optimal separating systex corresponds to a minimal separating system with $f_{1}(x), f_{2}(x), \ldots \ldots, f_{m}(x)$ independent.

Remark: An optimal separating system F can at characterized by saying that the partial bits of information obtained by otserving functions f belonging to F do not overlap. Thus an oftimal separating system corresponds to a most econouic strategy.

Lemma 2.2: Suppose $F=\left\{f_{1}, f_{2}, \ldots, f_{m}\right\}$ is a separating system for the set $S_{n}=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$
with $n=\log _{2} n$, then F is an optimal separating system.

Proof

Since $I=\log _{2} n$, the number of columns of the search matrix $M_{m, n}$ of the functions $f_{1}, f_{2}, \ldots, f_{m}$ consists of all possible combinations of 2 ones (zeros) and (mi) zeros (ones), $i=1,2, \ldots .$. . \quad. To determine the number of ones in a row, say the th row of $M_{m, n}$ we form a matrix $M_{m, n} n^{\text {. whose colum as }}$ are all the columns of the matrix $M_{m, n}$ with entry 1 in the seth row. That is, the j-th row of the matrix $M_{m, n}$ consists of all ones, with n^{\prime} giving the number of ones in the j-th row of $M_{m, n}$.

With the isth row of the matrix $M_{m, n}^{\prime}$ consisting of all ones, the remaining rows which consist of ones and zeros is ($m-1$) and the number of columns of the matrix $M_{m, n}, n^{\prime}$ is given by the number of all possible combinations of i ones (zeros) and (m-1-i) zeros (ones). Thus, the number of ones in the th row of the matrix $M_{m, n}$ is:

$$
\begin{aligned}
\left(\begin{array}{c}
m-1 \\
0
\end{array}\right]+\left[\begin{array}{c}
m-1 \\
1
\end{array}\right] & +\left[\begin{array}{c}
m-1 \\
2
\end{array}\right]+\ldots \ldots+\left[\begin{array}{l}
m-1 \\
m-1
\end{array}\right] \\
& =\sum_{i=0}^{m-1}\left[\begin{array}{c}
m-1 \\
1
\end{array}\right]=2^{m-1}
\end{aligned}
$$

and the number of zeros in the fth row of $M_{m, n}$ is;

$$
2^{m}-2^{m-1}=2^{m-1}
$$

Using the relative frequency interpretation of

$$
\operatorname{Pr}\left(f_{i}(x)=0\right)=\operatorname{Pr}\left(f_{i}(x)=1\right)=2^{m-1} / 2^{m}=\frac{1}{2} .
$$

The entropy of f_{i} in F is thus;

$$
H\left(f_{i}\right)=\frac{1}{2} \cdot \log _{2} n+\frac{1}{2} \log _{2} n=\log _{2} n
$$

and

$$
\sum_{i=1}^{m} H\left(f_{i}\right)=m=\log _{2} n
$$

which is the required condition for the separating system E to be optimal. Thus F is an optimal separating system.

Next, we consider the problem of determining the lower bound of the integer m for which there exists a binary search matrix $M_{m, n}$, in which each row contains k ones and no two columns are identical. We shall denote this integer by $m(n, k)$.

Theorem 2.1: The integer $\pi(n, k)$ described above satisfies the inequality:

$$
m(n, k) \geq \frac{\log _{2} n}{-\frac{k}{n} \log _{2} \frac{n}{k}+\frac{n-k}{n} \log _{2} \frac{n}{n-k}} .
$$

Proof

$$
\text { Let } F=\left\{f_{1}, f_{z}, \ldots, f_{m}\right\} \text { be a system of }
$$

$$
\text { functions defined on the set } S_{n}=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}
$$

whose search matrix is the matrix $M_{m, n}$ and the element $a_{3} \in S_{n}$ corresponds to the fth column of $M_{m, n}$. Assuming that the function f_{i} takes the values B or 1 with equal probabilities we have:

$$
\operatorname{Pr}\left(f_{i}(x)=1\right)=\frac{k}{n}
$$

and

$$
\operatorname{Pr}\left(f_{i}(x)=\emptyset\right)=1-\frac{k}{n}
$$

since each row of $M_{m, n}$ consists of k ones and $(n-k)$ zeros. The entropy of $f_{i} \in F$ is then given by;

$$
H\left(f_{1}\right)=\frac{k}{n} \log _{2} \frac{n}{k}+\frac{n-k}{n} \log _{2} \frac{n}{n-k} .
$$

But

$$
\begin{aligned}
\sum_{i=1}^{m(n, k)} H\left(f_{i}\right)= & m(n, k)\left[\frac{k}{n} \log _{2} \frac{n}{k}+\frac{n-k}{n} \log _{2} \frac{n}{n-k}\right], \\
& \geq \log _{2} r_{1}, \quad \text { (see Renyi (1865). }
\end{aligned}
$$

Therefore,

$$
a(n, k) \geq 10 \varepsilon_{2} n /\left[\frac{k}{n_{k}} \log \varepsilon_{2} \frac{n}{k}+\frac{\pi-k}{n} \log \varepsilon_{2} \frac{n}{n-k}\right) \quad(2.2)
$$

Which is the required result.

Corollary ar: For k close to but less thar or equal to $\frac{\pi}{2}-1$, the integer $\mathbb{m}(n, k)$ satisfies the inequality:

$$
\begin{equation*}
m(n, k) \geq \log _{2} n /\left[\frac{1}{2} \log _{2}\left(\frac{n^{2}}{k(n-k)}\right)+\frac{1}{n} \log _{2}\left(\frac{k}{n-k}\right)\right] \tag{2.3}
\end{equation*}
$$

Proof.

From 2.3

$$
m(n, k) \geq \log _{2} n, /\left(\frac{k}{n} \log _{2} \frac{n}{k}+\frac{n-k}{n} \log _{2} \frac{n}{n-k}\right)
$$

But
for h close to but less than or equal $\pm 0 \frac{\mathrm{n}}{2}-1$, we have,

$$
\frac{k}{n} \log _{2} \frac{n}{k}+\frac{n-k}{n} \log _{2} \frac{n}{n-k}=\frac{1}{2 n}\left[2 n 1 \log _{2} n-2 n \log 2(r-k\right.
$$

$$
+\therefore 10 g_{i}\left(r_{1}-k\right)-10 g_{z}-
$$

$$
-n i o s_{2} \text { in }
$$

$$
=\frac{1}{2 n}\left[2 n i:_{2} h-\therefore i o \xi_{i} n-\right.
$$

$$
+2 \log _{\overline{2}} \frac{1}{r_{1}-6}-n 105
$$

$$
=\frac{1}{2 \pi_{L}}\left[n l o g_{2} \frac{n^{2}}{\sqrt[n]{n}-n)}\right.
$$

Thus

$$
=\frac{1}{2} \log _{2} \frac{n^{2}}{k i n-k!}+\frac{1}{n} i \operatorname{cog}_{2} \frac{k}{n-1} \quad \text { in }
$$

$$
m(n, k) \geq \log _{2} n / \quad\left[\frac{1}{2} \log _{2}\left(\frac{n_{1}^{2}}{k(n-k)}\right)+\frac{1}{n} \log \varepsilon_{2}\left(\frac{k}{n-k}\right)\right]
$$

Hence the proof of Corollary (2.2).

$$
\begin{aligned}
& \frac{k}{n} \log _{2} \frac{n}{k}+\frac{n-k}{n} \log _{2} \frac{n}{n-k}=\frac{1}{n}\left[k \log _{2} n-k \log _{2} k+(n-k) \log _{2} n\right. \\
& \text { - (} \left.n-k) \log _{2}(n-k)\right] \\
& =\frac{1}{n}\left[n \log _{2} n-\log _{2} k-n \log _{2}(n-k)\right. \\
& +k \log (n-n)] \\
& =\frac{1}{n}\left[n \log _{2} \frac{r}{n-k}+k \log _{2} \frac{n-k}{k}\right] \\
& \leq \frac{2}{n_{2}} \operatorname{mios}_{2} \frac{n}{n-n}-\frac{n-z}{n}-0 \equiv_{2} \frac{n-n}{n},
\end{aligned}
$$

Remark: Corollary 2.2 gives a weaker but easier to compute estimate of the integer (n, k).

Example 2.3: Let $n=11$ and $k=4$, then $k=4$ is close to $(n-2) / 2=(11-2) / 2=4.5$. Thus corollary 2.2 could be applied, to obtain an estimate for m(11,4). This estimate is:

$$
\frac{\log _{2} 11}{\frac{1}{2} \log _{2}(121 / 4 \times 7)+\frac{1}{11} \log _{2} 4 / 7}=3.52
$$

That is, $(11,4) \geq 4$, since $m(n, k)$ must be an integer.

2. 3 NON-BINARY SEPARATING SYSTEMS.

A system F of functions $f_{1}, f_{2}, \ldots, f_{m}$ defined on a finite set S_{n} is a non-binary separating system if for every pair of distinct elements $a_{i}, a_{j} \in S_{n}$, there exists a function $f \in F$ such that $\mathbf{P}\left(\boldsymbol{a}_{\mathbf{i}}\right) \neq \mathrm{f}\left(\boldsymbol{a}_{\mathrm{j}}\right)$ and each function in F takes p values $0,1,2, \ldots ., E-1$ (E : $)$

Example 2.4: Consider s systus of two

 functions f_{1} and f_{2} defiried on the set $S_{n}=\left\{a_{1}, a_{2}, \ldots \ldots . a_{0}\right\}$ as foliost:$$
f_{1}\left(a_{1}\right)=f_{1}\left(a_{2}\right)=f_{1}\left(a_{3}\right)=f_{2}\left(a_{1}\right)=f_{2}\left(a_{4}\right)=f_{2}\left(a_{7}\right)=0
$$

$$
f_{1}\left(a_{4}\right)=f_{1}\left(a_{5}\right)=f_{1}\left(a_{6}\right)=f_{2}\left(a_{2}\right)=f_{2}\left(a_{5}\right)=f_{2}\left(a_{8}\right)=1
$$

$f_{1}\left(a_{7}\right)=f_{1}\left(a_{0}\right)=f_{1}\left(a_{0}\right)=f_{2}\left(a_{3}\right)=f_{2}\left(a_{0}\right)=f_{2}\left(a_{0}\right)=2$.

Then the systen $\left\{f_{1}, f_{2}\right\}$ is a non-binary separating system. This can be seen easily from its search matrix given as follows;

$$
M=f_{2}\left[\begin{array}{lllllllll}
a_{1} & a_{2} & a_{3} & a_{4} & a_{5} & a_{0} & a_{7} & a_{0} & a_{0} \\
0 & 0 & 0 & 1 & 1 & 1 & 2 & 2 & 2 \\
0 & 1 & 2 & 0 & 1 & 2 & 0 & 1 & 2
\end{array}\right] .
$$

All the columns of the search matrix M are distinct: thus the system $\left\{f_{1}, f_{2}\right\}$ is a separating system.

Theorem 2.2: Suppose $F=\left\{f_{1}, f_{2}, \ldots, f_{m}\right\}$ is a separating system on the set S_{n} and each function $f \in E$ takes the value $i(i=0,1, \ldots, p-1)$ at k points in S_{n}, that is $n=k p$. Then m the number of functions in F satisfies the inequality;

$$
m \geq \log _{p} n .
$$

Proof

$$
\text { Let } M=\left(\left(f_{i}\left\langle a_{j}\right)\right)\right. \text { be an mxn sesich matrix of }
$$

the functions $f_{1}, f_{2}, \ldots . f_{m}$. Then the calumis of the matrix M are, distinct since $f_{1}, f_{2}, \ldots . . . f_{m}$ is a separating system. The joint entropy of $\left\{f_{1}, f_{2}, \ldots . ., f_{m}\right\}$ is;

$$
\begin{aligned}
H\left(f_{1}, f_{2}, \ldots . . f_{m}\right) & =\sum_{i=1}^{n} \frac{1}{n} \log _{2} n \\
& =\log _{2} n .
\end{aligned}
$$

And the entropy of $f \in F$ is

$$
\begin{aligned}
\sum_{i=0}^{p-1} \operatorname{Pr}(f(x) & =i) \log _{2} \frac{1}{\operatorname{Pr}(f(x)=i)} \\
& =p \frac{k}{n} \log _{2} \frac{n}{k} \\
& =\log _{2} \frac{n}{k}, \quad \text { since } p k=n .
\end{aligned}
$$

But

$$
H\left(f_{1}\right)+H\left(f_{2}\right)+\ldots+H\left(f_{m}\right) \geq H\left(f_{1}, f_{2}, \ldots . . . f_{m}\right)
$$

That is,

$$
m \log _{2} \frac{n}{k} \geq \log _{2} n
$$

Changing from base 2 to base p, he have

$$
\begin{aligned}
\frac{m \log _{p} \frac{n}{F}}{\log _{p} 2} & \geq \frac{\log _{p} n}{\log _{p} 2} \\
m \log _{p} \frac{n}{k} & \geq \log _{p} n \\
\text { WiNg } p & \geq \log _{p} n \\
\mathbb{H} & \geq \log _{F} n
\end{aligned}
$$

bitich is the require result.

Theorem i. 3 : Rugose $F=\left\{f_{1}, f_{2} \ldots, \ldots f_{m}\right\}$ is a separating system on the set S_{n} and each function $f \in F$ takes the value $\langle=0,1, \ldots \ldots, p-1$) at $k_{1}, k_{2} \ldots, k_{p}$ poirots in S_{n} where $k_{1} \leq k_{2} \leq \cdots . . \leq k_{p}$ and $\sum k_{i}=n$. Then w, the number of functions in F
satisfies the inequality:
$n \geq \log _{p} n / \log _{p} \frac{n}{k_{1}}$.

Proof

$$
\text { Let } M=\left(\left(f_{i}\left(a_{j}\right)\right)\right. \text { be an min search matrix of }
$$ the functions $f_{1}, f_{2}, \ldots, f_{m}$. Then the columns of the matrix M are distinct since $f_{1}, f_{2}, \ldots . . . f_{m}$ is a separating system. The joint entropy of ($\mathrm{f}_{1}, \mathrm{f}_{2}, \ldots, \mathrm{f}_{\mathrm{m}}$) is;

$$
H\left(f_{1}, f_{2}, \ldots . ., f_{m}\right)=10 g_{2} n .
$$

And the entropy of $\mathrm{f} \in \mathrm{F}$ is;

$$
H(f)=\sum_{i=0}^{p} \frac{k_{i}}{n} \log \frac{n}{k_{i}} .
$$

But

$$
\begin{aligned}
H\left(f_{1}\right)+H\left(f_{2}\right)+\ldots+H\left(f_{m}\right) & \geq H\left(f_{1}, f_{2}, \ldots, f_{m}\right) \\
& =\log _{2} n .
\end{aligned}
$$

Whet is,

$$
\begin{aligned}
& \quad\left[\log _{2} \frac{n_{1}}{k_{1}}+\frac{k_{2}}{r_{1}} \log _{2} \frac{n}{k_{2}}+\ldots+\frac{k_{p}}{n} \log _{2} \frac{n}{k_{p}}\right] \geq \log _{2} n \\
& =\left[\left(k_{1} \log 2 n+k_{2} \log _{2} n+\ldots+k_{p} \log n\right)\right. \\
& \left.\quad-\left(k_{1} \log g_{2} k_{1}+k_{2} \log _{2} k_{2}+\ldots+k_{p} \log _{2} k_{p}\right)\right] \geq \log _{2} n .
\end{aligned}
$$

Now, sirree $k_{1} \leqslant k_{2} \leqslant \ldots \leqslant k_{p}$

$$
\begin{align*}
\frac{m}{n}\left[n \log _{2} n-n \log _{2} k_{1}\right] \geq \frac{m}{n} & {\left[\left(k_{1} \log _{2} n+k_{2} \log _{2} n+\ldots\right.\right.} \tag{x}\\
& \left.\cdots+k_{p} \log _{2} n\right)-\left(k_{1} \log _{2} k_{i}\right.
\end{align*}
$$

$+k_{2} \log k_{2}+\ldots . .$.
$\left.\left.\ldots . . \ldots+k_{p} \log _{2} k_{p}\right)\right]$

$$
\geq \log _{2} n
$$

Therefore,

$$
\frac{m}{n}\left[n \log _{2} \frac{n}{k_{1}}\right] \geq \log _{2} n
$$

Changing from base 2 to base p, we have

$$
\frac{m \log _{p} \frac{n}{k_{1}}}{\log _{p} 2} \geq \frac{\log _{p} n}{\log _{p} 2}
$$

and

$$
u \geq \log _{p} n / \log _{p} \frac{n}{K_{1}}
$$

Hence the proof.

Example 25: Let $F=\left\{f_{1}, f_{2}, \ldots, f_{m}\right\}$ be a separating system on the set $S_{\sigma 4}=\left\{a_{1}, a_{2}, \ldots, a_{\sigma 4}\right\}$ and each function $f \in F$ takes the value $0,1,2$ and 3 at $4,12,20$ and 2ε points in $S_{\text {os }}$ respectively. Then the minimum number of functions, m setisties the inequality:

$$
\begin{aligned}
n & \geq \log _{4} 64 / \log _{4} 64 / 4 \\
& =1.5 .
\end{aligned}
$$

That is, to separate the elements of the set S_{64} a minimum of two functions would be required.

RANDOM SEARCH MODELS BASED ON BINARY STRUCTURES

3.1

INTRODUCTION.

The search models we are going to study in this Chapter consist of a system F of functions which identifies any unknown elenent x of the set $S_{n}=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$, and each punction in F takes only two values 0 and 1 . Each function divides the set S_{n} into two subsets. The intersection of subsets in which the unknown element x belongs gives the identity of x. These search models were described in Chapter 1 as binary search models.

Renyi (1965) obtained the following properties concerning binary search models.
(i) A systew F of binary functions which is weakly homogeneous of order 2 is also neakly homogeneous of orders 3 .
(ii) If R_{1} denotes the number of functions in F and R_{z} denotes the number of punctions for which $f\left(a_{2}\right)=f\left(a_{j}\right), i \neq j, f \in F$ then

$$
\begin{equation*}
R_{2} / R_{1} \geq(n-2) / 2(n-1) . \tag{3.1}
\end{equation*}
$$

(iii) If the systen F of functions defined on
the set S_{n} is keakly homogeneous of order 2 , then for all $x \in S_{n}$

$$
\begin{equation*}
P_{1}(N, x) \geq 1-(n-1)\left[R_{2} / R_{1}\right]^{N} \tag{3,2}
\end{equation*}
$$

where $P_{i}(N, x)$ denotes the probability
sequence of functions $f_{1}, f_{2}, \ldots, f_{N}$ determines unknown elenent x and R_{1} and R_{2} are as defined above.
(iv) If the system F of binary functions defined on the set S_{n} is weakly hamogeneous of order 2 and thus weakly homogeneous of order 3 , then for all x in S_{n}

$$
P_{1}(N, x) \leq 1-(n-1)\left[\frac{R_{2}}{R_{1}}\right]^{N}+\left[\begin{array}{c}
n-1 \tag{3.3}\\
2
\end{array}\right]\left[\begin{array}{l}
R_{3} \\
R_{1}
\end{array}\right]^{N}
$$

Where R_{3} denotes the number of functions for which $f\left(a_{i}\right)=f\left(a_{j}\right)=f\left(a_{\dot{x}}\right), i \neq j \neq k, f \in F$.

We also recall that the expected duration of the search process for detecting the unknown element x is given by;

$$
\begin{equation*}
E_{1}(x)=\sum_{N=0}^{\infty} N p_{1}(N, x) \tag{1.7}
\end{equation*}
$$

with $p_{1}(N, x)$ denoting the probability that the process for detecting x terminates exactly at the N th step.

The following is an example illustratine tie craputation of the duration of the search process for detecting one unknown element.

Example 3.1: Consider a set S_{3} consisting of three elements s_{1}, a_{2} and a_{3} and suppose that we wish to determine one of these elements. Let
$F=\left\{f_{1}, f_{2} \cdot f_{3}\right\}$ be a set of three functions defined

as follows:

$$
f_{i}\left(a_{j}\right)= \begin{cases}0 & \text { if } i=j \\ 1 & \text { if } \quad i \neq j, i=1,2,3, j=1,2,3 .\end{cases}
$$

Then, the search matrix of the system F is;

$$
\left.M=\underset{f_{2}}{f_{1}} \begin{array}{ccc}
a_{1} & a_{2} & a_{3} \\
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right] .
$$

He notice that the columns of the matrix M are distinct, therefore, the system F of functions f_{1}, f_{2}, f_{3} is a separating system. For ary choice of two distinct elements $a_{1}, a_{i_{2}}$ in S_{3} there is onl: one function in F such that $\mathrm{f}\left(\mathrm{a}_{1}\right)=\mathrm{f}\left(\mathrm{a}_{\mathrm{L}_{2}}\right)$. 30 F is = Heakly homogeneous system of orjer 2 with $\mathrm{R}_{2}=1$. Further, F is a strongly homogeneous system of order 3 with $R_{2}(1,1)=R_{2}(1,0)=R_{2}(0,1)=1, R_{2}(0,0)=0$, $R_{3}(0,1,1)=R_{3}(1,1,0)=R_{3}(1,0,1)=1$, where R_{1}, R_{2} and $R_{k}\left(y_{i_{1}}, y_{i_{2}}, \ldots . ., y_{i_{k}}\right)$ are as defiried in section 1.2 of Chapter 1.

Now, let us computa $F_{1}(N, x)$ if the untronit. elerent $:$ is a_{1}. The fallowine t tio -reverives not detere x;

$$
f_{2}, f_{2}, \ldots \text { and } f_{3}, f_{3}, \ldots . .
$$

Thus, the probability of not detecting x within steps is;

$$
\begin{equation*}
\left(\frac{1}{3}\right)^{N}+\left(\frac{1}{3}\right)^{N}=2\left(\frac{1}{3}\right)^{N} \text {. } \tag{3.4}
\end{equation*}
$$

Therefore, the probability uf detecting x within N steps is;

$$
\begin{equation*}
P_{1}(N, x)=1-2\left(\frac{1}{3}\right)^{N} \tag{3.5}
\end{equation*}
$$

Hence the probability of detecting x in exactly N steps is;

$$
\begin{aligned}
p_{1}(N, x) & =\left[1-2\left[\frac{1}{3}\right]^{N}\right]-\left[1-2\left[\frac{1}{3}\right)^{N-1}\right] \\
& =\frac{4}{3}\left(\frac{1}{3}\right)^{N-1}, N \geq 2
\end{aligned}
$$

and

$$
p_{1}(1, x)=\frac{1}{3}, \text { for } N=1
$$

since the function f_{1} identifies the unknown element x. Using Equation (1.7) in Chapter 1, the expected duration of the search process is;

$$
\begin{aligned}
E_{1}(x) & =\sum_{N=1}^{\infty} N \cdot p_{1}(N, x) \\
& =\frac{1}{3}+\sum_{N=2}^{\infty} N \cdot p_{1}(N, x) \\
& =\frac{1}{3}+\frac{4}{3}\left[2\left[\frac{1}{3}\right]+3\left(\frac{1}{3}\right]^{2} \ldots\right) \\
& =\frac{1}{3}+\frac{4}{3}\left[\frac{1}{1-1 / 3}\right. \\
& =\frac{1}{3}+\frac{5}{3}=2 .
\end{aligned}
$$

That is, to determine x an avevafe of two test-functions would be required.
3.2 RANDOM SEARCH MODELS BASED ON FINITE PLANE PROJECTIVE GEOMETRIES: PG(2,s).

We recall that the incidence matrix of $P G(2, s)$ is an $n x n$ matrix $M=\left(\left(a_{i j}\right)\right)$, where $n=$ $s^{2}+s+1$ and $a_{i j}=0$ or 1 depending on whether the ith point is incident with the jth line or not $(i=1,2, \ldots, n ; j=1,2, \ldots . . . n)$.

Identifying the points of $P G(2, s)$ with the elements of the set S_{n} and the lines with functions of F, the incidence matrix M of $P G(2, s)$ forms a search matrix.

Lemma 3.1: The system of functions (Iines) F, derived from $P G(2, s)$ is weakly homogeneous of order 2.

Proof.
Let $K=\left(\mathrm{f}_{1}\left(\mathrm{a}_{\mathrm{j}}\right)\right)$ be the search matrix of the strateey kased or the system F. Then F will be a weakly homogeneous system of order 2 if R_{z}, which is the nurber of functions in F for which

$$
=f\left(a_{j},\right), \quad \text { e, } a_{j}
$$

is constant. Thet is, the riumber of furctions in F for which $f\left(a_{0}\right)=f\left(a_{j}\right)=1$ or $f\left(\varepsilon_{j}\right)=f\left(a_{j}\right)=0$, $\varepsilon_{j} \neq \varepsilon_{j}$ is constant.

But, the number of functions in F for which $f\left(\delta_{j}\right)=f\left(a_{j}\right)=1$ is

$$
\sum_{i=1}^{2+s+1} f_{i}\left(a_{j}\right) f_{i}\left(a_{j}\right), \quad a_{j} \neq a_{j}
$$

and the number of functions in F for which $f\left(a_{j}\right)=f\left(a_{j}\right)=0$ is

$$
\sum_{i=1}^{2+s+1}\left(1-f_{i}\left(a_{j}\right)\right)\left(1-f_{i}\left(a_{j}\right)\right) .
$$

Thus,

$$
\begin{align*}
R_{2} & =\sum_{i=1}^{s^{2}+s+1}\left[f_{i}\left(a_{j}\right) f_{i}\left(a_{j}\right)+\left(1-f_{i}\left(a_{j}\right)\right)\left(1-f_{i}\left(a_{j}\right)\right)\right] \\
& =\sum_{i=1}^{2}\left[1-f_{i}\left(a_{j}\right)-f_{i}\left(a_{j}\right)+2 f_{i}\left(a_{j}\right) f_{i}\left(a_{j}\right)\right] \\
& =\left(s^{2}+s+1\right)-2(s+i)+2 \\
& =s^{2}-s+1 \tag{3.6}
\end{align*}
$$

which is a constant as required. Hence F is a weakly homogeneous system of order 2 .
Lemma 3.2:- The sÿstera of Euhtions (Vines) F, derived from $P G(2, s)$ is heart homogeneous of order 3.

Proof

$$
\text { The system } F \text { will te wetly homogeneous of }
$$ order 3 if R_{s}, which is the rather of functions in F for which

$$
f\left(a_{j}\right)=f\left(a_{j}\right)=f\left(a_{j}{ }^{\prime \prime}\right), \quad a_{j} \neq a_{j} \neq a_{j \prime}
$$

constant. That is, if the number of functions in E for which $f\left(a_{j}\right)=f\left(a_{j}\right)=f\left(a_{j},{ }^{\prime}\right)=1$ or $f\left(a_{j}\right)=$ $f\left(a_{j}\right)=f\left(a_{j \prime \prime}\right)=0, \quad a_{j} \not a_{j} \neq a_{j^{\prime \prime}}$ is constant.

But the number of functions in F for which $f\left(a_{j}\right)=f\left(a_{j}\right)=f\left(a_{j}, \prime\right)=1$ is

$$
\sum_{i=1}^{2+s+1} f_{i}\left(a_{j}\right) f_{i}\left(a_{j},\right) f_{i}\left(a_{j}, \prime\right), \quad a_{j} x a_{j} \neq a_{j \prime}
$$

and the number of functions in F for which $f\left(a_{j}\right)=$ $f\left(a_{j}\right)=f\left(a_{j}, \prime\right)=0$ is

$$
\sum_{i=1}^{s^{2}+s+1}\left(1-f_{i}\left(a_{j}\right)\right)\left(1-f_{i}\left(a_{j},\right)\right)\left(1-f_{i}\left(a_{j}, \ldots\right)\right)
$$

Thus,

$$
\begin{align*}
& R_{3}=\sum_{i=1}^{5^{2}+5+1}\left[f _ { i } (a _ { i }) \left(f_{i}\left(\varepsilon_{j}\right)\left(a_{j}, \ldots\right)\right.\right. \\
& \left.+\left(1-f_{i}\left(a_{j}\right)\right)\left(1-f_{i}\left(a_{j}\right)\right)\left(1-f_{i}\left(a_{j},\right)\right)\right] \\
& =\sum_{i=1}^{2}\left[1-f_{i}\left(\varepsilon_{j}\right)-f_{i}\left(\exists_{j}\right)-f_{i}\left(a_{j}, \ldots\right)\right. \\
& +f_{1}\left(a_{j}\right) f_{1}\left(a_{j}\right)+f_{i}\left(a_{j}\right) f_{i}\left(a_{j}, \prime\right) \\
& \left.f_{2}(5,,) f_{2}\left(7_{2}, 1\right)\right] \\
& =:-2\langle s+1\rangle+3 \\
& =s^{2}-5+1=(s-1)^{2} . \tag{3.7}
\end{align*}
$$

[^1]Example 3.2:- Consider the incidence matrix of $\operatorname{PG}(2,3)$ given as follows;

Identifying the points of this geometry with the elements of the set S_{13} and the lines with functions of $F=\left\{f_{1}, f_{2}, \ldots, f_{13}\right\}$, the incidence matrix M forms a search matrix.

Taking any two points, say p_{1} and P_{2} which correspond to elements $a_{1}, a_{2} \in S_{13}, R_{2}$ is equal to the number of functions in F for which $f\left(a_{1}\right)=f\left(a_{2}\right)=1$ or $f\left(a_{1}\right)=f\left(a_{2}\right)=0$. But, the number of functions in f for which $f\left(a_{1}\right)=f\left(a_{2}\right)=1$ is

$$
\sum_{i=1}^{13} f_{1}\left(a_{1}\right) f_{1}\left(a_{2}\right)=1
$$

arde the number of furactions in F for which $f\left(\varepsilon_{1}\right)=f\left(a_{2}\right)=$ is is

$$
\begin{aligned}
& \sum_{i=1}^{13}\left[1-f_{i}\left(a_{1}\right)\right]\left[1-f_{i}\left(a_{2}\right)\right] \\
& \quad=\sum_{i=1}^{13}\left(1-f_{i}\left(a_{1}\right)-f_{i}\left(a_{2}\right)+f_{i}\left(a_{1}\right) f_{i}\left(a_{2}\right)\right]
\end{aligned}
$$

$$
\left.\left.\begin{array}{rl}
= & 13
\end{array}\right)-\sum_{i=1}^{i 3} f_{i}\left(a_{1}\right)-\sum_{i=1}^{i 3} f_{i}\left(a_{2}\right)\right\}
$$

Thus,

$$
R_{2}=1+6=7
$$

which is constant for any pair of elements (a, a_{j},), implying that the system of functions Mines: is mealy homogeneous of order 2 .

Theorem 3.1: The expected duration of the search process based on the incidence matrix 0 : PGK, fo: for drtecsins ore unknown element :. denoted by $E_{f}(x)$, satisfies the inequality:
$E_{1}(x) \leq \frac{\left.(s+1) \mid s^{2}+s+:\right)}{2}\left[1+\frac{\left(s^{2}+s-1\right)\left(s^{2}-2 s+1\right)}{9 s}\right]$

$$
-\frac{\left.s^{i} s+1\right)}{2\left(s^{2}+s+1\right)}\left(\div s+\left(s^{2}+s-1\right)\left(s^{2}-2 s-1\right)\right)
$$

Proof.
otain:

$$
\begin{aligned}
& \text { Front equations }(3.6) \text { and }(3.7), R_{2}=s^{2}-s+1
\end{aligned}
$$

$$
\begin{aligned}
& \text { and } s_{1}=s^{2}+s+1 \text { in (3.2) and (3.3) we } \\
& P_{1}(x, x)-1-\left(s^{2}+s\right)\left(\frac{s^{2}-s+1}{s^{2}+s+1}\right)^{N}+\left(s^{2}+s\right)\left(\frac{s^{2}-2 s+1}{s^{2}+s+1}\right)^{N}
\end{aligned}
$$

$P_{1}(N-1, x) \geq 1-\left(s^{2}+s\right)\left(\frac{s^{2}-s+1}{s^{2}+s+1}\right)^{N-1}$
But

$$
\begin{align*}
P_{1}(N, x)= & P_{1}(N, N)-P_{1}(N-1, N) \\
\leq & {\left[1-\left(s^{2}+s\right)\left(\frac{s^{2}-s+1}{s^{2}+s+1}\right)^{N}+\binom{s^{2}+s}{2}\left(\frac{s^{2}-2 s+1}{s^{2}+s+1}\right)^{N}\right] } \\
& -\left[1-\left(s^{2}+s\right)\left(\frac{s^{2}-s+1}{s^{2}+s+1}\right)^{N-1}\right] \\
= & s(s+1)\left(\frac{s^{2}-s+1}{s^{2}+s+1}\right)^{N-1}\left(1-\frac{s^{2}-s+1}{s^{2}+s+1}\right)^{N+\left(\frac{\left.s^{2}+s\right)\left(s^{2}+s-1\right.}{2}\right)} \\
= & \frac{2 s^{2}(s+1)}{s^{2}+s+1}\left(\frac{s^{2}-s+1}{s^{2}+s+1}\right)^{N-1} s^{2}+\frac{s^{2}-s+1}{s^{2}+1}\left(\frac{s^{2}-2 s+1}{s^{2}+s+1}\right)^{N-1} \\
& +\frac{s\left(s^{2}+1\right)\left(s^{2}+s-1\right)\left(s^{2}-2 s+1\right)}{2\left(s^{2}+s+1\right)}\left(\frac{s^{2}-2 s+1}{s^{2}+s+1}\right)^{N-1}, \text { for N }>2
\end{align*}
$$

and

$$
p_{1}(1, X)=0, \text { for } N=1
$$

since no single function derived from PG: 2, s) can detect th er union element. The expected duration of the search is;

$$
E_{1}(x)=\sum_{N=2}^{n} N \cdot x_{i}(x, x)
$$

which implies :rat

$$
\begin{aligned}
E_{1}(x) \leq & \sum_{N=2}^{x} x\left[\frac{2 s^{2}(s+1)}{s^{2}+s+1}\left(\frac{s^{2}-s+1}{s^{2}+s+1}\right)^{N-1}\right. \\
& \left.+\frac{s(s+1)\left(s^{2}+s-1\right)\left(s^{2}-2 s-1\right)}{2\left(s^{2}+s+1\right)}\left(\frac{s^{2}-2 s+1}{s^{2}+s+1}\right)^{N-1}\right]
\end{aligned}
$$

$$
\begin{align*}
& =\frac{2 s^{2}(s+1)}{\left(s^{2}+s+1\right)}\left(1-\frac{s^{2}-s+1}{s^{2}+s+1}\right)^{-2}-\frac{2 s^{2}(s+1)}{s^{2}+s+1} \\
& +\frac{s(s+1)\left(s^{2}+s-1\right)\left(s^{2}-2 s+1\right)}{2\left(s^{2}+s+1\right)}\left(1-\frac{s^{2}-2 s+1}{s^{2}+s+1}\right)^{-2} \\
& -\frac{s(s+1)\left(s^{2}+s-1\right)\left(s^{2}-2 s+1\right)}{2\left(s^{2}+s+1\right)} \\
& =\frac{\frac{2 s^{2}(s+1)}{\left(s^{2}+s+1\right)} \times \frac{\left(s^{2}+1\right)^{2}}{4 s^{2}}+\frac{s(s+1)\left(s^{2}+s-1\right)\left(s^{2}-2 s+1\right)\left(s^{2}+s+1\right)^{2}}{2\left(s^{2}+s+1\right) \cdot 9 s^{2}}}{-\frac{s(s+1)}{2\left(s^{2}+s+1\right)}\left(4 s+\left(s^{2}+s-1\right)\left(s^{2}-2 s-1\right)\right)} \\
& =\frac{(s+1)\left(s^{2}+s+1\right)\left(1+\frac{\left.s^{2}+s-1\right)\left(s^{2}-2 s+1\right)}{2}\right)}{9 s} \\
& -\frac{s(s+1)}{2\left(s^{2}+s+1\right)}\left(4 s+\left(s^{2}+s-1\right)\left(s^{2}-2 s-1\right)\right)
\end{align*}
$$

which is the required result. The upper bound of the expected duration of the search process given in (3.9) clearly increases with increase in s.

Example 3.3: consider the incidence matrix of $F G(2,3)$ given as;

Identifying the points of PG(2,3) with the eicmerts $a_{1}, a_{2}, \ldots \ldots \ldots, a_{13}$ of the set S_{13} and the lines
with functions $f_{1}, f_{2}, \ldots, f_{13}$ of $-t$ the一syn… incidence matrix M of $P G(2,3)$ forms a search matrix. The system $F=\left\{f_{1}, f_{2}, \ldots, f_{19}\right\}$ would detect any unknown element x in $S_{1 s}$ since the columns of the incidence matrix of $P G(2,3)$ which is a search matrix M are distinct and thus, F is a separating system in S_{13}.

Using the incidence matrix of $P G(2,3)$ as a search matrix, the probability that the search process for detecting one unknown element, x terminates in exactly N steps, $P_{1}(N, x)$ and the duration of the search process $E_{1}(x)$ satisfy the inequalities 3.8 and 3.9 respectively. That is,

$$
\begin{aligned}
P_{1}(N, x) & \leq \frac{2 \times 9 \times 4}{13}\left[\frac{7}{13}\right)^{N-1}+\frac{3 \times 4 \times 12 \times 4}{2 \times 13}\left(\frac{4}{13}\right)^{N-1} \\
& =\frac{72}{13}\left(\frac{7}{13}\right)^{N-1}+\frac{576}{26}\left(\frac{4}{13}\right)^{N-1}
\end{aligned}
$$

and

$$
E_{1}(x) \leq 72.2
$$

The exact values for $p_{1}(N, x)$ and $E_{1}(x)$ have befn computed by Chakravarti and Manglik (1972) and found to be:

$$
\begin{aligned}
& p_{1}(N, x)=\frac{72}{13}\left[\frac{7}{13}\right]^{N-1}-\frac{66 \times 3}{13}\left[\frac{4}{13}\right]^{N-1} \\
&+\frac{72 \times 10}{13}\left[\frac{3}{13}\right]^{N-1}-\frac{23 \times 12}{13}\left[\frac{1}{13}\right]^{N-1}
\end{aligned}
$$

and

$$
E_{1}(x)=49.64
$$

Clearly, the exact expected duration of the search process given above satisfies the inequality given in (3.9).

We note here that the formula given above gives an upper bound far from the exact value, thus an improvement on this bound is necessary.
3.3 RANDOM SEARCH MODELS BASED ON FINITE PLANE EUCLIDEAN GEOMETRIES: EG(2,s).

Again we recall that the incidence matrix of $E G(2, s)$ is a man matrix $M=\left(\left(a_{\imath \jmath}\right)\right)$ where $m=$ $s^{2}+s, n=s^{2}$ and $a_{1}=0$ or 1 depending on whether the j-th point is incident with the - th line or not $(\imath=1,2, \ldots, m ; \quad \jmath=1,2, \ldots, n)$

Identifying the points of $E G(2, s)$ with elements of the set S_{n} and the lines with functions of F, we see that the incidence matrix M of $E G(2, s)$ is a search matrix.

Lemma 3.3: The system of functiore \{1ires) F, derived from $E G(2, s)$ is a weskiy homasera. a system of order 2.

Proof.
Let $M=\left(f_{L}\left(a_{j}\right)\right)$ be the search miaty x of the strategy based on the system F. Ther F iill be a weakly homogeneous system of order 2 if S_{2}, which , is the number of functions in F for which

$$
f\left(a_{j}\right)=f\left(a_{j}\right), \quad a_{j} \times a_{j} ;
$$

is constant. That is, the number of functions in F for which $f\left(a_{j}\right)=f\left(a_{j}\right)=1$ or $f\left(a_{j}\right)=f\left(a_{j}\right)=$ $0, \quad a_{j} \neq a_{j}$ is constant. But, the number of functions in F for which $f\left(a_{j}\right)=f\left(a_{j}\right)=1$ is

$$
\sum_{i=1}^{s^{2}+s} f_{i}\left(a_{j}\right) f_{i}\left(a_{j}\right), \quad a_{j} \neq a_{j}
$$

and the number of functions in F, for which $f\left(a_{j}\right)=f\left(a_{j}\right)=0$ is

$$
\sum_{i=1}^{s^{2}+s}\left(1-f_{i}\left(a_{j}\right)\right)\left(1-f_{i}\left(a_{j}\right)\right)
$$

Thus,

$$
\begin{align*}
R_{2} & =\sum_{i=1}^{s^{2}+s}\left[f_{i}\left(a_{j}\right) f_{i}\left(a_{j}\right)+\right. \\
& \left(1-f_{i}\left(a_{j}\right)\right)\left(1-f_{i}\left(a_{j}\right)\right] \\
& =\sum_{i=1}^{s^{2}+s}\left[1-f_{i}\left(a_{j}\right)-\varepsilon_{i}\left(a^{\prime}\right)\right. \\
& =\left(s^{2}+s\right)-2 i s- \\
& =s^{2}-s .
\end{align*}
$$

which is a constant as required. Hence F is a weakly homogeneous system of order 2 .

Lemma 3.4: The system of functions (lines) F derived frow $E G(2, s)$ is weakly homogeneous of order 3.

Proof

The system F will be weakly homogeneous of order 3 if R_{3}, which is the number of functions in F for which

$$
f\left(a_{j}\right)=f\left(a_{j},\right)=f\left(a_{j}, \ldots\right) \quad a_{j} \neq a_{\jmath} \neq a_{j}{ }^{\prime \prime}
$$

is constant. That is, the number of functions in F for which $f\left(a_{j}\right)=f\left(a_{j}\right)=f\left(a_{j},{ }^{\prime}\right)=1$ or $f\left(a_{j}\right)=$ $f\left(a_{j},\right)=f\left(a_{j},\right)=0, a_{j} \neq a_{j} \neq a_{j \prime \prime}$ is constant.

But, the number of functions in F for which
$f\left(a_{j}\right)=i\left(a_{j}\right)=f\left(a_{j}, \ldots\right)=1$ is;

$$
\sum_{i=1}^{s^{2}+s} f_{i}\left(a_{j}\right) f_{i}\left(a_{j}\right) f_{i}\left(a_{j}, \ldots\right), a_{j} \neq a_{j} \neq a_{j \prime \prime}
$$

and the number of functions in F for which $f\left(a_{j}\right)=$ $f\left(a_{j},\right)=f\left(a_{j},{ }^{\prime}\right)=c$ is;

$$
\sum_{=1}^{s^{2}+s}\left[\left(1-f_{i}\left(a_{j}\right)\right)\left(1-f_{i}\left(a_{j}\right)\right)\left(1-f_{2}\left(a_{j},\right)\right)\right] .
$$

Thus.

$$
\begin{aligned}
\hat{R}_{2}=\sum_{i=1} & {\left[f _ { i } (a _ { j }) f _ { i } (a _ { j } ,) f _ { i } \left(a_{j} \prime \prime\right.\right.} \\
& \left.+\left(1-f_{i}\left(a_{j}\right)\right)\left(1-f_{i}\left(a_{j}\right)\right)\left(1-f_{i}\left(a_{j}, \prime\right)\right)\right] \\
= & \sum_{i=1}^{2}\left[1-f_{i}\left(a_{j}\right)-f_{i}\left(a_{j}\right)-f_{i}\left(a_{j} \prime\right)\right. \\
& +f_{i}\left(a_{j}\right) f_{i}\left(a_{j}\right)+f_{i}\left(a_{j}\right) f_{i}\left(a_{j \prime \prime}\right)
\end{aligned}
$$

$$
\begin{align*}
& \left.\quad+f_{i}\left(a_{j}\right) f_{i}\left(a_{j},\right)\right] \\
& =\left(s^{2}+s\right)-3(s+1)+3 \\
& =s^{2}-2 s \tag{3.13}
\end{align*}
$$

which is a constant as required. Hence the proof of the lemma.

Example 3.4: Consider the incidence matrix of $E G(2,3)$ given as follows:

$$
\begin{aligned}
& \quad \\
& \ell_{1} \\
& \ell_{2} \\
& \ell_{3} \\
& \ell_{1} \\
& \ell_{5} \\
& \ell_{0} \\
& \ell_{7} \\
& \ell_{8} \\
& \ell_{0} \\
& \ell_{10} \\
& \ell_{11} \\
& \ell_{12}
\end{aligned}\left[\begin{array}{lllllllll}
P_{1} & P_{2} & P_{3} & P_{4} & P_{5} & P_{0} & P_{7} & P_{0} & P_{0} \\
1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 & 1
\end{array}\right] .
$$

Identifying the points of this geometry with the elements of the set $S_{0}=\left\{a_{1}, a_{2}, \ldots, a_{0}\right\}$ and the lines with functions of $F=\left\{f_{1}, f_{2}, \ldots, f_{12}\right\}$: be incidence matrix M forms a search watrix.

Taking any two points, say P_{1} and P_{2} which correspond to the elements a_{8}, a_{2} of S_{0}, R_{2} is equal to the number of functions in F for whic: $f\left(a_{1}\right)=f\left(a_{2}\right)=1$ or $f\left(a_{1}\right)=f\left(a_{2}\right)=0$. But, the number of functions in E for which $f\left(a_{1}\right)=f\left(a_{2}\right)=1$ is;

$$
\sum_{i=1}^{12} f_{i}\left(a_{1}\right) f_{i}\left(a_{2}\right)=1
$$

and the number of functions in F which $f\left(a_{1}\right)=f\left(a_{2}\right)=0$ is;

$$
\sum_{i=1}^{12}\left(1-f_{i}\left(a_{1}\right)\right)\left(1-f_{i}\left(a_{2}\right)\right)=\sum_{i=1}^{12}\left(1-f_{i}\left(a_{1}\right)-f_{i}\left(a_{2}\right)\right.
$$

$$
\left.+f_{i}\left(a_{1}\right) f_{i}\left(a_{2}\right)\right]
$$

$$
=12-\sum_{i=1}^{12} f_{i}\left(a_{1}\right)-\sum_{i=1}^{12} f_{i}\left(a_{2}\right)
$$

$$
-\sum_{i=2}^{12} f_{i}\left(a_{1}\right) f_{i}\left(a_{2}\right)
$$

$$
=12-4-4+1=5 \text {, }
$$

Thus

$$
R_{2}=1+5=6
$$

which is constant for any pair of elements (a_{j}, a_{j},) implying that the system of functions F is weakly homogeneous of order 2 .

Theorem 3.2: The expected duration of the search process based on the incidence matrix of $E G(2, s)$ for detecting unknown element $x, E_{1}(x)$ satisfies the inequality

$$
E_{1}(x)-\left[(s-1)(s+1)^{2} / 2\right]\left[1+2\left(s^{2}-2\right)(s \cdot 2) / s\right]
$$

Proof
$\operatorname{From}(3.12)$ and $(3.13), R_{2}=s^{2}-s$ and $R_{3}=s^{2}$ - 2s. Substituting these values and $R_{1}=s^{2}+s$ in (3.2) and (3.3) we obtain:

$$
P_{1}(H, X) \leq 1-\left(s^{2}-1\right)\left(\frac{s^{2}-s}{s^{2}+s}\right)^{N}+\left(\frac{s^{2}-1}{2}\right)\left(\frac{s^{2}-2 s}{s^{2}+s}\right)^{N}
$$

and

$$
P_{1}(N-1, x) \geq 1-\left(s^{2}-1\right)\left[\frac{s^{2}-s}{2}\right]^{N-1}
$$

But

$$
\begin{aligned}
P_{1}(N, x)= & P_{1}(N, X)-P_{1}(N-1, x) \\
\leq & \left(s^{2}-1\right)\left[\frac{s^{2}-s}{s^{2}+s}\right]^{N-1}\left(1-\frac{s^{2}-s}{2}\right] \\
& +\left(\frac{s^{2}-1}{2}\right)\left(\frac{s^{2}-2 s}{s^{2}+s}\right]^{N} \\
= & \frac{\left(s^{2}-1\right) \cdot 2 s}{s^{2}+s}\left(\frac{s^{2}-s}{s^{2}+s}\right]^{N-1} \\
& +\frac{s\left(s^{2}-1\right)\left(s^{2}-2\right)(s-2)}{2 s(s+1)}\left[\frac{s^{2}-2 s}{s^{2}+s}\right]^{n-1}
\end{aligned}
$$

That is,

$$
\begin{aligned}
p_{1}(N, x) \leq 2(s-1) & {\left[\frac{s^{2}-s}{s^{2}+s}\right)^{N-1} } \\
& +\frac{(s-1)\left(s^{2}-2\right)(s-2)}{2}\left(\frac{s^{2}-2 s}{s^{2}+s}\right)^{N-1}
\end{aligned}
$$

The expected duration of the search process is given by:

$$
\begin{equation*}
E_{1}(x)=\sum_{N=0}^{\infty} N \cdot P_{1}(N, x) \tag{i.7}
\end{equation*}
$$

which implies

$$
\begin{align*}
& E_{1}(x) \leq \sum_{N=0}^{\infty} N\left[2(s-1)\left(\frac{s^{2}-s}{s^{2}+s}\right)^{N-1}+\right. \\
& \left.\frac{(s-1)\left(s^{2}-2\right)(s-2)}{2}\left(\frac{s^{2}-2 s}{s^{2}+s}\right)^{N-1}\right] \\
& =2(s-1)\left(1-\frac{s^{2}-s}{s^{2}+s}\right)^{-2}-2(s-1)+ \\
& \frac{(s-1)\left(s^{2}-2\right)(s-2)}{2}\left(1-\frac{s^{2}-2 s}{s^{2}+s}\right)^{-2} \\
& -\frac{(s-1)\left(s^{2}-2\right)(s-2)}{2} \\
& =\frac{2(s-1) s^{2}(s+1)^{2}}{\frac{1}{4} s^{2}}+\frac{(s-1)\left(s^{2}-2\right)\left(s-\underline{2}^{2}\right) s^{2}(s+)^{2}}{9 s^{2}} \\
& -\frac{s-1}{2}\left(4+\left(s^{2}-2\right)(s-2)\right) \\
& =\frac{(s-1)(s+1)^{2}}{2}\left[1+2 \frac{\left(s^{2}-2\right)(s-2)}{9}\right] \\
& -\frac{s-1}{2}\left(4+\left(s^{2}-2\right)(s-2)\right) \tag{3.15}
\end{align*}
$$

which is the required result. Herce, trie siouf ci the theorem. Fiom (3.15) he see that the crinected duration of the searcir process biseí c! t!e incidouce matrja or EG(2, S) jucree:ce mitb incueate $11!$.

Example 3.5: Consider the incidence matuly... EG(2, 2) Ei:cnas follons:

$$
\begin{aligned}
& \ell_{1} \\
& \ell_{2} \\
& \ell_{3} \\
& \ell_{4} \\
& \ell_{5} \\
& \ell_{6}
\end{aligned}\left[\begin{array}{llll}
F_{1} & p_{2} & F_{3} & F_{4} \\
1 & 0 & 0 & 1 \\
1 & 1 & 1 & 0 \\
1 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

Identifying the points of $E G(2,2)$ with the elements $a_{1}, a_{2}, a_{3}, a_{4}$ of set S_{4} and the lines with functions $f_{1}, f_{2}, \ldots f_{6}$ of the system F, the incidence matrix M of EG (2,2) forms a search matrix. The system $F=\left(f_{1}, f_{2}, \ldots, f_{6}\right\}$ would detect any unknown element x in S_{4} since the columns of the search matrix M are distinct and thus, F is a separating system on S_{4}. Using the incidence matrix of $E G(2,2)$ as a search matrix, the probability $F_{1}(N, x)$, that the search process for detecting one unknown element x, terminates in exact? sups, and the duration, $E_{1}(x)$ of the setter process satisfy the inequalities (3.:i) !3.1: respectively. That is,

$$
p_{1}(N, x) \leq 2\left(\frac{1}{3}\right)^{N-1}
$$

and

$$
E_{1}(x) \leq \frac{5}{2}
$$

Io chain the exact value of
$E_{1}(x)$, we substitute P
$\mathrm{f}_{3}=s^{-}-2 \mathrm{~s}$ in (E .2)

$$
\begin{align*}
& F_{1}(N, x) \geq \sum^{*}-\left(s^{2}-1\right)^{\left(s^{2}-s\right.}\left(\frac{s}{s}\right) \tag{281}\\
& F_{1}(N, x) \leq 1-\left(s^{2}-1\right)\left(\frac{s^{2}-s}{\left(s^{2}+s\right.}\right)^{N} \\
& +\left(s^{2}-1\right)\left(\frac{s^{2}-2 s}{s^{2}+s}\right)^{n}
\end{align*}
$$

For $s=2$, the expressions (3.18) and (3.19) reduce to;

$$
P_{1}(N, x) \geq 1-3\left(\frac{1}{3}\right)^{N}
$$

and

$$
P_{1}(N, x) \leq 1-3\left(\frac{1}{3}\right)^{N}
$$

Thus

$$
P_{1}(N, x)=1-3\left(\frac{1}{3}\right)^{N}
$$

and from

$$
p_{1}(N, x)=P_{1}(N, x)-P_{1}(N-1, x)
$$

we get

$$
\begin{aligned}
p_{1}(N, x) & =\left[1-3\left(\frac{1}{3}\right)^{N}\right]-\left[1-3\left(\frac{1}{3}\right)^{N-1}\right] \\
& =3\left(\frac{1}{3}\right)^{N-1}\left(1-\frac{1}{3}\right)=2\left(\frac{1}{3}\right)^{N-1}, N \geq 2
\end{aligned}
$$

and

$$
p_{1}(1, x)=0
$$

since no single function (line) can detect the unknown element.
The expected duration of the search process $E_{1}(x)$ is then given by;

$$
\begin{aligned}
E_{1}(x) & =2 \sum_{N=2}^{x} N\left(\frac{1}{3}\right)^{N-1} \\
& =2\left(\frac{1}{\left(1-\frac{1}{3}\right)^{2}}-1\right) \\
& =2.5
\end{aligned}
$$

Thus, the expected duration of the search process
for detecting one unknown element using the incidence matrix of $E G(2,2)$ as a search matrix is 2.5 test-functions. This expected duration of the search process satisfies the inequality given in (3.17).

We note here that although the formula given in section 3.2 gives an upper bound far from the exact value in example 3.4, the above formula gives an upper bound which concides with the exact value in this example.

3.4 SEARCH MODELS BASED ON RANDOM $0-1$ MATRICES.

Consider an man matrix $M=\left(\left(a_{i j}\right)\right)$, whose entries $a_{i j}(i=1,2, \ldots, \pi ; j=1,2, \ldots, n)$ take on l: two values 0 and 1 with equal probabilities. That is

$$
\operatorname{Prob} .\left(a_{i j}=0\right)=\operatorname{prob} \cdot\left(a_{i j}=1\right)=\frac{1}{2}
$$

Then the matrix M is called a random 0-1 matrix.
Identifying the it column of the matrix M with the element a_{i} of the set $S_{n}=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ and the th row with the function f, of the system $F=\left\{f_{i}, f_{p}, \ldots . . . f_{n}\right\}$, the rate dom 0 - 1 matrix M gives a search matrix of the $s: s^{*} \in \min ^{\mathrm{F}}$.

Let $: \in S_{n}$, be the unknown element whose identity we wish to deicrmite by choosing a sequence of functions $f_{1}, f_{2}, \ldots, f_{N}$ from the system F ard observing the values of these functions at the "\& unknown element x, until enc:rsh information is obtained to determine the unknown element. The unknown element, x would then be determined in any
of the following mutual ex prase cases
(i) only one function in F, say f, is selected. The unknown element would be determined if in the submatrix consisting of the fth row of M there exists "1" in the eth column and 0 's in the remaining ($n-1$) columns or " 0 " on the eth column and l's on the remaining ($n-1$) columns. The probability of such arrangement is

$$
\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)^{n-1}+\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)^{n-1}=\left(\frac{1}{2}\right]^{n-1}
$$

and the expected number of such functions (rows) is

$$
m\left(\frac{1}{2}\right)^{n-1} .
$$

(ii) Thru functions in E, say $f_{1_{1}}$ and $f_{j_{2}}$ are selected. Then the unknown element would be determined if in the submatrix consisting of the 1_{1} th and J_{2} th rows of H, the eth column is different from any other column. Possible columns of the subutatrix consisting of the J_{1} th and J_{2} th rows of M are:

$$
\begin{aligned}
& {\left[\left(\begin{array}{l}
1 \\
1
\end{array}\right], \quad\left(\begin{array}{l}
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1
\end{array}\right] \text { and }\left(\begin{array}{l}
0 \\
0
\end{array}\right]\right.} \\
& \text { Prob. }\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\text { Prob. } \cdot\left(\begin{array}{l}
1 \\
0
\end{array}\right]=\text { Prob } \cdot\left(\begin{array}{l}
0 \\
1
\end{array}\right]=\text { Prob } \cdot\binom{0}{0}=\frac{1}{4} .
\end{aligned}
$$

Thus, the probability that a column will be different from all other columns is

$$
\left(\frac{1}{4}\right] \cdot\left(\frac{3}{4}\right)^{n-1}+\left(\frac{1}{4}\right) \cdot\left(\frac{3}{4}\right)^{n-1}+\left(\frac{1}{4}\right) \cdot\left(\frac{3}{4}\right)^{n-1}+\left(\frac{1}{4}\right)\left(\frac{3}{4}\right)^{n-1}=\left(\frac{3}{4}\right)^{n-1}
$$

And the expected number of pairs of rows with a colum different from all other columns is

$$
\binom{m}{2} \cdot\left(\frac{3}{4}\right)^{n-1}
$$

(iii) Generally a sequence of k functions $f_{1}, f_{2}, f_{3}, \ldots, f_{k}$ will determine the unknown element if in the submatrix consisting of k rows of M, the eth column is different from any other column, possible columns of such a submatrix of M are:

$$
\left(\begin{array}{c}
1 \\
1 \\
\vdots \\
1
\end{array}\right),\left(\begin{array}{c}
1 \\
0 \\
\vdots \\
\vdots \\
1
\end{array}\right), \ldots \ldots \ldots \ldots,\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
0
\end{array}\right)
$$

with

$$
\operatorname{Prob} \cdot\left(\begin{array}{l}
1 \\
1 \\
\vdots \\
1
\end{array}\right)=\text { prob. } \cdot\left(\begin{array}{l}
1 \\
0 \\
\vdots \\
1
\end{array}\right)=\ldots \text { Prob } \cdot\left(\begin{array}{l}
0 \\
0 \\
\vdots \\
0
\end{array}\right)=\frac{1}{2^{k}} .
$$

Thus, the probability that a column will be different from ail other colum s is

$$
\begin{gathered}
{\left[\frac{1}{2^{k}}\right]\left(1-\frac{1}{2^{k}}\right)^{n-1}-\frac{1}{2^{1}}\left(i-\frac{1}{2^{k}}\right)^{n-1}+\cdots .} \\
\\
\ddots
\end{gathered} \quad\left(i-\frac{1}{z^{k}}\right]^{n-1} .
$$

and the expected number of k rows of M with = column dizemert ono g all other columns is

$$
\begin{equation*}
\left[\frac{n}{A}\right] \cdot\left[1-\frac{1}{2^{y}}\right]^{n-1} \cdot \tag{3.20}
\end{equation*}
$$

Termination of the search process．
To determine the probability that the search process will terminate at the Nth step，we consider the complementary event that the search process will not terminate in N steps．To do this we require the following counting lemma．

Lemma 3．5：Let t be the number of ways of placing N balls in $⿴ 囗 ⿰ 丿 ㇄$ are occupied，then；

$$
t=\sum_{k=0}^{m}(-1)^{k}\left[\begin{array}{l}
m \\
k
\end{array}\right](m-k)^{N} .
$$

For proof of this lemma see Renyi（1970）．

Lemma 3．6：Let $E_{1}^{C}(N, x)$ be the probability that the seguence

$$
f_{i}, f_{i}, \ldots, f_{i}, f_{i}, f_{2}, \ldots, f_{i}, f_{i}, \ldots, f_{i}, \ldots, f_{i}, \ldots, f_{i}
$$

of length N wisil not detect the unknown element x ．Then，

$$
P_{1}^{c}(N, x)=\left\{\left[(i) i^{i} 1-\left[1-\frac{1}{2^{\ell}}\right)^{\pi-1}\right] \sum_{i=1}^{\ell}(-1)^{i}\left[\begin{array}{l}
\ell \\
i
\end{array}\right](\ell-i)^{N}\right\} / \mathbb{m}^{N}
$$

Finef
Tetizet the functions $f_{i}, f_{i}, \ldots f_{i}$ to be celis fid the length N t．be nueter of balls in Lemae（3．5），$u \in$ find that the number of ways of arremeing the sequence

$$
f_{i}, f_{i}, \ldots, f_{i}, f_{i}, \ldots, f_{i}, f_{i}, \ldots, f_{i}, \ldots, f_{i}, \ldots, f_{i}
$$

of functions such that all the functions $f_{i_{1}}, f_{i}, \ldots, f_{i}$ appear at least once in each sequence is

$$
\sum_{i=0}^{\ell}(-1)^{i}\left[\begin{array}{l}
\eta \\
i
\end{array}\right](l-i)^{N}
$$

But from (3.20) the expected number of l rows of matrix M with a column different from all other columns and thus detect the unknown element is

$$
\binom{m}{\ell}\left(1-\frac{1}{2^{\ell}}\right)^{n-1}
$$

so the expected number of ℓ rows of matrix M which do not detect the unknown element is

$$
\binom{\mathbb{m}}{i}-\binom{\mathbb{m}}{i}\left[1-\frac{1}{2^{i}}\right)^{n-1}
$$

Thus, the expected number of sequences

$$
f_{1}, f_{1}, \ldots, f_{1}, f_{i}, \ldots, f_{2}, f_{i}, \ldots, f_{i}, \ldots, f_{i}, \ldots, f_{i}
$$

which do not detect the unknown element is

$$
\because \left\lvert\,\left\{1-\left[1-\frac{1}{2^{i}}\right)^{n-1}\right\} \sum_{i=1}^{\ell}(-1)^{1}\left(\begin{array}{l}
\ell \\
i
\end{array}\right](l-1)^{N}\right.
$$

End ere fabocbiiity that the sequence

$$
=\left\{\ldots, f_{i}, f_{i}, \ldots, f_{i}, f_{i}, \ldots, f_{i}, \ldots, f_{i}, \ldots, f_{i}\right.
$$

will not detect the unknown element is therefore;

$$
E_{1}^{C}\left(N, x_{i}\right)=\left[\left(\begin{array}{c}
\mathbb{m} \\
\ell
\end{array}\right]\left\{1-\left(1-\frac{1}{2^{\ell}}\right)^{n-1}\right\} \sum_{i=1}^{\ell}(-1)^{i}\left(\begin{array}{l}
\ell \\
i
\end{array}\right](l-i)^{N}\right] / \mathbb{m}^{N}
$$

which completes the proof of Lemua 3.6. he illustrate this Lemma by computing the expected probability that the search process will not terminate within N steps for $\ell=3$. That is, a sequence of three functions

$$
f_{i_{1}}, f_{i}, \ldots, f_{i}, f_{i}, \ldots, f_{i}, f_{2}, \ldots, f_{i}
$$

in $F=\left\{f_{1}, f_{2}, \ldots, f_{m}\right\}$ will not detect the unknown element.

Now, the unknow element x will be detected by three functions f_{i}, f_{i}, f_{2} if in the submatrix consisting of the $i_{1}-$ th, i_{2}-th and i_{3}-th rows of M, the xth column is different from any other column. Fossible columns of such a submatrix of M consisting of three rous are:

$$
\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right),\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right),\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right],\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

with

$$
\begin{aligned}
\operatorname{Pr} \cdot\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] & =\operatorname{Pr} \cdot\left[\begin{array}{l}
1 \\
1 \\
n
\end{array}\right]=\operatorname{Pr} \cdot\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]=\operatorname{Pr} \cdot\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]=\operatorname{Pr} \cdot\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right] \\
& =\operatorname{Pr} \cdot\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]=\operatorname{Pr} \cdot\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]=\operatorname{Pr} \cdot\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]=\frac{1}{2^{3}} \cdot
\end{aligned}
$$

Thus, the probability that a column will be different from all other columns is;

$$
\left[\frac{1}{2^{3}}\right]\left(1-\frac{1}{2^{3}}\right]^{n-1}+\left(-\frac{1}{2^{3}}\right]\left(1-\frac{1}{2^{3}}\right)^{n-1}
$$

$$
\begin{aligned}
& +\frac{1}{2^{3}}\left(1-\frac{1}{2^{3}}\right)^{n-1}+\frac{1}{2^{3}}\left(1-\frac{1}{2^{3}}\right)^{n-1}+\left[\frac{1}{2^{3}}\right)\left(1-\frac{1}{2^{3}}\right) \\
& +\left(\frac{1}{2^{3}}\right)\left(1-\frac{1}{2^{3}}\right)^{n-1}+\left(\frac{1}{2^{3}}\right)\left(1-\frac{1}{2^{3}}\right)^{n-1} \\
& +\left(\frac{1}{2^{3}}\right)\left(1-\frac{1}{2^{3}}\right)^{n-1}=\left(1-\frac{1}{2^{3}}\right)^{n-1} .
\end{aligned}
$$

The expected number of three rows of M with a column different from all other columns is;

$$
\begin{equation*}
\binom{m}{3}\left(1--\frac{1}{2^{3}}\right)^{n-1} . \tag{3.21}
\end{equation*}
$$

Taking the functions $f_{1_{1}}, f_{i_{2}}$ and $f_{i_{3}}$ to be cells and the length N to be number of balls in lemaa 3.5 we find that the number of ways of arranging the sequence

$$
f_{i}, f_{i}, \ldots, f_{i}, f_{i}, \ldots, f_{i}, f_{i}, \ldots, f_{i}
$$

of functions such that all the functions $f_{i_{1}}, f_{i_{2}}, f_{i_{3}}$ appear at least once in each sequence is

$$
\sum_{j=0}^{3}(-1)^{j}\binom{3}{j}[3-j]^{N}=3^{N}-3 \cdot 2^{N}-3
$$

Eut from (3.21) the expected number of three rias M with a column different from all otier coiuturs thus detect the urknown element is

$$
\left[\begin{array}{l}
m \\
3
\end{array}\right]\left[1-\frac{1}{2^{3}}\right]^{n-1}
$$

so the expected number of three rows of matrix Mo:
which do not detect the unknown element is

$$
\binom{m}{3}-\binom{m}{3}\left(1-\frac{1}{2^{3}}\right) .
$$

Thus, the expected number of sequences

$$
f_{i}, f_{i}, \ldots, f_{i}, f_{i}, \ldots, f_{i}, f_{i}, \ldots, f_{i}
$$

which do not detect the unknown element is

$$
\binom{m}{3}\left[1-\left(1-\frac{1}{2^{3}}\right)^{n-1}\right]\left[3^{N}-3 \cdot 2^{N}+3\right),
$$

and the probability that the sequence

$$
f_{i}, f_{i}, \ldots, f_{i}, f_{i}, \ldots, f_{i}, f_{i}, \ldots, f_{i}
$$

will not detect the unknown element is therefore:

$$
\left.F_{1}^{c}(N, x)=\left[\binom{n}{3}\left\{1-\left(1-\frac{1}{2^{3}}\right)\right]^{n-1}\right\}\left[3^{N}-3 \cdot 2^{N}+3\right)\right] / m^{N}
$$

Remark: The probability that the search prooess does not terminate within N steps, $P_{1}^{=}(N, x)$ given in lemma 3.6 is the average of the probabilities that the search processes do not terminate within N steps. That is, if n number of randnm 0-1 matrices are considered then the average of the frobabilities that the search processes do not terminate wianin iv steps is given in lemma 3.6 .

Corollary 3.1: The probabilicy that the search process terminates in N or less steps is $P_{1}(N, x)=1-\left[\sum_{\ell=1}^{m}\left[\begin{array}{c}m \\ \ell\end{array}\right]\left\{1-\left(1-\frac{1}{2^{\ell}}\right)^{n-1}\right\} \sum_{i=1}^{\ell}(-1)^{i}\left(\begin{array}{l}\ell \\ i\end{array}\right](\ell-i)^{N}\right] / m^{N}$

Proof

From lemma 3.6 the probability that the search process will not terminate in N or less steps is

$$
\left[\sum_{l=1}^{\mathrm{m}}\binom{m}{l}\left\{1-\left(1-\frac{1}{2^{\ell}}\right)^{\mathrm{n}-1}\right\} \sum_{i=1}^{l}(-1)^{i}\left[\begin{array}{l}
l \\
l
\end{array}\right](l-1)^{\mathrm{N}}\right] / \mathrm{m}^{\mathrm{N}} .
$$

Thus, the probability that the search process will terminate in N or less steps is
$P_{1}(A, x)=1-\left[\frac{\sum_{\ell=1}^{m}\binom{m}{\ell}\left\{1-\left(1-\frac{1}{2^{\ell}}\right)^{n-1}\right\} \sum_{i=:}^{\ell}(-1)^{2}\left[\begin{array}{l}\ell \\ i\end{array}\right)(\ell-i)^{N}}{\mathbb{m}^{N}}\right]$.
Hence the proof of Corollary 3.1.

Example 3.6:- Let $M=\left(\left(a_{1}\right)\right)$ be a 5×5 matrix constructed from five rows and five colums of random numbers such that:

$$
a_{i j}=\left\{\begin{array}{l}
1 \text { if (} 1, j \text {)th random number is even } \\
0 \text { if }(1, j) \text { th random number is odd. } .
\end{array}\right.
$$

Then one possible such matilix is:

$$
M=\left(\begin{array}{lllll}
1 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 1 \\
1 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 & 1
\end{array}\right)
$$

Now, since random numbers are even or odc mith esual probabilities, the prob. $\left(a_{i j}=1\right)=$ prob. $\left(\varepsilon_{21}=0\right)=\frac{1}{2}$ Thus, the matrix M is a random $0-1$ watrix.

$$
\text { Identifying the columns of the matrix } M \text { with }
$$

the elements of the set $S_{5}=\left\{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right\}$, that is, the th column corresponds to the element $a_{2} \in$ S_{5}, and the functions $f_{1}, f_{z}, f_{5}, f_{4}, f_{5}$ with the rous of M, that is, the ith row corresponds to the function f_{j}, the random $0-1$ matrix M gives a search matrix of the functions $f_{1}, f_{2}, f_{3}, f_{4}, f_{5}$.

Let $a_{1} \in S_{5}$ be the unknown element whose identity we wish to determine by choosing a sequence of functions f_{1}, f_{2}, \ldots_{s} from the syster $F=\left\{f_{1}, f_{2}, f_{3}, f_{4}, f_{5}\right\}$ and observe the values of these functions at a_{1} until enough information is obtained to determine it.

To determine the probability of termiration of the search process, we consider the conplementary event, that is, the event that the search process does not terminate in N steps. He will use lemma 3.5 to get the number of sequences of length N which do not detect the unknown element.

The search process will rot terminate in N steps if any of the following seguerses occur:
(i) Only one function $f \in \sum$ is sele ted Heger. The ark: will not
be detected because the is no row with "1" in the first columnand 0 's in the remaining 4 culurfo $c=i n$ the first column and i's on the remainine 4 colums. The nutaber of possible sequences " ${ }^{\circ}$ " is five, viz:

$$
\begin{aligned}
& f_{1}, f_{i}, \ldots, f_{1} ; f_{2}, f_{2}, \ldots, f_{2} ; f_{3}, f_{3}, \ldots, f_{3} ; \\
& f_{4}, f_{4}, \ldots, f_{4} ; f_{5}, f_{5}, \ldots, f_{5} .
\end{aligned}
$$

(ii) Two functions f_{1} and f_{2} are selected x_{1} and x_{2} times respectively, where $x_{1}+x_{2}=$ N. In this case the unknown element a_{1} will not be detected because the first and second columns of the submatrix consisting of the 1 st and 2 nd rows of matrix M are the same. The number of possible sequences of f_{1} and f_{2} is

$$
\left[\begin{array}{l}
2 \\
2
\end{array}\right]\left(2^{N}-2\right)=2^{N}-2 .
$$

(iii) Two functions f_{1}, and f_{3} are selected x_{1} and x_{2} times respectively, where $x_{1}+x_{2}$ $=N$. In this case the unknown element a_{1} will not be detected because the first and second columns of the submatrix consisting of the 1 st and 3 rd rows of matrix M are the same. The number of possible sequences of f_{1} and f_{3} is

$$
\left[\begin{array}{l}
2 \\
2
\end{array}\right]\left(2^{N}-2\right)=2^{N}-2 .
$$

Using similar, argument the sequences of the follow ag functions will not detect the unknown element a_{1}.
(iv) Two functions f_{1} and f_{4} are selected x_{1} i and x_{2} times respectively, where
$x_{1}+x_{2}=N$; the number of possible sequences of f_{1} and f_{4} is

$$
\left[\begin{array}{l}
2 \\
2
\end{array}\right]\left(2^{N}-2\right)=2^{N}-2 .
$$

(v) Two functions f_{2} and f_{4} are selected X_{1} and x_{z} times respectively, where $x_{1}+x_{2}=N$; the number of possible sequences of f_{2} and f_{4} is

$$
\left[\begin{array}{l}
2 \\
2
\end{array}\right]\left(2^{N}-2\right)=2^{N}-2 .
$$

(vi) Two functions f_{2} and f_{5} are selected x_{1} and x_{2} times respectively, where $x_{1}+x_{2}=N$; the number of possible sequences of F_{2} and f_{5} is

$$
\left[\begin{array}{l}
2 \\
2
\end{array}\right]\left(2^{N}-2\right)=2^{N}-2 .
$$

(vii) Two functions f_{z} and f_{3} are selected x_{1} and x_{2} times respectively, where $x_{1}+x_{2}=N$; the number of possible sequences of f_{z} and f_{3} is

$$
\left[\begin{array}{l}
2 \\
2
\end{array}\right]\left(2^{N}-2\right)=2^{N}-2 .
$$

$$
\begin{array}{rlr}
\text { (viii) } I \text { in functions } t_{3} \text { and } f_{4} \text { are selected } \\
x_{1} \text { and } x_{2} \text { times respectively, where } \\
x_{1}+x_{2}=N \text {; the number of possible } \\
& \text { sequences of } f_{3} \text { and } f_{4} \text { is } &
\end{array}
$$

$$
\left(\begin{array}{l}
2 \\
2
\end{array}\right]\left(2^{N}-2\right)=2^{N}-2 .
$$

(ix) Two functions f_{s} and f_{5} are selected x_{1} and x_{2} times respectively, where $x_{1}+x_{2}=N$; the number of possible sequences of f_{3} and f_{5} is

$$
\left[\begin{array}{l}
2 \\
2
\end{array}\right]\left(2^{N}-2\right)=2^{N}-2 .
$$

(x) Three functions f_{1}, f_{2}, f_{3} are selected x_{1}, x_{2}, x_{3} times respectively, where $x_{1}+x_{2}+x_{3}=N$; the number of possible sequences of f_{1}, f_{2}, f_{3} is

$$
\left[\begin{array}{l}
3 \\
3
\end{array}\right]\left(3^{N}-3 \cdot 2^{N}+3\right)=3^{N}-3 \cdot 2^{N}+3
$$

(xi) Three functions f_{1}, f_{2}, f_{4} are selected x_{1}, x_{2}, x_{3} times respectively, where $x_{1}+x_{2}+x_{3}=N$; the number of possible sequences of f_{1}, f_{2}, f_{4} is

$$
\binom{3}{3}\left(3^{N}-3 \cdot 2^{N}+3\right)=3^{N}-3 \cdot 2^{N}+3 .
$$

(xii) Three functions f_{1}, f_{3}, f_{4} are selected x_{1}, x_{2}, x_{3} times respectively, where $x_{1}+x_{2}+x_{3}=N$; the number of passible sequences if f_{1}, f_{3}, f_{4} is

$$
\left[\begin{array}{l}
3 \\
3
\end{array}\right]\left(3^{N}-3 \cdot 2^{N}+3\right)=3^{N}-3 \cdot 2^{N}+3 .
$$

(xiii) Three functions f_{2}, f_{3}, f_{4} are selected x_{0}, x_{2}, x_{3} times respectively, where $x_{1}+x_{2}+x_{3}=N$; the number of possible
sequences of f_{2}, f_{3}, f_{4} is

$$
\left[\begin{array}{l}
3 \\
3
\end{array}\right]\left(3^{N}-3 \cdot 2^{N}+3\right)=3^{N}-3.2^{N}+3
$$

(xiv) Three functions f_{2}, f_{3}, f_{5} are selected x_{1}, x_{2}, x_{3} times respectively, where $x_{1}+x_{2}+x_{3}=N$; the number of possible sequences of f_{2}, f_{3}, f_{5} is

$$
\binom{3}{3}\left(3^{N}-3 \cdot 2^{N}+3\right)=3^{N}-3 \cdot 2^{N}+3 .
$$

(x) Four functions $f_{1}, f_{2}, f_{3}, f_{4}$ are selected $x_{1}, x_{2}, x_{3}, x_{4}$ times respectively, where $x_{1}+x_{2}+x_{3}+x_{4}=N$; the number of possible sequences of $f_{1}, f_{2}, f_{3}, f_{4}$ is $\left[\begin{array}{l}4 \\ 4\end{array}\right]\left(4^{N}-4 \cdot 3^{N}+6 \cdot 2^{N}-4\right)=\left(4^{N}-4 \cdot 3^{N}+6 \cdot 2^{N}-4\right)$.

Thus, the probability of the search
i.e
$P_{1}(N, x)=1-\left[\frac{1}{5}\right]^{N}-\left(\frac{3}{5}\right]^{N}+\left(\frac{2}{5}\right]^{N}$
and the probability of the search process terminating in exactly N steps is

$$
\begin{aligned}
P_{1}(N, x)= & P_{1}(N, x)-P_{1}(N-1, x) \\
= & \left\{1-\left[\left[\frac{4}{5}\right]^{N}+\left[\frac{3}{5}\right]^{N}-\left[\frac{2}{5}\right]^{N}\right]\right\} \\
& -\left\{1-\left[\left(\frac{4}{5}\right]^{N-1}+\left[\frac{3}{5}\right]^{N-1}-\left[\frac{2}{5}\right]^{N-1}\right]\right\} \\
= & \left(\frac{4}{5}\right]^{N-1}\left[1-\frac{4}{5}\right]+\left[\frac{3}{5}\right]^{N-1}\left[1-\frac{3}{5}\right] \\
& +\left[\frac{2}{5}\right]^{N-1}\left[\frac{2}{5}-1\right] \\
= & \frac{1}{5}\left(\frac{4}{5}\right)^{N-1}+\frac{2}{5}\left(\frac{3}{5}\right]^{N-1}-\frac{3}{5}\left(\frac{2}{5}\right]^{N-1}
\end{aligned}
$$

The expected duration of the search process is

$$
\begin{aligned}
E_{1}(x) & =\sum_{N=1}^{\infty} N \cdot p_{1}(N, x) \quad c \cdot f(1,7) \\
& =\frac{1}{5} \sum_{N=1}^{\infty} N\left[\frac{4}{5}\right]^{N-1}+\frac{2}{5} \sum_{N=1}^{\infty} N\left(\frac{3}{5}\right)^{N-1}-\frac{3}{5} \sum_{N=1}^{\infty} N \cdot\left(\frac{2}{5}\right)^{N-1} \\
& =\frac{1}{5}\left[\frac{1}{(1-4 / 5)^{2}}\right]+\frac{2}{5}\left(\frac{1}{(1-2 / 5)^{2}}\right)-\frac{3}{5}\left(\frac{1}{\left.(1-2 ; 5)^{2}\right)}\right. \\
& =\frac{1}{5} \times 25+\frac{2}{5} \times \frac{2.5}{4}-\frac{3}{5} \times \frac{25}{9} \\
& =5.83 .
\end{aligned}
$$

Thus, an average of 5.8 trep-fliceticre
required to detect the unknown element a_{1}
Note that the probability of termination of the search process and expected curation 6 the search process given here are for as specific example. If a number of random $0-1$ matrices are
considered then the average of the probabilities and durations of the search processes would be given by Lemma 3.6.

Remarks:- To compare search systems derived from incidence matrices of $P G(2,5)$ and $E G(2,5)$ with search systems derived from random $0-1$ matrices, we first note the following:

> (i) In a search system derived from the incidence matrix of $P G(2, s)$ or $E G(2, s)$ the number of functions is alwaysgreater thanor at least equal to the number of elements.
(ii) The search systems cerived frou the incidence matrices of $F G(2,5)$ and EU(2,s) are always sefsrating systems.
(iii) In a search syster derived from the random $0-1$ matrices the number of functions car be less trari, equal to or Ereater than the numper of ejerents.
(iv) The search syetcos derivec frow ihe rendam 0-1 reit not alfés

Now, Eince not il sfors sysums dermed
 would preer to use sespre syetems deived from incidence matrices of $P\left(\begin{array}{l}\text { (} \\ \text { a }\end{array}\right.$) or $E G(2, s)$ since, such search systems ale mlfrys sefayating systems.

CHAPTER 4

detecting more than one unknown Element.

4.1

INTRODUCTION.

In this Chapter, we study two different strategies for detecting more than one unknown element from a set S_{n} consisting of n distinguishable elements $a_{1}, s_{2}, \ldots . . ., a_{n}$. We will first study strategies for detecting two unknown elements. These strategies are described below.

2-Complete search designs.
Using the definition of t-complete search design given in Section 1.2 of Chapter 1 , we define a 2-complete search design as a system $\left\{A_{1}, A_{2}, \ldots ., A_{m} ; S_{n}\right\}$ consisting of m subsets $A_{1}, A_{2}, \ldots, A_{m}$ of a finite set S_{n} in which for any pair of elements a_{ℓ}, a_{ℓ} in S_{n}, there exist subsets $A_{i_{1}}, A_{i_{2}}, \ldots, A_{i_{k}}, \quad\left\{i_{1}, 2_{2}, \ldots, i_{k}\right\} \subset\{1,2, \ldots, \mathbb{m}\}$ such that $a_{\ell}, a_{\ell^{\prime}} \in A_{i}$ for $j=1,2, \ldots, k$ and $\bigcap_{j=1} k_{j}=\left\{\hat{z}_{i}, \varepsilon_{i}\right\}$. Without any loss of generality we will assume that the subsets $A_{i}, A_{i_{2}}, \ldots ., A_{i_{k}}$, are the only subsets in the set $\left\{A_{1}, A_{2}, \ldots \ldots, A_{m}\right\}$ which contain the pair $a_{\ell}, a_{q^{\prime}}$.

To identify two unknown elements, say $u, v \in S_{n}$, we determine subsets $A_{i_{1}}, A_{i_{2}}, \ldots$. $\left\{i_{1}, i_{2}, \ldots, i_{k}\right\} \subset\{1,2, \ldots, m\}$, such that $u, v \in A_{i_{j}}$
for $j=1,2, \ldots, k$. The identity of the two unknown elements is then given by the intersection of these k subsets, that is $\bigcap_{j=1} A_{i}=\{u, v\}$.

The following example illustrates this strategy.

Example 4.1: Suppose the system $\left\{A_{1}, A_{2}\right.$, $\left.A_{9}, A_{4}, A_{5}, A_{6}, A_{7} ; S_{7}\right\}$ constitutes a 2-Complete search design for separating the elements of the set $S_{7}=\left\{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{45}, a_{7}\right\}$. Then one possible configuration of the subsets $A_{1}, A_{2}, A_{3}, A_{4}, A_{5}, A_{6}, A_{7}$ is the following:

$$
\begin{aligned}
& A_{1}=\left\{a_{4}, a_{5}, a_{6}, a_{7}\right\}, \\
& A_{2}=\left\{a_{2}, a_{3}, a_{6}, a_{7}\right\}, \\
& A_{3}=\left\{a_{2}, a_{3}, a_{4}, a_{5}\right\}, \\
& A_{4}=\left\{a_{1}, a_{3}, a_{5}, a_{7}\right\}, \\
& A_{5}=\left\{a_{1}, a_{3}, a_{4}, a_{6}\right\}, \\
& A_{6}=\left\{a_{1}, a_{2}, a_{4}, a_{7}\right\}, \\
& A_{7}=\left\{a_{1}, a_{2}, a_{5}, a_{6}\right\} .
\end{aligned}
$$

This design will detect any arbitrary pair of elements of S_{7}. That is, for any distinct pair ($a_{\ell^{\prime}}, a_{\ell^{\prime}}$) of elements of the set S_{7}, there exists a pair of subsets $A_{i_{1}}, A_{i_{2}}$ such that $a_{i}, a_{i} \in A_{i}$, $j=1,2$ and $A_{i_{1}} \cap A_{i_{2}}=\left\{a_{i}, a_{\ell^{\prime}}\right\}$. Thus, to detect, any pair of unknown elements in the set S_{7} using this design, we determine subsets amongst
$A_{1}, A_{2}, A_{8}, A_{4}, A_{5}, A_{0}, A_{7}$ which contain the unknown pair of elements. The intersection of these subsets gives the identity of the unknown pair of elements.

More explicity, we have the following display of detectable pairs of elements and the associated subsets.

Subsets	Elements	Subsets	Elements
A_{6}, A_{7}	a_{1}, a_{2}	A_{3}, A_{5}	a_{3}, a_{4}
A_{4}, A_{5}	a_{1}, a_{3}	A_{3}, A_{4}	a_{3}, a_{5}
A_{5}, A_{6}	a_{1}, a_{4}	A_{2}, A_{5}	a_{3}, a_{6}
A_{4}, A_{7}	a_{1}, a_{5}	A_{2}, A_{4}	a_{3}, a_{7}
A_{5}, A_{7}	a_{1}, a_{6}	A_{1}, A_{3}	a_{4}, a_{5}
A_{4}, A_{6}	a_{1}, a_{7}	A_{1}, A_{5}	a_{4}, a_{0}
A_{2}, A_{3}	a_{2}, a_{3}	A_{1}, A_{6}	a_{4}, a_{7}
A_{3}, A_{6}	a_{2}, a_{4}	A_{1}, A_{7}	a_{5}, a_{6}
A_{3}, A_{7}	a_{2}, a_{5}	A_{1}, A_{4}	a_{5}, a_{7}
A_{2}, A_{7}	a_{2}, a_{6}	A_{1}, A_{2}	a_{6}, a_{7}

The display shows that every pair of the seven elements can be detected by a unique pair of subsets. For example, if $\left(a_{1}, a_{5}\right)$ is the unknown pair of elements, then we determine subsets amorisit $A_{1}, A_{2}, A_{3}, A_{4}, A_{5}, A_{6}, A_{7}$ which contain both a_{1} and a_{5}
 of the unknown pair of elements. In this cese, the subsets which contain buth a_{1} and a_{5} Ere A_{4} and A_{7}. The intersection of these subsets, A. End A_{7} gives the identities of the unknown elemerts. That js, $A_{4} \cap A_{7}=\left\{a_{1}, a_{5}\right\}$.

We can further characterize this arrallemant in terms of the incidence matrix of the search design.

This is an man matrix $N=\left(\left(n_{i j}\right)\right)$ such that if $a_{1}, a_{2}, \ldots ., a_{n}$ are the elements of the set S_{n} and $A_{1}, A_{2}, \ldots ., A_{m}$ are the subsets, then:

$$
n_{i j}=\left\{\begin{array}{lll}
1 & \text { if } a_{i} \in A_{j} & i=1,2, \ldots, n \\
0 & \text { if } a_{i} \in A_{j} & j=1,2, \ldots, m .
\end{array}\right.
$$

In the above example we therefore have:
$\left.N=\begin{array}{l}A_{1} \\ A_{2} \\ A_{3} \\ A_{4} \\ A_{5} \\ A_{0} \\ A_{7}\end{array} \left\lvert\, \begin{array}{lllllll}a_{2} & a_{3} & a_{4} & a_{5} & a_{0} & a_{2} \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 & 1 & 0\end{array}\right.\right]$.

From this matrix, we notice that every element of S_{n} appears in four subsets, every pair of elements appears in two subsets and any three elements appear in at most one subset. Now, for any pair of elements to be uniquely detectable the number of subsets in which they appear must be strictly more than the number of subsets in which any three elerunts appear. This is because if the number of subsets ir which any three elements appear is the same as the number of sutsets in which any pair of elements appears, then the intersection of these subsets will consist of three elements, not tho as required for the identification of the unknown pair of elements. This requirement is
satisfied in this example, and so any pair of elements can be uniquely detected.

Partition search design.

Here the strategy is to determine m subsets $A_{1}, A_{2}, \ldots ., A_{m}$ of S_{n} such that for any pair of elements $a_{i}, a_{j}\left(a_{i} \neq a_{j}\right)$ in S_{n}, there exist two disjoint subsets A_{ℓ} and A_{k} with $a_{i} \in A_{i}$ and $a_{j} \in A_{k}$. The composite set $\left\{A_{1}, A_{2}, \ldots, A_{m} ; S_{n}\right\}$ is then called a partition search design.

To detect two unknown elements, say $u, v \in S_{n}$, He determine tho disjoint subsets $A_{i_{1}}$ and $A_{i_{2}}$, $\left\{L_{1}, 2_{2}\right\} \subset\{1,2, \ldots, m\}$ such that $u \in A_{1}$ and $v \in A_{i_{2}}$ The two unknown elements are then identified separately from the subsets A_{1} and $A_{i_{2}}$ by separating systems described in Chaper 2.

The following example illustrates this strategy.

Example 4.2: Consider the set $S_{8}=\left\{a_{1}, a_{2}, \ldots, a_{\varepsilon}\right\}$ and the subsets $A_{1}, A_{2}, A_{3}, A_{4}, A_{5} A_{0}$ described bell?:

$$
\begin{aligned}
& A_{1}=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}, \\
& A_{2}=\left\{a_{5}, a_{6}, a_{7}, a_{8}\right\}, \\
& A_{3}=\left\{a_{1}, a_{2}, a_{7}, a_{8}\right\} \\
& A_{4}=\left\{a_{3}, a_{4}, a_{5}, a_{6}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& A_{5}=\left\{a_{1}, a_{3}, a_{5}, a_{7}\right\} . \\
& A_{6}=\left\{a_{2}, a_{4}, a_{6}, a_{3}\right\} .
\end{aligned}
$$

Then, the system
$\left\{A_{1}, A_{2}, A_{9}, A_{4}, A_{5}, A_{0} ; S_{6}\right\}$ constitutes a partition search design, since for every distinct pair (a_{i}, a_{j}) of elements of S_{a}, there exists a pair of disjoint subsets A_{ℓ} and A_{k} such that $a_{i} \in A_{\ell}$ and $a_{j} \in A_{k}$. The configuration of the elements of the partition search design can be more explicitly displayed as follows:

Disjaint subsets A_{1}, A_{2} A_{3}, A_{4} A_{5}, A_{0}

Identifiable pairs of elements

$$
\begin{aligned}
& \left(a_{1}, a_{5}\right),\left(a_{1}, a_{6}\right),\left(a_{1}, a_{7}\right),\left(a_{1}, a_{8}\right) \\
& \left(a_{2}, a_{5}\right),\left(a_{2}, a_{6}\right),\left(a_{2}, a_{7}\right),\left(a_{2}, a_{8}\right) \\
& \left(a_{3}, a_{5}\right),\left(a_{3}, a_{6}\right),\left(a_{3}, a_{7}\right),\left(a_{3}, a_{8}\right) \\
& \left(a_{4}, a_{5}\right),\left(a_{4}, a_{6}\right),\left(a_{4}, a_{7}\right),\left(a_{4}, a_{8}\right) \\
& \left(a_{1}, a_{3}\right),\left(a_{1}, a_{4}\right),\left(a_{2}, a_{3}\right),\left(a_{2}, a_{4}\right) \\
& \left(a_{5}, a_{7}\right),\left(a_{6}, a_{7}\right),\left(a_{5}, a_{8}\right),\left(a_{6}, a_{8}\right) \\
& \left(\varepsilon_{1}, a_{2}\right),\left(a_{3}, a_{4}\right),\left(\varepsilon_{5}, a_{6}\right),\left(a_{7}, a_{8}\right)
\end{aligned}
$$

The display shows that every pair of the eight elements can be separated int $t u$: oint subsets

To deteri tho urkmikr t... say as and a_{p}. we determine, tho disjoint sutsets $A_{L_{1}}$ and $A_{L_{2}}$, $\left\{i_{1}, i_{2}\right\} \subset\{1,2,3,4,5,6\}$ suoh $i=1 \Sigma_{2} \in A_{1_{1}}$ and $a_{7} \in$ $A_{i_{2}}$. In this case, the tro disjoint subsets are A_{3} and A_{4}. That is, $a_{5} \in A_{3}$ and $a_{2} \in A_{4}$. The two unknown elements a_{5} and a_{2} are then identified

separately from the subsets A_{s} and $A_{\text {a }}$ respectively.
 Again we can characterise this design by its incidence matrix M, given as follows:

$$
A_{1}\left[\begin{array}{cccccccc}
a_{1} & a_{2} & a_{3} & a_{4} & a_{5} & a_{0} & a_{7} & a_{0} \tag{4.2}\\
A_{2} \\
A_{3} \\
A_{4} & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
A_{6} \\
1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 & 1
\end{array}\right] .
$$

From the incidence matrix, we notice that in any two colums of the matrix M, there exist two rows such that the 2×2 submatrix formed by the intersection of these columns and rows is

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \text { or }\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

and the subsets corresponding to the rows are disjoint. That is, to say, for any two distinct elements $a_{i}, a,(i \neq j)$ there exists two disjoint subsets $A_{1}, A_{2},\left\{i_{1}, i_{2}\right\} \subset\{1,2,3,4,5,6\}$, such that $a_{1} \in A_{1}$ and $a_{j} \in A_{L_{2}}$
4.2 2-COMPLEPE SEARCH DESIGNS.

$$
\text { Let } N=\left(\left(n_{i \jmath}\right)\right), \quad i=1,2, \ldots, m ; \jmath=1,2, \ldots, n
$$ be the incidence matrix of a search design $\left\{A_{1}, A_{2}, \ldots, A_{m} ; S_{n}\right\}$ of the set S_{n}. Further, let the elements in A_{4} correspond to the entries of 1 s in

the i-th row of the incidence matrix M and T_{j} be a set consisting of all the subsets A_{i} s which are not incident with the j-th element, a_{j} of S_{n}. That is, T_{j} corresponds to the entries of $0^{\prime} s$ in the $j-t h$ colum of the matrix M. For example, in the incidence matrix (4.1) of a 2-Complete search design given in Section (4.1) of this Chapter,

$$
T_{1}=\left\{A_{1}, A_{2}, A_{3}\right\} .
$$

The following theorem gives a necessary and sufficient condition for the existence of a 2-Complete search design.

Theorem 4.1: A necessary and sufficient condition for the existence of a 2-Complete search design $\left\{A_{1}, A_{2}, \ldots ., A_{m} ; S_{n}\right\}$ for detecting an arbitrary pair of elements $\left(z_{2}, z_{j}\right)$ in S_{n} is that

$$
T_{k} \nsubseteq T_{i} \cup T_{j}
$$

for $k=1,2, \ldots, n ; \quad k \neq 2 \neq j$.

Froof
Let the system $\left\{A_{1}, A_{2}, \ldots . ., A_{m} ; S_{n}\right\}$ be à 2-Complete search desien. Then, consider two pairs of elements $\left(a_{i}, a_{j}\right)$ and $\left(a_{r}, a_{k}\right)$. Since $\left\{A_{1}, A_{2}, \ldots, A_{m} ; S_{n}\right\}$ is a 2-Complete search design; there exist subsets $A_{h_{1}}, A_{h_{2}}, \ldots, A_{h_{i}}$, $\left\{h_{1}, h_{2}, \ldots . . ., h_{l}\right\} \subset\{1,2, \ldots \ldots, m\}$ such that

$$
\begin{aligned}
& a_{i}, a_{j} \in A_{h_{g}} \text { for } g=1,2, \ldots \ldots . \ldots, t \text { and } \\
& \ell \bigcap_{g=1} A_{h_{g}}=\left\{a_{i}, a_{j}\right\} \text {. That is, the subsets } A_{h_{1}}, \\
& A_{h_{2}}, \ldots, A_{h_{\ell}} \text { are incident with both } a_{i} \text { and } a_{j} .
\end{aligned}
$$

$$
\text { But from our definition of } T_{j} \text {, as a set }
$$ consisting of all the subsets A_{i} 's which are not incident with the fth element a_{j}, it follows that T_{j}^{C} is a set consisting of all the subsets A_{i} 's which are incident with the j-th element a_{j}.

Thus

$$
\left\{A_{h_{1}}, A_{h_{2}}, \ldots . . ., A_{h_{l}}\right\}=T_{2}^{C} \cap T_{j}^{C} .
$$

That is, the subsets $A_{h_{1}}, A_{h_{2}}, \ldots ., A_{h_{i}}$ which detect the two unknown elements a_{i} and $a_{\text {, }}$ are given by

$$
\begin{equation*}
T_{i}^{c} \cap T_{j}^{c} \tag{4.4}
\end{equation*}
$$

Similarly, the subsets $A_{h_{1}^{\prime}}, A_{n_{2}^{\prime}}, \ldots, A_{h^{\prime}}$ which detect the two unknown elements a_{r} and a_{k} are given by

$$
T_{r}^{c} \cap T_{k}^{c}
$$

Now, since $\left\{A_{1}, A_{2}, \ldots, A_{m} ; S_{n}\right\}$ is a 2-Conflete search design

$$
\bigcap_{g=1}^{\ell} A_{h}=\left\{a_{i}, a_{j}\right\} \quad \text { and } \bigcap_{g=1}^{\ell} A_{h}=\left\{a_{j}, a_{k}\right\}
$$

$$
\begin{equation*}
\left\{A_{h_{1}}, A_{h_{2}}, \ldots, A_{h_{l}}\right\} \nsubseteq\left\{A_{n_{1}^{\prime}}, A_{h_{2}^{\prime}}, \ldots, A_{h^{\prime}}\right\} \tag{4.5}
\end{equation*}
$$

That is,

$$
\begin{equation*}
\mathrm{T}_{i}^{c} \cap \mathrm{~T}_{\mathrm{j}}^{c} \nsubseteq \mathrm{~T}_{\mathrm{r}}^{c} \cap \mathrm{~T}_{k}^{c} \tag{4.6}
\end{equation*}
$$

which implies that

$$
\begin{equation*}
T_{r} \cup T_{k} \notin T_{i} \cup T_{j} . \tag{4.7}
\end{equation*}
$$

In particular, if the pairs were $\left(a_{i}, \varepsilon_{j}\right)$ and $\left(a_{i}, a_{k}\right)$ then (4.7) reduces to

$$
T_{\imath} \cup T_{k} \nsubseteq T_{\imath} \cup T_{j}
$$

which implies that

$$
\begin{equation*}
T_{k} \nsubseteq T_{i} \cup T_{j} \tag{4.8}
\end{equation*}
$$

Conversely, suppose that $T_{k} \nsubseteq T_{i} \cup T_{j}$, then we have to show that the system $\left\{A_{1}, A_{2}, \ldots, A_{m} ; S_{n}\right\}$ is a 2-Complete search design. That is, for any pair of elements $\left(a_{i}, a_{j}\right)$ there exist subsets $A_{o_{1}}, A_{o_{2}}, \ldots, A_{\alpha_{\tau}},\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{\tau}\right\} \in\{1,2, \ldots, w\}$ such that $a_{i}, a_{j} \in A_{\alpha_{i}}$, for $t=1,2, \ldots$, and $\bigcap_{i=1} A_{\alpha_{i}}=\left\{a_{i}, a_{j}\right\}$.

Now, $T_{k} \not \& T_{i} \cup T_{k}$ implies that

$$
\begin{equation*}
T_{r} \cup T_{k} \nsubseteq T_{L} \cup T_{j} \tag{4.9}
\end{equation*}
$$

for any other set $T_{r}(r \neq k), \quad r=1,2, \ldots, n$; and from (4.6) it follows that

$$
\begin{equation*}
T_{i}^{c} \cap T_{j}^{\subset} \nsubseteq T_{r} \cap T_{j}^{c} \tag{4.10}
\end{equation*}
$$

Now, $T_{i}^{c} \cap T_{j}^{c}$ gives subsets $\subset \bar{I} S_{n}$, which are incident with both a_{1} and a_{J} $(\imath \neq j, i, j=1,2, \ldots, n)$ say, $\quad A_{\alpha_{1}} \quad A_{\alpha_{2}}, \ldots . ., A_{\alpha_{t}}$.

Thus, for any pair of elements $\left(a_{1}, a_{j}\right)$ there exists subsets of $S_{n}, A_{\alpha_{1}}, A_{\alpha_{2}}, \ldots, A_{\alpha_{\tau}}$ such that $a_{i}, a_{j} \in A_{\alpha_{i}}$ for $t=1,2, \ldots \ldots, \tau$. To complete the proof we need to show that $\bigcap_{i=1}^{T} A_{\alpha_{i}}=\left\{a_{i}, a_{j}\right\}$. Now suppose,

$$
\bigcap_{i=1}^{\tau} A_{\alpha_{t}} \neq\left\{a_{i}, a_{j}\right\}
$$

τ
That is, $\bigcap_{t=1} A_{\alpha_{t}}=\varnothing$ or a set consisting of one element or a set consisting of $a_{1}, 2$, and some other element (s). Now $\bigcap_{t=1} A_{\alpha_{t}}$ cannot be an empty set or a set consisting of one element since $a_{i}, \varepsilon_{j} \in A_{\alpha_{l}}$, for $t=1,2, \ldots, T$. Thus, we are left with the possibility that $\bigcap_{i=1}^{\tau} A_{i}$ is a set consisting of a_{i}, a_{j} and some other element (s). To investigate this possibility we let $a_{i}, a_{j}, a_{j} \in \bigcap_{i=1} A_{\alpha_{i}}$. That is, $a_{\jmath}, a_{j} \in A_{\alpha_{t}}$ for $t=1,2, \ldots, \tau$ and or $\left\{A_{\alpha_{1}}, A_{\alpha_{2}}, \ldots, A_{\alpha_{\gamma}}\right\}$ is a subset of the set of which are incident with Latin y_{j} and a_{j}.
subsets which, are incident with both a, and a_{j} is ε even by $T_{j}^{c} \cap T_{j}^{c}$. Thus

$$
\left\{A_{\alpha_{1}}, A_{\alpha_{2}}, \ldots \ldots, A_{\alpha_{\tau}}\right\}=T_{i}^{C} \cap \mathbb{T}_{j}^{c} \subseteq T_{j}^{c} \cap T_{j}^{c},
$$

This contradicts (4.10), hence $\bigcap_{t=1} A_{\alpha_{t}}$ is not $\bar{a} \quad s \in t$ consisting of a_{i}, a_{j} and some other element (s). We
therefore, conclude that $\bigcap_{i=1}^{\tau} A_{\alpha_{t}}=\left\{a_{i}, a_{j}\right\}$ which completes the proof.

Corollary 4.1: Let the cardinality of the set $T_{i}(i=1,2, \ldots, n)$ be p and the cardinality of the intersection of any two sets T_{i} and T_{j}, $\quad \neq j$, be less than $p / 2$. Then the system $\left\{A_{i}, A_{2}, \ldots, A_{m} ; S_{n}\right\}$, where S_{n} is a finite set and $\left\{A_{i}, A_{\bar{z}}, \ldots, A_{m}\right\}$ is a collection of aIl the elements of the set T_{2}^{c} $(1=1,2, \ldots, n)$ is a 2 -Complete search design.

Proof

> We are given that for any distinct indices , and $J,\left|T_{2} \cap T_{3}\right|<\frac{P}{2}$ where $\|$ denotes the cardinality of the set concerned.

That is,

$$
\begin{equation*}
\left|T_{k} \cap T_{i}\right|<\frac{p}{2} \tag{4.11}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|I_{x} \cap T_{1}\right|<\frac{P_{2}}{2} \tag{4.12}
\end{equation*}
$$

Then

$$
\begin{equation*}
\left|T_{k} \cap\left(T_{L} \cup T_{J}\right)\right|<F ; \tag{4.13}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
T_{k} \nsubseteq T_{\imath} \cup T_{j} \tag{4.14}
\end{equation*}
$$

since $\left|T_{k}\right|=p$. Thus, it follows from theorem (4.1)
that the system $\left\{A_{1}, A_{2}, \ldots ., A_{m} ; S_{n}\right\}$ is a 2 -Complete search design.

Theorem 4.2: Suppose the system $\left\{A_{1}, A_{2}, \ldots, A_{m} ; S_{n}\right\}$ is a 2-Complete search design and suppose that $T_{1}(1=1,2, \ldots ., n)$ consists of $2 p+1$ elements and that $\left|T_{i} \cap T_{j}\right| \leq p$ for any other set $T_{j}(j \neq i)$, $\jmath=1,2, \ldots, n$; then n, m and p are related by the equation:

$$
n=\frac{m!p!}{(2 p+1)!(m-p-1)!},
$$

Proof

Each set T consists of $2 p+1$ elements and so the possible number of such subsets out of m is

$$
\begin{equation*}
\binom{m}{2 p+1} \tag{4.15}
\end{equation*}
$$

Out of these subset any $p+1$ arbitrary elements eppear in

$$
\left[\begin{array}{c}
m-(p+1) \tag{4,16}\\
2 p+1-(p+1)
\end{array}\right]=\left[\begin{array}{c}
m-p-1 \\
p
\end{array}\right]
$$

subsets. This is obtained by considering ($p+1$) elements to have already been chosen, thus we are left to choose $((2 p+1)-(p+1))$ elements from w $-(p+1)$.

But, we are given that $\left|T_{i} \cap T_{j}\right| \leq p$, thus, any $p+1$ elements must appear in only one subset. So the number of subsets T_{i} which satisfy the condition of
the theorem, is given by;

$$
\begin{align*}
n & =\frac{\binom{m}{2 p+1}}{\binom{m-p-1}{p}} \tag{4.17}\\
& =\frac{m!}{(2 p+1)!(m-2 p-1)}!\times \frac{p!(m-2 p-1)!}{(m-p-1)!} \\
& =\frac{m!p!}{(2 p+1)!(m-p-1)!} \tag{4.18}
\end{align*}
$$

which completes the proof.

4.3 CONSTRUCTION OF 2-COMPLETE SEARCH DESIGNS.

In the construction of a 2 -Complete search design, we will make use of the properties of a $t-\left(v, k, \lambda_{t}\right)$ design and a balanced incomplete block design which are defined in Chapter 1.

We recall that, a $t-\left(v, k, \lambda_{i}\right)$ design is a family B of subsets B_{1}, called blocks, of a finite set X containing v points, such that every B_{i} has the same cardinality k and every t elements of X are contained in exactly λ_{t} tilocks of B. A balanced incomplete block desier is a special cese of $t-\left(v, k, \lambda_{t}\right)$ design with $t=2$.

Taking the subset B, to represent a set consisting of all the subsets A_{i} s which are not incident with the $j-t h$ element of S_{n}, T_{j}. ($j=1,2, \ldots, n$), we see that a $t-\left(v, k, \lambda_{t}\right)$ design with parameters $t=p+1, v=m, k=2 p+1$ and $\lambda_{t}=1$ is a 2-Complete search design. This is because each set
$T_{j}\left(B_{j}\right)$ consists of $2 p+1$ elements and since every $\mathrm{p}+1$ elements is contained in exactly one $\left(\lambda_{\mathrm{t}}=1\right)$ subset, it follows that $\left|T_{i} \cap T_{j}\right| \leq p$, which are the requirements for the exsistence of a 2 -Complete search design, according to Corollary (4.1).

A necessary and sufficient condition for a $t-\left(v, k, \lambda_{t}\right)$ design to exist states that the quantity

$$
\lambda_{t}\left(\begin{array}{l}
v-s \\
t-s
\end{array}\right] /\left[\begin{array}{l}
k-s \\
t-s
\end{array}\right]
$$

be an integer for $s=0,1,2, \ldots(t-1)$; see Renyi (1970)
In the following theorem we give a necessary condition for exsistence for a 2 -Compiete search design.

Theorem 4.3: Suppose the system $\left\{A_{1}, A_{2}, \ldots, A_{m} ; S_{n}\right\}$ is a 2 -Complete search design and suppose that $T_{i}(1=1,2, \ldots, n)$ consists of $2 p+1$ elements and that $\left|T_{i} \cap T_{j}\right| \leq p$ for any other set $T_{j}(J \neq 2), j=1,2, \ldots, n$; then the quantity

$$
\left[\begin{array}{c}
m-p-1+s \\
p+s
\end{array}\right) /\left[\begin{array}{c}
w-p-1 \\
p
\end{array}\right)
$$

is an integer for $s=0,1,2, \ldots ., 0$.

Proof
Let λ_{i} be the number of subsets in whict $F+1-$. elements appear, that is λ_{0} is the number of sutsets in which $p+1$ elements appear, λ_{1} is the number of subsets in which p elements appear and so on.

Then frow Theorem 4.2 together with the fact
that any $(p+1)$ elements appear in λ_{0} sets arid p elements appear in λ_{1} sets and so on, we have

$$
\begin{aligned}
n & =\frac{\binom{m}{2 p+1}}{\left[\begin{array}{c}
m-p-1 \\
p
\end{array}\right)} \lambda_{0}=\frac{\binom{m}{2 p+1}}{\binom{m-p}{p+1}} \lambda_{1} \\
& =\frac{\binom{m}{2 p+1}}{\binom{m-p+1}{p+2}} \lambda_{2}=\ldots=\frac{\binom{m}{2 p+1}}{\left(\begin{array}{c}
m-p-1+s \\
p+s
\end{array}\right]} \lambda_{s} .
\end{aligned}
$$

But, $\lambda_{0}=1$, since $\left|T_{i} \cap T_{j}\right| \leq p$, so

$$
\begin{align*}
\lambda_{s} & =\frac{\binom{m}{2 p+1}}{\left[\begin{array}{c}
m-p-1 \\
p
\end{array}\right]} \times \frac{\left[\begin{array}{c}
m-p-1+5 \\
m+5
\end{array}\right]}{\left[\begin{array}{c}
m \\
2 p+1
\end{array}\right]} \\
& =\left[\begin{array}{c}
m-p-1+s \\
p+s
\end{array}\right] /\left[\begin{array}{c}
m-p-1 \\
p
\end{array}\right] \tag{4.19}
\end{align*}
$$

which must be an integer. Hence the proof.
Example 4.3: Let the cardirality of the sut
$T_{i}(t=1,2, \ldots, n)$ be $2 p^{+1}$ and the cardinality of the intersection of any two sets T and $T,(i x)$ be less than or equal to p. Then for $p=1$, twer: pair of elements appears in exactly one subset and each subset consists of three elements. The syster "~ $\left\{T_{1}, T_{2}, \ldots, T_{n}\right\}$ forms a simple triple syster anj thus a BIB design in which $k=3, \lambda=1, b=\pi$ and
$v=m$.
As a particular case, consider the system $\left\{A_{1}, A_{2}, \ldots, A_{0}, S_{12}\right\}$ then with $p=1$, the set $\left\{T_{1}, T_{2}, \ldots, T_{12}\right\}$ forms a simple triple system with $k=3, \lambda=1, b=12$ and $v=9$. One possible configuration of the simple triple system with these parameters is;

$$
\begin{array}{ll}
B_{1}=\{1,2,3\} & B_{2}=\{1,4,5\} \\
B_{3}=\{1,6,7\} & B_{4}=\{1,8,9\} \\
B_{5}=\{2,4,7\} & B_{0}=\{2,6,9\} \\
B_{7}=\{2,5,8\} & B_{8}=\{3,5,6\} \\
B_{0}=\{3,7,8\} & B_{10}=\{3,4,9\} \\
B_{11}=\{4,6,8\} & B_{12}=\{5,7,9\}
\end{array}
$$

If we let the block B_{2} to correspond to the set T_{2} and points in the blocks to correspond to the subsets A_{1} 's, that is, the J-th point corresponds to the subset A_{j}, then the sets T_{i} 's are as follows:

$$
\begin{array}{ll}
T_{1}=\left\{A_{1}, A_{2}, A_{3}\right\} & \left.T_{7}=A, A_{1}\right\} \\
T_{2}=\left\{A_{1}, A_{4}, A_{5}\right\} & T_{0}=\left\{A_{3}, A_{7}, A_{8}\right\} \\
T_{3}=\left\{A_{1}, A_{6}, A_{8}\right\} & \left.T_{10}\right\} \\
T_{4}=\left\{A_{1}, A_{8}, A_{0}\right\} & T_{11}=\left\{A_{4}, A_{0}\right\} \\
T_{5}=\left\{A_{2}, A_{4}, A_{8}\right\} & T_{12}=\left\{A_{5}, A_{7}, A_{0}\right\} \\
T_{6}=\left\{A_{2}, A_{6}, A_{0}\right\} &
\end{array}
$$

Now, the cardinality of the sets
$T_{i}(i=1,2, \ldots, 12)$ is three and the cardinality of the intersection of any two set T_{i} and $T_{j}(i \neq j)$ is at most one. Thus, using Corollary 4.1, the system $\left\{A_{1}, A_{2}, \ldots ., A_{0} ; S_{12}\right\}$ is a 2 -Complete search design.

From our definition of the set T_{i} given earlier, as a set consisting of all the subsets A_{i} 's which are not incident with the j-th element, a_{j} of S_{n}, we see that the subsets A_{1}, A_{2}, A_{3}, for example are not incident with $a_{1} \in S_{n}$, and $T_{1}^{C}=\left\{A_{4}, A_{5}, A_{6}, A_{7}, A_{0}, A_{0}\right\}$ consists of subsets which are incident with a_{1}. Using this information, provided by $T_{1}, T_{2}, \ldots . T_{12}$ we get subsets $A_{1}, A_{2}, \ldots, A_{0}$ as follows

$$
\begin{aligned}
& A_{1}=\left\{a_{5}, a_{6}, a_{7}, a_{8}, a_{0}, a_{10}, a_{11}, a_{12}\right\}, \\
& A_{2}=\left\{a_{2}, a_{3}, a_{4}, a_{8}, a_{0}, a_{10}, a_{11}, a_{12}\right\}, \\
& A_{3}=\left\{a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{11}, a_{12}\right\}, \\
& A_{4}=\left\{a_{1}, a_{3}, a_{4}, a_{6}, a_{7}, a_{6}, a_{0}, a_{12}\right\}, \\
& A_{5}=\left\{a_{1}, a_{3}, a_{4}, a_{5}, a_{6}, a_{0}, a_{10}, a_{11}\right\}, \\
& A_{6}=\left\{a_{1}, a_{2}, a_{4}, a_{5}, a_{7}, a_{0}, a_{10}, a_{12}\right\}, \\
& A_{7}=\left\{a_{1}, a_{2}, a_{4}, a_{6}, a_{7}, a_{8}, a_{10}, a_{11}\right\}, \\
& A_{8}=\left\{a_{1}, a_{2}, a_{3}, a_{5}, a_{6}, a_{8}, a_{10}, a_{12}\right\}, \\
& A_{5}=\left\{a_{1}, a_{2}, a_{3}, a_{5}, a_{7}, a_{8}, a_{0}, a_{11}\right\} .
\end{aligned}
$$

The incidence matrix of this design is ¿herefore;

$$
\begin{align*}
& A_{1} \tag{4.20}\\
& A_{2} \\
& A_{\mathbf{2}} \\
& A_{3} \\
& A_{4} \\
& A_{5} \\
& A_{0} \\
& A_{7} \\
& A_{0} \\
& A_{0}
\end{align*}\left(\begin{array}{llllllllllll}
a_{1} & a_{\mathbf{2}} & a_{3} & a_{1} & a_{5} & a_{0} & a_{2} & a_{1} & a_{0} & a_{10} & a_{11} & a_{12} \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 \\
1 & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 1 \\
1 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 1 & 1 & 1 & 0 \\
1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 1 & 0 & 1 \\
1 & 1 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & 1 & 1 & 0 \\
1 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\
1 & 1 & 1 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & 1 & 0
\end{array}\right]
$$

Now, any pair of elements will be detected according to the following scheme:

Subsets	Elements	Subsets	Elements
$A_{0}, A_{7}, A_{\theta}, A_{0}$	a_{1}, a_{2}	A_{2}, A_{4}, A_{7}	a_{4}, a_{8}
$A_{4}, A_{5}, A_{0}, A_{0}$	a_{1}, a_{3}	A_{2}, A_{4}, A_{5}	a_{4}, a_{0}
$A_{4}, A_{5}, A_{6}, A_{7}$	a_{1}, a_{4}	A_{2}, A_{5}, A_{0}	a_{4}, a_{10}
$A_{5}, A_{0}, A_{0}, A_{0}$	a_{1}, a_{5}	A_{2}, A_{3}, A_{5}	a_{4}, a_{11}
$A_{4}, A_{5}, A_{7}, A_{8}$	a_{1}, a_{0}	A_{2}, A_{3}, A_{4}	a_{4}, a_{12}
$A_{4}, A_{0}, A_{7}, A_{0}$	a_{1}, a_{7}	A_{1}, A_{3}, A_{5}	a_{4}, a_{0}
$A_{4}, A_{7}, A_{8}, A_{0}$	a_{1}, a_{8}	A_{1}, A_{3}, A_{6}	a_{5}, a_{7}
$A_{4}, A_{5}, A_{6}, A_{0}$	a_{1}, a_{0}	A_{1}, A_{θ}, A_{0}	a_{5}, a_{8}
$A_{5}, A_{0}, A_{7}, A_{0}$	a_{1}, a_{10}	A_{1}, A_{5}, A_{6}	a_{5}, a_{0}
A_{5}, A_{7}, A_{8}	a_{1}, a_{11}	A_{1}, A_{5}, A_{0}	a_{5}, a_{10}
A_{4}, A_{6}, A_{B}	a_{1}, a_{12}	A_{1}, A_{3}, A_{5}	a_{5}, a_{11}
$\therefore_{2}, A_{3}, A_{\theta}, A_{0}$	a_{z}, a_{3}	A_{1}, A_{3}, A_{0}	a_{5}, a_{12}
$A_{2}, A_{3}, A_{6}, A_{7}$	a_{2}, a_{4}	A_{1}, A_{3}, A_{4}	a_{6}, a_{7}
$A_{3}, A_{0}, A_{8}, A_{0}$	- a_{2}, a_{5}	A_{1}, A_{4}, A_{7}	a_{6}, a_{0}
A_{3}, A_{7}, A_{8}	a_{2}, a_{0}	A_{1}, A_{4}, A_{5}	a_{0}, a_{0}
$A_{3}, A_{0}, A_{7}, A_{8}$	a_{2}, a_{7}	A_{1}, A_{5}, A_{7}	a_{6}, a_{10}
$A_{2}, A_{7}, A_{0}, A_{0}$	ε_{2}, s_{0}	A_{1}, A_{3}, A_{5}	ε_{6}, a_{11}
A_{2}, A_{6}, A_{0}	a_{2}, a_{0}	A_{1}, A_{3}, A_{4}	a_{6}, a_{12}
$A_{2}, A_{6}, A_{7}, A_{0}$	a_{2}, a_{10}	A_{1}, A_{3}, A_{7}	a_{7}, a_{B}

Subsets
$\begin{array}{ll}A_{2}, A_{5}, A_{7}, A_{0} & a_{2}, a_{11} \\ A_{2}, A_{3}, A_{6}, A_{8} & a_{2}, a_{12} \\ A_{2}, A_{3}, A_{4}, A_{5} & a_{3}, a_{4} \\ A_{3}, A_{5}, A_{8}, A_{0} & a_{3}, a_{5} \\ A_{3}, A_{4}, A_{5}, A_{8} & a_{3}, a_{6} \\ A_{3}, A_{4}, A_{0} & a_{3}, a_{2} \\ A_{2}, A_{4}, A_{8}, A_{0} & a_{3}, a_{8} \\ A_{2}, A_{4}, A_{5}, A_{0} & a_{3}, a_{9} \\ A_{2}, A_{5}, A_{8} & a_{3}, a_{10} \\ A_{2}, A_{3}, A_{5}, A_{0} & a_{3}, a_{11} \\ A_{2}, A_{3}, A_{4}, A_{6} & a_{3}, a_{12} \\ A_{3}, A_{5}, A_{6} & a_{4}, a_{5} \\ A_{3}, A_{4}, A_{5}, A_{7} & a_{4}, a_{6} \\ A_{3}, A_{4}, A_{6}, A_{7} & a_{4}, a_{7}\end{array}$

Subsets
El ements
$A_{1}, A_{4}, A_{6}, A_{0} \quad a_{7}, a_{0}$ $A_{1}, A_{0}, A_{7} \quad a_{7}, a_{10}$ $A_{1}, A_{3}, A_{7}, A_{0} \quad a_{7}, a_{11}$ $A_{1}, A_{3}, A_{4}, A_{6} \quad a_{7}, a_{12}$ $A_{1}, A_{2}, A_{4}, A_{0} \quad a_{0}, a_{0}$ $A_{1}, A_{2}, A_{7}, A_{0} \quad a_{B}, a_{10}$ $A_{1}, A_{2}, A_{7}, A_{0} \quad a_{0}, a_{11}$ $A_{1}, A_{2}, A_{4}, A_{8} \quad a_{8}, a_{12}$ $A_{1}, A_{2}, A_{5}, A_{6} \quad a_{0}, a_{10}$ $A_{1}, A_{2}, A_{5}, A_{0} \quad a_{0}, a_{11}$ $A_{1}, A_{2}, A_{4}, A_{0} \quad \theta_{0}, a_{12}$ $A_{1}, A_{2}, A_{5}, A_{7} \quad a_{10}, a_{11}$ $A_{1}, A_{2}, A_{0}, A_{2} \quad a_{10}, a_{12}$ $A_{1}, A_{2}, A_{3} \quad a_{11}, a_{12}$
designs from the theorem given by Eush and Federer (1984). Before using this theorem we state it and give on alternative proof.

Theorem 4.4. A EIB design with parameters (v, r, k, b, λ) is a 2 -Complete search design if

Proof
Le: H ur vie incidence matrix of a BIB design Witt v objects $a_{1}, a_{2}, \ldots a_{v}$ and b blocks $B_{1}, B_{2}, \ldots, E_{b}$. That is, $M=\left(\left(n_{i j}\right)\right), 2=1,2, \ldots, v ; \geqslant 1$ $j=1,2, \ldots, b$, where;

$$
n_{i j}=\left\{\begin{array}{lll}
1 & \text { if } & a_{i} \in B_{j} \\
0 & \text { if } & a_{i} \in B_{j}
\end{array}\right.
$$

Now, let the complements of the blooks $B_{1}, B_{2}, \ldots . ., B_{b}$ of this BIB design correspond to the subsets $A_{1}, A_{2}, \ldots ., A_{b}$, of the inite set S_{n}, that is, B_{i}^{c} corresponds to A_{i} for $i=1,2, \ldots, b$ and T_{j} is as defined earlier, that is, a set of all subsets A_{i} 's (B_{i}^{C} s) which are not incident with the element $a_{j} \in S_{n}$. Then $\left|T_{j}\right|$ is, the number of subsets A_{i} is which are not incident with the element a_{j}, that is, the number of complements of the subsets A_{L} 's which are incident to a_{j}. But the complements of the sutsets $A_{2}^{\prime} s$ correspond to the blocks B_{i}^{\prime} s so $\left|T_{i}\right|$ is the number of blocks which are incident with a Fertioular object (element). That is $\left|T_{i}\right|=r$ and $\left|T_{2} \cap T_{J}\right|=\lambda(2 \neq \mathrm{J})$. Using Corollary 4.1, this design will be a 2 -Complete search design if λ < $r / 2$, that is $r-2 \lambda>0$.

A BIB design with 2-Complete property will have $b \geq r$. In search problems we need designs with b < r. These designs could be obtained from BIB designs by deletine q objects (treatments) and all the blocks in which these objects occur.

Thearem 4.5: Suppose à BIB desier has the 2-Complete property, that is $r-2 \lambda>0$. Then the number of objects (treatments) q which could be deleted together with all the blocks in which they occur without affecting the 2 -Complete property
satisfies the inequality:

$$
q<\frac{r}{\lambda}-2 \text {. }
$$

Proof

If q objects are deleted together with all the blocks in which they occur, then the minimum number of blocks in which any object can occur is $r-\lambda q$. Therefore, for a design to retain the 2 -complete property after deleting q objects $r-\lambda q-2 \lambda>0$ That is,

$$
\begin{equation*}
q<\frac{r}{\lambda}-2 \text {. } \tag{4.21}
\end{equation*}
$$

Example 4.4: Consider the symmetric BIB design $(13,4,4,13,1)$. Here $r=4$ and $\lambda=1$, thus the number of objects wich can be deleted without affecting the 2 -Complete property is less than $4-2=2$. That is, only one treatment and the blocks in which it occurs can be deleted without affecting the 2 -Complete property.

Consider the $B I B$ design ($13,4,4,13,1$) whose blocks are:

$$
\begin{array}{ll}
B_{1}=\{1,2,4,10\} & B_{0}=\{4,5,7,13\} \\
B_{2}=\{1,3,9,13\} & B_{0}=\{4,8,5,11\} \\
B_{3}=\{1,7,11,12\} & B_{10}=\{3,4,6,12\} \\
B_{4}=\{1,5,6,8\} & B_{11}=\{6,10,11,13\} \\
B_{5}=\{2,3,5,11\} & B_{12}=\{5,9,10,12\} \\
B_{6}=\{2,8,12,13\} & B_{13}=\{3,7,8,10\} \\
B_{7}=\{2,6,7,9\} &
\end{array}
$$

If one treatnent, say 13 is deleted with all the blocks in which it occurs, we obtain:

$$
\begin{array}{ll}
B_{1}=\{1,2,4,10\} & B_{0}=\{4,8,8,11\} \\
B_{3}=\{1,7,11,12\} & B_{10}=\{3,4,6,12\} \\
B_{4}=\{1,5,6,8\} & B_{12}=\{5,8,10,12\} \\
B_{5}=\{2,3,5,11\} & B_{19}=\{3,7,8,10\} \\
B_{7}=\{2,6,7,9\} &
\end{array}
$$

Let the element a_{j} correspond to the $j-t h$ treatment, then the subsets A_{i} 's which are the complements of the blocks B_{i}^{\prime} s are:

$$
\begin{aligned}
& A_{1}=\left\{a_{3}, a_{5}, a_{6}, a_{7}, a_{6}, a_{0}, a_{11}, a_{12}\right\}, \\
& A_{9}=\left\{a_{2}, a_{9}, a_{4}, a_{5}, a_{6}, a_{0}, a_{0}, a_{10}\right\}, \\
& A_{4}=\left\{a_{2}, a_{9}, a_{4}, a_{7}, a_{0}, a_{10}, a_{11}, a_{12}\right\}, \\
& A_{5}=\left\{a_{1}, a_{4}, a_{6}, a_{7}, a_{6}, a_{0}, a_{10}, a_{12}\right\}, \\
& A_{7}=\left\{a_{1}, a_{3}, a_{4}, a_{5}, a_{8}, a_{10}, a_{11}, a_{12}\right\}, \\
& A_{0}=\left\{a_{1}, a_{2}, a_{3}, a_{5}, a_{6}, a_{7}, a_{10}, a_{12}\right\}, \\
& A_{10}=\left\{a_{1}, a_{2}, a_{5}, a_{7}, a_{0}, a_{0}, a_{10}, a_{11}\right\}, \\
& A_{12}=\left\{a_{1}, a_{2}, a_{9}, a_{4}, a_{6}, a_{7}, a_{8}, a_{11}\right\}, \\
& A_{13}=\left\{a_{1}, a_{2}, a_{4}, a_{5}, a_{6}, a_{0}, a_{11}, a_{12}\right\} .
\end{aligned}
$$

And the sets T_{j}, that is, sets of all sutsets A_{i} s, which are not incident with the element a_{j} are:

$$
\begin{array}{ll}
T_{1}=\left\{A_{1}, A_{9}, A_{4}\right\} & T_{7}=\left\{A_{9}, A_{7}, A_{19}\right\} \\
T_{2}=\left\{A_{1}, A_{5}, A_{7}\right\} & T_{0}=\left\{A_{4}, A_{0}, A_{13}\right\} \\
T_{3}=\left\{A_{5}, A, A_{19}\right\} & T_{0}=\left\{A_{7}, A_{0}, A_{12}\right\} \\
T_{4}=\left\{A_{1}, A_{0}, A_{10}\right\} & T_{10}=\left\{A_{1}, A_{12}, A_{19}\right\} \\
T_{5}=\left\{A_{4}, A_{5}, A_{12}\right\} & T_{11}=\left\{A_{9}, A_{5}, A_{0}\right\} \\
T_{0}=\left\{A_{4}, A_{7}, A_{10}\right\} & T_{12}=\left\{A_{3}, A_{10}, A_{12}\right\}
\end{array}
$$

Each subset $T_{1}(1=1,2, \ldots ., 12)$ consists of three elements and $\left|T_{i} \cap T_{J}\right| \leq 1(i \neq j)$. Using Corollary 4.1, which states that if the sets $T_{i}(i=1,2, \ldots, n)$ contain the same number of elements p and if the intersection of any two sets contains less than $p / 2$, then the system $\left\{A_{1}, A_{2}, \ldots ., A_{m} ; S_{n}\right\}$ is a 2-Complete search design, we conclude that the system $\left\{A_{1}, A_{3}, A_{4}, A_{5}, A_{7}, A_{8}, A_{10}, A_{12}, A_{13} ; S_{12}\right\}$ is a 2-Complete search design. The incidence matrix, N, of this design is

$$
\begin{aligned}
& A_{1} \\
& A_{3} \\
& A_{4} \\
& A_{5} \\
& A_{7} \\
& A_{0} \\
& A_{10} \\
& A_{12} \\
& A_{13}
\end{aligned}\left[\begin{array}{lllllllllllll}
a_{1} & a_{2} & a_{3} & a_{1} & a_{5} & a_{0} & a_{7} & a_{0} & a_{0} & a_{10} & a_{11} & a_{12} \\
0 & 0 & 1 & 0 & 1 & 1 & 1 & 1 & 1 & 0 & 1 & 1 \\
0 & 1 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 \\
0 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 0 & 1 & 1 & 1 & 1 & 1 & 0 & 1 \\
1 & 0 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 1 \\
1 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\
1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 1 & 1 & 1 & 0 \\
1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 1
\end{array}\right]
$$

A given pair of elements will te detected according to the following scheme

Subsets

$A_{0}, A_{10}, A_{12}, A_{13}$
A_{8}, A_{0}, A_{12}
$A_{5}, A_{7}, A_{12}, A_{13}$ $A_{7}, A_{0}, A_{10}, A_{13}$ $A_{5}, A_{0}, A_{12}, A_{13}$ $A_{5}, A_{8}, A_{10}, A_{12}$ $A_{5}, A_{7}, A_{10}, A_{12}$

Elements

Subsets

$A_{3}, A_{4}, A_{5}, A_{13} \quad z_{6}, a_{6}$
$A_{3}, A_{4}, A_{5}, A_{13} \quad a_{8}, a_{0}$
$A_{3}, A_{4}, A_{5}, A_{2} \quad a_{4} A_{10}$
$A_{4}, A_{7}, A_{12}, A_{13} \varepsilon_{4}, \bar{c}_{11}$
$A_{4}, A_{5}, A_{7}, A_{13} \quad a_{4}, a_{12}$,
$A_{1}, A_{3}, A_{0}, A_{13} \quad a_{5}, a_{0}, \dot{a}$
$A_{1}, A_{0}, A_{10} \quad a_{5}, a_{8}$

Subsets
A_{5}, A_{10}, A_{13}
$A_{5}, A_{7}, A_{0}, A_{10}$
$A_{7}, A_{10}, A_{12}, A_{13}$
$A_{5}, A_{7}, A_{0}, A_{13}$
$A_{3}, A_{4}, A_{0}, A_{12}$ $A_{3}, A_{4}, A_{12}, A_{13}$ $A_{3}, A_{0}, A_{10}, A_{13}$ $A_{3}, A_{0}, A_{12}, A_{13}$ $A_{4}, A_{0}, A_{10}, A_{12}$ A_{3}, A_{10}, A_{13} $A_{3}, A_{4}, A_{10}, A_{13}$ $A_{3}, A_{4}, A_{0}, A_{10}$ $A_{4}, \hat{r}_{10}, A_{12}, A_{13}$ A_{4}, A_{0}, A_{13} $A_{3}, A_{4}, A_{7}, A_{12}$ $A_{1}, A_{3}, A_{2}, A_{0}$ $\dot{A}_{1}, A_{3}, A_{0}, A_{12}$ $A_{1}, A_{4}, A_{8}, A_{12}$ $A_{1}, A_{3}, A_{2}, A_{12}$ A_{1}, A_{3}, A_{4} $A_{3}, A_{4}, A_{7}, A_{8}$ $A_{1}, A_{4}, A_{7}, A_{12}$ $A_{1}, A_{4}, A_{2}, A_{0}$ A_{3}, A_{7}, A_{13}
$A_{3}, A_{5}, A_{12}, A_{13}$ A_{4}, A_{5}, A_{12}

Elements Subsets
a_{2}, a_{0}
a_{1}, a_{10}
a_{1}, a_{11}
a_{1}, a_{12}
a_{2}, a_{3}
a_{2}, a_{4}
a_{2}, a_{5}
a_{2}, a_{6}
a_{2}, a_{7}
a_{2}, a_{8}
a_{2}, a_{0}
a_{2}, a_{10}
a_{2}, a_{11}
a_{2}, a_{12}
a_{3}, a_{4}
a_{3}, a_{5}
a_{3}, a_{6}
a_{3}, a_{7}
a_{3}, a_{8}
a_{3}, a_{0}
a_{3}, a_{10}
a_{3}, a_{11}
a_{3}, a_{12}
a_{4}, a_{5}
a_{4}, a_{6}
a_{4}, a_{7}

$A_{1}, A_{8}, A_{7}, A_{10}$	a_{5}, a_{8}
$A_{1}, A_{8}, A_{10}, A_{13}$	a_{5}, a_{0}
$A_{3}, A_{7}, A_{0}, A_{10}$	a_{5}, a_{10}
$A_{1}, A_{7}, A_{10}, A_{13}$	a_{5}, a_{11}
$A_{1}, A_{7}, A_{0}, A_{13}$	a_{5}, a_{12}
$A_{1}, A_{5}, A_{0}, A_{12}$	a_{6}, a_{2}
A_{1}, A_{5}, A_{12}	a_{8}, a_{8}
$A_{1}, A_{3}, A_{5}, A_{13}$	a_{6}, a_{0}
A_{3}, A_{5}, A_{8}	a_{6}, a_{10}
A_{1}, A_{12}, A_{13}	a_{6}, a_{11}
$A_{1}, A_{5}, A_{0}, A_{13}$	a_{8}, a_{12}
$A_{1}, A_{5}, A_{10}, A_{12}$	a_{7}, a_{8}
$A_{1}, A_{4}, A_{5}, A_{10}$	a_{7}, a_{0}
$A_{4}, A_{5}, A_{0}, A_{10}$	a_{7}, a_{10}
$A_{1}, A_{4}, A_{10}, A_{12}$	a_{7}, a_{11}
$A_{1}, A_{4}, A_{5}, A_{0}$	a_{7}, a_{12}
$A_{1}, A_{3}, A_{5}, A_{10}$	a_{8}, a_{0}
$A_{3}, A_{5}, A_{7}, A_{10}$	a_{8}, a_{10}
$A_{1}, A_{7}, A_{10}, A_{12}$	a_{8}, a_{11}
A_{1}, A_{5}, A_{7}	a_{8}, a_{12}
$A_{3}, A_{4}, A_{5}, A_{10}$	a_{0}, a_{10}
$A_{1}, A_{4}, A_{10}, A_{13}$	a_{0}, a_{11}
$A_{1}, A_{4}, A_{5}, A_{13}$	a_{0}, a_{12}
A_{4}, A_{7}, A_{10}	a_{10}, a_{11}
$A_{4}, A_{5}, A_{7}, A_{0}$	a_{10}, a_{12}
$A_{1}, A_{4}, A_{7}, A_{13}$	a_{11}, a_{12}

The dispilay shows that every pair of the trelue elements can be detected by a unigue set of subsets. For example, if $\left(a_{3}, a_{0}\right)$ are the unknown elements, then the intersection of A_{1}, A_{3}, A_{4} gives the identity of the unkrown pair, that is, $A_{1} \cap A_{3} \cap A_{4}=\left\{a_{3}, a_{0}\right\}$.

4.4 PARTITION SEARCH DESTGNS.

Suppose the set S_{n} consists of n elements $\left\{a_{1}, a_{2}, \ldots ., a_{n}\right\}$. Then in a partiton search design, we determine subsets $\left\{A_{1}, A_{2}, \ldots, A_{m}\right\}$ of S_{n} such that for any two distinct elements $a_{i_{1}}, a_{i_{2}} \in S_{n}$, there exists two disjoint subsets $A_{i_{1}}$ and $A_{L_{2}}$ such that $a_{i_{1}} \in A_{i_{1}}$ and $a_{i_{2}} \in A_{i_{2}}$.

We describe here a procedure for constructing the subsets $A_{1}, A_{2}, \ldots, A_{m}$. We start by partitioning the set S_{n} into two sets $A_{L_{1}}$ and $A_{L_{2}}$.
That is,

$$
\begin{equation*}
A_{i_{1}} \cup A_{i_{2}}=S_{n} \tag{4.23}
\end{equation*}
$$

and

$$
A_{L_{1}} \cap A_{L_{2}}=\varnothing .
$$

We proceed to obtain other subsets by considering the subsets $A_{i_{1}}$ and $A_{L_{2}}$ as the set S_{n} and then partition each into two. The union of the first. part of $A_{i_{1}}$ and the first part $A_{L_{2}}$ forms the third subset $A_{L_{3}}$ and the union of the second part of A_{1} and the second fart $A_{i_{2}}$ forms the fourth subset A_{i}. This process is repeated until all pairs of the elements of the set S_{n} have been separated into disjoint subsets. This procedure of partitioning a
set into two is called halving procedure.

Example 4.5: Consider the set $S_{10}=$ $\left\{a_{1}, a_{2}, a_{3}, \ldots, a_{10}\right\}$ then applying the halving procedure, we obtain the following subsets of S_{n}, which will separate all pairs of elements of S_{n} :

$$
\begin{aligned}
& A_{1}=\left\{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{6}\right\} . \\
& A_{2}=\left\{a_{0}, a_{10}, a_{11}, a_{13}, a_{14}, a_{15}, a_{16}\right\}, \\
& A_{3}=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\} \cup\left\{a_{0}, a_{10}, a_{11}, a_{12}\right\} . \\
& A_{4}=\left\{a_{5}, a_{6}, a_{7}, a_{8}\right\} \cup\left\{a_{13}, a_{14}, a_{15}, a_{16}\right\} .
\end{aligned}
$$

Other subsets obtained in a similar manner as the above subsets A_{3} and A are:

$$
\begin{aligned}
& A_{5}=\left\{a_{1}, a_{2}, a_{5}, a_{6}, a_{0}, a_{10}, a_{13}, a_{14}\right\} \\
& A_{6}=\left\{a_{3}, a_{4}, a_{7}, a_{6}, a_{11}, a_{12}, a_{15}, a_{10}\right\}, \\
& A_{7}=\left\{a_{8}, a_{3}, a_{5}, a_{7}, a_{0}, a_{11}, a_{13}, a_{15}\right\}, \\
& A_{8}=\left\{a_{2}, a_{4}, a_{6}, a_{0}, a_{10}, a_{12}, a_{14}, a_{16}\right\},
\end{aligned}
$$

To detect tho unkrion elements, say a_{4} and a_{5}. we determine two disjoint subsets A_{1} and $A_{L_{2}}$ $\left\{1_{1,2}\right\} \subset\{1,2, \ldots \ldots, 8\}$ such that $a_{i} \in A_{i}$ and $a_{7} \in A_{i_{2}}$. In this example, the two disjoint subsets are A_{3} and A_{4}. That is, $\Sigma_{4} \in A_{3}$ and $\varepsilon_{7} \in A_{4}$ and $A_{3} \cap A_{4}=0$. The unknown elements are then identified separately from the subsets A_{3} and A_{4}
using separating systems.

More explicitly, we have the following display of detectable pairs of elements and the corresponding subsets:

Subsets Identifiable pairs of elements

$$
\begin{aligned}
A_{1}, A_{2} & \left(a_{1}, a_{0}\right),\left(a_{1}, a_{10}\right),\left(a_{1}, a_{11}\right),\left(a_{1}, a_{12}\right) \\
& \left(a_{1}, a_{13}\right),\left(a_{1}, a_{14}\right),\left(a_{1}, a_{15}\right),\left(a_{1}, a_{16}\right) \\
& \left(a_{2}, a_{0}\right),\left(a_{2}, a_{10}\right),\left(a_{2}, a_{11}\right),\left(a_{2}, a_{12}\right) \\
& \left(a_{2}, a_{13}\right),\left(a_{2}, a_{14}\right),\left(a_{2}, a_{15}\right),\left(a_{2}, a_{10}\right) \\
& \left(a_{3}, a_{0}\right),\left(a_{3}, a_{10}\right),\left(a_{3}, a_{11}\right),\left(a_{3}, a_{12}\right) \\
& \left(a_{3}, a_{13}\right),\left(a_{3}, a_{14}\right),\left(a_{3}, a_{15}\right),\left(a_{3}, a_{10}\right) \\
& \left(a_{4}, a_{0}\right),\left(a_{4}, a_{10}\right),\left(a_{4}, a_{11}\right),\left(a_{4}, a_{12}\right) \\
& \left(a_{4}, a_{12}\right),\left(a_{4}, a_{13}\right),\left(a_{4}, a_{14}\right),\left(a_{4}, a_{15}\right) \\
& \left(a_{4}, a_{16}\right),\left(a_{5}, a_{0}\right),\left(a_{5}, a_{10}\right),\left(a_{5}, a_{11}\right) \\
& \left(a_{5}, a_{12}\right),\left(a_{5}, a_{13}\right),\left(a_{5}, a_{14}\right),\left(a_{5}, a_{15}\right) \\
& \left(a_{5}, a_{10}\right),\left(a_{6}, a_{0}\right),\left(a_{6}, a_{10}\right),\left(a_{6}, a_{11}\right) \\
& \left(a_{6}, a_{12}\right),\left(a_{6}, a_{13}\right),\left(a_{0}, a_{14}\right),\left(a_{6}, a_{15}\right) \\
& \left(a_{6}, a_{16}\right),\left(a_{7}, a_{0}\right),\left(a_{7}, a_{10}\right),\left(a_{7}, a_{11}\right) \\
& \left(a_{7}, a_{12}\right),\left(a_{7}, a_{13}\right),\left(a_{7}, a_{14}\right),\left(a_{7}, a_{15}\right) \\
& \left(a_{7}, a_{10}\right),\left(a_{8}, a_{0}\right),\left(a_{8}, a_{10}\right),\left(a_{8}, a_{11}\right) \\
& \left(a_{8}, a_{12}\right),\left(a_{8}, a_{13}\right),\left(a_{0}, a_{14}\right),\left(a_{8}, a_{15}\right. \\
& \left(a_{8}, a_{16}\right)
\end{aligned}
$$

A_{3}, A_{4}

$$
\begin{aligned}
& \left(a_{1}, a_{5}\right),\left(a_{1}, a_{0}\right),\left(a_{1}, a_{7}\right),\left(a_{1}, a_{0}\right) \\
& \left(a_{2}, a_{5}\right),\left(a_{2}, a_{6}\right),\left(a_{2}, a_{7}\right),\left(a_{2}, a_{8}\right) \\
& \left(a_{3}, a_{5}\right),\left(a_{4}, a_{6}\right),\left(a_{4}, a_{7}\right),\left(a_{4}, a_{0}\right) \\
& \left(a_{4}, a_{5}\right),\left(a_{5}, a_{6}\right),\left(a_{4}, a_{7}\right),\left(a_{4}, a_{8}\right)
\end{aligned}
$$

$$
\begin{aligned}
A_{3}, A_{4} & \left(a_{0}, a_{15}\right),\left(a_{0}, a_{10}\right),\left(a_{10}, a_{13}\right), \\
& \left(a_{10}, a_{14}\right),\left(a_{10}, a_{15}\right),\left(a_{10}, a_{10}\right) \\
& \left(a_{11}, a_{13}\right),\left(a_{11}, a_{14}\right),\left(a_{11}, a_{15}\right) \\
& \left(a_{11}, a_{10}\right),\left(a_{12}, a_{13}\right),\left(a_{12}, a_{14}\right) \\
& \left(a_{12}, a_{15}\right),\left(a_{12}, a_{16}\right),\left(a_{0}, a_{13}\right) \\
& \left(a_{0}, a_{14}\right) \\
& \left(a_{1}, a_{3}\right),\left(a_{1}, a_{4}\right),\left(a_{2}, a_{9}\right),\left(a_{2}, a_{4}\right) \\
& \left(a_{5}, a_{8}\right),\left(a_{5}, a_{8}\right),\left(a_{6}, a_{7}\right),\left(a_{6}, a_{8}\right) \\
& \left(a_{8}, a_{11}\right),\left(a_{0}, a_{11}\right),\left(a_{0}, a_{12}\right) \\
& \left(a_{10}, a_{11}\right),\left(a_{10}, a_{12}\right),\left(a_{13}, a_{15}\right) \\
& \left(a_{13}, a_{10}\right),\left(a_{14}, a_{15}\right) \\
& \\
& \left(a_{1,}, a_{2}\right),\left(a_{3}, a_{4}\right),\left(a_{5}, a_{0}\right),\left(a_{7}, a_{8}\right) \\
& \left(a_{0}, a_{10}\right),\left(a_{11}, a_{12}\right),\left(a_{13}, a_{14}\right) \\
& \left(a_{15}, a_{10}\right) .
\end{aligned}
$$

Suppose that the set S_{n} consists of n elements. Then we construct the subsets $A_{1}, A_{2}, \ldots, A_{m}$ by partitioning the set S_{n} into x equal parts for $n=$ x^{k} and x parts not all equal but with a maximum size difference of one for $n x x^{k}$. The parts formed in the partitioning of the set S_{n} forn try subsets $A_{1}, A_{2}, \cdots, A_{2}$.

That is,

$$
S_{\Gamma_{1}}=A_{L_{1}} \cup A_{2_{2}} U \ldots . A_{L_{x}}
$$

and

$$
A_{i j} \cap A_{i,}=\varnothing, \quad j \neq j^{\prime}
$$

We proceed to obtain other subsets by considering each of subsets $A_{1} A_{i_{1}}, A_{i_{2}}, \ldots, A_{i_{x}}$ as the set S_{n} and then partition each into x parts．The union of the first parts of each of the subsets $A_{i_{1}}, A_{i_{2}}, \ldots, A_{i_{x}}$ forms （ $x+1$ ）－th subset，that is A_{x+1} ；the union of the second parts of each of the subsets $A_{i_{1}}, A_{i_{2}}, \ldots, A_{t_{x}}$ forms the $(x+2)$－th subset，and so on．This process is repeated until all pairs of the elements of the set S_{n} have been separated into disjoint subsets． This procedure of partitioning a set into x parts is called $\frac{1}{x}$－procedure．

Thearem 4．6．The number of subsets， \mathbb{F} in the $\frac{1}{x}$－procedure is；

$$
\mathbb{m}=x\left\{\log _{x} n\right\}
$$

where \｛y\} denotes the least interger greater than or equal to y ．

Proof
Suppose the sel S ．consists of $n=x^{k}$ elements， then the sut ．itionod into x equal Farts．Each Fえことさizon produces x subsets consisting of $\quad . / x \in 2$ ments．Suppose the first subset is A ，the：n / x^{2} eiements are taken from it to form part of subset $A_{x+1}, n / x^{3}$ elements taken to form part of sutset $A_{2 \times+1}$ ．This process is repeated until the elements taken from A_{1} to form part of a new subset is $n / x^{\ell}=1$ ，that
is $\ell=\log _{2} n$. But each partition produces x subsets, thus the total number of subsets is,

$$
m=x \log _{x} n .
$$

For $n \neq x^{k}$, the set S_{n} is partitioned into x parts not all equal but have maximum size difference of 1 . Let k_{1} be the size of the largest part, then $k_{1}-1$ is the size of the smallest part. The following inequality therefore holds:

$$
\begin{equation*}
\left(k_{1}-1\right) x<n<k_{1} x . \tag{4.21}
\end{equation*}
$$

liext, we partition the largest part (size k_{1}) into x parts, again not all equal but have a maximum size difference of one. Let k_{2} be the size of the largest Fart, then $k_{2}-1$ is the size of the smallest part. Again the inequality

$$
\begin{equation*}
\left(k_{2}-1\right) x<k_{1}<k_{2} x \tag{4.22}
\end{equation*}
$$

holds.
But

$$
k_{1}>\left(k_{2}-1\right) x
$$

relics that

$$
\begin{equation*}
\left(k_{1}-1\right) \geqslant\left(k_{2}-1\right) x \tag{4.23}
\end{equation*}
$$

since $k_{1},\left(k_{2}-1\right)$ and x are all integers.
Thus, from (4.21) and (4.22), we have

$$
\begin{equation*}
n<k_{1} x<k_{2} x^{2} \tag{4.24}
\end{equation*}
$$

and
$n>\left(k_{1}-1\right) x \geq\left(k_{2}-1\right) x^{2}$
This process is repeated until, we have the inequalities
$n<k_{1} x<k_{2} x^{2}<\ldots \ldots \ldots \ldots . \ldots k_{m^{\prime}-1} x^{m^{0}-1}$ $\left.n>\left(k_{1}-1\right) x \geq\left(k_{2}-1\right) x^{2}>\ldots\right\rangle\left(k_{m^{\prime}-1}-1\right) x^{m^{\prime}-1}$
and

$$
2<k_{m^{\prime}-1} \leq x .
$$

That is,

$$
n<x^{m^{\prime}}
$$

and

$$
n>x^{m^{\prime}-1}
$$

which implies

$$
m^{\prime}>\log _{x} n
$$

and

$$
\mathbb{m}^{\prime}<\log _{x} n+1 .
$$

But m^{\prime} is an integer so

$$
m^{\prime}=\left\{\log _{x} n\right\}
$$

Each partition produces x subsets, so the total number of subsets is

$$
m=x m^{\prime}=x\left\{\log _{x} n\right\}
$$

which completes the proof.
Theorem 4.7: An $1 / x$ procedure, with $x=3$ gives the minimum number of subsets, m.

Proof

From Theorem 4.6, m is given by

$$
m=x \log _{x} n
$$

Differentiating with respect to x and equating to
zero, we get

$$
\frac{d m}{d x}=\log _{0} n\left(\frac{1}{\log _{0} x}-\frac{1}{\left(\log _{e} x\right)^{2}}\right)=0
$$

which gives,

$$
\log _{e} x=1 \quad \text { or } \quad x=e ;
$$

and

$$
\frac{d^{2} m}{d x^{2}}=\log _{\theta} n\left[\frac{\frac{1}{x}\left(\log _{\theta} x\right)^{2}-2\left(\log _{\theta} x-1\right)\left(\log _{\theta} x\right)}{\left(\log _{\theta} x\right)^{4}}\right]
$$

which is positive when $x=e$.
Thus, $x=e$ gives minimum number of subsets, m. But x must be an integer so $x=3$ would give minimum m, that is

$$
\begin{equation*}
m=3 \log _{3} n \tag{4.26}
\end{equation*}
$$

4.5 DETECTING $t(t>2)$ UNKNOWN ELEMENTS.

In this section we study a strategy for detecting $t(t) 2$) unknown elements from a finite set S_{n}. The strategy he propose to study is called a t-complete search design defined ir: Section 1.2 gl Chapter 1. For purposes of our study of the t-complete search design we define it in terms of the intersection of the subsets $A_{1}, A_{2}, \ldots . ., A_{m}$ of the finite set S_{n}, as a system $\left\{A_{1}, A_{2}, \ldots, A_{m} ; S_{n}\right\}$ in which for any arbitrary set of t elements $\left\{a_{i}, s_{i_{2}}, \ldots, s_{i_{i}}\right\} \in S_{n}$ there exists a set of
indices $\left\{i_{1}, i_{2}, \ldots, i_{k}\right\} \subset\{1,2, \ldots, m\}$ such that $\left\{a_{i}, a_{i}, \ldots, a_{i_{i}}\right\} \in A_{i_{\ell}}$ for $\ell=1,2, \ldots, k$ and $\bigcap_{\ell=1} A_{i_{\ell}}=\left\{a_{i_{1}}, a_{i_{2}}, \ldots, a_{i_{i}}\right\}$. Without loss of generality we will assume that the subsets A_{i} ($\ell=1,2, \ldots, k$) are the only subsets which contain the set $\left\{a_{i_{1}}, a_{i_{2}}, \ldots, a_{i}\right\}$.

To identify any t unknown elements, say $a_{1}, a_{2}, \ldots, a_{i}$, we determine subsets $A_{i_{1}}, A_{i_{2}}, \ldots \ldots, A_{i_{k}}$ $\left\{i_{1}, i_{2}, \ldots \ldots, i_{k}\right\} \subset\{1,2,3, \ldots \ldots, m\}$ such that $a_{1}, s_{2}, \ldots, a_{i} \in A_{i}$ for $j=1,2, \ldots, k$. The identity of the t unknown elements is then given by the intersection of these subsets $A_{i_{1}}, A_{i_{2}}, \ldots, A_{i_{k}}$ that is $\bigcap_{j=1} A_{2_{j}}=\left\{a_{1}, a_{2}, \ldots, a_{1}\right\}$.

The following example illustrates this strategy.

Example 4.6:- Suppose the system $\left\{A_{1}, A_{2}, A_{3}\right.$, $\left.A_{4}, A_{5}, A_{6}, A_{7}, A_{8}, A_{0}, A_{10}, A_{11}, A_{12}, A_{13} ; \quad S_{13}\right\} \quad$ constitutes a 3 -complete search design for separatine the Elements of the set $S_{n}=\left\{a_{1}, a_{2}, \varepsilon_{3}, a_{4}, a_{5}, a_{0}, s_{2} \varepsilon_{6}\right.$ $\left.a_{0}, a_{10}, a_{11}, a_{12}, a_{13}\right\}$. Then one possible configuration of the subsets $\left\{A_{1}, A_{2}, A_{3}, A_{4}, A_{5}, A_{0}, A_{7}, A_{0}, A_{0}, \hat{A}_{10}, t_{12}\right.$ $\left.A_{12}, A_{13}\right\}$ is the following:

$$
\begin{aligned}
& A_{1}=\left\{a_{3}, z_{5}, a_{\sigma^{\prime}}, z_{7}, a_{a^{\prime}}, a_{0}, a_{11}: a_{12}, a_{13}\right\}, \\
& A_{2}=\left\{a_{1}, a_{4}, a_{\sigma^{\prime}}, a_{7}, a_{a^{\prime}}, a_{0}, a_{10}, a_{12}, a_{13}\right\}, \\
& A_{3}=\left\{a_{1}, a_{2}, a_{5}, a_{7}, a_{3}, a_{9}, a_{10}, a_{11}, a_{13}\right\},
\end{aligned}
$$

$$
\begin{aligned}
& A_{4}=\left\{a_{1}, a_{2} \cdot a_{1} \cdot a_{6} \cdot a_{1} \cdot a_{0}, a_{10} \cdot a_{11}, a_{12}\right\}, \\
& A_{5}=\left\{a_{2}, a_{3}, a_{4} \cdot a_{7}, a_{0} \cdot a_{10}, a_{11} \cdot a_{12}, a_{13}\right\} \text {, } \\
& A_{6}=\left\{a_{1} \cdot a_{3} \cdot a_{4} \cdot a_{5}, a_{1} \cdot a_{10} \cdot a_{11}, a_{12}, a_{13}\right\} \text {, } \\
& A_{7}=\left\{a_{1} \cdot a_{2} \cdot a_{4} \cdot a_{5} \cdot a_{6} \cdot a_{0} \cdot a_{11} \cdot a_{12} \cdot a_{13}\right\} \text {, } \\
& A_{0}=\left\{a_{1} \cdot a_{2}, a_{3} \cdot a_{5}, a_{0}, a_{7}, a_{10}, a_{12}, a_{13}\right\} \text {, } \\
& A_{0}=\left\{a_{1}, a_{2}, a_{3}, a_{4} \cdot a_{6}, a_{7}, a_{8}, a_{11}, a_{13}\right\}, \\
& A_{10}=\left\{a_{1} \cdot a_{2}, a_{3}, a_{4} \cdot a_{5}, a_{7} \cdot a_{8} \cdot a_{0}, a_{12}\right\}, \\
& A_{11}=\left\{a_{2} \cdot a_{3} \cdot a_{4}, a_{5} \cdot a_{6} \cdot a_{8} \cdot a_{0} \cdot a_{10^{\prime}} a_{11}\right\} . \\
& A_{12}=\left\{a_{1} \cdot a_{3} \cdot a_{4} \cdot a_{5} \cdot a_{6} \cdot a_{7}, a_{0} \cdot a_{10} \cdot a_{11}\right\} . \\
& A_{13}=\left\{a_{2}, a_{4}, a_{5}, a_{6}, z_{7}, a_{8}, a_{10}, a_{11}, a_{12}\right\} .
\end{aligned}
$$

This design will detect any arbitrary group of three elements from S_{13}. That is, for any group of three elements $a_{\ell^{\prime}}, a_{\ell^{\prime \prime}}, a_{\ell^{\prime \prime}}\left(\ell \neq \ell^{\prime \prime} \neq \ell^{\prime \prime}\right)$ of the set S_{13}, triere exist subsets $A_{i_{1}}, A_{i_{2}}, \ldots, A_{i_{k}}$, $\left\{i_{1}, i_{2}, \ldots . i_{k}\right\} \subset\{1,2, \ldots, \pi\}$ such that $a_{i}, a_{\ell^{\prime}}, a_{\ell \prime \prime} \in A_{i_{j}}$, for $j=1,2, \ldots, k$ and k $\bigcap_{j=1} A_{j}=\left\{a_{i}, a_{\ell}, a_{i, \prime}\right\}$. Thus, to detect any three unknown elements of the set S_{13}, we determine subsets amongst $A_{1}, A_{2}, \ldots, A_{13}$ which contain the three unknown elements. The intersection of these subsets Eives the identity of the three unknown elements.

More explicitly, we have the following display of detectable pairs of elements and the associated subsets.

Subsets
$A_{4}, A_{\theta}, A_{0}, A_{10}$ A_{7}, A_{0}, A_{10}
$A_{9}, A_{7}, A_{8}, A_{10}$ $A_{4}, A_{7}, A_{日}, A_{0}$ $A_{3}, A_{8}, A_{9}, A_{10}$ $A_{3}, A_{4}, A_{0}, A_{10}$ $A_{3}, A_{4}, A_{7}, A_{10}$ A_{3}, A_{4}, A_{8} $A_{3}, A_{4}, A_{7}, A_{0}$ $A_{4}, A_{7}, A_{8}, A_{10}$ $A_{3}, A_{7}, A_{8}, A_{0}$ $A_{0}, A_{8}, A_{0}, A_{10}$ $A_{0}, A_{8}, A_{10}, A_{12}$ $A_{4}, A_{8}, A_{0}, A_{12}$ $A_{B}, A_{0}, A_{10}, A_{12}$ $A_{4}, A_{0}, A_{0}, A_{10}$ A_{4}, A_{10}, A_{12} $A_{4}, A_{6}, A_{\theta}, A_{12}$ $A_{8}, A_{0}, A_{0}, A_{12}$ A_{0}, A_{9}, A_{10} $A_{8}, A_{\sigma}, A_{\theta}, A_{0}$ $\dot{A}_{8}, A_{2}, A_{10}, A_{12}$ $A_{2}, A_{7}, A_{9}, A_{12}$
A_{0}, A_{10}, A_{12} $H_{2}, A_{0}, \dot{r}_{5}, H_{10}$ $A_{2}, A_{3}, A_{10}, A_{12}$ A_{2}, A_{6}, A_{12} $A_{6}, A_{7}, A_{0}, A_{12}$ $A_{2}, A_{6}, A_{8}, A_{10}$ $A_{2}, A_{6}, A_{7}, A_{0}$ A_{7}, A_{0}, A_{12} $A_{3}, A_{8}=A_{10}, A_{12}$ A_{3}, A_{6}, A_{10} $A_{3}, A_{7}, A_{10}, A_{11}$ $A_{3}, A_{6}=A_{8}, A_{12}$ $A_{3}, A_{6}, A_{7}, A_{12}$

Subsets
$A_{0}, A_{7}, A_{8}, A_{10}$
$A_{9}, A_{0}, A_{7}, A_{0}$
$A_{2}, A_{8}, A_{0}, A_{12}$
$A_{2}, A_{4}, A_{0}, A_{11}$
$A_{2}, A_{4}, A_{7}, A_{12}$
$A_{2}, A_{4}, A_{0}, A_{12}$
$A_{4}, A_{7}, A_{0}, A_{12}$
A_{2}, A_{7}, A_{B}
$A_{2}, A_{7}, A_{8}, A_{0}$
$A_{2}, A_{3}, A_{0}, A_{10}$
$A_{2}, A_{3}, A_{10}, A_{12}$
$A_{2}, A_{3}, A_{6}, A_{12}$
A_{3}, A_{0}, A_{12}
A_{2}, A_{8}, A_{10}
$A_{2}, A_{3}, A_{8}, A_{0}$
$A_{2}, A_{3}, A_{4}, A_{10}$
$A_{2}, A_{3}, A_{4}, A_{0}$
$A_{9}, A_{4}, A_{6}, A_{0}$
$A_{2}, A_{4}, A_{6}, A_{10}$
$A_{2}, A_{9}, A_{6}, A_{0}$
$A_{2}, A_{3}, A_{4}, A_{12}$
$A_{3}, A_{4}, A_{7}, A_{12}$
$A_{2}, A_{4}, A_{7}, A_{10}$
A_{2}, A_{3}, A_{7}
$A_{3}, A_{4}, A_{6}, A_{12}$
$A_{2}, A_{4}, A_{6}, A_{0}$
$A_{2}, A_{9}, A_{6}, A_{0}$
A_{8}, A_{0}, A_{7}
$A_{9}, A_{6}, A_{7}, A_{6}$
$A_{2}, A_{6}, A_{7}, A_{0}$
$A_{5}, A_{0}, A_{10}, A_{11}$
A_{0}, A_{10}, A_{11}
$A_{8}, A_{8}, A_{9}, A_{11}$
$A_{5}, A_{8}, A_{9}, A_{10}$
$A_{4}, A_{0}, A_{10}, A_{11}$
$A_{4}, A_{5}, A_{10}, A_{11}$

Elements

$$
a_{1}, a_{5}, a_{12}
$$

$$
a_{1}, a_{5}, a_{19}
$$

$$
a_{1}, a_{6}, a_{7}
$$

$$
a_{1}, a_{\sigma}, a_{B}
$$

$$
a_{1}, a_{6}, a_{0}
$$

$$
a_{1}, a_{6}, a_{10}
$$

$$
a_{1}, a_{6}, a_{11}
$$

$$
a_{1}, a_{6}, a_{12}
$$

$$
a_{1}, a_{6}, a_{13}
$$

$$
a_{1}, a_{7}, a_{a}
$$

$$
a_{1}, a_{7}, a_{8}
$$

$$
a_{1}, a_{7}, a_{10}
$$

$$
s_{1}, a_{7}, a_{11}
$$

$$
a_{1}, a_{8}, a_{12}
$$

$$
a_{1}, a_{7}, a_{13}
$$

$$
a_{1}, a_{8}, a_{0}
$$

$$
a_{1}, a_{8}, a_{10}
$$

$$
a_{1}, a_{0}, a_{11}
$$

$$
a_{1}, a_{0}, a_{12}
$$

$$
a_{1}, a_{8}, a_{13}
$$

$$
a_{1}, a_{0}, a_{10}
$$

$$
a_{1}, a_{0}, a_{11}
$$

$$
a_{1}, a_{0}, a_{12}
$$

$$
a_{1}, a_{0}, a_{13}
$$

$$
a_{1}, a_{10}, a_{11}
$$

$$
a_{1}, a_{10}, a_{12}
$$

$$
a_{1}, a_{10}, a_{13}
$$

$$
a_{1}, a_{11}, a_{12}
$$

$$
a_{1}, a_{11}, a_{13}
$$

$$
a_{1}, a_{12}, a_{13}
$$

$$
a_{2}, a_{3}, a_{4}
$$

$$
a_{2}, a_{3}, a_{5}
$$

$$
a_{2}, a_{3}, a_{6}
$$

$$
a_{2}, a_{3}, a_{7}
$$

$$
a_{2}, a_{3}, a_{8}
$$

$$
a_{2}, a_{3}, a_{0}
$$

Subsets	Elements	Subsets	Elements
A_{4}, A_{5}, A_{11}	a_{2}, a_{5}, a_{10}	$A_{4}, A_{0}, A_{11}, A_{19}$	a_{2}, a_{6}, a_{10}
A_{4}, A_{5}, A_{0}	a_{2}, a_{3}, a_{12}	$A_{4}, A_{2}, A_{0}, A_{13}$	$a_{2}, a_{0,} a_{11}$
$A_{4}, A_{5}, A_{0}, A_{10}$	a_{2}, a_{3}, a_{12}	$A_{7}, A_{0}, A_{0}, A_{1: 1}$	a_{2}, a_{6}, a_{12}
$A_{5}, A_{0}, A_{0}, A_{11}$	a_{2}, a_{3}, a_{13}	$A_{7}, A_{0}, A_{0}, A_{11}$	a_{2}, a_{0}, a_{13}
$A_{7}, A_{10}, A_{11}, A_{13}$	a_{2}, a_{4}, a_{5}	$A_{3}, A_{5}, A_{10} A_{11}$	a_{2}, a_{7}, a_{8}
$A_{7}, A_{0}, A_{11}, A_{19}$	a_{2}, a_{4}, a_{0}	A_{5}, A_{5}, A^{\prime}	a_{2}
$A_{5}, A_{0}, A_{10}, A_{19}$	a_{2}, a_{4}, a_{7}	$A_{3}, A_{5}, A_{8}, A_{13}$	a_{2}, a_{7}, a_{10}
$A_{0}, A_{10}, A_{11}, A_{13}$	a_{2}, a_{4}, a_{0}	$A_{3}, A_{5}, A_{0}, A_{13}$	a_{2}
A_{5}, A_{10}, A_{11}	a_{2}, a_{4}, a_{0}	$A_{5}, A_{0}, A_{10}, A_{15}$	a_{2}, a_{7}, a_{12}
A_{5}, A_{11}, A_{13}	a_{2}, a_{4}, a_{10}	$A_{3}, A_{5}, A_{5}, A_{0}$	$a_{2}, 8_{7}, a_{13}$
$A_{5}, A_{7}, A_{0}, A_{13}$	a_{2}, a_{4}, a_{11}	$A_{3}, A_{7}, A_{10}, A_{11}$	a_{2}, a_{0}, a_{0}
$A_{5}, A_{7}, A_{10}, A_{13}$	a_{2}, a_{4}, a_{12}	$A_{3}, A_{4}, A_{11}, A_{13}$	a_{2}, a_{0}, a_{10}
$A_{5}, A_{7}, A_{0}, A_{11}$	a_{2}, a_{4}, a_{13}	$A_{3}, A_{4}, A_{0}, A_{13}$	$\mathrm{a}_{2} 8_{8}, \mathrm{a}_{11}$
$A_{7}, A_{B}, A_{11}, A_{19}$	a_{2}, a_{5}, a_{0}	A_{4}, A_{1}, A_{19}	a_{2}, a_{8}, a_{12}
$A_{3}, A_{B}, A_{10}, A_{13}$	a_{2}, a_{5}, a_{7}	A_{3}, A_{2}, A_{1}	a_{2}, a_{8}, a_{19}
$A_{3}, A_{10}, A_{11}, A_{13}$	a_{2}, a_{5}, a_{8}	$A_{5}, A_{4}, A_{5}, A_{11}$	a_{2}, a_{0}, a_{10}
$A_{3}, A_{7}, A_{10}, A_{11}$	a_{2}, a_{5}, a_{0}	$A_{9}, A_{4}, A_{5}, A_{7}$	a_{2}, a_{0}, a_{1}
$A_{3}, A_{0}, A_{11}, A_{13}$	a_{2}, a_{5}, a_{10}	$A_{4}, A_{5}, A_{7}, A_{10}$	a_{2}, a_{0}, a_{12}
A_{3}, A_{7}, A_{23}	a_{2}, a_{5}, a_{11}	$A_{3}: A_{5}, A_{7}, A_{11}$	a_{2}, a_{0}, a_{1}
$A_{7}, A_{8}, A_{10}, A_{13}$	a_{2}, a_{5}, a_{12}	$A_{3}, A_{4}, A_{5}, A_{13}$	a_{2}, a_{10}, a_{11}
$A_{3}, A_{2}, A_{0}, A_{11}$	a_{2}, a_{5}, a_{19}	$A_{4}, A_{5}, A_{0}, A_{13}$	a_{2}, a_{10}, a_{12}
A_{8}, A_{0}, A_{13}	a_{2}, a_{6}, a_{7}	$A_{3}, A_{5}, A_{8}, A_{11}$	a_{2}, a_{10}, a_{13}
$A_{4}, A_{0}, A_{11}, A_{13}$	a_{2}, a_{0}, a_{0}	$A_{4}, A_{5}, A_{7}, A_{1}$	a_{2}, a_{11}, a_{12}
A_{4}, A_{7}, A_{11}	a_{2}, a_{0}, a_{0}	$A_{3}, A_{5}, A_{7}, A_{0}$	a_{2}, a_{11}, s_{13}
$A_{6}, A_{0}, A_{11}, A_{12}$	a_{9}, a_{4}, a_{5}	$A_{4}, A_{5}, A_{0}, A_{1}$	$a_{9}, a_{10}, \varepsilon_{11}$
$A_{1}, A_{0}, A_{10} A_{11}$	a_{3}, a_{5}, a_{7}	$A_{4}, A_{5}, A_{6}, A_{0}$	a_{3}, a_{10}, a_{12}
$A_{1}, A_{0}, A_{1} 0_{1} 1_{1}$	a_{9}, a_{5}, a_{6}	$A_{5}, A_{0}, A_{0}, A_{11}$	$a_{0,} a_{10}, a_{13}$
$A_{1}, A_{10} A_{11} A_{12}$	a_{3}, a_{5}, a_{0}	$A_{1}, A_{0}, A_{5}, A_{0}$	a_{9}, a_{11}, a_{12}
$A_{0}, A_{0}, A_{11} A_{12}$	a_{a}, a_{5}, a_{10}	$A_{1}, A_{3}, A_{0}, A_{0}$	$a_{9,} a_{1,1}, a_{1 a}$
$A_{1}, A_{0}, A_{7}, A_{10}$	a_{5}, a_{5}, a_{11}	$A_{1}, A_{5}, A_{6}, A_{0}$	a_{9}, a_{12}, a_{13}
$A_{1}, A_{0}, A_{B}, A_{10}$	a_{3}, a_{5}, a_{2}	A_{7}, A_{11}, A_{12},	,
$A_{1}, A_{6}, A_{0}, A_{11}$	a_{3}, a_{5}, a_{13}	$A_{10} A_{1} 2^{A_{13}}$	a_{4}, a_{5}, a_{7}
$A_{1}, A_{0}, A_{0}, A_{12}$	a_{3}, a_{0}, a_{7}	A_{6}, A_{10}, A_{11},	[a_{5}, a_{8}
$A_{1}, A_{4}, A_{0}, A_{11}$	a_{3}, a_{6}, a_{8}	A_{2}, A_{10}, A_{11},	4, a_{5}, a_{0}
$A_{1}, A_{4}, A_{11} A_{12}$	a_{3}, a_{0}, a_{0}	$A_{6}, A_{11}, A_{12}, A_{1}$	$4_{4}, a_{5}, 8_{10}$
$A_{4}, A_{0}, A_{11} A_{12}$	a_{3}, a_{6}, a_{10}	$A_{6}, A_{7}, A_{12}, A_{1}$	a_{4}, a_{5}, a_{11}

Subsets Elements Subsets Elements

$A_{1}, A_{4}, A_{0}, A_{12}$	a_{9}, a_{6}, a_{11}
A_{1}, A_{4}, A_{0}	a_{9}, a_{0}, a_{12}
$A_{1}, A_{0}, A_{0}, A_{11}$	a_{3}, a_{6}, a_{13}
A_{1}, A_{0}, A_{10}	a_{3}, a_{7}, a_{8}
$A_{1}, A_{5}, A_{10}, A_{12}$	$a_{9}, 8_{7}, a_{8}$
A_{5}, A_{8}, A_{12}	$a_{9}, a_{7}, a_{10}{ }^{\prime}$
$A_{1}, A_{5}, A_{0}, A_{12}$	a_{3}, a_{7}, a_{11}
$A_{1}, A_{5}, A_{8}, A_{10}$	a_{3}, a_{7}, a_{12}
$A_{1}, A_{5}, A_{8}, A_{0}$	a_{3}, a_{7}, a_{13}
$A_{1}, A_{4}, A_{10} A_{11}$	a_{9}, a_{8}, a_{0}
A_{4}, A_{6}, A_{1}	a_{3}, a_{8}, a_{10}
$A_{1}, A_{4}, A_{6}, A_{0}$	a_{3}, z_{8}, a_{11}
$A_{1}, A_{4}, A_{6}, A_{10}$	$a_{3}, 8_{8}, a_{12}$
$A_{1}, A_{6}, A_{9}, A_{11}$	$a_{3}, 8_{8}, a_{13}$
$A_{4}, A_{5}, A_{11} A_{12}$	a_{3}, z_{9}, a_{10}
$A_{1}, A_{4}, A_{5}, A_{12}$	a_{3}, a_{0}, a_{11}
$A_{1}, A_{4}, A_{5}, A_{10}$	a_{3}, a_{9}, a_{12}
A_{1}, A_{5}, A_{11}	a_{3}, a_{9}, a_{13}
$A_{2}, A_{6}, A_{10}, A_{19}$	a_{4}, a_{8}, a_{12}
$A_{2}, A_{6}, A_{0}, A_{11}$	a_{4}, a_{8}, a_{13}
$A_{2}, A_{5}, A_{11} A_{12}$	a_{4}, a_{0}, a_{10}
A_{5}, A_{2}, A_{12}	a_{4}, a_{0}, a_{11}
$A_{2}, A_{5}, A_{7}, A_{10}$	$a_{4}, 8_{0}, a_{12}$
$A_{2}, A_{5}, A_{7}, A_{11}$	a_{4}, a_{0}, a_{13}
$A_{5}, A_{0}, A_{12} A_{13}$	$3_{4}, z_{10}, z_{11}$
$A_{2}, A_{5}, A_{6}, A_{13}$	a_{4}, a_{10}, a_{12}
$A_{2}, A_{5}, A_{6}, A_{11}$	a_{4}, a_{10}, a_{13}
$A_{5}, A_{6}, A_{7}, A_{13}$	$a_{4}^{0}, a_{11}, a_{12}$
$A_{5}, A_{0}, A_{7}, A_{0}$	a_{4}, a_{11}, a_{13}
$A_{2}, A_{5}, A_{6}, A_{7}$	a_{4}, a_{12}, a_{19}
$A_{1}, A_{8}, A_{12}, A_{19}$	a_{5}, a_{8}, a_{7}
A_{1}, A_{11}, A_{13}	a_{5}, a_{0}, a_{0}
$A_{1}, A_{2}, A_{11}, A_{12}$	a_{5}, a_{6}, a_{0}
$A_{6}, A_{11}, A_{12}, A_{1}$	a_{5}, a_{0}, a_{10}
$A_{1}, A_{7}, A_{12}, A_{19}$	a_{5}, a_{6}, a_{11}
$A_{1}, A_{7}, A_{8}, A_{19}$	a_{5}, a_{6}, a_{12}

$A_{6}, A_{7}, A_{10}, A_{19} \quad a_{4}, a_{5}, a_{12}$
$A_{6}, A_{7}, A_{11} \quad a_{4}, a_{5}, a_{19}$
$A_{2}, A_{0}, A_{12}, A_{19} \quad a_{4}, a_{6}, a_{7}$
$A_{2}, A_{0}, A_{11}, A_{13} \quad a_{4}, a_{6}, a_{6}$
$A_{2}, A_{7}, A_{11}, A_{12} \quad a_{4}, a_{0}, a_{0}$
$A_{2}, A_{11}, A_{12}, A_{13} \quad a_{4}, a_{6}, a_{10}$
$A_{7}, A_{8}, A_{12}, A_{13} \quad a_{4}, a_{6}, a_{11}$
$A_{2}, A_{7}, A_{13} \quad a_{4}, a_{6}, a_{12}$
$A_{2}, A_{7}, A_{8}, A_{11} \quad a_{4}, a_{6}, a_{19}$
$A_{2}, A_{9}, A_{10}, A_{13} \quad a_{4}, a_{7}, a_{8}$
$A_{2}, A_{5}, A_{10}, A_{12} \quad a_{4}, a_{7}, a_{0}$
$A_{2}, A_{5}, A_{12}, A_{13} \quad a_{4}, a_{7}, a_{10}$
$A_{5}, A_{0}, A_{12}, A_{13} \quad a_{4}, a_{7}, a_{11}$
$A_{2}, A_{5}, A_{10}, A_{13} \quad a_{4}, a_{7}, a_{12}$
A_{2}, A_{5}, A_{0}
a_{4}, a_{7}, a_{13}
$A_{2}, A_{10}, A_{11} \quad a_{4}, a_{B}, a_{0}$
$A_{2}, A_{6}, A_{11}, A_{13} \quad a_{4}, a_{8}, a_{10}$
$A_{6}, A_{8}, A_{13} \quad a_{4}, a_{0}, a_{11}$
$A_{1}, A_{4}, A_{0}, A_{13} \quad a_{0}, a_{8}, a_{11}$
$A_{1}, A_{2}, A_{4}, A_{13} \quad a_{6}, a_{8}, a_{12}$
$A_{1}, A_{2}, A_{0}, A_{11} \quad a_{0}, a_{0}, a_{13}$
$A_{2}, A_{4}, A_{1}, A_{12} \quad a_{6}, a_{0}, a_{10}$
$A_{1}, A_{4}, A_{2}, A_{12} \quad a_{6}, a_{8}, a_{11}$
$A_{1}, A_{2}, A_{4}, A_{7} \quad a_{0}, a_{0}, a_{12}$
$A_{1}, A_{2}, A_{7}, A_{11} \quad a_{6}, a_{0}, a_{13}$
$A_{4}, A_{12}, A_{13} \quad a_{6}, a_{10}, a_{11}$
$A_{2}, A_{4}, A_{8}, A_{13} \quad a_{0}, a_{10}, a_{12}$
$A_{2}, A_{8}, A_{1} \quad a_{0}, a_{10}, a_{13}$
$A_{1}, A_{4}, A_{7}, A_{13} \quad a_{0}, a_{11}, a_{12}$
$A_{1}, A_{7}, A_{0} \quad a_{6}, a_{11}, a_{13}$
$A_{1}, A_{2}, A_{7}, A_{0} \quad a_{6}, a_{12}, a_{13}, C-$
$A_{1}, A_{2}, A_{3}, A_{10} \quad a_{7}, a_{8}, a_{0}$
$A_{2}, A_{3}, A_{13} \quad a_{7}, a_{9}, a_{10}$
$A_{1}, A_{9}, A_{4}, A_{13} \quad a_{7}, a_{8}, a_{11}$
$A_{1}, A_{2}, A_{10} A_{13} \quad a_{7}, a_{8}, a_{12}$
$A_{1}, A_{2}, A_{3}, A_{9} \quad a_{7}, a_{8}, a_{13}$

Subsets	Elements	Subsets	Elements
$A_{1}, A_{7}, A_{0}, A_{11}$	a_{5}, a_{7}, a_{19}	A_{2}, A_{9}, A_{5}	a_{7}, a_{0}, a_{10}
$A_{1}, A_{9}, A_{10}, A_{19}$	a_{5}, a_{7}, a_{6}	A_{1}, A_{3},	$a_{7}, a_{0,} a_{11}$
$A_{1}, A_{3}, A_{10} A_{12}$	a_{5}, a_{7}, a_{0}	A_{1}, A_{2},	a_{7}, a_{0}, a_{12}
$A_{3}, A_{B}, A_{12}, A_{19}$	a_{5}, a_{7}, a_{10}	$A_{1}, A_{2},{ }^{\text {a }}$	a_{7}, a_{0}, a_{13}
$A_{1}, A_{3}, A_{12}, A_{13}$	a_{5}, a_{7}, a_{11}	A_{9}, A_{5}, A	a_{7}, a_{10}, a_{11}
$A_{1}, A_{0}, A_{10}, A_{13}$	a_{5}, a_{7}, a_{12}	A_{2}, A_{5}, A^{\prime}	a_{7}, a_{10}, a_{12}
A_{1}, A_{3}, A_{0}	a_{5}, a_{7}, a_{13}	A_{2}, A_{9}, A_{5}	a_{7}, a_{10}, a_{13}
$A_{1}, A_{3}, A_{10}, A_{1}$	a_{5}, a_{0}, a_{0}	A_{1}, A_{5},	a_{7}, a_{11}, a_{12}
$A_{3}, A_{6}, A_{12}, A_{13}$	a_{5}, a_{8}, a_{10}	A_{1}, A_{3}, A_{5}	a_{7}, a_{11}, a_{13}
$A_{1}, A_{3}, A_{6}, A_{13}$	a_{5}, a_{6}, a_{11}	A_{1}, A_{2}, A^{\prime}	a_{7}, a_{12}, a_{13}
$A_{1}, A_{45}, A_{10}, A_{13}$	a_{5}, a_{8}, a_{12}	A_{2}, A_{3}, A	a_{0}, a_{0}, a_{10}
$A_{1}, A_{3}, A_{6}, A_{11}$	a_{5}, a_{8}, a_{13}	A_{1}, A_{3}, A_{4}	a_{0}, a_{0}, a_{11}
A_{3}, A_{11}, A_{12}	$a_{5}, 8_{0}, 8_{10}$	A_{1}, A_{2},	a_{0}, a_{0}, a_{12}
$A_{1}, A_{3}, A_{7}, A_{12}$	a_{5}, a_{0}, a_{11}	A_{1}, A_{2}, A	a_{0}, a_{0}, a_{19}
A_{2}, A_{7}, A_{10}	a_{5}, a_{0}, a_{12}	A_{3}, A_{4},	a_{0}, a_{10}, a_{11}
$A_{1}, A_{3}, A_{2}, A_{11}$	a_{5}, a_{0}, a_{13}	A_{2}, A_{4}, A	a_{8}, a_{10}, a_{12}
$A_{3}, A_{6}, A_{12}, A_{13}$	a_{5}, a_{10}, a_{11}	A_{2}, A_{3}, A	a_{0}, a_{10}, a_{13}
A_{6}, A_{0}, A_{13}	a_{5}, a_{10}, a_{12}	A_{1}, A_{4}, A	a_{8}, a_{11}, a_{12}
$A_{3}, A_{6}, A_{9}, A_{11}$	a_{5}, a_{10}, a_{13}	A_{1}, A_{3}, A_{0}	a_{0}, a_{11}, a_{13}
$A_{1}, A_{6}, A_{7}, A_{13}$	a_{5}, a_{11}, a_{12}	A_{1}, A_{2}, A_{0}	a_{0}, a_{12}, a_{13}
$A_{1}, A_{3}, A_{6}, A_{7}$	a_{5}, a_{11}, a_{13}	A_{3}, A_{4}, A^{\prime}	a_{0}, a_{10}, a_{11}
$A_{1}, A_{6}, A_{7}, A_{B}$	a_{5}, a_{12}, a_{13}	A_{2}, A_{4}, A_{5}	a_{0}, a_{10}, a_{12}
$A_{1}, A_{2}, A_{0}, A_{13}$	a_{6}, a_{7}, a_{0}	A_{2}, A_{9}, A_{5}	a_{0}, a_{10}, a_{13}
A_{1}, A_{2}, A_{12}	a_{6}, a_{7}, a_{0}	A_{1}, A_{4}, A_{5}	a_{9}, a_{11}, a_{12}
$A_{2}, A_{8}, A_{12}, A_{13}$	a_{6}, a_{7}, a_{10}	A_{1}, A_{3}, A	$a_{0}, a_{1,1}, \bar{a}_{3}$
$A_{1}, A_{0}, A_{12}, A_{13}$	$\mathrm{a}_{6} a_{6}, \mathrm{a}_{2}$	A_{1}, A_{2}, A^{\prime}	a_{0}, a_{12}, a_{13}
$A_{1}, A_{2}, A_{B}, A_{13}$	a_{0}, a_{7}, a_{12}	A_{4}, A_{5}, A_{0}	a_{10}, a_{11}, a_{12}
$A_{1}, A_{2}, A_{0}, A_{0}$	a_{6}, a_{7}, a_{13}	A_{3}, A_{5}, A_{0}	a_{10}, a_{11}, s_{1}
$A_{1}, A_{2} A_{4}, A_{11}$	a_{0}, a_{0}, a_{0}	A_{2}, A_{5}, A_{6}	a_{10}, a_{12}, s_{1}
$A_{2}, A_{4}, A_{11}, A_{13}$	$a_{0}, a_{0}, \hat{a}_{10}$	A_{1}, A_{5}, A_{6}	$a_{11}, a_{12}, \varepsilon_{1}$

The display shows that every set of three elements can be detected by a unique set of subsets. For example, if $\left\{a_{1}, a_{5}, a_{11}\right\}$ is the unknown set of
elements, then \quad determine subsets amongst $A_{1}, A_{2}, \ldots ., A_{19}$ which contain a_{1}, a_{5} and a_{11}. The intersection of these subsets gives the identity of the three unknown elements. In this case, the subsets which contain a_{1}, a_{5} and a_{11} are A_{9}, A_{6}, A_{7}, and A_{12}. The intersection of these subsets A_{3}, A_{6}, A_{7} and A_{12} gives the identities of the elements. That is, $A_{3} \cap A_{6} \cap A_{7} \cap A_{12}=\left\{a_{1}, a_{5}, a_{11}\right\}$

We can further characterise this arrangement in terms of the incidence matrix of the search desigr. This is an m \quad n matrix $M=\left(\left(n_{b}\right)\right)$, where;

$$
n_{i j}= \begin{cases}1 & \text { if } a_{i} \in A_{j}, i=1,2, \ldots \ldots, m \\ 0 & \text { if } a_{i} \in A_{j}, j=1,2, \ldots ., n\end{cases}
$$

In the above example, we therefore have:

From this matrix, we notice that every element
of the set S_{13} appears in nine subsets, every pair of elements appears in six subsets, any three elements appear in four subsets and any four elements appear in ot most three subsets. No: for any three elements to be uniquely detectable, the number of subsets in which they appear must be strictly more than the number of subsets in which any four elements appesr. This is because if the number of subsets in which any three elements appear is the same as the number of subsets in which any four elements appear, then the intersection of these subsets will consist of four elements, not three as required for correct-identificetion of the unknown three elements. This requirement is satisfied in this example, so any three unknomn elerants can be uniquely detected.

$$
\text { Suppose } N=\left(\left(n_{i j}\right)\right), 2=1,2, \ldots, \pi, j=1,2, \ldots
$$

....n is the incidence matrix of a search design $\left\{A_{1}, A_{2}, \ldots . ., A_{m} ; S_{n}\right\}$ consistirig of m

 the i-th row of the incidencersiait snd T_{j} be a set consisting of all the sutsets A_{i} si which are not incident with the $i-t h e j e a e n t, \theta_{j} \in S_{n}$. That is, T_{j} corresfonds to the entries θ in the $j-t h$ column of the matrix N . For example in the incidence matrix (4.27) of a 3 -complete search design given in

Section 4.5 of this Chapter

$$
T_{1}=\left\{A_{1}, A_{5}, A_{11}, A_{19}\right\} .
$$

The following theorem gives a necessary and sufficient condition for the existence of a t-complete search design in terms of $T_{j}{ }^{\prime}$.

Theorem 4.8:- A necessary and sufficient condition for the existence of a t-complete search design $\left\{A_{1}, A_{2}, \ldots . ., A_{m} ; S_{n}\right\}$ for detecting an arbitrary set $\left\{a_{1}, a_{2}, \ldots ., a_{1}\right\}$ of t distinct unknown elements in S_{n} is that

$$
T_{k} \notin \bigcup_{i=1}^{t} T_{i} .
$$

Proof.
Let the system $\left\{A_{1}, A_{2}, \ldots, A_{m} ; S_{n}\right\}$ be a t-complete search design. Then, consider two sets of elements $\left\{a_{1}, a_{2}, \ldots ., a_{2}\right\}$ and $\left\{a_{j_{1}}, a_{J_{2}}, \ldots, a_{j_{i}}\right\}$. Since $\left\{A_{1}, A_{2}, \ldots, A_{m} ; S_{n}\right\}$ is a t-ougitete sewer design there exist subsets $\hat{t}_{h_{1}}, A_{h_{2}}, \ldots . . . t_{h_{1}},\left\{h_{1}, h_{2}, \ldots ., h_{h_{e}}\right\} \subset\{1,2, \ldots, m\}$ such that $\left\{a_{i}, a_{i_{2}}, \ldots \ldots, a_{i}\right\} \in A_{h_{g}}$ for $s=$ $1,2, \ldots ., t$ and $\bigcap_{g=1} A_{h_{g}}=\left\{a_{i_{1}}, a_{i_{2}}, \ldots, a_{i_{i}}\right\}$. That is, the subsets $A_{h_{1}}, A_{n_{2}}, \ldots . ., A_{h_{2}}$ are incident ${ }^{\circ}$ with each of the points $a_{i_{1}}, a_{i_{2}}, \ldots, a_{i_{i}}$.

But from the definition of T_{j}, we know that $T_{j}{ }^{C}$
is a set consisting of all the subsets A_{i} 's which are incident with the jth element, and so

$$
\begin{equation*}
\left\{A_{h_{1}}, A_{h_{2}}, \ldots, A_{h_{l}}\right\}=T_{i_{1}}^{C} \cap T_{i_{2}}^{C} \cdots \cap T_{i_{i}}^{C} . \tag{4.28}
\end{equation*}
$$

That is, the subsets $A_{h_{1}}, A_{h_{2}}, \ldots . ., A_{h_{\ell}}$ which detect the set. $\left\{a_{i_{1}}, a_{i_{2}}, \ldots, a_{L_{1}}\right\}$ of unknown elements are given by;

$$
\begin{equation*}
\bigcap_{k=1}^{t} T_{i}^{C} \tag{4.29}
\end{equation*}
$$

Similarly, the subsets $A_{n_{1}}, A_{n_{2}^{\prime}}, \ldots . . . A_{n_{2}}$ which detect the set $\left\{a_{j_{1}}, a_{j_{2}}, \ldots ., a_{J_{2}}\right\}$ of unknown elements are given by;

$$
\begin{equation*}
\bigcap_{r=1}^{t} \mathrm{~T}_{\mathrm{J}_{r}}^{c} . \tag{4.30}
\end{equation*}
$$

Non, since $\left\{A_{1}, A_{2}, \ldots ., A_{m} ; S_{n}\right\}$ is a t-complete search design

$$
\bigcap_{g=1}^{\ell} A_{h_{g}}=\left\{\varepsilon_{i_{1}}, \varepsilon_{i_{2}}, \ldots \ldots \varepsilon_{i}\right\}
$$

and

$$
\bigcap_{g=1}^{\varepsilon^{\prime}} A_{h_{g}}=\left\{a_{j_{1}}, a_{2}, \ldots, a_{j_{t}}\right\}, \quad 2 \neq j
$$

$$
\bigcap_{g=1}^{\ell} A_{h} \quad \$ \bigcap_{g=1}^{i n} A_{h_{g}}
$$

That is,

$$
\begin{equation*}
\bigcap_{k=1}^{1} T_{i_{k}}^{c} \neq \bigcap_{r=1}^{1} T_{J_{r}}^{c} \tag{4.31}
\end{equation*}
$$

which implies that

$$
\begin{equation*}
\bigcup_{r=1}^{i} T_{j_{r}} \neq \bigcup_{k=1}^{i} T_{i i_{k}}^{\prime} . \tag{4.32}
\end{equation*}
$$

$$
\bigcup_{r=1}^{1-1} T_{r_{r}} U T_{J_{i}} \nsubseteq \bigcup_{k=1}^{i} T_{k}
$$

Which implies that

$$
\begin{equation*}
T_{J_{t}} \neq \bigcup_{k=1}^{t} T_{i_{k}} . \tag{4.33}
\end{equation*}
$$

Conversely, suppose that $T_{J_{i}} \nsubseteq \bigcup_{k=1}^{i} T_{i}$, then we rave to show that the system $\left\{A_{1}, A_{2} \ldots . . \hat{A}_{m} ; S_{n}\right\}$ is 9 t-coufiete search design. That is, for any see.
 subsets $\left.\quad A_{\alpha_{1}}, A_{\alpha_{2}}, \ldots ., A_{\alpha_{\tau}}\right\},\left\{\alpha_{1}, \alpha_{2}, \ldots . ., \alpha_{\gamma}\right\}$ $\{1,2, \ldots .$. 四 $\}$ such that;

$$
\left\{a_{i}, a_{i_{2}}, \ldots, a_{i}\right\} \subset A_{o_{r}} \text { for } r=1,2, \ldots, \tau
$$

$$
\because
$$

and

$$
\bigcap_{r=1}^{T} A_{\alpha_{r}}=\left\{a_{i_{1}}, a_{i_{2}}, \ldots, a_{i_{\tau}}\right\} .
$$

Now, $T_{j_{t}} \nsubseteq \bigcup_{k=1}^{i} T_{i_{k}}$, implies that

$$
\begin{equation*}
\bigcup_{r=1}^{i} T_{3_{r}} \nsubseteq \bigcup_{k=1}^{i} T_{i_{k}} \tag{4.34}
\end{equation*}
$$

for other sets $T_{j_{1}}, T_{j_{2}}, \ldots \ldots . T_{j_{1-1}}$, which in turn implies that

$$
\begin{equation*}
\bigcap_{k=1}^{1} \mathrm{~T}_{L_{k}^{c}}^{c} \neq \bigcap_{r=1}^{1} \mathrm{~T}_{J_{r}}^{c} . \tag{4.35}
\end{equation*}
$$

But, $\bigcap_{k=1}^{i} T_{i_{k}}^{c}$ gives subsets of S_{n}, which are incident with the points $\left\{a_{i_{1}}, a_{i_{2}}, \ldots, a_{i_{1}}\right\}$, say $A_{\alpha_{1}}, A_{\alpha_{2}}, \ldots$, $A_{\alpha_{\tau}}$. Thus, for any set of t elements say $\left\{a_{L_{1}}, a_{i_{2}}, \ldots, a_{i_{t}}\right\}$ there exists subsets of S_{n}, say $\left.A_{\alpha_{1}}, A_{\alpha_{2}}, \ldots, A_{\alpha_{\tau}}\right\}$ such that $\left\{a_{i_{1}}, a_{i_{2}}, \ldots, a_{L_{1}}\right\} \subset A_{\alpha_{r}}$, for $r=1,2, \ldots . ., \tau$. To complete the proof we show that

$$
\bigcap_{r=1}^{\tau} A_{\alpha_{r}}=\left\{a_{i_{1}}, a_{i_{2}}, \ldots, a_{i_{1}}\right\} .
$$

Now, suppose that

$$
\bigcap_{r=1}^{\tau} A_{a_{r}} \neq\left\{a_{i_{1}}, a_{i_{2}}, \ldots, a_{i}\right\} .
$$

That is, $\bigcap_{r=1}^{A_{\alpha_{r}}}=\varnothing$ or a set consisting of one or wore elements of the $\operatorname{set}\left\{a_{i_{1}}, a_{i_{2}}, \ldots, a_{i}\right\}$ or a set consisting of the set $\left\{a_{i_{1}}, a_{i_{2}}, \ldots, a_{i_{t}}\right\}$ and some other element .(s). Now, $\bigcap_{T=1}^{\tau} A_{\alpha_{r}}$ cannot be an empty set or a set consisting of one or more elements of the set $\left\{s_{i}, a_{2}, \ldots \ldots, a_{2}\right\}$ since
$\left\{a_{i_{1}}, a_{i_{2}}, \ldots . ., a_{i_{i}}\right\} \subset A_{\alpha_{r}}, r=1,2, \ldots, \tau$. Thus, we are left with the possibility that $\bigcap_{r=1}^{\tau} A_{\alpha_{r}}$ is a set consisting of $\left\{a_{i_{1}}, a_{i_{2}}, \ldots, a_{i_{i}}\right\}$ and some other element (s). To investigate this possibility we let

$$
\left\{a_{i_{1}}, a_{i_{2}}, \ldots, a_{i_{i}}, a_{J_{2}}\right\} \subset A_{\alpha_{r}} .
$$

That is,

$$
\left\{a_{L_{1}}, a_{L_{2}}, \ldots, a_{L_{i-1}}, a_{J_{t}}\right\} \subset A_{a_{r}}
$$

$r=1,2, \ldots \ldots \tau$
and so

$$
\left\{A_{\alpha_{1}}, A_{\alpha_{2}}, \ldots, A_{\alpha_{\tau}}\right\}
$$

is a subset of the set of subsets which are insiferit with $a_{i_{1}}, a_{i_{2}}, \ldots, a_{i-1}, a_{j_{i}}$. This set of subsets which are incident with $a_{2}, a_{i_{2}}, \ldots, a_{L_{i-1}}, a_{j_{1}}$ is giver by;

$$
T_{i}^{c} \cap T_{i_{2}}^{c} \cap \cdots \cap_{i-1}^{c} \cap T_{j_{1}}^{c}
$$

Thus,

$$
\left\{A_{\alpha_{1}}, A_{\alpha_{2}}, \ldots, A_{\alpha_{T}}\right\}=\bigcap_{r=1}^{1} T_{L_{r}}^{c} \leq \bigcap_{r=1}^{t-1} T{ }^{c}
$$

This contradicts (4.34), hence $\bigcap_{r=1} \hat{A}_{a_{r}}$ is rot $E=E$ consisting of $a_{L_{1}}, \varepsilon_{2_{2}}, \ldots ., a_{i_{2}}$ arid
element (s). We therefore, conclude that τ
$\bigcap_{r=1} A_{\alpha_{T}}=\left\{\varepsilon_{i_{i}}, a_{L_{2}}, \ldots, \varepsilon_{L_{1}}\right\}$ which completes the goof is

Corollary 4.2: - Let the cardinality of the set $T_{i}(i=1,2, \ldots, n)$ be $t p+1$ where t and p are
positive integers, and let the cardinality of the intersection of any two sets T_{i} and $T_{j}, i \neq j$, be equal to or less than P. Then the system $\left\{A_{1}, A_{2}, A_{3}, \ldots, A_{m} ; S_{n}\right\}$ is a t-complete search design.

Proof. We are given that for any distinct indices i and,$\left|T_{L} \cap T_{j}\right| \leq p$, where $\|$ denotes the cardinality of the set concerned.
That is,

$$
\left|T_{j} \cap T_{i}\right| \leq p, \text { for } k=1,2, \ldots, t
$$

Then,

$$
\left|\left[T, \cap T_{i}\right] \cup\left[T_{j} \cap T_{i}\right] \cup \ldots . U\left[T, \cap T_{i}\right]\right| \leq t p .
$$

That is,

$$
\left|T_{j} \cap\left(\begin{array}{cc}
\bigcup_{k=1}^{t} & T_{i}
\end{array}\right]\right| \leq t F .
$$

But

$$
\left|T_{j}\right|=t p+: \text { for } j=1,2, \ldots, t
$$

Therefore,

$$
T_{j} \pm \bigcup_{k-1} T_{i k} \text {, for } k=1,2, \ldots, t
$$

Thus, from Theorem (4.8) and relation (4.33), the system $\left\{A_{1}, A_{2}, \ldots, A_{m} ; S_{n}\right\}$ is a t-complete search
design.

Example 4.7:- Consider the BIB design (16,4,4,20,1) whose blocks are given as follows:

$$
\begin{array}{ll}
B_{1}=\{4,13,8,11\} & B_{11}=\{6,15,7,10\} \\
B_{2}=\{7,1,11,14\} & B_{12}=\{9,3,10,13\} \\
B_{3}=\{10,4,14,2\} & B_{13}=\{12,4,13,1\} \\
B_{4}=\{13,7,2,5\} & B_{14}=\{15,9,1,4\} \\
B_{5}=\{1,10,5,8\} & B_{10}=\{3,12,4,7\} \\
B_{0}=\{5,14,9,12\} & B_{10}=\{16,1,2,3\} \\
B_{7}=\{8,2,12,15\} & B_{17}=\{16,4,5,6\} \\
B_{8}=\{11,5,15,13\} & B_{18}=\{16,7,8,8\} \\
B_{8}=\{14,8,3,6\} & B_{10}=\{16,10,11,12\} \\
B_{10}=\{2,11,6,9\} & B_{20}=\{16,13,14,15\}
\end{array}
$$

If we let the $j-t h$ block $B_{\text {, }}$ to correspond to the set I the points in the blocks to corvesf: corresponds to the subset A_{3}, then we have:

$$
\begin{array}{ll}
T_{1}=\left\{A_{4}, A_{13}, A_{0}, A_{14}\right\} & T_{5}=\left\{A_{1}, A_{10}, A_{5}, A_{8}\right\} \\
T_{2}=\left\{A_{2}, A_{1}, A_{11}, A_{14}\right\} & T_{6}=\left\{A_{5}, A_{14}, A_{0}, A_{12}\right\} \\
T_{3}=\left\{A_{10}, A_{4}, A_{14}, A_{2}\right\} & T_{7}=\left\{A_{8}, A_{2}, A_{12}, A_{15}\right\} \\
T_{4}=\left\{A_{13}, A_{7}, A_{2}, A_{5}\right\} & T_{6}=\left\{A_{1}, A_{5}, A_{15}, A_{13}\right\}
\end{array}
$$

$$
\begin{array}{ll}
T_{0}=\left\{A_{14}, A_{6}, A_{9}, A_{6}\right\} & T_{15}=\left\{A_{3}, A_{12}, A_{4}, A_{2}\right\} \\
T_{10}=\left\{A_{2}, A_{11}, A_{6}, A_{0}\right\} & T_{10}=\left\{A_{10}, A_{1}, A_{2}, A_{3}\right\} \\
T_{11}=\left\{A_{0}, A_{15}, A_{7}, A_{10}\right\} & T_{17}=\left\{A_{10}, A_{4}, A_{5}, A_{6}\right\} \\
T_{12}=\left\{A_{0}, A_{3}, A_{10}, A_{13}\right\}, & T_{10}=\left\{A_{16}, A_{7}, A_{9}, A_{0}\right\} \\
T_{13}=\left\{A_{12}, A_{4}, A_{13}, A_{1}\right\} & T_{10}=\left\{A_{16}, A_{10}, A_{11}, A_{12}\right\} \\
T_{14}=\left\{A_{15}, A_{0}, A_{1}, A_{4}\right\} & T_{20}=\left\{A_{16}, A_{13}, A_{14}, A_{15}\right\}
\end{array}
$$

Now, the cardinality of the sets $T,(1=1,2, \ldots, 20)$ is four and the cardinality of the intersection of any two sets T_{2} and $T_{\text {, }}$ (L^{\prime} j) is at most one. Thus, using corollary 4.2, the system $\left\{A_{1}, A_{2}, \ldots . ., A_{10} ; S_{20}\right\}$ is a 3-Complete search design.

From our definition of the set T_{i} given earlier, as a set consisting of all the subsets A_{i} 's which are not incident with the $j-t h$ element, a_{j} of S_{20}, we see that the subsets $A_{4}, A_{13}, A_{8}, A_{11}$, for example, are not incident with a_{1} and $T_{1}^{C}=\left\{A_{1}, A_{2}, A_{3}, A_{4}, A_{5}\right.$, $\left.A_{6}, A_{7}, A_{0}, A_{0}, A_{10}, A_{12}, A_{14}, A_{15}, A_{10}\right\}$ Eves subsets which are incident with a_{1}. Using the information provided by $T_{1}, T_{2}, \ldots, T_{20^{\circ}}$ we get subsets $A_{i}, A_{2}, \ldots, A_{1 \sigma}$ as follows:

$$
\begin{aligned}
A_{1}= & \left\{a_{1}, a_{3}, a_{4}, a_{6}, a_{7}, a_{8}, a_{0}, a_{10}, a_{11}, a_{12}, a_{15}, a_{17},\right. \\
& \left.a_{18}, a_{10}, a_{20}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& A_{2}=\left\{a_{1}, a_{2}, a_{5}, a_{6}, a_{0}, a_{0}, a_{11}, a_{12}, a_{13}, a_{14}, a_{15},\right. \\
& \left.a_{12}, a_{18}, a_{20}\right\} \\
& A_{3}=\left\{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{10}, a_{11}, a_{19}, a_{14}, a_{17},\right. \\
& \left.a_{10}, a_{10}, a_{20}\right\} \\
& A_{4}=\left\{a_{2}, a_{4}, a_{5}, a_{6}, a_{7}, a_{0}, a_{10}, a_{11}, a_{12}, a_{105}, a_{10},\right. \\
& \left.a_{10}, a_{20}\right\} \\
& A_{5}=\left\{a_{1}, a_{2}, a_{3}, a_{7}, a_{0}, a_{10}, a_{11}, a_{12}, a_{13}, a_{14}, a_{15},\right. \\
& \left.a_{10}, a_{10}, a_{10}, a_{20}\right\} \\
& A_{6}=\left\{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}, a_{12}, a_{13} a_{14}, a_{15},\right. \\
& \left.a_{16}, a_{18}, a_{10}, a_{20}\right\} \\
& A_{7}=\left\{a_{1}, a_{3}, a_{5}, a_{6}, a_{8}, a_{0}, a_{10}, a_{12}, a_{13}, a_{14}, a_{16},\right. \\
& \left.a_{17}, a_{10}, a_{20}\right\} \\
& A_{8}=\left\{a_{2}, a_{3}, a_{4}, a_{6}, a_{7}, a_{8}, a_{10}, a_{11}, a_{12}, a_{13}, a_{14},\right. \\
& \left.a_{16}, a_{17}, a_{10}, a_{20}\right\} \\
& A_{0}=\left\{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{7}, a_{11}, a_{0}, a_{11}, a_{13}, a_{13}, a_{1}\right. \\
& \left.a_{17}, a_{10}, a_{20}\right\} \\
& A_{10}=\left\{a_{1}, a_{2}, a_{4}, a_{6}, a_{7}, a_{0}, a_{0}, a_{10}, a_{13}, a_{14}, s_{1,},\right. \\
& \left.a_{16}, a_{17}, a_{10}, a_{20}\right\} \\
& A_{11}=\left\{a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{0}, a_{11}, a_{12}, a_{13}, a_{14}, a_{25},\right. \\
& \left.a_{10}, a_{17}, a_{18}, a_{20}\right\}
\end{aligned}
$$

$$
\begin{aligned}
A_{12}= & \left\{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{8}, a_{8}, a_{10}, a_{11}, a_{12}, a_{14},\right. \\
& \left.a_{10}, a_{17}, a_{18}, a_{20}\right\} \\
A_{13}= & \left\{a_{2}, a_{3}, a_{5}, a_{6}, a_{7}, a_{9}, a_{10}, a_{11}, a_{14}, a_{15}, a_{16},\right. \\
& \left.a_{17}, a_{10}, a_{19}\right\} \\
A_{14}= & \left\{a_{1}, a_{4}, a_{5}, a_{7}, a_{8}, a_{10}, a_{11}, a_{12}, a_{13}, a_{15}, a_{16},\right. \\
& \left.a_{17}, a_{18}, a_{19}\right\} \\
A_{15}= & \left\{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{16}, a_{10}, a_{12}, a_{19}, a_{14},\right. \\
& \left.a_{15}, a_{16}, a_{19}, a_{18}, a_{19}\right\} \\
A_{16}= & \left\{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}, a_{9}, a_{10}, a_{11}, a_{12},\right. \\
& \left.a_{13}, a_{14}, a_{15}\right\}
\end{aligned}
$$

The incidence matrix of this design is;

	a_{1}		a_{3}																$10^{2} 20$
A_{1}	1	0	1	1	0	1	1	1	1	1	1	1	0	0	1	0	i	1	11
A_{2}	1	1	0	0	1	1	0	1	1	0	1	1	1	1	1	0	1	1	111
A_{3}	1	1	1	1	1	1	1	0	0	1	1	0	1	1	0	0	1	1	11
A_{4}	0	1	0	1	1	1	1	1	1	1	1	1	0	0	0	1	0	1	$1 \begin{array}{ll}1 & 1\end{array}$
A_{5}	1	1	1	0	0	0	1	0	1	1	1	1	1	1	1	1	0	1.	$\begin{array}{ll}1 & 1\end{array}$
A_{0}	1	1	1	1	1	1	1	1	0	0	0	1	1	1	1	1	0	1	11
A_{7}	1	0	1	0	1	1	1	0	1	1	1	1	1	1	0	1	1	0	11
A_{8}	0	1	1	1	0	1	1	1	0	1	1	1	1	1	0	1	1	0	11
A。	1	1	1	1	1	0	1	1	1	0	1	0	1	0	1	;	1	0	1
A_{10}	1	1	0	1	0	1	1	1	1	0	0	1	1	\checkmark	1	1	1	1	0 -
A_{11}	0	0	1	1	1	1	0	1	0	1	1	1	1	1	1	1	1	1	01
A_{12}	1	1	1	1	1	0	0	1	1	1	1	1	0	1	0	1	1	1	01
A_{13}	0	1	1	0	1	1	1	1	1	1	1	0	0	1	1	1	1	1	1 i
A_{14}	1	0	0	1	1	0	1	1	0	1	1	1	1	1	1	1	1	1	0
A_{15}	1	1	1	1	1	1	0	0	1	1	0	1	1	0	1	1	1	1	
A_{16}	1	1	1	1	1	1	1	1	1		1	1	1	1	1	0	0		

three unknown elenents. For exanple if a_{1}, a_{5}, a_{0} are the three unknown elements, then these elements are detected by $A_{2}, A_{7}, A_{0}, A_{12}, A_{15}, A_{16}$. That is, $A_{2} \cap A_{7} \cap A_{0} \cap A_{12} \cap A_{15} \cap A_{10}=\left\{a_{1}, a_{5}, a_{0}\right\}$.

CHAPTER 5

DURATION OF THE SEARCH PROCESS FOR DETECTING TWO UNKNOWN ELEMENTS

5.1

INTRODUCTION.

In this chapter we are interested in the duration of the search process for detecting two unknown elements using the subsets $A_{1}, A_{2}, \ldots, A_{m}$ of a finite set S_{n} defined in Section 4.1 of Chapter 4 . In the computation of the duration of the search process we will use the notations introduced in Chapter 1. That is, we shall use $P_{1}(N, U, V)$ to denote the probability that the sequence $A_{i}, A_{i}, \ldots, A_{i}, A_{i}, \ldots, A_{i}, A_{i}, \ldots, A_{i}, \ldots, A_{i}, \ldots, A_{i}$ determines two unknown elements (u, v) within N steps and $P_{1}(N, u, v)$ to denote the probability that the process for detecting the two unknown elements terminates at exactly the Nth step.

The formula for computing the duration of the search process for detecting two unknown elements is

$$
\begin{equation*}
E_{1}(u, v)=\sum_{N=0}^{\infty} N \cdot p_{1}(N, u, v) . \tag{1.10}
\end{equation*}
$$

5.2 SOME EXAMPLES.

Example 5.1:- In this example we illustrate the computation of the duration of the search process using a 2 -Complete search design.

Now, consider the 2 -Complete search design of

Example 4.1 in Section 4.1 of Chapter 4. The configuration of the subsets $A_{1}, A_{2}, \ldots, A_{7}$ of this 2-conplete search design is

$$
\begin{aligned}
& A_{1}=\left\{a_{4}: a_{5}, a_{6}, a_{7}\right\}, \\
& A_{2}=\left\{a_{2}, a_{3}, a_{6}, a_{7}\right\}, \\
& A_{3}=\left\{a_{2}, a_{3}, a_{4}, a_{5}\right\}, \\
& A_{4}=\left\{a_{1}, a_{3}, a_{5}, a_{7}\right\}, \\
& A_{5}=\left\{a_{1}, a_{3}, a_{4}, a_{6}\right\}, \\
& A_{6}=\left\{a_{1}, a_{2}, a_{4}, a_{7}\right\}, \\
& A_{7}=\left\{a_{1}, a_{2}, a_{5}, a_{6}\right\},
\end{aligned}
$$

The incidence matrix of this design is;

$$
M=\begin{aligned}
& A_{1} \\
& A^{1} \\
& A^{2} \\
& A_{3}^{3} \\
& A_{5}^{4} \\
& A_{5}^{5} \\
& A_{7}^{5}
\end{aligned}\left(\begin{array}{lllllll}
a_{1} & a_{2} & a_{3} & a_{1} & a_{5} & a_{0} & a_{7} \\
0 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 & 1 \\
1 & 1 & 0 & 1 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 & 1 \\
0
\end{array}\right),
$$

Suppose the unknown pair of elements we wish to detect is $\left(a_{1}, a_{2}\right)$, then since $\left\{A_{1}, A_{2}, \ldots, A_{7} ; S_{2}\right\}$ is a 2 -complete search design, we determine subsets of S_{7} aronget $A_{1}, A_{2}, \ldots, A_{7}$ which contain the fair $\left(s_{1}, s_{2}\right)$. The intersection of these subsets gives the identity of the unknown pair. In this example, the subsets which contain $\left(\varepsilon_{1}, \varepsilon_{2}\right)$ are A_{σ} and A_{7} with $A_{0} \cap A_{7}=\left\{a_{1}, a_{z}\right\}$. Thus, the unknown pair of elements $\left(a_{1}, z_{2}\right)$ hould be detected if and only if the subsets A_{0} and A_{9} are selected. It therefore follows that the pair $\left(a_{1}, a_{2}\right)$ cannot be detected in
one step. That is, the process of search cannot terminate at $N=1$.

The process of search will terminate at $\mathrm{N}=2$, if the following sequences occur;

$$
A_{0}, A_{7} \text { or } A_{7}, A_{0} .
$$

Thus, the probability of terminating the search process after selection of two subsets is

$$
\begin{aligned}
p_{1}(x, u, v) & =\frac{1}{7} \cdot \frac{1}{7}+\frac{1}{7} \cdot \frac{1}{7} \\
& =\frac{2}{49} .
\end{aligned}
$$

The search process will terminate at $N=3$ if the following sequences occur:

Sequences

Number of possiblle ways
$1 \times 1 \times 1=1$
$1 \times 1 \times 1=1$
$5 \times 1 \times 1=5$
$5 \times 1 \times 1=5$
$1 \times 5 \times 1=5$
$1 \times 5 \times 1=5$
where $=1,2,3,4,5$. The probability of terminating the search process at $N=3$ is, therefore,

$$
p_{1}(3, u, v)=\frac{22}{7^{3}}
$$

and the probability of terminating search process at上 ≤ 3 is

$$
\begin{aligned}
P_{1}(B, u, v) & =\frac{2}{7^{2}}+\frac{22}{7^{3}} \\
& =\frac{36}{7^{3}}
\end{aligned}
$$

For higher values of N, we consider the
complementary event; that is, the event that the search process does not terminate in N steps and use Lemma 3.5 which gives the number of ways of placing N balls in m cells such that all the m cells are occupied as

$$
\sum_{k=0}^{n}(-1)^{k}\binom{m}{k}(m-k)^{N} .
$$

The search process will terminate in N steps if and only if the subsets A_{σ} and A_{7} are both selected. Thus the search process will not terminate in N steps if any of the following sequences occur:
(i) Only one subset A_{2} is selected N times; in that case there are 7 sequences.These sequence are:

$$
\begin{aligned}
& A_{1}, A_{1}, \ldots ., ., A_{1} ; \quad A_{2}, A_{2}, \ldots . . ., A_{2} \text { : } \\
& A_{3}, A_{3}, \ldots . . ., A_{3} ; \quad A_{4}, A_{4}, \ldots, A_{4} ; \\
& A_{5}, A_{5}, \ldots . . ., A_{5} ; \quad A_{6}, A_{6}, \ldots . . ., A_{6}, \\
& A_{7}, A_{7}, \ldots . . ., A_{7} .
\end{aligned}
$$

(ii) Two subsets A_{i} and A_{α} are selected x_{1} and x_{2} times respectively, where $x_{1}+x_{2}=N$; ' $\in\{6,7\}$ and $\alpha \in\{1,2,3,4,5\}$. Using the formula atove, the number of such sequences is

- $2 \times 5\left(2^{N}-2\right)=10\left(2^{N}-2\right)$.
(iii) Two subsets A_{α} and A_{β} are selected x_{1} and x_{2} times respectively, where $x_{1}+x_{2}=N$; and $\alpha, \beta \in\{1,2,3,4,5\}, \alpha \neq \beta$. Number of such sequences is

$$
\binom{5}{2}\left(2^{N}-2\right)=10\left(2^{N}-2\right)
$$

(iv) Three subsets A_{α}, A_{β} and A_{1} are selected x_{1}, x_{2} and x_{3} times respectively, where $x_{1}+x_{2}+x_{s}=N ; \alpha, \beta \in\{1,2,3,4,5\} ;$ $\alpha \neq \beta$ and $i \in\{6,7\}$. Number of such sequences is

$$
\left[\begin{array}{l}
5 \\
2
\end{array}\right] \cdot\left[\begin{array}{l}
2 \\
1
\end{array}\right]\left(3^{N}-3 \cdot 2^{N}+3\right)=20\left(3^{N}-3 \cdot 2^{N}+3\right) \text {. }
$$

(v) Three subsets A_{α}, A_{β} and A_{λ} are selected x_{1}, x_{2} and x_{3} times respectively, where $x_{1}+x_{2}+x_{3}=N ; \alpha, \beta, \lambda \in\{1,2,3,4,5\} ;$ $\alpha \neq \beta \neq \lambda$. Number of such sequences is

$$
\left[\begin{array}{l}
5 \\
3
\end{array}\right] \cdot\left(3^{N}-3 \cdot 2^{N}+3\right)=10\left(3^{N}-3 \cdot 2^{N}+3\right) .
$$

(vi) Four subsets $A_{\alpha}, A_{\beta}, A_{\lambda}$ and A_{γ} are selected x_{1}, x_{2}, x_{3} and x_{4} times respectively, where $x_{1}+x_{2}+x_{3}+x_{4}=N: \alpha, \beta, \lambda, \gamma \in$ $\{1,2,3,4,5\} ; \alpha \neq \beta \neq \lambda \neq \gamma$. Number of such sequences is

$$
\begin{aligned}
& {\left[\begin{array}{l}
5 \\
4
\end{array}\right]\left(4^{N}-4 \cdot 3^{N}+6 \cdot 2^{N}-4\right) } \\
&=5\left(4^{N}-4 \cdot 3^{N}+6 \cdot 2^{N}-4\right) .
\end{aligned}
$$

(vii) Four subsets $A_{\alpha}, A_{\beta}, A_{\lambda}$ and A_{i} are selected x_{1}, x_{2}, x_{3} and x_{4} times respectively, where $x_{1}+x_{2}+x_{3}+x_{4}=N ; \alpha, \beta, \lambda, \in\{1,2,3,4,5\}, \alpha \neq$ $\beta \neq \lambda$ and,$\in\{6,7\}$. Number of such sequences is

$$
\left(\begin{array}{l}
5 \\
4
\end{array}\right]\left[\begin{array}{l}
2 \\
1
\end{array}\right]\left(4^{N}-4 \cdot 3^{N}+6 \cdot 2^{N}-4\right)
$$

$$
=20\left(4^{N}-4 \cdot 3^{N}+6 \cdot 2^{N}-4\right) .
$$

(viii) Five subsets $A_{1}, A_{2}, A_{3}, A_{4}$ and A_{5} are selected $x_{1}, x_{2}, x_{3}, x_{4}$ and x_{5} times respectively where $x_{1}+x_{2}+x_{9}+x_{4}+x_{5}=N$; the number of such sequences is

$$
\begin{aligned}
{\left[\begin{array}{l}
5 \\
5
\end{array}\right] } & \left(5^{N}-5 \cdot 4^{N}+10 \cdot 3^{N}-10 \cdot 2^{N}+5\right) \\
& =\left(5^{N}-5 \cdot 4^{N}+10 \cdot 3^{N}-10 \cdot 2^{N}+5\right)
\end{aligned}
$$

(ix) Five subsets $A_{\alpha}, A_{\beta}, A_{\lambda}, A_{\gamma}$ and A_{i} are selected $x_{1}, x_{2}, x_{3}, x_{4}$ and x_{5} times respectively where $x_{1}+x_{2}+x_{3}+x_{4}+x_{5}=N$; $\alpha, \beta, \lambda, \gamma, \in\{1,2,3,4,5,\} \quad \alpha \neq \beta \not \lambda \neq \gamma$ and $1 \in\{6,7\}$. Number of such sequences is

$$
\begin{aligned}
& {\left[\begin{array}{l}
5 \\
5
\end{array}\right] \cdot }\binom{2}{1} \\
& \quad=10\left(5^{N}-5 \cdot 4^{N}+10 \cdot 3^{N}+10 \cdot 4^{N}+5\right) \\
&\left.\quad=10 \cdot 3^{N}-10 \cdot 2^{N}+5\right)
\end{aligned}
$$

(x) Six subsets $A_{1}, A_{2}, A_{3}, A_{4}, A_{5}$ and A_{2} are selected $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}$ and x_{0} times respectively, where $x_{1}+x_{2}+x_{9}+x_{4}+x_{5}+x_{0}=N$; and $t \in\{6,7\}$. Number of such sequences is

$$
\begin{aligned}
& {\left[\begin{array}{l}
5 \\
5
\end{array}\right] \cdot\left(\begin{array}{l}
2 \\
1
\end{array}\right]\left(6^{N}-6 \cdot 5^{N}+15 \cdot 4^{N}\right.} \\
&\left.-20 \cdot 3^{N}+15 \cdot 2^{N}-6\right) \\
&= 2\left(6^{N}-6 \cdot 5^{N}+15 \cdot 4^{N}\right. \\
&\left.-20 \cdot 3^{N}+15 \cdot 2^{N}-6\right) .
\end{aligned}
$$

Therefore, the probability of terminating the search
process in at most N steps is

$$
\begin{aligned}
P_{1}(N, u, v)= & 1-\left[7+20\left(2^{N}-2\right)+30\left(3^{N}-3.2^{N}+3\right)\right. \\
& +25\left(4^{N}-4.3^{N}+6.2^{N}-4\right) \\
& +11\left(5^{N}-5.4^{N}+10.3^{N}-10.2^{N}+5\right) \\
& +2\left(6^{N}-6.5^{N}+15 \cdot 4^{N}-20.3^{N}\right. \\
& \left.\left.+15.2^{N}-6\right)\right] / 7^{N} \\
= & 1-2\left[\frac{6}{7}\right)^{N}+\left[\frac{5}{7}\right]^{N} .
\end{aligned}
$$

And the probability of terminating the search process in exactly N steps is

$$
\begin{aligned}
E_{1}(N, u, v) & =P_{1}(N, u, v)-P_{1}(N-1, u, v) \\
& =\left[1-2\left(\frac{6}{7}\right)^{N}+\left[\frac{5}{7}\right]^{N}\right]-\left[1-2\left(\frac{6}{7}\right)^{N-1}+\left(\frac{5}{7}\right)^{N-1}\right] \\
& =\frac{2}{7}\left(\frac{6}{7}\right)^{N-1}-\frac{2}{7}\left(\frac{5}{7}\right)^{N-1} .
\end{aligned}
$$

The expected number of tests required to detect the pair of unknown elements is

$$
\begin{aligned}
E_{1}(u, v) & =\sum_{N=1}^{\infty} N \cdot p_{1}(N, u, v) \\
& =\frac{2}{7}\left[\sum_{N=1}^{\infty} N \cdot\left(\frac{6}{7}\right)^{N-1}-\sum_{N=0}^{\infty} N \cdot\left(\frac{5}{6}\right)^{N-1}\right] \\
& =\frac{2}{7} \times 147 / 4 \\
& =10.5
\end{aligned}
$$

Thus, to detect a pair of unknown elements (uv) of S_{n} an average of 10.5 tests would be required.

Example 5.2:- In this example we illustrate the computation of the duration of the search
process using partition search design.
Now, consider the partition search design of Example 4.2 in Section 4.1 of Chapter 4. The configuration of the subsets $A_{1}, A_{2}, \ldots . ., A_{6}$ of this partition search design is

$$
\begin{array}{ll}
A_{1}=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}, & A_{2}=\left\{a_{5}, a_{6}, a_{7}, a_{8}\right\} . \\
A_{3}=\left\{a_{1}, a_{2}, a_{7}, a_{8}\right\}, & A_{4}=\left\{a_{3}, a_{4}, a_{5}, a_{6}\right\}, \\
A_{5}=\left\{a_{1}, a_{3}, a_{5}, a_{7}\right\}, & A_{0}=\left\{a_{2}, a_{4}, a_{6}, a_{8}\right\} .
\end{array}
$$

The incidence matrix of this design is

$$
M=\begin{aligned}
& A_{1} \\
& A_{2} \\
& A_{3} \\
& A_{1} \\
& A_{5} \\
& A_{0}
\end{aligned}\left[\begin{array}{llllllll}
a_{1} & a_{2} & a_{3} & a_{4} & a_{5} & a_{0} & a_{7} & a_{8} \\
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 & 1
\end{array}\right] .
$$

Suppose the unknown pair of elements we are to detect is $\left(a_{1}, a_{2}\right)$. Then since $\left\{A_{1}, A_{2}, A_{3}, A_{4}, A_{5}, A_{6} ; S_{6}\right\}$ is a partition search design, we determine two disjoint subsets $A_{i_{1}}$ end $A_{i_{2}}$ such that $a_{1} \in A_{i_{1}}$ and $a_{2} \in A_{L_{2}}$. In this case, the two disjoint subsets are A_{5} and A_{6}. That is, $a_{1} \in A_{5}, a_{2} \in A_{0}$ and $A_{5} \cap \hat{A}_{0}=\varnothing$. The unknown pair of elewerits $\left(a_{1}, a_{2}\right)$ would then be separated if and only if the subsets A_{s} and a_{o} are selected. It therefore, follows that the pair $\left(a_{1}, a_{2}\right)$ cannot be separated in one step. That is, the process of sesrch cannot terminate at $\mathrm{N}=1$.

The process of search will terminate at $N=2$, if the following sequences occur

$$
A_{5}, A_{0} \text { or } A_{0}, A_{5} .
$$

Thus, the probability of terminating the search process after selection of two subsets is

$$
\begin{aligned}
P_{1}(2,4 . v) & =\frac{1}{6} \times \frac{1}{6}+\frac{1}{6} \times \frac{1}{6} \\
& =\frac{2}{36}
\end{aligned}
$$

The search process will terminate at $N=3$ if any of the following sequences occur

Sequences Number of possible ways

where $=1,2,3,4$. The probability of terminating the search process at $N=3$ is therefore,

$$
P_{1}(3, u, v)=\frac{18}{6^{3}}
$$

and the probability of terminating search process et $N \leq 3$ is

$$
\begin{aligned}
E_{1}(3, u, v) & =\frac{2}{6^{2}}+\frac{18}{6^{3}} \\
& =\frac{30}{6^{3}} .
\end{aligned}
$$

For higher values of N, we consider the, complementary events; that is, the event that the search process does not terminate in N steps. We
will use Lemma 3.5 to get the number of sequences of length N which do not detect the unknown pair of elements.

The search process will not terminate in N steps if subsets A_{5} and A_{0} are both not selected. Thus, the search process will not terminate in N steps if any of the following sequences occur:
(i) Only one distinct subsets A_{i} is selected N times; in that case there are 6 sequences. These sequences are:

$$
\begin{array}{ll}
A_{1}, A_{2}, \ldots ., A_{1} ; & A_{2}, A_{2}, \ldots ., A_{2} ; \\
A_{3}, A_{3}, \ldots, A_{3} ; & A_{4}, A_{4}, \ldots ., A_{4} ; \\
A_{0}, A_{0}, \ldots ., A_{0} ; & A_{0}, A_{0}, \ldots . ., A_{0} ;
\end{array}
$$

(ii) Two subsets A_{2} and A_{α} are selected X_{1} and x_{2} times respectively, where $x_{1}+x_{2}=N$; $\imath \in\{5,6\}$ and $\propto \in\{1,2,3,4\}$. Possible number of such sequences is

$$
\left[\begin{array}{l}
2 \\
1
\end{array}\right] \cdot\left(\begin{array}{l}
4 \\
1
\end{array}\right]\left(2^{N}-2\right)=8\left(2^{N}-2\right) .
$$

(iii) Ihc subsets A_{α} and A_{β} are selected x_{1} she x_{2} times respectively, where $x_{1} \div x_{2}=N ; \imath \in\{5,6\}$ and $\alpha, \beta \in\{1,2,3,4\}$. Possible number of such sequences is

$$
\binom{4}{2}\left(2^{N}-2\right)=6\left(2^{N}-2\right)
$$

(iv) Three subsets A_{α}, A_{β} and A_{λ} are selected x_{1}, x_{2} and x_{3} times respectively, where $x_{1}+x_{2}+x_{3}=N ; \alpha, \beta, \lambda \in\{1,2,3,4\}$. Possible number of such sequences is

$$
\left(\begin{array}{l}
4 \\
3
\end{array}\right]\left(3^{N}-3 \cdot 2^{N}+3\right)=4\left(3^{N}-3 \cdot 2^{N}+3\right)
$$

(v) Three subsets A_{α}, A_{β} and A_{2} are selected x_{1}, x_{2} and x_{3} times respectively, where $x_{1}+x_{2}+x_{3}=N ; \alpha \beta \in\{1,2,3,4\}$ and $i \in\{5,6)$. Possible number of such sequences is

$$
\left(\begin{array}{l}
4 \\
2
\end{array}\right]\left[\begin{array}{l}
2 \\
1
\end{array}\right]\left(3^{N}-3 \cdot 2^{N}+3\right)=12\left(3^{N}-3 \cdot 2^{N}+3\right)
$$

(vi) Four subsets $A_{\alpha}, A_{\beta}, A_{\lambda}$ and A_{γ} are selected x_{1}, x_{2}, x_{3}, and x_{4} times respectively, where $x_{1}+x_{2}+x_{3}+x_{4}=N$; and $\alpha, \beta, \lambda, \gamma \in$ $\{1,2,3,4\}$. Possible number of such sequences is

$$
\begin{aligned}
&\binom{4}{4}\left(4^{N}-4 \cdot 3^{N}+6 \cdot 2^{N}-4\right) \\
&=\left(4^{N}-4 \cdot 3^{N}+6 \cdot 2^{N}-4\right) .
\end{aligned}
$$

(vii) Four subsets $A_{\alpha}, A_{\beta}, A_{\lambda}$ and A_{i} are selected x_{1}, x_{2}, x_{3}, and x_{4} times respectively, where $x_{1}+x_{2}+x_{3}+x_{4}=N$; and $\alpha, \beta, \lambda, \in$ $\{1,2,3,4\}$ and $t \in\{5,6\}$. Possible number in of such sequences is

$$
\begin{aligned}
\binom{4}{3}\left[\begin{array}{l}
2 \\
1
\end{array}\right] & \left(4^{N}-4 \cdot 3^{N}+6 \cdot 2^{N}-4\right) \\
& =8\left(4^{N}-4 \cdot 3^{N}+6 \cdot 2^{N}-4\right)
\end{aligned}
$$

(viii) Five subsets $A_{1}, A_{2}, A_{3}, A_{4}$ and A_{1} are selected $x_{1}, x_{2}, x_{3}, x_{4}$ and x_{5} times respectively, where $x_{1}+x_{2}+x_{9}+x_{4}+x_{5}=N$; and $i \in\{, 5,6\}$. Possible number of such sequences is

$$
\begin{array}{r}
{\left[\begin{array}{l}
4 \\
4
\end{array}\right]\left[\begin{array}{l}
2 \\
1
\end{array}\right]} \\
\quad=2\left(5^{N}-5.4^{N}+10.3^{N}-10.4^{N}+10.3^{N}+10.2^{N}+5\right) \\
\\
=2)
\end{array}
$$

Therefore, the probability of terminating the search process in at most N steps is

$$
\begin{aligned}
P_{1}(N, u, v)= & -\left[6+14\left(2^{N}-2\right)+16\left(3^{N}-3.2^{N}+3\right)\right. \\
& +9\left(4^{N}-4.3^{N}+6.2^{N}-4\right) \\
& \left.+2\left(5^{N}-5.4^{N}+10.3^{N}-10.2^{N}+5\right)\right] / 6^{N} \\
= & 1-2\left[\frac{5}{6}\right)^{N}+\left[\frac{4}{6}\right)^{N}
\end{aligned}
$$

and the probability of terminating the search process in exactly N steps is

$$
\begin{aligned}
p_{1}(N, u, v) & =P_{1}(N, u, v)-P_{1}(N-1, u, v) \\
& =\left[1-2\left(\frac{5}{6}\right)^{N}+\left(\frac{4}{6}\right)^{N}\right]-\left[1-2\left(\frac{5}{6}\right)^{N-1}+\left(\frac{4}{6}\right)^{N-1}\right] \\
& =\frac{1}{3}\left[\left(\frac{5}{6}\right)^{N-1}-\left(\frac{4}{6}\right)^{N-1}\right]
\end{aligned}
$$

The expected number of tests required to separate the two unknown elements into two disjoint subsets is

$$
\begin{aligned}
E_{1}(u, v & =\sum_{N=0}^{\infty} N \cdot P_{1}(N, u, v) \\
& =\frac{1}{3}\left[\sum_{N=2}^{\infty} N\left(\frac{5}{6}\right)^{N-1}-\sum_{N=2}^{\infty} N \cdot\left(\frac{4}{6}\right)^{N-1}\right] \\
& =\frac{1}{3} \times 27=9.0 .
\end{aligned}
$$

Thus, to separate the two unknown elements (a_{1}, a_{2}) into two disjoint subsets, an average of 9.0 tests would be required.
5.3 DURATION OF THE SEARCH PROCESS.

In Section 5.2 above we have seen two examples dealing with the computation of the duration of the search process for detecting two unknown elements using a 2 -complete search design and duration of the search process for separating the two unknown elements into two disjoints subsets using a partition search design. In this Section we look at this problem in general.

Theorem 5.1: Let P_{r} be the probability that r subsets $A_{L_{1}}, A_{i_{2}}, \ldots A_{L_{r}}$ selected from the set $\left\{A_{1}, A_{2}, \ldots . . ., A_{m}\right\}$ will detect the unknown elements $(u, v\rangle \in S_{n}$, in N or less steps. Then

$$
P_{t}=\sum_{i=0}^{r}(-1)^{i}\left[\begin{array}{l}
r \\
i
\end{array}\right)\left(\frac{m-i}{m}\right)^{N} .
$$

Proaf.

The search process will terminate in N or less steps if all the subsets, $A_{i_{1}}, A_{i_{2}}, \ldots, A_{i_{r}}$ which detect the unknown pair of elements, (u,v) are selected from the subsets $A_{1}, A_{2}, \ldots, A_{m}$. That is, if we select one or two or three or ...or (m-2) or (m-1) subsets from $A_{1}, A_{2}, \ldots, A_{m}$, which do not include all the subsets $A_{i_{1}}, A_{i_{2}}, \ldots, A_{i_{r}}$, then the unknown pair of elements will not be detected. Possible number of ways of selecting the subsets which do not detect the unknown elements in N steps, that is, under the sequences of one or two or three or............. (m - 1) subsets of length N, which do not include all the subsets $A_{i_{1}}, A_{i_{2}}, \ldots, A_{i_{r}}$ is obtained by applying Lemma 3.5 to be as follows:

$$
\begin{aligned}
& \left(\begin{array}{cc}
m & -r \\
0
\end{array}\right]\left[\binom{r}{1}+\binom{r}{2}\left(2^{N}-2\right)+\left(\begin{array}{l}
r \\
3
\end{array}\right]\left(3^{N}-3.2^{N}+3\right)+\ldots\right. \\
& \left.+\left[\begin{array}{c}
r \\
r-1
\end{array}\right)\left[(r-1)^{N}-(r-1)(r-2)^{N}+\ldots \pm(r-1)\right]\right] \\
& +\left[\begin{array}{cc}
m & -r \\
1
\end{array}\right]\left[\left(\begin{array}{l}
r \\
0
\end{array}\right]+\binom{r}{1}\left(2^{N}-2\right)+\left[\begin{array}{l}
r \\
2
\end{array}\right)\left(3^{N}-3 \cdot 2^{N}+3\right)+\ldots .\right. \\
& {\left[\left(r^{r}-r(r-1)^{N}+\left[\begin{array}{l}
r \\
2
\end{array}\right)(r-2)^{N}-\ldots . \pm r\right]\right]} \\
& +\left[\begin{array}{cc}
\pi & -r \\
2
\end{array}\right]\left[\left(\begin{array}{l}
r \\
n^{\prime}
\end{array}\right]\left(2^{N}-2\right)+\left[\begin{array}{l}
r \\
1
\end{array}\right]\left(3^{N}-3.2^{N}+3\right)\right. \\
& +\left[\begin{array}{l}
r \\
2
\end{array}\right]\left(4^{N}-4 \cdot 3^{N}+6 \cdot 2^{N}-4\right)+, \ldots \\
& \left.+\left[\begin{array}{c}
r \\
r-1
\end{array}\right]\left[(r+1)^{N}-(r+1) r^{N}+\cdots \pm(r+1)\right]\right]
\end{aligned}
$$

$$
\begin{aligned}
&+\ldots \ldots+\left[\begin{array}{l}
\mathbb{I}-r \\
m-r
\end{array}\right]\left[(\begin{array} { l }
{ r } \\
{ 0 }
\end{array}] \left[(m-r)^{N}-(m-r)(m-r-1)^{N}+\ldots \ldots\right.\right. \\
& \pm(m-r)]+\left[\begin{array}{l}
r \\
1
\end{array}\right]\left[(m-r+1)^{N}-(m-r+1)(m-r)^{N}+\right. \\
&\ldots \ldots+(m-r+1)]+\ldots \ldots \\
&\left.+\left[\begin{array}{c}
r \\
r-1
\end{array}\right]\left[(m-1)^{N}-(m-1)(m-2)^{N}+\ldots \pm(m-1)\right]\right] .
\end{aligned}
$$

The coefficient of (m-1) ${ }^{N}$ is

$$
\left[\begin{array}{l}
m-r \\
m-r
\end{array}\right]\left[\begin{array}{c}
r \\
r-1
\end{array}\right]=r ;
$$

the coefficient of $(m-2)^{N}$ is

$$
\begin{aligned}
-\left(\begin{array}{l}
m-r \\
m-r
\end{array}\right]\left[\begin{array}{c}
r \\
r-1
\end{array}\right)(m-1) & +\binom{m-r}{m-r}\left[\begin{array}{c}
r \\
r-2
\end{array}\right]+\binom{m-r}{m-r-r} \\
& =-\frac{2(m-1)+r(r-1)(m-r) r}{2} \\
& =-r\left(\frac{r-1)}{2}\right. \\
& =-\left(\begin{array}{l}
r \\
2
\end{array}\right]
\end{aligned}
$$

the coefficient of $(m-3)^{N}$ is

$$
\begin{aligned}
& {\left[\begin{array}{ll}
m & -r \\
m & -r
\end{array}\right]\left[\begin{array}{c}
r \\
r-1
\end{array}\right]\left[\begin{array}{c}
m-1 \\
2
\end{array}\right]-\left(\begin{array}{l}
m-r \\
m-r
\end{array}\right]\left[\begin{array}{c}
r \\
r-1
\end{array}\right)(m-2)} \\
& +\left(\begin{array}{l}
m-r \\
m-r
\end{array}\right]\left[\begin{array}{c}
r \\
r-3
\end{array}\right]-\left(\begin{array}{l}
m-r \\
m-r-1
\end{array}\right]\left[\begin{array}{c}
r \\
r-1
\end{array}\right)(m-2)+\left(\begin{array}{l}
m-r \\
m-r-1
\end{array}\right]\left[\begin{array}{c}
r \\
r-2
\end{array}\right] \\
& +\binom{m-r}{m-r>2}\left[\begin{array}{c}
r \\
r-1
\end{array}\right)=\left[\begin{array}{c}
r \\
r-3
\end{array}\right] \\
& =\left[\begin{array}{l}
r \\
3
\end{array}\right] ;
\end{aligned}
$$

and in general, the coefficient of $(\mathbb{D}-i)^{N}$ is
$(=1)^{i+1}\left(\begin{array}{l}\text { r } \\ 1\end{array}\right]$. It then follows that,

$$
\begin{gathered}
P_{r}=\left[m^{N}-\left[\begin{array}{l}
r \\
1
\end{array}\right](m-1)^{N}+\left[\begin{array}{l}
r \\
2
\end{array}\right](m-2)^{N}-\binom{r}{3}(m-3)^{N}+\ldots .\right. \\
\left.\cdots \cdots \cdots+\left[\begin{array}{l}
r \\
r
\end{array}\right](m-r)^{N}\right] / \mathbb{m}^{N} \\
=\sum_{i=0}^{r}(-1)^{i}\left[\begin{array}{l}
r \\
i
\end{array}\right]\left[\frac{m-i}{m}\right]^{N}
\end{gathered}
$$

as required.

Corollary 5.1: Let p_{r} be the probability that r subsets $A_{i_{1}}, A_{i_{2}}, \ldots, A_{i}$ selected from the collection $\left\{A_{1}, A_{2}, \ldots . ., A_{m}\right\}$ will detect the unknown elements (u,v) in exactly N steps. Then

$$
P_{r}=\sum_{i=1}^{r}(-1)^{i+1}\left[\frac{i}{m}\right]\left(\begin{array}{l}
r \\
i
\end{array}\right]\left[\frac{m-1}{m}\right]^{N-1} .
$$

Proof.
From Theorem 5.1

$$
P_{r}=P_{1}(N, u, v\rangle=1-\left[\begin{array}{l}
r \\
1
\end{array}\right]\left[\frac{m-1}{m}\right]^{N}+\left[\begin{array}{l}
r \\
2
\end{array}\right]\left[\frac{m-1}{m}\right)^{N}-\ldots .
$$

$$
\pm\left[\begin{array}{l}
r \\
r
\end{array}\right]\left[\frac{m-r}{m}\right]^{N}
$$

and

$$
\begin{aligned}
& P_{1}(N-1,0, N)=1-\left(\begin{array}{l}
r \\
1
\end{array}\right]\left[\frac{m-1}{m}\right)^{N-1}+\left[\begin{array}{l}
r \\
r
\end{array}\right)\left[\frac{m-2}{\pi}\right]^{N-1}-\left(\begin{array}{l}
r \\
3
\end{array}\right]^{N-1} \\
& +\ldots \ldots \ldots \pm\binom{ r}{r}\left(\frac{m-r}{m}\right)^{N-1} .
\end{aligned}
$$

Trierefore,

$$
\begin{aligned}
& P_{r}=P_{2}(N, u, v)-P_{1}(N-1, u, v) \\
& =\left[1-\binom{r}{1}\left(\frac{n-1}{n}\right]^{N}+\left(\begin{array}{l}
n \\
2
\end{array}\right]\left[\frac{n-2}{n}\right)^{N}-\binom{r}{3}\left[\frac{n-3}{n}\right)^{N}+\ldots .\right. \\
& \left. \pm\left[\begin{array}{l}
r \\
r
\end{array}\right]\left[\frac{m-2}{m}\right)^{N}\right]-\left[1-\left[\begin{array}{l}
r \\
1
\end{array}\right]\left[\frac{m-1}{m}\right]^{N-1}+\right. \\
& +\left[\begin{array}{l}
r \\
2
\end{array}\right]\left[\frac{m-2}{m}\right)^{N-1}-\left[\begin{array}{l}
r \\
3
\end{array}\right]\left[\frac{m-3}{m}\right)^{N-1}+\ldots \\
& \left.\ldots . .+\left[\begin{array}{l}
r \\
r
\end{array}\right]\left[\frac{m-r}{n}\right)^{N-1}\right] \\
& =\left[\begin{array}{l}
r \\
1
\end{array}\right]\left[\frac{m-1}{m}\right]^{N-1}\left[1-\frac{m-1}{m}\right] \\
& +\left[\begin{array}{l}
r \\
2
\end{array}\right]\left(\frac{m-2}{m}\right)^{N-1}\left[\frac{m-2}{n}-1\right] \\
& +\left[\begin{array}{l}
r \\
3
\end{array}\right]\left[\frac{m-1}{m}\right]^{N-1}\left(1-\frac{m-3}{m}\right) \\
& +\ldots \cdots \pm\left[\begin{array}{l}
r \\
r
\end{array}\right]\left[\frac{m-r}{m}\right]^{N-1}\left[1-\frac{m-r}{m}\right] \\
& =\frac{1}{m}\left[\begin{array}{l}
r \\
1
\end{array}\right]\left[\frac{m-1}{m}\right)^{N-1}-\frac{2}{m}\left[\begin{array}{l}
r \\
2
\end{array}\right]\left(\frac{m-2}{m}\right)^{N-1} \\
& +\frac{3}{m}\left[\begin{array}{l}
r \\
3
\end{array}\right]\left(\frac{\mathbb{Q}-3}{m}\right)^{N-1} \cdots+\frac{r}{\pi}\left[\begin{array}{l}
r \\
r
\end{array}\right]\left[\frac{m-r}{\pi}\right]^{N-1} \\
& =\sum_{i=1}^{r}(-1)^{i+1} \frac{i}{m}\left[\begin{array}{l}
\gamma \\
i
\end{array}\right]\left[\frac{\pi-i}{\square}\right)^{N-1} .
\end{aligned}
$$

Theorem 5.2: If r subsets $A_{i_{1}}, A_{i_{2}}, \ldots, A_{i_{r}}$ selected from the collection $\left\{A_{1}, A_{2}, \ldots . ., A_{m}\right\}$ are required to detect the unknown pair of elements,
then the expected duration of the search process, $E_{1}(u, v)$ is given by

$$
E_{1}(u, v)=\sum_{i=1}^{r}(-1)^{i+1}\left[\begin{array}{l}
r \\
i
\end{array}\right] \frac{m}{i} .
$$

Proof.

From corollary 5.1 , the probability that the process of search terminate in exactly N steps is given by

$$
\begin{aligned}
& P_{r}=\frac{1}{m}\binom{r}{1}\left(\frac{m-1}{m}\right)^{N-1}-\frac{2}{m}\left(\begin{array}{l}
r \\
2
\end{array}\right]\left[\frac{m-2}{2}\right)^{N-1} \\
&+\frac{3}{m}\binom{r}{3}\left[\frac{m-3}{m}\right)^{N-1}-\ldots+\frac{r}{m}\binom{r}{r}\left(\frac{m-r}{m}\right]^{N-1} .
\end{aligned}
$$

But

$$
\begin{aligned}
& E_{1}(u, v)=\sum_{N=0}^{\infty} N P_{1}(N, u, v) \\
& \text { c.f(1.10) } \\
& =\sum_{N=0}^{\infty} N P_{r} \\
& =\frac{1}{m}\binom{r}{1} \sum_{N=1}^{\infty} N\left(\frac{m-1}{m}\right)^{N-1}-\frac{2}{m}\left[\begin{array}{l}
r \\
2
\end{array}\right) \sum_{N=1}^{\infty} N \cdot\left(\frac{m-2}{m}\right)^{N-1} \\
& +\ldots \ldots+\frac{r}{m}\left[\begin{array}{l}
r \\
r
\end{array}\right) \sum_{N=1}^{\infty} N \cdot\left(\frac{m-r}{m}\right)^{N-1} \\
& =\frac{1}{m}\binom{r}{1} m^{2}-\frac{2}{m}\binom{r}{2} \frac{m}{2}^{2}+\frac{3}{m}\binom{r}{3} \frac{\frac{m}{3}_{3}^{2}}{}{ }^{2} \\
& -\ldots \ldots \pm \frac{r}{m}\binom{r}{r} \frac{m^{2}}{r^{2}} \\
& =\sum_{i=1}^{r}(-1)^{i+1}\binom{r}{i} \frac{m}{i}
\end{aligned}
$$

Example 5.3:- Consider a partition search design $\left\{A_{1}, A_{2}, \ldots, A_{m} ; S_{n}\right\}$.To separete two unknown elements (u, v) using this design we determine two disjoint subsets $A_{i_{1}}$ and $A_{i_{2}}$ such that $u \in A_{i_{1}}$ and v $\in A_{L_{2}}$. The two unknown elements u and v are then separately identified from $A_{i_{1}}$ and $A_{i_{z}}$ respectively. Thus, to separate the two unknown elements only two subsets $A_{i_{1}}$ and $A_{L_{2}}$ are required. That is, $r=2$ The probability that the subsets $A_{L_{1}}$ and $A_{L_{2}}$ separate the unknown elements $(u, v) \in S_{n}$ in N or less steps is, therefore

$$
P_{2}=1-2\left(\frac{m-1}{m}\right)^{N}+\left(\frac{m-2}{m}\right)^{N} ;
$$

the probability that the subsets $A_{i_{1}}$ and $A_{i_{2}}$ separate the unknown pair of elements in exactly N steps is

$$
p_{2}=\frac{2}{m}\left[\left(\frac{m-1}{m}\right)^{N-1}-\left[\frac{m-2}{m}\right)^{N-1}\right]
$$

and the expected duration of the search process is

$$
E_{1}(U, \forall)=\frac{3 r}{2}
$$

Remarks: Any strategy for detecting unknown elements will only be foconomiosl if the expected number of tests recuirec for the identification is less than that of the number of elements in the $s \in t S_{n}$. In the case of partition search design, the expected
number of test is $3 \mathrm{~m} / 2$, which is more than the number of subsets m. The partition search design will be economical if the number of elements, n, in the finite set S_{n} is greater than $3 \mathrm{~m} / 2$. But $m=3 \log _{2} n$; that is, $n=3^{m}$. Thus partition search design will be economical if $n=3^{m}>3 m / 2$. This inequality is true for $m \geq 7$; That is, a partition search design is economical for all m ? 7 .

The table below gives the number of elements n, the number of subsets m, given by the formula $m=3 \log _{3} n$ and the expected number of tests reguired to separate any two unknown elements into two disjoint subsets, $E_{1}(u, v)=3 m / 2$.

Number of elements	Number of subsets $=3 \log _{\mathbf{3}} m$	The expected duration, E (3m/2
3	3	$4.5)$
9	6	9.0
27	9	13.5
81	12	18.0
243	18	22.5
729	21	27.0
2187	24	31.5
6561	27	36.0
19883	30	40.5

Evidently, partition search design is very economical for large values of n.

CHAPTER 6

6.1

SEARCH IN THE PRESENCE OF NOISE

INTRODUCTION.

In the previous chapters we considered separating systems for determining the identity of one unknown element. We also considered two different strategies, namely 2 -complete search design and partition search design for determining the identities of two unknown elements. In all cases, we assumed that the search process was performed in the absence of noise. That is, the observed values of the functions $f_{1}, f_{z}, \ldots, f_{m}$ at the unknown element(s) were assumed to be free of any error. In this Chapter, we consider again, separating systems, 2-complete search and partition search designs except that we now assume that the search process is performed in the presence of noise.

For example, we are interested in problems like detecting an unknown element x in the set $S_{n}=\left\{a_{1}, a_{2}, \ldots . ., a_{n}\right\}$ using a binary separating system $F=\left\{f_{:}, f_{z}, \ldots, f_{m}\right\}$, whose observed values at x, may be in error. That is, it is possible to observe $f(x)$ as 0 instead of the correct value 1 , which leads to wrong iciertification of the unknown element(s).

Example 6.1: - Consider the set $S_{8}=\left\{a_{1}, a_{2}, \ldots, a_{\theta}\right\}$, and suppose that we wish to determine one unknown element $x \in S_{B}$ using three functions f_{1}, f_{2}, f_{3} whose
search matrix M is.

$$
M=\begin{aligned}
& f_{1} \\
& f_{2} \\
& f_{3}
\end{aligned}\left[\begin{array}{llllllll}
a_{1} & a_{2} & a_{3} & a_{4} & a_{\mathbf{5}} & a_{6} & a_{7} & a_{a_{0}} \\
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 & 1 & 0
\end{array}\right]
$$

The functions f_{1}, f_{z}, f_{3} form a separating syster since the colums of the matrix M are distinct.

Let the unknown element x be a_{1}. Then by observing f_{1}, f_{2}, f_{3} at x we obtain subsets $A_{1}=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$ $A_{2}=\left\{a_{1}, a_{2}, a_{5}, a_{6}\right\}$ and $A_{3}=\left\{a_{1}, a_{3}, a_{5}, a_{7}\right\}$ respectively, with

$$
A_{1} \cap A_{2} \cap A_{3}=\left\{a_{1}\right\}
$$

Suppose $f_{2}(x)$ is in error. That is, it is oustrved as 0 instead of the correct value 1 . the sutset $A_{2}=\left\{a_{3}, a_{4}, a_{7}, a_{a}\right\}$ would be specified by this incorreot observation, with

$$
A_{1} \cap A_{2} \cap A_{3}=\left\{a_{3}\right\}
$$

which is wrong identification of the urkforn element x.
In the next section we will cons-ior sefarating systems which deterwine correatly cleacnt x in S_{n} in the preserce of roiss.
6. 2 SEPARATING SYSTEMS WHICH IHI LI WNE UNKNOWH
element in the presence of noise.
In this section, we describe thi types of "-
separating systems. The first one detects an error in
the search process for one unknown element without correcting it. The second system detects and corrects the error in determining the identity of the unknown element.

6.2.1. Single-error detecting system

Consider the set $S_{n}=\left\{a_{1}, a_{2}, \ldots . . ., a_{n}\right\}$ and the system F of functions $f_{1}, f_{2}, \ldots . f_{m}$. Suppose that the unknown element x is searched for by observing the functions $f_{1}, f_{2}, \ldots, f_{m}$ successively at x. Further, let $A_{i}=f_{i}^{-1}\left(f_{i}(x)\right), i=1,2, \ldots \ldots m$. Then the system $\left\{\mathrm{f}_{1}, \mathrm{f}_{2}, \ldots . . . \mathrm{f}_{\mathrm{m}}\right\}$ will be single-error detecting system if

$$
A_{1} \cap A_{2} \cap \cdots \cdot .
$$

and

$$
\begin{aligned}
& A_{1} \cap A_{2} \cap \cdots \cap A_{i-1} \cap A_{i}^{C} \cap A_{i+1} \cap \cdots \cap A_{m}=0 \\
& 1 \leq i \leq m .
\end{aligned}
$$

Examl pe 6.2:-Consider the set $S_{0}=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right.$, $\left.a_{5}, a_{0}\right\}$ and suppose the system $F=\left\{f_{1}, f_{2}, f_{3}, f_{4}\right\}$ has the following search matrix:

$$
M=\begin{aligned}
& f_{1} \\
& f_{2} \\
& f_{3} \\
& f_{4}
\end{aligned}\left(\begin{array}{llllll}
a_{1} & a_{2} & a_{3} & a_{4} & a_{5} & a_{0} \\
1 & 1 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 & 1
\end{array}\right) .
$$

The functions $\left\{f_{1}, f_{2}, f_{3}, f_{4}\right\}$ form a separating system, ${ }^{\circ}$ since the columns of the search matrix M are distinct. Let the unknown element x be a_{1}. Then by observing
$f_{1}, f_{2}, f_{3}, f_{4}$ at a_{3} we obtain the subsets

$$
\begin{aligned}
& A_{1}=f_{1}^{-1}\left(f_{1}\left(a_{1}\right)\right)=\left\{a_{1}, a_{2}, a_{3}\right\}, \\
& A_{2}=f_{2}^{-1}\left(f_{2}\left(a_{1}\right)\right)=\left\{a_{1}, a_{4}, a_{5}\right\}, \\
& A_{3}=f_{3}^{-1}\left(f_{3}\left(a_{1}\right)\right)=\left\{a_{1}, a_{3}, a_{5}\right\},
\end{aligned}
$$

and

$$
A_{4}=f_{4}^{-1}\left(f_{4}\left(a_{1}\right)\right)=\left\{a_{1}, a_{2}, a_{4}\right\} ;
$$

with

$$
\begin{aligned}
& A_{1} \cap A_{2} \cap A_{3} \cap A_{4}=\left\{a_{1}\right\}, \\
& A_{1}^{C} \cap A_{2} \cap A_{3} \cap A_{4}=\varnothing, \\
& A_{1} \cap A_{2}^{C} \cap A_{3} \cap A_{4}=\varnothing, \\
& A_{1} \cap A_{2} \cap A_{3}^{C} \cap A_{4}=\varnothing .
\end{aligned}
$$

and

$$
A_{1} \cap A_{2} \cap A_{3} \cap A_{4}^{C}=\varnothing .
$$

Thus, the system $\left\{\mathrm{f}_{1}, \mathrm{f}_{\mathbf{z}^{\prime}}, \mathrm{f}_{\mathbf{3}^{\prime}} \mathrm{f}_{\mathbf{4}}\right\}$ is a single-error detecting system; it will detect if any function f_{6} is in error.

Lemma 6.1:- Let $\left\{\mathrm{f}_{1}, \mathrm{f}_{2}, \ldots . \mathrm{f}_{\mathrm{m}}\right\}$ te \quad of

 functions defined on a finite set $S_{n}=\left\{a_{1}, z_{2}, \ldots, a_{n}\right\}$ and let $A_{i}=f_{i}^{-1}\left(f_{i}(x)\right)$, where x is the unknown element in the set S_{n}. Then the system $\left\{f_{1}, f_{2}, \ldots, f_{m}\right\}$ is a single-error detecting system if and only if the intersection of any ($\mathbb{m}-1$) subsets ${ }^{\circ}$.. $A_{i_{1}}, A_{i_{2}}, \ldots, A_{i_{m-1}}, \quad\left\{i_{1}, i_{2}, \ldots ., i_{m-1}\right\} \in\{1,2, \ldots \ldots, m\}$is x. That is,

$$
A_{i_{1}} \cap A_{i_{2}} \cap \cdots \cdots \cdots \cap A_{i_{m-1}}=\{x\}
$$

Proof.
Suppose the system $\left\{f_{1}, f_{2}, \ldots, f_{m}\right\}$ is a single-error detecting system and the unknown element x is a_{ℓ}. That is,

$$
A_{i} \cap A_{2} \cap \cdots \cdots \cdots \cdot A_{m}=\left\{a_{\varepsilon}\right\}
$$

and

$$
A_{1} \cap A_{2} \cap \cdots \cap A_{1}^{C} \cap \cdots \cdots A_{m}=0
$$

$$
\text { for } 1 \leq x \leq \mathbb{x}
$$

Then, we have to prove that

$$
A_{2} \cap A_{2} \cap \cdots \cdots \cdots \cdot A_{i} \cap \cdots A_{m-1}=\left\{\varepsilon_{i}\right\} \quad(6.1)
$$

where $\left\{i_{1}, i_{2}, \ldots . ., i_{m-1}\right\} \subset\{1,2,3$,
Now, suppose

$$
\begin{equation*}
A_{2} \cap A_{2} \cap \cdots \cdots \cdots \cdot \cap_{2} A_{[:-1} \neq\left\{s_{\ell}\right\} . \tag{6.2}
\end{equation*}
$$

That is, $A_{i_{1}} \cap A_{i_{2}} \cap \cdots \cdots \cdots \cdots \cap A_{\text {mi-: }}=0$ or a set consisting of one element ε, ia a set consisting of $a_{J_{1}}, \hat{b}_{J_{2}}, \ldots \ldots, a_{J_{\ell}}$
 $\ldots \ldots \not j_{t} \neq \ell$ or a set consisting of and some other elements. But, $A_{i} \cap A_{1} \cap \ldots . . . \hat{l}_{m-1}$ cannot be an empty set or set consisting ci doris element $a_{j}\left(a_{j} \not a_{i}\right)$ or set consisting of $a_{j_{1}}, \varepsilon_{j_{2}}, \ldots, a_{j}$, $j_{1} \neq j_{2} \neq j_{3} \not \ldots \neq j_{\ell} \neq \ell$ since $A_{1} \cap A_{2} \cap \ldots \cap A_{n}=\left\{a_{\ell}\right\}$
and so $a_{\ell} \in A_{i_{k}}$, for $k=1,2, \ldots \ldots,(m-1)$. This leaves us with only one possibility that $A_{i} \cap A_{i_{2}} \cap \cdots \cdots A_{i_{m-1}}$ is a set consisting of a_{ℓ} and some other element (s). To investigate this possibility, we let a_{j}, be one of these other elements in $A_{1} \cap A_{i} \cap \cdots \cdots A_{2}$. That is, $a_{i}, a_{j} \in$ $A_{i} \cap A_{2} \cap \cdots \cdots A_{m-1}$. This implies that $a_{j} \in A_{L_{m}}$ since $A_{1} \cap A_{2} \cap \cdots \cdots \cdots \cdots \cdot \cdots A_{m}=\left(a_{\ell}\right)$ and $\left\{t_{1}, \varepsilon_{2}, \ldots \ldots \ldots i_{m}\right\}=\left\{1,2, \ldots \ldots \pi \in\right.$, so $a_{j} \quad \in A_{i}^{C}$ and $A_{i} \cap A_{L_{2}} \cap \cdots \cdots \cdots \cdots \cdots A_{i_{m-1}} \cap A_{i m}^{C}=\left\{a_{J^{\prime}}\right\}$. Thus, there exists $j, 1 \leq j \leq m$, such that, $A_{1} \cap A_{2} \cap \cdots \cap A_{j}^{C} \cap \cdots \cap A_{m}=\left\{a_{j}\right\}, j \cdot \neq$ 亿. This contradicts, the fact that $\left\{f_{1}, f_{2}, \ldots f_{m}\right\}$ is a single-error detecting system; thus $A_{1} \cap A_{L_{2}} \cap \cdots \prod_{L_{m-1}}$ is not a set consisting of a_{ℓ} and some other element (s). We therefore, conclude that $A_{i} \cap A_{i} \cap \cdots \cap$ $A_{m-1}=\left\{a_{l}\right\}$.

Conversely, suppose

$$
\begin{equation*}
A_{i_{1}}^{A_{i}} \cap A_{i_{2}} \cap \cdots \cdots \cdots A_{i_{m-1}}=\left\{a_{i}\right\} . \tag{6.3}
\end{equation*}
$$

Then, $w \in$ are to prove that the system $\left\{\mathrm{f}_{1}, \mathrm{f}_{2}, \ldots . ., \mathrm{f}_{m}\right\}$ is a single-error detecting system. That is, we have to show that

$$
\begin{equation*}
A_{1} \cap A_{2} \cap \cdots \cdots \cdot \cdots \cap A_{m}=\left\{a_{\ell}\right\} \tag{6.4}
\end{equation*}
$$

and

$$
\begin{equation*}
A_{1} \cap A_{2} \cap \cdots \cdots \cap A_{i}^{c} \cap \cdots \cap A_{m}=0 \tag{6.5}
\end{equation*}
$$

for $1 \leq 2 \leq m$.

But

$$
A_{i}=f_{i}^{-1}\left(f_{i}\left(a_{\ell}\right)\right),
$$

and thus

$$
A_{i}=f_{m}^{-1}\left(f_{i}\left(a_{l}\right)\right)
$$

$i_{m} \in\{1,2, \ldots \ldots m m$ so that

That is,

$$
a_{i} \in A_{i}
$$

$$
\begin{equation*}
a_{i} \in A_{i m}^{c} \tag{6.6}
\end{equation*}
$$

From (6.3) and (6.6) it follows that:

$$
\begin{equation*}
A_{1} \cap A_{i} \cap \cdots \cap A_{2} \cap \cap A_{i m-1}=\left\{a_{\ell}\right\} \tag{6.7}
\end{equation*}
$$

and

$$
\begin{equation*}
A_{1} \cap A_{i_{2}} \cap \cdots \cap A_{i_{m-1}} \cap A_{i_{m}}^{C}=0 . \tag{6,8}
\end{equation*}
$$

Eat, $\left\{:_{1}, i_{z}, \ldots . '_{m}\right\}=\{1,2, \ldots \ldots, m\}$; thus (8.7) and
(E. 8) inpiy that
(E. 8) imply that there exists $j, 1 \leq j \leq m$, such that
and

$$
A_{1} \cap A_{2} \cap \ldots \ldots \ldots \ldots \ldots \cap A_{m}=\left\{a_{l}\right\}
$$

$$
A_{1} \cap A_{2} \cap \cdots \cdots \cap A_{j}^{C} \cap \cdots \cap A_{\bar{m}}=0
$$

which is the required result.

Thearem 6.1:- Let the number of elements in the set S_{n} be n, then the minimum number of functions, m for which a single-error detecting system exists satisfies the inequality:

$$
m \geq \log _{2} n+1
$$

Proof.
Let $\left\{f_{1}, f_{2}, \ldots, f_{m}\right\}$ be a single - error detecting system and $A_{1}, A_{2}, \ldots ., A_{m}$ be subsets specified by the functions $f_{1}, f_{z}, \ldots . . f_{m}$. Then, frort Lemma 6.1, the intersection of any $(m-1)$ subsets, $A_{1}, A_{2}, \ldots, A_{2}$ is the unknown element x. That is, ary (m-1) functions identify the unknown element. The minimum number of functions which separate the unknown element is $\left\{\log _{2} n\right\}$, see Feryi (1965). That is,

$$
\begin{aligned}
(m-1) & \geq \log _{2} n \\
n & >\log _{2} n+1
\end{aligned}
$$

which is t!... yed result.
 sircle-arec. cetecting system for this set will contain at leasi $\left(\log _{2} \varepsilon\right)+1$, that is four, functions. One possible search aratrix of a system of four functions $f_{1}, f_{2}, f_{9}, f_{4}$ which is a single-error detecting system is

$$
f_{1}\left(\begin{array}{llllllll}
a_{1} & a_{2} & a_{3} & a_{4} & a_{5} & a_{0} & a_{7} & a_{0} \\
1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 & 1 & 1 & 1
\end{array}\right)
$$

The four functions $f_{1}, f_{2}, f_{3}, f_{4}$ can easily be shown to be a single-error detecting system by taking the unknown element x to be; say a_{1}. Then, the subsets $A_{1}, A_{2}, A_{3}, A_{4}$ specified by these functions are:

$$
\begin{aligned}
& A_{1}=\left\{a_{1}, a_{2}, a_{3}, a_{7}\right\}, \\
& A_{2}=\left\{a_{1}, a_{2}, a_{4}, a_{5}\right\}, \\
& A_{3}=\left\{a_{1}, a_{3}, a_{4}, a_{0}\right\}, \\
& A_{4}=\left\{a_{1}, a_{5}, a_{0}, a_{2}\right\} ;
\end{aligned}
$$

with

$$
\begin{aligned}
& A_{1} \cap A_{2} \cap A_{3} \cap A_{4}=\left\{a_{1}\right\}, \\
& A_{2} \cap A_{2} \cap A_{3} \cap A_{4}=0, \\
& A_{1} \cap A_{2}^{C} \cap A_{3} \cap A_{4}=0, \\
& A_{1} \cap A_{2} \cap A_{3} \cap \cap A_{4}=0, \\
& A_{1} \cap A_{2} \cap A_{3} \cap A_{4}=0
\end{aligned}
$$

Thus, the $\left\{f_{j}, f_{z}, f_{s}, f_{4}\right\}$ is a single-error deterare \because the set C_{g}.
 remsinine colum s consist of all possible combinations of $\left\{\frac{1}{2^{m}}\right\}$ zeros (or ones) and $m-\left\{\frac{1}{2^{\mathbb{m}}}\right\}$ ones (or zeros),
where $\{x\}$ is the least integer greater than or equal to x. Further, let the functions $f_{q}, f_{2}, \ldots . . f_{m}$ be defined on a finite set $S_{n}=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ as follows:

$$
f_{i}\left(a_{j}\right)=\left\{\begin{array}{lll}
1 & \text { if } & m_{i j}=1 \\
0 & \text { if } & m_{i j}=0
\end{array}\right.
$$

Then, the system $\left\{f_{1}, f_{2}, \ldots ., f_{m}\right\}$ of functions is a single-error detecting system.

Proof.
Identifying the columns of the ratrix M with elements $a_{1}, a_{2}, \ldots, a_{n}$ of S_{n} and rows with the functions $f_{1}, f_{2}, \ldots, f_{m}$, we need to show that the intersection of any $(m-1)$ subsets $A_{i}, A_{i}, \ldots, A_{i}$ s-iecified by the functions $f_{i_{1}}, f_{i_{z}} \ldots . ., f_{i_{m-1}}$ is a single eielient. That is,

$$
A_{i_{1}} \cap A_{i_{2}} \cap \cdots \cdots \cap A_{i_{m-1}}=\{x\} .
$$

But,

$$
A_{i} \cap A_{i_{2}} \cap \cdots \cdot A_{i_{m-1}}=\{x\}
$$

holds if and only if functions $f_{i_{1}}, f_{i_{2}}, \ldots, f_{i_{m-1}}$ form a sepmrating \quad on ien $s_{n}=$ $\left\{a_{1}, a_{2}, \ldots ., a_{n}\right\}$. But we know that, the functions $f_{i_{1}}, f_{i_{2}}, \ldots f_{m-1}$ will form a separatine suster if the matrix N, defined by;

$$
N=\left(f_{i}\left(a_{j}\right)\right), \quad k=1,2, \ldots, m-1 ; j=1,2, \ldots, n ;
$$

has distinct columns.
Now, the columns of the matrix M defined above differ in at least two places and so if a row is deleted, the remaining columns will differ in at least one place. Thus, the matrix M^{\prime} obtained by deleting one row of M has distinct 'columns and so the functions $f_{i}, f_{i}, \ldots, f_{i}$ which correspond to the rows of M^{\prime} is a separating system. The system $f_{1}, f_{2}, \ldots, f_{m}$ is therefore a single-error detecting system.

Example 6.4: Consider a 6×22 matrix whose first and last columns are respectively $(1,1,1,1,1,1)^{\prime}$ and $(0,0,0,0,0,0)^{\prime}$ and the remaining 20 columns consist of all possible combinations of 3 zeros and 3 ones The columns of this matrix are identified with the elements of a finite set $S_{22}=\left\{a_{1}, a_{2}, \ldots, a_{22}\right\}$ and the rows are identified with the functions $f_{1}, f_{2}, f_{3}, f_{4}, f_{5}, f_{0}$. The matrix M has the following form;

Now, suppose the fourth row is deleted. The remsining, matrix M^{\prime} will have the form,

We notice that the columns of the matrix M° are distinct; thus the system $\left\{f_{1}, f_{2}, f_{3}, f_{4}, f_{5}, f_{6}\right\}$ is a single-error detecting system. We can easily, verify this by taking the unknown element x to be say a_{1}. Then,

$$
\begin{aligned}
& A_{1}=\left\{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7} a_{8}, a_{0}, a_{10}, a_{11}\right\}, \\
& A_{2}=\left\{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{12}, a_{13}, a_{14}, a_{15}, a_{10}, a_{17}\right\}, \\
& A_{3}=\left\{a_{1}, a_{2}, a_{0}, a_{7}, a_{0}, a_{12}, a_{13}, a_{14}, a_{10}, a_{10}, a_{20}\right\}, \\
& A_{4}=\left\{a_{1}, a_{5}, a_{0}, a_{0}, a_{10}, a_{12}, a_{15}, a_{10}, a_{18}, a_{10}, a_{20}\right\}, \\
& A_{5}=\left\{a_{1}, a_{4}, a_{7}, a_{0}, a_{11}, a_{13}, a_{15}, a_{17}, a_{10}, a_{10}, a_{20}\right\}, \\
& A_{6}=\left\{a_{1}, a_{5}, a_{8}, a_{10}, a_{11}, a_{13}, a_{16}, a_{17}, a_{10}, a_{20}, a_{21}\right\} ;
\end{aligned}
$$

with

$$
\begin{aligned}
& A_{1} \cap A_{2} \cap A_{3} \cap A_{4} \cap A_{5} \cap A_{0}=\left\{A_{1}\right\}, \\
& A_{1} \cap A_{2} \cap A_{3} \cap A_{4} \cap A_{5} \cap A_{0}=0 \\
& A_{1} \cap A_{2} \cap \cap A_{3} \cap A_{4} \cap A_{5} \cap A_{0}=0 \\
& A_{1} \cap A_{2} \cap A_{3}^{C} \cap A_{4} \cap A_{5} \cap A_{0}=0 \\
& A_{1} \cap A_{2} \cap A_{3} \cap A_{4}^{C} \cap A_{5} \cap A_{0}=0 \\
& A_{1} \cap A_{2} \cap A_{3} \cap A_{4} \cap A_{5}^{C} \cap A_{6}=0
\end{aligned}
$$

and

$$
A_{1} \cap A_{2} \cap A_{3} \cap A_{4} \cap A_{5} \cap A_{0}^{C}=0
$$

Thus, $f_{1}, f_{2}, f, f_{4}, f_{5}, f_{6}$ is a single-error detecting
system．
In our study of the next type of separating system， that is one which detects and corrects the error in determining the identity of one unknown element，we will require the basic concepts of coding theory introduced in Chapter 1．In addition，we will need the following property of block codes also given in Chapter 1.

A block code with distance d is capable of correcting all patterns of t or fewer errors and detecting all patterns of $t+j, 0<j<s$ errors if $2 t+s\langle d, s\rangle 0$ ．

6．2．2：Error－correcting system
Let $S_{n}=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ and $F=\left\{f_{1}, f_{2}, \ldots, f_{m}\right\}$ be a system of $⿴ 囗 十$ functions．Further，let M be an mxn search matrix of the system F．That is；

$$
M=\left(f_{i}\left(a_{j}\right)\right), \quad i=1,2, \ldots ., m ; \quad j=1,2, \ldots, n .
$$

Let $x \in S_{n}$ be the unknown element which is to be iduntified by observing the functions $f_{1}, f_{2}, \ldots, f_{m}$ scceasively at x ．By these observations we obtain a $\left(f_{2}(x), f_{2}(x), \ldots, f_{m}(x)\right)^{\prime}$ ．The unknown element x ， Is then identified as $a_{\ell}(\ell=1,2, \ldots, n)$ if the vector （ $\left.f_{s}(x), f_{z}(x), \ldots, f_{m}(x)\right)^{\prime}$ is the th column of the metrix M．
fion，suppose ρ functions are in error then the systerl $F=\left\{f_{1}, f_{2}, \ldots f_{m}\right\}$ will bee error－detecting and error－correcting if the vector $\underline{u}=$
$\left(f_{1}(x), f_{2}(x), \ldots, f_{m}(x)\right)^{\prime}$ obtained by observing $f_{1}, f_{2}, \ldots, f_{m}$ at x is not one of the columris of the matrix M and the distance between any tho columns of the matrix M say \underline{v}_{1} and \underline{v}_{2} is at least $2 \rho+1$. The p errors will be detected by the fact that none of the columns of the matrix M is the vector $\underline{u}=\left(f_{i}(x)\right.$, $\left.f_{2}(x), \ldots . f_{m}(x)\right)$ and corrected by identifying the vector \underline{u} with a column \underline{v} of the matrix M in which $d(\underline{u}, \underline{v})=\rho$. The column \underline{v} can essily be shown to be unigue; for suppose that there exists another column \underline{v}^{\prime} of the matrix M, such that $d(\underline{u}, \underline{v})=\rho$. Then,

$$
\begin{aligned}
d\left(\underline{v}, \underline{v^{\prime}}\right) & \leq d(\underline{v}, \underline{u})+d\left(\underline{u}, \underline{v^{\prime}}\right) \\
& =d(\underline{u}, \underline{v})+d(\underline{u}, \underline{v}) \\
& =p+p=2 p
\end{aligned}
$$

which implies that the distance between the two colums \mathcal{V} and v^{\prime} of the matrix M is less than or equal to $2 p$. This contradicts the earlier assumption that the distance between any two columin is at least $2 p+1$. - Ss. the columr \underline{v}^{\prime} does not exist.

Example 6.5: - Consider a block code which corrects F Errors, that is, the distance between any two code words is at least $2 f+1$. Let these code words be the columns of the matrix M defined earlier. Then the, system F of functions which correspond to the rows of the matrix M is error-correcting system since the distance between any two columns of the matrix M is at
least $2 p+1$.

Special case

Consider, the following code words of the Hamming block codes that correct one error, (see Chakravarti (1976)):

0	0	0	0	0	0	0
1	0	0	0	1	1	0
0	1	0	0	1	0	1
0	0	1	0	0	1	1
0	0	0	1	1	1	1
1	1	0	0	0	1	1
1	0	1	0	1	0	1
1	0	0	1	0	0	1

0	1	1	0	1	1	0
0	1	0	1	0	1	0
0	0	1	1	1	0	0
1	1	1	0	0	0	0
1	1	0	1	1	0	0
1	0	1	1	0	1	0
0	1	1	1	0	0	1
1	1	1	1	1	1	1

Taking these code words to be the columns of the matrix M, we obtain the following search matrix,
$M=\begin{gathered}f_{1} \\ f_{2} \\ f_{3} \\ f_{4} \\ f_{5} \\ f_{6} \\ f_{7}\end{gathered}\left(\begin{array}{lllllllllllllll}a_{1} & a_{2} & a_{3} & a_{4} & a_{5} & a_{0} & a_{1} & a_{10} & a_{0} & a_{10} & a_{11} a_{12} a_{13} a_{14} a_{15} & a_{10} \\ 0 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 1\end{array}\right]$

The distance between any two columns of the matrix M is at least three, thus the functions $f_{1}, f_{2}, \ldots . f_{f} f_{i}$ an error-correcting system which corrects at most ont error.

OF NOISE USING A 2-COMPLETE SEARCH DESIGN.
We first recall that a 2-complete search design is a system $\left\{A_{1}, A_{2}, \ldots, A_{m} ; S_{n}\right\}$ consisting of m subsets $A_{1}, A_{2}, \ldots . ., A_{m}$ of a finite set S_{n}, in which for any pair of elements $a_{\ell}, a_{\ell^{\prime}}$ in S_{n}, there exist subsets $A_{i_{1}}, A_{i_{2}}, \ldots, A_{i_{k}},\left\{i_{1}, i_{2}, \ldots, i_{k}\right\} \subset\{1,2, \ldots, m\}$ such that $a_{\ell^{\prime}}, a_{\ell^{\prime}} \in A_{i_{j}}$ for $j=1,2, \ldots, k$ and k
$\bigcap_{j=1} A_{i}=\left\{a_{\ell}, a_{\ell}\right\}$.
Now, suppose that the unknown elements ($a_{\ell^{\prime}}, a_{\ell^{\prime}}$) in S_{n} are to be determined in the presence of noise. That is, a subset A_{1} can be declared to contain the two unknown elements while it actually contains just one or none of them. Then, the intersection of the subsets $A_{i_{1}}, A_{L_{2}}, \ldots ., A_{i_{k}}$ will not identify the two unknown elements.

In this section, we consider 2-complete search designs which detect the error in the search process for the two unknown elements without correcting it.
6.3.1: 2-Complete search design which detects all error in the search process. Consider the set $S_{n}=\left\{\varepsilon_{1}, a_{2}, \ldots . . \varepsilon_{n}\right\}$ arc 2-complete search design $\left\{A_{1}, A_{2}, \ldots ., A_{m} ; s_{1}\right\} .17 \in x t$, consider the set of indices $\left\{i_{1}, i_{2}, \ldots, i_{k}\right\} \subset\{1,2, \ldots, m\}$ and let $A_{i_{1}}, A_{i_{2}}, \ldots . . ., A_{i_{k}}$ be the subsets of S_{n} which contain the two unknown elements $\left(a_{\ell}, a_{\ell^{\prime}}\right)$. Then, the

2-complete search design $\left\{A_{1}, A_{2}, \ldots, A_{m} ; S_{n}\right\}$ will detect an error in the search process if

$$
A_{i_{1}} \cap A_{i_{2}} \cap \cdots \cdots \cdots \cdots \cdot A_{i_{k}}=\left\{a_{\ell}, a_{\ell^{\prime}}\right\}
$$

and

$$
A_{i_{1}} \cap A_{i_{2}} \cap \cdots \cdots \cap A_{i}^{C} \cap \cdots \cap A_{i_{k}}=0 ;
$$

or

$$
\begin{aligned}
A_{i} \cap A_{i_{2}} \cap \cdots \cap A_{i}^{c} \cap \cdots \cap A_{i_{k}} & =\{a\}, \\
a & \in S_{n}, 1 \leq j \leq k .
\end{aligned}
$$

Example 6.6: - Consider the 2-Complete search design $\left\{A_{1}, A_{2}, \ldots, A_{a} ; S_{12}\right\}$ of Example 4.3 given in Section 4.3 of Chapter 4. The subsets $A_{1}, A_{2}, \ldots . . A_{\text {o }}$ were given as follows:

$$
\begin{aligned}
& A_{1}=\left\{a_{5}, a_{0}, a_{7}, a_{0}, a_{0}, a_{10}, a_{11}, a_{12}\right\} \\
& A_{2}=\left\{a_{2}, a_{3}, a_{4}, a_{0}, a_{0}, a_{10}, a_{11}, a_{12}\right\}, \\
& A_{3}=\left\{a_{1}, a_{3}, a_{4}, a_{0}, a_{7}, a_{8}, a_{0}, a_{12}\right\}, \\
& A_{4}=\left\{a_{1}, a_{3}, a_{4}, a_{6}, a_{7}, a_{8}, a_{0}, a_{12}\right\}, \\
& A_{5}=\left\{a_{1}, a_{3}, a_{4}, a_{5}, a_{0}, a_{0}, a_{10}, a_{12}\right\}, \\
& A_{6}=\left\{a_{1}, a_{2}, a_{4}, a_{5}, a_{7}, a_{0}, a_{10}, a_{12}\right\}, \\
& A_{7}=\left\{a_{1}, a_{2}, a_{4}, a_{6}, a_{7}, a_{8}, a_{10}, a_{11}\right\}, \\
& A_{8}=\left\{a_{1}, a_{2}, a_{3}, a_{5}, a_{6}, a_{8}, a_{10}, a_{12}\right\} \\
& A_{9}=\left\{a_{1}, a_{2}, a_{3}, a_{5}, a_{7}, a_{8}, a_{0}, a_{11}\right\} .
\end{aligned}
$$

Suppose the two unknown elements are $\left(a_{1}, a_{2}\right)$, then the subsets which contain these two unknown
elements are $A_{0}, A_{7}, A_{0}, A_{0}$ with

$$
\begin{aligned}
A_{0} \cap A_{7} \cap A_{B} \cap A_{0} & =\left\{a_{1}, a_{2}\right\} \\
A_{0}^{C} \cap A_{7} \cap A_{B} \cap A_{0} & =\left\{a_{8}\right\}, \\
A_{0} \cap A_{7}^{C} \cap A_{B} \cap A_{0} & =\left\{a_{5}\right\}, \\
A_{0} \cap A_{7} \cap A_{B}^{C} \cap A_{0} & =\left\{a_{7}\right\},
\end{aligned}
$$

and

$$
A_{0} \cap A_{>} \cap A_{B} \cap A_{0}^{C}=\left\{a_{10}\right\}
$$

That is,

$$
A_{i} \cap A_{2} \cap A_{i_{3}} \cap A_{i_{4}}=\left\{a_{1}, a_{2}\right\}
$$

and

$$
A_{1} \cap A_{2} \cap A_{2} \cap A_{2}^{c}=\{a\}, \quad a \in S_{12}, 1 \leq 2_{4} \leq 4
$$

Thus, the system $\left\{A_{1}, A_{2}, \ldots, A_{0} ; S_{12}\right\}$ is a 2 -complete search design which detects an error in the search process.

Lemma 6.3: - Let $\left\{A_{1}, A_{2}, \ldots, A_{m} ; S_{n}\right\}$ be a 2 -complete search design. Further, let $A_{i_{1}}, A_{i_{2}}, \ldots . A_{i_{k}}$ be the subsets of the set S_{n} which contain the two unknown elements $\left(a_{q}, 8_{i}\right.$) where $\left\{i_{1}, i_{2}, \ldots . i_{k}\right\} \subset\{1,2, \ldots, m\}$. Then, the 2 -complete search design $\left\{A_{1}, A_{2}, \ldots ., A_{m} ; S_{n}\right\}$ will detect an error in the search process if and only if the intersection of any ($k-1$) subsets $A_{i_{1}}, A_{i_{2}}, \ldots \ldots . A_{i_{k-1}}$ is at most three elements
with the two unknown elements $\left(a_{\ell}, a_{\ell^{\prime}}\right)$ being amongst the three.

Proof.
Suppose the system $\left\{A_{1}, A_{2}, \ldots, A_{m} ; S_{n}\right\}$ is a 2 -complete search design which detects an error in the search process. That is, for any set of indices $\left\{i_{1}, i_{2}, \ldots . . i_{k}\right\} \subset\left\{1,2, \ldots \ldots, m_{1}\right\}$

$$
\begin{equation*}
A_{i} \cap A_{L_{2}} \cap \cdots \cap A_{2} \cap \cdots A_{i_{k}}=\left\{a_{i}, a_{\ell},\right\} \tag{6.9}
\end{equation*}
$$

and

$$
\begin{align*}
A_{i} \cap A_{i} \cap \cap \cap A_{i}^{C}, \cap \cdots \cap A_{i} & =\varnothing \text { or }\left\{a_{i}\right\} \\
& a_{i} \in S_{n} . \tag{6,10}
\end{align*}
$$

Then, we are to prove that

$$
\begin{equation*}
A_{i} \cap A_{i_{2}} \cap \cdot \cap A_{i_{j-1}} \cap A_{2} \cap \cap \cdot \cap A_{i}=\left\{a_{\ell}, a_{z},\right\} \tag{6.11}
\end{equation*}
$$

or

$$
\begin{equation*}
A_{2} \cap A_{1}=\cap \cdot \cap A_{1}, \cap A_{2}, \cap \cdot \cap A_{i_{k}}=\left\{a_{\ell}, a_{\ell}, a_{\ell}, .\right\} \tag{6.12}
\end{equation*}
$$

where, $\left\{\partial_{f}, \varepsilon_{f^{\prime}}, \varepsilon_{\ell_{i}},\right\} \in S_{n}$.

> Now, suppose that

$$
A_{i} \cap A_{2} \cap \cdot \cap A_{j-1} \cap A_{j+1} \cap \cdots \cap A_{i} x\left\{a_{\ell}, \varepsilon_{\ell}\right\}
$$

and

$$
A_{i} \cap A_{i_{2}} \cap \cdots \cap A_{i_{j-1}} \cap A_{i_{j+1}} \cap \cdot \cap A_{i_{k}} \times\left\{a_{i}, a_{i}, a_{i^{\prime}},\right\} .
$$

That is, $A_{i} \cap A_{i} \cap \cdots \cap A_{i_{j-1}} \cap A_{i+1} \cap \cdots \cap A_{i_{k}}=\varnothing$ or a set consisting of one element a or a set consisting of tho elements $\left(a_{j_{1}}, a_{j_{2}}\right)$ where $a_{j_{1}} a_{j_{2}} \&\left\{a_{\ell^{\prime}} a_{\ell^{\prime}}\right\}$ or a set consisting of $a_{j_{1}}, a_{j_{2}^{\prime}}, \ldots, a_{j_{r}^{\prime}}$ where a_{ℓ}, a_{ℓ} $\left\{a_{j_{1}}, a_{j_{2}}, \ldots, a_{j_{r}}\right\}$ and $r>2$ or a set consisting of a_{ℓ} and a_{ℓ} and two or more other elements. But $A_{i} \cap \cdot \cap A_{i_{j-1}} \cap A_{i+1} \cap \cdot \cap A_{L_{k}}$ cannot be the empty set or a set consisting of one element or a set consisting of two elements $\left\{a_{J_{1}}, a_{j_{2}}\right\}$ where $a_{j_{1}}, a_{J_{2}} \&\left\{a_{\ell}, a_{\ell}\right\}$ or a set consisting of $a_{j_{1}^{\prime}}, a_{j_{2}^{\prime}}, \ldots, a_{j_{r}^{\prime}}$ where $a_{\ell}, a_{\ell \prime} \notin$ $\left\{a_{j_{2}}, a_{j_{2}}, \ldots, a_{j_{r}^{\prime}}\right\}$ since $A_{i} \cap \cdots A_{i}, \cap A_{l_{j+1}} \cdots \cap A_{l}=\left\{a_{\ell}, a_{\ell}\right\} ;$
and so $a_{\ell}, a_{\ell} \in A_{i_{j}}$ for $,=1,2, \ldots, k$. This leaves us with only one possibility that $A_{i} \cap A_{i} \cap_{2} \cdots \cdots \cap A_{i} \cap_{j-1} A_{i+1} \cdots \cdots \cdots \cap_{i_{k}} \quad$ is a set consisting of $a_{\ell}, a_{\ell^{\prime}}$ and $t w o$ or more other elements. To investigate this possibility, we let a_{j} and a_{j}, be the other elements in the set $A_{i} \cap A_{i_{2}} \cap \cdots \cdots A_{i_{j-1}} \cap A_{i+1} \cap \cdots \cdots \cap A_{i_{k}}$. That is,

$$
\begin{equation*}
a_{j}, a_{j}, \in A_{i} \cap \cdots \cap A_{i j-1} \cap A_{i j+1} \cap \cdots \cap A_{i} \tag{6.13}
\end{equation*}
$$

Now, (6.9) and (6.13) imply that

$$
a_{j}, a_{j} \in A_{i}
$$

That is,

$$
a_{j}, a_{j}, \in A_{i}^{c},
$$

and so from (6.13)

$$
a_{j}, a_{j}, \in A_{i} \cap A_{i} \cap \cdots \cap A_{i} \cap A_{j-1}^{C} \cap A_{i} \cap \cdots \cap A_{i+1} \cap \cdots
$$

This contradicts (6.10). Thus $A_{i} \cap A_{i} \cap \cdots \cap \quad A_{i} \cap$ $A_{i+1} \cap \cdots \cdots \cdots \cdots A_{i_{k}}=\left\{a_{\ell}, a_{\ell^{\prime}}\right\}$ is not a set consisting of a_{ℓ}, a_{ℓ} and two or more other elements We therefore, conclude that $A_{i} \cap A_{i_{2}} \cap \cdots \cap A_{i_{j-1}} \cap A_{i_{j+1}} \cap \cdots \cdots \cap A_{i_{k}}=\left\{a_{\ell}, a_{\ell,}\right\}$ or $\left\{a_{\ell}, a_{\ell^{\prime}}, a_{\ell^{\prime}},\right\}$.

Conversely, suppose

$$
A_{i} \cap A_{i} \cap \cdots \cap A_{i} \cap A_{j-1} \cap \cdots \cap A_{i+1}=\left\{a_{\ell}, a_{\ell}\right\}
$$

or

$$
A_{i} \cap A_{i_{2}} \cap \cdots \cap A_{i_{j-1}} \cap A_{L_{j+1}} \cap \cdots \cap A_{i_{k}}=\left\{a_{\ell}, a_{\ell^{\prime}}, \varepsilon_{\ell}\right.
$$

where $\left\{a_{\ell}, a_{\ell}, a_{i},\right\} \in S_{n}$. Then, we are to prove those the 2 -complete search design $\left\{A_{1}, A_{2}, \ldots, A_{m} ; S_{n}\right\}$ detects an error in the search process. That is, we meed to show that

$$
A_{i_{1}} \cap A_{i_{2}} \cap \cdots \cap A_{i} \cap \cdots A_{k}=\left\{a_{8}, a_{\ell^{\prime}}\right\}
$$

and

$$
\begin{array}{r}
A_{i} \cap A_{i_{2}} \cdots \cap A_{i-1} \cap A_{i}^{C} \cap A_{i_{j+1}} \cdots \cap A_{i_{k}}=0 \text { or }\left\{a_{i}\right\} \\
i \in S_{n}
\end{array}
$$

First we consider the case

$$
\begin{equation*}
A_{i} \cap A_{i_{2}} \cdots \cap A_{i,-1} \cap A_{i_{j+1}} \cap \cdots \cap A_{i_{k}}=\left\{a_{\ell}, a_{\ell},\right\} \tag{6.14}
\end{equation*}
$$

From the fact that $\left\{A_{1}, A_{2}, \ldots, A_{m} ; S_{n}\right\}$ is a 2 -complete search design and the subsets $A_{i}, A_{i_{2}}, \ldots, A_{i}, \ldots, A_{i_{k}}$ contain both the unknown elements $\left\{a_{\ell^{\prime}} a_{\ell^{\prime}}\right\}$, we see that

$$
\begin{equation*}
a_{l}, a_{l}, \in A_{L_{j}} \text { and } a_{l}, a_{\ell}, A_{L}^{C} \text {. } \tag{6.15}
\end{equation*}
$$

From (8.14) and (8.15) we have

$$
A_{i} \cap A_{2} \cap \cdots \cap A_{i j-1} \cap A_{i} \cap A_{i} \cap \cap \cap A_{j+1}=\left\{a_{\ell}, a_{\ell}\right\}
$$

and

$$
A_{i} \cap A_{i} \cdots \cap A_{i j-1} \cap A_{i}^{C} \cap A_{i j+1} \cap \cdots \cap A_{i k}=\varnothing .
$$

Thus, the 2 -complete search design detects an error in the search process.

$$
\begin{align*}
& M \in X_{0} \text { we consider the case } \\
& \therefore, \cap A_{2} \cap \cdots \cap A_{i_{J-1}} \cap A_{L_{j+1}} \cap \cdots \cap A_{i_{k}}=\left\{a_{\ell}, a_{i}, a_{\ell}, .\right\} . \tag{6.16}
\end{align*}
$$

iEairt, from the fact that $\left\{A_{1}, A_{2}, \ldots, A_{m} ; S_{n}\right\}$ is a z-complete search design and the subsets $A_{i_{1}}, A_{i_{2}}, \ldots, A_{i_{k}}$ contain both the unknown elements $\left\{a_{i}, a_{l^{\prime}}\right\}$, we see that $\left\{a_{\ell^{\prime}}, a_{\ell^{\prime}}\right\} \in A_{i_{j}}$ and $\left\{a_{i}, a_{\ell^{\prime}}\right\} \in A_{i j}^{c}$.

From (6.16) we have

$$
A_{i} \cap A_{i_{2}} \cap \cdots \cap A_{i_{j-1}} \cap A_{i_{j}} \cap A_{i_{j+1}} \cap \cdots \cap A_{i}=\left\{a_{\ell}, a_{\ell^{\prime}}\right\}
$$

and

$$
A_{i} \cap A_{i} \cap \cdots \cap A_{i} \cap A_{i-1} \cap A_{j} \cap A_{j+1} \cap \cdots A_{i k}=\left\{a_{\ell^{\prime \prime}}\right\}
$$

Thus, the 2 -complete search design $\left\{A_{1}, A_{2}, \ldots, A_{m} ; S_{n}\right\}$ detects an error in the search process. Hence the proof.

Example 6.8: Consider Example 4.1 in Section 4.1 of Chapter 4. The subsets $A_{1}, A_{2}, \ldots, A_{p}$ are:

$$
\begin{aligned}
& A_{1}=\left\{a_{5}, a_{0}, a_{2}, a_{8}, a_{0}, a_{10}, a_{11}, a_{12}\right\}, \\
& A_{2}=\left\{a_{2}, a_{3}, a_{4}, a_{8}, a_{0}, a_{10}, a_{11}, a_{12}\right\}, \\
& A_{3}=\left\{a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{11}, a_{12}\right\}, \\
& A_{4}=\left\{a_{1}, a_{3}, a_{4}, a_{6}, a_{7}, a_{8}, a_{0}, a_{12}\right\}, \\
& A_{5}=\left\{a_{1}, a_{3}, a_{4}, a_{5}, a_{0}, a_{0}, a_{10}, a_{11}\right\}, \\
& A_{0}=\left\{a_{1}, a_{2}, a_{4}, a_{5}, a_{7}, a_{0}, a_{10}, a_{12}\right\}, \\
& A_{7}=\left\{a_{1}, a_{2}, a_{4}, a_{6}, a_{7}, a_{8}, a_{10}, a_{11}\right\}, \\
& A_{8}=\left\{a_{1}, a_{2}, a_{3}, a_{5}, a_{6}, a_{8}, a_{10}, a_{12}\right\}, \\
& A_{0}=\left\{a_{1}, a_{2}, a_{3}, a_{5}, a_{7}, a_{18}, a_{0}, a_{11}\right\},
\end{aligned}
$$

As displayed in the example, every pair of elements $\left(a_{1}, a_{j}\right), i^{2}=1,2, \ldots, 12$, can be detected by at... at most four subsets. The intersection of any three
subsets can easily te verifled to contain atmost three elements. Hence the system $\left\{A_{2}, A_{2}, \ldots . ., A_{8} ; S_{12}\right\}$ is a 2-complete search design which detects an error in the search process.
6.4 DETERUINING TWO UNKNOWN ELEMENTS IN THE PRESENCE OF NOISE USING PARTITION SEARCH DESIGNS.

We recall that a partition suarch design consists of two stages, namely:
(i) Determining subsets $A_{1}, A_{2} \ldots . . . A_{m}$ of the set $S_{n}=\left\{a_{1}, a_{2}, \ldots . . a_{n}\right\}$ such that for any two distinct elements $(u, v) \in S_{n}$ there exists two subsets A_{1} and A_{1} of S_{n} such that $u \in A_{L_{1}}$ and $v \in A_{L_{2}}$ and $A_{L_{1}} \cap A_{L_{2}}=0$.
(ii) Identifying the two unknown elements (u,v) from the sets $A_{L_{1}}$ and $A_{i_{2}}$ separately using a separating systen.

Now, suppose that we search for these two unknown elements in the presence of noise: that is, it is possible for an error to occur. If the error ocours in stage one, that is, a subset A, is declared to contain the unknown element while it does not, then this error would be detected in the second stage while searching for the unknown element u or v in a subset in which it does not belong. If the error occurs in the second stage; that is the observed values of the functions $f_{1}, f_{2}, \ldots . . f_{m}$ at the unknown element may be in error\% then this error can be detected without being corrected
by applying single-error detecting systems, described in Section 6.2.1 of this Chapter: or the error can be detected and corrected by applying error-correcting systems described in Section 6.2.3 again of this Chapter.

Example 6.9: - Consider the partition search design of Example 4.2 in Section 4.1 of Chapter 4. The subsets $A_{1}, A_{2}, A_{3}, A_{4}, A_{5}, A_{6}$ are:

$$
\begin{array}{ll}
A_{1}=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}, & A_{2}=\left\{a_{5}, a_{6}, a_{7}, a_{0}\right\}, \\
A_{3}=\left\{a_{1}, a_{2}, a_{7}, a_{8}\right\}, & A_{4}=\left\{a_{3}, a_{4}, a_{5}, a_{0}\right\}, \\
A_{5}=\left\{a_{1}, a_{3}, a_{5}, a_{7}\right\}, & A_{6}=\left\{a_{2}, a_{4}, a_{6}, a_{8}\right\} .
\end{array}
$$

Let $\left\{a_{1}, a_{2}\right\}$ be the unknown pair of elements. Then the subsets A_{5} and A_{6} will detect the pair since $a_{1} \in A_{5}$ $a_{2} \in A_{0}$ and $A_{5} \cap A_{0}=0$. Suppose, a subset say A_{4} is erroneously, found to contain an unknown element say a_{2}, then this error will be detected without being corrected in the second stage, where the identity of the unknown element is determined. In this case, we will be trying to identify the unknown element from a set in pminh it dees not belong.

An error in the second stage, say an error made in identifyine the unknown a_{2} from A_{o} will be detected without being corrected ty applying single-error detectind syster. That is, if we apply single-error detecting system $\left\{f_{1}, f_{2}, \ldots, f_{0}\right\}$, then the intersection
of the subsets $A_{1}, A_{2}, \ldots . . ., A_{\sigma}$. where $A_{i}=f_{i}^{-1}\left(f_{i}\left(a_{2}\right)\right)$ will be either $\left\{a_{2}\right\}$ or 0 . It will be $\left\{a_{2}\right\}$ if no error is made and \varnothing if an error is made in identifying, the unknown element, a_{2} from A_{σ}.

CHAPTER 7

CONCLUDING REMARKS

In this thesis the problem of search for one unknown and two unknown elements from a set S_{n} consisting of n distinguishable elements has been studied. The study has dealt with search models which assume noiseless conditions and those which take noise into account.

Starting with the case of one untnown element in the set S_{n}, binary and non-binary separating systems which detect the unknown eleaient have been studied. Properties of these separating systeas have also been given in the thesis.

It has been shown in the study that some geometrical structures like Projective geonetries and Euclidean geometries are separating systems and therefore can be used to separate the elements of the set S_{n}. The duration of the search process for detecting one unknown element using some of trese geometrical structures has teen obiaineus.

For detecting two unknown elements from the finite set S_{n}, two designs have been constricted. These designs are 2-complete search desifn and the partition search design. The 2-complete serrch design is based on the property that the intersection of a given number of subsets of S_{n} which contain the two unknown elements consists of
the two unknown elemerits. On the other hand, a partition search design divides the set S_{n} into two parts with each part containing one unknown element. The two unknown elements are then identified separately from each part.

Two different methods of constructing 2 -complete search design have been discussed in the thesis. The two methods which are both based on properties of bslanced incomplete block designs can be described triefly as follows:
(i) The elements of the set S_{n} are identified
with the blocks and the functions
$f_{i}, f_{\bar{z}}, \ldots . . f_{m}$ are identified with the
objects of a BIB design with some specific
properties. These properties are given in
the thesis.
(ii) The elements of the set S_{n} are identified with the objects and the functions $f_{1}, f_{z}, \ldots, f_{m}$ are ideritified with the blocks of a BIB design after deleting a number of blocks. A simple formula for complting the number of biacks to be deleted is given in the thesis.

Methods of constructing partition search designs have 8 !so been discussed in the thesis. Sorie of the methods discussed are the halving and the \& $\frac{1}{x}$ - procedures. It is shown in the thesis that the $\frac{1}{3}$-procedure, which partitions the set S_{n} into
three disjoint parts, provides the best results.
Probabilities of termination of the search process after N steps, and duration of the search process for detecting two unknown elements have been derived for both the 2 - complete search design and the partition search design. Comparing the number of elements n of the set S_{n} and the expected duration of the search process, it was observed that partition search design is very economical for large values of n.

Lastly, the study has dealt with the detection of one unknown element and of two unknown elements from a finite set S_{n} in the fresence of noise. The study has attempted to obtain designs which would detect an error without correcting it or detect the error and correct it. To achieve this, systematic strategies of choosing the functions $f_{1}, f_{2}, \ldots, f_{m}$ in the case of separating systems and of choosing the subsets $A_{1}, A_{2}, \ldots ., A_{m}$ in the ciase of 2 -complete search and partition search designs has been proposed. In this strezee. \&il the functions $f_{1}, f_{2}, \ldots . . f_{m}$ and all the subsets $A_{1}, A_{2}, \ldots, A_{m}$ were systematically chosen in the determination of one untioum elemint and two unknown elements respectively. We note here that it is not possible to detect without correcting, or detect and correct an error, if only a few functions or a few subsets are choser at random to determine one unknown
element or two unknown elements.
Search models studied in this thesis have a variety of practical applications. A list of these applications is given in Chapter 1 of the thesis. We conclude by listing some problems which require further investigations:

(i)	Construction of strategies which
	determine one unknown element from a
	firite set S_{n} in the preserice of noise
(ii)	with probability $1-\varepsilon$
	Construction of economical partition
	search designs which determine more than
	two unknown elements.
(iii)	The relationship between combinatorial
	search models and probabilistic search
	models.
(iv)	Construction of random search models based
	on finite plane Projective and Euclidean
	geometries which give sharper bounds to
	the expected duration of the search
	process.

LIST OF REFERENCES

1. Blake, I.F and Mullin, R.C.(1975): "The

Mathematics Theory of Coding",
Academic Press, New York, San
Francisco, London.
2. Bose, R.C. and Nelson, R.J (1962): "Sorting

Problem", Jour. Assoc. Comput.
Machinery, 99, 282-296.
3. Bose, R.C and Koch, G.G (1969): "The design of combinatorial information retrieved systems for files with multiple-valued
attributes", SIAM J, APEl. Math,17, 1203-1214.
4. Bose, R.C. (1969): "Notes on the Application of combinatorial Theory to Design of Experiments', University of North Carolina Chapel Hill.
5. Bush and Federer (1984): "t-complete search design", Jour. of Statistical Planning and Inference, 10, 17-24.
6. Chatiravarti, I.M. and Manglik, V.P (1972):
"On random search systems
using binary systems derived
from the incidence matrices of
$P G(2,2)$ and $P G(2,3)$ ". Jour. of

Cybernetics 2, 26-27.
7. Chakravarti, I.M. (1976): "Search in the presence of noise", 8, 381-393
8. Dickson, T.J. (1969): "On a problem concerning Separating Systems of a Finite Set" Jour. of Combinatorial theory, 7, 191-196.
9. Floyd, R.W. and Knuth, D.E. (1967): "Improved Constructions for the Base-Nelson Sorting Problem", Notices Am. Math. Soc 14, 283-284.
10. Floyd, R.W. (1972): "The Bose-Nelson Sorting Problem" A survey of combinatorial theory, North Holland Publishing Co., Chapter 15, 163-172.
11. Hall, M. (1987): "Combinatorial Theory", Waltham, Mass: Blaisdell Pub. Co.
:Z. Ketona, G.O.H (1966): "On Separating System of Finite Set, "Jour.

- Combinatorial Theory, 1, 174194.

13. Koch, G.G. (1969): "A class of covers for finite Projective geometries which are related to the
design of combingtorial
filing system" Jour Comb.
Theory, 7, $215-220$.
14. Manglik, V.P.(1972): "On some strongly and weakly homogeneous binary search Systems", Jour. of Cybernetics, 2, 61-77.
15. Renyi, A. (1965): "On the theory of randon search", Bull. Amer. Soc. Vol. 71, 809-828.
16. Renyi, A. (1969): "Lectures on the theory of search", Institute of Statistics Mineo series No. 600.7, University of North Carolina at Chapel Hill, N.C. 27514.
17. Renyi, A. (1970): "On the enumeration of search-codes", Acta Math. Sci. Hungary, 27-33.
18. Tosic, R (1980): "An optimal search
procedure", Jour. of

Statistical Planring and
Inference, 4, 169-171.
19. Sebo, A. (1988): " On two random search
problems", Jour. of
Statistical Planning Inference " $11,23-31$.

[^0]: We shall denote the probability that the sequence

[^1]: which is a constant as required. Hence the proof of the levity.

