METRIC-DEPENDENT DIMENSION FUNCTIONS

Ι

BY

GEORGE OYUNGA OMAMO EPTED FOR THIS THESIS TAS BE AND A CULY TAY BE LACED IN THE N-28 THE DEGREE JE. UNIVERSITY LAURARY.

This thesis is submitted in partial fulfilment for the degree of Master of Science in Pure Mathematics in the Department of Mathematics.

UNIVERSITY OF NAIROBI

November 1985

SUMMARY OF CONTENTS

Section 0 is a review of results in general topology and basic dimension theory which are used in the sequel.

In section 1, we study the relationships between the various dimension functions. We give a proof of a result mentioned by Nagami and Roberts (Nagami and Roberts, 1967) to the effect that on locally compact metric spaces, all the dimension functions studied here coincide. We prove a lemma (lemma 1.3) which shortens the proofs of a number of results.

In section 2 we study examples which show that different dimension functions can have different values on the same metric space. We give an example of a connected subset of I² which is a union of countably many (an more than one) disjoint non-empty closed sets which shows that a lemma used by Nagami and Roberts (lemma 2.3) cannot be extended to normal (infact metric) spaces. Nagami and Roberts also show that if A_i, icN is a disjoint sequence of closed sets of Iⁿ at least two of which are non-empty, then dim $(I^n - \bigcup_{i=1}^{N} A_i) \ge n-1$. They give a sketch of a Cantor 2-manifold for which this result is not true. We give a rigorous proof of this. Nagami and Roberts have given an example of a metric space (X, ℓ) with d_2 $(X, \ell) = 2$, $d_3(X, \ell) = \mu$ -dim $(X, \ell) = 3$ and dim $(X, \mathcal{L}) = 4$. This has been the only known example

where d_2 and d_3 differ. We generalize this to examples with $d_2 \leq n-2$, $d_3 = \mu$ -dim = n-1 and dim = n for any n, n > 4.

In section 3 we study results which show that a given metric-dependent dimension function can give different values for equivalent metrics on a set. We then study realization theorems, i.e. theorems to the effect that there exist equivalent metrics to a given metric that make a given dimension function realize given values. We prove a lemma (lemma 3.4) which generalizes a similar lemma by Goto (Goto, lemma 1).

In section 4 we study more characterizations of metric-dependent dimension functions, notably Lebesgue cover characterizations. We study a weak sum theorem for some metric-dependent dimension functions.