" THE APPLICATION OF OBJECTIVE, TESTS FOR ASSESSING ACADEMIC ACHIEVENENT IN SCIENCE

Allan Cameron Ebblewhite Sanders, M.A. (Oxon)

A thesis submitted for
the Degree of Master of Education in the University of East Africa

1969
ACKIOWLEDGERTENTS
SMNOPSIS OF ASSTRACT i
CHAPTYR 1 APPRAISAL OF EXAMINATIONS 1
(a) Examinations in Britain 1
(b) Purpose of examinations 4
(c) Review of conventional examinations 7
(d) Review of objective examinations 11
(e) Educational objectives of science teaching 16
(f) Examinations in Kenya 21
CTAPTER 2 THE SCIENTIFIC ABILITIES 25
(a) Structure of abilities 25
(b) Measurement of scientific abilities 30
(c) The aim of the research 40
CHAPTER 3 THE TEST BATTERY 43
(a) Mental ability tests 44
(b) Conventional examinations 80
(c) Objective examinations 82
CHAPTYR 4 THE EXPERINENT 89
(a) Application of the tests and examinations 89
(b) Histograms 96
(c) The analysis of the Chemistry and Physics objoctive examinations 100
(d) Means, standard deviations and correlation matrix 110
(e) Reliabilities 113
CHAFTHR 5 ANALYSIS OF THE RESULTS 115
(a) Comments on the science examinations with special reference to the correlation matrix 115
(b) Significance of difference between means after grouping on the science scores 128
(c) Factor analysis 147
CHAPTER 6 SUMMARY AND CONCLUSIONS 165
(a) Correlations between ability tests and science examinations 165
(b) Comparison of abilities required for success in objective and conventional science examinations 168
(c) Abilities required for achievement in Chemistry and Physics 171
(d) Factor analysis 174
(e) Discussion 177
BIBLIOCRAPEY 182
APPINDIX 194
(a) Item analysis of the Chemistry and Physics objective examinations 195
(b) The tests and examinations 205
Page
TABLE 1 Tests, examinations and times 90
TABLE 2 Histograms 99
TABLE $3 \quad F$ and D for Chemistry objective questions 105
TABLE 4 F and D for Physics objective questions 106
TABLE 5 Item analysis of Chemistry and Physics objective examinations 109
TABLE 6 Means and standard deviations 111
TABLE 7 The correlation matrix 112
TABLIF 8 Means after grouping on Chemistry scores 134
TABLE 9 Significance of difference between means - Chemistry 135
TABLiS 10 Means after grouping on Physics scores 141
TABLE 11 Significance of difference between means - Physics 142
TABLE 12 Principal Components 148
TABLE 13 Varimax rotated factor loadings 150
TABLE 14 Correlations between Promax factors 163
TABLE 15 Second-order factors derived from the Promax factors 164
TABLE 16 Significant correlations between mental ability tests and science examinations 167
TABLE 17 Significance of difference between means: conventional vs objective examinations 170
TABLE 18 Significance of difference between means: good vs poor students 173
TABLE 19 The significant loadings of the

ACKNONLEDGEMENTS

In any research that involves people there are always many to whom thanks must go. Firstly, I would express my gratitude to my supervisor, Professor Hamed El-Abd of Makerere University College for his continual assistance and encouragement.

Others have given advice, and particularly my thanks are due to Professor P.E. Vernon for sugeestions when he visited East Africa, and for his co-operation in getting the data factorized by the Calgary computer in Canada; to Dr. J. Cavanaugh of the National Institute of Education, Uganda for his help in constructing the multiple choice questions; to Mrs. V. Harris of the Department of Zducational Psychology, Makerere, for reading some of the chapters; to Mr. C. Mann, Mathematics Department, Makerere, for his assistance in obtaining the varimax solution from the Uganda Treasury Computer, Kampala, and to Professor R.N. Curnow of Reading University for his advice with some of the statistics.

The Headmaster of Alliance High School, Kenya, kindly allowed me to use Form 2 as the sample and finally my thanks go to the students of Form 2, who were most patient and co-operative during the administration of the test battery.

Previous investigations have found certain abilities which are associated with science achievement. Ten such abilities were selected and a battery of mental tests, which measure these abilities, is chosen.

The history and development of each ability is traced and a brief description of each test is given. The sample chosen for this investigation consists of 96 students of Alliance High School, Kikuyu, Kenya. These students have completed two years of their secondary school education.

The results of the battery of mental test and science examinations are analysed in various ways. Histograms are drawn for all the tests and examinations, and corrections are made for the two tests which show skewed distributions.

An item analysis is carried out on all the questions in the objective examinations for both Physics and Chemistry. A number of questions are rejected and the scores of revised examinations are used in further analyses.

Previous investigations have found certain abilities which are associated with science achievement. Ten such abilities were selected and a battery of mental tests, which measure these abilities, is chosen.

The history and development of each ability is traced and a brief description of each test is given. The sample chosen for this investigation consists of 96 students of Alliance High School, Kikuyu, Kenya. These students have completed two years of their secondary school education.

The results of the battery of mental test and science examinations are analysed in various ways. Histograms are drawn for all the tests and examinations, and corrections are made for the two tests which show skewed distributions.

An item analysis is carried out on all the questions in the objective examinations for both Physics and Chemistry. A number of questions are rejected and the scores of revised examinations are used in further analyses.

The raw data is processed by computor and the means and standard deviations are calculated and then a correlation matrix for the twenty-nine variables is produced.

The correlations between the tests and examinations are generally positive as would be expected, but there are a number of negative correlations. Comments are made about the inter-correlations between the science examinations and individual abilities as measured by the tests. Tests of memory and word fluency abilities have no significant correlations with the science examinations. The objective examinations in science are found to have a greater number of significant correlations with the tests of mental abilities than have the conventional examinations in science.

The sample is divided into four groups according to scores on the objective and conventional science examinations, so that abilities required for the two types of examination can be compared. The means of the scores on all tests and examinations for these four groups are found and the significance of difference between the means are calculated. There are some tests whose means show a significant difference between the
group good at objective and poor at conventional examinations and the group poor at objective and good at conventional examinations. Gencral reasoning, inductive and spatial abilities are associated with success in the objective examinations, and verbal abilities favour, to a small extent, success in the conventional examinations.

It is clear that those students who are good at both types of examination have superior abilities in general reasoning, induction, and concepts of space whereas the verbal, perceptual, numerical,memory and fluency abilities are not significantly different between good and poor students in science.

Ten principal components are extracted from the data and then a Varimax solution is obtained which produces seven components which have a meaningful psychological interpretation. The only science achievement factor is the first, whichhas acontribution of variance of 26.5% and is identified as a factor of general science reasoning achievement. The other six factors are identified as II-Numerical Perceptual; III-Spatial

Orientation; IV-Verbal, Ideational, Perceptual Judgement; V-Word Fluency; VI-Verbal Comprehension; and VII-Expressional Fluency.

Two second order factors are extracted from the correlations between the Promax factors obtained. The first factor is identified as a general science scholastic intelligence factor and the second as a numerical, memory, word fluency facility.

These factor analyses suggest that the reasoning ability and general intelligence are the most important abilities for achievement in science at the academic level tested.

CHAPTER I

AFFRAISAL OF EXAMINATIONS

Kenya has inherited an educational system similar to that of Britain owing to its close ties for many years with the United Kingdom. The first secondary schools were developed under the supervision of teachers and administrators from Britain and the examination procedure was moulded on the British pattern. Thus it is appropriate to consider examinations in Britain, for developments and modifications which have taken place in examinations in Britain have also been adopted in Kenya.
(a) Examinations in Britain

It is not known when the first written examinations were set, but tradition says that there were written examinations in China some two thousand years ago. (Report, 1960). In Britain, written examinations were first used widely in the 1850's for admission to the Home and Indian Civil Service, to the Royal Military Academy and for admission to London University, and at the same time scholarships at Cambridge were thrown open to competition. In 1861 the Clarendon Commission
> recommended that examinations for Public Schools should be on competitive basis. (Report, 1960).

This new outlook led to the proliferation of examinations, and in 1868 the Report of the Schools Inquiry Commission proposed that a statutory council for examinations should be set up. From this proposal came the origin of the Oxford and Cambridge Schools Examination Board which set examinations for secondary schools. With the increase in the number of secondary schools, spurred on by the Education Act of 1902 which enabled the new local education authorities to aid and establish them, came a multiplicity of examinations at different levels and for different purposes. The Report of the Consultative Committee in 1911 drew attention to this uncoordinated growth and recommended that external examinations "should so be conducted as to assist and emphasize the principle that every secondary school should provide, for pupils up to an average age of 16 , a sound basis of liberal education which would serve as a foundation upon which varieties of further education could be based". In 1917 the Board of Education introduced two examinations; the Sobool

Certificate intended for pupils about the age of 16 , and Higher School Certificate for those two years older. These examinations were to be conducted through universities and a Secondary School Examination Council was set up to advise the Board on its function as a coordinating authority.

The Norwood Committee of the Secondary School Examination Council issued a Report in 1943 which condemned the existing examination system and recommended radical changes and their preference was for a scheme which would replace the School Certificate examination with an internal examination under the control of the teachers. The Secondary School Examination Council Report in 1947 sought to create the General Certificate of Education Ordinary level examination, an examination which would be taken after five years of secondary education. The Report (1960) of the Secondary School Examination Council recommended that a new examination, the Certificate of Secondary Education, should be set up and cater for the 20% to 60% ability range of the 16 -yєar-old age group,
which would not normally take the General Certificate of Education. This Report recommended that the Certificate of Secondary Education examinations should largely be in the handa of teachers serving in the schools, divided into about twenty regional Examining Bodies.

It can be seen that many people are aware of the importance of examinations and are seeking to find better ways of conducting these examinations, which affect the lives of large numbers of children. Alongside these changes in the system of examinations has been an enquiry into the types of examinations which are most suitable for these pupils.

(b) Purpose of Examinations

There have always been criticisms of examinations, but they have become more vocal over the past twenty years. Even as early as 1868 a Commission was set up to enquire into the examination system in Britain. This was followed in 1911 by the Report of the Consultative Committee, and in 1938 the Spens Committee was concerned by the way the School Certificate examination dominated the framework and content of curriculum.

In 1943 the Norwood Report urged that the School Certificate examinations should be replaced by an internal examination under the control of the teachers. The Report (1960) recommended that any new examination should be largely in the hands of the teachers and that regional Examining Bodies should be responsible for the setting and moderation of any examinations, internal or external.

There is no perfect examination, but they do have uses which can be summarised as follows: (Vernon, 1956. Report, 1960.)

1. They are used as tests of achievement, giving both pupil and teacher a measure of what the pupil 'knows'.
2. They are used as 'yard-sticks', to compare pupils with one another and to group them appropriately.
3. They are used to indicate to the teacher how effective the teaching is, and what is being understood by the pupil.
4. They are used to assess the efficiency of the school and its teachers in relation to other schools and teachers.
5. They are used as guides for predicting future achievement of pupils and for selection for further education and professions.
6. They are used by employers for a common guide as to the ability of prospective employees.
7. They stimulate both pupils and teachers to work harder, even on those sections of the work which they do not find so interesting. Teachers like to see their pupils do well in examinations and so put more effort into their teaching.

Vernon (1956) states that the traditional written examinations generally fail to fulfil these many different functions and considers that the conventional, essay-type, question can be considerably improved and that the new-type, objective question can be introduced with benefit.

7

Abstract

Valentine (1969) summarised the role of the Gencral Certificate Examination as (i) a model and pace-setter for what is taught and learned in schools and (ii) a measurement device for assessing the proficiency of individual students, but he concludes that the present examinations must be much improved in order to fulfil these functions.

The Report (1960) comes to the conclusion that examinations serve a useful purpose in Britain, but stresses that the examination should suit the pupils and enable them to find a place in the community most suited to their abilities.

(c) Review of conventional examinations

The conventional, or essay-type, examination is composed of a number of questions, which need twenty or thirty minutes for answering. The candidate normally is allowed to choose a given number of questions from the paper; a 2% hours examination might ask for answers to five or six questions.

That this is the best way to test subjects ranging from History to Chemistry has gencrally been accepted, except by a few educationists, until recently. Bellard (1923) strongly criticised this kind of examination and showed how unreliable the essay was as a measure of a child's ability, and how a child's work could fluctuate from week to week. Hartog and Rhodes (1935) gave instances when essays were marked completely differently by markers, but little has been done to change the kind of examinations which are set for the present General Certificate of Education.

A summary is given of the advantages and disadvantages of conventional, essay-type, examinations, which are discussed at length by many writers, e.g. Vernon (1956), Ebel (1965).

Advantazes

1. They are relatively easy and quick to set.
2. Candidates are required to express their knowledge and understanding in writing and therefore show that they can organize, plan and assemble their facts and ideas, and can present them so
```
that they can be easily followed and
understood by the examiner.
```


Disadvantages

1. They take a lone time to mark and depend on the subjective judgement of the marker. Niseman (1956) showed that three essays from each student, all marked by three markers, are required if the reliability of essays is to be comparable to the reliability of objective tests.
2. The examination can sample only a small ficld of the work covered during the course. This means that some parts are examined in detail, whereas others are ignored so that an element of chance is introduced, encouraging the candidate to guess which questions are likely to be set.
3. It is difficult to determine exactly what each question is designed to test, and different markers look for different qualities. A candidate who is poor at expressing himself verbally, may in fact have a good knowledge and understanding of the subject.

Eggleston (1965) reviews some of the deficiencies of the conventional examination. Lggleston states that we have come to accept that the conventional examinations, which demand answers written in about 20 minutes, are efficient and the only acceptable technique for measuring attainment, or at best constitute an indispensible technique, which may perhaps be augmented by short-answer questions. He continues:

```
"An effective assessment procedure, designed
    to measure attainment in secondary
    school Chemistry must ideally measure
    all the definable attainments relevant
    to such a course and sample them often
    enough to account for variations of
    performance in relation to topic and time.
    The abilities required to score high marks
    in conventional written examinations,
    even in science subjects, are predominantly
    to receive a written communication,
    selectively to recall facts and to communicate
    a written answer. Few teachers would
```

> doubt that these are important abilities appropriate to 'O' level standards of attainment in science subjects. What can be questioned, is the apparently restricted range of abilities required."

Most examinations which are designed for pupils in secondary schools are at present of the conventional type requiring essay-type written answers. Although good candidates will probably do well on any type of examination, it is suggested by a number of writore that the conventional examination is unable to measure the wide range of abilities required for particular subjects.
(d) Review of objective examinations

The objective, or new-type, examination contains a large number of specific questions requiring only a brief answer, on which all markers will agree as to the rightness or wrongness of the answer. This kind of question has been used extensively in the United States for a long time to measure attainment. Shortly after 1900, Thorndike, Binet and others devised tests to measure intelligence and Binet's Intelligence
test of 1908 and the Intelligence Examinations for the American Army in 1917 gave an impetus to objective testing in the U.S.A.

Abstract

In Britain the objective test for measuring achievement did not catch on despite Ballard's (1923) plea for its consideration, but psychologists have used them widely for testing intelligence, particularly in the $11+$ selection examinations and in Armed Forces selection. Some Examination Boards have recently introduced them into their ' O ' level examinations and the Nuffield Science Teaching Project have used them in their trial examinations.

Meyer (1936) studied methods used by students preparing for different types of examinations. He found that the type of examination affected the way in which students revised; for essay-type questions they studied to get a general view of the material, making summaries of the work covered, and for multi-choice questions the students studied to get details and underlined relevant material.

13

Cook (1936) made a comparison of results obtained in objective and essay-type examinations in Biology. He found that the objective examination was just as reliable as the essay-type, and the objective examination had a higher correlation with an intelligence test than did the essay-type examination.

A number of investigations into scientific ability have used objective examinations, Chary (1948), Lewis (1964, 1967) and there has been much discussion in the School Science Review $(1967,1968)$ and Education in Chemistry $(1965,1967)$ about the use and introduction of objective tests into the science examinations at all levels.

Although objective-type questions have been hailed as the answer in avoiding the worst defects of the conventional questions, they have in fact their weakness. The advantages and disadvantages have been discussed by many writers, e.g. Hawkes (1936) Vernon (1956), Ahmann (1962), Ebel (1965).

Advantages

1. They can be marked objectively as there is only one correct answar. They are easy and quick to mark by hand or machine and therefore can be conveniently administered to large numbers.
2. They sample the whole field covered by the course and therefore can measure as many abilities as the examiner requires.
3. A candidate cannot bluff the marker or impress him by the quality of his writing.

Disadvantages

1. The cost of duplicating or printing is high as the questions require many pages.
2. A long time is required to set the tests and they should be pre-tested if possible. There can be a subjective element in the setting of the questions, but this can be partially eliminated by using a committee to construct the questions.
3. It is sometimes said that the examination favours the quick-witted type of candidate, whose ability to think coherently and to present evidence in a clear-cut way is not tested. If the tests are highly seeded this might be the case, so enough time should be given for the majority of candidates to finish as much as they can do.
4. If alternatives are given, it is said that candidates may spot the right answer without really knowing why it is the answer. This can happen if the alternatives are not equally attractive, and a correction for guessing can be made so that indiscriminate guessing is penalised.
5. It is said that these question measure only trivial aspects of ability, such as memory, and cannot test real understanding of the subject, or a candidate's ability to interpret and organize facts or his initiative and creativity. Vernon (1956)
states that objective tests can measure
> abilities other than memory and in fact there is a danger that they require abilities over and above those which the questions are expected to measure.

There is no doubt that by thoir natare, objective questions are more reliable than the conventional questions. It is suggested that objective questions can be used to measure particular abilities and objective-type examinations can test a wide range of abilities required for any given subject. Objective questions have their woaknesses, but these can be eliminated by careful construction of the items. (e) Educational objectives of science teaching Since the beginning of the 20th Century there has been a steady increase in educational research and one of its aims has been to define more clearly the precise nature of the abilities of man. Even now psychologists have only a partial understanding of these abilities, but there have been numerous attempts to classify educational objectives, so that teaching can be channelled into useful objectives and that tests can be devised to measure the abilities which are oncouraged in learning.

Bloom (1956) divided the educational objectives into two parts:
(i) knowledge and (ii) intellectual abilities and skills. These were sub-divided as follows:
(i) Knowledge
(a) knowledge of specifics
(b) knowledge of ways of dealing with specifics
(c) knowledge of universals and abstractions
(ii) Intellectual abilities and skills
(a) comprehension
(b) application
(c) analysis
(d) synthesis
(e) evaluation.

Lewis (1967) used this framework as a basis for placing science questions into categorias for use in the tests he set to measure scientific abilities.

There have been many attempts to compile lists of the educational objectives of science teaching.

The Science Masters' Association Report (1938) made two major categories (i) the acquisition of scientific information and knowledge and (ii) the development of scientific modes of thought. Since that time there have been numerous attempts to list the catogorios of scientific ability which should be encouraged. Such attempts have been made by Greene (1953), Noll (1957), Schmab (1963), and Kessen (1964). The introduction of Nuffield science has meant that the objectives of science teaching worc stated clearly. For example the Chemistry Handbook for Teachers (1964) lists the following qualities that examinations should encourage.

1. Facility in recalling information and experience.
2. Skill in handling materials, manipulating apparatus, carrying out instructions for experiments and making accurate observations.
3. Skill in devising an appropriate scheme and apparatus for solving a practical problem.
4. Skill in handling and classfying given information (including graphical information and quantitative results).

19

5. Ability to interpret information with evidence of judgement and assessment.
6. Ability to apply previous understanding to new situations and show creative thought.
7. Competence in reporting, commenting on and discussing matters of simple chemical interest.
8. Awareness of the place of Chemistry amongst other school subjects and in the world at large.

Eggleston (1965) lists ten abilities which the Certificate of Secondary Examination board science panels intend to measure.

1. Ability to use knowledge
2. Application of facts to problem solving
3. Use of principles
4. Ability to draw conclusions
5. Ability to devise experiments
6. Ability to handle data, to classify and interpret
7. Ability to work to given instructions
8. Ability to make observations
9. Ability to use simple apparatus, skill in manipulation, experimental technique

20

> 10. Originality - ability to speculate, exercise imagination in hypothesis construction.

Lewis (1965) reviews the attempts phich have been made over the past thirty years to compile objectives in the teaching of science and states that there are three main general trends which are apparont. Firstly, therc is an increasing acknowledgement that science is an essential part of our culture, secondly there is a greater recognition of levels of development in the student i.e. the pattern of objectives will differ at each level, and thirdly there is an increasing emphasis on objectives other than memorization of factual knowledge,

Certain objectives for the teaching of science are being suggested and it is important that examinations must assist the process of learning and teaching by testing that these objectives have been achieved. Lewis concludes that multiple-choice objective types of questions can prove a valuable supplement to the traditional form of science examination.
(f) Examinations in Kenya

Entry to secondary schools has been based on an examination taken during the last year of primary schooling. This examination, the Primary Examination, has consisted of three papers. English, Mathematics and General Knowledge. Up until 1967 these papers were set in the traditional way, requiring essays and written answers. In 1968 the examination changed completely to an objective one in which the pupil had to select the correct answer from various alternatives. The large increase in the number of pupils taking the examination made it necessary to introduce the objective type examination,which could be quickly and efficiently marked by computer.

If a pupil does well enough, he may be selected to continue secondary schooling. The first secondary school for African students was founded in 1926 and the students sat the Junior Secondary School Certificate two years later. In 1940 the Cambridge School Certificate for Overseas was introduced into
secondary schools and this was taken at the end of the fourth year. Students who wished to continue education went to Makerere University College, Uganda, and sat the Higher School Certificate two years later. In 1961 African schools in Kenya were able to continue education to the Higher School Certificate standard, and students took this examination at school for the first time in 1962.

The Kenya African Secondary Schools Examination (KASSE), which was set and marked in Kenya, was introduced in 1948 for students who had completed two years of secondary education. Those who did well enough were allowed to take the Cambridge School Certificate two years later. In 1955 this examination was abolished as students were able to continue for four years and sit the School Certificate examination, making the KASSE redundant.

In 1965 the Kenya Junior Secondary Examination (KJSE) was introduced for students who had completed two years at secondary school or its equivalent. This was made necessary by the enormouti increase in the number of secondary schools following Independence in 1963.

23

Abstract

Most of these new schools were only able to offer two years of secondary education, so it was necessary to re-introduce an examination to cater for students who needed a qualification after two years of secondary education.

Over the next few years East Africa will be accepting the responsibility for the setting and marking of the School Certificate and Higher School Certificate examinations, and the East African Examinations Council will question the nature and purpose of examinations. The next years will see an increasing number of pupils in primary schools, and already objective type examinations are being tried in the Certificate of Primaiy Education. At present the Kenya Junior Secondary Examination is of the conventional type, but more objective questions are being tried. There is a great need for research in the type of question most suited to pupils at different stages and the abilities which can be measured by different types of questions.

24

Examinations in Kenya are in the process of change, and modern methods of examinations are required to cope with the large numbers of pupils with only a relatively small number of personnel available for the setting and marking of examinations.

CHAPTER 2

The Scientific Abilities

(a) Structure of Abilities

The faculties or powers of the mind have been of great interest down the centuries, but it is only relatively recently, during the past 100 years, that people have attempted to investigate them scientifically. Sir Francis Galton (1822-1911) suggested that individuals might have different intellectual capabilities and James Mckeen Cattell (1860-1944) investigated the sensory reactions. This was followed in 1904 by the construction of intelligence tests in France by Alfred Binet (1857-1911) to find pupils who were suitable for teaching. The early years of the 20th Century saw the beginning of what is known as pedagogy, through pioneers like Edward Lee Thorndike and Binet.

Before 1820 educational psychologists thought of intelligence as a collection of faculties, such as judgement, practical sense, initiative. (Vernon, 1961). School subjects or new methods of teaching were introduced because they were thought to develop a particular faculty.

For example, nature study was thought to stimulate the power of observation, or learning poetry to develop the memory (Ballard, 1923). Such mental faculties could not be directly observed or verified, so psychologists began to prefer to deal with operational or behaviouristic concepts derived from measurable activities of the human mind.

The way of measuring such abilities is by testing and if two or more tests correlate positively then the tests can be said to be measuring a distinct ability. Thus Vernon (1956) defines an ability "It implies the existence of a group or category of performances which correlate highly with one another and which are relatively distinct from (i.e. give low correlations with) other performances."

Spearman (1904) put forward a Two Factor Theory in which he postulated a general factor, g, which he suggested might depend on the general mental energy with which each individual is endowed, and specific factors, s, which he compared to a large number of mechanisms or engines which could be activated by

Abstract

this energy. He said that the specific factors were largely affected by education and training, whereas the general factor was innate and ineducable.

Thomson (1916) put forward a Theory of Bonds in which he thought of the mind as consisting of an immense number of 'bonds', including inherited reflexes, acquired habits and associations. A person's performance at any one test would involve the activation of a large number of such bonds.

Burt (1917) provided evidence for verbal, numerical and practical factors in the school subjects of children in addition to the gencral factor. Stephenson (1931) administered seven verbal and eight non-verbal tests to 1,037 girls aged $10-12$ years. The correlations of verbal tests and non-verbal tests could be accounted for by a general factor, g, and a verbal group factor. El Koussy (1935), who gave 26 tests to 162 boys aged 11-13, showed the presence of spatial factor, k, in addition to the general factor.

Vernon (1947) confirmed the importance of the general factor in his tests on Navy and Army recruits. After the removal of g, Vernon found two major group factors, the verbal-momerical-educational factor, v:ed, and the practical-mechanical-spatial factor, k:m. On further analysis Vernon found that these factors could be subdivided, the v:ed factor giving minor group factors of verbal, v, and numerical, n, and the k :m factor giving mechanical information, spatial and manual group factors. Vernon (1950) represented the relationship between these factors with the Hierarcbical Group Factor Theory which had first been suggested by Burt (1949). In this theory Burt had arranged the general factor, major group factors, minor group factors and specific factors in the form of a genealogical tree.

After 1930 the analysis of abilities in the U.S.A. took a different turn from Britain, when in 1931 Thurstone extracted a number of components from tests of attitudes and personality traits of approximately equal variance, which he explained without the need of a general factor. Thurstone (1938a) published the first
of a series of investigations into the primary mental abilities of children, and instead of using the concept of a general factor and major group factors, he proposed a series of distinct multiple factors, namely, Verbal Relations -V,Number -N, Perceptual-P, Rote Memory $-M$, Word Fluency-W, Inductive Reasoning-I, and Space-S. In later work he modified some of these factors and constructed a series of tests to measure these various factors. Most American psychologists have fo:lowed the Theory of Multiple Factors proposed by Thurstone. During the 1939-45 war and since 1945 there has been intensive research by the Armed Forces and the U.S. Employment Service into the development of aptitude tests. From their work with the U.S. Army Air Force Guildford (1956a) and his co-workers have produced a boxlike model which he calls the structure-of-intellect model. This model laceified intellectual traits along three dimensions, operations, contents and products, comprising 120 psychological factors.

(b) Measurement of science ability

One of the earliest studies of general educational abilities was carried out by Burt (1917) when he gave thirteen objective tests of achievement in various school subjects, including nature study, to 120 children aged ll+. The inter-correlations suggested that a general educational factor entered into all the subjects tested, and verbal, manual and arithmetic factors were also present.

Zyve (1927) attempted to set a Scientific Aptitude test as a diagnostic test to show the aptitute of students for training in science. He set tests of reasoning, accuracy of observation, clarity of definition and experimental bent, and obtained predictions of .74 to .95 for different branches of science, but more recent analysis show his predictions should be much lower, . 33 to .57. Earle (1936) found that reasoning problems and analogies in verbal and numerical material correlated most highly with achievement scores in science.

$$
\text { Pawley(1937) administered } 14 \text { tests to } 67 \text { 1st year }
$$ teacher training students to determine abilities

Abstract

involved in learning Chemistry. He gave apparatus assembly, arrangement, matching of substances, reasoning, spatial and mechanical tests extracting a general intelligence in verbal ability factor with 34.1% variance and also a spatial factor involving memory and manipulation of spatial concepts, and possibly a practical factor.

Among 560 Training College students Vernon (1939) found that Stephenson's non-verbal g test correlated more highly with arithmetic and science subjects than with arts subjects. Using verbal, non-verbal, American Co-operative achievement, personality and interest tests, Vernon showed three main types of ability, scientific-mathematical, arts-humanistic and practical.

To 126 boys in technical schools Berridge (1948)
set tests in the mechanics, hydrostatics and heat branches of Physics, plus 13 tests of abilities, such as vocabulary, reasoning, general intelligence, deduction, induction memory, spatial, and identified the following five factors:

1. General intelligence and reasoning. This factor was required for Physics and is similar to the abilities required for the mixed intelligence test. This factor indicated most strongly an ability to solve problems or puzzles.
2. Verbal - the ability to acquire knowledge of words. Physics was a relatively non-verbal subject, requiring less verbal ability than the mixed intelligence test.
3. Space. This was an important factor, particularly in the branches of Physics which involved principles of mechanics.
4. Mathematical - particularly evident in heat and hydrostatics.
5. Memory. This factor appears in the mechanics test, and is associated with a number factor in the hydrostatics test.

Chary (1948) gave objective tests in Physics and Chemistry plus intelligence tests to 57 boys and 50 girls in order to determine any sex difference in performance.

In his analysis for the significance of difference between the means of the boys' scores, he extracted a general factor of memory for factual attainment and a second factor associated with reasoning and problem solving. Chary suggested that his results showed that Chemistry was associated with memory and problem tests, and Physics with the general intelligence and reasoning tests.
Ellis (1949) identified a scientific factor in

School Certificate marks in Physics, Chemistry, Mathematics and Geography. Angus (1949) administered 11 teste science, the Otis Gamma Intelligence test as well as non-verbal and interest tests and suggested that intelligence played a large part in predicting success in science. Young (1948) devised tests of inference in sciencc subjects and then related them to tests of intelligence and school attainment to 501 pupils of lst - 5th Years at Scottish Sucondary Schools and concluded that intelligence is a major factor of ability to draw inferences from science experiments.

James (1950) set various tests in Biology to Fth Form boys and girls. These tests contained biological questions designed to involve abilities such as verbal memory, memory for spatial imagery, inductive and deductive reasoning and logical thinking. From the results of these tests, an intelligence test and the School Certificate marks in Biology, he extracted three factors, (1) an educational factor of ability to learn Biology (2) a logical reasoning factor and (3) a factor involving visual imagery of biological material.

Khan (1951) devised tests for accuracy of obserration, definition, classification, interpretation, application, generalisation, planning of experiments and resourcefulness, all in science, and administered these tests to 307 pupils and extracted factors of (1) general intelligence (2) verbal reasoning, and (3) visual imagery.

Jog (1955) set a battery of verbal, non-verbal, spatial and practical tests of ability as well as attainment tests in arithmetic and algebra to account for differences in the Physics performances of 150 boys.

He found that besides the general intelligence factor, factors of visuo-mechanical ability and industry werc important for attainment in Physics.

Muthulingham (1963) made a factor analysis of results obtained from 10 tests, including definitions, problem situations, reasoning, application of principles, ability to analyse, observation, physics, chemistry, attitudes towards science and interests in science, which were administered to girls in thoir 5tb Year. Mutbulingham found a general scientific ability factor which was a general factor of verbal scientific ability. This is the only factor she attempted to identify.

Lewis (1961) analysed the results of the Junior Certificate examination in English, Latin, French, History, Geography, Arithmetic, Algebra, Geometry along with three objective tests in Physics, Chemistry and Biology, taken by 173 boys in two Belfast grammar schoola. Using the centroid analysis technique Lewis extracted four factors; (1) a general factor accounting for 42.3\% of the total variance, (2) a scientific group factor independent of the mathematical subjects (3) a mathematical factor (4) a factor which separates

History and Geography from English, Latin and French. As the science examinations were the only ones to be tested by objective tests, there is a possibility that the scientific factor may have been produced by the test procedure.

Lewis (1964) followed these findings by setting a battery of tests which measured the verbal, spatial and number abilities and administered them to 307 boys and girls in their 3 rd and 4 th year at grammar schools in Belfast. Objective tests of attainmont in Physics, Chemistry and Biology were administered to the same pupils. From a centroid analysis and a rotation of the centroid factors, the following five factors wore obtained: (1) general factor G with a variance of 18.9%, (2) verbal factor V, (3) numerical factor N, (4) spatial factor S, and (5) scientific factor Sc. Lewis found that attainment in Physics, though not in Chemistry and Biology, seemed to depend to some extent on spatial ability, quite apart from the genswal and scientific factors. The verbal factor loadings on the Chemistry and Physics tests were negligibly small. The number factor had small loadings on the science tests, indicating that attainment in school science shows no appreciable overlap with the number factor.

An investigation into scientific abilities for boys at post- 'O'-level was reported by Lewis (1967). 191 boys from five schools in the Manchester area were given ten tests including verbal, numerical and spatial abilities, plus tests in physics, chemistry and biology. The science tests all contained objective questions of the multiple-choice type divided into three sections; (1) knowledge (2) comprehension and applic tion and (3) evaluation. The correlations were factor-analyzed and the four significant factors obtained were rotated in accordance with the varimax criterion. Lewis identified four factors:

1. A factor of scholastic, including scientific, achievement which had high loadings on all science tests, although the evaluation tests has the smallest loading.
2. A reasoning factor which had moderate loadings on the three science tests of evaluation, and negligible loadings on the knowledge and comprehension and application tests.
3. A factor of numerical ability, having high loadings on the number tests; the only other significant loading being on the test of evaluation in Physics.
4. A factor of verbal ability, with negligible loadings on all science tests except the test of evaluation in Chemistry.

Lewis suggests that the reason for these results may be that the instruction and training rocoivod by the testees in their ' O ' level science courses is such that their performance on the tests of comprehension and application is similar to that on the tests of factual knowledge, their performance on the tests of evaluation is noticeably different. As far as the evaluation of scientific data is concerned, the formal training received appears to be less relevant, and the performance on evaluation tests being influenced to about an equal extent by general reasonig.

Abilities required for success in science subjects have been the concern of a number of investigations over the past thirty years or so, and it is clear that a number of abilities have been recognized as being involved in the learning of science.

From these investigations the following mental factors have been identified on one or more occasions.

1. number ability, which is associated with mathematical ability, required for mathematical aspects of science,
2. reasoning ability which is required for problem solving and sceing relationships,
3. spatial ability required for manipulating and visualising apparatus,
4. Verbal abilities related to general scholastic aptitude and the understanding of verbal material,
5. memory ability connected with the ability to memorize facts, diagrams and terminology of science,
6. general intellective ability which is related to educational and scholastic success,
7. scientific ability specifically required for science subjects.

In recent attempts to describe the objcctives of science teaching (Chapter l(e) particular skills and abilities have been listed. It is possible to associate each of these objectives with particular mental abilitics.

For instance, the first quality mentioned in the Chemistry Handbook for Teachers (1964) 'facility for recalling information and experience' is clearly a memory ability for scientific facts. Similarly such skills as handling materials involve spatial abilities, and handling and classifying information require fumerical and reasoning abilities. Likewise most of the objectives listed by Eggleston (1965) an be translated into identifiable mental abilities. Application of facts to problem solving requires reasoning abilities, drawing conclusions require inductive abilities, and originality and the ability to speculate require ideational abilities.

Thus investigations into the abilities required for success in science have confirmed that science examinations can measure at least some of the educational objectives of science teaching.
(c) The aim of the research

In recent years methods of examining have undergone a major rethinking. The functions and uses of the traditional questions are being challenged and objective type questions are being reconsidered as a substitute (Vernon, 1964). In East Africa the setting and marking
of school examinations are gradually being transferred from Britain to the East African Examinations Council.

There has been much criticism of both types of examinations. The question arises as to which is the best method of examining science. Do the objective questions give a student a better chance of displaying his scientific abilities? Do the traditional type questions dcpend too much on verbal and fluency abilities? To answer such questions as these it was decided that two types of examination, conventional essay-type and multiplechoice objective type, should be set in Chemistry and Physics and an attempt should be made to discover which abilities were being measured by both types of examination.

Educational objectives of science teaching have clearly been stated and can be linked to well-known mental abilities. On the basis of the educational objectives mentioned in Chapter $l(e)$, the following abilities were selected as representing the important abilities involved in the learning of science: number, genural reasoning, induction, spacc, perceptual, memory, verbal comprehension, general intelligence, word and ideational fluencies. In addition to a battery of tests
which measure these abilities, examinations in Chemistry and Physics of the conventional and objective types were to be constructed and administered to ninetyeix students in order to test the hypothesis that "Objective type examinations measure a wider range of abilities than conventional type examinations in Chemistry and Physics at the Form 2 level in a Kenya secondary school". After administering tests of the ten mental abilities and the examinations in science it was hoped that, by using vell-known atatistical methods, it would be possible to discovor the abilities which are required for conventional and objective examinations in science, and whother in fact the objective type examination is a better method for measuring scientific abilities.

CHAPTER 3

The Test Battery

Twenty-five tests designed to measure the ten mental abilities, which had been selected as representing the important abilities in the learning of science, were chosen from various sources. Piany of the tests were taken from the battery constructed by L.L. Thurstone for use in the Chicago Tests of Frimary Mental Abilities, which were suitable for students in the age 11 - 17 years range. Other tests published in the U.S.A., particularly by the Educational Testing Service, and in Britain were selected. Some tests were constructed by the writer and by colleagues in Kenya when suitable tests were not easily available. In all tests words and phrascology were altered where necessary to suit the subjects tested.

These twenty-five tests are described under ability headings: number, general reasoning, induction, space, perceptual, memory, general intelligence, verbal comprehension, word fluency and ideational fluency. A brief history of the development of each ability is also given.

The conventional examinations and the multiplechoice objective examinations were constructed by the writar with assistance from colleagues and from the National Irstitute of Education in Uganda.

A complete copy of all the tests and examinations will be found in the Appendix.

(a) Mental ability tests

Number Ability Burt (1917) in his investigation of the distribution of abilities suggested that there was an arithmetic factor in school work. Later Kelley (1928) found the number factor. In the research on Primary Mental Abilities, Thurstone (1938a) found the number factor, N, in simple computational tests of addition, subtraction, multiplication and division. Coombs (1941) found a distinct number factor in some of the 18 mathematics tests he administered along with 16 tests of mental abilities. Wrigley (1958) who investigated the nature of ability in elemertary mathematics in school children isolated a numerical factor, in which he used the tests of addition, multiplication, subtraction and division prepared by Thurstone. French (1951) could say that the number factor is the clearest of them all' since he cited 35 analyses in which the
number factor had been found before 1951.

Two of the tests prepared by Thurstone were chosen for reference tests to measure the number ability. Both the Addition and Multiplication tests are known to have high loadings on the number ability and were found to be the best two tests in Zimmerman's (1953) reanalysis of Thurstone's data.

TEST OIADDT ADDITION

For the addition tests there are 70 sums with four numbers, between 10 and 100 , to be added. An answer is given and the subjects are required to indicate below the sum, whether it is right (R) or wrong (W)

The first and third examples are right so the subjects should mark the dots on the R line. The second answer is incorrect therefore should bc marked on the dots of the W line.

Scoring: the number correct.

$$
\begin{aligned}
& \text { Time: after a tryout on other students a time of } \\
& 8 \text { minutes was found to be sufficient to } \\
& \text { allow about } 10 \% \text { of the subjects to complete } \\
& \text { the test. }
\end{aligned}
$$

TEST O2MULT MULTIPLICATION

The multiplication test was set out in a similar way except that the subjects were given 70 multiplications of the type below. Numbers between 20 and 100 were to be multiplied by numbers from 3 to 9.

The first example should be marked right and the scend two wrong.

Scoring: the number correct
Time: 8 minutes.

General Reasoning Ability

Spearman (1927) thought that reasoning depended solely on the general factor of intelligence, g.

Abstract

Thurstone (1936b) found a factor on which the test of Arithmetical Reasoning was most heavily weighted and tentatively suggested that thie was a reasoning factor. Zimmerman (1953) re-analysed Thurstone's original data and the factor R, later called restrictive reasoning, showed up more clearly with loadings on Arithmetic Reasoning, Division, Number Series and a small loading on Vocabulary. This he compared with the general reasoning factor which Guildford (1947) had suggested. Sutherland (1941) had found that arithmetical problems required a general factor which had high loadings on Intelligence, Reasoning and Letter Series tests.

In the Army Air Forces Research undertaken by Guildford and co-workers, a factor was repeatedly found with a high loading on the arithmetic reasoning tests. They called this factor 'general reasoning' and by tryine out a number of hypotheses as to the nature of the factor (Green,et al 1953), he demonstrated that the important aspect of solving problems in arithmetic reasoning tests "has something to do with comprehending or structuring problems of certain kinds in preparation for solving them".(Guildford, 1956b).

Abstract

French (1957) also found the general reasoning factor on arithmetic reasoning tests administered in his 'Pure-Factor' analysis. Butt (1957) in his work on the reasoning abilities at adolescence found various reasoning factors including one similar to Guildford's general reasoning, with loadings on arithmetic-reasoning tests.

Vernon (1961) states that reasoning ability is one of the commoner definitions of intelligence and that if a factor g is allowed (which most of the American psychologists do not isolate) the factor g should contain the whole variance of reasoning factors.

Reasoning should be an important ability in science, and it is hoped that both the conventional examiration and the objective examination would require this ability, even though the objective examinations are criticised for testing mainly recall and memory abilities. Two tests of general reasoning were sulected, the Ballard Reasoning test comprising 100 items of simple arithmetical reasoning problems which had to be solved, and Guildford's Necessary Arithmetic Operations test which requires the subjects only to
structure the problem in preparation for solving. The Ballard test is known to have loadings on the numerical factor as does the Necessary Arithmetic operations test, although there is no computation required in the latter.

TEST O3AREA Arithmetical Reasoning
This test of 100 items was divided into three parts. Each had 33 or 34 simple arithmetical problems and a box was provided for the answer eeg. A plank 20 ft . long is laid on the top of one which is 14ft. long so that it is 2 ft . over at one end. How much is it over the other?

Scoring: 1 mark for each correct answer Maximum 100 Time: 15 minutes for each part.

TEST O4AROP NECESSARY ARITHMETIC OPERATIONS
In this test the subjects are given thirty mathematical problems with four options for solving each of them. The option required for solving was to be selected. eeg. A coat marked Shes. 40.00 was sold for Shes. 29.95 during a sale. What was the per cent reduction?

1 - divide and add,
2 - substract and divide
3 - multiply and substract,
4 - add and divide.

Scoring: Score $=$ Number right $-\frac{\text { Number irene }}{3}$
Time: $\quad 8$ minutes for each part.

TEST OTSEEP Seeing Problems
Although this test is not strictly a test
of reasoning, it is described here because it does involve reasoning as well as ideational and verbal
abilities. This test is said to measure a reasoning ability which involves seeing implications in a certain situation (Guildford, 1967). The subjects are given the nance of common objects, eff. 'candle' or 'rope' and are asked to write down, within 1 minute, five problens which occur to them when they think about the object, what it is, what it is made of, etc..

This is a common situation in science, for scientists need to go beyond the immediate experiment and try to think of the implications and problems
the experiment presents. This test may measure a students ability to predict, to visualize and suggest hypotheseз.

This test was adapted from a test produced by the Sheridan Surply Conpany and contains four sections each with three objects.

Scoring: 1 mark for each problem sugeested Time: 3 minutes for a set of three objects.

Induction Ability

Thurstone (1938a) first identified the induction factor which had high loadings on Figure Classificatior, Number Series and. Pattern Analogues. He described induction as the ability to discover the genira? rule connecting figures, numbers or letters. Sutherland (1941) also found a small factor which he called induction and compared it with Thurstone's ability for finding the rule or principle. French (1957) founc an induction factor neasured by the Letter Sets tests and Butt (1957) called one of his rcasoning factors ar induction factor which hed a high loading on the Vernon's Letters and Numbers Test.

Green, et al (1953) postulated that there may be a reasoning ability for discovering rules and principles and seeing relations, similar to Thurstone's I, but found no clear avidence for its indopendent existence, but since that time cuildford (1967) states that using his model of the Structure of Intellect there appears to be little further need for the concept of induction which can be replaced with concepts that are nore precise and richer in meaning and have ties to empiricnl referents. This does not mean that there is no such ability, but that Guildford has been able to split up this complex ability into abilities which fit his structural pattern.

Even if induction is not a 'pure' factor Butt (1957) has shown that there is a clear-cut Induction group factor in the Number and Letter Series test devised by Vernon snd showed that it could be related to success in science.

Although none of the investigations into the scientific abilitios has identified an induction factor, it seens very probable that the processes of
induction are used at all levels of science. For instance it is necessary to find the rules and principles underlying natural phenomena and to see relations between one experiment and anothir. In order to identify this ability, if possible, two tests to neasure this factor were set.

THST O5LENO Letters and Numbers

In this test which was constructed by Vernon, wherever there is a dot, there is one letter or number missing and the subjects have to find the rule or principle in order to find the missing letter or number e.g. hot cold wet dry fast slow down.. 100 baa 201cab 106 bag 543.... Scoring: 1 mark for ench correct answer Maximum 40 Time: 20 minutes

TEST 06LEST Letter Sets
This is a test to find thc set of letters which does not obey the rule of the other four. There are five groups of four letters, of which four groups are relpted by a general rule, the fifth does not fit this rule. There are 30 itens:

| e.g. NOPQ DEFL | ABCD | HIJK | UVIX |
| ---: | :--- | :--- | :--- | :--- |
| PABG SEFT | VIJ! COPD FUZG | | |

Scoring: $S=R-\frac{1}{4}$: score after correction of guessing. Tine: 7 minutes for each part of 15 itens.

Spatial Ability

Early investigations on spatial abilitics
were closely linked with work on mechenical and practical abilities. Cox (1928) found a mechanical factor, m, present in tests involving mechnnicel models, jig-sews, paper-folding and described it as 'an aptitude and mental activity underlying the comprehension of mechanical relntions'. Kelley (1928) found a spatial factor in some tests on children aged 10-16. El Koussy (1935) published results of 26 paper-nnd-pencil tests administered to 162 school boys and found a k factor and explainen it in terms of visual imazery 'the ability to obtain, nanipulate and utilize visual spatisl imagery'. Thurstone (1938a) identified a visunl spatial factor in a number of space tests. Both Dempster (1948) and Emmett (1949) found evidence for a spatial factor in school children of $11+$.

Since 1945 subdivisions of the space factor have been made by many workers including Thurstone and Guildford. Thurstone (1950) listed three factors S_{1}, S_{2} and S_{3}. S_{1} he described as 'the ability to recognize the identity of on object when it is seen from different angles' or 'the ability to visualize a rigid configuration when it is moved into different positions as in the Plags test', S_{2} 'the ability to imagine the movement or internal displecement among the parts of a configuration that one is thinking about, such as in the Cards test'.

Michael and Guildford (1957) also found three factors, SR-O-space reletions and orientation, $V_{z}-$ visualisation and K-kinacsthetic. Thurstone's Flags, Carts and Figures tests would show the first factor SR-O.

Vernon (1961) noted that the spatial ability tends to link up with the mathematical abilities at advenced levels. Peel (1948) reported that the spatiol ability is nssociated with sciontific interests.

Roe (1953) in \mathfrak{i} study with high level scientists reported thet physicists had higher scores on spatial tests than any other group of scientists Btudied. Sultan (1962) found a very strons spatial factor linked to the general factor running through his tests, both verbal and non-verbal, which sugesests thet spatial ability, rather than verbal ability, is essocinter with abstract conceptual or mathematical thinking. Snith (1967) found the first bipolnr factor of his analysis to be a spatial factor opposed to a v:ed factor, in his tests on 200 boys in technical and comprehensive schools.

As was shown in Chapter 2(b) most of the investigetions carrice out on scicntific abilities in schools rave identified a spatial-visual factor. Science requires the visualization and manipuletion of apparatus, drawing of diagran, of circuits and geniral visualization of size, and therefore there should be a factor which relates to this ability. The Flags, Cards and Figures tests, originally devised by Thurstone, yer chosen as the tests for the spatial factor.

TESTS 08FLGS Flags

This test presents the subjects with a row of five flags. The flags have a small shaded square in one corner and the flags winch are like the first flag are marked. This requires the subjects to visualize what the flags would be like if they were rotated in the plane of the page.

Below is a row of flags. Mark all flags that are like the first flag in the row

: : :

: : :

Scoring: Score $=$ No. Right - No. wrong. Maximum 60. Time: 8 minutes.

TESTS OgCRDS Cards

This is a similar test to the Flog test exert cards are used. In each row mark every card that is like the first card in the row.

Scoring: Score $=$ Right - lirone Maximum 54. Time: 8 minutes.

TEST 10FIGS Figures

This is again similar to the Flags and Cards tests. In each row below, mark every ii cure which is like the first figure in the row.
J

: : :

: : 8

H

:: :

: : :
$\because:-$

Scoring: Score $=$ Right - Wrong Maximum 54
Time: 8 minutes.

Perceptual Ability

Thurstone (1938b) claimed a perceptual factor in the battery of Primary Mental Ability tests. He found the factor in speeded tests, both verbal and non-verbal, and described it as the facility in perceiving detail that is imbedded in irrelevant detail'. Vernon (1950) made a factoring analysis of clerical tests given to 400 women service recruits and found a small perceptual factor which tended to be absorbed by the vied factor. Bair (1951) made a
factor annlysis of 17 clerical apptitude tests including number comparison and name comparison tests, and called the first factor 'Perceptual inalysis' with span and accuracy playing major parts, with highest loadings on number and mane checking tests. The second factor was a speed factor, again with high loadings on number end name comparisons. Denton and Taylor (1955) in a factor analysis of verbal and nonverbal tests, inclựing an identical nurber test, found that this first factor had a high loading on number and perceptual abilities. Sultan (1962) in a factorial study of creative thinking identified a perceptunl speed factor.

The Minnesota Clerical Test was chosen as the reference tests for this ability of parceptual speed. In the studies of Bair, Denton and Taylor, the Minnesota Clerical Tests came out with high loadings on this factor. The Name Comparison test was adapted by the writer using fifrican local names, substituted for their American original.

60

Vernon (1961) in his review of this factor states that the evidence suggests that there are factors of perceptual speed for verbal and nonverbal detail, which overlap to join verbal and spatial factors. There is evidence therefore for Ω rather unstable perceptual factor related to speed and accuracy in dealing with verbal-numerical detail as an offshoot of the verbal factor.

It was thought that tests in science might have a perceptunl-speed ability, which might be related to the attention which students give to scientific detail, both verbal and numerical. Science experiments can sometimes be wholly misunderstood if the student is not quick enough to understand the detail. It was also the ugh that the actual form of the science test may reflect this perceptual ability. To read and follow directions in multiple-choice questions nay require the ability to 'perceive detail that is imbedded in irrelevant detail' $n s$ Thurstone describcdit.

TEST 11PER:V Ferceptual iVords
This test consists of names; names of people, companies, buildings and streets and so on. If the two names nre exactly the same the subject is required to make n tick mark (\checkmark) on the line between them; if they are different, $:$ cross (x) on the line.

Thompson's Folls	\mathbf{x}	Thomson's Falls
Thakrir J.K.	X	Thakrar K.J.
Pictorial Review	\checkmark	Pictoris:l Review

Scoring: 1 merk for wach correct answer. Maximum 75 Time: 5 minutces.

TEST 12PEPN Perceptual Numbers
This perceptual test has 50 pairs of numbers and the subject is instructed to put $\%$ tick (\checkmark) on the line betveen the pairs of numbers if identical, a cross (\mathbf{x}) if different.

$$
\begin{aligned}
& 3,562,315 \quad x \quad 3,526,315 \\
& 2047.321 \quad \checkmark \quad 2047.321
\end{aligned}
$$

Scoring: 1 mark for each correct answer. Maximum 50 Tirse: $\quad 1 / 2$ minutes.

Memory Ability
Spearman (1927) adratted thot if enters into many learning and reproductive activities, but regarder retentivity as an entirely distinct mental furction. Sraith and hicDougall (1919) showed that practice in memorising producus improvement in retention and found correlations of .53 between two tests of logical memory. Thurstone (1938a) clained a distinct memory factor as found in word-number and figure recognition tests. Hoodrow (1939) also found a similar factor of memory especially in number span, digit span and word building tests. Coombs (1941) found a memory factor for mordmuber and initials tests in his factorial study of the nuinber ability and Carroll (1941) extracted a memory factor on paired associates tests, English-Turkish, Turkish-Enflish and Wore-Number. Taylor (1947) also found the memory factor in first names and nord-number tests. All of these results show a factor of rote memury, when the naterial has no meaning or associations.

Vernon (1961) points out thet this kind of memory is not that which is tested by teachers and suys that memory refers to so many different things. Investigations have been mado to sub-divide the memory factor anc Kelley (1954) suggested three memory factors:
(i) rote memory for words and numbers, (ii) meaningful memory for related material (iii) span menory for grasping numbers and letters at a sinble presentation. Thurstone (1951) adjed two nore factors to his rote nemory for paired associates $M-1$, an $M_{-2} 2$ factor, memory for pictures and geometrical design, ne an $\mathrm{M}-3$ factor, keeping in mind some perceptual detail.

Guildford (1956a) found thet memory was one of the operation categories requirer for classifying intellectunl factors n nd in his Structure of Intellect Model there are 24 cells in the memory matrix, of which Guildford (1967) claims to have demnstrated 14 of them. This confirms the views of other invetigations that the factor of memory is complex.

It is not yet clear exactly what kind of memory is required for recalling scientific knowledge. Guildford's definition of memory ns the ability for the retention or storage with some degree of availability of information in the same form it was committed to storage and in connection with the same cues with which it was learned' suggests that scientific memory can only bc testeत with scientific material.

The memory factor has been found in a number of previous investigations of scientific ability. Pawley (1937) extracted a spatial factor involving memory and manipulation of spatial concepts. Chary (1948) sugjested that ability in Chemistry was associnted with memory for equations and experiments. Berridge (1948) extracted a small memory factor in the nbility for school Physics, and James (1950) found a factcr for memory of a visual kind for words and diagrams in the learning of Biology.

TEST 130BMR Object-Number Test
This is a test devised by Thunstone and requires the subject to nemorize the number which is associated
with an object, eeg. desk, chair etc. This is a paired associate test, which has been found to have a high loading on the rote memory factor. There are two sub-tests which each have 15 objects and numbers. The subject h :s 3 minutes to memorize the number associated with each object; then he has 2 minutes to write down the number against the objects listed on another page. eeg. tree 58
post 65
Scoring: 1 mark for each correct answer. Maximum 30 Time: 10 minutes.

TEST 14FCMR Picture Memory

This test was designed by the writer to try to test memory associated with pictures of everyday objects, $\in \cdot$ E. book, ruler, spectacles. Twenty pictures were drawn on the page and the subject had two minutes to recognize ans. remember their names; he then had $1 \not / 2$ minutes to $w r i t e$ down as many as he could recall. This would be a test of 'intermediate' memory, associated with pictures which might be relevant to the kind of memory required to recall diagrams and apparatus in science experiments

Scoring: 1 mark for ench correctly named object Time: $\quad 3 / 2$ minutes.

General Intelligence

Until the 1930's most psychologists tested
intellisence by means of verbal problens, on the grounds that the highest achievement of man's intellicctual powers was reached through verbal symbols and concepts. Stephenson (1931) found that the correlations between seven verbal and eight non-verbal tests were accounted for by a single factor, which he identified with g. Smith (1964) makes a plea for the measurement of intelligence with non-varbal tests and criticizes many local educntional nuthorities for relying too much on verbal intelligence tests for the ll+ selection.

It has been found that nearly half the communality of many group verbal intelliegence tests consists of the verbal ability, v, rather than g, although the non-v.rbal tests will be have loadings on spatial abilities. Butt (1957) has found that Vernon's Letters and Numbers test is a good measure of \mathcal{E}, and Vernon (1961) points out that the g-variance can be reiuced
on intclligence tests by coaching and practice.
is might have been expected many of the investigations on scicnce ability have produced a general factor associated in some way with the factor of general intelligence, e.g. Lewis (1964) extracted a general factor with a variance of 1.8 .9 \% of the total variance, suggesting that g has a lerge influence on ability in science.

Irvine (1966) in his experiments in Rhodesia found a general factor g, in his 26 tests with 1600 fifican primiry school children and concluded that "what is called intelligence may, in Africa, be at this point in social history, far more a product of education than in western societies, and the variance in an intelligence test score may owe more to environmental influences, at present, than to any other source." Vernon (1967) found that tests given to African primary school children in East Africa did not produce different results than in western schools provided the kinds of tests used were made familiar before testing.

150TIS General Intelligence
An intelligence test based mainly on verbal
 As the Letters ned Numbers test had already been incorporated, it was hoped that both verbal and non-verbal intelligence could be tested. Er?ucetion in Kenya has largely been dependent on verbal-educational abilities, the $v: e d$ factors, that it was thought the Otis test mould be a good measure of general intelligence. The test was checked for unfamiliar words and altered to make it applicable to the subjects. This test is mainly based on verbal relations and analogies, but also includes sone non-verbal-numerical questions. e.g. Food is to the body as (?) is to an engine. l. Wheels, 2 fuel, 3 smoke, 4 motion, 5 fire.....() One number is wrong in the following series. what number should it be?

$$
16263364656 \ldots \ldots()
$$

Scoring: 1 mark for each correct answer. Maximum 75 Time: 30 minutes.

Verbal Comprehension

Verbal ability is usually inextricably bound up with education and with Alexander's X-factor of industriousness and interest (Vernon 1961). As the past and present type of education lays so much importance on verbal abilities, it is not clear what is being measured. Sometimes it is thought of as verbal reasoning which has a high loading on general ability, and sometimes it is thought to be measured by etraightforward vocabulary tests.

Burt (1917) suggested a verbal factor in reading, which would now be regarded as the v:ed factor by British psychologists. Kelley (1928) and Stephenson (1931) found a significnnt verbal finctor in tests of vocabulary, sentence completion and verbal analogies. Thurstone (1938a) claimed a verbal reaftions factor, V, found in tests dealing with ideas and meanings of words. Thurstone (1948) divided this factor into three parts, V - understanding of verbal materinl best measured by vocnbulary tests, : fluency in finding words and F - ideationel fluency with words.

Morgin (1956) found a verbal factor best measured by tests of vocabulary and also found a verbal comprehension factor. Sultar (1962) isolated V using Thurstone's voc?bulary test.

Other researches have identified a verbal factor associated with the use of words in context of writing nnd reading. In an investigation into problem solving in arithmetic, Sutherland (1941) found a verbal factor involving the use of words in arithmetic problems. Rogers (1953) fron his tests on verbal fluency found as his first factor a general factor associated with a verbal-educational factor. Denton and Taylor (1955) also found a general factor of verbal ability in the fnctor analysis of mental abilities. Although they included tests for word fluency,ideational fluency and verbal comprehension, they did not have a vocabulery test. Morgan (1956) fcund a minor factor of verbal comprehension found in reading and writing sentences, and Vernon (1962) found in a study of verbal tests that there were various types of comprehension.

Heinonen (1963) found that the first factor in an investigation to differentiate Primary Hental Abilities at different ages was a factor of verbal comprehension for the ages 13 - 15.

It seems thereforc, thet there is more than one ability present in verbal testa. There is the ability to understand the meaning of words measured by vocabulary tests, which Thurstone claims would measure verbal ability in the wider context, and then the ability tc understand words in the context of senterces, paragraphs, and the production of fluent writing. The latter ability might be calleत 'verbal comprehension'.

It was decideत to set tests for both these abilities to discover if they hore any relation to students' ability in science. Conventional examinations require the ability to communicate verbally and therefore require verbal abilities. Objective examinations require the students to read and comprehend the questions and to extract relevant material from them, but requires no nbility to commicate on paper. It was thought that there may be some distinction between these abilities on the different types of examinations.

Therefore the following tests were set, all except the vocabulary, being set and arranged by the English Department of Alliance High School.

TEST 20V0CB Vocabulary
This was adapted from the vocabulary test constructed by Thurstone. The subjects are required to mark which has the same meaning as the first word in a row of five words. .
e.g. Mark the word which means the same as the first word in the row:
quite blue still tense watery
defective concealed mythical faulty external

Scoring: 1 rask for each correct answer.
Time: 20 minutes.

TEST 16EMPR Expression and Comprehension
This test consisted of three paragraphs in answer to questions about the piece.
egg. Use two sentences to describe how the loot is divided between the tribe.

Scoring: Maximum 22 marks for accuracy and relevance. Time: $\quad y_{2}$ hour.

TEST 17COMP Comprehension

This test consisted of two paragraphs from 'Elephant Bill' by Coly. Williams. There were 8 multiple-choice questions, each with four alternative answers and the subjects were required to select the best alternative.
e.E. The most important characteristic of the young elephants we learn of from the first paragraph is their:
(a) intelligence
(b) greed
(c) naughtiness
(d) shyness.

Scoring: 2 marks for each correct answer
Time: $\quad 1 / 2$ hour

TEST 18ESSY Essay
A choice of nine titles was given and 1 hour was allowed for the essay. The subjects were warned to reread the essay and check for mistakes.

Scoring: Maximum 40 marks. The essay was marked by an experienced English teacher, who looked for relevance, fluency and Accuracy of English.

TEST 19SENT Sentence Structure
The first question required the subjects to rewrite eight sentences according to the instructions given.
cog. The coffee wasn't of a good grade so it could not be exported.
(Rewrite usirg.....enough .. and omitting...so)

The second question asked the subjects to join
two given sentences by using one of the sentence connectors nevertheless, consequently, moreover, therefore, however. There were five pairs of sentences.
e.f. She is rich. She is unhappy.

Scoring: 2 marks each for correct answers in the first question. 1 mark each for correct answers in the second question.

Time: $\quad 1 / 2$ hour.

Word Fluency

From his battery of primary mental abilities Thurstone (1938a) found an additional factor to his verbal relations, V, and identified it as a factor which required the production of words at speed under easy restrictions, e.g. words beginning with s. This was identified as word fluency, W. In his revised analysis Zimmerman (1953) found that this factor separated from V, which is concerned with ideas and meanings of words. Carroll (1941) found a factor A, which was similar to Thurstone's W, and Taylor (1947) claimed three fluency factors, one of which was similar to Thurstone's W. In his work on verbal abilities in primary school children, Morgan (1956) found a fluency factor in addition to the verbal factor. Shousmith (1958) also extracted a general fluency factor in his tests with primary school children. He called it a general fluency which he defined as 'a general facility or quickness with words and in writing and involved the facility of association with little or no reference to meaning and was analogous to Thurstone's W'. Sultan (1962) used Thurstone's tests of First Letters and Prefixes and extracted a word fluency factor with high loadings on these tests.

From this evidence there seems to be a well-defined factor of word fluency which requires the production of words with little reference to their meaning. It was thought that the conventional type examination in science may require this facility so three tests were used. They were Thurstone's well known tests of First Letters, Prefixes and Suffixes.

TEST 21LETT First Letters

The subject is required to write down as many words as time permits all beginning with the same letter egg. s

Scoring: 1 mark for each different word
Tine: 4 minutes.

TEST 22 PRFX Prefixes
The subject is required to write down ns many words as possible all beginning with the same prefix egg. CON-.

Scoring: 1 mark for each different word
Time: $\quad 4$ minutes

The subject is required to write down as many words as the time permits ending with the same suffix e.z. -TION

Scoring: 1 mark for each different word Time: 4 minutes.

Ideational Fluency

In a factorial study of fluency in writing Taylor (1947) claimed to have distinguished three fluency factors, one of them being a fluency associated with naming of classes of things, eeg. naming of round things, or blue objects. This he called ideational fluency. Thurstone (1948) also identified an ideational factor. Other minor factors of ideational fluency were found by Carroll (1941) in 42 tests of verbal ability; Rogers (1953) in 26 tests of verbal fluency, and by Morgan (1956) in his work on verbal abilities in primary school children. Shousmith (1958) found a similar factor to Thurstone's ideational fluency, F, in his investigation of fluency in essay writing of those children about to leave primary school. His tests included intelligence,
vocabulary, essay, categories and theme. He defined this factor as the 'facility in using ideas chiefly in the verbal context'. Guildford (1967) describes it as a divergent-production ability, in which the subject is required to produce lists of things or ideas on topics with little restriction. Sultan (1962) found ideational fluency factor with high loading on his 'Topics' test.

It mas thought that scientific ability might require the ability to produce ideas in the written form. Classification is an important aspect of science, e.g. acids, metals, so the Categories test wis chosen. The kind of ability required in the Theme test, where the subject is required to write as much as he can about a single topic, was also chosen, although it was thought that this kind of ideational fluency would not be required at this level of science, where there is little scope for 'free' fluency writing.

Both the Theme and Categories test were adapted from those published by the Educational Testing Service.

In this test the subjects are asked to write
a few paragraphs about two given topics eeg. 'a parcel',
'a locked door'. They are asked to include as many
ideas as possible, and write as much as they can within the time allowed.

Scoring: 1 mark was given for any idea related to the topic

Time: $\quad 4$ minutes for each topic.

TEST 25CATG Categories
This is a test to see how many things, which are alike in some way, the subjects can name in the time allowed, e.g. how many things that are always red or that are red more often than any other colour. Scoring: 1 mark for each thing, which is correct for the category.

Time: $\quad 3$ minutes for each part.
(b) Conventional Examinations

These were designed to be the kind of examinations which any pupil at the end of Form 2 in a secondary school might have to take. Care was taken to see that the questions were typical of conventional examinations, by reference to previous examinations and by experience of the kind of question set in the Cambridge School Certificate on these particular topics.

26 CHCN Chemistry Conventional

The course covered included the usual topics in a two-year course of Chemistry. It might be summarised as follows:

Mixtures, compounds and physical methods of separation.

Chemistry of air an water.
Acids, alkalies and salts.

Metals and nonmetals; their differences of properties Preparation and properties of oxygen, hydrogen carbon dioxide and chlorine.

There were six questions from which four were to be chosen and answered in $1 \frac{1}{2}$ hours. Each question carried the same mark of 25 .

Ti SST 27PHCN Physics Conventional
The Physics course covered the basic ideas of the usual topics, and in some inst ness only a brief introduction was given. The following topics were treated at some length:

Mechanics, hydrostatics, light and heat and the following were treated briefly:

Sound, electricity and magnetism.

It was hoped that the conventional examination could have included parts of all these topics, but it was pointed out by the Physics teacher that the students had spent the previous two terms on mechanics and light and therefore would not be familiar enough with the other parts to justify questions on them. If the students had been told just b fore the exaanimation that it would include all aspects of the physics covered in the first two years, then it was thought that the answers to these questions would merely test how quickly the students could relearn and memorise work which had been taught over a year presviously. Therefore it wis decided just to examine those two sections in which they were recently taught.

Six questions were set from which four were to be chosen and answered in $1 / 2$ hours.

(c) Objective ixaminaticns

Questions in an objective examination have only one correct answer. There are many types of questions which fulfil this condition, e.g. true/false items, simple recall one word answers, multi-choice items, matching items, rearrangement items. These have been discussed at great length by many wiiters e.g. Lindquist (1951), Vernon (1956) Ahmann (1962) Furst (1958)Nelson (1958) and Educational Testing Service (1963)

It has been pointed out by Vernon (1962) that it does take a little time for students, who are unfamiliar with new-type tests, to learn how to tackle this kind of question. Vernon found that British students improved their performances in new-type examinations as they became more familiar with this kind of test. For reasons such as this, it was decided to restrict the type of question to 'multiple-choice', so that the students would not be put off by the form of question. Also the students
had become familiar with multiple-choice question in their English studies, and the writer had also included some in previous science tests. Another advantage was that some of the ability tusts were in the form of multiple-choice questions.

After deciding that the questions would all be in the form of multiple-choice, a first draft of the questions was prepared. Many books and objective examinations, prepared in the U.S.f., were consulted. An attempt was made to cover as wide a range
of topics and abilities which the students could be expected to have covered. No attempt was made to put questions into categories, such as information, comprehension, analysis, synthesifs and evaluation as suggested by Bloom (1956), because not enough was known about what individual questions measured, but an attempt was made to cover as many as possible of the abilities listed as educational objectives of science teaching. Use was made of the classification suggested by Nelson (1958) who gave the following kinds of items:

Recall, Recognizing and appraising assumptions Problem solving

Evaluating hypothes s
Experimental tests of hypotheses
The Chemistry Handbook for Teachers (1964) contained some questions which were adapted for use in the Chemistry examination. The Examinations Bulletin No. 8(1965) suggested that one important scientific ability involved interpretation of data in tabular form, in graphical form, in diagramatical form and an attempt was made to include this kind of question.

An expert at the National Institute of Education, Uganda looked through the first draft of the questions and made some valuable comments on the wording and content of the questions. Unfortunately it was not possible to try out these questions beforehand as there was no parallel group of students available for testing.

TEST 28CHOB Chemistry Objective
This contained 60 items to be answered
in $11 / 2$ hours, which was found to be sufficient time for
most students to complete the paper. The more difficult items were spread throughout the paper, although the first eight questions tested mainly recall to give students a good start.

The multiple-choice questions were constructed, keeping in mind the educational objectives of science teaching, and the abilities which were considered to be important in the learning of science. Although it is difficult to classify the questions precisely into different categories, questions were constructed with the following categories in mind:

1. Recall. This is one of the simplest forms of questions, testing the subject for memorisation of the knowledge and experience gained e.g. Q. 5
2. Problem Solving This is a very important mental activity for the study of science, requiring many abilities but mainly reasoning and induction abilities. e.g. Q. 43
3. Interpretation of data. Science requires the handling and manipulation of information with particular emphasis on the number and reasoning abilities.e.g. 38-41
4. Evaluating hypotheses. Science progresses through the formulation and testing of hypotheses, requiring reasoning, induction and general intelligence abilities.
e.g. Q.23-34
5. Recognising and appraising assumptions.

The scientist must be able to think logically and see when certain assumptions are made. Abilities which might be relevant are the reasoning, inductive, and verbal abilities. e.g. Q. 46 - 51
6. Experimental test of hypotheses. Scientific laws are discovered by the continual testing of hypotheses and this requires spatial, perceptual, ideational abilities as well as abilities of reasoning. e.g. Q. 22
7. Comprehension. A scientist has to be able to understand written material and be able to communicate his findings. All written questions require some degree of verbal ability and comprehension. eng. Q. 9-10.

In this way, it was considered that the questions covered most of the knowledge and understanding which students at this level of academic achievement in science might be expected to have reached.

The knowledge required for the objective examination was the same as for the conventional examination, being the work covered in the first two years of secondary school course in Chemistry.

TEST 29PHOB Physics Objective
This examination contained 55 items to be answered in $11 / 2$ hours which was in fact sufficient time for most of the students to complete the paper.

It was decided to examine the same kind of abilities as tested in the Chemistry objective examination. It has been mentioned that the conventional Physics examination covered only light and mechanics, but it was necessary to include questions on hydrostatics, heat, sound and electricity on the objective paper because not enough questions were available on mechanics and light. The Physics teacher was consulted about this and agreed that all the questions on the
paper should be in the ability range of the subjects. It was thought that although the two Physics tests covered different limits of knowledge, the range of abilities required would be fairly typical for the different types of examination at this academic level.

Questions were constructed bearing in mind the educational objectives of science teaching and the abilities considered to be important in the learning of science. Categories of questions, similar to those set for the Chmistry objective examination, are as follows:

```
Recall, e.g. Q,3.6.
Problem solving, e.g. Q.33
Interpretation of data, e.g. Q 10, 13
Evaluating hypotheses, e.g. Q 24, 27.
Recognizing and appraising assumptions, e.g. Q 28-32
Experimental test of hypotheses, Q 53 - 55
Comprehension, Q 20-23.
```


CHAPTER 4

The ixperiment

(a) Application of the Tests and Examinations

The Tasts and Examinatione

The 25 Ability Tests and 4 Chemistry and Physics Examinations were administred to 96 stucents of which 94 completed all tests and examinntions. A list of the tests and examinations, with the times allowed for each, are given in Table 1, page 90.

The subjects

It was necessery to decide at what level to hold this experiment. The school chosen was Alliance High School, Kikuyu, Kenya, where the writer had been a teacher for six years at the time of the experiment. The class of students chosen were in their second year (Form 2) of secondary education and the experinent was held during the third term of the academic year in 1966.

Reference	Name	Time
O1ADDT	Addition	8 min .
O2MULT	Multiplication	8 min .
03AREA	Artthmetical Reasouing	$3 \times 15 \mathrm{~min}$.
04AROP	Necessary Arithmetic Operati	$2 \times 8 \mathrm{~min}$.
O5LEINO	Letters and Numbers	20 min .
06LEST	Letter Sets	$2 \times 7 \mathrm{~min}$.
OTSEEP	Seeing Problems	4×3 min.
08FLGS	Flags	8 min .
09CRDS	Cards	8 min .
10FIGS	Figures	8 min .
IIPERW	Perceptual Words	5 min .
I2PERN	Perceptual Numbers	$13 / 2 \mathrm{~min}$.
130BMR	Object. -Number Memory	2×5 min.
14 PCMR	Picture Memory	$31 / 2 \mathrm{~min}$.
150TIS	General Intelligence	$1 / 2 \mathrm{hr}$.
16EXPR	Expression and Comprehension	$1 / \mathrm{hr}$ 。
17COMP	Comprehension	\%hr.
18ESSY	Essay	1 hour
19SENT	Sentence Structure	\% hour
20VOCB	Vocabulary	20 min .
21LETT	First Letters	4 min .
22PRFX	Prefixes	4 min .
23SUFX	Suffixes	4 min .
24 THME	Theme	$2 \times 4 \mathrm{~min}$.
25CATG	Categories	$2 \times 3 \mathrm{~min}$.
26 CHCN	Chemistry Conventional	$11 / 2$ hour
27 PHCN	Physics Conventional	$11 / \mathrm{hr}$.
28 CHOB	Chemistry Objective	I/2 hr 。
29PHOB	Physics Objective	l/ $/ \mathrm{hr}$.

Alliance High School is an extra-provincial school, founded in 1926, which draws its pupils fron all over Kenya. In order to be considered for entry into Form 1, the pupils must have completed seven or eight years of primary education and have passed the Kenya Primary Examination (now the Certificate of Primary Education). In most cases this means that pupils who enter Alliance are near the top of the class in their Primary schools, and so it is considered that Alliance High School gets as good an entry as possible. It was decided to choose the students who had reached Form 2, because they had completed two years in the School, in the same class, doing exactly the same subjects. They had not been 'streamed' but were placed in three parallel classes all of equivalent standards, and for most subjects were taught by the same tcachers. Form 3 was considered, but rejected because it had been streamed for science and this would limit the scope of any experiment. Form 2 also happened to be the level at which the new examination, the Kenya Junior Secondary Examination, was to be introduced in 1967, making the end of the second year a recognized examining stage.

Each of the three classes had 32 pupils making a total of 96 pupils. Students in Kenya are on an average older than those in highly developed countries, due partly to the longer time required for primary school and partly to the later start to their school life. The ages of the pupils ranged from 16 to 19 years and the average age was 18.0 years. There were 24 tribes represented taken from all parts of Kenya. Although to enter Alliance High School, marks in the K.P.E. must have been similar for all students, the kind of teaching and standard of education in the primary schools would have varied widely, but with two years at Alliance High School one would have expected that these different educational environmental differances would be eliminated to some extent, as all 96 pupils have equal opportunities for two years. There are four years of schooling to the Cambridge School Certificate, so that the end of Form 2 represents the half-way stage. Subjects studied in Form 2 are English Language and Literature, History, Geography, Religious Knowledge, Mathematics, Physics, Chemistry, Biology, Swahili, Art, Music and Handwork.

Physics, Chemistry and Biology are taught as three separate subjects by different teachers, but generally the same teacher teaches all three classes in that subject.

The Procedure

The Science examinations were taken during the normal end-of-year school examinations in November as part of the school examination routine. These examination marks went towards a total mark which determined the final class position of each pupil. The science marks were used to divide the class into three streams for the sciences in the following year. Thus the pupils knew that these examinations were important and therefore all would be expected to do their best.

The mental ability tests were taken during October and November. The Headmaster of the School kindly allowed the writer to use three periods of about two hours each on Saturday mornings, when the classes would have normally attended a school talk by the Headmaster, and one two-hour period in the afternoon after the examinations were completed. Tests 16-19 were taken as part of the end-of-year English examination. Pupils who missed any of the tests through illness, or other reasons, were asked to complete the tests during an evening private study period.

The purpose of the experiment was explained to them in outline and the cooperation was very good. The kinds of tests were new to them and a great interest was shown in the novelty of the tests, and a great deal of trouble was taken over explaining how each test should be answered, so that everyone knew exactly what to do. There was no evidence of confusion over the instructions and the writer was satisfied that they were done to the best of their ability. The whole sample was tested at the same time in one large room (the dining hall) and care was taken to supervize properly with the help of three or four senior students. The times of some of the tests were altered to suit the speed of working of the students, but all students were allowed exactly the same time. 94 students completed all the tests and examinations and these scores were used in the analysis of results.

The marking

All the tests, except the English tests No. 16-19
and the Physics conventional examination No. 27 were either marked by the writer or under his direct supervision.

The English tests were marked by the English teachers and the Physics conventional examination was marked by the Head of Physics. The raw scores were transferred to a large sheet of paper and recorded against the name of each student.

(i) Histograms

The raw scores for the subjects were tabulated and histograms were constructed to check for normal distributions. The limits for the intervals were selected so that there were between seven and ten class intervals. In the diagrams of the histograms the base is labelled with the score intervals rather than the exact limits (Garrett 1966). Thus, the first interval in the histogram of Test 1 actually begins at 14.5, the exact lower limit of the interral, and ends at 22.5 , the exact upper limit of the interval. As all scores on the tests were in units, this means that the interval 15-22 includes all the scores of $15,16,1$ 17, 18, 19, 20 and 21.

All of the histograms, with the exception of Flags Test 08 and Figures Test 10 , show approximately normal distributions. Some of them show 'taile' either at the low end of the scale or at the high end. Tails at the high end of the scale are particularly noticeable in the tests which require the subjects to write down their answers, expressing ideas in words or continuous prose, e.g. Test 07 Seeing Problems, Test 18 Essay, Test 22 Prefixes, Test 24 Theme, suggesting that a few subjects excel at this kind of ability. There is also a tail at the high end for botr the Chemastry and Physics objective examinations, probably because there are a few subjects who are very good at this kind of science examination. Test 03 Arithmetical Reasoning and Test 04 Necessary Arithmetic Operations show low tails in their histograms, indicating that some subjects are particularly poor at these reasoning tests.

Test 08 Flags and Test 10 Figures were both negatively skewed indicating that many of the subjects found little difficulty with these two spatial tests.

It is interesting that the Test 09 Cards has an approximately normal distribution which shows that this test was found to be much more difficult than the other two spatial tests. This may be due to the fact that the cards have more complicated shapes than the flags or figures, and there are two or three aspects of shape which must be considered before getting the correct answer.

The histograms for the Test 08 Flags and Test 10 Figures were normalized by changing to a C-Scale which is based on the normal distribution, as suggested by Guildford (1956c) in which the top 1% scores 10 , the next 3% scores 9 , the next 7% scores 8 , down to the last 1% which scores O. Both the original and normalized histograms have been drawn.

TEST OZMULT
MULTIPLI CATION

TEST O4AROP
NECESSARY ARITHMETIC OPERATIONS

TEST OMCRDS
CARDS

TEST OEFFLGS FLAGS - NORMALISED

TEST IOFIGS FIGURES - NORMALISED

PERCEPTUAL NUMBERS

TEST IAPCMR PICTURE MEMOFY

$99(h)$

TEST ISOTIS OTIS INTELLIGENCE

TEST 1 GEXPR
EXPRESSI ON AND COMPREHENSION

TEST ITCOMP COMPREHENSION

TEST 18ESSY ESSAY

TEST ROVOCB VOCABULARY

$99(k)$

TEST 2ZPRFX PREFIXES

TEST 24THME

TEST 2SCAT6
CATEGORIES

ITPMCN PNYSICS CONVENTIONAL

TEST 28 CHOP CHEMISTRY OBJECTIVE - REVISED

TEST 29PHOB PHYSICS OBJECTIVE - ORIGINAL

TEST 29PHOB PHYSICS OBJECTIVE - REVISED

(c) The analysis of the Chemistry and Physics objective

Examinations

It was not possible to pre-test the items on the objective examinations, 80 an item analysis of each question was carried out in order to determine the facility level and the discrimination value for each question. If the item did not reach certain standards, the item was removed from the examination leaving the good items, which were then re-scored to give the subjects a new score on a revised examination. These new scores for the revised objective examination were those used in the analysis of the results.

Chemistry

The whole sample of 96 subjects was divided exactly into sixths for the item analysis, as sugeested in Examinations Bulletin No. 3 (1964). The number of subjects who answered each item correctly i.e. the frequency, was counted and the results represented as in Figure 1. The facility level, F, which expresses the difficulty of the questions, was the percentage of subjects who gave the correct answer to the items.

The discrimination values, D, which express how effectively the items discriminate between the best and poorest subjects, mees the differences between the proportion of correct answers in the top third and bottom third of the subjects.

Question 2 was considered to be a fairly good item especially in the view that only one in the top sixth answered wrongly and only two of the bottom sixth ans甲ered correctly. The Facility Level of 60% is good, as also is the Discrimination value of 0.50 .

In order to decide which items to discard the
following points were taken into consideration:

1. The general shape of the diagram, which should show a graducl diminishing of right answers from the top sixth to the bottom sixth. The diagram should not show any exaggerated results for any of the sixths.
2. The facility level should not be too low or too high. If the value was between 30% and 70% this was acceptable, but the range was extended down to 20% and up to 80% if other considerations were acceptable.
3. The discrimination value should be jetween 0.30 and 0.70 , but again discrimination values down to 0.20 were acceptable if the item was acceptable in other considerations.
4. The item itself must not have shown any peculiarities, such as baving alternatives which were in fact possible answers. If the item was considered to measure a valuable ability or skill, even though the facility level and discrimination value were low, provided the general shape of the diagram was consistent this item would be allowed to stand. e.g. Q16.

18 items on the Chemistry objective examination failed to measure up to this standard and therefore were discarded. A new score, based on the 42 'good' items,was calculated according to the fornula: Score $=$ No. right - No. Wirong.

The item analysis was repeated using these revised scores to divide the students into sixths and new discrimination values (D ') were obtained, which are shown in the Table 3. Generally the discrimination values shows improved values, as would be expected when the poor items are eliminated. An example of the change in the diagram of item analysis is given for Question 2 in Figure 2.

```
Frequency of corruct cnaswers
```

Figure 2

Facility Level (F)	$=60 \%$
Original Discrimination Value (D)	$=0.50$
Revised Discrimination Value (D^{\prime})	$=0.56$

The dotted line indicates the revisud item analysis which shows a better gradation of correct nswers. The discrimination value has increased slightly from 0.50 to 0.56 .

Physics

An item analysis for the Physics Objective examination. was carried out in a similar way to the Chemistry examination. The subjects were divided into sixths according to their scores in the Physics objective examination and the diagrams were drawn, From these were calculated the Facility Level and Discrimination Value of each item. The same consideration of 1. gen-ral shape of diagram
2. facility level
3. discrimination value
4. nature of the item
were considered and it was decided to discard 23 items leaving 32 'good' items fron which the revised scores were calculated. A revised item analysis was carried

F - Facility Level
D - Discrimination Value for item in original examination D' - Discrimination Value for item in revised examination
I in the D^{\prime} column - item not included in revised examination

Itom	F	D	D'	Item	\underline{F}	D	D'
1.	24	. 41	. 41	31.	47	. 66	. 72
2.	60	. 50	. 56	32.	78	. 28	. 25
3.	63	. 38	. 34	33.	21	.19	. 12
4.	27	-. 03	X	34.	26	.16	X
5.	41	. 22	I	35.	82	.31	.25
6.	51	-. 09	I	36.	77	. 31	. 28
7.	42	. 38	.44	37.	42	. 28	. 31
8.	64.	. 19	. 25	38.	70	.16	. 22
9.	69	. 44	. 59	39.	80	. 03	x
10.	73	. 34	. 38	40.	37	. 12	.22
11.	80	. 06	x	41.	75	. 00	x
12.	48	. 31	. 31	42.	75	. 19	. 25
13.	50	. 49	. 38	43.	33	. 44	. 50
14.	52	. 12	x	44.	47	. 19	. 22
15.	60	. 38	. 38	45.	22	.34	. 28
16.	23	. 31	. 38	46.	82	. 22	. 28
17.	51	. 47	. 50	47.	83	. 06	x
18.	49	. 25	. 28	48.	65	. 22	. 22
19.	13	. 04	X	49.	45	. 34	. 23
20.	40	. 25	. 23	50.	44	. 19	. 19
21.	41	. 50	. 50	51.	60	. 25	. 22
22.	32	. 15	X	52.	73	. 41	. 34
23.	64	. 06	x	53.	60	. 34	. 34
24.	30	. 00	X	54.	23	. 06	x
25.	56	. 50	. 47	55.	79	. 34	. 34
26.	46	. 06	X	56.	63	. 44	. 47
27.	75	. 28	.25	57.	63	. 47	. 44
28.	38	. 53	. 53	58.	89	.13	X
29.	69	. 13	x	59.	56	. 28	. 25
30.	66	. 28	. 4.4	60.	67	. 13	X

F - Pacility Levol
D - Discrimination Value for item in original examination
D' - Discrimination Value for item in revised examination
x in the D^{\prime} column - item not included in revised examination

Item	F	D	D'	Item	F	D	D'
1.	75	. 19	. 19	29.	41	. 53	. 53
2.	61	. 22	. 25	30.	18	-. 07	x
3.	44	. 41	. 38	31.	85	. 19	X
4.	63	. 16	x	32.	90	. 19	x
5.	12	. 12	X	33.	15	. 03	X
6.	98	. 06	X	34.	44	. 38	. 28
7.	81	. 04	X	35.	18	. 10	x
8.	38	. 41	. 34	36.	43	. 03	x
9.	84	. 22	. 28	37.	79	.16	. 19
10.	54	. 10	. 22	38.	36	. 56	.63
11.	22	. 28	. 25	39.	41	-. 07	X
12.	44	. 12	X	40.	34	. 16	. 22
13.	51	. 31	. 31	41.	19	. 03	\mathbf{x}
14.	68	-. 07	x	42.	70	. 41	. 47
15.	90	. 08	X	43.	44	. 44	. 44
16.	20	. 19	X	44.	14	-. 03	X
17.	33	. 34	. 38	45.	40	. 09	. 03
18.	73	. 34	. 34	46.	28	. 16	. 22
19.	88	. 12	\bar{x}	47.	54	. 41	. 44
20.	70	.19	. 19	48.	23	. 16	I
21.	55	-. 07	x	49.	46	. 44	. 44
22.	65	. 22	. 16	50.	67	.38	. 44
23.	43	. 59	. 59	51.	54	. 38	. 41
24.	78	. 19	. 16	52.	19	-. 03	X
25.	41	.19	.19	53.	52	. 31	. 34
26.	77	.25	. 28	54.	37	. 44	. 38
27.	63	.10	x	55.	06	. 00	\%
28.	55	. 50	. 56				

Abstract

out using the 32 good itenis and new discrimination values (D^{\prime}) were found. Table 4 shows the Facility Level (F), the original Discrimination Value (D) and the revised Discrimination Value (D^{\prime}) of each item.

Effect of the revision on the science objective

examinations

When the poor items are discarded from a test the whole test should improve, for poor items do not adequately distinguish between the best and poorest students. The scores on the revised test should be a better reflection of achievement. To find out if the science examinations had improved overall in this revision, the facility levels and discrimination values of the whole examination, before and after revision, were calculated. This was done in two ways for both Chemistry and Physics; firstly using the average score calculated from the total number of items correctly answered (R), and secondly from the average score calculated from the correction for guessing formula, $S=R-\frac{W}{n}-1$,
in which $R=$ number of items right
W - number of items wrong
$n=$ number of alternatives for the items.

Origizal Revised
 Examination Examination

Chemistry
(i) using scores R

F $\quad \underline{D}$
$55 \quad 0.26$
$55 \quad 0.34$
$\begin{array}{lllll}\text { (ii) using scores S } & 42 & 0.33 & 40 & 0.44\end{array}$
Physics

| (i) using scores R | 50 | 0.21 | 53 | 0.33 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| (ii) using scores S | 38 | 0.26 | 39 | 0.43 |

The revision hes hardly affected the facility levels, which have values of about 50% when the average scores calculated from the total number of items answered correctly (R) are considered. This is the value usually recommended for science tests. The discrimination values of the original examinations were low, 0.20 to 0.33 , but the revised tests show much better values. The discrimination values are over 0.40 when average scores after correction for guessing (S) are used. This value is slightly below the value of 0.50 generally recommended, but this may be accounted for by the homogeneity of the sample tested.

The diagrams for these item analysos are shown in Table 5. The revision has not changed the general

TABLE 5 OVERALL ANALYSIS OF SCIENCE OEJECTIVE EXAMINATIONS ORIGINAL EXAMINATION REVISED EXAMINATION
TEST 28CHOB LuEMHTRT DONECTNE
(i) averace abre cacownted froar Total nurnec comeeary anduered (R)

0

(ii) Av eract scope CALCMATED FREM Foprluch Fap coprection of Guessing
(s)

TEST 29PH0B

parsics objective
(i) AuErace score calculated from total number correctay
answered (R)

(ii) Avprage score calculated froom formula for correctron of
guessing (S)


```
shape of the diagrams, but they do show that there
is a gradual diminution from the top sixth to the
bottom sixth in the avcrage scores.
```

(d) Means, Standard Deviations and Correlation Matrix

The raw scores were punched on to cards and the
1500 IBM computor at the I.C.L. Building in Nairobi
was instructed to print out the means and standard
deviations for cach of the 29 variablcs (tests)
and the product-moment coefficients of correlation
between all of the 29 variables.

Table 6 gives the means and standard deviations and Table 7 shows the correlation matrix.

Table 6
NAMES OF TESTS, MEANS AND STANDARD DEVIATIONS OF TESTS

Reference	Name	Mean	S.D.
OlADDT	ADDITION	42.7	11.7
O2MULT	MULTIPLICATION	47.1	9.7
O3AREA	ARITHMETICAL REASONING	64.9	10.1
O4AROP	NECESSARY ARITHMETIC OPERATIONS	16.2	3.9
O5LENO	LETTERS AND NUWBERS	23.7	5.2
06LEST	LETTER SETS	27.5	9.6
O7SEEP	SEEING PROBLEMS	28.2	8.5
08FLGS	FLAGS	5.1	2.0
O9CRDS	CARDS	21.6	11.7
10FIGS	FIGURES	5.1	1.8
11 PERW	PERCEPTUAL HORDS	51.7	11.6
12PERN	PLERCEPTUAL NUMBERS	36.5	6.1
$130 B M R$	OBJECT-NUMBIR MEMCRY	18.6	5.9
14PCMR	PICTURE MEMORY	14.8	2.4
150TIS	GENERAL INTELLIGENCE	56.9	6.5
16EXPR	EXPRESSION AND COMPREHENSION	13.3	3.9
17COMP	COMPREHENSION	11.1	2.6
18ESSY	ESSAY	19.7	3.6
$195 E N T$	SENTENCE STRUCTURE	14.8	3.4
20VOCB	VOCABULARY	31.2	6.1
21LETT	FIRST LETTERS	50.1	11.1
22PRFX	PREFIXES	26.0	5.6
23SUFX	SUFFIXES	21.8	5.0
24THME	THEME	22.7	6.0
25CATG	CATEGORIES	22.6	6.1
26 CHCN	CHEMISTRY CONVENTIONAL	52.5	15.1
27 PHCN	PHYSICS CONVENTIONAL	39.3	10.5
28СНОВ	CHEMISTRY OBJECTIVE	17.9	8.4
29PHOB	PHYSICS OBJECTIVE	12.6	6.1

TABLE 7

TESI	01	02	03
O1ADDT	-	62	30
O2MULT	62	-	38
03AREA	30	38	-
04AROP	26	31	45
05LENO	11	20	46
06LEST	03	23	51
07SEEP	-04	03	30
08FLCS	00	10	19
09CRDS	04	16	29
10FIGS	09	15	25
11PERW	24	35	26
12PERN	39	44	27
130BMR	25	25	18
14PCMR	11	14	13
150TIS	-01	10	47
16EXPR	07	12	15
17COMP	-07	13	25
18ESSY	24	21	24
19SENT	-09	-16	25
20VOCB	-01	09	11
21LETT	08	10	08
22PRFX	27	17	15
23SUFX	17	16	08
24THME	12	06	06
25CATG	-07	-03	23
26CHCN	17	35	48
27PHCN	10	30	29
28CHOB	04	19	52
29PHOB	-07	02	41

| 04 | 05 | 06 | 07 | 08 | 09 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 |
| :--- |

	11	03	-04				24				01	07	-07	24	-09	-01	08	27		12	-07	17	10		-07
31	20	3	03	10	16	15	35	44	25	14	10	12	13	21	-16	09	10	17	16	06	-03	35	30	19	02
45	46	51	30	19	29	25	26	27	18	13	47	15	25	24	25	11	08	15	08	6	23	48	29	52	41
	38	35	27	20	26	09	33	25	13	-02	40	02	31	10	24	17	06	03	10	19	10	43	36	36	19
38	-	59	32	32	38	28	31	27	14	18	53	28	17	26	14	-08	11	-11	-07	11	18	40	29	52	35
	59	-	23	19	27	11	24	17	03	18	51	13	20	22	20	10	14	-01	15	15	32	40	35	50	38
27	32	23		07	15	04	36	18	-01	10	35	11	22	12	34	12	20	06	12	40	39	28	07	29	7
20	32	19	07		64	58	12	11	12	01	18	15	25	09	06	-02	5	-29	0	-03	01	18	21	26	9
26	38	27	15	64		60	18	16	28	08	28	16	26	21	17	01	06	-23	-01	09	04	22	25	38	31
	28	11	04	58	60		17	15	19		06	08	11	06	-01	-08	12	-23	04	01	05	15	34	33	27
	31	24	36	12	18	17	-	57	24	28	25	17	22	17	21	11	12	-03	17	41	23	21	25	24	03
25	27	17	18	11	16	15	57	-	21	16	21	14	10	05	08	-04	06	-06	12	17	14	12	09	06	-05
13	14	3	-01	12	28	19	24	21			00	14	-06	22	-04	-10	14	09	04	-04	-01	02	03	03	01
22	18	18	10	01	08	12	28	16	15		03	-13	-11	12	-16	-17	7	-08	05	19	10	01	06	00	8
	53	51	35	18	28	06	25	21	00	03		10	44	23	26	27	14	-03	01	10	28	43	30	5	37
	28	13	11	15	16	08	17	14		-13	10		10	24	10	-11	07	9	-04	0	-05	05	14	25	4
	17	20	22	25	26	11	22	10	-06	-11	44	10		07	32	29	18	-03	-03	05	14	24	22	35	8
10	26	22	12	09	21	06	17	05	22	12	23	24	07	-	10	10	18	03	09	08	04	26	15	32	7
24	14	20	34	06	17	-01	21	08		-16	26	10	32	10	-	00	04	-04	06	24	18	23	07	35	35
	-08	10	12	-02	01	-08	11	-04		-17	27	-11	29	10	0	-	10	10	25	8	15	28	13	17	
	11	14	20	05	06	12	12	06		-	14	07	15	18	04	10		32	35	08	17	06	15	12	19
	11	-01	06	-29	23	-23	03	-06		-08	03	-19	-03	03	-04	10	32		31	-04	11	07	13	-03	1
	-07	15	12	00	-01	04	17	12	04	05	01	-04	03	09	06	23	35	31		13	04	14	13	-01	0
	11	15	40	-03	09	01	41	17	-04			00	05	08	24	08	08	-04	13		32	08	10	15	09
	18	32	39	01	04	05	23	14	-01	10		-05	14	04	18	5	17	1	04	32	8	08	06	21	34
	40	40	28	18	22	15	21	12	02	O		05	2	26	23	28	06	07	14	08	08		37	70	44
	29	35	07	21	25	34	25	09	03	06		14	22					13				37		46	29
	52	50	29	26	38	33	24	06	03	00	52	25	35	32	35	17		03	-		21	70	46		63
	35	38	27	29	31	27	03			08	37	14	28	17	35	1	19	O1	0	O	34	4	29	63	

(ब) Reliabilities

There are various methods for finding the reliabilities of tests, (i) test retest, (ii) alternate or parallel forms, (iii) split-half technique (iv) rational equivalence.

It was not possible to retest the subjects or to set parallel test, so the method of rational equivalence was chosen to find reliabilities where the form of the test made possible this method, egg. for objective tests in which the answers score either l or 0. The formula used to estimate reliabilities was that derived by Richardson and Kuder, Formular 20, which is given by Garrett (1966) as

in which

$$
\begin{aligned}
r_{11}= & \text { reliability of the } \\
& \text { whole test } \\
n= & \text { number of items in } \\
& \text { test } \\
\sigma_{t}= & \text { standard deviation } \\
& \text { of the test scores } \\
M= & \text { mean of the test } \\
& \text { scores. }
\end{aligned}
$$

CHAPTER 5

ANALYSIS OF THE RESULTS

(a) Comments on the science examinations with special reference to the correlation matrix

The abilities required for science examinations are discussed with particular reference to their correlations with the tests selected to measure these abilities.

Garrett (1966) states that for 92 observations (i.e. 92 subjects) the correlation coefficients must be at least 0.267 to be significant at the 1% level, and at least 0.205 to be significant at the 5% level. In the discussion which follows, correlation coefficients of 0.27 or greater will be regarded as significant at the $\mathbf{1 \%}$ level and are underlined, and correlation coefficients from 0.21 to 0.27 will be regarded as significant at the 5% level.

Number ability

Exams Pests	Chemistry		Physics	
	Conv.	Obj.	Conv.	Obj.
Addition	17	04	10	-07
Multiplication	35	19	30	02

It can be seen that only the correlations between the Multiplication test and the conventional science examinations are significant. It would be expected that the Addition test would have similar correlations because both tests have similar loadings on the number ability. That it is not so may be explained by the fact that the Multiplication test has higher correlations with the reasoning, induction and perceptual tests, indicating that the correlations with the conventional examinations are perhaps duc to these other abilities rather than a pure number ability. This result does g1ve support to Vernon's view (1961) that the number ability is linked to the scientific-methematical abilities, particulary in the conventional cxaminations, but the low correlations of the Addition test with science examinations agree with Lewis (1964, 1967), who found that achievement in science was almost independent of the number ability.

General Reasoning ability

Exams	Chemistry		Physics	
Tests	Conv.	Obj.	Conv.	Obj.
Arithmetical Reason-	48	52	29	41
ing	$\underline{23}$	36	36	19
Necessary Operations	$\underline{43}$	26		

All the correlations are significant at the 1% level, except for that between the Necessary Arithmetic Operations test and Physics objective examination. The correlation between the two reasoning tests io .45 which is fairly high considering that one test requires number computation and the other requires only the selection of the correct method for solving an arithmetical problem.

The correlations show that the reasoning ability is necessary for all the science examinations, perhaps to a greater extent in Chemistry than in Physics. Berridge (1948), Chary (1948), Angus (1949) and James (1950) have all shown that the reasoning abilities play a large part in scientific achievement.

Tests Exams	Chemistry Conv.		Obj• Physics	Conv. Obj•
Seeing Problems	$\underline{28}$	$\underline{29}$	07	$\underline{27}$

The correlations are just significant at the 1% level except for that with the Physics conventional examination. The Seeing Problems test has highest correlations with the Theme and Categories tests, 0.40 and 0.39 respectively. This indicates that the Sceing Problems test requires ideational abilities. The Seeing Problems test has significant correlations with both reasoning tests. The correlations show that the Chemistry and the Physics objective examinations have a dependence on this test, sugesting that the abilities required for seeing problems are related to achievement in science, particularly in the objective examinations.

Induction ability

Exams	Chemistry		Physics	
	Conv.	Obj。	Conv. Obj,	
Letters and Numbers	$\underline{40}$	$\underline{52}$	$\underline{29}$	$\underline{35}$
Letter Sets	$\underline{40}$	$\underline{50}$	$\underline{35}$	$\underline{38}$

All the correlations are significant at the 1% level showing that the induction ability is required in all science examinations as measured by the Letters and Numbers and Letter Sets tests. There is a slight increase in the correlation from conventional to objective, suggesting that the ability is more relevant in the objective examinations. The ability to find the rule or principle is more apparent in the objective paper, presumably because the subjects are required to eliminate alternatives, which is similar to the operatinns in the Induction tests. This confirms the work of Vernon (1961), Butt (1957) and Young (1948) who all suggested that induction was related to success in science courses. Up to the present time no clear induction factor has been isolated from investigations into science ability. This ability is probably absorbed by the reasoning and general factors and this can be appreciated from the inter-correlations between the tests of induction and the tests of reasoning and intelligence abilities.

Tests	O3AREA	O4AROP	150 TIS
Letters and Numbers	$\frac{46}{21}$	38	53
Letter Sets	21	35	51

All of these correlations are highly significant, showing that the abilities measured do overlap. Spatial Ability

	Exams	Chemistry		Physics	
Tests	Conv.	Obj.	Conv.	Obj。	
Flags	18	26	21	$\underline{29}$	
Cards	22	38	25	$\underline{31}$	
Figures	15	$\underline{33}$	$\underline{34}$	$\underline{2 ?}$	

The spatial ability seems to be a fairly independent ability having low correlations with other ability tests. The only test to have a correlation of over . 30 is the Letters and Numbers test of induction. This indicates that spatial tests require the same kind of ability to find the rule or principle in the configuration of the flags, cards and figures.

The objective science examinations all have correlations significant at the 1% level except for that between the Flags test and the Chemistry Objective, which just misses this significance. level.

This indicates that the spatial ability is associated more with the objective examinations and only slightly with the conventional. Chemistry and Physics objective examinations have similar spatial content, but the Physics conventional examination is more highly correlated with the spatial tests, having two correlations significant at the 5% level and one at the 1% level. This agrees with the findings of previous investigations by Berridge (1948), Jog (1955), Lewis (1964) and Smith (1967) all of whom found spatial factors in Chemistry or Physics.

Perceptual ability

Exame		Chemistry		Physics	
Tests	Coniv.	Obj.	Conv.	Ob,j.	
Perceptual words	21	24	25	03	
Perceptual numbers	12	06	09	-05	

None of these correlation is significant at the 2% level, although the perceptual words test has three correlations significant at the 5% level with the science examinations.

The perceptual ability, to appreciate the accuracy of letters and numbers at speed, does not seem to be particularly linked with success on science examinations, although the correlations with the Perceptual Words test does indicate that this ability may be slightly connected with success in the conventional examinations. It is interesting to note that the highest correlation of the Perceptual Words test is 0.41 with the Theme test, and this may indicate an ability to write words in a meaningful situation at speed, hence the link with the conventional examination.

The Perceptual Numbers test has correlations with of .39 and .44 with the Addition and Multiplication tests respectively, and as the number ability had only low correlations with the science examinations, the low correlations of the Perceptual numbers test would be expected as Denton and Taylor (1955) found that the number and perceptual factors were associated. Memory ability

Exams Tests	Chemistry		Physics	
	Conv.	Obj.	Conv.	Obj.
Object-Number	02	03	03	01
Picture	01	00	06	08

Abstract

The correlations are all nearly zero, indicating that this kind of 'intermediate' memory is not relevant to success in science examinations.

Small memory factors have been found in a number of previous investigations into scientific abilities, e.g. Berridge (1948) who found a smell memory factor in Physics, Chary (1948) who found that Chemistry was more associated with memory than Physics, but Guildford (1967) states that there are numerous memory abilities. In fact the inter-correlation between the two memory tests is as low as 0.15 suggesting that these two types of memory are very different. If there is a memnry ability relevant to science, it is probably the long-term type which requires associative recall, rather than the meaningless memory as in the Object-Number test and visual picture memory required in the Picture test.

General intelligence

Exams	Chemistry		Physics	
Test	Conv. Obj.	Conv. Obj.		
General ence	$\underline{32}$	$\underline{32}$	$\underline{30}$	37

This test has fairly high correlations with all the science examinations and particularly with the Chemistry. The objective examinations are more highly correlated with the Otis test, showing that general and verbal reasoning abilities are an important part of this type of examination. The Otis test has high correlations with other ability tests, particularly with the tests of general reasoning and induction. It seems that general intelligence is an important factor in achievement in science, as was claimed by Angus (1949).

Verbal comprehension ability

Exams	Chemistry		Physics	
Tests	Conv.	Obj.	Conv. 0 Obj.	
Expression	05	25	14	14
Comprehension	24	35	22	$\underline{28}$
Essay	26	32	15	17
Sentence Structure	23	35	07	35
Vocabulary	$\underline{28}$	17	13	11

The correlations of the verbal comprehension tests are generally higher with the objective examinations than with the conventional. It has been generally assumed by the critics of the essay-type questions that these questions depend too wuch on verbal ability and writing facility, but these tests do not support this view, for it is the objective examinations which correlate more hizhly with the comprehension, the essay and sentence structure tests.

There is a possibility that the higher correlations between the science objective examinations and the Comprehension test may be due to the objective multiplechoice form of question in the Comprehension test (Vernon, 1956), but this cannot explain the high correlations with the Essay and Sentence Structure tests which
require the subjects to express themsclves in writing.

The only correlation significant at the 1% level for the conventional tests is between the Chemistry conventional examination and the Vocabulary test. As this Vocabulary test is regardedasa reliable measure of verbal ability, Thurstone, (1938a) Zimmerman (1953), a reasonable importance should be attached to this correlation, which suggests that verbal ability is related particularly to the Chemistry conventional examination.

Word fluency ability

Exams	Chemistry		Physics	
	Conv.	Obj.	Conv. Obj.	
First Letters	06	12	15	19
Prefixes	07	-03	13	01
Suffixes	14	-01	13	00

As there are no significant correlations with the word fluency tests, it seems that the ability to produce words with little or no reference to their meaning is not associated with science achievement.

The word fluency ability is generally independent of vther abilities showing negative correlations with many tests and particularly with the spatial tests.

Ideational fluency ability

Tests	Exams	Chemistry		Physics
	Conv.	Obj.	Conv.	Obj.
Theme	08	15	-10	09
Categories	08	21	06	34

The only correlation significant at the 1% level is that between the Categories test and Physics Objective examination, although that with the Chemistry objective is significant at the 5% level. This suggests that the ability to classify and to relate iaeas is more evident in the objective than the convontional examinations.

Science examinations

Exams	Chemistry	Physics		
Exams	Conv.	Obj.	Conv. Obj.	
Chemistry conventio- nal Chemistry objective Physics conventional Physics objective	$\underline{70}$	-	$\underline{47}$	$\frac{37}{4}$

As would be expected, all the correlations are significant at the 1% level, the highest correlation being between the Chemistry conventional and objective examinations, and the lowest between the Physics conventional and objective examinations. The Chemistry and Physics objective examinations are more highly correlated than the two conventional examinations.

The abilities required for the various examinations are obviously different and an attempt to discover the abilities are required for success in the science examination will be made in the section (b).

(b) Significance of difference between means after

 grouping on the science scoreThe aim of the research is to test the hypothesis that objective examinations test a wider range of abilities than conventional examinations. It seemed particularly relevant to attempt to find out what caused some students to do well in conventional examinations and poorly in objective examinations and vice versa. If two science examinations are reliable, one would expect that most candidates would do either well or
poorly at both types of examinations, but in practice many students do well at one type and poorly in the other. Is it oossible to relate these performances with performances in the ability tests, i.e. is it possible to find that if one group of students is better in conventional examinations it is also better at reasoning tests, for example, or those better at objective examinations are also better in spatial tests?

The subjects were divided into four groups based on the scores in the Chemistry examinations, in the following manner:

Group A - subjects with high conventional marks/high objective marks

Group B - subjects with high conventional warks/low objective marks

Group C - subjects with low conventional marks/high objective marks

Group D - subjects with low conventional marks/low objective marks.

The means of the scores on all the tests were calculated for each group and the difference between the means of Groups B and C and of Groups A and D

Abstract

was tested for significance. The same procedure was carried out with Groups based on scores in the Physics examinations.

Statistics

According to the Null Hypothesis (Garrett, 1966) there will be no significant difference between two means unless they differ from each other by a certain amount, which is determined by finding the Critical Ratio, CR, which is equal to the difference between the means, D, divided by its standard error, of $C R=\frac{D}{\sigma_{D}}$. For large samples, if the $C R$ is ± 1.96 or larger, the null hypothesis is rejected at the .05 level on the grounds that not more than once in 20 repetitions of the same experimont would a difference as large as, or larger than, that found arise - if the true difference were zero. If the CR $= \pm 2.58$, or larger, the null hypothesis can be rejected at the . 01 level.

When the N's of two independent samples are small (less than 30), the fraction $\frac{D}{S E_{D}}$ is equal to t, whose significance can be tested in a similar way, using the Table of t (Garrett, 1966, p.461). The standard error of difference ($S E_{D}$) is calculated for both samples combined.

The standard deviation (SD) when the two small
independent samples are pooled $=\sqrt{\frac{\Sigma\left(x_{1}-M_{1}\right)^{2}+\Sigma\left(x_{2}-M_{2}\right)^{2}}{\left(N_{1}-1\right)+\left(N_{2}-1\right)}}$
and the standard error of difference $S E_{D}=S D \sqrt{\frac{N_{1}+N_{2}}{N_{1} N_{2}}}$
and $t=\left(M_{1}-M_{2}\right)-0$
$S E_{D}$
in which X_{1} and X_{2} are the scores in the two samples M_{1} and M_{2} are the means of the two samples N_{1} and N_{2} are the numbers in the two samples

It was decided that if the null hypothesis could be rejected at least at the $\quad 10$ level, the levels of significance would be recorded, although it was thought that the .05 level would be needed to be really significant in this experiment.

Tables 8 and 10 give the means of the four groups for Chemistry and Physics, and Tables 9 and 11 give the standard error of difference $S E_{D}$, the t value, and level of significance for the test with means reaching the required level of difference.

Chemistry grouping

The subjects were divided into four groups accordiag to their scores on the two examinations in Chemistry.

Group A consisted of 31 students, who scored 53 marks or more in the conventional examination and 18 marks or more in the objective examination. The means of the two examinations were 52.5 and 17.9 and it was found that these scores represented the median, dividing the top half of the students from the bottom half.

Group B consisted of 15 students, who came in the top half (scored 53 or more) in the conventional examination, but who came in the bottom half (score less than 18) in the objective examination.

Group C consisted of 9 students who came in the bottom half of the conventional, but who came in the top half of the objective examination.

Group D consisted of 39 students who came in the bottom half in both Chemistry examinations.

> Group B and C are small owing to the high correlation of .70 between the two examinations.

TARLE 8 Means after grcuping on Chemistry scores

TEST	GROUP A	GROUP B	GROUP C	GROUP
O1ADDT	44.1	41.9	40.9	42.3
Ocmuli	49.8	48.1	43.4	45.6
O3AREÁ	70.1	62.3	71.7	60.4
04AROP	17.7	15.9	17.3	14.9
O5LENO	26.8	20.9	25.1	22.1
06LEST	32.8	24.8	30.0	24.1
O7SEEP	30.6	27.1	27.2	27.0
08FLGS	5.7	4.7	5.8	4.7
O9CRDS	25.9	17.9	26.8	18.5
10FIGS	5.8	4.5	5.6	4.7
IlPERW	54.6	50.5	49.3	50.1
12PERN	37.0	35.5	37.3	36.2
130BMR	18.8	18.2	19.9	18.3
14PCMR	14.7	14.8	13.8	15.0
150TIS	59.9	56.3	57.6	54.5
16EXPR	14.5	11.7	13.9	13.0
17COMP	11.7	11.4	10.9	10.5
18 ESSY	21.1	18.3	18.7	19.5
19SENT	15.9	14.0	16.2	13.8
20VOCB	31.9	34.7	30.0	29.6
21LETT	51.2	51.1	45.6	49.5
22PRFX	26.2	26.3	27.7	25.4
23S0FX	21.8	24.4	19.7	21.1
24THME	23.3	22.4	22.8	22.4
25CATG	23.3	22.6	24.2	20.1
26 CHCN	66.8	60.8	48.1	39.1
27 PHCN	45.7	36.7	39.1	35.4
28СНов	26.9	14.7	22.1	10.9
29 PHOB	16.5	11.3	17.3	9.0

TABLE 9 Significance of difference between means CHEMISTRY Table of t_{1} (Garrett, 1966). Where no value for $S E_{D}$ has buen given, the mean difference is not significant.
Groups B and C
SE $\quad \underline{\text { sig }}$
03AREA 04AROP

O5LENO 06Lest 07SEEP -8FLGS

OMCRDS
lofigs
IIPERW
I2PERN
l30BMR
14PCMR
150TIS
16EXPR
17COMP
18ESSY
19SENT
20VOCB
21LETT
22PRFX
23SUFX
24 THME
25CATG
$26 \mathrm{CHCN} \quad 3.16 \quad 4.02 \quad 0.01$ 27 PHCN
28снов
29PHO

1.37	5.42	0.01
1.84	3.26	0.01

Groups A and D

$S E_{D}$	\underline{t}	sig.level
		-
2.32	1.81	0.10
2.17	4.47	0.01
0.93	3.03	0.01
1.20	3.90	0.01
2.18	3.99	0.01
2.17	1.67	0.10
0.47	2.15	0.05
2.72	2.73	0.01
0.40	2.76	0.01

$1.54 \quad 3.50 \quad 0.01$
$0.77 \quad 1.94 \quad 0.10$
$0.65 \quad 1.92 \quad 0.10$
$0.89 \quad 1.79 \quad 0.10$
$0.79 \quad 2.66 \quad 0.01$
$1.34 \quad 2.39 \quad 0.02$
$\begin{array}{lll}2.17 & 12.8 & 0.01\end{array}$
$2.45 \quad 4.20 \quad 0.01$
$1.18 \quad 13.5 \quad 0.01$
$1.27 \quad 5.910 .01$

Significance of difference between means of Groups B and C
It would be expected that there would be a significance of difference between the means of Groups B and C in the tests of mental abilities which contribute more to achievenent in the conventional examination than the objective examination, or vice versa.

The means of Group C are significantly better than the means in Group B in the following tests:-

	Level of significance
03AREA Arithmetical reasoning	0.05
05LENO Letters and Numbers	0.02
09CRDS Cards	0.10
28CHOB Chemistry objective	0.01
29PHOB Physics objective	0.01

These results indicate that those subjects who do better at the objective examination in Chemistry, do better at the Physics Objective, Arithmetical Reasoning, Letters and Numbers and Cards tests. This suggests that the reasoning, induction and spatial abilities are required more for the objective examination than for the conventional.

The means of Group B are significantly better than the means of Group C in the following tests:

2OVOCB	Vocabulary	Level of significance
23SUFX	Suffixes	0.05
26CHCN	Chemistry conventional	0.05

Those subjects who do better in the conventional
Chemistry examination also do better at the Vocabulary and Suffixes test, suggesting that the verbal and word fluency abilities are more associated with success in the essay-type paper.

It is interesting to note that there is no significance of difference between the means of any of the tests which measure number, perceptual, memory, or ideational abilities. These do not seem to be required for one particular type of examination. Significance of difference between means of Groups A and D

Although the significance of difference between the means of Groups A and D would give no information about the different abilities required for conventional and objective examinations, it was thought that it might give some information about the abilities required for success in Chemistry examinations.

The means of Group A are significantly better than the means of Group D in the following tests:

Significance level of . 01

03AREA Arithmetical reasoning
O4AROP Necessary Operations
05LENつ Letters and Numbers
06LEST Letter Sets
O9CRDS Cards
1OFIGS Figures
150TIS General intelligence
19SENT Sentence Structure
26 CHCN Chemistry conventional
27PHCN Physics conventional
28CHOB Chemistry objective
29PHOB Physics objective
Significance level of 0.02
25CATG Categories
Significance level of 0.05
08FLGS Flags
Significance level of 0.10
O2MULT Multiplication
OTSEEP Seeing Froblems
16ExPR Expression
I7COMP Comprehension
18ESSY Essay

What is of interest is not the tests which are represented above, but those tests with difference of means which are not significant. It would be expected that the best students in science would be significantly better at ability tests than the poor students in science, but this is not the case in any of the tests for perceptual, memory, or word fluency abilities. Also the tests for verbal comprehension and number abilities are only represunted at the 0.10 level of significance. Therefore it can be seen that the poorest students in Chemistry are just as good as the best students in some of the ability tests, and this suggests that success in science does not depend on these abilities.

Success in Chemistry must therefore be related to the abilities in general reasoning, induction, spatial, verbal reasoning and ideational fluency, and students who have these abilities are also good in Chemistry examinations.

Physics Groupine

The students were divided into four groups according to their scores on the Physics examinations:

Group A consisted of 24 students who scored 40 marks or more on the conventional examination and 13 marks or more on the objective examination. The means for these two examinations were 39.3 and 12.9 respectively and were found to divide the students into approximately equal halves.

Group B consisted of 20 students, who came in the top half on the conventional but in the bottom half on the objective examination.

Group C consisted of 22 students who came in the bottom half on the conventional, but in the top half on the objective examination.

Group D consisted of 28 students who came in the bottom half on both examinations.

TABLE 10 Means after grouping on Physics scores

TEST	GROUP A	GROUP B	GROUF C	GROUP D
01ADDT	42.7	46.8	42.0	40.5
O2MULT	49.2	51.2	45.7	43.4
O3AREA	70.5	65.1	66.1	58.9
O4AROP	17.7	18.0	15.9	14.0
O5LENO	25.9	23.8	24.4	21.6
06LEST	32.0	28.5	29.9	21.2
O7SEEP	28.0	26.6	32.2	26.4
08FLGS	5.8	5.2	5.4	4.5
09CRDS	23.4	23.1	23.0	17.6
10FIGS	5.8	5.2	4.9	4.7
11PERW	51.7	54.1	51.7	49.8
12PERN	35.6	38.3	37.0	35.5
1301MR	18.2	18.9	18.7	18.8
14 PCMR	14.5	15.3	15.4	14.1
150TIS	60.4	57.2	56.7	54.1
16EXPR	14.0	13.0	14.0	12.5
I7COMP	11.4	11.9	11.4	10.1
18ESSY	19.8	20.9	20.5	18.3
19SENT	15.1	14.1	16.4	13.8
20VOCB	31.2	32.6	31.7	30.1
21LETT	51.8	49.0	51.6	47.8
22 PRFX	27.5	26.0	25.8	24.9
23SUFX	21.8	21.4	22.8	21.3
24 THME	21.6	22.4	24.8	22.3
25CATG	23.8	20.2	24.8	21.6
26 CHCN	57.3	53.9	60.2	41.5
27 PHCN	50.0	45.8	33.6	30.2
28 CHOB	22.5	17.7	21.0	11.6
29PHOB	17.8	8.7	17.8	7.1

ThBLE 11 Significance of difference between means

Physics

Table of t_{1} (Garrett, 1966).
Where no value for $S E_{D}$ has en given, the mean difference is not significant.

Groups B and C

Groups A and D

$\underline{S E_{D} \quad t \quad s i g . l e v e l} S E_{D} \quad t \quad$ sig.level
OlADDT

O2MULT	3.16	1.74	0.10	2.41	2.40	0.02
O3AREA			-	2.39	4.86	0.01
O4AROP	1.11	1.90	0.10	0.98	3.78	0.01
O5LENC			-	1.25	3.45	0.01
O6LEST			-	2.33	4.65	0.01
O7SEEP	2.77	2.02	0.05			-
08FLGS			-	0.62	2.07	0.05
O9CRDS			-	3.36	1.73	0.10
10FIGS			-	0.49	2.27	0.05

11PERW

-	-
-	-

130BMR
14PCMR
150TIS

- $\quad 1.67 \quad 3.78 \quad 0.01$

16EXPR
17C0MP
18ESSY

19SENT	1.08	2.18	0.05			-
2OVOCB			-			-
21LETT			-			-
22PRFX			-	1.54	1.69	0.10
23SUFX			-			-
24THME			-			-
25CATG	1.82	2.44	0.02			-
26CHCN			-	3.88	4.07	0.01
27PHCN	1.38	8.83	0.01	2.00	9.90	0.01
28CHOB			-	1.76	6.18	0.01
29PHOB	1.16	7.86	0.01	0.89	13.9	0.01

Significance of differencc between means of Groupe B \& C The means of Group C are significantly better than the means of Group B in the following tests:

Level of significance

O7SEEP	Seeing Problems	0.05
19SENT	Sentence Structure	0.05
25CATG Categories	0.02	
29PHOB Physics objective	0.01	

It will be noted that the mental ability tests which have significant differences of means for the Physics grouping are different from those found in the Chemistry grouping, suggesting that different abilitics are required for achievement in Physics. All three tests, Seeing Problems, Sertence Structure and Categories all have something in common in that all three tests require the subject to think about a problem. This sugeests that the Physics objective examination requires the students to have the ability to sce and solve problems which require the production of ideas.

The means of Group B are sienificantly bettar than the means of Group C in the following tests:

Level of significance
OZMULT Multiplication
0.10

04AROP Necessary Operations
0.10

27PHCN Physics conventional
0.01

The Multiplication and Necessary Arithmetic Operations tests have only low levels of significance, showing that the students who are better at the conventional Physics examination are only slightly better at the number and reasoning abilitics.

There are no significant differences between means of the tests which measure the induction, spatial, perceptual memory, verbal comprehension (except Sentence Structure) or word fluency abilitics, showing that differences in achicvement are not due to these abilities.

Significance of difference between means of Groups A \& D
As with the Chemistry results, it would be
expected that the means of the ability tests for Group A would be significantly better than for Group D. This is so for the following tests:

Significance level of .01
O3AREA Arithmetic reasoning
O4AROP Necessary Operations
05E No Letters and Numbers
06LEST Letter Sets
150TIS General Intelligence

26CHCN Chemistry conventional
27PHCN Physics conventional
28CHOB Chemistry objective
29PHOB Physics objective
Significance level of .02
O2MULT Multiplication
Significance level of 0.05
08FLGS Flags \& 10 FIGS Figures
Significance level of 0.10
O9CRDS Cards
17COMP Comprehension
22PRFX Prefixes.
It is seen that the abilities which clearly distinguish the students who are good at Physics examinations from those who have poor results are abilities such as general raasoning, induction, general intelligence, spatial and number.

There are some abilities which do not seem to affect ability at science, for abilities of perception, memory and ideational fluency are not represented in the list above. Of the verbal and fluency abilities, only the Comprehension and the Prefixes tests show any

146

Abstract

significant difference of means. The lack of importance of verbal, fluency and memory abilities may be due to the fact that the original selection of the students for secondary school was based solely on their ability at English and Mathematics, which require high levels of achievement in these abilities, so that the sample is fairly homogeneous in respect to verbal and fluency abilities. This does not mean that verbal and fluency abilities are not important in achievement in science examinations, but that this particular sample showed an even distribution in these abilities.

A comparison of the tests which have means which are significantly different for Groups A and D in both Chemistry and Physics groupings show striking similarities. The tests with levels of significance of difference at the 0.05 level or better, include both tests of general reasoning, both induction tests, the Otis general intelligence test, and two of the three spatial tests. This suggests that overall achievement in Chemistry and Physics requires good abilities in general reasoning, induction and space, associated with a higher general intelligence in verbal reasoning.

The numerical, perceptual, memory, verbal comprehension, and fluency abilities may contribute to success in science, but the presence of them does not predict success.

(c) Factor Analysis

The scores of the tests and examinations were punched on to cards and the principal components were extracted according to the Statistical Analysis for Principal Components programme on the IBM computer at the Treasury in Nairobi.

Table 12 gives the values of the first ten components, which covered 70.5% of the total variance. The variance of component 10 falls below 1.0 which is less than 3% of the total variance and appears therefore not to be significant (Harman 1967). An attempt was made to analyse the first nine principal components, and it was thought accordingly that a varimax solution of seven components would cater for the psychological interpretation of the twonty nine variables.

TEST
COMPONENTS

O1.DDT $10 \begin{array}{lllllllll}45 & 06 & 12 & 13 & 00 & 05 & 22 & 15 & 04\end{array}$
O2MULT $17 \begin{array}{llllllllll} & 17 & 40 & 09 & 18 & 16 & -05 & -07 & -02 & 05\end{array}$-01
03AREA $28 \quad 06-03 \quad 11 \quad 10 \quad 16-07 \quad 24-08 \quad 12$
O4AROP $24 \quad 07-06 \quad 07 \quad 24-18-12 \quad 17-06 \quad 02$
OSLENO $27-05 \quad 12-08 \quad 10 \quad 29-06-11-16 \quad-04$
06IEST $26-05-07$ 01 $01 \quad 26-18-17-12 \quad-10$
OTSEEP $19-05-24-30-06-03 \quad 10 \quad 08$ 01 -01
08FLGS $17-15 \quad 37-01-17-27-04 \quad 02 \quad 02 \quad 02$
O9CRDS $22-11 \quad 34-05-16-20 \quad 02 \quad 08 \quad 10 \quad 17$

IIPERW $21 \quad 24-03-32 \quad 09-18 \quad 03-16-03 \quad-11$
I2PERN $15 \quad 31$ 07 $-24 \quad 21-16-02-04-25 \quad-06$ 13OBMR $\begin{array}{lllllllllll}08 & 25 & 22 & -03 & -14 & 08 & 24 & 17 & -09 & 47\end{array}$ 14PCMK $07 \begin{array}{lllllllll}18 & 08 & -27 & -24 & 30 & -37 & -17 & 11 & 02\end{array}$ 150TIS $26-14-13 \quad 02 \quad 13 \quad 05-07-23-19 \quad 24$ 16EXPR $11-02 \quad 17-04 \quad 13 \quad 14 \quad 59-27-13 ~-28$ 17COMP $18-17-09 \quad 06 \quad 09-37 \quad 10-13-25 \quad 22$ 18ESSY $150090308-07 \quad 25 \quad 37-27 \quad 41 \quad 25$ 19SENT $15-21-18-16 \quad 09-11 \quad 33 \quad 39 \quad 01$ 2OVOCB $08-03-28 \quad 21-01-37-08-38 \quad 26 \quad 29$ 21LETT $10 \begin{array}{llllllllll} & 12 & -14 & 04 & -53 & -01 & 20 & -16 & -25 & -01\end{array}$ 22PRFX Or $\begin{array}{lllllllll}24 & -32 & 29 & -23 & 08 & 06 & 30 & -21 & 36\end{array}$ 23SUFX $06 \quad 22-20 \quad 10-35-22 \quad 07-09 \quad 09 \quad-36$ 24THME $1108-20-44-02-100008 \quad 41 \quad-11$ 25CATG $14-07-26-27-19 \quad 08-15 \quad 07-16 \quad 20$ 26CHCN $26-03-10 \quad 24 \quad 13 \quad 05-10 \quad 06$ 27PHCN $210105 \quad 28-07-04-13-12-17 \quad-37$
28CHOB $30-18$-02 $14 \begin{array}{llllllll}14 & 04 & 14 & 04 & 05 & 19 & -12\end{array}$

$29 P H O B$	23	-25	-05	08	-20	17	01	22	08

$\begin{array}{lllllllllll}\text { COMPONENT } & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10\end{array}$ VARI\&NCE $\quad 6.452 .582 .381 .871 .531 .401 .251 .041 .000 .94$ ACCUMULATED \% OF TOTAL VARIANCE $22.3 \quad 31.239 .445 .851 .155 .960 .263 .867 .370 .5$

The extraction of factors was re-worked by the Uganda Treasury Computer using the principal component method. Unity was used in the diagonal cells as a communality estimate and no extractions were repeated to adjust the communalities. The principal component matrix is typical of what is reported in Table 12. Furthermore a Varimax solution of seven factors was obtained by the computer and the Varimax Rotated Factors are given in Table 13. No further rotation of the Varimax solution was conducted as such rotation was not necessary.

The interpretation of the Varimax factors for psychological meaning was attempted taking into consideration the content of the tests and previous factorial analyses. The interpretation of the factorial loadings rests solely upon those tests of known content with positive loadings of .30 or higher, utilizing the conventional agreement among psychologists that such a loading is of significant value. If there are significant loadings of tests on other factors, these are indicated in brackets. The sions of the loadins on Factors II and VII of all tests concerned are reversed for convenience in interpretation.

VARIMAX ROTATED FACTOR LOADIIGS

(Decimal point omitted in body of table)

Test	Factor							$\frac{\text { Commun }}{\frac{a l i t y}{h^{2}}}$
	I	II	III	IV	V	VI	VII	
01 Addition	08	-75	-08	-11	20	10	15	66
02 Multiplication	27	-77	05	-13	15	03	04.	72
03 Arithmetical Reasoning	- 69	-29	07	10	06	01	12	59
04 Necessary Arith. Op.	48	-42	09	17	-04	-29	-10	53
05 Letters and Numbers	66	-14	21	20	-19	20	24	67
06 Letter Sets	72	-06	05	21	01	15	02	60
07 Seeing Problems	28	02	00	67	12	11	09	57
08 Flags	17	-01	82	-02	-07	-09	05	71
09 Cards	26	-08	78	07	-04	-05	16	71
10 Figures	15	-07	83	-04	06	12	01	74
11 Perceptual Vords	12	-55	16	58	02	-02.	08	69
12 Perceptual Numbers	01	-69	13	36	-11	03	06	64
13 Object-Iumber Memory	-04	-34	24	-02	18	23	42	43
14 Picture Memeory	12	-14	12	26	07	71	-14	64
15 General Intelligence	68	-03	05	27	-05	-20	00	58
16 Expression and Comp.	09	-06	10	03	-13	-13	75	63
17 Comprehension	30	-02	24	21	02	-53	-04	52
18 Essay	30	-12	00	01	21	06	55	45
19 Sentence Stmature	22	17	00	45	-05	-42	27	54
20 Vocabulary	19	-05	05	06	32	-51	-32	51
21 First Letters	07	06	14	19	73	08	18	63
22 Prefixes	09	-12	-39	-12	67	-01	-04	64
23 Suffixes	-04	-18	04	13	68	-10	-07	53
24 Theme	-01	-14	-02	73	03	03	-03	55
25 Categories	29	16	-03	59	17	13	-14	51
26 Chemistry Conventional	- 73	-19	03	-02	09	21	-01	62
27 Physics Conventional	53	-17	26	-17	21	-09	-05	47
28 Chemistry Objective	79	04	20	10	02	-17	21	75
29 Physics Objective	64	32	24	14	16	-02	13	63
Total Variance	4.65	2.68	. 56	2.47	1.90	1.70	1.51	17.17
Proportion of Total Variance (\%)	16.0	9.2	8.8	8.5	6.6	5.9	5.2	60.0
Proportion of Common Variance	6.5	.31	.61	.11	10.8	9.4	8.6	100.0

Interpretation of Factors

I. Gen.ral Science Reasoning Achievement Factor

Reference	Test	Loading
28CHOB	Chemistry Objective	79
26CHCN	Chemistry Conventional	73
06LEST	Letter Sets	72
03AREA	Arithmetical Reasoning	69
150TIS	General Intelligence	68
05LLNO	Letters and Numbers	66
29PHOB	Physics Objective	64 (II : 32)
27PHCN	Physics Conventional	53
04AROP	Necessary Arithmetic Operations	48 (II : 42)
17COMP	Comprehension	30 (VI : 58)
18ESSY	Essay	30 (VII : 55)

The Chemistry Objective examination has the highest loading on this factor, followed by the Chemistry Conventional examination. The Physics examinations also have their primary loading on this factor. The tests which measure the abilities of general reasoning and induction have primary loadings on this factor. Such
a factor may be called a General Science Reasoning
Achievement Factor.

This findine fite into Vernon's (1961) diagram of "Structure of Educational Abilities", which portrays the relationship between scientific subjects with the k:m factor on one hand and the arithmetical reasoning factor on the other.

Berridge (1948) found a factor of general intelligence and reasoning in his Physice tests and Lewis (1967) identified a scholastic, including scientific achievement factor, in tests on Physics, Chemistry and Biology, although the loadings on the reasoning tests were low.

Tests 17COMP and l8ESSY have minimum loadings of - 30 each on this factor. This might indicate that reasoning ability requires the ability to write an essay or comprehend a piece of literature, which is necessary to answer science questions. Muthulingham (1963) identified a verbal scientific factor in tests on Physics and Chemistry.

The objective examinations for both Physics and Chemistry have higher loadings on this factor than the conventional examinations. It appears, therefore, that responding to an objective science test, if

reason, inductively and deductively, as much as, if not		
more than, he vould when dealing with essay-type		
conventional examinations.		
II Numerical Perceptual Factor		
Reference	Test	Loading
O2MULT	Multiplication	77
OlADDT	Addition	75
12PERN	Perceptual Numbers	69 (IV
11PERW	Perceptual Words	55 (IV
O4AROP	Necessary Arithmetic Operations	42 (I
130BMR	Object-Number Memory	34 (VII
29PHOB	Physics Objective	-32 (I

This factor is a mixture of numerical facility and perceptual discrimination with a smell memory ability for numbers. The tests of numerical facility, Tests OlADDT and 02MULT, head the loadings on this factor and have no secondary loadings on other factors. Furthermore, tests of perceptual speed, Tests llPERW and l2PERN, have significant saturations on this factor; the perceptual number test has its primary loading on this factor,

154

Abstract

whereas the perceptual word test has its primary loading on Factor IV. Although EI-Abd (1966) reported the existence of a numerical facility factor using an ऍast Africa sample, the present factor is identified as a numerical-perceptual factor, presumably similar to that found by Taylor(1955).

The Perceptual Numbers test is presumably linked with the tests of numerical facility because of its number content, requiring the ability to deal with numbers at speed. The Necessary Arithmetic Operations test has a secondary loading on this factor because this test is known to have loadings on the numerical factor (Guildford, 1967). The Object-Number test for memory has a significant loading on this factor, presumably because the subject is required to memorize numbers in relation to objects. Coombs (1941) found that this type of test had loadings on the numerical as well as the memory ability.

The fact that the Physics Objective examination has a significant negative loading on this factor suggests that the numerical - perceptual facility is not apparant in the Physics Objective examination. Although one
might not expect this result, it does support the findings of Lewis, $(1964,1967)$ who found that the numerical factor was generally not related to success in science.

II Spatial Orientation Factor

Reference	Test	Loading
10FIGS	Figures	83
08FLGS	Flags	82
09CRDS	Cards	78
22PRFX	Prefixes	$-39(\mathrm{~V}: 67)$

This is a spatial orientation factor which has been reported in previous researches (e.g. Thurstone, 1938a; Vernon, 1961; EL-Abd, 1966). In order to solve the problems in the spatial tests the subject is required to identify, from a group of five or six drawings of an object shown rotated or turned over, the ones which show the object rotzted but not turned over. The Prefixes test asks the subject to produce as many words as possible from the given prefix. The Prefixes test requires an activity of the mind which involves productive thinking, whereas the spatial tests require a cognitive activity. Also the content of the spatial tests is figural whereas the content of the Prefixes test is symbolic. Hence it is not unexpected that the Prefixes test has a negative loading on this factor.

IV Verbal,Ideational, Perceptual Judgement Factor

Reference	Test	Loading
24THME	Theme	73
07SEEF	Seeing Problems	67
25CATG	Categories	58
11PERW	Ferceptual Words	$58($ II : 55)
19SENT	Sentence Structure	$45(V I: 42)$
12PERN	Perceptual Numbers	$36(I I: 69)$

The two tests of ideational fluency served their purpose in distinguishing this factor to some extent. The Perceptual Words test has its primary loading on this factor and the Perceptual Numbers has a small loading. The See $n g$ Problems test, which requires the subject to think of different problems associated with common objects, has its only significant loading on this factor. Accordingly this factor has been named as verbal ideational, perceptual judgement. The common feature about the Theme, Categories, Perceptual Words, Seeing Problems tests is perhaps the ability of the person to judge a word, name an idea, a difficulty in relation to a given word, topic, or object in a limited period of time. All these tests are verbal. The Sentence Structure has its primary saturation on this factor
presumably because this is a test in which the subject has to re-write sentences according to instructions, but has to keep the same idea and meaning of the sentences.

V Word Fleoncy Factor

Reference	Test	LoadinE
21 LETT	First Letters	73
23 SUFX	Suffixes	68
$22 P R F X$	Prefixes	67 (III : - 39)
$20 V O C B$	Vocabulary	32 (VI : 51; VII : -32)

This factor is identified as a word fluency factor. All three reference test have their primary significant loadings on it. The presence of Vocabulary on this factor does not contradict the findings of previous research (Thurstone 1938a) as the word fluency factor was originally isolated from the verbal factor as measured by the ocabulary test. Vocabulary is a test of verbal comprehension whereas the word fluency tests require verbal production.

VI Verbal Comprehension

Reference	Test	Loading
17COMP	Comprehension	$58(I: 30)$
2OVOCB	Vocabulary	$51(\mathrm{~V}: 32 ;$ VII : -32)
19 SENT	Sentence Structure $42($ IV : 45)	
14 PCMR	Ficture Memory	-71

This appears to be a verbal comprehension factor despite the high negative loading of the Picture Hemory test. In comparing the content material involved in the verbal tests 17COMP, 20vocB and 19SENT with the Picture Memory test, one finds that the former tests consist of words and sentences that need verbal understanding and interpretation, whereas the Picture Memory test requires the subject to memorize certain objects presented in figural form. Here again as suggested in the interpretation of Factor III, there are two different activities of mind (cognition vs memory) and two different contents of material (verbal vs non-verbal).

VII Expressional Fluency

Reference	Test	Loading
16EXPR	Expression and Comprehension	75
18ESSY	Essay	$55(I: 30)$
130BMR	Object-Number Memory	42 (II : 34)
2OVOCB	Vocabulary	$-32(V: 32 ; V I: 51)$

Expression and Comprehension and Essay tests have their highest loadings on this factor. In the former the subject is asked to write three sentences and a short paragraph in answer to questions about a given paragraph taken from a certain book. In both the Expression and Comprehonsion test and the Essay test the subject writes sentences in which the organization of meanings over-shadows the organization of syntactical structures. Guildford (1967) identifies sentence-construction tests with the expressional fluency ability.

The presence of the Object-Number Memory test on this factor strengthens the idea that in writing an essay, or in expressing himself, the subject has to depend on his memory to recall facts and ideas related to the topic concerned.

The Vocabulary test has a negative Ioading which is difficult to interpret, but which might be due to the fact that the Vocabulary test is a very sclective measure of cognition of semantic units (Guildford, 1967) in which the subject has to identify meanings of given words in terms of alternative word responses.

Calgary Promax Second-Order Solution

When the programmersat the Kampala Treasury were first approached to obtain the Varimax solution from the data, they were unable to do so, as the programme was not available. The Calgary Department of Educational Psycholozy, Canada was approached by the Makerere Educational Psychology Department to get the writer's data factorized. However, whilst Calgary were processing the data, the Kampala Treasury Computer was able to perform the operation in co-operation with the Computer Centre at Makerere University College. Therefore, the interpretation of the Varimax Rotated Factor Loadings is based on the Kampala Treasury Computer analysis.

The Calgary Computer supplied a Varimax solution with eight factors, which appear to be similar to the Kampala solution. In addition the Calgary Computer supplied the Promax rotations which allow the calculation of two second-order factors. Table 14 gives the correlations between the Promax factors and Table 15 gives the variable loadings on the secondorder factors.

It is found that the first second-order factor has significant loadings on all but six variables and this factor could be labelled as a general science scholastic intellipence factor, which is similar to Vernon's (1961) general factor g, and similar to that found by Lewis (1961, 1964). This factor has 25.4% of the total variance. Tests 20VOCB, 21LETT, 22PRFX and 23SUFX are not loaded significantly on this factor. All these tests are related to the meaning and production of words at speed and the low loadings on these tests may be due to the fact that the subjects are using a language (English) which is not their mother tongue.

The second factor seems to be a mixture of numerical facility, rote memory and word fluency with a variance of 15% of the total. Rote memory was not identified in the first-order factorial analysis but this factor seems to be associated with a memory for words and numbers. Test 19SENT, Sentence Structure, has a significant loading opposing this factor and the objective science examinations have smaller loadings opposing this factor, suggesting that the objective science examinations do not depend on the number, memory and word fluency abilities as much as the conventional examinations.

Table 14

CORRULATIONS BETHELTN PROMAX FACIORS

FACTOR	1	2	3	4	5	6	7	8
1	1.00	-.14	.35	.37	.06	.14	-.23	.25
2	-.14	1.00	-.14	-.07	-.04	.11	.14	-.18
3	.35	-.14	1.00	.23	-.13	.02	-.30	.11
5	.06	-.04	-.13	-.13	1.00	-.09	.05	.05
6	.14	.11	.07	.23	1.00	-.13	.03	-.22
7	-.23	.14	-.30	-.22	.05	.11	1.00	-.01
8	.25	-.18	.11	.19	.05	.02	-.01	1.00

SECOIDD-ORDER FACTORS DERIVED FROM

THE PROMAX FACTORS

(Decimal points omitted from body of table)

170. Tost	Factor		$\frac{\text { Significant }}{\text { Loadings }}$	
Ho. -	I	II	I	II
01ADDT Addition	17	-54		-54
O2MUIT Multiplication	35	-55	35	-55
O3ARPA Arithmetical Reasoning	58	-13	58	
OAAROP Necessary Arith. Op.	53	-04	53	
05LnNO Letters and Numbers	65	03	65	
06LPST Letter Sets	55	-08	55	
O7SEEP Seeing Problems	50	12	50	
n8FLGS Flags	51	15	51	
O9CRDS Cards	64	09	64	
lOFIGS Figures	44	-02	44	
IIPERW Perceptual Words	61	-23	61	
12 PERN Perceptual Numbers	44	-26	44	
130 BMR Cbject-Number Memory	32	-4.4	32	-44
$14 P C M R$ Picturo Nemeory	15	-44		-44
150TIS General Intelligence	64	08	64	
16EXPR Expression and Comp.	37	20	37	
17COMP Comprehension	51	22	51	
18ESSY Tsaay	42	-25	42	
19SENT Sentence Structure	38	49	38	49
2OVOCB Vocabulary	25	-22		4
2lLETT First Letters	22	-11		-41
22PRFX Prefixes	-20	-47		-47
23 SUFX Suffixes	08	-44		-44
$24 T H M E$ Thome	33	03	33	
25CaTG Catogories	32	-02	32	
26CHCIN Chemistry Conventional	52	-04	52	
27PHCN Physics Conventional	39	-16	39	
28CHOB Chemistry Objectivo	67	17	67	
29PHOB Physics Objective	48	20	48	
Variance (\%)	25.4	15.1		

CHAPTER 6

SUMMARY AND CONCLUSIONS

(a) Correlations between ability testsand science
examinations
One of the main aims of this work was to discover if the objective type examinations measured a wider range of abilities than conventional examinations or vice versa. Table 16 lists the ability tests which have correlations with the science examinations, significant at the 1% and 5% level.

The memory and word fluency abilities are the only abilities which do not have at least one test with a significant correlation with a science examination. The objective examinations have more significant correlations at the 1% level eith the tests of the other eight mental abilities than do the conventional examinations. Thus it would seem that the objective type science examinations measure mental abilities better than do the conventional examinations.

Both types of examination measure well the general reasoning, induction and general intelłigence abilities.

The objective examinations measure the spatial, verbal comprehension and ideational fluency abilities better.

The conventional examinations measure the number and perceptual abilities better.

These results show that both types of examination require the general reasoning and inductive abilities at this academic level. It is interesting that the objective examinations measure the verbal comprehension and ideational fluency abilities better than the conventional examinations, although the subjects do not express themselves verbally, showing that these abilities are required to understand the written material in order to select the correct alternative.

TABLE 16

Sipnificant correlations between mental ability tests and science examinations

Abilitiy	Test	Chemistry		Physics	
		Conv.	$\underline{\mathrm{Obj}}$.	Conv.	Cbj.
Number	OIADDT	-	-	-	-
	02mut	1\%	-	1\%	-
General Reasoning	03ARIA	1\%	1\%	1%	1%
	O4AROP	1\%	1%	1%	-
	07Sinep	1\%	1\%	-	1\%
Induction	05Luno	1\%	1\%	1\%	1\%
	06ITSS	1\%	1\%	1%	19\%
Spatial	08FLGS	-	5\%	5	1罢
	09 CRDS	5\%	1\%	5\%	1\%
	10FIGS		1%	1\%	1\%
Perceptual	11PERW	5\%	5\%	5%	-
	12 PrimN	-	-	-	-
Memory	130 $\mathrm{HMR}^{\text {R }}$	-	-	-	-
	14 PCMR	-	-	-	-
General Intelligence	1501IS	1\%	1\%	1\%	1\%
Verbal Comprehension	16 EXPR	-	5\%	-	-
	17COSP	5\%	1\%	5\%	1\%
	18ESSY	5\%	1\%	S	,
	19SETT	5\%	1\%	-	1\%
	20 VOCB	1\%	-	-	-
Word Fluency	21LietT	-	-	-	-
	22 PRFP	-	-	-	-
	23 SUFX	-	-	-	-
Ideational Fluency	24 ¢7\% ${ }^{\text {a }}$	-	-	-	-
	25CATG	-	5\%	-	1\%

Number of significant correlations:

Chemistry Conventional	-	3 at 1% level;	5 at 5% level
Chemistry Objective	-	11 at 1% level;	4 at 5% level
Physics Conventional	-	7 at 1% level;	4 at 5% level
Physics Objective	-	11 at 1% level.	

(b) Comparison of abilities required for success in

objective and conventional sciance examinations

This work set out to discover if different
abilities are needed for success in conventional and objective science examinations. Table 17 gives a summary of the tests which, after grouping the subjects according to their scores in science, had means which showed significant differences at the $0.01,0.02,0.05$ and 0.10 levels.

There are surprisingly few tests which have means which are significantly different. This suggests that students at this level of academic achievement are generally equally proficient at both types of examinations.

Students who are better at the conventional examinations than they are at the objective examinations show particular ability in one of the tests designed to measure verbal, word fluency, number and eeneral reasoning abilities. The gencral reasoning test, 04AROP Necessary Arithmetic Operations, may be based to a large extent on numerical and verbal reasoning abilities.

Students who are better at the objective examinations than they are at conventional examinations show particular ability in at least one of the tests designed to measurt general reasoning, induction, spatial ability, verbal comprehension and ideational fluency.

TABLE 17

Significance of difference between means

Conventional vs Objective examinations

(1) - mean of Group B significantly better than mean of Group C
(2) - mean of Group C significantly better than mean of Group B (Groups B and C refer to science groups as on p. 129 and 140)

Ability	Test	Chemistry		Physics	
		(1)	(2)	(1)	(2)
Number	OLADIT	-	-	-	-
	02mult	-	-	0.10	-
General Reasoning	O3AREA	-	0.05	-	-
	O4AROP	-	-	0.10	-
	O7SEITP	-	-	-	0.05
Induction	05LEHO	-	0.02	-	-
	06LisST	-	-	-	-
Spatial	03FLGS	-	-	-	-
	09 CRDS	-	0.10	-	-
	10FIGS	-	-	-	-
Perceptual	IIPERH	-	-	-	-
	12PERN	-	-	-	-
Memory	130 BMR	-	-	-	-
	14 PCMR	-	-	-	-
General Intgliigence	1501IS	-	-	-	-
Verbal Comprehension	163XPR	-	-	-	-
	17 COMP	-	-	_	-
	18ESSY	-	-	_	_
	19S1MT	-	-	-	0.05
	20VOCB	0.05	-	-	
Word Fluency	21LETT	-	-	-	-
	22PRFX	-	-	-	-
	23 SUFX	0.05	-	-	-
Ideational Fluency	24 THME	-	-	-	-
	25CATG	-	-	-	0.02
Science	26CHCis	0.01	-	-	-
	28 CHOB	-	0.01	-	-
	27 PHCT	-	-	0.01	-
	29 PHOB	-	0.01	-	0.01

(c) Abilities required for achiev.ment in Chemistry
and Physice
Those students who are good at both types of science examination would be expected to have significantly better scores in the mental ability tests than those students who are relatively poor at both types of examination. Table 18 indicates that this is not so, suggesting that achievement in science at this academic level depends on certain abilities.

Both top and bottom groups in science have similar abilities in the perceptual and memory abilities, showing no significant differences between the means for these tests. Only one test for word fluency and one for ideationa? fluency show significant differences between means. Tests for verbal comprehension and number abilities have means which show only low significant differences for these science groupings.

It can therefore be concluded that the abilities of number, perceptual, memory, verbal comprehension, word fluency and ideational fluency are all fairly much the same for those students with good science achievement and those with poor science achievement.

This does not infer that these abilities are not required for science achievement, for science examinations require verbal expression, numerical calculation and recall capabilities, but it does indicate that the presence of these abilities does not necessarily lead to science achievement.

The fact that the verbal, numerical and memory abilities are apparantly very similar for all students may be due to the type of primary school education which concentrates on the verbal and numerical aspects of education, encouraging rote memory,so that the student may do well in the Certificate of Primary Education. The sample had received this type of educatio.n, therefore all the subjects would have achieved btgh standards in these abilities to be selected for secondary education.

The students, who were good at both kinds of examination, were significantly better in the tests designed to measure the gencral reasoning, induction, spatial and general intelligence abilities, so it can be concluded that it is the presence of these abilities which affects scientific achievement. These are the abilities which werc not particularly encouraged by the kind of primary school education which the subjects received before coming to Alliance High School.

TABLE 18
Significance of difference between means

Good vs Poor students

Ability		Means of Group A significantly better than means of Group D	
	Test	Chemistry	Physics
Number	OLADDT	-	-
	O2MULT	0.10	0.02
General Reasoning	03AREA	0.01	0.01
	O4AROP	0.01	0.01
	O7SEEP	0.10	-
Induction	05LENO	0.01	0.01
	O6LEST	0.01	0.01
Spatial	08FLGS	0.05	0.05
	O9CRDS	0.01	0.10
	10FIGS	0.01	0.05
Perceptual	IIPERW	-	-
	12PERN	-	-
Memory	130 BrR	-	-
	14 PCMR	-	-
General Intelligence	150TIS	0.01	0.01
Verbal Comprehension	16EXPR	0.10	-
	17C0MP	0.10	0.10
	18ESSY	0.10	-
	19SinT	0.01	-
	20vors	-	-
Hord Fluency	21LITTT	-	-
	22PRFX	-	0.10
	23SUFX	-	-
Ideational Fluency	$24 T \mathrm{TmE}$	-	-
	25 CATG	0.02	-
Science	26 CHCN	0.01	0.01
	28 CHOB	0.01	0.01
	2 PPHCN	0.01	0.01
	29PHOB	0.01	0.01

(d) Factor Analysis
A Varimax solution of seven components was obtained from the data using standard statistical procedures. The seven components were given a psychological interpretation and were identified as factors of mental ability. Table 19 shows the significant loadings of the Varimax Rotated Factors.

Factor I General Science Reasoning Achievement
A science achievement factor in Chemistry and Pbysice, particularly related to verbal, non-verbal and arithmetical reasoning.

Factor II Numerical Perceptual

A numerical factor associated with perceptual speed and a memory for numbers. The Fhysics objective examination has a negative loading on this factor.

Factor III Spatial Orientation

A spatial factor particularly related to the orientation of objects and drawings.

Factor IV Verbal, Ideational, Perceptual Judgement
An ideational fluency factor associated with the verbal manipulation of verbal material concerning ideas and problems, within a limited time.

Factor V Word Fluency

A straightforward word fluency factor requiring the production of words at speed under easy restrictions.

Factor VI Verbal Comprehension

A verbal factor related to the meaning of words and understanding of written verbal material.

Factor VII Expressional Fluency

An expressional fluency factor associated with the verbal expression of ideas with a small memory loading.

Second-order Factors

Two second-order factors were obtained from a Promax solution.

I General Science Scholastic Intelligence
This had significant loadings on most of the ability tests and science examinations.

II Numerical, Memory, Word Fluency Facility

A factor related to memory for numbers and words.

THE SIGIITFICAITT LOADINGS OF

THE VARIMAX ROTATED TACTORS

(Decimal points omitted from body of table)

IIN. Test	Factor						
	I	II*	III	IV	V	VI*	VII
OIADDT Addition O2MULT Multiplication		$\begin{aligned} & 75 \\ & 77 \end{aligned}$					
OZAREA Arithmetical Reasoning OAAROP Necessary Arith. Op.	$\begin{aligned} & 69 \\ & 48 \end{aligned}$	42					
05Linto Letters and Numbers O6LEST Letter Sets	66						
O7SEEP Seeing Problems				67			
08FIGS Flags OGCRDS Cards 1OFIGS Figures			$\begin{aligned} & 82 \\ & 78 \\ & 83 \end{aligned}$				
IIPERW Perceptual Words 12PFRN Perreptual Numbers		$\begin{aligned} & 55 \\ & 69 \end{aligned}$		$\begin{aligned} & 58 \\ & 36 \end{aligned}$			
130 bar Object-Nilumber Memory 14 PCIR Picture Memory		34				-71	42
150TIS General Intelligence	68						
16EXPR Expression and Comp. 17COMP Comprehension 13ESSY Essay 19SETT Sentence Structure 20VOCB Vocabulary	$\begin{aligned} & 30 \\ & 30 \end{aligned}$			45	32	$\begin{aligned} & 58 \\ & 42 \\ & 51 \end{aligned}$	$\begin{array}{r} 75 \\ 55 \\ -32 \end{array}$
21LETP First Letters 22PRFX Prefixes 23SUFX Suffixes			-39		73 67 68		
24THME Theme 25CATG Cateçories				$\begin{aligned} & 73 \\ & 59 \end{aligned}$			
26CHCN Chemistry Conventional 27 PHCil Physics Conventional 28CHOB Chemistry Objective 29PHOB Physics Objective	$\begin{aligned} & 73 \\ & 53 \\ & 79 \\ & 64 \end{aligned}$	-32					

[^0]
(e) Discussion

The measurament of abilities using conventional and objective type science examinations has important implications for the setting of examinations in schools. For too long it has been assumed that objective type multiple choice questions are unable to measure the 'higher' abilities, which are necessary for achievement in science.

The administration of a battery of mental tests alongside typical conventional and objective examinations in scicnce enabled a comparison between the abilities required for the different types of examination to be made, and also for group factors of ability to be extracted.

Students who have similar levels of general intelligence perform equally as well on both types of examination. From the results it appears that success in the objective type examination depends on Ros wide a range of abilities as success on the conventional type examination, and in fact the objective examinations have higher correlations with tests which measure spatial, reasoning, verbal comprehension and
ideational abilities. There is only slight evidence, in the Chemistry examination, that verbal ability contributes to success in the conventional rather than the objective examination. This suggests that there would be no real loss if science examinations were all of the objective type, for all abilities required for conventional are also required, and lure so, for objective examinations.

Gencrally all the analyses gave similar results for Chemistry and Physics suggesting that, at this level of academic achievement, there are no particular 'Chemistry' or 'Physics' abilities.

The existence of the general science reasoning achievement factor has important implications for saience teaching. A comparison of the significance of differencc between the means of those students good at both types of examinations and those poor at both types showed clearly that the reasoning and inductive abilities, the spatial ability and general intelligence were most influential on achievement in science. Students who enter secondary schools in Kenya have high standards in verbal and numerical abilities and have a high average general intelligence, but there
is no evidence that standards are equally high in the reasoning and spatial abilities. This work has shown that there is a wider range in the reasoning and spatial abilities than there is in the verbal and numerical abilities. Thus it would be a great help in the teaching of science if the reasoning and spatial abilities could be encouraged, just as verbal and numerical abilities are encouraged.

It is commonly said that Africans in Kenya find science harder to understand than the arts subjects, and the reason usually given is that they have little 'scientific' background. Perhaps one way of helping this situation is to positively assist by setting a series of tests in reasoning, both verbal and nonverbal, and in spatial orientation. If two groups of students could be taught science over a puriod of a year, whilst one of the eroups receives spcial instruction in the reasoning and spatial abilities, tests in science could then be given at the beginning and end of the year, and with reference to tests of mental ability, it might be observed whether or not the group receiving special instruction in the reasoning and spatial abilities had improved more than the other group.

Seven factors of ability have been identified, but only the first two had significant loadings on the science examinations. Many of these factors are probably required for success in science, but the general science achievement factor absorbs these other factors in the kind of examinations set in this work. Lewis (1967) classified science questions into three categories, knowledge, comprchension and evaluation, and identificd factors with significant loadings on these categories. It might be useful to set science examinations classifying the questions according to abilities such as numerical, numerical reasoning, verbal reasoning, space, ideational fluency and so on, and with a refcrence battery of mentsi tests undertake a factor analysis to find out whether or not these abilitics are being measured by such science questions. This could be done with both conventional and objective type questions.

This work has produced no evidence as to how memory fits into science achievement, probably because it is a more complex ability that originally realized, so it would be fruitful, especially for
a comparison of the two types of examination, to construct a series of memory tests, incorporatine memory for scientific knowledge, as well as rote memory. It has been pointed out by Lewis (1965) that there has been a recognition that students' abilities develop and change, so it would be of value to follow the pattern of abilities over a period of years, right through to Higher School Certificate. In conclusion, it has been shown that the general pattern of abilities with secondary school students in a school in Kenya follows a similar pattern to that which has been found in Britain.

BIBLIOGRAPHY

AMMANN, J.S. (1962), Testing Student Achievements and Attitudes.

Library of Education.

ANGUS, L. (1949), A Comparative Study of the Methods of Measurine Interest in Science and ite Relation to Ability and Achievement. M. Ed. Thesis, Durham. Brit. J. Educ. Psychol., 20, p 63.

BAIR, J.T. (1951), Factor Analysis of Clerical Aptitude Tests. J. Appl. Psychol.. 35, p 245.

BALLARD, P. B. (1923), The New Examiner. University of London Press.

BERRIDGE, A. R. (1948), A Factorial Analysis of Ability in School Physics. M.A. Thesis. University of London.

BLOOM, B.S. (1956), Taxomony of Educational Objectives: Cognitive Domain. New York: Longmans, Green.

BURT, C. (1917), The Distribution and Relations of Educational Abilities. Edinburgh: Oliver \& Boyd.

BURT, C. (1949), The Structurc of the Mind: A Review of the Results of Factor Analysis. Brit. J. Educ. Psychol., 19. p 100.

BUTT, A.S. (1957), The Differentiation of Reasoning Abilities at Adolescence. Ph.D. Thesis. University of London. CARROLL, J. B. (1941), A Factor Analysis of Verbal Abilities Psychometrika, 6, p 279.

CHARI, K.V. (1948), A Statistical Analysis of the Performance of Boys and Girls in Science. M.A. Thesis. University of London.

CHEMISTRY HANDBOOK FOR TEACHERS, (1964), The Nuffield Foundation.

COOK, F.S. (1936), The Value of the New-type Examination for Assessing Attainment in Biology. M.A. Thesis, University of London.

COOMBS, C.C. (1941), A Factorial Study of Number Ability. Psychometrika, 6, p 161.

COX, J.W. (1928), Mechanical Aptitude. London: Methuen. DEMPSTER, J.J. B. (1948), Symposium on the Selection of Pupils for Different Types of Secondary Schools:

V - The Selector's Point of View. Brit. J. Educ. Psychol., 18, p 121.

DENTON, J.C. \& TAYLOR, C.f. (1955), A Factor Analysis of Mental Abilities and Personality Traits. Psychometrika, 20, p 75.

EARLE, F.M. (1936), Tests of Ability for Secondary School Courses. University of London Press.

EBEL, R.L. (1965), Measuring Educational Achievement. New Jersey: Prentice-Hall.

EDUCATION IN CHEMISTRY, (1965), 2, p 283, True or False: Some Thoughts on Examination Questions. Jennings, K.R. and Leisten, J.A.

LDUCATION IN CHEMISTRY, (1967), 4, p 2, The Nuffield '0' Level Chemistry Examinations. Matthews, J.C.

EDUCATIOI: If CHis!ISTRY, (1967), 4, p 112, New Examinations in School Chemistry. Neuff, A.T.

EDUCATIOII IN CHEMISTRY, (1969), 6, p 78, Measurine Attainment of Rducational Objectives in Chemistry. Hoare, D.E. \& Revans, M.N.

EDICATION IT: CHEMISTRY, (1969),6, p 88, Increasing the Efficiency of the University lisaminations System. Walkley, G. H.

EDATCATIONAL TESTIVG SIRVICt, (1963), Multiple-Choice Questions: A Close Look. E.T. S. Princeton, New Jersey.

LGGLESTON, J. F. (1965), A Critical Review of Assessment Procedures in Secondary School Science. University of Leicester.

EI-AED, H. (1966), Three Facets of Mental Ability: B.Ed. II Structure of Intellect. Res. Rep. No. ? Makerere University College, Uganda.

EL KOUSSY, A. A. H. (1935), The Visual Perception of Space. Brit. J. Psychol. Monozr. Suppl., 20.

ELLIS, A. G. (1948), The Relations between Abilities in Grammar School Subjects and their Bearing on School Organization. M.Ed. Thesis, Durham. Brit. J. Educ. Psychol., 19, p 166.

BMMETT, W.G. (1949), Evidence of a Space Factor at ll+ -nd Earlier. Brit. J. Psychol. Statist. Sec., 2, p 3.

EXAMINaTIONS BULIETIN No. 3. (1964), The Certificate of Secondary Education: An Introduction to Some Techniques of Examining. H.M.S.O. Secondary School Examinations Courcil.

EXAMINATIGNS BULLETIN No. 8. (1965), The Certificate of Secondary Education: Experimental Examinations: Science. The Schools Council. H.M.S.O.

FRENCH, J. \cdot (1951), The Description of Aptitude and Achievement Tests in Teras of Rotated Factors. Psychome.tr. Monogr. No. 5.

FRENCH, J. W. (1957), The Factorial Invarisnce of PureFactor Tests. J. Educ. Psychol., 48, p 93.

FURST, E. J. (1958), Constructing Evaluation Instruments. New York: Longmans.

GARRETT, H. E. (1966), Statistics in Psychology and Education. 6th Edition. Longmane.

GREEN, R. F.,GUILDFORD, J. F., CHRISTENSEN, P.R. \& COMREY, A. L., (1953), A Factor-Analytic Study of Reasonine Abilities. Psychometika, 18, p 135.

$$
\begin{aligned}
& \text { GREME, H. A., JORGIMS:M, A. N. e. GlRBURICH, J. R. (1953), } \\
& \text { Heasurement and Jvaluation in the Secondary School. } \\
& \text { Ne: York: Longmans. }
\end{aligned}
$$

GUILDFORD, J. P. (1947), Arryy Air Forces Aviation Psychology. Report NO. 5. Washington, D. C. Government Printing Office.

GUILDFORD, J.F. (1956a), The Structure of Intellect. Psychol. Bull. 53, p 267.

GUILDFORD, J.P. (1956b), The Nature of the General Reasonine Factor. Psychol. Ruv. 63, pl69.

GUILDFORD, J.I. (1956c), Fundamental Statistics in Psychology and Education. 3ra Edition. McGraw-Hill.

GUILDFORD, J.F. (1967), The Nature of Human Intelligence. McGraw-Hill.

HaRMiN, H. H. (1967), Modern Factor Anelysis. University of Chicago.
Mi.RTOG, P. \& RHODES, E. C. (1935), An Examination of Examin=tions. London: Macmillan.

HArKES, H. E. (1936), The Construction and Ust of fichivvemunt Jxaminations. Harrop.

HEINON: V. (1963), Differentintion of Primnry liental Abilitics. Jyvaskyla Studies in Education, Psychology and Socizl Research 2 :

IRVINE, S. H. (1966), Towards a Rationale for Testing Attainments and Abilities in Africa. Brit. J. Educ. Psychol., 36, p 24.

JAMES, E. (1950), An Investigation into the Factors Entering into the Ability to Learn Biology at the School Certificate Stage. M.A. Thesis, University of London.

JOG, R. N. (1955), A Study of the Factors Underlying the Ability of Grammar School Boys to Learn Physics at the G.C.E. Stage. M.A. Thesis, University of London.

KCLLEY, H. P. (1954), A Factor Analysis of Memory fibility. Princeton, New Jersey: Fducational Testine Scrvice.

KELLEY, T. L. (1928), Crossroads of the Mind of Man. Stanford, Calif: Stanford University Press.

KESSEN, W. (1964), Statement of Purposes and Objectives of Science Education in School. J. Res. in Science Tuaching, 2, p 3.

KHAN, M. A. (1951), \& Study of Ability and Interest in Secondary School Pupils in Science. M.A. Thesis. University of London.

LEWIS, D.G. (1961), Group Factors of Attainment in Grammar School Subjects. Brit. J. Educ. Psychol., 31, p 241.

LENIS, D. G. (1964), The Factorial Nature of Attainment in Elementary Science. Brit. J. Educ. Psychol., 34, p 1.

LEWIS, D. G. (1965), Objectives in the Teaching of Science. Educ. Res. V1l, 3, p 186.

LEWIS, D. G. (1967), Ability in Science at 'O' Level G.C.E. Brit. J. Educ. Psychol., 37, p 361.

LINDQUIST, E. F. (1951), Educational Measurement. Washington D.C.: American Council on Education.

MEYER, G. (1936), An Experimental Study of the 01d and New Type of Examination. J.Educ. Psychol., 26, p 30.

MICHAEL, W. D., GUILDFORD, J.P. et al (1957), The Description of Spatial Visualization Abilities. Educ. Psychol. Neasmt., 17, p 185.

MORGAN, G.A.V. (1956), Verbal Abilitics in Primery School Children. Durham Res. Rev., 7, p 97.

MUTHULINGHAM, S. (1963), An Investigation of Certain Factors in the Physical Science Course of Secondary Schools in Relation to Aspects of the Achievement, Attitudes and Interests of Fifth Year Pupils. M.A. Thesis, University of London.

NELSON, C. H. (1958), Let's Build Quality into our Science Tests. National Science Teacher Association.

NOLL, V.H. (1957), Introduction to Educational Measurement. Boston: Houghton Mifflin.

PAVLEX, G.C. (1937), A Factor Analysis of the Abilities Involved in Learning School Chemistry. M.A. Thesis, University of London.

PEEJ, E.A. (1948), Assessment of Interest in Practical Topics. Brit. J. Educ. Psychol., 18, p 41.

REPORT, (1960), Secondary School Examinations other than the G.C.E. Report of a Committee: Chairman, Beloe, R. Ministry of Education, H.M.S.O.

ROE, Anne, (1953), A Psychological Study of Eminent Psychologists and Anthropologists and a comparison with Biological and Physical Scientists. Psychol. Monogr. 67, No. 2.

ROGERS, C.A. (1953), The Structure of Verbal Fluency. Brit. J. Psychol., 44, p 368.

SCHOOL SCILNCE REVIEW, (1967), 49, No.167, p 21. O-Level Chemistry Examinations. Matthews, J.C.

SCHOOL SCIGNCE REVIEY, (1968), 49, No. 170, p 19. Objective Tcstine. Danicls, D.J.

SCHOOL SCIENCE REVIEJ, (1968), 50, No. 171, p 315. An Electronic Approach to Organic Chemistry. Witfield, R.C.

SCHWAB, J. J. (1963), Biology Teachers' Handbook. Wiley.

SCILNCE MASTERS' ASSOCIATION, (1938), The Teaching of General Science, Part II. Murray.

SHOUSMITH, G. (1958), Fluency and Essay Writing. Brit. J. Educ. Psychol., 28, p 266.

SMITH, I. MacFarlane, (1964), Spatial Ability. University of London Press.

SMITH, I. MacFarlane, (1967), A Factorial Study of an Hypothesis about the Nature of Spatial Ability. Durham. Res. Rev., 18, p 149.

SMITH, M. \& McDCUGALL, \&. (1919), Some Experiments in Learning and Retention. Brit. J. Psychol., 10, p 199.

SPEARMAN, C. (1904), 'Gencral Intelligence', Objectively Deterained and Heasured. Amer. J. Psychol., 15, p 201.

SPEARMAN, C. (1927), The Abilities of Man. London: Macmillan.

STEPHENSON, W. (1931), Tetrad Differences for Verbal Subtests relative to Non-verbal Subtests. J. Educ. Psychol., 22, p 334.

SULTAN, E.E. (1962), A Factorial Study in the Domain of Creative Thinking. M.A. Thesis, University of London. Brit. J. Educ. Psychol., 32, p 78.

SUTHERLAND, J. (1941), An Investigation into some Aspects of Problem Solving in Arithmetic. Brit. J. Educ. Psychol., 11, p 215.

TAYLOR, C.W. (1947), A Factorial Study of Fluency in Writing. Psychometrika, 12, p 239.

THOMSON, G.H. (1916), A Hierarchy without a General Factor. Brit. J. Psychol., 8, p 271.

THURSTONE, L.L. (1938a), Primary Mental Abilities. University of Chicago Press.

THURSTONE, L.L. (1938b), Primary Mental Abilities. Psychometr. Monogr., 1.

THURSTONE, L.L. (1948), Psychological Implications of Factor Analysis. Amer. Psychol., 3, p 402.

THURSTCNE, L.L. (I950), Some Primary Abilities in Visual Thinking. Chicago: University of Chicago Psychometric Laboratory Feport No. 59.

THURSTONE, L.L. (1951), An Analysis of Mechanical Aptitude. University of Chicago, Psychometric Laboratory.

VALENTINE, J.A. (1969), The Unbearable Burden on External Examinations in England and the United States. Comparative Educ., 5, No. 2, p 139.

VERNON, P.E.(1939), Educational Abilities of Training College Students. Brit. J. Educ. Psychol., 9, p 233.

VERNON, P.E. (1947), Research on Personnel Selection in the Royal Navy and the British frmy. Amer. Psychologist, 2, p 35.

VERNON, F.E. (1950), An Application of Factorial Analysis to the Study of Tests Items. Brit. J. Psychol. Statist. Sec., 3, pl.

VERNON, P.E. (1956), The Measurement of Abilities. 2nd Edition. London: University of London Press.

VERNON, P.E. (1961), The Structure of Human Abilities. 2nd Edition.London: Methuen.

VERNON, P.E. (1962), The Determinants of Reading Comprehension. Educ. Psychol. Measmt., 22, p 269.

VERNON, P.E:. (1964), Examinations Bulletin No. 4. The Certificate of Secondary Education. An Introduction to Objective-Type Examinations. H.M.S.O.

VERNON, P.E. (1967), Administration of Group Intelligence Tests to East African Pupils. Brit. J. Educ. Psychol., 37, p 282.

WISEMAN, S. (1956), The Use of Essays in Selection at $11+$. Brit. J. Educ. Psychol., 26, p 172.

WOODROW, H. (1939), The Common Factors in Fifty-Two Mental Tests. Psychometrika, 4, p 99.

WRIGLEY, J. (1958), The Factorial Nature of Ability in Elementary Mathematics. Brit. J. Educ. Psychol., 28, p 61.

YOUNG, J.E. (1948), The Ability to Draw Inferences from Science Experiments. Ed.B. Thesis, Glasgow. Brit. J. Educ. Psychol., (1951) 21, p 74.

ZIMMERNAN, W.S. (1953), A Revised Orthogonal Rotational Solution for Thurstone's Original Primary Mental Abilities Tests Battery. Psychometrika, 18, p 77.

ZYVE, D.L. (1927), A Test of Scientific Aptitude. J.Educ. Psychol., 17, p 525.

194

APPENDIX

(a) Item Analysis of the Chemistry and Physics objective examinations
(b) The Tosts and Examinations

SHLXIS SHLXIS

whules mas ub ciac wor dol

88

80Hつ8と 1531

29

35

27

30

36

203

46

48

205

(b) THE THSTS NTD TXAM DTATIONS

Referonco	IJame of tests	Source
OLADDT	Addition	L.L.T.
O2MULT	Multiplication	L.I.T.
03AREA	Arithmetical Reasonine	Ballard
OAAROP	Necessay Arithmetic Operations	13.T.S.
05LINO	Letters and Niumbers	P.E.V.
06LEST	Lettor Sets	T.T.S.
07SEFP	Seeing Problens	H.T.S.
03FLGS	Flags	L.L.T.
O9CRDS	Cards	L.L.T.
IOPIGS	Figures	L.L.T.
11P1RW	Percoptual Hords	A.C.E.S.
12PIHRN	Perceptual Numbers	A.C.T.S.
130 Br R	Object-liumber Memory	T.T.S.
14 PCIR	Picture Memory	A.C.E.S.
150TIS	General Intellifence	Otis
16 EXPR	Expreseion and Comprehension	A.H.S
17 COMP	Comprehension	A.H.S.
18 ESSY	Essay	A.H.S.
19SL[MT	Sentence Structure	M.H.S.
20VOCB	Vocabulary	L.L.T.
21LTMT	First Letters	L.L.T.
22PRFX	Prefixes	L.L.T.
23SUFX	Suffixes	L.L.T.
24THME	Theme	E.T.S.
25CATG	Catoçories	E.T.S.
26CHCu	Chemistry Conventional	A.C.E.S.
27PHCII	Phrsics Conventional	A.C.T.S.
28CHOB	Chemistry Objective	A.C.E.S.
29PHOB	Physics Objective	A.C.E.S.

* L.L.T.	$-\quad$ L.L. Thurstone, Chicago
E.T.S.	$-\quad$ Qducational Testing Service, Princoton
P.L.V.	$-\quad$ Professor P. E. Vernon
A.C.E.S.	$-\quad$ The writer
Otis	$-\quad$ Otis Intermediate Examination
A.H.S.	$-\quad$ Alliance High School Mnglish Department

```
A DDITION - N
```

Below are two columns of numbers which have been added. Add the numbers for yourself to see if the sums are correct.

	$\begin{array}{r} 16 \\ 38 \\ 45 \\ \hline \end{array}$	4.2 61 83
	99	176
R	\%	:
w	: : :	\cdots

The first sum is right so the space in the R row is marked. The second sum is wrong so the space in the W row is marked.

Check the sums of the columns below. If the sum is right, mark the space in the R row. If the sum is rrong, mark the space in the W row.

	17 84 29	$\begin{array}{r} 35 \\ 28 \\ 61 \\ \hline \end{array}$	$\begin{array}{r}63 \\ 17 \\ 89 \\ \hline\end{array}$
	140	124	169
R	: : :	: : :	: :
W	: $: ~$	- : \%	: :

STOP HERE

DO NOT TURN THIS PAGE UTTIL ASKRD TO DO SO,

ADDITION Adđ oach column.

If the sum is right, mark the space in the R row. If tho sum is wrong, wark the space in the II row.

	61	31	66	73	13	48	88	86	69	71
	34	59	73	29	39	45	29	49	44	37
	78	52	15	56	99	17	69	54	89	66
	53	$\frac{68}{20}$	$\frac{38}{20}$	33	32	82	98	22	84	55
	226	200	202	211	183	192	284	111	286	129
R	: :	: :	: : :	: : 8	: :	: :	: :	: :	: :	: :
H	::	: : :	: : :	: :	: :	: :	: :	: :	: :	::
	44	75	26	99	25	43	31	59	52	68
	49	54	44	77	46	34	73	29	56	33
	23	36	75	82	92	89	13	39	99	32
	48	17	51	68	57	32	48	45	17	82
	164	$\overline{162}$	196	$\overline{316}$	220	198	185	192	$\frac{1}{124}$	$\frac{225}{}$
R	::	: :	: : :	: :	: :	::	: :	: :	: :	: : \% R
H	: : :	: :	: : :	: : :	: :	: :	: :	: :	: :	: : :
	78	95	79	89	97	13	26	44	97	13
	56	49	22	64	35	92	99	77	92	99
	76	44	84	61	66	31	26	86	26	86
	35	37	55	34	73	36	62	68	86	79
	245	205	240	258	271	$\frac{172}{}$	$\underline{213}$	275	201	$\overline{367}$
R	: :	: :	: : :	::	: : :	: :	::	: :	: \%	: : \% R
H	: : $:$: :	: : :	: :	: :	: :	: :	: :	: :	: : : W
	26	44	75	51	81	32	97	23	71	48
	77	82	68	39	46	98	63	36	46	59
	32	84	39	92	43	22	76	41	67	17
	92	32	57	32	43	91	57	65	62	16
	234	232	339	314	208	243	303	165	236	150
R	: :	: :	: :	: :	: :	: :	: :	: :	: :	: : : R
	: :	: :	: :	: :	: : :	: :	: :	:8:	: :	: : : H
	24	89	26	81	75	18	59	64	83	
	85	95	86	39	47	15	44	61	34	97
	94	55	24	84	55	57	78	34	41	23
	47	79	99	79	19	96	89	19	16	71
	250	218	345	293	196	$\overline{186}$	280	188	174	243
R	: :	: :	: :	: :	: : :	: :	: :	: :	: $:$:	: : \% R
H	: :	: :	: : :	: :	: :	: :	: $:$: :	: : :	: : : W
	98	22	91	28	81	89			43	31
	63	76	57	63	39	86	82	68	73	29
	36	41	65	62	67	69	99	32	39	99
	46	67	62	37	52	72	87	23	17	82
	$\overline{243}$	196	295	260	239	315	243	174	182	$\overline{251}$
	: :	: :	: :	: :	: :	: :	: :	: :	: :	: : : R
	: :	: :	: :	: :	: : :	: :	: :	::	: : :	: : \% W
	59	52	68	31	59	42	68	75	78	23
	56	33	47	43	73	29	56	33	47	56
	32	55	56	92	43	13	39	45	32	55
	19	33	58	79	57	32	48	99	17	82
	146	173	239	245	232	106	201	242	154	216
	: : :	: :	: : :	: : :	: : :	: :	: :	: : :	: : :	: : : R

208

TEST O2MULT

Page 3

MUITIPLICATION

Below are tro multiplication problems. Multiply the numbers for yourself to see if the products are correct.

	$\begin{array}{r} 64 \\ \quad 7 \\ \hline \end{array}$	$\begin{array}{r} 39 \\ 4 \\ \hline \end{array}$
	448	166
R	\cdots	: : :
W	: : \%	Nor

The first answer is right so the space in the R row is marked. The second answer is wrong so the space in the W row is marked.

Check the answers in the problems below. If tine answer is right, mark the space in the R row. If the ansuer is rrong, mark the space in the H row.

STOP HERE.

MULTIPLICATION
If the answer is right, mark the space in the R row. If the answer is wrong, mark the space in the row.

ARITHETICAL RBASONTIG B2llard Form A

This is a test of arithmotical reasoning. You will have 15 minutes. Write your answers in tho space provided on the right-hand sido of each question. You can do rough work on this paper. Only the answer in the box will be marked. There are 33 quostions.

1/7 There are 20 brads on a string. 7 are red, 8 are blue, and the rost are yollow. How many aro yellow?

2/10 Among how many boys can I shere Sh. 5/-so that each eets 50 conts?

3/4 A boy was civen 12 apples. 3 of the apples were bad and had to be throw away. After eating 4 of the good ones how many were left?

$4 / 52$ What is tho loast number that must be added to 53 to make it exactly divisible by 7?

5/22 Shakespeare died in 1616 at the age of 52. When was he born?
6/23 What is the length of the stick which I can cut up into 8 pieces, each of 6 in . long, and have 4 in . loft over?

7/12 If I writo the word 'giraffe' 3 times, how many letters do I use?

9/8 A plank 20 ft . long is laid on the top of one which is 14 ft . lonf so that it is 2 ft . over at one end. How much is it over at the other?

10/50 I entered a shop at $5 \mathrm{p.m}$. and stayod till $5.30 \mathrm{p} . \mathrm{m}$. I bought two tios at Sh. 2/- each and two handkorchiefs at Sh. 3/50 each. Whet chanco did I get from Sh.20/-?

11/15 Mary is twice as old as Jane, Jane is twice as old as Ann, Ann is as old as Ruth, Ruth is 3. How old is Mary?

11
12/39 A man has 5 childron. It costs him Sh. 50/- to feed them. What will be the exponse for a month (4 weeks)?

13/54 How many oranies at 4 for 25 cents can I buy for $\mathrm{Sh} .2 /-$?
14/14 Two similar taps fill a bath in 20 minutos. How lon§ will ono take?

IA

211

Page 2

15/43 A helf and a quarter of a man's money added to zethor make $\mathrm{Sh} .9 /$ - How much has ho?

16/2 What number is half-way between 12 and 16 ?
17/47 How many days aro thore from noon on Januery 28 th to noon on Fobruary 2nd of the same yoar?

18/51 A boy sold a knife for Shs.1/50. His gean was 30 cents. What fraction of the cost price did he gain?

19/80 If I share 60 conts among two boys, so that ono gets 20 conts more than tho other, how much does the less fortunate boy get?

$20 / 58$ In the 3 class-rooms of a school thereare 120 children. Half of them are in the first room, one-third in the second room, and the rest in tho third room. How many are there in the third room?

21/64 What is tho greatest number that will divide 62 and 74 and leavo 2 remainder of 2 in each case?

22/29 Eow many twos must be multiplied together to make thirty-two?
23/37 A Iuns a hundrod yards raco with B, giving him 5 yards start. A boats B by 6 yards. How many yards has B run when A reaches the winning post?

24/66 What is the profit on 120 articles bousht at 80 cents a dozen and sold at Sh.i/- a dozen?

25/59 A bag containod nuts. David was given half of them and Sermel a quarter. It was found that David had 9 nuts more than Samol. How many nuts wore there in the bac; at first?

26/41 A man of 35 is 7 timos as olत as his son; how many times as - ld as his son will bo be 25 years hence?

27/76 How many times as fast as the hour hand does tho minute hand of a clock move?

28/94 The sum of two numbors is 24 and their difference is 10. What is tho largor of the two numbers?

29/99 If in secretly sending numbors to a friend I agree to write 7 whon I moan 3 and 11 when I mean 7 , what should I write whon I mean 10?

212

Page 3

30/96 A brick weighs 7 lb . plus half its own weight. What is tho weight of the brick?

31/92 If a man's salary is reduced by 10 percent. and then increased by 10 per cents, state whether he loses or spins and by what percentage?

32/88 A rectangular plot of grass 6 ft . long and 5 ft . broad is surrounded by a path 2 ft . wide. What is the area of the path in square feet?

33/65 A 5-storoy house has 4 equal flights of stairs with a total of 52 stairs. How many stairs must I go up to get to the fourth storey?

ARITHIETICAL RUASOITIG

3allard Form B
This is a tost of erithmetical reasoning. You rill have 15 minutes
Writo your answers in the space provided on the right-hand side of oach quostion. You can do rough work on this paper. Only the answer in tho box will be markod. There are 33 questions.

I/18 A bookseller bought some books for $\mathrm{Sh} .20 /$ - and sold them for Sh.22/-, gaining 50 conts on each book. Hor many did he buy?

2/16 There are 40 nuts on a plate. How many will bo loft after 5 people have eaton 7 each?

3/27 How many numbers betwoen 19 and 30 are exactly divisible by 4?

4/3 A man is tallor than his wife by 3 inches. His rife is tallor than his druchter by 5 inches. The dauchter is 60 inches tall. Iow tall is the man?

5/6 Fred has 15 marbles when he starts playing. He losos 8 marbles and then wins 6 marbles. How many marbles has ho?

5/28 If it takos 3 minutes to boil an ogg, how lonc will it take to boil 10 eggs together?

7/19 There are 35 boys in the first class and 40 in the second cless. For the arithmetic lesson 5 boys go down from the first class to the second class and 7 co up from the second to tho first. Hors many boys arc in the first class for the arithmetic lesson?

8/33 If I buy two books at 90 cents each and three pencils at 40 cents each, what change shall I have left from a five shilliñ note piece?
$9 / 53$ How many egess at 3 for 40 conts can I buy for Sh. $2 / 80$?

10/67 A bookscller bought some books forSh. 30/- and sold thom for $\mathrm{Sh} .35 /$-, gaining 20 cents on each book. Eow many did he buy?

24

11/70 If 1 man oats 1 apple in 1 day, in how many days will 10 men eat 10 apples at the same rate?

12/11 I malie as many separate triangles as I can with 29 whole atches. How many metches are not used?
 pan and place in the other to make them balance?

14/77 The area of a square ic 144 sq .in. What is the cistance in inches round it?

15/78 What is the distance round a rectanglar table top 5 Pt. long and 4 ft . broad?

16/32 A paper boy buys a dozen newspapers at Sh.2/- and sells them at 15 cents each. Hhat profit does he make on the whole?

17/84 A boy said "In 10 years' time I shall be twice as old as I am now". How old was he?

18/55 It takes three non two days to paint the inside of a house. How many men would be needed to do it in half a day rorlcin; at the same rate?

19/69 A man 6 ft . tall stande in the sunlizht noar a tele.zraph pole 30 ft . hish and casts a shadow of 9 ft. How lonf is the shadow of the telegraph pole?

20/21 The bottom of a hill is 200 ft. a oove sea-level and the top 400 ft. a bove sea-level. How high above the sea is a house which is half-ray up the hill?

21/56 Two men start rowing down a river from the same place at the same time. One rows at the rate of 4 miles per hour, and the other at $3 \frac{1}{4}$ miles per hour. How far apart are they after 3 hours?

22/61 What tro whole numbers multinlied together will make 7 ?

215

Page 3

23/45 A boy spent a quarter of his money on sreets and twice as much on fruit. Half of what he had left was 15 cents. How much had he at first?

24/55 A boy har 3 miles to waik to get to school. He can cycle 4 times as fast as he can walk. How far has he to go when he cycles to school?

25/60 What fraction lies midway between $\frac{1}{4}$ and $\frac{2}{?}$?

25

26/89 5 per cent of A^{\prime} s income is the same as 15 per cent of $B^{\prime} s$. A^{\prime} s income is $£ 300$ a year. What is $B^{\prime} s ?$

27/93 A box ani its key cost Sh.1/20. The box coste Sh.1/- more than the key. Hhat does the key cost?
\square 26

28/100 The first even number is 2 , the second is 4 , and so on. What is the hundredth even number?

29/86 John and Eenry start walking to meet one another from places los miles apart. If John walks at the rate of 3 miles an hour and Henry at 4 miles an hour, how long will it be before they meet?

30/57 My watch gains 4 minutes every day. It is set right at noon on Monday. What time will it show on the followincs Wednesday when the right time is 6 p.m.?

31/71 A man can dig his garden in 2 days, and his son can do it in 4. days. Hori long rrill it teke them if they work together?
$32 / 25$ What is the cost of 50 cents worth of egiss at 7 for 90 cents?

33/95 A man rows with the stream at the rate of 3 miles an hour and against it at the rate of 1 mile an hour. Hhat is the

33

ARITHPTICAL REASOITIG
 Ballard Form C

This is a test of arithmetical reasoning. You will have 15 minutes. Firite your ansuers in the space provided on the right-hand side of each question. You can do rougi work on this paper. Only the answer in the box will be marked. There are 34 questions.

1/26 If I pay Sh.6/-for 3 lb. of butter, what shell I have to pay for 2 lb.?

2/24 Hori much miot be added to Sh. 4/50 to make Sh. 10/-?

3/30 On January 4th a man bought 10 lb . of potatoes for Sh. 3/-. On Jenuary 6th he sold them in the market to 30 people for $\mathrm{Sh} .5 /$-. Eof much profit did he make?

4/44 If half a cake costa 25 cents, whatwill 5 cakes cost?
5/20 What is the number which is a quarter of five?
6/62 Find the distance round a square whose sides are 8 in.

7/46 Amonf: how many boys may 35 apples be divided so that each cets 2\% apples?

8/42 Two-thirds of a clase consists of 21 children. How many are there in the cless?
$9 / 35$ A boy was ziven three shillincs. He geve half to his brothers and with the rest boumht oranses at 10 cents each. Horr many did he buy?

10/75 A man works a day, tien rests a day, then works a day, then reste a day, and so cn. For each day he works he earns Sh.15/-. How much will he earn from Monday mornin; to Friday nisht?

11/73 The averaze of 5 numivers is 4. Four of the numbers are 2, 1, 5 and 5. What is the fifth number?

217

Page 2

12/1 Jane is 18 years old. If Sarah vere 5 years older she rould be as old as Jane. How old is Sarah?

13/49 Aftor spending half of my money and then half the remainder I had 20 cents left. Hors much did I have at first?

14/48 If five-eigths of my money is 10 cents, how much have I?

15/17 Five separate equilateral trianfles of equal size are made from 60 in. of wire. How long is each side?

16/9 John has 30 oranfer and James has 15 oranzes. James gives John sir of his oraņes. How many more oranges has John
 than James?

17/30 If a train goes 12 miles in 10 minutes, hov long will it tcke to col mile?

18/36 A butcher in selling $3 \frac{1}{4}$ Ib. of meat gave 5 oz . short weight. What did the mest really weigh?

19/63 Mery and Marcaret torgether eam Sh.10/- by making buttonholes. Hary sews 3 while Marçaret sews 2. What share of the Sh. 10/- should Mary receive?

20/31 A boy meesured a piece of strin; miti a muler and found that it was 6 ft . lonf. He then measured the muler and found that it was only 11 inslon.;. What was the real length of the strinc?

21/97 Bow many times can one-third be taken away from twelve?
22/83 Seven posts 3 ft. apart are fixed in a row. How far is the first post from the last?

23/79 A rectancle is trice as loñ as it is broad. Its area is 200 sq.ft. What is its breadth?

24/81 If I share a shilling amons two boys so that one gets ten cents more than the other, how much does the more fortunate boy eet?

218

Page 3

25/85 If telegraph poles stand 50 yards apart in a straisht row, whet is the distence from the first to the eighth?

26/34 What is the smallest sum of money that car be paid in either five shilling notes or ten shilling notes?

\square
27/74 There are two numbers, one of which is larçer than the other by 2. When multiplied tofether they make 143. What is the smaller number?

28/98 A man walks 5 yerds north, 5 yards to the east, 5 yards to the south, and then 5 yards to the west. How far is he then from the starting point?

29/72 How much is three times the third of three and a third?

30/90 A street 30 yards long is planted on each side with trees 6 yards epart. How many trees are there?

31/87 A man walking at the rate of 4 miles an hour pursues another man who had an hour's start and walks at the rate of 3 miles an hour. How lons will it take the pursuer to catch up the other man?

32/69 A man 5 ft . tall stands in the sunlicht near a tree 40 ft . tall and casts a shadow of 6 ft . How long is the shador of the tree?

33/91 If a man's salary is increased by 10 per cent, and then reduced by 10 per cent, state whether he loses or gains and by what percentaze.

34/82 A flower-bed 6 ft . square is surrounded by a path a foot
ride. What is the areaof the path in square feet?

NECESSARY ARITHMETIC OPEKATIONS TEST -R-4

This test consists of problems in mathematics. However, instead of solving the problems and finding an answer, ycur task will be merely to indicate which arithmetic operations could be used, if you solved the problens. Put an \bar{X} through the number in front of the option that you select.

Examplo I

If a man earns Shs.2.75 an hour, how many hours should he work each dey in order to make an average of Shs.22.50 per daj?

> 1-subtract
> 2-divide
> 3-add
> 4-aultiply

In order to solve the problem you should divide Shs.2?.50 by Shs.2.75; therefore, you should have put an X through 2.

Ezample II

Desks priced at Shs. 40 each are being sold in lots of 4 at 85% of the original price. How much would 4 desks cost?

> 1-divide and add
> 2-multiply and multiply
> 3-subtract and divide
> 4-multiply and divide

One way to solve tho problem would be to multiply Ths. 40 by -85 and then multiply this product by 4 ; therefore, you should have put an X through number 2. (Although some problems may be solved in more than ono way, as with Example II, only the operations for one of these weys will be given among the options).

When 2 oporations are given, they are always given in the order in which they should be performed.

Your score on this test will be the number marked correctly minus a fraction of the number narked incorrectly. Therefore, it will not be to your advantage to guess unless you are able to eliminate one or more of the answer choices as wrong.

You will have 5 minutes for each of the 2 parts of this test. Each part has 3 pages. When you have finished Part 1, STOP. Please do not 80 on to Part 2 until you are asked to do so.

220

Page 2
Part 1 (minutes)

1. There are 4 quarts in a gallon and 4 cups in a quart. How many cups aro there in a callon?
```
1-add
2-subtract
3-multiply
4-divide
```

2. An electric plening machine is set to remove . 02 of an inch each tins a piece offrood is passed through it. If a board is put tbrough 7 times, how much wood will heve been removed?
```
1-multiply
2-subtract
3-divide
4-add
```

3. There are 54 children at a small summer camp. If there are 33 boys attending the camp, how many campers are girls?

1-add
2-multiply
3-subtract
4-divide
4. A man vants to seed a lawn around his new house. His plot is 120 feet by 90 feet (10.800 sq. feet). His house is centred on the plot and occupies $2,785 \mathrm{sq}$.feet. How many square fect of eround may he sow with grass seed?

1-add
2-divide
3-multiply
4-subtract
5. A wholesale meat dealer sells beef for Shs.l. 44 per pound and goats' meat for Shs. 0.62 per pound. One day he sold 79 pounds of each. How much money was taken in?

1-add and divide
2-add and multiply
3-multiply and subtract
4-divide and divide

Part 1 (continued)

6. A cyclist in an international bicycle race has covered an average of 9 miles every 20 mimutes. If he can maintain the same averace speed, how lons will it take him to cycle the remaining 84 miles of the race?

1-divido and multiply
2-subtract and divide
3-add and subtract
4 -divide and ade
7. A crocer sells oranzes for Shs.l.18 per dozen. The oranges cost him Shs.0.66 a dozen. How much profit is there on each orange?

1-subtract and multiply
2-divide and subtract
3-add and divide
4-subtract and divide
8. A boy works in a shop after school for a total of 10 hours from Monday to Friday. He also works 8 hours on Saturdays. Horr much is he being paid per hour, if he earne Shs.20.70 per week?

1-multiply and subtract
2-add and divide
3-divide and subtract
4 -add and multiply
9. A woman took a job which pays Shs. 130 per week. After taxes have been deducted she is left with 76% of her salary, and each week she spends a total of Shs. 6.00 on lunches and bus fares. How much does her job increase her family's income?

1-divide and subtract
2-subtract and multiply
3-add and divide
4-rultiply and grbtract
10. A rectancular underground reservoir is 15 feet deep and contains 2,000,000 sallons of water, when it is full. The Long Rains filled the reservoir, but the following drought caused the water level to drop 5 foet. Apprcximately how many gallons of water were consumed during the drought?
l-subtract and divide
2-add and subtract
3-divido and multiply
4-subtract and multiply

Part 1 (continued)

11. Acertain cut of beef costs Shs.1.50 per pound. How much beef could a housewife serve to each of 5 people, if she could only afford to spend Shs. 4.00 for the beef?

$$
\begin{aligned}
& \text { 1-divide and divide } \\
& \text { 2-multiply and add } \\
& \text { 3-subtract and wultiply } \\
& \text { 4-divide and multiply }
\end{aligned}
$$

12. A coat marked Shs. 40.00 was sold for Shs. 29.95 during a sale. What was the per cent reduction?

$$
\begin{aligned}
& \text { 1-divide and add } \\
& \text { 2-subtract and divide } \\
& \text { 3-multiply and subtract } \\
& \text { 4-add and divide }
\end{aligned}
$$

13 At the beginning of the month, a car rental organization rented 37 cars. During the month, 32 of these cars were returned. If, at the end of the month, 43 of their cars were being rented, how many new rentals had boen made?
l-subtract and divide
2-subtract and subtract
3-add and subtraot
4-multiply and add
14. A Corporation doubled its assets by selling l,000 shares of atock at Shs.75.00 per share. What were the Corporation's total assets after the stock had been sold?

> 1-multiply and divide
> 2-add and multiply
> 3-add and subtract
> 4-multiply and multiply
15. A certain houserife generally squeezes $l^{\frac{1}{2}}$ oranges for a glass of orange juice. The average cost of the oranges she bought during one year was Shs. 0.40 per orange. Approximately how much did it cost the family for the 827 glasses of juice that they drank during the year?
l-multiply and subtract
2-add and divide
3-multiply and multiply
4-divide and multiply

223

Page 5

Part 2 (minutes)
16. If chocolate bars are sold by the dozen at a cost of 45 cents, how much does each bar cost?

$$
\begin{aligned}
& \text { 1-multiply } \\
& \text { 2-divide } \\
& \text { 3-add } \\
& \text { 4-subtraot }
\end{aligned}
$$

17. If a woman can weave a small rug in three days, what is the least number of days that she would need to complete 6 of these rugs?

$$
\begin{aligned}
& \text { 1-add } \\
& \text { 2-subtract } \\
& \text { 3-multiply } \\
& \text { 4-divide }
\end{aligned}
$$

13. A book club is giving its members a discount of Shs. 2.00 on each book. If the members buy a total of 1,721 books in a certain month, how much is the total discount for that month?

$$
\begin{aligned}
& \text { l-divide } \\
& \text { 2-multiply } \\
& \text { 3-subtract } \\
& \text { 4-add }
\end{aligned}
$$

19. If 2 inches are added to the length of a reotancle, its area is increased by $\frac{1}{2}$ eq.inch. What is the breadth of the rectangle?
l-divide
2-add
3-multiply
4-subtract
20. A salesman needed to drive the 300 miles from Nairobi to Hombesa. If be left Nairobi at 7:30 A.M. and arrived in Mombasa at 12:30 P.M., what wes his average speed in miles per hour?
l-add and subtract
2-divide and multiply
3-multiply and add
4-subtract and divide
21. A particular television set can be purchesed with cash for She.680, or it can be purchased on the installment plan for Shs. 44 a month for 18 months. How much more would the television set cost on the installment plan?

1-multiply and add
2-add and divide
3-subtract and divide
4-multiply and subtract
22. A newspaper seller buys newspapers for 30 cents each and sells them for 50 cents each. How many papers must be sold to make a. profit of Shs. 4.00 per day?
l-subtract and divide
2-multiply and subtract
3-divide and multiply
4-add and divido
23. At the first day of the year, a shop's inventory showed goods worth Shs.31,250. During February the shop purchased goods worth Shs.29,834. In March a fire completely destroyed the shop. If the owner claimed a goods loss of Shs.47,420, how much goods had been sold before the fire occurred?

1-multiply and subtract
2-subtract and add
3-multiply and add
1-add and subtract
24. A clothing atore took in Shs.93,752 in cash fror one yearls sales. At the end of the year there was also Shs.7,952 outstanding in uncollected accounts. If the store expects to collect 95% of these accounts, how much will it eventually take in for the year's sales?

$$
\begin{aligned}
& \text { 1-subtract and multiply } \\
& \text { 2-divide and add } \\
& \text { 3-subtract and divide } \\
& \text { 4-multiply and add }
\end{aligned}
$$

25. A topographical map on which 1 inch equals 50 miles shows that a point 1 inch from the seacoast is 1,500 foet above sea level. What is the average number of feet that the ground must climb every 5 miles in order to reach that height?
l-multiply and subtract
2-divide and divide
3-add and divide
4-multiply and multiply

225

Page 7
Part 2 (continued)
26. A farmer has his home and cattle insured for Shs.52,000. The yearly premium rato is Shs.2.05 per Shs.100. How much does this insurance cost him each year?

1-divide and add
2-add and multiply
3-divide and multiply
4-subtract and divide
27. John, who is eifht years old, has been given an allowance of 25 cents per week. Each year he will get a rise of 20 cents per weok. How much will his weokly allowence be 10 years from nor?
l-multiply end add
2-subtract and divide
3-divide and subtract
4-add and multiply
28. A man who owns a motor boat which uses 54 gallons of petrol every 6 hours when it is cruising at $\frac{1}{4}$ speed. If the same boat uses 20 gallons an hour then it is running at $\frac{3}{4}$ speed, how many fewer gallons are used per hour at $\frac{1}{4}$ than at $\frac{3}{4}$ speed?
l-multiply and multiply
2-add and divide
3-divide and subtract
4-subtract and add
29. At present, Mr. Mwangi receives an annual interest of Shs. 42 from a Shs. 910 investment. He wants to increase his investment so that he will get Shs. 437 interest annually. What is the total amount that he must have invested at the same rate of interest?

1-divide and divide
2-subtract and divide
3-multiply and subtract
4-add and multiply
30. A motorist spent Shs. 31.20 for petrol in the first 4 days of a 20 day trip. At this rate what will his petrol exnenditure be for the entire trip?
l-multiply and add
2-divide and multiply
3-add and jivide
4-subtract and multiply

Name TEST 05LENO LETTeRS AND NUMBERS TEST

In this test, wherever you see a dot, there is one letter or number missed out. Write the missing letters or numbers just above the dot.
e.B. A B C D E

1. hot cold wet dry fast slow down . .

3.	AC BD	EGFH	IKJL	\ldots	\ldots		
4.	2	8	18	32	\cdots		
5.	AZ	CK	CV		\ldots		
6.	212	323	434	545	\cdots		

7. grass green sky blue soot.....
8. than an thought ought think
9. Sunday 1 Monday 2 Saturday
10. peat pea note not bowl...
11. 1 inch 12 foot 36 . . .
12. shark hark ark spill pill
13. no on ten net deer
14.

C 18
D 16
E 14 F 12
15. head hat foot shoe hand
16. she he sill ill slow . . .
17. $A \quad Z \quad B \quad Y \quad C \quad X \quad D \quad W \quad$.
18. January March May
19. finger hand arm toe foot . .
20. We our she her he . . .
21. bag beg big . . . bug
22. he ha end and rein
23. $864 \quad 753 \quad 642 \quad 531$
24. Wednesday Tuescay Friday Thursday Saturday
25. groat get tarry try blind bid chain...
26. RZKT TRZKK KTRZ,
27. beneath bath swallow slow torrent . . .
28. sheathe heath eat .
29. sloops pool unity tin zone . .
30. bread dread ham jam nail . . .
31. umpire rum pie search she car estate . . . tea
32. dough cough bough teal seal . . .
33. B C E HI .
34. rain into tone atom
35. ALZ DNX CNV. JOT
36.
sleet hail fret animal bear carry recline lie falsehood beg dismiss
37.

DeF HiJ Lm
38.

100 baa 201 cab 106 bag 543
39. dare ouse fate h...
40. TOHN VQYP CITY
41. $396 \quad 584 \quad 772$

TEST O6LEST

Name:

LETMER SETS TEST - I-I

Each problem in this test has five groups of letters with four letters in each group. Four of the groups of letters are alike in some way. You are to find the rule that makes these four हroups alike. The fifth group is different from them and will not fit this rule. Draw an X through the group of letters that is different.

NOTE: The rules will not be based on the sounds of groups of letters, the shapes of letters, or whether letter combinations form words or parts of words.

EYamples:

| A. NOPQ DFIN | ABCD | HIJK | UHKX |
| :--- | :--- | :--- | :--- | :--- |
| B. NLIK FLIK | | | |

In example A, four of the groups have letters in elphabetical order. An X has therefore been drawn through DeFL. In example B, four of the groups contain the letter L. Therefore, an X has been drawn through THIK.

Your score on this test will be the number of problens marked correctly minus a fraction of the number marked incorrectly. Therefore, it will not be to your advantage to guess unless you are able to eliminate one or more of the letter groups.

You rill be allowed 7 minutes for each of the tro parts of this test. Each part has 1 page. When you have finishod Part l, STOP. Please do not go on to Part 2 until you are asked to do so.

Page 2

The Alphabet:

$$
\begin{aligned}
& \text { A BCDEFGHISKLM NOP QRSTUVWXY Z } \\
& \text { Part I (7 minutes })
\end{aligned}
$$

1.	QPPQ	HGHH	TTTU	DDDE	MLMM
2.	BCDE	FGHI	JKLM	PRST	VWXY
3.	PABQ	SEPT	VIJW	COPD	FUZG
4.	LNLV	DTFL	CINL	ERLJ	LLWS
5.	BDCE	FHGI	JIKII	PRQS	TVW
6.	BCCB	GFFFG	LIMIL	QRRQ	WXXW
7.	DCDD	HGHH	MMLM	Q22R	WWVW
8.	ABCX	EFGX	IJKX	OPQX	UVWZ
9.	GFFFG	DCCD	STMS	RQQR	MLIM
10.	DEGF	KLHEJ	TOQP	PQSR	TURS
11.	CSRT	KısTV	FHXZ	BODQ	HJPR
12.	CFCR	JCVC	CGCS	CIXC	KCWC
13.	PXCC	IEQX	RXGG	IISX	TXLL
14.	VEBT	XGDV	ZIFX	KXVH	MZXJ
15.	AFBG	EJFK	GKHM	PSQT	RWSX

DO NOT TURR TTHIS PAGE UTTIL ASKED TO DO SO.

The Alphabet:

> ABCDEFGIIJKLNIOPQRSTUVWXYZ Part $2(7$ minutes $)$

16.	BDBB	BFDB	BHBB	BBJB	BBLB
17.	NABQ	PEFS	RIJV	GOPK	CUWH
18.	CAEZ	CEIZ	CIOZ	CGUZ	CAUZ
19.	BDEP	FHIJ	HJKL	NPQR	SVWX
20.	BVZC	FVZG	JVZK	PWXQ	SVZT
21.	ABDC	EGFH	IJIK	OPRQ	UVXW
22.	AAPP	CCRR	QQBB	EETT	DDSS
23.	$\triangle B C E$	WFGI	IJKM	OPQT	UVITY
24.	XDEK	TNLL	VEGV	PFCC	2ing
25.	FFEDC	MKJ I	DCBA	HGFE	JIHG
26.	BCEP	FGIJ	STWX	CDFG	PQST
27.	BKIPW	HJITX	KRRZ	KOSV	HRPN
28.	RRER	QQAR	FTMF	JXIJ	SSCS
29.	AOUI	CMZR	JHTH	P BRL	RTVH
30.	HOGD	BFOP	GHOZ	XSII	POLF

$$
\text { DO NOT GO BACK TO PART } 1 \text { and }
$$

DO NOT GO ON TO ANY OTHER TTEST UITTIL ASKED TO DO SO.

SEELIG PROBLEMS - Sep-2

In this test you will be given names of common objects. You will be asked to write down problems that you think of when you think about each of these objects. You do not have to think of any answers to the problems. All you have to do is think of the problems and write them down.

For example, if you were given the word "candle" you might see the following problems:

1. How to light it
2. Keeping it from falling over
3. Keeping it burning steadily
4. Hows long will it bum
5. What to do with the dripping was

Your problems should deal with the use of the object, its shape, or what it is made of. Do not waste your time thinking of ways to get the object or ways to get rid of it, as these will not be counted. You rill have minutes for each page (there are three objects on each page)

In the test you are to write as many as five different problems for each object named. You need not write more than five problems for any one object. If you cannot think of five, write as many as you can, then ${ }^{2} 0$ on to the next object.

If you have questions, ask them now.

Page 2

Part 1 (minutes)

Write different problems for each of these objects. If you cannot think of any more problems, so on to the mext object.

Tree
1.
2. \qquad
3.
4. \qquad
5. \qquad

Hammer
1.
2. \qquad
3. \qquad
4.

5. \qquad

Hind
1.
2.
3.
4. \qquad
5. \qquad

233
 Page 3
 Part II (minutes)

Write different problems for each of these objects. If you cannot think of any more problems, go on to the next object.

Paint

1. \qquad
2.
3. \qquad
4. \qquad
5. \qquad

Box

1. \qquad
2. \qquad
3. \qquad
4. \qquad
5. \qquad

Lake

1. \qquad
2. \qquad
3. \qquad
4.
5. \qquad

Pase 4

Part III (minutes)

Write different problems for each of these objects. If you cannot think of any more problems, go on to the next object.

Envelope
1.
2. \qquad
3. \qquad
4. \qquad
5. \qquad

Curtain
1.
2. \qquad
3. \qquad
4.
5. \qquad

Sun
1.
2. \qquad
3. \qquad
4. \qquad
5.

Part IV (minutes)

Hrite cifferent problems for each of these objocts. If you cannot think of any more problems, 30 on to the next object.

Glue
1.
2.
3. \qquad
4.
5. \qquad

Rope
1.
2. \qquad
3.
4. \qquad
5. \qquad

Potato

1. \qquad
2. \qquad
3. \qquad
4. \qquad
5.

FLAGS

The two flegs bolow ars alike. You can slide one around on the page to fit the other oxactly.

How look at tho next two flags. They are different. You cannot make ther fit by sliding around on the page.

Hero are moro flags. Somo of the flags are marked. The flags that are liko tho first plag in this row are markod.

Below is another row of flags. Mark all the flags that are like the first flag in tho row.

You should havo markod the flaç B and D.
Here aro moro flags for you to mark. In oach row mark evory flag that is like the first flas in the row.

STOP HERE. WAIT FOR FURTHMR INSTRUCTIONS.

In each row merk every flag that is like the first flag in the row N.B. Thoro are FOUR pagos of flags.

				$\begin{aligned} & \text { In } \\ & t: \geq \end{aligned}$

-				
-				

				$\frac{\square}{\square \square \square}$

国

CARDS

Horo is a picturo of a card. It looks like an L, and it has a hole in ono ond.

Tho two cards bolorr aro alike. You can slide one around on the page to fit tho other exactly.

Now look at tho next two cards. They aro difforent. You onnnot make thom fit oxactly by sliding them around tho page.

Here are more cards. Somo of the cards aro markod. The cards which ?ro like the first card in this row are marked.

Bolov is anothor row of caras. Mark all the cards which nre like the first card in tho row.

You should have marked tho cards B and C.
Hero are sone more cards for you to mark. In oach row mark every card that is liko tho first card in the row.

STOE EIERE. HAIT FOR FURTHER INFTRECTIONS.

Page 2

In eech row mark every card that is like the first card in the row. N.B. There are ThO pages of cards.

GO STRAIGHT ON TO NTEXT PAGE.

243

Paģe 3

STOP HIRR

FIGURES

Look at tho row of figures below. Tho first figure is like the letter F which is the right side up. All tho other figures are like the first but hoy have boon turned in different directions.
F
<
人
$-\uparrow$
λ
y
山

Satisfy joursolf that all the figures look like the first one if they are turned tho right way up.
Now look at the next row of figures. The first one looks like an F. But none of tho other figures would look like en F even if they wire turned tho right way up. They are all made heckward.

$$
F \quad 7 \quad>\quad \Perp \quad \leqslant \quad t
$$

Some of the figures in the next row are like the first figure. Some are made backward. The figures like the first figure are marked.

Notice that all tho figures like the first figure are marked.
In the row of figures below, mark avery figure which is like the first figure in tho row. Do not mark the figures which are made backward.

You should hove marked tho figures A and E.
In orch row below mark every figure which is like the first figure in the row.
ST B:

STOP HERE. WAIT FOR FURTHER INSTRUCTIONS.

In each row put a mark under every figure which is like the first figure in tho row.
N.B. There are TWO pages of figures.
促

Name:

PERCEPTUAL TT ST - P

This test consists of names; names of people, companies, buildings, streets and so on. If the two names are exactly the same make a tick mark ($)$) on the line between them; if they are different, make a cross on that line.

Example.

Now try the examples below

$$
\begin{array}{cc}
\text { Salisbury Hotel__Salsbury Hotel } \\
\text { Parliament Building___Norliament Buildings } \\
\text { F. N. Noroge_N. Noroge }
\end{array}
$$

This is a test for Speed and Accuracy. Work as fast as you can without making mistakes: there are three pages to attempt.

DO ROT TURN THIS PAGE UTITIL ASKED TO DO SO.

The time allowed is minutes
8.
9.

Ruhr-Stickstoff \qquad Ruhr Stickstoff

Macos (E.A.) Ltd. \qquad Macos ($\mathrm{H} . \mathrm{A}^{(.)}$Ltd. Ruaraka General Store__Ruaraka General Store

Tutu Coffoe Ltd. \qquad Tutu Coffee Co.

Twentsche Overseas \qquad Twentsche Overseas

Higglesworth \& Co. \qquad Wigglesworth i\& Co. C.C.K. Nakuru \qquad C.C.K. Nakuru

Samuel Muchimu \qquad Samual Muchiru

Pictorial Revies \qquad Pictorial Review

Dagoretti Centre \qquad Dagorreti Centre
J. T. Mathai \qquad J. T. Mathai

John Skinner \& Sons \qquad John Skinner \& Sons

Vishram Pirbhai \qquad Vishram Pirbhaj

Harambee Avenue \qquad Harambee Street

Red Hill Road \qquad Red Hill Road

Shoikh H.El-Kindy \qquad Shiekh H.El-Kindy Kariithi K. G. \qquad Kariithi K. ${ }^{\text {. }}$

Total Ltd. \qquad Total Ltd.
J. Omondi \qquad J. Omonde

Keelay Institute \qquad Keeley's Institute

Jan Mohammed \qquad Jan Mohamed

Urland's Bacon \qquad Uplands' Bacon

MacMillan Library \qquad McMillan Library
J. F. M. Koite \qquad J. F. W. Koite

Lake Victoria \qquad Lake Victoria Rev. L. MacPherson_Rev. L. liacpherson
S. O. Onamu \qquad S. O. Onamu

Adams Arcade \qquad
Kariokor_...................
Mamugee Brothers \qquad Mamugee Bros.

Glad Rags' \qquad Glad Rags'

Zimmermann Lta. Zimmermann Ltd.

Malik Street \qquad Malek Street

Fred Berger \qquad Fred Berçar Nyanjuki Mills \qquad Myanjuki Mills
E. T. Monks Lta. \qquad E. T. Monks Ltd. Elisabeth \mathbb{N} jemz \qquad Ilinabe th Njemu

Giraffe Ltd. \qquad Giraffe Ltd.

Kajiado Plains \qquad Kajiado Plains
M. E. Ofyond'o \qquad M. E. Ogondo

Thompson's Palls \qquad Thomson's Palls

Sceix Co. \qquad Sciex Co. Goodyear Tyre Co. \qquad Coodyear Tyre Co. New Stanley Hse. \qquad New Stanley Hse. Shimba Hills \qquad Simba Hills

Thakrar J. K. \qquad Thakerar K. J.
"Henry" Hairdresser \qquad 'Henry' Hairdresser Twentieth Century \qquad Twentieth Century

Meru Co-operative Ltd. \qquad Meru Cooperative Itd.
H. Morryweather \qquad H. Merrywea ther
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.

Chege Tile Co. \qquad Cege Tile Co.

Dr. J. R. Singh \qquad Mr. J. R. Singh

Shah Keshavlal \qquad Shah Keshavial

Kilindini Road \qquad Klinidini Road

Taพง Ltd. \qquad Taws Ltd.

Polytechnic College \qquad Polytechnic College Sales \& Service___ Sales \& Service

Kamacrambo \qquad Kamagambo

Selous Co. \qquad Selos Co.

Clinton F. \mathbb{F}. \qquad Clinten F . J . Otieno Oyoo St. \qquad Otieno Oyoo St.

Mbaya House \qquad Mibaya House

Kamau Stores \qquad Kamau Stores Kenol Oil___Kenol Oil

Bernard Gdns. \qquad Bernard Gdrs.

Raja Co. \qquad Raja Co. University College___ University College

Keekerok Lodze \qquad Keekerok Lodge

Panafric Yotel \qquad Panafrica Hotel

Dr. Ngata \qquad Dr. Ngatia

The Orphanage \qquad The Orphanage

Mwangi \& 0100 (E.A.) \qquad Mwangi \& 0100 (A.E.)

Beso Ltd. \qquad Esso Ltd.

Blanche Acadamy \qquad Blanche Academy

Herbert Chitepo \qquad Herbert Chitepo

TEST 12PERN

Page 5

Perceptual Test - P

PART II

This tset consists of numbers. If the two numbers are exactly the same mako a tick mark (\checkmark) on the line between them: if they are different make a cross on that line.

Example-

How try the examples below

0.2584321	0.2584321
$83465 \cdot 21$	$334652 \cdot 1$
5231987	523987

This is a test for Speed and Accuracy sith numbers. Work as fast as you can without making mistakes. Thero is only one page; do both columns.

DO NOT TURN THIS PAGE UNTIL ASKIED TO DO SO.

OBJECT - NUMBER TEST - Ma-2

This is a test of your ability to learm combinations of words and numbers. In each pert of the test you will study a page shoring 15 abject names with numbers. After studying the page showing both objects and numbers you will turn to a page shoring the names of the objects in a difforent order. You will be asked to write down the numbers that go with them.

Here is a practice list. Study it until you are asked to turn to the practice test page (1 minute).

Obiect	Number
window	73
desk	41
carpet	19
door	84
glass	90

Page 2

PRACTICE TEST PAGE

For the first object below, the correct number has been written. Write all of the other numbers that you can remember.

Object	Number
desk	-41
glass	-
window	-
door	-
carpet	-

Tour score will be the number marked correctly. Even if you are not sure of the correct answer to a question, it will be to your advantage to guess.

There are two parts in this test. Each part has two pages:
The first of those is a memory page which you are to study for 3 minutos.

The second is a test page on which you are to write the numbers that $g 0$ with the objects. You will have ? minutes to write.

When you heve finished Part 1, STOP. Please do not go on to Part 2 until you are asked to do so.

Page 3

MLMORY PAGE FOR PART I

Study this list. You will have 3 minutes.

Object	Number
tree	58
floor	29
chair	33
wall	56
shoe	17
table	78
coat	49
roof	22
dish	36
pillow	43
post	65
tile	35
plate	26
shade	40
rock	62

DO NOT TURN THIS PAGE UNTIL ASKED TO DO SO.

STOP.

Page 4

TEST PAGE FOR PART 1

Write the number that belongs with each of the objects. You will have 2 minutes.

Object	Number
coat	post
pillow	-
floor	-
shoe	-
shade	-
tile	-
roof	-
wall	-
rock	-
tree	-
chair	-
plate	-
dish	-

DO NOT TYRIT TO PART 2 UNTIL ASKED TO DO SO.

```
    Page 5
    MEMORY PAGL FOR PART 2
Study this list. You will have 3 minutes
    Object
        Tumber
    mop
        2 3
    jacket 18
    brick 54
    mat 31
    board }1
    cup 77
    bush 37
    clip 42
    spoon 63
    piano 28
    bod }5
    ceiling 82
    vase 44
    panga }1
    razor 91
```


Page 6

TEST PAGE FOR PART 2

Write the number that belongs with each of the objects. You will have 2 minutes.

Object	Number
mat	
clip	
panga	
board	-
ceiling	-
spoon	-
vase	-
mop	-
cup	-
bed	-
bush	-
jacket	-
razor	-
piano	-

PICTURE MEMORY TEST

This is a test of your ability to remember names of objects. You rill study a page af twenty objects. After studying the page showing the objects you will turn to the next page and will write down the names of objects in any order you like.

Here is an example. Below are drawings of two objects.

They are, of course, a hammer and a leaf.
On the following page you would have written:

1. LEAF
2. HAMMER

You will have 2 minutes to study the pictures and $1 \frac{1}{2}$ minutes to write down their names.

MEMORY PAGE

Study these objects. You will have 2 minutes to learn their names

DO NOT TURN THIS PAGE UNTIL ASKED TO DO SO.

Pace 3

TEST PAGE

Write the name of each of the objects in the pictures. You can write them in any order. You will have li minutes.

This is a tost to see how well you onn think. It contains questions of lifferent kinds. Hore is a semplo question alroady answered correctly. Notica how the qusation is anoworad. Which one of the fivo words below tolls what an apple is?

1 flower, 2 treo, 3 vegotable, 4 fruit, 5 animal
Tho richt answor, of courso, is "fruit"; so the word"fruit"ia underlined. Ind tio wore. "fruit" is No.4; so the ficure 4 is placed in the brackets at the end of the dottod line. This is tho ray you aro to answor the questions.

Try this semple question yoursolf. Do not write tho answer; just draw a lino under it and then put its number in the brackots:

Which ono of the five things bolow is round?
1 a book, 2 a brick, 3 a ball, 4 a house, 5 a box
The answor is, of coursc, is "a ball"; so you should have drawn a line under tia words "a ball" and put a figuro 3 in the brackots. Try this one:

A foot is to a men and a paw is to a cat the same as a hoof is to a -what?

Tho ancror, of courso, is "horsa"; so you should have drawn a line under the roid "horso" and put a fieure 2 in tho brackots. Try this one:
At forty conts oach, how many conts will 6 renoils cost?
The answor of courso is 240, and thore is nothing to underline; so just pht the 240 in the brackete.

If the annwor to any question is a number or a letter, put the number or lottor in the brackots without undorlininé anything. Make all lettors like printed capitals.

The test contains 75 quostions. You aro not oxpocted to be eble to answor all of thom, but do tho best you can. You will bo allowed half an hour after the oxaminer talls you to bocrin. Try to got as many right as possiblo. Be careful not to co so fast that you makc mistakes. Do not spend too much time on any one question. No questions about the tost will bo answorod by the oxaminor after tho tost bogins.

1. Which ono of the five thine bolow does not bolong with tho others?1 potato, 2 timip, 3 carrot, 4 stone, 5 onion
2. Which one of the five fords below tells best what a saw is?
1 somothinc, ? tool, 3 furniture, 4 wood, 5 machine
3. Which one of the five roads below means the opposite of west?
1 north, 2 south, 3 east, equator, 5 sunset
4. A hat is to a heed and a clove is to a hand the same as a shoe is to what?1 leather, 2 a foot, 3 a shoelace, 4 walk, 5 a toe
5. A child who knows he is salty of doing wrong should feel (?) 1 bad, ? sick, 3 butter, 4 afraid, 5 ashamed
6. Which one of the fire things below is the smallost?
1 trig, 2 limb, 3 bud, 4 tree, 5 branch
7. Which on c of the five things below is most like these three: cup, plate, saucer?1 fork, 2 trblo, 3 eat, 4 bowl, 5 spoon
8. Which ono of the five words below means the opposite of strong?1 man, 2 weak, 3 small, 4 short, 5 thin
9. A finger ie to a hame the same as a toe is to what?1 foot, 2 too-nail, 3 heel, 4 shoe, 5 knee()10. Which word mean r tho cppocito of sorrow?
1 sicknocs, 2 health, 3 good, 4 joy, 5 pride ()11. Which one of tho ton numbers below is the smallest? (Tell by letter)
A 6084, B 5160, C 4342, D 6521, E 9703, F 4296, G 7475, H 2657, J 8839, K 3918 ()
10. Which word means the opposite of pretty?1 good, 2 ugly, 3 bad, 4 crooked, 5 nice)13. Do what this mixod-up eontonce tells you to do.number Write the the in 5 parentheses()
11. A book is to en author ad a statue is to (?) 1 sculptor, 2 marble, 3 model, 4 magazine, 5 man
12. If we beliovo some one has committed a crime, but we are not sure, we have a (?) 1 fear, 2 suspicion, 3 wonder, 4 confidence, 5 doubtful
13. Which is tho most important reason that words in tho dictionary are arranged alphabetically?
1 That is tho easiest way to arrange them. 2 It puts the shortest words first. 3 It enables :is to find any word quickly. 4 It is merely a custom. 5 It makes tho printing
14. Which one of the five things below is most like these three: plum, apricot, apple?

1 two, 2 sled, 3 mango, 4 juice, 5 ripe
12. At 40 cents each, how many pencils can bo bought for She. 3/60 ?
19. If a person walking in a quit place suddenly hears a loud sound, he is likely to be (?)
l stopped, 2 struck, 3 startled, made deaf, 5 ancered
20. A boy ie to a man as a (?) is to a sheep.

1 wool, 2 lamb, 3 goat, 4 shepherd, 5 dog
?1. On s number is wrong in the following series. What should that number be? (Just write the correct number in the brackets.)
$\begin{array}{llllllllllll}1 & 6 & 2 & 6 & 3 & 6 & 4 & 6 & 5 & 6 & 7 & 6\end{array}$
22. Which one of the five things below is most like these three: horse, pigeon, grasshopper? 1 stall, 2 saddle, 3 oat, 4 goat, 5 chirp
23. If tho words below were raarraged to mako a good sentence, with what letter would tho last word of the sentence begin? (Make the letter like a printed capital.)
nuts from squirrels tres the gather
24. A man who betrays his country is called a (?)

1 thief, 2 traitor, 3 enemy, 4 coward, 5 slacker
25. Food ic to the body as (?) is to an ongine.

1 wheels, 2 fuel, 3 smoke, 4 motion, 5 fire
26. Which tells best just what a pitcher is?

1 a vessel from which to pour liquid, 2 something to hold milk, 3 It has a handle,
4 It goes on the table, 5 It is easily broken
27. If Samuel is older than Joseph, and Joseph is older than Sliud, then Samuel is (?) Blind. 1 older than, 2 younger than, 3 just as old as, 4 cannot say which
28. Count ouch 7 below that has a 5 next after it. Toll how many 7's you count.

7530973785742175732470937557235577547
2e. If the words below were rearranged to make a good sentence, with what letter would the last word of the sentence begin? (Mako the letter like a printed capital)
loather shoos usually made are of
30. An eloctric light is to a candle as a motor-cyclo is to (?)

1 bicycle 2 motor-car, 3 whools, 4 speed, 5 police
31. Which one of the words below would come first in the dictionary?

1 march, 2 ocean, 3 horse, 4 paint, 5 elbow, 6 night, 7 flown

Page 4

32．Thu ilanghtcr of ray mothor＇a brother in my（？）
1 bister， 2 niece， 3 cousin， 1 cunt， 5 prand－claurghter
33．Ono number is wrong in the followinis series．What should tho number bo？
$34 \quad 54 \quad 3 \quad 4 \quad 5 \quad 4 \quad 3 \quad 5$ ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．
31．Which ono of the five thing es below is most like those throe：boat，horsa，train？
1 sail， 2 row， 3 motor－cyclo， 4 move， 5 track
35．If Omolo is taller than Otiono and Omolo is shorter than Oyodo，then Oyodo is（？）Otiono．
1 taller than， 2 shorter than， 3 just as tall as， 4 cannot say which
36．What is the most important reason that we use clocks？
l to wake us up in the morningin 2 to regulate our daily lives， 3 to holp us catch
trains， 4 so that children will got to Bohol on time， 5 They arc ornamental
37．A coin made by an individual and meant to look liko ono made by tho government is called（？） 1 duplicate， 2 counterfeit， 3 imitation，4 forgery， 5 libel
38． 1 wire is tc olectricity as（？）is to gas．
1 爫 flea， 2 a spark， 3 hot， 4 a pipe， 5 a stove
39．If thu follcring words wore arranged in order，with what letter would the middle word begin？ Yard Arch Mile Foot Rod

40．Ono number is wrong in tho following series．That should that number be？ $\begin{array}{llllllllll}5 & 10 & 15 & 20 & 25 & 29 & 35 & 40 & 45 & 50\end{array}$
41．Which word roans the opposite of truth？
1 cheat， 2 rob， 3 liar， 4 ignorance， 5 falsehood．．）
42．Order is to confusion $a s$（？）is to war．
1 guns， 2 peace， 3 powder， 4 thunder， 5 army
43．In a foroicr language，good food＝Beano Nab
good water $=$ Keto Nab
The word that means good begins with what lottor？
44．Who evince of a man for his children is usually（？）
1 affection， 2 contempt， 3 joy， 4 pity， 5 roveronco ．．
45．Which one of tho five things below is moat like these three：stocking，flag，sail？
1 shoo， 2 ship， 3 staff， 4 towel， 5 wash
16．A book is to information as（？）is to money．
I papor， 2 shillings， 3 bank， 4 work， 5 gold
47．If Warm is taller thanlilliam，and William is just as tall as Charles，hon Charles is（？）Harry． 1 troller than， 2 shorter than， 3 just as tall as， 4 cannot say which
43. If thu follorinç words wore arran od in orcas, with what motor would the middle wore burin?Six Ton Two Eight Four
49. If the words bolos were rearranged to make a rood sentence, with what letter would the third
word of tho sontonco bo in? (Male the letter like a printed capital.) men high the wall a built stone
50. If the suffering of another makes us suffer also, we feel (?)
1 worse, 2 harmony, 3 sympathy, 4 love, 5 repelled.. 50. If tho suffering of another makes us suffer also, we feel
1 worse, 2 harmony, 3 sympathy, 4 love, 5 repelled
51. In a foreign lançuage, grass = Moki
Croon crass a loki Lamp Tho word that means green begins with what letter?)
?...)
52. If a man has walked west from his howe 9 miles and then walked east 4 miles, how manymiles is he from his home)53. A pitcher is to milk as (?) is to flowers.1 stem, 2 leaves, 3 water, vase, 5 roots
54. Do what this mixod-up sentence tells you to do. sum throe Write two tho four and of)55. There is a saying, "Don't count your chickens before they are hatched." This means (i)1 Don't hurry. 2 Don't be too sure of the future. 3 Haste makes waste. 4 Doan'tgamble)
56. Which statomont tolls best just what a fork is?I a thine to carry food to the mouth, 2 It goes with a lenife, 3 an instrument withprongs at the end, 4 It goes on the table, 5 It is made of metal()
57. Wood is to a tabla as (?) is to a knife.
1 cutting, 2 chair, 3 fork, 4 steel, 5 handle)
58. Do what this mixed-up sentence tells you to do.sontonco the letter Write last this in)
59. Which one of the words below would come last in the dictionary?1 alike, 2 admit, 3 amount, 4 across, 5 after, 6 amuse, 7 adult, 8 affect
60. There is a saying, "Ho that scatters thorns, let him go barefoot." This means (?)
1 Lot him who causes others discomforts boar them himself also. 2 Going barefoottoughens tho foot. 3 People should pick up what they scatter. 4 Don't scatter thinksaround()
61. If the following words were arrangoi in order, with what letter would the middle word begin? Plastor Frame Wallpaper Lath Foundation

Pacio 6
62. In it roroign languacio,
many boyss - Boka Hopo many firls a Marti Ilopo
many boys and girls = Boka Nilo Marti Hopo
Tho word that moans and bogins with what lotter?
63. A statemont which oxpresses just tho opposite of that which another statemont oxprossos is sais to bo a (?)
l lio, 2 contradiction, 3 felsohood, 4 correction, 5 explanation
64. Thoro is a saying, "Don't look a gift horse in the mouth." This means (?)

1 It is not safo to look into tho mouth of a horse. 2 Although you question tha va? uo of
a eift, accopt it graciously. 3 Don't accopt a horso as a gift. 4 You cannot juago the age of a gift horso by his tooth
65. Which onc of the words below would come last in the dictionary?

1 hodge, 2 glory, 3 labol, 4 groon, 5 linen, 6 knife, 7 honour
66. Which statoment tolls best just what o wratch is?

1 It ticks, 2 something to tell timo, 3 a small, round object with a strep, 4. © prakot-
sizod timo-kooping instrumont, 5 something with a faco and hands (
67. Ico is to wator as wator is to what?

1 land, 2 stoam, 3 cold, 4 river, 5 thirst
68. Which statomont tello best just what a window is?

1 something to sec through, 2 a glass door, 3 a frame with a glass in it, 4 a gless opening in tho wall of a house, 5 a piece of class surroundod by wood
69. Which one of the five words belov is most like these three: large, red, \quad rood?

1 hoavy, 2 size, 3 colour, 4 apple, 5 vary
10. Write tho lottor that follows the letter that comos next after M in tho alphabot.......... ()
71. One number is wrong in tho following series. What should that number be?
$\begin{array}{lllllll}1 & 2 & 4 & 8 & 16 & 24 & 64\end{array}$
72. An unclo is to an eunt as a son is to a (?)

1 brothor, 2 daughter, 3 sister, 4 father, 5 girl
73. If I have a large box with 3 small boxes in it and 4 very small boxes in each of tho smell boxes, how many boxes aro there in all?
74. Ono numbor is mrone in the following saries. What should that number be ?
$\begin{array}{llllllllll}1 & 2 & 4 & 5 & 7 & 8 & 10 & 11 & 12 & 14\end{array}$
75. There is a saying, "Don't ride a free horse to death." This means (?)

1 Don't be cruel, 2 Don't abuse a privileço, 3 Don't accept fifits, 4 Don't bo reckloss.()

The Kikuyu Warriors

The whole varrior class was divided into several regimental groups, according to the system of age grades. Every age grade had its leader who was responsible for the activities of his croup. His main duty was to keep harmony and discipline in the group, and to settle minor disputes and quarrels among the members of his regiment. He also acted as spokesman of the group in general matters. He was the chief composer and organizer of songs and dances in his group, and sometimes arranged competitions between his and other groups. The warrior dances and songs served two purposes, namely, enjoyment and drill for physical development. In jumping and running, warriors developed the powers of endurance and the art of battle. In the time of war these regiments were united under the leadership of a council of war composed of several leaders of the age grades. At the head of this council was a war magican whose duty was to advise it as to the best time of waging war He blessed the warriors and gave them medicine to protect them against the enemy.

Every regiment had its regimental songs and war-cry. There were distinctive designs on the shields and headgear to distinguish each regiment. There was no particular uniform, for warriors went to war practically naked except for a small apron which was worn at the back, and the headgear. On the outbreak of war, a war-horn sounded as a sign of readiness. The warriors immediately took to arms and started shouting their particular war-cry. This brought together all the regimental units in the district until they formed a procession towards the enemy. Bach regiment followed different directions, all leading to the battlefield. The senior warriors formed the front lines and the junior ones the rear lines. The council of war went between the tro giving advice to both sections. The motive of the fighting was merely to capture livestock of the enemy and to kill those who offered resistance. In other words, it was a form of stealing by force of arms.

If the warriors were successful in the war and captured the enemy's livestock, they returned home as quickly as possible to avoid the recapture of their loot by the enemy. Before reaching home, after crossing the enemy's boundary, they halted and counted the cattle that had been captured. The council of war then divided the loot among the regiments. In the first place, 'brave warriors' were rewarded according to the task performed in fighting the enemy. Then a small number of cattle were set aside for the chief, the medicine man was given his share, and the other members of the council of war. If there were any left, and not enough to go round equally, it was settled by drawing lots.
(from "Facing Mount Kenya" by Jomo Kenyatta)

1. Write one sentence which contains all the duties of the leader of the age groups.
2. What happens from the time the war-hom is sounded to the time they cross from the enemy's territory? (Give your answer in less than 60 words.)
3. Use two sentences to describe how the loot is divided betreen the tribe.

26

Read the following passaze very carefully and then in each of the questions 1 to 8 which follow select the hest of the four choices given. Do not write any words.

Many young elephants develop the naughty habit of plugging up the wooden bell they wear hung around their necks (kalouk) with good stodgy mud or clay, so that the clappers cannot ring, in order to steal silently into a grove of cultivated bananas at night. There they will heve a whale of a time, quietly stuffing, eating not only the bunches of bananas, but the leaves end, indeed the whole tree as well, and they will do this just beside the hut occupied by the owner of the grove, without wakins him or any of his family

Oozies are not always as innocent as they pretend on such occasions. I once had to pay a fine to the Forest Department for damage by my elephants to some experimental plantations of teak saplings. Naturally, I gave the oozies a reprimand for their slackness in allowing their animals to stray into these plantations. A month afterwards I happened to moet the Forest Officer who had fined me, near a argo village, where we both camped for the night. He had four elephants with him, and I had eight. Next morning his annoyance can be imagined when the village headman arrived to ask for compensation for no less than a hundred banana-treos, destroyed by his four elephants. Strangely enough, not one of my eight elephants hac been involved in the mischief, a fact which made it even more annoying for him. It was not until a week after we had parted company that I found out that though my elephants were innocent, my oozies were quite the reverse. They had taken the bells off the Forest Officer's four elephants and during the night had led them quietly into the banana groves - and had paid him out for fining me for the damages to the teak plantation.
(from "Elephant Bill" by Col. W. Williams)

1. The most important characteristic of the young elephants we learn of from the first paragraph is their
(a) intelligence,
(b) greed,
(c) naughtiness,
(d) shyness
2. 'They will have a whale of a time'. This means they will
(a) have an enormous amount of time at their disposal,
(b) enjoy themselves greatly,
(c) have enough time to eat a very large quantity of bananas,
(d) have a very busy time.
3. Neither the omer of the grove or his family are disturbed by the elephants because
(a) they sleep very soundly,
(b) the elephants operate at the dead of night,
(c) of the ereat delicacy of the touch of the elephants,
(d) the elephants are careful not to go too near to the hut.
4. 'Oozies' is probably a new word for you. But after reading through the second paragraph it is possible to infer that it means
(a) baby elephants,
(b) forest rangers,
(c) elophant attendants.
(d) plantation labourors.
5. Which one of the following is the best substitute for the word 'reprimand' in the third sentence of the second paragraph?
(a) beating,
(b) lecture,
(c) scolding,
(d) fino.
6. The first sentence of the second paragraph means that the oozies
(a) are generally innocent although they pretend they are not,
(b) are never innocent but they pretond they are,
(c) are sometimes guilty when they protend they are innocent,
(d) are always as innocent as they protend to bo.
7. The thing that increased the annoyance of the Forest Officer was
(a) the fact that the headman demanded compensation from him,
(b) that his four elephants had destroyed no less than a hundred banana-trees,
(c) that none of the writer's elephants had been responsible for the mischief,
(d) that the writer's oozies were responsible for the damage while he had to pay the compensation.
8. The actions of the oozies doscribed in the second paragraph shows that their attitude towards their master was
(a) disrospectful
(b) loyal and affectionate,
(c) revengeful,
(d) highly respectful

Write on ONE of the following subjects:-

1. An hour at the Railway Station.
2. When we lost our way.
3. A journey I have mado.
4. Hrite a story about a man, a boy, a donkey that would not do what it was told, rain, a telephone, the full moon.
5. Write about a street in your town. If you like you can pretend to be walking down it, and write about the things and people you see.
6. A young policeman doing his first night duty in a big town heard loud cries and footsteps running away. Finish the story.
7. By the river.
8. The rainy season.
9. Compare aeroplanes, lorries, bicycles and camels or horses as means of travelling. Write a paragraph about each.

Now re-read your essay and check mistakes. Careless errors which have not been corrected will lose marks.

1. Rewrite the following sentences as directed.
(a) The coffee wasn't of a good grade so it could not be erportod. (Rewrite using enoursh ... and omitting ... Bo)
(b) He is not clever and he is not handsome either.
(Rewrite using neither)
(c) I was stupid in bolieving him.
(Begin: It wลs)
(d) I'm sure it must be somewhere.
(Make it negative.)
(e) The story is too well known to need any repetition here. (Begin: The story is so well knorm)
(f) I believed that an occasional train still ran there. (Becin: It was)
(g) My first need was to go to Isfahan. (Bogin: I first
(h) Having sont off my tolegram, I spent two agreeable days in Isfahan. (Begin: I spent)
2. Join the followinc pairs of sentences by using one of the following sentence connectors:
nevortheless, consequently, morcover, therafore, however. Do not use the same connector twice.
Example: The people are illiterate. The establishment of democracy will be difficult.
Answer: The people are illiterate; therefore the establishinent of democracy will be difficult
(a) She is rich. She is unhappy.
(b) Sho is poor. She is unhappy.
(c) He did not study. He failed in his oxamination.
(d) He lost his luggage. Ho did not lose his wallet.
(o) He was an ignorant man. He was stubborn as well.

Name:
VOCABULARY - V

The first word in the following line is "big".

One of the other words means the same as "big". The word " large" has been marked because it means the same as"big".

The first word in the following line is "ancient". Mark one of the other words that means the same as "ancient".

ancient	dry	long	happy

You should have marked "old" because it means the same as "ancient".

In each of the following lines mark the word that means the same as the first word.

DO NOT TURN THIS PAGE UNTIL ASKED TO DO SO.

Page 2

VOCABULARY - In each row of five words below, mark the word which means the same as the first word in that row.

moist	curit	humane
quick	¢¢\% jor	hasty
annual	yariable	\#early
splendid	expensive	gey
customary	nocturnal	redial
fluid	1i̇ivid	dead
idle	7azy	cross
deserted	drab	absurd
rare	hol ${ }_{2}$	crisess
contented	nasty	continuous

enraged	!leasing	poor
beneficial	artificial	tamable
mouldy	tonic	qusty
rasping	harish	minute
dietary	diagramatic	amormous

sober	dizfy	cloudy
droll	dẹlightful	odd
stately	dignified	thôn
disreputable	shtameful	forfensic
genteel	Wępl thy	uriban

original	!ral	derelict
novel	oxpensive	nep
famous	!elebrated	fijithful
systematic	!audatory	orderly
fatigued	plitable	grave

damp
narrow
!i!
ligtless
rigid
prime

7iquid
พild
ditisturbed
infrequent
d̦efamatory
angry
betpful
รhapeless
kininesthetic
dijetetic
serious
forceful
digestible
horticultural
polite
fictst
glopomy
Tę̣ewed
jubilant
ฟุุ̣ary
moderate
켞orous untenable excellent usual
talkative
useful
abandoned
พeak
satisfied
dẹpestic
pํㅜㄱquant
mute
narifshy
grommatical
fitting
foreign
velif
छuspceptible
jణᄐ్రnorant

Feliable
fraticical
nimble
ampitious
finnatic

resplendent	phonetic	tart	brilliant	fearless
gonerous	oblivious	ardent	7iberal	defiant
kincly	bland	façial	recent	regal
flexible	pitiable	formel	pliant	peateful
sagacious	erotic	apparent	พi่\%e	mīid
heedless	patient	¢]̇̇gible	parallel	TTㅜㄴh
doficiont	constant	dreary	lacking	peculiar
vigilant	Hatchful	indulgent	yalorous	paspeent
minimum	bumid	festricted	tranquil	least
gellant	chitivalrous	authentic	treachorous	probable
giddy	feminino	casual	digzzy	comical
discreet	çausstic	fedolent	honourable	prisident
destined	simplified	feted	directional	7ucky
oternal	momentous	benign	priceless	perpetual
lavish	çombined	ribald	Forthy	extravarant
defective	çoncealed	mythical	faulty	external
regue	numb	Obscure	indecent	vermiculate
ossential	çatassical	indispensable	dieplorable	candid
impulsive	ippotuous	pettrified	immature	compulsory
diffident	f:bulous	Shy	valuablo	alphabetical
erroneous	8070mn	false	ironic	trateric
benevolent	kind	native	suitable	modest
Erimy	stern	filithy	¢rim	colourful
lecorated	discruntled	manglod	frimined	striticken
insolent	studious	eptyious	arrogant	accioidental

```
PIRSTLEETTERS
TEST 21LETT
```

Name:

Look at the words in the following list. Each word begins with \underline{D}. dull
dinner
different
disappear

On the blanks below write several words which begin with \underline{P}. One word you might write is pretty. Write more words which begin with P below.

When the signal is given, tum the page. You will be given a new letter. Write as many words as you can which begin with the new letter. Write the words as fast as you can.

FIRST LETTERS

The new letter is S.
Write as many words as you cen which begin with S.

FREFIXES
TEST 22PRFX

Name:

Look at the words in the following list. Mach word berins with PER.
perfoct
perhaps
permanent
persecute

On the blanks below write several words which be inin with SUB. One rord you might write is subjoct. Hrite more words which begin with SUB.

When the signal is given, turn the page. You will be given a new prefix. Write as many words as you can which begin with new prefiz. Firite the words as fast as you can.

PREFIXES
The new prefix is col. firite as many words as you can which begin with coly.

Name:

Look at the words ir the following list. Each word ends with EST

finest
coldest
noarost

On the blanks below write sereral words which enc with NiSS. One word you might wite is kindnoss. Write more words which end with NESS.

When the signal is given, turn the page. You will be given a now suffix. Write as many words as you cen which end with the now suffix. Hrite the words as fast as you can.

SU P FIXES

The new suffix is TION.
Write as many words as you can which end with TION.

Name

THENE TEST - Fi-2

In this test you are to write a few paragraphs about two given topics. You are to write all you can about each topic. Use any idea whether or not it seems very closely related to the topic. Expand on any idea as much as you like, and be sure you write as much as you can

Your score on this test will be the amount of appropriate material that you write.

You will have 4 minutes for each of the topics in this test. When you have finished the first topic, STOP. Please do not go on to the second topic until you are asked to do so.

Part 1 (4 minutes)

The topic is "a parcel".
Write $n l l$ you can about a parcel.
(If you mun out of space, write on the back of the preceding page.)

Part 2 (4 minutes)

The second topic is "a locked door". Write all you can about a locked door.
(If you run out of space, write on the back of the preceding page.)

DO NOT GO BACK TO PART 1.

Name

THING CATEGORIES TEST - Fi-3

This is a test to see how many things you can think of that are alike in some way.

Below are two examples of things that are always red or that are red more often than any other colour. Look at these examples. Then go ahead and write in the blanks more things that are always red or that are red more often than any other colour. You may use one word or several words to describe each thing.
blood
bricks
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Your score will be the number of correct things you write
You will have three minutes for each of the two parts of this test. When you have finished Part l, STOP. Please do not go on to Part 2 until you are asked to do so.

Page 2

Part 1 (3 minutes)

The category is "round".
Go ahead and write all the things that are round or that are round more often than any other shape.

287
 Page 3

Part 2 (3 minutes)

The new category is "blue".
Go ahead and write all things that are always blue or that are blue more often than any other colour.

DO NOT GO BACK TO PART 1.

From Soction A answer Question 1 and either Question 2(a) or 2(b). From Section B answer TWO questions.
N.B. Credit will be given for word or formulae equations wherever possible.

Section A

1. Write balanced formulae equations for the reactions between:
i) steam and red hot charcoal
ii) zinc carbonate and dilute nitric acid
iii) aluminium bjdroxide and dilute sulphuric acid
iv) sodium and water
v) calcium chloride and sodium hydroxide solutions.

2(a) i) Describe an experiment to determine accurately the percentage,
ii) Name the products formed when sulphur and sodium are burnt in gas jars containing oxygen. What colour changes are seon when water containing litmus is added to the jars after the sulphur and sodium have been burnt? What does this show?

2(b) i) Describe, with e diagram, how you would prepare a few gns jars OR of dry hydrogen in the laboratory.
ii) Describe ONE experiment which shows that water contains hydrogen and oxgen chemically combined. (No dia.gram required.)

Soction B (Answer TWO questions.)
3. 1) Starting from calcium metal, describe briefly how you could prepare a samplo of limewater in the laboratory.
ii) Place the following metals in ordor of decreasing reactivity with dilute hydrochloric acids iron, aluminium, oopper and magnesium. Write dow the names of the products, if any, for each reaction.
1ii) State ONE industrial use for each of the following:
a) hydrogen
c) coal
b) carbon dioxide
d) diamonds
4. i) Describe the preparation of a few eas jars of dry chlorine in the laboratory. (No diagram required.)
ii) Describe what you would see, naming the products, when chlorine reacts with a) phosphorus b) hydrogen sulphide c) sodium.
iii) State TWO industrial uses for chlorine.
5. i) Starting from zinc, describe how you would prepare crystals of zinc sulphate in the laboratory. Give practical details, but no diagrams required.
ii) State whether the followine are physical or chemical changes, giving ONE food reason in each case for your answer.
a) sugar dissolves in water to form a solution
b) carbon dioxide dissolves in water to form a solution
c) food is digested in the stomach.
iii) Dessribo and explain what happens when burning magnesium is plunged into a gas jar containing carbon dioxide.

Answor FOUR quostions, ONE from SECTION A and THREE from SECTION B

SECTION A

1. Draw ray diagrams for the passage of light through
(a) a periscopo; (b) a reotangular glase block; (c) a 60° elass prism (white light); (d) a converging lens of 10 cm . focal length when the object is 15 cm . from the lens; (e) a pond so that the oye views an objoct on the bottom; (f) the formation of an umbra and a penumbra on a screen.
2. (a) Labol a sketch of a concave lons showing (i) the optical axis, (ii) the principal focus, (iii) the focal length, (iv) the aperture.
(b) An objoct 1 cm . high is placed perpendicular to and on the axis of a convex lons of focal lensth 3 cm . Find, by construction, the position, naturo and size of the image when the object is placed at the following distances from the lens:
(i) 7 cm .
(ii) 2 cm .

SECTION B

3. Distinguish betweon the mass and weight of a body. State tho laws of friction.
A block of wood weighing 10 lbs. is pulled along the bench top by a string held horizontally and attached to a spring balance which reads 3 lbs. What is the coefficient of friction? What would the balance read if a 6 lbs . Weight were resting on the block?
4. Explain the terms force, resolved part of a force.

State the conditions under which a body will remain in equilibrium under the action of three coplanar forces which are not parallel.
A mass of 50 lb ; is supported by two threads inclined respectively at angles of 60° and 30° to the vertical. Find the tensions in the threads.
5. Define the moment of force about a point.

State the principle of monents.
A uniform rod 5 ft . long and of mass 10 lb . is supported from a horizontal beam by two equal vertioal strings, one attached to one end X, and the other to a point P 1 ft. from the other end Y. Find the tonsion in each string.
6. Explain the torms stable equilibrium, centre of gravity.

How would you find experimentally the position of the centre of gravity of a flat plate of wood of irregular outline?
One half $A B$ of a straight uniform rod $A C 2 f t$. long is borod out uniformly so that it weighs half as much as the half BC. Find by calculation the position of the contre of gravity of the rod.

CHEMISTRY

13. houre

This paper contains 60 questions. Attempt all the questions. The questions are not arranged in order of difficulty, so do not apend too much time on any one questions if you cannot do it quickly, pass on to the next and return to it at the end if you have time.

There are four alternatives to most questions, but there are a few with only three alternative answers. Only one of the alternatives is correct. Decide which you think is correct and put a cross over the appropriate number on your Answer Sheet.

Sample Question:
101. Of what is water composed?

1. hydrogen and nitrogen
2. sulphur and hydrogen
3. carbon monoxide and hydrogen
4. hydrogen and oxygen.

Sample Answer Sheet:

> 101. $1 \times 2 \quad 3 \quad \times$
> (The correct answer is the fourth alternative, so) a cross is put over 4

If you wish to change your answer, make sure that you write in the number again above the cross.

A fraction of the marks will be deducted for wrong answers, so it will not be to your advantage to guess unless you are able to eliminate one or moxe of the alternatives.

Please do not vrite on this question paper: use paper provided for rough work.

1. Phosphorus is used in some match heads because it
2. has a low ignition point
3. is not poisonous
4. will burn without oxygen
5. can be heated by friction.
6. A molecule of water may be separated into its elements by
l. vigorous boiling
7. oveporation
8. a magnotic field
9. a direct current of electricity.
10. Which one of the following substances has the highest boiling point?
11. petrol
12. meroury
13. water
14. elcohol.
15. Which would be the best way to show that a given liquid wes pure water?
16. Taste it
17. Add a piece of sodium and note its reaction
18. Dotermino its melting point and boiling noint
19. Add a drop onto anhydrous copper sulphate.
20. Which one of the following metals will not react with steam?
21. zinc
22. lead
23. iron
24. calcium.
25. Sodium is kept in the laboratory under oil because
26. tho motal catches fire in air
27. the metal reacts with the oxygen of the air
28. the oil prevents the pieces of metal sticking together
29. All reactive metals are kopt undor oil.
30. Which one of the following is an acidic oxide?
31. hydrogen oxide
32. sodium oxide
33. phosphorus pentoxido
34. carbon monoxide.
35. Which one of tho following is not a mixture?
36. muddy water
37. brass
38. gunpowder
39. marble.

Whon a fired weight of copper is heated in a measured volume of air until no further change takes place, the copper becomes coated with a black substance and the air decreases to about four-fifths of its original volume. The same result is obtained each time the experiment is repeated. PROVIDED thatbufficient copper is used to leave some unchanged at the end of the experiment. Answer Puestions 9 and 10 basod on these experiments.
9. The evidence of this experiment indicates that

1. air consists of one substance only
2. air consists of two substances only
3. air consists of at least two substances
4. air consists of more than two substances.
5. If more copper were used in the experiment you would oxpect
6. the volume of the air would decrease by more than one-fifth
7. all the air would be usod up
8. The volume of air would docrease by one-fifth
9. the volume of air would decrease hy ? oas than

A student attomptod to propere and collect hydrogen using the apparatus shown below. Answer Questions 11 to 14 usines this apparatus.

11. Which one of the following reactions could be used to prepare the hydrogen?

1. copper and diluto hydrochloric acid
2. zinc and diluto sulphuric ncid
3. aluminium and dilute nitric acid
4. zinc oxide and dilute hydrochloric acid.
5. From the above diagram, which one of the following statements can be doduced?
6. hydrogen is not vory soluble in weter
7. hydrogen is colourless
8. hydrogen is less dense than air
9. hydrogen in inflammable.
10. The student found that although he had chosen suitable reagents no hydrogen was being collected. He eventually discovered that it was bocauso
11. the level of the water in the trough was higher than the level of the acid in the test-tube
12. the ond of the thistlo funnel was above tho lovel of the acid
13. the test-tube should have been hoated
14. The top of the gas jar was below the top of the thistle funnel.
15. If tho gas were roquired dry, which one of tho following methods would be the best method for dryine and colloctin
I. pass through anhydrous calcium chloride and collect by upwerd displacement of air.
16. pass through concentrated sulphuric scid and collect by downward dieplacement of air
17. pass through a beated tube and colloct over mercury
18. pass throush anhydrous copper sulphate and colloct over oil.

In Queations 15 to 17 you aro asked to choose the best method for separating mixtures so as to obtain tho constituents in a pure state. The processo must be carriod out in tho order stated.
15. Which would be the best way to obtain sand and wax separately from a mixturo of the two?

1. filtration
2. evaporation and filtration
3. dissolving in a solvent and distillation
4. dissolving in a solvent, filtration and evaporation.
5. Which my vould be the best way for obtaining common salt and ammonium chloride from a mixturo of their solutions?
6. evaporation c d sublimation
7. distillation and filtration
8. evaporation, dissolving in water, filtration and evaporation.
9. sublimation
10. Which would be the bost method for obtainini reasonably pure samples of water, sand and copper sulphate crystals from a mixture of sand in a coppor sulphate solution?
11. Filtration and evaporation
12. filtration and distillation
13. distillation, dissolving in wator and filtration
14. filtration and sublimation.

Tho following chart is a solubility curve for potassium chlorate dissolved in water. Points A, B, C, D and E represent five solutions of different compositions at different temperatures. Use the graph to answer Questions 18 to 21.

18. Which solution is most dilute?

1.	A
2.	B
3.	D
4.	E

19. A small crystal of potassium chlorate is added to each of the five solutions. Crystallisation takes place in
20. in both A and B
21. in both A and E
22. in C only
23. in both D and E
24. Solution E could bo made saturated by
25. lowering the solubility curve
26. adding about 2 gm . of tho solute
27. raising the temperature to $40^{\circ} \mathrm{C}$. and adding 5 gm . of the solute
28. by lowering the temperature to $10^{\circ} \mathrm{C}$.
29. About hov many grams of water would be needed to dissolve 20 gm . of potassium chlorate at $30^{\circ} \mathrm{C}$.?
30. 5 gm .
31. 10 gm .
32. 20 gm .
33. 200 gro.
34. A student assembled the following apparatus in an attempt to show that oxygen and water are necessary for rusting.

After the tubes had bon left for a few days he found that the nail in the tube B had rusted and that the other two nails had not. He then roalisod that in order to show that water and oxygen together are necossary for rusting, he should have set up a fourth tube. What should he have put into this fourth tube?

1. a nail, distilled water and oxygen
2. a nail and dry air
3. a nail and tap wator
4. a nail and wet air.

- 4 -

In the following questions 23-34 you are given a hypothesis, which mey, or may not, be true. After each hypothesis are four experimental obscrvations. Think carefully about each experimental observation and decide which of the following altermatives apply:

1. the experimental observation suggests that the hypothesis is true
2. the experimental observation suggests that the hypothesis is false
3. the oxporimental observation doos not give any information about the truth or falsehood of the hypothesis.

Hypothesis I 'Hydrogon is a reducing agent'
23. Water is formed when hydrogen is bumed in oxyisen.
24. The raaction botween red hot iron and steam is reversible.
25. Hydrogen is a non-metal.
26. Hydrogen is oxidised to hydrogen chloride by chlorine.

Hypothesis II 'All acids contain hydrogen, which is directly repleceable loy all metalst
27. Copper does not react with dilute hydrochloric acid.
28. Copper sulphate can be prepared from dilute sulphuric acid and copper oxide.
29. Hydrogen is evolved when iron reacts with diluto sulphuric acid.
30. Aluminium will not react with nitric acid.

Hypothesis III 'The hardnoss of water is caused by calcium salts'
31. Hard water forms a scum with soap.
32. A precipitate of calcium carboñte is formed when wnshing soda is added to hard water.
33. Calcium carbonate does not dissolve in hard water.
34. Hard water becomes softer when a small amount of limevater is added to it.
35. Which one of the followine will not produce any aluminium oxide?

1. heating aluminium in air
2. herting aluminium with iron oxide
3. heating aluminium in nitrogen
4. heating aluminium in stoam
5. A ccrtain gas extinguishod a candlo flame immodiatoly. It had no action on limowater, and copper did not change rhen hoated in the gas. Which one of the folloring could it be?
I. Air
6. Nitrogen
7. Carbon dioxide
8. Chlorine
9. Suppose you wanted to make an electrical connection betwoen the wire A and eloctrode B, which is to be used in tho oloctrolysis of an cqueous solution. Which ono of the following would you put into the Els.ss tube C?
10. mercury
11. molten sulphur
12. pure water
13. powdored sulphur.

Tho following information concerns an experiment to investigate the rate of roaction botween calcite (a form of calcium carbonate) and excess hydrochloric acid. 1.05 gm . of calcite wore put into 10 ml . of bench hydrochloric acid in ε small flask. The flask and its contents were woighed at 2 -minute intorvals to determine the loss of weight caused by the evolution of carbon dioxide. The results were recorded in the form of a graph as shown below. In this graph the loss in weight is plotted againat tho time from the moment the two substences were mixed.

Use this graph to answer Questions 38 to 41.
38. What weight of carbon dioxide has been produced after 9 minutes?

1. 0.695 gm .
2. 0.325 gm .
3. 0.30 gm .
4. $0 \cdot 355 \mathrm{gm}$.
rate of
5. During which one of the folloving 2-minute intervals was the/reaction the quickest?
6. 0 to 2 minutes
7. 2 to 4 minutes
8. 8 to 10 minutos
4 16 to 18 minutes.
9. After how many minutes had just helf the calcite reacted?
10. 9 minutes
11. 5 minutes
12. 11 minutes
13. 22 minutes.
14. What was the total weight of carbon dioxide formed?
15. 1.05 gm .
16. 0.9 gm .
17. 0.6 gm .
18. 0.45 gm .
19. P is a white solid, insoluble in water, but dissolves in dilute hydrochloric acid giving off a colourless gas, which when bubbled through limewater producos a whito precipitate. P is most likely to be
20. calcium
21. calcium carbonate
22. sodium bicerbonato
23. carbon dioxido.
24. Q is a substance which reacts with cold water to produco a gas which burns in air. The romaining solution turns rod litmus blue. On adding a solution of sodium carbonate to this solution, a white precipitato
is formed. Q is most likely to be
25. calcium hydrozide
26. sodium
27. calcium oxido
28. colcium.
29. R is a red solid which dissolved in dilute nitric acid forming a colourless solution. If hydrogen is passed over hot R, a grey metallic solid is left. There is no change if R is heated. R is likely to be
30. mercury oxide
31. forric oxide
32. losd oxide
33. copper
34. S is a brown solid which produces chlorine when warmed with concentrated hydrochloric acid. When the solution is cooled, a white precipitate is formed. $\quad S$ is most likely to bo
35. mangenose dioxide
36. ferric chlorido
37. lead monoxide
38. lead dioxide

In the followine questions, $46-51$, you are given ε statement followed by a condition. Decide which one of the three alternativos apply in each question.

1. The statement is true only under the condition stated.
2. The statoment is true and does not depend on the condition.
3. The statement is false regardloss of the condition.

Statement
46. Iron rusts in woter
47. Mangenese dioxide acts as a catalyst in tho proparation of oxygen from potassium chlorate

Condition

if the w
if the manganese dioxide is added in small quantities
if steam is passed over red hot iron
if they arc heated together
if there is no permanent hardness prosent in the water

11 the base is insoluble in water

Substence	Electrical Conduction	Melting Point	$\begin{aligned} & \text { Boiling } \\ & \text { Point } \end{aligned}$	Effect of heating in air
1.	Good whon solid or liquid	$97^{\circ} \mathrm{C}$.	$889{ }^{\circ} \mathrm{C}$	Burns to form a single oxide, which forms an alkaline solution in water
2.	Non-conductor	$113^{\circ} \mathrm{C}$.	$444{ }^{\circ} \mathrm{C}$.	Burns to form a single oxide, which forms an acid solution in water.
3.	Wion-conductor	$5^{\circ} \mathrm{C}$.	$80^{\circ} \mathrm{C}$.	Burns to form carbon dioxide and water only.
4.	Non-conductor whon solid: good conduct when molton	$800^{\circ} \mathrm{C}$	$1413{ }^{\circ} \mathrm{C}$.	Melts; no new substance formed.

52 Which substnnce would be a liquid at room temperature?
53. Which substance could be a metallic element?
54. Which substanco could have boen sodium chloride?
55. Which substance which when heated would not change in weight?
56. Whioh substance nearly resomblos petrol?
57. Which substanco could bo sulphur?
58. X, Y and Z aro three motals. The metals X and Y will displace hydrogen from dilute hydrochloric acid, but Z will not react. Metal Y displeces X from a solution of a salt of X. On this evidence, which one of the following is the ordor of roactivity, putting the most reactive first?

1. X, Y, Z
2. $\mathrm{X}, \mathrm{Z}, \mathrm{Y}$
3. Y, X, Z
4. Z, X, Y
5. A cortain solid H was hoatod in a stroam of gas called ammonia (a compound of nitrogon and hydrogon). H changed to another solid which was a good conductor of electricity and at the same time wator and nitrogen gas were formed. Which one of the following is the most likely conclusion?
6. H is an oxide of a metallic element
7. H is an oxide of a non-metallic element
8. H is a motallic oloment
9. H is a non-metallic eloment.
10. When potassium chlorato is hertod it decomposes to form oxygen. Suppose you wanted to investigate whether a certain black powder acted as a catalyst to the decomposition. Which one of the following would you do?
11. Measure tho volume of oxygen produced from different waights of black powder on heating with a fixed weight of potassium chlorate.
12. Measure the rate at which oxygen is formod from different weights of potassium chlorate heated alone.
13. Measure the volume of oxygen produced when different weights of potassium chlorate are heated with a fixed woight of black powder.
14. Moasuro the rate at which oxygon is formed from a fixed weight of potaseium chlorate with and without the black powder.

Form 2

ANSWERSHEET

Chemistry

Term 3, 1966

1. 12 | 1 | 2 | 3 | 4 |
| :--- | :--- | :--- | :--- |
2. 1234
3. 1223
4. 1231
5. 12234
6. 1234
7. $1 \begin{array}{llll}1 & 2 & 3\end{array}$
8. 1234
9. 123 $\begin{array}{llll}\text { 10. } & 1 & 2 & 3 \\ \text { 11. } & 1 & 2 & 3\end{array}$ 12. $1 \begin{array}{llll}1 & 2 & 3\end{array}$ 13. 1233
10. 123
11. 1234
12. 1234 17. 123
13. 123
14. 1×34
15. 123
```
21. 1 2 3 4
```

22. 1234
23. 123
24. 123
25. 123
26. 223
27. 123
28. 123
29. 123
30. 123
31. 123
32. 123
33. 123
34. 123
35. 123
36. $1 \begin{array}{llll}1 & 2 & 3\end{array}$
37. 123
38. 1234
39. 123
40. 1234
41. 123 42. 123 43. 123 44. 1223 45. 1223 46. 123 47. 123 48. 123 49. 123
42. 123
43. 123
44. 1223
45. $1 \begin{array}{llll}1 & 2 & 3\end{array}$
46. 123 3
47. 1234
48. 123
49. 1234
50. 123
51. 123
52. 1234

PHYSICS

1站 hours

This paper contains 55 questions. Attempt all the questions. The questions are not arranged in order of difficulty, so do not spend too mach time on any one question; if you cannot do it quickly, pass on to the next and return to it at the end if ycu have time.

There are four alternatives to each question. Only one of the alternatives is correct. Deoide which alternative is correct and put a cross over the appropriate number on your Anawer Skeet.

Sample Question:

75. Which one of tho following is a liquid at room tomporature?
76. iron
77. mercury
78. iodine
79. silver

Sample Answer Sheet:

75. 1 Х 34
(The correst answer is the second alternative, so) a cross is put over 2

If you wish to change your answer, make sure that you write in the number again above the cross.

A fraction of the marks will be deducted for wrong answers, so it will not be to your advantagee to guess unless you are able to eliminate one or more of the alternatives.

Please do not write on this question paper; use papor provided
for rough work.

1. It is not possible to hear a bell ringing in a vacuum because
2. there is no material in the vacuum in which the sound waves can exist
3. the clappor of the bell gives up kinetio eneres to the vacuum
4. the vacuum acts as a sound conductor
5. the vacuum decreases the pitch of the bell.
6. A certain machine is said to have an effioiency of 50%. Doeal this mean thet
7. only half of the work put into tho meohine in used up.
8. helf of tho eneres put into tho macbine is destroyed
9. only half of tho vork put into the eacbino is returnod as usoful work done.
10. Tho approximato pressura of air at gae-level, arproseod as inohos of mercury
is 1. 10
11. 30
12. 50
13. 76
14. The chiof difference botween the bighest note and the lowest note on a
piano is that the high note
15. is always a louder sound
16. is always a softer sound.
17. has more vibrations per second
18. has fower vibrations per second
19. Many of the small motors used in refrigerators are rated at one-fourth horsepowor. How many foot-pounds of rork can such a motor do ins 1 minute?
20. 550
21. 8,250
22. 33,000
23. $137 \frac{1}{2}$
24. At certain times the moon comes in betweon the sun and the earth and cuts off the sunlight. This phenomenum is called
25. a shadow
26. a penumbra
27. an eclipse
28. a sunspot
29. When tho E string on a violin is tichtoned the
30. pitch is raised
31. pitch is lowerod
32. intensity is increased
33. overtones are improved.
34. In order to operate successfully, an electric motor does not need
35. an armature
?. an electromegnot
36. a coil
37. a transformor
38. The following diegrams roprosent rays of light reflected from a plane mirror. Which one of the reflections is incorrect?

1.

10. The following diagrams represent rays of light falling on to lenses or mirrors. Which ono of the diagrams is incorroct?
1.

2.

11. The following diagrams show rays of light passing through glass blocks. Which one of the diagrams is incorrect?
1.

2.

3.

12. The number of calories required to heat 100 gm . of a metal, specific hat $0.2 \mathrm{cal} / \mathrm{em} . /$ deg.C., from $20^{\circ} \mathrm{C}$. to $80^{\circ} \mathrm{C}$. is

1. 1,600
2. 0.33
3. 120
4. 1,200
5. The graph shown is a plot of
temperature against numbor of calories
requirod to heat a certain mass of
alcohol. The reason for the vertical
part of the graph at $78^{\circ} \mathrm{C}$. is that
6. no heat is being supplied to the alcohol
7. the heat be ng suppliod is wested
8. the alcohol is boiling

9. the heat supplied is absorbod by the container.
10. A boat is to bo pulled out of tho woter on to tho bench on a set of rollers. Before the amount of work required for the oparation can be calculated, it is nocessary to know
11. only the distance the bort is to be moved alon the beach
12. the volume of the bost and the distance it is to be moved
13. the force required to move the boat and the distence it is to be moved
14. the weight of the boat and the diameter of the rollers.
15. A magnet will lose some of its magnotism if it is
16. dipped in hot wnter
17. himmered
18. brought near a compass
19. surrounded by soft iron.
20. The function of the valves in wind musical instruments is to 1. control the loudness of the sounds produced
21. make the air columns vibrato
22. koop the length of the air column from changing
23. change the length of the air columns.
24. The material used in frree must

$$
\begin{aligned}
& \text { 1. have a high melting point } \\
& \text { 2. havo a low moltirg point } \\
& \text { 3. hovo a hioh oloctrical rosistanco } \\
& \text { 4. contain coppos }
\end{aligned}
$$

19. The diagram shows the magnetic field between the poles of two magnets. The poles are
20. North and North
21. North and South
22. South and South
23. Impossible to tell.

Read the following passage and answer Questions 20 to 23.
The first stroke of the four-stroke cycle Diesel engine is the intake of fresh air. With the inlet valve open, the piston, movinc downward, pumps in air to fill the cylinder. When the piston pesses the bottom of its stroke, the inlet velve closes.

The socond stroke compressos the air to between 500 and 600 pounds per squaro inch. When air is compressed, its temperature rises. In the Diesel engino the temperature of the compressed air may reach as high as 1,000 degroes Fahrenheit.

The fuel is injected into this hot air. Since tho oil is a fine, foc-like spray, it starts to burn immediately. The injector continues to sprey fuel oil into the cylinder until all of the charge is injected. The prossure in the cylinder rises to bewtoen 800 and 850 pounds per square inch.

The third stroke is the power stroke. The hot gases expand and force the piston downward. The chemical energy of the fuel is converted into mochanical eneryy to move the piston.

The fourth stroko is the exhaust stroke. The exhaust valve opens and the piston, movine upward, forces the burned gases out to make room for a new charge of air.
20. The pressure which injects oil into a Diesel oylinder must be at least

1. 15 pounds por squaro inoh
2. 100 poundo per square inch
3. 400 pounds per squaro inch
4. 800 pounde por squaru inoh.
5. Whioh of tho following procosece is mont important durin- the thind stroks of tho pleton?
6. Air ls compressed
7. Enorey is storod
8. Enorgy is destroyod
9. Chomical chanzes occur.
10. What causes tho fuel to imite in a Diesol cylinder?
11. hot fuel
12. a spark
13. hot air
14. heat of friction
15. In what position aro the valves during the compression stroke?
16. both are open
17. both are closod
18. the inlet valve is open and the exhaust valve is closed
19. the inlet valve is closed and the exhaust valve is open.
20. Water in a papor bag can be boiled using a flame without the paper burning because
21. paper will not burn when wot
22. The wator keeps the temperature of the paper below its ignition point
23. the water cools the flame
24. It is impossible to burn anything which is in contact with water.
25. A woollon jumper is used to keep oneself warm in cold weather hecause
26. it keops out the cold air
27. wool is a poor conductor of hoat
28. tho air netreon tho fibres act as a good insulator
29. woollor garmonts aro biways werm.
30. A glass bottle sometimes breaks if boiling water is poured into it because
31. glass cannot stand the temperature of boiling water
32. the glass expands unevenly
33. glass bottles are badly manufactured
34. glass has a very low coefficient of expansion.
35. The metal shoet (shown in the diagram) is heated to a temporature groater than $100{ }^{\circ} \mathrm{C}$. Thermometers R and L are placed at equal distances away from the blackoned and polished surfaces rospectively. Thormometer R is found trosk in temperature faster
 than thermometer I because
36. the blackened surface is a worse absorber of radiation than tho polishod surface
37. the blackened surface is a bettor radiator of heat than the polished surface
38. air conducts heat better from a blackened surface
39. the blackened surface gives off more eloctrons

Questions 28 to 32 concern a mercury in glass thermometer.
28. The bulb of the thormometer is made of thin class because

1. mercury is exponsive
2. tho morcury can be seen moro cloarly
3. glass is a poor conductor of hoat
4. if it wore thick, the glass would break owing to expansion
5. Tho stem of the thermometer is a narrow tube because
6. morcury is exponsive
7. it is too difficult to make a uniform wide tube
8. thero will be uniform expansion
9. tho thermometer will be more sensitivo.
10. Tho stom of the thormomoter has a thick wall becmued
11. it will not broak so casily
12. It will memity the moroumy thread
13. it is oavior to mark tho groduatione
14. it will provent hoat boing conductod from tho norcurs
15. Therc is a spaco at the top of tho bore
16. to hold the morcury vapour
17. Bo that tho air can be compressed into this space when the morcury oxpands
18. due to the mothod of sealing the bore during manufacture
19. to give moro safoty in caso of ovorheating.
20. The thermometor is mado of glass because
21. othor solids roact chomically with mercury
22. glass is transparent
23. glass does not expand when heated
24. glass is a good conductor of heat.
25. A beaker is filled to the top with wator containing l c.c. of ice (specific gravity $=\frac{1}{2}$) floating on the surface, as shown in the diagram. What will happen when the ice melts?
I. $\frac{1}{3}$ c.c. of water will overflow
26. the lovel of tho wator will go down
27. the lovel of the water will stay tho same
28. I c.c. of the water will overflow
29. A cylinder of cork has a dianetor of 4 cm . and a mass of 22 gm . The density of cork is 0.25 gm . Der c.c. What is the length of the cylinder?
I. $1 / 16 \mathrm{~cm}$.
30. $1 \frac{3}{4} \mathrm{~cm}$.
31. 22 cm .
32. A block of material $2 \mathrm{~cm} \cdot x 9 \mathrm{~cm} . x 5 \mathrm{~cm}$. weighed 100 gm . It sinks when placed in water. What volume of cork (specific gravity $=0.5$) would be nooded to be attrchod to this piece of material so that it just floated in water?

$$
\begin{array}{ll}
\text { 1. } & 10 c \cdot c . \\
\text { 2. } & 20 \quad c \cdot c . \\
\text { 3. } & 45 c \cdot c . \\
\text { 4. } & 50 c \cdot c .
\end{array}
$$

36. The diagram shows a pulley and tackle system. Pulleys A and C are attached to an upper beam and Pulley B is attached to a lower fixed beam. Assuming that the system is frictionless, what effort would be required to lift a load H lb.wt.?
37. W lb. wt.
38. W/2 lb. wt.
39. W/3 1b.wt.
40. W/4 Ib.wt.

The diagram represents a lever. By pushing down with a force applied 3 ft . from the pivot, a man raises a load of 12 lb. wt, which is placed 1 ft. from the pivot. No friction is assumed.

Answer questions 37 to 39 using this information.
37. What force does the man have to apply to lift the load?

38. If the force move 2 ft. dommarde, how fer will tho load bo releodi

1.	$\frac{1}{5} \mathrm{ft}$.	
2.	ft.	
3.	$6 \mathrm{ft}$.	
4.	1	ft.

39. The onoref transfored from the man to thelload is
40. $\frac{5}{} \mathrm{rd}$. the energy supplied by the man's push
41. equal to the energy supplied by the man's push
42. 3 tines the energy supplied by the mar.'s push
43. 龺 rd the energy supplied by the men's push.

The diagram represents the imago of the object from a convex lens. f is the focal length; u is the distance of the object from the lens; v is the distance of the image from the lens. They are related according to the expression

$$
\frac{1}{f}=\frac{1}{u}+\frac{1}{v}
$$

(NAT TO SCALE)

Answer Questions 40 and 41 using the above information.
40. The distance of the image from the lens is

$$
\begin{aligned}
& \text { 1. } 3 \mathrm{~cm} \\
& \text { 2. } \quad 1 \frac{1}{4} \mathrm{~cm} \\
& \text { 3. } \\
& 3 \frac{1}{3} \mathrm{~cm}
\end{aligned}
$$

41. The size of tho image will be
42. 2 cm
43.

3 cm
3.
4. cm
. $9 / 5 \mathrm{~cm}$
42. The following diagrams represent light falling on plane mirrors. Which one of the diastems is incorrect?
1.
 2.

4.

43. The following diagrams represent light rays travelling towards an air-wnter or water-air interface. Which one is incorrect?
1.

2.

3.

44. Tho diagrams represent light rays travelling from air through glass blocks. Which one is incorrect?

2. 3 .

Tho diAgram below moprobenta a container rita diEnselone me snows. oontaining water. Answer questions 45 and 46.

45. At which one of tho four points would there be the greatest water pressure?

$$
\begin{array}{ll}
\text { 1. } & \text { A } \\
\text { 2. } & B \\
\text { 3. } & \text { C } \\
\text { 4. } & \text { D }
\end{array}
$$

46. What would be the water pressure at Point A?
47. 1 em.wt./sq.cm.
48. 3 डn.wt./sq.cm.
49. 4 gm. wt./sq.cm.
50. 5 gm.wt./sq.cm.
51. The diagram shows a system containing oil with a piston in each limb. Area of the piston X is 32 sq.ft. Area of piston Y is 2 sq.ft.
What weight must be placed on piston Y in order to raise the 112 lb. wt. on piston X ?

52. 1121 bs .
53. 28 1 bs.
54. 7 1 bs.

- 60 om . of mercury.

48. What is the pressure of the gas in the closed limb 1 ?
49. $(60+x)$ ca. of mercury
50. $(x-60) \mathrm{cn}$. of mercury
51. $60 / x$ on. of mercury
52. $(60-x) \mathrm{cm}$. of mercury
53. If a small volume of mercury were run out of the tap T, what would happen to the pressure of the es in limb A?
54. it would decrease
55. it would increase
56. it would stay the same
57. it is not possible to predict.
58. If the atmospheric pressure were to increase, what would happen to the pressure in the limb A ?
59. it would decrease
60. it would increase
61. it would stay the same
62. it is not possible to predict.
63. If more mercury were added to tho $1 i m b B$, what would happen to the pressure of the gas in limb A ?

> 1. it would decrease
2. it would increase
3. it would stay the same
4. it is not possible to predict.
52. Which one of the follalng etntomente about the elooerolymie of illust mulphurio noid using platimum olootrodoe in true?

1. Squat volume of nycroean arc oaken ammo produced at the alactrodoe.
2. Water is decomposed into its elements by a physios chance.
3. The electrolyte is decomposed only if the electrodes are aloe together.
4. The solution of sulphuric solid becomes more concentrated.
5. The following diagmos represent a combination of four cells,(each of 2 volts). Which arrangement will provide the greatest electrical pressure?
6.

2.

3.

4.

54. In the circuit show, the following are placed in position R. Which one will allow a current to Now?

1. a glass rod
2. an asbostos rod
3. a pencil
4. a plastic rod.

5. You are provided with a battery B, an ammeter A, a voltmeter V, a resistance R and connecting wire. Which one of the following circuits would you set up to measure the current flowing through the circuit and the electrical pressure across the battery?
6.

2.

4.

R

Name

Porm 2

AHSHERSHEET

Physice

Torm 3. 1966

41. 123 42. 123 43. 1223 44. 2234 45. $1 \begin{array}{llll}1 & 2 & 3\end{array}$ 46. 1223
42. 1234
43. $1 \begin{array}{llll}1 & 2 & 3 & 4\end{array}$
44. $1 \begin{array}{llll}1 & 2 & 3 & 4\end{array}$
45. 2 2 4
46.
47.
48. 1234
49. 1234

[^0]: * signs are reversed

