by

Adrian \%. LIUthebi
B. S., Cur Laude, Kansas State University, 1974

> A MASTER'S THESIS
> Submitted in partial fulfillment of the requirements for the degree

MASTER OF SCIENCE

Department of Economics

KANSAS STATE UIIIVTRSITY
 manhattan, Kansas

1976

> Approved by:

ACKIO'ILEDGEMTS

I wish to acknowledge the professional guidance, constructive criticisas and amiable advice of my major proiessor, Dr. John th. "eCoy, who circcted this stuad. A debt of anoreciation is also due to Professors "djar S. Basfley and Frank Orazen for their critical remari-s as academic co:mittee members that helped to make this thesis as complete and coneront as possible.

I an indebted to the Kenya Government and the United States Agency for International Developant (USAID) for providing funds that enabled me to כursue undergraduate and graduate studies at Kansas state University (KNJ). A spccial appreciation is due to my USAID Procram Specialist at the United States Departaent of Agriculture in rashington, D.C., Dr. Robert W. Doan, and the Director of International Asricultural Procrams \& hisu, Dr. Vernon C. Larson, for efficiently handling administrative Eetters related to my procram of study.

IV Eratitude is also extended to liessrs. Ron E. Solomon and John IT. Relly, Research Assistants in the Department of Economics at KSU, for their friendly assistance in computations of data for this thesis. They made my curden lighter and spared me fron many sleepless nights.

I would not end this note without expressine ruy depest appreciation to my wife, Nab:rile, for her flowint stream of letters of encouragement that cave me extra impetus in woring throuch ny program of study. In final eratitude is here tendered to my dauchter, Nafula, and my son, Viasia, who sore the acony of "dad's" absence for many jears while I was avay from home
in pursuit of thesc studies.

TABIT OP CONTEMTS

Faje
AOMO:IHDGETMS ii
IIST OF TABLISS vi
IIST OF ILIUSTRASIOITS viii
JWIRODUCTION 1
Statement of the Probler 1
Objectives of the Study 4
Chavter
I. REVIEN OF IITRMAURE 6
Origin and Data Base for Price Spreads 6
Definitions, Types and Computations of Beef Price Sipreads 8
Purmose of Price Syread Series 12
Limitations of Price Spread Series 12
Comon I:isconceptions about Price Spreads and Pamer's Share 14
Price Spreads Versus Level of Econoric Developaent 17
II. RUSEARCH ITMMODOIOGY 19
Tine Series Anproach 19
Tinc Series iodels 21
Isolatiñ the Secular Trends 22
Isolating the Seasonal Variations 24
Isolatine the Cyclical FIuctuations 26
Isolating the Irrejular IVovenents 27
Lead-Ias Relationship betveen Live Aninal and Retail
Heef Prices 27
III. SECUTAR TREDDS IIT RERT VALUES AHD PRICE SPREADS MOJEOMIORTS TO 1980 30
Secular Trends in Beef Values 37
Secular Trends in Beef Price Spreads 39
pactors behind the Secular Trends in Beef Values and Price Spreads 40
Projections ard Implications of Trends in Beef Price Spreads to 1980 43
 51
Seasonal. Variations in Becf Values 53
Scasonal Variations in Beef Price Spreads 54
Factors behind the Scasonal Variations in Beef Values and Price Spreads 54
Chanse in Seasonal Variation over the ycars 56
V. CYCIICA工 RIUCTUAMIOIS IIT BNE VALUES N.D TRICE SEREADS 59
Cyclical Fluctuations in Beef Values and their Causes 59
Cyclical Fluctuations in Beef 3nce Soreads and their Causes 63
 69
Irresular lovements in Beef Values and Price Spreads 69
Factors bchind the Irrerular iovenents in Beef Values and Price Syreads 76
 PRICES 80
Results and Analysis 80
:III. SUITIARY 85
SEIEOTED BIBIIOGRAPHY 90
\therefore MDDICES 94

IIST OT TABIES

Pase

Table
1．Fari－carcass，carcass－retail，and farin－retail price spreads
and farmer＇s share as percentames of retail value for U．S．
choice erade beef， 195 hesept． 19752
2．Computed montinly sccular trend values for fam，carcass，and retail values，and farm－carcass，carco．ss－retail．，and farm－ retail price spreads for choice frade becr̀，U．s゙．，January 1954－Sept． 1975 31

3．Components of ram－retail price spreads per pound at retail
for U．S．choice crade beer， 1973 ．．．．．．．．． 41
4．Farm－retail price spread and selected marketins costs for U．S．choice Grade beci，1963－7443

5．Per capita personal disposable incone and per capita
civilian beef consumption，U．S．，1953－74 44
6．Profits aiter taxes of retail food chains and food manưaoむurers，U．S．，1964－74 46
7．Projected monthly secular trend values for farm，carcass， and retail values，and farm－carcass，carcass－retail，and farr－retail price spreads for choice grade beef，U．S．， October 1975－December 1930 49
8．Seasonal indices of fam，carcass，and retail values，and farm－carcass，carcass－retail，and farm－retail price spreads for choice grade beef，U．S．，1956－Sept． 1975 51
9．Seasonal Amplitudes in fam and retail values and farm－ retail price spread in the periods 1947－53 and 1954－75． 57

10．Cyclical percentaces for farm，carcass，and retail values， and farm－carcass，carcass－retail，and farm－retail price spreads for choice crade bec̊，U．ふ．，Jan．1954－Nept． 1975.60

11．Irresular percentaces for farm，carcass，and retail values， and farm－carcass，carcass－retail，and farm－retail price spreads for cinoice grade becf，U．S．，Jan．1954－Sept． 1975.70
12．Lags in retail beef prices during periods of increasing and decreasine live ani．nal prices，U．S．，Jan．1954－Dec． 1974. 32
:able
13. :"onthly farm, carcass, and retail values, and farn-carcass, carcass-retail, and faca-retail price sorcads in cents per retail pound for choice grade beef, U.S., Jan. 1954Sept. 1975 95

1. Beef composite retail price per pound 103
2. Choice 900-1,100 Ib. slauminter steers, Onaka monthly averace price per cult., 1955-74 107

IIST OM IILUSTEATIO:TS

Pase
Sisure

1. Fam-carcass, carcass-retail, and form-retail price spreads and farner's share as percentares of retail value for choice crade beef, U.S., 1954-Sent. 1975 3
2. Secular trends in farm, carcass, and retail values for choice croade beeP, U.S., 1954-Se: t. 1975 35
3. Secular trends in farmocarcass, carcass-retail, and farm- retail price spreads for choice Eracic beer, U.S., 1954- Sept. 1975 36
4. Seasonal variations in farm, carcass, and retail values, and fari-carcass, carcass-retail, and fara-retail price sureads for choice srade beef, U.S., 1954-Sent. 1975 52
5. Cyclical fluctuations in farm, carcass and retail values for choice grade becf, U.S., 1954-Scrut. 1975 64
6. Cyclical fluctuations in farm-carcass, carcass-retail, and fari-retail price spreads for choice grade becf, U.S., 1954-Sept. 1975 65
7. Luanber of cattle and calves on U.S. fams, 1955-1975 66
8. Irrerfular rovements in farm, carcass, and retail values for choice grade bcef, U.S., 1954-Sèt. 1975 74
9. Irrerular movenents in fam-carcass, carcass-retail, andfarn-retail price spread̉s for choice srade beef, U.S.,1954-Sent. 197575
10. Choice 900-1,100 Ib. slauchter steers Onaha price per cut, and U.S. averafe retail price of choice erade beef per lb, 1954-1976 81
11. Schenatic diacram of the Lead-lag relationship between live animal and retail beef prices, durins periods of increasine and decreasin\% live animal prices, U.S., Jan. 1954-Seyt. 1975 33

INTRODUCTION

Statement of the Problem

The price spread between the price a consumer pars for a pound of becf at the retail recister and the price a beef farmer receives for an couivalent quantity of live aninal has been widening over the gast two decades, especially with the rising retail beef prices in recent years. Table 1 and Firure lindicate that in 1954 the price soread was 32 percent of the consumer's dollar spent on beef, the ramaining portion (53 percent) being the famaer's share. By the end of the third quarter in 2975, the price spread had risen to 35 percent of the consumer's beef dollar, with a record higin of 40 percent in 1964, and as hičh as 38 percent in 1961, 1963, 2970 and 1974.

Thus, while the price spread has been widening, the famer's share of the conswer's beef dollar has been dwindling. This phenomenon has causce considerable continuine concern anone beef farmers and consuacrs.

Farmers have felt that the increasing price spread is reflective of inefficiency in the marketirf syster, or excessive profits accruing to zarketinf afencies, or a combination of the two. Fost consumers, generally for reroved from the arricultural scene, are neither well acquainted with the intricacies of the marketing channel nor with the arduous business of beef cattle production. To many, it is a forefone conclusion that the rising retail beef prices must be gutting excessive profits into the pockets of beef farmers and/or the midalemen. The raddlemen, on the other hard, have often attacked the validity of beef price spread statistics.
(17.: 1.--Farn-caxcass, carcass-retail, and faria-retail. price soreads and farmer's simae as percentnaes of retail value for U.S. choice Erade beef, 1954-Sept. 1.975

$\because r$	Earmcarcass	Carcassretail	$\begin{aligned} & \text { Farm- } \\ & \text { retail } \end{aligned}$	$\begin{aligned} & \text { Farmer's } \\ & \text { sinare } \end{aligned}$
: 354	11	20	32	68
: 355	13	21	34	66
: 350	14	22	35	65
$\bigcirc 357$	12	23	35	65
1-3:3	9	23	33	67
:959	9	24	34	66
2350	9	26	35	65
: 951	10	28	38	62
2952	8	24	32	68
2353	9	30	38	62
1954	9	30	40	60
1955	8	28	35	65
2956	7	29	37	63
1957	8	28	36	64
1958	7	27	35	65
1969	7	29	35	65
: 970	7	31	38	62
1971	8	27	35	65
1972	7	30	36	64
1973	6	28	34	66
1974	8	30	38	62
$1975{ }^{\text {b }}$	9	27	36	64

[^0]

Ficure 1. Farti-carcass, carcass-rctail, and farm-retail price sorcids and farmer's sharo as percentaros of retail value, for choico rraic beef, U.U.,

Tisey have asserted tiant beef price soread statistics are not only inaccurate in the way thej are computed but also grossly overstate the middemen's sinse of the consur.er's beef dollar.

These sentiments heiwhten at the times when there exists apparently-in the eyes of beef farmers and consuiers--contradictory movements in live animal and retail beef prices: when live aninal prices nay be declinine ni:ile simultancously retail beef prices remain stable or even rise, because of tize las between these trio types of prices.

It is evident from the above account that a considerable amount of …isunderstanding exists about the nature of beef price spreads, their relation to farmer and middlemen profits and marketing efficiency, and the lead-lag short-term relationship between live animal and retail beef price movements. Accordinsly, the purpose of this study is to attempt to clear these misunderstandings among beef farmers, widdenen, and conswners by groviding some insight lmowledge about the nature and interoretation of changes in beef price spreads. In addition to helping these interest zroups understand beef price spreads better, the results of this study could bs of value to beef farmers as well as potential beef farmers in Flanine their future cattle investment, production or marketing prozrans.

Objectives of the Stuady

The general objective of this study is to present a historical
Cescription and analysis of changes in beef price spreads with a view to sromotine a better understanding about their nature and interpretation a-ong beef famaers, midolenen and consuriers.

Specific objectives include the following:
(1) Present a detailed description of concepts and procedures for computing
becf price spreads.
ldentify, measure and provide a picture of changes in beef price spreads beti:een January 1954 and September 1975.

Erom nưber (2) above, analỹe the undorlyin causes ancemeang of tine chances in beef price spreads.

Forecast the direotion and magnitude of chanees in the price soreads throufh to December 1980.

Detemine the lead-lag relationship between live aninal and retail beef prices.

CILAPMER 1

RFVIE: OF IITHZATURE

Ori in and Data Base for Price Snreads

Tae publication of price suread statistics was trigbered to an :-o: $\begin{aligned} \text { tant extent by the concems of the United States Conjress about the }\end{aligned}$ cefcot of proposed arricultural programs on price spreads and retail food $\therefore \therefore 20$ in the 1930's. "In the early 1930's, it vas generally agreed that ©2:. prices were too lor, but there was hope that a mafical formula might \therefore found to raise prices to farmers :iith havine undesirable effects on ;-ives at other levels, particularly to consurers." ${ }^{1}$ In this pursuit, the soreess assicried the United States Department of Agriculture (USDA) the :ass: of collectine data, analyzine and publishing price spread statistics. Accordingly, in 1935 the USDA issued a preliminary report, "The :"arein Between Parna Prices and Retail Prices of Ten Foods," winich surmarized for the period 1910-34 price spreads for ten farm products. This research the expandea to include 58 items in a 1936 report, "Price Spread Between the Bamer and the Consumer." Beginning with 1941, price spreads for food F:OAucts have been published on a continuing basis by the USDA in "The "̈rketing and Transportation Situation" and other reports. ${ }^{2}$

[^1]The USDA measures and publishes price suread statistics for a maricet ariet as well as for the individual food groducts in the basket. The :anent maket basket contains the averace quantitics of 65 conestic femm-:- inated foods purchased annually per housenold in 1950-61 for prepa‥tion at home by fanilies of urban wase eamers and clerical worne:s and whers liviñ alone. ${ }^{\text {l }}$ Price spread statistics for the rarket bashet and ost of the individual food products are composed of four series: (1) retail :ice; (2) farm value; (3) farm-retail price spread; and (i) the farmer's s.are of the consuraer's food collar. ${ }^{2}$ Beef price spread statistics, with nich this study is concemed, contain three adaitional series: (5) carcass ralue; (6) farm-carcass price spread; and (7) carcass-retail price spread. Nurent price spread statistics are puolished by the USDA in a quarterly sasue of "Acricultural Cutiook," and in a nuaber of monthly and special resorts.

Thus, the data used for this study were obtained fro: the USDA in rarious publications and reports. A surmary of beef price soread statis:inel scries by month from January 1954 to December 1974 was obtained from Aursan ${ }^{3}$ on request. ${ }^{4}$
U.S., Department of Acriculture, Bconomic Research Service, Farm "otail Shread fou Food products, oy Narsinall E. Niller and Harry II. Harp, secllancous iuplication ilo. 741 ("ashinston, D.C.: Govemment Printing Cefice, January 1972), p. 1.
${ }^{2}$ Ibia., p. 2.
$3^{\text {Denis Dunhen }}$ is an Agricultural Dconomist in the Scetor Performance \because Oasures, Eiconomic Researon Service of the U.S. Departrent of Acriculture, "acininton, D.C.
${ }^{4}$ Appendix A.

Definitions, Tynes and Commutation
 of Decf jrice Sbieads

Price spread in general is the difference between the ronetary value 2: a quantity of a product at one level of the marketine ciamel and the \therefore ue of an cquivalent quantity of the procuct at another level of the ..weting channel during a given period of time. There are three types of cof price sureads: (1) farm-carcass price suread; (2) carcass-retail -ince spread; and (3) Iarminetail grice spread. Before each of these price a =eeds is definca, it vill help to explain tine idea of "equivalent" :untitity as used above first.
"The word 'equivalent' is used because 1 pourd of retail neat necessitates somewhat more than 1 pound at wolesale and even nore at the farm icvel."1 For instance, pachers purcinase a lareer quantity of product in fow of a live steer than they sell in form of carcass beef to winolesalers. iant of the amount--hence weight--lost from the farm level to the wolesale level is waste and part is salable byproducts. Sirilarly, retailers buy a inuzer quantity of carcass beef than they sell in retail cuts to consumers. Aice loss in amount and weight between wolesale and retail market levels is due to spoil.ace, shrink, bone and fat trin. It is, therefore, by the =0ఇputation of "equivalent" quantities that such losses in product quantity ind weight can be accounted for in comparing quantities and values at any $\therefore::$ levels of the marketing channel.

T:o types of "equivalent" quantities and three types of prices are :.ccced in computine beef price spread statistics, narely farm product Guivalent, carcass product equivalent, a U.S. averare fara price, a U.s. steraje carcass price and a U.S. averare composite retail price.
${ }^{I}$ John II. IfcCoy, Jivestock and Meat Ifaricetinf, (ifestport, Connecticut: - Niv Publisinin Compay, Irc., 1972), p. 394.

2ar: product cquivalent is the weisht of a live animal at the farm :te level ${ }^{1}$ that will jrield 1 zound of retail cuts sold. Careass product onuivalent is the weicint of curcass beef at the wolesale level that will $\because:$ elả 1 pound of retail cuts sold. The USDA has estimated thot for choice \cdots ?ie ${ }^{2}$ beef, the farm product equivalent is 2.28 younds, wile the carcass :=oduct equivalent is 1.41 pounds. ${ }^{3}$ The 2.23 gounds at the farm level are coivalent to the 1.41 gounds at the winolesale level, and to 1 cound of :ctail cuts sold at the retail level.

Product equivalents are converted to value equivalents by multipluine \therefore :. :rices at relevant mariket levels. Gross farm value equivalent is outined by multiplying the farn product equivalent by a U.S. averaje farm nice ${ }^{4}$ of choice slauriter steers in a civen period. In price spread somentations, not faria value equivalent is uscd instead of the esoss farm :Ilue equivalent. Tine net farm value equivalent ${ }^{5}$ is obtained by subtractinc the value of salable kyproductis--i.e. hide, etc.--from tine gross fam value çuivalent. The value of byproducts is excluded from price spread compu:3tions because all values used are based on the amount of beei actually

Farm gate level is the point where a live slauchter aninal leaves the area of production for marketing.
${ }^{2}$ Choice crrade beef is used for beef price spread statistics because rost of the beef sold in the United States is choice Erade, according to I.S. Departiment of Acriculture, Honomic research Service, Develoments in "anetinm, Sbacade for Acricultural Producis in 1974, Arricultural Iconomic :cyort lo. Z̄́l (ivaskinton, D.C.: Governmont Printing Office, April 1975), 2. 27.

3:iller and Hamp, "Farm-Retail Spreads for Food Products," January :372, vp. 73-74.
${ }^{4}$ Appendix B, p. 104.
$5_{\text {Het farm value equivalent will be refermed to simply as farm value }}$ 2.7 suissequent text. ifnen expressed as a percent of retail value, it is ieraed the farmer's share of the consumer's beef dollar.

2ald at the retail level. Carcass value eouivalentl is ootainea by milti--itiz the carcass product equivalent by a U.S. averase wolesalc price ${ }^{2}$ of coice carcass becf in a fiven period. Retail value is a U.S. averarge ? - osite retail price ${ }^{3}$ of 1 pound of all cuts sold from a choice carcass.

The three types of beef price suread identified asove can now be dosined as follows:

2he Farm-Carcass Price Spread:
The farn-carcass price spread is the difference between carcass value and farm value. It represents costs incurred and profits obtained by :.aricting acencies in moving a farm product equivalent from the farm to the a:obesale level. In other words, it is the sum of all costs and profits for performing the services of asseribling and transportine a live animal, ciaunhtering, dressing, and shipping the carcass to the point of sale.

Thc Carcass-Retail Price Spread:
The carcass-retail price spread is the difference vetween retail Oalue and carcass value. It represents all costs incurred and profits enjoyed by maketine agencies in moving a carcass product equivalent from the wholesale to the hands of the consuner at the retail level. It includes ainly the average gross margin ${ }^{4}$ that retailers receive for selling beef, as rell as compensation for marehousing and delivery services performed by
${ }^{l_{\text {Carcass }}}$ value equivalent will be referred to simply as carcass value in subsequent text.
${ }^{2}$ Appendix B, p. 102.
${ }^{3}$ Ibid., p. 100.
${ }^{4}$ Gross marein is the difference between what a retailer or packer ets fos his product per unit sold and what he pajs for it. For nore details see E. 15-16.

ごchil chains and othoi carlot buyers, includinz indenerdent wolesalers $\because: 10$ supply retail stores. 1

Sic Fam-Retail Price Spread:
The farm-retail price spread is the difference bet:een retail value and fann value. Or, sinply, it is the sum of farm-canoass and carcass"ctail price spreads. Thus, farm-retail price spread is the suru of all sosts incurred and proifts obtained by marketinc acencies in moving a farm "oduct equivalent from the hands of the famer at the fam gate level to tiac hands of the consuner at the retail level. The costs and profits are dosorbed in performing the services of assembling, processiñ, storine, packasing, transporting, wolesaling, and retailiny. Eaoh of these services irivoives costs for labor, cnergy, capital, business taxes, depreciation of buildines and equipment, etc. ${ }^{2}$ In seneral, the farm-retail price soread is the portion of the consumer's beef dollar that accrues to marketing agencies in the ruarketing channel, the remaning portion being the farmer's share.

Beef price spreads are computed by the USDA on a weekly and monthly insic, and then afecrecated into quarterly and annual price spreads. A corputed example of the three types of beef price spreads and the farmer's diare for Scplember 1975 is as follows: ${ }^{3}$

Tiller and Harp, "Parm-aetail Spreads for Food Products," January 1972, ․ 26.

Table 3, p. 41.
${ }^{3}$ Basic data from U.S. Denartment of Asriculture, Econonic Research
 osfice, rovemuer 1975), p. 26 .

Furyose of Price Spreads

$I_{\text {"Ithe major purpose of price spread statistics is to measure pariations }}$
over time in prices--chances in retail prices, farm prices, and prices of (or cherres for) services associated with marketing. These data enable changes in retail prices of farm foods to be disafcrecated into chanes in aarketiñ cherges and form prices. Analyzing price spreads over time provides some insights into the nature and causes of the changes that have occurred.

Over the years these data have contributed to better public enlightcriaent regaraing chanfes in food prices and their causes. These statistics provide basic intellisence and frequently are the best information available for answering scores of requests from producers, retailers, processors, jublic acencies, and consurers."

Limitations of Price Spread Statistics

The reliability and adequacy of price spread statistics depend upon the accuracy and apgromriateness of the prices and product equivalents from
U.S., Department of Acriculture, Economic Research Service, niolonemts in larietin Snreads for Arricultural Procucto in 1.974 , coultural icono:ic ieport ilo. 201 (ivasinifton, D.C.: Govemment =:inting Office, April 1975), p. 26.
d: they are derived. Yet there are two general probleas in derioine the devant prices and mrocuct equivalents at the various levels of the \therefore ctine charnel: ${ }^{1}$
"(1) The establisinent of comparable physical units as the product forjocs chanjes in form, comosition, terperature, processing, shrinhare, \therefore ㄷince etc.
(2) The securing of avpropriate prices at different levels of the ro:tical price-structure of the food economy. This may be a uroblen nuse of proauct definition, specification, sampling, or contractual "clationshivs over a period of time."

Accordingly retail, vinolesale and fam prices collected for use in :owuting price spreads are subject to sampline, reportine and other statis:Lcal errors. Similarly, product equivalents have inherent errors and do :ot readily reflect chances in physical quantities over considerable periods of time that may range from a year to five or more years. For instance, :3ra and carcass product equivalents have not been revised or changed since 1352. Product equivalents are deliberately held constent over a period of :Sme so that price spread statistics may measure price chances for relatively sonarable beef slaughterinc, processing, transporiation, retailing and other acrvices. Otherwise, price spreads would show variations that could not nevessarily be interpreted as price changes. ${ }^{2}$
lRay A. Goldbere, "Narketing Costs and Nargins: Current use in Agritusiness Liarket-Stmucture Analysis," Joumal of Farm Econonics, Vol. 47 \therefore. 5, Dece:nber 1965, p. 1352.
for ${ }^{2}$ U.S., Department of Agriculture, "Developments in ilarketing Spreads for Ajricultural Products in 1974," April 1975, p. 27.

Fillior and fiarm ${ }^{1}$ contend that price suread statistics are more :eliable as indicators of changes in prices and marleting costs than as :easures of absolute levels.

Comron lisconcentions about Price Sureads

 and Farmer's inareIt is widely assumed that the farmer's share of the consuner's beef dollar is an accurate indication of the farmer's profit position. That is, that wen the farmer's share is declininä, his net profit is aiso declinint and rice versa. Tris may not necessarily be the case, however. The real economic issue to the farmex should not be so nuch as to what share of the consumer's beef dollar he gets but rather to what extent he maximizes his farm business objective, be it raximum profits, fanily welfare, or some other objective or cosibination of objectives.

The farmer's share is his gross return. Costs nust be suctracted from it to know his net profit. The share may be large relative to the farm-retail price spread. But if his costs are high as well, his net profit will be only meafer. Besides, the value of byproducts sold raust be added to the farmer's share to obtain his total gross return per farm product equivalent. what is more, it wotid be sound business manafement for the farmer to be more concerned with the total net profits from the farn business as a whole rather than with profits from individual enterprises, such as beef cattle. Thus, we can not look at the farmer's share of the consumer's beef dollar alone and be able to judge with certainty the farmer's profit position.

[^2]Another comion nisconcertion is tre relation between price spread anà © retailer or packer gross marfin. liany people use these terms interchizcaoly rithout rcalizine that there are differences between them.

Price spread has been defined above in some detail. It is simply a 1:iference between value equivalents at two market levels for a specific ality of a product. "Gross marcin, on the other hand, is often used by \therefore ixistry to mean the difference between what a retailer or packer gets for : : 3 product (per unit sold) and what he pays for it." ${ }^{1}$ Gross marcin thus concerns a single firm between two market levels. It includes costs of :ajor, packaring and overhead as well as any profit by the firm. Unlike - rice spread, gross margin does not include the costs and profits of =arceting services such as transportation performed on a product by other sirms between the two market levels. Hence, a price spread between any tro ::arket levels is larger than the gross rargin of a single firm between the t:o market levels.

The USDA lists differences between price spreads and industry gross =aruins as follows: ${ }^{2}$

IU. S., Department of Africulture, Dconomic Pesearch Service, Facts 0. Iam-Retail Price Snreads for Beef and Pork, ExS 597 (\%ashinfton, D.C.: Govemnent Printing Office, February 1975), p. 28.

$$
\text { ² }{ }^{2} \text { bid., p. } 29
$$

USDA Price Spreads

1. represent UU.S. \&veraçc.
2. Choice 心rade beci only.
3. Concurrent prices or vaiues at each mariret level.
4. Cut prices meichted by carcass proportions.
5. Retajil pound equivalent basis.
6. Includes charges between pricing points.
7. Carcass bee prices.
8. Standardized yields.
9. Based on (Bureau of Labor Statistics) BLê prices, adjusted for price and quantity effects of specialing, usinf price data reported to (Economic Research Service) ERS by a sample of retail food chain divisions.

Gross Maruins

1. Usumlij represent a single firm.
2. Includes oubr frades as well as choice.
3. Time lacged orices Detwi n purchase and sale.
4. Ilix of cuts sold may vamy from carcass proportion.
5. liay be stated on live weight or carcass weicht basis.
6. Includes only charges for retailing or meat packing.
7. Primal, subprinal, and cut prices, as well as carcass beef.
8. Cutting test yields.
9. Sales volume weighted averase of special and resular retail prices.

Another comon misconception about price spread (form-retail price spread) is its implications with recpect to marketing efficiency. As was stated in the statement of the problem above, farmers have resarded the widening of farm-retail beef price spread over the years partly as indicative of inefficiency in the marketing system. 'Mieither the farmer's share, nor the absolute amount of marketing (nrice) spread is adequate in itself for evaluating marketing efficiency--either operational efficiency or pricing efficiency."1 For instance, the farnnretail price spread as a percent of the consumer's dollar spent for lettuce in April 1975 vas 66 percent, whereas It was 33 percent for choice beef during the same month. ${ }^{2}$ On the basis of
${ }^{1}$ John H. IncCoy, Ifivestock and Ifeat Ilarketing, (Westport, Connecticut: The AvI Publishing Company, Inc., 197̌), p. 404 .
${ }^{2}$ U.S., Department of Arriculture, Economic Research Service, Acricultural Outlook, AO-6 (Vashington, D.C.: Govermment Printing Office, Lioverber 1975), p. 26.
\therefore ase ficures, some pooble would concluato that the marinetine of lestuce is less cificient than that of choice beef. This would be an untrarrantcd concausion. So:ne products simply require nore marketing semices relative to fincir value than do others. Whis is the above case with choice beef reasus letuluce, were processinf costs for instance are substartielly hifiner for luttuce relative to itus value than for the beef.
"It would be possible to reduce fanilretail price spread to zero (c.ü. famers could set 100 percont of the consurier's beef dollar if they slauchtered, processed, and delivored neat to the consuramis doors). This, :Lowever, is not necessarily the nost efficient system. In fact, it was discovered long aro that snecialization and trade, based on comarative advontaje would result in a ereater total and per canita real income. "1

Price Snreads Versus Level of jeonomic Dovelonment

It has been pointed out above that price spreads renresent costis and rrofits of semvices adided to food products between the famer and the consumer, Accordinily, they are apt to be higher relative to retail prices in a more developed economy, where more marketing services are added than in $\&$ less develoned econozy where the producer is often tine middaman as rinll. This viev is supported by Darrah :inen he states:
2.ariating costs that are hicil relative to retail prices are com:on in such countries as tioc United States, with its hich derree of industriolization and vrbanization. Warkotints costs that arc low relative to retail yrices are topical oi areas wose econowy is lareoly asticultural. Thus, marketine costs, in a general way, hay be considered a reflection of a country's econoily and stacc of àvelopincit anc siould not be condened unless one blindly favors a comletc retum to a less prosessive socicty.

2L. D. Darrain, Hood Uarictins, (wer York: whe Ronald Press Coypany, 1971), p. 313.

However, as people's education, incomes and standards of living have risen, as more and nore women have abardoned the idea of spending a life time in the kitchen for an industry or some other "man's" job, and as urban yopulations have continued to expand in these predominantly asrarian societies, sualler and sualler proportions of income are expended for raw food products, and creater and Ereater proportions of the income are used to call forth additional and improved marlcetins services. Indeed, as Darrah guts it, "Instead of buyins wheat or flour with which to maice bread, people b:iy bread enriched with minerals and vitamins that is already baked, sliced, urapped, and delivered Presh daily." ${ }^{\perp}$

As a result of these developments, today in many less developed countries, as much as in more developed ones, food pioducers and sonsumers alike are complaining that farm-retail price spreads have and are growing too wide. ${ }^{2}$ But, producers and consumers in the less developed countries are iess fortunate than their counterparts in the more developed countries. Price spread information available in more developed countries like the United States is non-eristent in most, if not all, less developed countries. There, much more than in the United States, for example, food producers, consumers and private as well as governmental arricultural policy makers lack the knorledge and understandinf of the nature and causes of changes In the widening food price spreads.
${ }^{1}$ L. B. Darrah, "Food liarketing," p. 318.
${ }^{2}$ However, it must be categorically stated here that the number and decree of sophistication of services added to food products domestically Produced and marketed are higher in the nore developed than in the less developed countries.

CHAPTM II

RESEARCH IDTHODOIOGY

Time Series Anoroach

"A time series may be dofined as a sequence of mepeated measurerients Oi a variable rade periodically throurh time." ${ }^{I}$ inhus, beef price spreads and values ${ }^{2}$ are ime series. Such tine series are assumed to contain four basic components: secular trend, seasonal variations, cyclical fluctuations, and irregular moverants. ${ }^{3}$

In order to gain a better understanding and picture of the nature and causes of changes in beef price spreads (and values), it is neeessary to isolate and analyze the four components of the time series sevarately. Sucir a decomposition of time series into their parts requires an assumption about the relationsinip existing amonf the various components. Before discussing the methuds that were employed in decomposing the beef price spread and value time series, some definition of the time series components will be civer as follows:

Secular trend:
"A secular, or lonc-term, trend refers to the smooth and regular
${ }^{1}$ Cecil H. IIeyers, Elementary Business and Economic Statistics, Belmont, Celifomia: The "iadsworth Publishine Company, Inc., 1970), p. 446.
${ }^{2}$ Beef price sprcads are farm-carcass, carcass-retail, and farm-retail; beef values are farin value, carcass value, and retail value. All these terms have been discussed in Chapter 1 of this study.
${ }^{3}$ Iincoln I. Chao, Statistics: liethods and Analyses, (INeV York: :cGraw-Hill Bonic Company, Inc., 1969), p. 257.
covenants of a series reflecting continuous growth, stagnation, or decline over a rather long period of time.... What the trend measures is the average change in the variable per unit of time. It characterizes the gradual and general pattern of developments, which is often described by a straight line or some type of smooth curve. "1

Seasonal variations:
Seasonal variations are periodic variations that recur with some decree of regularity within a specific period of 1 year or shorter. ${ }^{2}$ The underlying factor responsible for seasonal variations in beef price spreads is climatic conditions.

Cyclical fluctuations:
Cyclical fluctuations are characterized by recurring up-andodorm movements, which are different from seasonal variations in that they extend over longer periods of time--usually 2 or more years, but they are shorter than secular trends. ${ }^{3}$

Irrçular movements:
"Irregular movements of time series are either random or caused by some sporadic forces such as var, earthquake, flood, droughts, and other natural catastrophes. such fluctuations are nonrecurring and, therefore, completely unpredictable. $1{ }^{4}$ However, these unpredictable events can be easily recognized and identified, and thus can be easily eliminated from
$1_{\text {Ibid. }}$ p. 358.
${ }^{2}$ Ibid.
${ }^{3}$ Ibid., pp. 359-360.
${ }^{4}$ Ibid., p. 360.
the data in measurine the other corponents of a time scries. Irrecular variations are ofton coaparatively uninuortant and are usuall:r considered a part of the seasonal or cyclical variations or simily ignored. Formever, they were also isolated and analyzed in this study.

Time Series llodels

"Tro time scries nodels are eenerally accested as good 'approximations' to the true relationship anons the components of a time series data. Finey are the 'additive' and the 'aultiplicative' nodels, and ane the most com:only assumed relationship between a time serics and its elements." ${ }^{1}$ Let
$i=$ position of a month from I to n, where $n=261$, the total number of months in the data used. $Y_{i}=0 r i g i n a l$ measured value of a time series variable for the i th month. ${ }^{2}$
$\mathrm{T}_{\mathrm{j}}=$ corresponding value of the secular trend component.
$S_{i}=$ correspondint value of tine seasonal component.
$c_{i}=$ corresponding value of the cyclical component.
$I_{i}=$ corresponding value of the irreutar component.
The additive model assumes that the original measured value of the composite series is the sum of the four components. ${ }^{3}$ That is,

$$
Y_{i}=T_{i}+S_{i}+C_{i}+I_{i}
$$

${ }^{1}$ Ibid., p. 361.
${ }^{2}$ The original values of the time series--farm, carcass, and retail values, farm-carcass, carcass-retail, and farm-retail price spreads are Given in Appendix A.
${ }^{3}$ Lincoln I. Chao, "Statistics: IEthods and Analyses," p. 361.

111 the four components here are view ch as absolute values. On the other hard, the multiplicative model assumes that the value of the composite scrics is the product of the four components. That is,

$$
Y_{i}=T_{i} X S_{i} \times C_{i} X I_{i}
$$

According to this model, only the trend component is viewed as an absolute value; the other three comments are expressed as percentrazes. S_{i} is a percent of $T_{i} ; C_{i}$ is a percent of the $T_{i} X S_{i}$ product: ard I_{i} is a percent of the $T_{i} X S_{i} X C_{i}$ product.
"Generally, the multiplicative model has been considered the standard conventional model for analysis of time series." ${ }^{2}$ for this reason, the multiplicative model was used for the decomposition of the beef price spread and value time series.

Before discussing the decomposition procedures, it nay be worthwhile first to point out some inherent liratiations ${ }^{3}$ of the method. The four components are interdependent. An extreacly unusual seasonal variation for instance, nay precipitate or at least acceravate, the cyclical development; conversely, a cyclical fluctuation may greatly influence the seasonal variation. likewise, a severe cyclical fluctuation may strongly affect the secular trend, and irregular movements may substantially alter any or all of the other components. Thus, the decomposition of the tire series into separate components is by no means a complete accurate account of the relationship among thea.

Isolating: the Secular Trends

Each price spread and value series was initially plotted on a graph
$I_{\text {bid. }}$
${ }^{2}$ Ibid.
$3_{\text {Ibid., np. }}$ 362~363.
payer to determine winch type of trend model-mstraight line or curro-moula nest fit tine data. Visual inspection of the plotted lines indreater tint in cesh case, the average change in cents per retail pound vas not constant but varied from period to period. For this phenomenon, a tromd aodel with a curve would fit the data better. Accordincly, a Least-Squares second degree parabolic trend model ${ }^{l}$ vas used to derive the irend in each case. ${ }^{2}$ The formula used vas:

$$
T_{i}=a+b x_{i}+c x_{i}^{2}
$$

where

$i=a s$ defined above

$T_{i}=$ computed value of the secular trend component in current cents for a time series in the 1 th month.
$x_{i}=$ time-centered position of the i th month counted fron the median month of the time series. The median nonth used was ITovember 1964. Positions of months before llovember 1964 carried negative signs. The x_{i} position for llovenber 1964 vas 0 . Positions of months thereafter carried positive signs.

$$
a=\frac{\sum_{i=1}^{n} Y_{i}-c \sum_{i=1}^{n} x_{i}^{2}}{n}
$$

$I_{\text {Ibid. }}$, pp. 363-370.
${ }^{2}$ All computations in the excrcise of decomposing the time series and the drawing of craphs in the subsequent text were perormed by computer, with procraming help from staif in the Department of Economics, Kansas State University.

$$
\begin{aligned}
& b=\frac{\sum_{i=1}^{n} x_{i} Y_{i}}{n} \\
& c=\frac{n x_{i}^{2}}{n \sum_{i=1}^{n} x_{i}^{2} Y_{i}-\sum_{i=1}^{n} x_{i}^{2} \sum_{i=1}^{n} Y_{i}} \\
& n \sum_{i=1}^{n} x_{i}^{4}-\left(\sum_{i=1}^{n} x_{i}^{2}\right)^{2}
\end{aligned}
$$

and where

$$
\begin{aligned}
\sum_{i=1}^{n}= & \text { sum of values from number } 1 \text { to } n, \text { where } n \text { has been indicated } \\
& \text { above as } 261 . \\
Y_{i}= & \text { As defined above. }
\end{aligned}
$$

a is the Y intercept, wile b and c are related to the slope and the rate of change of the curve respectively. The T_{i} and Y_{i} values were charted on care graph. The results obtained and analysis thereof are given in Chapter III.

Isolating: the Seasonal Variations

In order to isolate the seasonal component, seasonal indices were calculated. Seasonal indices are percentage measures of seasonal variations In the behavior of any variable. ${ }^{1}$ The Rationto-iovins-Averace method as discussed by lieyers ${ }^{2}$ vas employed to derive the seasonal indices for each

$$
\text { I }{ }_{\text {bid. }} \text { p. } 371 .
$$

2 Cecil H. Meyers, "Elementary Business and Economic Statistics,"
pp. 497-502.
time series. This method has chosen for reasons statca by Shishan: ${ }^{1}$
(1) It has been thoroughly tested in the past and has proved satisfactary for a laree variety of econoaic series.
(2) It permits checking and analysis at each of the nany starces in the seasonal adjustment process.
(3) It has been almost universally accepted by economists and business analysts, who are the chief users of seasonally adjusted data. The steps ${ }^{2}$ followed in computine seasonal indices for each time series were as Iollows:
(1) A 13 -month centered moving average yas calculated for the data. Construction of the movinf average inherently caused a loss of 6 nonths of data at each end of the time series.
(2) The correspondine original Y_{i} value uas divided by the novine average to obtain a ratio. This, then, is the ratio of the original Y_{i} value to the tyoical value for that month as represented by the moving average--hence the name of the nethod. Subsequentily, the ratio vas multiplicd by 100 for represertation in the usual seasonal indices form.
(3) These indices were then arranged in tabular form by month and year.
(4) The indices were then arrayed by month-othat is, ranked from low to high-and the median value was selected as the "typical" seasonal value for that particular month.

[^3](5) The final step in construeting the scesonal indices pas to deternine whether the sum of 12 indices vas l,200.0. Theoretically, the 12 seasonal indices should average to 1.00 (sm to 1200). However, because the median value (an averaje of position) vas used rather than the mean (an average of calculation), in each case, the 12 indices did not total exactly 1,200. Accordingly, an adjustment to the typical nedian values obtained in step 4 above was necessary in order to bring the sum of 12 indices in each case to exactly 1,200. To accomplish this, the 12 typical (unadjusted) mediar values were surmed up. Then l,200 vas divided by the sum, to obtain the adjustment factor. Each unadjusted median for a month was then multiplied by this edjustment factor, to obtain the seasonal index (S_{i}) for that month. The seasonal indices for each time series were then graphed by month.

The results obtained and analysis thereof are presented in Chapter IV.

Isolating the Jyclical Pluctuations ${ }^{1}$

In the multiplicative time series model $Y_{i}=T_{i} X S_{i} X C_{i} X I_{i}$, the T_{i} and S_{i} values were obtained as has been described above. The first step in isolating the cyclical component was, therefore, to eliminate the $T_{i} X X_{i}$ product from the original Y_{i} series, leaving the $C_{i} X I_{i}$ combination. This was achieved by the following division:

$$
\frac{T_{i} \times S_{i} X C_{i} X I_{i}}{T_{i} \times S_{i}}=c_{i} X I_{i}
$$

where all terms have been defined above. The second step was to get rid of the irregular component I_{i} from the combination $C_{i} X I_{i}$ leaving the cyclical

[^4]component C_{i}. This wes accomplished by a 9 month rovine averace actiou, whereby the imesular component vas canceled nut in the process or averajirf. Thus, the 9-month movine averaces were recorded as the cyclical percentages for the cyolical componet. These were rraphed oy month and ycar, ard tine results and analysis are presented in Chapter V.

Isolating the Irrerular Iovements

The irregular component was isolated by dividing the cyclical percentages obtained in the foregoing section into the $C_{i} X I_{i}$ combination as follows:

$$
I_{i}=\frac{c_{i} X I_{i}}{C_{i}}
$$

where all terms are as defined above. The I_{i} values so obtained were the irregular component percentages. Results and analusis are presented in Chapter VI.

Iead-Iac Relationshin Between Live Animal and Iretail BeeI Prices

As was stated in the problen statenent, beef farmers and consurners often get uneasy when short-term price changes at the farm level (especially declining farm prices) are not imediately followed by similar changes in beef prices at the retail level. A knowledge of lead-lag relationship between live animal and retail beef prices is required to comprehend this problem.

Farm and carcass price (hence value) changes usually occur during the same week. ${ }^{2}$ However, a period of time elapses before retail prices respond

$I_{\text {bid. }}$

ZU.S., Department of Asriculture, Dconomic Research Service, Facts on - Pamn-Retail Price Snreads for Beef and Porls, ERS 597 ("'ashinoton, D.C.: Governaent Printing Oifice, February 1975), 1. 30.
to the price changes at the farm and wholesale levels. Part of tiois 1%. $:$ retail price may be explained by the fact that time elapses betuer one tixu when a farmer sells an animal and the eventual sale of neat fro: tre anima
 the marketine system may differ from the time nomally recuired for a ciande in prices at one market level to be reflected at another.

One objective of this study was to determine an averaje lenjtin of the lag between chanfes in live animal and beef retail prices for periods of advancing and declining live animal prices since January 1954, and to test a common hypothesis that beef retailers respond more readily to increasinu than declining live animal prices. In laf teminology, this kyothesis is tantamount to saying that the lag between changes in live aniral and retail prices is less for rising than for falling live aniral prices. Or, in other words, beef retailers react quickly by raising their prices when cattle prices are rising but hesitate to lower their prices when cattic prices start falling.

In order to achieve the results desired, a definition of a period of increasirg or decreasing live animal (cattle) prices was required. Since such a standard definition was not found in the literature reviewed, an arbitrary definition was made up as follows: A period of increasing or decreasing live animal nrices is one in which the general continuous trend in live animal prices in the relevant direction is at least 4 months. Data used were the monthly retail value time series and monthly averaze $0 \ldots$ ana Choice 900-1100 pound slaughter steer prices, from January 1954 to Deceraber 1974, obtained in previously cited USDA references.

Using the above definition and data, the following steps were followed:
(1) Botil live steer prices and retail values vicre ciartiou on the an graph by montin and year.
(2) Periods of increasine and decreasine live animai : =iccs :.t: marked off on the steer price line.
 recorded in a table:
(i) Beginnine and ending monthes and prices, anc Litation of the period, for the steer prices.
(ii) Beginning and ending las and prices, and cumtion of the period, for the retail prices.
(4) Averace duration, average beginning and ondine trices, and average percentage change in price for steer prices during total feriocis of increasinr prices, and also of decreasing prices, vere calculatcd.
(5) Averace duration, average becinnine and endini laj and arice, nod average percentaze change in price, for retail values durin total periods of jncreasing prices, as well. as of decreasing prices, were calculated.

The results and discussion thereof are presented in chapter VII.

CIIAPTLR III

SDCUIAR TRNTDS IN BEEF PRICE SPREADS
 VITH PROJECTIONS TO 1980

Results of isolatinc the secular trend comoneat fro: beet soread End beef value tine series are swruarlzed in Table 2 ani and 3 belom. The major purpose of isolating the secular trer. $\mathrm{c}: \mathrm{a}$. : in each series was to deterine the averaje change in tine m-in:: of time, and also give the direction and picture of chanze $\leq n \because:$ over the entire period being studied i.e. from January 195% to $: \quad Q_{0}$
 could be made.
 trend nodel fitted to the orisinal data in each series are eive\% w:of b: appropriate price spread and beef value sections below. riscse cabia:ca
 pound ${ }^{l}$ per montin. Table 2 gives the computed trend values per ax.:\% $0=$ cach variable, and Figures 2 and 3 provide the dircction and gatuma cixan in each variable over the entire period. It nust be pointed cut $0: 3 \%$: reference to Table 2, the farm-carcass and carcass-retail price 5reod trend values do not necessarily add up to the correspondinj $P \Omega=-50.2!1$ price spread trend values. The explanation is that the iar:-re:a!l 刀5icc spread trend values were not derived from the two price sereads bis ixom

[^5]

Year	Vouta	？st：Value		Catas1 Patue			Hit：－－2ict： 1^{3}
1954	Jawney	49.72	60． 10	75.0 \％	9．24	15.10	24.43
	Pçrasy	49.61	oc： 0	75．5：	9.19	1：3．12	24．40
	Harcia	49.50	56.30	75.75	9.14	15．13	24.37
	Ap：al	49.39	62.10	75.23	9.10	23.15	24.54
	day	49.23	59．90	$75 .: 2$	9.05	15.17	24．32
	Juno	49.18	59.71	74． 33	9.00	15.19	24.29
	July	19.05	55.52	$7 \dagger . \%$	8.95	15.21	24.26
	Aurust Sejteciber		59.54 59.15	74.63	8.91	$\underline{15.24}$	24.24
	Sejtelibe： Ocioter	43.38 43.73	59.15 50.97	74．27	8.87	25.26	24.22
	Oc inter	48.69	50.97 56.30	74.83 74.22	8.32 8.70	15.23 15.30	24.19
	December	43.50	50.62	73.87	8.74	15．33	24.15
1955	Jamuary	48.51	56.45	73.83	8.69	25.35	24.13
	February	48．12	58.28	73.65	3.65	15.38	24．11
	Narch	48.33	55.11	73．5：	3.61	15.40	24.10
	April	48.25	57.95 57.79	$73 . \therefore 2$	\＆． 57	15.43	24.04
	Mey June	48.17 48.09	57.79 57.63	73.27	8.52	15.46	24.06
	June July	48.09 40.01	57.63 57.47	73.21 73.01	8.48 0.44	15.49 25.51	24.05 24.04
	Aucust	47.93	57.32	72.63	0.44 8.40	25.51 15.54	24.04 24.04
	Septerber	47.86	57.17	72.73	8.36	15.57	24.01
	October	47.79	57.03	72.65	8.32	15．60	24．00
	Novertor	47.71	56.38	72.54	8.28	15.63	23.99
	Decezbar	47．0́5	56.74	72.43	3． 24	$15.50{ }^{\text {a }}$	23．98
1956	Janugry	47.58	56.60	72． 32	8.20	15.70	
	Fobruary	47.52	56.47	72.22	8.17	15.73	23.98 23.97
	April	47.45 47.39	56.33	72.92	8.13	15.76	23.97
	Hav	47.39 47.34	56.20 56.07	72.62	8.09	15.79	23.913
	June	47.28	55.95	71．84	8.05 8.02	15.83 15.86	23.96
	July	47.23	55.83	71.75	7.98	15.86 15.90	23.96 23.95
	Aucust	47.17	55.71	71.6 ？	7.95	15.94	23.95
	Sentegber	47.12	55.59	71.57	7.91	15.97	23.75
	Noveniber	47.08	55.48	71.52	7.88	16.01	23.96
	Deceraber	40.99	55.37 55.26	71.46	7.84	16.05	23.85
2957							
	Joruary	46.94	55.16	71.31	7.77	15.12	
	Feuruary	46.90	55.05	71.85	7.74	16．16	23.97
	Hiarch April	46.81 46.83	54.96	71.13	7.71	16.20	23.98
	${ }_{\text {April }}$	46.83 46.80	54.36	71.25	7.68	16.24	23.94
	June	46.76	54.76	71.63	7.64	16.29	23.99
	Jusy	46.73	54.59	71.63 70.69	7.61	16，33	24.00
	Aucast	46．${ }^{\circ}$	54.50	70.59	7.55	16.41	24.01
	Soitcmior	45．ća	54.42	70.59	7.52	16.45	24．03
	Oetober	46.65	54.34	70.57	7.49	16.50	24.05
	Moyenber	46.63	34.26	$70.8:$	7.46	16.55	24.07
	December	46.61	34.19	$10.8:$	7.43	16.53	24.00
1358	Jankarj	46.59	54.12	70．72	7.40	26.64	24.10
	Felrury	46.50	54.25	70.75	7.37	16.69	24.12
	March April	46.56 40.55	53.38	75.74	7.34	16.73	24.13
	U．ay	40.58	22．：2	70.78	7.32	16.13	24.15
	Jurie	46.53		70.72 70.72	7.29	16.83	24.17
	July	45.53	53.15	70.75	7.24	16.93	24． 20
	Auruat	45． 52	53.59	75.75	7.21	16.93	24．＜2
	Soptraber	45.52	53.65	70．72	7.13	16.03	24.27
	October	45.5	䉼54	70.7	$\% .16$	2\％．00	（\％．ć）
	Novester	46.5	53．${ }^{5}$	70.72	$\% .13$	17.13	24．82
	Decerier	46．53	53.52	$76 . \%$	7.11	17.19	24．85
1959	Jonutiry	45.53	33.40	70.75	7.09	17.24	24.83
	Felrunry	46． 54	53． 24	10.77	$\%$ \％，0r，	17.30	84.819
	harsil	46． 45	35．41	10.7	$\% .04$	17.35	84．4．1
	April	15．${ }^{2}$	\％jos	76．uck	7.182	1\％．80	24.17
	Junts	4is．js		＇ricts，	（2．J）	17．40	＂1．${ }^{\text {\％}}$
	July	45．．1．：	1\％，	\％．\％	\％．\％	17.11 17.17	2\％．$\because 3$
	A以7apt	46．1．3	「3．ご	70．3＇	「．0」	17.65	＜1．1，
	Siry wrober	S1，in，	？ 2.20	11.6	C．J1	17．6．	＜4．1．8，
	Coctober Puve：ticer	41．．＇＇3	\％号＇	\％1．U：	（2．1：＇）	1\％．8i	\％1．3；
	Huve：licr	（1．．${ }^{(1)}$	－	\％：03）	1．9．＇	1\％8！	2，
	brectuener	\＆ioils	23．6）	7．1\％	6．13）	1\％．17	i＇r．${ }^{\prime \prime}$

Yenr	Ront：	Pas：a value	Cusaso Talue	1606：61 Matue		arvase－！c．ab ${ }^{\text {a }}$	

1950	Joralary	（i）．is	33.24	\％．20	－3． 33		
	Fcoruary	io．i）	53．ai	i．．．j	－．：31	1．0．j）	2
	Harun	$\therefore 0.03$	：3．2．	21．35	8．19	12．C5	－4．
	April	\％iocu	53．${ }^{2}$	71． 39	6．il	10.12	\％2．0
	ツ®゙	4.90	53．23）	71．${ }^{\text {c }}$	6.15		
	June	46．94	53.25	72.54	6.74	20． 64	－6． 21
	July	45.93	5\％． 23	71.61	－． 72	10．\％	25.01
	Ausust		\＄3．＜9	71．${ }^{\text {¢ }}$	6． 10	10.37	25.6
	Septembe：	¢i．07	53.31	71.73	6.69	15.44	2c．ios
	Oetiocer	47.12	23.33	71.80	0．07	13.50	25.3
	Hoveider	41.17	53.36	71.95	6．co	15.5	25．80
	December	47.12	53.30	72.05	6.04	18.69	25.51
1961	Jenuary	47．27	53.41	72.15	0．63	13.70	ลิ¢． 30
	Yebruery	47.33	53.14	72.25	6.61	18.77	25.01
	Marct．	＋7．39	53.43	72．35	5．j0	18.24	25.17
		47.45	53.52	72.46	6.59	16.91	25.82
	Lay	\＄7．51	53.56	72.57	6.57	18.98	25．\％
	sune	47.57	53.60	72.68	6.56	19.05	25.04
	July	47．6\％	53.65	72.50	6.55	19.12	25.70
	Ausust	17.71	53.70	72.52	6.54	19.19	25.75
	Septezber	17.73	53.75	73.65	6.53	19.27	25.82
	October	47.65	53.00	73.18	6.52	19.34	25.08
	Noverser	47.92	53.36	73.31	6.51	15.41	25.98
	December	43.00	53.92	73.44	6.50	19.49	86.00
1962	January	43.08	53.98	73.53	6.49	19．0\％	26.07
	Februais	45.16	54.05	73.72	6.40	19.64	25.13
	Y，arch	4． 24	54.12	73.87	5.47	19.72	26.20
	April	43.32	54.19	74.02	6.46	19.79	26.27
	${ }^{\text {Lay }}$	48.41	54.26	74.17	6．45	19.87	25.34
	June	48.50	54.34	74.32	6.44	19.95	26.12
	July	＋3．59	54.42	74.43	6.44	2 c .03	26.18
	Alujust	29．68	54.50	74.64	6.43	20.11	26.55
	Septercer	43.77	54.59	74．32	6.42	20.19	25.62
	Ootober	43.87	54.68	74.98	6.42	20.27	20.09
	Hoverber	¢3．97	54.77	75.15	0． 61	20.35	26.71
	Decesior：	49.07	54.86	75.32	5.41	2 C .43	25.84
1963	Jamuary	－9．17	54.96	75.50	6.40	20.51	26.92
	February	－9．27	55.06	75.69	6.40	20.59	27.00
	March	19．33	55.16	75．a7	6.39	20.68	27． C
	april	49.49	55．26	75.06	5.39	20.76	27.15
	H2	49.60	35．37	76.25	6.38	20.85	27.26
	June	49.71	55.48	76.45	6.30	20.93	27.32
	July	49.82	55.60	76.65	6.38	21.02	27.40
	Aucuet	43.94	55.71	76.35	6.38	21.10	27.43
	Septeeber	50.06	55.23	77.00	6.30	21.19	27.57
	October	50.38	55.95	77.27	6.37	21.28	27.65
	Rovemiber	50.30	56.08	77.43	6.37	22.37	27.74
	December	5 C .42	56.21	77.70	6.37	21.46	27.83
2964	Jamuary	50.55	56.34	77.92	6.37	21.54	27.92
	February	50.68	56.47	78.14	6.37	21.63	28.61
	March	50.80	56.61	78.37	6.37	21.73	20．：2
	April	52.94	56.74	73.62	6.23	22.32	20．23
	Stay	51.07	56.89	78.63	6.35	21.91	2¢5．＜
	June	52.21	57.03	79.07	6． $3 \cdot 3$	za．cu	23．33
	July	51.34	57.8	79．31	6.23	22.09	－3．47
	Aujust	51.18	57.33	79．3\％，	6.3 3	22．：3	20．47
	Septexber	51.63	57.48	79．50	6．23	くで匈	
	October	¢． 77	57.63	80.65	6.39	くで．\％	233．${ }^{\text {che }}$
	Noverber	52.92	57.79	\％0． 30	5.29	22．4？	\％ 2 ¢．E5
	Deceriber	82．65	57．95	80.56	5.40	8＜．21	29．95
2965	Jenuary	$52 .<1$	环．12	80.82	6.40	22.60	¢＇9．\％
	Pebruary	5\％ 20%	9\％．as	42，03	6.11	\％．it	＜1．0：
	March	52． \％$^{\text {\％}}$	20．4．5	61．35	6.41	2く．\％	23．＜
	Apral	\％ 2×3	\％$\%$	81．6\％	6.42	＜＜．入	－）， 27
	Raj	ご．03	\％2：0	\％！	5.69	2\％．0	と＇J．${ }^{\text {¢ }}$
	June	2．29		Ė．${ }^{\text {\％}}$	6．45	¢ \because ．．．	19\％\％
	Juig	为，	\％\％． 1.5	－20．15	6． 1.0	23.24.	－
	Auriuct	＇3．0．	\％${ }^{2}$	12\％．1\％	世．\％）	E\％\％	29．？
	Seftenber	¢，¢！		日号\％	6.4.	\％ 5 ．16	8 \％，$\%$
	Octoter	\％．．35	ジ．\％	$13 \% \%$	\％， 6 \％	29．80	；
	noveriber	\ldots ．	＇s．נ1	His．t！	$6 . .11$	－\therefore	\％．．．．
	Desmaber	\％\％\％	\％，\％ 0	13．j！	u．4s	－3．：9	\％＇se：

Tanlar: \therefore - - -

 than frou the beef valuca.

Figure 2. Secular trends in farm, carcass, and

 and farm-reiail price spreads fur choice arace Ueef, U.E., 1954 - Scptaber 2975.
its own model. And since the models were obviously not periect fits to the orisinal data, the values they yielded in fable 2 do not add up or subtract perfectly. For the same reasors, the subtraction of say, a farm value frow a correspondins retail value may not result in a value equal to the formretail price soread trend value in Table 2, nor does the subtraction of a fam value frow a corresponding carcass value necessarily yield a ficure cqual to the corresponding farm-carcass price spread trend value.

Secular Trends in Beef Values

The results of fitting the Least-Squares second degree paracolic
trend model to the beef values are as follows:
Fam value:

$$
T_{i}=\begin{aligned}
& 51.90830+0.14677 x_{1}+0.00100 x_{i}^{2} \\
& (0.74742)\left(0.0066 I^{2}\right)\left(0.00010^{i}\right)
\end{aligned} \quad R^{2}=0.6952^{a}
$$

where $i=$ position of a month from 1 to $n=261$ the total number of months in the data used. $T_{i}=$ computed value of the secular trend component for the i th month. $x_{i}=$ time-centcred position of the i th month counted from the nedian month of the time series.

Carcass value:

$$
T_{i}=\frac{57.78462}{(0.62646)}+\underset{\left(0.15951 x_{i}\right.}{\left(0.00554^{i}\right)}+\underset{\left(0.00008^{i}\right)}{0.00138 x^{2}} \quad R^{2}=0.8118
$$

where i, T_{i} and X_{i} are as delined above.
$\mathrm{a}_{\mathrm{R}}{ }^{2}$ is the square of the multiple correletion coefficient. It neasures the proportion of variation in the dependent variable (T) explained by the independent variables $\left(x\right.$ and $\left.x^{2}\right)$. The fisures in parentheses in this equation and in subsecuent equations are standard errors of the paremetric cstimates innediately above them; the sualler the standard error, the creater the precision oi the estimate.

Jetail valuc:

$$
T_{i}=\frac{80.23835}{(0.69244)}+0.25532 \pi i+\left(0.00613^{i}\right)+\left(0.00160 x_{i}^{2} \quad \lambda^{2}=0.0377\right.
$$

where i, T_{i}, aid x_{i} are as cerined above. By the t-ratio test, naranetric estinates in ell of and riouc value sccular trend equations are sianificantly different fon: 1 percent level of siçificance. Thus, the slove and cumentue of : trendline (Eiven by the coefficients of x_{i} and $x_{i}{ }^{2}$ in eac: conatio: are statistically sienificant. Nhis indicates tiat by ircor om: and $c x_{i}{ }^{2}$ in the Icast-Squares Iodel (see Chapter II), the vesibilal _ squares vas significantly reduced, improving the quality oifit $0:=$ secular trend equations.

The paranctric estinates in the trend equation for recall insirn ace greater than those for the carcass value equation. This is an fatcos. that between any two adjacent months, retail value chanced by woo eceto : fan carcass value. Similarly, carcass value chanced by nore cents than ant value betircen any two adjacent ronths.

As said before, the computed trend values of the above focicits aro shorm in Table 2 and in Fisure 2 above. It can be seen intigure $2: 3 \%$: n fitted trend lines over-estimated and underestinated the orizinal is: in several periods. But this feature is inherent in the process $0: 8.8: \%$ n line to any obscrved data of this nature. The trend lines sio: trin: : o direction and picture of chance in each trend vas definitely whin and rather concave in apoearance to the origin. This concavity sixios.a : 3:
$I_{\text {The t-ratio used was the ratio of an estinate to its sispzan eron: }}$ Its distribution provides a basis for testinz whether a pam:as:-: ettan a in a rezression equation is sicnificantly dirferent froa a Jicsilict value, such as zero in the above cases.
the trends in values vere increasing at an increasing muc, i.e. averace change in cents for each value betwecn two adjacc:at moasi: than that for the previous ronti interval.

Secular Trends in Beef Price Snread

The results of fittinf the Least-Squares second de ron -amblon: model to the beef price spreads are as follows:

Farm-carcass price spread:

$$
T_{i}=\begin{aligned}
& 6.39414+0.00414 x \\
&(0.11874)\left(0.00105^{1}\right)+0.00023 x^{2} \\
&\left(0.00002^{i}\right)
\end{aligned} \quad R^{2}=0.4716
$$

where i, T_{i}, and x_{i} are as defined above.
Carcass-retail price spread:

$$
T_{i}=\underset{(0.28488)}{22.46735+}+\left(0.09571 x_{i}+0.00030 x^{2}{ }^{2}\right) \quad \pi^{2}=0.0537
$$

where i, T_{i}, and x_{i} are as defined above.
Farm-retail price spread:

$$
T_{i}=\underset{(0.39309)}{28.85361}+\underset{\left(0.00348^{i}\right)}{0.09895 x_{i}}+\underset{\left(0.00005^{i}\right)}{0.00049 x^{2}} \quad R^{2}=0.7770
$$

where i, T_{i}, and x_{i} are as defined above.
By the t-ratio tesi, parametric estimates in all of tre atoro $5=150$ spread secular trend equations are significantly different iro: zes n: : : c 1 percent level of sicnificance. As was stated above for the bece raices,
 are statistically significant.
 are higher than those in the carcass-retail price spread eminton. Th. means that between any two adjacent months, farm-retail price sorciat cisect by a lareer absolute amount than did the carcass-retall sarcad. :-icemed,

price sipread betwecn any two aujacent ronths.
Price surced trend values ecmeretod by the above rouels are given in Taole 2 and Ficures 2, and 3 above. In Rigure 2, differences betircen retail, carcass and fari values are shown as carcass-rotail, and farm-carcass price spreads. Mase tio edd up to farm-retail vmice spread. Facin of tinese sureads las frayhed in Ficure j es cents por retail pound for that spread. the base or each spread in rifure 3 is zero (Ior instance, the carcass-rotail spread does not start at the farm-carcass line but at the oricin). The farm-retail aid carcassmetail trends were definitely upward and increased at an increasino rate as shom by thein clearly cefined concave ampearance to the origin. Form ever, the farm-aarcass price spread trend was generally downiard, until late 1950's when it turned contly unverd, and vas also increasing at an increasing rate in the 1970^{\prime} s uil to the eno of the study period.

Pactors benind tine Seculam nrends in Beci Mice Sireadis and Values

In the process of definine beef price sareads earlier in this tert, it lias stated that the price simeads represent costs and profits or marineting beef. This is illustrated by Mable 3 below, in wich the major functions in becî narketinc chennel are listed by individual cost itens per rejail pound in 1973. It can be expcoted that trends in price syreads, therefore, will reflect lonj term chences in these marketine costs and profits. Trends in spreaùs are also affected by the addition of new meriretinf services and sus tained chances in demend for services relative to supylies of these semrices. ${ }^{1}$

Figures 2 and 3 above indicate that trons in ocef values wore
Gencrally in the same direction as those for the spreads. In the lons run, a price at a bicher marinet level rose or Pell faster than a price at a lowen
 leat Industry, (ivew York: The !acliilan Comany, I9úr), p. 593.

TABLE J.-Components of farm-retail price sprcad per pound at retail for U. S . choice crade becf, 1973

Costs and Profit	Farm Value	Assemoly of Live animal	Processing	Wholesaling	Retailing	Retail Value
Iabor	--	--	1.5	-	15.9	--
Iackacing	--	--	0.2	-	2.3	--
Mransvortation	-	--	0.6	$1.1{ }^{\text {a }}$	--	--
Busincss taxes	-	--	0.1	--	1.0	--
Depreciation	--	--	0.3	--	0.5	--
Rent	--	--	0.2	--	0.7	-
Pepairs	--	-	0.2	--	0.3	--
Advertising	--	--	0.1	--	2.1	--
Interest	--	--	0.3 b	-	0.2	--
Energy	-	--	$0.2{ }^{\text {b }}$	--	0.6	--
Other	--	--	1.6	--	2.5	--
Proij.t	--	-	0.5	-	1.7	\cdots
Unallocated	--	-	--	8. 9	--	-
Total	89.9	1. 5	5.3	10.0	23.3	235.5

${ }^{a}$ Intercity.
$b_{\text {Includes }}$ all enersy and vater.

level, such that risine prices (hence values) were accompanied by rising sipreads and vice versa.

Costs of rariceting dia not appear to have chanced very much in the 1954-1962 period. However, since 1953, they have tended to generally increase at an increasing rate as reflected oy the rate or chance in sureads discussed earlier in the teant.

Farm-retail price spread:
As has been stated above, the trend in farm-retail price spread has been uprard since 1954, and especially so since 1963. The stroni uniand trend since 1963 was due to a number of factors. Stron irfiationary conditions in the econony brought about rapid increases in marieting costs of meat packing and processing (Table 4 below ${ }^{1}$. Of nost importance ins the increases in labor cost, wich account for over 50 percent of tion costu in the spread. Earnings of employees for meat packine ard processler; rose by 84 percent. Prices of supplies and services bouzht by marioctin: ©i上is were also up sharply. Containers and packarine naterials rose 59 percen:; fuel, power and light more than doubled; rent, telephone, canidrif crit oficr services rose 82 percent. Shipping and delivery costs contirued to 2rarcanc markedly. Rail freight rates for dressed meats declined frou $1953: 112$ 2 257 ; but since then they have also been increasing ranidly.

Apart fron rapidly risins costs of marietine, unvard trenda in :arm
retail price spread accorpanied upvard trends in retail mrices rable $\quad .$. turn, accompanied upraxd trends in per capita beef consumintion =eilec:to. strone consumer derand boosted by rising consuner incozes (2 able 5 va:at. Conswer disposable income per capita more tran doubled with scarly
 and Mransmortation sjituation, :TTS-197 (iashiñton, D.C.: Sover........ Printinc Office, liay 1975), np. 16-19.

TABIF 4.-Farn-retail price spread and selected marietinj costs, for U.S. choice Erade beef, $1963-74$

Year	Parm-retail price spread	Hourly Larriñs		
		Meat pacling	$\begin{gathered} \text { İeat } \\ \text { processin } \end{gathered}$	$\begin{aligned} & \text { Eood } \\ & \text { retoilinu } \end{aligned}$
	cents	collars	coilars	Collers
1963	30.1	2.82	2.64	1.90
1964	30.3	2.91	2.72	1.93
1965	28.3	2.99	7.78	2.00
1966	30.1	3.09	2.88	2.13
1967	29.6	3.24	3.03	2.23
1958	29.9	3.45	3.22	2.33
1969	34.0	3.66	3.45	2.54
1970	37.1	3.98	3.65	2.70
1971	36.5	4.20	3.93	2.90
1972	41.4	4.47	4.24	3.09
1973	45.6	4.68	4.45	3.26
1974	52.7	5.15	4.91	3.60
	Prices of supplies and services bought by marketing firms		TEil Areigint rater for:	
	Containers, rucl, power Rentals and packaring and light services			$\begin{gathered} \text { Livestock } \begin{array}{c} \text { Iresesd } \\ \text { :scita } \end{array} ~ \end{gathered}$

95	99	86	100	117
96	98	83	99	113
97	99	91	99	104
99	99	95	99	100
100	100	100	100	100
100	99	105	104	103
104	99	113	103	107
108	108	120	119	117
114	121	123	135	132
117	126	138	140	130
128	138	145	185	23.3
151	202	157	-	-

Source: U.S., Departrent of Agriculture, Ecoromic Sescarcis
 10, (Masinicton, D.G.: Governaent Printine Office, :ay 1915), p. 19.

TABIH 5.--Per cavita personal disposable income and per capita Civiliaia beef consu:! p tion, U.s., 1963-74

Year	Per capita personal disposable income	Per capita civilian beef consurntion (carcass weisht)
1963	2,139	Pounds
1964	2,284	94.5
1965	2,436	99.9
1966	2,604	104.2
1967	2,744	106.5
1968	2,945	109.7
1969	3,130	110.8
1970	3,376	113.7
1971	3,603	113.0
1972	3,816	116.0
1973	4,195	109.5
1974		102

Source: U.S., Denartment of Aテriculture, Economic Fesearch Service, "rariceting and Transportation Situation" renorts.
onc-inalf of the increasc occuraing since 197]. The incroase in wise syread Leans tiat increases in retail becf prices rore tinan orsot increases in live anial prices durinz tilis neriod.
l.s was stated in the yroblem staterent, comlaints avout tie ridenin farn-retail price sircad by beef iamers and consumers aline have rocused
 this charce, reat pecirers and rotailers have opten cuoted their after-tar: profits as a vercentase of sales, a fisure milich usually co:es out lower tian if the profits are quoted as a percertace of stocholder's eduity Marnetine fima clain that the costs of providins tine semices demanded by consumers have oscalated with the inflationary pressures in the coono-ng. But farmers too are quick to point out that their costs of production have been subject to the seme pressures. For sure, it is hara to sey which side is right without marine some value judements, and it is not tine vurpose of this study to do so. The followine niay help to emplain the profit position of rarictine fioms durine the period under study.

Thurinç 1954-71 aftcr-tan profits of 15 leadine Iood cinains as a percentafe of stockiolders' equity renced betwcen 10 and 11.5 percent (Table 6). As a percentaje of salcs, these profits varied Irom 1.0 to 1.3 percent tirough nost of the period. Profit rates by botin zeasures fell substantially from 1972 to the end $0: 1974$ and they were well below profit rates for other inaustry broups throuchout the period 1960-7\% accoraing to

TABIw G.--Profits after taxes of retail food chains and food …nuractumurs, U.S., 1954-74

Year	15 leadins food ciains	10 leadiñ meat packers	All food manufacturing	111 :.anificc土uring
		Percent retum on stocknolicss' oruity		
1964	11.5	--	10.1	21.7
1955	11.3	-	10.7	13.1
1966	11.4	7.1	11.3	13.6
1967	10.3	11.5	10.9	21.3
1968	10.3	10.2	10.8	12.2
1969	10.4	8.8	10.9	12.5
1970	10.6	8.7	10.3	9.3
1971	10.1	10.8	11.0	9.7
1972	5.1	9.1	11.2	10.6
1973	8.2	10.6	12.8	12.6
1974	$4.7{ }^{\text {a }}$	12.2 (8 firms)	13.9	1.4 .3
Percert retum on Sales				
1964	1.3	--	2.7	5.2
1965	1.3	--	2.7	5.0
1966	2.3	0.9	2.7	5.6
1967	1.1	1.4	2.6	5.0
1265	1.1	1.2	2.6	5.1
1969	1.1	1.2	2.6	4.3
1970	1.0	0.9	2.5	4.0
1971	0.9	1.3	2.6	4.1
1972	0.5	0.8	2.6	4.3
1973	0.7	1.2	2.6	1.7
1974	0.43	1.4 (8 firms)	2.9	5.5

-Data not available
ancludes extraordinary Inss fron store closines by ti:e firs:re

 Profits of 14 stores, excluding A \& P, amounted to 0.90 čcc:\% © : A. Al sales.

Source: U.S., Department of Agriculture, Economic Exccasin zerrize, llarketinc and mranshortation Gituation, ITS-192, Table 6, (iomis.o. . . : Governaent Printing Ofice, Aūust 1975), p. 12.
a USDA Tasly Iorce renort. ${ }^{1}$ "Only recently have reteilers" profits risea to the levcls they held during the $1960^{\prime} s . "^{2}$

Within the poriod 1964-74, meat packer propits were more unstajle out were somewat hicher relative to sales than those of food retailens. The after-tax profits of 10 leading neat packers as a percenta,je of stocinoliers' equity varied fros 7.1 to 12.2 percent.

As a percentane of sales, averace profits after taies verc about kalf as large for food-manufacturing corvorations as for all manufacturing cornorations during 1954-74. But as a percentase of stocholacrs' enuity, after tarn profits of iood-manufacturine corporations sometines cacecieà the overall averace. Thus, the food nanufacturers' ratio of profits to stoc:holders' equity was fairly close to the avorare for the manifactumine erou: , although their ratio of profits to sales vas about half the aromaje por tie group. The USDA Tas: Force concluded that overall, profits in meat pacialis and food retailing have not been excessive relative to all :anciacturing industries in the country. ${ }^{3}$

Carcass~retail price spread:
Most of the increase in farm-retail price spread as doccribci abore was due to the increase in the carcass-retail portion of it a3 the far:carcass portion renained relatively stable but on the declinine side duriry most of the period (Fisure 3 above). Rapid increases in carcass-retail spread were largely affected by additional services that were prowded inirim the period. "rriming of retail cuts increased wici recuired zore iotor.
$I_{U S D A}$ Task Force, "USDA Task Force Reports on Livestoc:-" can: Bobce Spreads," The ITational Provisioner, September 23, 1974, 2\%. 22;-131.
${ }^{2}$ Ibid.
$3_{\text {Ibid. }}$

The proportion of beef sold in chain stores and laric inaic wincos zwormaricets rose during this period, and self-service has inavociar: $: x=2 \%$, stores. Increased sales per store apparchtive made yocsibio vavorifu cz
 delivery costs to retail stores increased substantially aimin: $\quad \therefore$ es.

Farm-carcass price spread:
As has been indicated above, the trend in farm-carcoss \%rece w, w:
 un on the upward trend in late 1960's. The docline in ti:c $2=36$ apparently due to improvements in eficiency within the :aco: : as:.:...

 a reduction in labor requirements per unit of output. :in:ocisin 3 o: bor:
 to use their facilities nore efficiently. " ${ }^{2}$

Projections and Implications of Trends in 3cce Price inreads to 1900

If the above described trends in beef price spreada con:- -..e : : :
 in Table 7 below. These trend values mere adjusted for visc accuian in:lor. The fifures indicate that by December 1930, farm-carcess, car: insom: and farm-retail price spreads could be 41, 33, and 35 perci.: :rFec:irriy

[^6]

1975	octaber	\％．$=0$	$100 . \%$	141．6：	12.05	i：．ち）	41.
	Hoveber	96.0	100.04	1－2．500	10． 3	4.5	\triangle
	Decciber	96.74	101.33	243．90	16．3：	（．，：$)$	\because
1976	sazury	89.10	105．42	14\％．83	11．¢0	30．19	$5 . .24$
	Pebruary	90.75	106.73	143．${ }^{\text {cos }}$	10.51	4．．73	S．．．
	Larch	91.4	105．03	1：\％．19	10.07	20． 55	4\％．． 3
	April	92.73	107．0j	147.65	10.37	90．is	＊，
	Hay	91.23	106.31	147.60	12．00	＋．：93	．．．
	Јนจะ	91.56	10． 51	1：3．03	10．	¢0．23	3
	Juls	93.0	209.14	129．${ }^{\text {a }}$	11．18	20．17	3.
	August	94.07	109． 35	150.63	10．92	6．6：	\％．
	Septeaber	52.38	109.29	152.43	10.97	42．\％	5.
	Octaber	91.13	107.15	150.43	10．73	\＄3．00	，
	Nove＝ber	91.66	207.02	151．：0	21.07	d． 77	
	Decerber	91.76	107.82	152．71	11.06	d．3\％	8.
1977	Japrary	94.51	112.10	152.59	12.29	40．11	＊2．．．
	February	95.05	123．45	154．84	11.33	く．と． 3	s $1 .: 8$
	March	96.72	122． 38	256.41	10.70	42.59	S．
	April	98.04	123.32	255．50	11.09	46， 8 \％	3\％．9
	Lay	96.51	113.06	156.52	11.76	43.0	， 4.
	Junc	96.79	213.26	257.61	31.63	43.07	3.
	July	99.00	116.06	133.52	2.89	46.41	$\cdots 6$
	Auncat	97.45	126.48	159.73	11.65	43.80	－1．
	Septenber	93.29	116.22	151.62	11.72	46.78	Se． c_{1}
	October	96.34	113.94	159.55	11.18	46.20	\cdots
	Hoveribe：	96.90	113.80	160.32	11．84：	47.12	4， 1
	Decester	96.95	114.64	161.90	11．8：	45.65	Stil
1978	Jacuars	99.91	219.21	161.73	13.14	42.32	
	February	101.42	120.68	164.16	12．120	45．14	－1．．．
	Laren	102.24	119.49	165.82	11.50	4.92	98.0
	April	103.53	i21．01	155.00	11.86	45．21	\％．．＂
	3as	202.02	120.21	165.93	12.57	45.05	＊．t．
	Junc	10 c .32	120.42	267.03	12.45	45.31	$\because \cdot$
	July	104.64	：23． 39	169.04	12．\％	65．78	\cdots
	Ausust	105.13	223.24	169． 33	12.49	45，66	3．
	Septeaber	203.90	123． 55	171.32	12.54	47.00	9：0－
	October	101.54	121．13	169.12	22.27	49.49	6.9
	Soverber	202.42	120.98	169.92	12.66	49.35	6．．＇
	Deceaber	102.47	121.87	171.60	12.07	69.01	＊．．．
1979	Jaruary	105．60	126.71	171.46	14.04	46．3i	x．${ }^{\text {a }}$
	Febramary	107.20	128.27	173.83	12． 96	47.66	4．，${ }^{\text {c }}$
	Narch	100.06	127.01	375．72	12.32	47.68	5：．${ }^{\text {c }}$
	lpril	109.52	123.52	175.91	22.65	67.63	$\cdots:$
	May	107.61	127.76	175.83	13.45	43.21	6．．＇
	June	168.13	127.97	177.03	13.30	47.64	6．．
	July	210.59	131.13	176.64	13.59	$4 \% .12$	8．．．．：
	Aurgust	211.10	131.60	179.4 c	13．36	47.75	\％：
	Septesber	109．79	131.29	191.51	13.41	49.9	16
	October	207． 20	123.71	179.15	13.13	5\％， 97	4． 1
	Rovember	208． 22	123.54	130.61	13.55	52.06	4．4
	Decerber	104.20	129.47	181.77	13.55	5\％．46	6．1．．${ }^{\text {a }}$
1920	Jarcuary	111.53	234.52	181.63	15．03	45.77	
	February	113.27	136.27	154.67	13．81	43．6）	4
	צarcia	214.16	134.92	1es．le	13．10	4\％．68	－．．．？
	April	115.71	235.63	1\％90． 1	13．060	42.8	
	say	113.31	235．70	2ifsoiz	14.3	$5 \% .60$	8.
	Juac	114.23	135.93	lis\％ 18	1：9．6	5\％．65	
	July	116.02	2\％9．23	153．54	14．34	51.51	
－	Aucut	217．：35	130．κ	10.1	14．23	＇c．is	\square
	Sufteaber	213．${ }^{\text {＇3 }}$	1：3．12	13a．0．19	14．34	5.97	
	Octoier	123．\％6	185.023	1i\％）．$\%$	11.34	\％．\％	
	Have：ber	114．00	2er．0is	1）0．	12．093	9，9．71	
	Decenber	114．${ }^{5}$	1\％iors	1 \％．$\%$	2．1＇	＇ix．ss	

above the September 2975 levels, but the relative division of the farmretail spread between the other two spreads muld renain about the same by Dccerber 1980 as wore in Sentember 1975, namcly at ajout 20 pereent famim carcass and 80 percent carcass-retail sread. A considerable slow dow in the rate of inflation in the conory could help hold down costs of marketins services and so slow down the rate of increase in tine spreads. Likerise, a strone cyclical chanse such as a high liquidation of cattle inventory could boost up farm prices and tend to slow dow or curb ircreases in the spreads. These trends have definite irnlications to the cattle producer, meat marleter, and consumer. The producer can expect that his shaxe of the consumer's beef doller is likely to continue dwinding. To trir to correct the situation, as an individual, he can cut dow on his costs of production andor do his own marketing where it is economically feasible to do so. As a group, cattle producers could use some kind of barzainine forur to try to secure better prices during periods of increasine costs since they, like beef narketers, are affected by increasing costs of production. The trends point to the marketer that costs of doinc business are linely to continue risins and he must be avare that the prices he charges must cover these rising costs in the long run for his business to stay solvent. Consumers can expect that the increasing costs will be passed on to them in form of kicher retail nrices. So lone as they continue denandine nore and better marketing services, they must be ready to pay for thein, without feeling that somebody else is excessively benefitting at their expense.

CEMPSIL IV

SZASOMAL VABIAIOMS IH BEEN FRICE SPRIADS

The purpose of isolatine the scasonal comporent was to describe and ciart the intra-yearly patterns in price spreaĩ chances in orucr to facilitate analysis of factors that nay be behind these chances. Rino results of isolatins the seasonal factor are presented in Table 3 and Ficure 4 below. rable 8 gives the computed seasonal indices for the beef price spreads and values, while Fifure 4 shows Eraphed inaices by month for the values and syreads.
rAPIE 8.-Weasonal indices of fart, carcass, and retail valucs and faracarcass, carcass-retail, and far:-retail price ryrceds for choice zrade beef, U.S., 1954-Sjepterber 1975

Ionth	Farm Value	Carcass Value	Retail Value	NarmCarcass	Carcass?etall	FarnRetail

Fercent of annual averaje

January	99.82	101.05	99.19	109.12	93.05	100.26
February	100.87	101.78	100.16	100.11	99.63	101.70
liarch	101.21	100.27	100.68	94.53	93.00	95.56
April	102.11	101.03	100.30	96.86	93.79	97.85
lay	100.00	99.84	99.78	102.13	100.00	93.95
June	99.89	99.51	99.93	100.43	03.40	101.03
July	101.69	101.45	100.07	102.11	101.05	93.22
Aurust	101.69	101.30	100.38	99.75	97.03	97.35
Sentember	100.04	100.55	101.04	99.60	100.93	100.7%
October	97.60	93.03	99.26	96.94	$203.5 j$	102.34
liovenber	97.71	97.46	99.25	99.46	105.33	103.92
December	97.31	97.63	99.75	98.95	101.57	101.20

Scasonal Variations in Beef Values

The amplitude of the scasonal patiern for farm value rose steadily froll January and reached hichest point in April at 2 percent above the arorage index of 100 (fisure 4). It droyped to the average level in liay and June and strensthoned ajain in the sumer ronths of July and Ausust, at nearly 2 percent above averaze, before falline to its lowest level in jucciber at 3 percent belor average.

The carcass value trend started off the year at l percent above averace, and rose to its highest ampitude in February at 2 percent. It staycd above averace until April before dropging to about one-halr percent celow average in June. It strengthened up in surmer nonths, July-Septenber at about 1 percent above averaçe, and dropped off in fall, hittine its lowest in November at 3 percent below averace.

The retail value seasonal pattern started the year at its lovest level of about I percent below averase. It rose to just under l percent above average in l"arch, and dropped back and stayed generally at the averase level from April until July, when it started to rise slowly to its highest anplitude of 1 percent above averare in Septeaber. It fell to just under 1 percent below average from October to Deceaber.

It is evident from the above account and from Fisure 4 above that the seasonal patterns in farm and carcass values not only had same directional change but also their highest and lowest percentage araplitudes were equal and occurred during nearly same months. This nay be interpreted to mean that Ear:l and carcass values (hence prices) responded to same seasonal factors olrultaneously. Although the pattern in retail value had similar directional change as the other tro values, its percentage amplitudes above or below the average were much less tahn those for the other two values. This
is an indication that retail value varied less (vas more stable) seasonally than the other twio values. ${ }^{1}$.

Seasonal Variations in Beei Price Syreads

The seasonal pattern for the farm-carcass price spread startod the year at its highest level of 9 percent above average in January. It then fell rapidly to hit its lowest anplituade at 5 percent below averaje in irarch. It rose in April and stayed above averaçe from ilay to July before declinine to 3 percent below averasc in October.

While the amlitude for the farm-carcass spread was hichest in January, it was lowest for the carcass-retail spread at 5 pereent below average. This shows that carcass value vas very high relative to fara and retail values durine January. It (carcass-retail spread) stayed below average until July when it rose to 1 percent above average. It fell to 2 percent below in Aurust, before rising to its highest level of the year in November at 5 percent above average.

The pattern for farmoretail spread started the year at about the average index of 100. It rose to 2 percent above the average in Feoruary, then fell to its lowest in liarch at 4 percent below averase. It rose to 1 percent above in June, fell back to 2 percent below in Ausuist, then rose to its highest, level of the year in Hovember at 4 percent above the average.

Factors behind the Seasonal Variations

 in Beef Price SpreadsSeasonal variations in beef price spreads are influenced by seasonal variations in beef values (and hence prices). "Seasonal price novenents are a direct reflection of seasonality in marketinss, and to a lesser
${ }^{1}$ Factors or reasons for these phenomena are fiven in the appropriate section below.
deuree, scasonality in demend. "1
As described above and shorm in Fiefure A, Generally the seasonal pattern in farm value was strone in sprine montins (fevmary-April) and ajain in sumer montins (July-Septanber) but weak in fall and vinter montis (October-January). Beef production and marketincs are lowest in Pebruary partly because of the smaller number of maricetins days, and appears to reach a peak in October. ${ }^{2}$ It was also show above that the seasonal varietion in farm and carcass values was greater than in retail value. ${ }^{\text {numis }}$ difference resrits from retail prices changine more slowly than live (and wholesale) prices-a lag which partly results fron the lencth of time required for a change in supply to move from the farm to the retail level. Other factors are also important. For instance, retailers tend to prefer stable prices and will acceyt chanced marcins for a short period before chanfing prices. Retailers also pertially denend on suecials to move larger supplies rather than chance their rezular prices, when increases in supply nay be oi short duration."

Seasonal variations in price spreads were generally inversely related to those in beef values. Farm-carcass tended to decrease when farm and carcass values werc rising and to increase when these values vere declining. This indicatcs that seasonally farm prices rose and fell faster than wholesale beef prices. Sinilarly, carcass-retail price syread decreased when carcass and retail values were increasing and vice versa, demonstrating
${ }^{1}$ John H. IHCCoy, "Livestock and Keat i.arketinc," January 1973, p. 63. ZU.S., Department of Acriculture, Economic Rescarch Service, Frice Soreads for Beef and Porl, Revised Series 1949-59, Hiscellancous Publication lio. 1174, (Washinfton, D.C.: Goverment Printing Oifice, Liay 1970), p. 7 .
${ }^{3}$ Ibid.
that seasonally beef wholesale prices rose and foll faster tinan retail nrices.

Contrary to comen thinking, the larger anglitudes in the seasonal pattern of price spreads in relation to those for beef values (rieure 4) indicate that there vas more seasonal variation in spreads than in values. This may be explained as follows: seasonality in supply and marnetings of cattle and bcef declined over the period, ${ }^{1}$ resultiñ in less variation in farm and wholesale beef prices; on the other hand, very high energy costs in recent years caused more seasonal variations in rarketins costs and hence price spreads. ${ }^{2}$

Change in Scasonal Variations ovor the years

Seasonal variations in price spreads and values have declined over the past tro decades. A corparison of the seasonal amplitudes for the 195475 period obtained by this study avove, with those for the $1947-58$ period in a study by the USDA ${ }^{3}$ verify this statement. The comparison is sumarized in trable 9 belov.
$I_{\text {This point }}$ is explained below, whereby a comparison is made between the seasonality in spreads and values in an earlier period and the period covered by this study.
${ }^{2}$ Other costs may also be a factor, but energy costs have a distinct seasonal pattern e.g., building heatins in winter.
$3_{U . S .}$, Department of Agriculture, Agricultural tarinetincs Semvice, I:arketing Economics Research Division, Seasonal Variation in Farm Food Prices and Price Spreads, liscellaneous Publication Mo. 840 (:iashincton, D.C.: Govemnent Printing Office, January 1961), n. 15, Table 5.

LAity 9.--Socsonal Amplitudes in farm and retail values and farm-retail price spread in the periods 1947-53 and 1954-75

*Source: Computed from reference 3 on the preceding pare.
Farm (and carcass) values respond readily to chances in supplies of choice grade slauminter cattle and consequently to changes in seasonality of choice grade mainetincs. Over the years, expanded feeding operations by farmers and commercial feedlots have tended to transform seasonally concerntrated sunvlies of srass-fed cattle marketings into a more evenly distributed supply of higher grade and heavier cattle. ${ }^{1}$ With more orderly marketings of choice grade cattle throughout the year, fluctuations in the seasonal pattern of farm value (and carcass value) have been reduced. This reduced seasonal variation in farm value has led to more stable retail value and hence more stable farn-retail price spread than in the earlier period. "Another reason for the decline in seasonality may have been the increase in the volume of processeả meat and improved methods of preservation. The conversion of large quantities of fresh meat into less perishable forms and storage of this neat during seasons of peak production tend to stabilize supply and prices of fresh neat. $"^{2}$

Ibid., p. 14.
2 Ibid.

It must be pointed out that the presence of a scasonal pattern in syreads or values does not mean, necessarily, that the smreads or values as observed in the maricet durine any particular yoar vill follo: the charted seasonal pattern. Adiorence to the seasonal pattern deyends on diverience of the relative strensth of forces causing seasonal variations and those causinc other types of novenents from the charted averace. Ifevertileless, a knowledee of past seasonal patterns can scrve as an indication of the likely future seasonal novenents end, theroiore, as a uuide in phanninu irdividual. business production and marketine prozrans. A cattle producer can synchronize his production and marketine procras to take advantaje of certain Iavorable price periods without affecting tine ceneral seasonal pattern for the whole cattle industry. He can do this provided that the gain fron such action more than offsets any resultant increases in costs. Forever, if a laree nu:ber of cattle producers make the same adjustment to a scasonal pattern, they may, as a croup, alter the patterm and thoreiore, fail to achieve the anticipated results.

CilATMR V

GYOIICAI FLUONTJATIOITS Li B BijF

PRICE SPREADS

The cyclical comonents in beer price spread seires were isolated so that the recurrina-up-an-dom noverents in these series that last 2. or more years could be icentified, recorded and explainca. The results of these isolated cuclical factors are nresented in Table 10 and Ficures 5 and 6 below. Table 10 cives the computed montilly cyclical percentases ${ }^{1}$; Pigures 5 and 6 show the chnited crelical percentaces in beef values and price spreads respecti.vely.

Crclical Rluctuations in Beei Values

and tiecir Causes

The cyclical sluctuations in beef values (Nisure 5) Eencrally inversely followed cuclical movements in the numbers of all cattle and calves on U.S. farmis or the cattle cycle (rigure 7 below). A cattle cycle nay be divided into two phases: (1) the uprard or accurrulation phase, and (2) the downard or liquidstion phase. \bar{Z} Thus, cyclical trends in beer values were gencrally do:mmard during the accumulation phases and uphard during the liquidation yhases. In reference to Fisure 7, the 1955-75 period may be divided up into liquidation and accumulation phases as follows:
${ }^{1}$ Cyclical percentaces are percentarcs of the $T_{i} X S_{i}$ nroduct. See Chanter II, p. 22.

2John H. IlcCoy, "Livestock and lieat liaricetine," 1972, p. 54.

Year	\％ontis	Yars Vialue	こa＊osa Value	Hot．ind Value		SNCHEJ－1；C：A2l	
$1.954^{\text {a }}$	2．＇s：	91.12	30.03	6\％．04	33.13	95.37	92.95
	．${ }^{\text {due }}$	91． 30°	50．39	45.35	d）．${ }^{\text {d }}$	93.42	2¢．22
	Julj	95.79	ど，いい	90.59	（7\％03	20.11	8\％． 10
	Autiat	9\％ư	92． 0	41.27	21.01	45.01	97．${ }^{6}$
	sic？te：zber	97.32	9－． 42	91.80	93．05	02.43	80.03
	october	93.35	95．53	92.17	93.12	80.92	14．79
	November	39.37	9：－99	9\％． 20	93．84	\％10．25	83． 70
	Denester	99． 37	90.03	96.51	93.81	77.80	82.73
1955	¿anay	99.89	26.72	92． 37	93.65	77.81	83.12
	Pcbiuny	99.13	90.06	92.73	92.30	30.90	85．43
	Sarch	97.83	95．00	92.55	31.20	93.17	35.36
	April	90.30	93．79	92.11	91.85	E5． 53	87.72
	Nav	94.61	96.39	91.77	95.30	$0 \cdot 6.63$	89.77
	Ju：ce	92.63	32．89	91.45	93． 29	89.32	92.36
	Jury	92.11	91.00	91.33	100.84	91.19	94.71
	Aucust	89.13	89.74	90.70	103.20	94.51	97.26
	Scptewber	87.49	83.63	90.20	104.57	96.33	98.77
	October	35.30	47.18	89.55	106.16	90.17	100.13
	Hovember	84.07	85.93	83.63	106.54	98.36	100.32
	Decenber	83.08	85.17	87.93	106.79	90.34	100.52
1956	January	82.38	84.33	87.51	104．44	99.40	100.62
	Fisbruary	81.63	83.72	87.19	203.51	100.32	100.70
	March	81.43	83.54	86.22	102.29	99.15	99.95
	Apml	83.46	85.32	97.33	102.79	94.67	97．31
	Hay	86.49	88.36	83.49	100． 29	88.94	94.71
	June	39.50	91.19	90.04	103.90	86.25	93.52
	July	92.06	93.76	91.63	110.47	84.77	93.29
	Auguat	93.55	95.40	93.01	112.71	85.37	94.13
	Soptermber	94.20	96.46	34.05	115.89	80.29	95.63
	October	94.16	96.85	94.71	119.59	67.40	97.20
	Noverzber	94.64	97.26	95.02	119.67	87.43	97.61
	Deceraber	95.05	97.72	95.62	$120 . \therefore 9$	80.96	92.43
1957	January	94.29	95.87	96.03	118.42	93.89	201.22
	Pebruary	92.76	95.33	95.97	115．5；	99.02	103.50
	March	92.08	34．58	95.39	113.19	100.52	104.30
	April	92.76	95.15	96.21	113.21	99.91	104.03
	May	94.10	96.15	96.97	121.99	99.52	103.44
	June	95.39	97.46	97.96	110.21	99.34	102．30
	July	93.68	100.02	99.03	110.62	96.02	100.80
	Aucuat	101.19	102.09	200.33	169.15	96.29	100.23
	Septerucr	103.40	104.10	202.09	169.28	96.29	101.07
	October	105.53	105.55	103.62	1C3． 74	$96: 33$	101.97
	Nave＝ber	103.50	$\bigcirc 07.80$	104.93	165.50	95.80	101.45
	Desember	110.65	109.32	106.56	102.45	93.33	101.43
1958	January	112.59	110.91	100.03	161．11	99.72	101.66
	Fetruary	114.42	112.49	209.65	ico． 21	201.46	101.46
	Hareh	115.91	113.74	111.17	93.36	103.20	101.06
	Auril	116.09	115.50	112.35	97.20	103.34	101.67
	Llay	216.23	113.72	113.15	97.51	110.30	102.018
	June	116．66	114.01	113.0 ¢ 9	58.74	112.32	102.93
	July	216.69	114.56	114.22	100.92	113.35	99.95
	Ausust	115.17	114.68	114.43	105.20	114.15	95.34
	Serterier	116.03	114.89	114.54	107.83	113.97	99.15
	October	115.52	114.50	114.61	10\％． 25	114.98	93.61
	Noveriber	115.52 ．	124.76	114.53	110.44	113.85	97.67
	Dece：be：	135.19	215.72	114.55	112.44	111.46	93.11
1953	む̇eruary	117.90	117.39	115.07	114.15	109.34	98.70
	February	114．09	118．37	115.62	115．66	107.79	99.35
	Harch	118． 30	113． 33	125.54	114．3）	100.43	100.51
	Ap＝11	11 li .15	117.34	115.91	122.50	109.70	10\％．71
	R：ay	117.85	117．68	115.02	122．6，3	109.76	205．55
	Jurice	217.10	：17．3＇）	115.70 －	113．61	110.19	icx．rs2
	Suly	216.95	216.92	115.62	11：．15	111.61	101.32
	Aurict	116.01	116.03	113.43	116.60	113.70	109.75
	Sericembar	115.12	115．3＇	$115 .<1$	10\％． 0	115.40	116．ES
	Onberear．	113．9．1	－14．00	114．0＇s	115.17	125．3＇	112.6
	Hove：batr	：13．\％	213．03	114．4\％	110．21	214.96	110．8）
	Deracalier	113．85	214.63	213．93	$11 \% .64$	113．93	110.21

290	January	11\％\％？	114．8\％	113.03	11： 6	112．33	
	Februncj	113．70	11．．0）	1120：3	10.10	1：3．N	10．．．．
	Earsh	12；．cj	1i）． 01	11）．00：	208.5	114．．？	110．22
	Airil	112．51	： $2 \times .+4 y$	122．$\%$	121．15	114.2	111．
	Hay	111．	113．98	112．0	：17．19	11：．23	112.35
	Junc	210．70	112． 24	122.00	112.55	－13． 0	113.34
	July	110．30	$11 v^{20}$	111．59	109．2：	114． 44	123.53
	A_{0}	110.14	110．50	211．50	109．0：	112．03）	i13．47
	Septembe：	109.97	110.27	311.00	109.12	115．${ }^{\circ}$	123．92
	Detober	Lu9．0	10.75	111.37	111.17	115.96	$113.6{ }^{\circ}$
	Noverber	100.08	109.71	211.12	113.52	115.04	12t．c5
	December	107.71	109．30	110．90	11：．33	\＄15．92	125.08
1961	January	$206.69{ }^{\circ}$	！08．60	$210.6)$	214．11	116.57	
	Pcbruary	105.11	107.89	210.17	125．77	117.10	110.26
	Earch	104．13	135.61	109．12	115.84	117.95	115.99
	April	102.74	105.75	103．64	219.07	117.10	127.62
	Iay	101.08	10：． 23	10\％．5．	118.80	118.17	119.43
	June	99.34	103.23	107．？${ }^{\text {a }}$	120.02	11\％．30	118.70
	July	99.51	102.50	106．60	115.30	$\underline{110.13}$	118.03
	August	99.99	102.60	103 27	112.69	116.72	115.95
	September	100.91	103.27	206.16	111.42	114.00	113.69
	Oetober	102.32	104.25	106.09	110.50	111.16	110.46
	Hovember	104．27	105．74	106.50	106.68	108.51	$\text { 1C3. } 58$
	Deceater	206.39	107．46	207．06	107．0\％	106.31	$\text { 10á. } 18$
1962	January	207.62	106.41	107．5\％	105.42	105.52	
	Pebruary	103.16	109.04	107.91	103.66	205.35	10．4．89
	Marcin	108.36	109.33	107．93	104．15	104． 50	10：．22
	April	109.41	110.20	163.03	105.28	102.34	$1 \mathrm{C2.99}$
	Kay	110.73	111.28	108.55	204．32	301.09	101.98
	Junc	112.11	112.30	109.06	103.39	200.17	201.21
	July	113.75	113.74	109.73	101． 52	99.31	100.32
	Augut	214．97	114.66	110.12	100． 56	98.50	109.32 99.14
	September	215.17	114.61	116． 73	99.39	99.94	99.51
	Oetober	114．43	113.69	110.58	98.17	101.36	99.97
	Sovezber	313.24	112.54	109.93	96.30	102.07	102．12
	Deoenber	111.81	111.29	109.40	93.47	103.98	102.33
1963			109.30	108.47	100.68	105.91	
	February	105.01	106.73	107．01	102.57	107.58	105．94
	March	103.55	104．74	105.64	103.48	167．90	105.39
	April	100.72	102.30	104．35	104．72	109.19	100.10
	May	98.09	100.07	103.19	106.10	110．50	103.46
	June	96.57	90.99	101.90	208.67	109.55	109.70
	July	95.85	98.66	101.42	$110.0<$	100.79	109． 70
	August	35.49	93.40	101． 28	110.92	160.92	109.64
	Septeriber	35.11	92.03	100.95	111.26	108.84	105．20
	October	94.36	97.34	100.66	112.59	109.35	109.45
	Hoverber	93.49	9¢． 57	100.13	113.41	109． 54	110.33
	Decerber	91.40	95.05	99.34	116．71	110.93	111.91
2964	January	89.33	33.40	98.33	118.31	111.57	
	February	87.95	32.15	97.35	217.51	121.35	112.31
	Marcin	87．c6	91.31	96.54	116.55	110.23	111.56
	April	27．18	91.37	95.97	116.47	100.33	$1: 0.17$
	May	i8． 25	92.02	95.84	114.24	106.05	107.93
	June	E9．07	92.57	95.05	11\％．18	104.30	106.73
	July	90.37	93.48	36.03	208．73	ic2．53	16.15
	Auguet	91.41	24.14	96．4is	207.48	102．E＇2	164.07
	Seyterber	92.60	34.71	92.75	20\％．60	102．${ }^{\text {cis }}$	168． 43
	October	37.62	95.21	$96.8{ }^{\text {c }}$	101．38	100．心5	160．4．43
	Noverber	34.20	95．61	94.72	：00． 77	39.85	93．75
	Dezerber	34.68	95．35	36.044	95． 35	30．57	92． 79
1965							
	February	9\％．93	96.94	30．13：	97.62	9\％．9\％	98.73
	bierch	36.21	37.27	97.6	37.67	96.67	9¢．73
		9 CL .97	97.53	97.28	7\％． 4		Yis．6＇
	luy	97．13	27.15	97.64	970 35	94．1505	95，4\％
	June	97.97		＇J7\％＇s＇s	$2 \% \cdot 3$	93．6．：	45．ग\％
	July	9\％．血1	うう．＇1	\％\％．15\％	为吅	38.24	¢¢．0ヶ6
	Auzuat	9）${ }^{\text {cosi }}$	10，2il			\％${ }^{\text {\％\％\％}}$	\％ 2.7%
	Celsteruct	2＇A\％，1\％	110．is	＇pioin＇	K．6，	＇11．0＇s	41，\％
	October	＇9\％． 14	1910．03	1）．01；	95.24	9\％．0．1	\％$\%$ er
	Roverier	＇jJss＇	（\％）	1－．e＇	\％\％\％	\％，．：	＇s，．＇s＇，
	Lecerber	＇ 10.51	そう」ど	＇hios＇，	\％ 1 ，us	\％	＇84\％＇\％

Y car	s．onth	time Viuc	Baxciss Vblue	－ictroi 54.14	Ynreion＇2a		
1900	Jumary	99．22	95）． 10	98.13	9.9		
	Pebruara	90．－5	90． 0	9\％ocs	9．．53	Ju．${ }^{\text {J }} 7$	\％2．．2
	Farcs	27.35	97.93	$9 \% .25$	－．．！	）．u？	） 1.0
		$96 . c$	20．79	90.90,	9 O	j－${ }^{\text {a }}$	\cdots ．
	riay	90.02	96.17	40.55	9 O	2＂．${ }^{\text {2 }}$	B．
	June	95.19	25.57	56．：．2	9 cos	$2 \% 92$	
	July	94.37	44.72	95.80	9 ccos	？¢ ¢	2．． 3
	AuTust	92．－5	93.94	95.5	9．	？${ }^{\text {a }}$	17.
	Seutember	91.39	92.05	94．49	9\％．．．	2．ad	1．．．
	Cctober	00.93	91.70	93．－1	9：．30	－0．	A．．
	Yovembr	90.36	91.00	93.17	93.0	20．ts	y． $7 \% .2$
	Deceriber	69．59	90.61	92.85	9\％\％	20． 3.26	37.9
1967	J araniy	89.77	20.51	92.09	25．4：	\％．8＇s	
	Pebruary	Sy． 5	30．$\%$	91.79	2う．68	98	20． 57
	Siarch	69．${ }^{\text {co }}$	90.40	91．53	Su．e	\％ローと	720．．
	$4_{\text {aril }}$	90.45	91.17	91.57		12．86	96．．）
	Bryy	$91 .<2$	91.07	91.29	98.2	\％．4？	3）
	dune	91.54	92.13	91.53	93.30	c）．j4	f：．
	July	92．53	92.59	91.03	9\％．23	5.7	$\%$
	Mupuat	93.97	93.76	91.95	93．6s	－）	\％）．
	Segtember	94.24	94.23	92.9	9：． 2 C	6i．ti	\＆．．
	October	94.55	34．30	92.46	9\％．30	O．0．8，	¢．．
	Decezber	94.41	94.12	92.45	98.00	5．0	＋．．．
				92.32	27.60	6，4）	co．．，
1958	Jエ゙uット	94.53	93.90	32.22	92．0：	$\because \%$	
	Februnty	93.59	93.55	91.23	95．0：	80.9 ：	\％\％
	Earen	93.44	93.33	91.72	93． 53	d 0.9 ？	
	April	93.45	93.21	91.53	92.95	20．0 ${ }^{\text {cos }}$	
	Eay	93.40	93.06	91.37	96.58	$40^{\circ} \mathrm{O}$ ：	1．4． $6^{\text {a }}$
	Jume	93.04	93.25	91.73	95.31	－． 3 ：	111
	むuly	34.00	93.56	91.43	9：．6．	en．${ }^{\text {a }}$ ：	（1）：
	Surut	94.55	93.96	91.23	9：．${ }^{-1}$	A． 3 ：	－＇．．
	Segtember	94.34	94.13	91.65	9：．1：	B．．${ }^{\text {a }}$	＊，$\%$
	October	95.05	93.98	91.65	Sju．t1		an． 5
	December	95.55 95.20	94.31	91.73	8\％．3	59．53	4．．．6
		95.20	94.85	22．Có	27.35	0\％．3．30	6．．．）
1969	\％cruary	98.14	96.51	92.84	82．${ }^{\text {a }}$	40	
	Pebrany	100.31	93． 38	94.15	03.5	4.22	2．
	Haren	101.21	99.23	95.32	E． 37	$\therefore *$	6．，
	April	101.22	99.29	90́．ć	C．os	5．73	＞2，
	EEV	100.52	98.75	96.93	89．1－	H．．7	1．．．is
	June	130.25	98.38	97．：0	85．2\％	） 9.7 \％	$\because \%$＊
	July	100．c2	98.27	97.54		10．31	－
	Auridet	99.51	97.72	37.69	6）．：3，	－ 5	30．
	seoteriber	93.49	96.92	98.04	$9: .97$	－	\％${ }^{\text {d }}$
	October	95.37	94.89	97.52	9．－－2	沚．71	． 1
	foverber	94.56	93.32	95.72	34．－	－．． 6	d 41
	Deeenber	93.50	92.53	95.93	y．．6	－\％．02	－2． 410
1970	sinuary	93.39	92.04	95.41	9．58	23－：	\cdots ）
	Pebruary	93.72	32.25	25．C3	とこ．ご	－20．11	＊1． 8
	turch	94.21	92.63	95.20	E．ess	\＃．．${ }^{\text {a }}$	－4 3
	Asril	54.31	92.79	94.97	d\％．．．	－0．${ }^{\text {a }}$	3
	Lay	94． 19	92.57	94.60	0j．：	P A．	＊－
	\boldsymbol{J} une	94.27	92.28	94.20	6．s：	$\cdots 3$.	＊．
	July	93.55	91.95	93．9）	\＆－66	\cdots	1 ＇
	Ausutt	$92 .<6$	90.57	33.65	ET．3：	vi＊	1
	Septerber	31.43	$90 .: 7$	92．5\％	\％	\cdots	8
	Oetober	91.90	90.49	92．3）	7．．$人$	170	1
	Eove：ber	91.22	90.52	92.25	48.75	－mid	＊．
	Deceabor	32.75	90.69	92.14	8．0．6	V．．．．	\％．
2971	Eanuary	92.42	91.43	92.81	9？．－${ }^{\text {co }}$	JN^{*}	－
	Heurunry	45.01	92.16	92．53	\％rion	$1{ }^{\circ} \cdot 1$	${ }^{*}$
	Limath	93.42	92．70	92.77	－2．${ }^{\text {＂}}$	5．．	－
	4：81］	34． 3	93．53	33.63	\％6．2	4． 2	
	［y	45.02	94.57	93.92	－－	$\cdots=$	T．
	June	3 Cul	98.25	23.78		－－	
	July	97.17	9コ． 36	93．3s	\＆．	1	
	A14．Wut	j3．80	\％1． 26	\％ 10×1	7.		
	Ecretonier	23．73	30． 78	90．1．：	8.	1	
	Celater	「\％${ }^{\text {\％}}$	5，\％：	95．．）	57	，	
	Foventrer	F\％o＇is	＇r．6．＇	95．7：	32．．	1	
		＇\％ 13	＇リ．1＇）	35．：？	\＆．．${ }^{-7}$	上．	$*$

sall：i：： 0 －contsimurd．

Year	20：${ }^{\text {a }}$	Yara rialue	ล2：＂งコร Vi：Ľuc	Bret．and \％inluc		Cuncucu－Retid1	Pa．7－ïctut 1
		－	มฺอบช์				
1972	J muar：	99．ia	$1) 6.8$	90.04	24．C：	94．03	94.74
	Febriary	103．42	9\％001	95.43	O．．0\％	Y：．02	95.80
	Marry	101．03	2．29	9\％．0ú	ツッここ	？-1.34	9\％． 50
	April	100．$=7$	97.40	97	33．c゙－	97．70	97.05
	kiay	99.10	90.16	37.22	92．6	9\％．95	9．50
	Jure	03.20	9 j .2 C	20.37	90.55	1cc． 39	99.84
	\＄uly	96.35	94．000	95.17	20．c5	16：． 40	100．06
		97．23	94.34	95.03	90．7）	$9 \% 05$	97.313
	Serteser	93.31	95．54	90.29	90．6：	9． 20	90.67
	Octosem	100． 39	90.71	97.51	89.69	99.18	97.09
	Toverer	102.00	92．92	93.94	89．5．	1C． 24	$99.0{ }^{\circ}$
	Deceser	103.40	99.39	100.13	93．6：	10：． 11	99.97
1973	Jщwn：	1 Cu .31	101.67	201．94	89.55	20.24	99.00
	Pebrasing	109.48	104．43	203.22	83.7	10．40	97.95
	Earct	112.51	106.37	：09．77	8．j．Ey	93.39	96.94
	4－71	117.55	110.00	：07．02	20． 53	97.99	94.65
	lisy	119.23	112.02	－09．07	80.47	201．58	97.53
	Jmar	219.13	112.13	109.31	83.63	103.63	160.07
	3 nly	117.93	111.41	109.31	85．：1	105.59	102.27
	A	215.97	110.47	109.32	92.65	10.5127	10：．01
	Sejtucber	$\underline{56.50}$	110.78	109.54	93.65	100． 30	103.64
	Dctober	116.03	111.07	$\underline{110.17}$	101．－7	107.37	105.05
	Movecer	114.18	109.80	110．14	105．： 3	110.53	109.88
	Deceber	211.53	108．39	109.60	111.05	112.71	112.54
1974		108.14	165．04	108.35	121．es	134．22	115.93
	Yearasy	125.73	10．4．44	106.87	126．co	113.21	115.67
	Narch	105.84	104．79	106.42	128．C：	1：0．45	114.23
	Auril	107.31	105.74	100.49	125．50	$1 \mathrm{Cos}$.	112.22
	Firy	107.33	105.21	106.43	120.65	1 l 9.50	112.12
	5120	105.09	103.40	105.38	122．E7	1：3．11	113.36
	5	102．38	101.20	103.64	118.55	169.76	112.51
	Ansiat	101.71	79.95	102．4i	117.23	123．50	120.81
	sertebar	100.50	98.75	201． 75	116.6 ¢	169.45	110.92
	Octoser	98.67	96.84	100．73	125． 24	120.40	110.97
	Eove＿der	97.85	95.85	99.76	113.99	107.49	110.40
	Decezber	97.19	95.13	98.92	111.63	153.30	109.23
$1975{ }^{\text {a }}$	Jucisery	27.66	95.73	98.82	114．50	105．76	1 Ca .32
	Febslery	100.43	98.39	99.72	115.60	163.49	105.80
	Varac	10．2．5	100.40	101.05	1：7．73	12.73	105.39
	Apris	103.95	101.95	$\underline{202.11}$	121.32	12.82	105.31
	kay	106.17	104． 13	103.10	124.50	200.66 \％	105．85

[^7]

7hpure 5. Cyoliest fluctintiona in farr, anreane and
ratadi valuea fur s.inlice aralu beci, U.J.
Iy'4 - Jitritenocr $29 \%^{\circ}$

Figure 7. Number of cattle and calves on U.S. farms, 1955-1975.

Ifquidation phases-- 1955-57
1965-66
1975-(still in progress)

Accurulation phases-- 1953-64
1967-74
In reference to Ficures 5 and 6 , the $1955-75$ period may be dividcd into periods of cencral uprard and downard cyclical trend in keef values as follows:

Upriard trend-
1955-58
1965-73
Dowmard trend-- 1959-54

1974-75

Thus, the period 1955-75 was covered by two cattle circles and hence tro cycles in beef vaiues.

Cattle cycles are caused by the time lar between the decision to change production levels and the change in the number of animals actually reaching the market. 1 For instance, when cattle prices are low, a silaller calf crop is planned; and when the smaller number of slaughtor cattle reaches the market, prices increase. With higher prices, an increase in the calf crop is planned; and when the higher supply of slaưhter cattle reaches the market prices deciine, and so forth. A minor exception to this general inverse relationship between prices and cattle inventory occured during 1965-73. Iiquidation during 1965-66 vas slisht, and then accumulation bergan in 1967. Cattle prices (hence beef values) were generally on an upward cyclical trend during that period. Stronc continuing consumer derand

[^8] Spreads for Beef and Pork, Revised Series, 1949-69," llay 1970, p. 6.
coupled with inflation as has been discussed in Chapter III kent prices up.

Cyclical Fluctuations in Bcef Price Snreads and tileir causes

Cyclical fluctuations in beef price spreads (risure 6) cenerally directly followed cyclical fluctuations in beef valucs discussca above. However, cyclical fluctuations in the spreads showed sreater variability by larger anplitudes and more short up-and-down movements between years tizan did those for the values. The stronger seasonal variability in price spreads as explained in Chanter IV did influence these cyclical chanses. ${ }^{1}$ The fact that cyclical trends in price spreads were upward with upvard trends in beef values and dowmard with dowmard trends in beef values indicates that on a cyclical basis, beef retail prices rose and fell faster than wolesale prices and in turn, wholesale prices rose and fell. fester than live animal or farm prices.

A lenowledge of cyclical movenents in the beef industry can be particularly helpful to cattle producers and potential cattie producers in making their lons-term investanent plans, in order to take advantage op periodic risinf prices. A befinner in cattle production would be enabled to lay a stronfer foundation by entering into business at the start of an unward cyclical swing in prices rather than on the downard swing.

[^9]
CHAPMER VI

mpiegunar loovetigs in bem

PRICE SYREADS

Irregular novenents in beef price spreads and values are presented in Table 11 and Fifures 8 and 9 below. Table 11 shows the computed monthly percentages ${ }^{1}$ of the irregular components. Figure 8 and Figure 9 respectively show graphs of the irregular components in beef values and price spread.s.

As indicated earlier in Chapter II, irregular movements are caused by ranaom or sporadic factors. The movencnts are non-recuming and, therefore, kave no unifomity or predicability. In beef industry irrecular movenents can be caused by such factors as adverse weather chanees minch cause considcrable chanfes in the availability of feed and hence the supply and prices of cattle marketings, a witholdines of catile from the market by producers, Governaent reculation such as a price ceiling, adverse conswer reaction such as beef boycotts, labor strikes, erratic and sudden chances in export demand, etc.

Irresular : Yovements in Beef Price Snreads and values

Percentage chanjes of irresular movements in beef values above or below their average (Figure 8) were about equal for farm and carcass values, and mostly ranced between plus and minus 10 percent, and were less in retail value, ranziñ between plus and minus 5 percent. This indicates tinat
${ }^{I}$ Irrerular percentages are percentares of the $T_{i} X S_{i} X C_{i}$ product. See Chapter II, p. 22.

1954 ${ }^{\text {a }}$	30	200． T^{2}	10．．24	100．04	161．13	235． 39	100．97
	dur：	》．$\%$	2：3．5：	101．：0	91.39	113.07	10r． 70
	Jぃ゙う	9\％．il	$\because 6$	リッ．」u	1！じめ	いい。年	d心．．j：
	Ацフォs：		リ1．21	（10）	いよ．${ }^{\text {l }}$	16．53	104．01）
	Scpre＝ber	91.42	Cu．tic	9う． 24	：10． 22	8．2． 74	$9 \% .07$
	Octoser	201．17	いい，ぶ	30゙心行	－04．03	？． 07	20．2．in
	Movciter	10． 33	10：．93	10こ．0	：0\％．10	93．92	3：．79
	Decererer	100.30	10．4．03	101．38	94.91	20.97	93.14
2955	Jarmar	105.55	10：．36	102.25	95.78	07.42	91.01
	Feもriey	101.02	200.39	100．70	$100 . c 0$	$\bigcirc \therefore .07$	95．0
	Carch	102.35	103．02	99.52	20． 2 J	9，7s	90.93
	4pril	93.85	100．31	200.13	111.49	9E．cis	101.60
	lisy	93.71	97.02	3.32	95.27	105.75	103.47
	June	97.24	90.97	90.74	93.23	2：\％． 59	104．${ }^{\text {¢ }} 7$
	July	97.35	95.15	9 Caj	35.30	1く． 70	101.96
	Ausus：	59．21	99.03	9\％．15	9.3 .22	こC． 18	100.13
	Septeiser	164．03	105.21	100． 57	114.65	c． 5.54	96.69
	Octoter	105.19	105.41	202.67	109． 73	93.96	98.01
	Eovember	120．78	102.36	101.71	103.28	93.14	201.05
	Decesber	99.16	93.93	100.90	97.62	111.14	10\％． 70
1956	Jaxuary	97.63	100.35	100.21	109.14	93.99	102.11
	Fetriay	91.24	92.08	9\％． 36	101.53	160.71	104.69
	Earch	93.79	$9 \pm .25$	95.33	22.35	16．9．96	102.64
	April	95．53	94.13	90.30	So． 91	102.95	97.31
	Bing	94.95	91.99	97.62	75.53	117.20	102．38
	Jume	34.16	90.12	97.56	102．6i	106.24	102．31
	July	96.35	96.41	97.73	95.54	96.18	98.83
	Amuet	109.64	109.40	100.87	105．23	00.07	ย2．95́
	Septecter	116.43	115.75	105.40	117.19	60． 86	86.69
	October	114.17	113.66	107.39	124.94	$8 \div .89$	95.66
	Novesier	103.01	105.08	104.34	99.66	109.55	109．92
	December	94.56	94.80	99.75	$95.8{ }^{2}$	123．00	111.83
1957	Jamuary	90.77	92.79	97.31	99.60	112.72	106.88
	Fcamary	88.19	88.93	96.22	93． 50	115.36	107.74
	Farch	95.15	96.51	94.58	99.40	91.37	95.81
	Amill	99.65	99.36	98.63	97.37	95.46	96.23
	Eay	101.67	100.63	100.62	92.70	100.55	93.37
	June	99.92	： 00.34	100.62	99.73	105.24	201.10
	Joly	102.79	103.27	101.93	IC5． 22	92.29	93.86
	Aupust	202.39	103.26	201.55	103.43	95.76	30.71
	Septerber	99.50	97.30	200.08	95.89	115．02	103.77
	Octobe＊	97.20	96.25	98.97	93.72	102.25	100.41
	Koverser	37.70	99.99	97.19	111.14	87.97	92.21
	Decezter	100.43	100.50	97.79	96.92	92.87	93.53
1958			102.56		110.23	95.67	
	Februa：${ }^{\text {d }}$	93.70	98.41	99.36	93.73	90． 34	109.29
	Merch	105.82	102．98	100.92	81.56	95．73，	98.27
	April	104.02	202.88	102．09	91.41	10.90	97.81
	Bay	104．20	105.32	：02．33	120.23	92．73	99.36
	June	101.44	2C1．53	202.27	9\％．63	204.27	1ci．0ó
	July	99.63	98.61	101．60	99.82	105.71	Sis．03
	Aurust	92.62	93.31	98.39	96.43	114.38	99．74
	Septemer	95.86	96.16	$37 .<7$	94.67	102．10	164.77
	Octode：	102.24	200.68	92.35	$21 \% .09$	ご－90	202．20
	Boveriter	23．9\％	100.83	23.76	$15.7 .2 \%$	\％ 5.33	98．79
	Deceater	201．00	10 c． 15	93.01	10\％．ぐう	9%	95.62
1959	Janua＝y	101.35	101.20	101． 20	38.52	196.39	99.67
	Pebruary	90.25	咸．16	100．60́	20\％．90	10\％．03	27．7\％
	Larch	140.03	93.94	39.12	92.85	こoc．${ }^{\text {c }}$	39.05
	April	102.55	10\％．14	100.20	14．0．035	ビ，U2	צ＇j． 07
	May	204.32	103.70	101.24	25．76	＇83．49	
	June	261.03	101.61	100．532	261.65	261.07	102．6\％
	July	97.7	Yi．6is	200．54	262．09\％	10：4．35	20．4．0\％
	Aumist	97．44	93．2\％	2－3． 75	［\％．${ }^{\text {a }}$	20．0．44	20：．is
	Saptesier	20.0 .14	200.50	2：3．34	20＇リ．73	9く0	＇8\％．5．）
＊	October	101．${ }^{\prime}$	201．75，	100.64	込：	91． 24	98.02
	noveimber	発：00	92． 31	201． 14	－	16．4．48	31．8：
	yenceajer	9\％\％\％	46.61	20n． 20	9\％．51	21\％．12	＇170．
1950	J faruaty	93．69	9\％．15	150．29	0\％．73	：10．0．0s	10：．6\％
	Pctrisoj	＂）．！\％	91．33，	9：1．C\％	112．0\％	＇，．$\%$	\％ 272
	\％ure．	1－6．0：	14．2．94	913．6	\％，i\％	6\％\％ 3	3＇\％． 818
	Aprs］	115\％\％＇8	15\％．77	101．11	：\％．18	\％\％． 4	96．
	Lu\％	10\％．7\％	102．0．2	311．i？	＇31．13	4，${ }^{\text {a }}$	7e．1）
	Jun－	Jutas	＇4，\％	HR：\％	fors	．ro．a\％	
	July	21\％10\％	72， 21	シッ＂）	：$\because \% \%$	AP，．${ }^{\text {P }}$	10\％．18
	Alinur：	\cdots	117． 11	1，10		$\because \because$.	\because
	Eryrazert	J．0．	＇1．．${ }^{\prime}$	\％\％	21．11	．t．．．	\％＇••
	かごごさせ\％	＇$\because \cdot 6$	$7 \% 78$	＇I．．1＇，	14.2	－60\％	$1 \cdot \mathrm{l}$
	goremies		－1．．．	＇9．${ }^{\prime}$	：，．oi＇	\％．${ }^{\text {a }}$	\cdots
	Wecosia．	jrnors＇l	J－C．as）	－\times ．${ }^{\text {P }}$＋	$\because \cdots$	＊1．．．	$1 \cdot 85$

Year	Hont：	Hami inlue	Sa：cinu bialue	I．wis：Va：uc		Binvauumir－．：：	
1901	Jmana：	S0：．0：	10.10	10： 71	$\because \mathrm{OL}$	Ju．．v	＂1．7\％
	Rcbruais：	103．+5	c6． 51	102． 60	－．．．．．」	－．$\%$	…＂
	Larci：	101.52	13． 50	LU．．01	2iJ．－	Lu．．1	－2．6
	Ansil	99.04	99.10	101.07	9\％．3	10：．00	10：．0－
	K2ay	95.73	90．03	200．01	20．0． 1	ivj．u：	16.73
	June	93.58	ب5\％． 11	95． 30	Ic：． l	201．a	16： 3 ？
	July	22.11	95.33	91.28	－ 3.5	10．o．j2	L心．\％\％
	Ausua：	20.63	Yio ity	9\％7．：4	13v： 3	4：\％． 7	35．6
	Septerber	99.10	930， 19	95．14	永．．0	9\％\％	93．8：
	Octooe：	$100.3{ }^{\prime \prime}$	100．8y	10c． 30	204． 32	93.93	93.2%
	Yove＝ber	102．00	99.99	100.92	3！．39	132． 2	97.6
	Decerber	203.94	1C2．43	100.47	95．04	2．74	y？．7；
1562	Januar：	102.23	101.80	20.17	39．：2	9）． 21	93． 3
	Pebrux゙y	20：．25	103.69	102.03	305.34	93．${ }^{\text {ct }}$	95．9？
	March	102．25	102.65	100.30	$10^{1 j} \cdot 20$	93．32	1c：．7：
	April	101.15	100.94	100.61	95.24	1，080	93． 3
	Kay	97.32	93.53	29.32	104．：7	122．35	：03．35
	Jume	93.53	95.35	38.60	106.3	：1： 5	127．\％
	July	93.93	94.76	97.57	100.37	：00．j）	26：．4）
	Aurcet	$\begin{array}{r}98.10 \\ \hline 105.39\end{array}$	99.05	98.05	97.04	23．07	＋5．12
	$\begin{aligned} & \text { Septober } \\ & \text { Ontoje: } \end{aligned}$	205.39 206.95	104.60	101.43 102.43	99.23 53.29	93.04	95.19
	Soverier	209.81	109.04	103.65	95.1%	39．w	48．6）
	Decenter	109.01	108.32	102.81	102．：7	22． 31	94．0．
2963	Jentas＝－	102.93	101． 31	105.25	09.80	10\％． 20	10：．？
	Pebruary	95.65	54．97	92.48	95.37	20． 24	：08．6：
	Narcin	90.43	92.30	96.29	107．：9	16．0．3	112．e：
	April	93.33	94.37	97.98	92．${ }^{-4}$	：07．0．	168．： 7
	Nay	92.85	95.62	96.55	111．83	39.60	：C：$\%$ \％
	Jume	95.53	97.72	97.38	100．c̈3	73．8］	S1．42
	July	104．50	102.96	99.50	90． 59	00． 13	7）．：
	Aurust	103.52	1С2．47	101.11	9．9．92	20.04	97．0）
	Septerest	103．c9	$1 \mathrm{C2} .48$	101.02	2 Cl .54	93．0：	9\％．8．
	Ocrobe	104．73	103.72	101．92	－しう．${ }^{3}$	9－\％？	97.73
	Hoverbe＝	101.36	10土． 93	101.90	27．－2	1CC．：${ }^{\text {a }}$	91．5：
	Deccuber	98.78	99.25	101.17	101.35	$10:$－${ }^{\text {d }}$	16．2：
1964	Januar：	101． 3 a	99.86	200.92	69.38	：0：．02	20．：
	February	$9 \% .85$	97.04	99.89	1：0．75		1：9．：${ }^{\text {a }}$
	Harch	97．：0	96.40	96.06	： 55.53	：0．38	$\because \%$ ，
	Aprs 1	93.50	96.22	97.28	2i1．：5	\％＇：	－．．．．）
	May	90.92	93.37	97.37	204．31	26\％＋6	$\because \because$
	June	33.35	90.51	97.13	33.77	：7：64	ji．ie
	July	10c． 47	97.77	99.27	33.75	3\％\％：	\％．．．
	Aufust	105.33	105.18	100.47	： 03.50	ys．i3	32． 6
	Septejer	107．33	165.77	102．67	35.55	＇R．${ }^{\text {S }}$－	¢．．！
	Octobes	104.65	123.13	102． 56	35.35	： $5 .$. ．	$\gamma \cdot 1$.
	Nove＝ter	101.91	102．13	102.75	93.87	$\because-3.79$	：\％ios
	Deaembe：	93.51	97.90	101.60	203.32	ように．＂\％	： 5 P． 83
1965	Jaruany	96.87	95.73	99.25	95.65	：0．0．	：5．．：
	Pebrizry	93.14	93.21	96.91	102．：6	（－17）	：＂，
	Marcn	34.64	95.60	34.95	$: c 3 . \therefore 7$	$\square \ldots 1$	：ro．： 4
	April	97.59	97.80	97.47	32．33		$\because-$
	H：xy	105.17	J． 05.03	100.00	125．0	30．6s	\％．．
	June	107．9＇）	207.61	103．76	202．8\％	P．F1	4.
	July	101.56	101.53	103．36	1\％， 3 3	：0．t	：人．：
	Auriat	32.41	\％J． 77	101．4\％	־く2．． 1	：1．．：	－．．．
	Septczer	99.63	92． 63	54．76	1\％R．：	：10\％	\％＊＊
	October	39.94	$97.25)$	95．3	9\％\％3	NHO	\cdots
	Hovezer	97.51	98.85	$1 \mathrm{Cl}_{6} 17$	151．6\％	17\％＊＊	52，＂1
	Deceber	93.56	9\％． 27	リリ．23	97．${ }^{\text {c }}$		－．．．．－
1966	January	93.11	3\％．70		：9．3\％		$x^{\prime}=$
	qubruary	101．31	$1(4) .136$	100．3\％		…	3.
	Harcon	10\％．10	10\％．3\％	16：．0i	（1）．${ }^{2}$	－．．）	
	Apris	101．．${ }^{\text {as }}$	103．9\％	102．1＊j	\％ 0 ，	＊－－ 16	
	May	＇リ．${ }^{\prime \prime}$	10．01\％	16ら．う心	$3 \rightarrow 1$	－－	$4{ }^{-5}$
	June	9\％． 71	\％\％＇\％	j＇s．01	：．．．J	\square	
	July	54\％，${ }^{\text {a }}$ ，	＇rior＇ 1	9：0．0，	8．2．．	－	，
	Awrubi：	＇－0．7）	1r．es＇	－ i ： 12 ＇，	－．．．－${ }^{1}$	－	
	Se：rcmuer	Lis：\％＇，	Lessobe	＇r，\％	$\therefore \cdots$	71	\％
	Octose：	16\％．919	！atorit	！r．o	\therefore＂\％	\％	－
		1．11	1droors	fios	$1 \because 1$		
	beccoumer	11， 0 ol	1＇a．f	midel	¢ ． 0^{\prime} 8		

Yeser	\＃one：	Murs Vaiue	Varcisa \％abuo	netu：\＃ıaue		varcezg－．．cedt	
1957		101．6．3	101．：1	9．4．32	102．0）	9\％ 0	95.75
	Yoturasy	97．72	90．－．：	99.50	¢7． 23	102．\％o	¢9．07
	Larc：z	46.10	95．心）	23.69	g0．00	1 CB ． 0	107．${ }^{\text {c }}$
	April	94.95	90． 10	93． 21		203.05	1c3．3
		99.15	99.78	97.03	100.12	21． 25	25.23
	vure	10：． 54	101.95	9．9． 51	121．19	96.61	25.63
	July	101．4：	：01．01	103．0\％	101．2\％	93.00	97.75
	Au， 3 3t	102． 21	101.22	150.40	92.01	99.10	97.11
	Se，terber	305.02	102.55	100.93	104.32	90.70	99.30
	October	101． 99	122.43	101.80	101．${ }^{-1}$	2v2． 10	102．－9
	Soverie：	99.29	130.20	100．31	1し2． 15	10c． 34	100．89
	Deserber	100.47	100.51	100.59	102． 39	97．：5	103.23
19008	Jerunzy	93.59	97.75	99.08	92.44	$: 06.25$	39.67
	Petruary	99.01	99.07	99.49	103.77	97.25	98.01
	Larch	100.62	100.39	99.42	98.54	100.64	102．00
	April	90.43	99.20	94． 59	101.47	100．92	100.90
	Liar	99.53	99.80	100．cu	97.85	100.57	161.40
	Jure	99.47	100.32	99.45	103.57	10c． 35	98．45
	July	100.07	100.16	100．36	99.31	96．${ }^{5}$	39.4
	August	99.45	99.47	99.48	9 cou	96.46	99．：0
	Septexter	99．41	99.13	99.80	102.17	202.30	102.77
	October	99.97	99.46	100.35	99.00	101.77	ic1． 53
	Povezer	102.05	101.23	100.25	95.92	96.77	97．02
	Dececter	202.52	102.65	99.46	103.84	94.47	¢0．24
1969	Jancary	97.35	97.41	99.76	100.27	106.76	102.07
	Febzuary	93.72	93.01	97.13	96.20	105.02	202.62
	karch	90.53	97.22	96.4	10\％．13	97.32	100．17
	Afril	93.75	99.27	98.00	99.09	93.73	95.34
	＂ary	210.73	109.77	202.15	95.08	8 8 .69	85.76
	June	113.60	211.94	105.51	91.01	91．80	09.10
	July	10\％．zt	102.96	$\underline{204.97}$	108.86	215.53	－08． 31
	Augiat	97.93	98.28	102.49	100.36	113.52	－11． 24
	Statearar	94.81	95.38	39.25	100． 73	105.33	109.06
	Octosis	95.75	95．36	97.10	9 c .24	100.91	99.46
	Mopreber	97.03	97.03	98.80	91.36	100．39	99.34
	Deceebar	99.81	98.87	99.03	96.96	101.54	100.77
1970	Jamarar	97.24	99.32	100.34	1ia． 49	205．33	$\therefore 03.20$
	Pebriary	93.57	97.75	97.12	100.53	30.72	97.63
	liarck	103.52	103.67	100.20	－02． 30	95.16	98.37
	Anril	101.27	101.38	100.76	3．．． 33	9 c .34	93．47
	Lay	99．30	98.99	100.71	92.24	104.13	203.10
	Ju＊	102.27	101.23	99.56	85．34	98.56	93.94
	July	103.23	103.32	101.55	203.23	93.16	97.50
	Ausuat	100． 51	101.41	101.16	105.21	10：． 23	102．72
	Soptecber	100.45	99.35	98.78	95.93	9y．44，	95.65
	October	99.59	96.06	99.77	8．． 33	10．c． 18^{4}	150．30
	Novenber	94.53	96.15	99.14	104.35	104．20	206.42
	Decenter：	92.77	93.21	97.21	9？．49	109.87	100.75
1971	Jamuary	95.70	97.91	97.93	115.39	99.70	99.50
	Pebruary	104．78	1．02． 57	200.29	93.93	92.44	69.32
	Harcin	162.45	162． 05	39.90	97.79	9 Cc .42	100．00
	Aprel 1	102.51	102.09	101.27	107．68	92.50	102.02
	Hiay	103．01	104.24	$101.00{ }^{\text {d }}$	13 T ． 72	5\％． 5 i	प9．0．7
	Jurae	100.50	10：．0a	101．：8	10．． 30	205.73	102． 24
	July	37.22	97.94	99.73	56.95	10．90	：us． 3 C
	Su，${ }^{\text {sent }}$	91．29	95.20	99.57	49.14	iC．． 72	－6゙oid
	Septecier	97.43	97.07	90.31	¢．． 77	162.22	2Lく．01
	0ctober	3.15	97.06	98.24	G－． 05	$30 \times .27$	x．0\％
	Korajer	101.40	101．C1	94.44	45．75	Es． 61	91．is
	Deeciver	104．50	204．56	99.25	120． 54	is＇．z：＂	9：．10
1976	sunuary	103.54	103.11	101.32	100．6is	93063	$\mathfrak{x} .23$
	Petiumry	162.32	101.17	：03． 31	200．53	16.00	：6：．0）
	Sinach	96.14	97.22	－C2．21	Y＇s．cu	3こc．al	11\％．24
	Arysi	प4．04	98.56	93．42	\％う． 31	127．42	iL．．7）
	Liay	110.311	102.30	9：． 10	167.60	＇80，i\％	24． 5
	Jure	1\％7．8＇，	107．1E	10．5．？	16．．7）	以8．il	40．8，
	July	ducasa	： 6.0 dis	103.12	32．：1	94．0：	＇6．6．
	¢ulume	リヒ\％	97．04	10.1	1／R．0．2	1．－．＇s	126．15
	Era：mere－	54．\％\％	9：．cı7	97.14	？\％\％	ds？${ }^{\text {d }}$	小⿺尢丶万女
	Orenco	r94．0，	94．2\％	97.11	121．0\％	lisjoi4	ri．．．ve
	lioverser	Lé： $6, \%$	90．6＇；	94． 31	16：\％，	16．．．．	：0．0．4
	vecezmer	97．\％	4e．5；	44．its	16，4． 44	（3ar）	20．4，

Ye．a＝	Mor： th	Pas：Vnlue	Swente \％ilne	iistat：Value		Caxcras－i．ctud	
1973	J دnu	202．C5	10．d．as	9.964	0	：3．0～	9n．63
	Peticury	しご． 3	103．53	105．09	－゙j．：7	50.65	とU．心．
	Lars．	Su．	1ごり．5	10：4．4	$\div 20$	26： 3	105．33
	Apri？	93．03	111．21	20：．53	$\therefore 2.37$	E（6．2）	110.23
	Lay	200.30	10．0． 2	10.75	01.20	1心．45	10：．0：
	Nupe	102.15	いいこ， 0	＇川．01	95.12	$\bigcirc 3.90$	01．6：
	July	105.25	501．43	Y5．02	79.36	E3．23	203． 80
	Aupuat	11\％．13	1：	10\％．40	＋1．37	± 5.94	Pis．79
	Septesber	99.95	97.45	103．51	－J1．心1	1：5．70	113.23
	Octoter	92.64	92.01	97.05	$\div 7.31$	107.73	103．くす
	Move＝ber	$3 \mathrm{C.03}$	92.30	$96 . ⿱ 亠 䒑 𧰨$	10． 31	205.45	100．31
	Dezerber	91．34．	2.27	95.79	239.32	97.62	105.53
1974	Jonuary	111.62	123.30	203.17	35.15	\＃1．42	87．15
	Yebruary	109.55	109.64	103.13	220.79	100.44	103.23
	Harce	93.77	93.31	101.90	93.57	123.81	111.93
	April	94.54	94.69	97.57	94.37	134．00	102.35
	Nay	94.76	96.52	93.65	：05． 11	96.71	100.23
	Juve	90.23	92.60	94.95	$=06.52$	203.50	101.55
	July	105.43	105.65	10c． 11	107.92	32.70	90.34
	August	124．20	110.09	10：． 52	79.20	91.72	99．12
	Septerber	101.89	100.79	102．70	97.91	168.30	106.24
	October	102.90	1 Cl .77	102．52	204.38	39.61	101.10
	Foveber	92.36	93.93	10c． 22	200． 92	$\bigcirc 00.97$	201.28
	Deceroer	90.07	96.47	38.44	95.56	105.10	103.08
1975 ${ }^{\text {a }}$	Tanuary	92.74	93.51	99.06	$9 \mathrm{9}$.	113.70	106.97
	Febriary	84.30	85.77	93.97	99.73	120.71	100.60
	Merch	65.31	85.50	90.37	95.72	102.93	103.82
	April	98.60	98.63	94.20	95.87	82.27	85.83
	liay	113.33	111.36	103.01	93.23	80.64	85.05

a－The 12rst 5 wonths of 135 ；ant the lact f wontrs ic 1975 were 108% ir tina nrocess of computing j－sonth ceutered novire averafe for tiel arclisal parcentazes．

the factors thot precipitated the imecrulem moverents often struck at the supnly side (cattic production) causine erester irrecuiar variations in fam and carcass yrices than at the denand side Fron the retail end. All the threc valucs had sinilar directional changes during sane periods.

Arone nrice surcads, percentage chanjes viere greater in famm-careass and carcass-rotail soreads (nlus or minus 15 percent) than in the farmretail surcad (olus or minus 10 percent).

A conarison 0: Figure 8 with Figure 9 shows that irrecular novenents in beef price sureaus rere fencrally inversely related to those in beef values, ir botir direction and macnitude of chance. This is an indication that in short Eeriods of time, prices at a lower naricci level rose or fell faster than prices at a hicher market level. This is that farm prices rose or fell faster than retail prices. Another observation from the comparison is that percentacc chances above or below averege were higher in price spreads than in values. thile changes in the spreads ranged between plus and minus 15 percont, changes in values ranged betweer nlus and minus 10 percent, indicating stmoner irregularity in spreads than in the values. Ihis means that tire irrerular forces that caused chances in the costs of providing marketing services were stronger than those that caused changes in cattle and beef prices.

Nactors behind the Irremular ITovements
 in Beef Price Sureads

Irresular movenents in price spreads inversely followed irregular moverants in beef values as has been discussed above. Accordinfly, these two movenents were caused by the same factors.

Irregular movements were exceptionally strong in some months of 1956, 1969, 1973, 1974 and durine the first three quarters of 1975.

Accordins to USDA, an excentionally laxe nurioer of steers has carricd over frow late 1955 and marieted in carly 1956. The sinarp increases in values (and therefore decrcases in the spreads) durins the thirc ouarter of 1956 reflected reảuced supplics of fed cattle compared with 1955. Sharply increased maxicetincs of fed cattle plus heavy marinetine of other cattie caused a domward novenent in values and therefore an uprard moveinent in spreads in the final quarter of 1956.

As for 10\%9, USD ${ }^{2}$ renorted that a stronj continuinz consumer demand due to increasins disposable income (and the Vietnamese war) counled with reduced per capita beef supplies caused retail prices to rise sharmly. Fonever, farm and carcass prices declined causing the spreads to miden considerably.

During 1973, "several factors reduced production of fed cattle and pushed prices un to record levels. The rate of weicht cyain vas less than usual because of a severe winter weather, excessively muday lots in the spring, the ban on fecding dietinylstilbesterol (DES), and changes in relative arounts of grain and supplanent fed because of rapidly increasing feed costs. In addition, the announcenent in July 1973 that beef price ceilines imposed in March 1973 would be lifted in September, accompanied by the jump in hog prices when ceilings were liftcd on porli, encourared cattle feeders to hold back cattle nearinf market weights for expected hisher prices in September and cenerally slowed novements throush the feedlots.... Price spreads vere squeczed during the irceze on retail prices,

[^10]particularly in June throüsio Aurist．After the price coininss mere lifted allowing retail prices to rise as processors and retailers passed on increased costs，tile sprees ripened substantially．＂1

It can thus be said wat two factors contributed to abruptly higher price spreads in 1973．＂ゴニst，there were increases in labor and other costs to packers，processors，and retailers that could not be passed through until price collins were lifted．There was a decrease in per． centare yield of retail bes cuts from the heavier cattle merited after August．The wider spreads since Pall 1973 have provided some packers and retailers a chance to recoup earlier operating Josses wan margins were squeezed．＂${ }^{2}$

There were strone imesular fluctuations in price spreads and values in the first quarter of 197% ．＂Sine trick strike which was settled in aid－ Peomary，contributed much spice movement during the quarter．It disrupted both the flow of five cattle to market and the flow of beef from neat pacicers to retailers．Both the threat of the impedine strike and the actual strike caused serious zaladjustments in supplies，and prices jumped as marketing firms bid for tie dwindling supplies．Farm values peaked in January，but then trailed $0 \underset{\sim}{c}$ ，falling sharply in larch．In contrast，the spreads wore squeezed shargiz in January，but widened significantly in lierch．${ }^{3}$

High foreign demand for U．S．feed and food trains pushed prices of these commodities hicin relative to livestock prices in the later months of 1974 and early 1975．Cattle producers reacted to the high feed prices and

> Ibid., I.TS-193, May 1974, p. 2.1.
${ }^{2}$ Ibid．
$3_{\text {Ibid．}}$ ，p． 4 ．
wfevorable roJurns in 1.974 by cuttina dom production of fed cattle and other livestoci. is a result, marketincs were dow (thereiore jrices uis and soreads com) curing tire first three quarters of 1975.

It is ericie:t from the above account that some unusual events ouch as price ceiliñs, auversc :"eather, labor strikes, unfavorable mariet forces can cause vild s:inis in prices and spreads from month or quarter to the next. They are difincult to plan for since they are unvredictable and do not occur with any uinformity. However, cattle producers nced to look over past history and cevelon an avareness that adverse events can and do havpen and, therefore, need to am themselves with sufficient insuance to protect theriselves aceinst tive risk of adverse effects or of beinc wiped out of business altojetiner.

IU.S., 工en ninent of Asriculture, Dconoric Pesearch Serrice, Arricultiral Outloot, $30-5$ (ieshinfton, D.C.: Govemment Printinj Ofice, October 1975), 20. $3-7$.

CLSPMIR VII

IEAD-IAG REIATIOSISHP BETVUR IIVE

Results and Analysis

The results of lead-lag relationshio between live animal and retail Deef prices are presented in Fisure 10, Table 12 and Ficure 11. Ficure 10 shows erashic relationship between the two prices month by rionth and by year from January 1954-December 1974. Table 12 sumarizes the leads and lacs, and the magnitudes of chanees in these prices for periods of increasing and decliniñ live animal prices. And Ficure 11 sinows a schem matic diagran of these lead-las relationshivs.

The following conclusions can be draw from the above presentation of the Lead-Laj relationship between live aniral and retail price movenents: Winen live animal prices were increasiñ:
(1) The averase berinning laf in retail pricos was 24 days.
(2) The averase endiñ lag in retail prices vas 15 days.
(3) The live aninal prices on average increased 27 percent above the beginnine price in an averace duration of 9.6 months.
(4) The retail prices on averase increased 12 percent aoove the becinning price in an average duration of 9.3 months.

When live animal prices were decreasing:
(1) The average becinning lag in retail prices was 15 days (same las as the ending las in retail prices for increasine live aninal prices).

Retail price, \& per 2 b .

 "Berglundar" Lonsi.

 in Arporadiz A.

SOURCE: DRAWN FROM INFORMATION IN TAD:E 12.
FIGURE 11 -- SCHEMATIC DIAGRAM OF THE LEAD-LAG RELATIONSHIP BETWEEN LIVE ANIMAL AND RETAIL BEEF PRICES, DURING PERIODS OF INCREASING AND DECREASING LIVE ANIMAL PRICES. U.S., JANUARY IS54SEPTEMBER 1975.
(2) The averase ending las in rotail prices was 24 days (same as the beginnine las in retail prices for increasinz live aniral yrices).
(3) The live animal prices on averase declined 13 porcent below the beginning price in an averace duration of 7.3 months.
(4) The retail prices on averase declined 7 percent below the beginning price in an averace duration of 3.1 months.

The results indicate trat retailers responded nore readily (vith less lar) to declinins live eninal prices than they did to increasine live animal prices. That is, it took 24 days for retailers to respond to the effect of increasing iive aninal prices while it took only 15 days for the retailers to adjust to declining live aniral prices. This finding tends to refute a common hypothesis that the reverse is the case, that is, that retailers
 any case, it seems that beef producers and consumers pay more attention to the 15 -day \dot{d} clay in retail prices to adjust to falling live animal prices than they do (or never pay any attention at all) to the 24 -day delay by retailers in adjustine their prices to increasing farm prices.

The larger percentage changes in live animal than in retail prices confirm what has been discussed elsewhere in the study that farm prices were more variable than retail prices during the period under study.

SUSEARY

The prianm objective of this study vas to present a historical analysis of bee: vrice spreads during the period 1954-75, in an attempt to contribute to a better understandind of the nature and causes of chanees in these smreads over time. The major cuestions this study attempted to answer were: wiot are beef price spreads and how do they differ from industry cross zargins? Do price spreads measure marketinc efficiency? Does the farmer's siare measure his profit position? Are the profits of marketinf ascrizes excessive? What have been tine scoular, seasonal, cyclical and irrecular trands in beef price spreads and values, and what factors have been behind these chances? What implications do these trejds have for the cattie producer, marketer and beef consumer? And finally, wint has been the las between live animal and retail beef price rovements?

In order to answer these the U.S. Denartient of Agriculture, vas used. Data were also obtained from the Departaeni, and Time Series analysis was employed in isolatinf the secular, seasonal, cyclical and irrecular trends to facilitate the description, analysis, and interpretation of these trends. The folloring is a condensation of the findines of this study.

Difierences between farm and carcass values, and between carcass and retail values are the faru-carcass and carcass-retail price syreads. These two spreads add up to the farm-retail price spread. Stated differently, tarm-retail price spread is the difference between the averace retail price
per pound for representative rotail cuts of beef and the net farm value of the quantity of live animal (2.23 lbs) that will yicld 1 pound of retail cuts. It represents oross maxieting costs, includjn profits, incurred between cattle producers and retail-store chechout counters. It includes the sum of charges for aarketing and slaughtering livestock; breaking the dressed, chill.ed carcass into wholesale cuts; transportation to consuring centers; local delivery to retail stores; cutting and packafing for the retail case; retail store scllinf expenses, includine overhead; and profits. Frice spreads are not synonvious with eross margins. Gross margin is oiten used by industry to mean the difference between winat a retailer or packer gets for his product per unit sold and what ho paid for it. Gross margir. includes costs of labor, packacins, etc. and orerhead as well as any profit for an individual firm between any two market levels. Price spreads include all the costs and profits of all firms between any two market levels for equivalent quantities of a product. Thus, a price syread is larger than a grose marein of a firm between two market levels.

An absolute anount of fam-retail price spread is not a reliable indicator of physical efficiency in marketing, nor is the farmer's share a satisfactory measure of the farmer's conomic vell-being. Operational efficiency involves a comparison of outnut and input. The product produced by the marketing system is scrvices rather than goods. The faruer's share of the consuraer's beef dollar has dropped despite the fact that cattle prices are considerably higher today than they vere in 1954. "iith no change in farn prices or production costs, the farmer's share can fall simply as a result of more processinf, transportation, packasinf, or other services. Available data sufcest that overall profits in beef packing and retailine have not been excessive relative to all maufacturin industries
in the country.
Secularly, time sexies anolusis indicates thet durint 1954-75 period, the trend in beef fam-retail prise suread vas conerally unama and ircreased at an increasing rate, especially from rid $1900^{\prime} \mathrm{s}$. This uprard trend was closely associated ritin a rapid increase in average hourly earnings oi workers in neat peckinc firms and retail stores, as well as increases in other costs op supylies and services bought by marketine fime, such as containers and packacint matcrials, fuel, power and light, rent, telephone, berling, shiopiñ and delivery costs, etc.

The upward trend in the fars retail price spread resulted nainly from the upvard trend in the carcass-retail price spread rether than the farmcarcass portion, whose trend ras slichtly dommard during nost of the period. The carcass-retail spread includes the cuttine, processing, packacinct and rerchandisinc of retail cuts of beci. This spread increased because of the rapidly rising labor and other costs. Extra labor was required as a result of the trend tovards rezoving bones from more cuts and the practice of trinming more of the fat from the cuts in recent years. Improved technolegr and increases in efficiency by beef packers and processors were greater than the increases in costs of labor and equipnent, resulting in the slowy declining Parm-carcass syread, until the last 4 years which have witnessed an upvard trend in this syread as vell.

If the past uprard trend in farmoretail price spread continues, it will mean that the famer's share of the conswer's beef dollar will continue to decline, and that the beci consumer will be faced with higher retail prices as the increased costs of providing rarletins services are passed on to him.
feasonaly, veriations in price spreads reflected tine varyinu cifectis of vrice adjustients occasioned by seasoral chances in beef vroduction aun mariretince, mu sonsonal shifts in consumer sweminis. Generally, seasonal variations in price surcads were inversely related to those in bee prices (hence values); sirreads ridened winen prices were falling and narrowed wen prices wore risinç, vecause of tine laces in retai? price adjustment as the cattle and beaf erc traded and movea throurin the processing and distribution system. A cattlc groducer can use lnowledfe of seasonal patterin to plan his production and marietine programs in order to taice advantare of months of: favorable prices.

Cyclicalle, fluctuations in price spreads éenerally directly followod fluctuations in beei values winch in turn generally noved in inverse relationsizin to the cattle cycle; that is, when cattle inventory was accurulating, beci prices (hence values and spreads) were declinins and vice versa with a one to two year las. Incrcasing inventory meant increasing sunplies to the nariot and hence decreasinc prices. A knowledce of cyclical movenents can fuide a cattle producer or potential cattle producer as to When to undertaise a major investment so as to benefit from rísinc prices.

Irreunlar movarients in price spreads were inversely related to movements in beef prices, winch were caused by a number of unusual or random factors such as adverse weather, labor strilse, price ceiling and unceiling. In astute business:ian can recosnize such nast random factors and therefore, provide sufficient insurance açainst possible future similar unfavorable factors.

A tabular analysis of lcad-las relationship between live animal and retail beef prices revealed that retailers responded more readily (with less lad to declinine live aniaal prices than they did to increasing live
aninal prices. This findine tends to refute the hyothosis that the neverse is the case. The averace besinning law in rotail prices to increasinf live aniral prices ras equal to the averaçe ending las to decressinc live aninal prices, and vas 24 days; the averase ending las in retail prices to increasing live animal prices :as equal to the averare beriming las to decreasine live animal prices and vas equal to 15 days. Stated differently, becf retailers did not increase their prices until 24 days after live animai prices had started rising; they stopped increasing their retail prices 15 days after live aninal prices had stopped rising; they started reducing their prices 15 days after the live aninal prices had started falling; and they stopned reducing their prices 24 days after live aninal prices had stonved falling. These adjustment lags in retail prices to chances in live aniral prices caused price syreads to narmow when prices were risins and to widen when the prices were falline on a monthly and seasonal basis.

SELPOTZD BIBIIOGZAPHY

Books

Chao, Iincoln I. Ftotisijcs: Hethods and Analysje. ITew York: "ickraw-Hill Book Comany, 1909.

Darrain, L. 3. Food : ancoting. New York: The Ronald Press Company, 1971.
Fowler, Stewart F. The Tarineting of Tivestocl: and Ieat. Danville, Illinois: The Intorstaje irinters and Iuvishers, Inc., 1961.
licCoy, John H . Investocl and Ieat larmeting. Westport, Connecticut: The AVI Publisisine Voinany, Inc., 1972.

Heyers, Cecil H. Blenentary Business and Economic Statistics. Belmont, California: aüsuorth Euulisininç Coipanv, Inc., 1970.

Phillins, Richard. Mana-ing for Greater Return in Grain, Feed and Other Retail Pusinoss Seminc Arriculture. Ianiattan, Ñasas: AG Press, 1973.

Shepherd, Ceoffrer S. and Futrell, A. Gene. Iaxictinr Parm Products. Anes, Iowa: The Iowa State University Press, 1969.

Snedecor, Georse ̈.. and Cochran, G. Milliam. Statistical I"cthoàs. Ames, Iova: Mhe Iow State University Press, 1973.

Williams, :illard F., and Stout, T. Thomas. Economics of the fivestock lieat Incustry. Ifew Yorl: The Nacilillan Company, 1964.

Published Reports

Elam, T. E. Tocus on Yarketins Fareins, material prepared for Illinois Farm and Food Outloo: College of Agriculture, Departenent of Acricultural Economics, University of Illinois at Urbana-Champaign, Urbana, Illinois, 28 Aurust 1975.

George, P. S., and Kins, G. A. Technical Research Report on Consumer Demand for Food Comodities in the United States with Projections $\overline{\text { I }}$ or 1900, Giannini zouncation lonofraph limber éb, Üniversity or california, Berkeley, l"arch 1971.

Remort of the USDA Tasiz Force on Iivestock-icat Price Gnread. By Don Paarlbery, Chaiman. Wawington, D.C.: Governent Irinting office, August 1.974.

Goldberí, Ray A.; Oeren, E. Kenneth; and Been, O. Richard. Narketinc Costs and I'arrins," Journal of Parm Zcononics, Vol. 47, Ho. 5 (December 1965): .2352-1330.

Hoos, Sidney; Detoach, D. B.; Farstad, Zdmund; and Bartlett, Rorald if. "Mine Behavior of "erietine !ercins," Joumal of Parn Zconomics, Volune SerIV, Nuniber 5 (Decenocr 1952): 912-929.

Iocklin, Philin D; Ocren, L. Kenneth; Atchlcy, I.. Frant; Thompson, ï. H.; "iest, I. Vincent; and recert, 彐. J. "Mat is behind Wideniñ laricetine Price Soread?" Journal of Farm Fcononics, Voluae TEXVIII, ITunber 5 (Deceraber 1950): 1550-159j.

Public Docunents

Bureau of Economics. Bcononic Revort on Food Chain Profits. Stafi Fenort to the Federal Trade Conrission. 1975.
U.S. Department of Acriculture, Econoric Research service. Arricultural Outlook. Washineton, D.C.: Governmat Printine Office, Aufusi 1975Decemer 1975.
U.S. Congress and Senate. Cost Components of Fam-Zetail Price Sireads for Poods. Renoct of the rational Comission on Rood Darketinz, June 1966.
U.S. Departiment of Comerce, Bureau of the Census. Decomposition of Fonnoric Time Serjes. Science, Vol. 123, No. 333i, Deceiver 1950.
U.S. Denarmiat oi Aericulture, Economic Research Semice. Develoments in Ifarictins Spreads for Amricultural Products in 1974, Agricultural
 April 1975.
U.S. Denartnent of Asriculture, Africultural liarietins Service, larketinc Research Service. Farm-Retail Sureads for Food Products, "iscellaneous Publication Io. 747. "ashinton, D.C.: Governmit irintinc: Office, ITovember 1957.
U.S. Denartment of Arriculture, Econo:aic Nesearch Service. Narm-Retail Snreadis for Food Products. Fiiscellancous Fublication $\overline{\text { iTo. } 741 .}$ Washingon, D.C.: Govervment Printing Office, January 1972.
U.S. Department of Africulture, Economic Zescarch Service. Nem?-Retail price Snreads for Beef and Pork, MRS 597. Fashinston, D. C.: Government Printinc Ofíice, Peoruary 1975.
U.S. Department of Acriculture, Economic Research Service. laricetine and Transiortation Situation. "̈ashincton, D.C.: Government Printing Orice, 2954-July 1975.
U.S. Dejartnent or Asriculture, Economic Research Scrvice. Price Snreads for Bees and Tonis: Ievised Sexies 1949-69, iisellaneous iublicetion Fio. 1174. esiminton, D. ©. : Covernant Irintins orfice, lay 1270.
U.S. Denartinent of Ariculture, Dconomic Rescarch Service, larireting Economics Reserici Division. Seasonal Variations in Far: Tood Prices
 Governent -rinting Office, Jenuary 190́l.

Unpuilished I.aterial

Braunschmeis, Robert T. "The Overstatement of larketine liareins by the U.S. Departnent of Arriculture," i . ". Braunschmeig's testimony before a U.S. Congressional Co:mittee discussins the difficult and complex issue of faynuretail mareins on beef. The Frofer Comany, Cincinnati, Ohio, 19 iove iber 1974.

Ginn, Bruce A. "rarteting iarcins for Beef and Felated Considerations," paper prepared for South Dahota Becf Field Dav, "̈estern Livestock I:arketing Information Project, 31 October 1915.

Hays, Henry M., Jr. "Mhe Oreanization of the stanle Food Grain Inarketing Syster in Torthern ifiecria: A Study of Jfficiency of tine Iuralmuban Iink," Ph.D. dissertation, Kansas State University, 1973.

Seltzer, Richard. "Pricing Within the Food Processinc Inciustr"," paper prepared for In-House Use on Contract INo. YO. Coll. National Comrission on Water Cuality, Develoment Planning and Pesearch Associates, Irc., IManhattan, Kansas, April 1975.

APPEMIDIX A

1954	J9wnyy	1	－－： 30	：5．5	8．4．3	63.3	U．；	13．5	\％ 0
	Hercuary	2	－-0°	i．．${ }^{\text {a }}$	11．7	$0 \cdot 5$	0.3	15.3	2．． 0
	yareia	3	－123	4i．：	－9，4	$6{ }^{60} 0$	9.1	16.3	2 ar
	dril	4	－$=1$	＋5．0	52.2	60.6	－ 0 ？	14.4	$2{ }^{2} .7$
	\＃ay	5	－1．0	43.3	33.3	67.0	8.3	13.3	22.1
	Junc	6	－	42．7	¢2．2	63.1	$7 . \%$	15.9	23.4
	July	$?$	－124	4．1．${ }^{\text {a }}$	33.7	67.6	4.9	15.9	23．4
	44\％8t	8	－： 3	－5．2	53.7	60.8	8.2	13.1	21.3
	Seprezaer	9	－：22	47．：	50.5	67.9	9.1	11.9	$2 . .3$ 20.5
	Octoler	20	－3i	¢\％\％	55．${ }^{\text {a }}$	69.2	8.5	12.5	2 c .6
	Hoverber	11	\therefore－． 0	¢－3	57.2	09.3	0.1	12.1	$2 C .6$ 20.5
	Decebocr	12	－：19	90．j	50.0	69.2	7.7	11.2	20.5 19.9
Armual	Avera；			43.9	54.1	67.8	7.7	13.7	22.4
1955	Janusiy	13	－118	51.2	59.6	69.4	3.5	9.8	18.3
	Fehzuary	14	－：17	43．2	57.2	69.0	8.5	11.8	19.8
	Harrh	15	－126	49.9	55.7	63.2	6.7	12.5	19.2
	dipll	15	－115	46.9	35.4	67.9	8.5	12.5	21.0
	Hey	17	－114	¢4．2	52.0	66.3	7.9	14.3	82.2
	\％me	18	$-: 13$	43.3	51.1	60.7	7.8	15.6	23.4
	Juy	19	－：12	43.3	50.8	66.1	7.5	15.3	22.8
	${ }^{\text {cigectuat }}$	20	－il1	43.1	51.6	66.0	3.5	14.4	22.9
	September	21	－210	43.6	53.6	66.7	10.0	13.1	23.1
	October	22	－：09	42.0	51.4	65.3	9.4	14.9	25.3
	Movenier	23	-1.08	39.5	49.0	64.9	9.5	15.9	25.4
	thaceuber	24	－107	38.2	45.7	64.1	8.5	17.4	25.9
Annual	Averace			44.4	52.8	66.8	8.4	14.0	22.4
1956	Jamuary	25	－206	38.2	18.4	62.9	10.2	14.5	24.7
	？ebrusry	25	－：05	35.7	44.3	61.4	8.6	17.1	25.7
	Larah	27	－ 204	36.7	44.0	60.2	7.3	16.2	23.5
	dpril	23	－203	30.5	45.6	60.8	7.0	15.2	$2 \mathrm{2a}$ ．
	\％as	29	－102	33.9	45.5	62.0	6.6	16.5	25.1
	Jume	30	－101	39.3	48.8	63.1	9.0	14.3	23.3
	July	31	－100	42.5	51.2	64.3	8.6	13.1	21.7
	Aucuat	32	－ 39	49.2	50.7	67.5	9.5	8.8	18.3
	Septenber	33	－ 93	51.7	$6{ }^{\text {cos．}} 4$	72.7	10.7	9.3	20.0
	October	34	－ 97	49．：	59.9	72.2	10.5	12.3	22.8
	Soverer	35	－ 36	$44 . \overline{6}$	54.1	70.3	9.3	16.2	25.5
	Deceuber	36	－95	41.1	50.0	67.9	8.9	17.9	26.8
Ammal	Averase			42.2	51.1	65.4	8.9	14.3	23.2
1957	January	37	－94	40.1	50.1	66.1	10.0	16.0	
	February	38	－ 33	38.7	47.5	65.9	0.8	18.4	27.2
	Harch	39	－ 92	42.0	50.3	65.0	8.2	14.7	22.9
	April	40	－	44.2	52.4	67.7	0.2	15.3	23.5
	May	41	－ 30	44.3	52.9	69.2	8.1	16.3	24.4
	June	4	－ 69	44.3	53.2	70.0	8.4	16.8 ，	25.2
	July	43	－ 88	43.2	57.2	71.2	9.0	14.5	23.5
	Aucust	44	－${ }^{\text {a }}$	49.2	50.2	72.7	9.0	14.5	23.5
	Septerber	45	－ 36	47.5	55.6	73.2	7.3	17.6	25.5
	October	46	－ 85	46.9	54.2	72.0	7.4	17.3	25.2
	Noveribar	47	－ 84	40.3	57.0	71.7	8.7	14.7	23.4
	Docenber	48	－ 83	50.4	58.7	73.6	7.3	15.9	23.4 23.2
Annual	Averaje			45.4	53.9	69.9	0.5	16.0	26.5
1958	January	49	－ 82	52.5	61.6	76.5	9.0	14.9	
	Pebruary	50	－ 31	53.6	60.9	77.6	7.3	16.7	23.9 24.1
	Harch	51	－ 20	57.2	63.4	79.9	5.6	16.5	22.1
	April	52	－ 79	57.4	63.7	82.0	6.3	18.3	24.6
	Lav	53	－ 73	56．：	64.4	81.7	8.0	17.3	25.3
	June	54	－ 77	55.5	62.0	32.2	7.0	20.2	27.2
	July	55	－76	54.3	61.6	02.1	6.7	20.5	27.2
	Aucuat	56	－75	50.9	53.2	79.9	7.3	21.7	29.0
	Septenber	57	－ 74	52.3	59.6	79.6	7.3	20.0	27.4
	October	5	－ 73	53.1	50.6	79.9	8.5	19.3	27.8
	Hoveator	5）	－ 72	52.5	60.4	40.2	0.4	19.8	2 c .2
	Uecenber	60	－ 71	53.6	¢1．8	80.5	0.4	18.7	27.1
Annual	Averaje			54.0	61.5	4\％． 2	7.5	18.7	26.2
2959	Jamary	61	－ 70	55.5	6，6．2	11.8	9.7	1\％．6	
	Pebrunry	82	－is	52.7	63.2	4．2．5	18.5	19.3	
	Harch	63	－8，3	50.8	63.3	1\％\％．4	7.1	19.1	27．0
	Alril	64	－${ }^{\prime \prime}$	5% \％	6.6	（3\％．，	8.0	26．9）	24.2
	La：	r．t，	－ 511	1\％\％	51．013	じ\％．9	7.7	1\％，	$2 \% .3$
	Jure	1,6	－${ }^{\text {r }}$	55.2	5%	边り	： 8.1	1\％．2	2\％
	July	61	－ 21	5．${ }^{2}$	¢く．	\％ 18	18．\％		27.3
	Auryat	1．13	－	¢\％号	60.3	ن1．${ }^{\text {a }}$	6.7	80	2120．0
	Seizenuer	9）	－ 5	2，${ }^{\text {a }}$	ficil	－．．${ }^{\text {j }}$	13．：	1．1．2	\％
	Ocroler	\％	－ O_{1}	！．．	1，0．1	18．4	1．1	$0 \cdot 1$	2\％
	Sovcsitar Deaciur	\％1	－ 8.2	51.8	B2i	H：1．）	10.1	\％ 3 ，	3
Annual	avers：\％：	\because	－ 5	1．4．6	$0 \cdot 3$	111.1	6． 3	23.1	5\％．

1900	Јапиมบ	73	- r_{2}	5\%.3	-1. 1	du. 7	3.?	29.0	2-. 9
	Pebreary	it	-	?	01.0	bi.e	0.5	2. 4	2%
	bnaci	"	- r_{2}	5\%.\%		de:	6.7	2.. 3	2'. ${ }^{\text {a }}$
	A:ril	70	- $\%$	5.0.	02.6	81.3	7.3	- $\%$. 0	23.3
	L2y	71	- 5	4,\%	$0 . .0$	81.3	7.7	29.3	27.0
	\%unc	73	- 53	52.0	53.0	80.7	3.0	21.3	23.7
	July	T9	~ 52	52.3	¢3.7	3. 1	7.7	21.4	29.1
	Ай78t	80	- 5i	49\%	$5: 9$	80.0	3.1	22.1	30.2
	Septcsuer	81	- 50	14.0	5 Cr .4	74.2	7.4	22.3	30.2
	Oetober	32	- - 7	63.7	50.1	73.8	7.4	-2.7	30.1
	Novc-ber	33	-	50.3	50.6	73.9	6.3	22.3	ze.
	Decerwer	$8:$	- 47	54.8	¢0.0	79.7	7.2	29.7	26.9
Annua)	Aver-te			¢く.	59.5	- ${ }^{\text {c }}$ 2	7.4	20.7	25.1
1961	January	85	- 5	54.0	61. 6	81.3	7.6	19.7	27.3
	Yebruary	80	- $\because 5$	52.8	60.8	01.0	8.5	20.2	2 t 3
	Harct	67	- 4	50.1	53.6	80.5	7.9	21.9	29.8
	April	90	- 3	+9.3	50.7	79.3	7.4	23.1	36.5
	L'py	89	- $: 2$	\$6.0	51.0	7.6	8.0	24.6	32.6
	Juse	90	- 42	44.4	5 c .7	75.5	0.3	23.8	32.1
	July	91	- -	44.4	52.1	75.5	7.7	23.4	31.2
	surgast	92	- 39	46.9	55.0	73.8	3.1	20.8	88.9
	Seytezber	93	- 33	47.8	54.8	76.9	7.0	22.1	29.1
	Octoter	94	- 37	48.2	55.5	77.3	7.3	21.8	29.1
	Sovemoer	95	- 35	49.9	55.5	73.2	5.7	2\%.7	28.4
	Deceuber	96	- 35	51.4	5×1.0	73.8	6.6	20.8	27.4
Annual	Averse			43.8	56.3	70.4	7.5	22.1	29.6
2902	Jenuary	97	-38	52.3	60.2	79.4	7.4	19.2	26.5
	Fetruary	93	- 33	53.2	60.4	79.7	7.2	19.2	26.5
	Larch	99	- 32	54.2	60.9	81.0	0.7	20.1	26.3
	deril	100	- 31	54.0	60.9	80.7	6.3	19.8	20.1
	Yay	101	- 50	52.2	59.4	79.8	7.2	20.5	27.6
	Јแาง	102	- 27	50.8	57.9	79.9	7.1	22.0	29.1
	July	103	- $2 \pm$	52.3	59.5	79.8	6.7	20.3	27.0
	Auguat	104	- 27	55.4	62.7	80.9	6.3	18.2	24.5
	Serterber	105	- 26	59.5	65.8	84.9	6.3	19.1	25.4
	Octobe:	106	- 25	58.4	64.1	84.3	5.7	20.2	25.9
	Soverber	107	- 22	59.5	65.5	85.0	6.0	19.5	25.5
	Decerber	103	- 23	53.2	64.6	84.5	6.4	19.9	26.3
Annual	Averata			55.2	61.8	81.7	6.6	19.9	26.5
1963	January	109	- 22	55.2	61.5	85.5	6.3	22.0	29.3
	Peoruary	116	- 21	50.5	50.8	80.7	6.3	23.9	30.2
	Larch	111	- 20	46.3	53.5	77.7	6.7	24.2	30.9
	faril	112	- 29	47.5	53.9	73.0	6.4	24.1	30.5
	Eay	113	- 23	45.2	52.9	75.8	7.7	22.9	30.6
	June	114	- 17	40.0	53.4	75.8	7.4	22.4	29.8
	July	135	- 16	50.3	57.3	77.4	6.5	20.1	26.0
	Aucust	116	- 15	50.2	56.9	79.0	6.7	22.1	28.3
	Stpteber	117	- 14	49.2	56.4	79.4	7.2	23.0	30.2
	October	113	-	43.4	55.4	73.7	7.0	23.3	20.3
	Hoverter	119	- 2^{2}	86.8	55.8	78.5	7.0	24.7	31.7
	Deceber	1.20	- 11	44.3	51.8	77.9	7.5	26.1	33.6
Armusi	Averace			48.4	55.3	78.5	6.9	23.2	30.1
1964	January	221	- 10	45.7	53.1	76.7	7.4	23.6	31.0
	Pebruary	122	- 9	43.1	51.4	76.1	8.3	24.7	33.0
	Laren	123	- 8	43.5	51.0	74.7	7.4	23.7	31.1
	April	124	- 7	42.4	50.4	73.6	8.0	23.2	31.2
	Liay	125		41.0	42.8	73.4	7.8	24.6	32.4
	sune	126	- 5	43.9	50.7	73.6	6.8	22.9	25.7
	July	127	- 5	47.7	58.1	75.7	6.7	21.6	28.3
	Aujuat	123		50.4	57.5	71.4	7.1	19.9	27.5
	Seprejer	129	- 2	51.5	57.9	$8 ¢ .1$	5.3	22.2	20.5
	0 Ototer	173	- 1	49.5	55.5	75.9	6.6	23.4	29.4
	Hoverer	131	0	48.7	55.0	79.2	6.3	24.2	36.5
	Doccuoe:	13ic	,	47.7	54.2	74.9	6.5	24.7	31.2
Annuel	1 Averaie			46.2	53.3	76.5	7.1	23.2	30.5
1965	January	133	2	43.1	54.7	76.9	6.6	22.2	24.3
	Pebsuary	134	3	$47 . \%$	53.5	76.2	6.4	22.6	2\%.0
	L:3.as.:	135	4	40.4	54.5	75.5	6.1	81.0	27.1
	Airil	$1 \% 6$	5	50.9	$5 \times .5$	77.5	5.6	21.0	26.5
	Lay	12\%	7	54.0	6.54	9.3	0.4	23.?	$2 \mathrm{~F}, 3$
	tune	23is	7	\%1.0	62.3	42.3	5.3	20.6	
	Ju17	13	4	5	$66^{6} 9$	43.3	c. 4	23.1	$2{ }^{2} 9.5$
	A M.18:	16\%	,	53.15	its. 1	(\%) ${ }^{\text {a }}$	6.5	2\%0	29.1
	5eprbuber	14:	\because	5×1	$5 \% .6$	21.7	6.3	2 cos 1	240\%
	Pactular	12\%	\because	\% 51	\%	31. ${ }^{\text {a }}$	5.9	35.0	**.')
	Hoverser	148	1\%	52.4	517.6	\%2.j	C.	<4.8	34.3
	fucimbiar	144	13	52.1	5.0	41.6	5.9	23.6	S's.;
disual	1 Avirisue			51.13	53.0	80.1	6.2	22.1	24.3

1960	Jงxコ下	3：5	1.1	$8 . c .3$	b！ó	11.0	3．13	$\because \%$	20.4
	jctury	込	15	5\％．U	6， 3.1	3.1	2.1	－$=0$	－．．－1
	Escred	1：7	－0	\％i．s	U－． 1	$\therefore .1$	$\therefore j$	C．．0）	2．．．）
	A－ril	1＊3	1%	$\therefore 3.0$	w． 3	34．0	2.1	$8{ }^{5} 3$	－\％． 0
	biar	2：9	13	\therefore－0	－i． 7	E． 3.1	0.1	－${ }^{\text {a }} 1$	－1．2
	Jucue	150	19	：0．3	20.9	01.7	0.1	Ci．${ }^{\text {c }}$	SJ．${ }^{3}$
	Jux	151	20	50.5	50.2	31.5	0.4	25．6	31.0
	Ayruet	452	21	51.0	57．${ }^{\text {2 }}$	01.7	0.2	： $2 . y$	50．1
	3epteber	153	22	52.0	58.1	84．3	01	Exi．d	30.2
	October	： 4	53	50.6	59.4	U． 3	5.3	－1．9	50.7
	Xaverber	25	24	69.4	55.7	± 0.3	3.3		30.9
	Deacber	150	25	47．3	50.4	＜3．6	7.1	27．8	34.3
Arnur：	1 Arerzjo			52.3	30.4	82.4	5.2	23.9	30.1
1967	Jexiary	257	26	51.1	58.2	50.4	7.1	E． 2	29.3
	Fetmuary	153	27	¢0．1	50.3	80.9	0.2	2\＄．6	30.3
	Mazra	259	26	\＄9．7	55.2	40.3	5.5	－3．6	31.2
		1 O	29	50.0	50.3	90.4	0.3	24．1	30.1
	MEP	101	30	51.8	58.3	79.6	0.5	2i． 3	27.8
	Juse	15.2	31	53.5	59.9	81.9	5.4	22.0	28.4
	Euly	153	32	55.0	01.6	83.3	0.6	21．7	28.3
	Angint	164	33	56.2	62.1	？4．0	5.9	2．．9	27.8
	Septembe：	305	36	55.4	65．0	35.5	6.6	22.5	29.1
	October	Itio	35	54.8	61.1	85.3	0.3	84.2	30.5
	Morewer	167	36	53.7	－ic． 2	34.4	6.5	二º 2	30.7
	Dececter	－58	37	54.2	60.7	85.3	6.5	64．6	31.1
Annua］	1 Ancraje			53.0	59.4	82.6	6.4	83.2	29.6
1968	5．scalats	259	38	54.6	61.1	84.3	6.5	23.2	29.7
	Pebruary	170	39	55.7	62.4	85.1	0.7	22.7	29．7
	Herce？	－71	40	56.4	－2．4	85.6	5.0	E3．2	29.2
	4 ycil	272	41	50.0	62.3	25.6	6.3	23.3	29.6
	Eact	173	42	55.7	52.1	85.8	6.4	－3．7	30.1
	Jinye	174	43	55.9	62.6	85.3	6.7	23．2	29.9
	$5{ }^{505}$	175	44	57.7	64.2	37.1	5.5	22.9	29.4
	Aurus：	175	45	57.9	64.2	87.0	0.3	22.8	29.1
	Senterber	177	46	57．：	63.9	88.4	6.5	C4． 5	51.0
	Oetober	178	47	56.0	62.7	87.7	6.1	25.0	32.1
	Eavelber	179	48	57．${ }^{\text {e }}$	63.9	83.1	6.1	24.2	30.3
	Deceeber	130）	43	59.1	65.6	88.5	5.5	22.9	29.4
Annual	1 kserace			56.7	63.1	86.6	6.4	23.5	29.9
1969	Jecruary	281	50	38.9	65.8	89.5	6.9	23.7	30.6
	Pcaruary	2E2	5	53.8	64.8	39.6	6.0	24.8	30.8
	March	143	52	61.5	67.5	30.9	6.1	23.3	29.4
	A0Fil	184	53	63.8	65.3	93.3	6.1	23.4	29.5
	Egy	255	54	70.0	76.3	97.8	6.3	21.5	27.8
	dume	2 co	55	72.7	77.6	101.9	5.9	24.3	30.2
	Jusiy	157	56	65.6	73.0	302.4	7.2	29.4	36.6
	Arigust	184	57	63.0	69.5	101.1	6.5	31.6	38.1
	Sretenber	189	50	59.5	66.7	99.1	7.1	32.4	39.5
	Detober	190	59	57.7	64.1	95.2	6.4	31.7	37.5
	Foremer	191	60	57.7	63.9	96.5	6.2	32.6	32.3
	Teoctiber	292	61	58.5	65.0	96.9	6.5	31.9	33.4
Animal	1 Areasge			62.8	63.7	96.2	6.5	27.5	34.0
1970	Jxamary	153	62	53.8	67.5	97.5	8.7	30.0	36.7
	Fasmary	194	63	60.7	67.3	97.3	6.6	30.0	36.5
	と気近	195	64	64.5	71.0	99.4	6.4	20.4	34.4
	A -131	P35	65	64.0	70.4	99.9	6.4	29.5	35.9
	Exy	207	66	41．9	63.1	99.4	6.2	31.3	37.5
	June	193	67	63.3	67.5	94.5	5.6	29.0	34.7
	July	149	3	65．：	72.4	100.7	7.0	23.3	35.3
	A＜rount	200	63	63.0	70.3	100.4	7.3	30.1	37.4
	Septesber	202	70	52.7	6is．${ }^{\text {\％}}$	90.7	6.1	30.4	37.0
	Octoter	20%	71	66.2	66.3	$4 \% .9$	6.1	31.6	37.7
	Inverber	303	72	57.4	65．0	97.6	7.6	32.6	40.2
	Ineccaber	204	T3	5，	－3．5	13.5	7.2	33.0	46.3
Ammal	Averare			61.5	6．3	9.6 .6	6.6	30.5	$3 \% .1$
197		205	74				9.6	27.5	
	Februncy	K05	73	67.4	75.7	101.3	7.3	20.6	3\％．9
	Liarch	む）	\％$\%$	Luc．l	15.4	10c． 2	7.3	26.2	3\％． 5
	Aricll	20，	ri	E\％． 3	75.1	100．0	7.9	くu．j	36.2
	Hixy	－ OH_{5}	13	Pris．rs	71．\％	！！ 1 －＇t	\％ 1	2\％${ }^{\circ}$	30.2
	Jure	230	73	－\％．\％	$\%$ \％．$\%$	ぱ」。？	7．＇	30.1	\％1．）
	5 cly	21：	is）	t\％\％	720	2isco． 7	1.7	：＂3．${ }^{2}$	20． 9
	A．Mrist	＊゙＊	：1	1．1．，	r\％\％	10：． 1	1.1	cis． 1	30.1
	Ex：urcar－	2：	c	des． 1	＇r＇．．	11，	7.1	30.1	：\％．13
	O－Lover：－	5．28	\because	－1．）	？，	112\％．．．	$\cdots \cdot$	36．	－1．1）
	Fove．．lor	22\％	14	$\because \cdots$	7\％．	11．．．${ }^{\text {a }}$	1.1	－15． 1	3 Cl
	Leremiuer	2 Lu	（i）	71． 1	$\cdots \cdots$	（19＋1．）		．${ }^{\text {S．}}$	\％
Annue？	averame			i．1．－${ }^{\text {d }}$	$1 . .1$	1tai．j	$1 . \%$	，the\％	$3 \cdot 1.2$

197\%	Jerausy	2:7	iv	74.5	36. 5	211.5	U. 5	29.0	37.5
	Fe\%rundy	: \%	37	\%. 3	32. \because	$\therefore 25.3$	7.0	33.1	4 4 .9
	Eaxai	- : ${ }^{\text {a }}$	23	71.3	7 - !	13\%.s	7. 5	30.7	4i.0
	-1\%11	220	39	76.	7%	-12.0	7.2	34.6	41.9
	Ex	2?1	90	12.3	31.2	\$11.4	4. 6	30.2	35.6
	5 Scse	222	91	77.4	35.2	113.5	7.9	23.3	50.0
	July	223	22	77.3	24. 1	± 17.3	7.1	32.9	40.0
	A以汖t	22.4	93	70.9	\%00	115.3	7.7	37.2	42.9
	Serterber	225	94	59.5	\% 6.3	112.9	7.3	50.1	43.4
	October	203	95	69.3	76.5	112.3	7.5	36.3	43.8
	Noveaber	¢ 27	96	60.5	74.2	212.3	7.7	33.1	45.8
	Desestuer	220	97	74.5	92.7	1i¢.6́	8.2	31.9	40.1
Amual Averaec					30.1	-13.8	7.7	33.7	41.4
1973	ysedury	229	98	8 8. 2	90.4	122.1	8.2		
	Fekruary	2;0	99	87.4	95.9	130.3	4.5	34.4	43.0
	Barch	231	100	92.2	99.3	135.3	7.2	36.0	43.1
	AFEil	2,32	1 Cl	91.1	99.8	136.5	8.7	36.2	4.9
	3 Smy	23	102	92.5	99.2	:36.0	6.7	36.8	43.5
	Jurse	234	103	94.4	101.5	135.5	7.1	34.0	41.1
	$51.2 y$	235	109	96.5	: 32.7	130.3	6.2	33.6	39.8
	AMSust	23E	107	108.3	111.3	144.2	3.5	32.4	35.9
	Septezer	:37	106	91.7	100.2	144.3	8.5	44.7	53.2
	October	236	307	83.0	92.7	136.0	9.7	43.3	53.0
	Ioveaber	< 59	108	79.8	90.3	334.9	10.5	44.6	55.1
	Deserioer	240	109	79.4	93.6	134.4	14.2	40.3	55.0
Anrual Averace				89.9	33.1	≥ 35.5	8.2	37.4	$4 \overline{2} .6$
2974	danuery	$2: 1$	110	95.6	107.1	145.0	10.5	35.9	46.4
	Pexaruax	26	111	94.1	138.3	150.0	14.2	41.7	55.9
	Biech	263	112	85.6	96.3	142.2	10.6	45.9	50.5
	A2x+2	240	123	\%4. 2	95.0	136.4	10.8	41.4	52.5 52.2
	¢f2y	245	214	83.1	95.5	$135 . \mathrm{C}$	12.4	39.5	51.9
	Јune	246	115	7\%.7	, 90.2	132.2	12.j	42.0	54.5
	july	247	216	$9 \mathrm{C}$.	203.4	137.9	12.5	34.5	47.0
	Aurust	243	117	97.7	106.6	143.4	8.9	36.8	45.7
	Septerber	-49	118	85.2	96.2	141.5	11.0	45.4	56.4
	Clatomer	250	219	82.0	93.4	236.8	21.4	43.4	54.8
	Toventer	251	120	73.7	89.9	134.4	11.1	44.6	55.7
	Derember	252	121	77.1	87.5	132.2	20.4	44.7	55.2
Annual sverasit				26.1	97.4	138.8	11.3	41.4	$5 \overline{0} .7$
1975	Iseungy	253	122	76.6	88.8	132.8	12.2	44.0	56.2
	Tebruary	25.	123	73.2	64.7	123.C	11.5	44.3	55.8
	Enarch	255	224	75.7	80.3	127.0	10.6	40.7	51.3
	Agril	256	125 126	89.9 107.9	101.2	233.9	11.3	32.7	44.0
	\%.y	257 258	126 127	103.9 210.2	115.9 123.2	147.8 157.8	12.0	31.9	43.9
	Juty	259	128	105.3	129.7	161.0	13.9	34.6	47.6
	Ausuet	260	129	30.9	21\%.1	155.5	15.3	43.4	50.7
	Segtamer	262	130	10C.?	114.5	152.8	14.3	34.3	52.6
3-quarter Avcrare				9<.4	105.1	244.2	12.7	39.0	52.7

a - Fosision of tces בinit :ior Jariary 1954 to seriemer :375.
 tite fontra

APPInidIX B

APFMIIX B

HO:i FROAII PRICE, NMOIESAIE PRICE
OTi) RAT: MICE USTD IM CO:TPUMIG
Bin VALUS AID PAICE SEAHDS
AD DERIVIN ${ }^{1}$

Retail Price:

Retail price per younc of choice beef is the estimatcd averafo price of all salable cuts obtaincd from a choice carcass, includiñ ground beef and stew meat. Prices oddained by Reononic Research Service of the U. S. Departraent of Africulture (ins) from a croun of retail food chains, as well as Bureau of Labor Statistics (BLS) nrices, have been used in calculating this price.

EnS now reccives wee'cly retail price reports from 26 retail food chains. Seven renort for wore than one of their divisions. Fieadquarters of the 40 divisions reyorting are located in 27 Standard l. etropolitan Statistical Areas (N:SA)--six in the Northeast, seven in the North Central region, 10 in the South, and four in the West.

Each division's rejort contains the weelly nrice list and other information sent to stores in its territory. The list gives regular prices for all cuts and also prices for cuts on special sale.

ERS calculates two simple averages of prices reported for each cut by

1U. S., Denartrient of Aicriculture, Fconomic Research Service, FarmPetail Snreads for Pood Prociucts, Kiscellancous Publication Mo. 741 (Vashincton, D.C.: Goverment Printing Office, Januamy 1972), pp. 71-75.
food chain divisions in cach of the four refions. Cne avoraje is for resular prices--tiosc prevailine in the ausence of syecial sales. The

 use a special-sales price wich applies only durins the First part ois the week and has been carried over from the preceding veek.

To obtain \& U.S. averaçe of recular prices and a U.S. wecials* ircluded avereje for cach montin, Fins weicits rejonal rontily evorares =or each cut. "Feisints were calculated irom recional por canita consuartion and population data. 2 derives monthly prices for each cut by averafing weekly prices.

In calculatins averase retail nrices of choice oecif cuts, Z卫S uses BLS prices for the cuts for wich they are availeble, instead of rood cimin prices. To derive resular and snecials-included prices, Tms adusts RIS prices by using U.S. average prices computed from food chain prices. For exanmle, two-tinirds oi tine difference between the regular and the mecialsincluded price oi round steak is added to the BIs price of that cut to derive an adjusted BIS rerular price. The renaining third of tine difference is subtracted froa the BiN price to derive the BLS specials-included price. Prices are derived for tine other BLS-priced cuts in the same ianner. These adjusted BIS prices are converted to a nonthly basis by addine to or subtracting from then differences between corresonding weerig and zontily chain-store averace prices.

Adjustments by ITRS are designed to derive one price tinat is an averace of all prices and another price that is an averaice of reitular prices only. BIN prices are not affected by all syecial vrices in tioe z.es
sample of suorcs-mion exavic, wecend succial Mrices in stores visitcu on Tuesday. Nis prices ere used instcad of ciain prices because they are. considered more renresentative of prices in otores of various trees and sizes throurhout tize Unitcd Stetes. BTN-griced cuts accout sor aiout 47 percent of the weicht of all salable cuts per 100 nouncs or cooice carnass, ircludins sround beef and stew meat.

FRS weichts U.S. averace prices of cuts to calculate tio U.S. avoraje prices of choice becí-Z U.S. conposite ređular price and a U.S. conosite specials-included price. Weirhts used are the estirated averaje vei nits of cuts sold per 100 younds of choice beef carcass (See Table 14).

FiS dexives its averace price for choice beef bry subiractiny 65 yercent of the difference between the U.S. composite rogular and specialsincluded prices fron the latter of these tro prices. This adjustuent is designed to account for the effect of extra volunes sold at syecial prices. The composite specialsmincluded price is an escimate oi hat the averaje Price would be if each cut made up the sarne proportion of total salce tiat it represented of the carcass. IIowever, specially priced cu.ts procably naice un larcer percentares of total sales than the nercentafes they represent of the carcass. Retailers make available lareer cuantities of the cuts on sinecial sale by buring extra portions of the carcass that vield these cuts.

Wholesale nrice:

ERS estimates U.S. averace wholesale prices of choice carass beci based on Chicaso and west coast prices. Price obscrvation at variouz points shows that except on the west coast, wholesale nrices of carcasses throughout the United States vary closely with prices in chicajo. Ine Chicaco price used is the cerlot price for choice steer carcasses \%ciondi;
 total retail cuts, and retail value per cut and per 100 lb retail cuts from carcass ${ }^{\text {a }}$

Iters
Percentaje of total Price per Retail cuts Iroil carcass ${ }^{\text {b }}$
pound
Value/100 1b

Percent Dollars Dollars

Steais
Porterhouse, BI ${ }^{\text {c }}$
Club, BI
Club, BO^{d}
T-bone, BI
Sirloin, BI
Round fullcut, BI
Round top, Bo
Round botton, BO
Chuck steak, BI
Pib, BI
Flank, BO
Poasts
Rib roast, BI
Rib rolled, BO
Chuck blade, BI
Chuck arm, BI
Chuck roast, BO
Sirloin/Round tip, BO
Eye round, BO
Rurap, BO
Rump, BI
Other cuts
Plate, BI
Short Rib, BI
Brisiset, BO
Ground beef
Ground chuck
Stew, BO
Shin or Shank, BO
Shin or Shank, BI
Kidney
Total

	Percent	Dollars	Dollars
Stea's			
Porterhouse, BI ${ }^{\text {C }}$	2.1	1.58	3.32
Club, BI	1.3	1.49	1.94
Club, $\mathrm{BO}^{\text {d }}$	0.5	2.18	2.09
T-bone, BI	3.6	J. 55	5.53
Sirloin, BI	6.6	1.33	8.78
Round fullcut, BI	3.6	1.15	4.18
Round top, B0	3.5	1.28	4.43
Round botton, BO	2.9	1.32	3.33
Chuck steak, BI	2.3	0.74	1.70
Pib, BI	2.0	1.24	2.43
Flank, BO	0.7	1.36	0.95
Roasts			
Rib roast, BI	6.0	1.10	6.60
Rib rolled, BO	1.2	1.57	1.88
Chuck blade, BI	8.2	0.71	5.82
Chuck arm, BI	5.0	0.85	4.25
Chuck roast, B0	5.4	0.94	5.08
Sirloin/Round tin, BO	3.5	1.34	4.64
Eye round, 30	1.5	1.53	2.30
Rump, B0	3.8	1.26	4.79
Runp, BI	1.2	0.94	1.1 .3
Other cuts			
Plate, BI	2.1	0.38	0.80
Short Rib, BI	3.1	0.59	1.83
Brisiset, B0	2.8	1.09	3.16
Ground beef	16.4	0.62	10.17
Ground chuck	2.0	0.83	1.66
Stew, BO	6.0	0.93	5.58
Shin or Shank, B0	0.3	0.83	0.25
Shin or Shank, BI	2.0	0.60	1.20
Kidney	0.3	0.39	0.12
Total	100.0	--	$99.64{ }^{\text {e }}$

Prices used were for llay 1969
$b_{\text {ithe fifgures show are net of retail cutting loss and retail shring. }}$
$c_{\text {Bone in }}$
Bone out
${ }^{\text {e }}$ In other words, a composite price per retail pound oi 99.6 \%
Source: John H. ICcoy, "Investock and heat Naricting," 1972, rable 15-1, p. 395.
©00 to 700 ..nous cach. Rinis price is adjusted to one ronresentative or the entire Unitoca "Jtates, cxcent the west coast, by adaine: 75 cents, Mis 75-cent uifrerontial :us estiwated by veichtinc price differcnces betreen Chicajo and other arricts by consumrtion in areas surrounding those narinets; it consists nainly of transoortation costs.
 derived from a sinle averace of carlot and less-than-carlot vxices for 600 to 700-pound choicc carcasses in Ios Anceles, San Francisco, and the Seattle-Tacou- Fontland area-six prices in all.

In computine a U.S. averace, ITS assigns the west coast price $\&$ weight of 0.109 ; and the price for the rest of the United States, a weight of 0.366. The weicints uscd were calculated fron.2 recional consungtion and population data.

Prices for tine Chincaro and west coast markets are simple averases of the mean of the daily rance of quotations. Mhe FederalmState Naricet ifews Service reports daily rances from samples of sales believed representative of all sales. "Wecry averages are published in "Jivestock, I"eat, Fool larket News, Viecoly Sumamy and Statistics," a publication of the Iivestock Division, Conswicr and Jarketing Service (C\&ES), USDA.

Farm nrice:

A fari price of choice beef cattle is derived from (l) monthly average prices of choice steers, all weights, at seven leading midwectern markets (Omaha, Sioux City, Kansas City, National Stock Yards, South St. Joseph, Sioux Falls, and South St. Paul); and (2) monthly averages of daily quotations to California feeders and ranchers for choice steers in the 900 to 1,100-pound weigint class. Prices at the scven markets are weichted by actuel volumes sold to arrive at an average price for those maricts. Statistical

Renortins Service of the USDA (SRS) end the Investock Division, CRJS, collect price and volume data for the seven nerkets. Inivestock ifaricet :"evs Service reporters provide Califomia cuotations by cathoninf information fron burers, feedlot oncrators, and ranchers and periodically checline sales records.

To convert market prices to a "fam-eate" basis, Jins deducts 60 cents from the averacge price per 100 pounds for the seven merkets and 50 cents from the Califomia quotations to cover costs of assembline and selling. From 1949 on, the same deductions have been made and were estimated from data fumnished by market officials and othas connected with livestock marketing.

A U.S. averace price is calculated by weirhting the seven-market price by 0.35 and the Califormia quotation by 0.15 . These weichts are based on estimated marketincs of fed cattle in 3 years--1955, 1961, and 1964-in 39 cattle-iccaing states. The veight assigned tine CaliPornia price is the proportion of the total marketed in the three Pacific Coast States and IVevada; the weicht assigned the seven-market price is the proportion marketed in the other 35 states.

APP留DIX C

Yent	JAM.	FL3.	Pas.	APR.	I:AY	JUTE	JULY	AUG.	SEM\%	OCT.	IOV.	DEC.	$\begin{aligned} & \text { YEAN.Y } \\ & \text { AV. } \end{aligned}$
1955	27.36	26.06	25.65	24.32	22.20	21.82	22.20	21.39	22.49	21.51	20.32	19.54	22.96
1956	20.16	19.54	19.99	20.25	20.24	20.33	21.37	24.30	26.16	25.07	23.36	21.41	21.93
2957	20.94	20.12	21.44	22.23	22.79	22.74	24.60	24.95	24.15	23.94	24.42	25.53	23.16
1353	26.47	27.55	29.31	23.90	23.46	27.40	25.50	25.68	26.21	26.13	20.52	27.25	27.20
1959	23.19	23.02	22.83	29.93	29.08	27.99	27.89	27.41	27.24	26.36	25.62	25.43	27.67
1960	26.26	26.53	27.75	27.88	27.19	25.85	25.02	24.41	24.06	24.26	25.40	26.13	25.30
1961	26.74	26.15	25.52	24.87	23.22	22.42	22.34	23.87	2\%.73	23.96	24.33	25.51	24.43
1962	25.76	25.95	26.36	26.31	25.50	25.07	25.63	27.41	23.83	28.46	29.12	20.12	26.92
1963	26.49	24.47	22.33	23.10	22.27	22.52	24.57	24.40	23.93	23.74	22.92	21.64	23.58
1964	22.20	21.36	21.33	20.88	20.23	21.25	22.69	24.23	24.75	23.66	23.45	22.79	22.41
2905	22.90	22.53	23.17	24.30	26.00	26.69	26.05	26.28	26.19	25.33	24.93	25.33	24.99
1966	25.31	27.16	23.25	26.94	25.94	25.25	25.27	25.76	25.54	24.70	23.92	23.92	25.71
1957	24.94	24.32	23.92	23.89	24.75	25.45	26.18	26.57	26.63	25.98	25.34	25.43	25.29
1950	25.69	26.37	26.60.	26.50	26.30	26.39	27.37	27.54	27.27	27.05	27.33	27.94	26.37
2909	27.74	27.50	23.81	30.14	32.79	33.63	31.29	30.04	23.66	27.60	27.44	27.73	29.45
1970	23.33	29.30	30.99	30.79	29.57	30.36	31.1 .2	30.09	29.21	22.47	27.22	20.82	29.30
1971	29.10	32.13	31.09	32.41	32.86	32.35	32.44	33.10	. 32.50	32.22	$33^{3} 0$	34.033	32.39
1972	35.63	36.32	35.17	34.52	35.70	37.91	33.38	35.70	34.69	34.92	33.59	36.05	35. $T 3$
1973	40.65	43.54	45.65	45.03	45.74	46.76	47.65	52.34	45.12	41.92	40.14	39.35	44.54
1974	47.13	46.37	42.85	41.54	4C. 52	37.98	43.72	46.62	41.38	39.64	37.72	37.20	41.89

Source: U. 3. 万. A., Africultural lamketing Service, Iivestoci Division.

by

Adrian \%. Iukiebi
B. S., Cura Iaucie, Kansas sitate University, 1974

AIT ABSTRACM OF A IMASTETS THESIS
subinitted in partial fulfillment of the
requirencnts for the degree

MASTLA OS SCIMCM

Department of Jiconomics

KALEAS STATH UTIVERSITY
Haniattan, Ǩansas

ABSTPAST

Beef far:i-rctail price spread has widened suistantially over the past two decaucs. Minis has meant that the farmer's share of the consumer's beef dollar has declined over the same period, for the spread and the share are two sides of the sane coin. This phenomenon has caused widespread concerm mong beef producers and consuners who have felt that the spread is Erowinf too wide. They have placed the blame for this widening snread on the beef marketing syster and the middlenan rith the contention that the markoting system is inefficient and/or the middeman is enjoying racessive profits.

This study attenpted to put the facts of the widening farm-retail price spread into proper perspective. Farm-retail price spread togetrec wi.th its component parts, the farm-carcass and carcass-retail price spreads, were disaggregnted into secular, seasonal, cyclical and irremular trends in owder to identify, measure, describe, record and interpret these trends. Only thon could tine nature of and causes benind these changes in brice spreacis bo comprehensively explained.

Secularly, it was found that indeed the farm-retail price spread has widened and that the trend is upward, increasine at an increasing rate. Nit ratiner likn reasons for this unwara trend being inefficiency or excessive profits in the beei marketing channel, eviuence sufficested tiat the trend was due to ragidly rising costs of providing maxinetina services. Consumers havo denanded not only wore services, but better services; anu

Nontrary to populai thinizit, the rinainge of this siudy sugyest that beer retailens reswonded wore reaiily (hitia loss las) to decreasing thon to inereasinu live minal prices.
the increase in costs has been duc to not only wore and better servicos but diso to an inflationam econory. Profits of beef manetine fimas
 in tive countsy; and hence, tine clai: by beef producers and soncumers wat these orofits are croessive seemeci unsubstantiated by tine cividence obtained.

The seculer insrease in the farin-retail price spread resulted mainly from the increase in the carcass-retail portion ratizer than the farm-cancass portion winh actually declined curing most of the 1951-75 period. The carcass-retail spread increased because of the rapidly rising labor and other costs; extra labor was required as a result of the trend lowards reaving bones from more cuts and the practice of trimming more of the fat from the cuts in recent years. Improved technolory and increases in efficiency by beef packers and processors more than offset increases in costs of labor and other costs, resulting in a decinine Iarm-careass snread durinis most of the period.

Seasonal charges in cattle production, marketins and genand for beef causea seasoral variations in beef prices and hence rrice spreads.

Over a period of several years, fluctuations in beef prices and Frice sureads tended to follow the cattle cycle inversely.

Randoa factois were important in causine sone short-run movements in the beef prices anà spreads. Bxcess or short supplies, retail price cciling and unceiling, and labor stribe, are but some of the random factors that caused wild swinss in prices and nrice spreads. Random and Beasonal factors causedi inverse fluctuations betwecn beef prices and price spreads, winile cyclical and secular fastors caused direct novenents between the prices mil sareada.

[^0]: Due to roundine errors, percentares of iam-carcass and carcass retail price spreads may not add up to the fammerail percentare.
 ${ }^{b_{O n l y}}$ the first 3 quarters of 1975.
 Source: Calculated frora data in Appendix A.

[^1]: Fenneth E. Ogren, "farketing Costs and Marcins: Hew Perspectives in :\%anzing Economy," Joumal of Farm Econo:icics, Vol. 47 Ho . 5, December -35ラ, p. 1367.

 ZU.S., Departient of Agriculture, Aঠricultural Marketine Service, $\because 2$ Ontin Research Division, Farm-Retail Sbreads for Food Products, by Frineth E. Ogren, Fiscellaneous Eublication ilo. 741 (vasineton, D.C.: Taremment Printing Office, Hovember 1957), p. ii.

[^2]: liniller and Harp, "Farm-Retail Spreads for Food Products," January 1972, p. 70.

[^3]: I.S., Department of Africulture, Arricultural Marketing Service, larketing Economics Rescarch Division, Seasonal Variation in Farm, Food Prices and Price Shreads, Hiscellancous ihblication i:o. 240 ("asinineton, D.C.: Govemment irriniine Office, January 1961), p. 46.
 ${ }^{2}$ Based unon Cecil H. leyers, "Elementary Business and Economic Statistics," pp. 497-501.

[^4]: Based upon Lincoln I. Chao", "Statistics: licthods and Analyses," p. 376.

[^5]: ${ }^{1}$ Retail pound is a pound of representative cuts frow a carcass; sce Table 14 in Appendix B.

[^6]: IU.S., Department of A孔riculture, Econonic Rescarci: Zevrice, "マain Retail Spreads for Food Products," January 1972, n. Z̃.
 ${ }^{2}$ Ibid., p. 29.

[^7]: cestered moving averaje．

[^8]: 1ु.S., Deyartnent of Agriculture, Economic Research Service, "Price

[^9]: $1_{\text {A }}$ strong seasonal component could still affect the cyclical factor despite the fact that these two were isolated, aue to the interdependency among the factors and the innerent inconpleteness of the decomposition process as vas explained in Chapter II.

[^10]: IU.S., Denartaent of AEriculture, AEricultural Iarketing Service, The Jarisetinc and rrans yortation Situation, iTN-l24 ("iashinston, D.C.: Covernnent irintinf Oifice, January 2957), p. 13.

 2U.S., Denartant of Auriculture, Economic Rescarch Service, The "aricotine and mansmortation Situation, !"S-175 (i"asininzion, D.C.: Covermient írinting Office, loveaber 1969), 2p. 3-9.

