IMPACT OF INTEGRATING FAMILY PLANNING SERVICES INTO HIV CARE ON REPRODUCTIVE HEALTH: A RETROSPECTIVE COHORT STUDY

INVESTIGATOR: Dr Rose Jepchumba Kosgei
MBChB, Registrar Ob/Gyn University of Nairobi

SUPERVISORS: Dr James Kiarie
MBChB, MMED (Ob/Gyn), MPH
Lecturer Ob/ Gyn, University of Nairobi
Consultant Ob/Gyn Kenyatta National Hospital

Dr Kizito Lubano
MBChB, MMED (Ob/Gyn), MDC, DIPL (HIV/AIDS),
Honorary Lecturer, Ob/Gyn, University of Nairobi
Consultant Ob/Gyn Kenyatta National Hospital
Assistant Director KEMRI

A Research Report Submitted
To the University of Nairobi
Institute of Tropical and Infectious Diseases
In partial Fulfillment of the requirements
of Postgraduate Diploma in Biomedical Research Methodology
2009
DECLARATION

This dissertation is my original work and has not been presented elsewhere, to the best of my knowledge.

Candidate:

Signature... Date: 13/11/2009

Dr Rose Jepchuma Kosgei

Supervisors:

This dissertation has been submitted with our approval

Signature.. Date: 13/11/2009

Dr James Kiarie

Signature.. Date: 12/11/2009

Dr Kizito Lubano
ACKNOWLEDGEMENTS

To the AMPATH program, for sponsoring my research
To Prof Joseph Mamlin and Dr Sylvester Kimaiyo for facilitating the design and implementation of the integrated model
To staff and patients of module I AMPATH clinic for making the integrated model a success
To Deputy Director UNITID, Dr Machoki
To my University of Nairobi supervisors, Dr’s: James Kiarie and Kizito Lubano
To my AMPATH mentors: Dr’s: Kara K. Wools-Kaloustian, Abraham M. Siika, Hillary Mabeya and Susan Cu-Uvin
To Dr’s Joe Hogan, William M. Tierney and John Sidle; Ada Yeung, Changyu Shen, Beverly Musick, Cheryl Densiky, Adrian Katschke and Ann Mwangi for their support in data management and statistical analysis
To the 2008/2009 Postgraduate Diploma in Research Methodology class
To all staff of University of Nairobi Institute of Tropical and Infectious Diseases (UNITID), for the facilities and support that made my learning environment conducive
THANK YOU
DEDICATION

To my Grandmother Toiyoi Barmao Salil
<table>
<thead>
<tr>
<th>TABLE OF CONTENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION..........................II</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS..............III</td>
</tr>
<tr>
<td>DEDICATION......................IV</td>
</tr>
<tr>
<td>TABLE OF CONTENTSV</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS......VI</td>
</tr>
<tr>
<td>ABSTRACT.......................VII</td>
</tr>
<tr>
<td>CHAPTER 1: INTRODUCTION- 1 -</td>
</tr>
<tr>
<td>CHAPTER 2: METHODS...........- 5 -</td>
</tr>
<tr>
<td>CHAPTER 3: RESULTS..........- 12 -</td>
</tr>
<tr>
<td>CHAPTER 4: DISCUSSION.......- 18 -</td>
</tr>
<tr>
<td>APPENDIX I: REFERENCES- 21 -</td>
</tr>
<tr>
<td>APPENDIX II: FAMILY PLANNING AND STI SCREENING FORM- 25 -</td>
</tr>
<tr>
<td>APPENDIX III: ADULT INITIAL ENCOUNTER FORM- 28 -</td>
</tr>
<tr>
<td>APPENDIX IV: ADULT RETURN VISIT FORM- 36 -</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

AIDS- Acquired Immunodeficiency Syndrome
AMRS- AMPATH Medical Records System
ARV- Anti Retrovirals
cART- Combined Anti Retroviral Therapy
FP- Family Planning
HIV- Human Immunodeficiency Virus
MCH/FP- Mother Child Health Clinic/Family Planning
MTRH- Moi Teaching and Referral Hospital
PMTCT- Prevention of Mother-To-Child Transmission of HIV/AIDS
RH- Reproductive Health
STI- Sexually Transmitted Infection
UN- United Nations
USAID-AMPATH- United States Agency for International Development - Academic Model Providing Access To Healthcare
WHO- World Health Organization
ABSTRACT

Background: HIV-infected patients like their uninfected counterparts are faced with reproductive health needs including family planning (FP). FP has been shown to play a role in primary and secondary prevention of HIV virus transmission including prevention of mother-to-child transmission of HIV/AIDS. Despite this, FP uptake is low among HIV-infected women. This is attributed, in part to the vertical nature of FP and HIV care programs. To address this challenge, the United States Agency for International Development - Academic Model Providing Access To Healthcare (USAID-AMPATH) partnership integrated FP services into one of its HIV clinics.

Objectives: Among HIV-infected women attending the USAID-AMPATH HIV Care clinic with and without integrated FP services, to: 1) determine and compare the incidence of new users of modern FP methods, 2) determine and compare the incidence of pregnancy and 3) determine the correlation between incidence of new use of modern FP methods and incidence of pregnancies with socio-demographic variables.

Methods: This was a retrospective cohort study carried out in the Eldoret clinic of the USAID-AMPATH partnership, Western Kenya. The primary outcome measures, incidence of new use of modern FP method and pregnancy were compared between HIV-infected women attending the HIV care module with integrated FP services (exposed group) and HIV-infected women attending HIV care modules which had not yet integrated FP services (unexposed group). The exposed and unexposed were matched by age on a ratio of 1:2 respectively. The secondary outcome measures were the correlations of these incidences with socio-demographic variables that were significant in the univariate analysis.

Results: Between October 2007 and February 2009, 4,138 patients met the eligibility criteria (1,498 were exposed to the integrated module and 2,640 were unexposed). There was a 10.8% (p<0.001; 95% CI: 7.3%, 14.3%) increase in new condom use; 7.1% (p<0.001; 95% CI: 3.6%, 10.6%) increase in new FP methods use other than condoms and 1.3% (p=0.24; 95% CI: -3.4%, 0.8%) decrease in the incidence of pregnancy among the exposed group. The incidence rate of new use of modern FP methods was 46.6 per 100 person years (95% CI: 44.0, 49.3) and 36.6 per 100 person years (95% CI: 34.7, 38.5) for the exposed and the unexposed respectively. The patients exposed to the integrated model were 27 times more likely to use modern FP methods than the unexposed (RR=1.27; 95% CI: 1.14, 1.41). The incidence rate of pregnancy was 8.69 per 100 person years (95% CI: 7.31, 10.31) and 8.37 per 100 person years (95% CI: 7.34, 9.53) for the exposed and the unexposed respectively. There was no significant difference in likelihood of pregnancy between the exposed and the unexposed (RR=1.04; 95% CI: 0.83, 1.30). Disclosure to partner, sex within the last 6 months and more years of schooling was associated with an increased incidence of modern FP method use. More years of schooling, higher age at enrolment and having more children living with the patient were associated with a reduction in the incidence of pregnancy.

Conclusion: Integrating FP services into HIV care and treatment programs is associated with: a significant increase in the incidence of new condom and FP method other than condoms use of 10.8% and 7.1% respectively and a none statistical but clinical reduction in the incidence of pregnancy of 1.3%. Funding agencies and programs should consider integrating FP services into HIV care and treatment programs. There is need for further studies on strategies to increase FP uptake by HIV-infected patients.
CHAPTER 1: INTRODUCTION

1.1 Background and Literature Review

Sub-Saharan Africa carries a huge burden of the global HIV epidemic with nearly two-thirds of those living with HIV/AIDS residing in this region. Women form 60% of people living with HIV/AIDS in Africa. An average of 6,800 new HIV infections and 5,700 AIDS related deaths occur globally each day. The global pattern is typified in Kenya, where 60% of the estimated 1.4 million adults who are HIV-infected are women of reproductive age. According to the Kenya AIDS Indicator Survey of 2007, the adult HIV prevalence in Kenya is estimated at 7.4% which is higher than in earlier surveys; 6.7% and 7.3% (Kenya Demographic Health Survey of 2003 and the antenatal care sentinel surveillance of 2006) respectively. Earlier research suggested that, in the absence of treatment, women who are HIV-infected were less sexually active compared to their uninfected counterparts, because of higher morbidity. Current evidence from resource constraint countries reveals that, combined antiretroviral therapy (cART) has dramatically improved the survival and quality of life for HIV-infected patients. This in addition to perceptions of reduced infectivity associated with the increased use of cART, are anticipated to increase sexual activity among HIV-infected patients. The problem facing the majority HIV care programs in resource poor settings is how to successfully provide reproductive health (RH) services including family planning (FP) to HIV-infected women in their care programs in a feasible and sustainable manner.

According to the World Health Organization (WHO) and the United Nations (UN), FP is one of the strategies that can address the HIV/AIDS pandemic. FP is central to achieving the four prongs of the strategy of Prevention of Mother-to-child transmission of HIV/AIDS (PMTCT) proposed by the WHO and the UN. In preventing HIV infection in all people, especially young women (prong 1), correct and consistent use of condoms will ensure that those who are not HIV-infected remain uninfected. FP will also be critical in preventing unwanted pregnancies among HIV-infected women and ultimately reducing HIV-positive births (prong 2), which is particularly significant in sub-Saharan Africa, where as many as 50% of
pregnancies among HIV-infected women are considered unintended16,17. Modeling studies in Africa have demonstrated that preventing unintended pregnancies among HIV-infected women is more cost-effective as a PMTCT intervention than providing single dose nevirapine alone. For the same cost, FP services can avert nearly 30 percent more HIV-positive births than use of single dose nevirapine18-20. PMTCT among HIV-infected women (prong 3) and providing care and support to HIV-infected women, their infants, and families (prong 4), is achieved to a lesser extend by FP. FP achieves prongs 3 and 4 by allowing for pregnancy planning and hence pregnancies can be scheduled for a time when a woman is stable on antiretrovirals and less likely to transmit HIV. It also allows women and families to have control over the number, timing, spacing or limiting of births.

The overall FP uptake in Kenya is low. According to the Kenya Demographic health Survey of 2003, only 30.5\% of married women were on a modern method of contraception (female sterilization, oral contraceptive pill, intrauterine contraceptive device, implants or injectable depo provera), and only 1.2\% of them were using condoms21. The unmet need for FP in Kenya is estimated at 24\% 22 and is thought to be even higher amongst HIV-infected women. This is attributed to the fears that HIV-infected women cannot use majority of FP methods due to their HIV diagnosis. Contrary to this perception, its now known that with individualized care, HIV-infected patients are able to use any method of the FP methods available23,24.

There are data supporting the supposition that HIV-infected patients, when given access and information on FP, increase their use of contraception25-29. One success story is exemplified by progressive integration of primary care services including FP into HIV counseling and testing activities at a voluntary, counseling and testing (VCT) center in Port au Prince, Haiti, between 1985 and 2000. In this program, of the 6,709 adults presenting for HIV testing: 1274(19\%) became new users of a contraceptive method and of the contraceptive users, 902 (70\% of total FP users) chose to use condoms30.

Although the World Health Organization, World Bank, and the European Union support the integration of FP and HIV treatment and care, most HIV programs focus on HIV treatment and little or no emphasis is placed on FP services. Such
integration is further impeded by funding restrictions31. Separate funding for these two programs and the resulting vertical organization of health services undermine coordination between departments and limit providers' ability to address the contraceptive needs of HIV-infected patients32. Based on the evidence that FP is efficacious in both primary and secondary prevention of HIV transmission the United States Agency for International Development - Academic Model for Providing Access To Healthcare (USAID-AMPATH) Partnership referred to as AMPATH hereafter started a pilot program integrating FP services into one of its HIV clinics allowing for provision of same-day 'one stop shop care' for these two services. In this paper we describe this model's impact on the incidence of new use of modern FP methods and pregnancy.

1.2 Justification

HIV-infected patients are faced with the similar RH needs as their non-infected counterparts. HIV infection modifies but does not eliminate their reproductive desires, and intentions. Such needs include having control over the number, timing, spacing and limiting of their children. The need for safe sex among these patients is of significance because most of these patients are asymptomatic and sexually active and those who were symptomatic eventually resume sexual activity due to the positive effects of antiretroviral therapy. FP is one of the proven ways of both primary and secondary prevention including PMTCT. Until now however, the FP needs of HIV-infected people have largely been neglected. As regards to PMTCT, FP enables HIV-infected women to plan pregnancies when the probability of vertical transmission is lowest: with high CD4 counts, low viral loads, an appropriate, planned mode of delivery and availability of safe feeding practices for their infants. This study seeks to determine impact of integrating FP services into HIV care on reproductive health. Cross-sectional descriptive studies form the bulk of earlier research on this subject; this design does not show cause effect, it's only appropriate for hypothesis generation but not measure impact of integration. Retrospective cohort study design used in this study was appropriate for measuring impact, lacks observational bias, made use of available patient data and is cost-effective. The information gained will be used to construct recommendations for
other programs on how to achieve FP integration into HIV care services and will provide pilot data for future studies.

1.3 Research Question
What is the impact of integrating FP services into HIV care and treatment on the incidence of new use of modern FP methods and pregnancy among HIV-infected women of reproductive age?

1.4 Hypothesis
Integrating FP services into HIV care affects the incidence of new use of modern FP methods and the incidence of pregnancy among HIV-infected women of reproductive age.

1.5 Broad Objective
To determine and compare the impact of integrating FP services into HIV care on the incidence of new use of modern FP methods and pregnancy between HIV-infected women of reproductive age being cared for in the FP/HIV care integrated model and non-integrated model.

1.5.1 Specific Objectives

Primary Objectives

1. To determine and compare the incidence of new users of modern FP methods (female sterilization, pill, intrauterine contraceptive device, injectables, implants or condoms) between HIV-infected women being cared for in the FP/HIV care integrated model and non-integrated model.

2. To determine and compare the incidence of pregnancy between HIV-infected women being cared for in the FP/HIV care integrated model and non-integrated model.

Secondary Objectives

1. To determine the correlation between incidence of new use of modern FP methods and incidence of pregnancies with socio-demographic variables (HIV disclosure, years of school, age at enrolment, sex in the previous 6 months, children living with patient, number of live births and times pregnant).
CHAPTER 2: METHODS

2.1 Study Design

This was a retrospective cohort study of HIV-infected women enrolled in the AMPATH program. For the purpose of this study exposure was defined as care within the AMPATH model that had integrated FP services. Whereas unexposed group were patients attending care within modules without integrated FP (regular care). Since HIV care at AMPATH is protocol-led, the exposed and the unexposed groups were similar in terms of HIV care and the only difference was exposure to the FP integration described afterward. The primary outcome measures are the incidences of: new use of modern FP methods and pregnancy. On other hand secondary outcome measures are the correlations between incidences of new use of modern FP methods and pregnancy with socio-demographic variables that were significant in the univariate analysis (HIV disclosure, years of school, enrolment age, sex in the previous 6 months, children living with patient, number of children given birth to and times pregnant).

2.2 Study Site and Setting

The study was conducted at the Eldoret clinic (AMPATH Center), of the AMPATH program. AMPATH Center is located at the Moi Teaching and Referral Hospital (MTRH). It has 3 comprehensive adult HIV care clinics referred to as module I, II and III. Adult patients, when referred to the AMPATH Center, are assigned to a particular module by the records clerk; Module assignment is random. Patients, once assigned to a module, receive care within that module. Crossover from one module to another is discouraged because AMPATH believes in continuity of care (chronic care model). The AMPATH program described elsewhere33-36 began to provide HIV care in 2001. As of end of May 2009 the program was caring for over 70,000 HIV-infected adult patients of whom 70% are women in 18 Kenya Ministry of Health facilities across western, Kenya. There were more than 17,000 adult patients with more than 11,000 (65%) women enrolled in the AMPATH Center as of end of May 2009.
Original AMPATH HIV Care Model

In the original AMPATH care model, AMPATH enrolled patients are offered some degree of FP services in the HIV clinic in form of condom counseling which is geared toward reduction of HIV virus transmission. Condoms are strategically placed in the waiting bay, check in/out rooms and consultation rooms for those patients who need them. Patients who require FP methods other than condoms are referred to the mother child health/family planning (MCH/FP) clinic for FP services. The MCH/FP clinic and the HIV clinic are vertically integrated and independent. The HIV clinic is run under the department of internal medicine and the MCH/FP clinic is run under the departments of reproductive health and pediatrics. Patients who need FP services are referred to MCH/FP clinic after their appointment in the HIV clinic. In this model, it is the patients responsibly to ensure that they have their FP appointment after referral from the HIV clinic. Unlike HIV care which is provided free of charge, services in the MCH/FP clinic require a patient’s co-pay. Based on this model, two challenges were anecdotally observed. To start with, patients who managed to get FP clinic appointments had an increased burden of hospital visits. Secondly, there was a relative underutilization of FP services by HIV-infected patients due to the fact that getting a FP appointment depended solely on the individual patient.

FP and HIV Care Integrated Model

Integration of FP services into HIV care pilot study started in October 1st 2007 and is ongoing in the AMPATH center module I HIV clinic. Modules II and III continue to offer original care model type of care described earlier. In the integrated model, FP services are housed within the HIV clinic. Nurses experienced in offering FP services were re-located to module I RH room. The RH room forms part of the patient flow in the HIV clinic. A blend of both vertical and horizontal integration is utilized. Some degree of vertical integration for both FP and HIV care is maintained to ensure that the focus and specific nature of these two service provisions is not weaken by a complete horizontal integration. The link between the two services forms the horizontal nature of the model and at module level both services are run under the same in charge. Services that are horizontally integrated are: same-day
'one-stop-shop' appointments, patient flow logistics, central check in/out, use of same patient charts, use of same patient identifier number, consultations, outreach services for loss to follow up patients, module progress meetings and passage of same messages (adherence, contraception and disclosure). During the counseling sections, structured counseling is done and the RH nurse completes a structured FP and Sexually Transmitted Infections (STI) encounter form (appendix II). Patients are allowed to make informed choices on which FP methods to use. All FP methods except surgical sterilization are offered through the module. Patients who request surgical sterilization and those in the non-integrated modules (II and III) are referred to MCH/FP clinic.

2.3 Study Population

Adult HIV-infected women attending AMPATH Center HIV clinic formed the study population. Women cared for in module I were considered the exposed group while women cared for in model II and III were considered unexposed group for this study.

2.3.1 Inclusion Criteria

1. HIV-infected female patients enrolled in AMPATH Center Age 15 to 49 years
2. Enrolled into AMPATH after October 1st 2007 (initiation date for FP integration)

2.3.2 Exclusion Criteria

1. Patients, who interchanged modules during the time period of this study
2. Patients who had only one visit after initiation of the integrated model (October 1st 2007)

2.4 Sample Size and Sampling

All 4,138 patients who met the eligibility criteria between October 1st 2007 and February 28th 2009 formed the cohort for this study and were included in the analysis; (n=1,498) and (n=2,640) for the exposed and unexposed groups respectively. The exposed and the unexposed were matched in a ratio of 1:2 by age. A match with-replacement strategy to infer the exposure effect (integration) by matching each exposed subject to two unexposed subjects was done. This figure is in excess of the calculated sample size of 250 patients per group and increased the
study power from the calculated 80% to 98%. This sample size was arrived at by using a 12% increase of FP uptake above the average baseline uptake of 30% (average of FP uptake in the 3 provinces where AMPATH operates4). We estimated using the sample size formula in figure 1, that we would need approximately of 500 patients in total (250 per group) to achieve an 80% power to detect the stated difference of 12% in FP uptake between the exposed and unexposed groups (alpha=0.05 two-sided).

Figure 1: sample Size formula

\[
\frac{2\left(Z_{1-\alpha}^2 \cdot \sqrt{2 \cdot \bar{p} \cdot (1-\bar{p})} + Z_{1-\beta}^2 \cdot \sqrt{p_j \cdot (1-p_j) + p_c \cdot (1-p_c)}\right)}{(p_j - p_c)^2}
\]

Where \(p_i \) =the expected proportion in the intervention group

\(p_c \) =the expected proportion in the control group

\(\bar{p} \) =the mean proportion in the intervention and control groups.

\[
n = \frac{2(1.96 \cdot \sqrt{2 \cdot 0.36 \cdot (1-0.36)} + 0.842 \cdot \sqrt{0.42 \cdot (1-0.42) + 0.30 \cdot (1-0.30)})^2}{(0.42-0.30)^2}
\]

\[
n = \frac{2(1.96 \cdot \sqrt{2 \cdot 0.23} + 0.842 \cdot \sqrt{0.2436 + 0.211})^2}{0.0144}
\]

\[
n = \frac{2(1.3304 + 0.5671)^2}{0.0144}
\]

\[
n = \frac{7.2009}{0.0144}
\]

\[
n = 500
\]

\(n_l = 250 \)

\(n_c = 250 \)
2.5 Data Collection and Management

All data used in this study were derived from existing clinical data collected during the normal patient care in module I, II and III from October 1st 2007 to February 28th 2009. All medical records of AMPATH patients are recorded on paper forms at each patient visit, and these paper forms are cross-checked by data entry clerks to ensure that they are no missing patients’ records. Data is subsequently transferred by data entry to a clinical electronic database; the AMPATH Medical Records System (AMRS). Data for this analysis were extracted from the medical records by submitting a data abstraction request form defining the key variables needed for the analysis to the AMPATH research department. This study did not include new data outside the normal clinical data collected at a patient visit.

Data from the routine initial encounter form (completed on enrolment for every patient) and adult return visit form (completed on each subsequent patient visits) were used for analysis in this study (appendix II). These two forms are universal for both the exposed and unexposed groups. Data from the FP and STI forms was not used for this analysis, because this form is unique only for the exposed (module I) patients. From the initial encounter form the following variables were extracted: patient’s demographics (children living with the patient, sex in the previous 6 months, years of school, patient’s age at enrolment, number of children, times pregnant, HIV disclosure and days before start of the integrated model) and pregnancy status at enrollment. From the adult return visit form: pregnancy, FP method, current antiretroviral therapy regimen, and latest CD4 count were extracted.

2.6 Data Analysis and Presentation of Results

All patient identifiers were removed prior to data analysis. Data was analyzed using STATA computer package.

Descriptive Analysis: summaries and comparisons of demographic/social characteristics (children living with the patient, Sex in the previous 6 months, years of school, patient’s age at enrolment, number of children, times pregnant, HIV disclosure and days of follow up since start of the integration), ARV status,
pregnancy status and CD4 counts was carried out. These were presented descriptively in form of Means, medians, standard deviations, inter quartile ranges and percentages.

Primary Outcome Analysis: Incidence of: new condom use, new FP methods use other than condoms and pregnancy was determined between the exposed and unexposed groups. Exposure effect (incidence) was based on analysis that matches (by age) 1 exposure with 2 unexposed in a ratio of 1:2. For condom use and other FP methods use other than condoms, subjects who responded “no” or had missing values during the follow-up were considered not using condoms or other FP methods other than condoms.

Secondary Outcome Analyses:
For secondary analysis univariate analysis (unadjusted odds ratios) was done followed by multi-variate analysis (adjusted odds ratios) which included only covariates that were significant (p<0.05) in univariate analysis. This was done to establish correlation between incidences of: new use of condoms, new use of FP methods other than condoms and pregnancy with socio-demographic variables that were significant in the univariate analysis (HIV disclosure, years of school, enrolment age, sex in the previous 6 months, children living with patient, number of live births and times pregnant).

2.7 Ethical Considerations
This study was approved by the Moi University/Moi Teaching and Referral Hospital Institutional Research and Ethics Committee and the Indiana University School of Medicine Institutional Review Board.

2.8 Limitations of the Study

1. Since the modules (clinics) are situated in the same building there was a possibly of diffusion of information across modules. This coupled with the fact that routinely in AMPATH HIV clinics some degree of FP counseling is done and condoms are issued to patient’s bias the results.
2. Data was analyzed after 16 months of the pilot phase. The pilot was initially faced with problems typical to any new program. With longer follow-up and integration we anticipate the outcome variables to move more strongly toward the hypothesized outcomes. Thus in this paper we may underestimate the impact of integration.

3. Due to the retrospective nature of the study miss-classification of variables would have occurred during patient care.
CHAPTER 3: RESULTS

During the 16 month pilot period which started October 1st 2007 (commencement of integrated model) and ended February 28th 2009, 4,138 patients meet the eligibility criteria and formed the analysis for this study. (n=1498) were exposed to the integrated module and (n=2640) were the unexposed group.

3.1 Descriptive Analysis

<table>
<thead>
<tr>
<th>Table 1: Socio-demographic Data at Enrolment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Exposed to integrated model (n=1498)</td>
</tr>
<tr>
<td>---------------------------------</td>
</tr>
<tr>
<td>Age (mean, sd)</td>
</tr>
<tr>
<td>Years of school (mean, sd)</td>
</tr>
<tr>
<td>Sex previous 6 months</td>
</tr>
<tr>
<td>Number of live births (median, IQR)</td>
</tr>
<tr>
<td>HIV disclosure to Partner</td>
</tr>
<tr>
<td>HIV disclosure to Healthcare provider</td>
</tr>
<tr>
<td>HIV disclosure to Family</td>
</tr>
<tr>
<td>HIV disclosure to Others</td>
</tr>
<tr>
<td>Times pregnant (median, IQR)</td>
</tr>
<tr>
<td>Children living with patient (median, IQR)</td>
</tr>
<tr>
<td>HIV disclosure to Friend</td>
</tr>
<tr>
<td>HIV disclosure to Household</td>
</tr>
<tr>
<td>Days before commencement of pilot (mean, sd)</td>
</tr>
</tbody>
</table>

The large sample size in this cohort made many small differences in baseline characteristics statistically significant; however none of the differences between the groups were clinically significant. From table 1, between the exposed and unexposed group there were differences in: mean age 32.7 and 33.4 respectively (p=0.003), years of school 9.2 and 8.8 respectively (p<0.001), sex in the previous six months 70% and 64% respectively (p<0.001), number of live births 2 and 3 respectively (p<0.001), HIV status disclosure to partner 40% and 36.4% respectively (p=0.01), HIV disclosure to healthcare provider 1.6% and 0.8% respectively (p=0.03), HIV disclosure to family 20.3% and 23.3% respectively (p=0.03) and HIV disclosure to others 10.7% and 8.2% respectively (p=0.007). These statistically
significant variables will be presented has adjusted odds ratios in secondary analysis section. There were no statistically significant differences between the exposed and unexposed groups in: number of pregnancies, number of children living with patient, HIV disclosure to friend, HIV disclosure to household members and number of days on care before commencement of the integrated model, 179 and 189 respectively.

Table 2: At First Follow-up Visit

<table>
<thead>
<tr>
<th></th>
<th>Exposed (n=1498)</th>
<th>Unexposed (n=2640)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pregnant</td>
<td>207 (13.8%)</td>
<td>212(8.0%)</td>
<td><0.001</td>
</tr>
<tr>
<td>On ARV’s</td>
<td>579 (38.7%)</td>
<td>948(35.9%)</td>
<td>0.08</td>
</tr>
<tr>
<td>CD4 (median, IQR)</td>
<td>330 (203-526)</td>
<td>324 (168-532)</td>
<td>0.34</td>
</tr>
</tbody>
</table>

Table 2, shows variables at the start of follow up; first visit after October 1st 2007. For the exposed group it is the first exposure visit and for the unexposed it is the first visit since commencement of the integrated model. The percentage of those pregnant between the exposed and unexposed groups was statistically significant, 13.8 % and 8.0% respectively (p<0.001). The other two variables: number of patients on ARV’s and median CD4 count were not statistically significant between the exposed and unexposed. The number of patients on ARV’s was 38.7% and 35.9% respectively (p= 0.08); and the median CD4 count 330 cells/mm³ and 324 cells/mm³ respectively (p= 0.34).

3.2 Primary Analysis

Table 3: Exposure Effect (Incidence) at End of Follow Up

<table>
<thead>
<tr>
<th></th>
<th>Incidence</th>
<th>P-value</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>New Condom use</td>
<td>10.8% increase</td>
<td>p<0.001</td>
<td>7.3%, 14.3%</td>
</tr>
<tr>
<td>New FP use other Condoms</td>
<td>7.1% increase</td>
<td>p<0.001</td>
<td>3.6%, 10.6%</td>
</tr>
<tr>
<td>Incident pregnancy</td>
<td>1.3% decrease</td>
<td>p=0.24</td>
<td>-3.4%, 0.8%</td>
</tr>
</tbody>
</table>
From table 3, at the end of follow up, the exposure effect (incidence) in the exposed group was: 10.8% (p<0.001; 95% CI: 7.3%, 14.3%) increase in new condom use; 7.1% (p<0.001; 95% CI: 3.6%, 10.6%) increase in new FP methods use other than condoms and 1.3% (p=0.24; 95% CI: -3.4%, 0.8%) decrease in the incidence of pregnancy.

<table>
<thead>
<tr>
<th>Table 4: Incidence Rate Per 100 Person Years</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Exposed</td>
</tr>
<tr>
<td>Incident rate (95% CI)</td>
</tr>
<tr>
<td>New use of Modern FP</td>
</tr>
<tr>
<td>Pregnancy</td>
</tr>
<tr>
<td>Unexposed</td>
</tr>
<tr>
<td>Incident rate (95% CI)</td>
</tr>
<tr>
<td>New use of Modern FP</td>
</tr>
<tr>
<td>Pregnancy</td>
</tr>
</tbody>
</table>

From table 4, at the end of follow up the incidence rate of new use of modern FP methods is 46.6 per 100 person years (95% CI: 44.0, 49.3) and 36.6 per 100 person years (95% CI: 34.7, 38.5) for the patients exposed to the integrated model and the unexposed respectively. On the other hand, the incidence rate of pregnancy is 8.69 per 100 person years (95% CI: 7.31, 10.31) and 8.37 per 100 person years (95% CI: 7.34, 9.53) for the patients exposed to the integrated model and the unexposed respectively.

<table>
<thead>
<tr>
<th>Table 5 Relative Risk (RR)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Modern FP methods</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Pregnancy</td>
</tr>
</tbody>
</table>

From table 5, patients exposed to the integrated model are more likely to use modern FP methods than the unexposed (RR=1.27; 95% CI: 1.14, 1.41). There is no significant difference statistically in the likelihood of pregnancy occurrence between the patients exposed to the integrated model and the unexposed (RR=1.04; 95% CI: 0.83, 1.30).

- 14 -
3.3 Secondary Analysis

For secondary analysis, univariate analysis (unadjusted odds ratios) was performed followed by multi-variate analysis (adjusted odds ratios) which included only covariates that were significant with p<0.05 in univariate analysis. Only results of the multivariate analysis with significant adjusted Odds ratios (OR) with p-value <0.05 are presented in tables 6 and 7 for the exposed and unexposed groups respectively.

| Table 6: Group- exposed; Outcome (Pregnancy/Condom Use/FP Other than Condom) |
|---------------------------------|-----------------|-----------------|-----------------|
| HIV disclosure to partner | Condom use OR (95% CI) | FP use other than condom OR (95% CI) | Pregnancy OR (95% CI) |
| | 1.44 (1.14,1.82) | 1.31 (1.04,1.65) | 1.59 (1.05,2.39) |
| Years of school | Not significant | Not significant | 0.91 (0.84,0.97) |
| Enrollment age | Not significant | Not significant | 0.90 (0.87,0.94) |
| Sex last 6 months | 1.63 (1.27,2.09) | 1.80 (1.39,2.32) | Not significant |

From table 6, we observe that among the exposed group: 1) HIV disclosure to partner and sex in the previous 6 months were found to be statistically significant for condom use among the exposed. Controlling for all the variables in the model: those who had disclosed to partner were more likely to use a condom (OR 1.44) and subjects who had sex in the previous 6 months were more likely to use a condom (OR 1.63), 2) HIV disclosure to partner and sex in the previous 6 months were found to be statistically significant for FP use other than condoms among the exposed. Controlling for all the variables in the model: those who had disclosed to their partner were more likely to use FP methods other than condoms (OR 1.31) and subjects who had sex in the previous 6 months were more likely to use FP methods other than condoms (OR 1.80) and 3) HIV disclosure to partner, years of school and age at enrollment were found to be statistically significant for pregnancy. Controlling for all the variables in the model: women who disclosed to their partners were more
likely to become pregnant (OR 1.59), one year increase in schooling leads to a
decrease in the odds of getting pregnant (OR=0.91) and one year increase in age at
enrolment leads to a decrease in the odds of getting pregnant (OR=0.90).

We observe from table 7 that among the unexposed group: 1) HIV disclosure to
partner, sex last 6 months, years of school, age at enrollment and HIV disclosure to
other family members were found to be statistically significant for condom use
among the controls. Controlling for all the variables in the model: subjects who had
disclosed to partner were more likely to have used a condom (OR =1.43), subjects
who had sex in the previous 6 months were more likely to have used a condom (OR
=1.51), one year increase in years of schooling increases the odds of condom use
(OR =1.03), one year increase in age at enrollment leads to a decrease in the odd of
condom use (OR=0.97) and those who had disclosed to other family members were
less likely to use condoms (OR=0.77), 2) HIV disclosure to partner, sex last 6
months and age at enrollment were found to be statistically significant with FP use
other than condoms among the controls. Controlling for all the variables in the
model: subjects who had disclosed to partner were likely to have used FP methods
other than condoms (OR =1.42), one year increase in age at enrollment leads to a
decrease in the odd of using FP method other than condoms (OR=0.97), and

<table>
<thead>
<tr>
<th>Table 7: Group- unexposed; Outcome(Pregnancy/Condom Use/FP Other than Condom)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Condom use</td>
</tr>
<tr>
<td>OR (95% CI)</td>
</tr>
<tr>
<td>HIV disclosure to partner</td>
</tr>
<tr>
<td>Children living with the patient</td>
</tr>
<tr>
<td>Enrollment age</td>
</tr>
<tr>
<td>Sex previous months</td>
</tr>
<tr>
<td>Years of school</td>
</tr>
<tr>
<td>Enrollment age</td>
</tr>
<tr>
<td>HIV disclosure to family</td>
</tr>
</tbody>
</table>
subjects who had sex in the last 6 months were more likely to have used FP methods other condoms (OR =1.88) and 3) HIV disclosure to partner, children living with the patient and age at enrollment were found to be significantly associated with incident pregnancy among the unexposed group. Controlling for all the variables in the model: subjects who had disclosed to partner were likely to get pregnant (OR=1.49), those who had children living with them were less likely to get pregnant (OR=0.86) and one year increase in age at enrolment leads to a decrease in the odds of getting pregnant (OR=0.90),
CHAPTER 4: DISCUSSION

This study has been able to demonstrate that integration of FP services into HIV care is associated with an increased incidence of new use of modern FP methods (10.8% and 7.1% increase in new use of condoms and FP other than condoms and the exposed are 27% likely to use FP). Like other studies25-29 we have shown that when HIV-infected patients are given access and information on FP, uptake increases. Integration such as described in this paper makes FP services readily available and accessible to HIV-infected patients. We speculate that this increase in the uptake of FP is attributed to: the fact that health care providers in the HIV clinic become sensitive to FP planning needs of these patients, same-day 'one stop shop' service provision of both FP and HIV care lead to a reduction in the number of hospital visits improving adherence to clinic appointments, use of same patient chart/identifier number for both services, use of same check in/out and the fact that FP room is part of the patient flow in the HIV clinic just like any other rooms.

The integration was not associated with a statistical significant reduction in the incidence of pregnancy in the exposed group. However a reduction of 1.3% is clinically significant given that the confidence interval lies close to a reduction in the incidence of pregnancy among women exposed to the integrated model. Though the evidence that as many as 50% of pregnancies among HIV-infected women are considered unintended in sub-Saharan Africa can not be overlooked910, the insignificant reduction in the incidence of pregnancy in this study, is attributed to other patient factors like the desired family size. This study was however not designed to determine these patient factors. In addition, data was analyzed after 16 months of the pilot phase which is a short period of time to objectively determine the impact of this integration on the incidence of pregnancy. With longer follow-up and integration we anticipate that there will be a reduction in the number of incident pregnancies among the exposed group. More studies are needed to evaluate pregnancy and patient factors in relation to integration such as described here.

The same socio-demographic variables were associated with incidence of new use of modern FP methods and pregnancy in the same direction for both exposed and
unexposed groups. For instance, HIV disclosure to partner and sex in the previous six months were associated with an increased use of modern FP methods. On the other hand HIV disclosure was associated with an increased likelihood of pregnancy and one year increase in age at enrolment was associated with a decreased likelihood in the odds of pregnancy. Further studies are needed to evaluate these patient factors.

Integration of FP into HIV care model as described in this paper is in accordance to the recommendations by World Health Organization, World Bank, and the European Union. Previous studies demonstrated presence of policy commitment to such integration. Little evidence has been described on the impact of integration on incidence of modern FP methods and pregnancy. This has been attributed to funding restrictions, separate funding, vertical nature of both programs and reluctance to integrate FP into HIV/AIDS funding. The AMPATH program has been able to demonstrate how to overcome the barriers of vertical programs by providing a same-day 'one stop shop care' service provision of both FP services and HIV care in its integrated model. This was made possible by utilizing a blend of both vertical and horizontal integration. Some degree of vertical nature of both FP and HIV care was maintained to ensure that the focus and specific nature of these two service provisions is not weaken by a complete horizontal integration. The link between the two services formed the horizontal arm of the model.

The retrospective study design used in this paper, the large sample size and power has been able to successfully determine the impact of integrating family planning services into HIV care. The main limitation on the other hand is the fact that we were not able to show a significant statistical reduction in the incidence of pregnancy in the exposed group. This is attributed to the fact that 16 months is not sufficient time to objectively determine this variable and other patients factors come into play with regard to it. From a methodological point of view, we were not able to control miss-classification because of the retrospective nature of the design. Despite this limitation, we have been able to demonstrate that integration of FP into HIV care and treatment programs is associated with a statistical increased incidence of new use of modern FP methods and a clinically statistical reduction in the incidence of pregnancy.
Conclusion and Recommendation

Integrating FP services into HIV care and treatment programs is associated with: a significant increase in the incidence of new condom and FP method other than condoms use of 10.8% and 7.1% respectively and a none statistical but clinical reduction in the incidence of pregnancy of 1.3%. Retrospective cohort design used in this study has been able to successfully answer the research question. Funding agencies and programs should consider integrating FP services into HIV care and treatment programs. There is need for further studies on strategies to increase FP uptake by HIV-infected patients.
Appendix I: References

4. MOH. Kenya Demographic Health Survey 2003; 2003

13. WHO. World Health Organization, Reproductive health website: linkages between sexual and reproductive health and HIV.

Appendix II: Family Planning and STI Screening Form

AMPATH: Family Planning and STI Screening Form

<table>
<thead>
<tr>
<th>First Name:</th>
<th>Middle Name:</th>
<th>Last Name:</th>
</tr>
</thead>
</table>

AMPATH ID:

Date:

<table>
<thead>
<tr>
<th>Location:</th>
<th>MTRH Module:</th>
<th>Elgon</th>
<th>Other:</th>
</tr>
</thead>
<tbody>
<tr>
<td>□ Amukura</td>
<td>□ 1</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>□ Kabamet</td>
<td>□ 2</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>□ Elgon</td>
<td>□ 3</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>□ Naitiri</td>
<td>□ 4</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>□ Port Victoria</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>□ Teso</td>
<td>□ 1</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>□ Turbo</td>
<td>□ 2</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>□ Webuye</td>
<td>□ 3</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>□ Burnt Forest</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>□ Busia</td>
<td>□ 4</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>□ Chulaimbo</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>□ Iten</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>□ Kitale</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>□ Mosoriot</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
</tbody>
</table>

4. Please tick the appropriate section to be completed during this visit:

- Family Planning Screening
- STI Screening

A. Family Planning:

5. Last menstrual period _______ Parity _______ Gravida _______ GBD _______

6. Are you using any form of family planning? □ Yes □ No

7. If yes, which method are you using? (tick all that apply)

- Natural
- Male Condom
- Female Condom
- Injectables
- IUCD
- Oral Pills
- BTL
- Vasectomy
- Other

23a. Would you say that you use condoms....?

- □ Never (skip to 23e)
- □ Sometimes
- □ Most of the time
- □ All of the time

23b. The last time that you had sex did you use a condom? □ Yes □ No

23c. How many times do you think you had sex without a condom in the last month?

- □ 0
- □ 1-4
- □ 5-9
- □ >10

23d. Would you say that you use condoms....?

- □ With none of my partners
- □ With some of my partners
- □ With everyone but my main partner/spouse
- □ With ALL of my partners

23e. When you don’t use a condom, what is the reason?

- □ They are not available/I don’t have any
- □ I don’t know how to use them
- □ My partner refuses to use them
- □ I don’t like having sex with them (Why______)
- □ I am afraid to ask my partner to use them
- □ Other: ___________________________

Number of sexual partners in last 6 months: Types of intercourse □ oral □ anal □ vaginal

8. Do you experience any difficulties in the method you are using? □ Yes □ No

9. If Yes, what problems have you noticed? (tick all that apply)

- □ Nausea and Vomiting
- □ Weight gain
- □ Weight Loss
- □ Irregular Bleeding
- □ Headache
- □ Frequent Condom Breakage
- □ Painful Intercourse
- □ Other:

B. Family Planning Counseling:

10. Counseling Performed? □ Yes □ No □ Not Applicable (patient on family planning with no problems noted)

11. After counseling, does the patient choose a new method? □ Yes □ No
12. If Yes, which method? (tick all that apply)
- Natural
- Male Condom
- Female Condom
- Injectables
- IUCD
- Oral Pills
- BTL
- Vasectomy
- Other ______________

13. If refuses Family Planning, reason for refusal: (tick all that apply)
- Religion
- Culture
- Trying to conceive
- Want more children in Future
- Fear Side E
- Other ______________

C. STI Screening:
Comments:

14. Are you having any abnormal discharge?
- Yes
- No
If yes:
- White
- Bloody
- Greenish-Yellow
- Foul smelling:
- Yes
- No

15. Do you have vaginal itching?
- Yes
- No

16. Is it painful when you urinate?
- Yes
- No

17. Are you urinating more frequently than usual?
- Yes
- No

18. Have you noticed a different odor of urine?
- Yes
- No

19. Do you or have you had any sore in your mouth or genital area?
- Yes
- No

20. If you practice anal sex, re you having any rectal symp (need to specify)
- Yes
- No

21. Have you noticed a rash (perineal)?
- Yes
- No

22. Are you having any abdominal or pelvic pain?
- Yes
- No

23. Have you noticed any inguinal swelling?
- Yes
- No

24. Have you had a sexually transmitted illness before?
- Yes
- No

C. Physical Exam:

General:
- Pallor
- Jaundice
- Oedema
- Lymphadenopathy
Breast exam:
- Normal
- Abnormal
If abnormal:
- Cracked nipples
- Inverted nipples
- Other ______________
Genital Exam:
- Ulcer
- Vaginal Discharge
- Warts
- Other ______________
Rectal:
- Ulcer warts
- discharge rash
- Other ______________
Comments:

Diagnosis:
- Normal
- Candida Vulvovaginitis
- Trichomoniasis
- PID
- Gonorrhea/Chlamydia
- UTI
- Genital Ulcer Disease
 - Single
 - Primary Syphilis
 - Multiple
 - Lymphogranuloma
- 3 week incubation
- 1-2 week incubation
- 1-week incubation
- deep extremely tender ulcers, profuse pus, 1 week incubation
- (whitish curd-like discharge, itching)
- (greenish discharge, foul smelling)
- (lower abdominal or pelvic pain, with or without discharge)
- (urethral or vaginal discharge, dysuria, worse in morning, incubation 3-10 days)
- (dysuria and increased frequency without discharge)
- (painless chancre, painless lymphadenopathy, 3 week incubation)
- (matted lymphadenopathy, fistula may be present, 1-2 week incubation)
- Herpes Genitalia (vesicles progressing to shallow, tender ulcers)
- Granuloma Inguinale (large beefy ulcers with or without lymphadenopathy)

Plan:

Labs:
- □ VDRL
- □ Urinalysis
- □ Other test: ____________________________

Treatment:

Urethral Discharge
- □ Norfloxacin 800 mg stat
- □ Doxycycline 100 mg bd x 7 days

Vaginitis
- □ Metronidazole 2 g stat *(do not use in pregnancy)*
- □ Clotrimazole 1 pessary intra-vaginal x 6 days

Cervicitis
- □ Norfloxacin 800 mg stat
- □ Doxycycline 100 mg bd x 7 days *(if pregnant use: add categories and eliminate below)*

Cervicitis in pregnant women
- □ Spectomycin 2g IM stat
- □ Erythromycin 500 mg qid x 7 days

Lower abdominal or pain in women
- □ Norfloxacin 800 mg stat
- □ Doxycycline 100 mg bd x 7 days
- □ Metronidazole 400 mg bd x 10 days *(if pregnant, DO NOT TREAT NOW and refer immediately for Obstetric Review)*

Genital Ulcer Disease
- □ Erythromycin 500 mg tds x 7 days
- □ Benzathine Penicillin 2.4 MU stat
- □ Erythromycin 500 mg qid x 14 days *(Use if Penicillin allergic)*
- □ Ceftriaxone 250 mg IM *(alternative treatment)*

Herpes Simplex
- □ acyclovir

Syphilis:
- □ Benzathine Penicillin 2.4 MU IM weekly x 3 weeks

Referrals:
- □ None
- □ Reproductive Health Clinic
- □ Obstetric Review
- □ Family Planning Clinic
- □ Other ____________________________

Form Filled By: ____________________________ Provider #: ____________________________
Appendix III: Adult Initial Encounter Form

ADULT INITIAL ENCOUNTER FORM

<table>
<thead>
<tr>
<th>Name:</th>
<th>AMPATH ID:</th>
<th>Hospital #:</th>
<th>Child AMPATH ID</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>National ID Number:</th>
<th>HCT #:</th>
<th>pMTCT ID:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Date of Birth:</th>
<th>If Birthdate Unknown, Age at last Birthday:</th>
<th>Sex: □ M □ F</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tribe:</th>
<th>Location:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Clinic Location: MTRH Module:</th>
<th>Chulaaimbo</th>
<th>Busia</th>
<th>Ntien</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amukura</td>
<td>Burnt Forest</td>
<td>Khanyang</td>
<td>Kitale</td>
</tr>
<tr>
<td>Kabarnet</td>
<td>Kapenguria</td>
<td>Port Victoria</td>
<td>Teso</td>
</tr>
<tr>
<td>Mt. Elgon</td>
<td>Naitiri</td>
<td>Turbo</td>
<td>Webuye</td>
</tr>
<tr>
<td>UG District Hospital</td>
<td>Satellite:</td>
<td>Other:</td>
<td></td>
</tr>
</tbody>
</table>

Category:

- □ Pilot (PEPFAR)
- □ NASCOP
- □ Research
- □ Other: ________

Social History:

1. How long did it take you to travel to clinic today?
 - □ Less than 30 minutes
 - □ Between 30 and 60 minutes
 - □ Between 1 and 2 hours
 - □ More than 2 hours

2a. Have you ever attended school? □ Yes □ No

2b. If yes, how many years of school have you completed? ________ Years

2c. If widowed, suspicion of HIV as cause of death of spouse? □ Yes □ No Year of __________

3. Are you employed outside the home? □ Yes □ No

4. Do you have electricity inside your home? □ Yes □ No

5. Do you have water piped (from a tap) inside your home? □ Yes □ No

6a. How many people usually live in your household? □ Yes □ No

6b. Children under 5 years of age? ________

7a. Have you disclosed your HIV status to anyone? □ Yes □ No

7b. If yes, have you told any of the following people?
 - Partner/spouse □ Other family member
 - Friend □ Other household member
 - Health care provider □ Other (specify): ________

10a. What is your current relationship status?
 - □ Never married and not living with a partner
 - □ Legally married: Number of wives ________
 - □ Living with a partner
 - □ Separated
 - □ Divorced
 - □ Widowed

10b. If widowed, suspicion of HIV as cause of death of spouse? □ Yes □ No Year of __________

10c. Discordant couple? □ Yes □ No □ Unknown

10d. Sexual Activity:
 - □ Yes □ No - Spouse or partner suspected of sex partner outside of marriage/relationship
 - □ Yes □ No - Patient has sex partners outside marriage or current relationship
 - □ Yes □ No - Sexually active last 6 months Number of different partners: ________

10e. How do you think you were exposed to HIV?
 (Check all that apply)
 - □ Patient knows spouse or partner is HIV+
 - □ Suspected exposure in prior relationship
 - □ Blood Transfusion ________(Year of Transfusion)
 - □ History of Intravenous Drug Use
 - □ Contaminated Needle Stick
 - □ Unknown
 - □ Other
<table>
<thead>
<tr>
<th>Women Only:</th>
<th>Men Only:</th>
</tr>
</thead>
<tbody>
<tr>
<td>8a. How many times have you been pregnant?</td>
<td>9. How many children do you have?</td>
</tr>
<tr>
<td>8b. How many children have you given birth to?</td>
<td>11a. Is the patient pregnant?</td>
</tr>
<tr>
<td>8c. Number of your children living with you now:</td>
<td>11b. Is the patient Breast Feeding</td>
</tr>
<tr>
<td>8d. Number of your children living with you now</td>
<td>12. Is the patient or their partner currently using</td>
</tr>
<tr>
<td><5 yrs old:</td>
<td>any form of family planning?</td>
</tr>
<tr>
<td>8e. Number of your children less < 18 months old</td>
<td>11a. Is the patient pregnant?</td>
</tr>
</tbody>
</table>

Review of Systems:

14. CHIEF COMPLAINT: □ Feeling well □ Having symptoms

15. General: □ No complaints

- Fever □ Chills □ Weight loss □ Night Sweats □ Rash □ Fatigue □ Weight gain

Comments:

16. HEENT: □ No complaints □ Hearing difficulties □ Vision difficulties □ Swallowing difficulties

Comments:

17. Cardiopulmonary: □ No complaints

- Cough □ 0 days □ 0 weeks □ 0 months

- Cough productive □ 0 white □ 0 purulent □ 0 blood

- SOB □ 0 days □ 0 weeks □ 0 months

- □ At rest □ On exertion

- Pneumonia in the past 2 years □ Chest pain □ 0 days □ 0 weeks □ 0 months

- Location: □ substernal □ right □ left □ anterior □ posterior

- Quality: □ Pleuritic □ Sharp □ Pressure □ Burning

- TB: □ Currently on treatment □ Defaulted ________(year)

- Treatment completed ________(year)

- Known exposure to household contact with TB
18. **Gastrointestinal**: □ No complaints
 □ Abdominal pain □ Poor appetite □ Nausea O days O weeks O months □ Continues
 □ Hx of jaundice □ Vomiting O days O weeks O months □ Continues
 □ Diarrhea O days O weeks O months □ Continues

Comments: ___________________________________

19. **Genitourinary**: □ No complaints
 □ LMP __________ Menstrual Cycle: □ Regular □ Irregular □ Amenorrhea □ Post-Menopause
 □ Vaginal discharge O days O weeks O months □ UTI
 □ Urethral discharge O days O weeks O months □ Hematuria □ Circumcized?: □ Yes □

Comments: ___________________________________

20. **Musculoskeletal**: □ No complaints
 □ Joint pains □ Swelling of joints □ Edema of legs □ Muscle pain □ Pain in the legs / feet

Comments: ___________________________________

21. **Central Nervous System**: □ No complaints
 □ Paresthesia □ Focal Weakness □ Seizures □ Headache
 □ Depression □ Confusion □ Mental Illness □ Memory problems

Comments: ___________________________________

Hospitalizations

22a. Has the patient been hospitalized in the previous year? □ Yes □ No

22b. If yes, how many hospitalizations did the patient have in the past year? ________

Briefly describe the reason(s) for hospitalizations:

Medication History

23. **Allergies**:
 Penicillin Allergy □ Yes □ No Specify Reaction ________________
 Sulfur Allergy □ Yes □ No Specify Reaction ________________
 Other Allergy □ Yes □ No Name of drug/product ______________ Specify Re.

24a. Is the patient currently taking any of the following antiretroviral medications? □ Yes □ No
 Reason for Use □ pMTCT □ PEP □ Treatment Date Started: ___/____ Date Stopped: ___/____

 (Tick all that apply)
 □ Combivir □ Triomune-30 □ Triomune-40 □ Truvada
 □ Nevirapine(NVP) □ Lamivudine(3TC) □ Zidovudine(AZT) □ Stavudine-30(D4T-30) □ Stavudine-125
 □ Efavirenz(EFV) □ Abacavir(ABC) □ Aluvia/(Kaletra) □ Didanosine-125(DDI) □ Didanosine-200
 □ Tenofovir □ Indinavir(IDV) □ Other: __

24b. Has the patient used any antiretroviral medications in the past (other than those ticked in 24a)? □ Yes □ No
 Reason for Use □ pMTCT □ PEP □ Treatment Date Started: ___/____ Date Stopped: ___/____
25. Other Current Medications:

PCP Prophylaxis: □ None □ Septrin □ Dapsone

TB Prophylaxis: □ None □ INH

TB Treatment: □ None □ Rifater (RHZ) □ Rifafour (RHZE) □ Ethizide (EH) □ Rifenah (RH) □ Rifampicin □ INH □ Pyrazinamide □ Ethambutol □ Streptomycin □ Other:

Cryptococcus Tx: □ None □ Diflucan

Other Drugs:

PHYSICAL EXAMINATION

26. Vitals:
BP ______/______ Pulse ______ rate/min Resp Rate ______ Temp [Co] ________ SaO2 ______ %
Wt ______ kg Height ______ cm Karnofsky Score ______ %

Karnofsky Score:
50% = Disabled
100% = Normal health 40% = Requires considerable assistance, may require care
90% = Minor Symptoms 30% = Severely disabled, in hospital
80% = Normal Activity with some effort 20% = Very sick, active support needed
70% = Unable to carry on normal activity, able to care
oneself 10% = Moribund (near death)
60% = Requires help with personal needs

27. General Exam:
□ Temporal wasting Comments:

28. Skin □ Normal □ Abnormal □ Rash □ Kaposi sarcoma
Comments:

29. Lymph Nodes □ Normal □ Abnormal □ Normal □ Abnormal □ Normal □ Abnormal
Comments:
□ submandibular □ cervical □ inguinal □ supraclavicular □ axillary

30. HEENT □ Normal □ Abnormal
Eyes: □ Sclera icteric □ Conjunctiva pale □ Fundal abnormality
□ Cerumen impaction □ TM injected
□ Trachea deviated □ Nuchal rigidity
Oropharynx: □ Thrush □ Kaposi sarcoma □ Significant dental caries
□ Conjunctiva pale □ Fundal abnormality
□ TM injected
□ Nuchal rigidity

31. Chest □ Normal □ Abnormal
Percussion: □ Dullness
Auscultation: □ Breath sounds diminished □ Bronchial breath sounds □ Rhonchi /Wheeze
Comments:

32. Heart □ Normal □ Abnormal
□ Evidence for enlargement: □ LV lift □ RV lift
□ Abnormal Sounds: □ S3 Gallop □ Pericardial friction rub
□ Murmurs: □ Systolic Ejection Murmur □ Holosystolic Murmur □ Diastolic Decrescendo □ Diastolic Rumble
Comments:

33. Abdomen □ Normal □ Abnormal
□ Tender to palpation Location □ Ascites □ Mass
34. Urogenital □ Normal □ Abnormal □ Not done Comments:
35. Extremities □ Normal □ Abnormal □ Edema □ Leg ulcers □ Cellulitis □ Kaposi sarcoma Comments:
36. Musculoskeletal □ Normal □ Abnormal Comments:
37. Neurologic □ Normal □ Abnormal □ Cranial nerve abnormality □ Decreased sensation lower extremities □ Abnormal gait □ weakness Comments:
38. Psychiatric □ Normal □ Abnormal □ Depressed □ Dementia / confused Comments:
39. Does the patient currently have, or has the patient ever had, any of the following conditions?
Fill in the appropriate box next to each indicator condition P=Presumptive; C=Confirmed

<table>
<thead>
<tr>
<th>WHO Stage 1</th>
<th>WHO Stage 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asymptomatic HIV Infection</td>
<td>HIV Wasting Syndrome</td>
</tr>
<tr>
<td>Persistent Generalized Lymphadenopathy (PC)</td>
<td>Pneumocystic Pneumonia</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>WHO Stage 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight Loss ≤ 10% of Body Weight</td>
</tr>
<tr>
<td>Recurrent Upper Respiratory Tract Infection</td>
</tr>
<tr>
<td>Herpes Zoster</td>
</tr>
<tr>
<td>Angular Cheilitis</td>
</tr>
<tr>
<td>Recurrent Oral Ulceration</td>
</tr>
<tr>
<td>Papular pruritic eruptions</td>
</tr>
<tr>
<td>Seborrheic Dermatitis</td>
</tr>
<tr>
<td>Fungal Nail Infections</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>WHO Stage 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight Loss > 10% of Body Weight</td>
</tr>
<tr>
<td>Unexplained Chronic Diarrhea (>1 month)</td>
</tr>
<tr>
<td>Persistent Oral Candidiasis (Thrush)</td>
</tr>
<tr>
<td>Unexplained Prolonged Fever (intermittent, >1 month above 37.5°C)</td>
</tr>
<tr>
<td>Oral Hairy Leukoplakia</td>
</tr>
<tr>
<td>Pulmonary Tuberculosis</td>
</tr>
<tr>
<td>Severe Bacterial Infections (i.e. pneumococcal, pyomyositis, bone/joint infections, meningitis, bacteremia)</td>
</tr>
<tr>
<td>Acute necrotizing stomatitis, gingivitis, periodontitis</td>
</tr>
<tr>
<td>Unexplained anaemia (<8 g/dl), neutropenia (<0.5 x 10^9/L), and/or chronic thrombocytopenia (<50 x 10^9/L)</td>
</tr>
</tbody>
</table>

40. Tests
<table>
<thead>
<tr>
<th>Test</th>
<th>Result</th>
<th>Test Date</th>
<th>Test</th>
<th>Result</th>
<th>Test Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. WBC / mm3</td>
<td></td>
<td></td>
<td>9. CD4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Hgb g / dL</td>
<td></td>
<td></td>
<td>10. CD8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. MCV</td>
<td></td>
<td></td>
<td>11. CD4 %</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Platelets / µL</td>
<td></td>
<td></td>
<td>12. VDRL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. ALC / mm3</td>
<td></td>
<td></td>
<td>13. HIV Test (Rapid)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. SGPT</td>
<td></td>
<td></td>
<td>14. HIV Test (Long ELISA)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Creatinine mmol / L</td>
<td></td>
<td></td>
<td>15. Viral Load</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Other:</td>
<td></td>
<td></td>
<td>16. other</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17. CXR</td>
<td>Code:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

41. HIV-related Diagnoses/Problems

<table>
<thead>
<tr>
<th>Problem</th>
<th>Remove</th>
<th>Resolved</th>
<th>Problem</th>
<th>Remove</th>
<th>Resolved</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>□</td>
<td>□</td>
<td>5.</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>2.</td>
<td>□</td>
<td>□</td>
<td>6.</td>
<td>□</td>
<td>□</td>
</tr>
</tbody>
</table>

Non HIV-related Diagnoses/Problem

For Other Problems, tick box only if problem needs to be added or removed from summary sheet.

<table>
<thead>
<tr>
<th>Problem</th>
<th>Add</th>
<th>Remove</th>
<th>Problem</th>
<th>Add</th>
<th>Remove</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>□</td>
<td>□</td>
<td>4.</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>2.</td>
<td>□</td>
<td>□</td>
<td>5.</td>
<td>□</td>
<td>□</td>
</tr>
</tbody>
</table>

42. Plan:

ARVs: □ None □ Start ARVs □ Continue Regimen □ Restart □ Change Dose □ Change Regimen □ Stop All

- Reason to start ARVs: □ Treatment □ Total pMTCT
- Reason for stop/change: □ Failure □ Completed T-pMTCT □ Toxicity □ Other

Eligible for ARVs but not started:

□ Due to cap □ OI/TB tx □ Patient Refused □ Adherence Con □ Other

If start or change, tick new regimen:
Combination: □ Combivir □ Triomune-30 □ Triomune-40 □ Truvada
Individual: □ Nevirapine (NVP) □ Lamivudine (3TC) □ Zidovudine (AZT) □ Stavudine-30(D4T) □ Stavudine-40(D4T-40) □ Efavirenz (EFV) □ Abacavir (ABC) □ Aluvia (Kaletra) □ Didan 125 (DDI) □ Didanosine-200 (DDI) □ Tenofovir (TDF) □ Indinavir (IDV) □ Other:
PCP Prophylaxis: □ None □ Start □ Continue Regimen □ Change Regimen □ Stop

Reason for stop/change: □ CD4>200 □ Toxicity □ Other

New Drugs: □ Septrin tabs/day □ Dapsone mg/day

TB Prophylaxis: □ None □ Start INH □ Continue INH □ Stop INH

Reason for stop/change: □ Completed □ Active TB □ Toxicity □ Other

TB Treatment: □ None □ Start Induction □ Change to Continuation □ Continue Regimen □ Restart/Retreatment Regimen □ Defaulter Regimen (using Streptomycin) □ MDR Regimen □ Other

Reason for stop/change: □ Completed □ Toxicity □ Other

New Drugs:
- Rifater (RHZ) tabs/day
- Rifampicin mg/day
- Ethambutol mg/day
- InH mg/day
- Streptomycin mg/day

43. Additional Drugs (ordered at the time of the initial visit)

<table>
<thead>
<tr>
<th>Drug</th>
<th>Strength</th>
<th>Sig</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Patient Plan Comments:

44. What tests will be ordered for the patient? □ None
□ Complete Blood Count □ ALT □ AST □ CXR □ Radiology Test (specify):
□ CD4 Count Assay □ Creatinine □ HIV ELISA □ Sputum for AFB
□ VDRL □ Electrolytes □ HIV Viral load □ Pregnancy Test
□ Other (specify):

45. What referrals will be made for the patient? □ None
□ Social Support Services □ Psychosocial counseling □ Disclosure counseling
□ Family Planning Services □ Reproductive Health □ TB treatment/DOT program
□ Nutritional support □ Adherence Counseling □ Alcohol counseling/support group
□ Mental Health Services □ Other referral (specify):
□ Inpatient care/Hospitalization: (□ MTRH □ Local Health Centre/Hospital □ Other Facility:
□ Other Facility:

46. When is the patient’s next appointment? Fill in appropriate box:
□ 1 week □ 2 weeks □ 1 month □ 3 months □ 6 months □ Other (specify):
47. Next Scheduled Appointment Date \(\underline{\underline{d}} / \underline{\underline{d}} / \underline{\underline{m}} / \underline{\underline{m}} / \underline{\underline{y}} / \underline{\underline{y}} / \underline{\underline{y}} / \underline{\underline{y}} \)

Form completed today by:

<table>
<thead>
<tr>
<th>Role</th>
<th>Provider #:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical Officer</td>
<td></td>
</tr>
<tr>
<td>Nurse</td>
<td></td>
</tr>
<tr>
<td>Physician</td>
<td></td>
</tr>
</tbody>
</table>
Appendix IV: Adult Return Visit Form

ADULT RETURN VISIT FORM

| Date: | / / |

<table>
<thead>
<tr>
<th>2. Name:</th>
<th>AMPATH ID:</th>
<th>Previous ID:</th>
<th>MTCT+ ID:</th>
</tr>
</thead>
<tbody>
<tr>
<td>National ID Number:</td>
<td>Hospital ID #</td>
<td>HCT#</td>
<td>pMTCT ID:</td>
</tr>
</tbody>
</table>

Clinic Location: MTRH Module: □1 □2 □3 □4 Chul Busia □1 □2 □1 □2
- □ Amukura □ Burnt Fore □ Khunyangu □ Kitale □ Iten
- □ Kabarnet □ Kapengurii □ Port Victoria □ Teso □ Mosoriot
- □ Mt. Elgon □ Naitiri □ Webuye □ Turbo □ Other:
- □ UG District Hospital □ Satellite:

5. □ Scheduled Visit □ Unscheduled Visit Early □ Unscheduled Visit Late

6. Does patient have a disability? □ Yes □ No If Yes, specify:

7. Does the patient have any interval complaints? □ Yes □ No
 Comments:

8. Female Patients:

8a. Is the patient pregnant? □ Yes _____ Weeks □ No (If yes: On ARV-directed pMTCT □ Yes □ No
 □ Treatment □ pMTCT only □ unknown
 □8d. LMP: / /) pending)

8b. LMP: □ Yes □ No (Go to 8d)

8c. Has she delivered since her last visit? □ Yes □ No (If yes: On ARV-directed pMTCT □ Yes □ No
 □ Treatment □ pMTCT only □ unknown
 □8c. Has she delivered since her last visit? □ Yes □ No Date / / □ No (Go to 8d)
 Pregnancy outcome: □ Live Birth, Child still alive □ Live Birth with neonatal death
 7 days □ Live Birth with neonatal death after 7 days □ Miscarriage □ Stillbirth

8d. Does mother have any children less than 18 months? □ Yes □ No
 Have all children < 18 months been enrolled in Peds HIV clinic? □ Yes □ No

9. Male and Female Patients:

9a. Family Planning: □ Yes □ No If Yes, Method: ____________________________

9b. Condom Use: □ Yes, always □ Yes, sometimes □ No

10. Has patient been Hospitalized since last visit? □ Yes □ No
 If yes: Location ________ Diagnosis: ____________________________

11. Current Medications:

11a. ARVs: □ Yes □ No Has this patient ever changed drugs for any reason? □ Yes □ No
 Combination: □ Combivir □ Triomune-30 □ Triomune-40 □ Truvada

- 36 -
Individual: □ Nevirapine (NVP) □ Lamivudine (3TC) □ Zidovudine (AZT) □ Stavudine 30 (D4T-30)
□ Stavudine 40 (D4T-40) □ Efavirenz (EFV) □ Abacavir (ABC) □ Aluvia (Kaletra)
□ Didanosine 125 (DDI) □ Didanosine 200 (DDI) □ Tenofovir (TDF)
□ Indinavir (IDV) □ Other:

11b. PCP Prophylaxis: □ None □ Septrin □ Dapsone

11c. TB Prophylaxis: □ None □ INH

11d. TB Treatment: □ None □ Rifater (RHZ) □ Rifafour (RHZE) □ Ethizide (EH) □ Other:
Rifinah (RH)
Start Date: ___ / ___ / ___ □ Rifampicin □ INH □ Pyrazinamide □ Ethambutol □ Streptomycin □ Other:

11e. Cryptococcus Tx: □ None □ Diflucan

11f. Other Drugs:

12. Adherence:

12a. During the last month has the patient missed any medications? □ Yes □ No □ Not applicable
(Skip to 13)
□ ARVS □ PCP Prophylaxis □ TB Prophylaxis □ Anti-TB Medication □ Other drugs
Drugs Missed:
□ ARVS □ PCP Prophylaxis □ TB Prophylaxis □ Anti-TB Medication □ Other
Reason(s) for missing pills in the last 7 days:

12b. During the last seven days how many of his/her pills did the patient take?

□ ARVS: □ None □ Few □ Half □ Most □ All
Drug(s) missed
□ PCP Prophylaxis: □ None □ Few □ Half □ Most □ All
Drug(s) missed
□ TB Prophylaxis: □ None □ Few □ Half □ Most □ All
Drug(s) missed
□ Anti-TB Medication: □ None □ Few □ Half □ Most □ All
Drug(s) missed
□ Cryptococcus Tx: □ None □ Few □ Half □ Most □ All
Drug(s) missed

13. Physical Exam:
BP: ___ / ___ P: ___ Temp: ___ Wt: ___ Height: ___ SaO2: ___
Karnofsky Score: ___

Comments:

14. WHO Stage: □ 1 □ 2 □ 3 □ 4 Criteria: __________ New Stage? □ Yes □ No

15. Test Results: (Please record date test was drawn, rather than date test was run)

<table>
<thead>
<tr>
<th>Test</th>
<th>Result</th>
<th>Test Date</th>
<th>Test</th>
<th>Result</th>
<th>Test Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>WBC/mm³</td>
<td></td>
<td></td>
<td>CD4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hgb g/dL</td>
<td></td>
<td></td>
<td>CD8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCV</td>
<td></td>
<td></td>
<td>CD4%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Platelets/mm³</td>
<td></td>
<td></td>
<td>VDRL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALC/mm³</td>
<td></td>
<td></td>
<td>Other</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SGPT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Creatinine mmol/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CXR Code</td>
<td></td>
<td></td>
<td>0=normal 3=Miliary 6=Cardiomegaly</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1=Pl Effusion 4=Diffuse abn/non-miliary</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2=Infiltrate 5=Cavity</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

16. Impression: New Diagnoses/Problems

Tick “Add” to add a problem to summary sheet. Tick “Remove” to delete problem from summary sheet

<table>
<thead>
<tr>
<th>Problem</th>
<th>Add</th>
<th>Remove</th>
<th>Problem</th>
<th>Add</th>
<th>Remove</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
<td></td>
<td>3.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td></td>
<td>4.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>