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Abstract

Tuberculosis is an infectious disease caused by bheteria bacillus mycobacterium
tuberculosis and is spread through the air by persoffering from it, especially those that
are sputum smear positive. Kenya is among the 2atdes burdened by TB in the world
and reports about 100,000 cases of this diseasg gear. The aim of this study was to
investigate the spatiotemporal clustering of tubkrsis and the factors associated with it in

Kenya using Bayesian approach to map and measatialsgariation of TB risks.

The TB data used in this study was obtained fronTIDIL from 2002 to 2009 while the data
on covariates were obtained from different sour€@msmbinations of approaches were then
used in the analysis. First exploratory spatiabdatalysis in terms of maps were generated
using Bayesian approach then clustering of diseasdifferent districts computed using
Moran’s | and space time scan statistics. Finatydsian approach with CAR specification
was computed to identify spatial variation of TBdazovariates such as prevalence of HIV,
distance greater than five kilometres to the nedrealth facility, proportion of the poor in

each district, illiteracy rate in each district amtbanization among others.

Results have shown us the spatial distribution®fahd areas that have consistently reported
high relative risks over the years such as Nairgsumu, Bondo and Rachuonyo among
others. The effects of the covariates have alsa Heenonstrated to be positive with credible

interval that does not contain zero. For exampieHiV the posterior density of3 had a

posterior median that was greater than zero an8% &edible interval of 0.200 to 3.157

which was considered statistically significant.

In conclusion, this study revealed the spatialrifistion of TB in the country over the years
from 2002 to 2009. It also revealed the spatiatepas of TB in different districts in
comparison to their nearest neighbouring disteaterging districts with increased TB risk
and those districts that have consistently recotdgh relative risk of TB. This information
can be used by the DLTLD for planning purposesocaliion of resources’ and even
dissemination of TB information. It can also be dise strengthen other strategies such as

poverty eradication in Kenya.



1.0 INTRODUCTION

Tuberculosis is an infectious disease caused by bheteria bacillus mycobacterium
tuberculosis and is spread through the air by pesrsoiffering from it, especially those that
are sputum smear positive. The disease is spreadigih coughing, spitting, sneezing,
laughing and talking among others. In Kenya, al@@upercent of the population have latent
TB which manifests itself when the immune systensuppressed. In addition, Kenya is
among the 22 countries in the world burdened by a8l is ranked 18 among those
countries. In Africa alone, it is ranked 5th moSeeted by the disease, WHO (2009). In the
country, TB is a major cause of morbidity and midstawith about 100,000 cases reported
every year, DLTLD, MOPHS (2009).

According to DLTLD, MOPHS (2009), TB has been osteady rise since early 1990’s and
these increase posses a major threat to the cesifitéalth and economy. In addition, case
notification has been on the increase from 53 [@€,A00 populations in 1990 to 326 per
100,000 populations in 2009. The identified ageugrwith the highest TB case notification
rate for both sexes remained 25-34 years in 200@disated in previous DLTLD annual

reports.

Report on Global burden of disease, WHO(1990, Tifari et al 2006), showed that
tuberculosis was ranked"7among the causes of morbidity in the world andsitnot
surprising that reducing TB incidence by half ie rear 2015 is one of the set targets for the
United Nation Millennium Development Goals (MDGPStTB partnership, an initiative of
WHO endorsed by world health assembly in 2006, atrisalving the prevalence and death
rates as a result of TB in comparison to the 199@&Ils and targets at eliminating TB
(reducing the global active TB incidence to lesantlone case per a million population per
year) by 2050 , WHO(2008).

WHO (2010) and DLTLD , MOPHS (2009) also showedttK&nya as a country has
achieved the WHO target of TB case detection r&téOopercent with a treatment success
rate of 85% among the sputum smear positive pulnyohB cases. Since 80% cases of TB
are being detected, there are still 20% undetet®dases that continue to transmit the
infection. In addition, the report results suggdgteat as much as the number of new cases of

TB seems to be declining, the number of those reguie-treatment is increasing.



WHO introduced Directly Observed Treatment Shordree (DOTS) as a global TB control
strategy, but this has not been very fruitful ihsgtups where after its implementation, TB
incidence continued to rise. DOTS as a strateggeatnate more on early TB case detection
and successful treatment as opposed to prevert®ias an airborne disease is known to be
associated with a number of factors that contribboiti's development and or occurrence. As
much as early detection and treatment is cruciahe fight against TB, the determinant
factors that play a role in its development shob&l addressed if the disease is to be
eliminated. Some of the determinants include-: HiMtus, poverty and overcrowding,
unemployment, tobacco smoking and indoor air pioliytage, gender, low education status

and environmental factors like Distance to the esidnealth facility and altitude.

New approaches in GIS such as geostatistical mgpuiuster detection techniques and
spatial temporal analysis may contribute signiftsann the control of TB through

visualization and identification of TB spatial gatis which can be related to the contributory
factors and measures to tackle them addressed.sildy used Bayesian technique to map
Standardized Morbidity Ratio (SMR) of TB in thefdifent districts in Kenya and associated
areas with high TB relative risk to the determin&anttors. Apart from that, clusters and
hotspot areas were detected with the aim of emight the Division of Leprosy

Tuberculosis and Lung Diseases (DLTLD) so that evhplanning more resources and
emphasis can be directed towards the areas that@teaffected. In addition spatial outliers
in terms of TB occurrence were also detected ireas with low relative risk of TB

surrounded by areas with high relative risk of Tl aice versa.

1.1 Main objective of the study

To investigate the spatiotemporal clustering ofetghlosis in Kenya and the factors

associated with it.
1.1.1The specific objectives of the study are:

a) To review and use appropriate spatial smoothingriggies in order to reduce
instability due to the high variability of the tulbelosis data in the different
districts in the country

b) ldentify tuberculosis hotspot districts in the ctoyrthrough maps and space time

scan statistics.



c) Use spatial statistical models to link the occuceerof tuberculosis to its

determinants

1.2 Hypothesis.

Assuming constant risk hypothesis in the sprea@Bfthere is no significant difference in
TB incidence among the different districts in tloeiatry.

1.3 Justification.

Since tuberculosis is a major cause of morbidity amortality in Kenya and in the world at
large, a number of efforts have been put in plageduce the incidence of this disease with a
goal of reducing it to less than 1 case per a oniljbopulations per year by the year 2050.
Achievements have been made so far but unfortyntitelreduction is slow as it is projected
that about eight of the high burdened countrieswat achieve the MDG TB target for 2015,
though Kenya has a chance of achieving the seettatg addition, according to WHO
(2010), it has been noted that the incidence ofsTlling slowly while the notification rate
is increasing in the African region. In view of thkove, it was important that spatial patterns
and factors associated with tuberculosis be unyaitethat other strategies apart from DOTs
can be emphasized to enhance and or improve TBctieduprocess. Since TB disease
patterns and the associated factors can be revélatedgh spatial and spatial temporal
analysis, the study therefore aimed at lookindhatdpatiotemporal clustering and modelling
of TB with more emphasis on the determinant factbes hinder or hamper the reduction of
this disease. Some of the factors considered werV, poverty, Household size,
unemployment, indoor air pollution, illiteracy ratistance to the nearest health facility and
altitude.



2.0 LITERATURE REVIEW.

2.1 Spatial smoothing and Mapping

In public health, the goal of mapping is to provateinsight of the geographic occurrence of
disease or variation in disease risk and or rafbg. maps are also used to identify and
understand the cause of diseases, in policy fotionland allocation of resources needed to
combat or reduce the spread of the disease idamtifi is however not meaningful to have
maps of counts because areas with higher populatierexpected to have increased disease
occurrence as compared to areas with lower populasind as a result the population can be
accounted for by using rates or SMR. Unfortunaifetige population sizes are very different,
this may still obscure the spatial patterns and anthe solutions to this problem is spatial

smoothing, Waller and Gotway (2004).

Spatial smoothing is the process of reducing thsenan rates or SMR associated with
different geographic region. This is accomplished bdorrowing information from the

neighbouring region so as to produce a better agtirof the rates or relative risk associated
with each region and separates the spatial pdttemm the noise. It comes in handy in small
number disease where disease rates tend to benekgranreliable because of small numbers

upon which it is based.

In a study by Zaman et al (2006), spatial rate ghing technique was employed in order to
reduce noise so that distinct patterns of TB pexwed can be observed in rural Bangladesh.
Fang et al (2006) also implemented spatial rate osinimg while mapping annualized
Haemorrhagic Fever with Renal Syndrome (HFRS) itn&Hrom 1994 to 1998. Kazembe
(2007) used Bayesian technique to map malaria inskorthern Malawi. Furthermore,
Callaghan et al (2009) applied Bayesian smoothéiegriique and compared it to classically
calculated rates (standard rates) where the resigigested that smoothing gives distinct

patterns of disease in a map as compared to rafgsmortion.

The empirical Bayesian smoothing approach was atgdied by Uthman et al (2009) when
analysing the trend and the distribution of TB-HI¥aths in Africa from 1991 to 2006. They
used yearly data submitted to WHO on deaths rel&wedB-HIV and modelled using

multilevel Poisson growth approach with more emphas trends. Bayesian smoothing



approach was also used in Antananarivo a city idadascar by Randremanana et al (2010)

to map risks of TB.

2.2 Spatiotemporal models

Spatiotemporal models are approach used when slatalected over space and time. These
approaches do not detect the cause of diseasathet provides an insight of the areas with
high incidences which can be investigated furtleer dausal relationship. In addition, the

method can identify the source of disease occuerevith respect to demographic, time and
space. Spatial temporal methods are useful in mong of disease status in a community as

they may provide information on changing diseasgtepaover time.

Tiwari et al (2006) investigated on the geo-spdtalspots for the occurrence of tuberculosis
in Almond district, India, using GIS and spatiabscstatistics. They identified areas with
high incidences of TB. In Portugal, Nunes (2007@niified Tuberculosis clusters using
spatiotemporal techniques. He specifically usedceptime scan statistics to spot most
significant clusters in the study area. Onozukalef2007) on the other hand, predicted
clusters of tuberculosis in Fukuoka area in Japam f1999 to 2004 using space time scan
statistics. They utilized Monte Carlo simulatiot 88999 replication and reported clusters of
TB with a statistical significance level of p<0.0Bhe same technique of cluster detection
was employed by Randremanana et al (2009) in Antma a city in Madagascar to
identify TB clusters. In Gambia, 80% of TB casesevi@und in western part of the country
known as Greater Banjul. Due to these high incideraf TB, Touray et al (2010) decided to
conduct a study in order to reveal hotspots in pligicular area. They used aggregated data
to perform spatial scan statistics that revealgdificant TB clusters both spatially and over

space and time.

2.3 Tuberculosis determinants

TB as a communicable disease is associated witralefactors as key determinants or risk
factors. The factors can broadly be classified g®:zio-economic, socio-demographic and
environmental factors. In addition, HIV /AIDS, detles, Cigarette smoking, alcohol and drug

abuse are also considered major contributors oéased TB incidence.

Studies have shown that socioeconomic factordelatto poverty contribute significantly to

the development of TB in that the poor live in cdmd areas, have poor nutritional status
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(malnutrition) due to poor eating habits and oklatfood that lead to weak immune system.
They also have limited access to proper medica (@diagnosis and treatment), Waaler et al
(2002). Barr et al (2001) demonstrated that TBdance rose with increasing neighbourhood
poverty and overcrowding. In the same vein, Munchl@003) investigated the risk factors
and areas of TB transmission using GIS and revealsinificant association of TB with

unemployment, overcrowding and number of sheeberwvfled neighbourhood bars). In

addition, Crampin et al (2004) had similar resudtace increased TB incidences were
observed in those who had contact with TB casesethwith fewer possessions, those who

shared sleeping dwellings and the ex-drinkers.

Chan-Yeung et al (2005) discovered that poverty, éducation attainment and old age were
significantly associated with high rates of TB wdes Baker et al (2007) also reported
significant association between TB and househadding. Furthermoredye et al (2009) in
their study of determinants and trends of TB inomein 134 countries found out that TB
incidence was declining faster in countries witlpioved sanitation, low child mortality and
high human development index. Urbanization on ttnerohand has lead to mushrooming of
slums and overcrowding. These predisposes indiVitmalB cases thus increased TB

incidence, Randremanana et al (2010)

Environmental factors also contribute to the likebd of acquiring the infection because the
concentration of TB bacilli depends on the veritlatof the surroundings and exposure to
ultraviolet light because Vitamin D helps with maghage function, and macrophages help
to clear TB bacteria. Thus, overcrowding, congregain prison settings, poor housing, and
inadequate ventilation increases the risk of cdntawd predisposes individuals to the
development of TB. Lienhardt et al (2005) and Mtllal (2006) proved that family history or
previous exposure to TB from a household membarkisy factor in developing the disease.
In addition, overcrowding, history of being in mis unemployment and the use of illicit
drugs as TB risk factors were demonstrated by Cekeal (2006). Distance to the nearest
health facility affect health seeking behaviour amtdess to health care. Thus the further the
health facility, the poorer the access by espactalbse of low socio economic status. Since
TB is an airborne disease, the more a person stafisthe untreated disease, the more it
spreads. Randremanana et al (2010) showed a gosélationship between TB and the

distance to the nearest health facility, thoughréh&tionship was not significant.



Socio-demographic factors such as age, gendertanitigy have been associated with TB.
Studies conducted by Lienhardt et al (2005) rewk#iat the risk of TB increased with age,
was higher in the male gender and single indivisluatiuding those who are widowed or

divorced as compared to the female gender and #eied individuals. The results are

similar to those of Crampin et al (2004) who haehitified that being widowed separated or
divorced increased the risk of TB. On the otherdhathnicity as a factor was described by
Hill et al (2006) in Gambia.

Smoking as a risk factor for TB has been demoretray Ghasemian et al (2009) who found
out that male smokers were 2.1 times more at fisleeeloping TB as compared to their non
smoking counterparts and this association was dkgeron dose and duration. This could be
attributed to the fact that smoking causes peritin@ inflammation, fibrosis, thickening of
the bronchial wall (intimal) and damage to the alweThis in turn reduces ciliary activity
leading to poor clearance of inhaled substancesilé8iresults had been observed by several
other prior studies, among them are those condumtddavies et al (2006) and Chiang et al
(2007). Indoor air pollution from solid fuel has also beassociated with TB and the
mechanism is believed to be similar to that eletityy tobacco smoking. From the studies
carried out most show that it increases the rigkttoel risk is not statistically significant, Lin
et al (2007).

HIV has been documented as a risk factor for TBeweral studies such as those carried out
by Crampin et al (2004) and Lienhardt et al (2008)ese studies revealed that increased
incidence of TB were observed among the HIV positg compared to those who were HIV
negative. The reason for the trend is reduced Giddhtcand increased viral load. In Kenya,
HIV is the major cause of TB epidemic. Since 2088y has contributed significantly to
increased proportion of smear negative TB thatwapassed notified smears positive TB,
DLTLD MOPHS, (2009).

Altitude has also been associated with TB where ddanet al (1999) and Tanrikulu et al
(2008) observed reduced incidence of TB with inseelaaltitude. To be precise, Tanrikulu
found out that the incidence of TB in low altituglas 3.28 times higher than in high altitude.



2.3 1 Conceptual framework

The TB conceptual framework was adapted from tiperé below that was developed by Jaramillo et
al (2009)

Weak and inequitable economic, social, Globalization, migration, urbanization,
and environmental policy demagraphic transition
Weak health care Poverty, low SES, P
system, poor access low education status -
Inapprepriate health Unhealthy
cara seeking behavior

0

Active TR Crowding, Tobacco T - A 4
1y catesin the poor Ll smoke, indoor ,.dr_mll-}nu r Ifi‘} Ulng iseases, | | .ge,—sc?,an
community ventilation air pollution labetes;aiconoismy; el el Tachir

4 1 N 1l 24

High-level contact with
infactious droplets

Impaired host defense

Infection

o Exposure

v
v

Active disease —* Consequences

]

Source: Jaramillo et al (2009) c.f. Hargreaved @i 1)

Figure 1-TB Conceptual framework




2.3.2 Operational plan

From the conceptual framework developed by Jararatllal (2009) we were able to come up
with an operational plan for TB determinants usedthie study. The roles of these
determinants in TB development are either direéhdirect. HIV and indoor air pollution are
considered to have a direct influence on TB sihey tinterfere in one way or another with
the normal functioning of the body, through redotiof CD4 count and ciliary activities
respectively. The independent factors act indiyeatid sometimes contribute to HIV and

indoor air pollution leading to active TB.

Independent factors Proximate factor Dependent factor

Environmental/geogre
phical factors

« Distance to the
nearest healtfacility

o Altitude >
HIV/AIDS )
* Active
» |ndoor air » tuberculosis
- pollution

Socic-economic factor:

Crowding
Urbanisation
Unemployment
Poverty

\ 4

Figure 2-TB Operational plan




3.0 METHODOLOGY

This study used the data submitted to the Divisibieprosy tuberculosis and lung diseases
every quarter from the DTLCs through their respec®TLCs in Kenya. First we looked at
the smoothing techniques then generated maps efdulosis at the district level. The maps
generated were not of standardised morbidity ratib rather of smoothed SMR to ensure
distinct patterns of TB were observed. Areas witfhtoccurrences of TB (hotspots) were
identified in the TB data and the presence of tresociation with TB determinants

investigated.

3.1 Study area, data and population

The study was conducted in Kenya, a country locatelast Africa bordered by Uganda,
Tanzania, Somalia, Ethiopia and Sudan. The stugylption included all people at risk of
developing TB .Since the study was retrospectiwe, used annual district TB data from the
year 2002 to 2009.This data is usually collectadinely as TB patients are diagnosed and
put on treatment. We used all cases of TB i.e. pabry sputum positive and negative and
extra-pulmonary all forms. Basically the data ugsstbrporated all forms of TB in Kenya
found in all age groups. The coordinate informaticas downloaded from Google maps by
using the code: javascript:void(prompt (",gApptioa.getMap().getCenter())); This is an
application that allows centroid of the specifigioa to be downloaded once it is identified
in the map. The population at risk used was theicliprojected population as calculated by
the Kenya National bureau of statistics for thery2@00 to 2020. In addition, data on HIV
was obtained from DLTLD’s, poverty information froklHBS 2005/2006, altitude from
www.fallingrain.comon 22 June 2011 and the determinant factors were usesvéal their

significant association with TB.

3.2 Tuberculosis Regional count data

Regional data is a set of counts of diseases &laila a set of geographic regions that could
be in the form of districts, counties, census srad blocks among others. In this study,
regional count data partitioned as districts wasdus identify areas with high incidences of
TB in Kenya .For exploratory spatial data analysmoothed maps using full Bayesian
approach for each year were generated. Then metismtk to identify disease clusters and

tests to identify disease clustering implementekde Thethods for spatial autocorrelation
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include Moran’s | and the G statistics but the gtedhployed Moran’s | because the later
can only be used to identify positive spatial aatoelation and not negative spatial

autocorrelation.

Since the research is on spatial temporal techsjcalethe newly created districts with TB
data available for less than three years were rozated into their previous districts. This
was to ensure uniformity and consistency of reduttsy the districts. Furthermore, some of
the newly created district's boundaries are yebeoapproved by parliament therefore the

coordinates have not yet been geo-referenced it8dd@ public use.

3.3 Data preparation

The data used for analysis was sourced from diffecgganizations and or entity. This
included data on TB cases per district, the dist@ordinates (latitude and longitude), HIV
prevalence per district, proportion of poverty, Medistrict altitude, Mean household size,
Employment opportunity, urban areas, proportiontlid population that use firewood,
proportion of the population per district that armre than 5 kilometres away from the

nearest health facility and the projected poputatier district.

The expected numbers of TB cases were calculatad tiee population and the observed TB
cases.
Let O represent the observed number of TB casKermya in a given year? the population

of that year andRthe rate of TB in that year.
Therefore R=0/P (1)

And let O be the observed number of TB cases per districlra(he L2 N) , E be

the expected number of TB cases per district Rtite population of each district.
The expected number of TB cases per district was:

E =RxP (2)
After calculating the expected number of TB casessdistrict per year from 2002 to 2009,
the data set was saved in excel as comma delifilige@ady for analysis.
The comma delimited data set and the Kenya didtoandary shape file were imported into
R. These two files were then merged to generatedare set that had all the variables of

interest including the co-ordinates (See R commamdppendix 1)
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Secondly in the same data set, number of columds@ms were indicated in the top most
rows then imported into Geoda software. Here, tleaya district centroid shape file was
created from Kenya district boundary shape filee Henya centroid shape file was then
opened in excels as a dbase file and its centomp&d into the comma delimited file. This
file was then converted into a point from ASCII gadile. The shape file was later joined
with the Kenya centroid dbase file and the outmédiagain to be merged with the Kenya
district boundary shape file. The whole procesdkaththe merging of the data to the Kenya
district boundaries thus creating a polygon filéhmthe required data. This polygon file was
then used for analysis. Apart from polygon file,igi files were also created to be used in
computing Moran’s | statistics and in Bayesian gsial

However, the data used for space time scan statisths prepared in a different manner such
that three files namely; case file, population &led coordinate files were created. The case
file had the district, cases and the time periogears, the population file had the district,
population and the time period in years and thalliinthe coordinate file had the district,
latitude and longitude. All the files were savedcasnma delimited files and imported into

Sat Scan software for spatiotemporal analysis.
3.4 Statistical methods

3.4.1 Smoothing models

First standardized morbidity ratio was calculatsthg Clayton and Kaldor (1987) approach.
This is an indirect method of standardization where observed number of event in a study
population is compared to the expected numberefetrent in the same study population if
the event were the same as that of the standandlgimm. In our case the event was TB
cases or occurrence of TB. The ratio is thereftwe dbserved number of TB cases to

expected number of TB cases.

So that

The SMR; was used to indicate the relative excess or demmewf TB cases in each district

with respect to the standard TB rate in Kenya esuatry for each year.
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When modelling count data, the approach is to asstivat the number of cases follow a
Poisson @tribution. A Poisson distribution models assumes that the naganthe variance

are equal but this is not always the case. In rsigations the data is “over-dispersed”
meaning that the variance is higher than the méana result the model needs to be
expanded to cater for the over-dispersion. Oneafaping this is to use a negative-binomial

distribution.

When negative binomial distribution is used, a mnceffect following a gamma distribution
for each region can be considered to produce vghedlled the Poisson-Gamma model. The

Poisson-Gamma model is structured in two levelhasvn below.
Q16.E ~Po(gE), (4)

g ~Ga(v,a) (5)

From aboved is the relative risk which is considered as a ramdariable drawn from a Gamma
distribution (scale paramete¥ and shape parametey with mean (v/ a) and variancév/ az). In

the first level, the distributiorQ, is conditioned ond . But in the second levelQ is a negative

binomial with size parametev and probablllty+—E. Also the posterior distribution of] has a
a i

Gamma distribution with shape parametet O and scale parameter+ E;. This means that the

information after observing the data has been @oband therefore the posterior expectatioi] as:

v (6)

£[910,E] =

Therefore the shrinkage estimator can be expressed

E[am,E]:a%'Eswm(l__aij% )

The output in equatiof6) and (7) is usually affected byd especially in low populated areas

where a small variation of observation can prodadeg change iSMR;. In addition, given

that the value fov and a are the same for all the regions, the informat®barrowed from
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everywhere to construct the posterior estimates thist can be modified to consider a

different set of neighbours.

Clayton and Kaldor (1987) developed an approachused Empirical Bayes estimation. The

estimation ofvand @ in a negative binomial distribution can be doneagghe maximum likelihood

function. The log likelihood based on the distribotof the Q is:

L(@) =3 1og=C Y 4y iog(a) (0 +v) log(E, +a) (8)

i r(v)

Setting the first derivative in the above equatwith respect toad and V to yield 0, the equation

becomes;
V_ 1wO0+v_ 10
E:WZ 3 :WZQ (9)
a i E +a i

and

N O-1 1 N
> > ——+Nlog(a)->_log(E +a)=0, (10)
i1 joVt] i=1

where Z;OJ/(V+ j)=0
Equatbn (9) and (10) can be solved using standard iterative procedimes ytielding the empirical

Bayes estimate(@i ) as shown in the equation below.

~ 0
~ A 0}
S EEA (11
02 N-14 E
a |
where N-1 is a Pearsonian chi-squaredbasemean and variance above.

It is also possible to allow the model for the disition of (6{)to extend for covariates such

as(;). Therefore the estimates of the districts with felvgerved and expected cases of TB

will not be drawn to the global relative mean of BBt rather to the estimated degree of the
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covariate being used. This is done by aIIowinginldﬁtvaIues(ai), for the scale parameters

of the distributions of eacH , and adopting the log-linear model shown below:
Vv
E(8)=—=exp(z"9) (12)

In Empirical Bayes technique developed by Marsl{@891, c.f. Bivand et al 2008) the
relative risk 8 was assumed to have a common meaand varianceo® without being

specific on any distribution. Using the method afments, the shrinkage estimator proposed

was:
~ o 0 0
6= 1+ SR -1 =(1-C) + COWR (19
N
0
where E{zz':l ' (14)
Zi=1E‘
and
: Ul E
C= £ (15)

&/ E+ul
HIE+ Ul E

When mapping disease incidence using conventiorethods, one may not get the true
spatial pattern because this methods are affegtedrimiom variation as a result of differing
population in different regions. This leads to reeld statistical power when the cases are
assigned to different subgroups such as distrittis Tmay further lead to incorrect
interpretation as true epidemiologic variation. 8sign methods models random variation
and true variation therefore it can be used tocttee problem. In addition, Bayesian models
provide shrinkage and spatial smoothing thus ahgwdistinct pattern of disease to be
observed.

It is also evident that when hierarchical Bayesi@dels are computed, Waller and Gotway
(2004), layers could be created such that eachesktlayers account for a specific source of

variation. This means that covariates can be medels the model borrows information from
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the neighbours (smoothing). This allows achievenwnstable local rates without losing

geographic resolution.

One of the drawbacks of empirical Bayes estimatiésigability to take into account a measure of
uncertainty of the estimates, Maiti (1998patial rate smoother on the other hand represent
regional averages therefore cannot be used toifigemttliers since it's not specific to
individual location. Head banging smoother andigpétters (adaptive k smoothing) are not
appropriate because they do not account for vagiamtability in rates. Kernel smoother on
the other hand is good for point data and not rediased dataFor this reasons we used

Bayesian methods.

In the Bayesian model analysis for mapping, thatina risk estimate was obtained through a
measure of central tendency of the posterior distion and the median. Bayesian Poisson
Gamma formulations were used whaftand a were assigned vague gamma priors to ensure
that very little information was introduced intoetimodel. Monte Carlo method with one
Markov chain was used to obtain the posterior iistion with Gibbs sampling algorithm.
Gibbs sampling was used to overcome the problerigf dimensional integration in the
posterior distribution. This allowed us to use nap#th iterative sampling to check the
convergence of Gibbs sampling. The Gibbs samplad)200,000 iterations, a burn in period
of 10,000 iterations and a thin rate of 100. Thiplied that the first 10,000 iterations were
discarded to eliminate the effects of the initilbices and one in every hundred of the
remaining iteration was stored. It is importanntiie that a package called R2WinBUGS in
R software was used to call WinBUGS software ushegscripting language and then reads

the output log file from it.

3.4.2 Detection of disease clusters

According to Tobler’s law, observations closer &zle other have related values or are more
alike than those further apart. Therefore spatitébeorrelation is a phenomenon that is used
to show whether near events are more alike thasethather apart. In other words, it shows

the relationship between an event in a given loocadind the same event at other locations.
3.4.2.1 Homogeneity of relative risk

Before any cluster detection, a heterogeneitywast computed in order to find out if there is

an actual difference in TB relative risk in thefdrent districts in Kenya. This was done
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using a chi-square test to find out if there isgaificant difference between the observed and

expected number of TB cases in each district. Tdugstcs is defined as below;

e=319 ?E (16)

i=1
where g is the globalSMR=3>" O,/ E,

3.4.2.2 K nearest neighbour

While generating weights used in computing spa#atocorrelation, the modality of
identifying the neighbours was specified. The studgd k nearest neighbour as a method of
generating weight. This is a method or approachithased to assess neighbour relationship
regarding a particular event in a certain regionother words, the event is assessed within
the spatial context of a fixed number of its clésesghbour. For example if k is 4, then the

four closest neighbours to the target region walimcluded in the computation of the event.

This method is advantageous in the sense thasiitres that there is some neighbour for each
target region and the number of neighbours is fix¢ds the number of neighbours and it

should be specified.
3.4.2.3 Moran’s |

For this study both global and local Moran’s | wetdized for detecting clustering and the
presence of clusters in the districts respectivehe global Moran’s | was used to provide an
insight on the spatial similarity of TB relativeskiin the neighbouring districts in the entire

study area and was expressed as shown below-:

_ 1 N
where Y:NZYi



and

Y, is the value for a variable in tlith observatior is the sample mean ang is the spatial

weight of the connection betweéand;.

After computing the global Moran’s | with EmpiricBlayes standardization, randomization
procedure was used to recalculate the statistiasrder to validate their significance. To
generate reference distribution, 999 permutatioagevapplied with a significance filter of
p < 0.05. The p value generated compared the obsetatstiss to the generated distribution
through randomization i.e. it determines how likelyis to observe the actual spatial
distribution if the actual values are randomly rdfled over space at a certain number of

permutation.

In Beijing, Jia et al (2008) used global Moran'with a z score and Getis’s G statistics to
identify hotspot districts for TB. Likewise, thisusly employed similar statistics to identify
TB hotspot districts in Kenya. Since Getis's G istats does not show negative spatial
autocorrelation, it was not computed instead glddalan’s | was used. Apart from that
LISA inform of cluster maps were generated to iigeaareas of both positive and negative

spatial autocorrelation.

Local Moran’s | a local indicator of spatial auto@ation was computed to show the local
measure of similarity in each region’s value andsth of their neighbours. The measure
detected individual clusters such that if we haggiani, then the local Moran’s | was

computed as shown below-:

N

l :(Yi ‘\?)ZW.J' (Yl _\?) (18)

=

To detect local clusters in the TB data set, LISEKhwempirical Bayes rate was also
computed where cluster maps were generated to shewelationship among different

districts with their neighbours. These maps weredu® identify local spatial clusters and
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spatial outliers of the geo-referenced TB data. Télationships were grouped into four

categories;

High-high: districts with high relative risk of TB surrourdidy neighbours with similar

values.
Low- low: districts with low relative risk of TB surroundég neighbours with similar values

High-low: districts that experience high relative risk @ Surrounded by neighbours with
low TB risk.

Low-high: districts with low relative risk of TB surroundday neighbours with high risk of
TB.

It is worth noting that since our population difeso much from one district to another, the

Moran’s | computed were standardised using EmpiBeges technique as outlined below.
3.4.2.4 To adjust for the population using EB techique

Assuncao and Reis (1999) developed a Moran’s | that &sapirical Bayes rate to shrink
extreme rates with small population at risk towatds entire study area’s rate. In this
technique a new index is generated using deviai@stimated marginal mean standardized

by the estimate of its standard deviation.

Let G...coeennnnne g, be unknown rate of TB in the different districtadaO observed TB cases per
year with a Poisson distribution conditional medfE¢O, |§) = P8 and the estimated ratB, has

conditional mearE(R |6{) =g and varianccfar(R |6{) =8 IP.

From above, if we denote priori expectation andarare asff and ' respectively then the
marginal expectation oR is S and marginal varianae+ B/P . This shows that the variance is

different and it increases as the population dee®a

Marshall (1991 c.f.Assunc’ao and Reis 1999) proposed moment estimators fimri pr

expectation and variance dsz O/P anda=s’-b/(N)
where =3 R(R-b)*/P
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and N is the number of areas/regions,
O is the observed event and
P is the population at risk

Then, the marginal expectation and varianck ofiere estimated by and vi respectively

wherev, =a+b/P,

The new index proposed therefore was:

and the Empirical Bayes Index was defined as

EBI =< 2% 32 (20)

) 2w Z(z —E)Z

Before computing LISA with Empirical Bayes standaation, the Geoda software was set at
999 permutations with a significance filter o&k@.05. This was to ensure that the cluster

maps generated showed areas with significant difies at 5% level of significance.

For interpretation of spatial association, the ¢attrs results were used to suggest spatial
autocorrelation with 1 and -1 depicting strong pesiand negative spatial autocorrelation

respectively. A zero value indicated a spatial cangbattern.
3.4.3 Space time scan statistics

A spatial scan statistics developed by Kulldorftiadagarwalla (1995 c.f. Kulldorff 2010)
was used to identify and detect clusters in a @ar district together with their statistical
significance. This statistics works by imposingi@war or elliptic window on the map and
allowing its centre to move over the study regibine window can take any predefined shape
and its size may be allowed to vary as it moves secahs the study region, Kulldorff
(2010).For any centre position, the radius of timeles is able to change so that it takes any
value between zero and some upper limit set byisiee. The upper limit set by the user can

be a percent of the population used in the analgsgercentage of population defined in the
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maximum circle file or geographic size. The maximupper limit for spatial analysis that

can be used is 50% of the total population at rigkerwise if the cluster size is large, it
would indicate areas of low rates outside the eirather than areas of high rates within the
circle, Kulldorff (2010). Having 50% of the totabpulation at risk is the preferred value

since SaTScan identifies both small and large etastithout any bias on cluster size.

Each of these circle generated includes differetst sf neighbouring districts so long as they
are within the circle and is a potential cluster @ incidence. For each circle generated,
spatial scan statistics calculates its likelihoodthe TB cases observed inside and outside the
circle. From the circles computed, the one with ti@ximum likelihood is considered the
most likely cluster meaning that it could not haeeurred by chance. This method tests the

null hypothesis that the risk of TB is the samalirthe districts in Kenya.

Since we are using regional count data, a retréiseeSpace time scan statistic was
computed on the TB data from 2002 to 2009 usingS8am software. The likelihood ratio
based on Poisson distribution was used. Therefobee likelihood ratio for a Poisson

assumption for a specific window was defined as:

O OIrl O OOLII
max{iJ (L“J 1 () (27)
Ein EOUT
where Oin is observed cases of TB in the defining windéwin is the expected cases in
the defined window, @ut and E out are the observed and expected cases outside the

window of interest respectively.is an indicator function which is equal to 1 wltka circle

has more TB cases than expected under the nultiggis and 0 otherwise.

For analysis, a discrete Poisson model with a dyilbal window where a circular geographic
base and a height corresponding to time was imptwsatbve over the study region in time,
so that for each possible area and size, it alsibedi each possible time period. For spatial
50% of the population at risk was the specified imaxn cluster size while for temporal 50%
of the study period was also specified as the magter size. Standard Monte Carlo
simulation with a significance level of 5% was usedinference, to test the null hypothesis
of spatial randomness. It was rejected when thalpevassigned to the detected cluster was
found to be significant. No spatial, temporal amdspace time adjustments were made and

the number of Monte Carlo replications was set98t 9As a criterion for reporting secondary
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clusters (areas with high rates of TB but with lowkelihood than the most likely cluster),

no geographic overlap was allowed.

As stated above, the most appropriate space time sttistics for our data is a discrete
Poisson model because the data is in count formta@doopulation for each district is

provided. Other models that space time scan statisipply are; Bernoulli model which

requires cases and control data, Ordinal model tbatires ordered data in categories,
multinomial model where case data that is groupgd specific categories is needed and
space time permutation model that needs only cate lout then it cannot be used where
population growth in different regions of the stualyea is not proportional and when the
study period is long, Kulldorff (2010). Furthermdegponential model requires survival data

and finally normal model utilizes continuous data.
3.4.4 Spatial modelling

To determine the association of TB and the riskoia; a Bayesian approach was applied
where Conditional Autoregressive Model (CAR) wasafied. This model depends on the
conditional distribution of spatial error terms aggplains part of the variability of the
relative risk. The CAR specification for a set ahdom variable$vi}iN:l =1can be defined as
below:

WiV

v v, ~N[ZZ-W- Yo /ZW”-J (22)

i

Wherey, |v; is the vector of all error terms minus the errentéself. w; is the weight that

measures the relationship between regiand j while g7 shows the conditional variance of

the CAR model specified.
3.4.4.1 The Model

Before computing the model we needed to specifyntivelel using the BUGS (Bayesian
inference using Gibbs sampler) language, the TBa,dapatial data describing the

neighbourhood structure and initial values of theameters (see R commands appendix 1)

Q, ~ poisson(4,)
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and U = 6E
therefore
log(@)=a+Bx +u +\

v; is the CAR specification y is the non spatial random effesid x; is the explanatory

variable.

The weight file used in this model was queen caiitynbut it was converted into an nb2WB
in R. This allowed us to set all the weights fojfaadnt neighbours to 1 and O otherwise.
During the analysis, MCMC simulation method wasdused 100,000 iterations specified
where the first 10,000 were discarded leaving 908 each 100sample was stored. This

sample was then used to assess convergence irateeplots generated. By including the
covariates, we were able to assess and remove fteetsethat occur as a result of
confounding or risk factors. To know the effectstlué covariate, we looked at the posterior
density plot off. If the posterior mean or median was greater #ea, the coefficient of the

covariate was considered to be positive and wherB8% credible interval did not include

zero, then it was interpreted that the coefficisnstatistically significant. This means that

there exists a positive association between TBtl@disk factor.

To diagnose convergence, several chains in the tpdmt showing Markov chain Monte
Carlo (MCMC) simulations output were compared drttley appeared to concentrate around
the posterior mean or median of the 2002 TB d&er) it was considered that convergence

had taken place.
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4.0 RESULTS

4.1 Bayesian smoothed Maps of TB

The Bayesian smoothed maps labelled figure 3 wordid0 below, shows the posterior mean
and median of the TB relative risk in Kenyan datifrom the year 2002 to 2009. These
maps were used for exploratory spatial data armlisishow the spatial patterns of TB
occurrence in Kenya and identify high risk dissict

In 2002, the districts with high relative risk oBTwere: Bondo, Embu, Isiolo, Mandera,
Marsabit, Meru south, Moyale, Nairobi, Rachuonyontébay, Kisumu, Mombasa, Kitui and
Nyando. In 2003, all the districts that had hachhiglative risk of TB were maintained apart
from Marsabit. In addition, Nakuru and Suba alsmorded a significant relative risk during

this year.

In 2004, Bondo, Embu, Homabay, Kitui, Isiolo, Mesauth, Moyale, Migori, Mombasa,
Nairobi, Nakuru, Suba, Rachuonyo, Turkana, UasshGi, west pokot, Kisumu and Nyando
experienced high TB occurrence while in 2005 adlsthdistricts maintained their high rates

in addition to Mandera and Siaya but excludingkéna and west pokot.

The year 2006 didn’t depict a very different sdapiattern since similar districts recorded
high occurrences of TB. Kitui, Nakuru and Meru $owtlative risks declined this year and
therefore were not among the TB hotspot identified2007, Busia and Kuria emerged as
hotspot since these two districts had not recordigh TB occurrences compared to the
country’s rate. The other districts especially th@sound the lake region maintained high
relative risk of TB.

In 2008, Bondo, Homabay, Isiolo, Kisumu, Migori, éde, Mombasa, Nairobi, Nyando,
Rachuonyo, Siaya, Suba, Turkana and Malindi hat hages of TB. It is worth noting that
Malindi emerged as hotspot in 2008. In 2009, Thamakd Thika were identified as emerging
hotspot areas but Bondo, Homabay, Isiolo, Kisumigo¥l, Moyale, Nairobi, Rachuonyo,
Siaya, Mombasa, Malindi, Turkana, Uasin Gishu anlaScontinued to display their high TB

occurrence.

24



2002 Pmean for TB in Kenya 2002 Pmedian for TB in Kenya
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Figure 3-Maps of posterior mean and median relativeisk of TB for the year 2002

2003 Pmean for TB in Kenya 2003 Pmedian for TB in Kenya
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Figure 4-Maps of posterior mean and median relativeisk of TB for the year 2003
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2004 Pmean for TB in Kenya 2004 Pmedian for TB in Kenya
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Figure 5- Maps of posterior mean and median relatie risk of TB for the year 2004

2005 Pmean for TB in Kenya 2005 Pmedian for TB in Kenya
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Figure 6-Maps of posterior mean and median relativeisk of TB for the year 2005
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2006 Pmean for TB in Kenya 2006 Pmedian for TB in Kenya
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Figure 7-Maps of posterior mean and median relativeisk of TB for the year 2006

2007 Pmean for TB in Kenya 2007 Pmedian for TB in Kenya
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Figure 8-Maps of posterior mean and median relativeisk of TB for the year 2007
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2008 Pmean for TB in Kenya 2008 Pmedian for TB in Kenya
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Figure 9-Maps of posterior mean and median relativeisk of TB for the year 2008

2009 Pmean for TB in Kenya 2009 Pmedian for TB in Kenya
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Figure 10-Maps of posterior mean and median relatig risk of TB for the year 2009
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4.2 Testing homogeneity of the relative risk

A chi-square test was computed on TB data on dyybasis to test for homogeneity before
proceeding to find out more on clustering and preseof clusters. The number of simulation

used was set at 999 and results are shown in 1dtdéow:

All the results suggest that there is over disparsivhich is significant at 5% level of
significance. This is because the p value is lbaa 0.05 suggesting strong evidence against

homogeneity.

Table 1-Results of a chi-square test for homogengibf TB data from 2002 to 2009

Year Statistics P.value
200z 37895.3 0.001
2003 39823.35 0.001
2004 40298.76 0.001
2005 38765.44 0.001
2006 40855.12 0.001
2007 33966.95 0.001
200¢ 32771.1 0.001
200¢ 31823.2! 0.001

4.3 Spatial autocorrelation

Spatial autocorrelation techniques used to iderhiéy existence of spatial association either
in the entire study region or the individual regionith their neighbours was computed in
Geoda software. The weight file computed had fasirttee specified number of nearest

neighbours.
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4.3.1 Global Moran’s |
The results of global Moran’s | are shown in tableelow.

These results suggest that there is positive $psociation on the TB data as the global
Moran’s | is greater than zero. From 2002 to 2006 positive spatial similarity is not
significant while from 2007 to 2009 the spatial #arity is significant at 95% confidence
interval since the p. values generated after ramghiion are less than 0.05. This means that

the relative risks of TB in near regions are mdileeathan those further away.

Table 2-Results of Global Moran's | for TB data fram 2002 to 2009.

Year Moran’s | standard | Moran’s | | P value | Expectation| Mean
deviate statistics
2002 0.0715 0.0898| 0.093 -0.0147| -0.0135
2003 0.0720 0.1122| 0.055 -0.0147| -0.0159
2004 0.0667 0.0619| 0.129 -0.0147, -0.0168
2005 0.0685 0.1022| 0.067 -0.0147, -0.0140
2006 0.0559 0.0781| 0.068 -0.0147, -0.0099
2007 0.066: 0.1217| 0.02¢ -0.014° | -0.017¢
200¢ 0.070" 0.154(| 0.01¢ -0.014° | -0.019(
2009 0.0710 0.1164| 0.044 -0.0147| -0.0140

4.3.2 Local Indicators of Spatial Autocorrelation LISA)

Below are cluster maps labelled figures 11 to #gii8 generated to identify the local clusters
of TB in the Kenyan districts for each year fron02@o 2009. Spatial clusters in terms of hot
spots and cold spots were defined. The spatialeositivere also identified because they have

an impact in epidemiology and disease surveillance.

In 2002, hotspot districts identified were Manddvigyale and Marsabit. These areas had

high TB values surrounded by neighbours with high dccurrence. Garissa, Kakamega,
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Trans Nzoia had low TB values surrounded by neighbaevith low TB occurrence. Wajir
had low values of TB surrounded by neighbours Wwitih TB value. West pokot and Uasin
Gishu had high TB relative risk surrounded by nbairs with low risk.

In 2003, Suba emerged as one of the districts Witfn TB occurrence surrounded by
neighbours with high values of TB. Bungoma and N§oB were added as cold spots. The
spatial outliers remained i.e. Uasin Gishu, Wesiop@nd Wajir. In 2004, Mandera was the
only hotspot revealed, the cold spots remainedMutsabit was added among the spatial
outliers that were surrounded by neighbours witihhTB incidence. Clusters map for the

year 2005 was similar to that of 2004 with only @ulelitional hot spot district called Suba.

In 2006, Mandera remained as a hotspot with anogineerging hotspot in Bondo. The
emerging cold spot were West pokot, Samburu and.Tdsirsabit and Wajir remained as
spatial outliers surrounded by neighbours with hagturrence of TB. Uasin Gishu still

continued to be surrounded by neighbours with I®&wases.

Districts with high TB incidence surrounded by ri#gurs with high TB occurrence in 2007
were Suba and Mandera. Trans Nzoia, Bungoma, Kajffaraad Garissa remained as cold
spots. Marsabit and Wajir maintained the same @ppéttern while West pokot and Uasin

Gishu had high values surrounded by neighbours lathvalues of TB.

The only hotspot revealed in 2008 was Suba butsINaoia emerged as an area with high
TB occurrence surrounded by neighbours with lowvEBIes. Cold spots for this year were
Baringo, Bomet, Keiyo, Kakamega, west pokot anditu&shu. Mandera was no longer an

outlier but an area surrounded by high values aof TB

In 2009, Bondo and Suba were the high TB area®wuded by neighbours with high TB
occurrence. Kakamega and Trans Nzoia remained lasspots. Uasin Gishu again was
identified as an area with high TB relative riskreunded by neighbours with low TB

values.
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Figure 11-Empirical Bayes standardized Cluster mapf TB for the year 2002
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Figure 12-Empirical Bayes standardized cluster mapf TB for the year 2003
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Figure 13-Empirical Bayes standardized cluster mapf TB for the year 2004
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Figure 14-Empirical Bayes standardized cluster mapf TB for the year 2005
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Figure 15-Empirical Bayes standardized cluster mapf TB for the year 2006
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Figure 16-Empirical Bayes standardized cluster mapf TB for the year 2007
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Figure 17-Empirical Bayes standardized cluster mapf TB for the year 2008
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Figure 18-Empirical Bayes standardized cluster mapf TB for the year 2009

4.4 Space time scan statistics

In space time analysis, we tested the areas wih B occurrence from the 69 districts in
Kenya starting from first of January 2002 to thifinst of December 2009. Remember that
the spatial window was set at 50% therefore theimam number of year computed for a

cluster is four years. These results are showralniel'3 below.
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The most likely cluster identified that would n@ve occurred by chance was Nairobi district
with a statistical significance cluster (p<0.00dnh 2003 to 2006. The observed cases were
77190 while the expected cases were 32414. It hadhighest log likelihood ratio thus

classified as the most likely cluster. The relatigk is as shown in Table 3.

The other clusters identified as secondary whictevagatistically significant (p<0.001) from
2005 to 2008 were Suba, Bondo, Homabay, Migoriy&id&Rachuonyo and Kisumu. Their
observed TB cases were 63844 with 35694 as thecegaumber of cases. In addition
several other secondary clusters that were statilstisignificant (p<0.001) but on different

time periods as shown in table 3 are Moyale, U&sghu, Nyando, Turkana and west pokot..

The secondary clusters reported are those thaigmdicant at 5% level of significance and

did not overlap with a reported cluster (the mosly cluster)

4.5 Tuberculosis Determinants

TB data for the year 2002 was used to analyseffaet®f the covariates on Tuberculosis. A
Bayesian approach with conditional autoregressisdehwas fitted to test the relationship of
TB with the selected covariates. Before interpgetihe results we looked at the stability
between the posterior mean and the posterior meghdnfound that the median was more
stable than the mean. Therefore our inference ithemmedian and not the mean. According

to the generated posterior densityGofor the year 2002, all the covariate’s coefficeentere

considered positive since their posterior mediarrewgreater than zero and their 95%
credible interval did not include zero as showrTable 4 below. This means that all these
covariates were considered to have a statistisallyificant influence on TB. For instance the
results suggest that there is an increased ri§iBoih areas with high prevalence of HIV at

5% level of significance. Also increased risks d8 Were observed in areas with high

proportion of poverty, increased mean house haté, sinemployment, urban areas, high
percentage of population that use firewood, higrcgretage of illiteracy, high altitude and

those regions where a big percentage of the papuolatere more than 5 kilometres away
from the nearest health facility. The density platsd the trace plots in appendix 2 to
appendix 11 shows the positive influence of theaciaes on TB and that convergence had
taken place before making any inference on theltesConvergence is considered to have
taken place when most of the MCMC simulations avacentrated around the mean or

median.
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Table 3-Results of space time scan statistics froa®02 to 2009

West pokot

District Time Observed | Expected | Relative | Log P-value

frame cases cases risk likelihood

ratio

Most likely 2003-2006| 77190 32414.37 2.52 23467.8 <0.(
Nairobi
Secondary 2005-2008| 63844 35693.72 1.85 9472.7 <0.0
Suba , Bondo,
Homabay,
Migori, Siaya,
Rachuonyo
and Kisumu
Secondary 20042007 | 442¢ 787.5: 5.64 4010.: <0.001
Moyale
Secondary 2004-2007 | 1266¢ 9354.0¢ 1.3¢ 534.4 <0.001
Uasin Gishu
Secondary 2003-200€ | 1318( 10911.9; |1.21 224 <0.001
Nyando
Secondary 200¢-200¢ | 8701 7285.6¢ 1.2C 130.f <0.001
Turkana
Secondary 2004-200¢ | 25.7 2238.1: 1.12 15.¢ <0.001
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Table 4-Results of Bayesian approach using CAR spécation on TB data for the year
2002.

Variable Band width| 95% credible interval
min max
HIV 0.0102: 0.20( 3.157
Poverty 0.0106! 0.20(¢ 3.14¢
Altitude 0.01044 0.197 3.153
llliteracy rate 0.01034 0.201 3.156
Mean hold house size 0.01017 0.200 3.142
Employment opportunity much worse 0.01046 0.196 63.1
Employment opportunity worse 0.0151 0.199 3.151
Urbar 0.00986:- 0.19¢ 3.14¢
Distance to the nearest health fac 0.0103« 0.19¢ 3.16:
Use of firewood 0.01077 0.199 3.16
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5.0 DISCUSSION

In this study we have shown the spatial distributdd TB in Kenya in different districts at
different time periods starting from the year 2@622009. In addition we have identified
areas with high occurrence of TB using Bayesianathexl maps, spatial autocorrelation test
and space time scan statistics. We have also nealdilé covariates that have an influence on

the occurrence of TB.

For exploratory spatial data analysis, Bayesianatheal maps of standardized morbidity
ratio were generated. This allowed visualizationspétial TB patterns in 69 districts in

Kenya. We noticed that high rates of this diseaseevobserved in the lake region and the
northern part of the country with a few areas adothe central region such as Nairobi, Embu
and Meru south. It is also evident that some alikasMarsabit which had high rates in the
years 2002 continued to decline over the yearsbgna009, the rates were below the mean
country rate. Districts that have consistently rég high relative risk of TB include:

Moyale, Suba, Rachuonyo, Kisumu, Bondo, Migori &lairobi among others. Nairobi could

be a high risk area because it is a highly popdlatban area with a number of slums leading
to overcrowding and this predisposes people tolfiBddition most of the urban areas have

recorded high rates of this disease over the years.

From the Bayesian smoothed maps, we were ablettifg areas that need thorough follow-
up if TB is to be eliminated as projected by stdp fartnership. These include districts like
Moyale, Bondo, Nairobi, Turkana, Mombasa, Kisumub& Rachuonyo, and Isiolo among
others. In addition, regions with emerging diseas#breaks such as Thika, Tharaka and
Malindi were detected. Furthermore, districts likegkana and Kitui that have had fluctuating

TB rates over the years were also revealed.

Global Moran’s | for spatial autocorrelation comgaditshowed that districts closer to each
other had similar relative risk of TB as comparedhiose further away. This relationship was
not significant until 2007, 2008 and 2009. The Iddaran’s | identified spatial cluster and
spatial outlier. This is very important in epidetoigy since the kind of relationship in terms
of TB relative risks that neighbouring districtsdh&as portrayed. We were also able to detect

areas of decreasing or increasing trends of TBlationship to their neighbours.
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Space time scan statistics are also very cruciatgiemiology as they reveal disease
aggregation, the presence of statistically sigaiftcclusters and also give some information
on etiologic factors. In the space time analysimpoted, hotspot districts were identified for

specific time periods, Nairobi being the most lkelluster significance at 5% level of

significance. The results compliment those reveatedmoothed maps and cluster maps
though they occurred at different time periodsattdition, the result complements those of
Tiwari et al (2006), Nunes (2007), Ozunuka et @02 and Randremanana et al (2009) that

TB occurs in clusters.

Bayesian approach, a spatial modelling techniquersdor random variation as a result of
differing population and model covariates while roaring information from neighbouring
region. The results have revealed that it has h sigtistical power of detecting variation in
disease risk. The belief that poverty is a deteamirof TB has been proven in this study.
These results are in line with those reported byMfeet al (2002) and Crampin et al (2004).
On the other hand HIV has a positive impact on TBthat those regions of high HIV
prevalence also recorded high risk of TB. The temulsimilar to what was reported by
Crampin et al (2004) and Lienhardt et al (2005)adidition, districts around the lake region
in Nyanza province that have had high HIV prevadeace the same with increased relative
risks of TB. This is also in line with the fact tHBB smear negative rate has increased as a
result of HIV surpassing the smear positive TB, NH3P(2009).The mean house hold size
was used as an indicator of overcrowding and tlselte have proved that districts with
higher mean household size have a higher risk ok&®&ping in mind that there are other
areas not necessarily in the house that can leadecrowding thus exposing one to TB

disease.

Altitude as a determinant of TB was found to haveoaitive effect. This is the opposite of
what Mansoer et al (1999) and Tanrikulu et al (30@8nd. This could be attributed to the
fact that we included more factors than just adétand also spatial effects were considered
while modelling for this covariate. It is therefdreportant that this covariate is investigated
further as a determinant of TB. Finally, it is alsgportant to note that as much as SMR is
usually affected by the population size, this wagarted by applying Bayesian technique

through borrowing information from the neighbours.
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One of the limitations of this study is that datanfi the districts that were created recently
had to be incorporated into their previous disérigb that mapping could be done. There is a
possibility that some data were not captured appatgly since the data used is usually
collected on a routine bases as TB patients arerptreatment. Some of the issues that could
arise in the data are incorrectness, inconsistandyincompleteness. Secondly, it would have
been of interest to relate the effect of gendersendon TB in different districts in Kenya, but

this was not done. Further studies could incorgotfais into their model.

In conclusion, this study has revealed the spdigtibution of TB in Kenya over the years
from 2002 to 2009. It has also revealed the spatdierns of TB in different districts in
comparison to their nearest neighbouring distriEtserging districts with increased risk of
TB have also been identified in addition to thomstritts that have consistently recorded high
relative risk of TB. This information can be useg the DTLTB for planning purposes,
allocation of resources’ and even disseminatiomBfinformation. It can also be used to

strengthen other strategies such as poverty etaiida Kenya.
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APPENDICES

Appendix 1

Mapping Tuberculosis

Accessing the district shapefile

I'i brary(maptools)

di st =r eadShapePol y(" C: / User s/ DNEKESA/ Deskt op/ mar gar et
ndubi / ke_di strict_boundari es. shp")

geti nfo. shape("C:./ User s/ DANEKESA/ Deskt op/ mar gar et
ndubi / ke_di strict_boundari es. shp")

proj 4string(dist)=("+proj=longlat +ellps=WsS84")

pl ot (di st, axes=TRUE)

Importing the TB data and nerging it with the shapefile

dat a=r ead. csv("C:/ User s/ DAEKESA/ Deskt op/ mar gar et ndubi / dat a. csv")
dat a

di st @at a=dat a. f rane(di st @at a, dat a)

i brary(spdep)

I'i brary( MASS)

['ibrary(nlme)

library(deldir)

coor ds=coor di nat es(di st)

| Ds <- row. nanes(as(dist, "data.frane"))

library(tripack)

dist4 nb <- tri2nb(coords, row nanes = |Ds)

di st5 nb <- graph2nb(soi.graph(dist4_nb, coords), row names = |Ds)
di st6_nb <- graph2nb(gabri el nei gh(coords), row nanmes = |Ds)

di st7_nb <- graph2nb(rel ati venei gh(coords), row nanmes = |Ds)

The Poi sson- Gamma Model for 2002
[ i brary( RRW nBUGS)

si nk("bayesfit.bug")# This stores the nodel given by cat(" ") in the
file bayesfit. bug

cat ("

nodel

{
# The Li kel i hood
for(i in 1:N)

observed[i] ~dpoi s(nu[i])
mu[i]<-theta[i]*expected[i]
theta[i]~dgamma(nu, al pha)
}

# The prior

nu~dganma(. 01, .O01)

al pha~dgamma(. 01, .01)

}

}
", fill =TRUE)
si nk()
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The data
N <- | ength(dist$ALL. 2002)

observed = di st $ALL. 2002
expect ed = di st $E2002
data <- list("N',"observed", "expected")

# The data is stored in a list object that shall be called by bugs
shortly

MCMC initialization
i nits=function(){list(nu=1, al pha=1)}

The MCMC settings
nc<-1

ni <-20000
nb<-10000

nt <- 100

Start the G bbs-Sanpler, run the nodel in WnBUGS and save the results
in the object

bayesfit.sim bugs(data,inits,

nodel . fil e="C:/ User s/ DANEKESA/ Deskt op/ mar gar et ndubi / bayesfit. bug",
par aneters=c("theta", "nu","al pha"), n.chains = 1, n.iter=200000,

n. bur ni n=10000, n. t hi n=100,

bugs. directory="C./Program Fi | es/ W nBUGS14/ ", codaPkg=FALSE)

print (bayesfit.sim

bayesfit.si nfsummary

Conver gence di agnostics

nu2002 = bayesfit.sin®sins.array[, 1, 1]
al pha2002= bayesfit.sin®sins.array[, 1, 2]

par (nfrow=c(1, 3))
ts.plot(nu2002, xl ab="iteration",ylab="", mai n="nu", col ="2")
pl ot (density(nu2002), mai n="nu", col ="4")

acf (nu2002, mai n="nu")

par (nfrow=c(1, 3))

ts. pl ot (al pha2002, xl ab="iterati on", yl ab="", mai n="al pha", col ="2")
pl ot (densi ty(al pha2002), nai n="al pha", col ="4")

acf (al pha2002, mai n="al pha")

credible interva

di st @at a$FBPGrean2002 <- bayesfit. si nbnean$t het a
di st @at a$FBPGredi an2002 <- bayesfit. si nBnedi an$t het a

PGB <- data.frane(bayesfit.sinBsunmary[ 1: 69, 3])
PGB <- data.frane(bayesfit.sinBsummary[1l:69,7])

par (nfrow=c(1,1))
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PGresults <-

as. dat a. f rame( cbi nd( di st @at a$FBPGean2002, di st @lat a$FBPGredi an2002
PG.B[, 1], PGUH, 1]),

row. nanes = as. character (di st $Dl STNAME) )

PGresults

plot(1,1, type="n", xlimec(1,68), ylim=c(0.O0,4),

mai n= "95% Cred. Int. for Bayes Poi sson- Ganma Mde

of Median Rel ative Risk",

xlab="Di strict", ylab="Full Bayes P-G RR (nedian & 95% Cl)", xaxt="n")
abline(h=1, Ity=2)

for(i in 1:69)

{
i f (PGresul ts$V3[i]>1 )

col <-gray(.4)

Ity <-2

col < "red"

lwd <-3

text(i, PGesults$Vv4[i]+0.23, dist$D STNAVE[],
srt=90, col="red", cex=0.7)

}

el se

col <-"bl ack"

Ity <-1

wd <-2

text (i, PGesults$V4a[i]+0.23, dist$DI STNAME ],

srt=90, col=gray(.4), cex=0.7)

}

lines(c(i,i), c(PGesults$V3[i],PGesults$Va[i]),

col =col, lty=lty)

points(i, PG esults$dist$D STNAMESFBPGredi an2009[i], pch=18, col =col)
}

I'i brary(RCol or Brewer)
l'ibrary(class)
library(classlnt)
library(el071)

par (nfrow=c(1, 2))

pl ot var =r ound( di st @at a$FBPGrean2002, 3) # The variable we are plotting
nclr=4 # The nunmber of colors

pl otcl r=brewer. pal (nclr,"BuGn") # The specification of colors

cl ass=cl assl nterval s(plotvar,nclr,styles="quantile")

col code=fi ndCol our s(cl ass, plotclr)

pl ot (di st, axes=T, xl i mec(33, 45))

pl ot (di st, col =col code, add=T)

plotclr=plotclr[nclr:1]

title(rmai n="2002 PGrean for TB in Kenya")

| egend(40,-2.2, |legend=nanes(attr(colcode, "table")),fill=attr(col code
"pal ette"), cex=0.6, bty="n"

pl ot var =r ound( di st @at a$FBPGredi an2002, 3)# The vari able we are plotting
nclr=4 # The nunmber of colors

pl ot cl r=brewer. pal (nclr,"BuGn") # The specification of colors

cl ass=cl assl nterval s(plotvar,nclr,styles="quantile")

col code=fi ndCol ours(cl ass, plotclr)
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pl ot (di st, axes=T, xl i mec(33, 45))

pl ot (di st, col =col code, add=T)

plotclr=plotclr[nclr:1]

title(nmai n="2002 PGredian for TB in Kenya")

| egend(40,-2.2, |legend=nanes(attr(colcode, "table")),fill=attr(col code
"palette"), cex=0.6, bty="n")

Testing for honogeneity

l'ibrary(Dd uster)

fit <- achisqg.test(dist@ata$ALL. 2002 ~ of fset (| og(di st @at a$E2002) ),
as(dist, "data.frane"), "nultinoni, 999)

fit

Spatial modelling with CAR specification

i brary(spdep)

['i brary(RCol or Brewer)
I'ibrary(Dd uster)
l'ibrary(rgdal)
I'ibrary(epitools)

[ i brary( RRW nBUGS)

I'i brary(coda)

The Mbdel with CAR specification

si nk("bayesfit.bug")# This stores the nodel given by cat(" ") in the
file bayesfit. bug

cat ("

nodel

{
# The |i kel i hood
for(i in 1:N)

observed[i] ~ dpois(m[i])
log(theta[i])<-log(expected[i])+b0O+b1*POV[i]+ u[i] + v[i]
mu[i] <- expected[i]*theta[i]

u[i] ~ dnornm(0, precu)

SMRhat[i] <- 100 * nu[i]/expected[i]

SMRraw{i] <- 100 *observed[i]/expected[i]

}

# The prior distributions

vV[1:N] ~ car.nornal (adj[], weights[], nuni], precv)
b0 ~ dflat()

bl ~ dnormn(0, 1. OE-5)

precu ~ dgamma(0.001, 0.001)

precv ~ dgamma(0.1, 0.1)

si gmau<- 1/ precu

si gmav<- 1/ precv

", fill =TRUE)
si nk()

The data

N <- | ength(di st $ALL. 2002)
observed = di st $ALL. 2002
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expect ed = di st $E2002
POV=di st $PRO. POCR

hi v=di st $Hl V. PREV. 05
g5kns=di st $X5KM5

hhsi ze=di st SMEAN. H. H. SI ZE
al t=di st $ALT. 1
illiteracy=dist$l.L. R
firewood=di st $Fi r ewood

ur ban=di st $ur ban

enpl oyl=di st $E. O. . M wor se
enpl oy2=di st $E. O. wor se

di st 2=read. gal ("di st1.gal ") ####dat2.gal is a rook continuity file.
di st.nb <- nb2WB(di st 2)

adj = dist.nb$adj; weights = dist.nb$weights;
num = di st. nb$num
dwoutcov <- |ist("N', "observed", "expected", "adj

, "wei ghts", "nunt)
datal <- list("N',"observed", "expected", "adj", "wei ghts", "nuni, " POV")

MCMC initialization

inits <- list(u =rep(0, N, v =rep(0, N, b0 =0,
b1=0, precu = 0. 001, precv = 0.001)

bayesfit.sim bugs(datal,inits=list(inits),

nodel . fil e="D:/projects/ margaret ndubi/bayesfit.bug",

par anet ers=c("theta", "b0","b1","u","v", "si gmau", "si gnav"), n.chains = 1,
n.iter=100000,

n. bur ni n=10000, n. t hi n=100,

bugs. directory="C./ Program Fi | es/ W nBUGS14/ ", codaPkg=FALSE, debug=TRUE)
bayesfit.sim
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Appendix 2

Trace plots and density plots of HIV prevalence different districts in Kenya.
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Appendix 3

Trace plots and density plots of proportion of ptywén different districts in Kenya.
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Appendix 4

Trace plots and density plots of percentage of pbeulation that are greater than 5

kilometres away from the nearest health facility
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Appendix 5

Trace plots and density plots of illiteracy rate.
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Appendix 6

Trace plots and density plots of mean househotlisidlifferent districts in Kenya.

ts.deviance M.H.H.5IZE density.deviance M.H.H.5IZE
1 e | E S T N
] o T
S T T T T o= T T T N
0 200 400 g00 200 0.45 0.50 0.55 0.50
iteration W =500 Bandwidth = 0.005815
ts.alpha M.H.H.SIZE density.alpha LM.H.H.SIZE

G0
111
Density
1
111

o T T T T T T T T T
0 200 400 500 200 0.50 0.85 0.70 0.75
iteration N =500 Bandwidth = 0.005333
ts.beta M.H.H.SIZE density.beta M.H.H.5IZE

1.30
1Ll
Density
0o 6
1111

o

0 200 400 800 800 125 130 135 1.40 145 1.50 155 180
iteration N =500 Bandwidth =0.01017
ts.theta M.H.H.SIZE density.theta M.H.H.5IZE

0.44
1111

D ensity

0 20
Lt

iteration N =800 Bandwidth = 0.003234

51



Appendix 7

Trace plots and density plots of urbanization askafactor for TB.
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Appendix 8

Trace plots and density plots of altitude.
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Appendix 9

Trace plots and density plots of areas with mucrse@mployment opportunity.
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Appendix 10

Trace plots and density plots of areas with worapleyment opportunity.
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Appendix 11

Trace plots and density plots of proportion of pa@ulation that use firewood.
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