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Abstract 

Tuberculosis is an infectious disease caused by the bacteria bacillus mycobacterium 

tuberculosis and is spread through the air by persons suffering from it, especially those that 

are sputum smear positive. Kenya is among the 22 countries burdened by TB in the world 

and reports about 100,000 cases of this disease every year. The aim of this study was to 

investigate the spatiotemporal clustering of tuberculosis and the factors associated with it in 

Kenya using Bayesian approach to map and measure spatial variation of TB risks. 

The TB data used in this study was obtained from DLTLD from 2002 to 2009 while the data 

on covariates were obtained from different sources. Combinations of approaches were then 

used in the analysis. First exploratory spatial data analysis in terms of maps were generated 

using Bayesian approach then clustering of disease in different districts computed using 

Moran’s I and space time scan statistics. Finally Bayesian approach with CAR specification 

was computed to identify spatial variation of TB and covariates such as prevalence of HIV, 

distance greater than five kilometres to the nearest health facility, proportion of the poor in 

each district, illiteracy rate in each district and urbanization among others. 

Results have shown us the spatial distribution of TB and areas that have consistently reported 

high relative risks over the years such as Nairobi, Kisumu, Bondo and Rachuonyo among 

others. The effects of the covariates have also been demonstrated to be positive with credible 

interval that does not contain zero. For example, in HIV the posterior density of β  had a 

posterior median that was greater than zero and a 95% credible interval of 0.200 to 3.157 

which was considered statistically significant. 

In conclusion, this study revealed the spatial distribution of TB in the country over the years 

from 2002 to 2009. It also revealed the spatial patterns of TB in different districts in 

comparison to their nearest neighbouring district, emerging districts with increased TB risk 

and those districts that have consistently recorded high relative risk of TB. This information 

can be used by the DLTLD for planning purposes, allocation of resources’ and even 

dissemination of TB information. It can also be used to strengthen other strategies such as 

poverty eradication in Kenya. 
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1.0 INTRODUCTION 

Tuberculosis is an infectious disease caused by the bacteria bacillus mycobacterium 

tuberculosis and is spread through the air by persons suffering from it, especially those that 

are sputum smear positive. The disease is spread through coughing, spitting, sneezing, 

laughing and talking among others. In Kenya, about 80 percent of the population have latent 

TB which manifests itself when the immune system is suppressed. In addition, Kenya is 

among the 22 countries in the world burdened by TB and is ranked 13th among those 

countries. In Africa alone, it is ranked 5th most affected by the disease, WHO (2009). In the 

country, TB is a major cause of morbidity and mortality with about 100,000 cases reported 

every year, DLTLD, MOPHS (2009). 

According to DLTLD, MOPHS (2009), TB has been on a steady rise since early 1990’s and 

these increase posses a major threat to the countries health and economy. In addition, case 

notification has been on the increase from 53 per 100,000 populations in 1990 to 326 per 

100,000 populations in 2009. The identified age group with the highest TB case notification 

rate for both sexes remained 25-34 years in 2009 as indicated in previous DLTLD annual 

reports. 

Report on Global burden of disease, WHO(1990, c.f. Tiwari et al 2006), showed that 

tuberculosis was ranked 7th among the causes of morbidity in the world and it is not 

surprising that reducing TB incidence by half in the year 2015 is one of the set targets for the 

United Nation Millennium Development Goals (MDG).Stop TB partnership, an initiative of 

WHO endorsed by world health assembly in 2006, aims at halving the prevalence and death 

rates as a result of TB in comparison to the 1990 levels and targets at eliminating TB 

(reducing the global active TB incidence to less than one case per a million population per 

year) by 2050 , WHO(2008).  

WHO (2010) and DLTLD , MOPHS (2009) also showed that Kenya as a country has 

achieved the WHO target of TB case detection rate of 70 percent with a treatment success 

rate of 85% among the sputum smear positive pulmonary TB cases. Since 80% cases of TB 

are being detected, there are still 20% undetected TB cases that continue to transmit the 

infection. In addition, the report results suggested that as much as the number of new cases of 

TB seems to be declining, the number of those requiring re-treatment is increasing. 
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WHO introduced Directly Observed Treatment Short course (DOTS) as a global TB control 

strategy, but this has not been very fruitful in all setups where after its implementation, TB 

incidence continued to rise. DOTS as a strategy concentrate more on early TB case detection 

and successful treatment as opposed to prevention. TB as an airborne disease is known to be 

associated with a number of factors that contribute to its development and or occurrence. As 

much as early detection and treatment is crucial in the fight against TB, the determinant 

factors that play a role in its development should be addressed if the disease is to be 

eliminated. Some of the determinants include-: HIV status, poverty and overcrowding, 

unemployment, tobacco smoking and indoor air pollution, age, gender, low education status 

and environmental factors like Distance to the nearest health facility and altitude.  

New approaches in GIS such as geostatistical mapping, cluster detection techniques and 

spatial temporal analysis may contribute significantly in the control of TB through 

visualization and identification of TB spatial patterns which can be related to the contributory 

factors and measures to tackle them addressed. This study used Bayesian technique to map 

Standardized Morbidity Ratio (SMR) of TB in the different districts in Kenya and associated 

areas with high TB relative risk to the determinant factors. Apart from that, clusters and 

hotspot areas were detected with the aim of enlightening the Division of Leprosy 

Tuberculosis and Lung Diseases (DLTLD) so that while planning more resources and 

emphasis can be directed towards the areas that are most affected. In addition spatial outliers 

in terms of TB occurrence were also detected i.e. areas with low relative risk of TB 

surrounded by areas with high relative risk of TB and vice versa.  

1.1 Main objective of the study 

To investigate the spatiotemporal clustering of tuberculosis in Kenya and the factors 

associated with it. 

1.1.1 The specific objectives of the study are: 

a) To review and use appropriate spatial smoothing techniques in order to reduce 

instability due to the high variability of the tuberculosis data in the different 

districts in the country. 

b) Identify tuberculosis hotspot districts in the country through maps and space time 

scan statistics. 
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c) Use spatial statistical models to link the occurrence of tuberculosis to its 

determinants 

1.2 Hypothesis. 

Assuming constant risk hypothesis in the spread of TB, there is no significant difference in 

TB incidence among the different districts in the country. 

1.3 Justification. 

Since tuberculosis is a major cause of morbidity and mortality in Kenya and in the world at 

large, a number of efforts have been put in place to reduce the incidence of this disease with a 

goal of reducing it to less than 1 case per a million populations per year by the year 2050. 

Achievements have been made so far but unfortunately the reduction is slow as it is projected 

that about eight of the high burdened countries will not achieve the MDG TB target for 2015, 

though Kenya has a chance of achieving the set target. In addition, according to WHO 

(2010), it has been noted that the incidence of TB is falling slowly while the notification rate 

is increasing in the African region. In view of the above, it was important that spatial patterns 

and factors associated with tuberculosis be unveiled so that other strategies apart from DOTs 

can be emphasized to enhance and or improve TB reduction process. Since TB disease 

patterns and the associated factors can be revealed through spatial and spatial temporal 

analysis, the study therefore aimed at looking at the spatiotemporal clustering and modelling 

of TB with more emphasis on the determinant factors that hinder or hamper the reduction of 

this disease. Some of the factors considered were-: HIV, poverty, Household size, 

unemployment, indoor air pollution, illiteracy rate, distance to the nearest health facility and 

altitude.  
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2.0 LITERATURE REVIEW.  

2.1 Spatial smoothing and Mapping 

In public health, the goal of mapping is to provide an insight of the geographic occurrence of 

disease or variation in disease risk and or rates. The maps are also used to identify and 

understand the cause of diseases, in policy formulation and allocation of resources needed to 

combat or reduce the spread of the disease identified. It is however not meaningful to have 

maps of counts because areas with higher population are expected to have increased disease 

occurrence as compared to areas with lower population, and as a result the population can be 

accounted for by using  rates or SMR. Unfortunately if the population sizes are very different, 

this may still obscure the spatial patterns and one of the solutions to this problem is spatial 

smoothing, Waller and Gotway (2004). 

Spatial smoothing is the process of reducing the noise in rates or SMR associated with 

different geographic region. This is accomplished by borrowing information from the 

neighbouring region so as to produce a better estimate of the rates or relative risk associated 

with each region and separates the spatial pattern from the noise. It comes in handy in small 

number disease where disease rates tend to be extremely unreliable because of small numbers 

upon which it is based.  

In a study by Zaman et al (2006), spatial rate smoothing technique was employed in order to 

reduce noise so that distinct patterns of TB prevalence can be observed in rural Bangladesh. 

Fang et al (2006) also implemented spatial rate smoothing while mapping annualized 

Haemorrhagic Fever with Renal Syndrome (HFRS) in China from 1994 to 1998. Kazembe 

(2007) used Bayesian technique to map malaria risk in northern Malawi. Furthermore, 

Callaghan et al (2009) applied Bayesian smoothing technique and compared it to classically 

calculated rates (standard rates) where the result suggested that smoothing gives distinct 

patterns of disease in a map as compared to rates or proportion.  

The empirical Bayesian smoothing approach was also applied by Uthman et al (2009) when 

analysing the trend and the distribution of TB-HIV deaths in Africa from 1991 to 2006. They 

used yearly data submitted to WHO on deaths related to TB-HIV and modelled using 

multilevel Poisson growth approach with more emphasis on trends. Bayesian smoothing 
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approach was also used in Antananarivo a city in Madagascar by Randremanana et al (2010) 

to map risks of TB.  

2.2 Spatiotemporal models 

Spatiotemporal models are approach used when data is collected over space and time. These 

approaches do not detect the cause of disease but rather provides an insight of the areas with 

high incidences which can be investigated further for causal relationship. In addition, the 

method can identify the source of disease occurrence with respect to demographic, time and 

space. Spatial temporal methods are useful in monitoring of disease status in a community as 

they may provide information on changing disease pattern over time. 

Tiwari et al (2006) investigated on the geo-spatial hot spots for the occurrence of tuberculosis 

in Almond district, India, using GIS and spatial scan statistics. They identified areas with 

high incidences of TB. In Portugal, Nunes (2007) identified Tuberculosis clusters using 

spatiotemporal techniques. He specifically used space time scan statistics to spot most 

significant clusters in the study area. Onozuka et al (2007) on the other hand, predicted 

clusters of tuberculosis in Fukuoka area in Japan from 1999 to 2004 using space time scan 

statistics. They utilized Monte Carlo simulation set at 999 replication and reported clusters of 

TB with a statistical significance level of p<0.05. The same technique of cluster detection 

was employed by Randremanana et al (2009) in Antananarivo a city in Madagascar to 

identify TB clusters. In Gambia, 80% of TB cases were found in western part of the country 

known as Greater Banjul. Due to these high incidences of TB, Touray et al (2010) decided to 

conduct a study in order to reveal hotspots in this particular area. They used aggregated data 

to perform spatial scan statistics that revealed significant TB clusters both spatially and over 

space and time.  

2.3 Tuberculosis determinants 

 TB as a communicable disease is associated with several factors as key determinants or risk 

factors. The factors can broadly be classified as-: socio-economic, socio-demographic and 

environmental factors. In addition, HIV /AIDS, diabetes, Cigarette smoking, alcohol and drug 

abuse are also considered major contributors of increased TB incidence.   

Studies have shown that socioeconomic factors that lead to poverty contribute significantly to 

the development of TB in that the poor live in crowded areas, have poor nutritional status 
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(malnutrition) due to poor eating habits and or lack of food that lead to weak immune system. 

They also have limited access to proper medical care (diagnosis and treatment), Waaler et al 

(2002). Barr et al (2001) demonstrated that TB incidence rose with increasing neighbourhood 

poverty and overcrowding. In the same vein, Munch et al(2003) investigated the risk factors 

and areas of TB transmission using GIS and revealed a significant association of TB with 

unemployment, overcrowding and number of sheebens (crowded neighbourhood bars). In 

addition, Crampin et al (2004) had similar results since increased TB incidences were 

observed in those who had contact with TB case, those with fewer possessions, those who 

shared sleeping dwellings and the ex-drinkers. 

Chan-Yeung et al (2005) discovered that poverty, low education attainment and old age were 

significantly associated with high rates of TB whereas Baker et al (2007) also reported 

significant association between TB and household crowding. Furthermore, Dye et al (2009) in 

their study of determinants and trends of TB incidence in 134 countries found out that TB 

incidence was declining faster in countries with improved sanitation, low child mortality and 

high human development index. Urbanization on the other hand has lead to mushrooming of 

slums and overcrowding. These predisposes individual to TB cases thus increased TB 

incidence, Randremanana et al (2010) 

Environmental factors also contribute to the likelihood of acquiring the infection because the 

concentration of TB bacilli depends on the ventilation of the surroundings and exposure to 

ultraviolet light because Vitamin D helps with macrophage function, and macrophages help 

to clear TB bacteria. Thus, overcrowding, congregation in prison settings, poor housing, and 

inadequate ventilation increases the risk of contact and predisposes individuals to the 

development of TB. Lienhardt et al (2005) and Hill et al (2006) proved that family history or 

previous exposure to TB from a household member is a key factor in developing the disease. 

In addition, overcrowding, history of being in prison, unemployment and the use of illicit 

drugs as TB risk factors were demonstrated by Coker et al (2006). Distance to the nearest 

health facility affect health seeking behaviour and access to health care. Thus the further the 

health facility, the poorer the access by especially those of low socio economic status. Since 

TB is an airborne disease, the more a person stays with the untreated disease, the more it 

spreads. Randremanana et al (2010) showed a positive relationship between TB and the 

distance to the nearest health facility, though the relationship was not significant. 
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Socio-demographic factors such as age, gender and ethnicity have been associated with TB. 

Studies conducted by Lienhardt et al (2005) revealed that the risk of TB increased with age, 

was higher in the male gender and single individuals including those who are widowed or 

divorced as compared to the female gender and the married individuals. The results are 

similar to those of Crampin et al (2004) who had identified that being widowed separated or 

divorced increased the risk of TB. On the other hand, ethnicity as a factor was described by 

Hill et al (2006) in Gambia.   

Smoking as a risk factor for TB has been demonstrated by Ghasemian et al (2009) who found 

out that male smokers were 2.1 times more at risk of developing TB as compared to their non 

smoking counterparts and this association was dependent on dose and duration. This could be 

attributed to the fact that smoking causes peribronchial inflammation, fibrosis, thickening of 

the bronchial wall (intimal) and damage to the alveoli. This in turn reduces ciliary activity 

leading to poor clearance of inhaled substances. Similar results had been observed by several 

other prior studies, among them are those conducted by Davies et al (2006) and Chiang et al 

(2007).  Indoor air pollution from solid fuel has also been associated with TB and the 

mechanism is believed to be similar to that elicited by tobacco smoking. From the studies 

carried out most show that it increases the risk but the risk is not statistically significant, Lin 

et al (2007). 

HIV has been documented as a risk factor for TB in several studies such as those carried out 

by Crampin et al (2004) and Lienhardt et al (2005). These studies revealed that increased 

incidence of TB were observed among the HIV positive as compared to those who were HIV 

negative. The reason for the trend is reduced CD4 count and increased viral load. In Kenya, 

HIV is the major cause of TB epidemic. Since 2005, HIV has contributed significantly to 

increased proportion of smear negative TB that has surpassed notified smears positive TB, 

DLTLD MOPHS, (2009). 

Altitude has also been associated with TB where Mansoer et al (1999) and Tanrikulu et al 

(2008) observed reduced incidence of TB with increased altitude. To be precise, Tanrikulu 

found out that the incidence of TB in low altitude was 3.28 times higher than in high altitude.  
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2.3 1 Conceptual framework 

 

The TB conceptual framework was adapted from the figure below that was developed by Jaramillo et 

al (2009) 

 

 

Source: Jaramillo et al (2009) c.f. Hargreaves et al (2011) 

 

Figure 1-TB Conceptual framework. 
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2.3.2 Operational plan 

 

From the conceptual framework developed by Jaramillo et al (2009) we were able to come up 

with an operational plan for TB determinants used in the study. The roles of these 

determinants in TB development are either direct or indirect. HIV and indoor air pollution are 

considered to have a direct influence on TB since they interfere in one way or another with 

the normal functioning of the body, through reduction of CD4 count and ciliary activities 

respectively. The independent factors act indirectly and sometimes contribute to HIV and 

indoor air pollution leading to active TB.  

 

 

           

 

 

 

 

 

 

Figure 2-TB Operational plan  

Independent factors Proximate factor Dependent factor 

Environmental/geogra
phical factors 

• Distance to the 
nearest health facility 

• Altitude 

Socio-economic factors 

• Crowding 
• Urbanisation  
• Unemployment 
• Poverty 

HIV/AIDS 

Indoor air 
pollution 

Active 
tuberculosis 
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3.0 METHODOLOGY 

This study used the data submitted to the Division of leprosy tuberculosis and lung diseases 

every quarter from the DTLCs through their respective PTLCs in Kenya. First we looked at 

the smoothing techniques then generated maps of tuberculosis at the district level. The maps 

generated were not of standardised morbidity ratio but rather of smoothed SMR to ensure 

distinct patterns of TB were observed. Areas with high occurrences of TB (hotspots) were 

identified in the TB data and the presence of their association with TB determinants 

investigated. 

3.1 Study area, data and population 

The study was conducted in Kenya, a country located in East Africa bordered by Uganda, 

Tanzania, Somalia, Ethiopia and Sudan. The study population included all people at risk of 

developing TB .Since the study was retrospective,  we used annual district TB data from the 

year 2002 to 2009.This data is usually collected routinely as TB patients are diagnosed and 

put on treatment. We used all cases of TB i.e. pulmonary sputum positive and negative and 

extra-pulmonary all forms. Basically the data used incorporated all forms of TB in Kenya 

found in all age groups. The coordinate information was downloaded from Google maps by 

using the code: javascript:void(prompt ('',gApplication.getMap().getCenter())); This is an 

application that allows centroid of the specific region to be downloaded once it is identified 

in the map. The population at risk used was the district projected population as calculated by 

the Kenya National bureau of statistics for the year 2000 to 2020. In addition, data on HIV 

was obtained from DLTLD’s, poverty information from KIHBS 2005/2006, altitude from 

www.fallingrain.com on 22nd June 2011 and the determinant factors were used to reveal their 

significant association with TB. 

3.2 Tuberculosis Regional count data 

Regional data is a set of counts of diseases available in a set of geographic regions that could 

be in the form of districts, counties, census tracts and blocks among others. In this study, 

regional count data partitioned as districts was used to identify areas with high incidences of 

TB in Kenya .For exploratory spatial data analysis smoothed maps using full Bayesian 

approach for each year were generated. Then methods used to identify disease clusters and 

tests to identify disease clustering implemented. The methods for spatial autocorrelation 
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include Moran’s I and the G statistics but the study employed Moran’s I  because the later 

can only be used to identify positive spatial autocorrelation and not negative spatial 

autocorrelation. 

Since the research is on spatial temporal techniques, all the newly created districts with TB 

data available for less than three years were incorporated into their previous districts. This 

was to ensure uniformity and consistency of results from the districts. Furthermore, some of 

the newly created district’s boundaries are yet to be approved by parliament therefore the 

coordinates have not yet been geo-referenced into GIS for public use. 

3.3 Data preparation  

The data used for analysis was sourced from different organizations and or entity. This 

included data on TB cases per district, the district coordinates (latitude and longitude), HIV 

prevalence per district, proportion of poverty, Mean district altitude, Mean household size, 

Employment opportunity, urban areas, proportion of the population that use firewood, 

proportion of the population per district that are more than 5 kilometres away from the 

nearest health facility and the projected population per district. 

The expected numbers of TB cases were calculated using the population and the observed TB 

cases. 

Let O represent the observed number of TB cases in Kenya in a given year, P  the population 

of that year and R the rate of TB in that year. 

Therefore    /R O P=        ( )1  

And let iO be the observed number of TB cases per district where( )1,2.............i N= , iE be 

the expected number of TB cases per district and iP the population of each district. 

The expected number of TB cases per district was: 

    i iE R P= ×        ( )2  

After calculating the expected number of TB cases per district per year from 2002 to 2009, 

the data set was saved in excel as comma delimited file ready for analysis. 

The comma delimited data set and the Kenya district boundary shape file were imported into 

R. These two files were then merged to generate one data set that had all the variables of 

interest including the co-ordinates (See R commands in appendix 1) 
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Secondly in the same data set, number of columns and rows were indicated in the top most 

rows then imported into Geoda software. Here, the Kenya district centroid shape file was 

created from Kenya district boundary shape file. The Kenya centroid shape file was then 

opened in excels as a dbase file and its centroids copied into the comma delimited file. This 

file was then converted into a point from ASCII shape file. The shape file was later joined 

with the Kenya centroid dbase file and the output used again to be merged with the Kenya 

district boundary shape file. The whole process enabled the merging of the data to the Kenya 

district boundaries thus creating a polygon file with the required data. This polygon file was 

then used for analysis. Apart from polygon file, weight files were also created to be used in 

computing Moran’s I statistics and in Bayesian analysis.  

However, the data used for space time scan statistics was prepared in a different manner such 

that three files namely; case file, population file and coordinate files were created. The case 

file had the district, cases and the time period in years, the population file had the district, 

population and the time period in years and the finally the coordinate file had the district, 

latitude and longitude. All the files were saved as comma delimited files and imported into 

Sat Scan software for spatiotemporal analysis. 

3.4 Statistical methods 

3.4.1 Smoothing models 

First standardized morbidity ratio was calculated using Clayton and Kaldor (1987) approach.  

This is an indirect method of standardization where the observed number of event in a study 

population is compared to the expected number of the event in the same study population if 

the event were the same as that of the standard population. In our case the event was TB 

cases or occurrence of TB. The ratio is therefore the observed number of TB cases to 

expected number of TB cases. 

So that  

i i iSMR O E=        ( )3  

       

The ���� was used to indicate the relative excess or decrement of TB cases in each district 

with respect to the standard TB rate in Kenya as a country for each year.
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When modelling count data, the approach is to assume that the number of cases follow a 

Poisson distribution. A Poisson distribution models assumes that the mean and the variance 

are equal but this is not always the case. In most situations the data is “over-dispersed” 

meaning that the variance is higher than the mean. As a result the model needs to be 

expanded to cater for the over-dispersion. One way of doing this is to use a negative-binomial 

distribution. 

When negative binomial distribution is used, a random effect following a gamma distribution 

for each region can be considered to produce what is called the Poisson-Gamma model. The 

Poisson-Gamma model is structured in two levels as shown below. 

    ( )| , ~ ,i i i i iO E Po Eθ θ
      ( )4

 

    ( )~ ,i Ga vθ α
       ( )5

 

From above iθ  is the relative risk which is considered as a random variable drawn from a Gamma 

distribution (scale parameter α and shape parameterv ) with mean ( )/v α and variance( )2/v α . In 

the first level, the distribution iO is conditioned on iθ . But in the second level, iO is a negative 

binomial with size parameter v and probability
iE

α
α +

. Also the posterior distribution of iθ has a 

Gamma distribution with shape parameter iv O+ and scale parameter iEα + . This means that the 

information after observing the data has been updated and therefore the posterior expectation of iθ is: 

    [ ]| , i
i i i

i

v O
E O E

E
θ

α
+=
+      

( )6
 

Therefore the shrinkage estimator can be expressed as 

[ | , ] 1i i
i i i i

i i

E E v
E O E SMR

E E
θ

α α α
 

= + − + +     
( )7

 

The output in equation ( )6 and ( )7 is usually affected by iO especially in low populated areas 

where a small variation of observation can produce a big change in ����. In addition, given 

that the value for v  and α are the same for all the regions, the information is borrowed from 
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everywhere to construct the posterior estimates but this can be modified to consider a 

different set of neighbours.  

Clayton and Kaldor (1987) developed an approach that used Empirical Bayes estimation. The 

estimation of v and α in a negative binomial distribution can be done using the maximum likelihood 

function. The log likelihood based on the distribution of the iO is: 

 ( ) ( )
( ) ( ) ( ) ( ), log log logi

i i
i

O v
L v v O v E

v
α α α

 Γ +
= + − + + Γ 
∑

 

( )8

 

Setting the first derivative in the above equation with respect to α and v  to yield 0, the equation 

becomes; 
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Equation ( )9  and ( )10 can be solved using standard iterative procedures thus yielding the empirical 

Bayes estimates$( )iθ as shown in the equation below. 
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          where N-1 is a Pearsonian chi-square based on mean and variance above. 

It is also possible to allow the model for the distribution of ( )iθ to extend for covariates such 

as( )iz . Therefore the estimates of the districts with few observed and expected cases of TB 

will not be drawn to the global relative mean of TB but rather to the estimated degree of the 
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covariate being used. This is done by allowing distinct values,( )iα , for the scale parameters 

of the distributions of each iθ , and adopting the log-linear model shown below: 

                                               ( ) ( )exp T
i i

i

v
E zθ φ

α
= =

 
( )12   

 

In Empirical Bayes technique developed by Marshall (1991, c.f. Bivand et al 2008) the 

relative risk iθ  was assumed to have a common mean µ and variance 2σ  without being 

specific on any distribution. Using the method of moments, the shrinkage estimator proposed 

was: 

                                               $ ( )1i i i i i iC SMR C C SMRθ µ µ µ
∧ ∧ ∧ = + − = − + 
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When mapping disease incidence using conventional methods, one may not get the true 

spatial pattern because this methods are affected by random variation as a result of differing 

population in different regions. This leads to reduced statistical power when the cases are 

assigned to different subgroups such as district. This may further lead to incorrect 

interpretation as true epidemiologic variation. Bayesian methods models random variation 

and true variation therefore it can be used to avoid the problem. In addition, Bayesian models 

provide shrinkage and spatial smoothing thus allowing distinct pattern of disease to be 

observed. 

It is also evident that when hierarchical Bayesian models are computed, Waller and Gotway 

(2004), layers could be created such that each of these layers account for a specific source of 

variation. This means that covariates can be modelled as the model borrows information from 
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the neighbours (smoothing). This allows achievement of stable local rates without losing 

geographic resolution. 

One of the drawbacks of empirical Bayes estimate is its inability to take into account a measure of 

uncertainty of the estimates, Maiti (1998). Spatial rate smoother on the other hand represent 

regional averages therefore cannot be used to identify outliers since it’s not specific to 

individual location. Head banging smoother and spatial filters (adaptive k smoothing) are not 

appropriate because they do not account for variance instability in rates. Kernel smoother on 

the other hand is good for point data and not region based data. For this reasons we used 

Bayesian methods. 

In the Bayesian model analysis for mapping, the relative risk estimate was obtained through a 

measure of central tendency of the posterior distribution and the median. Bayesian Poisson 

Gamma formulations were used where v and α were assigned vague gamma priors to ensure 

that very little information was introduced into the model. Monte Carlo method with one 

Markov chain was used to obtain the posterior distribution with Gibbs sampling algorithm. 

Gibbs sampling was used to overcome the problem of high dimensional integration in the 

posterior distribution. This allowed us to use multi-path iterative sampling to check the 

convergence of Gibbs sampling. The Gibbs sampling had 200,000 iterations, a burn in period 

of 10,000 iterations and a thin rate of 100. This implied that the first 10,000 iterations were 

discarded to eliminate the effects of the initial choices and one in every hundred of the 

remaining iteration was stored. It is important to note that a package called R2WinBUGS in 

R software was used to call WinBUGS software using the scripting language and then reads 

the output log file from it. 

3.4.2 Detection of disease clusters 

According to Tobler’s law, observations closer to each other have related values or are more 

alike than those further apart. Therefore spatial autocorrelation is a phenomenon that is used 

to show whether near events are more alike than those further apart. In other words, it shows 

the relationship between an event in a given location and the same event at other locations.  

3.4.2.1 Homogeneity of relative risk 

Before any cluster detection, a heterogeneity test was computed in order to find out if there is 

an actual difference in TB relative risk in the different districts in Kenya. This was done 
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using a chi-square test to find out if there is a significant difference between the observed and 

expected number of TB cases in each district. The statistics is defined as below; 
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where θ  is the global /i ii i
SMR O E=∑ ∑  

3.4.2.2 K nearest neighbour 

While generating weights used in computing spatial autocorrelation, the modality of 

identifying the neighbours was specified. The study used k nearest neighbour as a method of 

generating weight. This is a method or approach that is used to assess neighbour relationship 

regarding a particular event in a certain region. In other words, the event is assessed within 

the spatial context of a fixed number of its closest neighbour. For example if k is 4, then the 

four closest neighbours to the target region will be included in the computation of the event.  

This method is advantageous in the sense that it ensures that there is some neighbour for each 

target region and the number of neighbours is fixed. K is the number of neighbours and it 

should be specified.
 

3.4.2.3 Moran’s I 

For this study both global and local Moran’s I were utilized for detecting clustering and the 

presence of clusters in the districts respectively. The global Moran’s I was used to provide an 

insight on the spatial similarity of TB relative risk in the  neighbouring districts in the entire 

study area and was expressed as shown below-: 

 

    
( )( )

1 1

2

1 1

1

N N

ij i j
i j

N N

ij
i j

w Y Y Y Y

I
s

w

= =

= =

− −
 =  
 

∑∑

∑∑
                              

( )17  

where    
1

1 N

i
i

Y Y
N =

= ∑

 



18 

 

and 
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iY is the value for a variable in the �th observation Y is the sample mean and ijw  is the spatial 

weight of the connection between � and �. 

After computing the global Moran’s I with Empirical Bayes standardization, randomization 

procedure was used to recalculate the statistics in order to validate their significance. To 

generate reference distribution, 999 permutations were applied with a significance filter of 

p � 0.05. The p value generated compared the observed statistics to the generated distribution 

through randomization i.e. it determines how likely it is to observe the actual spatial 

distribution if the actual values are randomly reshuffled over space at a certain number of 

permutation. 

In Beijing, Jia et al (2008) used global Moran’s I with a z score and Getis’s G statistics to 

identify hotspot districts for TB. Likewise, this study employed similar statistics to identify 

TB hotspot districts in Kenya. Since Getis’s G statistics does not show negative spatial 

autocorrelation, it was not computed instead global Moran’s I was used. Apart from that 

LISA inform of cluster maps were generated to visualize areas of both positive and negative 

spatial autocorrelation. 

Local Moran’s I a local indicator of spatial autocorrelation was computed to show the local 

measure of similarity in each region’s value and those of their neighbours. The measure 

detected individual clusters such that if we have region �, then the local Moran’s I was 

computed as shown below-: 

    ( ) ( )
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To detect local clusters in the TB data set, LISA with empirical Bayes rate was also 

computed where cluster maps were generated to show the relationship among different 

districts with their neighbours. These maps were used to identify local spatial clusters and 
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spatial outliers of the geo-referenced TB data. The relationships were grouped into four 

categories;  

High-high: districts with high relative risk of TB surrounded by neighbours with similar 

values.  

Low- low: districts with low relative risk of TB surrounded by neighbours with similar values 

High-low: districts that experience high relative risk of TB surrounded by neighbours with 

low TB risk. 

Low-high: districts with low relative risk of TB surrounded by neighbours with high risk of 

TB.  

It is worth noting that since our population differs so much from one district to another, the 

Moran’s I computed were standardised using Empirical Bayes technique as outlined below. 

3.4.2.4 To adjust for the population using EB technique 

Assuņ	˜ao and Reis (1999) developed a Moran’s I that uses Empirical Bayes rate to shrink 

extreme rates with small population at risk towards the entire study area’s rate. In this 

technique a new index is generated using deviation of estimated marginal mean standardized 

by the estimate of its standard deviation.  

Let 1..................Nθ θ be unknown rate of TB in the different districts, and iO observed TB cases per 

year with a Poisson distribution conditional mean of ( )|i i i iE O Pθ θ= and the estimated rate iR  has 

conditional mean ( )|i i iE R θ θ=  and variance ( )var | /i i i iR Pθ θ= . 

From above, if we denote priori expectation and variance asβ  and α respectively then the 

marginal expectation of iR  is  β  and marginal variance iPα β+ . This shows that the variance is 

different and it increases as the population decreases. 

Marshall (1991 c.f. Assuņ	˜ao and Reis 1999) proposed moment estimators for priori 

expectation and variance as; b O P=  and ( )2a s b N= −   

  where   ( )22
i is P R b P= −∑  
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  and   N is the number of areas/regions, 

O  is the observed event and 

P is the population at risk   

Then, the marginal expectation and variance ofiR  were estimated by b and 
� respectively 

where i iv a b P= +  

The new index proposed therefore was: 

    i
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and the Empirical Bayes Index was defined as  
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Before computing LISA with Empirical Bayes standardization, the Geoda software was set at 

999 permutations with a significance filter of p � 0.05. This was to ensure that the cluster 

maps generated showed areas with significant difference at 5% level of significance. 

For interpretation of spatial association, the indicators results were used to suggest spatial 

autocorrelation with 1 and -1 depicting strong positive and negative spatial autocorrelation 

respectively. A zero value indicated a spatial random pattern. 

3.4.3 Space time scan statistics 

A spatial scan statistics developed by Kulldorff and Nagarwalla (1995 c.f. Kulldorff 2010) 

was used to identify and detect clusters in a particular district together with their statistical 

significance. This statistics works by imposing a circular or elliptic window on the map and 

allowing its centre to move over the study region. The window can take any predefined shape 

and its size may be allowed to vary as it moves and scans the study region, Kulldorff 

(2010).For any centre position, the radius of the circle is able to change so that it takes any 

value between zero and some upper limit set by the user. The upper limit set by the user can 

be a percent of the population used in the analysis, a percentage of population defined in the 
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maximum circle file or geographic size. The maximum upper limit for spatial analysis that 

can be used is 50% of the total population at risk, otherwise if the cluster size is large, it 

would indicate areas of low rates outside the circle rather than areas of high rates within the 

circle, Kulldorff (2010). Having 50% of the total population at risk is the preferred value 

since SaTScan identifies both small and large clusters without any bias on cluster size.  

Each of these circle generated includes different sets of neighbouring districts so long as they 

are within the circle and is a potential cluster for TB incidence. For each circle generated, 

spatial scan statistics calculates its likelihood for the TB cases observed inside and outside the 

circle. From the circles computed, the one with the maximum likelihood is considered the 

most likely cluster meaning that it could not have occurred by chance. This method tests the 

null hypothesis that the risk of TB is the same in all the districts in Kenya.  

Since we are using regional count data, a retrospective Space time scan statistic was 

computed on the TB data from 2002 to 2009 using SaTScan software. The likelihood ratio 

based on Poisson distribution was used. Therefore the likelihood ratio for a Poisson 

assumption for a specific window was defined as: 

 max ()
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in out

in out
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E E

   
   
   

 ( )21  

where O �� is observed cases of TB in the defining window, � �� is the expected cases in 

the defined window, O �� and � ��  are the observed and expected cases outside the 

window of interest respectively. � is an indicator function which is equal to 1 when the circle 

has more TB cases than expected under the null hypothesis and 0 otherwise. 

For analysis, a discrete Poisson model with a cylindrical window where a circular geographic 

base and a height corresponding to time was imposed to move over the study region in time, 

so that for each possible area and size, it also visited each possible time period. For spatial 

50% of the population at risk was the specified maximum cluster size while for temporal 50% 

of the study period was also specified as the max cluster size. Standard Monte Carlo 

simulation with a significance level of 5% was used for inference, to test the null hypothesis 

of spatial randomness. It was rejected when the p value assigned to the detected cluster was 

found to be significant. No spatial, temporal and or space time adjustments were made and 

the number of Monte Carlo replications was set at 999.  As a criterion for reporting secondary 
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clusters (areas with high rates of TB but with lower likelihood than the most likely cluster), 

no geographic overlap was allowed. 

As stated above, the most appropriate space time scan statistics for our data is a discrete 

Poisson model because the data is in count form and the population for each district is 

provided. Other models that space time scan statistics apply are; Bernoulli model which 

requires cases and control data, Ordinal model that requires ordered data in categories, 

multinomial model where case data that is grouped into specific categories is needed and 

space time permutation model that needs only case data but then it cannot be used where 

population growth in different regions of the study area is not proportional and when the 

study period is long, Kulldorff (2010). Furthermore Exponential model requires survival data 

and finally normal model utilizes continuous data.  

3.4.4 Spatial modelling 

To determine the association of TB and the risk factors, a Bayesian approach was applied 

where Conditional Autoregressive Model (CAR) was specified. This model depends on the 

conditional distribution of spatial error terms and explains part of the variability of the 

relative risk. The CAR specification for a set of random variables { } 1
1

N

i i
v

=
= can be defined as 

below: 
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             ( )22  

Where |i iv v−  is the vector of all error terms minus the error term itself. ijw  is the weight that
 

measures the relationship between region i and j while 2
vσ  shows the conditional variance of 

the CAR model specified. 

3.4.4.1 The Model  

Before computing the model we needed to specify the model using the BUGS (Bayesian 

inference using Gibbs sampler) language, the TB data, spatial data describing the 

neighbourhood structure and initial values of the parameters (see R commands appendix 1)  

    ~ ( )i iO poisson µ  
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 and  i iEµ θ =  

  therefore 

    ( )log i i i ix u vθ α β= + + +
 


� is the CAR specification , iu is the non spatial random effect and  �� is the explanatory 

variable.  

The weight file used in this model was queen continuity but it was converted into an nb2WB 

in R. This allowed us to set all the weights for adjacent neighbours to 1 and 0 otherwise. 

During the analysis, MCMC simulation method was used and 100,000 iterations specified 

where the first 10,000 were discarded leaving 90000 and each 100th sample was stored. This 

sample was then used to assess convergence in the trace plots generated. By including the 

covariates, we were able to assess and remove the effects that occur as a result of 

confounding or risk factors. To know the effects of the covariate, we looked at the posterior 

density plot of β. If the posterior mean or median was greater than zero, the coefficient of the 

covariate was considered to be positive and when the 95% credible interval did not include 

zero, then it was interpreted that the coefficient is statistically significant. This means that 

there exists a positive association between TB and the risk factor. 

To diagnose convergence, several chains in the trace plot showing Markov chain Monte 

Carlo (MCMC) simulations output were compared and if they appeared to concentrate around 

the posterior mean or median of the 2002 TB data, then it was considered that convergence 

had taken place.  
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4.0 RESULTS 

4.1 Bayesian smoothed Maps of TB 

The Bayesian smoothed maps labelled figure 3 to figure 10 below, shows the posterior mean 

and median of the TB relative risk in Kenyan districts from the year 2002 to 2009. These 

maps were used for exploratory spatial data analysis to show the spatial patterns of TB 

occurrence in Kenya and identify high risk districts. 

In 2002, the districts with high relative risk of TB were: Bondo, Embu, Isiolo, Mandera, 

Marsabit, Meru south, Moyale, Nairobi, Rachuonyo, Homabay, Kisumu, Mombasa, Kitui and 

Nyando. In 2003, all the districts that had had high relative risk of TB were maintained apart 

from Marsabit. In addition, Nakuru and Suba also recorded a significant relative risk during 

this year. 

In 2004, Bondo, Embu, Homabay, Kitui, Isiolo, Meru south, Moyale, Migori, Mombasa, 

Nairobi, Nakuru, Suba, Rachuonyo, Turkana, Uasin Gishu , west pokot, Kisumu and Nyando 

experienced high TB occurrence while in 2005 all these districts maintained their high rates 

in addition to Mandera and Siaya  but excluding Turkana and west pokot. 

The year 2006 didn’t depict a very different spatial pattern since similar districts recorded 

high occurrences of TB. Kitui, Nakuru and Meru south relative risks declined this year and 

therefore were not among the TB hotspot identified. In 2007, Busia and Kuria emerged as 

hotspot since these two districts had not recorded high TB occurrences compared to the 

country’s rate. The other districts especially those around the lake region maintained high 

relative risk of TB.  

In 2008, Bondo, Homabay, Isiolo, Kisumu, Migori, Moyale, Mombasa, Nairobi, Nyando, 

Rachuonyo, Siaya, Suba, Turkana and Malindi had high rates of TB. It is worth noting that 

Malindi emerged as hotspot in 2008. In 2009, Tharaka and Thika were identified as emerging 

hotspot areas but Bondo, Homabay, Isiolo, Kisumu, Migori, Moyale, Nairobi, Rachuonyo, 

Siaya, Mombasa, Malindi, Turkana, Uasin Gishu and Suba continued to display their high TB 

occurrence.  



25 

 

 

Figure 3-Maps of posterior mean and median relative risk of TB for the year 2002 

 

 

Figure 4-Maps of posterior mean and median relative risk of TB for the year 2003  
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Figure 5- Maps of posterior mean and median relative risk of TB for the year 2004  

 

Figure 6-Maps of posterior mean and median relative risk of TB for the year 2005 
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Figure 7-Maps of posterior mean and median relative risk of TB for the year 2006  

 

Figure 8-Maps of posterior mean and median relative risk of TB for the year 2007 
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Figure 9-Maps of posterior mean and median relative risk of TB for the year 2008 

 

 

Figure 10-Maps of posterior mean and median relative risk of TB for the year 2009 
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4.2 Testing homogeneity of the relative risk 

A chi-square test was computed on TB data on a yearly basis to test for homogeneity before 

proceeding to find out more on clustering and presence of clusters. The number of simulation 

used was set at 999 and results are shown in table 1 below: 

All the results suggest that there is over dispersion which is significant at 5% level of 

significance. This is because the p value is less than 0.05 suggesting strong evidence against 

homogeneity. 

Table 1-Results of a chi-square test for homogeneity of TB data from 2002 to 2009 

 

Year Statistics P.value 

2002 37895.37 0.001 

2003 39823.35 0.001 

2004  40298.76 0.001 

2005 38765.44 0.001 

2006 40855.12 0.001 

2007 33966.95 0.001 

2008 32771.18 0.001 

2009 31823.29 0.001 

4.3 Spatial autocorrelation 

Spatial autocorrelation techniques used to identify the existence of spatial association either 

in the entire study region or the individual regions with their neighbours was computed in 

Geoda software. The weight file computed had four as the specified number of nearest 

neighbours. 
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4.3.1 Global Moran’s I  

The results of global Moran’s I are shown in table 2 below.  

These results suggest that there is positive spatial association on the TB data as the global 

Moran’s I is greater than zero. From 2002 to 2006 the positive spatial similarity is not 

significant while from 2007 to 2009 the spatial similarity is significant at 95% confidence 

interval since the p. values generated after randomization are less than 0.05. This means that 

the relative risks of TB in near regions are more alike than those further away. 

Table 2-Results of Global Moran's I for TB data from 2002 to 2009. 

 

Year Moran’s I  standard 
deviate 

Moran’s I 
statistics 

P value Expectation Mean 

2002 0.0715 0.0898 0.093 -0.0147 -0.0135 

2003 0.0720 0.1122 0.055 -0.0147 -0.0159 

2004 0.0667 0.0619 0.129 -0.0147 -0.0168 

2005 0.0685 0.1022 0.067 -0.0147 -0.0140 

2006 0.0559 0.0781 0.068 -0.0147 -0.0099 

2007 0.0661 0.1217 0.029 -0.0147 -0.0178 

2008 0.0707 0.1540 0.016 -0.0147 -0.0190 

2009 0.0710 0.1164 0.044 -0.0147 -0.0140 

 

4.3.2 Local Indicators of Spatial Autocorrelation (LISA) 

Below are cluster maps labelled figures 11 to figure 18 generated to identify the local clusters 

of TB in the Kenyan districts for each year from 2002 to 2009. Spatial clusters in terms of hot 

spots and cold spots were defined. The spatial outliers were also identified because they have 

an impact in epidemiology and disease surveillance. 

In 2002, hotspot districts identified were Mandera, Moyale and Marsabit. These areas had 

high TB values surrounded by neighbours with high TB occurrence. Garissa, Kakamega, 
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Trans Nzoia had low TB values surrounded by neighbours with low TB occurrence. Wajir 

had low values of TB surrounded by neighbours with high TB value. West pokot and Uasin 

Gishu had high TB relative risk surrounded by neighbours with low risk. 

In 2003, Suba emerged as one of the districts with high TB occurrence surrounded by 

neighbours with high values of TB. Bungoma and Mt Elgon were added as cold spots. The 

spatial outliers remained i.e. Uasin Gishu, West pokot and Wajir. In 2004, Mandera was the 

only hotspot revealed, the cold spots remained but Marsabit was added among the spatial 

outliers that were surrounded by neighbours with high TB incidence. Clusters map for the 

year 2005 was similar to that of 2004 with only one additional hot spot district called Suba. 

In 2006, Mandera remained as a hotspot with another emerging hotspot in Bondo. The 

emerging cold spot were West pokot, Samburu and Teso. Marsabit and Wajir remained as 

spatial outliers surrounded by neighbours with high occurrence of TB. Uasin Gishu still 

continued to be surrounded by neighbours with low TB cases.  

Districts with high TB incidence surrounded by neighbours with high TB occurrence in 2007 

were Suba and Mandera. Trans Nzoia, Bungoma, Kakamega and Garissa remained as cold 

spots. Marsabit and Wajir maintained the same spatial pattern while West pokot and Uasin 

Gishu had high values surrounded by neighbours with low values of TB. 

The only hotspot revealed in 2008 was Suba but Trans Nzoia emerged as an area with high 

TB occurrence surrounded by neighbours with low TB values. Cold spots for this year were 

Baringo, Bomet, Keiyo, Kakamega, west pokot and Uasin Gishu. Mandera was no longer an 

outlier but an area surrounded by high values of TB. 

In 2009, Bondo and Suba were the high TB areas surrounded by neighbours with high TB 

occurrence. Kakamega and Trans Nzoia remained as cold spots. Uasin Gishu again was 

identified as an area with high TB relative risk surrounded by neighbours with low TB 

values.  
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Figure 11-Empirical Bayes  standardized Cluster map of TB for the year 2002 

 

  

 

Figure 12-Empirical Bayes standardized cluster map of TB for the year 2003 
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Figure 13-Empirical Bayes standardized cluster map of TB for the year 2004 

 

  

 

Figure 14-Empirical Bayes standardized cluster map of TB for the year 2005 
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Figure 15-Empirical Bayes standardized cluster map of TB for the year 2006 

  

 

Figure 16-Empirical Bayes standardized cluster map of TB for the year 2007 
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Figure 17-Empirical Bayes standardized cluster map of TB for the year 2008 

 

 

Figure 18-Empirical Bayes standardized cluster map of TB for the year 2009 

4.4 Space time scan statistics 

In space time analysis, we tested the areas with high TB occurrence from the 69 districts in 

Kenya starting from first of January 2002 to thirty first of December 2009. Remember that 

the spatial window was set at 50% therefore the maximum number of year computed for a 

cluster is four years. These results are shown in Table 3 below. 
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The most likely cluster identified that would not have occurred by chance was Nairobi district 

with a statistical significance cluster (p<0.001) from 2003 to 2006.  The observed cases were 

77190 while the expected cases were 32414. It had the highest log likelihood ratio thus 

classified as the most likely cluster. The relative risk is as shown in Table 3. 

The other clusters identified as secondary which were statistically significant (p<0.001) from 

2005 to 2008 were Suba, Bondo, Homabay, Migori, Siaya, Rachuonyo and Kisumu. Their 

observed TB cases were 63844 with 35694 as the expected number of cases. In addition 

several other secondary clusters that were statistically significant (p<0.001) but on  different 

time periods as shown in table 3 are Moyale, Uasin Gishu, Nyando, Turkana and west pokot.. 

The secondary clusters reported are those that are significant at 5% level of significance and 

did not overlap with a reported cluster (the most likely cluster) 

4.5 Tuberculosis Determinants 

TB data for the year 2002 was used to analyse the effect of the covariates on Tuberculosis.  A 

Bayesian approach with conditional autoregressive model was fitted to test the relationship of 

TB with the selected covariates. Before interpreting the results we looked at the stability 

between the posterior mean and the posterior median and found that the median was more 

stable than the mean. Therefore our inference is on the median and not the mean. According 

to the generated posterior density ofβ  for the year 2002, all the covariate’s coefficients were 

considered positive since their posterior median were greater than zero and their 95% 

credible interval did not include zero as shown in Table 4 below. This means that all these 

covariates were considered to have a statistically significant influence on TB. For instance the 

results suggest that there is an increased risk of TB in areas with high prevalence of HIV at 

5% level of significance. Also increased risks of TB were observed in areas with high 

proportion of poverty, increased mean house hold size, unemployment, urban areas, high 

percentage of population that use firewood, high percentage of illiteracy, high altitude and 

those regions where a big percentage of the population were more than 5 kilometres away 

from the nearest health facility. The density plots and the trace plots in appendix 2 to 

appendix 11 shows the positive influence of the covariates on TB and that convergence had 

taken place before making any  inference on the results. Convergence is considered to have 

taken place when most of the MCMC simulations are concentrated around the mean or 

median. 
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Table 3-Results of space time scan statistics from 2002 to 2009 

District Time 
frame 

Observed 
cases 

Expected 
cases 

Relative 
risk 

Log 
likelihood 
ratio 

P-value 

Most likely 

Nairobi 

2003-2006 77190 32414.37 2.52 23467.8 <0.001 

Secondary 

Suba , Bondo, 
Homabay, 
Migori, Siaya, 
Rachuonyo 
and Kisumu 

2005-2008 63844 35693.72 1.85 9472.7 <0.001 

Secondary 

Moyale 

2004-2007 4426 787.52 5.64 

 

4010.3 <0.001 

Secondary 

Uasin Gishu 

2004-2007 12668 9354.08 1.36 534.4 <0.001 

Secondary 

Nyando 

2003-2006 13180 10911.92 1.21 224 <0.001 

Secondary 

Turkana 

2006-2009 8701 7285.69 1.20 130.5 <0.001 

Secondary 

West pokot 

2004-2005 25.7 2238.11 1.12 15.6 <0.001 
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Table 4-Results of Bayesian approach using CAR specification on TB data for the year 

2002. 

Variable Band width 95% credible interval 

min max 

HIV  0.01022 0.200 3.157 

Poverty 0.01065 0.200 3.145 

Altitude 0.01044 0.197 3.153 

Illiteracy rate 0.01034 0.201 3.156 

Mean hold house size 0.01017 0.200 3.142 

Employment opportunity much worse 0.01046 0.196 3.160 

Employment opportunity worse 0.0151 0.199 3.151 

Urban 0.009864 0.199 3.149 

Distance to the nearest health facility 0.01034 0.199 3.162 

Use of firewood 0.01077 0.199 3.16 
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5.0 DISCUSSION 

In this study we have shown the spatial distribution of TB in Kenya in different districts at 

different time periods starting from the year 2002 to 2009. In addition we have identified 

areas with high occurrence of TB using Bayesian smoothed maps, spatial autocorrelation test 

and space time scan statistics. We have also modelled the covariates that have an influence on 

the occurrence of TB. 

For exploratory spatial data analysis, Bayesian smoothed maps of standardized morbidity 

ratio were generated. This allowed visualization of spatial TB patterns in 69 districts in 

Kenya. We noticed that high rates of this disease were observed in the lake region and the 

northern part of the country with a few areas around the central region such as Nairobi, Embu 

and Meru south. It is also evident that some areas like Marsabit which had high rates in the 

years 2002 continued to decline over the years and by 2009, the rates were below the mean 

country rate. Districts that have consistently reported high relative risk of TB include: 

Moyale, Suba, Rachuonyo, Kisumu, Bondo, Migori and Nairobi among others. Nairobi could 

be a high risk area because it is a highly populated urban area with a number of slums leading 

to overcrowding and this predisposes people to TB. In addition most of the urban areas have 

recorded high rates of this disease over the years.  

From the Bayesian smoothed maps, we were able to identify areas that need thorough follow-

up if TB is to be eliminated as projected by stop TB partnership. These include districts like 

Moyale, Bondo, Nairobi, Turkana, Mombasa, Kisumu, Suba, Rachuonyo, and Isiolo among 

others. In addition, regions with emerging disease outbreaks such as Thika, Tharaka and 

Malindi were detected. Furthermore, districts like Turkana and Kitui that have had fluctuating 

TB rates over the years were also revealed. 

Global Moran’s I for spatial autocorrelation computed showed that districts closer to each 

other had similar relative risk of TB as compared to those further away. This relationship was 

not significant until 2007, 2008 and 2009. The local Moran’s I identified spatial cluster and 

spatial outlier. This is very important in epidemiology since the kind of relationship in terms 

of TB relative risks that neighbouring districts had was portrayed. We were also able to detect 

areas of decreasing or increasing trends of TB in relationship to their neighbours.  
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Space time scan statistics are also very crucial in epidemiology as they reveal disease 

aggregation, the presence of statistically significant clusters and also give some information 

on etiologic factors. In the space time analysis computed, hotspot districts were identified for 

specific time periods, Nairobi being the most likely cluster significance at 5% level of 

significance. The results compliment those revealed in smoothed maps and cluster maps 

though they occurred at different time periods. In addition, the result complements those of 

Tiwari et al (2006), Nunes (2007), Ozunuka et al (2007) and Randremanana et al (2009) that 

TB occurs in clusters. 

Bayesian approach, a spatial modelling technique caters for random variation as a result of 

differing population and model covariates while borrowing information from neighbouring 

region. The results have revealed that it has a high statistical power of detecting variation in 

disease risk. The belief that poverty is a determinant of TB has been proven in this study. 

These results are in line with those reported by Waaler et al (2002) and Crampin et al (2004). 

On the other hand HIV has a positive impact on TB in that those regions of high HIV 

prevalence also recorded high risk of TB. The result is similar to what was reported by 

Crampin et al (2004) and Lienhardt et al (2005). In addition, districts around the lake region 

in Nyanza province that have had high HIV prevalence are the same with increased relative 

risks of TB. This is also in line with the fact that TB smear negative rate has increased as a 

result of HIV surpassing the smear positive TB, MOPHS (2009).The mean house hold size 

was used as an indicator of overcrowding and the results have proved that districts with 

higher mean household size have a higher risk of TB keeping in mind that there are other 

areas not necessarily in the house that can lead to overcrowding thus exposing one to TB 

disease.  

Altitude as a determinant of TB was found to have a positive effect. This is the opposite of 

what Mansoer et al (1999) and Tanrikulu et al (2008) found. This could be attributed to the 

fact that we included more factors than just altitude and also spatial effects were considered 

while modelling for this covariate. It is therefore important that this covariate is investigated 

further as a determinant of TB. Finally, it is also important to note that as much as SMR is 

usually affected by the population size, this was corrected by applying Bayesian technique 

through borrowing information from the neighbours. 
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One of the limitations of this study is that data from the districts that were created recently 

had to be incorporated into their previous districts so that mapping could be done. There is a 

possibility that some data were not captured appropriately since the data used is usually 

collected on a routine bases as TB patients are put on treatment. Some of the issues that could 

arise in the data are incorrectness, inconsistency and incompleteness. Secondly, it would have 

been of interest to relate the effect of gender and sex on TB in different districts in Kenya, but 

this was not done. Further studies could incorporate this into their model.  

In conclusion, this study has revealed the spatial distribution of TB in Kenya over the years 

from 2002 to 2009. It has also revealed the spatial patterns of TB in different districts in 

comparison to their nearest neighbouring districts. Emerging districts with increased risk of 

TB have also been identified in addition to those districts that have consistently recorded high 

relative risk of TB. This information can be used by the DTLTB for planning purposes, 

allocation of resources’ and even dissemination of TB information. It can also be used to 

strengthen other strategies such as poverty eradication in Kenya.  
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APPENDICES 

Appendix 1 

Mapping Tuberculosis 
 
Accessing the district shapefile 
 
library(maptools) 
dist=readShapePoly("C:/Users/DWEKESA/Desktop/margaret 
ndubi/ke_district_boundaries.shp") 
getinfo.shape("C:/Users/DWEKESA/Desktop/margaret 
ndubi/ke_district_boundaries.shp") 
proj4string(dist)=("+proj=longlat +ellps=WGS84") 
plot(dist,axes=TRUE) 
  
Importing the TB data and merging it with the shapefile 
 
data=read.csv("C:/Users/DWEKESA/Desktop/margaret ndubi/data.csv") 
data 
dist@data=data.frame(dist@data,data) 
library(spdep) 
library(MASS) 
library(nlme) 
library(deldir) 
coords=coordinates(dist) 
IDs <- row.names(as(dist, "data.frame")) 
library(tripack) 
dist4_nb <- tri2nb(coords, row.names = IDs) 
dist5_nb <- graph2nb(soi.graph(dist4_nb, coords), row.names = IDs) 
dist6_nb <- graph2nb(gabrielneigh(coords), row.names = IDs) 
dist7_nb <- graph2nb(relativeneigh(coords), row.names = IDs) 
 
The Poisson-Gamma Model for 2002 
 
library(R2WinBUGS) 
 
sink("bayesfit.bug")# This stores the model given by cat(" ") in the 
file bayesfit.bug 
cat(" 
model 
{ 
# The Likelihood 
for(i in 1:N) 
{ 
observed[i]~dpois(mu[i]) 
mu[i]<-theta[i]*expected[i] 
theta[i]~dgamma(nu, alpha) 
} 
# The prior 
nu~dgamma(.01, .01) 
alpha~dgamma(.01, .01) 
} 
} 
",fill=TRUE) 
sink() 
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The data 
N <- length(dist$ALL.2002) 
observed = dist$ALL.2002 
expected = dist$E2002 
 
data <- list("N","observed","expected") 
# The data is stored in a list object that shall be called by bugs 
shortly 
 
MCMC initialization 
 
inits=function(){list(nu=1,alpha=1)} 
 
The MCMC settings 
nc<-1   
ni<-20000    
nb<-10000  
nt<-100   
 
Start the Gibbs-Sampler, run the model in WinBUGS and save the results 
in the object 
 
 
bayesfit.sim= bugs(data,inits, 
model.file="C:/Users/DWEKESA/Desktop/margaret ndubi/bayesfit.bug", 
parameters=c("theta","nu","alpha"),n.chains = 1,n.iter=200000, 
n.burnin=10000,n.thin=100, 
bugs.directory="C:/Program Files/WinBUGS14/",codaPkg=FALSE) 
print(bayesfit.sim) 
bayesfit.sim$summary 
 
Convergence diagnostics 
 
 
nu2002 = bayesfit.sim$sims.array[,1,1] 
alpha2002= bayesfit.sim$sims.array[,1,2] 
 
par(mfrow=c(1,3)) 
ts.plot(nu2002,xlab="iteration",ylab="",main="nu",col="2") 
plot(density(nu2002),main="nu",col="4") 
acf(nu2002,main="nu") 
 
par(mfrow=c(1,3)) 
ts.plot(alpha2002,xlab="iteration",ylab="",main="alpha",col="2") 
plot(density(alpha2002),main="alpha",col="4") 
acf(alpha2002,main="alpha") 
 
credible interval  
 
dist@data$FBPGmean2002 <- bayesfit.sim$mean$theta 
dist@data$FBPGmedian2002 <- bayesfit.sim$median$theta 
 
PGLB <- data.frame(bayesfit.sim$summary[1:69,3]) 
PGUB <- data.frame(bayesfit.sim$summary[1:69,7]) 
 
par(mfrow=c(1,1)) 
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PGresults <- 
as.data.frame(cbind(dist@data$FBPGmean2002,dist@data$FBPGmedian2002 , 
PGLB[,1], PGUB[,1]), 
row.names = as.character(dist$DISTNAME)) 
PGresults 
plot(1,1, type="n", xlim=c(1,68), ylim=c(0.0,4), 
main= "95% Cred. Int. for Bayes Poisson-Gamma Model 
of Median Relative Risk", 
xlab="District", ylab="Full Bayes P-G RR (median & 95% CI)", xaxt="n") 
abline(h=1, lty=2) 
for(i in 1:69) 
{ 
if(PGresults$V3[i]>1 ) 
{ 
col<-gray(.4) 
lty <-2 
col <- "red" 
lwd <-3 
text(i, PGresults$V4[i]+0.23, dist$DISTNAME[i], 
srt=90, col="red", cex=0.7) 
} 
else 
{ 
col<-"black" 
lty <-1 
lwd <-2 
text(i, PGresults$V4[i]+0.23, dist$DISTNAME[i], 
srt=90, col=gray(.4), cex=0.7) 
} 
lines(c(i,i), c(PGresults$V3[i],PGresults$V4[i]), 
col=col, lty=lty) 
points(i, PGresults$dist$DISTNAME$FBPGmedian2009[i], pch=18, col=col) 
} 
 
library(RColorBrewer) 
library(class) 
library(classInt) 
library(e1071) 
 
par(mfrow=c(1,2)) 
plotvar=round(dist@data$FBPGmean2002,3)# The variable we are plotting 
nclr=4 # The number of colors 
plotclr=brewer.pal(nclr,"BuGn") # The specification of colors 
class=classIntervals(plotvar,nclr,styles="quantile") 
colcode=findColours(class,plotclr) 
plot(dist,axes=T,xlim=c(33,45)) 
plot(dist,col=colcode,add=T) 
plotclr=plotclr[nclr:1] 
title(main="2002 PGmean for TB in Kenya") 
legend(40,-2.2, legend=names(attr(colcode, "table")),fill=attr(colcode, 
"palette"),cex=0.6,bty="n") 
 
 
plotvar=round(dist@data$FBPGmedian2002,3)# The variable we are plotting 
nclr=4 # The number of colors 
plotclr=brewer.pal(nclr,"BuGn") # The specification of colors 
class=classIntervals(plotvar,nclr,styles="quantile") 
colcode=findColours(class,plotclr) 
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plot(dist,axes=T,xlim=c(33,45)) 
plot(dist,col=colcode,add=T) 
plotclr=plotclr[nclr:1] 
title(main="2002 PGmedian for TB in Kenya") 
legend(40,-2.2, legend=names(attr(colcode, "table")),fill=attr(colcode, 
"palette"),cex=0.6,bty="n") 
 
Testing for homogeneity 
 
library(DCluster) 
fit <- achisq.test(dist@data$ALL.2002 ~ offset(log(dist@data$E2002)), 
as(dist, "data.frame"), "multinom", 999) 
fit 

Spatial modelling with CAR specification 

library(spdep) 
library(RColorBrewer) 
library(DCluster) 
library(rgdal) 
library(epitools) 
library(R2WinBUGS) 
library(coda) 
 
The Model with CAR specification 
 
sink("bayesfit.bug")# This stores the model given by cat(" ") in the 
file bayesfit.bug 
cat(" 
model 
{ 
# The likelihood 
for(i in 1:N) 
{ 
observed[i] ~ dpois(mu[i]) 
log(theta[i])<-log(expected[i])+b0+b1*POV[i]+ u[i] + v[i] 
mu[i] <- expected[i]*theta[i] 
u[i] ~ dnorm(0, precu) 
SMRhat[i] <- 100 * mu[i]/expected[i] 
SMRraw[i] <- 100 *observed[i]/expected[i] 
} 
# The prior distributions 
v[1:N] ~ car.normal(adj[], weights[], num[], precv) 
b0 ~ dflat() 
b1 ~ dnorm(0,1.0E-5) 
precu ~ dgamma(0.001, 0.001) 
precv ~ dgamma(0.1, 0.1) 
sigmau<-1/precu 
sigmav<-1/precv 
} 
",fill=TRUE) 
sink() 
  
The data 
 
N <- length(dist$ALL.2002) 
observed = dist$ALL.2002 
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expected = dist$E2002 
POV=dist$PRO.POOR 
hiv=dist$HIV.PREV.05 
g5kms=dist$X5KMS 
hhsize=dist$MEAN.H.H.SIZE 
alt=dist$ALT.1 
illiteracy=dist$I.L.R 
firewood=dist$Firewood 
urban=dist$urban 
employ1=dist$E.O..M.worse 
employ2=dist$E.O.worse 
 
dist2=read.gal("dist1.gal")####dat2.gal is a rook continuity file. 
dist.nb <- nb2WB(dist2)  
 
adj = dist.nb$adj; weights = dist.nb$weights; 
num = dist.nb$num 
dwoutcov <- list("N","observed","expected","adj","weights","num") 
 
data1 <- list("N","observed","expected","adj","weights","num","POV") 
 
MCMC initialization 
 
  
inits <- list(u = rep(0, N), v = rep(0, N), b0 = 0, 
b1=0,precu = 0.001, precv = 0.001) 
 
 
bayesfit.sim= bugs(data1,inits=list(inits), 
model.file="D:/projects/margaret ndubi/bayesfit.bug", 
parameters=c("theta","b0","b1","u","v","sigmau","sigmav"),n.chains = 1, 
n.iter=100000, 
n.burnin=10000,n.thin=100, 
bugs.directory="C:/Program Files/WinBUGS14/",codaPkg=FALSE,debug=TRUE) 
bayesfit.sim 

 

 

 

 

 

 

 

 



47 

 

Appendix 2 

Trace plots and density plots of HIV prevalence in different districts in Kenya. 
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Appendix 3 

 

Trace plots and density plots of proportion of poverty in different districts in Kenya.  
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Appendix 4 

 

Trace plots and density plots of percentage of the population that are greater than 5 

kilometres away from the nearest health facility 

 

 

  

 

 

 

 

 



50 

 

Appendix 5 

 

Trace plots and density plots of illiteracy rate. 
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Appendix 6 

 

Trace plots and density plots of mean household size in different districts in Kenya. 
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Appendix 7 

 

Trace plots and density plots of urbanization as a risk factor for TB. 
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Appendix 8 

 

Trace plots and density plots of altitude. 
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Appendix 9 

 

Trace plots and density plots of areas with much worse employment opportunity. 
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Appendix 10 

 

Trace plots and density plots of areas with worse employment opportunity. 
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Appendix 11 

 

Trace plots and density plots of proportion of the population that use firewood. 
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