On λ -Commuting Operators

J.M. Khalagai and M. Kavila

School of Mathematics, University of Nairobi, P.O. Box 30197 - 00100, Nairobi Email: <u>khalagai@uonbi.ac.keormutiekavila@gmail.com</u>

Abstract: Two bounded linear operators A and B on a complex Hilbert space are said to λ -commute for $\lambda \in \mathbf{C}$ provided that: $AB = \lambda BA$. In this paper we look for some properties satisfied by the operators A and B so that $\lambda = 1$. It is shown among other results that if one of the operators raised to some power is normal and 0 does not belong to the interior of the numerical range of the other operator then: $\lambda = 1$

AMS 200 Mathematics Subject Classification 47B47 47A30, 47B20

Key words and phrases: Numerical range and normal operator

1. Notation and Terminology

Given an operator A we shall denote the spectrum, the approximate point spectrum, the point spectrum and the closure of the numerical range by: $\sigma(A)$, $\sigma_{ap}(A)$, $\sigma_p(A)$ and $\overline{W(A)}$ respectively. For A, $B \in B(H)$ the commutator of A and B will be denoted by [A, B]. Thus [A, B] = AB - BA. The commutant of A will be denoted by $\{A\}$ '.

Thus $\{A\}' = \{X \in B(H): [A, X] = 0\}$. Re*A* and Im*A* will denote real and imaginary parts of *A*. The operator *X* is said to intertwine operators *A* and *B* if AX = XB. The operator *A* will be said to be:

<u>Dominant</u> if to each $\lambda \in \mathbf{C}$ there corresponds a number $M_{\lambda} \geq 1$ such that $\|(A-\lambda)^* x\| \leq M_{\lambda} \|(A-\lambda)x\|$ for all $x \in H$.

<u>Hyponormal</u> if $A^*A \ge AA^*$.

<u>Normal</u> if A * A = AA *.

Self-adjoint if $A = A^*$.

We have the following inclusions of classes of operators:

 $Self-adjoint \subseteq Normal \subseteq Hyponormal \subseteq Dominant$

2. Introduction

Let B(H) denote the Banach algebra of bounded linear operators on a complex Hilbert space H. For any $T \in B(H)$ the numerical range of T denoted by W(T) is the image of the unit sphere of H under the quadratic form $x \rightarrow \langle Tx, x \rangle$ associated with the operator.

More precisely, $W(T) = \{\langle Tx, x \rangle : ||x|| = 1\}$. Thus the numerical range of an operator, like the spectrum, is a subset of the complex plane whose topological properties carry some information about the operator. We now note that λ -commuting operators have been considered by a number of authors. Among them are Brook *et al*, (2002) who proved the following results:

Theorem A: Let *A*, *B* \in *B*(*H*) such that *AB* \neq 0 and *AB* = λ *BA* for $\lambda \in \mathbf{C}$. Then:

Kenya Journal of Sciences Series A Vol. 15 No. 1, 2012

(ii) Similarly given $AB = \lambda BA$ we have: $A^n B = \lambda^n BA^n$ for $n \in J^+$ i.e., $B(\lambda^n A^n) = A^n B$

But $\lambda^n A^n$ and A^n are commuting normal operators. Since $0 \notin W(B)$, we have by theorem D again that:

 $A^{n} = \lambda^{n} A^{n}$ Since $A^{n} \neq 0$ then $\lambda^{n} = 1$ i.e., $\left\lceil A^{n}, B \right\rceil = 0$

Corollary 1: Given $AB = \lambda BA$ we have that [A, B] = 0 under any one of the following conditions:

(i) A is normal and $0 \notin W(B)$

(ii) *B* is normal and $0 \notin W(A)$

Proof: We put n = 1 in the proof of the theorem above.

Remarks: (i) We note that for the operator equation $AB = \lambda BA$ the condition [A, B] = 0 trivially implies that $\lambda = 1$.

(ii) We also note that the condition that A or B is positive is more stringent than a mere requirement that $0 \notin W(A)$ or $0 \notin W(B)$. More precisely the following corollary is an improvement of theorem A above.

Corollary 2: Let *A* and *B* be self-adjoint operators such that $AB = \lambda BA$. Then [A, B] = 0 under any one of the following conditions:

- (i) $\sigma(A) \cap \sigma(-A) = \emptyset$
- (ii) $0 \notin W(A)$
- (iii) $\sigma(\text{Re}A) \cap \sigma(-\text{Im}A) = \emptyset$
- (iv) $\sigma(B) \cap \sigma(-B) = \emptyset$
- (v) $0 \notin W(B)$
- (vi) $\sigma(\operatorname{Re}B) \cap \sigma(\operatorname{-Im}B) = \emptyset$

Proof: Given $AB = \lambda BA$ we have:

$$A^{2}B = A\lambda BA$$
$$= \lambda ABA$$
$$= \lambda \lambda BAA$$
$$= \lambda^{2} BA^{2}$$

Now by theorem A above we have that $\lambda^2 = 1$. Thus $A^2B = BA^2$ or $[B, A^2] = 0$. We also have:

$$AB^{2} = \lambda BAB$$
$$= \lambda B\lambda BA$$
$$= \lambda^{2} B^{2} A$$

By theorem A again $\lambda^2 = 1$. Thus $AB^2 = B^2 A$ or $[A, B^2] = 0$.

Now in view of theorem E above each of the conditions (i) to (vi) implies [A, B] = 0 and consequently $\lambda = 1$.

Theorem 2: Let *A*, $B \in B(H)$ be such that $AB = \lambda BA$. Then we have:

- (i) A is self-adjoint implies $B^*B \in \{A\}$ and $BB^* \in \{A\}$
- (ii) B is self-adjoint implies $A^*A \in \{B\}$ and $AA^* \in \{B\}$

References

- Brook J, Busch P and Pearson D.B. (2002), Commutativity up to a factor of bounded operators in complex Hilbert space, *Proc. R. Soc. Lond. A*, **458**, p. 109-118.
- Brown S. (1979), Connections between an operator and a compact operator that yield hyperinvariant subspaces, *J. Operator Theory*, p.117-122, MR 0526293 (80h: 47005).
- Embry, M.R. (1970), Similarities involving normal operators on Hilbert space, Pacific Journal of Maths, 35, No. 2, p.331-336.
- Sheth I.H and Khalagai J.M. (1987), On the operator equation AH = KA, *Mathematics Today*, V, p.29-36.