On λ-Commuting Operators

J.M. Khalagai and M. Kavila

School of Mathematics, University of Nairobi, P.O. Box 30197-00100, Nairobi
Email: khalagai@uonbi.ac.keormutiekavila@gmail.com

Abstract

Two bounded linear operators A and B on a complex Hilbert space are said to λ commute for $\lambda \in \mathbf{C}$ provided that: $A B=\lambda B A$. In this paper we look for some properties satisfied by the operators A and B so that $\lambda=1$. It is shown among other results that if one of the operators raised to some power is normal and 0 does not belong to the interior of the numerical range of the other operator then: $\lambda=1$

AMS 200 Mathematics Subject Classification 47B47 47A30, 47B20
Key words and phrases: Numerical range and normal operator

1. Notation and Terminology

Given an operator A we shall denote the spectrum, the approximate point spectrum, the point spectrum and the closure of the numerical range by: $\sigma(A), \sigma_{a p}(A), \sigma_{p}(A)$ and $\overline{W(A)}$ respectively. For $A, B \in$ $B(H)$ the commutator of A and B will be denoted by $[A, B]$. Thus $[A, B]=A B-B A$. The commutant of A will be denoted by $\{A\}^{\prime}$.
Thus $\{A\}^{\prime}=\{X \in B(H):[A, X]=0\}$. $\operatorname{Re} A$ and $\operatorname{Im} A$ will denote real and imaginary parts of A. The operator X is said to intertwine operators A and B if $A X=X B$.
The operator A will be said to be:
Dominant if to each $\lambda \in \mathbf{C}$ there corresponds a number $M_{\lambda} \geq 1$ such that $\left\|(A-\lambda)^{*} x\right\| \leq M_{\lambda}\|(A-\lambda) x\|$ for all $x \in H$.
Hyponormal if $\mathrm{A}^{*} \mathrm{~A} \geq \mathrm{AA}^{*}$.

$$
\text { Normal if } A^{*} A=A A^{*} \text {. }
$$

Self-adjoint if $A=A^{*}$.
We have the following inclusions of classes of operators:
$\{$ Self-adjoint $\} \subseteq\{$ Normal $\} \subseteq\{$ Hyponormal $\} \subseteq\{$ Dominant $\}$

2. Introduction

Let $B(H)$ denote the Banach algebra of bounded linear operators on a complex Hilbert space H. For any $T \in B(H)$ the numerical range of T denoted by $W(T)$ is the image of the unit sphere of H under the quadratic form $x \rightarrow\langle T x, x>$ associated with the operator.
More precisely, $W(T)=\{<T x, x\rangle:\|x\|=1\}$. Thus the numerical range of an operator, like the spectrum, is a subset of the complex plane whose topological properties carry some information about the operator. We now note that λ-commuting operators have been considered by a number of authors. Among them are Brook et al, (2002) who proved the following results:

Theorem A: Let $A, B \in B(H)$ such that $A B \neq 0$ and $A B=\lambda B A$ for $\lambda \in \mathbf{C}$. Then:
(ii) Similarly given $A B=\lambda B A$ we have:

$$
\begin{aligned}
A^{n} B= & \lambda^{n} B A^{n} \text { for } n \in \mathrm{~J}^{+} \\
& \text {i.e., } B\left(\lambda^{n} A^{n}\right)=A^{n} B
\end{aligned}
$$

But $\lambda^{n} A^{n}$ and A^{n} are commuting normal operators. Since $0 \notin W(B)$, we have by theorem D again that:

$$
A^{n}=\lambda^{n} A^{n}
$$

Since $A^{n} \neq 0$ then $\lambda^{n}=1$

$$
\text { i.e., }\left[A^{n}, B\right]=0
$$

Corollary 1: Given $A B=\lambda B A$ we have that $[A, B]=0$ under any one of the following conditions:
(i) A is normal and $0 \notin \mathrm{~W}(B)$
(ii) $\quad B$ is normal and $0 \notin \mathrm{~W}(A)$

Proof: We put $n=1$ in the proof of the theorem above.
Remarks: (i) We note that for the operator equation $A B=\lambda B A$ the condition $[A, B]=0$ trivially implies that $\lambda=1$.
(ii) We also note that the condition that A or B is positive is more stringent than a mere requirement that $0 \notin W(A)$ or $0 \notin W(B)$. More precisely the following corollary is an improvement of theorem A above.

Corollary 2: Let A and B be self-adjoint operators such that $A B=\lambda B A$. Then $[A, B]=0$ under any one of the following conditions:
(i) $\sigma(A) \cap \sigma(-A)=\varnothing$
(ii) $0 \notin W(A)$
(iii) $\sigma(\operatorname{Re} A) \cap \sigma(-\operatorname{Im} A)=\varnothing$
(iv) $\sigma(B) \cap \sigma(-B)=\varnothing$
(v) $0 \notin W(B)$
(vi) $\quad \sigma(\operatorname{Re} B) \cap \sigma(-\operatorname{Im} B)=\varnothing$

Proof: Given $\mathrm{AB}=\lambda \mathrm{BA}$ we have:

$$
\begin{aligned}
A^{2} B & =A \lambda B A \\
& =\lambda A B A \\
& =\lambda \cdot \lambda B A A \\
& =\lambda^{2} B A^{2}
\end{aligned}
$$

Now by theorem \mathbf{A} above we have that $\lambda^{2}=1$. Thus $A^{2} B=B A^{2}$ or $\left[B, A^{2}\right]=0$. We also have:

$$
\begin{aligned}
A B^{2} & =\lambda B A B \\
& =\lambda B \lambda B A \\
& =\lambda^{2} B^{2} A
\end{aligned}
$$

By theorem A again $\lambda^{2}=1$. Thus $A B^{2}=B^{2} A$ or $\left[A, B^{2}\right]=0$.
Now in view of theorem \mathbf{E} above each of the conditions (i) to (vi) implies $[\mathrm{A}, \mathrm{B}]=0$ and consequently $\lambda=1$.

Theorem 2: Let $A, B \in B(H)$ be such that $A B=\lambda B A$. Then we have:
(i) A is self-adjoint implies $B^{*} B \in\{A\}^{\prime}$ and $B B^{*} \in\{A\}^{\prime}$
(ii) B is self-adjoint implies $A^{*} A \in\{B\}^{\prime}$ and $A A^{*} \in\{B\}^{\prime}$

References

Brook J, Busch P and Pearson D.B. (2002), Commutativity up to a factor of bounded operators in complex Hilbert space, Proc. R. Soc. Lond. A, 458, p. 109-118.

Brown S. (1979), Connections between an operator and a compact operator that yield hyperinvariant subspaces, J. Operator Theory, p.117-122, MR 0526293 (80h: 47005).

Embry, M.R. (1970), Similarities involving normal operators on Hilbert space, Pacific Journal of Maths, 35, No. 2, p.331-336.

Sheth I.H and Khalagai J.M. (1987), On the operator equation $\mathrm{AH}=\mathrm{KA}$, Mathematics Today, \mathbf{V}, p.29-36.

