On the ordered sets in n-dimensional
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Abstract. Let X be a real inner product space of dimension > 2. In [2],
W. Benz proved the following theorem for z,y € X with z < y: "The
Lorentz-Minkowski distance between z and y is zero (i.e., I (z,y) = 0)
if and only if [z,y] is ordered”. In this paper, we obtain necessary and
sufficient conditions for Lorentz-Minkowski distances I(z,y) > 0, I (z,y) <
0 with the help of ordered sets in n-dimensional real inner product spaces.
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1 Introduction

Let X be a n-dimensional real inner product space, i.e., a real vector space furnished
with an inner product

g: X xX —R, g(zy) =ay
satisfying zy = yx, = (y + 2) = 2y + 22, a(xy) = (ax)y, 2 > 0 (for all z # 0 in X)
for all z,y,z € X, a € R. Moreover X need not be complete, i.e., that X need not

be a real Hilbert space. We assume that the dimension of X is n > 2 and ¢ be a fixed
element of X satisfying t2 = 1 and define

th={zeX:tx=0}

Then clearly t+ @ Rt = X. For any = € X, there are uniquely determined
T =1 —xot € t+ and zo = tz € R with

r =7+ xgt
Definition 1. The Lorentz-Minkowski distance of x,y € X defined by the expression

lz,y) = @ —=7)" — (w0 — %)
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Definition 2. If the mapping ¢ : X — X preserves the Lorentz-Minkowski distance
for each x,y € X then ¢ is called Lorentz transformation.

Under all the translation functions, Lorentz-Minkowski distances remain invariant
and it might be noticed that the theory does not seriously depend on the chosen t,
for more details we refer [1].

2 Ordered Sets in n-Dimensional Real Inner
Product Spaces

Let z,y be elements of a n-dimensional real inner product space X (n > 2), and
define a relation on X such that

r<y<«l(r,y) <0and zg < yo

Observe that an element of X can not be comparable to other element of X, for
example neither e < 0 nor 0 < e if we take e from ¢+. Therefore, (X, <) is a partially
ordered set but not completely ordered set. For the properties of “< 7 see [2].

Definition 3. Let we take two elements of z,y € X satisfying z < y (x < y,x # y)
and define
[zyl={reX:z<z<y}.

[x,y] is called ordered if and only if,
u<vorv<u
holds true for all u,v € [z, y].
In [2], W. Benz proved the following theorem and it will be the foundation of this
paper.
Theorem 4. Let x,y € X with x <y, thenl(z,y) = 0 if and only if [x,y] is ordered.

Corollary 5. Let z,y € X with x # y, then I (x,y) = 0 if and only if either [z,y] or
[y, z] ordered.

Proof. First we assume [ (z,5) = 0 and this implies (Z —7)° — (2o — yo)° = 0 and it
is clear that xg # yo. Thus we get either zg < yo or yo < zg. Let we take g < yo and
we get [x,y] ordered and similarly if we take yp < xo then obtain [y, z] ordered. The
second part of Corollary 5 immediately follows from the Definition 3 and Theorem 4.
O

Lemma 6. Let z,y € X with x < y and [z,y] be an ordered set and take u € X.
Then u is an element of [x,y] if and only if [x,u] and [u,y] are ordered sets.

Proof. Firstly, assume u € [z,y]. Therefore, from [2], there is an element a of R
(actually « € [0, 1] C R) such that
u=z+a(y— )

satisfied. Clearly I (z,u) =0 =I(u,y) and z¢ < ug < Yo.
Conversely, we want to show u € [z,y]. Because of [z, u] and [u,y] are ordered sets,
we obtain x < u <y and this yields u € [z, y]. ]
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Lemma 7. Vz,y,z € X, [x,y], [y,z] be ordered sets. Then the set [z, z] is ordered
if and only if the set {y — x,z — x} is linear dependent.

Proof. Let we assume firstly, [z, z] be ordered. Then clearly y € [z, z] and there is a
real number a € R such that

y=zx+a(z—x)

holds. Therefore, y—x = « (z — x) and this implies {y — x, z — «} is linear dependent.
Conversely, if {y — z,z — x} is linear dependent, there is one A € R such that

zi=z+ Ay —2x)
and thus we get I (z,z) = 0. O

The proof of the following lemmas are not difficult.

Lemma 8. Vz,y,z € X with x <y and [z, 2], [y,z] be ordered sets. Then the set
[,y] is ordered if and only if the set {y — x,z — x} is linear dependent.

Lemma 9. Let X be an n-dimensional real inner product space and [z,y], [z, k] be
ordered sets in X. Then

[xay] n [ka] = [T7 8} ) {m}7 b,

i.e., the intersection set of ordered sets may be an ordered set or a set which consists
of a unique element, or empty set.

2.1 Positive Lorentz-Minkowski Distances (I (z,y) > 0)

Theorem 10. Let X be a n-dimensional real inner product space (n > 2) and x,y
be elements of X with x # y and xg < yo. Then followings are equivalent.

(i) L(z,y) > 0.

(#3) There is at least one s € X — {x,y} such that [z,s], [y,s] are ordered while
[,y] is not ordered.

(i3i) There is at least one k € X — {x,y} such that [k,z], [k,y] are ordered while
[,y] is not ordered.

Proof. For all elements of x,y € X, it is not hard to see the equality
Lz,y) =1(0,y —x)

Therefore, instead of considering x and y, we can prove the theorem with respect to

0 and y — z. Firstly we take an orthonormal basis of X as follows:
0:={t,er,ea,...,en_1}

I(z,y) > 0 implies I (0,y — x) > 0. Thus, for ¢ € {1,2,...,n — 1} there are \; and

i € R (uniquely determined) such that

n—1

(2.1) y—x:=put+ Z)‘iei
i=1

holds.
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(1) = (i)

(idi) = (9)

n—1
[(x,y) > 0 implies Y A? — p? > 0, and zg < yo implies p > 0. Define
i=1

n—1 n—1
i I
A2 ¢ AN ISR R P
;ﬁu +;2 |
1= 1= A?
i=1

Then we get [(0,u) =0 =1(y — z,u), ie., [0,u], [y —x,u| are ordered sets.
Clearly [0,y — z] is not ordered since I(x,y) > 0. To prove that (i) holds,
translate 0 to x, then we get [x,2 + u], [y,u + z] are ordered sets and [z, y] is
not an ordered set.

In order to prove (4), it is enough to show [ (z,y) £ 0. We suppose [ (z,y) < 0.
Clearly = < y and this implies z < y < s. Firstly we assume [ (z,y) < 0 and
take

1 1
u::§(m—|—y) andv::§(m+s)

Observe [ (z,u) < 0, I(z,v) = 0, l(u,v) = 0 and moreover uy < vg. It is
immediately follows from the fact I (u,v) = 0, obtain [u, v] is ordered. Obviously
u € [z,v]. In order to see that we observe o < ug < vg and I (x,u), I (u,v) <0.
But u ¢ [z, v] since ! (z,u) # 0 and this is a contradiction. Obviously [ (z,y) # 0,
otherwise; [x,y] would be ordered. Therefore, we obtain [ (z,y) > 0.

n—1
[ (z,y) > 0 implies > A2 — 2 > 0, and zg < yo implies > 0. Define
i=1

1—-—L2 e

Then we get [ (v,0) =0=1(v,y — ), i.e., the sets [v,0], [v,y — x| are ordered
sets. Clearly [0,y — «] is not ordered since [ (x,y) > 0. To show that (ii¢) holds,
translate 0 to z, then we get [v + x,x], [v+ z,y] are ordered sets, but [z,y] is
not ordered.

We suppose [ (x,y) < 0. Clearly < y and this implies k < z < y. Firstly we
assume [ (x,y) < 0 and take

1 1
u! :zi(x—f—y) and v' ::§(m+k)

Observe [ (z,u') < 0, I (v',z) = 0, I (v',u') = 0, ie., [v',u'] is ordered and
moreover vy < uy. Obviously z € [v',u'] and this yields [ (z,u') =0 =1(v',z),
and this is a contradiction. Therefore, I (x,y) ¢ 0. Obviously I (x,y) # 0,
otherwise; [z, y] would be ordered, so we obtain [ (z,y) > 0.
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Remark 11. In the previous theorem u and v are not unique if dim X > 3. Indeed if
we take X as 3-dimensional real standard inner-product space, i.e., X = R® and take

3
t:=(0,0,1), y—T:i= (2,0,0>7

then we obtain

u' = (i,f,l) # §t+§€1 =u

4 4
. 3VT 3.3
v o= (4,4,1) #71t+161 =0

Proof of the following theorem is not difficult.

Theorem 12. Let X be a n-dimensional real inner product space (n > 2) and x,y

be elements of X with x #y and xg < yo. L (z,y) > 0 if and only if there is not any
element of X such that [x,s], [s,y] are ordered sets.

2.2 The Case [(z,y) =0

Theorem 13. Let X be a n-dimensional real inner product space (n > 2) and x,y
be elements of X with x # y and xg < yo. Then followings are equivalent.

(1) 1(z,y) =0.

(#3) There are at least m,s € X—{x,y} such that the sets [z, s], [y,s], [m,z], [m,y],
[m, s] are ordered sets.

Proof.

(1) = (ii) At first, assume [ (x,y) = 0, i.e., [ (0,y — 2) = 0 and we represent y —z as before
n—1
2.1). This implies [0,y — z] is ordered, and A2 —p? =0, 0<yo—zo. If we
i M
i=1

take u,v € X such as

n—1
ui=q <,ut+2)\iei> ,61 > 1

i=1
n—1

V=G (Mt + Z Aﬁi) ,S2 <0,
i=1

then we get
l(oau):l(y*mau):l(vao):l(vvy*x):()

A simple calculation shows that I (v,u) = 0, i.e, [v,u] is a ordered set. If we
translate 0 to x, we get the sets [z,u + 2], [y,u+z], [v+z,2], [v+a,v],
[v+ z,u+ x| are ordered. Thus we could find s, m € X.
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(#4) = (i) Conversely, for suitable s, m € X, we assume that [z, s], [y, s], [m,z], [m,y], [m, ]
are ordered. Clearly
m<z<y<s

and thus € [m, s] and y € [m, s], so this implies that there are real numbers
a, f € [0,1] such that

z:=m+a(s—m)
yi=m+ B (s —m)
then this yields I (x,y) = 0, i.e., [z, y] is ordered.

a

Remark 14. It is not hard to see that these elements m, s are not unique even if the
dimension of X is two.

2.3 Negative Lorentz-Minkowski Distances (I (z,y) < 0)

Theorem 15. Let X be a n-dimensional real inner product space (n > 2) and x,y
be elements of X with x #y and xo < yo. Then l(z,y) < 0 if and only if there is at
least s € X such that [z, ], [s,y] are ordered but [x,y] is not ordered.

Proof. Assume firstly I (z,y) < 0 and similarly to previous proofs, we consider the
n—1

elements 0,y — x instead of z,y. [ (z,y) < 0 yields > A\? — p? < 0. If we may choose
i=1

the element u € X such as:

n—1 n—1
Ai I
Ntplt+ ) T |1+— e
A
i=1

Then we get [ (0,u) =0 =1(u,y — x), i.e., the sets [0,u], [u,y — x] are ordered sets.
Let we take s € X such that [z,s] and [s,y] are ordered but [z,y] is not ordered.

Using the property of “<” z < s, s <y we obtain x <y, i.e., l(z,y) <O0. ]

Remark 16. In Theorem 15 the element s is not unique even if dim X = 2. In fact
for the case n = 2,

A A
s = 1;_Me+ lg_'ut—i—x

AL — 1 M+
L= t
5 5 ¢t

+x

are different elements of X and Theorem 15 holds for s, s'.

Proofs of the following theorems can be easily proved by the preceding proofs.
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Theorem 17. Let X be a n-dimensional real inner product space (n > 2) and x,y be
elements of X with x # y and o < yo. If I (x,y) < 0 then there is not any element
of X such that [z,s], [y,s| are ordered sets.

Theorem 18. Let X be a n-dimensional real inner product space (n > 2) and xz,y be
elements of X with x # y and xo < yo. If I (x,y) < 0 then there is not any element
of X such that [s',x], [s',y] are ordered sets.
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