On the ordered sets in n-dimensional real inner product spaces

Oğuzhan Demirel and Emine Soytürk

Abstract. Let X be a real inner product space of dimension ≥ 2 . In [2], W. Benz proved the following theorem for $x, y \in X$ with x < y: "The Lorentz-Minkowski distance between x and y is zero (i.e., l(x, y) = 0) if and only if [x, y] is ordered". In this paper, we obtain necessary and sufficient conditions for Lorentz-Minkowski distances l(x, y) > 0, l(x, y) < 0 with the help of ordered sets in n-dimensional real inner product spaces.

M.S.C. 2000: 14P99, 46B20, 51F99, 51K99. Key words: Real inner product space, Lorentz-Minkowski distance, Lorentz transformation.

1 Introduction

Let X be a n-dimensional real inner product space, i.e., a real vector space furnished with an inner product

$$g: X \times X \longrightarrow \mathbb{R}, \quad g(x, y) = xy$$

satisfying xy = yx, x(y + z) = xy + xz, $\alpha(xy) = (\alpha x) y$, $x^2 > 0$ (for all $x \neq 0$ in X) for all $x, y, z \in X$, $\alpha \in \mathbb{R}$. Moreover X need not be complete, i.e., that X need not be a real Hilbert space. We assume that the dimension of X is $n \geq 2$ and t be a fixed element of X satisfying $t^2 = 1$ and define

$$t^{\perp} := \{ x \in X : tx = 0 \}$$

Then clearly $t^{\perp} \oplus \mathbb{R}t = X$. For any $x \in X$, there are uniquely determined $\overline{x} = x - x_0 t \in t^{\perp}$ and $x_0 = tx \in \mathbb{R}$ with

$$x = \overline{x} + x_0 t$$

Definition 1. The *Lorentz-Minkowski distance* of $x, y \in X$ defined by the expression

$$l(x,y) = (\overline{x} - \overline{y})^2 - (x_0 - y_0)^2$$

Applied Sciences, Vol.10, 2008, pp. 66-72.

[©] Balkan Society of Geometers, Geometry Balkan Press 2008.

Definition 2. If the mapping $\varphi : X \to X$ preserves the Lorentz-Minkowski distance for each $x, y \in X$ then φ is called *Lorentz transformation*.

Under all the translation functions, Lorentz-Minkowski distances remain invariant and it might be noticed that the theory does not seriously depend on the chosen t, for more details we refer [1].

2 Ordered Sets in *n*-Dimensional Real Inner Product Spaces

Let x, y be elements of a *n*-dimensional real inner product space X $(n \ge 2)$, and define a relation on X such that

$$x \leq y \Leftrightarrow l(x,y) \leq 0 \text{ and } x_0 \leq y_0$$

Observe that an element of X can not be comparable to other element of X, for example neither $e \leq 0$ nor $0 \leq e$ if we take e from t^{\perp} . Therefore, (X, \leq) is a partially ordered set but not completely ordered set. For the properties of " \leq ", see [2].

Definition 3. Let we take two elements of $x, y \in X$ satisfying x < y ($x \le y, x \ne y$) and define

$$[x,y] = \{z \in X : x \le z \le y\}$$

[x, y] is called ordered if and only if,

$$u \leq v \text{ or } v \leq u$$

holds true for all $u, v \in [x, y]$.

In [2], W. Benz proved the following theorem and it will be the foundation of this paper.

Theorem 4. Let $x, y \in X$ with x < y, then l(x, y) = 0 if and only if [x, y] is ordered. **Corollary 5.** Let $x, y \in X$ with $x \neq y$, then l(x, y) = 0 if and only if either [x, y] or [y, x] ordered.

Proof. First we assume l(x, y) = 0 and this implies $(\overline{x} - \overline{y})^2 - (x_0 - y_0)^2 = 0$ and it is clear that $x_0 \neq y_0$. Thus we get either $x_0 < y_0$ or $y_0 < x_0$. Let we take $x_0 < y_0$ and we get [x, y] ordered and similarly if we take $y_0 < x_0$ then obtain [y, x] ordered. The second part of Corollary 5 immediately follows from the Definition 3 and Theorem 4. \Box

Lemma 6. Let $x, y \in X$ with x < y and [x, y] be an ordered set and take $u \in X$. Then u is an element of [x, y] if and only if [x, u] and [u, y] are ordered sets.

Proof. Firstly, assume $u \in [x, y]$. Therefore, from [2], there is an element α of \mathbb{R} (actually $\alpha \in [0, 1] \subset \mathbb{R}$) such that

$$u := x + \alpha \left(y - x \right)$$

satisfied. Clearly l(x, u) = 0 = l(u, y) and $x_0 < u_0 < y_0$. Conversely, we want to show $u \in [x, y]$. Because of [x, u] and [u, y] are ordered sets, we obtain $x \le u \le y$ and this yields $u \in [x, y]$. **Lemma 7.** $\forall x, y, z \in X$, [x, y], [y, z] be ordered sets. Then the set [x, z] is ordered if and only if the set $\{y - x, z - x\}$ is linear dependent.

Proof. Let we assume firstly, [x, z] be ordered. Then clearly $y \in [x, z]$ and there is a real number $\alpha \in \mathbb{R}$ such that

$$y := x + \alpha \left(z - x \right)$$

holds. Therefore, $y-x = \alpha (z-x)$ and this implies $\{y-x, z-x\}$ is linear dependent. Conversely, if $\{y-x, z-x\}$ is linear dependent, there is one $\lambda \in \mathbb{R}$ such that

$$z := x + \lambda \left(y - x \right)$$

and thus we get l(x, z) = 0.

The proof of the following lemmas are not difficult.

Lemma 8. $\forall x, y, z \in X$ with x < y and [x, z], [y, z] be ordered sets. Then the set [x, y] is ordered if and only if the set $\{y - x, z - x\}$ is linear dependent.

Lemma 9. Let X be an n-dimensional real inner product space and [x, y], [z, k] be ordered sets in X. Then

$$[x, y] \cap [z, k] = [r, s], \{m\}, \phi$$

i.e., the intersection set of ordered sets may be an ordered set or a set which consists of a unique element, or empty set.

2.1 Positive Lorentz-Minkowski Distances (l(x, y) > 0)

Theorem 10. Let X be a n-dimensional real inner product space $(n \ge 2)$ and x, y be elements of X with $x \ne y$ and $x_0 \le y_0$. Then followings are equivalent.

- (*i*) l(x, y) > 0.
- (ii) There is at least one $s \in X \{x, y\}$ such that [x, s], [y, s] are ordered while [x, y] is not ordered.
- (iii) There is at least one $k \in X \{x, y\}$ such that [k, x], [k, y] are ordered while [x, y] is not ordered.

Proof. For all elements of $x, y \in X$, it is not hard to see the equality

$$l(x,y) = l(0,y-x)$$

Therefore, instead of considering x and y, we can prove the theorem with respect to 0 and y - x. Firstly we take an orthonormal basis of X as follows:

$$\theta := \{t, e_1, e_2, \dots, e_{n-1}\}$$

l(x,y) > 0 implies l(0, y - x) > 0. Thus, for $i \in \{1, 2, ..., n - 1\}$ there are λ_i and $\mu \in \mathbb{R}$ (uniquely determined) such that

(2.1)
$$y - x := \mu t + \sum_{i=1}^{n-1} \lambda_i e_i$$

holds.

 $(i) \Rightarrow (ii) \ l(x,y) > 0 \text{ implies } \sum_{i=1}^{n-1} \lambda_i^2 - \mu^2 > 0, \text{ and } x_0 \le y_0 \text{ implies } \mu \ge 0. \text{ Define}$ $u := \frac{1}{2} \left(\sqrt{\sum_{i=1}^{n-1} \lambda_i^2} + \mu \right) t + \sum_{i=1}^{n-1} \frac{\lambda_i}{2} \left(1 + \frac{\mu}{\sqrt{\sum_{i=1}^{n-1} \lambda_i^2}} \right) e_i$

Then we get l(0, u) = 0 = l(y - x, u), i.e., [0, u], [y - x, u] are ordered sets. Clearly [0, y - x] is not ordered since l(x, y) > 0. To prove that *(ii)* holds, translate 0 to x, then we get [x, x + u], [y, u + x] are ordered sets and [x, y] is not an ordered set.

 $(ii) \Rightarrow (i)$ In order to prove (i), it is enough to show $l(x, y) \notin 0$. We suppose $l(x, y) \leq 0$. Clearly x < y and this implies x < y < s. Firstly we assume l(x, y) < 0 and take

$$u := \frac{1}{2} (x + y)$$
 and $v := \frac{1}{2} (x + s)$

Observe l(x, u) < 0, l(x, v) = 0, l(u, v) = 0 and moreover $u_0 < v_0$. It is immediately follows from the fact l(u, v) = 0, obtain [u, v] is ordered. Obviously $u \in [x, v]$. In order to see that we observe $x_0 < u_0 < v_0$ and l(x, u), $l(u, v) \le 0$. But $u \notin [x, v]$ since $l(x, u) \neq 0$ and this is a contradiction. Obviously $l(x, y) \neq 0$, otherwise; [x, y] would be ordered. Therefore, we obtain l(x, y) > 0.

$$(i) \Rightarrow (iii) \ l(x,y) > 0 \text{ implies } \sum_{i=1}^{n-1} \lambda_i^2 - \mu^2 > 0, \text{ and } x_0 \le y_0 \text{ implies } \mu \ge 0. \text{ Define}$$
$$v := \frac{1}{2} \left(-\sqrt{\sum_{i=1}^{n-1} \lambda_i^2} + \mu \right) t + \sum_{i=1}^{n-1} \frac{\lambda_i}{2} \left(1 - \frac{\mu}{\sqrt{\sum_{i=1}^{n-1} \lambda_i^2}} \right) e_i$$

Then we get l(v, 0) = 0 = l(v, y - x), i.e., the sets [v, 0], [v, y - x] are ordered sets. Clearly [0, y - x] is not ordered since l(x, y) > 0. To show that *(iii)* holds, translate 0 to x, then we get [v + x, x], [v + x, y] are ordered sets, but [x, y] is not ordered.

 $(iii) \Rightarrow (i)$ We suppose $l(x, y) \le 0$. Clearly x < y and this implies k < x < y. Firstly we assume l(x, y) < 0 and take

$$u' := \frac{1}{2} (x + y) \text{ and } v' := \frac{1}{2} (x + k)$$

Observe l(x, u') < 0, l(v', x) = 0, l(v', u') = 0, i.e., [v', u'] is ordered and moreover $v'_0 < u'_0$. Obviously $x \in [v', u']$ and this yields l(x, u') = 0 = l(v', x), and this is a contradiction. Therefore, $l(x, y) \not\leq 0$. Obviously $l(x, y) \neq 0$, otherwise; [x, y] would be ordered, so we obtain l(x, y) > 0. **Remark 11.** In the previous theorem u and v are not unique if dim $X \ge 3$. Indeed if we take X as 3-dimensional real standard inner-product space, i.e., $X = \mathbb{R}^3$ and take

$$t := (0, 0, 1), \qquad y - x := \left(\frac{3}{2}, 0, 0\right),$$

then we obtain

$$u' := \left(\frac{3}{4}, \frac{\sqrt{7}}{4}, 1\right) \neq \frac{3}{4}t + \frac{3}{4}e_1 =: u$$
$$v' := \left(\frac{3}{4}, -\frac{\sqrt{7}}{4}, 1\right) \neq -\frac{3}{4}t + \frac{3}{4}e_1 =: v$$

Proof of the following theorem is not difficult.

Theorem 12. Let X be a n-dimensional real inner product space $(n \ge 2)$ and x, y be elements of X with $x \ne y$ and $x_0 < y_0$. l(x, y) > 0 if and only if there is not any element of X such that [x, s], [s, y] are ordered sets.

2.2 The Case l(x, y) = 0

Theorem 13. Let X be a n-dimensional real inner product space $(n \ge 2)$ and x, y be elements of X with $x \ne y$ and $x_0 < y_0$. Then followings are equivalent.

- (*i*) l(x, y) = 0.
- (ii) There are at least $m, s \in X \{x, y\}$ such that the sets [x, s], [y, s], [m, x], [m, y], [m, s] are ordered sets.

Proof.

 $(i) \Rightarrow (ii)$ At first, assume l(x, y) = 0, i.e., l(0, y - x) = 0 and we represent y - x as before (2.1). This implies [0, y - x] is ordered, and $\sum_{i=1}^{n-1} \lambda_i^2 - \mu^2 = 0$, $0 < y_0 - x_0$. If we take $u, v \in X$ such as

$$u := \varsigma_1 \left(\mu t + \sum_{i=1}^{n-1} \lambda_i e_i \right) \qquad , \varsigma_1 > 1$$
$$v := \varsigma_2 \left(\mu t + \sum_{i=1}^{n-1} \lambda_i e_i \right) \qquad , \varsigma_2 < 0,$$

then we get

$$l(0, u) = l(y - x, u) = l(v, 0) = l(v, y - x) = 0$$

A simple calculation shows that l(v, u) = 0, i.e., [v, u] is a ordered set. If we translate 0 to x, we get the sets [x, u + x], [y, u + x], [v + x, x], [v + x, y], [v + x, u + x] are ordered. Thus we could find $s, m \in X$.

On the ordered sets

 $(ii) \Rightarrow (i)$ Conversely, for suitable $s, m \in X$, we assume that [x, s], [y, s], [m, x], [m, y], [m, s] are ordered. Clearly

$$m \le x \le y \le s$$

and thus $x \in [m, s]$ and $y \in [m, s]$, so this implies that there are real numbers $\alpha, \beta \in [0, 1]$ such that

$$x := m + \alpha (s - m)$$
$$y := m + \beta (s - m)$$

then this yields l(x, y) = 0, i.e., [x, y] is ordered.

Remark 14. It is not hard to see that these elements m, s are not unique even if the dimension of X is two.

2.3 Negative Lorentz-Minkowski Distances (l(x, y) < 0)

Theorem 15. Let X be a n-dimensional real inner product space $(n \ge 2)$ and x, y be elements of X with $x \ne y$ and $x_0 < y_0$. Then l(x, y) < 0 if and only if there is at least $s \in X$ such that [x, s], [s, y] are ordered but [x, y] is not ordered.

Proof. Assume firstly l(x, y) < 0 and similarly to previous proofs, we consider the elements 0, y - x instead of x, y. l(x, y) < 0 yields $\sum_{i=1}^{n-1} \lambda_i^2 - \mu^2 < 0$. If we may choose the element $u \in X$ such as:

$$u := \frac{1}{2} \left(\sqrt{\sum_{i=1}^{n-1} \lambda_i^2} + \mu \right) t + \sum_{i=1}^{n-1} \frac{\lambda_i}{2} \left(1 + \frac{\mu}{\sqrt{\sum_{i=1}^{n-1} \lambda_i^2}} \right) e_i$$

Then we get l(0, u) = 0 = l(u, y - x), i.e., the sets [0, u], [u, y - x] are ordered sets. Let we take $s \in X$ such that [x, s] and [s, y] are ordered but [x, y] is not ordered. Using the property of " \leq " $x \leq s$, $s \leq y$ we obtain $x \leq y$, i.e., l(x, y) < 0. \Box

Remark 16. In Theorem 15 the element s is not unique even if dim X = 2. In fact for the case n = 2,

$$\begin{split} s &:= \frac{\lambda_1 + \mu}{2}e + \frac{\lambda_1 + \mu}{2}t + x\\ s' &:= \frac{\lambda_1 - \mu}{2}e + \frac{-\lambda_1 + \mu}{2}t + x \end{split}$$

are different elements of X and Theorem 15 holds for s, s'.

Proofs of the following theorems can be easily proved by the preceding proofs.

Theorem 17. Let X be a n-dimensional real inner product space $(n \ge 2)$ and x, y be elements of X with $x \ne y$ and $x_0 < y_0$. If l(x, y) < 0 then there is not any element of X such that [x, s], [y, s] are ordered sets.

Theorem 18. Let X be a n-dimensional real inner product space $(n \ge 2)$ and x, y be elements of X with $x \ne y$ and $x_0 < y_0$. If l(x, y) < 0 then there is not any element of X such that [s', x], [s', y] are ordered sets.

References

- W. Benz, Lorentz-Minkowski distances in Hilbert spaces, Geom. Dedicata 81 (2000), 219-230.
- [2] W. Benz, On Lorentz-Minkowski Geometry in real inner-product spaces, Advances in Geometry, 2003 (Special Issue), S1-S12.

Authors' address:

Oğuzhan Demirel and Emine Soytürk Department of Mathematics, Faculty of Science and Arts, ANS Campus, Afyon Kocatepe University, 03200 Afyonkarahisar-TURKEY. E-mail: odemirel@aku.edu.tr, soyturk@aku.edu.tr