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Abstract. Let X be a real inner product space of dimension ≥ 2. In [2],
W. Benz proved the following theorem for x, y ∈ X with x < y: ”The
Lorentz-Minkowski distance between x and y is zero (i.e., l (x, y) = 0)
if and only if [x, y] is ordered”. In this paper, we obtain necessary and
sufficient conditions for Lorentz-Minkowski distances l(x, y) > 0, l (x, y) <
0 with the help of ordered sets in n-dimensional real inner product spaces.
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1 Introduction

Let X be a n-dimensional real inner product space, i.e., a real vector space furnished
with an inner product

g : X ×X −→ R, g (x, y) = xy

satisfying xy = yx, x (y + z) = xy + xz, α (xy) = (αx) y, x2 > 0 (for all x 6= 0 in X)
for all x, y, z ∈ X, α ∈ R. Moreover X need not be complete, i.e., that X need not
be a real Hilbert space. We assume that the dimension of X is n ≥ 2 and t be a fixed
element of X satisfying t2 = 1 and define

t⊥ := {x ∈ X : tx = 0}

Then clearly t⊥ ⊕ Rt = X. For any x ∈ X, there are uniquely determined
x = x− x0t ∈ t⊥ and x0 = tx ∈ R with

x = x + x0t

Definition 1. The Lorentz-Minkowski distance of x, y ∈ X defined by the expression

l (x, y) = (x− y)2 − (x0 − y0)
2
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Definition 2. If the mapping ϕ : X → X preserves the Lorentz-Minkowski distance
for each x, y ∈ X then ϕ is called Lorentz transformation.

Under all the translation functions, Lorentz-Minkowski distances remain invariant
and it might be noticed that the theory does not seriously depend on the chosen t,
for more details we refer [1].

2 Ordered Sets in n-Dimensional Real Inner
Product Spaces

Let x, y be elements of a n-dimensional real inner product space X (n ≥ 2), and
define a relation on X such that

x ≤ y ⇔ l (x, y) ≤ 0 and x0 ≤ y0

Observe that an element of X can not be comparable to other element of X, for
example neither e ≤ 0 nor 0 ≤ e if we take e from t⊥. Therefore, (X,≤) is a partially
ordered set but not completely ordered set. For the properties of “≤ ”, see [2].

Definition 3. Let we take two elements of x, y ∈ X satisfying x < y (x ≤ y, x 6= y)
and define

[x, y] = {z ∈ X : x ≤ z ≤ y} .

[x, y] is called ordered if and only if,

u ≤ v or v ≤ u

holds true for all u, v ∈ [x, y].

In [2], W. Benz proved the following theorem and it will be the foundation of this
paper.

Theorem 4. Let x, y ∈ X with x < y, then l (x, y) = 0 if and only if [x, y] is ordered.

Corollary 5. Let x, y ∈ X with x 6= y, then l (x, y) = 0 if and only if either [x, y] or
[y, x] ordered.

Proof. First we assume l (x, y) = 0 and this implies (x− y)2 − (x0 − y0)
2 = 0 and it

is clear that x0 6= y0. Thus we get either x0 < y0 or y0 < x0. Let we take x0 < y0 and
we get [x, y] ordered and similarly if we take y0 < x0 then obtain [y, x] ordered. The
second part of Corollary 5 immediately follows from the Definition 3 and Theorem 4.

Lemma 6. Let x, y ∈ X with x < y and [x, y] be an ordered set and take u ∈ X.
Then u is an element of [x, y] if and only if [x, u] and [u, y] are ordered sets.

Proof. Firstly, assume u ∈ [x, y]. Therefore, from [2], there is an element α of R
(actually α ∈ [0, 1] ⊂ R) such that

u := x + α (y − x)

satisfied. Clearly l (x, u) = 0 = l(u, y) and x0 < u0 < y0.
Conversely, we want to show u ∈ [x, y]. Because of [x, u] and [u, y] are ordered sets,
we obtain x ≤ u ≤ y and this yields u ∈ [x, y].
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Lemma 7. ∀x, y, z ∈ X, [x, y] , [y, z] be ordered sets. Then the set [x, z] is ordered
if and only if the set {y − x, z − x} is linear dependent.

Proof. Let we assume firstly, [x, z] be ordered. Then clearly y ∈ [x, z] and there is a
real number α ∈ R such that

y := x + α (z − x)

holds. Therefore, y−x = α (z − x) and this implies {y − x, z − x} is linear dependent.
Conversely, if {y − x, z − x} is linear dependent, there is one λ ∈ R such that

z := x + λ (y − x)

and thus we get l (x, z) = 0.

The proof of the following lemmas are not difficult.

Lemma 8. ∀x, y, z ∈ X with x < y and [x, z] , [y, z] be ordered sets. Then the set
[x, y] is ordered if and only if the set {y − x, z − x} is linear dependent.

Lemma 9. Let X be an n-dimensional real inner product space and [x, y] , [z, k] be
ordered sets in X. Then

[x, y] ∩ [z, k] = [r, s] , {m} , φ,

i.e., the intersection set of ordered sets may be an ordered set or a set which consists
of a unique element, or empty set.

2.1 Positive Lorentz-Minkowski Distances (l (x, y) > 0)

Theorem 10. Let X be a n-dimensional real inner product space (n ≥ 2) and x, y
be elements of X with x 6= y and x0 ≤ y0. Then followings are equivalent.

(i) l (x, y) > 0.

(ii) There is at least one s ∈ X − {x, y} such that [x, s] , [y, s] are ordered while
[x, y] is not ordered.

(iii) There is at least one k ∈ X − {x, y} such that [k, x] , [k, y] are ordered while
[x, y] is not ordered.

Proof. For all elements of x, y ∈ X, it is not hard to see the equality

l (x, y) = l (0, y − x)

Therefore, instead of considering x and y, we can prove the theorem with respect to
0 and y − x. Firstly we take an orthonormal basis of X as follows:

θ := {t, e1, e2, . . . , en−1}
l (x, y) > 0 implies l (0, y − x) > 0. Thus, for i ∈ {1, 2, . . . , n− 1} there are λi and
µ ∈ R (uniquely determined) such that

(2.1) y − x := µt +
n−1∑

i=1

λiei

holds.
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(i) ⇒ (ii) l (x, y) > 0 implies
n−1∑
i=1

λ2
i − µ2 > 0, and x0 ≤ y0 implies µ ≥ 0. Define

u :=
1
2




√√√√
n−1∑

i=1

λ2
i + µ


 t +

n−1∑

i=1

λi

2




1 +
µ√

n−1∑
i=1

λ2
i




ei

Then we get l (0, u) = 0 = l (y − x, u), i.e., [0, u] , [y − x, u] are ordered sets.
Clearly [0, y − x] is not ordered since l(x, y) > 0. To prove that (ii) holds,
translate 0 to x, then we get [x, x + u] , [y, u + x] are ordered sets and [x, y] is
not an ordered set.

(ii) ⇒ (i) In order to prove (i), it is enough to show l (x, y) 
 0. We suppose l (x, y) ≤ 0.
Clearly x < y and this implies x < y < s. Firstly we assume l (x, y) < 0 and
take

u :=
1
2

(x + y) and v :=
1
2

(x + s)

Observe l (x, u) < 0, l (x, v) = 0, l (u, v) = 0 and moreover u0 < v0. It is
immediately follows from the fact l (u, v) = 0, obtain [u, v] is ordered. Obviously
u ∈ [x, v]. In order to see that we observe x0 < u0 < v0 and l (x, u) , l (u, v) ≤ 0.
But u /∈ [x, v] since l (x, u) 6= 0 and this is a contradiction. Obviously l (x, y) 6= 0,
otherwise; [x, y] would be ordered. Therefore, we obtain l (x, y) > 0.

(i) ⇒ (iii) l (x, y) > 0 implies
n−1∑
i=1

λ2
i − µ2 > 0, and x0 ≤ y0 implies µ ≥ 0. Define

v :=
1
2


−

√√√√
n−1∑

i=1

λ2
i + µ


 t +

n−1∑

i=1

λi

2




1− µ√
n−1∑
i=1

λ2
i




ei

Then we get l (v, 0) = 0 = l (v, y − x), i.e., the sets [v, 0] , [v, y − x] are ordered
sets. Clearly [0, y − x] is not ordered since l (x, y) > 0. To show that (iii) holds,
translate 0 to x, then we get [v + x, x] , [v + x, y] are ordered sets, but [x, y] is
not ordered.

(iii) ⇒ (i) We suppose l (x, y) ≤ 0. Clearly x < y and this implies k < x < y. Firstly we
assume l (x, y) < 0 and take

up :=
1
2

(x + y) and vp :=
1
2

(x + k)

Observe l (x, up) < 0, l (vp, x) = 0, l (vp, up) = 0, i.e., [vp, up] is ordered and
moreover vp0 < up0. Obviously x ∈ [vp, up] and this yields l (x, up) = 0 = l (vp, x),
and this is a contradiction. Therefore, l (x, y) ≮ 0. Obviously l (x, y) 6= 0,
otherwise; [x, y] would be ordered, so we obtain l (x, y) > 0.
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Remark 11. In the previous theorem u and v are not unique if dim X ≥ 3. Indeed if
we take X as 3-dimensional real standard inner-product space, i.e., X = R3 and take

t := (0, 0, 1) , y − x :=
(

3
2
, 0, 0

)
,

then we obtain

up :=

(
3
4
,

√
7

4
, 1

)
6= 3

4
t +

3
4
e1 =: u

vp :=

(
3
4
,−
√

7
4

, 1

)
6= −3

4
t +

3
4
e1 =: v

Proof of the following theorem is not difficult.

Theorem 12. Let X be a n-dimensional real inner product space (n ≥ 2) and x, y
be elements of X with x 6= y and x0 < y0. l (x, y) > 0 if and only if there is not any
element of X such that [x, s] , [s, y] are ordered sets.

2.2 The Case l (x, y) = 0

Theorem 13. Let X be a n-dimensional real inner product space (n ≥ 2) and x, y
be elements of X with x 6= y and x0 < y0. Then followings are equivalent.

(i) l (x, y) = 0.

(ii) There are at least m, s ∈ X−{x, y} such that the sets [x, s] , [y, s] , [m,x] , [m, y],
[m, s] are ordered sets.

Proof.

(i) ⇒ (ii) At first, assume l (x, y) = 0, i.e., l (0, y − x) = 0 and we represent y−x as before

(2.1). This implies [0, y − x] is ordered, and
n−1∑
i=1

λ2
i −µ2 = 0, 0 < y0−x0. If we

take u, v ∈ X such as

u := ς1

(
µt +

n−1∑

i=1

λiei

)
, ς1 > 1

v := ς2

(
µt +

n−1∑

i=1

λiei

)
, ς2 < 0,

then we get

l (0, u) = l (y − x, u) = l (v, 0) = l (v, y − x) = 0

A simple calculation shows that l (v, u) = 0, i.e, [v, u] is a ordered set. If we
translate 0 to x, we get the sets [x, u + x] , [y, u + x] , [v + x, x] , [v + x, y],
[v + x, u + x] are ordered. Thus we could find s, m ∈ X.
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(ii) ⇒ (i) Conversely, for suitable s,m ∈ X, we assume that [x, s] , [y, s] , [m,x] , [m, y] , [m, s]
are ordered. Clearly

m ≤ x ≤ y ≤ s

and thus x ∈ [m, s] and y ∈ [m, s], so this implies that there are real numbers
α, β ∈ [0, 1] such that

x := m + α (s−m)
y := m + β (s−m)

then this yields l (x, y) = 0, i.e., [x, y] is ordered.

Remark 14. It is not hard to see that these elements m, s are not unique even if the
dimension of X is two.

2.3 Negative Lorentz-Minkowski Distances (l (x, y) < 0)

Theorem 15. Let X be a n-dimensional real inner product space (n ≥ 2) and x, y
be elements of X with x 6= y and x0 < y0. Then l (x, y) < 0 if and only if there is at
least s ∈ X such that [x, s] , [s, y] are ordered but [x, y] is not ordered.

Proof. Assume firstly l (x, y) < 0 and similarly to previous proofs, we consider the

elements 0, y− x instead of x, y. l (x, y) < 0 yields
n−1∑
i=1

λ2
i − µ2 < 0. If we may choose

the element u ∈ X such as:

u :=
1
2




√√√√
n−1∑

i=1

λ2
i + µ


 t +

n−1∑

i=1

λi

2




1 +
µ√

n−1∑
i=1

λ2
i




ei

Then we get l (0, u) = 0 = l (u, y − x), i.e., the sets [0, u] , [u, y − x] are ordered sets.
Let we take s ∈ X such that [x, s] and [s, y] are ordered but [x, y] is not ordered.
Using the property of “≤” x ≤ s, s ≤ y we obtain x ≤ y, i.e., l (x, y) < 0.

Remark 16. In Theorem 15 the element s is not unique even if dim X = 2. In fact
for the case n = 2,

s :=
λ1 + µ

2
e +

λ1 + µ

2
t + x

sp :=
λ1 − µ

2
e +

−λ1 + µ

2
t + x

are different elements of X and Theorem 15 holds for s, sp.

Proofs of the following theorems can be easily proved by the preceding proofs.
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Theorem 17. Let X be a n-dimensional real inner product space (n ≥ 2) and x, y be
elements of X with x 6= y and x0 < y0. If l (x, y) < 0 then there is not any element
of X such that [x, s] , [y, s] are ordered sets.

Theorem 18. Let X be a n-dimensional real inner product space (n ≥ 2) and x, y be
elements of X with x 6= y and x0 < y0. If l (x, y) < 0 then there is not any element
of X such that [sp, x] , [sp, y] are ordered sets.
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