On the ordered sets in n-dimensional real inner product spaces

Oğuzhan Demirel and Emine Soytürk

Abstract

Let X be a real inner product space of dimension ≥ 2. In [2], W. Benz proved the following theorem for $x, y \in X$ with $x<y$: "The Lorentz-Minkowski distance between x and y is zero (i.e., $l(x, y)=0$) if and only if $[x, y]$ is ordered". In this paper, we obtain necessary and sufficient conditions for Lorentz-Minkowski distances $l(x, y)>0, l(x, y)<$ 0 with the help of ordered sets in n-dimensional real inner product spaces.

M.S.C. 2000: 14P99, 46B20, 51F99, 51K99.

Key words: Real inner product space, Lorentz-Minkowski distance, Lorentz transformation.

1 Introduction

Let X be a n-dimensional real inner product space, i.e., a real vector space furnished with an inner product

$$
g: X \times X \longrightarrow \mathbb{R}, \quad g(x, y)=x y
$$

satisfying $x y=y x, x(y+z)=x y+x z, \alpha(x y)=(\alpha x) y, x^{2}>0($ for all $x \neq 0$ in X) for all $x, y, z \in X, \alpha \in \mathbb{R}$. Moreover X need not be complete, i.e., that X need not be a real Hilbert space. We assume that the dimension of X is $n \geq 2$ and t be a fixed element of X satisfying $t^{2}=1$ and define

$$
t^{\perp}:=\{x \in X: t x=0\}
$$

Then clearly $t^{\perp} \oplus \mathbb{R} t=X$. For any $x \in X$, there are uniquely determined $\bar{x}=x-x_{0} t \in t^{\perp}$ and $x_{0}=t x \in \mathbb{R}$ with

$$
x=\bar{x}+x_{0} t
$$

Definition 1. The Lorentz-Minkowski distance of $x, y \in X$ defined by the expression

$$
l(x, y)=(\bar{x}-\bar{y})^{2}-\left(x_{0}-y_{0}\right)^{2}
$$

[^0]Definition 2. If the mapping $\varphi: X \rightarrow X$ preserves the Lorentz-Minkowski distance for each $x, y \in X$ then φ is called Lorentz transformation.

Under all the translation functions, Lorentz-Minkowski distances remain invariant and it might be noticed that the theory does not seriously depend on the chosen t, for more details we refer [1].

2 Ordered Sets in n-Dimensional Real Inner Product Spaces

Let x, y be elements of a n-dimensional real inner product space $X(n \geq 2)$, and define a relation on X such that

$$
x \leq y \Leftrightarrow l(x, y) \leq 0 \text { and } x_{0} \leq y_{0}
$$

Observe that an element of X can not be comparable to other element of X, for example neither $e \leq 0$ nor $0 \leq e$ if we take e from t^{\perp}. Therefore, (X, \leq) is a partially ordered set but not completely ordered set. For the properties of " \leq ", see [2].
Definition 3. Let we take two elements of $x, y \in X$ satisfying $x<y(x \leq y, x \neq y)$ and define

$$
[x, y]=\{z \in X: x \leq z \leq y\}
$$

$[x, y]$ is called ordered if and only if,

$$
u \leq v \text { or } v \leq u
$$

holds true for all $u, v \in[x, y]$.
In [2], W. Benz proved the following theorem and it will be the foundation of this paper.
Theorem 4. Let $x, y \in X$ with $x<y$, then $l(x, y)=0$ if and only if $[x, y]$ is ordered.
Corollary 5. Let $x, y \in X$ with $x \neq y$, then $l(x, y)=0$ if and only if either $[x, y]$ or $[y, x]$ ordered.
Proof. First we assume $l(x, y)=0$ and this implies $(\bar{x}-\bar{y})^{2}-\left(x_{0}-y_{0}\right)^{2}=0$ and it is clear that $x_{0} \neq y_{0}$. Thus we get either $x_{0}<y_{0}$ or $y_{0}<x_{0}$. Let we take $x_{0}<y_{0}$ and we get $[x, y]$ ordered and similarly if we take $y_{0}<x_{0}$ then obtain $[y, x]$ ordered. The second part of Corollary 5 immediately follows from the Definition 3 and Theorem 4. \square

Lemma 6. Let $x, y \in X$ with $x<y$ and $[x, y]$ be an ordered set and take $u \in X$. Then u is an element of $[x, y]$ if and only if $[x, u]$ and $[u, y]$ are ordered sets.
Proof. Firstly, assume $u \in[x, y]$. Therefore, from [2], there is an element α of \mathbb{R} (actually $\alpha \in[0,1] \subset \mathbb{R}$) such that

$$
u:=x+\alpha(y-x)
$$

satisfied. Clearly $l(x, u)=0=l(u, y)$ and $x_{0}<u_{0}<y_{0}$.
Conversely, we want to show $u \in[x, y]$. Because of $[x, u]$ and $[u, y]$ are ordered sets, we obtain $x \leq u \leq y$ and this yields $u \in[x, y]$.

Lemma 7. $\forall x, y, z \in X,[x, y],[y, z]$ be ordered sets. Then the set $[x, z]$ is ordered if and only if the set $\{y-x, z-x\}$ is linear dependent.
Proof. Let we assume firstly, $[x, z]$ be ordered. Then clearly $y \in[x, z]$ and there is a real number $\alpha \in \mathbb{R}$ such that

$$
y:=x+\alpha(z-x)
$$

holds. Therefore, $y-x=\alpha(z-x)$ and this implies $\{y-x, z-x\}$ is linear dependent. Conversely, if $\{y-x, z-x\}$ is linear dependent, there is one $\lambda \in \mathbb{R}$ such that

$$
z:=x+\lambda(y-x)
$$

and thus we get $l(x, z)=0$.
The proof of the following lemmas are not difficult.
Lemma 8. $\forall x, y, z \in X$ with $x<y$ and $[x, z],[y, z]$ be ordered sets. Then the set $[x, y]$ is ordered if and only if the set $\{y-x, z-x\}$ is linear dependent.
Lemma 9. Let X be an n-dimensional real inner product space and $[x, y],[z, k]$ be ordered sets in X. Then

$$
[x, y] \cap[z, k]=[r, s], \quad\{m\}, \phi,
$$

i.e., the intersection set of ordered sets may be an ordered set or a set which consists of a unique element, or empty set.

2.1 Positive Lorentz-Minkowski Distances ($l(x, y)>0)$

Theorem 10. Let X be a n-dimensional real inner product space ($n \geq 2$) and x, y be elements of X with $x \neq y$ and $x_{0} \leq y_{0}$. Then followings are equivalent.
(i) $l(x, y)>0$.
(ii) There is at least one $s \in X-\{x, y\}$ such that $[x, s],[y, s]$ are ordered while $[x, y]$ is not ordered.
(iii) There is at least one $k \in X-\{x, y\}$ such that $[k, x],[k, y]$ are ordered while $[x, y]$ is not ordered.

Proof. For all elements of $x, y \in X$, it is not hard to see the equality

$$
l(x, y)=l(0, y-x)
$$

Therefore, instead of considering x and y, we can prove the theorem with respect to 0 and $y-x$. Firstly we take an orthonormal basis of X as follows:

$$
\theta:=\left\{t, e_{1}, e_{2}, \ldots, e_{n-1}\right\}
$$

$l(x, y)>0$ implies $l(0, y-x)>0$. Thus, for $i \in\{1,2, \ldots, n-1\}$ there are λ_{i} and $\mu \in \mathbb{R}$ (uniquely determined) such that

$$
\begin{equation*}
y-x:=\mu t+\sum_{i=1}^{n-1} \lambda_{i} e_{i} \tag{2.1}
\end{equation*}
$$

holds.
$(i) \Rightarrow(i i) l(x, y)>0$ implies $\sum_{i=1}^{n-1} \lambda_{i}^{2}-\mu^{2}>0$, and $x_{0} \leq y_{0}$ implies $\mu \geq 0$. Define

$$
u:=\frac{1}{2}\left(\sqrt{\sum_{i=1}^{n-1} \lambda_{i}^{2}}+\mu\right) t+\sum_{i=1}^{n-1} \frac{\lambda_{i}}{2}\left(1+\frac{\mu}{\sqrt{\sum_{i=1}^{n-1} \lambda_{i}^{2}}}\right) e_{i}
$$

Then we get $l(0, u)=0=l(y-x, u)$, i.e., $[0, u],[y-x, u]$ are ordered sets. Clearly $[0, y-x]$ is not ordered since $l(x, y)>0$. To prove that (ii) holds, translate 0 to x, then we get $[x, x+u],[y, u+x]$ are ordered sets and $[x, y]$ is not an ordered set.
$(i i) \Rightarrow(i)$ In order to prove (i), it is enough to show $l(x, y) \nless 0$. We suppose $l(x, y) \leq 0$. Clearly $x<y$ and this implies $x<y<s$. Firstly we assume $l(x, y)<0$ and take

$$
u:=\frac{1}{2}(x+y) \text { and } v:=\frac{1}{2}(x+s)
$$

Observe $l(x, u)<0, l(x, v)=0, l(u, v)=0$ and moreover $u_{0}<v_{0}$. It is immediately follows from the fact $l(u, v)=0$, obtain $[u, v]$ is ordered. Obviously $u \in[x, v]$. In order to see that we observe $x_{0}<u_{0}<v_{0}$ and $l(x, u), l(u, v) \leq 0$. But $u \notin[x, v]$ since $l(x, u) \neq 0$ and this is a contradiction. Obviously $l(x, y) \neq 0$, otherwise; $[x, y]$ would be ordered. Therefore, we obtain $l(x, y)>0$.
$(i) \Rightarrow($ iii $) l(x, y)>0$ implies $\sum_{i=1}^{n-1} \lambda_{i}^{2}-\mu^{2}>0$, and $x_{0} \leq y_{0}$ implies $\mu \geq 0$. Define

$$
v:=\frac{1}{2}\left(-\sqrt{\sum_{i=1}^{n-1} \lambda_{i}^{2}}+\mu\right) t+\sum_{i=1}^{n-1} \frac{\lambda_{i}}{2}\left(1-\frac{\mu}{\sqrt{\sum_{i=1}^{n-1} \lambda_{i}^{2}}}\right) e_{i}
$$

Then we get $l(v, 0)=0=l(v, y-x)$, i.e., the sets $[v, 0],[v, y-x]$ are ordered sets. Clearly $[0, y-x]$ is not ordered since $l(x, y)>0$. To show that (iii) holds, translate 0 to x, then we get $[v+x, x],[v+x, y]$ are ordered sets, but $[x, y]$ is not ordered.
$(i i i) \Rightarrow(i)$ We suppose $l(x, y) \leq 0$. Clearly $x<y$ and this implies $k<x<y$. Firstly we assume $l(x, y)<0$ and take

$$
u^{\prime}:=\frac{1}{2}(x+y) \text { and } v^{\prime}:=\frac{1}{2}(x+k)
$$

Observe $l\left(x, u^{\prime}\right)<0, l\left(v^{\prime}, x\right)=0, l\left(v^{\prime}, u^{\prime}\right)=0$, i.e., $\left[v^{\prime}, u^{\prime}\right]$ is ordered and moreover $v_{0}^{\prime}<u_{0}^{\prime}$. Obviously $x \in\left[v^{\prime}, u^{\prime}\right]$ and this yields $l\left(x, u^{\prime}\right)=0=l\left(v^{\prime}, x\right)$, and this is a contradiction. Therefore, $l(x, y) \nless 0$. Obviously $l(x, y) \neq 0$, otherwise; $[x, y]$ would be ordered, so we obtain $l(x, y)>0$.

Remark 11. In the previous theorem u and v are not unique if $\operatorname{dim} X \geq 3$. Indeed if we take X as 3-dimensional real standard inner-product space, i.e., $X=\mathbb{R}^{3}$ and take

$$
t:=(0,0,1), \quad y-x:=\left(\frac{3}{2}, 0,0\right)
$$

then we obtain

$$
\begin{array}{r}
u^{\prime}:=\left(\frac{3}{4}, \frac{\sqrt{7}}{4}, 1\right) \neq \frac{3}{4} t+\frac{3}{4} e_{1}=: u \\
v^{\prime}:=\left(\frac{3}{4},-\frac{\sqrt{7}}{4}, 1\right) \neq-\frac{3}{4} t+\frac{3}{4} e_{1}=: v
\end{array}
$$

Proof of the following theorem is not difficult.
Theorem 12. Let X be a n-dimensional real inner product space ($n \geq 2$) and x, y be elements of X with $x \neq y$ and $x_{0}<y_{0} . l(x, y)>0$ if and only if there is not any element of X such that $[x, s],[s, y]$ are ordered sets.

2.2 The Case $l(x, y)=0$

Theorem 13. Let X be a n-dimensional real inner product space ($n \geq 2$) and x, y be elements of X with $x \neq y$ and $x_{0}<y_{0}$. Then followings are equivalent.
(i) $l(x, y)=0$.
(ii) There are at least $m, s \in X-\{x, y\}$ such that the sets $[x, s],[y, s],[m, x],[m, y]$, $[m, s]$ are ordered sets.

Proof.

$(i) \Rightarrow(i i)$ At first, assume $l(x, y)=0$, i.e., $l(0, y-x)=0$ and we represent $y-x$ as before (2.1). This implies $[0, y-x]$ is ordered, and $\sum_{i=1}^{n-1} \lambda_{i}^{2}-\mu^{2}=0,0<y_{0}-x_{0}$. If we take $u, v \in X$ such as

$$
\begin{array}{ll}
u:=\varsigma_{1}\left(\mu t+\sum_{i=1}^{n-1} \lambda_{i} e_{i}\right) & , \varsigma_{1}>1 \\
v:=\varsigma_{2}\left(\mu t+\sum_{i=1}^{n-1} \lambda_{i} e_{i}\right) & , \varsigma_{2}<0
\end{array}
$$

then we get

$$
l(0, u)=l(y-x, u)=l(v, 0)=l(v, y-x)=0
$$

A simple calculation shows that $l(v, u)=0$, i.e, $[v, u]$ is a ordered set. If we translate 0 to x, we get the sets $[x, u+x],[y, u+x],[v+x, x],[v+x, y]$, $[v+x, u+x]$ are ordered. Thus we could find $s, m \in X$.
$(i i) \Rightarrow(i)$ Conversely, for suitable $s, m \in X$, we assume that $[x, s],[y, s],[m, x],[m, y],[m, s]$ are ordered. Clearly

$$
m \leq x \leq y \leq s
$$

and thus $x \in[m, s]$ and $y \in[m, s]$, so this implies that there are real numbers $\alpha, \beta \in[0,1]$ such that

$$
\begin{aligned}
x & :=m+\alpha(s-m) \\
y & :=m+\beta(s-m)
\end{aligned}
$$

then this yields $l(x, y)=0$, i.e., $[x, y]$ is ordered.

Remark 14. It is not hard to see that these elements m, s are not unique even if the dimension of X is two.

2.3 Negative Lorentz-Minkowski Distances $(l(x, y)<0)$

Theorem 15. Let X be a n-dimensional real inner product space ($n \geq 2$) and x, y be elements of X with $x \neq y$ and $x_{0}<y_{0}$. Then $l(x, y)<0$ if and only if there is at least $s \in X$ such that $[x, s],[s, y]$ are ordered but $[x, y]$ is not ordered.

Proof. Assume firstly $l(x, y)<0$ and similarly to previous proofs, we consider the elements $0, y-x$ instead of $x, y . l(x, y)<0$ yields $\sum_{i=1}^{n-1} \lambda_{i}^{2}-\mu^{2}<0$. If we may choose the element $u \in X$ such as:

$$
u:=\frac{1}{2}\left(\sqrt{\sum_{i=1}^{n-1} \lambda_{i}^{2}}+\mu\right) t+\sum_{i=1}^{n-1} \frac{\lambda_{i}}{2}\left(1+\frac{\mu}{\sqrt{\sum_{i=1}^{n-1} \lambda_{i}^{2}}}\right) e_{i}
$$

Then we get $l(0, u)=0=l(u, y-x)$, i.e., the sets $[0, u],[u, y-x]$ are ordered sets. Let we take $s \in X$ such that $[x, s]$ and $[s, y]$ are ordered but $[x, y]$ is not ordered. Using the property of " $\leq x \leq s, s \leq y$ we obtain $x \leq y$, i.e., $l(x, y)<0$.

Remark 16. In Theorem 15 the element s is not unique even if $\operatorname{dim} X=2$. In fact for the case $n=2$,

$$
\begin{aligned}
s & :=\frac{\lambda_{1}+\mu}{2} e+\frac{\lambda_{1}+\mu}{2} t+x \\
s^{\prime} & :=\frac{\lambda_{1}-\mu}{2} e+\frac{-\lambda_{1}+\mu}{2} t+x
\end{aligned}
$$

are different elements of X and Theorem 15 holds for s, s^{\prime}.
Proofs of the following theorems can be easily proved by the preceding proofs.

Theorem 17. Let X be a n-dimensional real inner product space ($n \geq 2$) and x, y be elements of X with $x \neq y$ and $x_{0}<y_{0}$. If $l(x, y)<0$ then there is not any element of X such that $[x, s],[y, s]$ are ordered sets.

Theorem 18. Let X be a n-dimensional real inner product space ($n \geq 2$) and x, y be elements of X with $x \neq y$ and $x_{0}<y_{0}$. If $l(x, y)<0$ then there is not any element of X such that $\left[s^{\prime}, x\right],\left[s^{\prime}, y\right]$ are ordered sets.

References

[1] W. Benz, Lorentz-Minkowski distances in Hilbert spaces, Geom. Dedicata 81 (2000), 219-230.
[2] W. Benz, On Lorentz-Minkowski Geometry in real inner-product spaces, Advances in Geometry, 2003 (Special Issue), S1-S12.

Authors' address:
Oğuzhan Demirel and Emine Soytürk
Department of Mathematics, Faculty of Science and Arts,
ANS Campus, Afyon Kocatepe University, 03200 Afyonkarahisar-TURKEY.
E-mail: odemirel@aku.edu.tr, soyturk@aku.edu.tr

[^0]: Applied Sciences, Vol.10, 2008, pp. 66-72.
 (C) Balkan Society of Geometers, Geometry Balkan Press 2008.

