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Abstract
-.,,~

The three basic spatial patterns of organisms are clustering

(overdispersion), randorrmess and uniformity (underdispersion). In this

paper, deterministic and stochastic models are employed to describe

the dynamics of the number of individuals in a habitable site called

a unit. Stochastic model discriminates spatial patterns whereas

deterministic model does not, however.xhe mean of stochastic model

is equivalent to the deterministic model. The probabilities of ultimate

extinction and ultimate mean number of individuals in a unit are

determined using the stochastic model. The analysis demonstrated that

if spatial pattern is uniform (underdispersed), ultimate extinction is

certain; if spatial pattern is clustered (overdispersed), ultimate

explosion is certain and if spatial pattern is random, ultimately it

stabilizes.
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1. Introduction

1.1. Dispersion

Dispersion is the description of the pattern of distribution of organisms in
space (Southwood [7]) and is often referred to as spatial distribution. Spatial
distribution is a visual description and not a probability distribution.
Probability distribution models are used to quantify and classify the
dispersion of organisms. They have been widely used in entomological
research to describe the dispersion of insects.

In order to describe dispersion, it is assumed that organisms are confined
to discrete habitable sites called units (sampling units). We further suppose
that a random variable X represents the number of individuals that a unit may
contain and let m = E(X) and v = var(X).

If the individuals are distributed randomly, then the spatial distribution is
said to be random and the population pattern is also said to be random. If the
individuals are distributed uniformly, then the spatial distribution is said to
be regular and the population pattern is said to be uniform or
underdispersed. If the individuals are distributed in clusters, then the spatial
distribution is said to be contagious and the population pattern is said to be
clustered or overdispersed or aggregated or clumped or patchy. The
population pattern is often referred to as spatial pattern.

Random spatial pattern is described by Poisson distribution (v = m),

uniform spatial pattern is described by the binomial distribution (v < m) and

clustered spatial pattern is described by the negative binomial distribution
(v > m).

In particular, the negative bin~a1 distribution with parameters k and p
is defined as

_ _ (k + x - 1J ( P )X( 1)k _ .P(X-x)- x 1+p 1+p ,x-O,1,2, ... ,k>O,p>0(1)

having mean m = kp and variance v = m(1 + p).
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Anscombe [1] gave statistical analysis of insect counts based on the
negative binomial distribution. The negative binomial parameter k is
considered as a dispersion parameter. Small values of k (k ~ 0) are

associated with overdispersion whereas large values of k (k ~ (0) are

associated with randomness.

Young and Young [8] reviewed measures of aggregation, namely,
variance to mean ratio, index of clumping, index of mean crowding and
index of patchiness with respect to Poisson and negative binomial
distributions. The four measures of aggregation revealed that decreasing
values of k are associated with increasing measures of aggregation (departure
from randomness).

Kipchirchir [3] demonstrated analytically that the negative binomial
parameter k is a measure of dispersion by analysing equicorrelation matrix in
relation to coefficient of determination, partial correlation and principal
components with respect to k. The analysis demonstrated that small values of
k are associated with overdispersion whereas large values are associated with
randomness.

For fixed m = kp and reparameterizing p = -1 P , then k ~ 00 or
+p

p ~ 0 or p ~ 0 implies a random spatial pattern while k ~ 0 or p ~ 00

or p ~ 1 implies a clustered (an overdispersed) spatial pattern.

1.2. Deterministic model

The deterministic model assumes that each organism reproduces and dies
on a completely predictable basis at c~~ta.:o.trate. Let Ylt be the number of

individuals in a unit at time t and suppose that they reproduce at rate A and
die at rate fl. The deterministic equation of a tinear birth-death process is

dn, (. )
dt = A - fl nt (2)

with solution

(3)
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which is the exponential growth model. If 'A = 11, nt = no (constant); if

'A > 11, nt ~ 00 (explosion) and if 'A < 11, nt ~ 0 (extinction). The

deterministic model does not discriminate the various spatial patterns.

Once shortage of resources (environmental resistance) preludes
exponential growth, we can deduce the logistic growth by introducing the
limit imposed by environmental resistance represented by K into (2).
Commonly such limit is imposed by exhaustion of either food supplies or
space. The deterministic logistic equation is

(4)

with solution

K
nt = 1 -(A.-J-l)t' y = (K - no)/no·

+ ye
(5)

The limit K is often referred to as the carrying capacity and (K - nt)/ K IS a

proportionate measure of the total resources unutilised (McLeone and
Andrews [4]). If environmental resistance is due to exhaustion of resources,

then we can interprete (K - nt)/ K as a proportionate measure of the total

resources the environment cannot provide.

If 'A = 11 (nt = no), there is an unstable equilibrium. However, if

nt = K, there is a stable equilibrium around which the number of individuals

in a unit fluctuates; .any perturbations are nullified by opposite forces

proportional to K - nt bringing the number of individuals in a unit back
- ....••.•....•
,'"

towards the equilibrium leveL If 'A 3-~Il, nt ~ K, that is, nt will stabilize at

K (explosion is avoided) whilst if 'A"<"Il, nt ~ 0 (extinction). Thus,

extinction is still inevitable although it is delayed since ('A - 11) (1 - nt / K)

> ('A - 11). In particular, if 'A > 11 and nt < K, then the growth of the

number of individuals in a unit follows a sigmoid curve (logistic curve).,



On Ultimate Extinction Probabilities and Mean Behaviour... 35

The growth of many species populations of animals, plants and

microorganisms follows the sigmoid curve, but it must not be assumed that

the growth of these populations is entirely represented by the logistic

equation, for numerous mathematical equations can produce a sigmoid curve
(McLeone and Andrews [4]).

Introducing immigration into (2) allows us to avoid extinction. Suppose

immigrants arrive in a unit randomly at rate v. The deterministic equation of

a linear birth-death process with immigration is

(6)

with solution

(7)

which changes exponentially (A> 11), linearly (A = 11) with time towards

infinity and exponentially (A < 11)with time towards v/(Il- A).

In practice, the number of individuals in a unit may fluctuate around nt

or K or v/(Il- A), so there is need to consider a probability distribution of

number of individuals in a unit so as to capture the behaviour over all

possible realizations, moreover, knowledge of the probability distribution can

provide insight into the behaviour of various spatial patterns.

Provided that population numbers never become too small, then a

deterministic model may' enable sufficient biological understanding to be

gained about the system and if at any time population numbers do become

small, then a stochastic analysis is vi-!~~(Renshaw [6]). So pursuing both

approaches simultaneously ensures that we do not become trapped either by
deterministic simplicity or detailed stochastic analysis.

1.3. Stochastic model

Let X(t) be the number of individuals in a unit at time t and let Pn(t)
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= P(X(t) = n), n = 0, 1, 2, ... be the probability distribution of X(t). Then

Pn(t) is a function of t and L;=oPn(t) = 1. In particular, Po(t) is the

extinction probability at time t and limt--+ooPo (t) is the ultimate extinction

probability. The probability structure {Pn (t) }~=o tells us the likely range of

the number of individuals in a unit at time t. It does not explicitly tell us what

a particular realization of the process {X(t)} looks like, but gives instead the

distributional properties of a large ensemble of such realizations.

The mean number of individuals in a unit is m(t) = E(X(t)) and the

ultimate mean number of individuals in a unit is limt--+oom(t). It is worth

noting that 'mean behaviour' represented by m(t), may be very different

from the behaviour of individual realizations.

The differential-difference equations of a stochastic birth-death process

are

Po(t) = -Aopo(t) + IlIPl(t), n = 0,

p~(t) = An-lPn-l(t) - (An + Iln)Pn(t) + Iln+lPn+l(t), n = 1,2,3, ... , (8)

where An and Iln are the birth and death rates, respectively (Medhi [5]; Bhat

[2]). They are so-called Kolmogorov's forward differential-difference

equations for the birth-death process. If 1,.0 = 0, and if the number of

individuals reaches zero at any time, then it remains at zero thereafter and

hence zero is an absorbing state. In the special case when An = nA, n > °
and Iln = nil, n > 1, we have a linear birth-death process or linear growth

process (Feller-Arley process) and when An = nA, n e ° and Iln = 0,

n ;;::1, we have a linear pure mitIi process (Yule-Furry process).
"">.,~

If a biological process has beer; developing long enough to ensure that it

has stabilized, then steady-st-ate or stable probabilities may be obtained. Their

derivation assumes that both population explosion and extinction are unlikely

during the observed time span.
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Equations (8) represent the transient behaviour of the individuals in a
unit. Setting p~(t) = 0 and letting Pn = limt~<XlPn(t) (assuming it exists)

denote stable or steady-state probability, (8) reduces to the steady-state
equations for the birth-death process. The steady-state behaviour provides us
with an approximation to that of transient behaviour, for large t, that is,
asymptotic behaviour.

If the initial number of individuals in a unit is no, that is, X(O) = no,
then the initial conditions are

n = no,
(9)

n =1= no.

Let

<Xl
g(s, t) = LPn(t)sn

n=O
(10)

be the probability generating function of the sequence {Pn(t)};=o. Then the

extinction probability at time t, poet) is g(O, t). The partial derivatives of

g(s, t) with respect to sand t are, respectively,

ages, t) _ ~ () n-las - ~npn t s ,
n=O

ages, t) _ ~ '() nat - ~Pn t s .
n=O

(11)

2. Linear Birth-death with 1liti'nigration (Kendall) Process..•.~

This is a linear growth process with immigration (Medhi [5]; Bhat [2]).

The rates of this process are 'An = nA + v, n > ° and Iln = nil, n > 1,

where v > 0 is the immigration rate. Since 1..0 =1= 0, ° is not an absorbing

state. The differential-difference equations (8) become
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po(t) = -vpo(t) + ).1.Pl(t), n = 0,

p~(t) = ((n -l)A + v)Pn_l(t) - (n(A +).1.) + v)Pn(t)

+ (n + l)).1.Pn+l(t), n = 1, 2, 3, ....

Now, from (10) and (11), we obtain the partial differential equation

(12)

8g~, t) + ().1.- AS)(S -1) 8g~; t) = v(s -l)g(s, t) (13)

having auxiliary equations

dt _ ds _ dg(s, t)
T - ().1.- AS)(S -1) - v(s -l)g(s, t)·

On solving (14) using initial conditions (9), we obtain

{(

1-Nt) )v/A.(a.(t) - s(a.(t) + ~(t) _l))no
() l-s~(t) l-sNt) ,

g s t =
, ( 1- ~(t) )v/A.(~(t) + s(l- 2~(t)))no

1- s~(t) 1- s~(t) ,
A = ).1.,

where

and

Extinction probability at time t is .• ~

(14)

(15)

(16)

(17)

(18)
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and the mean number of individuals at time t is

{

noe(A.-Il)t + _v_(e(A.-Il)t -1),
m(t) = A. - ~

vt + no,
(19)

which changes exponentially (A. > u}, linearly (A. =~) with time towards

infinity and exponentially (A. < u) with time towards v/(~ - A.).

From (16), (17) and (18), ultimate extinction probability is

(20)

and from (19), ultimate mean number of individuals is

lim m(t) = {~ ~ A.'
t~oo 00,

(21)

which are independent of no.

2.1. Dispersion and the Kendall process

In particular, if no = 0, then (15) reduces to

_( 1-P(t) )v/A.
g(s,t)- l-sP(t) , (22)

where P(t) is given by (17) and on reparameterizing Nt) = p(t~), then
. 1+ P t

{

A. ( (A.-Il)t) .>.~
( )

_ ~ 1 - e ,A. 7= u,
P t - ~ !I. •• ~

A.t, : A. = ~
(23)

and (22) becomes

g(s, t) = (1 + p(t) - sp(t)fv/A. (24)
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which IS the probability generating function of the negative binomial
distribution with parameters k = viA and p(t). Extinction probability at

time tis

po(t) = (1 - Nt)r/t.., (25)

where ~(t) is given by (17) and the mean number of individuals at time tis

{

_V_(eCt..-Il)t -1)
m(t) = kp(t) = A - fl '

vt,
(26)

which changes exponentially (A > u), linearly (A = fl) with time towards

infinity and exponentially (A < fl) with time towards v/(fl - A).

The ultimate extinction probability and the ultimate mean number of
individuals are given by (20) and (21), respectively, since they are
independent of no.

Since k = *' then A ~ 0 or v ~ 00, implies a random spatial pattern

(k ~ 00 or ~(t) ~ 0) and A ~ 00 or v ~ 0, implies a clustered (an

overdispersed) spatial pattern (k ~ 0 or ~(t) ~ 1).

From (17),

lim ~(t) = {~'
t~OCJ 1,

A < u, (27)

and hence for A ;:::u, ultimate spatial pattern is overdispersed whereas for

A < fl and A ~ 0,

lim ~(t.) = 0
t~<p,t..~o

(28)

and hence ultimate spatial pattern is random. In this case, from (20), the
ultimate extinction probability is
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(
A)V/A. (vi )V/A.lim Po(t) = lim 1-- = lim 1---.!:: =e-v/~

t~CO,A.~O A.~O Il A.~O viA (29)

and from (21), the ultimate mean number of individuals is

lim m(t)=~.
t~co, A.~O Il

(30)

We observe that A ~ ° is reminiscent of a linear death with immigration

process which we discuss in the sequel.

3. Linear Death with Immigration Process

Letting A = ° in linear birth-death with immigration process, we obtain

linear death with immigration process and since AO"* 0, ° is not an

absorbing state. Letting A = 0, (14) reduces to

dt _ ds _ dg(s, t)
T - Il(S -1) - v(s -l)g(s, t) (31)

which on solving using initial conditions (9), we obtain

which is the product of probability generating functions of Bin( no, e-~t)

and pOisson(~(l- e-~t)}
Extinction probability at time tis

po(t) = (1.; e-~~:~~~{- ~(1- e-~t)}
...;.~

and the mean number of individuals is

(33)

(34)

which is the sum of the means of Bin( no, e-~t) and pOisson( ~ (1 - e-~t)).
, .
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The ultimate extinction probability is

lim Po(t) = e-v/Il
t~oo

(35)

and the ultimate mean number of individuals is

lim m(t) = v/IJ-
t~oo

(36)

which are independent of no.

3.1. Dispersion and linear death with immigration process

In particular, if no = 0, then (32) reduces to

(37)

which is the probability generating function of pOisson(~(l- e-Ilt)) which

describes a random spatial pattern.

Extinction probability at time tis

(38)

and the mean number of individuals at time t is

(39)

which is a curve with negative curvature and converges to v/IJ-, indicative of

stability. From (34),

lim g(s, t) ~ exp{~ (s - I)}
t~oo : IJ-

(40)

which is the probability generating function of Poissonlv/u) and hence the

ultimate spatial pattern is random.
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The ultimate extinction probability and the ultimate mean number of
individuals are given by (35) and (36) since they are independent of no,
moreover, they confirm (29) and (30), respectively.

Furthermore, from (32),

lim g(s, t) = (1- e-J.lt + se-J.ltto (41)
v-'}o

which is the probability generating function of Bin( no, e-J.lt) and hence

the spatial pattern is uniform. In this case, from (35), ultimate extinction

probability is

lim po(t) = lim e-v/J.l = 1 (42)
t-'}oo, V-'}O V-'}O

which implies ultimate extinction is certain and from (36), the ultimate mean

number of individuals is

lim m(t) = lim vi/-! = O.
t-'}oo, V-'}O V-'}O

(43)

We observe that v ~ 0 is reminiscent of a linear death process which

we discuss in the sequel.

4. Dispersion and Linear Death Process

Letting v = 0 in the linear death with immigration process, we obtain a

linear death process and since "-0 = 0, 0 is an absorbing state. Letting

v = 0, (31) reduces to

dt ds dg(s, t)
T = /-!(s -1) = 0 (44)

which on solving using initial conditions (9), we obtain

(45)

which is the probability generating'function of Bin( no, e-J.lt), no > 0 and

hence spatial pattern is uniform. •. ;:

Extinction probability at time t is

(46)
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which implies extinction at time t is not certain and the mean number of
individuals is

(47)

which changes exponentially with time towards zero, moreover, ° is an
absorbing state.

From (46), ultimate extinction probability is

lim Po(t) = 1
t~oo

(48)

which implies ultimate extinction is certain and from (47), ultimate mean
number of individuals is

lim m(t) = °
t~oo

(49)

which are independent of no, moreover, they confirm (42) and (43),

respectively.

5. Conclusions

The mean (19) of the stochastic model (12) is equivalent to the
deterministic model (7). For clustered and random spatial patterns, ° is not an
absorbing state whereas for a uniform spatial pattern, ° is an absorbing state.

From stochastic analysis, the ultimate extinction probability is

{

O' clustered (overdispersed),
lim Po(t) = e-v/~, random,
t-oco

. 1, uniform (underdispersed)

(50)

and the ultimate mean number of.IDtIividualsis-;,~

{

CO, clustgred (overdispersed),

lim m(t) = ~; random,
t~oo ).l.

0, uniform (underdispersed).

(51)
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Thus, if spatial pattern is uniform, then ultimate extinction is certain and
if spatial pattern is overdispersed, then ultimate explosion is certain. If spatial
pattern is random, then ultimate extinction is not certain and ultimate mean
stabilizes.

Intuitively, overdispersion overly promotes survival leading to explosion
whereas underdispersion overly inhibits survival leading to extinction and
randomness is a compromise between these two extreme situations.
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