Modeling the impact of an exotic parasitoid

Diadegma, semiclausum, on the diamondback moth, *Plutella xylostella*, in Kenya, using the Lotka-Volterra model

Henri E. Z. Tonnang1,2, Lev V. Nedorezov2, John Owino3, Horace Ochanda3 and Bernhard Löhr4

1 International Centre of Insect Physiology and Ecology, P. O. Box 30772-00100 Nairobi, Kenya; courageonard@gmail.com; blohe55@gmail.com
2 Institute of Systematics and Animal Ecology, St. Furzune 11, Novosibirsk 630091, Russian Federation; lev.nedorezov@gmail.com
3 University of Nairobi, School of Mathematics / School of Biological Sciences, P. O. Box 30197-00100 Nairobi, Kenya; jowimo22@yahoo.com, hochanda@mail.uonbi.ac.ke

Introduction

Integrated pest management systems utilising the use/release of the parasitoid *D. semiclausum* have been developed to replace the pesticides only approach to diamondback moth control which is the major pest for crucifers worldwide. Consequently the impact of this strategy using mathematical model is paramount.

Methods

The Lotka-Volterra model (Wangersky, 1978)

\[
\frac{dx}{dt} = \alpha_1 x - \beta_1 x^2 - \gamma_1 xy
\]

\[
\frac{dy}{dt} = -\alpha_2 y - \beta_2 y^2 + \gamma_2 xy
\]

\[
\bar{x} = \frac{\alpha_1 \beta_2 + \alpha_2 \gamma_1}{\gamma_1 \gamma_2 + \beta_1 \beta_2} x(0) = x_0 \geq 0
\]

\[
\bar{y} = \frac{\alpha_1 - \beta_1 \bar{x}}{\gamma_1}
\]

Model parameters were estimated from the minimisation of the loss function made of the sum squared deviations between theoretical and field data following the Nelder-Mead method. The diamondback moth steady-state values for pre- and post-release period were calculated and compared. With this method, numerical reduction of this quantity stipulates a positive impact of *D. semiclausum*.

Results

<table>
<thead>
<tr>
<th>Estimated parameters</th>
<th>Pre-release</th>
<th>Post-release</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha_1)</td>
<td>27.76</td>
<td>27.76</td>
</tr>
<tr>
<td>(\alpha_2)</td>
<td>33.28</td>
<td>1.80</td>
</tr>
<tr>
<td>(\beta_1)</td>
<td>1.40</td>
<td>1.40</td>
</tr>
<tr>
<td>(\beta_2)</td>
<td>2.04</td>
<td>0.43</td>
</tr>
<tr>
<td>(\gamma_1)</td>
<td>35.14</td>
<td>145.19</td>
</tr>
<tr>
<td>(\gamma_2)</td>
<td>7.07</td>
<td>0.95</td>
</tr>
<tr>
<td>(\bar{x})</td>
<td>4.86</td>
<td>2.17</td>
</tr>
<tr>
<td>(\bar{y})</td>
<td>0.69</td>
<td>0.17</td>
</tr>
<tr>
<td>(x_0)</td>
<td>1.91</td>
<td>8.48</td>
</tr>
<tr>
<td>(y_0)</td>
<td>0.05</td>
<td>0.15</td>
</tr>
</tbody>
</table>

Table 1. Estimates Lotka-Volterra model parameters and values of statistical criteria fitted to an empirical times series of the diamondback moth and its parasitoids before and after the release of the exotic parasitoid species

Impact

The classical biological control method has had a positive impact in suppressing DBM pest population.

Conclusion

The project should be expanded to neighbouring countries with similar natural conditions to help farmers manage diamondback moth and consequently minimise the use of insecticides.

References/acknowledgements

This study was funded by German Federal Ministry of Economy Cooperation and Development (BMZ) and icipe (ARPPIS), Kenya.

icipe – African Insect Science for Food and Health

P. O Box 30772-00100 Nairobi, Kenya

icipe@icipe.org

www.icipe.org