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Abstract

The negative binomial distribution is a versatile distribution in describing
dispersion. The negative binomial parameter k is considered as.-1t~ ~
dispersion parameter. The aim of this paper is to demonstrate that fi~lfe
mixture of Poisson can be used in modelling dispersion. The digamma ."
function and the Sterling's expansion for the gamma function are used to
construct a dispersion parameter in relation to the negative binomial
parameter k. The construction is based on the hierarchical maximum
likelihood estimation of the negative binomial parameter k. The method of
moments estimates of the parameters of the finite mixture of Poisson is
used in the analysis. ' .

1. Introduction

Dispersion is the description of the pattern of distribution of organisms in space

(Southwood [6]) and often referred to as spatial distribution. It is a characteristic

ecological property. Probability distributions are used to quantify and classify the

dispersion of organisms. If the mean and variance are equal, then the spatial

distribution is said to be random and the population pattern is said to be random. If
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variance is greater than the mean, then the spatial distribution is said to be
contagious and the population pattern is said to be overdispersed or clumped or
patchy or aggregated or clustered. If variance is less than the mean, then spatial
distribution is said to be regular and the population pattern is said to be
underdispersed or uniform. Regular distribution is seldom observed unless during
presence-absence sampling.

Many overdispersed pest populations that have been studied can adequately be
described by the negative binomial distribution

(
k + X-I) ( p )X( 1 )k

Px = x 1 + p 1 + p , x = 0, 1, 2, ... ; k > 0, p > ° (1)

so that v = m{1 + p) > m = kp implying it describes a contagious distribution.

However, for fixed kp = A,

oX -A.
li I\. eim Px =--,-,

k~oo x.
x = 0, 1, 2, ... ; A > 0, (2)

which is the Poisson distribution and describes a random distribution (v = m = A).

The positive exponent, k, is considered as a dispersion (or an aggregation)
parameter (Anscombe [1]), so that the negative binomial distribution describes
contagion (k ~ 0) and randomness (k ~ 00).

Young and Young [7] reviewed measures of aggregation namely, variance to
mean ratio, index of clumping, index of mean crowding and index of patchiness with
respect to Poisson and negative binomial distributions. The four measures of
aggregation revealed that decreasing values of k are associated with increasing
measures of aggregation (departure from randomness).

Kipchirchir [4] demonstrated analytically that the negative binomial parameter k

is a measure of dispersion by analyzing equicorrelation matrix in relation to
coefficient of determination, partial correlation and principal components with
respect to k. The analysis demonstrated that small values of k are associated with
overdispersion whereas large values are ass~i;t;d with randomness.

Now, for given A, let the number of indisdduals per unit X have a Poisson
distribution with parameter A, that is,

AXe-A.
PxjA. =~, x = 0, 1, ... ; A> ° (3)
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so that

E(X/,,-) = Var(X/,,-) = "- (4)

and the pattern would be random.

Suppose that some units provide more favourable environment than others
(units are dissimilar). Then A, the expected number of individuals in a unit, varies
from unit to unit, that is, the environment is heterogeneous resulting in contagion. In
particular, we assume that "-is a realization of a random variable A having a gamma
density (Pearson Type III Distribution)

ok-l
(0) = r; e-'J.../ p "- k °

g,,- r(k)pk '" p > (5)

and the marginal distribution of X is

.• ,

I'(k+X)( p )X( I·)k= I'(k)x! l+p l+p , x=O,1,2, ...; k,p>O (6)

which is the negative binomial distribution.' .

In the Bayesian context, the Poisson distribution is referred to as the likelihood
and the gamma density as the prior distribution of A. The Bayes estimate of "-

depends on the distribution function G(,,-) and an empirical Bayes estimate of "-

depends on an empirical distribution function which is an estimate of G("-).

In our present context, the Poisson distribution is referred to as the kernel, the
negative binomial distribution as a continuous mixture of Poisson and the gamma as
the mixing distribution. Moreover, G(,,-) is identifiable in the continuous mixture of

Poisson since the factorial moment generating function of the negative binomial
distribution is the moment generating function of the Pearson Type III Distribution.
In the sequel, we consider discrete counterpart of a continuous mixture of Poisson
which is a finite mixture of Poisson.
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2. Finite Mixture of Poisson

et PX/'A. i ' j = 1, 2, 3, ..., q be a family of Poisson probability distributions

oisson kernels). Then

q

Px = LPjPx/'J...j, x = 0,1,2, ...; Aj > 0,
j;J

(7)

q

P j > ° Vj and LP j = 1
j;J

(8)

finite mixture of Poisson probability distributions. The parameters P j'

, 2, 3, ..., q are called mixing proportions of the finite mixture. Direct

ration on Px is supplied only by n observations on the random variable X

inite mixtures can be used to describe some heterogeneous population which
e regarded as being composed of a finite number of more homogeneous
pulations. A useful result is obtained by considering kernel distributions such

00 r

E(Xr IA) = Lxr Px/'J...= La)!
X;O ;;0

(9)

. is a polynomial of degree r in A. Now, the rth raw moment of Px is

00

I "\' rIlr = L.Jx Px
X;O

(10)

ling (7) we obtain

(11)

Ising (9) in (11), we obtain

,~~~pj[t,ai>!j1~t,a{~pi} t,aiai, ,~1, 2, 3, "', (12)
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where

q

LPij = ai' i = 0, 1, 2, ... , r
j=t

(13)

which is a linear system in powers of A i:

According to Everitt and Hand [2], to fmd the method of moments estimates of

A j and Pj, j = 1, 2, ... , q, we require 2q equations given by (13), namely

q

LPjAij = ai, i = 0, 1, 2, ... , 2q-l.
j=i

(14)

Now, suppose that we have found constants ~i' ~2' ... , ~q such that

or equivalently

(15)

q

L~q-iA! = 0 with ~O = -1,
i=O

(16)

then by multiplying the ith equation in (14) by ~q-i for i = 0, 1, 2, ... , q - 1 and

the qth by -1 and adding, we get

that is,

(17)

which by virtue of (16) simplifies to

q-i
L ai~q-i = aq.
i=O

(18)
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Similarly, if we multiply (i + lj th equation in (14) by ~q_; for

i = 0, 1, 2, ..., q -1 and the (q + l)th by -1 and adding, we get

q-l

LU;+I~q-; = uq+l'
;=0

(19)

Constructing in this way, we can set up a system of q linear equations

q-l

LUi+s~q-i = uq+s' S = 0, 1, 2, ... , q -1
i=O

(20)

which can be expressed in matrix notation as

(21)

that is,

A~ = 2:. (22)

If the Pj 's are non-zero and the Aj 's are distinct, A is non-singular and can be

inverted to give

The estimated ~i 's are then substituted in (15) and solved for the Aj'

j = 1, 2, ..., q.

Next, consider the moments of the finite mixture (7), that is,

lJ: ..••.• ~

~~ = LPj~~j(Aj)'
j=i •••.

(24)

where ~~ is the rth raw moment of Px which can be estimated by the sample raw

moment m~ and ~~j (Aj) is the rth raw moment of the jth component of the finite

mixture. In view of (8), we obtain estimates of the mixing proportions PI, ..., Pq-l
e
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empirical Bayes estimation, the mixing distribution being a step-function Gq, can be

used as an approximation to G(A.), moreover, Gq is identifiable in the finite mixture

of Poisson.

We shall assume population interpretation of a prior distribution, that is, the
prior distribution represents a population of possible parameter values, from which
the A.of current interest has been drawn (Gelman et al. [3]). In other words we
interpret the parameters A.j 's as 'observed' values of A j 's from a Pearson Type III

distribution with hyperparameters k and p. Thus,

,k-l
/

""j -'J...-Ip
g(A.j k,P)=-k-e } , k,p,A.j >0; j=1,2,3, ...,q

p r(k)
(31)

and assume the A j 's are conditionally independent given (k, p) and we defme the

likelihood function

q q A.k-1
L(k, p) = I1g(A.Jik, p) = I1+-e-'J...j/p

j=l j=l P r(k)
(32)

for the hyperparameters k and p. A hierarchical model permits the interpretation of
the A j 's as a random sample from a shared population distribution (Gelman et al.

[3]). Hierarchically, X has information about A.which is a realization of A which
has information about k.

Now, to determine the values of k and p which maximize the likelihood
function, we consider the log-likelihood function

q 1 q

InL(k, p) = q(-klnp -lnr(k)) + (k -l)LInA.j - P2>i (33)
j=l j=l

Differentiating (33)with respect to p, we obtain
.•.~ •......•
'. q

8 In L(k, It) = _ qk + _1 "" A. . = 0
8p • P p2 L,; J

J=l

(34)

which simplifies to

(35)
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and on taking log we obtain

(36)

Differentiating (33) with respect to k, we obtain

q
8lnL(k, p) = (-1 _8lnr(k)) ''In'. = 08k q n p 8k + L.,.; " }

j=!

(37)

yielding

(38)

-..•.....••... -
Next, we combine (36) and (38) and obtain the reduced maximifm likelihood

equation for determining estimate of k as •• ,.

(39)

which we generalize to

(40)

so that if P j = 1/q for all}, then (40) reduces to (39).

To solve the likelihood equation, we shall use the Sterling's expansion for the
gamma function, that is,

lnr(k) '" (k - ±}nk - k + ±In(2n) + ~(k), (41)

where

(42)
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with

(43)

and is a convergent series (by alternating series test). The derivative of (41) is given
by

= Ink __ 1 + ~ (-Ii Bi
2k L...J 2 "k2i

i=l I

= lnk--l __ 1_+_1 1_+_1 __ ... (44)
2k 12k2 120k4 252k6 240k8 .

An approximation of k can be obtained by ignoring terms of O(k-1) in (44) so

that

olnr(k) "" Ink __ 1
ok 2k (45)

and the maximum likelihood equation (40) yields

1
k "" zv (46)

A better approximation can be obtained by ignoring terms of O(k-2) in (44)so

that

olnr(k) "" Ink _ ~ __ I_
. ok 2k 12k2

(47)

and the maximum likelihood equation (~_~l:J8Comes
-;.~

12vk2 - 6k - 1 "" 0 (48). "
yielding

~I+V1+3
k "" 4v . (49)
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An even better approximation can be obtained by using (44) and the maximum
likelihood equation (40) becomes

v = lnk _ alnr(k) ::::_1 + _1 1_ +_1 1_ + ... (50)
ak 2k 12k2 120k4 252k6 240k8

or equivalently the function

f(k) = 240vk8 -120k7 - 20k6 + 2k4 - k2 + 1:::: O. (51)

An initial value kl can be obtained from (49) and better approximation can be

generated by the Newton-Raphson iteration formula

f(ki)ki+l = k, - f'(k;) , i = 1, 2,3, .... (52)

Table 1. Comparison of values of k for arbitrary values of v

v I I I • Y 1 2 3
4 3 2 --~-

k=_l 2 1.5 1 0.866 0.5 ••~ 0.25 0.167
2v .. ,

0.632k = 1+.,}1 + 4 v/3 2.155 l.651 1.145 l.009 0.364 0.270
4v

f(ki) 2.152 1.647 l.136 0.993 0.558 0.364 0.270
ki+l = ki - f'(k;)

,
y = 0.5772156 is the Euler's constant.

We observe that values obtained by (49) and those obtained by (52) are more or
less the same and hence for all practical purposes it suffices to use (49).

4. Measure of Dispersion with Respect to Finite Mixture

In Table 1, we observe that k decreases as v increases (k increases as v
decreases). Generally, we find the limit of v as k -; OCJ by considering the digamma
function

dlnr(k) = r'(k) = _ ~(~_ I )
dk r(k) Y+ L..J y k + Y -1 '

y=l

(53)
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where y is the Euler's constant. This infmite series is convergent by integral test.
Expanding the digarnrna function, we have

r'Ck) = _y + (1. _1.) + (1. __ 1 ) + (1.__ 1_) + ... (54)
r(k) 1 k 2 k+1 3 i «:

which can be expressed as

_(1.+_1_+_1_+ ...)
k k+1 k+2

(55)

so that from (40)

v = Ink - r'Ck) = y + 1._ (1+ 1.+ 1.+ ... + 1.-In k)
r(k) k 2 3 k . (56)

In particular, v = y when k = 1 which corresponds to the geometric

distribution.

Since

on taking limit of (56), we obtain

Em v = Em (y + 1._ (1+ 1.+ 1.+ ... + 1.-1n k)) = O. (58)
k~oo k~oo k 2 3 k

Thus, as k ~ 00 (randomness), v ~ 0, but from (40),

v ~ 0 ¢:::>•••••.')..,.j~~ A. V}.~-.;,~
(59)

and consequently the fmite mixture

q, q

Px = LpjPx/'A.j ~ px/'A.Lpj = Px/'A.,
j=l j=l

(60)

a single Poisson which describes randomness.
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On the other hand as k ~ 0 (overdispersion), then v ~ 00 and we conclude

from (40) that Ai' j = 1, 2, 3, ... , q are distinct and hence the population is

heterogeneous having a [mite number of more homogeneous subpopulations. In

other words, there is clustering (overdispersion).

Thus, v as in (40) can be used as a dispersion parameter when using [mite

mixture of Poisson in describing dispersion.

5. Illustration

We shall use the data in Table 2 generated by a mixture of Poisson and gamma

distributions where gamma distribution is the Pearson Type III with parameters

1k = 10 and p = "2. The mixture distribution is the negative binomial with

1
parameters k = 10 and p = "2.

- ......•.•.... -
Table 2. Mixture of Poisson and Pearson Type III Data ::.~

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 '5~ 16

nx 0 3 8 10 2 11 4 4 0 1 2 4 0 1 0 0 0

Source: Maritz and Lwin [5]

As per the following seven categories:

123456 7~I""""-I~~~.---..." " \
X = 0,1,2, 3 ,4,5,6 ,7,8,9,10,11,12,13,14,15,16;

1these data fit negative binomial distribution with parameters k = 10 and p ="2 at

5% level of significance. For the data in Table 2, n = 50, x = 5, and the method of

moments estimate of negative binomial parameter k is 6.068.

The first four raw moments of Poisson kernel are

E(xIA) = A, E(X2/A) = A2 + A,

(61)
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5.1. Estimation of k using 03

From (21) and (24) with a; = J..l~,which are estimated by m~, we have

34.12] [P3] [286.52]
34.12 286.52 P2 = 2736.04

286.52 2736.04 PI 28239.80

5

yielding

[~3] [ 138.78 ]
P2 = -10l.88

PI 19.26

and from (15), we solve

yielding the roots

[
AI] [2.115]
~2 = 5.768 .

A3 11.377

To obtain the estimates of the mixing proportions we have from (27), (28) and
(61)

(
9.261 5.610 J(PlJ (6.377 J

134.220 1Ol.788 P2 = 106.693

yielding

-;'~(PlJ ::= (0.2665J
p;. 0.6968

and finally from (8)

P3 = 1- PI - Pz = 0.0367.
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From (40), an estimate of v is

and Table 3 gives estimates of k with respect to linear, quadratic and iteration
formulae.

Table 3. Estimates of k

Formula k=_1 k= 1+.jI+4y/3 f(k;)
2y 4y k;+1 = k, - f'(kJ

k 5.02 5.18 5.16

5.2. Estimation of k using G4

From (21) and (24) with CJ..r = Il~, which are estimated by m~, we have
- ~ ... -..-

5 34.12 286.52 ~4

5 34.12 286.52 2736.04 ~3

34.12 286.52 2736.04 28239.80 ~2

286.52 2736.04 28239.80 30579l.72 ~I,

yielding

~4 -834.06596

~3 831.17729

P2 -245.40271

PI 27.17911

and from (15), we solve

4'3'2' ,A - ~IA; - ~2A; - ~3A - ~4 = 0

28239.8"0

2736.04

30579l.72

3416182.52



176 1. C. KIPCHlRCHIR

yielding the roots

Al 1.724307

A2 4.538120

A3 8.788438

A4 12.128250

To obtain the estimates of the mixing proportions we have from (27), (28) and
(61)

[

10.403943

154.52516

2221.6391

7.59013

134.09004

2077.6277

3.339812][PI] [7.12825]
73.197618 P2 = 125.1027

1318.122 P3 1950.8898
yielding

[
PI] [0.1123815]
Pz = 0.7087769

h 0.1734621

and finally from (8)

P4 = 1 - PI - P2 - P3 = 0.0053795.

From (40), an estimate of v is

and Table 4 gives estimates of k with respect to linear, quadratic and iteration
formulae

Table 4. Estimates of k

• "Formula 1 k = 1+ .Jl + 4v/3 f(ki)k:=- ki+1= k, - !'(ki)2v 4v

k 5.831 5.994 5.993
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5.3. Discussion on optimal Gq

The case for q = 5 fails to estimate G(A.) since PI < O. The case for q = 6

fails to estimate G(A.) since the matrix A in (23) for estimating l3;'s is singular

which means either the A. j ,s are not distinct or P j = 0 for some j. Thus, G4 is the

optimal estimate of G(A.). Geometrically, a smoothed G4 is closer to G(A.) and

hence is a good estimate of G(A.).

6. Conclusion

The average number of individuals per unit within the 50 units sampled as in
Table 1, is as follows:

1.73 4.33 8.14 11.4_ ~ ~ r--A---,

x = 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 13

which mirrors the parameter estimates of the Poisson kernels, namely, 1.1 = 1.72, .•.-~ ~->..~
~2 = 4.53, ~3 = 8.79, ~4 = 12.13. Thus, the finite mixture describes a heterogeneous

population which is composed of four homogeneous subpopulations. This .is
reminiscent of overdispersion.

In particular, the estimate of the four component finite mixture dispersion
parameter is v = 0.0857416 and the corresponding estimate of the negative binomial

dispersion parameter estimated using G4 is k = 5.993. In fact, G4 yielded more or

less the same estimate as the negative binomial method of moments estimate (6.068).

Thus, finite mixture of Poisson can be used to describe dispersion with v as a
measure of dispersion.
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