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ABSTRACT
The role of the negative binomial parameter k and index of patchiness as measures of dispersion in relation to

random removal of individuals are discussed. The aim of this paper is to demonstrate analytically that the negative
binomial parameter k is a measure of dispersion. The negative binomial parameter k and index of patchiness are
inverseJy related Equicorrelation matrix is analysed in relation to coefficient of determination, partial correlation
and principal components with respect to the negative binomial parameter k. The analysis demonstrates that small
values of k are associated with overdispersion whereas large values are associated with randomness.
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INTRODUCTION
Dispersion is the description of the pattern of distribution of organisms in space (Southwood,

1966) arid is often referred to as spatial distribution). It is a characteristic ecological property.
Probability distribution models are used to quantify and classify the dispersion of organisms.
They have been widely used in entomological research to describe the dispersion of insects.

In order to describe dispersion it is assumed that organisms are confined to discrete.
habitable sites called units (sampling units). In reference to sampling of pests on plants as a
prototype, for instance larvae of a pest species that attack the shoots of a plant, the following
assumptions are made:

(i) Each shoot constitute a habitable site and is a natural sampling Unit.
(ii) The larvae will not be found elsewhere than on shoots and therefore the space

available to them is discontinuous.
(iii) Migrations from one shoot to another, even if possible, are assumed to be uncommon

enough to be ignored.

1 Spatial distribution is a visual description and not a probability distribution..
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Thus, if we count the number of organisms per unit for a large sample of the units, the
observations clearly convey something about the spatial pattern of the species. .

Now, suppose every unit contains a large number oflocations and each of these can be
occupied by a single individual. We suppose that ." is the maximum number of individuals
that a unit may contain and the probability that every location in every unit is occupied is {"
(a constant). We further suppose that a random variable X represents the number of
individuals a unit may contain. Assuming independence, the probability that exactly x
locations in anyone unit will be occupied is given by the binomial probability

P(X='x)~(:){X(1-n'1-X, x=0,1,2, ....n. 0<{<1: (1)

Assuming that." is very large, { is very small, so that.,,{ = A (constant), then
. AXe-A

llm P(X = x) = -1-' X = 0,1,2,...; A > O. (2)
11.•.•00 x.

which is the Poisson probability.
If the individuals had been assigned independently and at random to the available units

(each organism has the same chance of occupying any unit), the spatial distribution is said to
be random and the population pattern is also random. Random spatial distribution is
described by Poisson distribution. For Poisson distribution, the mean (m) and the variance
(v) are equal.

In ecological studies, the variance is usually found to be larger than the mean and the .
Poisson distribution rarely fits the observed frequency distribution of the number of
individuals per unit. . •

Departure from randomness is centred on the heterogeneity of the environment and pest
behaviour (Young and Young, 1990). The behavioural response to their environment (food-
gathering traits) and other organisms (mating behaviour) results in the presence of one
organism in a unit, increasing the chances of occurrence of another organism in the unit.
Thus, units are not equally receptive or attractive to organisms and are depicted by a larger
variance than the mean. When the variance is larger than the mean, the spatial distribution is
said to be contagious and the population pattern in this case is clumped or patchy or
aggregated or clustered or overdispersed.

If the organisms are distributed in a uniform or regular fashion, the variance is less than
the mean. The spatial distribution is said to be regular and the population pattern is said to
be underdispersed (uniform). The regular distributiorr' is best described by the binomial
distribution (v < m). .

Many overdispersed pest populations that have been studied can adequately be
described by the negative binomial distribution

2 Regular distribution is seldom observed unless during presence-absence sampling.
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(
k + X - 1)( P )% ( 1 )"P(X = x) = . x 1 + P 1 + p • x = 0.1,2, ... ; k > 0, P > 0

sothatv = m(1 + p) > m = kp.

(3)

Anscombe (1949) gave statistical analysis of insect counts based on the negative
binomial distribution. 'Ilie negative binomial parameter k is considered as a dispersion
parameter. Smail values of k(k --+ 0) are associated with overdispersion, whereas large
values of k(k --+ (0) are associated with randomness. The three spatial distributions are
illustrated in Figure 1.
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Fi,.aure 1: Basic spatial distributions.

J. !. ~
...'- ..- '. "-I"~.~""...

.z':..,
-i [ ~.::..:.

"·f~-:··-
v> m

L MEASURING DISPERSION
, A measurable property of a population spatial pattern, which is equivalent to dispersion

but independent of population density, can be derived from observed frequency distribution
of the number of individuals per unit. Measures of dispersion are often used to draw
inferences relating to the spatial pattern of a population. Measures of dispersion, which are
not affected by small changes in population density, are thought of as representing some
intrinsic property of a spatial pattern, whatever the density.

It is assumed that if some individuals are randomly removed from the population, the
remaining individuals still remain at their original locations. Thus, random removal of

. individuals would only affect the population density while leaving the pattern unchanged.
However, if a large number of individuals were removed from the originally densely
populated units, we expect the pattern to change, resulting in reduced aggregation.

One of the measures of dispersion is the index of patchiness

_ 1(V )
P=1+m m-1
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SO that is = 1, is > 1 and is < 1 for random, contagious and regular spatial distributions
respectively. The index of patchiness is not affected by random removal of individuals
(pielou, 1978). Intuitively, populations with more or less different densities can exhibit the
same degree of patchiness. .

Let X be a random variable having the negative binomial distribution with parameters
k and mo = kp, representing the number of individuals in a unit before removal, and let Y
be a random variable representing the number of individuals remaining in a unit after
removal. The probability that a unit will contain y individuals, given that it formally
contained x individuals before removal, is

PCY = y/x,B) ~ G) BY(l- B)X-Y, y:::; x, 0 < e < 1 (5)

where e is the probability of an individual remaining in the population and
CD

PCY = y/B) = L pcY:::: y,X:::: x/B)
X=Y

00::::L P(Y = y/x,e)p(x:::: x)
x=y .

= f (X) BYC1-er'-y (k + x - 1)(~)x (_1 )kL. y x l+p l+p
x=y

(
k + Y - 1) ( Bp )Y ( 1 )k= Y 1+ 8p 1+ Bp ~ Y = 0,1,2, ... (6)

.which is negative binomial distribution with parameters k and m1 = kfJp = f)mo. Whilst
the population density has changed, k has remained the same. Thus, k is unaltered by
random removal of individuals and it can be used as a measure of dispersion in patterns that
yield negative binomial distribution when sampled. The variances before and after random
rernoval are r., = moC1+p)andvl = mlC1+ep)respectively.

The negative binomial distribution has index of patchiness

_ 1(V) 1P=l+- --1 =1+->1m m k
(7)

implying that negative binomial distribution describes a contagious distribution.
Furthermore,

_ 1 (vo) 1 1 (Vl ) _Po=1+- --1 =1+-=1+- --1 =Plmomo .k mlm1 .;
(8)
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implying is is not affected by random removal of individuals. We observe that

_ (1)lim P = lim 1+ -k = 1
k-+co k-+oo

(9)

implying as k ~ co, negative binomial distribution describes a random distribution.

From Equation (7):

I _
k =-_-, P ~ 1,P-I
implying, k > 0 and is ;;:::1.are inversely related and consequently

(10)

as is ~ co
(11)

that is, small values of k: are associated with overclispersion whereas large values of k are
associated with randomness. Underdispersion (is < 1) is riot accounted for by the negative
binomial distribution.

For fixed m = kp and reparameterizing f3 = 2-, then k -> co or p -7 0or f3 -7 0 imply
1+p

a random distribution while k -> 0 or p ~ co or f3 -7 1 imply a contagious distribution.

2. EQUICORRELATION MATRIX ANALYSIS

We suppose that there are n sampling units and to obtain Corr(Xi,Xj) i *- t.we have
to consider the multivariate negative binomial distribution

(12)

Xi = 0,1,2, ... ; q = np + 1, p > 0

having probability generating function

g(s,.s, ..... s,.) ; (q - P~ s,)-'

so that

(l3)

201



THE NEGATIVE BINOMIAL PARAMETER k AS A MEASURE OF DISPERSION

(14)

and

(15)

From (15), we observe that

(

0. random
Corr(Xi.Xj) ~

1. contagious

The equicorrelation matrix is

. (l6)

P', = (1- P)ln + Pln (17)

where In is an n-dimensional identity matrix,ln is an n x n matrix of ones (unit matrix) and
{3is the equicorrelation. We observe that

{

In. random
Pn ~

In. contagious
(18)

The unit matrix In can be expressed as

I« = 11' (19)

where l' is an n-dimensional vector of ones (unit vector). Since In is symmetric and has
rank one, it has the only non-zero eigenvalue given by

trUn) = tr(ll') = 1'1 = n (20)

and the eigenspace is generated by 1. Since In has all its eigenvalues equal to one, from
Equation (17) the eigenvalues of Pn are
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A1= (1- P) + np = 1+ (n - 1)P

and

Az=A3="""=An=1-P

sotbat

(21)

(22)

n

IPnl =nAi =(1 + (n - 1)P)(1- p)n-1
i=1

(23) •

and

pn-l = 1~P (In - 1+ t!~1)P) .

which exists if and only if (3 =1= 1 and (3 =1= -~. Further, Pn is positive definite (all eigenvaluesn-1
positive) if and only if P E (- _1_,1). The diagonal elements of pn-l are all equal ton-l

(24)

1 (1+ (n - 2)(3)
1 - (3 1+ (n - 1)(3 (25)

Each diagonal element of' p;l is related to the proportton of variation in the
corresponding variable explained by regressing. on the remaining variables (Whittaker,
1990). More precisely, each diagonal element equals

1 ~
l-Rz

where RZ(O :::; R2 :::;1) is the coefficient of multiple determination and R is the multiple
correlation coefficient between the variable and the rest. In other words, RZ is the proportion
of variation explained by the regression. The upper bound of R2 is achieved when the fit is
perfect (all residuals zero). As R2 approaches one, the variable is most predictable whereas
as it approaches zero, the variable is least predictable given the rest.

Equating (25) and (26), we obtain

(
(n -1)(32 )

R2= 1+ en _ 2){3 (27)
so that

(

0, random
R2 -+

1, contagious
(28)
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Thus, for " random distribution, a variable given the rest is least predictable
whereas for a contagious distribution, a variable given the rest is most predictable.
Intuitively, for a random population, individuals are independent of each other, hence
most unlikely to locate one given the rest whereas for an overdispersed population,
individuals are clustered (there is interaction or interdependence between individuals),
hence most likely to locate one given the rest.

The inverse correlation matrix is now scaled to have unit entries on the diagonal in the
same way as a covariance matrix is scaled to give a correlation matrix and we obtain

Scaled pn-1= In - 1+ C:-'2){3 Un -In)· (29)

The off diagonal elements of this scaled inverse correlation matrix are the negatives of the
partial correlation coefficients between the corresponding pair of variables given the
remaining variables (Whittaker, 1990).

From Equation (29),

random

(30)
contagious

so that the partial correlation coefficients between the corresponding pair of variables given
the remaining variables is

random

(31)
contagious

and together with Equation (16), supports the result in Equation (28). Further, for a
contagious distribution the partial correlation coefficient between a pair of variables given
the remaining variables diminishes to zero as the number of sampling units increases.

FromEquation(23),we observethat Pn is singularwhen p = 1and P = - _1_, that is,when. n-1

contagious
(32)

contagious

and hence pn-l does not exist for a contagious distribution. Further, Pn is positive semi-
definite (all eigenvalues non-negative) if'and only if P E [__ 1_.1].n-l
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3. PRINCIPAL COMPONENT ANALYSIS OF P«
The central idea of principal component analysis is to reduce the dimensionality of

a data set in which there are a large number of interrelated variables, while retaining as
much as possible of the variation present in the data set. This reduction is achieved by
transforming to a new set of variables, the principal components, which are
uncorrelated, and which are ordered so that the first few retain most of the variation
present in all the original variables.

If a set of variables X = (XII X 2' ••• , Xn)' , n > 2 has substantial correlations among
them, then the first principal component accounts for as much of the variability in the
variables as possible, and each succeeding component' accounts for as much of the
remaining variability as possible. If q (< n) principal components account for most of the
variation in X in the n-dimensional space (one axis per variable), the principal component
analysis gives us a lower-dimensional picture of this object described by the principal
components in a q-dimensional subspace,

Principal component analysis can be used to divide variables into groups. The
connection with principal component analysis is that when the variables fall into well-
defined clusters, there will then be one high-variance principal component, and, except in
the case of 'single-variable' clusters, one or more low variance principal component(s)
associated with each cluster of variables (Jolliffe, 1986).

Computation of principal components is reduced to the solution of an eigenvalue-
eigenvector' problem for a positive semi-definite symmetric matrix so that eigenvectors are
normalized and orthogonal. For a group of r equal eigenvalues, the corresponding r
eigenvectors span a certain unique r-dimensional space; but, within this space, they are, a
part from being orthogonal to one another, arbitrary. .

XI -m ..
. Principal components of standardized variables Zj = ,l = l = 1,2,3, ... ,n

'/m/(l-p)
are obtained from the eigenvectors of Pn. Pn is positive since P is positive and the largest
eigenvalue is given by Equation (21) with associated eigenvector

. 1
e~= v1i(1,1, ...,1). (33)

The largest eigenvalue is unique, since Perron-Frobenius theorem states that a positive
matrix has a unique largest real and positive eigenvalue and the corresponding eigenvector
has strictly positive components (Gantmacher, 1959). The remaining n - 1eigenvalues are
given by Equation (22) and one choice of their eigenvectors is

3 The eigenvalue-eigeavector pair derived from the covariance matrix is, in general, not the same as the oncs
derived from the correlation matrix.
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, 1
e2 = .j2(1. -1,0, ...•0).

1·
e~= 17 (1.1.-2,0 •...•0).

v6

1e; = (1•...•1,-(i - 1).0, ...•0)•..jet - l)i

(34)

eri= 1 (l •...•l.-(n-l») .
..j(n- l)n

The first principal component

(35)

is proportional to the sum of the n standardized variables and is unique since principal
components are necessarily orthogonal. This principal component explains a proportion

At 1- {3
-={3+--
n n.

(36)

of the total variation. For an equicorrelation matrix; the first principal component for the'
original variables", X, is the same (Johnson and Wichern, 2002), that is,

1 n

.Yt = ..fii ~ Xi' (37)

a measure of total size and it explains the same proportion (36) of total variance.
From Equations (21) and (22), we have for a random distribution

. At 1 .
hm- = -. t = 1.2.3•...•n (38)p ....•o n n

and for a contagious distribution

4 .
The eigenvalues are of course different since the covariance matrix of X is 1:.= ,:p P« and in this case Al =

~ (1 + (n - 1)P) and A2 = A3 = ... = An = m.I-p
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At
Iim-= 1p~o n

(39)

that is, for a random distribution, each component explains (100jn)%, whereas for a
contagious distribution, the first component explains 100%.

Thus, for a contagious distribution, the first principal component accounts for all
the variation in Z (and in X) in the n-dimensional space and hence gives us a lower-
dimensional picture of this object described by the first principal component in a
I-dimensional subspace resulting in a 'single variable' cluster. Intuitively, instead of all
individuals occupying the n sampling units, they occupy one sample unit, reminiscent
of overdispersion. On the other hand, for a random distribution, the n-dimensional
space cannot be described by principal components in a lower-dimensional subspace,
that is, no clustering, reminiscent of randomness.

CONCLUSIONS

The negative binomial parameter k is a measure of dispersion so that k ~ 0 CP ~ 1)
describes a contagious distribution and k ~ 00 CP ~ 0) describes a random distribution,
that is, small values of k are associated with overdispersion, whereas large values of k are
associated with randomness.
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