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Abstract – In this paper a hybrid numerical technique is presented for characterization of the transmission 

properties of a three-dimensional slot in a thick conducting plane. The slot is of arbitrary shape and is excited 

by an electromagnetic source far away from its plane. The analysis of the problem is based on the 

"generalized network formulation" for aperture problems. The problem is solved using the method of 

moments(MOM) and the finite element method(FEM) in a hybrid format. The finite element method is 

applicable to inhomogeneously filled slots of arbitrary shape while the method of moments is used for solving 

the electromagnetic fields in unbounded regions of the slot. The cavity region has been subdivided into 

tetrahedral elements resulting in triangular elements on the surfaces of the apertures.  Validation results for 

rectangular slots are presented. Close agreement between our data and published results is observed.  

Thereafter, new data has been generated for cross-shaped, H-shaped and circular apertures.  

 

Index Terms – Finite–Element Method, Method of Moments, Perfect Electric Conductor(PEC)  

 
I. INTRODUCTION 

 
 

HE problem of electromagnetic transmission 

through apertures has been extensively 

investigated[1-6].  Many specific applications, such as 

apertures in a conducting screen, waveguide-fed 

apertures, cavity-fed apertures, waveguide-to-

waveguide coupling, waveguide-to-cavity coupling, and 

cavity-to-cavity coupling have been investigated in the 

literature. 

Both intentional and inadvertent apertures of various 

shapes are encountered in the many applications 
afforded by the advances in technology and increased 

scale of utilization of microwave and millimeter-wave 

bands for communications, radar, industrial and 

domestic applications. Examples of undesirable 

coupling are leakage from microwave ovens and printed 

circuit boards, electromagnetic penetration into vehicles, 

and electromagnetic pulse interaction with shielded 

electronic equipment. These lead to problems of 

Electromagnetic Compatibility (EMC) and 

Electromagnetic Interference (EMI) which should be 

minimized or eliminated. Desirable coupling exist in 
slotted antenna arrays, microstrip-patch antennas, 

directional couplers, cavity resonators, etc.  

For the purposes of either minimizing or enhancing 

electromagnetic coupling through apertures, it is 

desirable to quantify the electromagnetic penetration 

through apertures. The past seventeen years have 

witnessed an increasing reliance on computational 

methods for the characterization of electromagnetic 

problems. Although traditional integral-equation 

methods continue to be used for many applications, one 

can safely state that in recent times the greatest progress 

in computational electromagnetics has been in the 

development and application of hybrid techniques, such 

as FEM/MOM and (finite-difference time-

domain)FDTM/MOM .   

The FDTM requires a fine subdivision of the 
computational domain for good resolution and so is 

computationally intensive just like the MOM. The 

method of moments is an integral equation method 

which handles unbounded problems very effectively but 

becomes computationally intensive when complex 

inhomogeneities are present. In contrast, 

inhomogeneities are easily handled by the finite element 

method, which requires less computer time and storage 

because of its sparse and banded matrix. The matrix 

filling time is also negligible when simple basis 

functions are used [7]. However, it is most suitable for 
boundary value problems.  Since the investigation to be 

carried out encompasses unbounded problems with 

complex inhomogeneities, a procedure combining the 

finite element method and the method of moments 

would be effective. 

T 



It is the objective of this paper to develop and 

demonstrate the validity and accuracy of a new hybrid 

FEM/MOM method. Apertures having various shapes, 

such as rectangular, circular, cross and H have been 

studied. 

 
II. GENERAL FORMULATION OF THE PROBLEM 

 

Consider the 3–dimensional ( aperture–cavity–

aperture ) structure illustrated in Fig.1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The specific configuration consists of a cavity in a 

thick conducting plane having an aperture at the top 

surface and another one at the bottom surface. The free 

space region above the plane ( z > 0 ) is denoted as 

region A and that below the plane ( z < -d ) as region B.  

Also, the volume occupied by the cavity ( -d < z < 0 )  

will be referred to as region C.  It is assumed that the 

cavity is filled with an inhomogeneous material having 

a relative permittivity   r
c

   and relative permeability 

 r
c

 . 

Using an approach similar to that presented in [8], 

one can replace the tangential electric fields in the 

aperture planes with equivalent magnetic currents 
1

M in 

the 
 0z aperture plane and 

2
M  in the 

 dz  

aperture plane.  In the interior region, the equivalent 

magnetic currents 
1

M and 
2

M  in the 
 0z  and the 

 dz aperture planes, respectively.  Perfect 

conductors can be placed in the  10 Sz   and the 

 2Sdz   planes, as illustrated in Fig. 2, without 

altering the fields.  The problem geometry is then 

decomposed into 3 regions as illustrated in Fig. 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

Fig. 1. Problem geometry: (a) Top view (b) Cross-sectional view 
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Fig. 2: Equivalent currents introduced in the aperture 

planes. 
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Fig. 3: Problem geometry decomposed into 

three regions; A, B, and C. 
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The total magnetic field in regions A and B can be 

expressed as a superposition of the short-circuited 

magnetic field scH


( i.e., the incident magnetic field 

plus the specular magnetic field scatH


, produced by the 
equivalent surface currents.  The tangential components 

of the total magnetic field in the aperture planes are then 

expressed as  
scatsctot HnHnHn


 ˆˆˆ                (1) 

In the interior region C, the closed cavity is 

perturbed by the equivalent currents 1M and 2M , as 

illustrated by Fig. 3.  The total tangential magnetic field 

that is produced on 1S  is expressed as the superposition 

of the fields produced by each current 

    
2111

ˆ MHMHn tottot


                (2) 

with a similar expression on 
2

S .  To ensure the 

uniqueness of the solution, the tangential magnetic field 

must be continuous across the aperture planes.  To this 

end, continuity of the total tangential magnetic fields 

across the aperture planes is enforced.  Therefore, on 
1

S  

      
1121111

ˆˆ MHMHMHnHn scattottotsc


      (3) 

At this point, the equivalent currents are still 

unknown.  Their approximate solution is derived using 

the method of moments.  To this end, the equivalent 

magnetic currents are expanded into a series of known 

basis functions weighed by unknown coefficients. 
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                 (4) 
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                (5) 

The approximate equivalent currents are substituted 

into equation (3).  Two sets of vector testing functions 

are also introduced :  0,1 zxW m


 and  dzxW m ,2


   

in the 
1

S  and 
2

S planes, respectively.  Taking the inner 

product of equation (3) with  0,1 zxW m


 and taking 

advantage of the linearity of the operators results in 
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where, a similar expression is derived on 
2

S  
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where the subscript t  denotes the tangential fields.  By 

introducing PN   vector testing functions, equations 

(6) and (7) provide PN   linear equations from which 

the unknown coefficients nV1  and  nV2  can be 

obtained. The first two inner products of equations (6) 

and (7) are referred to as the aperture admittance 

matrices for region C [10].  These matrices relate the 

tangential magnetic fields in the aperture to the 

equivalent currents, which are equivalent to the 
tangential electric fields.  The last inner products 

appearing in equations (6) and (7) are referred to as the 

interior aperture admittance matrix for regions A and B 

respectively.  In terms of the aperture admittance 

matrix, the coupled equations (6) and (7) are expressed 

as  
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The advantage of using this function is that the 

admittance matrices of the interior and the exterior 

regions can be constructed independently.  The aperture 

admittance matrices  AY  and  BY  are computed by 

solving the problem of the equivalent magnetic currents 
radiating into a half-space.  The aperture admittance 

matrix  CY  is computed by solving the interior cavity 

problem for each equivalent magnetic current basis 

function to compute in the aperture planes, and then 

taking the inner products with the appropriate testing 

functions. The following section describes the solution 

of this interior problem using the FEM. 
 

III. COMPUTING THE INTERIOR 

ADMITTANCE MATRIX  BY THE 

FEM 

A. SOLUTION OF THE INTERIOR PROBLEM  

Within the cavity region, the magnetic fields must 

satisfy the vector Helmholtz equation 

 

0
1 2  HkH r

r





               (9) 

where H


 is the total magnetic field. The cavity region 
is defined as a closed space confined by PEC walls, 

which will be referred to as the domain V .  A 
functional described by the inner product of the vector 

wave equation and the vectors testing function, H


, is 
expressed as 

  dVHHkHHHF
V

r

r
 











.

1
. *2* 


        (10) 

is defined. The solution of the boundary-value problem 

is then found variationally, by solving for the magnetic 

field at a stationary point of the functional via the first 
variation 

 

  0HF



              (11) 



 

The functional has a stationary point ( which occurs at 

an extremum ) and equations (9) and (10) can be used to 

derive a unique solution for the magnetic field. 

For an arbitrary V  the solution of the above variational 

expression cannot be found analytically and is derived 

via the FEM.  To this end, the domain V  is discretized 

into a finite number of subdomains, or element domains, 

eV ( Fig. 4).  It is assumed that each element domain eV  

has a finite volume and that the material profile within 

this volume is constant.  Within each element domain 

the vector magnetic field is expressed as eH


.  If there 

are eN  element domains within V , the functional can 

be expressed in terms of the approximate magnetic 

fields as  
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            (12) 

Applying the vector identity 
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                 (13) 

and the divergence theorem, (12 ) can be written as 
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Also 
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k

jHnH eee

r
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.ˆ.
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0
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
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implying contribution from only regions of implied 

magnetic current sources, i.e, at the apertures only. 

M


= surface magnetic current source. 
So that 
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The approximate vector field in each element domain is 

represented as 

 





m

j

ejejWH
1


                                   (17) 

with the spacial vector ejW


being the Whitney basis 

function defined by 

ijjiijW  


                           (18) 

and i  is the barycentric function of node i expressed 

as  
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e
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V
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where iA


 is the inwardly directed vectorial area of the 

tetrahedron face opposite to node i , eV  the element 

volume, and r


 the position vector.  Also, br


 is the 

position vector of the barycenter of the tetrahedron 

defined as 

 
4

3210 rrrr
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                            (20) 

in which ir


 is the position vector of node i . 

 Using equations (17) in (16) leads to: 
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Letting 
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equation (21 ) becomes 

  nb

N

b

b

N

e

m

j

m

i

jieieje PNHF
be

  
  











1

*

1 1 1

* 
                 (24) 

By enforcing the continuity of the magnetic field, a 
global number scheme can be introduced.  The 

following symmetric and highly sparse matrix results 
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where : b  are coefficients weighting the edge 

elements lying in the aperture plane 1S  and 2S .  e  are 

coefficients weighting the remaining edge elements in 

V . 

 



B. EVALUATION OF jiN  

 

Consider the tetrahedron in Fig ( ) : 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

jiN  are the elements of matrix      KDN   

 

C. EVALUATION OF nbP  
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where br


 is the position vector of the tetrahedron 

barycenter.   
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Eliminating surface integration over each triangle by 

approximating pqW


 by its value at the centroid of each 

triangle : 
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D. COMPUTING  CY  

The computation of the nth column of  CY  in ( ) and ( ) 

is performed by perturbing the cavity with an equivalent 

current basis function nM . Then, with the use of ( ) or ( 

), the interior tangential magnetic fields in the aperture 

planes 1S  and 2S  are computed. The first N row 

elements of the nth column of  CY  are then computed 

by taking the inner product of the aperture field on 1S  

successively with the N  testing functions mT


. The next 

P  row elements of the nth column are computed by 

taking the inner product of the aperture field on 2S  with 

with the P  testing functions qT


. Similarly, the 

remaining P  columns of  CY  can be computed by 

perturbing the cavity with equivalent current basis 

functions pM .     

 
IV. COMPUTING THE EXTERIOR ADMITTANCE 

MATRICES BY THE MOM 
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The discretization of the MOM computational domain is 

based on triangular patch modeling scheme as proposed 

by Rao et al [12] and as implemented by Konditi and 

Sinha [ paper u carried ]. 

 

A.  EVALUATION OF MATRIX ELEMENTS 

As explained in [paper u carr ], following Galerkin 

procedure ( mm MT 


), a typical matrix element for the 

rth region is given by 
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where the notation 


mT

ds)(  has been introduced 

for compactness. 

 In terms of the electric vector potential )(rF  

and the magnetic scalar potential )(r , the magnetic 

field )( n
r MH  can be written as 

)()()( rrFjMH nnn
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In Eqn. (14), )'/( rrG  denotes the dyadic Green's 

function of the half space. 

Substitution of Eqn. (13) in Eqn. (12) and use of two-

dimensional divergence theorem  leads to
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            (2.19) 

where 
j

M
m m

m



     

            (2.20) 

Eqn. (16) contains quadruple integrals; a double integral 

over the field triangles 
mT  and a double integral over 

the source triangles 
nT  involved in the computation of 

)(rFn  and )(rn . In order to reduce the numerical 

computations, the integrals over 
mT  can be 



approximated by the values of integrals at the centroids 

of the triangles. This procedure yields 












































)()(

2
)(

2
)(

2

c
mn

c
mn

c
mc

mn

c
mc

mn

m
r

mn

rr

rFrFj
lY






  (18) 

where 


 

nT

crc
mn rrGrF )'|()(  ')'( dsrMn  

            (19) 
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In (18), c
m  are the local position vectors to the 

centroids of 
mT  and c

mr  = 3/)( 321   mmm rrr  are the 

position vectors of centroids of 
mT  with respect to the 

global coordinate system. 

 Similarly, as explained in[ paper u carried], 

using the centroid approximation in Eqn. (2.10), an 

element of excitation vector can be written as 
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 Following the procedure as outlined in [ paper u 

carried], transmission coefficient and transmission 

cross-section are evaluated for the aperture problem. 

 
V. RESULTS AND DISCUSSION 
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