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A physics-based method for shadow compensation in scenes illuminated by daylight is proposed. If the day-
light is represented by a simplified form of the blackbody law and the camera filters are of infinitely narrow
bandwidth, the relationship between red/blue (rm) and green/blue ( gm) ratios as the blackbody’s temperature
changes is a simple power law where the exponent is independent of the surface reflectivity. When the CIE
daylight model is used instead of the blackbody and finite bandwidths for the camera are assumed, it is shown
that the power law still holds with a slight change to the exponent. This means that images can be trans-
formed into a map of rm /gm

A and then thresholded to yield a shadow-independent classification. Exponent A
can be precalculated from the CIE daylight model and the camera filter characteristics. Results are shown for
four outdoor images that contain sunny and shadowed parts with vegetation and background. It is shown
that the gray-level distributions of the pixels in the transformed images are quite similar for a given compo-
nent whether or not it is in shadow. The transformation leads to bimodal histograms from which thresholds
can easily be selected to give good classifications. © 2000 Optical Society of America [S0740-3232(00)00411-7]
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1. INTRODUCTION
Many attempts to analyze images start with the images
as given data. Sometimes in an attempt to improve on
this procedure the image analyst will try to control such
factors as lighting, camera, and digitizer gains to improve
the images. Occasionally the practitioner will use knowl-
edge of the physical processes behind image formation to
increase the changes of being able to analyze such images
successfully. Although comparatively rare in the whole
field of machine vision and image analysis, the latter ap-
proach has received some attention.1,2 An important
problem domain for the physics-based approach is in out-
door lighting, where complicated regimes that contain
more than one illuminant, variable illumination, interre-
flections, highlights, shadows, and so on can exist. In
these difficult situations the more prior knowledge that
can be used, the better the chances of successful analysis
will be.

Our study is applicable to many problem domains, but
the one in which we are currently interested is detecting
vegetation from ground-based vehicles. An important
application is in guiding vehicles3,4 or implements5 to
achieve precise control over weed or plant treatment. A
requirement is to classify vegetation and soil correctly
and accurately in real outdoor lighting conditions. Al-
though the lighting is always from daylight, its intensity
and spectral content may change over time. Also, in any
one image there may be unavoidable shadows due to
plant leaves shading parts of the scene or due to the ve-
hicle itself, walls, trees, people, and so on, blocking out di-
rect sunlight.

The problem of handling images that are subject to il-
lumination changes was recently addressed by Drew
et al.6 Using their technique, one can normalize the im-
age to remove (approximately) the effect of any illumina-
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tion change when the change is over the whole image.
This is a problem different from the one addressed here,
in which we wish to compensate for the effect of illumina-
tion changes at different parts of the same image. In or-
der to handle the extra problem of spatially variable illu-
mination, we sacrifice the flexibility of being able to
handle any illuminant change. In fact, our treatment ap-
plies only to blackbody-like illuminants for which the
change is in the color temperature. Although this treat-
ment is quite restrictive at first sight, it will be shown to
apply to the important practical situation of daylight, in-
cluding scenes that have shadows.

It is important to recognize that the illumination in
shadows is not just less intense than that in direct sun-
light. In shadows, the illumination is from skylight,
which is bluer than that from the Sun. Thus there is an
effect in shadows that is caused by there being two illu-
minants in the same scene, each of which has a different
spectral content.7 This is a different effect from shading,
which is a phenomenon that can occur when only one il-
luminant is present. With shading, the relative angles
among illumination, surface, and observer change, so the
resultant perceived intensity changes.

Shadows are often seen as a nuisance in images and
are dealt with by use of image processing techniques. If
shadows occupy only a small proportion of the image,
their information content can be ignored. With larger ar-
eas, a model-based image analysis technique may be used
to compensate for the information loss.8 In schemes that
employ change detection, fixed shadows may become part
of the background and discounted.9 Some authors10

double the number of classes in a classification problem to
cope with the possibility that each surface might be in sun
or shadow. Although simple in concept, this approach
makes the classification problem much more difficult. As
2000 Optical Society of America
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part of a scheme to achieve color constancy in the pres-
ence of shadows, Nakauchi et al.11 attempted to detect
shadow edges (as opposed to reflectance edges) by noting
that the spectral components of reflected light change sys-
tematically at shadow edges but in an unconstrained
manner at reflectance edges.

In contrast to most previous studies dealing with shad-
ows, we take a physics-based approach. On the basis of a
physical model we propose a simple transformation that,
given some approximations to the image formation pro-
cesses, compensates for the shadows formed when scenes
are illuminated by daylight. The symbols used in our no-
tation are listed in Appendix A.

2. PHYSICAL BASIS
In the following we make a number of assumptions about
the physical processes that apply in our work. Perhaps
the most significant of these is that the materials behave
as inhomogeneous dielectrics in which incident light en-
ters a pigment colorant layer below the material surface,
is scattered, and part of the light emerges from the sur-
face after undergoing a spectral change. We further as-
sume that the ratio between the spectral composition of
the light that enters the materials and the light that
leaves them is the same for all angles, part of what Tomi-
naga and Wandell12 call the standard reflectance model.
When using our approach for classifying surfaces we also
assume that the reflectances of the surfaces are constant
over the scene and that reflectances and illumination are
isotropic. In addition, we assume that there is no signifi-
cant illumination from transmitted or interreflected light.

An important model in physics-based vision is the
dichromatic reflection model.13 The model states that
the reflected light from an object can be described as the
sum of the object’s body and surface reflections where
each component has an associated reflectance. The body
reflectance is the scattered component described above.
The spectral composition of the surface reflection compo-
nent is usually regarded as that of the light source; Lee
et al.14 call this the neutral interface model. It is this
component that gives rise to highlights or specularities.
In this paper we disregard surface reflection. Our justi-
fication for doing so is that highlights occupy a small pro-
portion of the total area in any real scene, that the high-
lights can be detected,15–17 and that the areas detected as
highlights will normally be surrounded by nonhighlight
areas and thus can usually be filled in by use of morpho-
logical methods.

The physical process of light falling on a surface, its re-
flection, and interpretation by a video camera can be rep-
resented by a sequence of filtering operations; i.e.,

CI 5 GIE SI~l!r~l!E~l!dl, (1)

where CI is the output from a color channel (in our case
I P $R, G, B%), SI is the spectral sensitivity of each
channel, r is the reflectance of the surface that is being
imaged, E is the illumination, and l is the wavelength.
GI is a gain factor that is a product of two components.
The first component depends on the camera (for example,
on the electronics, color balance, aperture, and sensor in-
tegration time), and the second component depends on
the relative angles of the surface, the illumination, and
the observer. The integration is taken over a region to
cover the sensitive range of the system. As mentioned
above, dichromatic effects have been ignored in this
study, and so there is only one component, where r is the
body reflectance.

We use the JAI-M90 3-CCD color camera (JAI A/S,
Glostrup, Denmark), although the theoretical treatment
below is valid for any three-band camera. Note that we
implicitly assume in the following that the camera out-
puts are proportional to the incident flux on the sensor, so
it is important that the camera’s gamma correction be
turned off (i.e., set to 1.0). The spectral sensitivity of the
M90 camera is shown in Fig. 1, where the vertical scale is
arbitrary (any scale can be accommodated within GI).

Figure 2 shows reflectances of typical vegetation and
soil. The vegetation’s reflectance was derived from the
characteristic in Ref. 18 for maize under normal growth
conditions and is in good agreement with characteristics
of vegetation reported elsewhere in the literature for
other crops.19–22 The reflectance characteristics of soil in
general increase slightly with wavelength, for example, as
in the characteristics given in Ref. 23 for sandy loam,
clay, and fen soil. Although particular types of vegeta-
tion and soil will have characteristics that are different
from these, the conclusions from our study do not depend
on the exact spectral characteristics, and so those in Fig.

Fig. 1. Spectral sensitivity (arbitrary units) of the three bands
of the M90 camera.

Fig. 2. Spectral reflectance of typical vegetation and soil and of
a third material (blue shingle; see Ref. 24).



1954 J. Opt. Soc. Am. A/Vol. 17, No. 11 /November 2000 J. A. Marchant and C. M. Onyango
2 are perfectly adequate for illustration. Also shown is a
characteristic for a material outside our particular do-
main and with a very different spectrum, blue shingle.24

We shall use this characteristic later in the paper.
Most general-purpose illuminants, e.g., tungsten fila-

ment lamps, tubular and compact fluorescent lamps, and
daylight, may be characterized according to their corre-
lated color temperatures (CCT’s).25 The CCT is the tem-
perature of a blackbody emitting light of a spectral com-
position approximately similar to that of the illuminant.
The Commission Internationale de l’Eclairage (CIE) has a
standard26 that specifies the spectral composition of day-
light at various CCT’s on the basis of a study by Judd
et al.27 Figure 3 shows data from the CIE standard at a
few CCT’s, along with two theoretically derived approxi-
mations that we shall use below. Three CCT’s have been
chosen for illustration. The lowest and highest are the
extreme values of those usually tabulated and would ap-
ply to the sunny component of a very red sky and the
shadow component of an unusually blue sky, respectively.
The other temperature might typically come from an
overcast sky.

3. SHADOW-INVARIANT CLASSIFICATION
Our objective in this section is to show that the color of a
surface as seen through a three-band camera can be rep-
resented in a way that makes that color nearly invariant
to certain illumination changes. Strictly speaking, the il-
lumination should come from an approximation to a
blackbody radiator and the allowed changes are of the
blackbody temperature. However, it will be shown that
if the method is used with the CIE daylight standard at
varying color temperatures, the approximations used are
still valid. This makes it possible to derive a simple clas-
sification scheme, based on sound physical principles,
that will deal with the important practical situation of
daylight illumination with shadows.

A. Blackbody Illumination
Planck’s formula states that the spectral radiant exitance
of a blackbody at temperature T, per unit wavelength in-
terval, is given by24

Fig. 3. CIE daylight standard at several CCT’s. Also shown
are blackbody spectral content and an approximate form of the
blackbody equation. Note that the blackbody and approximate
forms merge at the lowest CCT.
Mel 5 c1l25@exp~c2 /Tl! 2 1#21, (2)

where l is the wavelength and c1 and c2 are constants.
As with the CIE daylight standard, this is usually pre-
sented in a normalized way, so Mel is unity at 560 nm.
The exitance is often approximated as

Mel 5 c1l25 exp~2c2 /Tl! (3)

(see Ref. 24 but note the missing minus there). Figure 3
shows the normalized Mel [Eq. (2)] and the approximate
form [Eq. (3)] along with the CIE standard at a number of
CCT’s. It can be seen that the blackbody and the ap-
proximate blackbody formulations represent the CIE
standard reasonably well over the visible range, with the
two blackbody curves being indistinguishable at the low
CCT.

We now introduce a second approximation, which is
due to Finlayson et al.,28 that extends the von Kries coef-
ficient rule29 and allows us to transform the color of a
pixel into the color that would have been observed at a
different illumination condition. The transformation is a
simple scaling on each color channel that is independent
of the surface color. A simplified approach to deriving
the scalings is given here.

If the passbands of the camera filters were very nar-
row, it might be possible to represent them by impulse
functions centered on the actual filter characteristics.
With this (rather gross) approximation, Eq. (1) becomes

CI 5 gIr~lcI!E~lcI!, (4)

where lcI is the center frequency of the channel I filter
and gI depends on GI and the shape of the filter. Thus,
to transform from a color measured at a given illumina-
tion (suffix m) to a color that would have been observed at
a reference illumination (suffix ref), we can use

CIref 5 CIm Eref ~lcI!/Em~lcI!, (5)

which shows that the transformation is a simple scaling
for each channel that depends only on the two illuminants
(that at the measurement and the reference illuminant)
and the camera characteristics. An important feature is
that it does not depend on the reflectance properties of the
surface.

Our particular problem domain is daylight illumination
with shadows. This situation can produce a very large
dynamic range in the data if absolute values are used.
To reduce potential problems from this source we will fol-
low Barnard et al.30 and use two ratios, which we will call
the red and green band ratios rather than absolute mea-
surements. These band ratios are defined as r
5 CR /CB and g 5 CG /CB . Note that Barnard et al.
call them chromaticities, which most workers define dif-
ferently, e.g., r 5 CR /@CR 1 CG 1 CB#. Use of the ra-
tios also means that the photometric angle component of
the gI terms cancels in the equations below. This means
that effects due to shading will be removed. As was
pointed out by Barnard et al.,30 the simple scaling result
applies just as well to band ratios as it does to absolute
color values, allowing us to write

rref 5 rm /sr , gref 5 gm /sg , (6)

where
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sr 5
Eref ~lcB!Em~lcR!

Eref ~lcR!Em~lcB!
, sg 5

Eref ~lcB!Em~lcG!

Eref ~lcG!Em~lcB!
. (7)

If we now substitute Mel for illuminant E from Eq. (3)
into Eqs. (7) we obtain

sr 5 expF c2S 1

Tref
2

1

Tm
D S 1

lcR
2

1

lcB
D G ,

sg 5 expF c2S 1

Tref
2

1

Tm
D S 1

lcG
2

1

lcB
D G , (8)

and so

sr 5 sg
A, (9)

where

A 5
1/lcR 2 1/lcB

1/lcG 2 1/lcB
. (10)

Combining Eq. (9) with Eqs. (6), we obtain

rm 5 Fgm
A, (11)

where

F 5 rref /gref
A . (12)

Now rref and gref can be obtained using Eq. (4) with the
appropriate color channels and dividing to form the band
ratios as

rref 5
gRr~lcR!Eref ~lcR!

gBr~lcB!Eref ~lcB!
, gref 5

gGr~lcG!Eref ~lcG!

gBr~lcB!Eref ~lcB!
.

(13)

The interpretation of Eref depends on the context. For
example, for a blackbody illuminant Eref would be the
value of Mel at a temperature chosen as a reference.
Thus the factor F in Eq. (11) is a function of the surface
(through r). It is also a function of the color balance of
the camera (which affects gR /gB and gG /gB) but not of
the aperture setting nor of the exposure time, as they do
not affect the ratios gR /gB and gG /gB .

Note that none of the components of F [Eqs. (10), (12),
and (13)] depends on Em , the illumination of the imaged
pixel. A and gI depend only on the camera, r depends
only on the surface, and Eref depends only on the illumi-
nation chosen as reference (which is arbitrary). There-
fore a major conclusion is that with any image (fixed cam-
era, fixed color balance, fixed choice of reference
illumination), with lighting from an approximate black-
body source, all pixels from the same surface will obey the
relationship in Eq. (11). This is true even if parts of the
scene are illuminated with a blackbody at a different tem-
perature. The conclusion does, of course, depend on the
narrow-passband assumption made above. It therefore
should be possible to differentiate between surfaces in
such a scene by transforming the image to a plot of F
5 rm /gm

A and classifying the result as a monochrome
image. In a two-component scene one could do this by
plotting a histogram of F (a bimodal plot should result)
and choosing the threshold on F appropriately. In mul-
ticomponent scenes, theoretically it will be possible to
choose n 2 1 thresholds to separate the n components.
Of course, just as for any other classification method, its
practicality depends on the separation of the components
in F and the variability in F in any one component. Note
that the method and the exponent are independent of the
color balance. If the color balance were changed the his-
togram might be stretched or compressed, whereupon the
appropriate value of F for classification would be differ-
ent.

B. Effect of Approximations on Scaling Factors
In this section we investigate how well the conclusions
above relate to daylight instead of to blackbody illumina-
tion and also the effect of finite camera filter bandwidths.

So far, the general conclusions are independent of the
particular camera used. To illustrate the effect of using
a blackbody instead of daylight, we must fix upon a par-
ticular camera. We derive the center frequencies of the
M90 camera’s filters (which are typical of common com-
mercially available devices) from a weighted average of
the sensitivities in each color channel; i.e.,

lcI 5
*SI~l!ldl

*SI~l!dl
, (14)

where the integrals are taken over the passbands of the
filters. The operation yields the red, green, and blue cen-
ter frequencies as 605.2, 530.5, and 440.8 nm, respec-
tively. There is no strong reason for using this particular
measure of center frequency; however, use of the modes
would, for example, make the values rather sensitive to
errors in characterizing the filters if the curves had flat-
tish tops.

Some scaling factors for the M90 camera with the CIE
standard, the blackbody model [Eq. (2)], and the approxi-
mate blackbody model [Eq. (3)] are listed in Table 1 for a
reference temperature of 6500 K. Note that these scaling
factors, under the assumption of infinitely narrow filter
bandwidths, are independent of reflectance and so apply
to any surface.28 It can be seen that the scaling factors
derived from both blackbody models are generally within
10% of the CIE standard, with the exception of sr at the
very high temperature.
Table 1. Scaling Factors for Various Illumination Models

Temperature
(K)

sr sg

CIE Eq. (2) Eq. (3) CIE Eq. (2) Eq. (3)

4000 2.49 2.31 2.35 1.82 1.69 1.70
7000 0.91 0.91 0.91 0.94 0.94 0.94

24000 0.43 0.43 0.37 0.57 0.59 0.54
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Figure 4 shows sr plotted against sg for the three
sample CCT’s, where the scaling factors have been calcu-
lated for the CIE daylight standard. To see how well Eq.
(9) describes data calculated in this way, we derived a
value for the constant A by using

A 5 (
log sr

log sg
, (15)

where the sum was taken over values tabulated at 1000 K
intervals, yielding A 5 1.51 as opposed to A 5 1.61 with
use of Eq. (10). A curve using A 5 1.51 is also plotted in
Fig. 4 that shows that Eq. (9) with a modified value of A
explains the data well. Thus our conclusion that all pix-
els from the same surface will obey the relationship in Eq.
(11) should be just as valid for daylight at different CCT’s
as it is for an approximate blackbody. All that is re-
quired is a slight change in the value of A.

The degree of approximation caused by assuming infi-
nitely narrow camera filters depends on how rapidly E
and r vary over the passbands. If E were constant over
each band, it can be shown that the scaling factors would
be the same as in the case of an infinitely narrow band-
width. It can also be shown that, if rE varies linearly
over the passband and lcI is defined as in Eq. (14), the
scaling factors will be the same again. Although we
could possibly claim enough smoothness in r and E for
this result to apply to some extent, the actual effect de-
pends on the reflectances used. Thus, to estimate the de-
gree of approximation, we use the surfaces that we are
primarily interested in, i.e., vegetation and soil, whose re-
flectances we have characterized in Fig. 2. Note that
these curves need not specify precisely any actual vegeta-
tion and soil that we use in later tests, as our thesis is
that scaling factors are influenced only slightly by the
particular surfaces observed (in fact, with our assump-

Fig. 4. sr versus sg for CIE daylight, assuming infinitely narrow
camera filter bands. Also shown is the curve sr 5 sg

1.51 .
tions of approximate blackbody illumination and infi-
nitely narrow camera filters, they are not influenced at
all). In order to stretch our thesis we also use a surface
outside our problem domain that has a very different
characteristic, blue shingle. Table 2 shows scaling fac-
tors for the different components with the CIE daylight
standard and with the M90 camera. The factors have
been calculated by use of Eq. (1) along with the reflec-
tance characteristics, the camera filter characteristics,
the CIE standard at the CCT’s, and the reference CCT
(6500 K). It can be seen that the scaling factors are al-
most independent of the surface and are very close to the
figures for any surface in Table 1. Thus the effect of fi-
nite filter bandwidths is small.

It is useful to note that if filter bandwidth did cause a
problem, advantage could be taken of spectral sharpening
techniques,31 with which a transformation of the normal
color space is used in which the filters are narrower.

C. Potential for Classification
So far we have shown that there should be a simple rela-
tionship between band ratios at each pixel in an image
[Eq. (11)]. We have also shown that the scaling factors
used in the development of this theory should be sensibly
independent of the particular surface that is being
viewed. This allows us to propose using Eq. (11), for
which F is dependent on the surface but not on the illu-
mination, as a way of classifying surfaces in the presence
of illumination changes.

To demonstrate the potential for classifying by this ap-
proach we calculate plots of rm versus gm for daylight at
three different CCT’s (Fig. 5) for the vegetation and soil
components characterized in Fig. 2. Also shown are two
curves of Eq. 11 with A 5 1.51 (the value for daylight and
the M90 camera’s center frequencies) and F
5 0.75, 1.05. For any surface in an image, as the illumi-
nation changes, the values of rm and gm for each pixel will
move along curves from this family. The soil and vegeta-
tion plots are well represented by the respective curves,
even in the presence of the approximations that we have
made. This shows that, if values measured from pixels
are transformed into rm /gm

1.51 , a simple threshold of ;0.9
could be used to separate these two components, what-
ever the value of the CCT, and in particular independent
of whether the components are in sunlight or shadow.

4. EXPERIMENT
A. Offset in the Camera–Digitizer System
The light intensity in shadows is much less than that in
direct sun. This makes it difficult to avoid saturation of
the camera–digitizer system in the sunny areas while
maintaining reasonable pixel values in the shadows.
Table 2. Scaling Factors for Vegetation, Soil, and Blue Shingle for Daylight with the M90 Camera

Temperature
(K)

sr sg

Vegetation Soil Shingle Vegetation Soil Shingle

4000 2.22 2.28 2.28 1.68 1.66 1.61
7000 0.91 0.91 0.91 0.94 0.94 0.95

24000 0.43 0.43 0.43 0.58 0.59 0.62
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Tominaga32 reduced this problem by using more than one
exposure, each at a different shutter speed; we may adopt
this approach in future research. However, with the pos-
sibility of low pixel values we must ensure that any offset
in the camera–digitizer is compensated for. The output
of the camera is proportional to the integration over time
of the light intensity at the sensor.33,34 Thus, if the light

Fig. 5. rm versus gm calculated for vegetation and soil with the
M90 camera at three CCT’s. Also shown are examples of the
function rm 5 Fgm

1.51 for F 5 0.75, 1.05.
intensity is constant over the exposure time, we can in-
vestigate the offset by changing either the light intensity
or the integration time. As controlling and measuring
the light intensity (while maintaining the same spectral
distribution) is not easy, we choose changing the integra-
tion time. Note that the offset cannot be established by
merely placing the lens cap on. There is a possibility
that the offset will be negative, in which case the digitizer
will give an output of zero.

A white reference target was illuminated in a
controlled-lighting cabinet. The pixel histograms in each
channel were observed and their spread found to be less
than 15% of their mean values. Thus it was decided that
the illumination was reasonably uniform and that the
output of the digitizer could be characterized by the mean
value in each channel. The output was plotted against
the integration time for five values between 100 and
10 000 ms. The lines were straight (r2 . 0.9998 for all
channels), and the offsets were 4, 3, and 3 for the red,
green, and blue channels, respectively, with a maximum
standard error on the offset of 0.62. As the offsets were
found to be positive, placing the lens cap on should give
the same result. This was confirmed by experiment.
The offsets were subtracted from the pixel values in the
following results.
Fig. 6. Images exhibiting sunny and shadow components. Top, sel5; upper middle, sel8; lower middle jtse –000; bottom jsse –000.
Left, original images; middle images of rm /gm

1.51 ; right, classified images.
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B. Classification of Images
Figure 6 shows four images captured on a sunny day.
For the moment we consider the first two (the top, known
as sel5, and the upper middle, known as sel8). Each im-
age has two different surfaces (vegetation and back-
ground) with shadows. In sel5 the vegetation is a cauli-
flower plant with weeds, and the background is soil. In
sel8 the vegetation is a grass lawn and the background is
a cement slab pathway. Shadows in sel5 were cast by
the vegetation and in sel8 by a computer trolley and the
authors.

Ground truth was produced by using the Adobe Photo-
shop package to assist a human operator to classify the
images. The main object of this manual classification
(Fig. 7) was to investigate the distribution of intensities in
the four classes: (1) vegetation in sun, (2) background in
sun, (3) vegetation in shadow, and (4) background in
shadow. Because it was not important to classify every
pixel, difficult (e.g., the thin straggly weeds in sel5) or
doubtful (e.g., in deep shadow) areas were classified as
‘‘don’t know.’’

Figure 6 (middle column) shows the images trans-
formed such that the gray level represents rm /gm

1.51.
The transformation makes the vegetation darker than the
background, as the vegetation is greener. Pixels where
any of the three components (R, G, or B) was zero have
been set to zero to avoid division problems. This was also
done with pixels that show saturation in any of the three
channels; these areas show as black in the transformed
images. It can be seen that the total area in these cat-
egories was extremely small. However, dividing small
numbers by similarly small numbers gives rise to noise in
the transformed image. We partially compensated for
this noise by passing a 5 3 5 median filter over the trans-
formed image. In the sel5 transformed image the area
of shadowed soil is made more apparent by a bright edge
on one side and a dark edge on the other. This effect is
due to a camera aberration, possibly a slight misalign-
ment of the color channels, that gives incorrect colors at
edges. The rest of the shadowed soil is very close in in-
tensity to the soil in sunlight. In the transformed image
of sel8 the shadows have virtually disappeared; they are
visually apparent only from the aberration mentioned
above.

Figure 8 shows the histograms of the various compo-
nents and the totals of the two images. For sel5 the dis-
tributions for the sunny and shadowed parts of the same
surface are visually quite similar. However, there is a
tendency for the shadowed areas to be darker in the
transformed image. This tendency is also apparent (to a
lesser extent) in the background of sel8. Nevertheless,
the histograms of the total transformed images show
clear bimodal structures, making it easy to choose thresh-
olds for classifying the images into vegetation and back-
ground.

If thresholds are chosen at the minima of the troughs
between the two modes (0.92 for sel5 and 0.82 for sel8),
the classifications of Fig. 6 (right) result. In sel5, with
the exception of some very small areas, all the parts ac-
tually classified manually (i.e., other than ‘‘don’t know’’)
have been assigned to the correct components. It is in-
teresting to see how the thresholding of the transformed
image has dealt with the areas manually classified as
‘‘don’t know.’’ For example, the straggly weeds have
been classified in a plausible manner, even when they are
in shadow toward the lower left of the image. Also, there
was a ‘‘don’t know’’ region on the left side of the main veg-
etation area that was so dark in the original image that it
could not be classified manually; it has been thresholded
as ‘‘vegetation.’’ On closer inspection of the image and
with some manually assisted image processing, it was
found that this was indeed a leaf in shadow. A similarly
successful thresholding is seen with sel8. Here there

Fig. 7. Manual classification of images sel5 (left) and sel8
(right). From lightest to darkest: vegetation sun, background
sun, vegetation shade, background shade, ‘‘don’t know.’’

Fig. 8. Histograms of transformed images (rm /gm
1.51). Left,

sel5; right, sel8. Rows from top to bottom: vegetation sun,
vegetation shadow, background sun, background shadow, total.
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Table 3. Mean Value and Spread of the Function rm /gm
1.51 As the Viewing Direction Was Changed

for Images of Tall Wheat Approximately Half in Sun and Half in Shadow

Variable

North East South West

Sun Shadow Sun Shadow Sun Shadow Sun Shadow

Mean 0.41 0.40 0.46 0.42 0.37 0.38 0.40 0.33
Spread 0.31 0.44 0.42 0.35 0.33 0.38 0.53 0.38

Table 4. Spatial Variation of the Mean Value and Spread of the Function rm /gm
1.51 for an Image of Tall

Wheat Approximately Half in Sun and Half in Shadow

Values of F, by Horizonal Region

Vertical Region 1
Mean 0.38 0.34 0.37 xa 0.40 0.35 0.40 0.52
Spread 0.29 0.24 0.30 xa 0.49 0.39 0.38 0.60

Vertical Region 2
Mean 0.30 0.30 0.29 xa 0.39 0.33 0.37 0.33
Spread 0.31 0.30 0.27 xa 0.59 0.38 0.49 0.39

Vertical Region 3
Mean 0.27 0.26 0.30 xa 0.36 0.40 0.36 0.34
Spread 0.25 0.24 0.24 xa 0.53 0.57 0.51 0.38

Vertical Region 4
Mean 0.27 0.34 0.34 0.35 xa 0.45 0.38 0.46
Spread 0.26 0.33 0.29 0.35 xa 0.49 0.45 0.56

a The area contained a mixture of sun and shade so no value is given. The shadow area is to the left of the x and the sunny area to the right.
was a ‘‘don’t know’’ region in the lower shadowed section
toward the middle. This region has been classified as
having a boundary between vegetation and background.
Although this classification is not readily apparent from
the image (the shadowed area is too dark to allow a deci-
sion), it fits in with the prior knowledge that the path
edge was straight and extended from the top of the image
to the bottom.

C. Violation of Basic Assumptions
In Section 2 we stated the assumptions on which our prin-
ciple is based. However, in our particular problem do-
main some of these assumptions will be violated. For ex-
ample, in crops that form a canopy, light transmitted
through and reflected from the leaves will give an illumi-
nation greener than that from a blackbody. Also, the
small areas of specular reflection that occur from a crop
canopy combine to give an apparent reflectance that de-
pends on the relative angles among the Sun, the camera,
and the canopy. The macroscopic effect is known as the
bidirectional reflectance distribution function, which is
influenced by any anisotropy in the canopy.

To check the performance of the function F [Eq. (12)],
where the assumptions are obviously violated, we consid-
ered images of a wheat canopy. First, images were cap-
tured with crop height 0.75 m, camera height 0.85 m
above the top of the crop, and camera angle 55° to the ver-
tical. This gave a field of view of approximately 1.2 m
width at the top of the image, 0.7 m width at the bottom,
and 1.0 m from top to bottom. The wheat was planted in
rows of ;0.22 m spacing, and it was just possible to see
the soil between the rows from a direct overhead view.
The rows were aligned east–west, and the images were
captured with the Sun in a direction just a few degrees
south from east and at ;30° elevation. Four images
were captured with the camera viewing from the north,
east, south, and west respectively. The canopy filled the
whole of each image, and a shadow was cast over approxi-
mately half of the image by use of opaque board.

It is important to realize that we do not expect the
small shadows or shading effects within the crop canopy
to be eliminated in a transformed image, as these are
likely to be influenced by transmission and interreflec-
tions. We still expect to see a textured surface in these
areas, and we may even wish eventually to use the prop-
erties of the texture to help in classification. What we do
hope to remove are large shadows caused, for example, by
vehicles, equipment, and people near the images. For
this to succeed, the value of F must not be influenced too
much by macroscopic effects, such as the bidirectional re-
flectance distribution function, over the extent of the im-
age. Also, F must be similar in sun and shadow in the
same image.

Table 3 lists the value of F for each component of each
image. The mean value and the spread are listed. The
spread is defined as the interval of F that contains 5%–
95% of the values in the F histogram. From an inspec-
tion of the table, taking into account the spread (which il-
lustrates the fine-scale variation in the transformed
canopy image), we see no noticeable change in F caused
either by viewing direction or by shadows. We used one
of the images (west view), where the camera view was
nearly into the Sun, to investigate the spatial variation of
F over the image. As well as spatial variation, the im-
ages contain viewing angle variations (rays from different
parts of the image enter the camera at different angles) of
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approximately 34° to 69° along the vertical center line of
the image. The image was divided into rectangular re-
gions, eight across the image and four down. Table 4
lists values of F in each of the regions. Once again, we
see no consistent difference in F either spatially or be-
tween sun and shadow.

To test whether F can be used to classify crop and soil
we used two images, known as jtse –000 and jsse –000, of
a mixture of crop and soil. jtse –000 is from the crop
used in the experiment described above, viewed from the
southeast, and jsse –000 is from a shorter crop (height ap-
proximately 0.25 m viewed from the same direction. Fig-
ure 6 shows the results. Despite the heavy shadowing,
the value of F in crop or soil is nearly independent of
shadowing. The two images were threshold at the same
value of F (0.82), and the resulting classification is excel-
lent. Even slight gaps in the crop canopy where the soil
is visible (more apparent with the shorter crop) have been
correctly classified. A small area of jtse –000, nearly
halfway up toward the left, has been left unclassified be-
cause the color components are too low for the transfor-
mation to be performed (see Subsection 4.B).

5. CONCLUSIONS
If it is assumed that daylight can be represented by a sim-
plified form of the blackbody law and that the camera fil-
ters are of infinitely narrow bandwidth, then the relation-
ship between red and green band ratios of image pixels as
the blackbody temperature changes is a simple power
law. The exponent A in the relationship is independent
of the surface reflectivity and can be precalculated from
the camera filter characteristics.

When the CIE daylight model is used instead of the ap-
proximate blackbody, and finite bandwidths for the cam-
era are assumed, the power law still holds with a slight
change to the exponent. The revised value of the expo-
nent can be precalculated from the CIE daylight model
and the camera filter characteristics. This means that
images can be transformed to a map of rm /gm

A and then
thresholded to yield a shadow-independent classification.

The results for two outdoor images show that the gray-
level distributions of the pixels in the transformed images
are very similar for a given component whether or not it is
in shadow. This permits bimodal histograms to be
formed from which thresholds can easily be selected to
give good classifications.

APPENDIX A: SYMBOLS USED
I Suffix used to denote color channel, R, G, or B
m Suffix used to denote conditions at a measured

value
ref Suffix used to denote conditions at a reference

value
A Exponent in relationship between red and green

band ratios
CI Camera output from channel I
c1 ,c2 Constants in Planck’s law
E Spectral power distribution of the illumination
F Ratio of rm to gm
A at a pixel

GI Gain factor for channel I
gI Factor depending on GI and the shape of the

camera filter
g Band ratio G/B
Mel Spectral radiant exitance of a blackbody radiator
n Number of components to be classified in a scene
r Band ratio R/B
S Sensor spectral sensitivity function
sg Scaling factor relating g for different illumina-

tion conditions
sr Scaling factor relating r for different illumina-

tion conditions
T Color temperature of the illuminant or absolute

temperature of a blackbody
l Wavelength
lc Wavelength at center frequency of camera filter
r Spectral reflectance function of the surface
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