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Abstract

Bayesian approach is based on subjective interpretation of probability. It views probability as a 

degree of belief concerning an uncertainty. It also regards an unknown parameter as an 

uncertainty on which a degree of belief can be expressed and then revised based on sample 

information. A parameter is viewed as a random variable which prior to sample evidence is
/

assigned a prior distribution. When sample evidence is obtained, the prior distribution is revised 

and posterior distribution obtained.

The Bayesian approach also uses data to update the uncertainty distribution for unknown 

parameters then draw conclusions using the updated distributions. Bayesian inferences help in 

decision making such that the gains made out of a study are maximized and the risks 

minimized. Data is used to generate posterior distribution depending on assumed prior 

distribution. This is done in terms of a likelihood function corresponding to the observed data. 

There are many situations especially in business, industry and technology where a careful 

analysis of a decision making is beneficial.

In this project, the data analyzed was collected from a pig breeding research centre. Various 

factors affecting the weights of pigs were determined by a regression equation after computing 

various Bayesian point estimates.

Keywords

Parameters, Bayesian approach, minimum and maximum risk, posterior and priori distribution, 

likelihood function, regression, Bayesian point estimate.
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CHAPTER 1

INTRODUCTION

1.1 Statistical Decision Theory

In most practical problems, a decision maker should be able to make a choice from among, 

several different acts or subjects to a wide variety of states or conditions over which he or she 

has no control. Classical decision procedures do not recognize the validity of any information 

pertaining to a decision that does not exist in the form of empirical data and results from a

process of sampling. ,

A procedure for using data as an aid to decision making will involve a set of instructions that 

assign one action to a possible value of dataset. In any study there are consequences of 

making wrong decisions. Bayesian decision making is based on data from which optimal 

decisions can be made. It provides a model for decision making in situations that involve 

multiple states of a parameter or nature. It also incorporates economic consequences of taking 

certain decisions especially where a study is done on an industrial process.

Bayesian decision theory allows use of information for prior or sampling experimentation, 

whether the decision is in the form of empirical data or is subject to assessment by the decision 

maker. In any organization the main function of the executive is to make decisions. The 

decisions can be made on new products to be introduced in the market, the number of units to 

be produced and how the products will be marketed. The decision theory is also applied in 

financial management in order to make decisions that will minimize costs and maximize profits.

A decision may be needed where two or more alternative courses of action are available and

where only one must be taken. If there’s only one course available, then the line of action is

clear. The line of action is one with minimal time wastage and minimal cost as long as the action

taken is the best among several others which may be available.
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Uncertainty may occur when the outcome of an action is not known in advance, for example 

when there are many possible outcomes of an event one cannot predict with certainty what 

would happen if a particular line of action is taken. Probability is used to identify the best line of

action.

Sometimes decisions have to be made under risk and uncertainty. When the state of nature is 

known and objective or empirical data is available so that the decision maker can use this data 

to assign probabilities to various states of nature; then the decision is said to have been made 

under Risk. When the state is unknown and there is no objective information on which 

probabilities can be based, then the decision is said to have been made under uncertainty.

1.2 Review of Bayes Theorem

To make use of Bayes Principle in statistical decision problems, the decision maker must be 

able to assign probabilities to the states of nature. Suppose a researcher is conducting an 

experiment in which he is aware that the result of interest will be affected by any of the existing 

alternatives say f31t /?2,..., /?n. He may not be certain about which one of these alternatives 

will ultimately prevail; he may have some information from which he can make subjective 

judgments concerning probabilities in n alternatives. Thus, he assigns probabilities P(fi -j), 

P('/?2),--.,P(/?n) to the alternatives before obtaining experimental evidence. Since the 

probabilities primarily reflect the researcher’s subjective judgment or degree of belief they 

constitute prior probabilities.

The researcher can obtain experimental evidence by collecting data from a given study. Let us 

denote this-data by A, also let the data be observed under a specific alternative /? j . The 

conditional probability P(A|B) may be computed. This will allow the determination of the 

probability of an alternative /?, given the experimental evidence A.
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The likelihood function P( /?j | A) represents the likelihood of a sample result /? ■] given A. The 

posterior distribution is obtained when prior information is combined with sample information 

and the result revised using a set of data. This combination is done according to Bayes

Theorem.

Since information concerning random variables can be periodically revised as additional sample 

evidences are obtained, the current posterior distributions become the future prior distribution.

Let PY( y ) and fY( y )) be the prior probability or probability density functions of Y and f( x | y ) be 

the likelihood function. The posterior probability of Y is given by the sample evidence x is given

as follows:

p ( j | x )  = f ( * | _ y ) P y b )  ( 1 .2 .1 )

£ f  ( X  I y)Py

Y

for a discrete case. Similarly, for a continuous case we obtain

' H y R i 1 L2-2)

I  f ( x  I v) fy(y)dy

The following example illustrates the Bayes theorem in a study to establish the relationship 

between smoking and lung cancer. Scientists in a large medical center suspected that of all the 

smokers who were suspected to have lung cancer, 90% did, while only 5% of the non-smokers 

who were suspected to have lung cancer did. The proportion of smokers was 0.45. We can use
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Bayes theorem to calculate the probability that a lung cancer patient who was selected by 

chance was a smoker as follows.

Let k, and k2be events that a patient is a smoker or a non-smoker respectively.

Let c be the event that a patient has lung cancer, also let k, and k2are the alternatives that may

prevail.

Their prior probabilities are 0.45 and 0.55 respectively. Whether a patient has lung cancer or 

not he or she may be affected by whichever of the two alternatives. The conditional probability 

of c given k, is

P(c| k0  = 0.9

And that of c given k2 is

P(c| k2) = 0.05

We wish to determine the posterior probability of selecting a smoker.

For a discrete case we have the following computation

P (c lk , l=  (045)(09)______________
(0.45)(0.9) + (0.55)(0.05) »

= 0.9364

Therefore the probability that a randomly selected lung cancer patient is a smoker is 0.9364
I

1.3 Prior distribution

The prior distribution has two consequences on the unknown parameter, first the probability 

density function will often contain information about the unknown parameter to the extent that 

the information is correct thus sharpening the inference about the parameter. Second, since the
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unknown parameter is a random variable, the method to be used for analysis can be greatly

clarified.

Essentially, prior distributions can be interpreted as frequency distributions. They also have 

normative and objective representation of what is rational to believe about a parameter usually 

in a situation of ignorance and as a subjective measure of what a particular individual actually

believes. »

Sometimes the parameter value may be generated by a stable physical random mechanism 

whose properties are either known or can be inferred by analysis of suitable data, for example if 

the parameter is a measure of the properties of a batch of material in an individual inspection 

problem. Observations on previous batches allow the estimation of prior distribution.

If the relative frequency of occurrence of the states of nature is available prior to obtaining any 

observations, prior probabilities can be used to weigh the average loss for each state to obtain 

an expected loss for each strategy

1.4 Posterior distribution

The posterior distributions are influenced by the correctness of the prior and data collected.

They are usually convenient to use because specifications have to be made. For posterior 

distributions that are nearly normal, the mean and standard deviation can be used for analysis.

A transformation of the parameter may be required if it is sufficiently simple. When parameters 

are multidimensional, the mean and covariance matrix can be used if the posterior distributions 

are approximately normal.

If the parameter is usually uni-dimensional and the posterior distribution unimodal, the upper 

and lower confidence limits are constructed to be used in analysis.
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1.5 The Loss function

The success of a given function is the accomplishment of its objective. The loss function 

measures the penalty that arises from taking a particular action depending on a given decision 

function. The Bayesian approach considers the loss function because the posterior density 

cannot be used to determine a point estimate of a given parameter. The loss function is a non 

negative function and is a function of a random parameter.

Let te( 9) be the prior density of a random parameter 9 . Also let L( x ( _ x |0) be the likelihood 

function of a random sample of n variables.

Let f(0| x ) be the posterior density and let / (d, 0) be the loss function. The Bayes estimate for

6 say

T = U( x 11 x , x ) is one in which the expectation of the loss function given by

j  / (d, B)f{6\x)6G 

0

( 1 .5 .1 )

is a minimum.

i
To determine the Bayes estimator, one must specify a loss function. Specification is difficult 

because economic consequences are not easily measurable. For many applied problems a 

reasonable argument can be made using a loss function in the form

/ (>d, 6) = (d - 6 f  which gives the squared error or quadratic loss function. For a

quadratic loss function, the Bayes estimate of 9 is the posterior expectation E(0| x ) of 9.

6



Risk function

In a decision theory and estimation theory, the expected value of the loss function gives the 

Risk function which is denoted by R(0, 5 ). The main objective of a decision maker is to 

minimize the risk function. For a decision function to exist, the risk must be greater than zero. If 

prior distribution for 9 is unknown then the risk function automatically becomes a random

variable. The expected value of the risk function measures the overall effectiveness of the 

decision function.

1.6 Bayes solutions of a statistical decision problem 

against a specified priori distribution

Suppose a value 6 occurs in accordance with some apriori probability function

q(0), 9 = 01 , . . 0n. Then for a given decision function d in the available class D, the risk

function R(0,£ ) would be averaged over 6 with respect to a prior distribution q(0) to yield the

average risk r(q,d) as follows:

n

r(q ,d ) = X  r(0i, d) q(0i) (1.6 .1)
i= l

n n
( 1.6 .2 )

Where

r (q.d*) <r(q,d) (1.6.3)

A decision function which minimizes r (q ,d ) is the Bayes solution relative to a particular priori

distribution q(0)
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Since q(0j) > 0 i = and

q(0T)+...+ q(0n) = 1 then

q(0i)... q(0n) can be expressed as a point on the (n-1) dimensional simplex G in the Euclidean 

space Rn which is spanned by n points (1,0,...,0),(0,1

We can then minimize the risk function as follows
t

r(q ,d )= X  i ;  /( B\, d) (xt) Q(G\ I X,) pq(x,) (1.6.4)
t=l i=l

Where

Q (0i I *0 =
pq( * t  I 0>) q (6»i)

P q ( * t )

(1.6.5)

And

P q ( * t ) = Z  Pq(xt I 6>i) q((9i)
( 1.6 .6)

i=l

Q( 9j  I X\ j  is a posterior probability that 0 = 0jand X  — given a priori distribution C\(9\).

For a given q(0j) and t, let

£  / ( 0 i , d * ) ( x t) Q ( 0 i | * t )
i=l

for all points ( / (  9\, d )  ( X{ ) , . . . ,  / (  9n, d )  ( X t))  in F for a fixed t.

For a fixed t, (Q(9\ | ^ t ) ) . - - - ,  Q(#n | -^t) is a point in G. Thus the sequence of points

x 1f x n in the sample space R determines a sequence of vectors in F and a 

corresponding sequence in G.

8



If F is extended to include vectors  ̂( ^1> d(-^t )  Q($1 I • •« l ( $n> d (-^ t) Q (^n  I -^t) 

for each t and for all d in D, and also the minimizing vector

/( 01f d*(Xt) Q(9, | /( Qn, d*(Xt) Q(0n | * t) (1.6.7)

for each t, then E and hence D are closed and provide a minimum such that D will contain at 

least one d* so that the equation below is obtained.

X X  i ( e i, d*(xt) Q(0i | Xt) pq(xt) < 7(q,d) (1.6.8)
t= l i= l

For any d in D Each d* provides a Bayes solution for each of the decision problem against a 

priori distribution q(0)

9



1.7 Literature Review

Inferences need to be made by combining information provided by prior probabilities with that 

given sample data. The combination is achieved by repeated use of Bayes theorem and the 

final inferences expressed by the posterior probabilities. This concept was outlined by Lindley 

(1972) on page xi of his research work. He further described a two sided test of a simple
t

hypothesis testing. He discovered that opinions differed in appropriate form and difficulties in 

interpretation arose. He also studied that if the prior distribution is sensibly constant over a given 

range of 6 for which the likelihood function is obtained and not too large over that range for

which the likelihood function is small, then the posterior distribution is approximately equal to the
\

normalized likelihood function.

Jeffrey (1961) in Chapter 5 of his book explains that for effective hypothesis testing, prior 

information of the test statistic should be in two parts; a prior discrete probability and posterior. 

He proposed that in the absence of any prior knowledge, the posterior priori should be divided 

equally. He also discussed the Bayes-Laplace’s principle of insufficient reason which stated that 

“...if there is no reason to believe one hypothesis rather than another, the probabilities obtained 

are equal, to say that the probabilities are equal is equal to have no good ground for choosing 

between alternatives.”

Brown L (1966) discusses the admissibility of invariant estimators of one or more location 

parameters.

James W and Stein C (1961) analyzed estimation procedures using the quadratic loss. The 

theory of statistical decision functions was initiated and developed by Wald (1950). He also 

showed that under general conditions the set of admissible decision functions forms a complete 

class and that the set of all Bayes solutions considered later is complete. This theory followed 

the development of the theory of likelihood functions developed by Von Neumann and 

Morganstern (1947).
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Hard (1986c, 1987a) on studying Bayesian analysis of disease prevalence discovered that the 

aims of screening and estimation of prevalence are different, so a threshold must be chosen 

with a particular aim, for prevalence estimation the aim was to minimize variance whereas with 

screening the aim was to maximize accuracy. He investigated the choice of threshold separately 

for each aim using a different sample scheme.

Geisser (1982) reviewed the Bayesian approach to discriminant analysis. His approach was 

based on the concept of predictive density of the likelihood function.

According to Aitchison and Dunsmore (1975) in Chapter 11 of his work, the predictive approach 

of prior probabilities was first explicitly presented by Geisser (1964) for multivariate normal 

group conditional distributions. Dunsmore (1966) gave similar results on studying relatively large 

samples and estimative approaches to posterior probabilities. However, for small samples there 

can be dramatic differences. Aitchison and Kay (1975) infer that large samples and small 

samples are compared under normal models, the estimates produced by the estimative 

approach are corrected for bias, and then the differences between the approaches considerably 

reduced.

Rao C.R (1968) discussed the prepositions characterizing complete and minimal classes of 

decision rules. He suggested that every admissible rule is a Bayes rule with some prior 

distribution. He also found out that if the loss vector corresponds to a rule, then the totality of 

vectors varies until all its components are negative.

The 2008 Bayesian applications modeling workshop identified that in constructing a Bayesian 

Model/ probabilistic information is required for establishing the numerical-parameters of the 

model. The probabilistic information judgments are known to be biased as a result of heuristics 

human use of assessing probabilities.

Bayesian and Non-Bayesian approaches were studied by Patrick Lam (1981). He found that in 

Non-Bayesian approach parameters are fixed and their true values unknown, objective notion of



probability is based on sampling and large sample properties have asymptotic approximations.

In Bayesian approach, parameters are random variables with distributions attached to them. 

Subjective notion of probability (prior) combined with data does not require large sample

approximations.

Lindsay and Smith (1972) studied the technical property that allows one to treat parameters as 

random variables ̂ called exchangeability of the observation units. International Association of

Bayesian Analysis (ISBA) 1992 was founded to promote the development and application of
»

Bayesian Analysis in the solution of theoretical and applied problems in science and industry.

DeGroot (1970) gave a careful account of the axiomatic basis of subjective probability as well as

' . . .  
the general development linked to decision making. He discussed of parameters in multivariate

models using discriminant analysis.

Alba and Van Ryzin (1979a) introduced an approach to outlier detection based on non standard 

empirical Bayes framework. The model used considered that out of a given sample of size n, 

(n-k) of the random variables had equal mean and variance while the remaining k random 

variables had the same mean but larger variance.

Robins considered the compound decision problem where a statistician was interested in 

minimizing the overall frequency of errors in n identical but unrelated decision problems,

n values were considered as a sample of n independent observations on a single random 

variable with a fixed priori distribution.
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1.8 Problem statement

One of the most important tasks a researcher faces is proper analysis of data. Sometimes

subjective judgment prevails leading to bias while making inferences in a given study. There are

situations where unknown parameters cannot be realistically determined, for example a

manufacturing process is likely to fluctuate depending on a number of factors like the efficiency
»

of machines, type of raw materials that are used in the production process among others. 

Different tests can be performed on a given set of numerical data in order to obtain more 

reliable results that can be used in decision making and quality control especially in an industrial 

process. Companies employ different strategies to reduce the occurrence of errors in the daily

production.

Most firms and companies are affected by poor decision making sometimes leading to loss of 

revenues. The Bayesian approach has been greatly favored in cases where there are many 

factors affecting an outcome and a decision has to be made on a fixed quantity.

The present research work has concentrated on how the weight of a given species of a pig is 

affected by the levels of calcium, carbohydrates and proteins in its blood. The data was 

collected from a breeding research centre. Bayes multiple regression has been used to model 

the relationship between the three variables and formulate a regression equation for predicting 

future weights based on the three predictor variables.

13



1.9 Aims and Objectives

i. To use Bayesian inference and multiple regression to model the relationship 

between the predictor and response variables that determine the weight of a 

certain species o f a pig.

ii. To discuss how prior and posterior distributions affect parameter estimation in 

Bayesian inferencing

14



CHAPTER 2

PROBLEM IDENTIFICATION AND DECISION RULES

2.1 Introduction

Bayes rule requires perfect knowledge of a priori distribution which can be assumed in practice. 

Therefore even if extensive past experience is available one would in most cases use Bayes
l

rule for a slightly slipped distribution from a true priori distribution. We shall investigate the 

problem of delivering allocation procedures if the prior distribution is assumed to be known. If 

the prior distribution depends on some unknown parameter an adaptive two stage allocation 

procedure will be proposed, that is an observation is made after each observation or group of 

observations.

A decision function is a function defined on a sample space whose range consists of actions to 

be taken during a research or an experiment. A decision function with the most desired 

properties shall be selected.

The chapter also deals with Bayesian estimation, convergence of Bayes estimation and 

comparison of Bayes estimates with other estimates.

2.2 Randomized and Non-Randomized decision Rules

A non-randomized decision rule assigns to each possible value of x e X one of these two 

decisions and therefore divides the sample space into two corresponding regions &J0and C0V If 

x falls into CO0 a given hypothesis is accepted, otherwise it is rejected. therefore the 

region of acceptance and COy the region of rejection.

When performing a test one may arrive at the correct decision. This may not always be the case 

because sometimes type I and type //errors occur.

15



A randomized test selects among the decisions, rejection or acceptance certain probabilities 

that depend on x . The probabilities are denoted by (/>( x ) and 1 - (j>{ x ) respectively. If this 

value of x is taken, a random experiment is performed with two possible outcomes R or R . If in

the experiment, R occurs the hypothesis is rejected with probability (j)(x ) otherwise it is 

accepted.

A randomized test is therefore completely characterized by the critical function (j) which varies
l

from 0 to 1 for all values ofx .

Statistical inference is concerned with using probability concepts to deal with uncertainty in
»

decision making. It involves selecting and using a sample statistic to draw inference about a 

parameter. It also involves hypothesis testing and estimation. A hypothesis is a supposition 

made as a basis for reasoning. It also aims at arriving at conclusions or decisions concerning 

parameters of a population on the basis of information contained in a sample. We thus make a 

statistical inference when we estimate.

Problem of statistical inferences have been classified into problems of estimation and problems 

testing hypothesis.

Problem of estimation require that we provide values for unknown parameters of distributions 

while hypothesis testing deals with reaching conclusion or decisions concern assumed values of 

parameters.

Statistical estimation is concerned with the methods by which the population characteristics are
I

estimated from sample information. There are two types of estimates, point estimates and 

interval estimates.

A point estimate is a single number which is used as an estimate of the unknown population 

parameter. For this case, a random sample of n observations x u x 2 x nfrom a population 

f  [x , 6) is selected.

16



Suppose ( *  1f ...,jcn) is an n-dimensional random variable from a cumulative distribution 

function Fn ( jc ...,;cn; 0) where 0 is a one-dimensional real parameter with a parameter space

Q.

Let 9 (x 1t .... Xn) or more briefly 9 be a function of {x u . . . ,x n) where 9 itself is a random

variable. If the observed value of 9 corresponding to the observed value of ( *  1f ...,x n) is used 
»

for 0O. the true value of 0. The random variable 9 is called a point estimate or estimator for 0O.

If an estimator 9 converges in a probability to 0oand n— ► oo it is constitutes a consistent

estimator for 0O. If 6 is an unbiased estimator for 0O having finite variance and no other
1

unbiased has a smaller variance, then 6 is an efficient estimator of 0O.

If 9 is a statistic such that for any other statistic# the distribution of the conditional random 

variable 9 \ 9 does not depend on 0othen it is a sufficient value of 0O.

An interval estimate of a population parameter is a statement of two variables between which it 

is estimated that the parameter lies. It makes use of two end points which are functions of 

observed random variables.

Suppose ( jc ........x n) is a random variable having cumulative distribution function Fn ( x  1f

...,xn:0). Let 9_{x 1t .... jcn), 9{x,, be two functions (random variables) from a sample

of elements such that 9 < 9 . If the sample 0 and 9 can be chosen so that for a given value Y

p(0<9<9 | < 9) = Y

Where

p( 9 < 9 <  9 \ 0 ) = Y denotes the indicated probability Fn(x  1, . . . ,xn.6) then 

(0 #) is called a 100Y % confidence interval for 0and 0 and 0 are the lower and upper

17



confidence limits for 0 . Y is called the confidence coefficient. (6 6)  is a two dimensional

random variable such that the probability is Y and the interval (6 0 ) contains the true value of

0 Fn( x 1...... x n:6).

2.3 Construction of Bayes Decision functions

Suppose that for a given probability density function it is desired that a decision function 
5 which minimizes the risk function /  ( x , 8 ) is to be computed

There are three factors supporting the use of Bayes Decision Rule as a reasonable prescription 
for action. These factors are:

(i) It has formal optimality in utility theorem terms.

(ii) It has inevitable inadmissibility -  a decision rule 8 ( x ) is said to be admissible if there’s

no other decision rule which dominates it.

(iii) It has intuitive appeal when tangible prior information about 6 is available.

Minimax Decision Rules

In the absence of a specified prior distribution for 6 , a principle is sometimes advanced for 

singling out a decision rule, which consists of choosing that decision rule for which the 

maximum risk over Q is as small as possible. This is referred to as minimax decision rule or 

minimax principle. The minimax principle considers the expected loss when population 

distribution is fixed, a function of a sample random variable or a function of the estimator. The 

expected loss should be as small as possible.

2.4 Comparison of Bayes Estimates with other Estimates
Under very weak restrictions, Bayes estimates and their limits form a class. The weak function 

holds, thus it should be possible to exhibit prior measures or sequences leading to any and all 

risk functions obtained by other methods like the maximum likelihood estimation and maximum 

probability estimation. If the Bayes estimate of a population mean with respect to a Dirichlet 

prior with parameter x has given rise to the interpretation that a  (X) is the prior sample size and 

if a (X) is made to tend to zero, then the Bayes estimate mathematically converges to the 

classical estimator called the sample mean.

18



2.5 Convergence of Bayes Estimates

We shall be mainly interested in the limits of the Bayes estimates of various functions say

^(p) as a a  (X)—>  0.

where a  (X) is the prior sample size

We will therefore make the following assumptions

a r(X )—► 0 and Sup a r{ A ) - a 0(A) 
A

0 (2.5.1)

Sup denotes the supremum of A.
A

Where a  0 is the probability measure in p.

We will also be interested in /? a special class of functions ^ (p ) as defined below. 

Let g be a permutation invariant measurable function from Xk into R1 such that

f *  1 > *  2> • • • i x  1 »■ • • > x  m>* • • > x  m) d  a ( x  1 )>■ • m$ C t  ( x  m) < oo (2.5.2)

For all possible combinations of arguments ( x 1 , . . . ,  x -j, x 2 ,. ■ •, x 1 , . . . ,  x m, ■ ■ •, x. m) from all 

distinct (m=k) to all identical (m=1). g vanishes whenever any two co-ordinates are equal and 

the condition (2.5.2) reduces to the simple condition

*k) d- (jr1),...,da (xk) < CO (2.5.3)

We shall define a parametric function

^9(P)= g(-*1.. *fln) dp(jc-,)...dp(jck) (2.5.4)

for all those p's for which it exists. Let p have D a as the prior distribution and let ( x -i, .. .  x n) 

be a sample from p. Under further assumptions concerning the second movement of g under 

a * , the Bayes estimate of (with respect to the squared error loss) of ^ g(p) based on this

sample is
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, a ~  E D a  ( ^ g (p ) )  |

A n

and based on no samples is

a  0

^ g ,  a ~  E  D a  ( ^ g ( P ) )
i

Since the conditional distribution of p given ( x 1 ,... *  n) is D a  +nFn, 

where Fn is the empirical distribution function of (x  1 ,— x n) we have

a  n a  0

(b = 6r  g, a T g, a  + nFn

Suppose that we substitute a -  a  r where {a  r } satisfies (2.6.1

From the results we obtain

Da  r S y0 weakly

and

D «+nFn -------------------►DnFn as r ----------► 00

The main result shows the convergence of Bayes estimates

a  0

and , & r + nFn

(2.5.5)

(2.5.6)

(2.5.7)

(2.5.8)

(2.5.9)
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2. 6 Bayes Point estimates

There may be situations where it may be convenient to choose a single value as an estimate of 

9. The value with the highest posterior probability is thus chosen. Consequently a Bayesian

Point estimate is defined as the quantity 0 ( x ) which maximizes n(9 \x).  The highest of the 

posterior distribution is mostly preferred in choosing the value of 9 . The estimated not 

invariant with respect to the transformations in the parameter space.

2.7 Bayesian confidence Regions
*

A more informative n( 9 \ x ) for practical purposes is obtained by stating that 9 lies in some 

region 0 with a prescribed probability. The region say

Sa ( x ) is a 100(1 - x)% Bayesian confidence region for 9 if

{  n ( 0 \ x )  =  1 - a  (2 .7 .1 )

Sa(jc)

Sr/ ( jc ) can be chosen to satisfy 2.5.1

1 - Ct is called the confidence interval. We must always ensure that

P [ 0  6 S a ( x ) ] > 1 - a ; (2 .7 .2 )

1 - OC is called the confidence level which occurs in cases where 9 has a discrete

component.

We shall choose a small value of Ct. For example 90%, 95%, 99% among confidence although 

the chance is arbitrary.

If n (0 | x ) is unimodal, a finite interval for S a  ( x ) is obtained. Here S a  ( x ) takes the form 

a ( x ) >@a( x ) ) where
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(2.7.3)J 7 7 ( 0 | x )  =  1 -  a

0_a ( X)

6«<*>

\

tt(6\x ) > n(e'\x) (2.7.4)

for any

0  e s « (* ) ,  (2.7.5)
t

The Bayesian confidence region may be graphically represented as follows:

The interval [ §  a  ( x ). @ a  ( x  )] on the graph represents the relative likelihood that a true 

value 6 of lies in the region prior to the observations of any 77 ( 0  | x ).
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2.8 Empirical Bayes methods

This was studied by Robbins and Maritz (1970). Maritz broadly defines the empirical Bayes

approach as follows

“It may be regarded as part of the development towards more effective utilization of all 

relevant data in statistical analysis. Its field of application Is expected to lie where there’s no 

conceptual difficulty in postulating the existence of a prior distribution that is capable of a 

frequency interpretation and where data suitable for estimation of the prior distribution may be

accumulated.”

Empirical Bayes approach often employs classical methods of estimation for finding estimates, 

for example the prior distribution based on prior sample data. To illustrate Bayes empirical 

procedure we shall consider estimating the mean of a possible distribution. With a quadratic 

loss structure, the optimal point estimator of 0 is the mean of the posterior distribution. That is 

we would estimate 6 by

(2 .8 .1)

Q Q

Where T1 ( 0 ) is the prior probability distribution.

p,> ( a- ) is the probability density function of the random variable a depending on 0

Q is the parameter space.

0 is the mean distribution

Applying (2.8.1) on the poisson distribution, then for a single X

p* (x ) - 6 0 X | A ! (2 .8 .2)

and

6 „ ( x )  = ( X  +  1 ) <p„  ( X  + 1 ) 1  </>n ( X ) (2.8.3)
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Where

Q X \ O

Which is the likelihood function smoothened by the prior distribution 0 m

If the prior distribution was known we would have in (2.8.2) a reasonable estimate of 9.

In typical empirical Bayes situation we assume that we have, in addition to the current 

observations when the parameter value 9 is a set of previous observations * 1 , * 2» • • •» x n 

obtained when the parameter values were 9 1t 9 9 n .

0, arises as a random sample from the prior distribution TT ( 0  ) and x . ( x , = i .....n) are

independent sample observations.

Suppose in a given set of data an observation i occurs /  n (i) times (i = 0,1,...) the

X ,may be regarded as a random sample from the smoothened likelihood function 2.8.3 since 

are assumed to arise at random from n{ 0 ). Thus a simple classical estimate (/) „ (i) is given

by

/ „ (i) | (n+1) for i * * or [ 1 + f n (x) |(n + 1) ] for i = x (2.8.5)

Efficiency or optimality of such an empirical Bayes procedure are complicated since they must 

take into account possible variations in the parameter values as well as sampling fluctuations in 

<j) n (n, x ) arising from different sets of previous data which might be encountered.

The Bayes point estimate is then estimated by

fln(n, X) = (x + 1) fn[ 1 + ] (2.8.6)
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2.9 Bayes strategy

For multivariate estimation of parameters many characteristics of phenomenon shall be 

observed by say p. Let the characteristics collected correspond to a p x 1 vector 2-. Furthermore 

U, different populations shall be given from which the z vectors z originate. Let there be U 

classes CO t CO u. Thus each vector z has to be allocated to one of these classes.

Let the occurrence of the class CO s be random which implies that CO has to be considered as a 

discrete random variable whose values CO, have probabilities p( CO,), hence p( CO,) is the 

probability density function of CO,. Furthermore, let z be a random vector. It’s conditional 

density function given that class CO j occurs is denoted by p(z-1 CO |).

Illustration

If the vector z contains the coordinates of grid points of capital letters into which the letters have 

been divided for an automated reading, then z has to be assigned to one of the 26 Classes 

CO j. The letter E appears in English more than the letter F. The probability p( CO )  of the 

occurrence of different classes therefore varies. The conditional density function p(z | CO )  of 

certain arrangements of grid points also varies as a function of the letters. For example, 

suppose the density function of the configuration which expresses the letter D, is greater for the 

letters C, E and G than for the letters F, D and J.

If p( CO |) and p(z | CO () are known and if a vector z of characteristics has been observed, then 

ith reference to Bayes formula for a discrete case we obtain

p(z |<»i )  p( CO i)
p ( f f l j | z ) = ------------------------------------ fori t ( 1 .....u) (2.9.1)

Z  P(Z | COj) p( CO j) 
j = l
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Intuitively one will assign the vector z to the class CO for which p( CO , | z) will be a minimum . 

With a decision, a loss may be connected if ei denotes the decision for the class CO -t based on 

the vector z characteristics, then the loss k(ej  | CO j) will be assumed to occur. The loss will be 

small for a correct decision and large for a wrong decision. Often one chooses the simple loss

function.

k (e , |« i)  = {

0 for i = j 

c for i * j

i,j e (1.....u)

(2.9.2)

which imposes no loss for the correct classification and equal loss c for a wrong classification.
t

The expected value R(e, | z) of the loss decision for decision Q\ will be computed.

R(ei I 2) = £  k ( e ,K )  p( ® j|z)  (2.9.3)

j = l

R(G| | z )  is called the conditional risk.

The decision based Gj on the vector Z  of the characteristics establish the decision rule 6(Z),

which for every vector Z  taken on one of the u values Gj , . . . ,  Gu, the overall risk R to be 
expected for applying the decision rule R(z) follows with the density function given by the 
equation below

p ( z )  =  X  k ( e i | ® j )  P( « j | 2 )

j = l

R is expressed as follows
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oo oo

R = R  (e (z ) |  z )  p (z )d  z

.00 .oo

(2.9.5)

The Bayes strategy now consists of chooses a decision rule such that the risk R attains a 

minimum. Since R (e (^ ) | 1 ) and p ( z )  are positive, the loss function is also positive. A

minimum of R follows from R  (6 (z ) |  Z  ) which is obtained with (2.9.2) and (2.9.3) by

R (e , |Z ) = E CP( ® j l z ) = C(1 '  P( ® J ) z ) (2 -9 -6 )
j * 1

The expression attains a minimum if the posterior probability p ( CO j | z )  of the class CO 
has a maximum. Hence the Bayes classification follows with:

Decide for CO \ with i e , if p (  C0 \ | z )  > p ( COj | z )

For all j e { 1 . , u)  with i *  j
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CHAPTER 3

Multiple Regression; A Bayesian inference 

3.1 Introduction
In this chapter e shall fit data to a probability model and summarize the results by a probability 

distribution on the parameters of the model and on the unobserved quantities such as 

predictions for new observations. We shall also investigate and model the relationship between 

variables using multiple regressions. Bayesian data analysis requires knowledge about an 

underlying scientific problem and the data collection process. Bayesian inference is based on 

two equations from the Bayes theorem. In these equations as presented below 9 is a vector of 

m continuous parameters, y is a vector of n continuous observations and f.g.h.k.p.r and t are 

probability density functions. The first equation is the conditional density of 0 given y.

where k(y ,0) is the joint density of y1t y2i...,yn and 01f 02, • - -, 9m- Using equation (1.2.1) we can 

write k(y, 9) = f(y| 9)p(0) , therefore (3.1.1) becomes

The marginal density of h(0)can be obtained by integrating 0 out of k(y, 0) -  f(y| 0)p(0) so that

(3 1.2) becomes

g(0|y)=
h(y)

(3.1.1)

g  (e | y) =
h(y)

(3.1.2)

(3.1.3)
00 ooJ... J  f(y| e)p(0)d(e)

= cf(y| 9)p(6)

d (0) = d0-i.....d0m
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'he definite integral in (3 .1 .3 ) can be replaced by a constant c after integration because it no 

onger involves the random vector 9. C is chosen such that the posterior density integrates to 1 

;hus it’s called a normalizing constant.

Rearranging (3.1.2) and the joint density function f (y| 0) of the data as the likelihood function

L(0|y), we obtain

g(6|y) = cp(9)L(6|y ) (3.1.4)

The second general equation fro Bayesian inference shall consider a future observation y0. In 

Bayesian approach, y0 is not independent of y because its density depends on 0. Since y0 

and 8 are jo intly distributed, the posterior predictive density of y0 given y is obtained by 

integrating 9 out of the joint conditional density of y0 and 9 given y as shown below.

oo oo

r(y0|y)=  I J t(y°- ely)d(e)
_oo _oo

= J...J q(yo|e,y)g(0|y)d(0) (315)

-OO -OO

where q(y0| 9 ,y) is the conditional density function of the sampling distribution for a future 

observation y0. Since y0 is dependent on y only through 0, q(y0| Q.y) simplifies and we

Obtain the following equation.

oo oo

r(y0|y) = ’ J  J" q(y°’ ely)9(0ly)d(0) ‘
-OO -OO
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3.2 A Bayesian Multiple Regression Model
Bayesian m u ltip le  re g re s s io n  m ode ls  inc ludes  spec ifica tion s  o f the p rio r d is tr ibu tions  for 

parameters. P rio r sp e c ific a tio n  m a y  be con juga te  o r d iffuse . If prior d is tr ib u tio n s  are 

formulated w ith  ve ry  s m a ll va ria n ce s  so th a t the  p rio r know ledge  s trong ly  in fluence s  

posterior d is tr ibu tion  o f th e  pa ram e te rs  in the  m odel, then th e y  are ca lled  in fo rm ative  

priors. On the  o th e r h a n d  if the prio rs  are  fo rm u la ted  using la rge  variances th e y  m ay 

have very little  e ffe c t on the  pos te rio r d is tribu tions  thus they  are called d iffuse  priors.

3.2.1 A Bayesian multiple Regression model with a conjugate
p r io r
Bayesian models can be parameterized using the precision (X) rather than variance 8

Where

T z l
8  2

Using the parameterization, let

YIP. T be Nn (Xp, _1 i) ,
T

PIT,  be Nk+, ( (f>. J L i) ,
T

fb e  gamma (a ,8)

We shall assum e th a t ^ ,V ,  a  , 8 are known parameters of prior distributions. The prior 

density for [3 | ~[ is g iven  as show n below . K denotes the num be r of p red ic to r variab les so 

that the rank of X is  K + 1 . N denotes the  num ber o f observa tions.

p(P|T) = _ __________ 1_________e - W - t ) V Q - t ) l 2  ( 3 .2 .1 ) .

(2n)lk+1)|21 T 1 V |1'2

According to Gelman et.al 2004 the prior density of ~[ is the gamma density given as
i

P2(T) = - l l .  (3 .2 .2 )
VS
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cl >0, 8 >0, and by definition

r<j=J  xa '1e'xdx (3-3-3)
0

Ef[) = a  18  and var(J) = a  IS 2

If V in (3.2.1) w ere  a d iagona l m a trix  w ith  the  very large d ia g o n a l e lem ents  and if 8 in 

(3.2.2) w ere very  c lo se  to  zero then  the  prio rs w ou ld  d iffuse . The  p rio r spec ifica tions in 

(3.2.1) and (3 .2 .2) have  the  m a th e m a tica l p roperties illus tra ted  in the  theorem  below.
I

The joint p rio r fo r  (3 and J  are co n ju g a te  priors because th e y  resu lt in a poste rio r 

distribution o f the  sam e  fo rm  as the  p rio r. The fo llow ing th e o re m  w ill enab le  us to 

understand the  p ro p e rtie s  o f the  p rio r and  posterio r d is tribu tions  o f J  and (3.

Theorem

Consider the  B ayes ian  reg ress ion  m ode l in which y|P,T is Nn (Xp, T )> P I T i s  Nk+i ( I  .V) 

and J  is gam m a (a  , 8 ). The  jo in t p rio r d is tribu tion  is con juga te , tha t is g(P ,T ly) IS ° f

form p(P,T)

Proof

I have proved the  theo rem  by com b in ing  (3.2.1) and (3 .2 .2). The  jo in t dens ity  is given by

P(P.T) = Pi(PIT PCD

= CiT(k+1)/V T(p' ^)/2T a -1e ' <?T

= Ci-r(a(,+k+1)/2e-T(p- ^)lv -1((3- ^)+ ^_/2-j-a-1e-^T (3 3 4)

Where Of. =2 Ot - 2 , S . -  2 8 ; all the other factors not involving random variables are collected 

in the normalizing constant which we shall denote by C1 .Using equation (3.1.4) the Joint 

posterior density is given by

= c2T (Q:*+k+1)/2e'T(p' ^)+ 2j n/2e'T[y' xp 1

(y - xp )/2

= C2T(a **+k+1) '2e'T(p ‘ ^)'V'1(P' ^ +(y' xp y (y' xp)+ 1/2
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■'< C 0 CX _ yy _.. = 2 6c -2 + n

and all the factors not involving random variables are also collected in the normalizing 

constants c2. By expanding and completing the square in the exponent we obtain

g(P,T|y) = c 2T (« . .+k+1)/2e-I(p - O V 1® ' S..]'2

where

v. = [(v*] + x 'x y 1 (/> j  = v *(v 1 (j) + x 'y) (3.3.5)

S"  = ^ ' V V * +  V ' V  +  y ' y  +

3.3 Marginal Posterior Density of p
In order,to carry ou t in fe re n ce s  fo r p, the  m arg ina l p os te rio r dens ity  o f p m ust be 

obtained by in teg ra ting  X ou t o f th e  poste rio r dens ity  in (3 .3 .5). The fo llow ing lem m a 

illustrates the form  o f th is  m arg ina l d is tribu tion . The fo llow ing  lem m a is a byp roduc t of 

the theorem above and w ill help us to understand  fu rth e r how  to  com pute  the  diagonal 

matrices of the p o s te rio r dens ities .

Lemma

Consider the Bayesian  m ultip le  regress ion  m odel in w h ich y|P,T 's Nn (x P, T *)> PIT's 

( ^ ,  T ‘1V ) and 1 is gam m a ( a , 8 ). T h e  m arg ina l pos te rio r d is tribu tion u (p |y) is a

multivariate t d istribution with param eters (n+2 S , W*) where

^  = (V 1 + X 'X )“1( V V  +  x 'y )  < (3-3-6)

and

W* =
( y - x ^ ) 1 [ i  + x *v  x T ^ y - x ^ )  + 2 s ( v '1 + X 1X)'1
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roof

ne marginal distribution of (3|y is obtained by integration as

J(Plv) = J g(P,T|y)dl
0

t

3y (3.3.5) this becomes

oo

C2 r i (a*.+k+1)/2e'T(P' (p*) + s - ]l2dJ (3 37)
U(P|y) =

0

Using (3.3.3) together with integration by substitution, the integral in this expression gives the 

posterior distribution of (3|y as

U (p |y ) =  c 2 r ( « . . +  2+k+i)  [(p -  ^ . ) V 1(p - 8 “ ]

.( CC..+ 2+k+l)

=c3[(p - - </>*) - </>' v V  + y 'y + ^ . ] ( a "+2+k+1) (3.3.

U (P ly ) is a multivariate t density. Thus it becomes

U(P|y) = c3 [(P - ^*)V1(P - <t>*) *  (y-x^)' (i + XV X1)'1 (y-x^) + 2s  ]

8)

.( a..+ 2+k+1 ) 12
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ividing the expression in the square brackets by ( y - X ^ ) ( i  + XV X*) 1 ( y - X ^ ) + 2 5 , a n d

lultiplying the normalizing constant accordingly and replacing 2 s - 2  + n, we obtain the 

blowing equation

J(Blv) = c< i  +

(P - ^*)'V*'1(P - (/>.) /(n + 2 £  ) 

[ ( y - X ^ ) ' ( l +  XVX’)'1( y -X ^ )  +25]/ (n + 2 5 )

-(n + 2 5 +k+1)/2

c / 1+ (3 -  - <j>,) y ( n  + 2(J +k+1)/2

n + 2 5 )
where w* is as given in (3.3.7).

The equation can be recognized as the density of the multivariate t distribution with as the 

mean vector and

[{n + 2 5 ) /  (n  +  2 s -2)]\n*

as the covariance matrix of P|y. This lemma will be used in computing the Bayesian point 
estimates of the data collected using equation (3.3.6).

3.4 Bayesian point and Interval Estimates of Regression 
Coefficients
A Bayesian point estim ato r of p is the mean of the marginal posterior density.

$> = ( v 1 +  X ' X ) - W  +  x 'y )  <3-3 -8) ■

a 100(1 - co)%  Bayesian confidence region for (3 is the highest density region in D such 

that

;  j 1 +(3-  ^ . )w . '1 (3-

Q _n + 2 S —

- (n  + 2  oc +k+1 ) 12 

dp = 1 - co

(3.3.9)
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Linear functions of the random vector fo llow  the univariate t distribution, thus an 
important special case is given by the following expression

P\ ~

W,i

//here (/>*. js jth e |ement 0f (f>
i

W-ji is the ith diagonal element of W*

A Bayesian point estimate of is (j>̂

A 100(1 - co)% Bayesian confidence interval fo r#  is given by

0*j i  t(OI2 , n + 2 8 W*jj

The Bayesian estimation of (3 can be obtained using the generalized least squares 
method.

After studying the Bayesian linear models, we have considered to use a diffuse prior 

w|th (j) _ Q) v  = diagonal matrix with all diagonal elements equal to a large constant 

say (106). W e have also taken phi and delta to be equal to a small constant say (10'6)

In this case V 1 is close to 0 and so is (j) *

The Bayesian point estimate of (3.3.8) is approximately equal to

(X 'X ) ’ 1 X 'y

which is the least squares estimate.

We have illustrated how the Bayesian point estimates of (3 can be calculated from the 

data we collected from a pig breeding research center for'a  certain species of pigs 

showing the weights of pigs denoted by y and the composition of proteins(x-i), 

carbohydrates(x2) and c a lc iu m ^ ) in their feeds.
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Table 1

y x 1 x 2 x 3
80 356 124 55

97 289 117 76
105 • 319 143 105
90 356 199 108
90 323 240 143
86 381 157 165
100 350 221 119
85 301 186 105
97 379 142 98
97 296 131 94
91 353 221 53
87 306 178 66
78 290 136 142
90 371 200 93
86 312 208 68
80 393 202 102
90 364 152 76
99 359 185 37
85 296 116 60
90 345 123 50
90 378 136 47
88 304 134 50
95 347 184 47
94 327 192 50
92 386 279 ’ 91
74 365 228 235
98 365 145 158
100 352 172 140
86 325 179 145
98 321 222 99
70 360 134 90
99 336 143 105
75 352 169 32
90 353 263 165
85 373 174 78
99 376 134 80

_ 100 361 182 54
78 335 241 175

_ 106 396 128 80
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98 227 222 186

102 '  378 165 117

90 360 182 160

94 291 94 71

80 269 121 29

93 318 73 42

86 328 106 56



CHAPTER 4

Data Analysis and Conclusion

From table 1, we can form  the design matrix X using x i,x2and X3 which are the predictor 
variables of proteins, carbohydrates and calcium respectively. The weight y shall 
constitute the response variable

80 356 , 124 55
97 289 117 76

319 143 105

x=

86
328 328 106 56

(X* X )   ̂ and X 'y  have been computed using the S plus software. The values of

B = ( X 1 X )   ̂ X 'y  gives the point estimates of /? which are the Bayes estimates 

B0 = 80.22477158
A

B, = 0.02924758
A

B2 = -0.0194718
A

B3 = 0.03703557

These Bayes estimates are a weighted average of the prior means and the least 
squares estimates.

The coefficients of/?i’s are estimated as random effects.
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In m ultiple linear regression, the observation consist of a response variable in a vector y 
and predictor variables in matrix form. The matrix y has n elements corresponding to n 
observations.

Regressions are often fitted in order to make predictions. The predictive distribution is , 

expressed in the equation.

Y jj = Po + /?1 Xu +  /?2X2i + ..+  /?k Xki + e | (4.1.1)

O r

Y  = x /? +  §

/?o = Regression constant - S j~ N ( 0 ,£  )

=  Regression coefficient for variable Xj 

= Regression coefficient for variable Xk
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Conclusion

Bayesian posterior com bines information from  the prior and the data of the prior is non- 
informative (diffuse). The sample data dom inates the prior and the Bayesian results
would be close to the Maximum Likelihood Estimate results.

*

For any fixed prior when the sample size gets bigger, the data model increasingly 
dominates the prior, so Bayesian results move towards Maximum Likelihood Estimate 
results.

Bayesian inferences fo r parameters can be carried out using sample statistics of 
empirical jo in t posterior distribution for example a Bayesian point estimate of t could be 
calculated as the sam ple mean or media o f the draws of r from  the joint posterior 
distribution.

Using the values o f /3{s obtained the following regression equation is obtained.

Y= 80.225 + 0 .02925X !-0.01942X2 + 0.03704X3+

Where this equation can be used to predict Y (the weight) given the response variables 
X1, x2, and, x3o f a pig

A week later the model was confirmed and tested to be true because X1 ,X2 , and x3 were varied. 
The weights of different pigs were computed using the regression equation (4.1.1) above. The 
results obtained were affected by some margin of error.
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Areas of Further Research

Inferences regarding r and S 2 require knowledge of the marginal posterior distribution 

of r|y. Future research can concentrate on how to derive the posterior density of r|y.

This research focused on how to obtain Bayesian point estimates from a given set of 

data. Further research can focus on interval estimation and also incorporate hypothesis 

tests for regression coefficients in Bayesian inferences.

This research w ork em ployed the use of the diffuse priors in Bayesian inferencing. 

Further work can be done using conjugate priors.
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