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BrrToTTI () has considered the Riemannian fourfold corresponding the product
of surfaces of constant curvature in the context of the electromagnetic field and it has
been shown with the help of purely geometrical arguments that the fourfold represents
a uniform nonnull electromagnetic field. In this paper we consider a produet of two
surfaces which arc not necessarily of constant curvature to start with. The condition
for a Riemannian fourfold to be dceomposable into the product of two surfaces is
obtained as

(1.1} Ryjx =  3Bujgi; -+ Bugni— B — Rung:,) s

which implies that the conharmonic curvature tensor

(1.2) Ve = Bpis + ;i‘) (Baj9u=—9.; + Rugn;  Bijgn)

vanishes in this case. Further such a space-time is incompatible with the perfect-fluid
distribution and the material distribution is possible only for the eigen-values of the
type (4, 2,0, 90) as shown by Singit and Suarax (3). In the sccond part we consider
the group of motion and express the four vectors in terms of arbitrary funetions. The
relationship between these arbitrary functions and the functions and the metric poten-
tials is obtained.

The metric for a Riemanuian fourfold. which is the product, of two ¥,’s, ean be
written in the form

(2.1) ds? = — A(dz? -+ dy?) - B(ds* de?),
where A — A(x,y), B= B(z,t) and #,y, 2. t corresponds to

z!, x2, x%, x! respectively .

(*) Present address: Department of Mathematies, Kenyatta University College, P.O. Box 43844, Nairobi,
Kenya.

(1) B. BERTOTTI: Phys. Rev., 116, 133 (1959).

(3) K. P. Six6n1 and R. SHARAN: Nal. Inst. of Sei. India, 31 A, No. 6, 584 (1965).
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The class of cach of the T7,’s is one, thus the class of the metrie (2.1) is two. The sur-
viving components of the curvature tensor

(2.2) Ry e AT

1')44 o _1_")33 s (1))3)2 (1”4)2
2 20

(2.3) Riyggy ==

The lower suftixes 1, 2, 3, 4, ufter a function indicate ordinary partial differentiation
with respeet to x, y. 2, {, respectively.
The nonvanishing components of the Ricei tensor F,; are given by

‘lu <+ 4‘122 (“11)2 - (A'I'v):
2.4 Ry~ - o R
( ) u 2;’1 2112 =
I - B By — ([I3,):
(2.5) y e LB

Ay v Ay, AP (1) By, B By)?2- (By)*?
(2.6) I: . 1 X 22 | ( 1) ( _) . 44 X 33 ( 3) ( j) .
A2 Rk 13* 3

We now look into these equations and obtain the tensorial condition. From (2.2), (2.3)
(2.4) and (2.3). we have

(2.7) Fuoie  3(Baigu - Rign)

as the necessary condition for o fourfold to be of the form ¥V, x 1,0 We can write (2.7)
in a more general form as

(2.8) R = Yonili 9By - 090 Bny- g0 B) -

We know that the conharmonie curvature tensor is defined as

(2.9) Viie ™ Bnigs P 9, Bis— 9By + g Bs ¢ 10) -

The conharmonie curvature tensor V,,;,. vanishes in view of (2.8) and the space bhecomes
conharmonically flat. Thus we have the following theorem:
. =

TneorEm (2.1). The ncecssary condition that the Riemannian fourfold can be
decomposed into the product of two surfaces of the form 7, x V, is that the space must
be conharmonically flat.

It may be mentioned that our space-time is not conformally flat.

Now we oxplore the possibility of generation of groups of motion for the product
space of class two.
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We know that the group of motion is generated if the vectors (2 satisfy Killing’s
cquations (3):

(3.1) %gij =¢;;la+ 90,50 T gl — 0.

For the metrie (2.1) we have the following set of Killing equations:

(3.2) Ay 5+ A2 4- 248 =0,
(3.3) Ayt A8 240 =0,
(3.4) By o B4 - 2B - 0,
(3.5) By 4 Bytt 4+ 2Bt = 0,
(3.6) oan oo,
(3.7) ALy B -0,
(3.8) Ary - piteso,
(3.9) A& - B -0,
(3.10) A5 Bz o0,
(3.11) ST IS

From (3.2) and (3.3). we have
(3.12) 3--3.

Similarily from (3.4) and (3.5) we have

(3.13) e

-3 “g

From (3.6) and (3.12) we get

(3.14) DU, ) Blxt - o) 4 el )o@ o) - plad, at)
and
(3.15) 2wt Y)Yy (R xt)o(e? g oa?) — glad, ),

where «, 8, 7. 0, p and ¢ are arbitrary {unctions.
Similarily from (3.11) and (3.13) we get

(3.16) 23 - u(et, xt)A@d oY) - a(eF, e (e - ) ot o)
and
(3.17) fh=v(@!, @) A@® - xt) - ot a )l wt) gty at),

where v, a, A, jt, p and y arc also arbitrary functions.

(%) K. Yaxo: Differential Geometry on Compler and Almost Complex Spaces (London, 1964), p. 17,
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We now find out the relationship between these arbitrary functions and the fune-
tions A and B of the metric such that the group of motion is generated by the vee-
tors {* expressed by (3.14), (3.15), (3.16) and (3.17) for the metric (2.1).

From (3.7), (3.8), (3.9) and (3.14), (3.15), (3.16) and (3.17), we have the following
relationship:

(3.18) Ao+ y30 + pg) + B(v A+ oype + 93) = 0,
(3.19) Aagf+ y,0 + pg) — Boyd — o 4- 1) = 0,
(3.20) Ay — 30 + qa) + Blopd + app + 9,) = 0,
(3.21) Aoy B— 740 + qg) — B(vgd— opp -+ 3,) = 0.

Thus the group of motion is generated by the vectors (¢ expressed by (3.14), (3.15),
(3.16) and (3.17) for the metric (2.1) of the product of two surfaces of class two and the
arbitrary functions are rclated with the metric potentials by the equations (3.18), (3.19),
(3.20) and (3.21).

® %

The author is thankful to Prof. R. S. MisurA and Dr. SHREE Ram for discussions
and Kenyatta University College for supporting it.



