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ABSTRACT

Precipitation from a 10-yr regional climate simulation is evaluated using three complementary analyses: self-
organizing maps, bias scores, and arithmetic bias. Collectively, the three reveal a precipitation deficit in the
south-central United States that emerges in September and lingers through February. Deficient precipitation for
this region and time of year is also evident in other simulations, indicating a generic problem in climate simulation.

Analysis of terrestrial and atmospheric water balances shows that the 10-yr average precipitation error for
the region results primarily from a deficit in horizontal water vapor convergence. However, the 10-yr average
for fall only suggests that the primary contributor is a deficit in evapotranspiration. Evaluation of simulated
temperature and soil moisture suggests the model has insufficient terrestrial water for evaporation during fall.
Results for winter are mixed; errors in both evapotranspiration and lateral moisture convergence may contribute
substantially to the precipitation deficit. The model reproduces well both the time-average and time-filtered
large-scale circulation, implying that the moisture convergence error arises from an error in simulating mesoscale
circulation.

1. Introduction

Regional climate models (RCMs) are among the tools
developed to address concerns of climate change impact
at regional scales. However, before RCMs can be used
for these purposes, better understanding of their behav-
ior in simulating current climate is needed to charac-
terize their strengths and weakness and, ideally, improve
their simulation. Such understanding is especially im-
portant for correct interpretation of results from climate
projections under different scenarios and for estimating
confidence bounds of climate projections. This task re-
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quires a variety of model assessments that can provide
broad understanding of model behavior.

We use such a variety of assessments here to evaluate
precipitation produced by a 10-yr RCM simulation of
the United States. This simulation is one part of a se-
quence of contemporary and future climate simulations
that have been cross compared to assess confidence in
their climate changes (Pan et al. 2001b). Evaluation of
this simulation on its own is also important, as it pro-
vides a basis for diagnosing specific areas of concern
and directions for improvement.

Evaluations of extratropical simulation tend to focus
on annual averages and extreme seasons (e.g., Mac-
Avaney et al. 2001; Giorgi et al. 2001), implicitly as-
suming that these cover the major challenges for good
simulation. However, a model must also simulate tran-
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FIG. 1. Model domain. Heavy interior lines mark the MD box.

sition seasons well, especially for climate change im-
pacts assessments. For example, transition seasons gov-
ern growing-season length and may have strong influ-
ence on flooding and water resources as periods of
snowmelt. The analyses here will highlight a southern
U.S. precipitation deficit that emerges during Septem-
ber–October–November (SON) and lingers through De-
cember–January–February (DJF). We will also present
evidence of similar deficits in climate simulations by
other models, so these results may apply to U.S. pre-
cipitation simulation in general.

Section 2 gives a description of the model and the
10-yr simulation it performed, along with the obser-
vational datasets used to evaluate the simulation. Sec-
tion 3 presents the precipitation analyses, and section 4
diagnoses possible sources for the most prominent pre-
cipitation deficit emerging from the analyses. The paper
concludes in section 5 with a discussion of the results
and suggested causes for the deficit.

2. Model output and observations

a. Simulation

We analyze a 1979–88 simulation performed by the
Second-Generation Regional Climate Model (RegCM2;
Giorgi et al. 1993a,b). The model computed precipita-
tion using a simplified version (Giorgi and Shields 1999)
of the Hsie et al. (1984) explicit moisture scheme and
the Grell (1993) convection parameterization. The mod-
el also used the Biosphere–Atmosphere Transfer
Scheme (BATS) version 1e (Dickinson et al. 1993) land
surface model and the Holtslag et al. (1990) nonlocal

boundary layer turbulence parameterization. Radiative
transfer used the Community Climate Model version 2
(CCM2) radiation package (Briegleb 1992). The model
did not include a gravity wave drag parameterization.
The simulation domain (Fig. 1) was the North American
grid of the Project to Intercompare Regional Climate
Simulations (Takle et al. 1999), with 101 3 75 grid
points spaced 52 km apart in a Lambert conformal pro-
jection centered at 37.58N, 1008W. The vertical grid used
14 sigma layers with finer resolution near the surface.
Pan et al. (2001b) give further details of the simulation
and discuss general features of the precipitation output
and its change under greenhouse warming.

The simulation used output from the National Centers
for Environmental Prediction–National Center for At-
mospheric Research (NCEP–NCAR) reanalysis (Kalnay
et al. 1996) for initial and lateral boundary conditions.
The simulation started on 1 October 1978, in part to
allow the model to build its own snow cover, but we
discarded the first three simulated months to reduce the
potential influence of spinup on the model’s climatol-
ogy. The reanalysis also provided evolving sea surface
temperature (SST). However, in the poorly resolved
Gulf of California and North American Great Lakes, the
model supplemented the reanalysis data with Advanced
Very High Resolution Radiometer (AVHRR) retrievals
(Brown et al. 1993) and buoy observations from the
Great Lakes Environmental Research Laboratory, re-
spectively. The evolving water vapor field used for lat-
eral boundary conditions has lower accuracy than other
upper-air fields (Kalnay et al. 1996), which is potentially
an important factor in our simulation. Accuracy of the



232 VOLUME 5J O U R N A L O F H Y D R O M E T E O R O L O G Y

initial soil moisture also may be questionable because
of climatological constraints placed on reanalysis soil
moisture (Roads et al. 1999; Roads and Betts 2000), but
simulated soil moisture (Pan et al. 2001a) shows no
evidence of slow, multiyear spinup from a poor initial
condition. We otherwise assume that the driving data
replicate the actual atmosphere, so that all precipitation
error is attributable to the model itself unless clearly
linked to lateral boundary conditions or soil moisture.

b. Observations

1) VEMAP PHASE II PRECIPITATION

The Vegetation/Ecosystem Modeling and Analysis
Project (VEMAP) has produced an 1895–1993 time se-
ries of monthly average precipitation on a 0.58 grid for
the contiguous United States (Kittel et al. 1995, 1997,
2000; Schimel et al. 2000). Data processing used a local,
moving-window kriging model (Haas 1990) to produce
serially complete station records using monthly obser-
vations from the National Climatic Data Center’s His-
torical Climatalogy Network (;1200 stations from 1895
to present), the Cooperative Observing Network (ad-
ditional 6000–8000 stations from 1951–90), and more
recent snowpack telemetry (SNOTEL) observations.
These records were then merged using the Parameter-
Elevation Regressions on Independent Slopes Model
(PRISM; e.g., Daly et al. 1994) for spatial interpolation
with topographic adjustment.

2) HIGGINS DAILY PRECIPITATION

Higgins et al. (1996) have produced gridded hourly
precipitation using observations spanning 1963–93 from
approximately 2500 stations, which they interpolated to
a 2.08 (latitude) by 2.58 (longitude) grid using a modified
Cressman (1959) scheme. Like the VEMAP dataset, it
covers only the contiguous United States.

3) NCEP–NCAR REANALYSIS

The NCEP–NCAR reanalysis (NNR) is a product of
data assimilation. We assume that, for the observation-
rich United States, the NNR gives the best available
rendition for observational, gridded upper-air fields. Our
analyses use geopotential heights, which Kalnay et al.
(1996) describe as strongly influenced by observations
and therefore among the most reliable NNR fields. We
also use NNR precipitable water, although with caution,
as the NNR forecast model likely has strong influence
on this field.

4) UNH/GRDC GRIDDED RUNOFF CLIMATOLOGY

The University of New Hampshire (UNH) and the
Global Runoff Data Centre (GRDC) have produced a
monthly, annual-cycle climatology of runoff on a global

0.58 grid (Fekete et al. 1999). The method combines
observed river discharge with a climatology-driven wa-
ter-balance model to compute composite runoff fields
that are consistent with observed discharge volumes and
the water-balance model’s spatial distributions. Periods
of record for the 15 contributing discharge sites in our
southern U.S. focus region range from 12 to 92 yr and
end in the mid-1980s. Median record length is 49 yr.

3. Precipitation error analysis

a. Methods

To gain a broad characterization of precipitation er-
rors in the simulation, we employed three complemen-
tary diagnostic methods: self-organizing maps, bias
scores, and arithmetic bias. We applied the methods to
the contiguous United States and, for the bias scores
and arithmetic bias, to a Mississippi Delta (MD) box
(318–378N, 858–958W; Fig. 1) that emerged as a special
focus in our analyses because of its error characteristics.
To compare observed and simulated precipitation, we
interpolated the model’s monthly average precipitation
to the VEMAP grid using a Cressman (1959) scheme.

Self-organizing maps (SOMs; Kohonen 1995) are
two-dimensional arrays of maps that display character-
istic behavior patterns of a field (e.g., Main 1997; Cav-
azos 1999, 2000; Michaelides et al. 2001; Hewitson and
Crane 2002). The SOM array is a discrete representation
of a continuous pattern space occupied by the field ex-
amined. Individual maps in the array represent nodes in
a projection of this space onto a two-dimensional sur-
face, with the two dimensions showing the two primary
pattern transitions for the field examined. The input
maps themselves determine the degree and types of pat-
tern transition, hence the ‘‘self-organizing’’ nature of
the resulting array. The SOM array is trained on a se-
quence of input maps through an artificial neural net
technique. In contrast to eigenvector techniques such as
empirical orthogonal functions, maps in the SOM array
do not necessarily favor the largest scales in the input
data, but rather the scales most relevant to the field for
the domain and resolution examined.

The array size (number of nodes) is not predeter-
mined, but the SOM’s discretization of the pattern space
provides guidance in this choice. Small arrays of maps
(e.g., 2 3 4) may allow fairly rapid SOM generation
but poor discretization of the pattern space spanned by
the input field. Large arrays (e.g., 10 3 12) may offer
finer but perhaps unnecessary discretization at the ex-
pense of more cumbersome computation. For the month-
ly precipitation examined here, a 4 3 6 array of maps
appears to discriminate well the primary patterns of ob-
served and simulated precipitation during our 10-yr
study period.

SOM generation uses an iterative procedure that com-
pares each member of a sequence of maps, such as 10
years of monthly precipitation, to an existing set and
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nudges the closest map in the set toward the input map.
The initial maps in the set consist of random numbers.
A well-constructed SOM set is independent of initial
iteration conditions, which we determined was the case
for our results through tests using alternative initial con-
ditions and sequences of map ingestion. Our metric for
determining the closest, or best-fit, map is the Euclidian
norm,

n

i j 2(P 2 P )O k k
k51i j ÎD 5 , (1)

n

where P is precipitation at grid point k of n total points,
i refers to one of the input precipitation maps, and j
refers to one of the SOM maps. To ensure relatively
smooth transitions between SOM maps, the procedure
also nudges toward the input map all SOM maps in a
neighborhood about the best-fit map, with the degree of
nudging and neighborhood size shrinking with iteration.
A well-constructed SOM set minimizes

I

iJ 2iD 5 (D ) , (2)O!i51

where I is the total number of input maps, and Ji is the
closest member of the SOM array to input map i. Our
application combines 10 years of monthly precipitation
maps from observations and model output to yield I 5
10 3 12 3 2 5 240. We performed 20 000 iterations
with this set of input maps to arrive at our final SOM
array, a procedure that took roughly 30 CPU min on a
DEC 3000 workstation.

With a trained SOM array, one can track the evolution
of a field through pattern space by the sequence of SOM
maps chosen to be closest to each member i of the input
sequence. We constructed a climatological annual cycle
of monthly precipitation for observations and for model
output by extracting the frequency distribution of the
closest, or best-fit, maps for each calendar month’s 10
renditions and then computing the centroid of this dis-
tribution in the pattern space spanned by the SOM array.
Connecting centroids for observations and model output
separately then gave their respective annual cycles.
Comparison of annual cycles reveals the degree of
agreement between simulated and observed precipita-
tion patterns.

The bias score (Wilks 1995) is the ratio

NMB 5 , (3)
NO

where NM is the number of event occurrences in the
model, and NO is the number of event occurrences in
observations. Here, an event is monthly precipitation at
a grid point exceeding a specified threshold. If B 5 1,
then the model exceeds the threshold exactly the same
number of times as the observations, with larger (small-
er) score meaning that the model produces more (fewer)

events. Monthly precipitation for most of the United
States averages 1–4 mm day21. Thresholds well above
this range will have NO 5 0, and thus B will be inde-
terminate. Except for deserts, thresholds approaching
zero for monthly precipitation will yield B → 1, in es-
sence simply confirming that both observed and simu-
lated precipitation occurred some time during the
month. Thus, bias scores will be most meaningful for
thresholds between these extremes. We used monthly
average precipitation rates of 1, 2, and 4 mm day21 as
thresholds.

Finally, the arithmetic bias (or simply, bias) is the
simulation 2 observation difference. We present biases
here for seasonal maps of the United States and for
monthly precipitation differences averaged over the MD
box.

b. Results

Prominent features in the SOM array (Fig. 2) are high
precipitation over the northwestern and southeastern
United States and low precipitation in the Southwest.
Moving from left to right among the maps shows in-
creasing southeastern U.S. precipitation, while moving
up and down the array shows variation in the north-
western precipitation. The upper-row maps show typical
summer climatological patterns: little precipitation in
the Southwest, a strong west–east gradient in the middle
of the country, and largest amounts along the south-
eastern coast. In contrast, the maps in the lower row
show typical winter climatological patterns: large pre-
cipitation amounts in the Northwest and generally less
precipitation compared to summer in the eastern two-
thirds of the country, except in the south-central United
States. The maps thus display a range of monthly pre-
cipitation patterns for the United States that correspond
in part to the annual cycle.

The maps in Fig. 2 appear in a rectangular array for
plotting convenience. However, this array does not show
their true separation as measured by (1). A higher di-
mensional space is required, but an approximate pro-
jection onto a two-dimensional space known as a Sam-
mon map (Sammon 1969; Kohonen 1995) is sufficient
for many purposes, including ours. The dots in Fig. 3
show the Sammon map of the Fig. 2 array, where the
dots are separated approximately by the differences be-
tween neighboring maps. In the Sammon map, the array
retains an approximately rectangular shape. The largest
separation of points occurs between the middle rows,
indicating distinct warm–cold season differences in pre-
cipitation patterns. Point separation is also larger along
the upper (summer) rows than along the lower (winter)
rows, indicating greater spread of precipitation patterns
in summer than in winter.

Figure 3 also shows the centroids of each month’s
best-fit precipitation maps in this array, computed using
the method described in the previous section and pro-
jected to their Sammon-map positions. The solid (ob-
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FIG. 2. SOM array of monthly precipitation. The two axes of the array give the two principal variations of
precipitation in the pattern space it spans. See text for details. (Units are mm day21.)

servations) and dashed (simulation) lines connecting
centroids show annual-cycle trajectories through the
SOM pattern space. A distinct feature of the trajectories
is the separation between VEMAP and RegCM2 tra-
jectories from September through March, with the VE-
MAP trajectory residing on the right-hand side of the
Sammon map and the model trajectory residing on the
left-hand side. The VEMAP trajectory also shows great-
er movement through the Sammon map during Novem-
ber–January than does the RegCM2 trajectory. The
model thus displays less pattern variability than the ob-
servations during the cold months. Examination of the
three lowest rows in the SOM array (Fig. 2) reveals the
differences in simulated (left-hand side) and observed
(right-hand side) precipitation patterns. The simulated

and observed patterns are similar in the far western
United States. The most prominent difference involves
the large south-central U.S. precipitation amounts in the
observed patterns that the model fails to replicate.

The simulation trajectory is relatively close to the
observations trajectory during April–August. This
agreement could be a result of fortuitous averaging
when computing centroids. However, the frequency dis-
tribution for each month’s best-fit maps (Otieno 2001)
is roughly the same in the simulation and the obser-
vations during June–July–August (JJA). The model sim-
ulates the spatial pattern of JJA precipitation much bet-
ter than SON or DJF precipitation.

We obtained model-observation separation of cen-
troids by computing for each calendar month the fre-
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FIG. 3. Sammon map of the SOM array and trajectory of monthly
precipitation centroids for VEMAP and RegCM2.

FIG. 4. Annual cycle of the separation between simulated and ob-
served centroids of each month’s 10-yr frequency distribution in the
SOM array.

TABLE 1. Annual average of monthly coefficient of kurtosis and
count of best-fit maps.

Source No. of maps Kurtosis

RegCM2
VEMAP

5.3
5.5

9.2
8.4

quency-weighted average of the maps used to determine
the centroid location and then computing the model-
observation separation of these averages using (1). Mod-
el-observation differences (Fig. 4) are small in July and
August, increase to maximum difference in November,
and remain large through DJF. The greatest contribution
to the separation in SON and DJF comes from the region
of large observed precipitation in the Mississippi Delta
(MD box).

Centroid paths might differ simply because the sim-
ulation output samples only a portion of the SOM space
sampled by the observations. For each month, we used
the 10-yr frequency distribution of best-fit maps to count
the number of distinct maps chosen and to compute
monthly coefficients of kurtosis. The map count is a
simple measure of the range of patterns in the simulation
and the observations. The coefficient of kurtosis is a
parametric statistic that measures the breadth of a fre-
quency distribution relative to the normal distribution.
Positive kurtosis signifies large tails in a distribution
relative to the normal distribution. Both map count and
kurtosis (Table 1) show that the simulation output sam-
ples as wide a variety of SOM maps as the observations.
Thus, the simulation’s spread in interannual pattern var-
iability is as large as the observations’, albeit shifted
with respect to observations.

The bias and bias score also show relatively large
simulation error in the south-central United States
(Otieno 2001). Seasonal average bias for the 10-yr pe-
riod (Fig. 5) shows a prominent simulation deficit in
this region during SON. There are also narrow bands
of positive and negative bias along the U.S. West Coast
that appear to result from the model’s relatively smooth
topography compared to observed topography (Pan et
al. 2001b). Bias is generally smaller across the United

States during JJA. This is in part due to the annual
minimum in precipitation during JJA along the West
Coast, but JJA is also the season of annual maximum
precipitation for much of the central United States. Sim-
ulation 2 observation bias for the MD box (Fig. 6)
shows persistent, relatively large negative values in
SON and DJF for each year. In contrast, simulated JJA
precipitation tends to have small, positive bias. March–
April–May (MAM) has strongly negative bias in the
first 2 yr of simulation, but later years show less negative
and even slightly positive bias, so its errors are not
persistently large as in DJF and SON.

The bias scores (Fig. 7) are mainly less than 1 during
SON and DJF, with the score decreasing as threshold
increases. The model thus has more difficulty simulating
large monthly average precipitation, with fewer events
than observed. However, during July and August, the
opposite behavior occurs: bias score exceeds 1 and be-
comes larger with increasing threshold. Even though the
model replicates the observed summer precipitation pat-
tern well, it has too many months in the MD box with
larger-than-observed monthly average precipitation, and
the problem is worse for larger precipitation thresholds.
Except for this problem, the SOMs, the bias, and the
bias score all point to the same location and time of
year as the most prominent precipitation error in the
simulation.

This precipitation error appears in other simulations.
Giorgi and Shields (1999) used a nearly identical ver-
sion of RegCM2 to simulate a similar domain, but for
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FIG. 5. Seasonal precipitation bias averaged over the 10-yr simulation period for (a) SON, (b)
DJF, (c) MAM, and (d) JJA. (Units are mm day21.)

FIG. 6. Interannual variability of seasonal precipitation bias aver-
aged over the MD box. DJF points are plotted for the calendar year
of January.

FIG. 7. Annual cycle of bias score for the MD box using three
different thresholds.

March 1993–February 1996, with boundary conditions
from the European Centre for Medium-Range Weather
Forecasts (ECMWF). Their lower Mississippi basin re-
gion has large negative bias in SON and DJF. The High
Resolution Limited Area Model with Hamburg Physics
(HIRHAM; Christensen et al. 1996; Christensen et al.
1998) simulated the same domain and time period as
our simulation, with the same boundary conditions (Pan
et al. 2001b). HIRHAM has similar negative precipi-
tation bias in the south-central United States (not shown)
that emerges in SON and fades during DJF and MAM.

Duffy et al. (2003) have used the NCAR Community
Climate Model Version 3 (CCM3) and the climatolog-
ical annual cycle of SSTs for 10-yr global simulations
at resolutions of T42 (corresponding grid spacing ;300
km), T170 (;75 km) and T239 (;50 km). DJF pre-
cipitation in all three simulations has negative bias in
the south-central United States, with bias decreasing as
resolution increases. The bias magnitude in the Missis-
sippi Delta region at T239 is similar to that in our
RegCM2 simulation. Finally, J. Boyle (2002, personal
communication) has examined monthly precipitation er-
ror for the United States in 18 atmospheric global cli-
mate models (AGCMs) that simulated 1979–95 for the
Atmospheric Model Intercomparison Project (AMIP;
Gleckler 2001). A common principal component anal-
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FIG. 8. Time series of daily precipitation in the MD box for SON.
Note that RegCM2 output has been multiplied by 21 for clarity.

ysis (Flury 1988) gives a leading principal vector for
error in 11 of the models that has its extremum in west-
ern Tennessee and Kentucky (i.e., along the northern
edge of our MD box), with maximum negative bias in
September and October. This feature may also corre-
spond to the bias seen in our simulation.

RegCM2 ingests reanalysis output at its lateral bound-
aries and thus should replicate observed large-scale fea-
tures that affect precipitation. Time series of daily ob-
served and simulated SON precipitation for the MD box
(e.g., Fig. 8) show that the model reproduces fairly well
the observed precipitation episodes as well as interven-
ing dry periods. Similar behavior occurred in all other
SON periods, including relatively wet (1984) and dry
(1987) SON (Otieno 2001). Because of the match be-
tween observed and simulated precipitation episodes,
we used the Higgins time series for 1979–88 SON to
identify precipitation events, defined as one or more
consecutive days when observed, daily precipitation av-
eraged over the MD box exceeded 1 mm. This definition
produced 131 precipitation events, averaging 2.8 days.
Over 95% of the events were 7 days or shorter, with
33% lasting only 1 day. The simulation had dry bias in
93% of the events, with an average bias per event of
25.4 mm day21. For the remaining events, the simu-
lation had an average wet bias of 11.6 mm day21. There
was no clear year-to-year trend in the bias, but bias
magnitude increased through SON, with November hav-
ing roughly twice the bias per event (26.2 mm day21)
as September (23.5 mm day21). Fractional bias showed
no clear dependence on either length or intensity of
precipitation episode. The model thus tended to repro-
duce observed precipitation episodes, but with less pre-
cipitation than observed.

4. Sources of precipitation error

In this section we investigate potential sources of the
deficit in simulated precipitation in the south-central
United States, focusing on the seasons SON and DJF,

when the simulation error emerges and maintains large
magnitude (e.g., Figs. 4 and 7).

a. Circulation

The model’s time-average 500-hPa geopotential
heights for SON and DJF are nearly identical to cor-
responding NNR heights (Otieno 2001). Differences
across almost all of the contiguous United States are
less than 5 m, which is within the measurement error
of observed 500-hPa heights. This behavior is consistent
with many regional climate models (Takle et al. 1999;
Gutowski et al. 2000).

Applying Blackmon (1976) bandpass and high-pass
filters to the geopotential height time series allows com-
parison of storm track behavior in observations and the
simulation. For these filters, bandpass variance is mainly
in the range 2.5–6.0 days, whereas high-pass variance
is mainly in the range 1–2 days. The 500-hPa bandpass
variance (Fig. 9) in both the NNR and the simulation
shows two regions of large variance in the northwestern
and northeastern United States that correspond to storm
tracks. For both seasons, the model tends to have weaker
variance in the core of the storm tracks but somewhat
larger variance in the central United States. Differences
between simulated and NNR bandpass variances are less
than 15% generally and even smaller over the south-
central United States. The 500-hPa high-pass-filtered
variances (Otieno 2001) show slightly weaker simulated
versus observed variance in the northeastern storm track
and very small differences in the south-central United
States. Differences between observed and simulated cir-
culation thus are relatively small for synoptic variability,
especially in the south-central United States. This result
is consistent with Fig. 8, suggesting that the model pro-
duces acceptable large-scale dynamics for generating
precipitation events.

Circulation error in shallow weather systems would
not be detected in a 500-hPa analysis. However, the dry
bias in the overwhelming majority (93%) of our pre-
cipitation episodes indicates that nearly all weather sys-
tems produced too little precipitation and that a subset
of events that were shallow was not the culprit. Indeed,
the episodes with largest dry biases tended to be the
strongest precipitation producers (not shown), suggest-
ing that relatively deep weather systems were important
contributors to the precipitation deficit.

b. Water balance

The atmospheric and terrestrial water balances pro-
vide an alternative method for assessing possible con-
tributions to precipitation error, since all errors must
balance. This approach needs water balances in terms
of quantities available from observations and model out-
put and also needs to recognize potentially significant
differences in how the water balance equations are ap-
plied to simulated and observed behavior.
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FIG. 9. Bandpass (2.5–6.0 days) variance of NNR 500-hPa geo-
potential height (shaded) and simulation minus NNR difference (con-
tour lines) for (a) SON and (b) DJF. (Units are m2.)

TABLE 2. Estimated water-budget errors in the MD box for a
10-yr average.

Term Error (mm day21)

DP
DR
DE
DC

21.02
20.71
20.31
20.71

Consider the terrestrial water balance equation in the
form

dW
P 2 E 5 1 R, (4)

dt

where E, P, dW/dt, and R are the evapotranspiration,
precipitation, change in subsurface storage, and runoff,
respectively. Both the model and the real world satisfy
(4). However, the terms on the right-hand side of (4)
are not defined the same way in both realms. The sub-
surface storage, W, is the vertical integral over all water
reservoirs below the surface. Simulated subsurface stor-
age in RegCM2 is water in the root zone of BATS, while
subsurface storage in the real world includes the root
zone, vadose zone, and aquifers (e.g., Dingman 1994)
and thus includes more water reservoirs than the BATS
subsurface. Similarly, the model’s runoff is water leav-
ing the BATS land model via overland flow or subsur-
face drainage from its soil, whereas observed runoff is

water entering the river network through overland flow,
interflow, and base flow from aquifers (cf. Fekete et al.
1999). Thus, observed runoff is affected by groundwater
retention not present in BATS. In a long-term average
that eliminates storage changes, observed and simulated
runoff should become equal. However, because W and
R are not precisely the same in the model and the real
world, their annual cycles are not necessarily the same.
Thus, for long-term averages, we can evaluate differ-
ences in observed and simulated runoff, but for cli-
matologies covering only part of the annual cycle, we
have derived expressions for estimating errors in the
model’s water budget that avoid comparing observed
and simulated values of R and dW/dt.

Our analysis also uses the atmospheric water balance

dwa 5 E 2 P 1 C, (5)
dt

where dwa/dt is the change in atmospheric water, and
C is horizontal convergence of water in the atmosphere.
Averaged over intervals of a month or longer, the at-
mospheric storage term tends to be very small compared
to the others. Terms on the right-hand side of (5) are
intended to represent the same processes in the model
as in the real world.

1) TEN-YEAR AVERAGE

For long-term averages, the storage terms in both (4)
and (5) become negligible. In this case, applying (4) and
(5) to the model and the real world separately and taking
differences yields simulation-observation errors

DE 5 DP 2 DR, and (6)

DC 5 DR, (7)

where the overbar represents the long-term average.
We assume that the real world’s subsurface storage

changes are indeed negligible for our 10-yr period and
that its 10-yr average annual cycle of runoff for 1979–
88 is the same as UNH/GRDC runoff climatology. Un-
der these assumptions, we use (6) and (7) to estimate
time-average errors in atmospheric convergence and
surface evapotranspiration for the MD box, thus infer-
ring possible sources of precipitation error. Table 2
shows the 10-yr average DP, DR, and our estimated DE
and DC. The model has less evapotranspiration than the
real world, but this error is smaller than the precipitation
error. For this region, the convergence error is roughly
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twice as large as the evapotranspiration error, indicating
that the primary reason for the model’s precipitation
deficit in the 10-yr average is a shortage of atmospheric
water convergence into the region.

In the long-term average, a region’s atmospheric con-
vergence should equal its terrestrial runoff. Assuming
this balance occurs for the 10-yr period and that the
UNH/GRDC runoff climatology is an accurate estimate
of runoff for this period, then the convergence error is
56% of annual average convergence. The proximity of
the south-central United States to the model’s southern
boundary (Fig. 1) indicates that error in NNR moisture
flux may be a contributor, since part of the atmospheric
moisture in the southern United States evaporates from
surfaces south of the simulation domain (Dirmeyer and
Brubaker 1999) and must be ingested through lateral
boundary conditions.

The accuracy of the model’s large-scale circulation
(e.g., Fig. 9) indicates that the 10-yr average error is
due to error in the model’s simulation of atmospheric
water vapor. However, the difference between simulated
and NNR precipitable water over the south-central Unit-
ed States and adjacent Gulf of Mexico is generally less
than 10% for all seasons (Otieno 2001). The simulation
appears to maintain a sufficiently full atmospheric water
reservoir, but water does not converge and precipitate
as intensely as in the real world.

2) SON AND DJF CLIMATOLOGY

The largest precipitation errors occur during fall and
winter (Figs. 4–7), so we also analyze the climatological
water budgets for SON and DJF. Changes in subsurface
water storage may not be negligible over a season. Also
as discussed earlier, observed and simulated annual cy-
cles of R and dW/dt may not align even if the model
simulates the atmospheric branch of the water cycle
accurately because they do not represent precisely the
same physical processes in the model and the real world.
Thus, we seek error diagnostics that avoid comparing
simulated and observed R and dW/dt and that depend
as much as possible on quantities available in obser-
vations and model output. The second goal minimizes,
but ultimately does not eliminate, the need to estimate
magnitudes of poorly observed quantities, such as sub-
surface water storage.

We can write the simulation-observation error in (P
2 E) as

D(P 2 E) 5 (P 2 E) 2 (P 2 E) ,S o (8)

where the subscripts s and o refer to simulated and
observed values, respectively. Applying (4) to obser-
vations gives

dW
(P 2 E ) 5 1 R . (9)o [ ]dt o

Combining (8) and (9) gives an estimate for evapotrans-
piration error

dW
DE 5 DP 2 [(P 2 E ) 2 R ] 1 . (10)s o )dt o

Using (5) to obtain the (observed 2 simulated) atmo-
spheric water balance and substituting into (10) then
yields

dW
DC 5 [(P 2 E ) 2 R ] 2 . (11)s o )dt o

Quantities in square brackets in (10) and (11) are
known if we assume that the real world’s annual cycle
of runoff for 1979–88 is the same as UNH/GRDC runoff
climatology. Again, we do not use simulated runoff be-
cause the model does not include a groundwater res-
ervoir and its contribution to runoff by base flow, which
is potentially significant (e.g., Dingman 1994) and
which could alter the phase of the annual cycle of runoff.

The error diagnostics (10) and (11) avoid the unob-
served Eo but do require estimates of dW/dt | o. Simu-
lated soil moisture change provides one estimate of its
value, recognizing that simulated soil moisture does not
include water in subterranean aquifers. Note also that
if the model matched observations perfectly, then DE
and DP would vanish, and (P 2 E) and R would con-
strain dW/dt | o. We assume that dW/dt | o is within the
range of (P 2 E)s and Ro values, noting that positive
(P 2 E) or negative R increase subsurface water. We
thus infer a range of likely values for dW/dt | o from (P
2 E)s, Ro, and the simulated root-zone moisture change.
Under these assumptions, (10) and (11) allow us to es-
timate evapotranspiration and atmospheric horizontal
convergence errors using fields available from the model
and observations for the MD box.

In the simulation, the annual cycle of soil moisture
change tends to mirror the annual cycle of evapotrans-
piration, implying substantial control of model soil
moisture by evapotranspiration (Fig. 10). During SON,
when the precipitation deficit becomes large, monthly
evapotranspiration wanes, and the change in simulated
storage is small though still negative (20.6 to 20.1 mm
day21). Values of (P 2 E)s and 2Ro during SON range
from 20.5 to 11.1 mm day21. These results suggest
that a reasonable range of test values for dW/dt | o during
SON is 20.6 to 11.1 mm day21. During DJF, simulated
evapotranspiration becomes small and simulated pre-
cipitation increases, producing monthly soil moisture
changes of 0.5 to 1.1 mm day21. The terms (P 2 E)s

and 2Ro range from 22.7 to 11.8 mm day21. A rea-
sonable range of test values for dW/dt | o during DJF
thus appears to be 22.7 to 11.8 mm day21. The DJF
estimate is rather liberal because it does not include
cancellation of positive R by positive (P 2 E). The
monthly sum {(P 2 E)s 2 Ro} suggests that the true
value of dW/dt | o more likely lies between 21.5 and
10.6 mm day21. Although we are not aware of any soil
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FIG. 10. Annual cycles of selected water balance terms in the
MD box.

FIG. 11. Errors DP, DE, and DC vs dWo/dt in the MD box for (a)
SON and (b) DJF. Note different scales on (a) and (b); values are
plotted for the test range of dW/dt | o in each season.

moisture measurements covering this domain for the
period simulated, the order of magnitude of inferred dW/
dt | o is consistent with moisture changes in the upper 1
m observed in neighboring Illinois for this period (Pan
et al. 2001a).

For the MD box during SON (Fig. 11a), the estimated
10-yr average DE is more negative than DC for almost
all test values of dW/dt | o. In addition, for some of the
test values, DC is positive, indicating that the simula-
tion’s circulation may even be importing too much water
into the region during SON. The results suggest that the
primary cause of precipitation deficit during SON for
the south-central United States is a shortfall of surface
moisture flux into the atmosphere. This may result from
insufficient local moisture recycling or from missing
reservoirs of terrestrial water.

During DJF (Fig. 11b), our estimated ‘‘more likely’’
range for dW/dt | o, 21.5 to 10.6 mm day21, tends to
have larger magnitudes for DE than DC. However, re-
sults for the entire range are mixed; insufficient vertical
and horizontal water fluxes both appear to be important
for the precipitation deficit. Insufficient moisture con-
vergence during DJF may result from error in the NNR
southern boundary condition for moisture and from dif-
ferences between the observed and simulated DJF storm
tracks.

5. Summary and discussion

We have evaluated precipitation from a 10-yr regional
climate simulation using a variety of analyses (self-or-
ganizing maps, bias scores, and arithmetic bias) to de-
termine the most prominent errors in the simulation.
SOMs expose pattern differences, bias scores expose
differences in temporal intensity distributions, and the
arithmetic bias exposes excessive or deficient simulated
precipitation. The three together reveal a precipitation
deficit in the south-central United States that emerges

in SON and lingers through DJF. The approach illus-
trates the advantages of using multiple perspectives to
ensure that the most important errors emerge. Deficient
precipitation for this region and time of year is also
evident in other simulations, either by RegCM2 using
a different source of boundary conditions or by different
models, so the problem is not specific to this particular
simulation, though the cause may of course differ be-
tween models.

Further analysis shows that large-scale atmospheric
circulation is not a major contributor to the SON pre-
cipitation deficit in the south-central United States. Sim-
ulated precipitation events occur with approximately the
same timing as observed, but they generally produce
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less precipitation. Error diagnosis based on atmospheric
and terrestrial water balances shows that the 10-yr av-
erage precipitation error results primarily from a deficit
in horizontal water vapor convergence. However, for
the 10-yr average over SON alone, the primary con-
tributor appears to be a deficit in evapotranspiration,
perhaps suggesting that the model does not produce as
much local recycling of water as the real world or that
a terrestrial water reservoir is missing in the model.

Several factors contribute to simulated evapotrans-
piration. Among the most important simulated fields for
evapotranspiration in BATS (Dickinson et al. 1993) are
soil temperature, soil moisture, and foliage temperature.
Soil temperature determines the annually varying veg-
etation fraction and leaf area indices, whereas foliage
temperature helps determine stomatal resistance. Soil
moisture helps determine root resistance to transpira-
tion. Cool temperature or dry soil moisture biases in the
simulation can yield deficient evapotranspiration. Soil
and foliage temperatures are not widely observed, so
we use the simulation’s surface air temperature bias as
an indicator of soil and foliage temperature bias.

The simulated surface air temperature has relatively
little bias in daily minimum temperature but does have
a cool bias in daily maximum temperature (not shown).
This could produce deficient evapotranspiration in
BATS. However, there is no clear annual cycle in the
temperature bias, and it tends to be less negative in the
south-central United States than in adjacent regions.
Temperature bias thus does not appear to cause deficient
evapotranspiration leading to the south-central United
States precipitation deficit. This suggests that there is
insufficient water present for evapotranspiration, which
may occur if the model’s soil is too dry. Excessively
dry soil during SON and DJF may occur for several
reasons, such as excessive JJA evapotranspiration, in-
sufficient water infiltration into the soil, or excessive
drainage from the root zone.

Another factor may be missing surface water. Pitman
(1991) and Bonan (1995) have argued that accurate sim-
ulation of surface evaporation in many regions may re-
quire a parameterization of subgrid-scale water bodies.
Bonan’s (1995) AGCM simulations showed statistically
significant increases in surface evaporation for most,
though not all, locations where parameterizations for
subgrid-scale lake and swamp/marsh fractions were add-
ed, though his analysis focused only on July and January
fluxes. The south-central United States contains many
wetlands and other inland bodies of water (e.g., NRCS
2000) that are not included in the RegCM2 land use
map for this region. Thus, a possible reason for the
deficient evapotranspiration could be the lack of these
water bodies in the model.

Deficiencies in NNR moisture flux along the model’s
southern boundary might also contribute to a precipi-
tation deficit by causing insufficient moisture conver-
gence, but the Giorgi and Shields (1999) simulation used
the ECMWF analysis for boundary conditions, and the

Duffy et al. (2003) simulations used a global model with
no lateral boundary conditions. Thus, some factor other
than lateral boundary conditions appears to be impor-
tant. In the Duffy et al. (2003) simulations, the degree
of bias diminishes with increasing resolution, indicating
that better resolution of mesoscale circulation features
such as fronts may be important for adequate simulation
of south-central United States precipitation, especially
in winter.

The appearance of the SON–DJF deficit in more than
one model suggests, though does not guarantee, com-
mon causes. However, Bonan’s (1995) inland water bod-
ies dataset had negligible wet surface area in the south-
central United States, in contrast to NRCS (2000). Better
observational characterization of the land surface ap-
pears necessary to determine whether or not unresolved
surface water could be an important factor in simula-
tions that show an SON precipitation deficit.
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