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Section 1

Logic and Foundations

Axiom of Choice and Euclid Axiom 8

Sukhotin Alexander M.

Tomsk Polytechnic University, Russia

E-mail: asukhotin@yandex.ru

2000 Mathematics Subject Classification. 01, 02, 01A55

1. The problem of infinity in mathematics is one of those “eternal problems”

to which the science comes back on each coil of its development. Ancient greek

mathematician Euclid (nearby 340–287 B.C.) introduced the Axiom 8 “And

the Whole is more then its Part” [1, I, p. 15]. On the boundary of XIX and

XX centuries founders of the sets theory rejected Euclid’s Axiom 8 by ignoring

(or explisitly); an equivalency between any set and its own part has referred

to as characteristic property of infinite sets. P. Cohen considered the existence

of infinite collections as the most important issue, he recognized the neces-

sity of inserting infinity axiom and emphasized, that “. . . by tradition the atti-

tude to infinite sets was the criterion of discrepancy between mathematicians”

[2, IV.13].

We think, at an axiomatization of the sets theory Euclid’s Axiom 8 was

incorrectly transformed into “an axiom of infinity”. Any formulation of Axiom

infinity [3, S. 11], as well as Peano’s Axiom of natural numbers set infinity

[3, S. 12], is of potential character. Now, we formulate first statement.

Hypothesis 1. Any infinite set is of potential nature.

2. Remaining within the framework of Halmosh sets naive theory [3], we proved

Euclid’s Axiom 8 in the form of following theorem.

Theorem 1. B ⊂ A ⇒ (∀ϕ : A → B∃(a, q), a, q ∈ A : a 6= q & ϕ(a) = ϕ(q)).

Theorem 1 has the following canonically short form: B ⊂ A ⇒ ¬(A ∼ B), in

particular, q /∈ A ⇒ ¬(A ∼ (A ∪ {q})). This theorem demonstration contains,
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in particular, references to Axiom of Choice [3, S. 15], the concept of exact

rearrangement of set A and concept of the maximal element of chains family

formed from set A subsets and others too.

Remaining within Theorem 1, now we formulate the following two sugges-

tions:

Hypothesis 2. Euclid Axiom 8 is unprovable without Axiom of Choice.

Statement 1. The power sets theory and continuum hypothesis ([2]–[3]) has

new way of development with Euclid’s Axiom 8.
Work is executed at financial support ADTP, the project N

o4207
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❖ ❖ ❖

Effective Eilenberg Machines

Benôıt Razet

STCS, Tata Institute of Fundamental Research, Homi Bhabha road 400005 Mumbai,

India

E-mail: benoit.razet@gmail.com

2000 Mathematics Subject Classification. 68Q10, 68Q45

We revisit the idea of Eilenberg [1] to use automata labelled with binary re-

lations as a general computational model. The Eilenberg machines model has

interesting properties. First, It is general because it unifies most of the devices

having a finite-state control (including Turing machines). Second, it is expres-

sive thanks to the following modularity property: an Eilenberg machine defines

a characteristic relation that shall be used in another Eilenberg machine. We

study the effective fragment of Eilenberg machines for which we propose a sim-

ulation engine [2, 3]. The correction of the simulation engine is proved using

a proof assistant. This approach of effective Eilenberg machines may be used

to solve properly problems which use multiple stages of traditional finite-state

machines.
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Another Arithmetization: and Godels Second Incompleteness
Theorem

Khanindra Chandra Chowdhury∗

Department of Mathematics, Gauhati University, Guwahati-781014, INDIA

E-mail: chowdhurykc@yahoo.com

Maitrayee Chowdhury
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Here we present a discussion to arithmetize a consistency statement for any

formal system with a recursive set of axioms, a finite number of finitary and

recursive rules of inference including modus ponens. In informal language, the

consistency of S shall be expressed by the sentence: there are no meaningful

formulae y and z where z is the negation of y such that both are theorems

of S. we then show that the formalized consistency statement for the arbitrary

system S cannot be proved in a certain sub-theory T of Peanos arithmetic. This

arithmetic theory T with + and ., is much stronger than Q. It will follow that

the consistency of Q formalized in the manner we do, cannot be proved in T,

let alone in Q itself, which is a sub-theory of T.

When formalizing the notion of theorem-hood in any arithmetic system with

+ and ., we have to refer to sequences in the formal language, since a proof

is a sequence of formulae. In the construction of the proof-predicate the usual

method is to allot (recursively) a single Godel number (g.n.) to each formula

and then a single g.n. to a sequence of formulae (forming a proof, say of the last

formula ). This is what we have done. The novelty in our present construction is

that instead of codifying sequences by single natural numbers, we use a number

triple. This device enables us, as we shall see, to do away with the need to find

a defining formula for the recursive function xy. With a Godel triple to codify a

sequence, our proof-predicate is a formula ProvS (c,d,l,y) with 4 free variables,

3 of which are thought of as always appearing in a bunch. ProvS (c,d,l,y) says

that the triple < c, d, l > yields a sequence of expressions (i.e. their g.n.’s)

constituting a proof in S of the formulae with g.n.y. Thus the triple < c, d, l >
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merely indicates a sequence of expressions without mentioning anything about

it being finite or infinite. We shall exploit this to our advantage, using an infinite

sequence of expressions to constitute a proof of its last member.

❖ ❖ ❖

Analogy of Hilbert’s Tenth Problem in Observers
Mathematics

Boris Khots∗

Compressor Controls Corporation 4725 121 Street, Des Moines, Iowa 50323, USA

E-mail: bkhots@cccglobal.com

Dmitriy Khots

Omaha, Nebraska, USA

E-mail: dkhots@cox.net

2000 Mathematics Subject Classification. 03H99

This work considers analogy of Hilbert’s tenth problem in a setting of arith-

metic, algebra, geometry, topology provided by Observer’s Mathematics (see

[1], [2], [3]). Certain results and communications pertaining to solution of this

problem are provided. Let Wn be a set of all finite decimal fractions of length

2n, hence, visually Wn can be described asWn = {? · · · ?
︸ ︷︷ ︸

n

. ? · · · ?
︸ ︷︷ ︸

n

}. The following

Theorem is proved:

For any positive integers m,n, k ∈ Wn, n ∈ Wm, m > log10(1 + (2 · 102n −
1)k), from the point of view of the Wm−observer, there is an algorithm that

takes as input a multivariable polynomial f(x1, . . . , xk) of degree q in Wn and

outputs YES or NO according to whether there exist a1, . . . , ak ∈ Wn such that

f(a1, . . . , ak) = 0.

References
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Sequential Two-Level Formalization of Mathematical Theories

Alexander Kuzichev∗

Faculty of Mechanics and Mathematics, Moscow State University, 119992 Moscow,

Russia

E-mail: askuzichev@rambler.ru

Karolina Kuzicheva

2000 Mathematics Subject Classification. 03B30, 03B40

Following step method of Kolmogorov and Markov, and ideas of sequential

logic, we propose non-axiomatic set-theoretical formalization of mathematical

theories in the form of two-level sequential (nonformula) calculus, representing

provably complete and provably consistent foundations of classical set-theoretic

mathematics. Preliminary results are reflected in a number of publications; see,

in particular, references below.

This result is obtained by using of non-logical algorithmic undecidable (with

the law of excluded middle) sequential calculus of Church Lambda-conversion

and deductive sequential Gentzen constructions without postulated logic cut

rule and with two postulated Lambda-cut rules, introduced by the first author.

Note that, following Gentzen, the basic object of our research of theories is

deductive sequents (deducibilities) instead of formulas, though such sequents

also are constructed only from formulas.

We give details of constructions, beginning with the alphabet, and corre-

sponding proofs.
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Modal Logics of Forcing

Benedikt Löwe

Institute for Logic, Language and Computation, Universiteit van Amsterdam,

Postbus 94242, 1090 GE Amsterdam, The Netherlands

E-mail: bloewe@science.uva.nl

2000 Mathematics Subject Classification. 03E

There is a natural forcing interpretation of modal operators: the possibility

operator 3 is interpreted as “there is a forcing extension such that” and the

necessity operator 2 is interpreted as “for all forcing extensions”. What are

the validities of modal logic in this interpretation? The answer depends on the

model of set theory. In [1], Hamkins provided a model in which the set of modal

validities is the modal logic S5, but it is easy to see that this is not true in

every model of set theory.

In [2], Hamkins and the author determined that the set of modal formulas

ϕ such that every substitution instance of ϕ is provable in ZFC is exactly the

modal logic S4.2. In this talk, we shall discuss this result and further applica-

tions of the technique used. In particular, we shall be looking at modal logics

for restricted classes of forcing (e.g., the modal logic of collapse forcings) and

modal logics in which 3 is interpreted as the converse of forcing possibility:

“there is a ground model such that”.

This talk is reporting on joint work with Joel Hamkins (CUNY).

References
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Computer-Aided Proofs

Raja Natarajan
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2000 Mathematics Subject Classification. MSC Primary 03B35; Secondary
68T15;

Recent advances in the field of ‘Interactive Proof Checking’ with the associated

development of powerful tools such as ‘Proof Assistants’ have given rise to an
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interesting consequence – viz. the practical feasibility of importing techniques

developed in the computer science community and redeploying them to im-

prove the main activity of the working mathematician, namely the process of

proof development. At the core of such redeployed techniques lie the notions

of formal systems, formal reasoning, and formal proofs. However the process of

formalizing mathematics is a highly non-trivial task, and gives rise to a number

of challenging and interesting issues which need to be addressed in order to

make the discipline of computer-aided proofs more prevalent in the future [1].

References
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Four Errors in Cantor’s Proofs on the Uncountability of Real
Number Set and The Foundation of Mathematics

Geng Ouyang

Department of Mathematics, Zhangzhou Teachers College, Zhangzhou, Fujian

363000, P. R. of CHINA

E-mail: oyg2001@yahoo.cn

2000 Mathematics Subject Classification. 03B35, 03E99

The ancient Zeno’s Paradoxes disclosed the serious defects in the infinite theory

and its relating limit theory. From than on, people have been trying very hard to

solve the problems. But till now Zeno’s Paradoxes are still on and new versions

of Zeno’s Paradox can still be found in modern mathematics. Based on the

logical deduction, the author in this article proves the following conclusion:

because of the long existing defects in the foundation of mathematics, Cantor

unconsciously made four serious but concealed mistakes in his proofs on the

uncountability of real number set and turned the proofs into a kind of typical

mathematical magic, such a proof and the related result are not scientific at all.

During the last two decades, the author has published more than 20 papers in

different academic Chinese journals to discuss the foundation of mathematics[1],

[2], [3], [4], [5].
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Herbrand Consistency and Bounded Induction

Saeed Salehi

Department of Mathematics, University of Tabriz, 51666-17766 Tabriz, Iran

E-mail: root@saeedsalehi.ir

2000 Mathematics Subject Classification. 03F

Herbrand Consistency of a theory is defined to be the propositional satisfiability

of the set of its all Skolem instances. This is a weaker notion than the standard

(Hilbert style) consistency, resembling much to cut-free consistency. Cut-Free

Consistency, and in particular Herbrand Consistency, had been suggested for

Π1−separating the hierarchy of bounded arithmetics. It was proved in [1] that

(1) for a bounded formula θ(x) if the theory (I∆0 + Ω2) + ∃x ∈ òg3θ(x) +
HCon(I∆0 + Ω2) is consistent, then so is the theory (I∆0 + Ω2) + ∃x ∈
òg4θ(x), where ògn is the cut {x | ∃y[y = expn(x)]}; and

(2) for any m,n, there exists a bounded formula η(x) such that the theory

(I∆0+Ωm)+∃x∈ ògnη(x) is consistent, but the theory (I∆0+Ωm)+∃x∈
ògn+1η(x) is not consistent.

Thus one gets a model-theoretic proof for I∆0 + Ω2 6` HCon(I∆0 + Ω2)

by putting m = 2, n = 3. In other words, by (1) in the presence of Herbrand

Consistency of the theory, one can shrink any ( òg3−)witness of any bounded

formula logarithmically, but this cannot be done for all bounded formulas by

(2); thus the theory cannot derive its own Herbrand Consistency.

The above proposition (1) was modified and generalized to the case of I∆0+

Ω1 in Chapter 5 of [2]. Here we further modify (1) and (2) to the case of I∆0:

for the cuts I = {x | ∃y[y = exp(ω2
1(x))]} and J = {x | ∃y[y = exp2(x4)]} we

show that

(3) for a bounded formula θ(x) if the theory I∆0 + ∃x∈Iθ(x) + HCon(I40)

is consistent, then so is I∆0 + ∃x∈J θ(x), where I40 is the theory I∆0

augmented with the additional axiom ∀x∃y(y = x · x); and
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(4) for any m,n, there exists a bounded formula η(x) such that I∆0 + ∃x∈
Iη(x) is consistent, but I∆0 + ∃x∈J η(x) is not consistent.

These two theorems immediately imply that I∆0 6` HCon(I40).

We note that the proof of (2) above in [1] works straightforwardly for (4) since

the relation 2x ∈I ⇐⇒ x ∈J holds for I and J , just like the way for ògn and

ògn+1.
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The aim of this paper is basically to study some of the standard properties

of the intuitionistic L-fuzzy images and intuitionistic L-fuzzy inverse images

of intutionistic L-fuzzy or L-vague fuzzy subsets of a set under a crisp map

which not only play a crucial role in the study of both Intuitionistic L-Fuzzy

Algebra and Intuitionistic L-Fuzzy Topology but also are necessary for the in-

dividual/exclusive development of intutionistic L-Fuzzy or L-Vague Set Theory.

❖ ❖ ❖
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Let A be an abelian group and G be a group acting on A as a group. Then A is

a G-module and A is called a cohomologically trivial G-module whenever the

Tate cohomology Hn(X,A) is zero for all integers n and all X ≤ G.

Let G be a finite p-group and N be a normal subgroup of G. Then Z(N)

can be viewed as a G
N

-module whenever G/N acts by conjugation on Z(N),

i.e., zgN := zg = g−1zg for all g ∈ G and all z ∈ Z(N). We show that Z(N)

is never a cohomologically trivial G
N

-module whenever G satisfy one of the

following properties:

(1) G is of nilpotency class 2 and G/N is not cyclic.

(2) p is odd, G is of nilpotency class 3 and G/N is not cyclic.

(3) p is odd, G/N is not cyclic and all elements of order p of G/Z(G) are

contained in the center of G/Z(G).

P. Schmid [2] has proved that for a finite regular p-group G, Z(N) is never

a cohomologically trivial G/N -module for all normal subgroups N of G such

that G/N is not cyclic. He then proposed the question [2, p. 3] of whether

there is a non-regular finite p-group G such that Z(Φ(G)) is a cohomologically

trivial G
Φ(G)

-module, where Φ(G) is the Frattini subgroup of G. Later, Schmid

[3, p. 363] has announced that in [1] the existence of (non-regular) p-groups G
such that Z(Φ(G)) is a cohomologically trivial G

Φ(G)
-module was shown. But
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the author noted that all groups considered in [1] are finite p-groups of class 4

with p 6= 2, 3, so these groups are all finite regular p-groups and they cannot

be candidate for Schmid’s question. This latter has been kindly confirmed by

P. Schmid [4].

We prove that groups G with IdSmallGroup [256,i] in small group library of

GAP [5], where i ∈ {298, . . . , 307}, are such that Z(Φ(G)) is a cohomologically

trivial G
Φ(G)

-module. This research was in part supported by a grant from IPM.
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Let G be a finite group and π(G) be the set of all prime divisors of |G|. The

prime graph Γ(G) of G is the graph whose vertex set is π(G) and two distinct

primes p and q are joint by an edge if and only if G contains an element of

order pq. Characterization of finite groups by the set of orders of their maximal

abelian subgroups, has first been considered by Wang [2]. A finite group G is

said to be characterizable by the set of orders of its maximal abelian subgroups,

if G is uniquely determined by the orders of its maximal abelian subgroups.

Let M(G) = {|N | : N is a maximal abelian subgroup of G}. According to [1],

Bn(q) is characterizable by the set of orders of its maximal abelian subgroups.

Here, using M(Cn(q)) and Γ(Cn(q)), we study whether Cn(q) is characterizable

by the set of orders of its maximal abelian subgroups.
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A near ring N is called 3-prime ( resp. 3-semiprime ) if for any nonzero elements

x, y ∈ N , xNy 6= 0 (resp. xNx 6= 0). An additive mapping d : N −→ N is

called a derivation on N if d(xy) = xd(y) + d(x)y holds for all x, y ∈ N . An

additive mapping d : N −→ N is called a (σ, τ)- derivation on N if there exist

automorphisms σ, τ : N −→ N such that d(xy) = σ(x)d(y) + d(x)τ(y) holds

for all x, y ∈ N . Since E.C.Posner [1] established a very striking result which

states that if R is a prime ring admitting a nonzero centralizing derivation,

then R must be commutative, many authors have investigated the properties

of derivations of 3-prime and 3-semiprime rings. Being important ring theory

tools ( see for example [2]) these results are one of the sources of the development

of theory of differential identities and the theory of Hopf Algebras acting on

rings. In this talk we dicuss near rings admitting a nontrivial (σ, τ)- derivation

and some generalizations of Posner’s Theorem that we explored recently.
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Let R be an associative ring. An additive mapping d : R → R is called a ∗-

derivation if d(xy) = d(x)y∗+xd(y) holds for all x, y ∈ R. An additive mapping

d : R → R is called a Jordan ∗-derivation if d(x2) = d(x)x∗ +xd(x) holds for all

x ∈ R. The study of Jordan ∗-derivations has been motivated by the problem of

representability of quasi-quadratic functionals by sesquilinear ones. It turns out

that the question of whether each quasi-quadratic functional is generated by

some sesquilinear functional is intimated connected with the structure of Jordan
∗-derivations (viz., [Bull. Austral. Math. Soc. 37(1988), 27-29] and [Proc. Amer.

Math. Soc. 91(1987), 133-136], where further reference can be looked).

In this lecture, we will present some new developments and generalization

about these mappings and related concepts. Moreover, some examples and

counter examples will be discussed for questions raised naturally. (This is a

joint work with Ajda Fosner).

❖ ❖ ❖

On Symmetric Generalized (α, β)-biderivations in Rings
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Let R be an associative ring and let α, β be endomorphisms of R. An additive

mapping d : R −→ R is said to be an (α, β)-derivation if d(xy) = d(x)α(y) +

β(x)d(y) holds for all x, y ∈ R. An additive mapping F : R −→ R is said to be

a generalized (α, β)-derivation if there exists an (α, β)-derivation d : R −→ R
such that F (xy) = F (x)α(y) + β(x)d(y) holds for all x, y ∈ R. A symmetric

biadditive mapping D : R × R −→ R is called a symmetric (α, β)-biderivation

if D(xy, z) = D(x, z)α(y) + β(x)D(y, z) holds for all x, y, z ∈ R. A symmetric

biadditive mapping G : R×R −→ R is said to be a symmetric generalized (α, β)-

biderivation if there exists a symmetric (α, β)-biderivation D : R×R −→ R such

that G(xy, z) = G(x, z)α(y)+β(x)D(y, z) holds for all x, y, z ∈ R. A symmetric

generalized (α, β)-biderivation with D = 0 is called an α-left bimultiplier. A

symmetric biadditive mapping J : R×R −→ R is called a symmetric generalized

Jordan (α, β)-biderivation on R if there exists a symmetric (α, β)-biderivation
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D : R × R −→ R such that J(x2, z) = J(x, z)α(x) + β(x)J(x, z) holds for all

x, z ∈ R. It is straight forward to see that every symmetric generalized (α, β)-

biderivation on R is a symmetric generalized Jordan (α, β)-biderivation, but the

converse need not be true in general. In the present talk we shall discuss the

conditions under which every symmetric generalized Jordan (α, β)-biderivation

becomes symmetric generalized (α, β)-biderivation. Moreover, we shall also find

the conditions under which every symmetric generalized (α, β)-biderivation on

R turns out to be an α-left bimultiplier of R. Finally some more related result

shall also be discussed.
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Gelfand Pairs in the Alternating Groups
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Let H be a subgroup of a finite group G. The permutation representation of G
on the set of cosets G/H is said to be multiplicity-free if all its irreducible con-

stituents are distinct, and the subgroup H is called a multiplicity-free subgroup

of G. The multiplicity-free condition is equivalent to the commutativity of the

algebra of bi-H-invariant complex-valued functions on the double coset space

H\G/H under convolution product. In this latter setting, G/H is a finite sym-

metric space and (G,H) is called a Gelfand pair. We determine all Gelfand pairs

(An, H) in the alternating groups An, for all n. We also give some decomposi-

tions of multiplicity-free permutation characters of An. The symmetric group

case was first investigated by Saxl, and recently completed by Godsil-Meagher

and Wildon. Part of this paper is joint work with Raissa T. Relator.
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Let R be a ring and σ an endomorphism of R. Recall that in [1], σ is called a

rigid endomorphism if aσ(a) = 0 implies a = 0 for a ∈ R, and R is called a σ-

rigid ring. For example, let R = C, the field of complex numbers and σ : R → R
be the map defined by σ(a + ib) = a − ib; a, b real numbers. Then it can be

seen that R is a σ-rigid ring.

We also recall from [2] that R is said to be a weak σ-rigid ring if aσ(a) ∈
N(R) if and only if a ∈ N(R) for a ∈ R, where N(R) is the set of nilpotent

elements of R.

Let now R be a right Noetherian ring which is also an algebra over Q (Q the

field of rational numbers). Let σ be an automorphism of R and δ a σ-derivation

of R. Let further σ be such that R is a σ-rigid ring. In this paper we study the

associated prime ideals of Ore extension R[x;σ, δ] and we prove the following

in this direction:

Let R be a semiprime right Noetherian ring which is also an algebra over

Q. Let σ and δ be as above. Then P is an associated prime ideal of R[x;σ, δ]

(viewed as a right module over itself) if and only if there exists an associated

prime ideal U of R with σ(U) = U and δ(U) ⊆ U and P = U [x;σ, δ].

We also prove that if R be a right Noetherian ring which is also an algebra

over Q, σ and δ as usual such that σ(δ(a)) = δ(σ(a)) for all a ∈ R and σ(U) = U
for all associated prime ideals U of R (viewed as a right module over itself),

then P is an associated prime ideal of R[x;σ, δ] (viewed as a right module over

itself) if and only if there exists an associated prime ideal U of R such that

(P ∩R)[x;σ, δ] = P and P ∩R = U .

References

[1] J. Krempa, Some examples of reduced rings, Algebra Colloq., Vol. 3(4) (1996),
289–300.

[2] L. Ouyang, Extensions of generalized α-rigid rings, Int. Electron. J. Algebra, Vol.
3 (2008), 103–116.

❖ ❖ ❖



16 Algebra

Prime Graph of a Ring
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We consider associative ring R (need not be commutative) and define the no-

tion: prime graph of R. We present few illustrations and obtain fundamental

results related to a prime graph. Further, it is if R is a semiprime ring then R
is a prime ring if and only if the prime graph of R is a tree. We observe sev-

eral properties of prime graph with respect to the properties like zero divisors,

nilpotent elements in R.
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The traditional approaches to the first five sporadic (finite simple) (Mathieu)

groups M11,M12,M22,M23 and M24 are via Steiner triple systems or through
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the binary Golay code. In our approach, we recall the extra involutory auto-

morphism of the alternative group A6 ≈ PSL2(9), so the normal extension S6

is accompanied by SL2(9) and M10, all of order 720. There must be a route

from M10 to the other (simple) Mathieu groups, as e.g. M10 ⊂ M11; we ex-

plore this route in our presentation. Our source of inspiration are [1], Essay 7,

and [2].
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In this paper, we discuss 1. How many terms are there in the discriminant

∆n in terms of elementary symmetric functions; 2. How to determine the co-

efficients of ∆n in terms of elementary symmetric functions; 3. How to trans-

form any symmetric function in terms of ‘simple’ symmetric functions into

that in terms of elementary symmetric functions. For problem 3, ‘simple’ sym-

metric function means symmetric function generated by a monomial such as

Uk1k2···kn
= 1

l1!l2!···lr!

∑

xk1

i1
xk2

i2
· · ·xkn

in
, which is generated by xk1

1 xk2

2 · · ·xkn
n ,r is

the number of different k, denoted by k∗1 , k
∗

2 , · · · , k
∗

r ,li is the number of ele-

ments of the set {j|kj = k∗i }1 ≤ i ≤ r; and
∑

go over all the permutations

i1, i2, · · · , in of 1, 2, · · · , n,N =
r∑

j=1

kj is the order of the polynomial. We use dn

to express the number of terms in ∆n, at the moment, to calculate the first n
terms of the sequence {dn}, we need to iterate n n2×n2 matrices, this should be

greatly improved. About the problem 3, for each N , arrange all the U.-terms

of order N into a vector ~UN , and the corresponding S.-terms form another

vector ~SN , then there exists a (triangular) transitional matrix
∑

N such that
~SN =

∑

N
~UN , and ~UN =

∑
−1

N
~SN , we have an iterative procedure to calculate

the transitional matrix
∑

N . Some numerical results for problem 2, we find

out that there exists a (coefficient) sequence which covers all the coefficients of

∆nfor all n. The coefficients of ∆n are the section of the first dn terms of the
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sequence. And the sequence is

1,−4,−4, 18,−27,−4, 16, 18,−80,−6, 144,−27,−128,−192, 256, · · · · · · ,

−46656, 381024,−926100, 600250,−444529, 1728720,−840350, 806736,

518616,−1512630, 1411788,−605052, 1176490, 705894,−823543, · · · · · · ,

We see that the first 5 terms are the coefficients of ∆3, the first 16 terms

are the coefficients of ∆4, another 15 terms are the coefficients of the last 15

terms in∆7.
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A group G is called factorizable if there are proper subgroups A and B such

that G = AB, otherwise G is called a non-factorizable group. In this paper we

will investigate the involvement of the alternating and the symmetric groups

in a factorization of a finite group G. We also obtain some results when G is a

non-factorizable group.
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In this paper we want to revisit the structure of wreath sum of near-rings to

establish some elegant structure of so-called wreath sum of Near-ring groups
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and discuss some related topics. It is observed here, how some examples of

wreath sum of near-rings may lead us to the notion of what may be called the

wreath sum of near-ring groups. It is interesting to note that, we have hardly

met any examples as yet in this context (especially in case of near-rings). Such

justifiable examples may lead us to or help in exploring some new areas and the

projected expectation has been possibly reached by what the author here likes

to claim. In contrast to the product, in the structure of wreath sum of near

rings, an observation leads us to an implication that same set of wreath sum of

near rings structure may have different explanation when the product is defined

in an innovative way. It is noticeable that a subset of such a set of so-called

wreath sum with a specific algebraic structure need not inherit it in the other

context. This observation opens a new outlet to the fact that even in case of a

particular near ring we may have more than one near-ring group structure of the

same wreath sum though the sets may not have isomorphic algebraic structure.

This very observation motivates us to extend the concept of wreath sum of

near-rings to that of near-ring groups. The paper also contains some important

and stimulating results relating to homomorphism and ideal structures of such

systems. Such results include structure of wreath sum of near ring groups,

inheritance of Noetherian and Goldie characters. Interestingly, wreath sum of

two left Goldie as well as right Goldie near rings appear as so respectively,

subject to the analogous restriction in each case.
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Using the idea of the new sort of fuzzy subnearing of a near-ring, fuzzy sub-

groups and their generalizations defined by various researchers, we try to in-

troduce the notion of (ε, ε ∨ q)-fuzzy ideals of N -groups. These fuzzy ideals

are characterized by their level ideals and some other related properties are

investigated.
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One of the interesting and important applications of finite field has been the

development of coding theory. Since x2 + x + 1 is an irreducible polynomial

in Z2 (x) , Z2 (x) / < x2 + x + 1 > is a finite field having four elements,

0, 1, α, α + 1. we use Z2 (x) / < x2 + x + 1 > to construct a (5, 2) linear

code that will correct any single error. For a (5, 2) linear code the parity check

matrix for the code 0, 1, α, α + 1, is

[

1 0 1 1 α
0 1 α α + 1 α + 1

]

❖ ❖ ❖
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The concept of an Almost Distributive Lattice(ADL) was introduced by Swamy

and Rao [3] as a common abstraction of the existing ring theoretic and lattice

theoretic generalizations of a Boolean algebra while characterizing the set of all

global sections of sheaves over locally Boolean spaces algebraically. The concept

of an ideal in an ADL was introduced [3] analogous to that in a distributive

lattice and it was observed that the set PI(R) of all principal ideals of R
forms a distributive lattice. This enables us to extend many existing concepts

from the class of distributive lattices to the class of ADLs such as pseudo-

complementation on an ADL [4] and Stone ADL [5]. Later, Normal ADLs were

studied by Rao and Ravi Kumar [1] and α−ideals in an ADL were studied by

Rao and Sambasiva Rao [2]. In this talk we give characterization of a normal

ADL topologically in terms of prime filters and maximal filters. Also, we intro-

duce the concept of a B−normal ADL R, where B is Birkhoff centre of R as

a generalization to the concept of a normal ADL. We prove that an ADL R in

which the intersection of maximal filters is the set of all maximal elements is

B−normal iff the space MaxFR of maximal filters with the hull-kernel topol-

ogy is a Boolean space. Also, it is proved that R is B−normal iff MaxFR is

homeomorphic to SpecFB, the set of all prime filters of B.
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The theory of Frobenius endomorphisms, i.e., transformations preserving dif-

ferent properties and invariants dates back to the works by Frobenius, Schur,

and Dieudonné, and is an intensively developing part of algebra nowadays.

The problem can be formulated as follows. Let T : Mn(R) → Mn(R) be

a certain transformation on matrices of a fixed order n over a certain ring R.

Let us consider a subset S ⊆ Mn(R), or a matrix functional ρ : Mn(R) → Q,

where Q is a given set (ρ can be a determinant, trace, rank, permanent, etc.),

or a matrix property P (nilpotence, idempotence, singularity, etc.), or a matrix

relation R (similarity, commutativity, order, etc.). It is assumed that one of the

following holds: the transformation T preserves the set S, or the functional ρ, or

the property P, or the relation R, which means that X ∈ S implies T (X) ∈ S;

ρ(X) = ρ(T (X)) for all X ∈ Mn(R); if X satisfies P, then T (X) satisfies P
also; and XRY implies T (X)RT (Y ), correspondingly.

Such maps are usually called Frobenius endomorphisms .

The main problem is to characterize all Frobenius endomorphisms preserv-

ing one of S, ρ, P, or R, possibly under some additional assumptions such as

linearity, additivity, bijectivity, etc.

In this talk we give an overview of the development of this field including

our recent results.

❖ ❖ ❖
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We propose different types of  Lojasiewicz inequality at infinity for polynomials

in two real variables. The formulas for the  Lojasiewicz exponents are given.

References

[1] W.D. Brownawell, Bound for the degrees in Nullstellensatz, Ann. Math. 126, 577–
592, 1987.

[2] S. Ji, J. Kollar, B. Shiffman, A global Lojasiewicz inequality for algebraic varieties,
Trans. Am. Math. Soc. 329(2), 813–818, 1992.

[3] J. Kollar, Sharp effective Nullstellensatz, J. Am. Math. Soc. 1(4), 963–975, 1988.

[4] T.-C. Kuo, Computation of Lojasiewicz exponent of f (x, y), Comment.Math. Helv.
49, 201–213, 1974.

[5] T.-C. Kuo, A. Parusinski, Newton polygon relative to an arc, In:Real andComplex
Singularities. Chapman-Hall. CRC Res. Notes Math. 412, 76–93, 2000.

[6] S. Lojasiewicz, Sur le probleme de la division, Studia Math. 18, 87–136, 1959.

[7] S. Spodzieja, The Lojasiewicz exponent of subanalytic sets, Ann. Polon. Math. 87,
247–263, 2005.

[8] H.H. Vui, N.H. Duc, On the ojasiewicz exponent near the fibre of polynomial map-

pings, Ann. Polon. Math. 94, 43-52, 2008.

❖ ❖ ❖



24 Algebra

Some Extensions of Semicommutative Compatible Ideals in
Ore Extensions

Ebrahim Hashemi

Department of mathematics, Shahrood University of Technology, Shahrood, Iran,

P.O. Box: 316-3619995161

E-mail: eb hashemi@yahoo.com

2000 Mathematics Subject Classification. 16W20, 16N40, 16S36

Throughout this note R always denotes an associative ring with unity. R[x;α, δ]

will stand for the Ore extension of R, where α is an endomorphism and δ an α-

derivation of R, that is, δ is an additive map such that δ(ab) = δ(a)b+α(a)δ(b)
for all a, b ∈ R. An ideal I is called α-compatible if for all a, b ∈ R, ab ∈ I ⇔
aα(b) ∈ I. Moreover, an ideal I is said to be δ-compatible if for each a, b ∈ R,

ab ∈ I ⇒ aδ(b) ∈ I. An ideal I is called semicommutative, if whenever ab ∈ I
implies arb ∈ I for each r ∈ R. In this note we study connection between

semicommutative compatible ideals of R and related ideals of Ore extension

R[x;α, δ] and skew power series R[[x;α]]. Also we investigate the relationship

of the prime radical and the upper nil radical of R with the prime radical

and the upper nil radical of the Ore extension R[x;α, δ] and skew power series

R[[x;α]].
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As opposed to the finitely presented and the finitely generated cases, the concept

of finitely related algebra in a variety is essentially dependent on the signature

on which the variety is defined. More specifically, there exist equivalences (even

isomorphisms) between varieties, seen as categories, sending a finitely related

algebra to one which is not.

A solution to this problem is to define a categorically finitely related algebra

as one which is (classically) finitely related with respect to its canonical theory.

Given a variety, its canonical theory is the dual of the full subcategory on its

perfectly presentable objects (see [1], 8.12). It is also the idempotent completion

of any of its (algebraic) theory. The categorically finitely related objects of a

variety are then the algebras of the form
∐

I Ai, where the Ai are finitely

presentable and all but at most one of them are projective.

Another suggestion would be to include the retractions of these objects

in the definition of the categorically finitely related objects. We note that

they are the same than the retractions of the (classical) finitely related ob-

jects. This weaker concept has a simple categorical definition, as those ob-

jects X for which every morphism f : X → ColimICi to the colimit of a fil-

tered diagram made of surjective homomorphisms factorizes through one of

the colimit morphisms ci : Ci → ColimICi. All this, and what follows, gen-

eralize to locally finitely presentable categories (changing surjective and pro-

jective for strong epi and strong epi projective, respectively). This concept

is the natural counterpart of the categorical definition of finitely presentable

and finitely generated objects: indeed, the injectivity of the canonical maps

ColimI(Hom(X,Ci)) → Hom(X,ColimICi) actually follows from its surjec-

tivity in every finitely accessible category; note however that this is not true if

one restricts to the diagrams made of strong epimorphisms.

Finally, we note that in any locally finitely presentable category, the equa-

tion

finitely presentable = finitely generated + categorically finitely related

holds for both meanings of “categorically finitely related” suggested above.
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Groups arise from symmetry, understood through transitive group actions. Such

actions may be defined equally well for quasigroups, where they lead to concepts

of approximate symmetry. Applications in biology and other fields are now

raising the problem of developing a rigorous theory of approximate symmetry. A

quasigroup is defined as a set Q equipped with a multiplication, not necessarily

associative, such that in the equation x · y = z, knowledge of any two of the

elements x, y, z of Q specifies the third uniquely. The body of the multiplication

table of a finite quasigroup is a Latin quare. Nonempty associative quasigroups

are groups: [2] and [4].

In this paper, we consider the usual direct product G of the dihedral group

of degree 4 and the cyclic group of order 2. By changing some intercalates of

the body of the multiplication table of the group G, we get various quasigroup

structures on the set G. We study homogeneous spaces derived from such a

quasigroup and show how each action matrix acts on an orbit contained in the

homogeneous space. Action matrices show the approximate symmetry.



Algebra 27

References

[1] P.J. Cameron and C.Y. Ku, Intersecting families of permutations, Eur. J. Comb.
24 (2003), 881–890.

[2] B. Im, J. Ryu and J.D.H. Smith, Sharply transitive sets in quasigroup actions,
preprint.

[3] B.D. McKay and I.M. Wanless, Most Latin squares have many subsquares, J.
Combin. Theory Ser. A 86 (1999), 322–347.

[4] J.D.H. Smith, An Introduction to Quasigroups and Their Representations, Chap-
man and Hall/CRC, Boca Raton, FL, 2007.

❖ ❖ ❖

New Identities In Universal Osborn Loops

T. G. Jaiyéo. lá
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A question associated with the 2005 open problem of Michael Kinyon (Is ev-

ery Osborn loop universal?), is answered. Two nice identities that charac-

terize universal(left and right universal) Osborn loops are established. Nu-

merous new identities are established for universal(left and right universal)

Osborn loops like CC-loops, VD-loops and universal weak inverse property

loops. Particularly, Moufang loops are discovered to obey the new identity

[y(x−1u) · u−1](xu) = [y(xu) · u−1](x−1u) surprisingly. For the first time, new

loop properties that are weaker forms of well known loop properties like inverse

property, power associativity and diassociativity are introduced and studied in

universal(left and right universal) Osborn loops. Some of them are found to be

necessary and sufficient conditions for a universal Osborn to be 3 power asso-

ciative. For instance, four of them are found to be new necessary and sufficient

conditions for a CC-loop to be power associative. A conjugacy closed loop is

shown to be diassociative if and only if it is power associative and has a weak

form of diassociative.
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Let (M,Γ) be a Γ-ring. An additive mapping D : M −→ M is called a

generalized derivation if there exist a derivation d : M −→ M such that

D(xαy) = D(x)αy+xαd(y) holds for all x, y ∈ M and α ∈ M . It is denoted by

(D, d). Two generalized derivations (D, d) and (G, g) of M are called orthogo-

nal if D(x)ΓMΓG(y) = (0) = G(y)ΓMΓD(x) for all x, y ∈ M . Suppose (D, d)

and (G, g) be generalized derivations on a Γ-ring M . In this paper, we prove

some necessary and sufficient conditions for the generalized derivations to be

orthogonal. Infact, we prove that if (D, d) and (G, g) are generalized derivations

of M , then for all x, y ∈ M and γ ∈ Γ, the following conditions are equivalent:

(i) (D, d) and (G, g) are orthogonal, (ii) (D, d) and (G, g) satisfy the following

relations: (a) D(x)γG(y) + G(x)γD(y) = 0, (b) d(x)γG(y) + g(x)γD(y) = 0,

(iii) D(x)γG(y) = d(x)γG(y) = 0, (iv) D(x)γG(y) = 0 and dG = dg = 0, (v)

(DG, dg) is a generalized derivation. We also prove that if (D, d) and (G, g) are

generalized derivations of M , then the following conditions are equivalent: (i)
(DG, dg) is a generalized derivation, (ii) (GD, gd) is a generalized derivation,

(iii) D and G are orthogonal, also G and d are orthogonal.
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In this paper, we introduce a prime ideal principle in lattices and use it to prove

that certain ideals in lattices are prime ideals. This also extends the results of

Stone, Gorbunov and Tumanov, Rav etc. on prime ideals.
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The construction of translation planes of order qt+1 through t-spread sets over

a Galois field GF(q) of order q, where q is a power of a prime has attracted

many of the researchers. To construct and study the translation planes of order

qt+1, it has become a practice to construct t-spread sets over GF(q).

The authors have constructed and classified all translation planes of order 34

which admit a collineation group isomorphic to a meta-cyclic group of order 20

as a subgroup of their ((∞),[0,0])-homology group. For this purpose the authors

have constructed all 3-spread sets over GF(3) which admit a meta-cyclic group

G = <x , y | x , y ∈ GL(4,3), x5 = I , y2 = −I , y−1xy = x−1>

of order 20 in their left nuclei by Rao and Davis procedure of constructing

spread sets, where

x =







2 1 1 0

0 2 1 2

2 2 2 1

1 0 2 2







, y =







1 1 0 0

1 2 0 0

2 0 1 2

1 2 2 2







As a result 456, 3-spread sets over GF(3) are obtained and these 3-spread sets

are partitioned into ten isotopic classes.

The aim of this paper is to study the translation plane π of order 34 asso-

ciated with the representative 3-spread set C over GF(3) of the first isotopic

class and its translation complement, where

C = { 0 }∪ G ∪A1 G ∪ A2 G ∪A3 G
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where A,1, A2, A3 are 4×4 matrices, A,1 = (0001,0010,0212,2121), A2 =

(0010,0112,2001,2200), A3 = (0100,0021,1111,2221).

The conjugacy collineation group and autotopism group of π are determined.

It is shown that the kernel K of π is GF(3) and the autotopism group itself

is the translation complement. Further, the translation complement is of order

160 and divides the set of ideal points into orbits of lengths 1, 1, 40, 40.
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Let k[G] be the group algebra of a finite abelian p-group G over an algebraically

closed field of characteristic p. We define p-power points, shifted cyclic sub-

groups of k[G] and give a characterization of these. Using p-power points we

define modules of constant p-power Jordan type as a generalization of modules

of constant Jordan type. Endotrivial k[G]-modules, k[G]-modules with equal

image property are examples of constant p-power Jordan type modules. We give

examples of non-isomorphic modules of constant p-power Jordan type having

the same constant Jordan type.



32 Algebra

References

[Be] D. J. Benson, Representations and cohomology: I, Cambridge studies in ad-
vanced mathematics 30 (1995).

[Ca] J. F. Carlson, The varieties and the cohomology ring of a module, J. Algebra
85 (1983), 104–143.

[CF] J. F. Carlson, E. Friedlander, Exact category of modules of constant Jordan

type, to appear in the Manin Festschift, Progress in Mathematics, Birkhauser.

[CF1] J. F. Carlson, E. Friedlander, A. Suslin, Modules for Z/p× Z/p, preprint.

[CFP] J. F. Carlson, E. Friedlander, J. Pevtsova, Modules of constant Jordan type,
J. Reine Angew. Math. 614 (2008), 191–234.

[Ch] L. Chouinard, Projectivity and relative projectivity for group rings, J. Pure
Appl. Algebra 7 (1976), 287–302.

[Da] E. Dade, Endo-permutation modules over p-groups II, Ann. of Math. 108
(1978), 317–346.

[FPa] E. Friedlander, B. Parshall, Support varieties for restricted Lie algebras.,
Invent. Math. 86 (1986), 553–562.

[FPa1] E. Friedlander, B. Parshall, Geometry of p-unipotent Lie algebras., J. Algebra
109 (1987), 25–45.

[FP] E. Friedlander, J. Pevtsova, Representation theoretic support spaces for finite

group schemes, Amer. J. Math. 127 (2005), 379–420.

[FPe] E. Friedlander, J. Pevtsova, Erratum to:Representation-theoretic support

spaces for finite group schemes, Amer. J. Math. 128 (2006), 1067–1068.
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The well-known method, which reduces the study of Artinian modules over

commutative rings to the study of Artinian modules over quasi-local rings, is

extended to the study of these modules over duo rings. The duals of Krull

Intersection Theorem and Nakayamas Lemma are proved for Artinian modules

over a large class of duo rings. We also give an upper bound for the length of

a duo ring R in terms of the length of a faithful R-module. This generalizes

a well-known result of Schur concerning the cardinality of a maximal linearly

independent set of commuting matrices.
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We introduce the notion of a reference point and provide local approximations

for a subset of the universe. The notion of a reference point naturally gives

rise to a rough approximations framework, wherein several approximations are

possible on the same set. Also, we present an extension to the decision theoretic

rough set model by using reference points.
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We present a lower bound for the number of conjugacy classes of a finite group

in terms of the largest prime divisor of the group order. We also present exam-

ples for which this bound is best possible and discuss recent progress on the

conjecture that these examples are the only ones meeting the bound.
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Suppose that R is a commutative ring with identity and M a unitary R-module.

we introduce the concept of a 2-absorbing submodule which is a generalization

of prime submodule. A non-zero proper submodule M0 of an R-module M is

called a 2-absorbing submodule of M if whenever, r1, r2, r3 ∈ R , m ∈ M and

r1r2r3m ∈ M0, then r1r2m ∈ M0 or r1r3m ∈ M0 or r2r3m ∈ M0. M is said

to be a 2-absorbing, if {0} is a 2-absorbing submodule of M . It is shown that

if M0 is a 2-absorbing submodule of M, then either Rad(M0) is a primes ideal

of R or Rad(M0) = P1 ∩ P2 where P1, P2 are the only distinct prime ideals of

R minimal over (M0 : M). All 2-absorbing submodules of a module M over a

Valuation domain or Dedekind domain R are completely discribed. It is shown

that a Noetherian domain R is a Dedekind domain, if and only if for every 2-

absorbing submodule M0 of M , (M0 : M) is either a maximal ideal of R or m2

for some maximal ideal m of R or m1m2 where m1,m2 are some maximal ideals

of R. Finally we introduce a relation between strongly irreducible submodules

of M and 2-absorbing submodules.
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Let R be a ring and σ, τ be endomorphisms of R. Suppose that U is a Lie

ideal of R such that u2 ∈ U for all u ∈ U . A family D = {dn}n∈IN of ad-

ditive mappings dn : R → R is said to be (σ, τ)- higher derivation of R if

d0 = IR, the identity map on R and dn(ab) =
∑

i+j=n

di(σ
n−i(a))dj(τ

n−j(b))

holds for all a, b ∈ R and for each n ∈ IN. A family F = {fn}n∈IN of ad-

ditive mappings fn : R → R is said to be generalized (σ, τ)- higher deriva-

tion (resp. generalized Jordan (σ, τ)-higher derivation) of U into R if there

exist a (σ, τ)- higher derivation D = {dn}n∈IN of R such that; f0 = IR,

the identity map on R and fn(uv) =
∑

i+j=n

fi(σ
n−i(u))dj(τ

n−j(v)) (resp.

fn(u2) =
∑

i+j=n

fi(σ
n−i(u))dj(τ

n−j(u)) holds for all u, v ∈ U and for each

n ∈ IN. In the present paper we shall obtain the conditions under which every

generalized Jordan (σ, τ)- higher derivation of U into R is a generalized (σ, τ)-

higher derivations of U into R.
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Let K = Q(θ) be an algebraic number field with θ in the ring AK of algebraic

integers of K and f(x) be the minimal polynomial of θ over the field Q of

rational numbers. For a rational prime p, let f̄(x) = ḡ1(x)e1 ....ḡr(x)er be

the factorization of the polynomial f̄(x) obtained by reducing coefficients of

f(x) modulo p into a product of powers of distinct irreducible polynomials over

Z/pZ with gi(x) monic. Dedekind proved that if p does not divide [AK : Z[θ]],
then pAK = ℘e1

1 ....℘er
r , where ℘1, ...., ℘r are distinct prime ideals of AK , ℘i =

pAK + gi(θ)AK having residual degree equal to the degree of ḡi(x). He also

proved that p does not divide [AK : Z[θ]] if and only if for each i, either ei = 1

or ḡi(x) does not divide M̄(x) where M(x) = 1

p
(f(x) − g1(x)e1 ....gr(x)er ) (See

[1, Theorem 6.1.4],[2]). Our aim is to give a weaker condition than the one given

by Dedekind which ensures that if the polynomial f̄(x) factors as above over

Z/pZ, then there are exactly r prime ideals of AK lying over p, with respective

residual degrees deg ḡ1(x), ..., deg ḡr(x) and ramification indices e1, ..., er. In this

paper, the above problem has been dealt with in a more general situation when

the base field is a valued field (K, v) of arbitrary rank and K(θ) is any finite

extension of K.
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Let G be a finite group and Ω be some properties of G. This is a natural

question to ask about the number of finite groups H (up to isomorphism) such

that H has the same properties Ω. If G is the only group with properties Ω, we

say that G is recognizable by properties Ω. A finite nonabelian simple group

P is called quasirecgnizable by Ω, if each finite group G with properties Ω

has a unique composition factor isomorphic to P . If n is an integer, then we

denote by π(n) the set of all prime divisors of n. Let G be a finite group.

The set π(|G|) is denoted by π(G). Also the set of orders of the elements of

G is denoted by πe(G). It is clear that the set πe(G) is closed and partially
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ordered by divisibility, hence it is uniquely determined by µ(G), the subset of

its maximal elements of G. The prime graph Γ(G) of a group G is the graph

whose vertex set is π(G) and two distinct primes p and q are joined by an edge

(we write p ∼ q) if and only if G contains an element of order pq.

Hagie in [1] determined finite groups G satisfying Γ(G) = Γ(S), where S is

a sporadic simple group. Previously finite groups with the same prime graph as

a CIT simple group are determined. It is proved that if q = 32n+1 (n > 0), then

the simple group 2G2(q) is uniquely determined by its prime graph. Also it is

proved that if p > 11 is a prime number and p 6≡ 1 (mod 12), then PSL(2, p)

is uniquely determined by its prime graph. Finite groups with the same prime

graph of 2F4(q) and F4(q) where q is even are determined in (see the references

of [2]). In this paper we consider the prime graph of L32(2) and determined

finite groups with the same prime graph as L32(2).

As the main result of this paper we prove that:

Main Theorem. The simple group L32(2) is quasirecognizable by prime graph,

in fact if G is a finite group such that Γ(G) = Γ(L32(2)) then G/O2(G) ∼=
L32(2).
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Let F be the usual fibre cone of the Rees ring over the closed point. By the

graded version of Noether Normalization, F is a finitely generated graded mod-

ule over a standard graded polynomial ring in s variables over the base field k,

where s is the analytic spread of the ideal I of the local ring R, with R hav-

ing the infinite residue field k. The hypotheses of the Eakin-Sathaye theorem

(see [1]) imply that s is at most r. Hence the ideal I certainly has a reduction

generated by r elements, and we can lift these elements from r generic linear

forms in F .

In the following µ(R[Int]) denotes the minimal number of generators of

R[Int] over R. The main goal of this paper is to prove Eakin Sathaye theorem

in the Rees algebra setting. We prove the following:

Let R be a local Noetherian ring with infinite residue field. Let I be an

ideal in R and R[It] denotes the Rees algebra of I. Let n ≥ 1 and r ≥ 0

be integers such that, µR(R[Int]) <n+r Cr and F be the usual fibre cone of

the Rees ring over the closed point. Then there exists an ideal J ⊂ I such

that R[It] is a finitely generated module over R[Jt] i. e. for some choice of

f1, . . . , fr in the degree 1 component F1 of F , homogeneous generators of F
as a finitely generated homogeneous module over the standard graded affine

algebra k[f1, . . . , fr] lie in degree at most n− 1.
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We introduce the concepts 1-quasitotal graph and 2-quasitotal graph. It is

proved that if G is a graph consist of exactly m connected components

Gi, 1 ≤ i ≤ m, then L(G) = L(G1) ⊕ L(G2) ⊕ ... ⊕ L(Gm) where L(G) de-

notes the line graph of G, and ⊕ denotes the ring sum operation on graphs.

The number of connected components in G is equal to the number of connected

components in L(G) and also if G is a cycle of length n, then L(G) is also a cycle

of length n. Further, it is proved that Q1(G) = G+L(G) where Q1(G) denotes

1-quasitotal graph of a given graph G; and the conditions: (i)|E(G)| = 1; and

(ii)Q2(G) contains unique triangle, are equivalent for a given graph G, where

Q2(G) denotes the 2-quasitotal graph of G.

References

[1] BONDY J. A. and MURTY U. S. R., Graph Theory with Applications, The
Macmillan Press Ltd, (1976).

[2] HARARY F., Graph Theory, Addison-Wesley Publishing Company, USA (1972).

[3] KULLI V. R., Minimally Non outerplanar Graphs, Recent Studies in Graph the-
ory” ed: V. R. Kulli), Vishwa International Publication, (1989) 177–189.

[4] Satyanarayana Bh. and Syam Prasad K., An Isomorphism Theorem on Directed

Hypercubes of Dimension n, Indian J. Pure and Appl. Math 34 (10) (2003) 1453–
1457.

[5] Satyanarayana Bh. and Syam Prasad K., Discrete Mathematics and Graph Theory,
Prentice Hall India Ltd. (2009).

❖ ❖ ❖

On Equinormalizable Deformations of Isolated Singularities

Gert-Martin Greuel

Fachbereich Mathematik, Universität Kaiserslautern, Postfach 3049, 67653

Kaiserslautern, Germany

E-mail: greuel@mathematik.uni-kl.de

Le Cong Trinh

Department of Mathematics, Quy Nhon University, 170 An Duong Vuong, Quy

Nhon, Binh Dinh, Vietnam

E-mail: lectrinh@yahoo.com

2000 Mathematics Subject Classification. 14B07, 14B07, 14B10, 14B12, 14B15,
32S05, 32S10, 32S30

In this talk we study equinormalizable deformations of isolated, possibly non-

reduced singularities. This has been initiated by Teissier ([3]) in the 1970’s for

deformations of reduced curve singularities over the germ of the complex plane
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C where he proved that such a deformation is equinormalizable if and only

if the deformation is δ-constant. Afterwards Teissier and Raynaud generalized

the δ-constant criterion to deformations of isolated reduced curve singularities

over normal base spaces of arbitrary dimension ([4]). Recently, Chiang-Hsieh

and Lipman ([2]) corrected the argument given by Raynaud and Teissier and

extended it to the case of deformations of reduced projective spaces of arbitrary

dimension.

Equinormalizable deformations of isolated (not necessarily reduced) curve

singularities over smooth 1-dimensional base spaces were studied by Brücker

and Greuel ([1]) in the 1990’s. The main aim of this talk is to generalize

the results of Brücker and Greuel to deformations of isolated, possibly non-

reduced curve singularities over arbitrary normal base spaces. For deforma-

tions of isolated (not necessarily reduced) singularities of arbitrary dimension,

we define the δ-invariant of these singularities and give a similar criterion for the

equinormalizability. We also give a relation between equinormalizable as well

as δ-constant deformations and deformations of the normalization of isolated

singularities.
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The classic minimum rank problem involves real symmetric matrices described

by a graph. The minimum (symmetric) rank of a simple graph G is the smallest

possible rank among all symmetric matrices whose (i, j)th entry (for i 6= j) is

nonzero whenever {i, j} is an edge in G and is zero otherwise: [1] and [3].
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The line graph L(G) of a graph G is constructed by taking the edges of G as

vertices of L(G), and joining two vertices in L(G) whenever the corresponding

edges in G have a common vertex: [4]. Applying results from the minimum rank

problem, we investigate the minimum rank of line graphs of some graphs, and

compare minimum ranks of L(G) and G: [1], [2] and [3].
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Let A ⊆ B be an extension of integral domains, Γ be a nonzero torsion-free

grading monoid with Γ ∩ −Γ = {0}, Γ∗ = Γ − {0}, S be a (saturated) multi-

plicative subset of A, and let R = A + B[Γ∗]. In this talk, we study when R
is a PvMD, a GCD-domain or a GGCD-domain. First, we show that if A is a
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proper subring of B = AS , then R is a PvMD (resp., GCD-domain, GGCD-

domain) if and only if A is a PvMD (resp., GCD-domain, GGCD-domain),

Γ is a valuation semigroup and S is a t-splitting (resp., splitting, d-splitting)

set of A. Second, we prove that if A is a field, then R is a PvMD (resp.,

GCD-domain, GGCD-domain) if and only if A = B and Γ is a PvMS (resp.,

GCD-semigroup, GGCD-semigroup). Finally, we prove that if A is not a field

and qf(A) ⊆ B, then R = A + B[Γ∗] is a PvMD (resp., GCD-domain, GGCD-

domain) if and only if A is a PvMD (resp., GCD-domain, GGCD-domain), Γ

is a valuation semigroup and B = qf(A), where qf(A) is the quotient field

of A.
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Infinitesimal spaces are important objects in the category of smooth functors. A

C∞-ring [4] is a ring A in which we can interpret every smooth map R
m → R as

an operation Am −→ A in such a way that projections, composition and identity

are preserved. Furthermore, a map between two such C∞-rings is a ring homo-

morphism which preserves this additional structures, a “C∞-homomorphism”.

The resulting category L of formal C∞-varieties is the opposite of the cate-

gory of finitely generated C∞-rings and C∞-homomorphisms. Now consider

the category SetsL
op

of contravariant set-valued functors, the so-called smooth

functors. Notice that by Yoneda embedding [1]

Y : L ↪→ SetsL
op

, Y (`A) = L(−, `A),
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L may be identified with the full subcategory of SetsL
op

and we usually just

write `A for Y (`A). In particular, we have the first-order infinitesimals

D = `(C∞(R)/(x2))

and the smooth line R = `C∞(R) in SetsL
op

that will play an important role

in this talk.

The aim of this research, among other things, is to establish an explicit

description of the automorphisms group object of D in terms of the object of

units of the smooth real line R.
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Some light is shed on the (still) open problem of whether the 0-primitivity of

a matrix near-ring Mn(R) (n > 1) over a zero-symmetric near-ring R with

identity implies that R is also 0-primitive. Positive results are given in the

finite case, but negative results exist in the realm of generalised matrix near-

rings ([1]).
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Let R be a commutative Noetherian ring and I be an ideal of the Laurent

polynomial ring R[X,X−1] that contains a doubly monic polynomial such

that dim(R[X,X−1]/I) = 0. Let I/I2 is genereted by n ≥ 2 elements over

R[X,X−1]/I. Define I(1) =< {f(1) : f ∈ I} >. Then any set of n generetors

of I(1) over R can be lifted to a set of n generators of I over R[X,X−1].
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It is shown that a domain R with k − dimR = 1 has infinite number of prime

ideals (i.e., maximal ideals) if and only if the rank of every maximal ideal in R[x]

is 2. We also extend the well-known characterization of Noetherian G−domains
to G− domains with acc on radical ideals and dcc on prime ideals.
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In this work, we search for free subgroups in the unit group U(ZG) of the

group ring ZG, using an alternating unit and another unit, either bicyclic or

alternating.

Let G be a group containing x ∈ G an element of odd order n, and c ∈ N,

1 ≤ c < 2n such that (c, 2n) = 1. Then, according to [4, Lemma 10.6], the

element

uc(x) :=

c−1
∑

i=0

(−x)i = 1 − x + x2 − . . . + xc−1 ∈ ZG

is a unit in ZG, called an alternating unit. In the present work, we also extend

the definition of alternating units to even values of c.
Just like some other types of units in group rings [2], [3], alternating units

defined in a homomorphic image of ZG may be lifted to alternating units in ZG.

So the research technique must involve studying the behavior of pairs formed

by an alternating unit and another unit (either bicyclic or alternating) in group

rings ZH, with H minimal groups that could be counter-examples to the result.

As a partial result, we classify such groups as well.

In a similar investigation [1], Gonçalves and del Rio show that in the integral

group ring ZG, with G a nonabelian group with order coprime with 6, there

always exists a pair formed by a Bass cyclic unit and a bicyclic unit, such that

the subgroup they generate is not 2-related. This work has motivated ours,

as Bass-cyclic units and alternating units behave similarly under group ring

representations.
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We prove that if G is a finite group in which elements of same order outside a

normal subgroup N form a coset of N , then G/N is elementary abelian 2-group.

Also, if G is a finite group in which elements of same order outside a normal

subgroup N are conjugate, then G/G′N is an elementary abelian 2-group and

all elements with the same order in G−G′N lie in the same coset of G′N .
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A finite group G can realize, via its regular group algebra CG, the tensor (bilin-

ear map) 〈m, p, q〉, of size mpq, describing m×p by p× q matrix multiplication

(over C), if G has a triple of subsets S, T, U ⊆ G, of sizes m, p, q satisfying

the triple product property (TPP): s′s−1t′t−1u′u−1 = 1G ⇐⇒ s′ = s, t′ =

t, u′ = u, for all s′, s ∈ S, t′, t ∈ T , u′, u ∈ U , ([2]). This leads to the bound

ω ≤ 3
log[

∑
%
R(〈d%,d%,d%〉)]

log(mpq)
for the exponent ω ∈ [2..3] measuring asymptotic

complexity of matrix multiplication, where the d% are the complex irreducible

character degrees of G, and R (〈d%, d%, d%〉) measures the minimal multiplicative

complexity of d% × d% matrix multiplication, and
∑

% R (〈d%, d%, d%〉) measures

the minimal multiplicative complexity of group algebra multiplication in CG,

([3]). This bound is proportional to the largest size d∗ of any complex irre-

ducible character of G, and inversely proportional to the realized tensor sizes

mpq of G, (pp. 51-53,[3]). Generally, mpq < |G|
3

2 , and mpq = |G| if G is abelian,

([2]). The problem is to identify finite groups with small degrees but large sized

tensors, for improving the current best bound, ω < 2.39, ([2]).

The author’s results: (1) a group G realizes O(|G|2 · 4|G|) distinct TPP
triples; (2) the probability Ptpp,G((S, T, U)) of a subset triple (S, T, U) of G

being a TPP triple is O(
|G|

3

2|G| ), showing that TPP triples, and, therefore, tensors,

are “rare” in large finite groups; (3) an efficient, probabilistic search algorithm

for maximal TPP triples of G (written and run on the GAP computer algebra

system, v. 4) on the “sample space” of “candidate TPP triples” of G, including

an exact TPP checking subalgorithm of complexity O(|G|6), with a success

probability proportional to running time t (minutes); (4) a computational cum

probabilistic proof that no alternating group or dihedral group lead to better

upper bounds for R (〈3, 3, 3〉) ∈ [14..28], or for R(〈4, 4, 4〉) ∈ [29..47].
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An algorithm for factorization of Fermat’s numbers, a proof for the infinitude of

Mersenne Primes and developing cosine trisection quartics and its application

to trisection of angles and an approximate real expression for tan 20◦ (and in

general any tan (θ/3)) are discussed.
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The aim of the present paper is to obtain some interesting results related to the

concept “finite dimension” in the theory of associative rings R with respect to

two sided ideals. It is known that if an ideal H of R has finite dimension, then

there exist uniform ideals Ui, 1 ≤ i ≤ n of R such that the sum U1⊕U2⊕· · ·⊕Un

is essential in H. This n is independent of choice of uniform ideals and we call

it as dimension of H (we write dimH, in short). We obtained some important

relations between the concepts complement ideals and essential ideals. Finally,

we obtained that dim(R/K) = dimR - dimK for a complement ideal K of R.

Some necessary examples were included.
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We will show that there is a class of transcendental numbers which are solutions

of the equations of the F -algebra F [e±x1 , · · · , e±xm , x1, · · · , xn]. It is well known

that if we find the automorphism group of the Weyl algebra, then the Jacobian

conjecture can be solved [5] and [6]. Zhao’s results of his paper imply that

if every non-zero endomorphism of W+(2) is surjective, then the Jacoboan

conjecture holds [8]. In this work, we will find the automorphism group of the

Witt type algebra W+(2) and prove that the Jacobian conjecture holds on the

polynomial ring F [x, y] [1], [3], and [4]. We also prove that the algebra W (2)

has a non-zero endomorphism such that the endomorphism is not surjective [7].

We will show some interesting open problems on Weyl algebra and Lie algebra

[2] and [3].
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In this paper, by using of an equivalence relation on fuzzy subgroup, we deter-

mine the number of distinct fuzzy subgroups some of the dihedral groups. A

fuzzy subset of a set X is a mapping µ : X → [0, 1]. Fuzzy subset µ of a group

G is called a fuzzy subgroup of G if

(G1) µ(xy) ≥ µ(x) ∧ µ(y)∀x, y ∈ G;

(G2) µ(x−1) ≥ µ(x)∀x ∈ G.

The set of all fuzzy subgroup of a group G denoted by F (G). Let G be a group

and µ ∈ F (G). The set {x ∈ G|µ(x) > 0} is called support of µ and denoted

by suppµ. Let G be a group, and µ, ν ∈ F (G). Define the relation ∼ on F(G)

as follows: ∀µ, ν ∈ F (G), µ ∼ ν if and only if for all x, y ∈ G, µ(x) > µ(y) if

and only if ν(x) > ν(y) and µ(x) = 0 if and only if ν(x) = 0.

We say two fuzzy subgroups are distinct if they are not equivalent. The

set of all fuzzy subgroups µ of G such that µ(e) = 1 denoted by F1(G) . The

number of equivalence classes ∼ on F1(G) will be denoted by r?G.

Theorem. Let G be a finite group and H be a subgroup of G. Then the number

of distinct fuzzy subgroups of G such that their support is exactly equal to H

is
r?H+1

2
.
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Theorem. Let G be the dihedral group of order 2n. If n ≥ 3, then r?G =

2n+2 + 2n−1 +
n−2∑

i=1

2ir?
(D

2n−i )
− 3.
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On the Distance of a Polynomial Near-ring Code

Péter Pál Pach

For a polynomial f(x) ∈ Z2[x] it is natural to consider the near-ring code

generated by the polynomials f ◦ x, f ◦ x2, . . . , f ◦ xk as a vectorspace. It is a

16 year old conjecture that for the polynomial f(x) = xn + xn−1 + · · · + x the

distance of this code is n.

The conjecture is equivalent to the following purely number theoretical prob-

lem. Let m = {1, 2, . . . ,m} and A ⊂ N be an arbitrary finite subset of N. Show

that the number of products that occur odd many times in n · A is at least

n. Among others we prove that for A = k this number is at least n and the

distance of the code is at least n/(log n)0.223.

While proving the case A = k we use different methods depending on the size

of k (respect to n). For example, for k ≤ 1.34 log n we apply inclusion-exclusion

principle. The most difficult part is when the interval (k, n] contains at most

one prime. In this case the key idea is to estimate the number of elements of

the set {12, 22, . . . , k2} which have a divisor in (k, n]. Furthermore, in all cases

we use several estimates on the distribution of primes.

❖ ❖ ❖
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The d-th Abel map of a smooth curve associates to a d-tuple of points of the

curve the line bundle associated to the d-tuple of points. This map has the

remarkable property that its fibers are projectivized linear systems. Recently,

the problem of contructing a resolution for Abel maps of a singular curve has

been considered by many authors. The problem has been solved if the curve is

irreducible in [1], if d = 1 in [2] and [3], if the curve is of compact type in [4].

The general problem is still open. It is expexted that the study of the fibers of

these resolutions should give interesting results on limit linear series on singular

curves. In this talk we will show how to get a resolution of the d-th Abel map

for curves of compact type and for the 2-nd Abel map for stable curves, giving

some applications to limit linear series on singular curves. This is a joint work

with Juliana Coelho and Eduardo Esteves.
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Generalized Weil Representations for Classical Groups with a
Bruhat Presentation

José Pantoja
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Let A be a ring with an involution ∗. Then the groups GLε
∗
(2, A) and SLε

∗
(2, A)

are a (tamely) non commutative version of the general linear and specially linear

groups over a field, consisting of 2×2 matrices with coefficients in A, that satisfy

certain commuting relations which involve ∗.
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Several times these groups afford Bruhat like presentations (symplectic

groups and orthogonal groups are examples of the groups under consideration)

for different choices of the involutive ring.

We define a (generalized) Weil representation of the group G = SLε
∗
(2, A)

for a general finite ring A in the case when G has a Bruhat presentation with

simple minimal relations. The representation is defined on the generators in

such a way that the linear automorphisms associated to them, satisfy those

minimal relations.
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The purpose of this paper is to use methods of simplicial homotopy for

the characterisation of subgroups determined by certain ideals, here called

symmetric ideals, in free group rings.

{This is joint work with Roman Mikhailov, Steklov Mathematical Insti-

tute, Moscow.}
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Combinatorics of Words over Semigroups

Gabriella Pluhár

The number of n-variable expressions, polynomials over a finite algebraic struc-

ture can be very informative about the structure itself. For example, it is well-

known that over a finite field every function is a polynomial, so for the p element

field Fp the number of n-variable polynomials is pp
n

. For the abelian group Zp

every polynomial can be written in the form of xk1

1 . . . xk2

2 , therefore the number

of polynomials is only pn.

For groups it was proved in the 1960’s that for a finite group G this number

is exponential, if G is nilpotent and double exponential, if G is not nilpotent.

We investigate the number of expressions for semigroups. As a first step,

we proved that the logarithm of the number of expressions over idempotent
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semigroups is asymptotically
4

(k − 3)!
nk−3 log n, where k depends on the semi-

group. A semigroup is idempotent if it satisfies x2 = x. This growth was not

experienced before. We continue with the semigroups closest to groups, with

the so-called completely regular semigroups. We show the following: Let V be

the class of semigroups defined by the identity x3 = x. Then the number of

polynomials is greater than 22
...2

, where there are n-many 2-s in the formula.
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If G is a finite simple Chevalley group, then G has an irreducible complex

character χ whose degree is the order of a p-sylow subgroup of G, and all other

irreducible complex characters are in the principal p-block (such a χ is called

the Steinberg character). For simple groups G, this property seems to hold

only if G is a finite simple Chevalley group. The conjecture, then, is that the

above property about the irreducible complex characters of G forces G to be a

finite simple Chevalley group. The simple group PSL(2, q), however, is the only

known simple group which satisfies the following stronger hypothesis:

(H) There is a unique irreducible complex character χ of degree m > 1 and

every other irreducible complex character is such that its degree is relatively

prime to m.

So the problem of classifying all finite groups G satisfying the hypothesis (H)

can be viewed, at least in the case when G is simple, as a first step towards

classifying finite simple Chevalley groups by their Steinberg character. Solvable

groups satisfying the hypothesis (H) have been classified in a separate paper

[1]. In this short communication, we study non-solvable groups satisfying the

hypothesis (H). Assuming that χ is faithful, it is shown that derived group G′

is a non-abelian simple group and that when χ(1) = p, p an odd prime, G
itself is a non-abelian simple group, and is such that its p-sylow subgroup P is

a cyclic group of order p and equals its centralizer. From this, it follows that

(when χ(1) = p) all involutions in G are conjugate.
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Let R be an associative ring, and F : R → R is an additive mapping. F is

called a Jordan triple derivation if F (xyx) = F (x)yx+xF (y)x+xyF (x) for all

x, y ∈ R is fulfilled [1], and F is called generalized Jordan triple derivation if

F (xyx) = F (x)yx + xf(y)x + xyf(x) with some Jordan triple derivation f for

all x, y ∈ R is fulfilled [2]. In the present paper, we studied some other types of

generalized Jordan triple derivations on rings R.
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While neural networks are very successfully applied to the processing of

fixed-length vectors and variable-length sequences, since in great variety of

real-world problems such as molecular biology and chemistry, pattern recogni-

tion, document processing the information is naturally incoded in the relation-

ships among the basic entities, the principle subject is the efficient processing of

structured objects of arbitrary shape (like logical terms, trees, or graphs). Here
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we explain methods of processing for directed acyclic and directed cyclic graphs

with the recursive neural network in such a way that directed acyclic graphs

are processed by unfolding the recursive network into an encoding network and

directed cyclic graphs map into a recursive-equivalent tree.
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We started this paper with the aim to find out the validity of results proved

by S.Montgomery and D.S. Passman [1] (regarding the connection between the

Connes subgroups and the ideal structure of a graded rings) for semirings. In

the absence of additive inverses in semirings, the conditions to find out the

validity of the results of ring theory become complicated, thus one needs a

weaker version of of additive inverses, i.e. cancellation of elements. If a semiring

is additively cancellative, then its ring of differences exists and becomes an

imprtant tool to find out the validity of the results of rings for semirings, e.g.

see [3].

Let K be an additvely cancellative commutative semiring and R an addi-

tively cancellative K-semialgebra graded by a finite group G.Then there exists

an extension semiring S (known as smash product), with same 1, which comes

from the study of semi-Hopf algebras [2]. If R is additively cancellative, then so

is S and hence its ring of differences also exists. R embeds in its ring of differ-

ences where as S embeds in its ring of differences.Theses embeddings become

useful as the results of Montgomery and Passman are valid for these rings of

differences, thereby providing us with an incisive technique for analyzing these

results for R and S.
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The notion of regularity was introduced by J. Von Neumann in his paper [11].

And A.H. Clifford and G.B. Preston [1], L. Kovács [2], S. Lajos [4] [5] [6] [8] [9],

J. Luh [3], and O. Steinfeld [10] [12] have characterized many results on regular

rings and semigroups by means of their left ideal, right ideals, and quasi-ideals.

In this paper we will show some results of regular groupoid-lattices which can

be considered as common generalization of regular rings and semigroups.
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Let R denote a commutative Noetherian ring (with identity), I an ideal of R,

and M a finitely generated R-module. In [5] L.J. Ratliff, Jr., conjectured about

the asymptotic behaviour of AssRR/In when R is a Noetherian domain. Sub-

sequently, M. Brodmann [2] showed that if R is Noetherian and M is a finitely

generated R-module, then AssRM/InM is ultimately constant for large n. In

[4], Melkersson and Schenzel asked whether the sets ExtiR(R/In,M) become

stable for sufficiently large n. In this paper we show that, for all i ≥ 0, the

sets of prime ideals AssRExtiR(R/In,M), n = 1, 2, . . . , become independent of

n, for large n, whenever I is principal, which is an affirmative answer to the

above question in the case I is principal. Also, it is shown that, if I is gen-

erated by an R-regular sequence and ExtiR(R/I,M) is Artinian, then the set

∪∞

n=1AssRExti+1

R (R/In,M) is finite. Another aim of this paper is to show that,

if x ∈ I is a regular element on R/ΓI(R) and M/ΓI(M), then for every i, j ≥ 0,

the R-module ExtiR(R/xR,Hj
I (M)) is I-cofinite, whenever dimR/I ≤ 1.
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A module M over an associative ring R with unity is a QTAG-module if every

finitely generated submodule of any homomorphic image of M is a direct sum of

uniserial modules. There are many fascinating concepts related to these modules

of which h-pure submodules and N -high submodules are very significant. A

submodule N of M is semi h-pure in M if it is contained in a h-pure submodule

of M and the minimal h-pure submodule of M containing N is the h-pure hull

of N in M. Here we characterize the h-pure hulls of the submodules N ⊂ M
as S-high submodules of M, where S is a subsocle of M. We also show that for

two h-pure hulls L and K (of N in M) fM/K(t) = fM/L(t) = 0, ∀ t ≥ o.
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Concepts are couples of sets O and A. (O,A) gives any concept, that is

the assignment, of the object O to the set A of their (common) attributes.

The lattice is created by two algebraic operations: “intersection of couples-

concepts” as the multiplication of the Boolean Algebra-Lattice and “symmetric-

difference (!) of couples-concepts” as the addition (!) of the Boolean Algebra-

Lattice (see ICM94). There are, also, two other operations (the “union of

two concepts” and the “complement of a concept”). Intersection and union

(which cannot play the role of multiplication) express similarities, while the

other two operations express dissimilarities. Definition 1. The complement

of the concept (O,A) is the concept (OC , AC), where OC and AC are the

usual set-theoretic complements of O and A, respectively. Definition 2. The

symmetric-difference of two concepts (O1, A1) and (O2, A2), is the concept

D = (O1 +O2, (A1 +A2)C), where O1 +O2, A1 +A2 are the usual set-theoretic

symmetric-differences of O1 and O2, A1 and A2, respectively. The non - com-

mon objects O1 +O2 have the common attributes A1 ∩A2, but they may have,

also, others ‘out of’ A1 ∪ A2 (that is, in the complement of A1 ∪ A2, which is

the fuzzy factor in the definition or comparison of concepts). Definition 3.

We define distance d(X,Y ) of two sets X and Y , the non-negative integer

expressing the number of elements of the set X +Y , that is of their symmetric-

difference. So, d(X,Y ) = n(X + Y ).The operation complement can not be

expressed by the two predefined operations “union” (∪) and “intersection” (∩),

which have the meaning of “common”. So, the complement gives the differ-

ent, not the common, the variety. The symmetric-difference of two concepts is

proved to be a “distance” between them (in the mathematical sense!). So,

an object is not defined but just compared to another object, through
one or more concepts. Our world consists of similarities for objects
and of equivalences for concepts. We are free to construct classes as thin

as possible. It is proved that every class is a sublattice, every concept
is, also, a sublattice and that all classes are the elements of a new lat-
tice! Taking as concepts only the standardized ones, fits well with (not intelli-

gent. . . ) robots, but not with human beings and real life. Our system of concepts

is open, enriched with differences, distances, classes of concepts and lattices

of classes!(see ICM94). All concepts are accepted, not only the standardized.

How many such concepts can we get? Can we enumerate them? It depends

on the complement of a concept, that is on the concept (Oc, Ac). There is a
space beyond our knowledge(?) Even if we make standardization of the
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concept (O,A) (which means that O is the maximum set of objects with the

minimum set A of common attributes), when we “go out of” O, nothing is sure

for the attributes of Oc. Many people think that, if we make standardizations,

then everything will be sure in our world. Unfortunately, we can be sure only

for a finite number of objects, but we cannot be sure for all the others.
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The stochastic SIS - Susceptible, Infected and Susceptible - model is a well

known mathematical model, studied in several contexts, and a special case of

more complex models [4]. In an epidemiological context, this model is used

for endemic infections that do not confer immunity and can be interpreted

as a birth-and-death process with a finite state space, correspondent to the

number of infected individuals I(t) ∈ {0, 1, 2, ..., N} at time t. Since the state

I(t) = 0 is the only one absorbing, the stationary distribution of the SIS model is

degenerated and the interest goes to compute the quasi-stationary distribution

that does not have explicit form [1, 2].

Many authors worked on the SIS model considering, only, the dynamical

evolution of the mean value and the variance of the infected individuals. In this

study, we derive recursively the dynamic equations for all the moments of the

infected quantity and, using the moment closure approximation [3], we develop

a recursive formula to compute the equilibria manifold of the m moment closure

ODEs. We discover that the stable equilibria of the m moment closure ODEs

can be used to compute a good approximation of the quasi-stationary mean

value of infecteds for relatively small populations size N and also for infection

rates β relatively close to its critical values by taking m large enough.
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Let R be a commutative ring with identity. We denote by dimR the Krull

dimension of R. It is shown in [10] that if dimR = n, then n+ 1 ≤ dimR[X] ≤
2n + 1 where R[X] is the polynomial ring over R. For the power series ring

R[[X]], we show that dimR[[X]] can be uncountably infinite even if dimR is

finite.
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We present an explicit quasi-free resolution BV∞ of the operad BV that encodes

Batalin-Vilkovisky algebras, and thus a notion of homotopy Batalin-Vilkovisky

algebras, or BV∞-algebras, with good homotopy properties. We compare our

notion with other definitions in the literature [1, 5]. In order to provide our

quasi-free resolution we introduce a general theory of Koszul duality for pr-

operads defined by quadratic and linear relations, extending the now classical

theory of [2] for purely quadratic operads and that of [3, 4] for algebras. The

operad BV is not purely quadratic but is Koszul in our sense, allowing us to

prove a Poincaré-Birkhoff-Witt Theorem and give the explicit small quasi-free

resolution BV∞.

With this resolution we can introduce deformation theory and homotopy

theory of BV-algebras, and of BV∞-algebras, and we also develop an obtruction

theory for algebras over any Koszul operad P with only quadratic and linear

relations.

As applications we prove that any topological conformal field theory carries

a BV∞-algebra structure that lifts the BV-algebra structure on homology. The

same result is proved for the singular chain complex of the double loop space

of a topological space endowed with an action of the circle. We also extend
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a conjecture of Lian-Zuckerman, showing that certain vertex algebras have an

explicit BV∞-algebra structure, and prove the cyclic Deligne conjecture with

the operad BV∞.
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An example in [4] suggests that Dedekind finiteness may play a crucial role in

a characterization of the structural subrings Mn(θ,R) of the full n× n matrix

ring Mn(R) over a ring R which are closed with respect to taking inverses. It

turns out that Mn(θ,R) is closed with respect to taking inverses in Mn(R) if all

the equivalence classes with respect to θ ∩ θ−1, except possibly one, are of size

less than or equal to p (say) and Mp(R) is Dedekind finite. Another purpose

of this paper is to show that Mn(θ,R) is Dedekind finite if and only if Mm(R)

is Dedekind finite, where m is the maximum size of the equivalence classes

(with respect to θ ∩ θ−1). This provides a positive result for the inheritance

of Dedekind finiteness by a matrix ring (albeit not a full matrix ring) from a

smaller (full) matrix ring.
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Let (S,+, .) be a semiring. A semiring is said to satifgy Integral multiple prop-

erty (IMP ), if for every a in S there exists a positive integer n such that a2 = na
and n depends on the element a. Additive and multiplicative structures play an

important role in determining the structure of semirings. In [2], Satyanarayana

proved that if a totally ordered (t, o) semirings contains multipicative identity,

then (S,+) is non-negatively ordered or non-positively ordered. Examples are

given that the converse of this not true. We prove that if a totally ordered

semiring satisfies IMP, then (S,+) is non-negatively (non-positively) ordered

if and only if (S, .) is non-negatively (non-positively) ordered, we also prove that

if S is a totally ordered semiring with IMP, then (S,+) is O-Archimedean if

and only if (S, .) is O-Archimedean. A semiring is called a divided semiring, if

(S, .) is a group. We study the conditions that (S,+) is positively ordered in

the strict sense or negatively ordered in strict sense in divided semirings.
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Convolution Rings and Some Applications
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Convolution types and convolution rings were introduced for two reasons.

Firstly, they provide a convenient tool to describe that which is common to

a wide variety of ring constructions (eg. polynomial rings, power series rings,

matrix rings, group rings, incidence algebras, necklace rings and many more).

Secondly, the convolution type separates the construction method from any

algebraic considerations. This is done in order to identify and describe the

properties of the parameters of the convolution type that will force certain

properties on the constructed rings. For example, a matrix convolution type

is defined and when imposed on a given ring, the resulting convolution ring is

just the matrix ring. The non-commutativity of the matrix ring is independent

of the underlying base ring and the reasons for the non-commutativity is to be

found in the construction method.

In this talk, these ideas will be illustrated with special reference to the arith-

metical rings based on the Cauchy, Dirichlet and Lucas products respectively.
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In our common papers [1]–[3] as well as in our monograph [4], M. Krasner and

myself first introduced a theory of a para- and extra- graduations which general-

ize a classical graduations as defined by Bourbaki, as well as some earlier results

of M. Krasner. Our aim was to introduce the structures which have, in each of

the three cases (groups, rings modules), the property of closure with respect to

direct sum and direct product in the sense that the support of the homogeneous

parts of this product is Cartesian restricted product, resp. Cartesian product

of the homogeneous parts of components. The characterization axioms of para-

and extra- graded groups give a way to three study methods of this groups

which are in principle equivalent: non-homogeneous, semi-homogeneous, and

homogeneous. In my presentation I will speak about extra- and para-graded

groups from semi-homogeneous aspect.

If H is a subset of the group G and x ∈ H, let H(x) = {y ∈ H; xy ∈ H}.
Then, H is homogeneous part of the group G in relation to the paragraduation
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E iff H satisfies the system of the following three axioms:

1. If x ∈ H, g(x) = {y ∈ H; H(y) ⊇ H(x)} is invariant subgroup of the

group G.

(The group G is very saturated if x ∈ g ⇒ g(x) ⊆ g).

2. If A ⊆ H is a subset of the set A such that ∀x, y ∈ A xy ∈ H, then there

exists a very saturated subgroup g of G with g ⊆ H such that A ⊆ g, i.e.
x ∈ g ⇒ g(x) ⊆ g.

3. a) H generates the group G, and

b) H generates G with the system of the relations R.

A pair (G, H ⊆ G) for which H satisfies axioms 1-3 defines the paragraduation

of the group G up to the equivalence and is called a paragraded group from the

aspect of the semi-homogeneity.

A paragraduation which belongs to this class of equivalence can be constructed

canonically.

A paragraded group (G, H) is an extragraded group iff the part 3.b) of the axiom

3. is replaced with:

4. Let u1, u2, . . . , un ∈ H such that H(ui) are incomparable in pairs (as

to the relation of inclusion ⊂), and let x1, x2, . . . , xn, x′

1, x
′

2, . . . , x
′

n be

elements of H such that ∀i ∈ {1, 2, . . . , n} : H(xi)∩H(x′

i) ⊆ H(ui), then

x1x2 . . . xn = x′

1x
′

2 . . . x′

n means that ∀i ∈ {1, 2, . . . , n} : H(x−1

i x′

i) ⊆
H(ui) (or better said, x−1

i x′

i ∈ H because xi, x
′

i ∈ g(ui)).
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Let F be a field. For a central division F -algebra D of index d > 1, the reduced

Whitehead group SK1(D) of D is defined. Similarly, if F/K is a quadratic field

extension (char(F ) 6= 2) and D is endowed with F/K-involution τ , then the

reduced unitary Whitehead group SUK1(D, τ) of D is defined.

Both groups play an important role in the study of the structure of simple

simply connected isotropic algebraic groups and algebraic K-theory ([1]).

Passing to anisotropic groups of type An one needs to look at groups

SU(1, D):

U(1, D) = {d ∈ D∗|ddτ = 1}, SU(1, D) = U(1, D) ∩ SL(1, D).

By analogy with the isotropic case one can define the following group

SUKan
1 (D, τ) = SU(1, D)/[U(1, D), U(1, D)],

([U(1, D), U(1, D)] denotes the commutator subgroup of U(1, D)) which is still

slightly studied. Even the problem of non-triviality of SUKan
1 (D, τ) is settled

([2], [3]) only in some particular cases which are strongly based on the special

structure of D. In this situation it is interesting to find a characteristic of non-

triviality of SUKan
1 (D, τ) which does not depend on that structure.

Such a characteristic is contained in the following

Theorem. There exists an epimorphism

SUKan
1 (D, τ) −→ SUK1(D, τ)/2SUK1(D, τ),

where 2SUK1(D, τ) is the 2-torsion part of SUK1(D, τ).

Corollary. If the period of SUK1(D, τ) > 2, then SUKan
1 (D, τ) 6= {0}.

Corollary. If d is odd and SUK1(D, τ) 6= {0}, then SUKan
1 (D, τ) 6= {0}.
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Let R be a commutative ring with identity and M be a finitely generated

generalized multiplication R-module. It will be proved that any submodule N
of M is the intersection of its isolated p-primary components, where p runs over

the minimal prime ideals of (N :R M). Using this fact we prove that if Q is a

primary submodule of M , then Q =
√
Q :R M

t
M for some positive integer t.

Also a criteria for which a finitely generated multiplication R module to be a

generalized multiplication module will be investigated.

❖ ❖ ❖
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Bloch-Kato Conjecture for Convolution L-functions

M. Agarwal

We give evidence for the Bloch-Kato conjecture for the convolution L-function
of two elliptic modular forms. Let f be a new cuspform of weight 2 and g be a

new cuspform of weight k+2, k ∈ {2, 4, 6, 8, 12}, of level Γ0(q) for an odd prime

q such that they are ordinary at p and have residually absolutely irreducible

Galois representations mod p for p an odd prime different from q. Under some

additional conditions on p we show that if

pn | Lalg(2 + k/2, f × g) =⇒ pn | #H1
f (GQ, ρf × ρg(−k/2− 1))

This is carried out by studying congruences between Yoshida lift of f, g and

stable forms on GSp(4). This is a report on joint work with Krzysztof Klosin.
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Suppose that E1 and E2 are elliptic curves defined over rationals and p is an

odd prime where E1 and E2 have good ordinary reduction. In this paper, we

prove that if E1[p
i] and E2[p

i] are isomorphic as Galois modules for i = µ(E1),

then µ(E1) ≤ µ(E2). If the isomorphism holds for i = µ(E1)+1, then both the

curves have same µ-invariants. We also discuss one numerical example.



72 Number Theory

References

[1] A. Nichifor, Iwasawa Theory for Elliptic Curves with Cyclic Isogenies, PhD Thesis,
submitted at the Department of Mathematics, University of Washington, 2004.

[2] R. Greenberg, Introduction to Iwasawa Theory for Elliptic Curves, IAS/Park City
Mathematicas Series, 9, (2001).

[3] R. Greenberg, V. Vatsal, On the Iwasawa Invariants of Elliptic Curves, Invent.
Math. 142, (2000), 17–63.

❖ ❖ ❖

Fermat’s Last Theorem

John Bellingham

Fairfax Media Limited, Level 1/1 Darling Island Road Pyrmont NSW 2009,

Australia

E-mail: jbellingham0@gmail.com

2000 Mathematics Subject Classification. Number Theory

Outline of this Proof of Fermat’s Last Theorem

Sophie Germain developed a proof of Case I based on the idea that at least one

auxiliary prime can be found for every prime n > 2 which shows that a solution

under Case I is impossible. Study of her ideas is contained in Appendix XVI

and XVII. Sophie Germain’s method fails

i) because it is difficult to prove that an auxiliary prime exists for every

prime n, even though this is a reasonable conjecture

ii) It only addresses Case I and does not address Case II

This proof, developed after studying the work of Sophie Germain, begins with a

proof of Case I based on a fascinating property of the prime factors of the sum

of two relatively prime nth powers. All the possible prime factors of (xn + yn),
excluding the prime factors contained in (x+y), are of the form; p = 1 + 2 * n

* k. (k is any integer which makes p a prime). All the primes (p) of this form

behave as auxiliary primes for all primes n in a similar way that was envisaged

by Sophie Germain.

For each possible value of p,

i) (-y/x) must be an nth power residue in mod(p)

ii) (-y/x) must be a specifically implied nth root of 1 in mod(p) and

iii) (-y/x) cannot be 1 mod(p)
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For every prime n, all primes p which are of the form 1+2*n*k and are factors

of z not contained in (x+y) imply that the three concurrent conditions above

contradict each other.

Under Case II, the same approach as in Case I is demonstrated to be still

valid. If we take z as the variable divisible by n, we know x and y cannot be

divisible by n. Since p is defined as all the prime factors of (xn + yn) excluding
primes contained in (x+y), the proof as in Case I still holds. Under Case II, if

z is the variable divisible by n, (x+y) must include n as a prime factor, hence

n is excluded from p by definition.
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Turning around an unsolved problem of Erdös and Odlyzko [3], first a related

problem is solved. Let k 6= 0 be an integer and P = {p1, . . . , pl} a set of primes.

Then the number of primes p ≤ x such that p+ k = α ·u, where α is supported

by P and u is squarefree, as x → ∞, is given by

∏

p-k℘

(

1−
1

p2 − p

)

· Li(x) +O

(

x

logH x

)

where ℘ := p1 · · · pl and H > 0 is a real number. Then the question of multiple

shifts of primes having the given shape α · u is explored [1, 2].

Then this idea is related to the concept of smooth number [4, Chapter 7].

Let pn be the n’th prime. A number m is pn-semismooth (compare [5]) if

m = α · u where α is supported by {p1, . . . , pn} and u is squarefree. Then the

count of these numbers up to x is given by

Θn(x) =
∏

p>pn

(

1−
1

p2

)

· x+O
(√

x logn x
)

.

These ideas enable us to develop a theory with has elements in common with

those of smooth numbers and squarefree numbers. For example we will address
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the question of semismooth numbers in short intervals and define semismooth
integer sequence, a very large subset of the set of all integer sequences. The

maximum number of consecutive pn-semismooth numbers is p2n+1 − 1 and this

is assumed an infinite number of times.
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In this paper, the authors extend the theory of the generalized difference opera-

tor ∆` to the Generalized difference operator of the nth kind ∆`1,`2,...,`n for the

positive reals `1, `2, . . . , `n. Also present the discrete version of Leibnitz Theo-

rem, Binomial Theorem, Newton’s formula with reference to ∆`1,`2,...,`n . Also
by defining its inverse to establish a formulae for the sum of general partial

sums of the higher powers of arithmetic progression in number theory.
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Let s ≥ 2 be an integer. Denote by µs the least integer so that every integer

l > µs is the sum of exactly s integers> 1 which are pairwise relatively prime.

In 1964, Sierpiński [7] asked a determination of µs. Let p1 = 2, p2 = 3, . . . be
the sequence of consecutive primes. In 1965, P. Erdős [4] proved that p2 + p3 +
· · ·+ps+1− 2 ≤ µs < p2+p3+ · · ·+ps+1+C, where C is an absolute constant.

We solve this problem completely.
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As a corollary, we prove that if ps+2 − ps+1 > 1100, then

µs =

s+1
∑

i=2

pi + 1100.

In particular, the set of integers s with

µs =

s+1
∑

i=2

pi + 1100

has the asymptotic density 1.
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[4] P. Erdős, On a problem of Sierpinski, Acta Arith. 11(1965), 189–192.

[5] H. Halberstam and H. E. Richert, Sieve methods, Academic Press, London, 1974.
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The Riemann Zeta function ζ(s) =
∑+∞

i=1

1

ns converges absolutely for s > 1.

In this section, I firstly show that ζ(s) is the reciprocal of
∑+∞

i=1

µ(n)

ns , µ(n)
being the divisor function for ‘n’. An important result is that the value of the

Riemann Zeta function for s = 2 is π2

6
. The proof of this result is also shown in
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this section. It can be used in finding the mean value of the Euler Phi Function

: Φ(x) =
∑

n≤x ϕ(n) =
3x2

π2 +O(xlogx).
The above result is used in showing that the probability of any two positive

integers being relatively prime is almost 6

π2 . Also in this section I show that if

a positive integer ‘n’ is equal to the product of two distinct primes ‘p’ & ‘q’
[p > x, q > x], the probability that a randomly chosen positive integer up to

‘x’ & relatively prime to ‘n’ is greater than (1− 1

x
)2. Notably the probability is

greater than 0.99, if ‘x’ is 200 or more. This idea is widely used in public key

cryptography where large distinct primes are chosen so that it becomes almost

practically impossible to factorize ‘n’ creating the cryptosystem to be secure.

It is an open problem to determine whether the number of twin prime pairs

(p, p + 2) is finite or infinite. One of the largest known twin prime pairs is

1, 000, 000, 009, 649 & 1, 000, 000, 009, 651. However it will be feasible in choos-

ing only one large prime instead of two, if we work with twin prime pairs.

Knowledge of ‘p’ implies knowledge of ‘q’, since q = p+ 2.

This enhances the security of the cryptosystem, since less amount of data needs

to be protected.
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Two infinite sequences A and B of non-negative integers are called additive

complements, if their sum contains all sufficiently large integers. Let A(x) and
B(x) be the counting functions of A and B. Motivated by a problem of Hanani

and Erdős [2],[3], Danzer [1] conjectured that for additive complements A and

B, if

lim sup
x→∞

A(x)B(x)

x
≤ 1,
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then

A(x)B(x)− x → +∞ as x → +∞.

In [8], Sárközy and Szemerédi proved this conjecture.

In this talk, we prove that for additive complements A and B, if

lim sup
x→∞

A(x)B(x)

x
< 5

4
or lim sup

x→∞

A(x)B(x)

x
> 2, then A(x)B(x)− x → +∞.
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Consider a system of linear equations Θx = y, where Θ is an n × m real

matrix. The supremum of real numbers γ, such that for each t large enough the

inequalities 0 < |x|∞ ≤ t, |Θx−y|∞ ≤ t−γ admit a solution in x ∈ Z
m, y ∈ Z

n,

is called the uniform Diophantine exponent of Θ and is denoted by α(Θ). If the

words “for each t large enough” are substituted by “there are arbitrarily large

values of t for which”, we get the individual Diophantine exponent, which is

denoted by β(Θ).

Our first result to be discussed at the talk is the following theorem improving

results of Jarńık [1] and Apfelbeck [2].
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Theorem 1. For all positive integers n, m, not equal simultaneously to 1, we

have

α(Θᵀ) >











n− 1

m− α(Θ)
, if α(Θ) ≤ 1,

n− α(Θ)−1

m− 1
, if α(Θ) ≥ 1.

Our second result improves the theorem of Dyson [3] and generalizes to the

case of arbitrary n, m the theorem of Laurent and Bugeaud [4].

Theorem 2. For all n, m, not equal simultaneously to 1, we have

β(Θᵀ) >
nβ(Θ) + n− 1

(m− 1)β(Θ) +m
,

β(Θᵀ) >
(n− 1)(1 + β(Θ))− (1− α(Θ))

(m− 1)(1 + β(Θ)) + (1− α(Θ))
,

β(Θᵀ) >
(n− 1)(1 + β(Θ)−1)− (α(Θ)−1 − 1)

(m− 1)(1 + β(Θ)−1) + (α(Θ)−1 − 1)
.
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Recently J. Bourgain [1] proved that for a given 0 < δ < 1

4
and r ∈ Z+ there is

δ′ > ( δ
r
)Cr such that if p is sufficiently large prime and subsets A1, A2, . . . , Ar ⊂

Fp satisfy |Ai| > pδ, i = 1, 2, . . . , r and
∏r

i=1
|Ai| > p1+δ then there is an

exponential sum bound

∣
∣
∣
∣
∣
∣

∑

x1∈A1,...,xr∈Ar

ep(x1 . . . xr)

∣
∣
∣
∣
∣
∣

< p−δ′ |A1| . . . |Ar|.

In my joint paper with J. Bourgain we extending this result to the case of

an arbitrary finite field. These results with the sketches of their proofs will be

presented at the communication.
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The newer facet of prime number theory has been studied by defining prime

and composite numbers in the backdrop of Sieve of Eratosthenes, as follows.

An integer n > 1 which can be obtained by the multiplication of two inte-

gers, other than 1 and n, is a composite number, otherwise it is a prime. Using

these definitions, following results have been obtained.

Even integers 2n represent prime and composite numbers according as n = 1

and n > 1. Odd integers 2n + 1 will represent composite numbers (having

factors 2m+1 and 2k+1 ) and primes according as n = and 6= 2mk+m+k, where
n,m, k ≥ 1. These findings represent the distribution of prime and composite

numbers through even and odd integers [1].

It is possible to find out n, in terms of m, k, for which an + b, subject to

(a, b) = 1 (refer to Dirichlet’s prime number theorem) will represent prime and

composite numbers [2].

It is also possible to obtain π(x), the number of primes up to any given odd

integer x, by writting π(x) =
(x+1)

2
− c(x) and obtaning c(x), the number of

odd composite numbers up to x by applying the above findings [2].



Number Theory 81

References

[1] V.K. Gurtu, A new approach towards prime numbers, Current Science, 84, (2003),
628.

[2] V.K. Gurtu, FLT and some other outstanding number theory problems with their

arithmetical solutions, Himalaya Publishing House, India, 2007.

❖ ❖ ❖

On the Prime Geodesic Theorem for Hyperbolic Manifolds
with Cusps

Muharem Avdispahić
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Let XΓ be a d−dimensional real hyperbolic manifold with cusps given as locally

symmetric space Γ\G/K, where G = SO0(d, 1) is the rank-one semi-simple Lie

group, K = SO(d) is the maximal compact subgroup of G and Γ is a discrete

co-finite torsion-free subgroup of G such that

Γ ∩ P = Γ ∩N(P )

for P ∈ <, where < is the set of Γ−conjugacy classes of Γ−cuspidal parabolic

subgroups in G and N(P ) is the unipotent radical of P . Referring to Fried [1]

and using Ruelle zeta function instead of the Selberg zeta function, Park [3]

proved the prime geodesic theorem for such a d−dimensional manifold XΓ with

the error term O
(

x
3

2
d0(log x)−

1

2

)

, d0 = d−1

2
. Having in mind that Randol [4]

obtained O
(

x
3

4 (log x)−1
)

for compact Riemann surfaces, we give an another

proof of Park’s prime geodesic theorem focusing on Randol’s approach and

using a meromorphic extension of the twisted Ruelle zeta function described in

[2], [3] to achieve the improved error term O
(

x
3

2
d0(log x)−1

)

for 3 ≤ d ≤ 5.

References

[1] D. Fried, The zeta functions of Ruelle and Selberg, I. Ann. Sci. Ecole Norm. Sup.
19 (1986), 491–517.



82 Number Theory

[2] Y. Gon and Jinsung Park, The zeta funtions of Ruelle and Selberg for hyperbolic

manifolds with cusps, Math. Ann. 346 (2010), 719–767.

[3] J. Park, Ruelle zeta function and prime geodesic theorem for hyperbolic manifolds

with cusps, preprint.

[4] B. Randol, On the asymptotic distribution of closed geodesics on compact Riemann

surfaces, Trans. Amer. Math. Soc. 233 (1977), 241–247.

❖ ❖ ❖

On the Mean Square of |ζ(1 + it)|

Aleksandar Ivić
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Let R(T ) :=
∫ T

1
|ζ(1 + it)|2dt − ζ(2)T + π log T denote the error term in the

mean square formula for |ζ(1 + it)|. We derive a precise explicit expression for

R(t) which is used to prove that

∫ T

1

R(t)dt = BT +O

(

T

log T

)

and
∫ T

1

R2(t)dt = CT +O

(

T

log T

)

for suitable constants B and C > 0.

These results improve on earlier upper bounds of Balasubramanian, Ra-

machandra and the author [1] for the integrals in question.
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Some results [1, 2] and a bit of analysis convince this author to frame the

following conjecture that relates to the powers of integers. For any positive

integer n, the nth power of an arbitrary positive integer can be expressed in

infinite number of ways as the sum or difference of (n + 1) number of other

nth powers of positive integers. When n equals 1, the conjecture is obvious. We

will produce the proof of the conjecture with formulae to establish the cases

for n taking values 2, 3 and 4. The structure of these results would tempt us to

discover other formulae relating to higher values of n greater than 4. Possibly,

the complete proof of this conjecture would open up our vision to add a new

dimension to the understanding of the Diophantine problems and the related

fields, known and unknown.
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For positive integers n > k, let Pn,k(x) =

k
∑

j=0

(

n

j

)

xj be the polynomial ob-

tained by truncating the binomial expansion of (1 + x)n at the kth stage. In
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2007, Filaseta, Kumchev and Pasechnik (see [1]) considered the problem of ir-

reducibility of Pn,k(x) over the field Q of rational numbers. In case k = 2,

Pn,k(x) has negative discriminant and hence is irreducible over Q. Filaseta et

al. pointed out that when k = n − 1, then Pn,k(x) is irreducible over Q if and

only if n is a prime number. They also proved that for any fixed integer k > 3,

there exists an integer n0 depending on k such that Pn,k(x) is irreducible over

Q for every n > n0. In this paper, the authors prove the irreducibility of Pn,k(x)
over the field of rational numbers when 4 6 2k 6 n < (k + 1)3.
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For r = (r0, . . . , rd−1) ∈ Rd define the shift radix system τr by the function

τr : Z
d → Zd, z = (z0, . . . , zd−1) 7→ (z1, . . . , zd−1,−brzc),

where rz is the scalar product of the vectors r and z (cf. Akiyama et al. [1]).

If each orbit of τr ends up at 0, we say that τr has the finiteness property.

It is well-known that each orbit of τr ends up periodically if the polynomial

td + rd−1t
d−1 + · · · + r0 associated to r is contractive. On the other hand,

whenever this polynomial has at least one root outside the unit circle, there

exist starting vectors that give rise to unbounded orbits. We want to present a

number of recent results gained together with H.Brunotte, A.Pethő, P.Surer and

J.Thuswaldner (cf. [2], [3] and [4]) on periodicity properties of the mappings

τr for the remaining situations of vectors r associated to polynomials whose

roots have modulus less than or equal to one with equality in at least one

case. We show that for a large class of vectors r belonging to the above class

the ultimate periodicity of the orbits of τr is equivalent to the fact that τs is

a shift radix system with finiteness property or has another prescribed orbit

structure for a certain parameter s related to r. These results are combined

with new algorithmic results in order to characterize vectors r of the above

class that give rise to ultimately periodic orbits of τr for each starting value. In

particular, we present the description of these vectors r for the case d = 3. This

leads to sets which seem to have a very intricate structure. For the instance
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d = 3 we furthermore settle the conjecture positively that the fact that τr has

the finiteness property implies that the polynomial td + rd−1t
d−1 + · · · + r0 is

contractive.
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Let p(x) be a polynomial in one variable with integer coefficients. We investigate

the question when Π(n) = p(1)p(2)...p(n) is a square. If p(x) is an irreducible

quadratic polynomial, it can be shown that for n large enough Π(n) is not a

square. However, obtaining a complete list of squares for all values of n requires

certain effective character sum estimates, and this is a difficult problem to solve

uniformly for all quadratic extensions. We concentrate on the latter question.

In particular, we prove that for p(x) = x3 + 1, Π(n) is not a square for any n,
and for p(x) = x2 + 5, Π(n) is a square if and only if n = 4.
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Here, we show that for most primes p, every residue class modulo p can be

represented as a sum of at most 32 Fibonacci numbers. We also look at the

similar problem for composite moduli.

References

[1] K. Ford and I. E. Shparlinski, On curves over finite fields with Jacobians of small

exponent, Int. J. Number Theory 16-4 (2008), 819–826.

[2] K. Ford, The distribution of integers with a divisor in a given interval, Ann. Math.
168 (2008), 367–433.

[3] M. Z. Garaev, An explicit sum-product estimate in Fp, arXiv:math NT/0702780.

[4] A. Glibichuk and S. Konyagin, Additive properties of product sets in fields of prime

order, arXiv:math NT/0702729.

[5] A. Glibichuk, Combinatorial properties of sets of residues modulo a prime an

the Erdös–Graham problem, Mat. Zametki 79:3 (2006), 384–395; English transl.,
Math. Notes 79:3–4 (2006), 356–365.

[6] D. Hart, A. Iosevich and J. Solymosi, Sum-product estimates in finite fields via

Kloosterman sums, arXiv:math.CO/0609426.

[7] F. Luca and L. Szalay, Fibonacci numbers of the form pa±pb+1, Fibonacci Quart.
45 (2007), 98–103.

❖ ❖ ❖

Lagrange’s Method in Theory of Diophantine Equathion: New
Integer Differentional Anaysis

Tania Kirilova Mintcheva

Mathematics, University of Economics, Bld. “Suhodolska” No. 2, Blok1, Vh. 2,

Bulgaria

E-mail: tmintcheva@yahoo.com

2000 Mathematics Subject Classification. 20K



Number Theory 87

The introduction of definition of derivative of one function in the real analysis

is a revolutionary moment in the history of mathematics. For that reason we

pose the question: Which is the respective interpretation of this concept in the

Number theory? This paper is solution of this problem.

In the first section we have a possibility of interpreting Lagrange’s method

using the theory of Linear Differential Equations for obtaining the general so-

lution of one Diophantine linear equation with two unknown quantities. Here

we follow the idea of Lagrange literally.

In the second section we consider integer interpretations of some basic def-

initions and theorems by real analysis. This gives us the possibility to prove

functional independence in the multitude of the integer numbers.

In section three, attention deserves T.3.2 about the presentation of X by the

power of n as a sum of consecutive powers of X. This theorem is a result of the

application of a Theory of Probability method (Two-dimensional distribution)

for integers X and n. Hence, this theorem defines all possible cases for obtaining

all possible values of X by the power of n. There is and the fundamental theorem

as the new interpretation of Lagrange’s method. This theorem answers of the

question of how to introduce new indeterminate quantities in order to compare

different addends from two equal sums. After all that, we can a possibility to

prove “Fermat’s Last Theorem”.
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There exist a lot of publications on prime numbers, but in comparison nearly

none on twin primes. Herein a novel criterion for a pair being a twin prime is

presented [1, 2, 3, 4, 5].

Let m ∈ N, D(m) :=
{

r ∈ Z |
⌊

1−m2

5

⌋

≤ r ≤
⌊

m2
−1

7

⌋}

, then

∀r ∈ D(m) \ {0}
√
9r2 − r +m2 /∈ Z ⇐⇒ (6m− 1, 6m+ 1) is a twin prime.

The proof of this theorem will be presented at the conference. Also a novel short

algorithm for computing all twin primes in a given intervall without performing

any decomposition will be shown. The algorithm was implemented symbolically

and numerically and the results agree with Ribenboim’s computed twin primes

table [5]. The computational time is in general O(m) and under some certain

circumstances O(
√
m).
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Tôhoku Gakuin Univ., Japan

T. Sekiguchi
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Let p ≥ 2 be an integer and denote the p−adic expansion of n ∈ N by n =
∑

i≥0
αi(n)p

i (αi(n) ∈ {0, 1, . . . , p− 1}) and set s(n, l) =
∑

i≥0
1
{αi(n)=l} (l =

0, 1, . . . , p− 1). The p-adic digital sum is defined by sp(n) =
∑p−1

l=1
ls(n, l).

Gelfond [2] investigated the distribution of sp(n) in arithmetic progressions,

where n ≡ l (mod m), sp(n) ≡ a (mod q) for m(≥ 2), q(≥ 2), l, a ∈ Z with

(q, p − 1) = 1. Noticing the relation between the distribution function of the

multinomial measure and sp(n), we shall give explicit formulas of exponential

sums related to Gelfond’s theorem. As an application of those formulas, we

shall obtain a simple expression of Newman-Coquet type summation formula

related to the number of digits in a multiple of a prime number.
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Here we investigate a new strategy to find a new point in Lagrange’s spectrum

near LC (the origin of the Hall’s ray) using a concept of slowly growing bilateral

critical string.
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The purpose of this research is to present some algorithmic solutions of a gen-

eralization of the well known Josephus problem ([1], [2], [3], [5], [7], [8] and

[9]) in which the elimination process consists of only one step by allowing it

to have multiple steps. First, it is given an algorithm (Theorem 1) to solve a

particular case of the Josephus problem generalized (JPG) by following the

approach developed by Graham, Knuth and Patashnik in [4, p. 81]. Next, the

JPG is solved in full (Theorem 2) and a recursion proved (Corollary 2). The

technique used is based on modular arithmetic in accordance with some ideas

introduced by Halbeisen and Hungerbuhler in [6], with few changes.
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For the Hurwitz zeta function ζ(s, α), we study ζ(r)(s, α), r-th order derivative

with respect to s, as an analytic function of complex variable α, especially
its power and Fourier series. We show that the only possible singularities of

ζ(r)(s, α) are at the non-positive integral values of α. For integral n ≥ 0, we

show that ζ(−n, α) is a polynomial, equal to − 1

n+1
Bn+1(α), Bn+1(α) being the

Bernoulli polynomial of degree (n+ 1). In particular for integral this results in

instant evaluation of multiple zeta value ζα(−n1,−n2, . . . ,−nr), defining this

value as the result of repeated limits. Following functional equations, we also get

instantly the values ζ(2n) and L(n, χ) for integral n ≥ 1, where ζ(s) = ζ(s, 1)
and L(s, χ) is the Dirichlet L-series corresponding to a Dirichlet character χ,
with n ≥ 1 and χ both even or both odd. We also give insight into possible

nature of ζ(2n+ 1). We treat Lerch’s zeta function likewise.
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In the context of the achievement of a generalized continued fraction expansion

of the n-th roots of the solution of a quadratic equation x2 − mx ± 1 = 0, a

positive integer number, m, is fixed, the positive solution of x2 −mx− 1 = 0,

will be denoted by σm, and the positive solution of x2 − mx + 1 = 0, m =

3, 4, 5, . . ., by τm. We can easily check that σm = m + 1

m+

1

m+
· · · , and

τm = (m− 1) + 1

1+

1

(m−2)+

1

1+

1

(m−2)+
· · · . Indeed, the number σm belongs to

the Metallic Number Family, [2], and the number τm does not belongs to the

Metallic numbers’ class, however it is linked to it, [1]. By using sophisticated

tools we may obtain generalized continued fraction for particular squared roots.

For instance,
√
σ2 can be expressed in terms of Dedekind eta function, since

it coincides with the inverse of
√
2η (z) η2 (4z) η−3 (2z), using the argument

z =
√
−1, [3]. We directly obtain two different generalized expansions of the

positive squared root of the number σm, m = 1, 2, 3, . . . One of them, with

complex coefficients, coincides with the real part of 1+ m−1+2i
2+

m−1+2i
2+

· · · . The

other one, with a fractal character, 1

1−

δ
2−

δ
2−

· · · , δ = 1− (σm)
−1

provides infi-

nite sequences of rational approximations which converge to
√
σm. We evaluate

the speed of convergence of both preceding formal expansions. We also obtain

regular (simple) continued fractions for odd n-th roots of particular cases of σm.

Among others results, that the cubic root of σm, m = p3+3p, p = 1, 2, 3, . . ., is
σp. In a similar way, we can consider, particular cases for even n-th roots of τm.

For example, the positive quartic root of τm, m = r4+4r2+2, r = 1, 2, 3, . . ., is
σr. Looking at the solutions of the first equation, we characterize the subset of

σm, m = 1, 2, 3, . . . which involves
√
2, obtaining a continued fraction with ra-

tional coefficients expressed in terms of leg-leg twin Pythagorean triples, which

quickly converge to the considered σm.
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It took more than three centuries and a half to generate a proof of FLT as a

supplementary result of the proof of Taniyama-Shimura Conjecture [4]. This

proof, based on modern theory of elliptical curves, an idea undreamt of in the

17th century [1]. Acknowledging this proof as a great achievement, I still am of

the view that Fermat possessed a logical proof other than this.

My search for such a proof led me to the following basic requirements.

(i) The equation xn + yn = zn(1) is to be made into factorisable form for all

n as yn = zn −xn which implies yn

(z−x)
= (zn−1 + zn−2x+ ....+ zxn−2 +

xn−1) = P (z) (2). For natural number solution set (x, y, z) of equation

(1), obviously yn

(z−x)
should be a natural number and at the same time

P (z) is not divisible by (z − x) [2].

(ii) The set of natural numbers is to be properly partitioned for detailed

analysis. The most appropriate partition [3], according to me is Unit-

Prime-Composite Partition (UPC Partition) as N = I ∪P ∪C where I =

{1} unit set, P = {2, 3, 5, 7, 11.........} set of primes and C = {4, 6, 8, 9.....}
set of composite numbers.

The above partition leads us to 9 different cases on the key factors y
and (z − x) of yn = zn − xn. For natural number solution set (x, y, z) of
equation (1) provides x 6= y therefore x < y < z. That is (z − x) > 1.

Hence 3 cases having (z − x) ∈ I can be ruled out. When y ∈ I , yn

(z−x)
is

fractional, no solution.

For remaining 4 cases obtained from UPC Partition, we can apply the method

of contradiction. For the case y ∈ P and (z−x) ∈ P , consider a natural number

solution set (x, y, z) satisfying (1). Let y = p ∈ P and (z − x) = q ∈ P . For

integral values of P (z) in (2) p = q, then yn

(z−x)
= qn

q
= q(n−1) = (z − x)(n−1)

= P (z), a contradiction. In the remaining 3 cases too we can prove that y and

(z − x) can not be determined as specified conditions of P (z) in (2). And this

proves Fermat’s last theorem.
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In this paper we derive some interesting properties related with the sequence

{Tn}n≥1 of Tribonacci numbers defined by T1 = 0, T2 = 1, T3 = 1 and Tn+3 =

Tn+2 + Tn+1 + Tn for n ≥ 1.

We first express Tn in simple explicit form and use it to derive the recur-

sive formula for Tn to complete the successor and predecessor of any given

Tribonacci number. We also derive nice bounds for Tn.

We the obtain the formula for the number of digits of Tn and also the value

of the finite series
∞
∑

i=1

Ti

x(i+1)n
, for x ≥ 2

Finally we consider the generalized Tribonacci sequence {tn}n≥1 having initial

terms t1 = a, t2 = b and t3 = c for non-zero relatively prime integers b,c. We

show that this sequence does not have the gcd property.

(ti, tj) = t(i,j), for any i, j ≥ 1
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Cyclotomic numbers had their origin in the work of C. F. Gauss. In his book

Disquisitiones Arithmeticae, he had obtained cyclotomic numbers of order 3

and 4 while solving the problem of constructibility of regular polygons. For

e ≥ 2, Jacobi sums of order e are algebraic integers in the cyclotomic field

Q(ζe), ζe = exp(2πi/e), and in 1935, L. E. Dickson (see [2]) used them in

connection with Waring’s problem. He showed that if Jacobi sums of order e
are known then cyclotomic numbers of order e can be obtained.
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It may be noted that an element α coprime to l in the cyclotomic ring Z[ζl],
l prime, can be determined uniquely if we know its prime ideal decomposition,

absolute value and congruence modulo (1−ζl)
2. To determine an element in the

ring Z[ζl2 ] which is coprime to l, the congruence is required modulo (1−ζl2)
l+1.

Prime ideal decomposition and absolute value of Jacobi sums of order e are well-
known. So it is required to find the appropriate congruences. The congruences

for Jacobi sums of order l and 2l (l prime) are well-known and they have been

used by Katre and Rajwade [4] and V. V. Acharya and S. A. Katre [1] for

arithmetic characterization of Jacobi sums of order l and 2l respectively.
In the present paper ([5]) we find determining congruences for Jacobi sums

J(1, n)l2 of order l2 for a finite field Fq, q = pr ≡ 1 (mod l2) where l > 3

and p are primes. These are appropriate congruences useful in giving algebraic

characterization of the Jacobi sums of order l2 and they have been obtained in

terms of cyclotomic numbers of order l. Our results sharpen the congruences

given in [3]. We also obtain cyclotomic numbers (h, k)l2 of order l2 in terms of

the coefficients of the Jacobi sums J(1, j)l of order l and J(1, n)l2 of order l2.
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A well–known Szemerédi’s theorem [1, 2] on arithmetic progressions asserts that

any sufficiently dense subset of the segment {1, 2, . . . , N} contains an arithmetic

progression of any length. Mutidimensional variants of the result was studied

by various authors (see e.g. [3]–[6]). We prove that any sufficiently dense set of
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two–dimansional grid (Z/5Z)n contains a configuration of the form {(x, y), (x+
d, y), (x+ 2d, y), (x, y + d)} with nonzero d.
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Let n be a positive integer and ϕ(n) denotes the Euler phi function. It is well

known that the power sum of n can be evaluated in closed form in terms of

n. Also, the sum of all those ϕ(n) positive integers that are coprime to n and

not exceeding n, is expressible in terms of n and ϕ(n). Although such results

already exist in literature [1, 2], but here we have presented some new analytical

results in these connections. Some functional and integral relations are derived

for the general power sums. Two sample results are [3]:

∑

d<n, (d,n)=1

dk =
nk+1

k + 1

[ k
2
]

∑

m=0

C(k + 1, 2m)B2mn−2m
∏

p|n, p−prime

(1− p2m−1). (1)

Sk(x) = k

∫ x

0

Sk−1(t)dt+ xCk, Ck = 1− k

∫ 1

0

Sk−1(t)dt (2)

for any real x where B2m denote the 2m−th Bernoulli number.
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In this manuscript, we consider some specific classes of exponential Diophantine

equations and give methods to obtain classes of solutions for each Diophantine

equation. An exponential Diophantine equation is an equation x2 + C = yn

where C is a product of several prime powers. In literature, there are partial

results concerning the solutions of these Diophantine equations. We discuss

these equations in three different cases: n = 3, n = 4 and n > 4. The main tool

used in calculations is MAGMA [3].
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It is well known that in the case of “simple” infinite continued fraction expan-

sions of real numbers, the rational approximants have the property that if they

are even, they increase with n increasing while if they are uneven, they decrease

strictly with n increasing.

Looking for a quicker convergence of the rational approximants, we have

found that if we consider the quadratic equation

x2 − nx+ 1 = 0 (nis a natural number ≥ 3) (3)

its solutions can be expressed as a continued fraction expansion of the form

x = n−
1

n−
1

n−
. . .

denoted by x = [n−], which we call “excess continued fraction expansion”.

Applying this result to the well known Golden Mean φ = 1+
√

5

2
and the

sequence of its successive powers φ2, φ3, φ4, . . . it is easy to prove that its

uneven powers have a purely periodic continued fraction expansion and its

even powers satisfy a quadratic equation similar to (3), having consequently

an excess continued fraction expansion which converges much faster than a
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simple one. For other members of the Metallic Means Family like the Silver

Mean, the Bronze Mean, the Copper Mean, the Nickel Mean, etc. (introduced

by the author in 1998, see [1]), which have a purely periodic continued fraction

expansion, the behavior is analogous to the one found for the Golden Mean.

From the numerical point of view, this is a big advantage because not only the

Metallic Means are frequently used in many applications, but also its powers, [2].
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In 1994 the Englishman Andrew Wiles presented a proof of the Tamiyama-

Shimura conjecture resulting from mapping Fermat’s L.T. into elliptic curves.

The solution proposed herein is simple and understanding.

In the formula βν+γν = αν when ν > 2 the number ν has an odd factor. For

ν = prime number ⇒ βν + γν = (β + γ)
ν∑

κ=1

(−1)
κ+1

βν−κγκ−1 = αν . Setting

β+ γ = δ and
ν∑

κ=1

(−1)
κ+1

βν−κγκ−1 = ∆. According to the Euclidean division

there exists exactly one Υ = ∆ − δπ. From Υ = νγν−1 ⇒ β + γ = αν
1 and

ν∑

κ=1

(−1)
κ+1

βν−κγκ−1 = αν
2 where α1, α2 either are relatively prime numbers

or have a common factor ν.

We probe the form (β + γ)
ν−1

−
ν∑

κ=1

(−1)
κ+1

βν−κγκ−1 = (αν
1)

ν−1
−αν

2 and

we prove that the right side of the above equation is not integer expression.
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Given positive integers a1, . . . , ak, with gcd(a1, . . . , ak) = 1, the Coin Exchange

Problem of Frobenius asks for the largest positive integer N such that the

equation

a1x1 + · · ·+ akxk = N (4)

has no solution in nonnegative integers x1, . . . , xk. This number is usually rep-

resented by g(a1, . . . , ak), and it is well known that g(a1, a2) = a1a2 − a1 − a2.
There are several results that pertain to the three variable and the more general

case, including algorithms and results that apply to special cases.

The purpose of my talk is to present an old and unpublished result that

gives a closed-form formula for g(a1, a2, a3). I will also briefly present results

for the related problem of determining n(a1, a2, a3), that counts the number of

N in (1) that are nonrepresentable by a1, a2, a3.
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Departamento de Matemáticas, Universidad Autónoma de Madrid, Campus

Universitario de Cantoblanco 28049 Madrid, Spain

E-mail: adrian.ubis@uam.es

2000 Mathematics Subject Classification. 11P21

The number N(R) of lattice points inside a sphere of radius R is comparable

to its volume, but to decide to what extend is still a matter of research. We are

interested in discovering the smallest real number θ such that we have

|N(R)−
4

3
πR3| < Rθ+o(1)

when R > 1 goes to infinity. It has been conjectured that actually θ = 1-and

we know that θ ≥ 1. Gauss was already interested in this problem due to its

relationship with the average behaviour of class numbers of binary quadratic

forms, and proved θ ≤ 2 by geometrical means. Afterwards there have been

several improvements due to Lipschitz, Mertens (by using Fourier Analysis),

Chen, Vinogradov (by adding exponential sums estimates), F. Chamizo and H.

Iwaniec [1], and finally D. R. Heath-Brown [4] (by introducing character sums,

due to the relationship with class numbers), with θ ≤ 1 + 5/16.
Nowadays the problem is understood as a mixed one, involving correlations

of exponentials and characters. After some related work [3], we were finally able

to understand this mixture in a broader way, thus improving [2] the best known

bound for θ.
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I will report on our recent work [1], in which we show that there are 2p/2+o(p)

distinct sumsets A+ B in Fp where |A|, |B| → ∞ as p → ∞. For the proof we

use a Fourier-analytic method developed in [2] whenever |A| and |B| are large

and a combinatorial argument otherwise.
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Let us recall that if E/Q is an elliptic curve with j-invariant 0, i.e. E is given

by the equation y2 = x3 + q for some q ∈ Q
∗, then the cubic twist of E by

d ∈ Q
∗ has the equation y2 = x3 + d2q. Moreover, if d ∈ Q

∗ then the sextic

twist of E by d has the equation y2 = x3 + dq.
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We prove that for any pair of elliptic curves Ei : y2 = x3 + ai, where
ai ∈ Z \ {0} for i = 1, 2, the set

D3 = {d ∈ Q : cubic twist of Ei by d has positive rank for i = 1, 2}

is dense in the set R.

A slightly better result can be proved for sextic twists of elliptic curves with

j = 0. More precisely, in [2] we prove that for any quadruple of elliptic curves

Ei : y2 = x3 + ai, where ai ∈ Z \ {0} for i = 1, 2, 3, 4, the set

D6 = {d ∈ Q : sextic twist of Ei by d has positive rank for i = 1, 2, 3, 4}

is infinite.

If now E/Q is an elliptic curve with j-invariant 1728, i.e. E is given by the

equation y2 = x3 + px then the quartic twist of E by d ∈ Q
∗ has the equation

y2 = x3 + dpx.
We prove that for any quadruple of elliptic curves Ei : y2 = x3+aix, where

ai ∈ Z \ {0} for i = 1, 2, 3, 4, the set

D4 = {d ∈ Q : quartic twist of Ei by d has positive rank for i = 1, 2, 3, 4}

is infinite.

In each case we construct a polynomial dm ∈ Q[t] such that dm(Q) is con-

tained in Dm for m ∈ {3, 4, 6}.
Our results complement the Kuwata and Wang result given in [1] concerned

the existence of simultaneous quadratic twists with positive rank of pairs of

elliptic curves.
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A Pythagorean triple is a triad of integers which satisfy Pythagoras’equation.In

this paper,we shall consider triples of the form (i, i+ 1, k), and the recurrence

relations governing them.
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We discusses the prime numbers and the prime factor decomposition of compos-

ite numbers in a sequence {P (n)} of polynomial with integer coefficient. Take

the P (n) = n2 + n + 1 as an example, there are two steps : 1. for each prime

number, solve the congruence equation r2 + r + 1 ≡ 0(modp), 1 ≤ r ≤ p − 1,

we reserved those p which have solutions, the other p won’t become the factors

of the n2 + n + 1; to this example, all the prime numbers which have been

eliminated are those prime numbers in shape of 6m+ 5; 3, as a prime number,

has a solution r(3) = 1;7 has two solutions r
(7)

1 = 2, r
(7)

2 = 4, all the prime

numbers which in shape of 6m + 1 have 2 solutions r
(p)

1 , r
(p)

2 . 2. Revise the

Sieve method: n ≡ 1(mod3), testify that P (n) is a multiple of 3, so it should

be eliminated ;n ≡ r
(p)

1 (modp) or n ≡ r
(p)

2 (modp), testify that P (n) is a multi-

ple of p, so it should be eliminated(however, if p itself is P (n), it could be re-

served). Through such means, the subsequence left 3, 7, 13, 43, 73, 157, · · · · · · are
all prime numbers, while the P (n), which has been eliminated at the same time

by p1, p2, · · · , pu will has the prime factor decomposition: P (n) = pk1

1 pk2

2 · · · pku
u .

Although the majority of k equal to 1, k bigger than 1 is also possible. But the

prime factor number 3’s exponent could only be 1.

When we solve the congruence equation till p ≤ 2000, we can obtain the

complete segment when P (n) ≤ 4000000. The last prime number in the segment

is P (1994) = 3978031, and there are ns representative prime factor number

decomposition I want to mention, as follow: P (1712) = 7 × 132 × 37 × 67,

P (1935) = 1753×2137, P (1733) = 73×8761. All the decompositions above are

all solved by hand, if we use the computer, we could find a plenty of huge prime

numbers and the huge prime factor decomposition of the composite numbers.
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The composition of 267−1 by the mathematician Cole can be used to as the

first item of the sequence {P (n) =
66∑

k=0

nk}, and we use the similar revision of

Sieve method, we can obtain the prime numbers and the prime number factor

decomposition of composite numbers. This research effort is in progress, P (2)’s

prime number decomposition, we have a simple method to figure it out only by

hand and this method will merely cost a few hours to process. What we need

to use are simply some rather little prime numbers, such as 3, 5, 7, 11, in order

to eliminate all the non-square numbers in a second-order arithmetic, then we

can obtain the result.
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The purpose of the talk is to give an elementary introduction to the theory

of residue of logarithmic and multi-logarithmic differential forms [1, 2, 4], and

to describe some of the less known applications of this theory, developed by

the author in the past few years. In particular, we briefly discuss the notion of

residue due to H. Poincaré, J. de Rham, J. Leray and K. Saito, and then obtain

an elegant description of the modules of regular meromorphic differential forms

in terms of residues of meromorphic differential forms logarithmic along hyper-

surface or complete intersections with arbitrary singularities. We also discuss

a new method for computing the topological index of complex vector fields on

hypersurfaces with arbitrary singularities [3], some applications to the theory of

holonomic D-modules of Fuchsian and logarithmic types [5], and to the theory

of Hodge structures on the logarithmic de Rham complex.
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We classify the resolution graphs of weighted homogeneous surface singularities

which admit rational homology disk smoothings. The nonexistence of rational

homology disk smoothings is shown by symplectic geometric methods, while

the existence is verified via smoothings of negative weights.
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The real locus MR

g in the moduli space Mg of complex algebraic curves of

genus g is covered by the strata Mk,ε
g each of which is determined by the real

curves of the given topological type (k, ε), where k stands for the number of

connected components and ε = ±1 corresponds to the separability type of the

smooth projective models. Furthermore, two such strata Mk,ε
g and Mk′,ε′

g in-

tersect if there is a complex algebraic curve of genus g having two real forms

of the types (k, ε) and (k′, ε′). We study the nerve N (g) corresponding to this

covering, ([7] 3.1.6), called the real nerve of complex algebraic curves of given

genus g. Some results concerning N (g) are known. First of all, by the results

of Hurwitz and Weichold, it has [(3g + 4)/2] points (c.f. [3]). By the results of

Buser, Seppälä and Silhol [2], N (g) is connected and furthermore, it was shown

by Costa and Izquierdo in [4] that given g and a type (k, ε) there exists a Rie-

mann surface X of genus g having two symmetries σ, τ of the types (k, ε) and
(1,−1) respectively which means that (1,−1) is a spine for N (g) for arbitrary
g. We find both geometrical and homological dimension of N (g) and give some

results concerning the global properties of N (g) for any even g ≥ 2. We also

present some results for odd values of g. The proofs were obtained by meth-

ods of combinatorial group theory, i.e. theory of non-euclidean crystallographic

groups.
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Let X be the moduli of SL(n,C), SU(n), GL(n,C), or U(n) valued represen-

tations of a rank r free group. We compute the fundamental group of X and

show that these four moduli otherwise have identical higher homotopy groups.

We then classify the singular stratification of X. This comes down to showing

the singular locus corresponds exactly to reducible representations if there exist

singularities at all. Lastly, we show that the moduli X are generally not topo-

logical manifolds, except for a few examples we explicitly describe. This is joint

work with C. Florentino (see arXiv:0907.4720 and arXiv:0807.3317).
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Higgs bundles, were introduced by Hitchin in [2]. Over a smooth compact Rie-

mann surface the moduli space of Higgs bundles contains as a dense open subset

the total space of the cotangent bundle to the moduli space of vector bundles.

The induced complex symplectic form is part of a hyper-Kähler structure and

extends to the whole moduli space, and the moduli space is equipped with an

algebraically completely integrable system through the Hitchin map.

A natural generalization of vector bundles arises when one endows the vector

bundle with a parabolic structure [6], i.e. with choices of flags in the fibers over

certain marked points on the Riemann surface. One can talk of Higgs bundles

as well, as was first done by Simpson [7].

We show that this space possesses a Poisson structure, extending the one

over the dual of an Atiyah algebroid over the moduli space of parabolic vector

bundles. By considering the case of full flags, we get a Grothendieck-Springer

resolution for all other flag types, in particular for the moduli spaces of twisted

Higgs bundles, as studied by Markman [5] and Bottacin [1] and used in the re-

cent work of Laumon-Ngô [3]. We discuss the Hitchin system, and demonstrate

that all these moduli spaces are integrable systems in the Poisson sense.
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The aim of this talk is to explain our recent work on an establishment of

correspondences among the 95 families of weighted K3 hypersurfaces [1].

It is well known that the projective plane P 2 is birational to P 1 × P 1 by

blowing up two points P and Q in P 2 and blowing down the strict transform

of the line passing through these points to a point R in P 1 ×P 1. On the other

hand, the complete anticanonical linear systems of P 2 and P 1 × P 1 are not

isomorphic since the dimensions of them are different. However, these systems

have the isomorphic sublinear systems under the birational transformation, that

is to say, the cubic curves through P and Q in P 2 and the (2, 2)-curves through
R in P 1 × P 1. It is also the complete anticanonical linear system of the del

Pezzo surface of degree 7.

We consider a two-dimensional analogue of such birational transformation.

In our case, it is observed that some of the 95 families have the isometric Pi-

card lattices. Then, a natural question arises; whether two generic weighted K3

hypersurfaces in different families themselves are isomorphic or not. That is a

subtle question since the Picard lattices would not always specify the family of
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K3 surfaces. We have made correspondences of weighted K3 hypersurfaces by

explicitly constructing the monomial birational morphisms among the weighted

projective spaces. In other words, all the weight systems having the isometric

Picard lattices commonly possess an anticanonical sublinear system. We re-

mark that since the birational transformations are given as monomial maps,

the corresponding amoebas of K3 hypersurfaces are linearly isomorphic. We

also confirm that the Picard lattice of the sublinear system we obtained is the

same as those of the complete linear systems. Consequently, the number of the

families of weighted K3 hypersurfaces is essentially 75.
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Let S be a nonsingular irrational ruled surface S irregularity q ≥ 1 and D a

nonsingular curve on S. We shall study pairs (S,D) of projective non-singular

irrational ruled surfaces S and curves D on S.
Define Pm[D] to be dimH0(S,O(m(D+KS))) (m > 0) and κ[D] the KS +

D dimension of S, which is denoted by κ(D + KS , S), where KS indicates a

canonical divisor on S. Both Pm[D] and κ[D] are invariants under birational

transformations between pairs. The pair (S,D) is said to be relatively minimal,

if every exceptional curve E of the first kind on S satisfies the inequality E ·D ≥
2 (E 6= D) (cf. [I1]). Moreover, (S,D) is said to be minimal, Since S is an

irrational ruled surface, the Albanese map α : S → Alb(S) gives rise to a

subjective morphism α : S → α(S) = B, which is a curve of genus q. Let
F denote a general fiber of α : S → B. Then the intersection number D · F
coincides with the mapping degree of α|D : S → B, which is denoted by σ(D).

The structure of relatively minimal pairs (S,D) with κ[D] ≤ 1 have been

precisely determined by [Ma]. If κ[D] = 2 then relatively minimal pairs are

always minimal (cf. Proposition 7 in [Ma]). Introduce an invariant η to be

4g(D)−D2 − 8q + 4.

Theorem 1. Suppose that κ[D] = 2. Then σ(D) ≤ η(η + 2) when q = 1, and

σ(D) ≤ 2 + η/2(q − 1) when q ≥ 2.
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Let τ denote 4ḡ − P2[D], where ḡ = g(D)− 1.

Theorem 2. Suppose that (S,D) is a minimal pair with κ[D] = 2 and g(D) ≥
2. Then P2[D] ≥ 3ḡ+ q̄, where q̄ = q− 1. Furthermore, we obtain the following

estimates of σ(D).

(1) Assume that q > 1. Then σ(D) ≤ 2(ḡ − q̄ − τ)/3q̄ + 3.

(2) Assume that q = 1.

If τ > 0 then σ(D) ≤ 2ḡ/τ+1. If τ ≤ 0 then σ(D) ≤ 16(ḡ−τ)2−τ+2ḡ+2.
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In this talk, we clarify or simplify certain aspects of the Calabi flow and of the

Donaldson heat flow.

In particular, in [1], the Calabi flow is studied as a flow of conformal factors

gij(t) ≡ e2u(t)ĝij(0),

u̇(t) =
1

2
∆R (1)

and the convergence of the conformal factors u(t) in the Sobolev norm ‖ · ‖(2)
is obtained. Although the convergence of the conformal factors established by

Struwe [1] is only in the ‖ · ‖(2) norm, he states clearly that the convergence in

arbitrary Sobolev norms, and hence in C∞, should follow in the same way. In

the first part of this talk, we confirm that this is indeed the case.

Next we discuss the Donaldson heat flow. We shall show directly the C0

boundedness of the full curvature tensor Fk̄j
α
β on [0,∞). Once again, our

main technique is differential inequalities for the L2 norms of the derivatives of

Fk̄j
α
β , in analogy with the methods of [3, 2] and the treatment of the Calabi

flow that we used in the previous section.
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c/ Serrano 123, Madrid, Spain

E-mail: roberto.rubio@icmat.es

2000 Mathematics Subject Classification. Primary 14D20; Secondary 58D29.

In 1846, Arthur Cayley ([2]) defined a transformation into matrices. In the

special case of complex dimension 1, it can be seen geometrically as a corre-

spondence between the Poincaré disc and the hyperbolic upper half-plane, both

models of the symmetric space SU(1, 1)/U(1).

This correspondence was generalized for any Hermitian symmetric space

in [3]. Let G be a real non-compact Lie group of Hermitian type, and H its

maximal compact subgroup. We will focus on the spaces G/H of tube-type. In

this case, the Shilov boundary is a compact symmetric space H/H ′ and the

Cayley transform is a tube domain over a self-dual cone. This cone is precisely

H∗/H ′, the non-compact dual of the Shilov boundary, and the space where it

lives is endowed with a Jordan algebra structure.

It turns out that the Cayley correspondence shows up also in the moduli

space of G-Higgs bundles over a compact Riemann surface. A G-Higgs bundle
is a pair consisting of a holomorphic HC-bundle and a holomorphic section of
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the bundle associated to the isotropy representation. For the moduli space of

G-Higgs bundles with maximal Toledo invariant we have that

Mmax(G) ∼= MK2(H∗),

where MK2(H∗) denotes the moduli space of K2-twisted H∗-Higgs bundles.

This result was proved recently for the classical groups, using the classification

theorem of Lie groups, in [1].

In this talk we present the case of the exceptional symmetric domain of tube

type and show an intrinsic and general proof, which reveals the important role

played by the Jordan algebra structure.
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Let k be an algebraically closed field of characteristic zero. We consider the

following three types of irreducible plane curve singularities:

A2d : x = t2, y = t2d+1 E6 : x = t3, y = t4 E8 : x = t3, y = t5.

They are called irreducible simple singularities. We denote by X one of them.

The local rings of A2d, E6 and E8 are defined by O1,2d := k[[t2, t2d+1]], O2 :=

k[[t3, t4]] and O3 := k[[t3, t5]], respectively. We write O for O1,2d or O2 or O3.

The set Γ := {ord(f)| f ∈ O} is called the semigroup of O. Fix the notations

as follows.

O := C[[t]], I(n) :=
{

f ∈ O
∣
∣ ord(f) ≥ n

}

, I(n) := I(n) ∩ O
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The positive integer δ := dimk

(

O/O
)

= #(N∪{0}\Γ) is called the δ-invariant

of Γ. An element W of Gr
(

δ, O/I(2δ)
)

is said to be good space, if it is an

O-submodule. The set

M :=
{

W ∈ Gr
(

δ, O/I(2δ)
) ∣
∣W is good

}

is called the PS-space of X. For an ideal I of O, we define the codimension of

I by τ(I) := dimk O/I. The set

Mr :=
{

I
∣
∣ I is an ideal of O with τ(I) = r

}

is called the Hilbert scheme of r-points on X.

Consider the map φr : Mr → M defined by φr(I) = t−rI
/

I(2δ). In
[1], Prof. Pfister and Steenbrink proved that the map φr is injective. It is also

shown that, for r ≥ 2δ, the map φr is bijective (i.e. φr(Mr) = M). Let ψ :

Gr(δ, O/I(2δ)
)

→ P
N be Plücker embedding where N =

(
2δ
δ

)

− 1. For certain

classes of curve singularities, Prof. Pfister and Steenbrink studied the structure

of (ψ ◦ φr)(M) in [1]. For irreducible simple singularities, we study that of

(ψ ◦ φr)(Mr) where 1 ≤ r ≤ 2δ − 1.
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Let F be a n-dimensional foliation on a closed manifoldM . The aim of this work

is to introduce and give some properties of the Lichnerowicz basic cohomology

which is an important generalization of the basic cohomology.

In [1, 2] we have showed the Leray-Hirsch theorem for basic and vertical

forms. In this note we will generalize this theorem for all differential forms.

We will also prove that many properties of the usual basic cohomology still

have their analogues within the Lichnerowicz basic cohomology.

We will also compute this new cohomology for some foliations. In partic-

ular, we will show that the Lichnerowicz basic cohomology of 0 degree of any

connected manifold is trivial which is not the case for the basic cohomology.

The Gysin sequences [4] are used to give the relationship between the Lich-

nerowicz cohomology [3] and the Lichnerowicz basic ones.

We will use this sequence to give some properties of Lichnerowicz basic

cohomology for given foliation.
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Given Σ2 a compact spacelike surface immersed in a Lorentzian product space

M2 × R1, we establish an integral formula which allows us to derive some

interesting consequences in terms of the Gaussian curvature of the surface. For

instance, when M2 is either the sphere S
2 or the real projective plane RP

2,

we characterize the slices of the trivial totally geodesic foliation M2 × {t} as

the only complete spacelike surfaces with constant Gaussian curvature in the

Lorentzian product M2 × R1.

On the other hand, we show that our results are no longer true when M2 =

H
2 is the hyperbolic plane. In fact, we give examples of complete spacelike

surfaces with constant Gaussian curvatureK ≤ −1. However, using the abstract

theory of Codazzi pairs, we show that there exists no complete spacelike surface

in H
2 × R1 with constant Gaussian curvature K > −1.

These results are part of a joint work with Luis J. Aĺıas and Juan A. Aledo

and are contained in [1] and [2].
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In affine surfaces theory, Blaschke (see [4]) found that the Euler-Lagrange equa-

tion of the equiaffine area functional is of fourth order and nonlinear. He also

showed that this equation is equivalent to the vanishing of the affine mean cur-

vature, which led to the notion of affine minimal surface without a previous

study of the second variation formula. But Calabi proved in [5] that, for locally

strongly convex surfaces, the second variation is always negative and since then,

locally strongly convex surfaces with vanishing affine mean curvature are called

affine maximal surfaces.

After Calabi’s work this class of surfaces has become a fashion research topic

and it has received many interesting contributions.

In this poster we present the resolution of the problem of existence and

uniqueness of affine maximal surfaces containing a regular analytic curve and

with a given affine normal along it, see [2]. As applications we give results about

symmetries, characterize when a curve in R3 can be a geodesic of a such surface

and study helicoidal affine maximal surfaces, that is, surfaces invariant under

a one-parametric group of equiaffine transformations. We obtain new examples

with an analytic curve in its singular set, which have been studied in [3]. To do

that, we introduce the notion of affine maximal map which allows us to analyze

global problems regarding to affine maximal surfaces admitting some natural

singularities.
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A convex body K is said to be isotropic if it satisfies the following

conditions:|K| = 1,
∫

K
xdx = 0 and ∀θ ∈ Sn−1

∫

K
〈x, θ〉2dx = L2

K .

This constant LK , independent of the vector θ is called the isotropy constant

of K. It is not known if there exists an absolute constant bounding from above

the isotropy constant of any convex body. This problem is known as the slicing

problem.

Conjecture (Slicing problem) There exists an absolute constant C such that

for any convex body

LK ≤ C
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Since any convex body can be approximated by polytopes this conjecture is

true for any convex body if and only if it is true for polytopes. Thus we study

the isotropy constant of polytopes.

We prove the following theorem, which gives a positive answer for the slicing

problem for polytopes with few vertices:

Theorem [ABBW] Let K be an n-dimensional convex polytope with N ver-

tices. Then

LK ≤ C

√

N

n
.
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It is known that classical Kähler (K) and nearly Kähler (NK) structures were

provided with remarkable collections of homogeneous examples, namely, Her-

mitian symmetric spaces (A.Borel, A.Lichnerovich et al.) and homogeneous

3–symmetric spaces (N.A.Stepanov, J.A.Wolf, A.Gray, V.F.Kirichenko and oth-

ers), respectively. Metric f–structures (f3 + f = 0, K.Yano) is a natural gen-

eralization of almost Hermitian structures and metric almost contact struc-

tures. Important classes of metric f–structures such as Kähler (Kf), Hermi-

tian (Hf), Killing (Killf), nearly Kähler (NKf), G1f -structures (G1f) have

been introduced and intensively studied since the 1980s in the framework of

generalized Hermitian geometry [1]. These classes include the corresponding

Gray-Hervella classes K, H, NK, G1 in Hermitian geometry. In comparison

with almost Hermitian structures, the metric f–structures had not been pro-

vided with invariant examples up to the middle 1990s. A rich collection of

canonical f–structures was discovered on regular Φ–spaces, in particular, on

homogeneous k–symmetric spaces [2]. It gave the opportunity to present wide

classes of invariant above mentioned f–structures (see, e.g., [3],[4]). Here the

particular role belongs to the canonical f–structures on naturally reductive 4–

and 5–symmetric spaces. Besides, four canonical f–structures on homogeneous
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6–symmetric spaces were also completely studied. Recently, some general results

for canonical f–structures on arbitrary k–symmetric spaces were obtained.

Many particular examples of both semisimple and solvable types were in-

vestigated in detail. They are the flag manifolds SU(3)/Tmax, SO(n)/SO(2)×
SO(n − 3), the 6-dimensional generalized Heisenberg group and some others.

Specifically, we present first invariant Killing f–structures with non-naturally

reductive metrics.
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When in 1980 Benoit Mandelbrot described the z → z2 + c formula, many

mathematicians and programmers tried to expand the Mandelbrot Set into the

third dimension. But all of them where stopped by the non-equivalence in 3D

to the 2D complex product (a+ bi) · (c+ di), something that was well known

since times of mathematician W. R. Hamilton. Also, as the 80’s computers

where not able to produce the calculations needed to represent an image of

that kind, all research moved towards other fractal fields. It was in 2007 when

the search was recovered by means of a controversial algorithm using a triplex

algebra structure based on Spherical Coordinates {ρ, φ, θ} (module, longitude

and latitude). Although, from a strict mathematical point of view, the process is

not correct, the stunning images of the 3D set, especially when raised to higher

polynomials z → zn + c soon became an iconic fractal named Mandelbulb.

The expansion of the Mandelbrot Set in 4D by means of quaternions is also

possible. Recent experiments reveal that adequate projecting surfaces provide

a fascinating group of 4D Mandelbrot Set projections into 3D.
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S. T. Yau, revisiting Calabi conjectures on minimal surfaces, in his Millennium

Lectures [4], [5], wrote: It is known [3] that there are complete minimal surfaces

properly immersed into a [open] ball. . . . Are their spectrum discrete? Although,

it is not clear that the Nadirashvili’s complete bounded minimal surface [3] is

properly immersed, F. Martin and S. Morales in [1] and [2], constructed, for

every open convex subset B of R3, complete proper minimal immersions of the

unit disk D into B. In this presentation we are going to show that the spectrum

of a complete submanifold properly immersed into a ball of a Riemannian man-

ifold is discrete, provided the norm of the mean curvature vector is sufficiently

small. In particular, the spectrum of complete minimal surfaces properly im-

mersed into a ball of R
3, (Martin-Morales-Nadirashvili minimal surfaces), is

discrete.
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In this paper we examine how closely a polygonal planar set is to being convex.

This is accomplished by considering the ratio of the area of a largest convex

set contained in the original polygon to the area of the convex hull of the

set. Algorithms for determining the convex hull and for determining a largest

convex set interior to the polygon are exhibited. After defining when such sets

are nearly convex we then use this result to decide when legislative districts are

nicely shaped. We show that this method for measuring the shape of legislative

districts is better than, or as good as, other techniques in the literature. This

is accomplished by pointing out flaws in the other methods and by examining

examples of district shapes found in the literature.
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Uniqueness and non-existence results of entire solutions to the maximal surface

equation and to the constant mean curvature spacelike surface equation on

certain complete Riemannian surfaces are obtained.

This is a joint work with Alfonso Romero and Rafael M. Rubio.
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Biwave maps generalize wave maps. We study biwave maps and equivariant bi-

wave maps. We obtain the formulations for equivariant biwave maps into various

spaces by applying eigen maps between spheres. We compute the biwave fields

of inclusions into warped product manifolds and construct examples of biwave

maps. We finally investigate the stress bi-energy tensors and the conservation

laws of biwave maps and discuss some applications.
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In the present paper we study the behaviour of gradient Ricci soliton and Ricci

soliton on some almost contact metric manifolds which are N(k) η−Einstein,

Kenmotsu and trans-Sasakian manifolds respectively. This paper also deals with

the global curvature derivative estimates of Ricci flow for pseudo-projectively

flat, quasi conformally flat and conharmonically flat η−Einstein manifolds re-

spectively.
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Faculty of Mathematics, University of Belgrade, Studentski trg 16, p.b. 550, 11000

Belgrade, Serbia;

E-mail: mdjoric@matf.bg.ac.rs

M. Okumura

5-25-25, Minami Ikuta, Tama-ku, Kawasaki, Japan.

E-mail: mokumura@h8.dion.ne.jp

2000 Mathematics Subject Classification. 53C15, 53C40, 53B20.

We investigate n-dimensional real submanifoldsM of Kähler manifoldsM when

the maximal holomorphic tangent subspace is (n− 1)-dimensional.

Besides the submanifold structure, represented by the second fundamental

tensor h of M in M , there is another geometric structure, an almost contact

metric structure (F, u, U, g), naturally induced from the almost complex struc-

ture of the ambient space.

We study certain conditions on the structure F and on h of CR submanifolds

of maximal CR dimension in complex hyperbolic space, we obtain a complete

classification of submanifolds M which satisfy these conditions and we charac-

terize several important classes of these submanifolds. Since, in general, F is

not a contact structure, we also give the condition for F to be the contact one

and we obtain some characterizations of contact submanifolds.
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In finite dimensions, a submanifold of Euclidean space is called isoparametric

if: (a) its normal bundle is flat; and (b) the shape operators along any par-

allel normal vector field are conjugate. It follows from theorems of Dadok [1],

Palais-Terng [2] and Thorbergsson [4] that every isoparametric submanifold in

Euclidean space of codimension different from two is a principal orbit of the

isotropy representation of a symmetric space.

In infinite dimensions, one works in the category of proper Fredholm sub-

manifolds in Hilbert space and defines such a submanifold to be isoparametric

if it satisfies conditions (a) and (b) above. Terng [3] has constructed very inter-

esting examples of homogeneous isoparametric submanifolds in Hilbert space,

principal orbits of the so called P (G,H)-actions, which are essentially isotropy

representations of affine Kac-Moody symmetric spaces.

In this talk, we will explain our proof that every every isoparametric sub-

manifold in Hilbert space of type Ã − D̃ − Ẽ and codimension different from

one is a principal orbit of a P (G,H)-action.
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In trying to develop the piecewise linear conformal geometry, Luo [6] studied

the combinatorial Yamabe problem for piecewise flat metrics on triangulated

surfaces. Glickenstein [3] unified the theory of combinatorial Yamabe flow of

piecewise flat metrics with the theory of circle packing on surfaces.

We consider the combinatorial Yamabe flow on hyperbolic surfaces with

boundary. The length of boundary components is uniquely determined by the

combinatorial conformal factor. And the space of the length of boundary com-

ponents is identified. The combinatorial Yamabe flow is a gradient flow of a

concave function. The sum of the square of the length of boundary components

is decreasing along the flow. We also study the long time behavior of the flow.

The main result is obtained by applying a variational principle. A concave

energy function is constructed using the derivative cosine law which is developed

in [7, 5]. The approach of variational principle of studying polyhedral surfaces

was introduced by Colin de Verdiére [2] in his proof of Andreev-Thurston’s

circle packing theorem. For related works, see [8, 1, 9, 4] and others.
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The Willmore energy of an immersed surface u : Σ → R3 is given by
1

4

∫

Σ
|H|2 dµg, where H denotes the mean curvature of u, and µg denotes the

area measure induced by the metric gij = ∂iu · ∂ju. Over the past decades

there has been considerable interest in the properties of critical points of this

functional, the so-called Willmore surfaces, cf. e.g. [4]. Recently, there has been

growing interest in costrained versions of the Willmore functional, c.f. e.g. [1].

Such constrained versions are also highly relevant for applications. e.g. for the

Helfrich model of biological membranes or for Kirchhoff’s plate theory in non-

linear elasticity, cf. [2].

We present recent results about critical points of the Willmore functional

constrained to the set of all isometric immersions u : S → R3 of a given flat

surface S ⊂ R2. This corresponds to the highly degenerate nonconvex pointwise

constraint

∂iu · ∂ju = δij for i, j = 1, 2. (1)

This problem arises naturally in three dimensional nonlinear elasticity, cf. [2].

We derive the Euler-Lagrange equation satisfied by local minimizers of the

Willmore functional under the constraint (1); it is of considerable interest in its

own. We then prove an optimal regularity result for solutions to that equation. It

shows that they are C∞ away from a singular set Σ1, but that surprisingly they

are exactly C3 away from a certain subset Σ0 ⊂ Σ1. A careful analysis of the

local behaviour near Σ0 reveals an interesting logarithmic scaling behaviour of

the mean curvature. We also obtain a rather explicit description of the geometry

of the singular sets. These results were announced in [3].
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In this paper, we introduce a new class of sets and a new class of functions called

geodesic E-convex sets and geodesic E-convex functions on a Riemannian man-

ifold, which are the extension of convex sets and geodesic convex functions

defined by Udriste [9]. The concept of E-quasiconvex functions on Rn is ex-

tended to geodesic E-quasiconvex functions on Riemannian manifold and some

of its properties are investigated. Afterwards, we generalize the notion of epi-

graph called E-epigraph and a characterization of geodesic E-convex functions

in terms of its E-epigraph is discussed. Some proprties of geodesic E-convex

sets are also studied.

References

[1] D.I. Duca, E. Duca, L. Lupsa, R. Blaga, E-convex functions, Bull. Appl. Comp.
Math. 43 (2000) 93–102.

[2] D.I. Duca, L. Lupsa, On the E-epigraph of an E-convex function, J. Opt. Theo.
Appl. 120 (2006) 341–348.

[3] C. Fulga, V. Preda, Nonlinear programming with E-preinvex and local E-preinvex

functions, Eur. J. Oper. Res. 192 (2009) 737–743.

[4] M.A. Hanson, On sufficiency of the Kuhn-Tucker conditions, J. Math. Anal.
Appl. 80 (1981) 545–550.

[5] S. Mititelu, Generalized invexity and vector optimization on differentiable mani-

folds, Diff. Geo. Dynam. Syst. 3 (2001) 21–31.

[6] R. Pini, Convexity along curves and invexity, Optimization 29 (1994) 301–309.

[7] T. Rapcsak, Smooth Nonlinear Optimization in Rn, Kluwer Academic 1997.

[8] Yu-Ru Syau, E. S. Lee,Some properties of E-convex functions, Appl. Math. Lett.
18 (2005) 1074–1080.

[9] C. Udriste, Convex Functions and Optimization Methods on Riemannian Mani-

folds, Kluwer Academic 1994.

[10] X.M Yang, On E-convex sets, E-convex functions and E-convex programming, J.
Opt. Theo. Appl. 109 (2001) 699–704.

[11] E.A. Youness, On E-convex sets, E-convex functions and E-convex programming,

J. Opt. Theo. Appl. 102 (1999) 439–450.

❖ ❖ ❖



Geometry 131

Ricci Semi-symmetric and Ricci-pseudosymmetric Mixed
Super Quasi-Einstein Manifolds

J. P. Jaiswal

Department of Mathematics, Faculty of Science, Banaras Hindu University

Varanasi, U.P. India-221005

E-mail: jpbhu2007@gmail.com

2000 Mathematics Subject Classification. 53C25.

Quasi-Einstein, generalized quasi-Einstein, super quasi-Einstein and mixed gen-

eralized quasi-Einstein manifolds are generalization of Einstein manifolds. The

object of the present work is to study mixed super quasi-Einstein manifolds

which is generalization of all of these manifolds. First we study the nature

of the associated 1-forms A and B of mixed super quasi-Einstein manifolds.

After that it is shown that a mixed super quasi-Einstein manifold can not be

Ricci semi-symmetric. Finally we find the curvature characterization of a Ricci-

pseudosymmetric mixed super quasi-Einstein manifold.
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This talk is dedicated to the new approach to investigation of a local geometry

of Carnot–Carathéodory spaces under minimal assumptions on smoothness of

basis vector fields. The main point is that, opposite to the well-known methods,

we study such geometry without Campbell–Hausdorff formula and Gromov’s

Theorem [1] on convergence of “rescaled” basis vector fields to vector fields

constituting a nilpotent graded Lie algebra (or, by another words, nilpotentized

vector fields).

This approach allows us to extend geometric results of [2] to all equiregular

Carnot–Carathéodory spaces with C1,α-smooth basis vector fields {Xi}
N
i=1, α >

0 (i. e., we do not need here to assume that conditions of [2, Remark 2.2.19]

hold). We remark that in [2] main results are established under assumption that

the depth M of a space M equals 2 or Gromov’s Theorem is true. Nevertheless,

in [2], one of the basic geometric facts is proved independently from Gromov’s

Theorem.

The goal of the talk is to show that all the other geometric results of [2] (esti-

mates in comparison of local geometries, Rashevskii–Chow Theorem, Ball–Box

Theorem, etc) including the main one (see Theorem 1) can be proved without

using Gromov’s Theorem on convergence since its validity is still unknown for

Carnot–Carathéodory spaces of depth more than 2 with C1,α-smooth basis

vector fields, α ∈ [0, 1). In Theorem 1, {Xu
i }

N
i=1 ({Xu′

i }Ni=1) is the base on

local Carnot group at u (u′) [2, Definitions 2.1.11, 2.1.21], degXi is a degree

of a vector field Xi, i = 1, . . . , N [1], [2, Definition 2.1.1], ρ is a Riemannian

distance, and du
∞

(du
′

∞
) is a sub-Riemannian distance in local Carnot group at

u (u′) [2, Definition 2.1.27].

Theorem 1. Consider in a neighborhood U of a Carnot–Carathéodory

space M points u, u′, v, wε = exp
( N∑

i=1

wiε
degXiX̂u

i

)

(v), and w′

ε =

exp
( N∑

i=1

wiε
degXiX̂u′

i

)

(v). Then, max{du
∞
(wε, w

′

ε), d
u′

∞
(wε, w

′

ε)} =

εΘ
([

log
ρ(u,u′)

α
M

ε
M−1

M

]

+ 1
)

· ρ(u, u′)
α
M . (Here Θ is bounded uniformly

in u, u′, v ∈ U ⊂ M, {wi}
N
i=1, and ε > 0).
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Define a fan to be a finite set of pointed polyhedral cones such that the in-

tersection of any two cones in this set is the common face of both. Consider

a polytope P such that the origin lies the interior of P . Denote by F any set

of cones spaned by proper faces of P . The set F is a fan. We say that F is

a face fan of the polytope P and P is a face polytope of the fan F (see, for

example, [1]).

The theory of face polytopes considers polytopes as face polytopes, that is,

not by themselves but together with their face fans. This consideration allows to

define a new sum operation for polytopes. Also, the theory studies thoroughly

whether a given fan is a face fan of some polytope. This study discovers two

important new features of fans. They are a characteristic cone and a family of

transfer cones.

Investigating the sums of polytopes and also the characteristic cones and

the families of transfer cones of fans finds new surprising facts on both fans and

polytopes. Among them: existence of fans consisting of three cones in R
3 that

are not face fans; possibility to combine facets of every simplicial polytope in

a convex manner; separation theorems for more than two sets; mean theorems

for polytopes.
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The notion of a multiplicative lattice is introduced by Ward and Dilworth [6]

in their study of abstract formulation of ideal theory of commutative rings. A

multiplicative lattice is a complete lattice L with a commutative, associative

multiplication satisfying the following properties for all a, b, bi ∈ L, (i) a(∨ibi) =
∨i(abi), (ii)0 ab ≤ a ∧ b and (iii) a1 = a.

There are many papers in which properties of such lattices are studied; see,

Anderson [3], Alarcon et. al. [1].

A pair a, b of elements in a lattice L is called a modular pair, in notation,

(a, b)M if (c ∨ a) ∧ b = c ∨ (a ∧ b) for every c ≤ b.
Birkhoff [2] p. 109 posed the following problem ” How to define modular

pairs in a general poset?”. As an attempt to answer this problem, many re-

searchers for example Thakare, Wasadikar and Maeda [5] have defined modular

pairs in semilattices and obtained their properties. Further, Thakare, Pawar

and Waphare [4] have defined modular pairs in posets and obtained many

results.

We define a modular pair in a multiplicative lattice using the multiplica-

tion operation. We show by an example, that if we consider the multiplication

operation instead of the meet operation, then a modular relation with respect

to these operations need not hold in a multiplicative lattice. This motivates us

to introduce and study the concept of an m-modular pair, dual m-modular pair,

m-covering property in multiplicative lattices. We obtain some results and give

a characterization of m-covering property.
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A submanifold Mn+1 of a Sasakian manifold B̄2m+1 with structure tensors

(φ, ξ, η, g) is called a contact CR submanifold if there exists two differentiable

distribution D and D⊥ on M such that TM = D ⊕ D⊥ ⊕ Span{ξ}, φDx =

Dx and φD⊥

x ⊂ TxM
⊥ for each x ∈ M, where D,D⊥ and Span{ξ} are

mutually orthogonal to each other. A contact CR submanifold is said to

be proper if neither dimD = 0 nor dimD⊥ = 0. A contact CR subman-

ifold is said to be mixed foliate if (a) D ⊕ Span{ξ} is integrable and (b)
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h(X,Y ) = 0, X ∈ D, Y ∈ D⊥, where h is the second fundamental form

of M . A contact CR-submanifold M is called a contact CR-product if (a)
D⊕Span{ξ} is integrable and (b)M is locally a Riemannain productM>×M⊥,

where M>and M⊥ are leafs of D ⊕ Span{ξ} and D⊥, respectively.

In 1982, Bejancu provided that there is no proper contact CR-product in

Sasakian space form B̄(c) with constant φ-holomorphic sectional curvature c <
−3.

The purpose of this paper is (1)to investigate some properties concernig with

φ-holomorphic bisectional curvature H̄B and prove Theorem A which yields

Bejancu’s result; (2)to show Theorem B as an existence theorem of mixed foliate

proper contact CR submanifolds in E2m+1(−3)

Theorem A. Let M̄ be a Sasakian manifold with H̄B < −2. Then every

contact CR-product in M̄ is either an invariant submanifold or an anti-invariant

submanifold. In other words, there exists no proper contact CR-product in any

Sasakian manifold with H̄B < −2.

Theorem B. Let M be a mixed foliate proper contact CR submanifold of

the standard Sasakian space form E2m+1(−3). If h(X,Y ) ∈ φD⊥, X, Y ∈ D⊥,

then for a point x ∈ M there exists a unique complete totally geodesic invariant

submanifold M ′ of E2m+1(−3) such that x ∈ M ′ and TxM
′ = TxM ⊕ φD⊥

x .
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We prove the semi-Riemannian bumpy metric theorem using equivariant varia-

tional genericity. The theorem states that, on a given compact manifold M , the

set of semi-Riemannian metrics that admit only nondegenerate closed geodesics

is generic relatively to the Ck-topology, k = 2, . . . ,∞, in the set of metrics of a

given index on M . A higher order genericity Riemannian result of Klingenberg

and Takens is extended to semi-Riemannian geometry.
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Let R be an algebraic curvature tensor, i.e., the tensor which satisfies the same

symmetries as the curvature tensor of a pseudo-Riemannian manifold equipped

with Levi-Civita connection. Let RX(Y ) = R(Y,X)X be the corresponding

Jacobi operator.

For a real number λ we say that it satisfies the duality principle if for all

mutually orthogonal unit vectors X ,Y holds

RX(Y ) = εX λY =⇒ RY (X) = εY λX .

If the duality principle holds for all real numbers then we say that duality

principle holds for the algebraic curvature tensor R.

We extend the notion of duality principle to all type of vectors, and in-

vestigate relations between duality principle and Osserman condition for the

simple algebraic curvature tensors. Also, we study algebraic curvature tensors

provided by a Clifford structure and give some interesting examples.
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We study (in common with P. Walczak, University of Lodz, Poland) deforma-

tions of Riemannian metrics on a manifold equipped with a codimension-one

foliation subject to quantities expressed in terms of its second fundamental

form. The local existence and uniqueness theorem is proved and the existence

time of solutions for some particular cases is estimated. The key step of the

solution procedure is to find (from a system of quasilinear PDE’s) the principal

curvatures of the foliation. Examples for extrinsic Newton transformation flow

and extrinsic Ricci flow, and applications to foliations on surfaces are given.
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Let K,E be convex bodies in the Euclidean space R
n, E with interior points,

and let λ ≥ 0. The (relative) outer parallel body of K (with respect to E) at

distance λ is the Minkowski sum K + λE. On the other hand, the (relative)

inner parallel body of K (with respect to E) at distance λ, 0 ≤ λ ≤ r(K;E),

is defined as the Minkowski difference K ∼ λE =
{

x ∈ R
n : λE + x ⊆ K

}

,

where the relative inradius r(K;E) is defined by r(K;E) = sup{r ≥ 0 : ∃x ∈
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R
n with x+ r E ⊆ K}. Now we write Kλ to denote the full system of parallel

bodies of K,

Kλ :=

{

K ∼ |λ|E for − r(K;E) ≤ λ ≤ 0,
K + λE for 0 ≤ λ < ∞.

(2)

The well known (relative) Steiner formula states that the volume of the outer

parallel body K + λE is a polynomial of degree n in λ ≥ 0,

V(K + λE) =

n
∑

i=0

(

n

i

)

Wi(K;E)λi,

where the coefficients Wi(K;E) are called the relative quermassintegrals of K.

Then, writing Wi(λ) := Wi(Kλ;E) for −r(K;E) ≤ λ < ∞, we can speak about

differentiability of the quermassintegrals.

Definition 1. A convex body K ⊂ R
n belongs to the class Rp, 0 ≤ p ≤ n− 1,

if for all 0 ≤ i ≤ p, and −r(K;E) ≤ λ < ∞ it holds ′Wi(λ) = W′

i(λ) =

(n− i)Wi+1(λ).

This is a natural definition, since from the concavity of the family (2) and

the general Brunn-Minkowski theorem for relative quermassintegrals, it holds
′Wi(λ) ≥ W′

i(λ) ≥ (n− i)Wi+1(λ), for i = 0, . . . , n− 1.

We study the convex bodies lying in the classesRp, 0 ≤ p ≤ n−1. It is known

that the volume is always differentiable and satisfies ′V(λ) = V′(λ) = nW1(λ)
for the full range −r(K;E) ≤ λ < ∞, which implies that the class R0 is the

set of all convex bodies. This problem was originally posed in dimension 3,

and for E being the Euclidean ball, by H. Hadwiger in 1955, and it has been

opened since then. We have obtained the characterization of the classes Rn−2

and Rn−1, which closes the original Hadwiger problem in dimension 3.
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The object of the present paper is to calculate the φ-sectional curvature of

a three-dimensional quasi-Sasakian manifold and to show equivalence of some

geometrical properties of the manifold depending on the φ-sectional curvature
and φ-symmetry of the manifold. To illustrate the results examples are given.

Existence of totally geodesic hypersurface of a three-dimensional quasi-Sasakian
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manifold is established. Non-equivalence of totally geodesic and invariant sub-

manifolds of quasi-Sasakian manifolds is shown. Finally we study submanifolds

of three-dimensional quasi-Sasakian manifols with recurrent, 2-recurrent and

generalized 2-recurrent second fundamental form.

❖ ❖ ❖

Theorems on bi-recurrent and bi-symmetric Sasakian
Manifold

Gyan Prakash Silswal

Department of Mathematics, H.N.B. Garhwal University, Campus Badashithaul,

Tehri (Garhwal), INDIA

E-mail: gyanprakashsislwal@yahoo.in

K. S. Rawat

2000 Mathematics Subject Classification. 49Q15, 58A03, 5A05

C.E. Weatherburti [2], An introduction to Riemannian geometry and tensor cal-

culus. K. Yano [3] Differential geometry on complex and almost complex spaces,

Pergoman Press. B.B. Sinha [1] On H-curvature tensor is in Kaehler manifold,

D.S. Negi and K.S. Rawat [4], studied integral inequalities in Kaehlerian man-

ifold. In the present paper, we have studied the theorem on bi-recurrent and

bi-symmetric sasakin manifold.
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Finding formulas for the area or circumradius of polygons inscribed in a circle

in terms of side lengths is a classical subject (cf.[1]). For triangle/cyclic quadri-

laterals we have famous Heron/Brahmagupta formulae. In 1994. D.P. Robbins

found a minimal area equations for cyclic pentagons/hexagons by a method of

undetermined coefficients (cf.[3]). This method could hardly be used for hep-

tagons due to computational complexity (143307 equations). In [4], by using

covariants of binary quintics, a concise minimal heptagon/octagon area equa-

tion was obtained as a fraction of two resultants which in expanded form has

almost one milion terms. It is not clear if this approach could be effectively used

for cyclic polygons with nine or more sides. In [6], by using Wiener-Hopf factor-

ization approach, we have obtained a very explicit minimal heptagon/octagon

circumradius equation in Pellian form with coefficients up to four digits.A non-

minimal area equation is also obtainable by this method. Both methods are

somehow external. But, based on our new intermediate Brahmagupta formula,

we have succeded also in finding an intrinsic proof of the Robbins formula for the

area (and also for circumradius and area times circumradius) of cyclic hexagon

based on an intricate direct elimination of diagonals (the case of pentagon was

much easier cf. [5]). We also get a simple(st) system of equations for the area

and area times circumradius of cyclic heptagons/octagons. It seems remarkable

that our approach, with a help of Groebner basis techniques leads to minimal

equations (for any concrete instances we have tested), what is not the case with

iterated resultants approach.
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1. A graph-directed iterated function system S with structural graph Γ =

〈V,E, α, ω〉 (see [1],[2]) is a finite collection of complete metric spaces {Xv}v∈V

together with a collection of contraction maps {Se : Xα(e) → Xω(e)}e∈E . A

family of compact sets {Kv}v∈V is called the attractor of the system S if for

every v ∈ V

Kv =
⋃

ω(e)=v

Se(Kα(e)).

2. The system S is called a multizipper (see [3]), if the following conditions are

satisfied:

a) for each v ∈ V a finite sequence zv0 , ..., z
v
nv

of points in Xv is specified,

b) there is a bijection f of the set P = {(v, k) : v ∈ V, 1 ≤ k ≤ nv} to E and

c) if e = f(v, k), u = α(e) then Se : Xu → Xv and Se({z
u
0 , z

u
nu

}) =

{zvk−1
, zvk}.

3. The following theorem shows that each self-similar Jordan arc may be rep-

resented as the attractor of some multizipper:

Theorem 1. Let Jordan arc γ be a component Kv of the attractor of a graph-

directed iterated system S of similarities in Rn with strongly connected struc-

tural graph Γ. Then, either the arc γ is a component of the attractor of some

multizipper Z, or γ is a straight line segment, and in this case the system S
does not satisfy weak separation property and the self-similar structure (γ,S)
is rigid.

4. The next theorem is crucial for finding the Hausdorff dimension of the arcs:

Theorem 2. If all components Kv of the attractor of a multizipper Z are

quasiarcs, then Z satisfies the open set condition.

5. There are the examples of multizippers Z in R3, whose attractors are col-

lections of Jordan arcs with unbounded torsion, and which do not satisfy the

weak separation property.
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The complex geometry of nilmanifolds provides a rich source of explicit ex-

amples of compact complex manifolds admitting additional special structures

with interesting properties. Many authors have studied several aspects of this

geometry from different points of view (see [2, 3, 4, 6, 7] and references therein).

Here we focus mainly on the study of the invariant balanced Hermitian geome-

try of six dimensional nilmanifolds. An interesting fact [4] is that the associated

Bismut connection [1] has holonomy contained in SU(3). We show that such

holonomy reduces to a proper subgroup if and only if the underlying complex

structure is abelian.

As an application we provide explicit solutions of the Strominger system in

heterotic supersymmetry. Fu and Yau first proved in [5] the existence of solu-

tions of this system satisfying the anomaly cancellation condition with respect

to the Chern connection on a Hermitian non-Kähler manifold given as a T 2-

bundle over a K3 surface. Here we show many new explicit compact solutions

with non-flat instanton, which are a deformation of the solution found in [3]

with flat instanton.
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The Willmore energy is defined by the mean and the Gaussian curvature as

W = H2 − G. The Willmore energy is a quantitative measure of how much

a given surface deviates from a round sphere. It presents a special case of

so-called elastic bending energy, which determines the equilibrium shape of a

membrane and describes a case of symmetric membrane, by taking bending

rigidity as a constant. A membrane can be regarded as two-dimensional surface

embedded in three-dimensional space, because its thickness is much smaller

than its lateral dimension. The change of the Willmore energy can be considered

under infinitesimal bending of membranes, as their special deformation.
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In this work the Willmore energy of the surfaces is discussed and its visu-

alization considering some examples is given. The behavior of that geometric

magnitudes under infinitesimal bending of the surfaces is considered. Its varia-

tion under infinitesimal bending is determined. The stationarity condition for

the Willmore energy is given.
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Construction of new balanced Hermitian manifolds is an active area of research

and several recent techniques have provided new examples. For instance, bal-

anced Hermitian metrics are constructed on torus bundles over K3 surfaces

and over complex Abelian surfaces in [5], whereas in [4] balanced metrics are



146 Geometry

constructed on the family of non-Kähler Calabi-Yau threefolds obtained by

smoothing after contracting (−1,−1)-rational curves on a Kähler Calabi-Yau

threefold.

Here we construct explicit new balanced Hermitian metrics in dimension 6

by means of appropriate evolution equations starting from a suitable structure

on a 5-dimensional manifold. Evolution equations have been previously used

to construct metrics of special holonomy G2 in seven dimensions [6], to obtain

metrics with SU(3)-holonomy in six dimensions [1] and to get new nearly Kähler

structures in dimension six [2]. These new balanced Hermitian metrics extend

the ones constructed in [3] and have holonomy of the Bismut connection equal

to SU(3).
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Beck [2] introduced the notion of coloring in commutative rings. Several re-

searchers defined graphs on various algebraic structures such as commutative

rings, Anderson and Naseer [1], commutative semigroups, DeMeyer, McKenzie

and Schneider [4] etc. There are many papers which interlink graph theory and

lattice theory. The study of graphs related to lattices, namely, covering graphs

and comparability graphs is well-known; see, Gedenova [6], Duffus and Rival
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[5] and Bollobas and Rival [3] et. al. In a recent paper, Nimbhorkar et. al. [8]

have studied graphs derived from a meet-semilattice with 0 and obtained prop-

erties of these graphs. Their work was generalized to posets with 0 by Halas

and Julk [7].

In this paper we associate a graph with a poset P without 0. Let P be a

poset and S ⊆ P . We write Sl = {x ∈ P | x ≤ s for every s ∈ S}. If S = {a, b},
then we write (a, b)l for Sl. We associate a simple graph, Γ(P ), with a poset P ,

whose vertices are those elements x ∈ P , for which, there is some y ∈ P with

the property (x, y)l = ∅ and two distinct vertices x, y are adjacent if and only if

(x, y)l = ∅. It is shown that if the chromatic number of the associated graph is

finite then the poset has only a finite number of minimal prime semi-ideals and

moreover, the clique number is equal to the chromatic number. Some properties

of this graph are obtained. These results generalize the results of Nimbhorkar

et. al. [9] and Halas and Julk [7] to a larger class of posets.
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We investigate hypersurfaces in space forms with two distinct principal cur-

vatures and constant m-th mean curvature. It is well-known that when the

two principal curvatures are non-simple, then the hypersurface is isometric to

the Clifford type hypersurface. Thus the key is to study the case when one of

the two principal curvatures is simple. In this situation, the constance of m-th

mean curvature is equivalent to an ODE of order two, and we obtain some local

and global classification results for such hypersurfaces by carefully analyzing

the solution of ODE. The main technique is based on Otsuki’s idea [1]. As the

application of the classification results, we prove that any local hypersurface in

the spheres or in Euclidean space of constant mean curvature and two distinct

principal curvatures is an open part of a complete hypersurface of the same

curvature properties. The corresponding result does not hold for m-th mean

curvature when m ≥ 2. We also obtain some global rigidity results for Clifford

type hypersurfaces and obtain some non-existence results [2, 3, 4]. The same

argument can be used to study spacelike hypersurfaces in Lorentzian space

forms with two distinct principal curvatures and constant m-th mean curva-

ture. We obtain some classification results of such spacelike hypersurfaces and

some applications of the classification results [5, 6, 7].
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On complete Riemmannian manifolds with Ricci(M) ≥ −K, K ∈ R, we prove

the new Li-Yau type gradient estimates for the positive solutions of the linear

heat equation in [1] and of the Schrödinger operator in [3], which generalize

the famous Li-Yau gradient estimates in [4]; and we prove the new Harnack

inequalities for the positive solutions of the linear heat equation in [2], which

generalize the Ni’s Harnack inequality in [5] and [6] for the heat equation on

manifolds with nonnegative Ricci curvature; and we also prove the monotonicity

of corresponding entropy formulas in [2] for the linear heat equation on com-

plete Riemmannian manifolds with Ricci curvature bounded from below, which

generalize the monotonicity of entropy formulas on manifolds with nonnegative

Ricci curvature in [5] and [6]. As applications in [1]-[3], several parabolic Har-

nack inequalities are obtained and they lead to new estimates on heat kernels

of manifolds with Ricci curvature bounded from below. These are joint works

with Dr. Junfang Li.
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We have characterized the spaces X for which the smallest z-ideal containing
C∞(X) is prime. It turns out that C∞(X) is a z-ideal if and only if every

zero-set contained in an open locally compact σ-compact set is compact. Some

interesting ideals related to C∞(X) are introduced and corresponding to the

relations between these ideals and C∞(X), topological spaces X are character-

ized. Finally we have shown that a σ-compact space X is Baire if and only if

every ideal containing C∞(X) is essential.
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In this paper, we extend the notions of reciprocal continuity and Cq-

commutativity to nonself setting besides observing equivalence between com-

patibility and φ -compatibility, and utilize the same to obtain some results on

coincidence and common fixed points for two pairs of nonself mappings in met-

rically convex metric spaces. As an application of our main result, we also prove

a common fixed point theorem in Banach spaces besides furnishing several il-

lustrative examples.
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Let X be Tychonoff space and C(X) be the ring of real continuous functions

on X. We consider the set of torsion elements of C(X), denoted by T (X), and

find a close relation between T (X) and zero dimensionality of X. Specially, we

prove that if X and Y are two zero dimensional compact spaces, then X and

Y are homeomorphic if and only if the rings generated by T (X) and T (Y ) are

isomorphic.
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In this talk we will show how the combinatorics of a certain class of simplicial

complexes K manifests itself when computing the unstable K(1)-completion of

the associated Borel Space BTZK using a certain generalized composite functor

spectral sequence constructed by the second author. Explicit calculations will

be highlighted as well as obstructions to more generalized calculations.
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We show that for real quasi-homogeneous singularities f : (Rm, 0)→ (Rk, 0),
m > k ≥ 2 with isolated singular point at the origin, the projection map

of the Milnor fibration Sm−1
ε \Kε → S1 is given by

f

‖f‖
. Moreover, for these

singularities the two versions of the Milnor fibration, on the sphere and on a

“Milnor tube”, are equivalent.
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In this work we consider links in S3 which are the closure of pure 3- braids and

we do integral surgery on these links. Applying the theory of Artin presentations

[1], [2], we calculate the fundamental group of the 3-manifolds obtained by

integral surgery on these links. We define an operation on the set of Artin

presentations and show that this operation gives a group structure to the set,

which is used to calculate the fundamental groups of the 3-manifolds mentioned

above. In some cases these groups are shown to be nontrivial.
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We show that linearly ordered quasi F -spaces and linearly ordered almost P -
spaces coincide. Linearly ordered P+ (P−)-spaces are introduced and an ex-

ample of a P+-space without P−-point is given. We also show that a linearly

ordered space (LOTS) is sequentially connected if and only if it is connected

without any almost P -point.
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A surface is called singular Euclidean if it can be obtained from a finite disjoint

collection of Euclidean triangles by identifying pairs of edges by Euclidean

isometries. The surface is locally isometric to the Euclidean plane except at

finitely many points, at which it is locally modeled on Euclidean cones. These

singular points are called the cone points. For each cone point there is a cone

angle, which is the sum of the angles of the triangles that are incident to the

cone point.

Singular Euclidean surfaces arise in several contexts within mathematics:

• Masur and Tabachnikov studied them from the viewpoint of billiard flows

on Euclidean polygons ([1]);
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• Rivin investigated their relations with volumes in hyperbolic geometry

([2]);

• Troyanov analyzed them in the context of Riemann surfaces and their

parameter spaces (Teichmüller and Moduli spaces) ([3]);

A hex sphere is a singular Euclidean sphere with 4 cones whose cone angles

are (integer) multiples of 2π
3

but less than 2π. Given a hex sphere, we con-

sider its Voronoi decomposition centered at the two cone points with greatest

cone angles. This decomposes the hex sphere into two cells, the Voronoi cells,

which intersect along a graph. By cutting a Voronoi cell along a special shortest

geodesic, the Voronoi cell becomes a polygon on the Euclidean plane ([4]). This

polygon will be referred to as a Voronoi polygon. We prove that the Moduli

space of hex spheres of unit area is homeomorphic to the the space of similarity

classes of Voronoi polygons in the Euclidean plane. A corollary is that every hex

sphere has an embedded, totally geodesic Euclidean annulus of positive width.

In particular, every hex sphere has a simple closed geodesic.
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[4] A.H. Cruz-Cota, Classifying Voronoi Graphs of Hex Spheres (preprint).

❖ ❖ ❖

Open Book Decompositions of Links of Quotient Surface
Singularities

Elif Dalyan

Department of Mathematics, Hitit University, Corum, Turkey

E-mail: elifdalyan@hitit.edu.tr

2000 Mathematics Subject Classification. 53D05, 53D10, 37J05

In this paper we write explicitly the open book decompositions of links of quo-

tient surface singularities that support the corresponding unique Milnor fillable

contact structures. The page-genus of these Milnor open books are minimal

among all Milnor open books supporting the unique Milnor fillable contact

structures. That minimal page-genus is called the Milnor genus. In this paper

we also investigate whether the Milnor genus is equal to the support genus
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for links of quotient surface singularities. We show that for many types of the

quotient surface singularities the Milnor genus is equal to the support genus of

the corresponding contact structure. For the remaining we are able to find an

upper bound for the support genus.
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The present paper is focused on a study of path topology introduced in [1].

Motivated by the facts that the topology on 4-dimensional Euclidean space does

not incorporate the causal structure of spacetime and that the homeomorphism

group of it being vast is of no physical significance, in 1967 Zeeman [2] initiated

the study of non-Euclidean topologies that incorporate the causal structure

of spacetime by introducing the notion of fine topology. Hawking et al. [1]

pointed out the following shortcomings and proposed path topology on strongly

causal spacetime to overcome these shortcomings: (i) fine topology is difficult

to deal with as no point of it has a countable basis, (ii) the homothecy group of

Minkowski space may not be physically significant and (iii) the set of continuous

paths in fine topology does not incorporate accelerating particles moving under

forces in curved lines.

Spacetime is considered to be a connected, Hausdorff, paracompact, C∞

real 4-dimensional manifold without boundary, with a Lorentzian metric and

associated pseudo Riemannian connection. Path topology on strongly causal

spacetimes is defined to be the finest topology satisfying the requirement that

the induced topology on every timelike curve coincides with the topology in-

duced from the standard (positive definite) metric topology. Path topology is

Hausdorff, connected, locally connected, path connected and locally path con-

nected but not regular, normal, locally compact or paracompact [1].

In this paper, the compact sets of strongly causal spacetime with path topol-

ogy have been characterized. Further, its simple connectedness is explored.
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Exterior, Ciudad Universitaria, 04510 México DF, MEXICO
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Following [3], we say that a tangle is a pair (B,A), where B is the 3-sphere

with the interiors of a finite number of 3-balls removed, and A is a disjoint

union of properly embedded arcs in B such that A meets each component

of B in four points. The hexatangle is a certain tangle having six boundary

components and a projection into the plane with no crossings. By filling the

boundary components of a tangle with rational tangles we get knots and links in

the 3-sphere. By fillling one of the components of the hexatangle with a certain

rational tangle we get the pentangle, which is studied in [2]. In a previous work

[1], we determined all the integral fillings on the hexatangle that produce the

trivial knot. Now we consider arbitrary rational fillings of the hexatangle, and

have a conjecture which says exactly when we can get the trivial knot. We

show some partial results about this conjecture. The hexatangle is somehow

the simplest tangle with no crossings for which the problem of the triviality of

knots is difficult. We also consider fillings that produce other classes of links,

like split links or composite links. The double branched cover of the hexatangle

is a certain hyperbolic link L of six components in S3. Our problem is equivalent

to determining all Dehn surgeries on L that produce the 3-sphere. This link is

interesting, for many hyperbolic knots and links with exceptional surgeries are

obtained by performing Dehn surgery on some components of L.
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In this talk, we generalize the notion of the bounding genus of homology 3-

spheres to that in the cobordism category of 3-manifolds and give a lower

bound by using a V-manifold version of the Furuta-Kametani-10/8-inequality.

The bounding genus is a homology cobordism invariant of homology 3-

spheres introduced by Y. Matsumoto with 11/8-conjecture in 1982. By us-

ing the Seiberg-Witten theory, the author used a V-manifold version of Fu-

ruta’s 10/8-inequality to determine the bounding genera for infinite families of

Brieskorn homology 3-spheres [2]. This inequality is improved by M. Furuta

and Y. Kametani with the quadruple cup products of the first cohomology of

closed spin 4-manifolds [1].

Motivated by this, we introduced a category L3 of graded commutative rings

and a homology functor Φ : C3 → L3 from the spin cobordism category C3 of

3-manifolds and constructed a non-associative algebra R∗(L) which obstructs

to realize a morphism (H → L ← H ′) ∈ L3(H,H
′) through Φ [3]. Then we

generalize the notion of the bounding genus (Φ-bounding genus) between two

objects M1,M2 ∈ ob C3 and a morphism L ∈ L3(H∗(M1), H∗(M2)) with a

set of quadruples Λ of 2-cycles on M1 tM2 as follows. The Φ-bounding genus

|(M1,M2)|L;Λ is defined to be the minimum of b+2 (W ) for all W ∈ C3(M1,M2)

satisfying Sign(W ) = 0, Φ(W ) = L with even/odd quadruple products of 3-

cycles on (W,∂W ) with boundary Λ. Now suppose Mi, i = 1, 2 has vanishing

triple cup products and bounds a compact spin 4-V-manifold Xi with non-

singular intersection pairing. If the w-invariants satisfy δ := w(M1)−w(M2) >
0, then by using a V-manifold version of the Furuta-Kametani-10/8-inequality,

the lower bound of Φ-bounding genus is:

|(M1,M2)|L;Λ
≥ δ + 2m(X1 tX2,Λ) + 1− b−2 (X1)− b

+

2 (X2),

wherem(X1tX2,Λ) is the maximum number of linearly independent odd/even

quadruple products of 3-cycles on (X1 tX2,M1 tM2) with boundary Λ.
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Study of Bitopological space is taking a rapid stride primarily for sake of uni-

fication and in a sense, of restoration of symmetry missing in a Topological

space. To look into separation axiom in a Bitopological space has thus become

an inevitable exercise.

In this paper we have studied graded classification of separation axioms

sometimes affixed with weak and we have incorporated new separation axioms

with a natural task to establish their mutual implications among new separation

axioms. We have also cited appropriate illustrative examples either to support

our contention or test the strength of implications. We have also dealt with

several separation axioms in a Bitopological space.
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Let k be a knot in S3. In [1], H.N. Howards and J. Schultens introduced a

method to construct a manifold decomposition of double branched cover of

(S3, k) from a thin position of k. In this talk, we will prove that if a thin

position of k induces a thin decomposition of double branched cover of (S3, k)
by Howards and Schultens’ method, then the thin position is the sum of prime

summands by stacking a thin position of one of prime summands of k on top of
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a thin position of another prime summand, and so on. Therefore, k holds the

nearly additivity of knot width (i.e. for k = k1#k2, w(k) = w(k1)#w(k2)− 2)

in this case. Moreover, we will generalize the hypothesis to the property a

thin position induces a manifold decomposition whose thick surfaces consists of

strongly irreducible or critical surfaces in the submanifolds obtained by cutting

double branched cover along thin surfaces.
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Toric hyperKähler manifolds, introduced by Bielawski and Dancer in [1], are

defined by the hyperKähler quotient of torus actions on quaternionic spaces.

This manifold can be regarded as the hyperKähler analogue of the toric man-

ifolds. For the toric manifolds, in [5], Masuda and Suh proposed the following

problem motivated by the Masuda’s theorem in [4]:

Problem 1 (Cohomological rigidity problem). Let M and M ′ be toric mani-

folds. Are they homeomorphic if H∗(M) ' H∗(M ′)?

This problem is still open, and we can also ask this problem for toric hy-

perKähler manifolds.

In this contributed abstract, we introduce the following two theorems:

Theorem 1 ([2]). Let (Mα, T, µα̂) and (M ′

α′ , T, µ′

α̂′) be triples of toric hy-

perKähler manifolds with torus actions and their hyperKähler moment maps.

Then, (Mα, T, µα̂) and (M ′

α′ , T, µ′

α̂′) are weakly hyperhamiltonian isomorphic

if and only if there is a weak H∗(BT )-algebra isomorphism f : H∗

T (Mα;Z) →
H∗

T (M
′

α′ ;Z) such that f(α̂) = α̂′.

Theorem 2 ([3]). LetM andM ′ be toric hyperKähler manifolds. Then,M and

M ′ are diffeomorphic if and only if dimM = dimM ′ and H∗(M) ' H∗(M ′).

Theorem 1 can be regarded as the hyperKähler analogue of the Masuda’s

theorem in [4], and Theorem 2 gives the answer of the cohomological rigidity

problem for toric hyperKähler manifolds.
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We prove the existence of Tn-invariant almost complex structure on any qu-

asitoric manifold with positive omniorientation. This is an answer to problem

posed by M. Davis and T. Januskiewicz in their classical paper [1]. We also

show that any such structure is equivalent to a canonical stably complex struc-

ture on quasitoric manifold with omniorientation [2]. The number of different

Tn-invariant almost complex structures on quasitoric manifold is estimated by

an invariant of underlying polytope, which may be described in purely combi-

natorial terms.
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Let Σ be a surface of negative Euler characteristic together with a pants decom-

position P. Kra’s plumbing construction endows Σ with a projective structure

as follows. Replace each pair of pants by a triply punctured sphere and glue, or

‘plumb’, adjacent pants by gluing punctured disk neighbourhoods of the punc-

tures. The gluing across the ith pants curve is defined by a complex parameter

τi ∈ C. The associated holonomy representation ρ : π1(Σ) → PSL(2,C) gives

a projective structure on Σ which depends holomorphically on the τi. In par-

ticular, the traces of all elements ρ(γ), γ ∈ π1(Σ), are polynomials in the τi.
Generalising results proved in [1, 2] for the once and twice punctured torus

respectively, we prove a formula giving a simple linear relationship between the

coefficients of the top terms of ρ(γ), as polynomials in the τi, and the Dehn-

Thurston coordinates of γ relative to P.
This could be applied to give a formula for the asymptotic directions of

pleating rays in the Maskit embedding of Σ as the bending measure tends to

zero.
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Keywords. Topological space, δsΠg - closed sets, δsΠg - T 1/2, δsΠg-continuous
and δsΠg-irresolute maps, compactness, δsΠGO-compact spaces, S-weakly Hausdorff
space.

In this paper a new class of sets called δsΠ generalized-closed sets (briefly δsΠg-
closed sets) is introduced and its properties are studied. Further the notions

of δsΠg - T1/2 space, δsΠg-continuous and δsΠg - irresolute mappings are in-

troduced. We obtain some of their properties via the concept of δsΠg-closed
sets and to relate the concept to the classes of δsΠGO-compact spaces. It is

seen that a topological space (X,T) is S-weakly Hausdorff if and only if each

singleton is δ-semi closed. Lastly some applications are shown with the above

concepts
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The above topological spaces are introduced and studied. It is shown that ev-

ery continuous image of a compact Hausdorff a−scattered space X (i.e., every

subset A of X with |A| ≥ a has an isolated point relative to A and a is the

least regular cardinal with this property) is b−scattered for some b ≤ a. Con-
sequently, if X is a compact Hausdorff a-scattered space , where a ≤ c and c
is the cardinality of continuum, then a = ℵ◦ the first infinite cardinal and X
is scattered. Surprisingly, it follows that in any compact Hausdorff space X,

every non-empty subset has an isolated point if and only if every uncountable

subset of X has an isolated point.
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In [3], F. Lalonde and L. Polterovich study the isometries of the group of Hamil-

tonian diffeomorphisms with respect to the Hofer metric. They defined a sym-

plectic diffeomorphism ψ to be bounded, if the Hofer norm of [ψ, h] remains

bounded as h varies on Ham(M,ω). The set of bounded symplectic diffeomor-

phisms, BI0(M), of (M,ω) is a group that contains all Hamiltonian diffeomor-

phisms.

F. Lalonde and L. Polterovich conjecture that these two groups are equal,

Ham(M,ω) = BI0(M,ω) for every closed symplectic manifold. In [3], they

prove this conjecture in the case when the symplectic manifold is a product

of closed surfaces of positive genus; and in [2], F. Lalonde and C. Pestieau

proved the conjecture for product of closed surfaces of positive genus and a

simply connected manifold. Recently, Z. Han [1] prove this conjecture for the

Kodaira-Thurston manifold.

We prove the bounded isometry conjecture for a closed symplectic manifold

(M,ω) of dimension 2n that satisfies the following hypothesis:

(a) There are open sets U1, . . . , Ul ⊂ M such that each Uk is symplectomor-

phic to T 2n \ {pt} with the standard symplectic form up to a scalar.

(b) The induced maps jk,∗ : H1
c (Uk)→ H1(M) are such that

H1(M) =

l
⋃

k=1

jk,∗(H
1
c (Uk)).

Basically what we need for the symplectic manifold is to have several punc-

tured torus that generate all the cohomology in degree one of M . This is need

it in order to describe the whole flux on M in terms of the flux on Uk.
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I will discuss the relationship between elliptic topology and bifurcation theory.

More precisely, given a family {fλ} of Fredholm maps between Banach spaces

parametrized by a finite CW -complex Λ and such that fλ(0) = 0, I will show
that bifurcation of nontrivial zeroes arise if, for some µ ∈ Λ, Dfµ(0) is invert-
ible and the index bundle of the family of linearizations {Dfλ(0)} along the

trivial branch is stably fiberwise homotopically nontrivial. Using the Atiyah-

Singer family index theorem, Fedosov’s formula and some classical results about

J-homomorphism, I will obtain sufficient conditions for the appearance of non-

trivial classical solutions of nonlinear elliptic boundary value problems bifur-

cating from a trivial branch.
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In this presentation we give a bound for the unknotting number of any given

knot. In many cases the given bound is exactly equal to the unknotting number.

We have utilized quasitoric braid representation for a given knot in finding the

bound.
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Let K be a polygonal knot. We say that a line ` in R3 is an n-secant line for

K if ` intersects K in at least n distinct points. If ` is an n-secant line for K and

the intersection of ` with K consists of the points x1, x2, ..., xn, in that order

along `, no two of which lie in a common straight subarc of K, then x1x2...xn
is an n-secant for K. We say that a 3-secant is a trisecant for K.

In [1], Erika Pannwitz proved that each point of K is the starting point

of at least κ trisecants for K, where κ is the necessary number of boundary

singularities for a disk bounded by K.

Let x be a point inK. We are interested in counting the number of trisecants

forK having the point x in common. If we restrict x to appear only as a starting

point for trisecants, we have found a lower bound on the number of trisecants

in terms of the crossing number of the knot: a knot K with crossing number,

cr(K), has at least
2cr(K)+1

3
trisecants.

We will discuss how to get this lower bound and some ideas that might lead

us to find another lower bound for the number of trisecants if we allow x to

appear not only as a starting point but also as a middle point.

A detailed study of trisecants appear in [1] and [2].
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Let X be a topological space and denote by catX the Lusternik–Schnirelmann

category [4] of X. Ganea [2] conjectured that cat (X × Sn) = catX + 1 for

any finite CW–complex X and n ≥ 1. Although this conjecture was proved

in some particular cases, it has been disproved in general [3] with the lowest

dimensional counterexample having dimension 10. Ganea [1] established that an

upper bound to the category of a space is equivalent to the existence of sections

of some fibrations associated to it. In this work, using Ganea’s characterisation

and a divisibility phenomenon for the Hopf invariants [5] of its attaching maps, a

7–dimensional CW–complex X such that catX = 2 is constructed. In addition,

an alternative cell decomposition of X is presented and by another divisibility

phenomenon of its attaching maps, it is proved that cat (X×Sn) = 2 for n ≥ 2.

Such space hence constitutes the minimum dimensional known counterexample

to Ganea’s conjecture on the Lusternik–Schnirelmann category of spaces.
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We introduce the notion of pair wise sαg∗-closure operator analogous to the

sαg∗-closure in a topological space. We also introduce sαg∗-continuous maps in

bitopological spaces by using sαg∗-closed sets of bitopological spaces and study

some of their basic properties.
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With every topology T on a set X, two finer topologies on X have been been

introduced in the past, viz., T f , called the front topology ([1], [5]) and T i, called
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the indiscrete generated refinement of T ([3]). Let X = (X,T ) be a topological

space, ∆X be the diagonal of X, and P be the product topology on X ×X. It

is known that X is T0 iff ∆X is P f -closed ([2]) iff ∆X is P i-closed ([3]). This

raises the question: Given a topological space (X,T ), are T f and T i related in

some way(s)?

In this note, we establish some nice relationships between T f and T i, which

include:

• T ff = T i.

• T f = T i iff (X,T ) satisfies the TD−0-separation axiom (as defined in [4]).
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This talk is on classification of embeddings of manifolds. Given a manifold N
and a number m, we study the following question: is the set of isotopy classes

of embeddings N → Sm finite? In case when the manifold N is a sphere the

answer was given by A. Haefliger in 1966 [1]. The case when N is a disjoint

union of spheres was treated by D. Crowley, S. Ferry and independently by

the author in 2008. In this talk we consider the next natural case when N is a

product of two spheres.
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Theorem. Assume that m > 2p + q + 2 and m < p + 3q/2 + 2. Then the set

of isotopy classes of smooth embeddings Sp × Sq → Sm is infinite if and only

if either q + 1 or p+ q + 1 is divisible by 4, or there exists a point (x, y) in the

set U(m− p− q,m− q) such that (m− p− q − 2)x+ (m− q − 2)y = m− 3.

Here U(i, j) ⊂ Z
2 is a concrete subset defined in the talk, which depends

only on the parity of i and j.
Our approach is based on a group structure on the set of embeddings [2]

and a new exact sequence, which in some sense reduces the classification of

embeddings Sp×Sq → Sm to the classification of embeddings Sp+q tSq → Sm

and Dp × Sq → Sm, cf. [3].
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We define an interesting class of 3-balls (called butterflies), with faces identified

by pairs. The identification space is S3, and the image of a preferred set of edges

is a link. As motivation we give some examples. We prove that every link can

be represented in this way (butterfly representation). The butterfly number of

a link is also defined and we prove that this number and the bridge number

of a link coincide. We give a partial extension of the Schubert theorem that

classifies the two bridge links and we show how to associate a special triple of

rational numbers (p/n; q/m; s/l) to each 3-bridge link.
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A classical theorem of Siegel [3] states that the minimum covolume among lat-

tices in G = SL2(R) is π
21
, and determines the lattice which realises this min-

imum. In the nonarchimedean setting, Lubotzky [1] and Lubotzky–Weigel [2]

constructed the lattice of minimal covolume in G = SL2(K), where K is the

field Fq((t
−1)) of formal Laurent series over Fq.

The group G = SL2(Fq((t
−1))) has, in recent developments, been viewed as

the first example of a complete Kac–Moody group of rank 2 over a finite field.

Such Kac–Moody groups are locally compact, totally disconnected topological

groups, which may be thought of as infinite-dimensional analogues of semisim-

ple algebraic groups. Apart from the “affine case” G = SL2(Fq((t
−1))), these

groups are nonlinear.

We determine the cocompact lattice of minimal covolume in such groups G.
We also classify those lattices in G which act transitively on the edges of its

associated Bruhat–Tits tree X, and show that in many cases, the cocompact

lattice of minimal covolume in G is edge-transitive. Our methods include finite

group theory, covering theory for graphs of groups and the dynamics of the

G–action on X.
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We give a survey of recent results [1], [2], [3] related to some aspects of braids.

Inverse braid monoid describes a structure on braids where some strings of

initial n may be deleted. It was shown [3] that many properties and objects

based on braid groups may be extended to the inverse braid monoids. For
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example an inclusion into a monoid of partial monomorphisms of a free group

gives a solution of the word problem. Let εi denote the trivial braid with ith
string deleted. We call a braid b on n strands brunnian if it satisfies the following

equations:

εim = εi for all i = 1, . . . , n.

Let Brunn(M) be the group of brunnian braids on a surface M and Ai,j [M ]

are the images of the canonical generators of the pure braid group by the

homomorphism induced by the inclusion of a disc into a manifold M .

Theorem. [2] Let M be a connected 2-manifold and let n ≥ 4. Let

Rn(M) = [<< A1,n[M ] >>,<< A2,n[M ] >>, . . . , << An−1,n[M ] >>]S

be the symmetric commutator subgroup and << Ai,j [M ] >> means a subgroup

of pure braids normally generated by Ai,j [M ].

1. If M 6= S2 or RP 2, then Brunn(M) = Rn(M).

2. If M = S2 and n ≥ 5, then there is a short exact sequence

1→ Rn(S
2)→ Brunn(S

2)→ πn−1(S
2)→ 1.

3. If M = RP 2, then there is a short exact sequence

1→ Rn(RP
2)→ Brunn(RP

2)→ πn−1(S
2)→ 1.
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The operation of a discrete semigroup S can be naturally extended to the Stone-

Čech compactification βS of S so that for each p ∈ βS, the right translation

βS 3 x 7→ xp ∈ βS is continuous, and for each a ∈ S, the left translation

βS 3 x 7→ ax ∈ βS is continuous. The semigroup βS has important applications

to combinatorial number theory ant to topological dynamics [2]. In [3] it was

shown that if S is an infinite Abelian group, then βS contains 22
|S|

closed two

sided ideals, and in [1] this result has been extended to an arbitrary countably

infinite group. We show that for every infinite semigroup S embeddable into a

group, βS contains 22
|S|

closed two sided ideals [4].
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Let g be a finite-dimensional simple Lie algebra over the field of complex num-

bers. Consider its loop algebra g̃ and the corresponding quantized enveloping

algebras Uq(g) and Uq(g̃). We will refer to the latter as the quantum affine

algebra of g. It is known that, unless g is of type A, there is no quantum group

analogue of the evaluation maps g̃→ g. In particular, the concept of evaluation

representations is not available in the context of quantum affine algebras in

general and it turns out that not every representation of Uq(g) can be extended

to one of Uq(g̃). To overcome this issue, V. Chari and A. Pressley introduced

the concept of minimal affinizations of an irreducible finite-dimensional Uq(g)-

module. Roughly speaking, a minimal affinization is a minimal enlargement

of the given irreducible representation of Uq(g) which can be extended to a

representation of Uq(g̃).

A special class of minimal affinizations is the one of Kirillov-Reshetikhin

modules which are the minimal affinizations of the irreducible modules whose

highest weights are multiples of the fundamental weights. These modules were

originally introduced in the mathematical physics literature before the concept

of minimal affinizations was defined. One problem of particular interest regard-

ing minimal affinizations is that of describing their characters. In this talk I

will present character formulas for certain minimal affinizations which were ob-

tained by comparing the classical limit of the minimal affinizations with certain
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graded modules for the underlying current algebra. This strategy was developed

and successfully used by V. Chari and the speaker in [1, 2] to prove several char-

acter formulas for Kirilov-Reshetikhin modules which had been conjectured in

the mathematical physics literature previously. More recently, the speaker has

devised a way of extending this method to minimal affinizations having more

general highest weights and obtained some formulas which appear not to have

been conjectured before [3, 4].
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Let G be a complex reductive algebraic group and K ⊂ G the fixed-point set of

a regular involution on G. Denote by k ⊂ g the corresponding Lie algebras, and

by p the Cartan complement of k in g. Let GR be a real form of G and gR the

Lie algebra of GR. Write KR = GR∩K and kR = gR∩ k. Denote by N ∗ the cone

of nilpotent elements in in the dual Lie algebra g∗, and consider a GR-orbit V
in N ∗ ∩ g∗

R
and a K-orbit O in N ∗ ∩ p∗ associated by the Kostant-Sekiguchi

correspondence.

According to a conjecture of Vogan the asymptotic behaviour of multiplici-

ties of KR-types in the ring of regular functions R
[

O
]

can be described in terms

of the Liouville measure βV on V. More precisely, we consider the generalised

function JV defined as restriction of the Fourier transform of βV to kR. On the

other hand, R
[

O
]

is a trace class representation of KR [4], hence one can define

the asymptotic KR-character of O as the limit

MO(X) = lim
t→0

tdTr(R[O])(exp tX), d = dimCO, X ∈ kR.
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Vogan’s conjecture states that JV = MO as generalised functions on kR. The

conjecture was established by King for even nilpotent orbits and minimal nilpo-

tent orbits [1, 2], and by Vergne for complex groups [4]. The aim of this work is

to provide additional evidence for Vogan’s conjecture. Relying on the results of

Schmid and Vilonen [3] we show that Vogan’s conjecture is true for the classical

groups GL(n,R), SL(n,R), SU∗(2n), Sp(p, q) and SO∗(2n).
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Evolution algebras appear as a intrinsic and general mathematical structure of

the stochastic processes and genetics.

Evolution algebras can be defined by generators and defining relations. It is

notable that the generators set of an evolution algebra can serve as a basis of

the algebra.
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Let (A, .) be an algebra over a field K. The algebra A is called an evolution

algebra if it admits a basis {x1, x2, . . . , xn}, such that

• xi.xj = 0, i 6= j

• xi.xi =

n
∑

k=1

ai,kxk for any i.

The basis will be called a natural basis (see [1]).

In this work we will study various algebraic concepts in evolution algebras.

For example, the notions of nilpotency and we will show the connections with

graph theory.
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The category of finite-dimensional representations of quantum affine algebras

is not semisimple. For generic values of the quantization parameter, results of

V. Chari [1] and M. Kashiwara [2] provide a way of obtaining indecomposable

objects by giving sufficient conditions for a tensor product of simple objects to

be highest-weight. In particular, a tensor product of fundamental representa-

tions can always be reordered in such a way that these conditions are satisfied.

Furthermore, this property turned out to be one of the essential ingredients

used to describe the block decomposition of the category.

In this talk, we will focus on a joint work with A. Moura [3] where we

consider the root of unity setting. We prove an analogue of Chari’s version of

the aforementioned result on tensor products of simple modules. However, the

result about tensor products of fundamental representations is no longer valid.

We will discuss the techniques we used to overcome this issue for describing the

blocks in the root of unity setting.
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The fuzzy algebraic structure play a prominent role in mathematics with wide

applications in many other branches of science. After the introduction of fuzzy

sets by Zadeh [4],several scholars studied fuzzy substructures of many algebraic

structures. K.T.Atanassov [3]introduced the notion of intuitionistic fuzzy sets

as generalization of fuzzy sets. In [2]we introduced fuzzy Lie algebra over a fuzzy

field. In this paper we introduce the notion of intuitionistic fuzzy Lie algebra

over a fuzzy field and give some results in this respect.
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Using inversion with respect to ball of arbitrary radius, a modified Kelvin trans-

form on the Heisenberg group Hn is defined which gives explicit expressions for

the Green’s function and Poisson kernel for Korányi ball of arbitrary radius

and annular domain. Solution of Dirichlet problem for union of two balls is

discussed using schwarz alternating method.
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In this paper we classify the splints of the root system of classical Lie superalge-

bras as a superalgebraic conversion of the splints of classical root systems. We

hope in some cases splints will play a role in determing brancing rules of a mod-

ule over a complex classical Lie superalgebras when restricted to a subalgebras

analougs to the case of classical Lie algebras.

References

[1] David A. Richter, Splints of classical root systems, Arxiv:0807.0640v1[math.RT]
7 Jul 2008.

[2] V.D. Lyakhovsky, S. Yu Melnikov, et al., Recursive relation and branching rules

for simple lie algebras, J. Phys. A: Math. Gen 29 (1996) 1075 -1087.

[3] L. Frappat, A. Sciarrino, and P. Sorba, Structure of Basic Lie Superalgebras and

of their Affine Extensions, Commun. math. Phys. 121, 457–500 (1989).

[4] V. G. Kac, Lie Superalgebras, Advanced in Mathematics 26, 8–96 (1997).

[5] M Parker, Classification of real simple Lie superalgebras of classical type, J.
Math.Phys. 21(4), April 1980.

[6] Georgia Benkart and Alberto Elduque, Lie Superalgebras Graded by Root System

A(m,n), Journal of Lie Theory, Volume 13 (2003) 387–400.

❖ ❖ ❖



184 Lie Theory and Generalizations
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The theory of irreducible representations of Lie algebras has been a rich source

of results in special function theory, [1]. In particular, the Mellin integral trans-

formation [2] as well as its q–analogue [3] have been studied from the Lie al-

gebraic point of view resulting in special function identities and recurrence

relations. In the proposed talk, we discuss new models of the irreducible p, q–
representations of the Lie algebra gl(2). An integral transformation motivated

by the p, q–gamma function is used to transform these models of gl(2) and

identities involving p, q–special functions are obtained.
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Let Λ be a dominant integral weight of level r for the affine Lie algebra g and let

α be a non-negative integral combination of simple roots of height d. We address
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the question of whether the weight η = Λ−α lies in the set P (Λ) of weights in a

highest weight module with highest weight Λ. We give a non-recursive criterion

in terms of the coefficients of α modulo an integral lattice rM , where M is the

lattice parameterizing the abelian normal subgroup T of the Weyl group. The

criterion does require the preliminary computation of a set no larger than the

fundamental region for rM , consisting of the maximal weights with positive

hubs and representatives of their images under the classical Weyl group W0

associated with the Weyl group W of g. The criterion is a generalization to

r > 1 of [Ka, 12.6.3].

The original motivation for this research was in investigation of the existence

of the block HΛ
α of the cyclotomic Hecke algebra HΛ

d (F, ξ), where ξ ∈ F ∗ is an

e-th root of unity. This question is typically settled by a recursive construction

of the weights of blocks up to rank d or by the construction of a multipartition

with content α. By the categorification result in [AM], such a block exists if and

only if the corresponding weight η is in P (Λ) for the affine Lie algebra A
(1)

e−1,

so our non-recursive criterion above gives a criterion in terms of the residues of

the coefficients of α modulo r. In this case the set to be computed is of order

re−1.
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We introduce an intrinsic version (called here geometric induction) of the classi-

cal induction of representations from a subgroup H of a (finite) group G, which

associates to any, not necessarily transitive, G-set X and any representation of

its motion groupoid M(X,G), a representation of the group G. We show that

for G = PGL(2, q), geometric induction applied to a suitable linear character of

the motion groupoid of the G-set X consisting of symmetric matrices in G af-

fords a “twisted natural representation”, which is a Gelfand Model for G [2, 1].

We conjecture moreover that for any finite group of Lie type G a canonical
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G-set X may be found affording a Gelfand Model by geometric induction from

a suitable linear character of its motion groupoid M(X,G).

This work was partially supported by Fondecyt Grants 1070246 and

7040148.
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This is a report on some unpublished work by the author during the year 2003

(and before). Let G be an algebraic group(scheme), and V a G-module. (All vec-

tor spaces are finite dimensional over a fixed unmentioned field of characteristic

zero). Let S denote the symmetric algebra Sym• V , and I ⊆ S a homogeneous

G-ideal with no (nonzero) element of S1. Let X = ProjR = (AffR)/Gmult,

for R := S/I. Our focus is on the case of G connected, acting transitively on

X; but for the discussion of generalities it is important to let G even be the

one-element group.

One is looking for an in-depth study of the minimal free resolution (MFR):

0← R← S = (F0)← F1 ← · · · ← FD ← 0 ;

where Fj (for j ≥ 1) are built as in the textbooks. (Uniqueness of Fi’s is also

‘clear’, and the value of D has been a topic of intensive study in literature.)

The study of MFR needs detailed attention to the boundary maps Fj →
Fj−1; to that end we must write Fj =

⊕

k Mj,k ⊗ S(−k), where S(−k) is the

same as S except for a degree shift. Thus we need to find the G-modules Mj,k

(plus suitable morphisms between them, on which we have inadequate space to

devote here).

Main result: The module Mj,k is isomorphic to the j-th cohomology of the

finite complex (always of (S,G)-modules) Ek = {Ek|j | 0 ≤ j ≤ k}, whose j-

th component Ek|j = Ei,j := Ri ⊗ ∧j for i = k − j, and ∧j =
∧j

V . This
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is a generalization of the standard Koszul Complex (obtained for I = (0)).

We discovered this using the philosophy of Generating Functions. The result,

however, is a rewording of the well-known Koszul Cohomology notion of Mark

Green (introduced in 1984 in two celebrated and intricate papers of the same

title).

The fact that ‘Full Syzygy Space’ M.,. (defined as the direct sum of all

G-modules Mj,k) has a natural supercommutative G-algebra structure (simi-

lar to the situation for De Rham cohomology), arises readily from the same

assertion for an arbitrary mod-2 graded G-algebra (equipped with a special

superderivation, such as our boundary map, whose ‘square’ is zero).

The prime example (the only ‘tractable’ one) withG = GL(V ) which the au-

thor could successfully tackle is the case of ‘Line Grassmannian’ (the space of all

lines in P
n−1, i.e. the d = 2 case of the d-Grassmannian variety consisting of all

d-dimensional subspaces of affine n-space An = SpecS). The net result, therein
is the discovery of the role of the infinite family of ‘special hooks’ with leg-size

exactly 3 more than the arm-size, defining (as anti-commutative generators of)

the said G-superalgebra. Thus M.,. =
∧

•

{the graded span of all such hooks}.
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We discuss in the paper the effectiveness properties of the Gregory-Type set

p0(z) = 1, pk(z) = (z − a)(z − 2a2)(z − 3a3) . . . (z − kak); k ≥ 1, for the cases

|a| < 1, |a| > 1 and |a| = 1 where a is a given complex number.
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For f ∈ Lp[0, 1], 1 ≤ p < ∞, the Bernstein-Durrmeyer type polynomial opera-

tors

Pn(f ;x) =

1∫

0

Wn(t, x)f(t) dt,

where the kernel Wn(t, x) = n

n
∑

k=1

pn,k(x)pn−1,k−1(t) + (1− x)nδ(t), δ(t) being

the Dirac-delta function, were introduced by Gupta and Maheshwari [2] to study

the approximation of functions of bounded variation. It turns out that the order

of approximation by these operators is at best O(n−1), however smooth the

function may be. In order to speed up the rate of convergence by the operators

Pn, we apply the technique of iterative combination as given below:

The iterative combination Tn,k : Lp[0, 1] → C∞[0, 1] of the operators Pn is

defined as

Tn,k(f ;x) =
(

I − (I − Pn)
k
)

(f ;x) =
k
∑

r=1

(−1)r+1

(

k

r

)

P r
n(f ;x), k ∈ N,

where P 0
n ≡ I and P r

n ≡ Pn(P
r−1
n ) for r ∈ N.

Assuming that I = [a, b], where 0 < a < b < 1, in [1] we proved that if

ω2k(f, τ, p, I) = O(τα) as τ → 0 then

‖Tn,k(f, .)− f‖Lp(I) = O(n−α/2) as n→ ∞,where 0 < α < 2k.
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The aim of this paper is to establish the corresponding inverse theorem i.e.

the characterization of the class of functions for which ‖Tn,k(f, .) − f‖Lp(I)

= O(n−α/2) as n→ ∞, where 0 < α < 2k.

References

[1] P. N. Agrawal, Karunesh Kumar Singh and A. R. Gairola, Lp−Approximation by
iterates of Bernstein-Durrmeyer type polynomials, Int. Journal of Math. Analysis,
4(10)(2010), 469–479.

[2] V. Gupta and P. Maheshwari, Bezier variant of a new Durrmeyer type operators,
Riv. Mat. Uni. Parma 7(2) (2003), 9–21.

❖ ❖ ❖

Use of Shear Construction To Study Harmonic Univalent
Mappings with Directional Convexity

Om P. Ahuja

Department of Mathematical Sciences, Kent State University, Burton, Ohio 44021,

U.S.A.

E-mail: oahuja@kent.edu

2000 Mathematics Subject Classification. Primary 31A05, Secondary 30C45.

Clunie and Sheil-Small [3] in 1984 discovered a general method, known as ‘shear

construction’ for constructing harmonic mappings with specified properties.

This method essentially produces a harmonic mapping onto a convex domain

in one direction by “shearing” (or stretching, or translating) a given confor-

mal mapping along parallel lines. For example, see [5]. In this paper we use

shear construction to generate certain subclasses of harmonic univalent map-

pings with directional convexity because it allows us to study such functions

by examining their related analytic univalent mappings. In this setting we find

growth, distortion, and coefficient bounds for harmonic univalent mappings

that are convex in both the directions of real axis and imaginary axis. For basic

definitions and terminology, one may refer to [1], [2], and [4].
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Let Fµ denote the class of all non-vanishing analytic functions f in the unit

disk D := {z ∈ C : |z| < 1} with f(0) = 1, and for µ ∈ C, such that Reµ >

0 satisfying Re
(

2π
µ

zf ′
(z)

f(z)
+ 1+z

1−z

)

> 0 for z ∈ D. Functions in the class Fµ

are called spirallike functions with respect to a boundary point, which has

been studied extensively in [1]. For µ = π, the class Fµ reduces to the class

of starlike functions with respect to a boundary point introduced by M. S.

Robertson [8]. In this talk we discuss the following problem: For any fixed

z0 ∈ D and λ ∈ D, we shall determine the region of variability V (z0, λ) for

log f(z0) when f ranges over the class Fµ(λ) =
{

f ∈ Fµ : f ′(0) = µ

π
(λ− 1)

}

.
Using Mathematica we also graphically illustrate the region of variability for

several sets of parameters. For a recent investigation on region of variability

problems we refer to [2, 3, 4, 5, 6, 7, 9].
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Let C be a smooth bounded, strongly convex symmetric set in Rn and B be

the open convex subset of Rn dual to C. For a given g ∈ C∞(Rn) we define a

piecewise smooth function f , supported on B, as follows: f(x) = g(x), if x ∈ B
and f(x) = 1

2
g(x) if x ∈ ∂B. Consider a nonspherical partial sums of n-fold

Fourier intergrals

SλCf(x) =

∫

λ−1ξ∈C

f̂(ξ)eixξdξ,

where f̂(ξ) is the Fourier transform of f :

f̂(ξ) = (2π)−n

∫

Rn

f(x)e−ixξdx.

In 1997 Pinsky and Taylor [1] proved, that when λ→ ∞:

n ≤ 2 ⇒ SλCf(x) → f(x), ∀x ∈ Rn,

n ≥ 3 ⇒ SλCf(x) → f(x), ∀x 6= 0.
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We establish necessary and sufficient conditions for piecewise smooth func-

tion f , which guarantee the convergence of its partial sums SλCf(0) when

n ≥ 3. In case of the spherical partial sums this result coinsides with a theo-

rem of Pinsky [2], which is in the mathematical literature called “the Pinsky

phenomenon”.
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In this paper we continue the investigations from [1]. There we have considered

in the region, x ≥ 0, y ≥ 0, two-parametrical families of differentiable functions

f(x, a, b), a > 0, b > 0, satifying the following conditions:

1.
∫
∞

0
(x, a, b)dx <∞,

2. Product xf(x, a, b) has only one local maximum for fixed parameters

a and b.

Let S(a, b) denote an area of the figure bounded by x-axis, y-axis and courve

y = f(x, a, b).

Let Pmax(a, b) denote the value of local maximum of the product xf(x, a, b).

And finally a quotient ke := S(a, b)/Pmax(a, b) is said to be extremality

coefficient.

In [1] we showed that in many cases this coefficient is constant. Now we

investigate general case of two-parametrical families possessing constant ex-

tremality coefficient and some phisical interpretations of obtained results. In

the last part of this paper we also study in the similar way the case of functions

of two variables.
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Let (H, ∗) be a commutative hypergroup [1]. We shall consider the following

general problem [2], [3]: Let A1, A2, ....Ak ⊂ H and let a be a fixed element of

H. Under some conditions on H we estimate the number of solutions of the

convolution equation.

δx1
∗ δx2

∗ δx3
∗ .... ∗ δxk

∗ = δa (xi ∈ Ai, i = 1, 2...k)

In particular, decide whether or not a solution exists.
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2000 Mathematics Subject Classification. 43A75, 46S10

In the field of p-adic numbers Qp, let Sγ be the sphere centered at 0 and with

the radius equal to pγ .
Form ∈ N , let Um = 1+pmZp, where Zp denotes the ring of p-adic integers.
There exists a sequence of multiplicative characters (θn)n≥0 on S0 such that

θ0 ≡ 1 and θn is trivial on UN+1 if n = a0+
∑N

s=1
(p−1)asp

s−1 for some N ≥ 0,
0 ≤ a0 < p− 1 and 0 ≤ as < p.

Each character θn is extended to Q∗

p by the relation θn(x) =

‖x‖−1/2θn(‖x‖x).
Departing from the traditional approach (cf., e.g., [2] and the literature

there), we introduce a differentiation operator with multiplicative characters as

its eigenfunctions and investigate basic properties of this derivative. Differen-

tiation of test functions, regular distributions, multiplicative convolution and

Fourier transform is considered.
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The algebras Ap(G) of elements in L1(G) whose Fourier transforms belong

to Lp(Ĝ) and the multipliers for these algebras have been studied by various

authors.([3-5]). Let I = (0,∞) be the locally compact, idempotent, commu-

tative topological semigroup with the usual topology and max multiplication.

Let Î be the maximal ideal space of L1(I). Then Î = (0,∞] [2]. Define for

p ≥ 1, Ap(I) = {f ∈ L1(I); f̂ ∈ Lp(Î)} and the norm of f ∈ Ap(I) as

|||f ||| = ||f || + ||f̂ ||. The maximal ideal space of Ap(I) is (0,∞) [1].Though

the algebras L1(G) and Ap(G) show similarity the algebras L1(I) and Ap(I)
are dissimilar. The multipliers from Ar(I) to Ap(I) are studied in this note. A

set of necessary and another set of sufficient conditions are found.

References

[1] Savita Kalra, A.I. Singh and H.L. Vasudeva, The algebra Ap(0,∞) with order
convolution and its multipliers, J. Indian Math. Soc. 54(1989) 47–83.

[2] L.J. Lardy, L1(a, b) with order convolution. Studia Mathematica TXXVII(1966)
1–8.

[3] R. Larsen, T.S. Liu, and T.K. Wang, On functions with Fourier Transforms in Lp,
Michigan Math. J. 11(1964) 369–378.

[4] J.C. Martin and L.Y.H. Yap, The algebra of functions with Fourier Transforms in
Lp, Proc. Am. Math. Soc. 24(1970) 217–219.

[5] H. Reiter, Subalgebras of L1(G), Indag. Math. 27(1965) 691–696.

❖ ❖ ❖

Fixed Point Theorems for Certain Contractive Mappings in
Cone Metric Spaces

Sandeep Bhatt

Department of Mathematics, H.N.B. Garhwal University,Srinagar (Garhwal),

Uttarakhand-246174, INDIA

E-mail: bhattsandeep1982@gmail.com

Amit Singh

Department of Mathematics, H.N.B. Garhwal University, Srinagar (Garhwal),

Uttarakhand-246174, INDIA

E-mail: singhamit841@gmail.com

R. C. Dimri

Department of Mathematics, H.N.B. Garhwal University, Srinagar (Garhwal),

Uttarakhand-246174, INDIA

E-mail: dimrirc@gmail.com

2000 Mathematics Subject Classification. 46J10, 46J15, 47H10.



Analysis 197

In the present paper we prove some common fixed point theorems by using the

Reich and Rhoades type contractive conditions in complete cone metric spaces

which generalize and extend the respective theorems of Morales and Rojas [1]

and others.
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Let {ψn(x)}
∞

n=0 be periodic multiplicative Vilenkin-Price system defined with

the help of a generating sequence {pk}
∞

k=1
of natural numbers pk, 2 ≤ pk <

∞, mn = p1p2...pn [1].

Let θ ∈ (0, 1]. By definition GMθ is the collection of all sequences {ak} such

that
∞
∑

k=n

| ∆ak |< Knθ−1

∞
∑

k=[n
c
]

| ak |

kθ
<∞

for some c > 1, where ∆ak = ak−ak+1, [t] is a integer part of number t, n ∈ N ,

K positive constant independent on n.

Theorem. Let 1 ≤ p < ∞, {bn ≥ 0} ∈ GMθ, θ ∈ (0, 1], 1 − θp < α < 1,
f(x) =

∑
∞

k=0
bkψk(x) ∈ L(0, 1).

Then

a) if
∑

∞

n=1
nα+p−2bpn <∞, then | f(x) |p x−α ⊂ L(0, 1),

b) if | f(x) |p x−α ⊂ L(0, 1), then
∑

∞

k=1
mα+p−1

k

(

1

mk

∑mk+1−1

n=mk
bn

)p

<∞.

For trigonometric series similar result was given in [2].
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LetM3 ⊂ C
2 be a three times differentiable real hypersurface. The Levi form of

M transforms under biholomorphism, and when restricted to the complex tan-

gent space, the skew-hermitian part of the second fundamental form transforms

under Möbius transformation. (The Möbius transformations are the automor-

phisms of CP2 ⊃ C
2.) The surfaces for which these forms are constant multiples

of each other were identified in previous work, provided the constant is not uni-

modular. Here it is proved that if the surface is assumed to be complete, and

if the constant is unimodular, then the surface is tubed over a strongly convex

curve. The converse statement is true, too, and is easily proved.
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This paper puts forward the concepts of element and real number order. It

points out that an element has the uncertainty of lower or higher order than
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that of physical quantities, while the uncertainty described in both probability

theory [1] and fuzzy set theory [2] is of the same order as that of physical

quantities. In this paper, the possible values of an element are defined by a

set of non-zero real numbers. The arithmetic operations of the elements can

be formulated by defining the arithmetic operations of the sets. Functions and

their finite precision calculus are then defined on the set of elements. The paper

argues that the set of elements are closed under the arithmetic operations, and

the ordered systems described by the elements and their operational relations

are discrete and irreversible. Using the elements to express physical quantities

can lead to the elimination of singularities in physics, the discretization of

space-time and the breaking of the symmetry of time direction.
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Barcelona, 08193-Bellaterra (Barcelona), Catalonia

E-mail: albertcp@mat.uab.cat

2000 Mathematics Subject Classification. 30C62

We study W 1,2
loc homeomorphisms f from the complex plane onto itself, that

satisfy a general nonlinear Beltrami equation,

∂f(z) = H(z, ∂f(z)),

and normalized by f(0) = 0 and f(1) = 1. Here H(z, w) is measurable as a

function of z, and

|H(z, w1)−H(z, w2)| ≤ k(z) |w1 − w2|,

with ‖k‖L∞ < 1. Such solutions f always exist (see [1]), but they need not be

unique. We will explain how uniqueness properties are related to the behavior of

k(z) as |z| → ∞. This is a joint work with K. Astala, D. Faraco, J. Jääskeläinen

and L. Székelyhidi.
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In [1] and [2] Connor proposed two very interesting extensions of the concept of

statistical convergence (see [5]) using a complete 0, 1 valued measure µ defined

on an algebra of subsets of N . The notion of statistical convergence was in-

troduced for double sequences by Mursaleen and Eedely [7] (also by Móricz [6]

who introduced it for multiple sequences). More references on double sequences

can be seen in [3].

Here we first introduce the notions of µ-statistical convergence and con-

vergence in µ-density (following the line of Connor [1]) using a two valued

measure µ defined on an algebra of subsets of N × N and mainly investigate

the inter-relationship between these two concepts. Next we focus on the Cauchy

criteria and introduce the Cauchy conditions associated with the two types of

convergence . Though one of them, namely µ-statistical Cauchy condition ap-

peared in [2], the other Cauchy condition in µ-density and in particular the

relation between these two concepts was never explored before. Finally we ex-

plore another relatively unexplored concept, namely, the divergence of double

sequences of real numbers corresponding to the measure µ. We introduce a new

property of the measure µ called (APO2) which plays the most important role

all throughout the paper and show by example that this condition is strictly

weaker than the condition (APO) of Connor [2].

References

[1] J. Connor, Two valued measure and summability, Analysis, 10 (1990), 373–385.

[2] J. Connor, R- type summability methods, Cauchy criterion, P-sets and statistical

convergence, Proc. Amer. Math. Soc., 115(2) (1992), 319–327.



Analysis 201

[3] Pratulananda Das, P. Kostyrko, W. Wilczynski, and P. Malik, I and I∗-
convergence of double sequences, Math. Slovaca, 58(5) (2008), 605–620.

[4] Pratulananda Das and S. Bhunia, Two valued measure and summability of double

sequences, Czechoslovak Math. J., 59(134) (2009), 1141–1155.

[5] J. A. Fridy, On statistical convergence, Analysis (Munich), 5 (1985), 301–313.

[6] F. Moricz, Statistical convergence of multiple sequences, Arch. Math.(Basel), 81
(2003), 82–89.

[7] Mursaleen, and Osama H. H. Edely, Statistical convergence of double sequences,J.
Math. Anal. appl., 288 (2003), 223–231.

❖ ❖ ❖

Scale Free Analysis and Applications: A Brief Report

Dhurjati Prasad Datta

Department of Mathematics, University of North Bengal, Siliguri - 734013, India

E-mail: dp datta@yahoo.com

2000 Mathematics Subject Classification. 11A41, 26E30, 34F05

Can time (t) (that is to say, an independent real variable) change by inversions

rather than simply by linear shifts (translations)? This is the central question,

investigated over a period of about a decay, that now leads to the formulation

of a scale free analysis accommodating inversions (jumps) t → t−1 as a valid

mode of increments over and above the usual shifts t→ t+ δt. This constitues
an extension of the ordinary real analysis to that of an infinite dimensional

non-archimedean space accommodating nontrivial valued infinitesimals (and

infinities). The socalled valued infinitesimals generate a countable number of

nontrivial scales and transition between two such scales are performed by inver-

sions. In this report we present a short review of the said formalism highlighting

three different applications: (a) a re-interpretation of the socalled nonsmooth

solutions of the scale free differential equation tdx
dt

= x [1] (b) formalism of an

ultrametric analysis on a Cantor set [2, 3] and (c) an elementary proof of the

Prime Number Theorem [4].
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In X-Ray fluorescence computed tomography (xfct) a sample is irradiated

with high intensity monochromatic synchrotron X-rays stimulating fluorescence

emission detected by an outside detector. Part of the emission is absorbed by

the sample. Mapping fluorescence emission density distributions has many im-

portant applications in medical imaging (malignancy analysis, for example).

A continuous mathematical model for xfct is given by the Generalized At-

tenuated Radon Transform

Rxfctf(t, θ) =

∫

τ(t,θ)

dx f(x)e−Dλ(x,θ+π)

∫

Γ

dγ e−Dµ(x,θ+γ) (1)

where f is the emission density, λ is a fixed transmission attenuation map, µ
is the fluorescence attenuation map and Γ is the angle section for stimulated

fluorescence rays starting from each point over the line τ(t, θ) = {x ∈ R
2 : x ·

ξθ = t}. The operator D is the divergent beam transform defined below, where

we have used the notation ξθ = (cos θ, sin θ)

Da(x, θ) =

∫
∞

0

a(x+ sξ⊥θ )ds. (2)

In this work, following Fokas and co-authors approach [1] for the Attenuated

Radon Transform, we develop a new analytic inverse for (1). By using an appro-

priate change of variables, we obtain d-bar equations that lead to a Riemann-

Hilbert problem, whose solution, in turn, leads to the inversion formula (details

in [2]). We also present some experiments with simulated and real data.
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In the present paper, first we prove a coincidence theorem for a family of map-

pings on an arbitrary set with values in an intuitionistic fuzzy metric space.

We further establish a common fixed point theorem. We generalize and extend

some of the results of Jesic and Babacev [1] and Mishra, Singh and Chadha [2]

to instuitionistic fuzzy metric spaces. Our results fuzzify and generalize several

results on metric, fuzzy and Menger spaces.
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In this talk we consider singular integral operators defined on non-doubling

measure metric spaces of finite measure. We present necessary and sufficient
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conditions for the boundedness of these operators on inhomogeneous Lipschitz

spaces. Since in these context, Lipschitz spaces are continuously embedded in

L2 spaces, as an application of our result, we use Krein’s theorem to obtain

boundedness on L2 when the singular integral and its adjoint are bounded

operators on the Lipschitz spaces and these spaces are dense in L2. These

results appeared in the reference below [1]
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It is possible to approximate the Riemann zeta-function by meromorphic func-

tions which satisfy the same functional equation and satisfy (respectively do

not satisfy) the analogue of the Riemann hypothesis.

In the other direction, it is possible to approximate meromorphic functions

by various manipulations of the Riemann zeta-function.

This abstract is based on [3] which summarizes and extends works by my

students [1], [2] and [7] and with co-authors [4], [5], and [6].
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This study characterizes the convex sets whose complements in the unit square

exhibit the fixed point property for continuous and order preserving mappings.

If every continuous and order preserving function on an ordered space has

a fixed point, then the space is said to have the cop fpp.

Here we show that subsets of line have the cop fpp only if they already have

the fixed point property for order preserving maps alone.

The analogous result for subsets of R2 is not true. Hence our interest lies

in identifying subsets of R2 that have the cop fpp. This work characterizes the

most basic category of such spaces, the complement of a convex set interior to

the unit square in the plane. Characterization of such sets with the cop fpp

requires verifying some set inclusions after a finite iterative construction.

The characterization presented here involves the shape and girth of the

convex set, K, and has unexpected consequences. For example, let

Kα = {(x, y) ∈ [0, 10]× [0, 10] : x− 2 < y < x+ α}.

Then every continuous and order preserving mapping of

Pα = [−1, 11]× [−1, 11]−Kα

has a fixed point if and only if

α ∈

[

−2,
2

5

]

∪

(

2

3
, 1

]

∪ (4, 6].
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Let H be the class of functions analytic in the open unit disk U := {z : z ∈
C and |z| < 1} and Ap be the subclass of H consisting of functions of the

form f(z) = zp +
∑

∞

n=p+1
anz

n (z ∈ U). For f ∈ Ap, let

Iλ
p,δf(z) = zp +

∞
∑

n=p+1

(

p+ δ

n+ δ

)λ

anz
n (λ ∈ R, δ > −p, z ∈ U).

The operator Iλ
p,δ includes and generalizes several previously studied familiar

operators (for details see [1]). It is observed that Iλ
p,δ behaves like an integral op-

erator for λ > 0 and a differential operator for λ < 0. Thus Iλ
p,δ can be thought

of as a fractional differintegral operator. In the present paper subordination and

superordination results of some subclasses of multivalent functions associated

with Iλ
p,δ are investigated. As consequence, differential sandwich-type theorems

for the above classes are presented. Relevant connections of the results, which

are presented in this paper, with various other known results are also pointed

out.
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The Halo Conjecture has long provided a fascinating open problem in the the-

ory of differentiation of integrals. Recent progress towards the resolution of

this conjecture will be discussed, in particular the theorem of Hagelstein and

Stokolos that any density basis consisting of a homothecy invariant collection

of convex sets must necessarily differentiate Lp for sufficiently large p. Con-
nections between this result, the work of Bateman and Katz on Kakeya sets

and directional maximal operators, and improvements on the well-known the-

orem of Córdoba and Fefferman relating the Lp bounds of geometric maximal

operators to those of certain multiplier operators will also be given.
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Let K ⊂ Cn be arbitrary compact set and let f(z) be a continuous function on

K. By ρm(f,K) we denote the least deviation of f(z) from the best approxi-

mation of f(z) on K by rational functions of degree less than or equal to m:

ρm(f,K) = infrm ||f−rm||K . Here ||−||K is the uniform norm and the infimum

is taken over all rational functions of the form

rm(z) =
Σα≤maαz

α

Σα≤mbαzα
, where α = (α1, α2, . . . , αn) is a multiindex.

As usual, we denote by em(f,K) the least deviation of function f(z) on K
from its polynomial approximation of degree less than or equal to m. Obvi-

ously, ρm(f,K) ≤ em(f,K) for each m = 1, 2, . . . . In ([1], [2]) Gonchar proved

that if K = [a, b] ⊂ R ⊂ C, then the class of functions R([a, b]) = {f ∈
C[a, b] : limm→∞

m
√

ρm(f,K) < 1} possesses one of the important properties

of the class of analytic functions: if limm→∞

m
√

ρm(f,K) < 1} and f(x) = 0 on

a set E ⊂ [a, b] of positive logarithmic capacity, then f(x) ≡ 0 on [a, b]. By anal-

ogy with the class B(K) = {f ∈ C(K) : limm→∞

m
√

em(f,K) < 1}, which is

called the class of quasianalytic functions of Bernstein ([3],[4]), we call R(K) =

{f ∈ C(K) : limm→∞

m
√

ρm(f,K) < 1} the class of quasianalytic functions of

Gonchar. We consider the quantity ρ?m(f,K) = infpm,qm ||qmf − pm||K , where

pm, qm are polynomials with degrees less than or equal to m and ||qm||K = 1

for all m = 1, 2, . . . . We introduce the following class of functions R?(K) =

{f ∈ C(K) : limm→∞

m
√

ρ?m(f,K) < 1} Clearly, B(K) ⊂ R(K) ⊂ R?(K). Our

main theorem states that if f ∈ R?(K) and f(x) = 0 on a nonpluripolar set E,

then f(x) ≡ 0 on K.
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Suppose (Z, d) is a locally compact noncomplete metric space and let Z be its

metric completion. For x ∈ Z, we let dZ(x) = dist(x,M), where M = Z \Z. In
geometric function theory the quantities

|dx|

dZ(x)
and

d(x, y)

dZ(x)dZ(y)

are rather ubiquitous. They are used in the definitions of various metrics, such

as the Poincaré, Barbilian and Apollonian metrics ([1],[2]), the hyperbolic cone

metric ([3]), the j-metric and the quasihyperbolic metric ([4],[5]) and the hy-

perbolic metric of the hyperspaces ([6]).

We introduce the following distance function on Z

uZ(x, y) = 2 log
(d(x, y) + max{dZ(x), dZ(y)}

√

dZ(x)dZ(y)

)

and prove: (1) uZ is a metric, (2) the space (Z, uZ) is Gromov δ-hyperbolic with
δ ≤ log 4 and (3) the identity map idZ : (Z, d) → (Z, uZ) is a homeomorphism.

The metric uZ can be thought of as a canonical Gromov hyperbolic metric of Z
since it appears that many Gromov hyperbolic metrics introduced in geometric

function theory are special cases of uZ (up to a quasiisometry). We verify this

claim for the metrics mentioned above. In particular, this in combination with

(2) gives alternative proofs of the Gromov hyperbolicity of these metrics.
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Ramanujan gave a number of Mock Theta Functions of different orders and

C. Trucedell defined the differential difference equations. We consider the q-

analogue of the differential difference equation and call it q-differential differ-

ence equation. Then, we give certain generalized functions of different orders of

Ramanujans Mock Theta Functions satifying this equation. and discuss their

properties. Further, We give inter-relationships between these generalized func-

tions of different orders. We also give integral representations for these func-

tions.
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The study of common fixed points of mappings in a fuzzy metric space satisfying

certain contractive conditions has been at the center of vigorous research activ-

ity. The concept of fuzzy sets was initiated by L. Zadeh [7] in 1965. With the

concept of fuzzy sets, the fuzzy metric space was introduced by O. Kramosil and

J. Michalek [6] in 1975. Also, S. Heilpern [3] in 1981 first proved a fixed point

theorem for fuzzy mappings. Again, M. Grabiec [2] in 1988 proved the contrac-

tion principle in the setting of the fuzzy metric space. Moreover, A. George and

P. Veeramani [1] in 1994 modified the notion of fuzzy metric spaces with the

help of continuous t-norm, by generalizing the concept of probabilistic metric

space to fuzzy situation. The concept of compatible mappings in metric space

was introduced by G. Jungck [4]in 1988. Also, the notion of weakly compatible

mappings in metric space was introduced by G. Jungck and B.E. Rhoades [5]in

1998. With these two compatible and weakly compatible concepts, there exist

several interesting results in the literature on fixed point theorems in fuzzy

metric space.

The main objective of this paper is to establish a common fixed point theo-

rem in fuzzy metric space under the weak compatible conditions which gener-

alizes and improves various similar results of fixed points.
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In this paper We introduce the concept of almost periodic like families using the

definitions of almost periodic functions that are given by J Nuemaan, W Maak

and H Bohr and charectrize the totally bounded subsets of locally compact

groups.
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In this paper finite element method [1] is proposed to solve the system of partial

differential equations determining the reliability of the five unit preventively

maintained system having variable failure and repair rates. The mathematical

formulation of the five units system is carried out using supplementary variable

technique [2, 3, 4, 5] and [6]. The long run availability and other parameters

have also been computed. Certain conclusions based on this analysis are finally

discussed.
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In the present paper we introduce a new subclass of analytic functions in the

unit disc defined by convolution (fµ)
−1 ∗ f(z), where

fµ = (1− µ)z 2F1(a, b; c; z) + µz(z 2F1(a, b; c; z))
′.

Several interesting properties of the class and integral preserving properties of

the subclasses are also considered.
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The idea of pathway model introduced by Mathai [4, 5] is used to obtain path-

ways among generalized hypergeometric functions. Some connections between

generalized hypergeometric functions and basic hypergeometric functions (q-

series) [6] are established. Possible application of the above pathways in applied

analysis, reaction rate theory in astrophysics and micro-economics are exam-

ined [2, 1]. The paper also examines the possible extensions of the above idea

to the multi-variate and matrix-variate cases. The behavior of the pathways are

studied.
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The study of continuous prolate spheroidal wave functions(PSWFs)has been

an active area of research in both electrical engineering and mathematics.The

PSWFs are those that are most highly localized simultaneously in both the time

and frequency domain.This fact was discovered by Slepian and his collaborators

and was presented in a series of articles [4], [5] and [8]–[10].In this paper we

define the double infinite matrix A = a(m,n, k) and study the action of A
onf ∈ L2(R) and on its prolate spheroidal wavelet coefficients.We also find the

frame condition for A-transform of f ∈ L2(R)whose wavelet series expansion is

known.
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In this paper, we study the finite generalized Hankel-Clifford transformation

on spaces of generalized functions (distributions) by developing a new proce-

dure. We consider two finite generalized Hankel-Clifford type transformations

~α,β and ~
∗

α,β connected by the Parseval equation
∑

∞

n=0
(~α,βf)(n)(~

∗

α,βφ)(n) =
∫ 1

0
f(x)φ(x)dx. A space Sα,β of functions and a space Lα,β of complex sequences

are introduced. ~∗α,β is an isomorphism from Sα,β onto Lα,β when (α−β) ≥ − 1

2
.

We propose to define the distributional finite generalized Hankel-Clifford trans-

formation ~
′

α,βf of f ∈ S′

α,β by
〈

(~′α,βf),
(

~
∗

α,βφ)(n)
)
∞

n=0

〉

= 〈f, φ〉 for

φ ε Sα,β .
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Let A denote the class of normalized functions defined in the unit disc U = {z :
|z| < 1}. Using the Rucshewyeh derivative Dδf, we define the class V λ

k (β, δ)
which includes convex and starlike functions of order β, spirallike functions

of order β, bounded boundary rotation etc. Certain radii results concerning

linear combinations of analytic functions in this class are studied.
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[4] V. Paatero, Über die Konforme Abbildungaen von Gebieten deren Rander von
beschrankter Drehung Sind, Ann. Acad. Sci. Fenn. Ser., A 33 (1931), 1–77.

[5] B. Pinchuk, Functions with bounded boundary rotation, Issrel, J. Math., 10(1971),
7–16.

[6] M.S.Robertson, On the theory of univalent functions, Ann. of Math., 37(1936),
374–408.

[7] ST. Ruscheweyh, New criteria for univalent functions, Proc. Ann. Math. Soc., 6,
No. 1, 1975, 109–115.

❖ ❖ ❖

Spectral Analysis on Self-similar Sets and Spectral Zeta
Function of Fractals

Nishu Lal

Department of Mathematics, University of California, Riverside, 261 Surge

Building, Riverside, CA 92521, USA

E-mail: nishul@math.ucr.edu

2000 Mathematics Subject Classification. 30, 30B50



Analysis 219

The Laplacian operator is one of the most important operators studied in the

theory of analysis on manifolds. To define a differential operator like the Lapla-

cian on fractals is not possible from the classical viewpoint of analysis. We

construct the Laplacian on finitely-ramified self-similar fractals, such as the

Sierpinski gasket and discuss its specturm. The decimation method is a process

that describes the relationship between the spectrum of the Laplace operator

and the dynamics of the iteration of a certain polynomial on C. Furthermore,

we discuss the spectral zeta function of the Laplacian. Teplyaev discovered the

product structure of the spectral zeta function in the case of Sierpinski gasket

that involves a geometric part and a new zeta function of a polynomial induced

by the decimation method. An interesting feature of the product structure is

the cancellation phenomenon between the poles of the zeta function of a poly-

nomial and the zeros of the geometric part of the spectral zeta function of the

Laplacian. Initially, M. Lapidus illustrated a similar product structure for self

similar fractal strings. Briefly, we will discuss the renormalization map of sev-

eral complex variables induced by a Sturm-Liouville operator on the interval

studied by Sabot and the corresponding spectral zeta function.
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A continued fraction

K(an/bn) =
a1

b1 +
a2

b2 +
a3

b3 +
.. .

=
a1
b1 +

a2
b2 +

a3
b3 + · · ·

can be viewed as a sequence {Sn} of linear fractional transformations con-

structed by compositions Sn = s1 ◦ s2 ◦ · · · ◦ sn where sk(w) = ak/(bk + w).
The amazing convergence properties of continued fractions are connected to

this fact. In this talk we shall look closer at what it is with the linear fractional

transformations that makes this work so well.
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In this paper, the author investigate the general solution and generalized Ulam-

Hyers-Aoki-Rassias stability of a additive functional equation of the form

h

(

xy + zw

u

)

= h
(xy

u

)

+ h
(zw

u

)

(3)

with u 6= 0. As a particular case, when u = 1 the above equation (1) is tran-

formed in to

h(xy + zw) = h(xy) + h(zw)

and investigate its generalized Ulam-Hyers-Aoki-Rassias stability.
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The discrete Fourier transform(DFT) is an important tool for applications in

engineering and physics, and it is also a source of interesting mathematical

problems. The trace of the DFT matrix is the well known Gauss sum up to

normalization factor. (see Ref [1]). One of the important problems associated

with DFT is to have wider classs of eigenfunctions. Matveev [2] has proven

beautiful consequences of the fact that the DFT Φ is a fourth root of unity i.e.

Φ4 = I. Given any absolutely summable series gn, he has constructed eigen-

functions of the DFT from the series gn. This is then applied for the case when

the series arises as the summands of a ν-theta function with characteristic (a,b)

namely θa,b(x, τ, ν). This reduces to usual theta function when ν = 1. We ex-

tend the result of Matveev to derive identities of classical Jacobi theta functions

using properties of eigenvectors of the DFT Φ(2). We obtain an extended Wat-

son addition formula and as a particular case of it Watson addition formula.

We prove fourth order Riemann identity of theta functions from which all the

well known classical fourth order identities of theta functions can be proved. All

these classical identities are derived from eigenvectors of the DFT Φ(2). There

is a natural extension of these identities corresponding to theta functions on 1

3
Z

using DFT Φ(3). We obtain corresponding version of Watson addition formula

corresponding to DFT Φ(3). The method we use is conceptually simple and

doesn’t depend on the properties of zeros of theta functions and there infinite

product representation.
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We characterize atomic Hardy spaces on unbounded locally compact Vilenkin

groups by means of a modified maximal function. The obtained Fourier multi-

plier theorem is more general than the corresponding results due to Kitada [4],

Onneweer-Quek [5] and Daly-Phillips [3] that were proved under the bound-

edness assumption on the underlying group. Namely, we prove the following

result:

Let φ ∈ L∞(Γ) and supN
∫

Gc
N

|(φ − φN+1)
∨(y)|dy = O(1), where φN+1 =

φ1ΓN+1
and ∧,∨ denote respectively the Fourier transform and the inverse

Fourier transform. Then φ is a multiplier on H1.

In the compact case we prove a multiplier theorem providing conditions on

Fourier coefficients.

We give an example that shows the sharpness of Quek’s result on weak type

multipliers for Lipschitz functions [6].

References
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For 0 ≤ k < ∞, let Ωk be the conical domain in the complex plane defined by

Ωk = {w ∈ C : w = u + iv, u2 > k2((u − 1)2 + v2), u > 0}. Let qk(z) be the

Riemann map of U := {z ∈ C : |z| < 1} onto Ωk satisfying qk(0) = 1, q′k(0) > 0.

Let P(qk) be the class of analytic functions h(z) subordinate in U to qk(z)
and represented by h(z) = 1 + b1z + b2z

2 + . . ., (z ∈ U). Sharp estimates for

|b2 − ub21|, (−∞ ≤ u < ∞), are found in this note. This result improves upon

an estimate of Kanas both interms of bounds and ranges of the parameter u,
[S.Kanas, Coefficient estimates in subclasses of the Carathéodory class related

to conical domains, Acta Math. Univ. Comenianae, LXXIV, 2(2005) 149-161].
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The purpose of this paper is to derive some inclusion and argument properties

of a new subclass of strongly close-to-convex functions defined in the open

unit disc. An integral operator is defined by convolution with a hypergeometric

function. The subclass also extends to the class of quasi-convex and close-to-

convex functions and α-spirallike functions of complex order.
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Let the positive function φ be superquadratic for p ≥ 2 and subquadratic for

1 < p ≤ 2, and such that Axp ≤ φ (x) ≤ Bxp holds on R
+ for some constants

A ≤ B. We derive a general class of new Hardy-type integral inequalities with

power weights for p ≥ 2. The inequalities are reversed for 1 < p ≤ 2, while equal-
ity holds for p = 2. The related dual inequalities are also derived and discussed.

The main tool used in the proofs are some new results for superquadratic and

subquadratic functions . The results obtained unify and extend several inequal-

ities of Hardy-type known in the literature.
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In this paper we study charactrization properties of some classes of p-valent

analytic functions involving a normalized repeated Erdelyi-Kober fractional in-

tegral operator Ef(z) ≡ E
(γi),(δi)

(βi),m
f(z) [2,4] for integer m ≥ 1, δi ≥ 0, γi ∈

<, βi > 0, i = 1, 2, ...,m and its operated function Ejf(z). Specially we investi-

gate some inclusion relations, class preserving properties of convolution of two

functions and of an integral operator for these classes. In obtaining inclusion

relations between these classes we use Briot- Bouquet differential subordina-

tion method in the form of Miller-Mocanu [3] and Hallenback-Ruscheweyh [1]

lemmas.
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We present an approach to Henstock integral with a setup which is closer to

classical measure theory. The Henstock integral on Euclidean spaces is a notion

more genereal than Leabegue integral. In particular for a mapping defined on a

closed interval on real line every derivative is integrable and therefore the second

fundamental theorem of calculus need not assume integrability of derivative.

This is essential for giving complete treatment of differential calculus in Banach

spaces as compared to the treatment given in (1) or (2).

LetX be a nonempty set. Consider an algebra of subsets ofX. The members

of the algebra are called as bases.

A tagged collection S is a collection of pair (e, E) where E is a base and e
is in E. The same base can appear more than once. A measure m ia a finitely

additive nonnegative real valued function on collection of bases with m(φ) = 0.

A gauge δ is a nonnegative real valued function on X with δ(x) > 0 for each

x ∈ X.

A subset A of X is termed admissible if there exists a partition of A, that
is a finite collection of Bases Ek such that ∪Ek = A and Ek’s are pairwise

disjoint.

Cousin’s axiom: Given an admisible set A and a guase δ there exists a tagged
partition {(ek, Ek)} of A such that m(Ek) > δ(ek) for each k. Such a partition

is called a δ - fine partition.

Given a map f : A → Y (a Banach cpace) on an admissible set A we say f
is integrable on A with integral as L ∈ Y , if given ε > 0 there exists a guase δ
such that for all δ fine partitions P of A

|
∑

f(ek)m(Ek)− L| < ε ..... (1)

A map f on a set X is integrable on X if in addition for each ε > 0 there

exists a real number M such that inequality (1) holds for each admissible set

A with m(A) ≥M .

We can show that Henstock’s lemma, usual lineariety properties as well as

Cauchy criterion holds.

References

[1] J. Dieudonne, Foundation of Modern Analysis, Accademic press, 1968.

[2] Serge Lang, Analysis II (Real Analysis), Addison Welsley, 1968.

[3] D. Kurtz, Scwartz, Modern Theories of Integration Accedamic Press, 2002.

❖ ❖ ❖



228 Analysis

Determination of Jumps by Fourier-Jacobi Coefficients

Samra Pirić∗
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We say that a function w is a generalized Jacobi weight and write w ∈ GJ if

w(t) = h(t)(1− t)α(1 + t)β |t− x1|
δ1 . . . |t− xM |δM

h ∈ C[−1, 1], h(t) > 0, (|t| ≤ 1), ω(h; t; [−1, 1])t−1 ∈ L[0, 1],

−1 < x1 < . . . < xM < 1, α, β, δ1, . . . , δM > −1.

By σ(w) = (Pn(w;x))
∞

n=0 we denote the system of algebraic polynomials

Pn(w;x) = γn(w)x
n+ lower degree terms with leading positive coefficients

γn(w), which are orthonormal on [−1, 1] with respect to the weight w ∈ GJ .

Theorem 1. Let f be a function of bounded p-variation, i.e. f ∈ Vp, p > 1, such

that fw ∈ L[−1, 1], w ∈ GJ . Then the sequence (an(w; f)P
′

n(w;x)) is (C,α),

α > 1 − 1

p
summable to

(1−x2
)
− 1

2

π
(f(x + 0) − f(x − 0)) for every x ∈ (−1, 1),

x 6= x1, . . . , xM , where an(w; f)P
′

n(w;x)) is the n− th term of the differentiated

Fourier-Jacobi series of f .
By a theorem of Avdispahić [1], there exist the following inclusion relations

between the classes Vp, ΛBV and V [ν] of generalized bounded variation in the

sense of Wiener, Waterman and Chanturiya

{nα}BV ⊂ V 1

1−α
⊂ V [nα] ⊂ {nβ}BV, for 0 < α < β < 1.

Therefore, we have

Theorem 2. If f belongs to {nβ}BV or V [nβ ], then the claim of Theorem 1

is valid for (C,α), α > β.
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The Pseudo-Differential Operator (p.d.o.) hµ,a associated with the Bessel Oper-

ator involving the symbol a(x, y) whose derivatives satisfy certain growth con-

ditions depending on some increasing sequences is studied on certain Gevrey

spaces. The p.d.o. hµ,a on Hankel translation τ and Hankel convolution of

Gevrey functions is continuous linear map into another Gevrey spaces.
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The present paper deals with the derivation of a new classes of transformation

formulae involving several variables in terms of the multiple q-series identities.
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The results obtained, besides being capable of unifying, and providing exten-

sions to various transformations and reduction formulae, also yields several new

formulae. The applications of the main results are exhibited by considering some

examples in the concluding section.
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Let ψ be a bounded, non decreasing function on [a, b], 0 ≤ a < b ≤ ∞, with

infinitely many points of increase in [a, b] and such that all the moments µn =
∫ b

a
tndψ(t), n = 0,±1,±2, . . ., exist. We consider the sequence of monic polyno-

mials {Qn}
∞

n=0 defined by
∫ b

a
t−n+sQn(t)dψ(t) = 0, s = 0, 1, . . . , n− 1.

The sequence {t−b(n+1)/2cQn(t)} forms a sequence of orthogonal Laurent

polynomials with respect to the measure ψ. Thus for convenience, {Qn} is

referred here as a sequence of L-orthogonal polynomials. It is known that

Qn+1(z) = (z − βn+1)Qn(z)− αn+1 z Qn−1(z), n ≥ 1,

with Q0(z) = 1 and Q1(z) = z − β1, where βn > 0 and αn+1 > 0, n ≥ 1.

Such L-orthogonal polynomials were first considered in [2] in order to solve

the strong Stieltjes moment problem. Gaussian type quadrature rules involving

these polynomials were treated, for example, in [1] and [5]. Studies of polyno-

mials satisfying recurrence relations of the above type have appeared prior to

[2] in the theory of continued fractions and two-point Padé approximants (see

[3] and [4]).

Let ψ0 and ψ1 be two strong positive measures supported within [a, b] and

connected to each other by (t− κ)dψ1(t) = γ dψ0(t). For i = 0, 1, let {Q
(i)
n } be
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the sequence of monic L-orthogonal polynomials with respect to the measure

ψi.

Considering the connection formulas that exist between the two sequences

of polynomials {Q
(0)
n } and {Q

(1)
n }, some useful relations that exist between the

coefficients of the respective three term recurrence relations are obtained. As

an application of these relations, some monotonicity properties of the zeros of

certain L-orthogonal polynomials are derived.
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The properties of kernels of Kontorovitch–Lebedev integral transforms–

modi-fied Bessel functions of the second kind with pure imaginary order

Kiβ(x) and with complex order K1/2+iβ(x) are elaborated. Some new repre-

sentations of these functions and transforms are justified. The approximation

and computation of kernels of Kontorovitch–Lebedev integral transforms–

modified Bessel functions of the second kind with pure imaginary orderKiβ(x)
and with complex order K1/2+iβ(x) are elaborated on the basis of several ap-

proaches [1-3].

The inequalities which give estimations for their kernels - the real and imag-

inary parts of the modified Bessel functions of the second kind ReK1/2+iβ(x)
and ImK1/2+iβ(x) for all values of the variables x and β are obtained. A proof of
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inversion formulas and Parseval equations for for modified Kontorovitch-

Lebedev integral transforms is developed [3].

The hypergeometric type differential equations of the second order with

polynomial coefficients are considered. The computational scheme of Tau

method is extended for the systems of hypergeometric type differential equa-

tions [4].

The effective applications of the modified Bessel functions for the numer-

ical solution of some mixed boundary value problems in wedge domains are

given. The Kontorovitch–Lebedev integral transforms and dual integral

equations are used. The analysis of using of these functions and transforms is

elaborated in detail [5].
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In this paper we establish a common fixed point theorem for a quadruple of

non-continuous mappings by using a strict contractive condition and property

(E.A.) under occasionally weakly compatible maps. Our result generalize and

extend the result of Singh-Pant [1] and others.
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Let Hn = Cn ×R be the Heisenberg group with multiplication (z, t) ◦ (ζ, τ) =
(z + ζ, t+ τ − Im(z · ζ̄)/2). We study the Heisenberg-Radon transform

(RHf)(z, t) =

∫

Cn

f((z, t) ◦ (ζ, 0)) dζ, (z, t) ∈ Hn, (4)

which was introduced by Strichartz [2], who obtained a weak L2-type inversion

formula for RH and a mixed norm estimate on Lp functions with 1 ≤ p ≤ p0,
p0 = 1 + 1/(2n+ 1). We also consider the transversal Radon transform

(RTF )(a, b) =

∫

Rm−1

F (x′, a · x′ + b) dx′, (a, b) ∈ Rm−1 ×R = Rm, (5)

which integrates a function F onRm over hyperplanes xm = a·x′+b, transversal
to the last coordinate axis.

If m = 2n+1, then, changing variables a = (−Imz,Re z)/2, b = t, one can

write RH in the form (5). Using this connection, we prove that for f ∈ Lp(Hn)

the Radon transform (4) is finite a.e. provided that 1 ≤ p < 1 + 1/2n. This
bound is sharp and improves the upper bound p0 in [2].

We obtain new boundedness results and explicit inversion formulas for RH

and RT (for any m ≥ 2, not only odd) on Lp functions in the full range of the

parameter p. We also show that these transforms are isomorphisms of the cor-

responding Semyanistyi-Lizorkin spaces of smooth functions. In the framework

of these spaces we obtain inversion formulas which are pointwise counterparts

of the corresponding weak-type formulas in [2].
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Let SH denote the class of functions f = h+ ḡ, which are harmonic, univalent

and sense preserving in the unit disc ∆, where

h(z) = z +

∞
∑

k=2

akz
k, g(z) =

∞
∑

k=1

bkz
k, z ∈ ∆.

We define a new subclass SHL(α, β) of SH by using a linear operator of har-

monic univalent functions

L(a, c)f(z) = z +

∞
∑

k=2

(a)k
(c)k

zk, a ∈ R, c ∈ R− Z
−

0 = {0,−1,−2, · · · }, z ∈ ∆.

In this paper, coefficient bounds, distortion bounds and extreme points are

obtained for the class SHL(α, β).
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In this article we introduce some vector valued difference double sequence spaces

defined by Orlicz function.

An Orlicz function M is a mapping M : [0,∞) → [0,∞) such that it is

continuous, non-decreasing and convex withM(0) = 0,M(x) > 0 for x > 0 and

M(x) → ∞, as x→ ∞.

For a seminorm q, we introduce the following difference double sequence

spaces.

2`∞(M,∆, q) = {< ank >∈ 2w(q) : sup
n,k

M
(

q
(

∆ank

ρ

))

<∞, for some ρ > 0}

2c(M,∆, q) = {< ank >∈ 2w(q) : lim
n,k

M
(

q
(

∆ank−L
ρ

))

= 0, for some ρ > 0}

Also < ank >∈ 2c
R(M,∆, q) i.e. regularly convergent if <

ank >∈ 2c(M,∆, q) and the following limits hold:

There exists Lk ∈ X, such that M
(

q
(

∆ank−Lk

ρ

))

→ 0, as n → ∞, for

some ρ > 0 and all k ∈ N .

There exists Jn ∈ X, such thatM
(

q
(

∆ank−Jn

ρ

))

→ 0, as k → ∞, for some

ρ > 0 and all n ∈ N .

We study some of their properties like solidness, symmetricity, completeness

etc. and some inclusion results will be proved.
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We study tangent cone questions for quasimetric spaces with dilations, in par-

ticular sub-Riemannian manifolds in a general setting [4].

On a (quasi)metric space, dilations can be defined as continuous one-

parameter families of contractive homeomorphisms given in a neighborhood

of each point. Most important examples of such spaces are sub-Riemannian

manifolds which model nonholonomic processes and naturally arise in many

applications.

We prove the existence of the tangent cone, provided dilations accord with

the quasimetric in a certain way. The notion of the tangent cone to a quasimetric

space was introduced in [5].

If, additionally, the limit of a certain combination of dilations exists, we

prove that the tangent cone to the given quasimetric space is a graded nilpo-

tent Lie group (this is a joint result with S. K. Vodopyanov [6]). The proof

of this fact uses algebaic tools, in particular Mal’cev’s theorem on local and

global topological groups which helps to overcome difficulties concerned with

investigation of a local version of the H5 Problem.

The motivation of our investigation can be found in [2, 4, 5, 6], see also

[1, 3] on related topics. We consider not metrics but quasimetrics (for which

the triangle inequality holds only in a generalized sense: d(u, v) ≤ Q(d(u,w) +
d(w, v)), 1 ≤ Q < ∞), according to a general situation [4] when the intrisic

Carnot-Carathéodory metric on a sub-Riemannian manifold might not exist.
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A class SH of sense preserving harmonic univalent maps is introduced by Cunie

and Sheil-Small [2] in 1984. Sufficient coefficient conditions for a map f ∈ SH

to be in classes S∗

H and KH are obtained by Jahangiri [3,4]. In this paper,

a harmonic univalent map W generated by Wright’s generalized hypergeomet-

ric (Wgh) functions [5] is considered. Under certain convergence conditions,

derived with the help of Gauss’s multiplication theorem, some Wgh inequali-

ties ensuring sense preserving nature and belongingness to the classes S∗

H and

KH of that harmonic map are examined and proved. In addition an integral

representation of W is also discussed in terms of its belongingness to these

classes. Further a convolution of two harmonic maps is studied in terms of

its class preserving properties for the subclasses S∗

H0 and KH0 with the help

of conjectures proved by Cunie and Sheil-Small. Some special cases [1] of our

results are also mentioned.
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Let f be a transcendental entire function and fn, n ∈ N denote the nth iterate

of f . Eremenko [2] defined an escaping set as

I(f) := {z ∈ C : fn(z) → ∞ as n→ ∞}.

A subset of I(f) in which the iterates of a transcendental entire function

tend to infinity arbitrarily fast was considered by Bergweiler and Hinkkanen [1]

who defined the set

A(f) := {z ∈ C : there exists L ∈ N such that |fn(z)| > M(R, fn−L)for n > L}

where M(R, f) = max
|z|=R |f(z)|, R is any value such that R > minz∈J(f) |z|,

and J(f) is the Julia set of f .
An alternate definition of A(f) was given by Rippon and Stallard [3] who

defined the set

B(f) := {z ∈ C : there exists L ∈ N such that fn+L(z) 6∈ f̃n(D), n ∈ N}

where D is an open disk meeting Julia set of f and Ũ denotes the union of U
and its bounded complementary components.

For transcendental entire functions f and g, in this paper we have found

some relations between B(f ◦ g) with B(g ◦ f) and also between B(f ◦ g) with
regards to B(f) and B(g). We have also studied the escaping sets of permutable

entire functions.
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Kamran [6] generalized the notion of common property (E.A) by introducing

tangential property and improved some results of Y. Liu et. al.[7]. Motivated by

Zhang and Song[13], we extend the notion of generalized ϕ -weak contractions

for a pair of single valued self mappings to two hybrid pairs of single and

multivalued mappings and improve some results of Kamran [6], Y. Liu et. al.[7]

and Zhang and Song[13].
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In this note, we aim to generalize the contractive conditions employed in the

main results of Cho et. al. [5], Arandelovic et. al. [3] and Aliouche [2]. Here,

two common fixed point theorems for two pairs of weakly compatible maps in

symmetric spaces are also proved. These results will be helpful in extending

and unifying numerous related results in the literature.
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In the present paper we prove some coincidence common fixed point theorems

for a family of hybrid pairs of mappings in metrically convex spaces by using

the notion of compatibility of mappings.Our results generalize and unify the

results due to Imdad and Khan [4], Khan [6], Itoh [5], Ahmad and Imdad [[1],

[2]], Ahmad and Khan [3] and several others.
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Algebra involutions in the context of the second dual B with Arens (1951)

products of a Banach algebra A with involution have been studied by various

mathematicians. The case of A = group algebra L1(G) of a locally compact

group G continues to draw a lot of attention. This includes study of the spec-

trum, say, Ω of A∗ = L∞(G), which inherits some sort of an algebraic structure

as well. For G discrete, the study of Arens products was related to that of

invariant means by Day (1957). For G discrete, Ω is the Stone-Čech compacti-

fication βG and Civin and Yood (1961) proved that it is a semigroup; we may

utilise Comfort and Ross (1966) to see that it is a topological group if and only

if G is finite. Dales, Filali, Ghahramani, Hindman, Lau, Neufang, Pym, Runde,

Strauss et al have more recent significant inputs.

Civin and Yood also noted that the second adjoint of an anti-homomorphism

on A is an anti-homomorphism on B with any one Arens product to B with

the other Arens product and thus the question of extending an involution T
by a suitably modified second adjoint is related to that of Arens regularity of

A; we may note that the question of extending T to an involution on B (with

any one Arens product) is related to that of a bijective homomorphism on this

B to B (with the other Arens product). Michael Grosser (1984) proved that if

B = L1(G)∗∗ admits an involution, then G is discrete. Paul L. Patterson(1994)

determined all isometric involutions on L1(G) and Farhadi and Ghahramani

(2007) show that if G has an infinite amenable subgroup, then there is no in-

volution on B that extends the natural involution on A = L1(G); we obtain

non-existence of special involutions extending other involutions on A. A.T.Lau,

Medghalchi and Pym (1993) show that, for non-compact non-discrete G, Ω is

not a semigroup by displaying µ, ν in Ω whose product is not in Ω. Farhadi
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and Ghahramani also demonstrate interesting situations involving existence of

involutions when A∗ = L∞(G) is replaced by certain subalgebras, say, C and,

thus, B = A∗∗ by certain subalgebras or quotient algebras of B. Ronald G.

Douglas (1966) indicates that these products are special probability measures;

and for an infinite discrete abelian G gives several subalgebras of B isomorphic

to L2(bG) (which has an involution of its own), with bG, the Bohr compactifi-

cation of G. We may use these techniques to make the spectrum of certain C
into an abstract convolution space (also known as hypergroups developed by

Dunkl, Jewett and Spector in 1970’s or hypercomplex systems developed by

Berezansky et al in 1950’s and then others). We also utilize this development,

particularly Bloom and Walter (1992) to carry over some of the results to the

situation when G is replaced by a hypergroup K.
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We prove matrix versions of the Chebyshev and Kantotovich inequalities in-

volving the Hadamard product i.e. entrywise product of the matrices. More

specifically, we prove that

(
n
∑

i=1

wiAi

)

◦

(
n
∑

i=1

wiBi

)

≤

(
n
∑

i=1

wi

)(
n
∑

i=1

wi(Ai ◦Bi)

)

for n × n positive semidefinite matrices Ai, Bi, i = 1, . . . , n, such that A1 ≥
· · · ≥ An, B1 ≥ · · · ≥ Bn where wi ≥ 0, i = 1, . . . , n, are weights and by

X ≥ Y (X > Y ) we means that X − Y is positive semidefinite (positive

definite). If 0 < aIm ≤ Ai ≤ bIm (here Im denote the m×m identity matrix),

Wi, i = 1, . . . , n are n × n positive semidefinite weight matrices and a, b are

real numbers, then

(
n
∑

i=1

W
1/2

i AiW
1/2

i

)

◦

(
n
∑

i=1

W
1/2

i A−1

i W
1/2

i

)

≤
a2 + b2

2ab

(
n
∑

i=1

Wi

)

◦

(
n
∑

i=1

Wi

)

.

Some related inequalities have been discussed. As a consequence we deduce a

number of known results.
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Gupta and Ahmed [2] proposed modified beta operators so as to approximate

Lebesgue integrable functions on [0,∞). It turns out that the order of approx-

imation by these operators is at best O(n−1), howsoever smooth the function

may be. In order to speed up the rate of convergence by these operators, the

technique of linear combination introduced by May [6] and Rathore [8] has been

used ([3], [4]). There is yet another approach to improve the order of approxi-

mation by linear positive operators, introduced by Micchelli [7] by considering

the iterative combination of Bernstein polynomials. Gupta and Vasishtha [5]

claimed that the iterative combinations can be applied only for those operators

for which t maps exactly into x. Agrawal et al [1] have shown that the iterative

combinations can be applied for other operators also which do not reproduce

linear functions either.



Analysis 245

The present paper deals with an error estimate in terms of higher order

modulus of continuity in simultaneous approximation by iterative combination

of modified beta operators.
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In this paper we use, convolution of two p-valent analytic functions, in defin-

ing two generalized classes S∗ (p, g, α,m) and S∗

λ (p, g,m) . This convolution

generalizes several convolution operators such as Dziok-Srivastava operator [3]

which contain well known operators as Hohlov [5], Carlson and Shaffer [2] and

Ruschweyh derivative [6]. Further, the convolution reduces to the generalized

Salagean operator [1] and to a Salagean operator [7]. We study several coef-

ficient conditions for these classes. Results obtained generalizes several results

obtained earlier and generate some new results for special classes of p-valently
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starlike, convex and close-to-convex functions of order α. Some of consequent

results such as convolution condition and inclusion relation for these classes

are also discussed. Further, we obtain inequalities involving partial sums for

functions belonging to these classes.
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For the unit disc D in C, the classical Littlewood-Paley Inequalities (1936)

are as follows: Let h be harmonic on D. There exists a positive constant C,
independent of h, such that for all p, 2 ≤ p <∞,

∫

D

(1− |z|)p−1|∇h(z)|pdA(z) ≤ C sup
0<r<1

∫ 2π

0

|h(reiθ)|pdθ,

with the reverse inequality valid for all p, 0 < p ≤ 2.

In the talk we will consider various extensions of the Littlewood-Paley in-

equalities to subharmonic functions on domains in Rn, n ≥ 2. Specifically we



Analysis 247

will prove that if f is a non–negative C2 subharmonic function on a bounded

domain Ω in Rn with C1,1 boundary for which ∆f is subharmonic or has sub-

harmonic behavior, then for 1 ≤ p <∞, there exists a constant C independent

of f , such that

∫

Ω

δ(x)2p−1(∆f(x))pdx ≤ C sup
0<r<ro

∫

∂Ω

fp(t− rnt)ds(t), (6)

where δ(x) is the distance from x to ∂Ω and nt is the unit outward normal at

t ∈ ∂Ω. We will also present the analogue of (1) for the case 0 < p < 1. Taking

f = h2, where h is harmonic on Ω, gives the usual Littlewood-Paley inequalities

for harmonic functions. We will also consider analogues of the Littlewood–

Paley inequalities for non–negative subharmonic functions f for which |∇f | is
subharmonic or has subharmonic behavior.
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In this paper we introduce the like-hyperbolic Bloch-Bergman classes of

bounded analytic functions in the open unit disk. We obtain for them, several

integral and series characterizations. Likewise we present some metric proper-

ties and their relationships with some other well known classes.
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In this paper I have defined the Lauricella-Saran triple hypergeometric function
∼

FK of complex matrix arguments and have established an integral representa-

tion for it using the Mathai’s matrix tansform technique [6].
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In this work we study the boundedness properties of Riesz Potentials, Bessel

potentials and Fractional Derivatives on Gaussian Besov-Lipschitz spaces

Bα
p,q(γd) and on Triebel-Lizorkin spaces Fα

p,q(γd). In [3] Gaussian Lipchitz spaces

Lipα(γd) were considered and the the boundedness of Fractional Integrals and

Fractional Derivatives on them was study in detail, we are going to extend

those results for Gaussian Besov-Lipschitz and Triebel-Lizorkin spaces. Also

these results can be extended to the case of Laguerre or Jacobi expansions and

even further to the general framework of diffusions semigroups
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We investigate necessary and sufficient conditions on approximately differen-

tiable mappings f : M → M′ of Riemannian manifolds to induce a bounded

(with respect to Lebesgue norms) pull-back operator of differential forms. As

a consequence, we obtain, in particular, that a homeomorphism f : M → M′

of the class ACL(M), for which the pull-back operator of spaces of differen-

tial forms with finite Lp-norm is an isomorphism, is either quasiconformal or

quasiisometric [1].

An approximatively differentiable mapping f : M → M′ has k-finite dis-

tortion if Hn(Z) = 0 at k = 0 and rank appDf(x) < k for Hn-almost all

x ∈ Z at 1 ≤ k ≤ n where Z = {x ∈ M : det appDf(x) = 0}. We say

that an approximatively diferentiable mapping f : M → M′ has (q, p)-bounded

distrortion (in symbols f ∈ CDk
q,p(M;M′)) if f has k-finite distortion and

M′ 3 y 7→ Hk,q(y) =

(
∑

x∈f−1(y)\(Σ∪Z)

|Λ
kf(x)|q

|J(x,f)|

) 1

q

∈ Lκ(M
′) where 1

κ
= 1

q
− 1

p
,

κ = ∞ (κ = q) when q = p (p = ∞). (Here Λkf(x) is the pull-back operator of

differential forms of degree k which is well-defined at the points of approxima-

tive differentiabity.)

The main result is the following

Theorem [1]. Let f : M → M′ be an approximatively differentiable mapping.

The pull-back operator f̃∗ : Lp(M
′,Λk) → Lq(M,Λk), 1 ≤ q ≤ p ≤ ∞, defined

by Lp(M
′,Λk) 3 ω 7→ f̃∗ω(x) = f∗ω(x) (0) if x ∈ M \ (Z ∪ Σ) (otherwise),

is bounded iff f ∈ CDk
q,p(M;M′). Moreover, the norm of the operator f̃∗ ∼

‖Hk,q(·) | Lκ(M
′)‖.

Some applications to the theory of Lq,p-cogomologies of Riemannian spaces

are also given.

The proof of the Theorem is based on methods of [2].

This research was partially supported by Federal Target Grant “Scientific and educational

personnel of innovation Russia” for 2009-2013 (government contract No. 02.740.11.0457),
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(project no. 6613.2010.1).

References

[1] S. K. Vodopyanov “Spaces of differential forms and mappings with controlled
distortion,” Doklady Mathematics, 2009, Vol. 79, No. 1, pp. 105–109.

[2] S. K. Vodopyanov “Composition Operators on Sobolev Spaces” In: Complex Anal-
ysis and Dynamical Systems II. Contemporary Mathematics, AMS, 2005. V. 382.
P. 327–342.

❖ ❖ ❖

On the Absolute Convergence of Fourier Series of Functions
of ΛBV (p) and ϕΛBV

R. G. Vyas

Department of Mathematics, Faculty of Science, The Maharaja Sayajirao University

of Baroda, Vadodara, Gujarat, India

E-mail: drrgvyas@yahoo.com

2000 Mathematics Subject Classification. 42A16, 42A28, 26A45.

Let f be a 2π periodic function in L1[0; 2π] and f̂(n), n∈Z, be its Fourier coeffi-

cients. Extending the classical result of Zygmund [3], Schramm and Waterman

[2] obtained the sufficiency conditions for the absolute convergence of Fourier

series of functions of ΛBV (p) and ϕΛBV . Here we have generalized these re-

sults ( [1], [4] and [5] for non-lacunary Fourier series and [2]) by obtaining

certain sufficiency conditions for the convergence of the series
∑

k∈Z |f̂(nk)|
β

(0 < β ≤ 2), where {nk}
∞

k=1
is a strictly increasing sequence of natural numbers

and n−k = nk, for all k, for such functions.
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Let C(T ) denote the Banach space of 2π-periodic, real valued continuous func-

tions on R where T denotes the unit circle.

For f ∈ C(T ), let V (f) denote the subspace generated by all translates of

integer powers of f . One notices that V (cos(θ)) is an algebra under pointwise

multiplication and due to Stone-Weierstrass Theorem it is dense in C(T ).
The purpose of this note is to characterize the set of functions in C(T )

which share with cos(θ)) this property. It turns out that the underlying reason

for V (cos(θ)) to be dense is the fact that cos(θ)) obtains its maximum value

at a single point in [0, 2π). That it any function f ∈ C(T ) which takes a given

value at only one point (which is necessarily its maximum or minimum) has

V (f) = C(T ).
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In the present paper, three theorems involving the q-Mellin transforms of cer-

tain basic hypergeometric functions have been derived. Applications of these

theorems in terms of the q-Mellin transforms of various basic hypergeometric

functions, q-polynomials and, their products have also been investigated.

References

[1] R. P. Agarwal, A note on Mellin and Laplace transform of Beta functions, Ganita
Sandesh, 10(2), 57–61, 1996.

[2] S. Ahmed Ali, Properties of certain fractional q-operators and cut q-Hankel trans-

form. Proc. Nat. Acad. Sci. India, 74(A)I, 67–74, 2004.

[3] W. A. Al-Salam, Some fractional q-integrals and q-derivatives, Proc. Edin. Math.
Soc., 15, 135–140, 1966.

[4] M. K. Atakisheva and N. M. Atakshiyev, On Mellin transform of hypergeometric

polynomials, J. Phys. A. 32, No. 3 L33–L41, 1999.

[5] A. Erdelyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Tables of integral

transform, Vol. I, MacGraw Hill Book Co. Inc. New York, 1954.

[6] G. Gasper and M. Rahman, Basic Hypergeometric Series, Cambridge University
Press, Cambridge, 1990.

❖ ❖ ❖



Section 9

Functional Analysis and

Applications

Weakly Continuous Hilbert Bundles over Stonean Spaces and
their C∗-algebras

Mart́ın Argerami∗

Dept. of Mathematics and Statistics, University of Regina, Regina SK S4S0A2,

Canada

E-mail: argerami@math.uregina.ca

Douglas R. Farenick

Dept. of Mathematics and Statistics, University of Regina, Regina SK S4S0A2,

Canada

E-mail: doug.farenick@uregina.ca

Pedro G. Massey

Departamento de Matemática, Universidad Nacional de La Plata, Argentina

E-mail: massey@mate.unlp.edu.ar

2000 Mathematics Subject Classification. 46L05

If ∆ is a Stonean space and if (∆, {Hs}s∈∆,Ω) is a continuous Hilbert bundle

over ∆, then there is an associated set Ωwk of vector fields that satisfy continuity

properties relative to the weak topology of the Hilbert space fibresHs. We prove

that this set of vector fields carries the structure of a Kaplansky–Hilbert module

over C(∆) [5] —a special type of C∗-module—and that the algebra B(Ωwk) of

bounded (adjointable) endomorphisms of Ωwk is a type I AW∗-algebra. Further,

we show that B(Ωwk) is the injective envelope and second order local multiplier

algebra [1] of the C∗-algebra K(Ω) of compact endomorphisms of the Hilbert

C∗-module Ω. In fact, we show that B(Ωwk) = Mloc(Mloc(A)) = I(A) for the
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spatial continuous trace C∗-algebra A [4] induced by the continuous Hilbert

bundle (∆, {Hs}s∈∆,Ω), generalizing a situation considered in [2] and [3]. Re-

garding the relation between the AW∗-algebra B(Ωwk) and the underlying bun-

dle structure, we show that endomorphisms b ∈ B(Ωwk) are representable, up

to meagre subsets of ∆, by operator fields on ∆ satisfying a weak continuity

property.
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Inequalities for convex and concave functions have been generalized to the case

of matrices by several authors over a period of time. These leads to some inter-

esting inequalities for matrices, which in some cases coincide with, and in other

cases are at variance with, the corresponding inequalities for real numbers.

In this short talk, I shall discuss some of these inequalities and their further

consequences.
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We call a subspace Y of a Banach space X a DBR subspace if its unit ball BY
admits farthest points from a dense set of points of X. We study the problem

for subspaces of classical sequence spaces c0, c, `1 and `∞; some function spaces

and also ball remotality of a Banach space in its bidual.
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One parameter semigroups of contractive completely positive maps on a C∗-

algebra, known as quantum dynamical semigroups, can be dilated to semigroups

of endomorphisms (E-semigroups ) of a larger algebra ([2], [3]). When the C∗-

algebra is actually the von Neumann algebra of all bounded operators on a

Hilbert space, E-semigroups can be classified by looking at their tensor product

systems of Hilbert spaces [1].

In the present work, we introduce the notion of ‘inclusion systems’ which

are exactly like tensor product systems but linking unitary maps are replaced

by isometries. We show that a simple inductive procedure gives us product
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systems from inclusion systems. We use this technique to understand amalga-

mated products of product systems, where the amalgamation is done through

contractive morphisms. This is a joint work with Mithun Mukherjee [4].
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Given a dense ∗-subalgebra U of a C∗-algebra A, various classes of smooth

subalgebras of A generated by U using differential norms will be discussed.

These include differential Fréchet algebras, smooth algebras, Ck-algebras, C∞-

algebras, analytic algebras and entire analytic algebras. Their smoothness prop-

erties like spectral invariance, K-theory isomorphisms and closure under func-

tional calculi will be exhibited. Several examples of smooth algebras will be

reviewed.
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In this article we introduce the spaces |σ1|(X,∇r) and Nθ(X,∇r) of X-valued

strongly ∇r-Cesàro summable and strongly ∇r-lacunary summable sequences

respectively, where X, a real linear n-normed space and ∇r is a new difference

operator, where r is a non-negative integer. This article extends the notion of

strongly Cesàro summable and strongly lacunary summable sequences to n-
normed linear space valued (n-nls valued) difference sequences. We study these

spaces for existence of norm as well as for completeness. Further we investigate

the relationship between these spaces.
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Let T be a locally compact Hausdorff space, and C0(T ) the space of real

continuous functions on T that vanish at infinity, equipped with the uni-

form norm. Let G denote a finite dimensional linear subspace of C0(T ). Then
PG : C0(T ) → P(G) denotes the set-valued metric projection of C0(T ) onto G,
that is, for each f ∈ C0(Y ), the set PG(f) is the set of best uniform approxima-

tions to f from G. Metric projections of the form PG have been studied for 50

years but the story is incomplete. We are concerned with the following possible

properties of the metric projections.

(1) G is Chebyshev, that is, cardPG(f) = 1 for all f ∈ C0(T ). Such G are

characterised by the Haar condition (Haar 1918).

(2) PG is lower semi-continuous. Such G were characterised by Wu Li (1989).
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(3) PG admits a continuous selection, that is a continuous function s :

C0(T ) → G such that s(f) ∈ PG(f) for all f ∈ C0(T ). Such G were

characterised by G. Nürnberger and M. Sommer (Sommer 1980) for the

case T = [0, 1], and by Wu Li (1991) in the general case (see also A. L.

Brown 2006).

(4) PG admits a unique continuous selection. Such G were characterised by

J. Blatter (1990, 1991).

Note that (1) =⇒ (2) =⇒ (3) ⇐= (4) ⇐= (1). The known characterising con-

ditions for (2), (3) and (4) are not easily exploited and the relations between

them are unclear. A new, calculable condition, which will be called aGeneralised

Haar Condition (GHC), will be described. If the space T has the property that

each one point component of T is an isolated point of T then the (GHC) charac-

terises those G ⊆ C0(T ) which have a lower semi-continuous metric projection.

The condition allows the construction of examples: if T = [0, 1] × {1, . . . , k}
where 2 ≤ k ∈ N then there exist many non-Chebyshev G such that PG is

lower semi-continuous; if T = T1tS
1 and G ⊆ C0(T ) is such that dimG|S1 ≥ 2

and PG is lower semi-continuous then G = G|T1
⊕G|S1 . Much less is known for

(3) and (4).
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Recently one can observe a growing interest in Dunkl operators, or differential-

difference operators associated to specific finite reflection groups. These oper-

ators are particularly useful for the study of structures with predefined sym-

metries common in electromagnetism, fluid dynamics or quantum mechanics.

Also, such structures are appearing in texture analysis of crystallography. Using

this as motivation, we cosntruct spherical Dunkl wavelets based on approximate

identities and we give some practical examples (see [1]).
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The Lucas’ theorem states that if p is a polynomial with complex coefficients

then all zeros of its derivative p′ lie in the convex hull of the set of zeros of

p. Let A be an n × n matrix. The numerical range of A is the set of complex

numbers W (A) = {x∗Ax : x ∈ Cn, |x| = 1}.
The Lucas’ theorem is generalized to the numerical ranges of 3×3 companion

matrices. Let p(t) = t3 + a2 t
2 + a1 t + a0 be a real polynomial, and C and

C ′ be respectively the companion matrices of p(t) and p′(t)/3. We determine

conditions of the generalization W (C ′) ⊂ W (C). Examples are provided to

show a negative answer to the question raised by Zemanek.
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Given a weighted discrete abelian semigroup (S, ω), the semigroupMω(S) of ω-
bounded multipliers as well as the Rees quotient semigroup Mω(S)/S together

with respective weights ω̃ and ω̃q induced by ω are discussed; their associated

Beurling Banach algebras `1(S, ω), `1(Mω(S, ω), ω̃) and `
1(Mω(S)/S, ω̃q) will be

exhibited; and their Banach algebra structure involving semisimplicity, Gel’fand

spaces, uniqueness of uniform norm and regularity will be exhibited revealing

their dependance on the weight ω. The involutive analogues of these are also

considered. A number of examples will be discussed.
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We consider the following second order nonhomogeneous evolution equation

{

u′′(t)− cu′(t) ∈ Au(t) + f(t) a.e. t ∈ (0,+∞)

u(0) = u0, supt≥0 |u(t)| < +∞

where A is a monotone operator in a real Hilbert space H, c is a real number, and

f : R+ → H is a given function, as well as its discrete analogue corresponding

to the following second order difference equation

{

un+1 − 2un + un−1 ∈ cnAun; n ≥ 1

u0 ∈ H, supn≥0 |un| < +∞

where {cn} is a positive real sequence. We prove ergodic theorems, as well as

weak and strong convergence theorems for solutions to these equations, con-

verging to an element of A−1(0), implying in particular that solutions exist if

and only if A−1(0) 6= φ. Our results extend and give simpler proofs to previ-

ous results by several authors who studied special cases of similar problems by

assuming that A−1(0) 6= φ, and have many applications in approximation and

optimization theory.
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In this talk we will discuss some recent developments in metric fixed point the-

ory and some application of fixed point theorems to obtain existence theorems
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for nonlinear differential and integral equations. Our treatment includes some

standard well-known results as well as some recent ones.
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In this paper we consider regularized modified Newton’s method for approxi-

mately solving the nonlinear ill-posed problem F (x) = y, where the right hand

side is replaced by noisy data yδ ∈ Y with ‖y−yδ‖ ≤ δ and F : D(F ) ⊂ X → Y
is a nonlinear operator between Hilbert spaces X and Y. Under the assumption

that Fréchet derivative F ′ of F is Lipschitz continuous, a choice of the regu-

larization parameter and a stopping rule based on a majorizing sequence are

presented. We prove that under a general source condition on x0 − x̂, the error

‖x̂ − xδk,α‖ between the regularized approximation xδk,α (x0 := xδ0,α) and the

solution x̂ is of optimal order.
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A linear map θ : A → B between algebras A and B is an n-homomorphism if

θ(a1a2 ···an) = θ(a1)θ(a2)···θ(an) for all elements a1, a2, ..., an ∈ A. If (A, (pm))
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is a commutative regular Fréchet algebra, then A/kerpm is a Fréchet Q-algebra

with respect to the quotient topology, whenever π−1
m (radAm) ⊆ kerpm, where

Am is the completion of A/ ker pm with respect to the norm p
′

m(x+ ker pm) =

pm(x), x ∈ A. In particular, if Am is semisimple then A/kerpm is a Fréchet

Q-algebra. This implies that if θ is an n-homomorphism on certain Fréchet

algebras (A, (pm)) into semisimple commutative Fréchet algebras (B, (qm)) such

that θ(kerpm) ⊆ kerqm for large enough m, then θ is continuous.

Let A be a Fréchet Q-algebra, B be a semisimple Fréchet algebra, θ : A→ B
be a dense range n-homomorphism such that θ(A) is factorizable, and the spec-

tral radius νB is continuous on the separating space of θ. Then θ is automatically

continuous.

Following Ransford’s method we show that if A is an lmc Q-algebra and

B is a factorizable, advertibly complete, lmc semisimple algebra, then every

surjective n-homomorphism θ : A → B has closed graph. We then obtain ex-

tensions of Johnson’s theorem for surjective n-homomorphisms and a theorem,

due to C. E. Rickart, for dense range n-homomorphisms, on certain topological

algebras.
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Departamento de Matemática, Universidade de Aveiro, P-3810-193 Aveiro, Portugal

E-mail: ukaehler@ua.pt

2000 Mathematics Subject Classification. 30G35



266 Functional Analysis and Applications

In 2004 Sommer and Felsberg introduced the so-called monogenic signal [1], a

concept of an analytic signal in higher dimensions which is nowadays widely

applied in texture analysis of images. Recently, this concept was extended to

the so-called conformal monogenic signal [2]. From a mathematical point of

view monogenic signals are boundary values of monogenic functions, i.e. null-

solutions of the Dirac operator. In this way the theory behind is still a continu-

ous theory while the signals under considerations are given as directly sampled

signals. In this talk we propose a completely discrete version of a monogenic sig-

nal, based on the notion of a boundary value of null-solution of a corresponding

discrete Dirac operator (see, for instance, [3]) and study some of its properties,

in particular the construction of the related discrete Hilbert transform. In the

end we will show its practical applicability.
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The reverse Brunn-Minkowski inequality of V. D. Milman [1] has been influ-

ential in Convex Geometry and the Asymptotic Theory of Normed Spaces. It

states that, given two convex bodies A and B in Rn, one can find linear vol-

ume preserving maps ui : R
n → Rn (i = 1, 2) such that with some absolute

constant C
∣
∣Ã+ B̃

∣
∣
1/n

≤ C
(

|A|1/n + |B|1/n
)

, (1)
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where Ã = u1(A), B̃ = u2(B), A + B is the Minkowski sum, and |A| is the

n-dimensional volume of A. Note that
∣
∣Ã+ B̃

∣
∣
1/n

≥ |A|1/n+ |B|1/n, holds true
for any such ui by the usual Brunn-Minkowski inequality.

We develop an entropic generalization of (1) for arbitrary log-concave proba-

bility distributions. Given a random vector X in Rn with density f(x), consider
the entropy functional h(X) = −

∫

R
n f(x) log f(x) dx, and the entropy power

H(X) = e2h(X)/n. The Shannon-Stam entropy power inequality asserts that

H(X+Y ) ≥ H(X)+H(Y ), for any two independent random vectors X and Y
in Rn for which the entropy is defined. It is closely related, though not directly

equivalent, to the Brunn-Minkowski inequality.

We show that if X and Y are independent and have log-concave densities,

then for some linear volume preserving maps ui : Rn → Rn, H
(

X̃ + Ỹ
)

≤

C (H(X) +H(Y )), where X̃ = u1(X), Ỹ = u2(Y ), and C is an absolute con-

stant.

Since the entropy is invariant under linear volume preserving transforma-

tions, this is indeed a reverse entropy power inequality, in the same sense that

(1) is a reverse of the Brunn-Minkowski inequality. By taking X, Y uniformly

distributed in convex bodies A,B ⊂ Rn, and noting that h(X) = log |A|,
we also recover (1). We also show an extended reverse inequality that holds

for the larger class of convex or hyperbolic measures on Rn in the sense of

Borell. The proof relies on Milman’s notion of M -ellipsoids as well as on vari-

ous information-theoretic inequalities.
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In this paper continuity of the Bessel wavelet transform of a suitable func-

tion φ in terms of an appropriate mother wavelet ψ is investigated on certain

Distribution spaces.
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There are several known pathologies for tensor products of C∗-algebras. Here

we reveal one more pathology: C∗-tensor products need not be associative.

Let D be a C∗-algebra. Given two (separable) C∗-algebras, A and B,

consider asymptotic homomorphisms ϕ = (ϕt)t∈[0,∞) : A → D and ψ =

(ψt)t∈[0,∞) : B → D. They give rise to an asymptotic homomorphism ϕ ⊗ ψ :

A�B → D⊗minD, where � denotes the algebraic tensor product and ⊗min is

the minimal tensor product of C∗-algebras.

For c =
∑

ai⊗bi ∈ A�B, set ‖c‖D,0 = supϕ,ψ ‖(ϕ⊗ψ)(c)‖, where the supre-
mum is over all asymptotic homomorphisms, and ‖c‖D = min(‖c‖D,0, ‖c‖min).

For D = B(H), this norm was introduced in [1]. The completion of A�B with

respect to the norm ‖ · ‖D is a C∗-algebra denoted by A⊗D B.

Theorem ([2]). Let D =
∏

K be the product of countably many copies of

the C∗-algebra K of compact operators. Then the tensor product ⊗D is not

associative. Namely, there exist C∗-algebras A, B, C such that the canonical

associativity isomorphism of A � B � C doesn’t extend to an isomorphism of

the C∗-algebras A⊗D (B ⊗D C) and (A⊗D B)⊗D C.
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The notion of divergence function was introduced in 1930 by Mahalanobis to

measure the discrimination between two correlated normal multivariate distri-

butions [4]. Since then, closeness between two probability distributions on an

event space is usually measured by a divergence function (also called dissimilar-

ity measure or relative entropy). Among these we mention here the Kullback-

Leibler divergence and the Bhattacharyya divergence [2].

The set of Hermitian positive-definite matrices plays fundamental roles

in many disciplines such as mathematics, numerical analysis, probability and

statistics, engineering, and biological and social sciences. In the last few years,

there has been a renewable interest in developing the theory of means for ele-

ments in this set [1, 3]. This is due to theoretical and practical implications. In

this work we present a divergence function on the space of symmetric positive-

definite matrices which coincides with the Bhattacharyya divergence in the case

of multivariate Gaussian distributions of zero means. We then study the invari-

ance properties of this divergence function as well as the matrix means based

on it. We present a fixed-point algorithm for computing the Bhattacharyya

divergence-based mean. A convergence result of this algorithm is provided.
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Theorems connecting the asymptotic behaviour of a generalized function in a

neighborhood of zero with the asymptotic behaviour of its integral transform

at infinity are called Tauberian.The theorems which are inverse to Tauberian

are called Abelian.In this paper we study distributions which are bounded on

the sides of a wedge W in R
n,tempered distributions having their support in

a wedge W in R
nand holomorphic generalized functions defined on the tube

regionT v.The notion of distributions having asymptotic, strong asymptotic of

order α is defined and the compatibility of these notions with the lattice proper-

ties inD′(W ),S′(W )respectively is proved.Those functions which are holomor-

phic in T vform a convolution algebra H(W )which is isomorphic to S′(W ) via

the Laplace transformation.We define an order relation on H(W ) by identifying

a cone inH(W ) and assign a topology to H(W ) with respect to which the above

cone is normal.The notion of elements in H(W ) having asymptotic is defined

and is observed to be compatible with lattice properties inH(W ).The Taube-

rian and Abelian theorems in this new background for the Laplace transform
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are proved.Two corollaries extending the results of the theorem to monotone

nets are also stated.A special case of the Tauberian theorem applied to the

one-dimensional case is also stated.
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The aim of this paper is to establish a common fixed point theorem for newly

introduced α-generalized asymptotically S-nonexpansive mappings under the

notion of uniformly Cq-commuting mappings. Best approximation results have

also been determined as its application. Our work improves, extends and gener-

alizes the corresponding results of Al-Thagafi [1], Al-Thagafi and Shahzad [2],

Beg et al. [3], Hussain et al. [5] and Vijayaraju and Hemavathy [11].
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Huang and Zhang [1] recently introduced the cone metric spaces by replacing

real numbers with ordered Banach spaces and Olaleru [5] later generalized the

concept by replacing ordered Banach spaces with ordered topological vector

spaces. The interest in cone metric spaces is informed by their recently dis-

covered applications in optimization theory. For example, see [3]. Several fixed



Functional Analysis and Applications 273

point theorems are recently proved for different contractive operators on cone

metric spaces. For example, see [5] and [2].

In this paper, we present common fixed point results for a rational inequality

of weakly compatible maps in cone metric spaces.

The results are generalizations and extensions of several fixed point results

in cone metric spaces and consequently in metric spaces including the recent

results in [4].
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In 2003, Kirk introduced the notion of asymptotic contractions on a metric

space and obtained a fixed point theorem for the same. Many subsequent ex-

tensions and generalizations of Kirk’s theorem appeared (cf. [1]–[11] and ref-

erences thereof). In this paper, we present a brief development of numerous

extensions and generalizations, which have come during a short span of five

years. Further, following Suzuki’s asymptotic contraction of Meir-Keeler type

(ACMK), we obtain a coincidence theorem for a generalized ACMK for a pair

of maps and derive some general fixed point theorems on metric spaces.
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We study the composition operator CΦ on holomorphic Sobolev spaces induced

by an analytic self-map Φ of Bn in Cn that extends to be smooth on Bn.
We characterize the boundedness and the compactness of CΦ on Apα,s, and

prove the jump phenomenon of CΦ on Apα,s. Moreover, we show an interesting

result that the boundedness of CΦ on Apα,s is equivalent to the compactness

of CΦ : Apα,s → Aqβ,t for appropriate Aqβ,t, for example Aqβ,t = Ap
α+1/4,s

. We

provide examples to show that our results are sharp.
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A bounded linear operator on a Hilbert space H is n-normal if TnT ∗ = T ∗Tn;
and is n-generalized skew projection if Tn = −T ∗(n ∈ N). These two classes
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of operators will be discussed with examples. Continuity of spectral parts of

n-normal operators will be established. The spectrum of an n-generalized skew

projection is calculated. This gives analogue of results of GroB and Trenkler

[2]. Conditions are developed for a linear combination of generalized skew pro-

jections to be a generalized skew projection; providing an analogue of a result

of Baksalary and Baksalary [1].
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The following criterium of weak compactness in the dual of a JB*-triple is ob-

tained in [1] and [2]: a bounded set K in the dual of a JB*-triple E is not

relatively weakly compact if and only if there exist a sequence of pairwise or-

thogonal elements (an) in the closed unit ball of E, a sequence (ϕn) in K, and

ϑ > 0 satisfying that |ϕn(an)| > ϑ for all n ∈ N. Consequently, a bounded sub-

set in the dual space of a JB*-triple, E, is relatively weakly compact whenever

its restriction to any abelian subtriple of E is.

This result generalizes the characterization of weak compactness in the dual

of a C∗-algebra obtained by H. Pfitzner in [3].
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We prove the existence of a point of coincidence for a pair of selfmaps (f, T ) of
a metric space (X, d) in which T is a generalized weakly contractive map with

respect to f , through the convergence of the Picard iteration. Also, we deduce

the existence of common fixed points for occasionally weakly compatible maps.

Further, we prove the existence of common fixed points for a pair of

occasionally weakly compatible selfmaps satisfying generalized weakly contrac-

tive condition and property (E.A).
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The main purpose of this talk is to show that the question posed in the paper

of Sinha D.P. and Karn A.K. [1] (see the very end of that paper) has a negative

answer, and that the answer was known, essentially, in 1985 after the papers

[2] and [3] by Reinov O.I. have appeared in 1982 and in 1985 respectively

(for a translation of [3], see arXiv:1002.3902v1 [math.FA]). In [1] it was shown

that for each p > 2 there is a Banach space without the AP of type p (the

notion introduced in [1]). The open question from [1] was: are there such spaces

for 1 ≤ p < 2? We show that there are (for a proof, see arXiv:1003.0085v1

[math.FA]).
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In solid mechanics, the obtention of classical models for beams and plates is

based on a priori hypotheses on the displacement and/or stress fields, which

upon substitution in the equilibrium and constitutive equations of three-dimen-

sional elasticity, leads to useful simplifications. Nevertheless, there is a need to

justify the validity of most of the models obtained this way.

In the past decades many models have been derived and justified by the

use of the asymptotic expansion method, whose foundations can be studied

in Lions [1]. Earlier works were due to Ciarlet and Destuynder [2] in order

to justify the linearized theory of plate bending. The asymptotic method was

successfully used by Bermúdez and Viaño [3] to justify the Bernoulli-Navier

model for bending-stretching of elastic thin rods.

Nevertheless, elasticity models cannot describe important mechanical phe-

nomena such as hardening, memory or relaxation of the materials involved.

Therefore, we devoted this work to derive and justify bending-stretching

models for viscoelastic beams (see [4]). The justification is based on the intro-

duction of a change of variable and a scaling of unknowns (displacements and

stresses) of the three-dimensional viscoelasticity problem posed in the volume

Ωε occupied by the rod (ε gives the size of the diameter of the transversal sec-

tion), with unknowns uε and σε – displacements and stresses. This way, the
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problem is reduced to other equivalent, posed in a reference domain Ω, with

unknowns u(ε) and σ(ε) – scaled displacements and stresses. The mathemat-

ical justification of the Bernoulli-Navier model is supported by a convergence

result of the form u(ε) → u0 in [H1(Ω)]3, for all time, where u0 = (u0i ) is the
classical Bernoulli-Navier displacement.
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Model. Numer. Anal. 18(4)(1984), 347–376.
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In this paper, we obtain some related fixed point theorems for two set valued

mappings on two complete and compact uniform spaces. Our results generalize

the results of Namdeo, Tiwari, Fisher and Kenan [12].
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Let X be a compact Hausdorff space and let E be a Banach space. Let

C(X,E) denote the space of E-valued continuous functions equipped with

the supremum norm. For Banach spaces E,F , let Iso(E,F ) denote the set

of surjective isometries, equipped with the strong operator topology. A well-

known Banach-Stone theorem that describes the structure of a surjective isom-

etry Φ : C(X,E) → C(Y, F ) states that when E,F have trivial centralizers,

Φ(f)(y) = τ(y)(f ◦ φ)(y), for a surjective homeomorphism φ : Y → X and for

a continuous map τ : Y → Iso(E,F ) ([1]). Thus in particular we have that

X is homeomorphic to Y and that E is isometric to F . An interesting varia-

tion on this theme of Banach-Stone theorems, is to put ‘local’ conditions on

the isometry Φ and ask if the same conclusions can be obtained, including a

possible description of Φ. Recently there has been a lot work in this direction

when E and F have additional structures like being an abstract M -space or

a Banach lattice ([2], [3]). In these cases of course one considers Riesz isomor-

phisms rather than isometries. In this talk we formulate and prove an order

unit Banach space version of the Banach-Stone theorem.
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The Davis–Choi–Jensen inequality states that if f is an operator convex func-

tion on an interval J , then for every self-adjoint operator A acting on a Hilbert

space H with spectra in J and each unital positive linear map Φ on B(H),

f(Φ(A)) ≤ Φ(f(A)) (2)

holds. In particular,

f

(
n
∑

i=1

A∗

iXiAi

)

≤
n
∑

i=1

A∗

i f(Xi)Ai (3)

for every n-tuple (X1, · · · , Xn) of elements of B(H) with spectra in J and

every n-tuple (A1, · · · , An) of operators in B(H) with
∑n

i=1
A∗

iAi = I. Also
inequality (3) is true if 0 ∈ J , f(0) ≤ 0 and

∑n

i=1
A∗

iAi ≤ I. It is known

that (2) is equivalent to the operator convexity of f . In this talk, we discuss

some results concerning with Jensen’s inequality, some equivalent conditions

to the operator convexity, inequalities involving eigenvalues and present some

refinements of the Choi–Davis–Jensen inequality for strictly positive maps.
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Tempered Boehmians are introduced as a natural extension of tempered dis-

tribution. In this paper we have attempted for an extension of Weierstrass

tranform, which is, further studied for the tempered Boehmians.
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First p-adic wavelet basis was found by S.V. Kozyrev [1] in 2002. For p = 2,

his basis is an analog of the classical Haar basis. It appears that these wavelets

are very useful to solve p-adic pseudo-differential equations.

The development of the real wavelet theory is based on the notion of mul-

tiresolution analysis (MRA). Following this idea, the notion of p-adic MRA was

introduced in [2], and a general scheme for its construction was described. Also,

this scheme was realized to construct the p-adic Haar MRA with using

φ(x) =

p−1
∑

r=0

φ
(1

p
x−

r

p

)

(4)
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as a generating refinement equation. Note that (4) reflects a natural “self-

similarity” of the space Qp: the unit disc B0(0) = {x : |x|p ≤ 1} is repre-

sented as the union of p mutually disjoint discs B−1(r) =
{

x : |x− r|p ≤ p−1
}

,

r = 0, . . . , p− 1, and so the characteristic function of B0(0) is a solution of (4)

(scaling function). In contrast to the real setting, there exists infinitly many

different orthonormal wavelet bases in the same Haar MRA. A wide class of or-

thogonal scaling functions generating a MRA was constructed in [3]. However,

it was proved in [4] that all of these functions lead to the same Haar MRA and

that there exist no other orthogonal test scaling functions generating a MRA.

A more general definition of MRA (with non-orthogonal scaling functions) were

introduced in [3], and a complete characterisation of test functions generating

a MRA was given. Also, methods for the construction of MRA-based wavelet

frames and Riesz bases have been developed.
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In this paper, we propose the integral type version of fixed point theorems in

Menger spaces satisfying common property (E.A). Also using common prop-

erty (E.A), some common fixed point theorems are proved for self mappings

satisfying quasi-contraction and φ-type contraction in Menger PM spaces. Our

results generalize several known results in Menger as well as metric spaces.

Some related results are also derived besides furnishing an illustrative example.
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The aim of this paper is to obtain coincidence and fixed point theorem in sym-

metric spaces satisfying integral type implicit relations due to their unifying

power besides admitting new contraction condition. Our main result is a gen-

eralized and improved form of several known results.
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In joint work with Guo Maozheng, first,we characterize that the genertator of A-
linear and strict continuous and symmetric contraction semigroup {Tt}t∈R+ ⊂
L(H ⊗ A) is a non-positive definite self-adjoint regular module operator on

H ⊗ A,where H is a separable Hilbert space and A is a finite dimensional

C∗-algebra, L(H ⊗ A) is the C∗-algebra of all adjointable modular maps on

H ⊗A.
Next,we give a one to one correspondence between the set of non-positive

definite self-adjoint regular modular operators on H ⊗ A and the set of non-

negative densely defined A-valued quadratic forms.

In the end,we obtain that a strict continuous symmetric semigroup

{Tt}t∈R+ ⊂ L(H ⊗ A) being markovian if and only if the associated densely

defined A-valued guadratic form is a Dirichlet form.
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We give constructive results of Hilbert’s problem 13th for discrete functions.

By them we give formula solution expressed by a superposition of functions of
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one variable to equations constructed by discrete functions and equations with

parameterized discrete operations. Further more we give formula solution ex-

pressed by a superposition of operators of one variable to equations constructed

by discrete operators and equations with parameterized discrete operators.
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In this talk we present the definition of a golden sequence {ri}i∈N
. These

golden sequences have the property of being Fibonacci quasi-periodic and de-

termine a tiling in the real line. We prove a one-to-one correspondence between:

(i) affine classes of golden tilings;

(ii) smooth conjugacy classes of Anosov difeomorphisms, with an invariant

measure absolutely continuous with respect to the Lebesgue measure, that

are topologically conjugate to the Anosov automorphism

GA(x, y) = (x+ y, x)

(iii) solenoid functions.
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A. Pinto and D. Sullivan developed a theory relating 2-adic sequences (Pinto-

Sullivan tilings in the real line) with smooth conjugacy classes of doubling

expanding circle maps. The solenoid functions give a parametrization of the

infinite dimensional space consisting of the mathematical objects described in

the above equivalences.
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By H
n, we denote the n-dimensional hyperbolic space. Let Isom+(H

n) be the

group of orientation preserving isometries of Hn and B be its Borel subgroup

(e.g., the subgroup of elements that fix ∞ ∈ ∂Hn ' R
n−1∪{∞}). For any given

cocompact lattice Γ of Isom+(H
n), the group B naturally acts on Γ\Isom+(H

n)

from right. We denote the action by ρΓ.
In this talk, we will discuss about the deformation of ρΓ. More precisely, we

will give the complete family of the deformation of the above action for n = 2

and show the local rigidity for n ≥ 3.

Theorem A. Suppose that n = 2. Let no be the dimension of the Teichmüller

space of Γ\H2 and np be the first Betti number of Γ\Isom+(H
2). Then, there

exists a C∞ family {ρt}t∈R
no+np of actions of B on Γ\Isom+(H

2) such that
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ρ0 = ρΓ and any locally free action of B on Γ\Isom+(H
2) is C∞ conjugate to

ρt for some t.

Theorem B. Suppose that n ≥ 3. Then, ρΓ is C∞ locally rigid.

In the proof of Theorem A, the deformation theory of low dimensional

Anosov systems plays an important role. In the proof of Theorem B, the rigidity

theorem of conformal Anosov systems does.
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Qualitative behavior of solutions to quasi-linear ordinary differential equations

of the higher order is described. In particular, to the equation

y(n) +

n−1
∑

j=0

aj(x) y
(j) + p(x) |y|ksgny = 0

with n ≥ 1, real (not necessary natural) k > 1, and continuous functions p(x)
and aj(x), uniform estimates for solutions with the same domain ([4]), sufficient

conditions for existence of non-oscillatory solutions, a criterion for existence of

non-oscillatory solutions with non-zero limit at infinity, sufficient conditions

for existence of solutions equivalent to those of the related linear differential

equation (cf.[2]) are formulated. In the case of even order and positive potential

p(x), a criterion is obtained for all solutions to be oscillatory ([3], cf.[1]).
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The dynamical relationships between predator and prey can be represented

by the functional response which refers to the change in the density of prey

attached per unit time per predator as the prey density changes. One of well-

known functional responses is the Beddington-DeAngelis functional response

introduced by Beddington and DeAngelis et al, independently. The main dif-

ference of this functional response from a classical Holling type ones is that

this one contains an extra term presenting mutual interference by predators.

There are a lot of factors to be considered in the environment to describe more

realistic relationships between predators and preys. One of important factors is

seasonality, which is a kind of periodic fluctuation varying with changing sea-

sons. Also, the seasonality has an effect on various parameters in the ecological

systems. For this reason, it is valuable to carry out research on systems with

periodic ecological parameters which might be quite naturally exposed such as

those due to seasonal effects of weather or food supply etc [2, 4]. There are sev-

eral ways to reflect the effects caused by the seasonality on ecological systems

[1, 3, 5]. In this talk we consider the intrinsic growth rate a of the prey popula-

tion as periodically varying function of time due to seasonal variations. In other

words we adopt a0 = a(1 + ε sin(ωt)) as the intrinsic growth rate of the prey.

Here the parameter ε represents the degree of seasonality, aε the magnitude of

the perturbation in a0 and ω the angular frequency of the fluctuation caused

by seasonality.
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In this paper we investigate the complete integrability of the system of six

coupled nonlinear ODEs, which arises in the ODE reduction of rotating strat-

ified Boussinesq equations in the context of theory of basin scale dynamics;

the details are given in the paper of Leo R. M. Maas [1]. Also, Desale [2] has

discussed the complete integrability of this system via concept of first integrals.

But we use Painlevé test approach to investigate the complete integrability of

the system. And we conclude that the system is completely integrable only if

the Rayleigh number Ra = 0. The singular solution of the system admits the

movable pole type singularity in complex domain.
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Let θ be a unimodal cyclic permutation. Define the RL-pattern for θ as the

element S1S2 . . . Sn ∈ {R,L}n satisfying

Si =

{

R, if θi(1) > θi−1(1),

L, if θi(1) < θi−1(1).

For example, the RL-pattern for θ = (12435) is RRLRL. Let C denote the class

of unimodal cycles whose RL-pattern does not contain two consecutive R’s. It
is well known that the maximal cycle of order n (n ≥ 4) in C with respect to

the forcing relation is

θ̄n = (1, k + 1, k, k + 2, k − 1, k + 3, k − 2, ..., n− 1, 2, n), where k =
n

2
.

This research aims to investigate the nature of the coefficients found in the

characteristic polynomial of the digraph representation of θ̄n.
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We deal with stability of linear systems neutral differential equations

ẋ(t) = Dẋ(t− τ) +Ax(t) +Bx(t− τ) (1)

where t ≥ 0 is an independent variable, τ > 0 is a constant delay, A,B andD are

n× n constant matrices and x : [−τ,∞) → Rn is a column vector-solution. We

use Lyapunov-Krasovskii functionals of a quadratic type depending on running

coordinates as well as on their derivatives

V0[x(t), t] = xT (t)Hx(t) +

t∫

t−τ

e−β(t−s)
[

xT (s)G1x(s) + ẋT (s)G2ẋ(s)
]

ds

and V [x(t), t] = eptV0[x(t), t] where x is a solution of (1), β and p are real

parameters, n × x matrices H, G1 and G2 are positively definite, and t > 0.

Although many approaches in the literature are used to judge the stability,

our approach, except others, not only determines whether the system (1) is

exponentially stable but also gives delay dependent estimation of solutions in

terms of norms for both ‖x(t)‖ and ‖ẋ(t)‖ even in the case of instability.
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In the talk I am going to touch two aspects dealing with the The Riemann-

Hilbert problem on a compact Riemann surface.

Firstly, I shall discuss the solvability of the Riemann-Hilbert problem on

a compact Riemann surface. Also I shall give an estimate of the number of

apparent singularities.

The problem is the following. LetM be a Riemann surface of positive genus,

let us fix some finite set S = {a1, ..., an}. We shall consider the system of p linear
differential equations with fuchsian singularities in S. It is known that in the

case of positive genus the dimension of the space of monodromies is bigger

than the dimension of the space of such systems. So, typically, so Riemann-

Hilbert problem cannot be solved. But it can we solved if we allow the system

to have additional singularities with trivial monodromy. It will be shown, that

2pg − g + 1 additional singularities are enough.

Also the conditions on the monodromy representation that are necessary

(and typically sufficient) for the solvability of the problem (without apparent

singularities) will be discussed.

Secondly, I am going to discuss isomonodromic deformations of pairs (E,∇)

(E is a holomorphic bundle and ∇ is a connections) on surfaces. Although

those deformations were considered by a quite large number of authors we shall

present one more description of isomonodromic deformations on surfaces. Our

description will be geometrical and it is baced on the representation of a surface

as a factor of a disc. In fact this approach generalizes the ordinary and elliptic

Shlesinger systems. In our description it turns out that the deformations are

described by an ordinary Shlesinger system on a Riemann sphere and some

linear equation.
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The talk deals with perturbations from planar vector fields having a line of zeros

and representing a singular limit of Bogdanov-Takens (BT) bifurcations. We in-

troduce, among other precise definitions, the notion of slow-fast BT-bifurcation

and we provide a complete study of the bifurcation diagram and the related

phase portraits. Based on geometric singular perturbation theory, including

blow-up, we get results that are valid on a uniform neighbourhood both in pa-

rameter space and in the phase plane. The talk is based on joint work with

Peter De Maesschalck.
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This paper on ‘Chaos and Fractal’ highlights four objectives on a two dimen-

sional discrete dynamical system: h(x, y) = (y, µx + λy − y3), where µ and λ
are adjustable parameters. Firstly, by adopting suitable computer programmes

we evaluate period doubling bifurcation values of the parameter ′λ′ for the pe-

riodic orbits of periods 20, 21, 22, 23....... and obtain the Feigenbaum universal

constant δ = 4.66920161..., a route from order to chaos and the accumulation

point α = 3.24069766596... beyond which chaotic region occurs. Secondly, as the

crucial feature of periodic orbits for their long time behaviour, the strange at-

tractor of the system is achieved. Thirdly, the notion of exponential divergence

of nearby trajectories and the existence of chaos are confirmed by determining

the Lyapunov exponents. Fourthly, Box Dimension, Information Dimension,

Correlation Dimension and Hausdorff Dimension are studied, and some illumi-

nating results are obtained as the measure of chaos.
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We develop the global bifurcation theory of planar polynomial dynamical sys-

tems and suggest a new geometric approach to solving Hilbert’s Sixteenth Prob-

lem on the maximum number and relative position of their limit cycles in two

special cases of such systems. First, using geometric properties of four field ro-

tation parameters of a new canonical system, we present the proof of our earlier

conjecture that the maximum number of limit cycles in a quadratic system is

equal to four and their only possible distribution is (3 : 1). Then, by means of

the same geometric approach, we solve the Problem for Liénard’s polynomial

system (in this special case, it is called Smale’s Thirteenth Problem). Besides,

generalizing the obtained results, we present the solution of Hilbert’s Sixteenth

Problem on the maximum number of limit cycles surrounding a singular point

for an arbitrary polynomial system and, applying the Wintner–Perko termina-

tion principle for multiple limit cycles, we develop an alternative approach to

solving the Problem. By means of this approach we complete also the global

qualitative analysis of a generalized Liénard cubic system, a neural network

cubic system, a Liénard-type piecewise linear system and a quartic dynami-

cal system which models the population dynamics in biomedical and ecological

systems [1]–[6].
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Fractional Calculus dates back to correspondence between LHospital and Leib-

niz towards the end of 17th century. The pioneering works of Euler, Lagrange,

Abel, Liouville, Riemann, Grunwald and Letnikov has led to formulation of

fractional integrals and derivatives with subsequent development of fractional

calculus. Formal mathematics of fractional calculus existed in the literature, for

a long time, however utility and applicability of fractional calculus to various

branches of Science and Engineering have been realised rather recently, [1, 2].

Study of dynamical systems of fractional order is receiving increasing atten-

tion in the recent years. Financial systems in economics displaying fractional

order dynamics are known. Furthermore Lorenz, Chen, L, Rossler systems of

fractional order have been studied widely in the literature. Effect of delay on

chaotic solutions in fractional order dynamical system is investigated by the

present author [3, 4, 5].

In this presentation we explore the interrelation between the order of frac-

tional system and chaos, syncronisation and delay.
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The article presents the solutions of Lotka-Volterra equations of fractional order

time derivatives with the help of analytical method of nonlinear problem called

the Homotopy perturbation method. By using initial values, the explicit solu-

tions of predator and prey populations for different particular cases have been

derived. The numerical solutions show that only a few iterations are needed to

obtain accurate approximate solutions. The method performs extremely well in

terms of efficiency and simplicity to solve this historical biological model.
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We present an existence theorem for monotonic solutions of a perturbed

quadratic fractional integral equation in C[0, 1]. Our equation contains the

famous Chandrasekhar’s integral equation as a special case. The concept of

measure of noncompactness related to monotonicity, introduced by J. Banaś

and L. Olszowy, and a fixed point theorem due to Darbo are the main tools in

carrying out our proof. Moreover, we give an example for indicating the natural

realizations of our abstract result presented in this work.
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The Nonlinear stability of triangular equilibrium points has been discussed

in the generalized photogravitational restricted three body problem with

Poynting-Robertson drag. The problem is generalized in the sense that smaller

primary is supposed to be an oblate spheroid. The bigger primary is considered

as radiating. We have performed first and second order normalization of the

Hamiltonian of the problem. We have applied KAM theorem to examine the

condition of non-linear stability. We have found three critical mass ratios.

Finally we conclude that triangular points are stable in the nonlinear sense

except three critical mass ratios at which KAM theorem fails.
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Fractional differential equations, both partial and ordinary ones, have received

more attention in recent years. Various phenomena in physics, like diffusion in

a disordered or fractal medium, or in image analysis, or in risk management

have been modeled by means of fractional equations.

Fractional diffusion-wave equation has important applications to mathe-

matical physics. Iterative methods to solve fractional and ordinary differential

equation are receiving increasing attention in recent years, for example the

Adomian Decomposition Method (ADM) [3, 4], Homotopy Analysis Method

(HAM) [5, 6], Homotopy Perturbation Method (HPM) [2, 7], Variational Iter-

ative Method [2, 8].

In this work we have used HAM, HPM, VIM, ADM and DJ method [1] for

solving linear and nonlinear fractional differential equations.
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Let X be a Banach space with norm ‖.‖. Let C = C([−r, 0], X), 0 < r < ∞,

denotes the Banach space of all continuous functions ψ : [−r, 0] → X endowed

with supremum norm

‖ψ‖c = Sup{‖ψ(θ)‖ : −r ≤ θ ≤ 0}
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If x is a continuous function from [−r, T ] , T > 0, to X and tε[0, T ] then xt
denotes the element of C given by xt(θ) = x(t + θ), for θε[−r, 0].Consider the

nonlinear functional integro-differential equation with non local condition

x′(t) = f
(

t, xt,

∫ t

0

k(t, s)h(s, xs)ds
)

, tε[0, T ] (2)

x(t) + (g(xt1 , ..., xtp))(t) = φ(t), tε[−r, 0] (3)

where x : [−r, T ] → X, the functions k : [0, T ]× [0, T ] → R, h : [0, T ]×C → X
and f : [0, T ] × C × X → X are continuous functions, g is given function

satisfying some assumptions and φ is given element of C.
We investigate the global existence of solutions of the above system by using

topological transversality theorem known as Leray-Schander alternative.

References

[1] J. Dugundji and A. Granas, Fixed point theory. Vol. 1, Monografie Matematyczne,
PWN, Warrsaw, 1982.

[2] L. Byszewski, On a mild solution of a semilinear functional differential evolution
nonlocal problem, J. of Appl. maths and Stoch. Anal., vol. 10:3(1997), 265–271.

[3] K. Bhalchandran and J.Y. Park, Nonlocal Cauchy problem for sobolov type func-

tional integro-differential equations, Bull. Korean Math. Soc. 39(1)(2002), 561–
569.

❖ ❖ ❖

On some Estimates for the First Eigenvalue of the
Sturm—Liouville Problem with Third-type Boundary
Conditions

Elena Karulina

Dept. of Higher Mathematics, Moscow State University of Economics, Statistics And

Informatics (MESI), Nezhinskaya St., 7, Moscow, 119501, Russia

E-mail: KarulinaES@yandex.ru

2000 Mathematics Subject Classification. 34L15

Consider the Sturm-Liouville problem:

y′′(x)− q(x)y(x) + λy(x) = 0,

{

y′(0)− k2y(0) = 0,
y′(1) + k2y(1) = 0,

where q(x) is a non-negative bounded summable function on [0, 1] such that

∫ 1

0

qγ(x)dx = 1, γ 6= 0.
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By Aγ denote the set of all such functions. We estimate the first eigenvalue

λ1(q) of this problem for different values of γ and k. For Mγ = supq∈Aγ
λ1(q)

and mγ = infq∈Aγ
λ1(q) some estimates were obtained. In particular, we have

Theorem 1. 1. If γ > 1 and k = 0, then mγ = 0;

2. if γ ≤ 1 and k = 0, then mγ ≥ 1/4.
3. If γ ∈ (−∞, 0) ∪ (0, 1), then Mγ = +∞;

4. if γ ≥ 1, then Mγ ≤ π2 + 2;

5. if γ ≥ 1 and k = 0, then Mγ = 1;

6. if γ = 1 and k 6= 0, then M1 = ξ∗, where ξ∗ is the solution to the equation

arctan k2

√

ξ
= ξ−1

2
√

ξ
.

Remark. The problem for the equation y′′ + λq(x)y = 0, q(x) ∈ Aγ , and

conditions y(0) = y(1) = 0 was considered in [1].
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We consider the class of first order impulsive integrodifferential inclusions of

the type:

x′(t)−Ax(t) ∈ Bx(t) +

∫ t

0

k(t, s)F (s, x(s))ds, a.e. t ∈ J (4)

J = [0, b], t 6= tk, k = 1, ....,m,

∆x|t=tk = Ik(x(t
−

k )), k = 1, ...,m, (5)

x(0) = x0, (6)

where F : J × X → P (X) is a multivalued map, X a real separable Banach

space with norm ‖.‖, P (X) is the family of all nonempty subsets of X, A
is the infinitesimal generator of a family of semigroup {T (t) : t ≥ 0} in X,
k : D → R, D = {(t, s) ∈ J × J : s ≤ t}, B is a bounded linear operator from
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X into X, x0 ∈ X, 0 < t1 < t2 < ... < tm < tm+1 = b, Ik ∈ C(X,X)(k =

1, ...,m), ∆x|t=tk = x(t+k ) − x(t−k ), x(t+k ) = limh→0+ x(tk + h)) and x(t−k ) =
limh→0− x(tk − h)) represent the right and left limits of x(t) at t = tk.

The purpose of the present paper is to study the class of first order impul-

sive integrodifferential inclusions in a real separable Banach spaces by using

semigroup theory and suitable fixed point theorems when the multivalued map

has convex and nonconvex values.

References

[1] R. P. Agarwal and D. O’Regan, Set valued mappings with Applications in Nonlin-

ear Analysis, Taylor and Francis,London, New York, Vol. 4, 2002.

[2] J. P. Aubin and A. Cellina, Differential inclusions, Springer-Verlag, Berlin-
Heidelberg, New York, 1984.

[3] J. P. Aubin and H. Frankowska, Set-valued Analysis, Birkhauser, Boston, 1990.

[4] J. Banas and K. Goebel, Measures of Noncompactness in Banach Spaces, Marcel-
Dekker, New York, 1980.

[5] M. Benchora and S. K. Ntouyas, , Existence Theorems for a class of first order

Impulsive Differential Inclusions, Acta Math. Univ. Comenianac, LXX, 2,(2001),
197–205.

[6] Y. Li and Z. Liu, Monotone iterative technique for addressing implusive integrod-

ifferential equations in Banach spaces, Nonlinear Analysis, 66(2007), 83–92.

[7] S. Ntouyas, Existence Results for Implusive Partial Neutral Functional Differential

Inclusions, Electronic J. Differential Equations, 30(2005), 1–11.

❖ ❖ ❖

Some Topological Properties of Julia Components of
Transcendental Entire Functions

Masashi Kisaka

Graduate School of Human and Environmental Studies, Kyoto University, Yoshida

Nihonmatsu-cho, Sakyo-ku, Kyoto 606-8501, Japan

E-mail: kisaka@math.h.kyoto-u.ac.jp

2000 Mathematics Subject Classification. 37F10

Let f be a transcendental entire function and fn denote the n-th iterate of f .
Recall that the Fatou set F (f) and the Julia set J(f) of f are defined as follows:

F (f) := {z ∈ C | {fn}∞n=1 is normal in a neighborhood of z}, J(f) := C \ F (f).

In what follows, we consider the case where f has a multiply-connected wander-

ing domain. Then J(f) is disconnected for such an f and we investigate some
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topological properties of connected components of the Julia set, which we call

Julia components. The results are the following:

Theorem A. Let f be a transcendental entire function which has a multiply-

connected wandering domain and let C be a Julia component with bounded

orbit.

(1) There exists a polynomial g such that C is homeomorphic to a Julia

component of the Julia set J(g).

(2) If C is full (i.e., the complement Cc in the complex plane C is connected),

then C is a buried component.

(3) If C is a wandering Julia component (i.e., fm(C)∩ fn(C) = ∅, ∀m 6= n),
then C is a buried singleton component.

Corollary B. For every repelling periodic point p, let C(p) be the Julia

component containing p.

(1) If C(p) is full, then C(p) is a buried component.

(2) If C(p) is not full, then the bounded components of C(p)c consist of

immediate attractive basins, immediate parabolic basins and Siegel disks

and their preimages.

(3) The point p is a buried point unless it is on the boundary of an immediate

attractive basin, an immediate parabolic basin or a Siegel disk.

We also show some results on Julia components under some additional condi-

tions on the behavior of singular values of f .
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Let V ∈ 0 be a bounded domain in the Euclidean space R
n. Consider the set

X of C1 diffeomorphisms F : Rn → R
n such that F (V ) ⊂ V . Here V is the
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closure of the set V . Define the C1 – distance at the space X by the formula

d1(F, F
′) = max

x∈K
(|F (x)− F ′(x)|) + max

x∈K
|DF (x)−DF ′(x)|.

We denote by the symbol | · | all Euclidian norms of vectors and corresponding

matrix norms and by DF and DF ′ the Jacobi matrices of the corresponding

mappings. We shall identify all the mappings which coincide on V . Fix a map-

ping F ∈ X and assume that the point O is the equilibrium of F . Let λ1, . . . , λn
be the eigenvalues of the matrix A = DF (0) (some of them may be equal) and

m ∈ {1, 2, . . . n1} be such that

|λ1| 6 |λ2| 6 . . . 6 |λm| < 1 6 |λm+1| 6 |λn|. (1.1)

The equilibrium 0 of the mapping F is strongly conditionally unstable if

1. there exist a neighborhood U0 3 0 and such a continuous mapping V :

U0 → [0,+∞) that V (x) = 0 if and only if x ∈W s
loc and V (F (x)) > V (x)

for all x ∈ U0

⋂

F−1(U0);

2. the equilibrium 0 of the mapping F−1|Wuc
loc

is asymptotically stable.

We say that the equilibrium 0 of the mapping F is strongly conditionally stable

if it is strongly conditionally unstable by the respect of the mapping F−1.

Condition 1. The point 0 of the mapping F is strongly conditionally stable.

The manifolds W sc and Wu intersect transversally in a point p 6= 0.

Condition 2. The point 0 of the mapping F |Wuc
loc

(0) is strongly conditionally

unstable. The manifolds W sc and Wu intersect transversally in a point p 6= 0.

Theorem 1. Suppose the coordinate origin is an equilibrium of the diffeomor-

phism F ∈ X, and either conditions 1 or conditions 2 are satisfied. Then for

any neighborhood U 3 0 there exists such δ > 0 that for any G ∈ X such that

‖F −G‖X < δ

there is an infinite subset PG ∈ U such that

1. all points q ∈ PG are periodic to the respect of G;

2. for any m ∈ N there is a point q ∈ PG, such that the period of q is bigger

than m;

3. cardPG = ℵ.

Corollary. Let F ∈ X be such that x = 0 is a hyperbolic equilibrium. Suppose

that F can be C1 linearized in a neighborhood U of 0. Assume that the corre-

sponding stable W s and unstable Wu manifolds intersect in a point p 6= 0 in

such a way that there exists such a disk D and a neighborhood U1 of the point

p with the following properties.
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1. dimD = dimWu, the manifolds D and W s intersect transversally at the

point p. Denote by ws and wu the connected components of intersections

of corresponding manifolds with U1, containing the point p

2. There exist such a smooth coordinate system ξ = col(η, ζ) in U1 that

ξ(x) is a local diffeomorphism of x in U1 3 p, η(x) = η(p) for any x ∈ D,

ζ(x) = 0 for any x ∈ ws and the set wu is a graph of the function η = g(ζ),
|ζ| < δ, such that the mapping g is smooth for all ζ : 0 < |ζ| < δ.

Then for any neighborhood U ⊂ 0 there is an infinite subset P ∈ U such that

the same statements 1.–3. held true.

This work was supported by the Grant Council of the President of Russia (grant MK-
4032.2009.1), by the Russian Fond of Basic Researches (grant 08-01-00346-a) and by
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Let Rn be the Euclidean n− space with Euclidean norm | · |. Let C =

C([−r, 0], Rn), 0 < r <∞, denotes the Banach space of all continuous functions

ψ : [−r, 0] → Rn endowed with supremum norm

‖ψ‖C = sup{|ψ(θ)| : −r ≤ θ ≤ 0}.

If x is a continuous function from [−r, T ], T > 0, to Rn and t ∈ [0, T ] then xt
denotes the element of C given by xt(θ) = x(t + θ) for θ ∈ [−r, 0]. Consider
the nonlinear functional mixed Volterra-Fredholm integrodifferential equation

of the form

x′(t) = f(t, x(t), xt,

∫ t

0

a(t, s)g(s, x(s), xs)ds,

∫ T

0

b(t, s)h(s, x(s), xs)ds), t ∈ [0, T ],

x(t) = φ(t), −r ≤ t ≤ 0,
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where f : [0, T ] × Rn × C × Rn × Rn → Rn, x : [−r, T ] → Rn, the functions

a, b : [0, T ] × [0, T ] → R, g, h : [0, T ] × Rn × C → Rn, are continuous functions

and φ is a given element of C.

We investigate the global existence of solutions of the above system by using

topological transversality theorem known as Leray-Schauder alternative.
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We investigate the presence of chaotic-like dynamics for a class of second order

ODEs using the concept of “stretching along paths” and the theory of “linked

twist maps”. The chaotic dynamics considered is of the coin-tossing type as in

the Smale’s Horseshoe.The proof relies on some recent results about chaotic

planar maps combined with the study of geometric features which are typical

of linked twist maps.

We study the case in which a perturbation is introduced for the conservative

scalar equation ẍ+ f(x) = 0 in the form of a weight function q(t).
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The ODEs investigated are of the form

ẍ+ q(t)f(x) = 0,

(

ẋ(t) =
d

dt
x(t)

)

where f = f(x) : R → R is locally Lipschitz and q = q(t) : R → R is a

T -periodic weight function which belongs to L1([0, T ]).
We consider two different scenarios for f : R → R, depending on the as-

sumptions for q(t).

(Case:1) q(t) changes its sign and f(x) is periodic but not necessarily odd. In

this case we assume that for some constant L > 0, f satisfies:

(H1) : f(x+ L) = −f(x), ∀x ∈ R and f(x) > 0, ∀x ∈ ]0, L[ .

(Case:2) q(t) is of constant sign and jumps between two different values and

f(x) is not necessarily periodic or odd.

In the second case we assume that f satisfies:

(H2) : There exist a, b with a < 0 < b such that f(a) = f(0) = f(b) = 0, and

f(x) < 0 ∀x ∈ ]a, 0[ , f(x) > 0 ∀x ∈ ]0, b[ ,

∫ b

a

f(s) ds = 0.
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By using asymptotic theory, we generalise the Turing diffusively-driven instabil-

ity conditions for reaction-diffusion systems with slow, isotropic domain growth.

There are two fundamental biological differences between the Turing conditions

on fixed and growing domains, namely: (i) we need not enforce cross nor pure ki-

netic conditions and (ii) the restriction to activator-inhibitor kinetics to induce

pattern formation on a growing biological system is no longer a requirement.

Our theoretical findings are confirmed and reinforced by numerical simulations

for the special cases of isotropic linear, exponential and logistic growth profiles.

In particular we illustrate an example of a reaction-diffusion system which can-

not exhibit a diffusively-driven instability on a fixed domain but is unstable in

the presence of slow growth.
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In this work, we consider the problem of topological classification of codimen-

sion one Anosov actions of Rk, k ≥ 1, on closed connected orientable manifolds

of dimension n+ k with n ≥ 3. This is a natural continuation of [1]. We show

that the fundamental group of the ambient manifold is solvable if and only if

the weak foliation of codimension one is transversely affine. We also study the

situation where one 1-parameter subgroup of Rk admits a cross-section, and

compare this to the case where the whole action is transverse to a fibration

over a manifold of dimension n. As a byproduct, generalizing a Theorem by

Ghys [2] in the case k = 1, we show that, under some assumptions about the

smoothness of the sub-bundle Ess ⊕ Euu, and in the case where the action

preserves the volume, it is topologically equivalent to a suspension of a linear

Anosov action of Zk on T
n.
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We consider the systems of delay differential equations of the form

d

dt
y(t) = A(t)y(t) +B(t)y(t− τ) +G(t, y(t), y(t− τ)), t > τ > 0, (1)

where A(t) and B(t) are matrices with continuous T -periodic entries; i.e.,

A(t+ T ) ≡ A(t), B(t+ T ) ≡ B(t), T > τ,

G(t, u, v) is a real-valued vector-function satisfying the Lipschitz condition and

such that

‖G(t, u, v)‖ ≤ q1‖u‖
1+ω1 + q2‖v‖

1+ω2 , q1, q2, ω1, ω2 ≥ 0 are constant.

We study the asymptotic stability of the zero solution to (1). Using an approach

developed in [1, 2], we obtain estimates for solutions to (1) that characterize

the decay rates as t → ∞ and find attraction domains of the zero solution to

(1) without finding roots of characteristic quasipolynomials. This approach is

based on the Riccati type matrix differential inequality

d

dt
H(t) +H(t)A(t) +A∗(t)H(t) +H(t)B(t)K−1(τ)B∗(t)H(t) < −K(0), t ∈ [0, T ],

K(s) = K∗(s) > 0,
d

ds
K(s) < 0, s ∈ [0, τ ].
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In this talk, we study polynomial skew products f : C
2
→ C

2
of the form

: f(z, w) = (p(z), q(z, w)), where p(z) and q(z, w) are polynomials of degree

d ≥ 2. We consider the dynamics of regular Axiom A polynomial skew products

on Jp ×C. Especially, we are interested in their postcritical sets. Put qz(w) =

q(z, w) and let CJp
= {(z, w) ∈ C

2
; z ∈ Jp, q

′

z(w) = 0} be the critical set over

Jp. For any subset X in C
2
, its accumulation set is defined by

A(X) = ∩N≥0∪n≥Nfn(X).

DeMarco & Hruska [DH1] defined the pointwise and component-wise accumu-

lation sets of CJp
respectively by

Apt(CJp
) = ∪x∈CJp

A(x) and Acc(CJp
) = ∪C∈C(CJp )

A(C),

where C(CJp
) denotes the collection of connected components of CJp

. We will

give characterizations of the equalities Apt(CJp
) = Acc(CJp

) and Apt(CJp
) =

A(CJp
) in terms of saddle basic sets on Jp ×C. We also give a characterization

of Acc(CJp
) = A(CJp

), which was posed in [DH1].

References

[DH1] L. DeMarco & S. Hruska: Axiom A polynomial skew products of C2 and their
postcritical sets. Ergod. Th. & Dynam. Sys. 28 (2008), pp. 1749–1779.

[DH2] L. DeMarco & S. Hruska: Corrections to “Axiom A polynomial skew products
of C2 and their postcritical sets”. Preprint 2009.

[J2] M. Jonsson: Dynamics of polynomial skew products on C
2. Math. Ann. 314

(1999), pp. 403–447.

[S] H. Sumi: Dynamics of postcritically bounded polynomial semigroups III : Clas-
sification of hyperbolic semigroups and random Julia sets which are Jordan
curves but not quasicircles. To appear in Ergod. Th. & Dynam. Sys.

❖ ❖ ❖



Dynamical Systems and Ordinary Differential Equations 313

Omitted Values and Dynamics of Meromorphic Functions

Tarakanta Nayak

Department of Mathematical Sciences, Tsinghua University, Beijing-100084, China

E-mail: nayak@math.tsinghua.edu.cn

Jian-Hua Zheng

Department of Mathematical Sciences, Tsinghua University, Beijing-100084, China

E-mail: jzheng@math.tsinghua.edu.cn

2000 Mathematics Subject Classification. 37F50, 37F10

Let M be the class of all transcendental meromorphic functions f : C →
C
⋃

{∞} with at least two poles or one pole that is not an omitted value,

and Mo = {f ∈ M : f has at least one omitted value}. Some dynamical issues

of the functions in Mo are addressed in this article. A complete classification of

all the multiply connected Fatou components is made. As a corollary, it follows

that the Julia set is not totally disconnected unless all the omitted values are

contained in a single Fatou component. Non-existence of both Baker wander-

ing domains and invariant Herman rings are proved. Eventual connectivity of

each wandering domain is proved to exist. For functions with exactly one pole,

we show that Herman rings of period two also do not exist. A necessary and

sufficient condition for the existence of a dense subset of singleton buried com-

ponents in the Julia set is established for functions with two omitted values.

The conjecture that a meromorphic function has at most two completely in-

variant Fatou components is confirmed for all f ∈Mo except in the case when

f has a single omitted value, no critical value and is of infinite order. Some

relevant examples are discussed.
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This paper deals with attractors of generic dynamical systems, and to what

extent they can be “invisible”. We introduce the notion of rate of invisibility,

which measures how rarely parts of the attractor are actually visited by generic

orbits.

One would expect areas around the attractor to be visited quite often, but

this is not so. For any n >> 1, we present an example of a dynamical system

whose defining parameters are all of order n and whose distance from struc-

turally unstable dynamical systems (in the C1−norm) is expected to be O(n−4),

and in the space of skew products it is proved to be at least O(n−2). However,

a very large part of the attractor is visited by generic orbits with frequency

≤ 2−n, and therefore we conclude that the rate of invisibility of this dynamical

system is ≤ 2−n.

The number 2−n is so tiny compared with the defining parameters of the

dynamical system (no smaller than order n−1), that it’s hard to imagine any

experiment that would actually see orbits reach the “invisible” part of the at-

tractor. This prompts the question: should that part be considered to lie in

the attractor at all? From a qualitative viewpoint, we prove that it respects

a number of generally accepted definitions of attractor. But from a quantita-

tive viewpoint, it is visited so rarely that it has no practical relevance to the

asymptotic behavior of orbits.

References

[1] J. Milnor, On the concept of attractor. Comm. Math. Phys. 99 (1985), no. 2,
177–195.

[2] Yu. Ilyashenko, D. Volk, Cascades of invisibility of attractors, to appear in Journal
of the fixed point theory and applications, 2010, v. 7

[3] Gorodetskii, A. S.; Ilyashenko, Yu. S. Some new robust properties of invariant sets
and attractors of dynamical systems. (Russian) Funktsional. Anal. i Prilozhen. 33
(1999), no. 2, 16–30, 95; translation in Funct. Anal. Appl. 33 (1999), no. 2, 95–105

[4] Gorodetskii, A. S.; Ilyashenko, Yu. S. Some properties of skew products over a
horseshoe and a solenoid. (Russian) Tr. Mat. Inst. Steklova 231 (2000), Din. Sist.,
Avtom. i Beskon. Gruppy, 96–118; translation in Proc. Steklov Inst. Math. 2000,
no. 4 (231), 90–112

❖ ❖ ❖

On Weak Product Recurrence

Piotr Oprocha
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A point x in a topological dynamical system (X,T ) is said to be (weakly)

product recurrent if for every topological dynamical system (Y, S) and for every

(resp. uniformly) recurrent point y ∈ Y , the pair (x, y) is recurrent under the

product action (T, S).
It was proved many years ago that product recurrence is equivalent to dis-

tality, however full characterization of weak product recurrence is still an open

problem (it was recently proved by Haddad and Ott that the class of weakly

product recurrent points is essentially larger than the class of product recurrent

points).

In this talk we will discuss results known from the literature and present

some new sufficient conditions for weak product recurrence.
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In the present paper we establish explicit estimates on some fundamental dy-

namic integral inequalities in two variables on time scales which can be used as

tools in the study of certain dynamic equations on time scales. Applications of

one of our result are also given.
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We have considered a three-component model consisting of dissolved limiting

nutrients (N) supplied at constant rate and partially recycled after the death

of plankton by bacterial decomposition, Phytoplankton (P) and Zooplankton

(Z). For a Realistic representation of the open marine plankton ecosystem,

we have incorporated various natural phenomena such as nutrient recycling,

inter-species competition and grazing at a higher level. Nutrient-phytoplankton-

zooplankton interactions are observed to be very complex and situation specific.
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For the model with constant nutrient input and different constant washout

rates, conditions for boundedness of the solutions, existence and stability of

non-negative equilibria, as well as persistence are given. Different exciting re-

sults, ranging from stable situation to cyclic blooms, may occur under different

favorable conditions, which may give some insights for predictive management.

Local stability of the equilibria is analyzed. It is shown that the positive equi-

librium loses its stability when the nutrient input concentration passes through

a critical value and the Hopf-bifurcation occurs that induces oscillations of the

populations.
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Identifying integrable nonlinear differential equations and exploring their under-

lying solutions is one of the challenging problems in nonlinear dynamical sys-

tems. Different methods have been proposed in order to identify new integrable

cases and to understand the underlying dynamics associated with the finite

dimensional nonlinear dynamical systems. The most widely used methods in-

clude Painlevé analysis, Lie symmetry analysis, Noether’s theorem and direct

linearization etc. In this paper, we consider a general damped second-order non-

linear ordinary differential equation of the form ẍ+ (k1x
q + k2)ẋ + k3x

2q+1 +

k4x
q+1 + λx = 0, where over dot denots differentiation with respect to t, and

ki
′

s, i = 1, 2, 3, 4, λ and q are arbitrary parameters. For q = 1, we carry out the

Painlevé analysis, obtained the symmetry and then integrability. We repeat

the analysis for q = 2 and finally for q = arbitrary. It is intresting to see that

the above equation includes a large number of physically important nonlinear

oscillators and systems such as the anharmonic oscillator, force-free Helmholtz

oscillator, force-free Duffing oscillator, force-free Duffing - van der Pol oscilla-

tor, modified Emden type equation and its hierarchy. Our results show several

new equations which have signature of integrability.
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In this paper, we propose and analyze a non-linear mathematical model to con-

trol malaria by rearing biocontrol agents such as bacteria which eats mosquito

larvae, in malaria prevalent areas along with vaccination of susceptible hu-

man population. In the modeling process, it is assumed that the bacteria and
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mosquito population grows logistically in nature. The analysis of the model

shows that as the magnitude of control parameters i.e., rate at which bacteria

eats mosquito larvae and the rate of vaccination in system under consideration

increases, the spread of malaria decreases and it may be eliminated completely

if these parameters are very large.
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In this work we generalize the Newtonian N -body problem to spaces of constant

curvature κ, we derive the new equations of motion and study the 2-dimensional

case. For κ < 0, we use the Weierstrass hyperbolical model of hyperbolic geom-

etry and we will compare it with other models. We will illustrate several results

concerning central configurations, relative equilibria, i.e. solutions where the

distances between any two particles are constant during the motion and homo-

graphic solutions, i.e. orbits for which the configuration of the system remains

similar with itself for all time. Part of the material presented in this talk is

contained in [3].
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In this paper, we give novel criteria for the exponential stability of a more

general class of delayed cellular neural networks. The delay neural networks in

consideration are time-varying with polytopic uncertainties and various activa-

tion functions. Based on augmented parameter-dependent Lyapunov-Krasovskii

functionals [1], new delay-dependent conditions for the global exponential sta-

bility are obtained for two cases of time-varying delays; that is, delays which

are differentiable and have an upper bound of the delay-derivatives, and de-

lays which are bounded but not necessary to be differentiable. Extending the

results of [2, 3], the conditions are presented in terms of linear matrix inequal-

ities, which allow to compute simultaneously two bounds that characterize the

exponential stability rate of the solution.
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Galileo, in the XVII century, observed that the small oscillations of a pendulum

seem to have constant period. In fact, the Taylor expansion of the period map

of the pendulum is constant up to second order in the initial angular velocity

around the stable equilibrium. It is well known that, for small oscillations of

the pendulum and small intervals of time, the dynamics of the pendulum can

be approximated by the dynamics of the harmonic oscillator. We study the dy-

namics of a family of mechanical systems that includes the pendulum at small

neighbourhoods of the equilibrium but after long intervals of time so that the

second order term of the period map can no longer be neglected. We charac-

terize such dynamical behaviour through a renormalization scheme acting on

the dynamics of this family of mechanical systems. The main theorem states

that the asymptotic limit of this renormalization scheme is universal: it is the

same for all the elements in the considered class of mechanical systems. As

a consequence we obtain an universal asymptotic focal decomposition for this

family of mechanical systems. Furthermore, we obtain that the asymptotic tra-

jectories have a Hamiltonian character and compute the action of each element

in this family of trajectories. We conclude with a description of the utility that

the asymptotic universal focal decomposition may have in the computation of

propagators in semiclassical physics.
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A mathematical model for the steady, mixed convection heat and mass transfer

along a semi-infinite vertical plate embedded in a micropolar fluid saturated

Darcy porous medium in the presence of Soret and Dufour effects is presented.

The nonlinear governing equations and their associated boundary conditions

are initially cast into dimensionless forms using similarity transformations. The

resulting system of equations is then solved numerically using the implicit finite

difference scheme known as Keller-box method. The higher values of the cou-

pling number N (i.e., the effect of microstructure becomes significant) result in

lower velocity distribution and but higher wall temperature, wall concentration

distributions in the boundary layer compared to the Newtonian fluid case. The

numerical results indicate that the skin friction coefficient as well as rate of

heat and mass transfers in the micropolar fluid are lower compared to that of

the Newtonian fluid. The opposite nature can be found in the case of Darcy

number. The present analysis has also shown that the flow field is appreciably

influenced by the Dufour and Soret effects.
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In 1982, Mañé announced that generically among conservative diffeomorphisms

in dimension 2, the Oseledec’s splitting was dominated [4], a complete proof of

this fact was later presented by Bochi [2]. This means that generically among

conservative diffeomorphisms of dimension 2, either all Lyapunov exponents

vanish almost everywhere, or else the system is Anosov.

Further generalizations of this fact were made for instance, by Bochi-Viana,

where they prove that generically among conservative systems the Oseledec’s

splitting of each orbit is dominated [3]. Note that, however, different behaviors

could coexist, such as vanishing of all Lyapunov exponents and non-uniform

hyperbolicity.

Here we show that generically among conservative systems in dimension

3, the Oseledets splitting is globally dominated, and that either all Lyapunov

exponents vanish almost everywhere, or the system is non-uniformly hyperbolic

and ergodic. This uses recent results by Avila-Bochi [1], and proves a conjecture

therein.
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We study how predator behavior influences community dynamics of predator-

prey systems. It turns out that predator behavior plays a dominant role in com-

munity dynamics. The molel system studied in this paper reveals that period-

doubling and period-doubling reversals can generate short-term recurrent chaos

which mimics chaotic dynamics observed in natural populations. Short-term re-

current chaos manifests itself when deterministic changes in a system parameter

interrupt chaotic behavior at unpredictable intervals. The result reinforce an

earlier suggestion that period-doubling reversals could control chaotic dynamics

in ecological models.
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Some seemingly simple nonlinear delay differential equations still pose mas-

sive problems to the understanding of their global dynamics, even after many
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decades of intensive research. In the talk an overview of some recent results will

be presented for two celebrated model equations with unimodal feedback: the

Nicholson blowflies equation arisen in population dynamics, and the Mackey-

Glass equation which has been proposed to model blood cell production and

haematological diseases, and well known for its chaotic behavior. In particular,

we give conditions that ensure that all solutions eventually enter the domain

where the feedback is monotone, thus chaotic behavior can be excluded. We

give sharp (in certain sense the sharpest) bounds for the global attractor and

construct heteroclinic orbits from the trivial equilibrium to a slowly oscillating

periodic orbit around the positive equilibrium. We discuss the coexistence of

rapidly oscillating periodic solutions, and provide many numerical examples for

different scenarios.
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The double pendulum is a simple physical system that exhibits rich dynamic

behavior where the motion is governed by a set of coupled ordinary differential

equations. Using the multiple scales methods; our original non-autonomous

system is reduced to a third-order approximate autonomous system.

For certain energies the motion of double pendulum undergoes chaotic mo-

tion. Chaos theory is an area of inquiry in mathematics and physics, which

studies the behavior of certain dynamical systems that are highly sensitive to
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initial conditions. Mathematically, chaos means deterministic behavior which

is very sensitive to its initial conditions; that is, tiny differences in the input of

chaotic systems can be quickly amplified to create overwhelming differences in

the output. This is the so-called butterfly effect.

Poincaré sections and bifurcation diagrams are constructed for certain, char-

acteristic values of energy. The largest Lyapunov characteristic exponents are

also calculated, where the Lyapunov exponents (also known as characteristic

exponents) associated with a trajectory are essentially a measure of the aver-

age rates of expansion and contraction of trajectories surrounding it. They are

asymptotic quantities, defined locally in state space, and describe the exponen-

tial rate at which a perturbation to a trajectory of a system grows or decays

with time at a certain location in the state space. All three methods confirm

the passing of the system from the regular low-energy limit into chaos as energy

is increased.
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We consider oscillators described by the equation

x′′ = −λf(x+) + µg(x−), (7)

where x+ = max{x, 0}, x− = max{−x, 0} and generally nonlinear functions

f(z) and g(z) are continuous, positive valued for z > 0 and satisfy the condition

f(0) = g(0) = 0. This means that the restoring forces act nonlinearly and they
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are different for x > 0 and x < 0. The restoring forces are controlled by the

nonnegative parameters λ and µ. If f(z) = g(z) = z then equation (7) reduces

to the Fuč́ık equation ([1])

x′′ = −λx+ + µx−. (8)

A set of all (λ, µ) such that the problem (8),

x(a) = 0, x(b) = 0 (9)

has a nontrivial solution is called Fuč́ık spectrum. It is known to be a union

of hyperbola looking branches and each branch corresponds to solutions with

definite nodal structure.

We study the problem (7), (9) under the normalization condition |x′(a)| = α.
The respective spectrum is called α-normalized spectrum. We obtain ([2]) the

description of α-normalized spectra in terms of the time-map functions (the

first zero functions) corresponding to the Cauchy problems u′′ = −f(u), u(a) =
0, u′(a) = γ and v′′ = −g(v), v(a) = 0, v′(a) = γ.

The properties of α-normalized spectra are described in a series of state-

ments. It is to be mentioned that some of these properties seem to be unusual

and closely relate to strange behavior ([3]) of technical structures subject to

asymmetrical forcing.
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Let f ∈End(C2, O) be tangent to the identity and with order ν(f) ≥ 2. We

study the dynamics of f near the set of fixed points Fix(f). Using results of

Abate [1], we prove that if the set of fixed points of f, Fix(f), is smooth at the

origin, f is tangential to this set, and the origin is not singular, then there are

no parabolic curves for f at the origin. After that and using some techniques

and results of Hakim [5], [6], we prove that Fix(f) is smooth at the origin and

this last one is a singular point of f , with the pure order of f, ν0(f) = 1, then

there exist ν(f)−1 parabolic curves for f at the origin. Finally and using always

the same results of Hakim [5], [6], we prove that if O is dicritical, then there

exist infinitely many parabolic curves[9].
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In the iteration theory of analytic functions, the dynamics of transcendental

meromorphic functions has been explored by many researchers in recent years.

Devaney and coworkers studied the dynamics of meromorphic functions with

rational Schwarzian derivative. Baker and coworkers proved many results on the

dynamics of meromorphic functions. We studied the dynamics of certain criti-

cally finite meromorphic functions and certain non-critically finite meromorphic

functions. In this paper, we attempt a comparative study on the dynamics of

one parameter families of functions λ (z+µ0)

(z+µ0+4)
ez, λ sinh

2

z
z4 , λtanh(ez), λ tan z,

etc.
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The complexity in a two-dimensional dynamical model is analyzed for prey

predator system with Leslie-Gower type interaction incorporating discrete de-

lay involved in growth of two species. The existence of periodic solutions via

Hopf-bifurcation with respect to delay parameters are established. Numerical

simulation substantiate the analytical results and also shows the appearance of

chaos.
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Consider deformations of unimodal maps, that is, smooth families of unimodal

maps ft which are inside a topological class. Assuming that this topological class

satisfies the so-called topological slow recurrence condition, a (topological) con-

dition that implies the more familiar Benedicks-Carleson and Collet-Eckmann

conditions, we study the differentiability of the SBR (Sinai-Bowen-Ruelle) mea-

sures of ft with respect to the parameter t. In one of the main steps of this

study we show that the family of conjugacies ht satisfying ht(f0(x)) = ft(ht(x))
is differentiable with respect to the parameter t, and its derivative is continu-

ous with respect to x, at least on the orbit of the critical point and the set of

periodic points.
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The existence and uniqueness of solutions and asymptotic estimates of solution

formulas are studied for certain classes of integrodifferential equations in a

neighbourhood of a singular point [1]–[4]. Solutions are located in a domain

homeomorphic to a cone having vertex coinciding with the initial point. The

proofs are based on a combination of the topological method of T.Ważewski

and the Schauder’s fixed point theorem or on the Banach contraction principle,

respectively.

Acknowledgement. This research has been supported by the Czech Ministry of Ed-
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in Microelectronic Systems and Nanotechnologies and MSM0021630529 Research In-
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Here we consider a model of HIV and CD 4+ T Cells dynamics via system of

ordinary differential equations. We shall consider the effect of Protease Inhibitor

and RT Inhibitor drugs on dynamics of HIV. It is noted that due to inefficacy

of RT Inhibitor a fraction of CD4+ T cells reverts back to uninfected cell

population. So we model this phenomenon and analytically study the model.

Further we shall consider the emergence of drug resistance strain of HIV in the

presence of both the Protease Inhibitor and RT Inhibitor. The results found

analytically, are supported and analyzed numerically.
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Predator - prey communities are building blocks of an ecosystem. Feeding rates

reflect interference between predators in several situations, e.g., when preda-

tors form a dense colony or perform collective motion in a school, encounter

prey in a region of limited size, etc. We perform spatio-temporal dynamics and

pattern formation in a model aquatic system in both homogeneous and hetero-

geneous environments. Zooplanktons are predated by fishes and interfere with

individuals of their own community. Numerical simulations are carried out to

explore Turing and non-Turing spatial patterns. We also examine the effect of

spatial heterogeneity on the spatio-temporal dynamics of the phytoplankton-

zooplankton system. The phytoplankton specific growth rate is assumed to be

a linear function of the depth of the water body.
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We consider the following nonlinear mixed Volterra-Fredholm integrodifferential

equation of the form:

x′(t) = Ax(t)+f(t, x(t),

∫ t

0

k(s, x(s))ds,

∫ b

0

h(s, x(s))ds), t ∈ J = [0, b], (1)

x(0)+g(t1, t2, · · · , tp, x(·)) = x0, (2)

where A is an infinitesimal generator of C0− semigroup of T (t) on a Banach

space X, t ≥ 0, 0 ≤ t1 < t2 < · · · < tp ≤ b, f, k, h, g are given functions. We

assume that f ∈ C(J ×X ×X ×X,X), k, h ∈ C(J ×X,X), g(t1, t2, · · · , tp, ·) :
X → X and x0 is a given element of X.

In this paper, we investigate the approximate solutions, uniqueness and

other properties of solutions of (1) − (2). The method of approximations to

the solutions is a very powerful tool which provides valuable information, with-

out the need to know in advance the solutions explicitly of various dynamic

equations. We apply the method of approximations to the solutions of the ini-

tial value problem (1) − (2) and investigate new estimates on the difference
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between the two approximate solutions of equation (1) and convergence prop-

erties of solutions of approximate problems. The main tool employed in the

analysis is based on the application of a variant of a certain integral inequality

with explicit estimate due to B. G. Pachpatte, the method of approximations

and the theory of semigroups.
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Predator prey communities are building blocks of an ecosystem. Feeding rates

reflect interference between predators in several situations, e.g., when preda-

tors form a dense colony or perform collective motion in a school, encounter

prey in a region of limited size, etc. We perform spatio-temporal dynamics and

pattern formation in a model aquatic system in both homogeneous and hetero-

geneous environments. Zooplanktons are predated by fishes and interfere with

individuals of their own community. Numerical simulations are carried out to

explore Turing and non-Turing spatial patterns. We also examine the effect of

spatial heterogeneity on the spatio-temporal dynamics of the phytoplankton-

zooplankton system. The phytoplankton specific growth rate is assumed to be

a linear function of the depth of the water body. It is found that the spatiotem-

poral dynamics of an aquatic system is governed by three important factors:

(i) intensity of interference between the zooplankton, (ii) rate of fish predation

and (iii) the spatial heterogeneity. In homogeneous environment, the tempo-

ral dynamics of prey and predator species are drastically different. While prey



Dynamical Systems and Ordinary Differential Equations 335

species density evolves chaotically, predator densities execute a regular motion

irrespective of the intensity of fish predation. When the spatial heterogene-

ity is included, the two species oscillate in unison. It has been found that the

instability observed in the model aquatic system is diffusion driven and fish

predation acts as a regularising factor. We also observed that spatial hetero-

geneity stabilizes the system. The idea contained in the paper provides a better

understanding of the pattern formation in aquatic systems.
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Since singularities of vector fields are easily detectable objects and, in many

cases, organizing centers of complex behaviours, they become essential elements

to explain dynamics. For instance, in order to prove the existence of chaos in

a given family of vector fields, it was proved in [4, 5] that it is enough to

find certain singularities that are unfolded by the family as seeds of strange

attractors. The singularities with the lowest codimension for which an analytical

proof is given are the nilpotent singularities of codimension 3 on R
3.

Motivated by answering whether it is possible to create chaos by means of

coupling dynamics, where the dynamics and the mechanisms of coupling are

chosen to be as simple as possible, we proved in [1] that the family consisting of

two Brusselators linearly coupled by diffusion has a nilpotent singularity on R
4

which is an organizing center of codimension 4. After proving that any generic

unfolding of an n-dimensional nilpotent singularity of codimension n contains

generic unfoldings of (n− 1)-dimensional nilpotent singularities of codimension
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(n−1), we conclude that the family also unfolds generically nilpotent singulari-

ties of codimension 3 and therefore strange attractors, as we showed numerically

in [2].

On the other hand, a linearly coupled system by diffusion is a natural frame-

work for the arising of Hopf-pitchfork singularities due to the symmetries of

those systems. These singularities can become the organizing centers of chaotic

dynamics as well as synchronization/desynchronization processes in coupled

systems. In [3] we illustrated this in the above-mentioned family.
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The research described in this paper aims to prove the existence of Gerver’s

super-eight solution for the 4-body problem with equal masses, which is one

of the open problems on N-body problem, announced ever on many occasions.

Normally, symmetric constraints are introduced to N-body system, for the dis-

covery of the periodic solutions with different shapes, and for the exclusion of

any collision.

We start from the above an exploration of the super-eight orbit, which is

performed with not only the traditional symmetric constraint, but a dynamical

geometric constraint. We employ two smooth curves with non-self-intersection

that joint when t = a, a ∈ [0, 1/4], at the only common point of the two curves,

in one quarter of the orbit. Then the piecewise orbit, formed by 8 jointed curves,
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provides the functional one class of orbits with continuous deformation. Within

the mixing constraints, we develop a numerical variational method. We then

prove that the rounding error is limited by the infinitesimal of the same order

as the discrete step. In this case, the minimizing of the functional transforms

into an optimization problem.

Afterwards, in the process of minimizing the functional with Newtonian

potential for 4 equal masses, we immediately discover the bifurcation on a:
(i) when a approaches to 0, the functional attains its minimum, 19.841, at a

clockwise circle; (ii) when a approaches to 1/4, the functional attains the same,

at an anticlockwise circle; while, (iii) when a approaches to the golden section,

the functional attains its minimum at the super-eight of the value 26.289. In

this bifurcation, one of the four bodies in the initial configuration, located on

the positive part of x-axis, will pass the self-intersection of the orbit for the

first time when t = 0.121. Furthermore, the mixing constraints guarantee that

there will not exist any collision in super-eight whenever the collisions on self-

intersection are excluded.

Supported by NSFC 10926081, the Foundation QN2009046 and Z111020825 of North-
west A & F University.
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Interest in the subject of partial differential equations with nonclassical initial

and boundary conditions has been growing fast in the last years since they are

often used to construct mathematical models of various non-stationary pro-

cesses of physics, biology and ecology ([1]–[3]). Nonlocal initial-boundary value

problems are nonclassical problems, where instead of classical boundary or ini-

tial conditions a relationship between the boundary or initial values of the

unknown function and its values at internal points of the domain or at later

times are given. Discrete spatially nonlocal problem for Laplace equation first

was systematically investigated in [4] and later various generalizations of the

problem posed in [4] were studied for elliptic, parabolic and hyperbolic equa-

tions. Nonlocal in time problems for parabolic equation, which involve nonlocal

initial condition, were studied in [5]. Note that nonlocal in time problems are

generalizations of periodical problems and can be also considered as problems

of controllability by initial conditions.

The present paper deals with nonlocal in time problems for parabolic, hy-

perbolic and Schrödinger type equations and systems. Nonclassical problems for

first and second order evolution and Schrödinger equations in abstract spaces

with various nonlocal initial conditions are studied and iterative algorithms

of approximation of such type problems by classical ones are constructed. For
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some nonlocal in time problems for hyperbolic and Schrödinger equations the

dependence of existence and uniqueness of solution on algebraic properties of

expressions containing time moments and geometric characteristics of the space

domain is studied.
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We study the existence of travelling-waves and local well-posedness in a suitable

function space for a nonlinear nonlocal evolution equation recently proposed by

Andrew C. Fowler to describe nonlinear dune formation.
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Given a planar domain Ω, and an analytic function f , we describe the set of

critical points for the solution u of the semilinear elliptic problem ∆u = f(u)
in Ω, u = 0 on ∂Ω. For simply connected domains we establish that the set of

critical points is finite while for non–simply connected domains we show that

this set is made up of finitely many isolated points and finitely many analytic

Jordan curves. Further results are given in the case that Ω is an annular domain

whose border has nonzero curvature. We also present some explicit calculations

that help to illustrate the theory as well as some open questions regarding the

cardinality of the critical set of the solutions.
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In 2002, Arceo et al [2] considered radially symmetric solutions to the nonlinear

parabolic equation

ut = ∆pu+
|u|q−2u

(1− |x|)α

with Dirichlet boundary conditions over the unit ball in RN , N ≥ 3. In 2008,

Arceo et al [1] established generalizations, which will be discussed in this talk

along with related updates. The generalizations include modifications in the

requirements for the initial data and the special exponents p and q with re-

spect to dimension N . The proving techniques mainly involve the Comparison

Principle.

References
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The standard model for incompressible miscible displacement for a mixture of

oil and a solvent with concentration c in a gravity-free environment, with mixed

boundary conditions and initial data c0, is given by the system:







Φ∂c
∂t

+∇ · (uc−D(u)∇c) = c̃q, (x, t) ∈ Ω× [0, T ], and c(x, 0) = c0, x ∈ Ω.

div(u) = q; u = −K(x)

µ(c)
∇p,

p = 0 in ΓD × [0, T ], (D∇c) · n = u · n = 0, in ΓN × [0, T ],

where T > 0, Ω ⊂ R
2 is bounded, with a Lipschitz continuous boundary ∂Ω.

Furthermore, for the Dirichlet and Neumann boundary conditions, we have

∂Ω = ΓD ∪ ΓN and ΓD ∩ ΓN = ∅. The variables involved are K, the rock

permeability, µ the viscosity of the fluid, which depends on the solvent con-

centration; p the pressure of the fluid, Φ the porosity of the medium, q the

volumetric external flow rate per unit volume; c̃ the specified concentration

of solvent in the injection well (q > 0) and the resident concentration in the

producer (q < 0). Finally, D is the diffusion-dispersion tensor.

We divided our study in two parts: when the viscosity is constant which yield

in a linear problem. For this part we have used the classic theory of monotone

operators [1], combined with variational techniques (non convex type as in [2])

for the evolution equation, and Hilbert Spaces Methods for the elliptic equation.

In the second part of this work, we consider the non linear coupled system, using

as approximation for a solution, a family of solutions of the linear uncoupled

system. The approximation method uses the Zorn’s Lemma. To complete the
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work, we used mixed finite elements [3] and the standard Modified Method of

Characteristics (MMOC) [4] to find a numerical solution.

Acknowledgements: to FAPEMIG (Fundação de Amparo à Pesquisa do Estado de

Minas Gerais) for the financial support for this presentation at ICM 2010.
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[1] H. Brézis Operateurs maximaux monotones et semi-groupes de contractions dans

les espaces de Hilbert, Amsterdam, North-Holland Pub. Co., 1973.

[2] J. M.H. Borwein & Q.J. Zhu Techniques of Variational Analysis, CMS Books in
Math Springer, 2005.

[3] E. Abreu, F. Pereira and S. Ribeiro Central schemes for porous media flows, Comp.
App. Math., 28 (2009), 87–110.

[4] J. Douglas and T. F. Russell, Numerical methods for convection-dominated diffu-

sion problems based on combining the method of characteristics with finite element

or finite difference procedures, SIAM J. Num. Anal., 19 (1982), 871–885.

❖ ❖ ❖

Γ-convergence of Power-law Functionals with Variable
Exponents and Related PDEs

Marian Bocea

Department of Mathematics, North Dakota State University, NDSU Dept. # 2750,

P.O. Box 6050, Fargo, ND 58108-6050 U.S.A.

E-mail: marian.bocea@ndsu.edu

2000 Mathematics Subject Classification. 35G50, 35J70, 49K20, 49S05, 74C05

Motivated by the analysis of various models related to polycrystal plasticity,

the asymptotic behavior of several classes of power-law functionals acting on

fields belonging to variable exponent Lebesgue spaces and which are subject

to constant rank differential constraints is studied via Γ-convergence [3], [4].

We extend, in several directions, the corresponding Γ-convergence results in [2]

and [5].

A number of highly degenerate nonlinear partial differential equations arise

as Aronsson equations associated to variational principles for the limiting func-

tionals, including the ∞-Laplace equation (an excellent survey on this equation

and related variational problems can be found in [1]) and its generalization to

the variable exponent case, as well as new systems of PDEs that are relevant

for applications which require considering differential constraints other than

curl v = 0.
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We investigate the uniqueness and multiple nontrivial solutions u(x, t) for per-
turbations µ[(u+v+1)+−1], ν[(u+v+1)+−1] of the hyperbolic system with

Dirichlet boundary condition

utt − uxx = g1((u+ v + 1)+ − 1) in
(

−
π

2
,
π

2

)

×R,

vtt − vxx = g2((u+ v + 1)+ − 1) in
(

−
π

2
,
π

2

)

×R,

where u+ = max{u, 0}, µ, ν are nonzero constants and the nonlinearity (µ +

ν)[(u+ v + 1)+ − 1] crosses the eigenvalues of the wave operator.
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In Esquivel-Avila [1], we studied the quasilinear riser equation

utt + αut + 2βuxxxx − 2[(ax+ b)ux]x +
β

3
(u3

x)xxx

−[(ax+ b)u3
x]x − β(u2

xxux)x = f(u), (x, t) ∈ (0, 1)× (0, T ),

with homogeneous boundary conditions

u(0, t) = u(1, t) = uxx(0, t) = uxx(1, t) = 0, t ∈ (0, T ),

and initial conditions

u(x, 0) = u0(x), ut(x, 0) = v0(x), x ∈ (0, 1),

where α ≥ 0, and a > 0, b > 0, β > 0, and

|f(s)| ≤ µ|s|r−1, ∀s ∈ R, µ > 0, r > 2.

We proved blow up and exponential decay for initial energies E0 < d =

depth of the potential well. In [2], we showed blow up and global existence for

initial energies E0 ≥ d. In this talk we want to present these results and list a

set of open problems.
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Global Existence and Uniqueness of Solutions to a Model of
Price Formation
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We study a model, due to J.M. Lasry and P.L. Lions, describing the evolution of

a scalar price which is realized as a free boundary in a one dimensional diffusion

equation with dynamically evolving, non-standard sources. We establish global

existence and uniqueness. This is joint work with L. Chayes, M. Gualdani and

I. Kim.
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We consider the class of matrix quasielliptic operators L(Dx) in R
n. This class

belongs to that of quasielliptic operators introduced by L.R. Volevich [1] and

includes homogeneous elliptic operators, elliptic and parabolic operators in the

sense of Petrovskii, elliptic operators in the sense of Douglis–Nirenberg, ho-

mogeneous quasielliptic operators. The main results are isomorphism theorems

for L(Dx) in special scales of weighted Sobolev spaces W l
p,σ(R

n). These results

imply some well-known isomorphism theorems for elliptic operators and a num-

ber of new isomorphism theorems for elliptic and parabolic operators in R
n.

Some of the mentioned results were established by the author in [2, 3, 4]. Iso-

morphism theorems have numerous applications in the theory of Sobolev type

equations [5].

This research was supported by the Russian Foundation for Basic Research

(project no. 10-01-00035), by the Federal Target Grant “Scientific and Edu-

cational Personnel of Innovation Russia” for 2009–2013 (government contract

no. 02.740.11. 0429), and by the Siberian Branch of the Russian Academy of

Sciences (project no. 85).
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Using the I-method, created by Colliander, Keel, Staffilani, Takaoka and Tao

[1]–[4], we prove that the initial value problem (IVP) for the critical generalized

KdV equation ut + uxxx + (u5)x = 0 on the real line is globally well-posed in

Hs(R), s > 3

5
, with the appropriate smallness assumption on the initial data.

This improves the previous result by Fonseca, Linares and Ponce [5].
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The context of the considered shock-turbulence interaction assumes a minimal

nonlinearity − in the form of a nonlinear subconscious [in the sense of P.D.

Lax and A. Majda]. The interaction solution is constructed as an admissible

solution.

The present analysis has essentially two objectives: (a) finding an explicit,

closed, and optimal form for the interaction solution, and (b) offering an ex-

haustively classifying characterization of this mentioned solution.

Realizing the objective (a) is connected with: (a1) considering a singular

limit of the interaction solution, (a2) considering a hierarchy of (natural) parti-

tions of the singular limit, (a3) inserting some (natural) gasdynamic factoriza-

tions at a certain level of the mentioned hierarchy and (a4) noticing a compat-

ibility of these factorizations (indicating a gasdynamic inner coherence), (a5)
predicting some exact details of the interaction solution, (a6) indicating some

parasite singularities [= strictly depending on the method] to be compensated

[= pseudosingularities], (a7) re-weighting the singular limit of the interaction

solution.

Realizing the objective (b) is connected with finding some Lorentz argu-

ments of criticity. The interaction solution appears essentially to (exhaustively)

include a subcritical and respectively a supercritical contribution distinguished

by differences of a “relativistic” nature. Precisely: in the singular limit of the in-

teraction solution the emergent sound is singular in the subcritical contribution

and it is regular in the supercritical contribution. This “relativistic” discontinu-

ity in the nature of the emergent sound, corresponding to the singular limit of

the interaction solution, appears to be dissembled (hidden) in the re-weighted

interaction solution.

The structure of the present interaction solution is associated first, from

a classifying prospect, to M.J. Lighthill’s fundamental representation of the

shock-turbulence interaction. • It is noticed that the present interaction solution

parallels and extends, from an analytical prospect, H.S. Ribner’s representation

and computational approach corresponding to the interaction between a shock

discontinuity and a planar vortex whose axis is parallel to this discontinuity.

• The details of the “relativistic” separation between a subcritical character

and a supercritical character are finally compared with the criticity arguments

considered in the recent fundamental numerical studies on the shock-turbulence

interaction due to S.K. Lele or K. Mahesh, S.K. Lele and P. Moin.
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In this talk we show that an asymptotically linear elliptic boundary value prob-

lem has at least seven solutions. We consider the nonlinear Dirichlet problem

{

∆u+ λf(u) = 0 in Ω,
u = 0 on ∂Ω,

(1)

where Ω ⊂ R
N (N ≥ 2) is a smooth bounded region, ∆ is the Laplacian

operator, and f : R → R is a nonlinear function of class C1. We assume that

f(0) = 0, f ′(0) = 0, lim
|t|→∞

f ′(t) = 1, and tf ′′(t) ≥ 0 for all t ∈ R. We will

denote by 0 < λ1 < λ2 ≤ · · · ≤ λk ≤ · · · the sequence of eigenvalues of −∆

with zero Dirichlet boundary condition in Ω. Our main result is:

Theorem 1. If k ≥ 2, λk < λk+1 then there exists ε > 0 such that if λ ∈
(λk, λk + ε) then (1) has at least seven solutions.

We prove Theorem 1 by using the mountain pass theorem, Lyapunov-Schmidt

arguments, existence of solutions that change sign exactly once, and bifurcation

properties.
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[5] J. Cossio, S. Herrón, C. Vélez, Existence of solutions for an asymptotically linear

Dirichlet problem via Lazer-Solimini results, Nonlinear Analysis, 71 (2009) No.1–2,
66–71.
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We wish to present a minimax formula for the principal eigenvalues of a (gen-

erally non selfadjoint) elliptic problem of the form

{

− div (A(x) ∇u)+ < a(x),∇u > + a0(x) u = λ m(x) u in Ω,
u = 0 on ∂Ω,

where m(x) is a weight function which may be indefinite. Several applications

can be considered, which concern for instance the antimaximum principle or

some inverse problems. In this talk we will concentrate on the use of that

formula to study the asymptotic behavior of the principal eigenvalues when the

first order coefficient (drift term) a(x) becomes larger and larger. Such a study

is partly motivated by some questions from nonlinear propagation. (Joint work

with T. Godoy and S. Paczka from Córdoba, Argentina).
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These are results of the papers coauthored with A. Komech, H. Spohn, and

B. Vainberg, see [1] and citations therein. We consider some systems which

describe an interaction of a field in R3 (for Klein-Gordon, wave, and Maxwell

fields) with a relativistic charged particle of position q(t) and momentum p(t)
at a time t. For the Maxwell field the system, in hamiltonian variables, reads

Ė(x, t) = −∆A(x, t)−Πs(ρ(x− q(t))q̇(t)), Ȧ(x, t) = −E(x, t),

q̇(t) =
P (t)−Aρ(q(t), t)

[

1 +
(

P (t)−Aρ(q(t))
)2
]1/2

, Ṗ (t) = ∇(q̇(t) ·Aρ(q(t), t))

∇ · E(x, t) = 0, ∇ ·A(x, t) = 0.

Here Π̂s is the projection onto the space of divergence-free vector fields and

Aρ(x, t) =

∫

A(y, t)ρ(x− y)dy.

The system is translation-invariant and admits soliton-type solutions

Ya,v(t) = (Ev(x−vt−a), Av(x−vt−a), vt+a, Pv), Pv = v/
√

1− v2+〈ρ,Av〉

The states Sa,v = Ya,v(0) form the soliton manifold S = {Sa,v : a, v ∈ R3, |v| <
1}.

Our main result is the asymptotics of the type

(E(x, t), A(x, t)) ∼ (Ev±
(x−v±t−a±), Av±

(x−v±t−a±))+W0(t)Ψ±, t → ±∞.
(1)

Here W0(t) is the group of the free wave equation, Ψ± are scattering states.

Theorem Let i) ρ satisfies certain regularity conditions and the Wiener con-

dition ρ̂(k) =
∫

eikxρ(x)dx 6= 0 ∀ k ∈ R3 \ {0};
ii) ρ̂ has the fourth order zero at the point k = 0;
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iii) the initial data are close to the solitary manifold in a weighted Sobolev

space with sufficiently large weight.

Then the asymptotics (1) holds in global energy norm with a remainder

tending to zero at a power rate in t.
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We are developing Riemann-Hilbert (RH) approach to scattering problems in

elastic media. The approach is based on a version of RH method introduced

in nineties by A. Fokas [1] for studying boundary problems for linear and inte-

grable nonlinear PDEs. The suitable Lax pair formulation of the elastodynamic

equation is obtained. The integral representations obtained from this vector Lax

pair are applied to Rayleigh wave propagation in an elastic quarter space and

half space. This reduces the problem to the analysis of certain underdeter-

mined matrix RH problem on a torus. We showed that the problem can be in

fact re-formulated as a well-posed RH problem with a shift. Some results of the

described analysis will be discussed. Part of this work is done jointly with J.

Kaplunov.
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The paper is devoted to weighted and non-local boundary value problems in

a half-plane for a forth order elliptic equation with the order degeneration

on a part of the boundary. Weighted boundary operators are second and third

order differential operators. To these mathematical problems lead two following

problems for s.c. cusped Kirchhoff-Love plates: (i) on the edge of the plate the

bending moment and generalized force (concentrated along the plate edge in

the case of a cusped plate) are prescribed; (ii) on the edge of the plate the

concentrated at point [at the origin of the coordinate system; in the case of

a non-cusped plate concentrated along the vertical segment passing through

the point (0, 0)] bending moment and generalized shearing force are prescribed.

Both the problems are solved in the explicit form. About cusped Kirchhoff-Love

plates see [1].
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We consider the global existence of strong solutions of the 3D incompressible

Navier-Stokes equations. We in particular show that a set of all initial data in

D(A
1

2 ) with which global strong solutions exist with some “growth property”

is open and locally δ-convex.
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In the report we consider the boundary value problems (BVP) for a loaded heat

conduction operator (one-dimensional in the space variable) in a quarter-plane

which relates to the class of functional-differential operators and has the form

Lu− λBu, where L is the differential part and B is the loaded part.

The operator in question is peculiar since the spectral parameter λ is the

coefficient of the loaded summand, the order of the derivative in the loaded

summand is equal to that of the differential part of the operator, and of the

load point defined by the function x(t) moves with a variable velocity, i.e., the

derivative x′(t) is not always constant.
Moreover, the load operator B in the generalized spectral problem Lu =

λBu of this report is not invertible. Such operator L− λB is called spectrally

loaded.

In the domain Q = {x, t|x > 0, t > 0}, we consider the BVP

(L− λB)u =

{

ut − uxx + λuxx|x=tω = f,

u(x, 0) = u(0, t) = 0,
(1)

(L∗ − λB∗)v =

{

−vt − vxx + λδ′′(x− tω)⊗
∫
∞

0
v(ξ, t)dξ = g,

v(x,∞) = v(0, t) = v(∞, t) = vx(∞, t) = 0,
(2)

where λ ∈ C is spectral parameter, ω ∈ (−∞,∞).
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The BVP (2) is adjoint to problem (1).

Here the loaded summand λuxx|x=tω in the equation (1) is not a weak per-

turbation of the differential part ut − uxx and the loaded differential operator

reveals some new properties not enjoyed by the operators with weak perturba-

tion.

We demonstrate that the BVP (1) under consideration is Noetherian and

has finite index for some strictly described values of the spectral parameter λ
in the complex plane C [1], [2] and the real parameter ω.
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Let G : R2n → R be a differentiable function with G(0, . . . , 0) = 0 and G′ be

its gradient. We show the existence of at least m nontrivial periodic solutions

of the nonlinear Hamiltonian system

ż = J(G′(z)), (1.1)

where z : R → R2n, ż = dz
dt
, J =

(

0 −In
In 0

)

, In is the n− dimensional

identity matrix. Let a · b and | · | denote the usual inner product and norm on

R2n. Let z = (p, q), p = (z1, · · · , zn), q = (zn+1, · · · , z2n) ∈ Rn. We assume

that G satisfies the following conditions:

(G1) G : R2n → R is C1 with G(0, . . . , 0) = 0.

(G2) There exists h ∈ N such that

h < lim inf
|z|→∞

G′(z) · z

|z|2
< h+ 1.

(G3) There exists m ∈ N such that

h+ 2m < lim inf
|z|→0

G′(z) · z

|z|2
< h+ 2m+ 1,



356 Partial Differential Equations

or

h− 2m− 1 < lim sup
|z|→0

G′(z) · z

|z|2
< h− 2m.

(G4) There exists an integer Γ such that Γ ≤ G′
(z)·z

|z|2
≤ Γ + 1.
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Birkhäuser, Boston. Basel. Berlin (1993).

[2] P. H. Rabinowitz P. H., Minimax methods in critical point theory with applications

to differential equations, CBMS. Regional Conf. Ser. Math., 65, Amer. Math. Soc.,
Providence, Rhode Island (1986).

❖ ❖ ❖

On the Parametric Interest of the Black-Scholes Equation

Amnuay Kananthai

Department of Mathematics, Faculty of Science, Chiang Mai University, Chiang Mai

50200, Thailand

E-mail: malamnka@science.cmu.ac.th

2000 Mathematics Subject Classification. 91B28, 35K05

We have discovered some parametics λ in the Black-Scholes equation which

depend on the interest rate r and the volatility σ and later named the parametic

interest. On studying the parametic interest λ, we find that such λ gives the

sufficient condition for the existence of solutions of the Black-Scholes equation

which is either weak or strong solutions. Related topics could be seen in [1], [2],

and [3].
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We consider interior source methods for solving acoustic or electromagnetic

scattering problems, which are usually posed in an exterior domain. Interior

source methods replace the differential equations by an integral equation, which,

in contrast to boundary element methods are set on a closed curve or a closed

surface inside the scattering body. This gives integral equations of type

∫

γ

K(x, y)u(y)dSy = f(x), x ∈ Γ,

where γ and Γ (the boundary of the scatterer) are some closed disjoint curves

or surfaces. If Γ and γ are analytic, then this is an integral equation of the

first kind with an analytic kernel. Results about existence and uniqueness of

the solution can often be obtained only in spaces of linear analytic functionals,

and in general case, only density of the range of the integral operator can be

proved.

We look for approximate solutions of the integral equation as linear com-

binations of Dirac’s δ-functions with supports on γ, because of simplicity of

the corresponding solution of the differential equation. The coefficients of the

linear combination can be determined either by collocation or by minimizing

some convex functional of the residual. This method is also known as discrete

source method [1], but no convergence rates have been obtained.

In two-dimensional case, if Γ is analytic it is possible to choose γ and the grid

so that the convergence rates of the approximate solutions of both the integral

and the original partial differential equations are exponential in the number of

variables. If Γ has corners, the collocation method still converges, if one chooses

the interior curve, the supports of the δ-functions and the collocation points

carefully, but the convergence rate deteriorates to algebraic (see [2]).

In three-dimensional case the L2-minimization method always converges,

and in certain cases the convergence is exponential. For the collocation method

the convergence is still an open question.
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The propagation of surface wave group is modeled mathematically by the non-

linear Schrödinger (NLS) equation (Benney and Newell, 1967; Whitham, 1974;

Yuen and Lake, 1982). The equation has applications not only in hydrodynam-

ics, but also in nonlinear optics, nonlinear acoustics, plasma physics and so

on. It has been studied extensively both theoretically and numerically. In this

presentation, we implement the NLS equation with non constant dispersive

and nonlinear coefficients to describe the wave propagation over slowly varying

bottom, as has been derived by Djordjevic and Redekopp (1978). A numer-

ical scheme using compact finite difference method from Xie et al (2009) is

adopted, modified and developed to obtain a better understanding of the wave

propagation over slowly varying bottom on a wave tank. A comparison with

approximate solution obtained by Benilov and Howlin (2006) is also discussed.
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In this talk we present exact solutions of Zakharov-Kuznetsov’s equation in

(1+3) dimensions with an arbitrary power law nonlinearity. The method of

Lie symmetry analysis will be used to carry out the integration of Zakharov-

Kuznetsov’s equation. The solutions obtained are cnoidal waves, periodic solu-

tions, singular periodic solutions and solitary wave solutions. Subsequently, the

extended tanh function method and the G′/G method will also be used to inte-

grate the Zakharov-Kuznetsov’s equation. Finally, the non-topological soliton

solution will be obtained by the aid of ansatz method. Numerical simulations

throughout the paper will be given to support the analytical development. For

some of the work done on Zakharov-Kuznetsov’s equation see [1, 2, 3].
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E-mail: koksi@mat.umk.pl

2000 Mathematics Subject Classification. 47J35, 47J15, 37L05



360 Partial Differential Equations

We present a method of finding T -periodic solutions for the following problem

u̇(t) = −Au(t) + λu(t) + F (t, u(t)), t > 0 (2)

where T > 0, λ > 0, a linear operator A : D(A) → X is such that −A generates

a compact C0 semigroup {e−tA}t≥0 on X := L2(Ω) and F : [0,+∞)×X → X is

the Nemytskii operator for a time T -periodic bounded mapping f : [0,+∞) ×
Ω × R → R where Ω ⊂ R

n is open and bounded. Motivated by [1], [3], we

consider the case at resonance i.e. N := Ker (λI −A) 6= {0}.
The idea of translations along trajectories is used, that is, periodic solutions

of (2) are found as fixed points of ΦT : X → X being the translation operator

associated with (2). Define g : N → N by g(u) :=
∫ T

0
PF (s, u) ds for u ∈ N ,

where P : X → X is an orthogonal projection ontoN . We show that if Ker (λI−
A) = Ker (λI − A∗) = Ker (I − eT (λI−A)), then under some Landesman–Lazer

type condition and standard assumptions on F

degLS(I − ΦT ,W ) = (−1)µ+dimN degB(g,W ∩N) (3)

provided W ⊂ X is an open bounded neighborhood of the origin such that

g(u) 6= 0 for u ∈ ∂N (W ∩ N), where degLS and degB stand for the Leray-

Schauder and Brouwer degree, respectively, and µ is the sum of the algebraic

multiplicities of eigenvalues of eT (λI−A), lying in (1,+∞). The formula (3)

together with a guiding function argument provides an effective criterion for

the existence of T -periodic solutions for (2), which may be applied to many

classes of partial differential equations.
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We consider the global existence of strong solutions of the 3D Navier-Stokes

equations.

1. We first show by a simple argument that a strong solution exists globally

when the product of L2 norms of the initial velocity and the gradient of

the initial velocity are small enough.

2. We next consider a thin domain and we present some improvement on

the global existence. Generalizing this framework, we introduce a new

approximation and investigate its global existence.

3. We finally investigate a global stability of solutions.
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Let Ω be a bounded smooth domain in RN , N ≥ 2, and let us denote by

d(x) =dist(x, ∂Ω). We deal with a priori estimates, existence and regularity for

solutions of nonlinear elliptic equations that are singular at the boundary. The

model problem is the following:

−α∆u+ u− σ
∇u · ∇d

d(x)
+ dβ(x)|∇u|2 = f(x) in Ω, (4)

where f is W 1,∞
loc

(Ω) function, and α, β, σ > 0.
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The main goal is to prove, under suitable assumptions, Lipschitz estimates

for solutions of (4) and, furthermore, to study the stability of such estimates

as α vanishes, i.e. for the associated first order equation.

The interest in such a class of equations arises from the application to a

stochastic control problem with state constraint. Actually, this model has been

introduced by J.M. Lasry and P.L. Lions in [1] and that been already studied

by the authors in a previous paper (see [2]).
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This talk is about the solvability of an initial-boundary value problem of a semi-

linear wave equation with space-time dependent coefficients and the so-called

memory boundary-like antiperiodic condition. The main tool is the contraction-

Galerkin method: the Faedo-Galerkin method is applied for the solvability of

a linear problem correspondent to the given problem, then the existence the

solution of the given problem is dealt with by a contraction. This study is a

generalization of [1, 2, 3].
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We study the problem of Cauchy for system of equations
{

ut = ∇ · (k(u)∇u)− χ∇ · (u∇v), t > 0, x ∈ Rn,

∆v = −u, t > 0, x ∈ Rn,
(5)

u(0, x) = u0(x) ≥ 0, x ∈ Rn, (6)

where k ≥ 0, χ− coefficient of chemotaxis.The main question is to define con-

ditions on k, χ and initial function u0(x), under which unbounded solutions of

(5),(6) are not localized. Method of investigation is based on one-parametrical

family {U, V } stationary solutions of system of equations (5):

{

∇ · (k(U)∇U)− χ∇ · (U∇V ) = 0,

∆V + U = 0.
(7)

It is proved, that spatial structure of stationary solutions of system (7) classifies

the evolutional property of solutions of problem (5),(6). We note, that in case

k(u) ≡ 1 system (5) is Keller-Segel model [1]. Method of stationary states are

proposed on monograph [2]. Some other approaches to analysis of system of

chemotaxis performed in [3].
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This study attempts to formulate a pricing model for the weather derivatives,

whose payoffs depend on surface air temperature. Daily temperature data for

the last thirty years is closely analyzed for four cities in U.K. to model a tem-

perature process which captures the daily temperature fluctuations including

the seasonal patterns and the year-on-year up-ward trend behaviour of the tem-

perature. This work further evaluates an arbitrage-free option pricing using a

Gaussian Ornstein-Uhlenbeck model. Keeping in mind that temperature, the

underlying variable of the weather derivative, is non-tradable we consider a risk

premium estimator to find the price of a weather derivatives contract. Finally,

the study provides results based on these models as well as based on Monte

Carlo Simulations.
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A large class of problems in the field of Hydroelasticity involve higher order

boundary conditions associated with Laplace equation as the governing equa-

tion and the eigenfunctions associated with these problems are not orthogonal

in the usual sense. In the present paper, a generalized Fourier type integral

theorem along with the corresponding orthogonal mode-coupling relations as-

sociated with three dimensional Laplace equation are derived to deal with wave

structure interaction problems in infinite water depth. The present expansion

formula is a generalization of the expansion formula developed by Manam et

al. (2006) to deal with two dimensional Laplace equation satisfying higher or-

der boundary conditions. Further, it has been proved that the eigenfunctions

associated with the boundary value problems are linearly dependent. Several

identities associated with the expansion formulae are derived in a straightfor-

ward manner. The utility of the expansion formula is demonstrated by deriving

the expansion formula for flexural gravity wave maker problems in three di-

mensions in the case of infinite water depth. As an application of the expansion

formula for flexural gravity waves, the reflection of flexural gravity waves by

a rigid wall is analyzed. The present results can easily be applied to study

scattering of wave propagation by flexible structures in the field of Acoustic,

Electromagnetic Theory, Elasticity, Ocean Engineering, Polar Sciences and En-

gineering.
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Let L be the closure in the norm of the space Lp(R) (R = (−∞,+∞), 1 ≤ p <
∞) of differential expression

ly = −y
′′

+ qy
′

+ ry, (1)
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defined on the set C∞

0 (R) of arbitrarily differentiable finite functions. Functions

q and r are assumed continuously differentiable and continuous, respectively. In

the case when q = 0, the questions of existence, uniqueness, coercive estimates

and smoothness of solutions of the equation Ly = f have been studied in [1–

4]. If the summand qy
′

in the expression (1) is a small perturbation of the

sum of two others, the results [1–4] can be extended to the general case. It is

interesting to investigate the case when qy
′

does not satisfy these conditions of

subordination, in particular, when q is growing faster than r near infinity. This

work is devoted to this question.
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We analyze existence and nonexistence of positive solutions to problem

(P±) −∆u± |∇u|2 = λ
u

|x|2
+ f in Ω, u = 0 on ∂Ω,

where Ω is a bounded domain containing the origin.

The main results are the following:

i) If the quadratic term in the gradient appears in the equation as a reaction

term (−|∇u|2) and λ > 0, then there is no solution to problem (P−) (even

in a very weak sense).
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ii) If the quadratic term in the gradient appears in the equation as an ab-

sorption term (+|∇u|2), then there exists a positive solution to (P+) for

all λ > 0 and f ∈ L1(Ω).
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A Numerical analysis is performed to study the transient free convective bound-

ary layer flow of couple stress fluid past an infinite vertical cylinder, in the

absence of body forces and body couples. The transformed dimensionless gov-

erning nonlinear set of equations for the flow and heat transfer characteristics

are derived and solved by using the Crank-Nicolson type of implicit finite dif-

ference method. The results concerning the velocity and temperature profiles

of both couple stress and Newtonian fluids across the boundary layer are illus-

trated graphically and discussed for different values of Prandtl number. Tran-

sient effects of velocity and temperature are analyzed and compared with those

of the Newtonian fluids. The heat transfer characteristics are analyzed with the

help of average skin-friction and Nusselt number and are shown graphically. It

is observed that in couple stress fluids the deviation of transient velocity and

temperature profiles from the hot wall is much more than that of the Newtonian

fluids.
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In this paper, we study the global structure stability of the Riemann solution

u = U(x
t
) for general n×n quasilinear hyperbolic systems of conservation laws

under a small BV perturbation of the Riemann initial data. We prove the global

existence and uniqueness of piecewise C1 solution containing only n contact

discontinuities to a class of the generalized Riemann problem, which can be

regarded as a small BV perturbation of the corresponding Riemann problem, for

general n×n linearly degenerate quasilinear hyperbolic system of conservation

laws; moreover, this solution has a global structure similar to the one of the

self-similar solution u = U(x
t
) to the corresponding Riemann problem. Our

result indicates that this kind of Riemann solution u = U(x
t
) mentioned above

for general n× n quasilinear hyperbolic systems of conservation laws possesses

a global nonlinear structure stability under a small BV perturbation of the

Riemann initial data. As an application, we apply the result to the system of

the planar motion of an elastic string.
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We study the initial value (IV) problem (−∞ < x < ∞) and the initial-

boundary value (IBV) problem (0 < x < ∞) for the Camassa–Holm equation [1]

ut − utxx + 2κux + 3uux = 2uxuxx + uuxxx, t > 0

with κ > 0, which is a model equation describing the unidirectional propaga-

tion of waves in shallow water over a flat bottom. Our approach is based on

expressing the solution in terms of the solution of a matrix Riemann–Hilbert

problem formulated in the complex plane of a spectral parameter appearing in

the Lax pair representation [1], [2] of the Camassa–Holm equation. The jump

conditions for the corresponding RH problem are expressed in terms of the

spectral functions, which in turn are expressed in terms of either initial data

u(x, 0) (for the IV problem) or initial and boudary (at x = 0) values u(0, t),
ux(0, t), and uxx(0, t) (for the IBV problem). In the latter case, the compatibil-

ity of initial and boundary values is characterized in terms of algebraic relations

among the corresponding spectral functions. We develop the nonlinear steepest

descent method [3] and compute the long-time asymptotics of the solutions,

which appear to be qualitatively different in different domains of the phase

space.
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The governing equations for generalized thermoelasticity of a mixture of an elas-

tic solid and a Newtonian fluid are formulated in the context of Lord-Shulman

and Green-Lindsay theories of generalized thermoelasticity [1-3]. These equa-

tions are solved to show the existence of three coupled longitudinal waves and

two coupled transverse waves, which attenuate and are dispersive in nature. Re-

flection from thermally insulated stress free surface is considered for incidence

of both coupled longitudinal wave and coupled transverse wave. Reflection coef-

ficients of reflected waves are computed numerically with the angle of incidence

for a particular example of the present model.
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In this paper, the method of Lie group invariance is used to obtain a class of

self-similar solutions to the problem of shocks in an non-ideal gaseous medium

and to characterize analytically the state-dependent form of the medium ahead

for which the problem is invariant and admits self-similar solutions. For a par-

ticular case of power law, shock path is recovered as special case depending on

the arbitrary constants occurring in the expression for the generators of the

transformation. Numerical calculations have been performed to obtain the sim-

ilarity exponents and the profiles of the flow variables, and comparison is made

with the known results.
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The Riemann problem for a quasilinear hyperbolic system of equations govern-

ing the one dimensional unsteady simple wave flow of an inviscid and perfectly

conducting compressible fluid, subjected to a transverse magnetic field, is solved

approximately. This class of equations includes as a special case the Euler equa-

tions of gasdynamics. It is noticed that in contrast to the gasdynamic case, the

pressure is varying across the contact discontinuity. The iterative procedure is

used to find densities, between left acoustic wave and right contact disconti-

nuity, and between right contact discontinuity and right acoustic wave, respec-

tively. All other quantities follow directly throughout the (x, t)-plane, except
within rarefaction waves, where an extra iterative procedure is used along with

Gaussian quadrature rule to find particle velocity; indeed, the determination of

the particle velocity involves numerical integration when the magneto-acoustic

wave is a rarefaction wave. Lastly, we discuss numerical examples and study

the solution influenced by the magnetic field.
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We present some recent results on singular solutions of the problem of travelling

gravity surface water waves on flows with vorticity. It has been known since the

work of Constantin and Strauss [1] that there exist spatially periodic waves of

large amplitude for any vorticity distribution. Building on earlier results [2], we

show [3] that, for any nonpositive vorticity distribution, a sequence of large-

amplitude regular waves converges in a weak sense to an extreme wave with

stagnation points at its crests. The proof is based on new a priori estimates,

obtained by means of the maximum principle, for the fluid velocity and the

wave height along the family of regular waves whose existence was proved in

[1]. We also show [2, 3, 4] that this extreme wave has corners of 120◦ at its crests,

as conjectured by Stokes in 1880. Further extensions of the Stokes conjecture,

obtained by new geometric methods [4], will also be presented.
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The complexity of nematic liquid crystals is described, in Landau-de Gennes

theory, through functions defined on two or three-dimensional domains and
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taking values into the set of Q-tensors, that is three-by-tree symmetric traceless

matrices.

The main mathematical challenges are caused by the necessity to finely

manipulate “high dimensional” objects. This large dimensionality of the domain

and target space allows for specific features inaccessible in lower dimensions (for

instance one needs at least a 2D domain to have a real analytic matrix-valued

function with discontinuous eigenvectors). Also, in 2D domains, in the so-called

“constrained theory”, one can express lifting questions in terms of familiar

complex analysis problems, but in 3D one needs to construct the appropriate

analogue of the complex analytic language in order to effectively deal with the

lifting problem, and this is yet to be done.

I will present some natural physical questions and recent advances in their

mathematical treatment, advances that involve a non-standard combination of

diverse tools from analysis, algebraic topology, Riemannian geometry, regularity

theory and qualitative properties of elliptic and parabolic systems.
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We consider the Proca equation which is the Maxwell equation of electromag-

netism with mass in the ultra relativistic limit using Snyder-Sidharth Hamil-

tonian. There is now an extra term involving an extra parity non conserving

term and we investigate the consequence both for Proca equation and Maxwell

equation and also for understanding of Kaon’s decay.
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We have studied the [1], [2] and [3] C-field cosmology with Bianchi type-V

space time in N-dimensions. Using methods of [4], the solutions have been

studied when the creation field C is a function of time t only. The geometrical

and physical aspects for model are also studied.
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Experiments on jet flows indicate that the overall sound pressure level peaks

at small observation angles to the jet axis [1]. Recent work using the gener-

alized acoustic analogy formalism [2] has focused on the kinematic theory of

the two-point, time delayed Reynolds stress auto-covariance tensor [3]. Under

this approach the starting point is an exact result that expresses the far field

acoustic spectrum as the convolution product of a propagator and the (gener-

alized) Reynolds stress auto-covariance tensor, which is a tensor of rank four

with one vector dependence. The problem then becomes one of modeling this

tensor in order to reduce its number of independent components and then to
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determine the consequences for the acoustic spectrum. In this paper, we show

the SO(3) Lie group representation [4] can be used to decompose the Reynolds

stress auto-covariance tensor into a form that depends upon 6 independent

components. The result is fairly general and indicates a “paradigm” of two in-

dependent groups of acoustic source terms exist that both contribute to the

overall sound pressure level, and can explain the observation from experiments.
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The β-function Over Curved Space-time Under ζ-function
Regularization

Susama Agarwala

This paper generalizes the Connes-Marcolli renormalization bundle to scalar

field theories over a curved space-time background, specifically looking at ζ-
function regularization. It further extends the idea of renormalization mass scale

from a scalar change of metric to a conformal change of metric. In this context,

it becomes useful to think of the renormalization mass scale as a complex 1-

density over the background manifold.
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An exact solution to the problem of an unsteady three dimensional MHD flow

of an incompressible viscous electrically conducting fluid past an impulsively

started horizontal porous plate taking into account the Hall current is presented.

It is assumed that the fluid rotates with a constant angular velocity about the

normal to the plate and a uniform magnetic field is applied along the normal

and directed into the fluid region. The non-dimensional equations governing

the flow are solved by Laplace Transform Technique. The primary velocity, the

secondary velocity, the skin friction at the plate due to the primary motion

and the skin friction at the plate corresponding to the secondary motion are

demonstrated graphically. The effects of the physical parameters involved are

discussed graphically and physically interpreted.
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In the present paper, we have studied the viscous contributions to the pressure

for the potential flow analysis of Kelvin-Helmholtz instability of two viscous

fluids in the presence of electric field acting in the direction of streaming. We

have introduced the viscous pressure in the normal stress balance along with

irrotational pressure and it is assumed that the viscous contributions to the

pressure will resolve the discontinuities between the tangential stresses and

tangential velocities at the interface. It has been observed that the viscous

contributions to the pressure for potential flow solution is more stable than

viscous potential flow solution.
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Thermal convection in fluids is one of the most studied instability problems

[1]. Plane couette flow between two moving horizontal boundaries is another

problem that has attracted scientists. Plane couette flow is linearly stable for

all Reynold numbers, but heated plane couette flow becomes unstable after the

temperature difference between the boundaries reaches certain critical value.

Thermal convection plays a central role in transporting heat and material in

vertical direction. Convection in a horizontal layer of fluid, heated from below

and subjected to shear velocities at the horizontal boundaries has many applica-

tions in industry, in cooling of electronic instruments. Ferrofluids act as a model

fluid to study thermomagnetic convection. Magnetic field affects the onset of

convection in ferrofluids and this leads to many technological applications [2].

In this paper thermomagnetic convection in horizontal layer of a ferrofluids,

in the presence of shear of the base flow and with external magnetic field in

the normal direction is investigated [3]. The numerical technique called the

Chebyshev tau method is used to study the stability problem. The stability

of the flow is determined in terms of Rayleigh number, which is a measure of

temperature gradient across the fluid layer. The effect of shear flow is observed

through variation of Reynold number.

It is observed that the onset of the longitudinal rolls does not depend upon

the shear of the base flow and they always dominate. In the absence of the shear

flow, the rolls in any direction appear at the same value of temperature gradient.

The onset of transverse rolls depends upon the shear velocity determined by

Reynold number. The onset of longitudinal rolls is also independent of the

Prandtl number. But increase in Prandtl number increases the required value

of the temperature gradient for the onset of transverse rolls. Magnetic field

also induces instability. In the absence of gravity, instability is induced at much

higher value of magnetic parameter M for the layer of ferrofluid with moving

boundaries.
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The idea how to generalize a stereographic projection to an arbitrary semisimple

Lie group is expounded in [1]. It is based on comparing Iwasawa and Gauss-

Bruhat decompositions of the group. As a result one obtains a projection from

a dual space onto an adjoint or coadjoint orbit. In the case of group SU(2) it

turns into the well-known stereographic projection onto the extended complex

plane.

At the same time, this Lie group construction gives a uniform complex para-

metrization for orbits. The parametrization is performed in terms of canonical

coordinates in a nilpotent subgroup of the complexified semisimple Lie group

[2]. A Kählerian potential for an orbit and the corresponding Kählerian metrics

and two-form are easily expressed in terms of these complex parameters.

Moreover, a lot of physical applications arise. A phase space for an integrable

Hamiltonian system usually has an orbit structure. In particular, a mean field

of magnetization in a spin lattice lives and evolves on coadjoint orbits of a Lie

group over the corresponding Lie algebra. Dealing with spin s lattice and taking

into account higher powers of exchange interaction, it is possible to represent

a complete associative algebra of spin operators as isu(2s+1). An evolution

of the mean field is governed by a Landau-Lifshitz-like equation, proper for

each orbit [3]. Some topological excitations can be represented by holomorphic

functions assigned to the complex parameters [4].

Another application was performed for the theory of controllability. The

method of stereographic parametrization allows to reconstruct a Hamiltonian

for a unitary evolution of a system under control. Note that a unitary evolution

is localized on an adjoint orbit of some unitary group over the corresponding

algebra [5].
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The problem of oblique surface wave propagation over a small deformation in a

channel flow consisting of two layers is considered. The upper fluid is bounded

by a fixed wall, which is an approximation for the free surface, and the lower

fluid is bounded by the bottom surface having a small deformation. A simpli-

fied perturbation analysis is employed to calculate the first-order corrections

to the velocity potentials in two fluids by using the Green’s integral theorem

in a suitable manner, with the introduction of appropriate Green’s functions,

and also to calculate the reflection and transmission coefficients in terms of in-

tegrals involving the shape function c(x) representing the bottom deformation.

Two-dimensional linear water wave theory is utilized for formulating the re-

lated boundary value problem. Three special examples of bottom deformation

are considered to validate the results. While considering a patch of sinusoidal

ripples (having the same wave number), it is observed that the reflection co-

efficient is an oscillatory function in the ratio of twice the component of the

wave number along x-axis and the ripple wave number. When this ratio ap-

proaches one, the theory predicts a resonant interaction between the bed and

the interface, and the reflection coefficient becomes a multiple of the number of

ripples. Similar results are observed for a patch of sinusoidal ripples having dif-

ferent wave numbers. These theoretical observations are supported by graphical

results.

This work is motivated mainly by the works done in [1], [2] and [3].
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The aim of the work is to shed some light on the structure of the duality

[1] (usually called AdS/CFT) between quantum gauge theories in Minkowski

space-time and theories of strings propagating in Anti-deSitter (AdS) man-

ifolds. In particular, we study the supersymmetric sigma model with target

space AdS4 ×CP3, first introduced in [2]. When quantized in the background

of a certain classical solution, the worldsheet theory exhibits an interesting

spectrum of particle-like states, and there exists a limit, when some of the par-

ticles become massless. We find a Lagrangian governing the dynamics of these

massless modes — a sigma model with target space CP3 and a Dirac fermion.

We discuss, whether the S-matrix of this theory factorizes, that is if this theory

is completely integrable. The latter is important for the integrability of the

ambient AdS4 ×CP3 model — a question, which has recently attracted a lot

of attention.

We provide the necessary definitions and explain the origin of the conjec-

tures to make the exposition accessible to a person unfamiliar with the subject.

In this way we hope to attract the attention of the mathematical community to

the problem of finding justifications (or even proofs) for the AdS/CFT duality

other than the original one [1]. This might well play a role in a future solution

of the “Yang-Mills mass gap problem”.
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The exact solution for the energy spectrum of a one-dimensional Hamiltonian

with local two-site interactions and periodic boundary conditions is determined

[1]. The two-site Hamiltonians commute with the symmetry algebra given by

the Drinfeld double D(D3) of the dihedral group D3 [2]. As such the model de-

scribes local interactions between non-Abelian anyons, with fusion rules given

by the tensor product decompositions of the irreducible representations of

D(D3). The Bethe ansatz equations which characterise the exact solution are

found through the use of functional relations satisfied by a set of mutually

commuting transfer matrices, following techniques developed in [3, 4, 5]. The

energy eigenvalues of the non-Abelian anyonic chain are found to be generically

functions of two sets of roots of a single set of Bethe ansatz equations.
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An exotic form of negative pressure matter called dark energy is used to ex-

plain the acceleration of the universe inferred from the the observations of

distant type Ia supernovae, cosmic microwave background radiation (CMBR),

and Sloan Digital Sky Survey (SDSS). Gao et al [1] has discussed how the

holographic dark energy model deals with the two fundamental problems of

cosmology. This holo- graphic dark energy model and its interacting versions

are successful in fitting the current observations [2,3]. Inspired by the holo-

graphic dark energy models, Gao et al [1] proposed another possibility, where

the density is proportional to the Ricci scalar curvature R and named this dark

energy as Ricci dark energy (RDE). In this work we have considered the RDE

in presence of dark matter and with suitable choice of the parameters we have

seen that the equation of state evolves as quintessence. Also we have considered

the correspondence between RDE and other dark energy candidates, namely,

tachyonic field [4], DBI-essence [5] and new age- graphic dark energy [6]. We

have reconstructed the corresponding scalar fields and potentials accordingly.
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Let B denote the Banach space of relatively short range Z
d-invariant inter-

actions, and for each φ ∈ B let Aφ and P (φ) denote the mean energy and

the pressure of φ, respectively. Let S (resp. S Zd

) denote the set of all

(resp. Zd-invariant) states on the spin algebra, and let s denote the mean

entropy map on S Z
d

. Put Z
d
> = {a ∈ Z

d : ai > 0, 1 ≤ i ≤ d} and

Λ(a) = {x ∈ Z
d : |xi| < ai, 1 ≤ i ≤ d} for all a ∈ Z

d
>. For each a ∈ Z

d
>

and each ω ∈ S Zd

, let Ua(ω) denote the a-periodic state obtained from ω by a

standard procedure ([1], Example 4.3.26), and let Va ◦ Ua(ω) ∈ S Z
d

obtained

averaging Ua(ω) along Λ(a). Our main result is the following.

Theorem 1. Let φ ∈ B, let {ϕn : n ∈ N} be a countable dense subset of B and

for each n ∈ N, let ωϕn
be an equilibrium state for ϕn. For each a ∈ Z

d
> put

Pera = {Ua(ωϕn
) : 0 ≤ n ≤ max1≤i≤d ai} endowed with the probability measure

pa,φ(ω) =
e|Λ(a)|s(ω)−

∑
x∈Λ(a)

ω◦τx
(Aφ)

∑

ω′
∈Pera

e|Λ(a)|s(ω′)−
∑

x∈Λ(a)
ω′

◦τx(Aφ)
.

Then the net (
∑

ω∈Pera
pa,φ(ω)δVa(ω)) satisfies a large deviation principle in S

with powers (|Λ(a)|−1) and rate function

Iφ(ω) =







P (φ) + ω(Aφ)− s(ω) if ω ∈ S Z
d

+∞ if ω ∈ S \S Z
d

.

It is known that the mean conditional entropy is smaller than s and coincides

with s on all equilibrium states, but not on all invariant states ([1], Remark pp.

289). The following corollary specifies the relation between both quantities.

Corollary 2. The mean entropy is the upper-regularization of the mean con-

ditional entropy.

Theorem 1 allows us to recover and specify the well-known property that

any Zd-invariant state can be approximated weakly∗ and in entropy by ergodic

states.
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After Gromov, there is a notion of a distance between two metric spaces which

makes the moduli of compact metric spaces itself into a metric space. In this talk

I will describe an attempt to define metrics on stacks and to extend Gromov’s

distance to so-called metric stacks. Time permitting, I will show how metric

stacks relate to Marc Rieffel’s quantum metric spaces, which are in some sense

noncommutative metric spaces, and I will also talk about the applications in

physics which motivate the work.
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Exact solution of unsteady flow past an exponentially accelerated infinite verti-

cal plate with variable temperature is analyzed in the presence of homogeneous

chemical reaction of first order. The dimensionless governing equations of the

fluid flow are solved by Laplace-transform technique for finding the concerntra-

tion of the species, temperature and velocity field. These are presented graph-

ically for different values of physical parameters like thermal Grashof number

(Gr), mass Grashof number (Gc) Schmidt number (Sc), accelerating parameter

(a) and time. The numerical values of skin friction are studied graphically. It is
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observed that the velocity increases with decreasing chemical reaction param-

eter K. Also the velocity increase with increasing values of a, Gr and Gc.
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Adopting a stepwise planned approach to the solution of Hilbert’s sixth prob-

lem (relating to unified axiomatization of physics and probability theory), a

universal scheme of mechanics (accommodating both classical and quantum me-

chanics), called supmech, is developed which combines elements of noncommu-

tative symplectic geometry and noncommutative probability in an observable-

state type algebraic framework. It is basically noncommutative Hamiltonian

mechanics incorporating the extra condition that the sets of observables and

pure states be mutually separating. Consistent description of interaction be-

tween two systems in supmech requires the system algebras to be either both

commutative or both noncommutative with a ‘quantum symplectic structure’

characterized by a universal Planck type constant. Systems in the latter class

(called quantum systems) are shown to inevitably have Hilbert space based

realizations (accommodating rigged Hilbert space based Dirac bra-ket formal-

ism) generally admitting commutative superselection rules; finitely generated

system algebras have faithful irreducible representations. [arXiv : 0909.4606 v3;

1002.2061 (math-ph)]
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We have considered the flat FRW model of the universe which is filled with

only dark energy [1]. The general descriptions of first and second laws of ther-

modynamics are investigated on the apparent horizon and event horizon of the

universe [2]. We have assumed the equation of state of three different types of

dark energy models. We have examined the validity of first and second laws of

thermodynamics on apparent and event horizons for these dark energies. For

these dark energy models, it has been found that on the apparent horizon, first

and second laws are always valid. On the event horizon, the laws are break

down for some dark energy models [3]. For some particular model [4], first law

cannot be satisfied on the event horizon, but second law may be satisfied at the

late stage of the evolution of the universe and so the validity of second law on

the event horizon depends on the values of the parameters only.
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FRW models of universe filled with perfect fluid coupled with massless scalar

field have been studied. The different models of the universe have been obtained

by using a special law of variation for Hubble’s parameter that yields a constant
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value of deceleration parameter. The physical behavior of the models are also

discussed.
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Various moduli spaces, like the Hitchin system, [1], the moduli spaces of abelian

and non-ableian vortices, [2], [3], [4], the moduli space of dimensionally reduced

and modified Seiberg-Witten equations, [5], can be geometrically prequantized

using modifications of Quillen’s deteminant line bundle construction. Using

this, one can construct line bundles on the moduli spaces whose curvatures are

proportional to the sympletic form(s) on the moduli spaces, which puts us in

the setting of geometric prequantization. In the case of the Hitchin system, for

instance, the hyperKähler structure can be prequantized, i.e. one can construct

three prequantum lines bundles whose curvatures are proportional to the three

symplectic forms in the hyperKähler structure
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We consider the problem of existence of first integrals for the class of time de-

pendent Hamiltonian systems which are given as linear combination of Hamil-

tonian vector fields closing under the Lie bracket into a finite dimensional Lie

algebra, with coefficients given by time dependent scalar functions [4]. From a

natural ansatz for the form of time dependent first integrals, we relate their

existence to periodic solutions of an Euler equation on the Lie algebra associ-

ated to the initial Hamiltonian system. Under different criteria, one based on

properties for the Killing form and the other on the exponential map of the

adjoint group of the Lie algebra, we prove the existence of Poisson algebras

of periodic first integrals for a large families of periodic Hamiltonian systems.

We include an application to the dynamics of the Milne-Pinney oscillator [3]

and present a periodic invariant, analogue to that given by Lewis [4] for time

dependent oscillators.
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The geometrically inspired Gotay-Nester constraint algorithm for presymplec-

tic manifolds [1], was originally motivated by the Dirac theory of constraints

[2]. It provides, in particular, a useful way of dealing with implicit differential

equations arising in classical mechanics, such as the Euler-Lagrange equations

for degenerate Lagrangians. In that case, which is the only one considered by

Dirac, it is, in a sense, equivalent to Dirac’s theory.

In this paper we first generalize the Gotay-Nester algorithm for the case of

general Dirac structures (not necessarily integrable) rather than presymplec-

tic forms. For this, we introduce the notion of a Dirac system, which encom-

passes important equations such as Euler-Lagrange, Hamilton and Lagrange-

d’Alembert equations as well as the Kirchoff equations for L-C circuits. We also

generalize the Dirac algorithm, obtaining explicit equations of motion in terms

of brackets. Both algorithms, called CA and CAD algorithms, respectively, are

closely related and, in a sense, equivalent. They provide, in particular, a unified

formalism for dealing with Dirac systems mentioned above, which are often

implicit differential equations.

In recent times the significance of Dirac structures (integrable or not) [3], in

representing geometrically the fundamental equations in several fields, such as

Lagrangian or Hamiltonian mechanics, nonholonomic mechanics, several the-

ories of circuits and interconnected systems, has become clarified, thanks to

the work of many researchers, see [4]–[5], and references therein. In this work

we are interested in the role of Dirac structures in dealing with some implicit

differential equations arising in nonholonomic mechanics, and for that purpose

the integrability condition is too restrictive.
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Newman-Penrose (NP)formalism [6], [2] in general relativity is a tetrad for-

malism in which various geometrical quantities are projected on a chosen null

tetrad basis. Spin coefficients in NP formalism replace connection coefficients

in geometry. The computations involved are very lengthy and complicated.

Applications of spin coefficients are discussed by many authors, in diverse

fields of general relativity and cosmology, like Ahsan et al [1], Hasmani and Ah-

san [3], Hasmani and Katkar [4] and also see Kramer at al [5] for other details.

Motivated by such a large number of applications and looking to the complexity

involved, we have exploited some features of computer algebra package Math-

ematica to carry out algebraic computation of spin coefficients in Newman-

Penrose formalism for given metric and null tetrad. We wish to present this

work.

References

[1] Ahsan, Z.; Ahsan, N. and Ali, S., Bull. Cal. Math. Soc. 93 (5) (2001) 407–422.

[2] Chandrashekhar, S.,Mathematical Theory of Black Holes.Oxford University Press,
New York (1983).

[3] Hasmani A.H. and Ahsan Z., Bull. Cal. Math. Soc. 93 (5) (2008) 557–562.

[4] Hasmani A.H. and Katkar L.N., The Aligarh Bull. of Maths. 27 (1) (2008) 47–52.



Mathematical Physics 393

[5] Kramer D., Stephani H., Herlt E.:Exact Solutions of Einstein’s Field Equations.

Cambridge University Press, Cambridge(1980).

[6] Newman, E.T., Penrose, R., J. Math. Phys. 3 (1962) 566–578.

❖ ❖ ❖

On Several Fifth Virial Coefficients for the Hard Core
Potential

Hiroshi Kajimoto

Faculty of Education, Nagasaki University, Nagasaki-City 852-8521, Japan

E-mail: kajimoto@nagasaki-u.ac.jp

2000 Mathematics Subject Classification. 82B05

As a continuation of [1] I present the integrals of several blocks in the fifth virial

coefficinets for the hard core potential. Some calculations can be extended to

the similar blocks of n-th order.

The cluster expansion of an imperfect gas is expressed by the virial series

pv

kT
= 1 +

B2

v
+
B3

v2
+
B4

v3
+
B5

v4
+ · · · = 1 +

∞
∑

k=1

Bk+1

vk
.

Take the hard core potential with σ twice the radius of the hard shere. B5 has

10 types of different block of fifth order. One of them is the fifth order cycle:

(−2/5)C5 := (−2/5)
∫

f12f23f34f45f51d
3r2d

3r3d
3r4d

3r5 = (4/5)(2π)11/2σ12c5

where c5 :=
∫
∞

0
J3/2(t)

5t−11/2dt. My calculation becomes c5 =
√

2

π
√

π
317

75600
.

By an iteration of Barnes integral and Weber-Schafheitlin integral of Bessel

function, similar caluculations become (−5/6)C6 = (−5/6)(2π)7σ15c6 in B6,

c6 =
∫
∞

0
J3/2(t)

6t−7dt = 1564

637875π2 . The integral of cycle of n-th order is, for

n ≥ 3

−
n− 1

2n
Cn = (−)n+1n− 1

n
(2π)(3n/2)−2σ3(n−1)cn, cn =

∫
∞

0

J3/2(t)
nt2−(3n/2)dt

in Bn, and my calculation becomes

c2m+1 =
9

4

√

π

2

(

2

9π

)m {

5

24
−

3(m− 1)

20
+

3(m− 1)

175
+

(

m− 1

2

)

1

25

}

, m ≥ 1

c2m =
9

5

(

2

9π

)m−1 {

34

567
−

4(m− 2)

105
+
m− 2

175
+

(

m− 2

2

)

1

75

}

, m ≥ 2.
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[2] L. Schwartz, Méthodes Mathématiques pour les Sciences Physiques, 1961, Her-
mann, Paris.

[3] E.T. Whittaker and G.N. Watson, A Course of Modern Analysis, Cambridge Univ.
Press, 1969.

❖ ❖ ❖

Hyperbolic Geometry and Invariant Ratio of Quark Masses

Surendran Karippadath

Bhaskaracharya Pratishthana, Pune, India

E-mail: k.k.surendran@gmail.com

2000 Mathematics Subject Classification. 81T99

In the context of the unsolved problem of the ‘Existence of generations of

Quarks’, the paper attempts to analse the following important observatons:

(a) The square of mean mass of second generation approximately equals the

product of the mean masses of first and third generations.

(b) The invariant ratio very closely approximates the dimensionless physical

constant - the fine structure constant.

This paper attempts to derive the consequences of representing each mean

value as a point along the imaginary axis (in the upper half-plane model) of

the hyperbolic plane, leading to the model the energy realm as hyperbolic

space, with the generations as horocyclic foliation. Moreover, when this cross-

ratio is identified with the Weierstrass elliptic lambda-function we arrive at an

interpretation of the generations in terms of the fundamental modular fibration

of the hyperbolic plane.

Interesting extensions leads to the idea of energy-space duality manifesting

as black-hole horizon and conformal boundary in field theories. The gauge sym-

metries in the standard model of elementary particles are now the the isotropy

groups of the special imaginary quadratic fields as the boundary becomes Com-

plex,Quaternionic and Octonionic.
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In this paper we have obtained set of solutions for a kinematical Λ, viz., Λ ∝

( Ṙ
R
)2 by assuming the barotropic equation of state in the context of Kaluza-

Klein type theory of gravitation. Some results of cosmic density Ω [1], [2] and

[3] and and deceleration parameter q, have been obtained with consideration of

two-fluid structure instead of usual uni-fluid cosmological model.
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The result of gravitational collapse of a compact body is believed to be a sin-

gularity hidden beyond its Schwarzschild radius known as a black hole. In the
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interior black hole region, a remarkable change occurs in the nature of the

space-time, namely the external spatial radial and temporal coordinates ex-

change their characters. So, the interior black hole solution is represented by a

non-static space-time that is with the time-dependent metric coefficient. With

the assumption that the material content of the spherical body is an anisotropic

fluid, we have carried out a brief study of the space time metric in the annular

region between the physical radius and Schwarzschild radius of a spherical star.

The case of isotropic pressures is discussed as a particular case and a regular

solution has been obtained.
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The Kelvin-Helmholtz instability of the plane interface separating two super-

posed viscous electrically conducting streaming Oldroydian fluids permeated

with surface tension and magnetic field in a porous medium is considered. The

stability motion is also assumed to have uniform two dimensional streaming ve-

locity. The stability analysis has been carried out for two highly viscous fluids.

By applying the normal mode technique to the linearized perturbation equa-

tions, the dispersion relation has been derived. As in the case of superposed

Newtonian fluids, the system is stable in the potentially stable case and unsta-

ble in the potentially unstable case, that holds also for the present case. The

behavior of growth rate with respect to kinematic viscosity, elasticity, perme-

ability of porous medium, surface tension and streaming velocity are examined

numerically and discussed in detail in section 5.
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We consider Klein-Gordon and Dirac equations coupled to U(1)-invariant non-

linear oscillators. The solitary waves of the coupled nonlinear system form two-

dimensional submanifold in the Hilbert phase space of finite energy solutions.

Our main results read as follows:

Theorem Let all the oscillators be strictly nonlinear. Then any finite energy

solution converges, in the long time limit, to the solitary manifold in the local

energy seminorms.

The investigation is inspired by Bohr’s postulates on transitions to quantum

stationary states.

The results are obtained for: a) 1D Klein-Gordon eqn coupled to one oscil-

lator [1, 2, 3] and to finite number of oscillators [4], and b) nD Klein-Gordon

and Dirac eqns coupled to one oscillator via mean field interaction [5, 6].
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Method of solution of hydrodynamical problem with given density field presents

the theoretical and practical interest [1, 2, 3].

The system of Ekman’s type equations for wind-induced flow of non-

homogeneous liquid is investigated. The boundary conditions for the horizontal

component of the velocity vector on the undisturbed surface take into account

the wind stress. On the bottom of a water body, is imposed the sliding con-

dition. The density of water is a linear function of known temperature. The

analytical solution for this problem was found. The obtained solution can be

used to determinate the ecological regime of the water body [4].
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We prove the asymptotic stability of the moving kinks for the nonlinear rela-

tivistic wave equations of the Ginzburg-Landau type in one space dimension:

starting in a small neighborhood of the kink, the solution, asymptotically in

time, is the sum of a uniformly moving kink and dispersive part described by

the free Klein-Gordon equation. The remainder decays in a global energy norm.

Crucial role in the proofs play our recent results on the weighted energy decay

[3] for the Klein-Gordon equations.
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Recent work on exotic smooth R
4’s shows the connection of 4-exotics with

the codimension-1 foliations of S3, SU(2) WZW models and twisted K-theory

KH(S3), H ∈ H3(S3,Z) [5, 4]. These results and [1, 5] made possible to expli-

cate some physical effects of exotic 4-smoothness. Based on [3, 6] we show that

small exotic smooth R
4’s can be considered as fundamental structures which

underly superstring theory similarly as D-branes do. The cases of D-branes in

SU(2) WZW models in finite k stringy regime and in the limiting geometry of

the stack of NS5-branes of type II superstring theory, are discussed. The cor-

relation of some configurations of D-branes in various string backgrounds with

4-smoothness of the transversal or ambient spaces, is presented. Moreover, we

are able to show that certain quantum D-branes, represented by noncommu-

tative C? algebras in noncommutative spacetimes, correspond to the net of

small exotic R
4’s embedded in a small exotic R

4. Thus exotic smoothness in

4-dimensions captures some higher dimensional effects of superstring theory D-

branes, also quantum. This unexpected result shed light on compactification in

string theory, and, in fact, serves as a possible counterpart for the compactifi-

cation. Based on the embeddings of homology 3-spheres in S6, or 4-manifolds

(Seifert 4-surfaces) in S7 [2], we can give 4-dimensional and topological origins

of D6-brane charges.
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A simple Ising spin model is proposed to study the price formation mecha-

nism in financial markets. The complex investment behavior of trend followers

and fundamentalists ascertaining accurate their final decision when trading in

Colombo Stock Exchange (CSE). Compared to other agent-based models, the

influence does not flow inward from the surrounding neighbors to the center

site, but spreads outward from the center to the neighbors. The model thus

describes the spread of opinions among traders. We use Monticarlo Simulations

to study the process. The results show that the model is appropriate to describe

the behavior of Sri Lankan financial market. Thus we may conclude that this

simple model is a good approximation of a number of real financial markets.

Most of investors are decision making in Sri Lankan financial market based on

the traditional techniques such as following the trend, this model thus provides

mathematical and statistical basis for effective share trading by participants.
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This paper focuses on the propagation of SH-type waves in three different types

of layered homogeneous and inhomogeneous isotropic media. Dispersion equa-

tion is derived. Variation of phase velocity with wave number are considered

numerically and natures are shown graphically in homogeneous and inhomoge-

neous cases with the help of Matlab.
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Steady, two-dimensional, two-layer flow over an arbitrary topography is con-

sidered by Belward and L. K. Forbes [1] for its nonlinear solution. Martha and

Chakrabarti [2] considered a two-dimensional problem involving irrotational

fluid flow in an infinite channel over an arbitrary topography. A linear theory

is presented for three layers of fluids where the upper fluid layer is bounded by

a rigid lid.

In this paper, a two-dimensional problem involving irrotational fluid flow

in three layers of fluid in an infinite channel over an arbitrary topography is

considered. The fluid is assumed to be inviscid and incompressible. A linear

theory is presented for three layers of fluids where the top surface of the upper

layer is a free surface. Fourier analysis is applied to obtain an interface profile

with an oscillatory nature downstream of the obstacle. Special examples of

bottom topography are examined in detail.
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Field equations of Wesson’s scale invariant theory are obtained, with the aid

of an inhomogeneous plane symmetric metric in the presence of perfect fluid

distribution. Model corresponding to stiff fluid is constructed and discussed.
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In this talk an observer of a set as a mathematical object will be studied.

The notion of topology from the viewpoint of an observer will be considered.

Relative manifolds as a mathematical solution for the “space meaning” by using

of high dimensional observer will be presented. By using of the relative vector

fields on relative manifolds a new version of the problem of unity as a realistic

approach to the problem of unity will be sketched. We will show that by using

of the mathematical notion of the observer in the geometrical structures we can

solve the new version of the problem of unity.
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Interest in the physics of non-Archimedean quantum models [3] is based on the

idea that the structure of space-time for very short distances might conveniently

be described in terms of non-Archimedean numbers. One of the ways to describe

this violation of the Archimedean axiom, is the using p-adic analysis. It is known
that a number of p-adic models in physics cannot be described using ordinary

Kolmogorov’s probability theory. New probability models - p-adic probability

models were investigated in [1]. This gives a possibility to develop the theory

of statistical mechanics in the context of the p-adic theory, since it lies on the

base of the theory of probability and stochastic processes.

In this work we develop p-adic probability theory approaches to study of

nearest-neighbor countable state Potts models on a Cayley tree in the field of p-
adic numbers, which provides more natural concrete examples of p-adic Markov

processes. In [2] a construction of p-adic Gibbs measures which depends on

weights is given. We found certain conditions to weights for the existence and

uniqueness of p-adic Gibbs measures for such a model. In the present work we

find other conditions to the weights which provide the existence of the phase

transition for the model. Here the phase transition means existence of two

different p-adic Gibbs measures. Note that one of such measures is bounded,

another one is unbounded.
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The slow streaming flows of a incompressible viscous fluid past shear stress

free oblate and prolate spheroids are considered; where the streams are in the

negative direction of the axis of symmetry. Physical properties of interest such

as stokes stream function, drag and torque exerted by the fluid on the spheroids

are established.
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Closed form solutions are given for the flow and heat transfer aspects of a mag-

netohydrodynamic two-phase steady flow between two parallel porous walls

under the action of a uniform transverse magnetic field applied in a direction

normal to the plane of flow, assuming that the magnetic Reynolds number is

small, when both the fluids and walls are in a state of rigid rotation with uni-

form angular velocity about an axis perpendicular to the plane of flow. It is

assumed that the fluids in the two regions are incompressible, immiscible and

electrically conducting, having different viscosities, thermal and electrical con-

ductivities. Further, assumed that the transport properties of the two fluids are

constant having constant bounding wall temperatures. Numerical calculations

for the velocity and temperature distributions for various sets of values of the

governing parameters involved are obtained to represent them graphically and

are discussed. It is observed that, as the suction number increases there is a

significant change in the primary velocity at the upper region but is insignifi-

cant in the lower region. While as this number increases the secondary velocity

also increases. Also, as suction number increases, there is an increase of the

temperature in the two regions.
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Effects of radiation and rotation on unsteady hydromagnetic free convection

flow of a viscous incompressible electrically conducting fluid past an impulsively

moving vertical plate embedded in a porous medium is studied. Temperature

of the plate has a temporarily ramped profile. Rosseland approximation is used

to describe the radiative heat flux in the energy equation. Exact solution of the

governing equations, in non-dimensional form, is obtained by Laplace transform

technique for both ramped temperature and isothermal plates. Expressions for

the Nusselt number and shear stress at the plate are also derived in both the

cases. Mathematical formulation of the problem, in non-dimensional form, con-

tains six pertinent flow parameters viz. M (magnetic parameter), K2 (rotation

parameter), K1 (porosity parameter), Gr (Grashof number), Pr (Prandtl num-

ber) and N (radiation parameter). Numerical values of the velocity are depicted

graphically for various values of M , K2, Gr, K1, N and time t while fluid tem-

perature profiles are drawn for different values of Pr, N and t for both ramped

temperature and isothermal plates. Numerical values of the shear stress at the

plate are presented in tabular form for various values ofM , K2, Gr, K1, N and

t whereas that of Nusselt number are given in tables for different values of Pr,

N and t for both ramped temperature and isothermal plates.
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A self-similar solution are obtained for one dimensional adiabatic flow behind

a cylindrical shock wave propagating in a rotating dusty gas in the presence

of heat conduction and radiation heat flux. The dusty gas is assumed to be a

mixture of non-ideal (or perfect) gas and small solid particles, in which solid

particles are continuously distributed. It is assumed that the equilibrium flow-

condition is maintained and variable energy input is continuously supplied by

the piston (or inner expending surface). The heat conduction is express in terms

of Fourier’s law and the radiation is considered to be of the diffusion type for

an optically thick grey gas model. The thermal conductivity and the absorption

coefficient are assumed to vary with temperature only. In order to obtain the

similarity solutions the initial density of the ambient medium is assume to

be constant and the angular velocity of the ambient medium is assume to be

decreasing as the distance from the axis increases. The effects of the variation

of the heat transfer parameters and non-idealness of the gas in the mixture are

investigated. The effects of an increase in (i) the mass concentration of solid

particles in the mixture and (ii) the ratio of the density of solid particles to the

initial density of the gas on the flow variables are also investigated.
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There are many problems in theoretical physics which consider the evolution

of a state variable X(t) in an uncertain environment. While Brownian motion

driven SDEs, dX(t)/dt = a(t,X) + b(t,X)dB(t)/dt, where B(t) is a Brownian

motion, are a popular approach to such situations, the interpretation of the
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term b(t,X)dB(t)/dt as ‘noise’ is often physically unsatisfying. Heuristically, if

we take X(t) as the position of a particle, then this noise might be interpreted

as successive perturbations on the particle’s trajectory, each occurring over a

time period too short to be resolved experimentally. In this presentation, we

put this concept on rigorous footing by considering SDEs driven by a stochastic

term b(t,X)dQ(t)/dt. The process dQ(t)/dt follows different deterministic be-

haviours over finitely-long time intervals, and can easily be interpreted in terms

of successive perturbations on a particle’s trajectory. It will be shown that in

the limit of these intervals going to zero, these equations weakly converge in so-

lution to those of a Brownian motion driven SDE. This result strongly supports

the heuristic interpretation of the term given above. Moreover, in this limit it

can be inferred that the size of these perturbations is finite, supplementing the

‘noise’ in a Brownian motion driven SDE with a sense of size and scale.
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Fractional calculus and special functions have contributed a lot to mathemati-

cal physics and its various branches. The great use of mathematical physics in

distinguished astrophysical problems has attracted astronomers and physicists

to pay more attention to available mathematical tools that can be widely used

in solving several problems of astrophysics/physics. In view of the great impor-

tance and usefulness of kinetic equations in certain astrophysical problems, the

authors derive a generalized fractional kinetic equation involving the Lorenzo-

Hartley function, a generalized function for fractional calculus. The fractional

kinetic equation discussed here can be used to investigate a wide class of known

(and possibly also new) fractional kinetic equations, hitherto scattered in the

literature. A compact and easily computable solution is established in terms of

the Lorenzo-Hartley function. Special cases, involving the generalized Mittag-

Leffler function and the R-function, are considered. The obtained results imply

the known results more precisely.
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The Hilbert space of our physical system (the interferometer), H, is a direct

sum of two isometric closed subspaces, H′ and H′′; J is a (fixed) Hermitian

isometry from H′ to H′′, I is the identity operator of H, J.J = I.
The unitary operator:

S(α) = cos(α).I + i. sin(α).J

is the scattering operator of a beam splitter (a semitransparent mirror, a per-

fect crystal); if cos(α) = 0 (and sin(α) = ±1) we have a true mirror. A split-

ter because, if the ongoing unit vector f ′ belong to H′, the outgoing vector

cos(α).f ′ + i. sin(α).f ′′, f ′′ = J.f ′, is split between H′ and H′′. For a phys-

ical splitter cos(α) is always > 0, but we can obtain a mathematical splitter

combining a physical one and a mirror (as S(α).S(β) = S(α+ β)).
If E′ and E′′ are the orthogonal projectors on H′ and H′′, the unitary

operator:

T (θ) = exp(+i.θ/2).E′ + exp(−i.θ/2).E′′
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represents a phase shifter (the shift is generally a consequence of strong,

electromagnetic or gravitational interactions); the difference of phase is θ;
J.T (θ).J = T (−θ).

An one particle, Mach-Zehnder interferometer is described by the unitary

scattering operator U(α, β, θ) = S(α).T (θ).S(β): splitter, shifter, splitter (plus
mirror). Then U is an unitary representation of SU(2) in H; α, β, θ are the

corresponding Euler angles.

Now, if the unit vectors f ′ and f ′′ belong to H′ and H′′, f ′′ = J.f ′, the MZ

interferometer transition probabilities are (an elementary calculation):

Prob(f ′, f ′) = A(α, β)− 2.C(α, β). cos(θ)

Prob(f ′, f ′′) = B(α, β) + 2.C(α, β). cos(θ)

Here A,B,C are polynomials of the sin and cos of α and β, A + B = 1.

The cos(θ) term, coming from the phase shifter, is clearly responsible of the

interference effects.

In a similar way it is possible to describe a two particles interferometer, for

example the EPR (Einstein, Podolski and Rosen) one. Now the Hilbert space

of the system is the tensor product of two copies of the same Hilbert space

(the one particle space); for every particle there is a phase shifter and a beam

splitter; then, for a suitable choice of the ongoing unit vector, we obtain the

well know interference and correlation effects.
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The Euler characteristic now forms a very versatile index for geometric and

topological invariants. The original idea of Leonhard Euler to define a invariant

for Platonic solids, extended to polyhedra, gave V −E + F = 2; for V number

of vertices, E number of edges and F number of faces.

The recent definitions for the Euler characteristic encompass several

branches of mathematics. They show surprising connections between Betti num-

bers and cohomology, singularities of vector fields on manifolds, moduli spaces

and gauge fiber bundles, Gauss Bonet and other geometric invariant forms,

Riemann spaces and genus numbers and so on.

The applications of the Euler characteristic index number in mathematical

physics are being increasingly discovered and range from statistical physics

partition functions to quantised unified fields. Topological phase transitions for
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clusters and spin systems in statistical physics as well as topological transitions

in compactifications in unified field theory are done.

This paper draws on the author’s work [Ref arxiv]in which the Euler char-

acteristic played a key role.
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We investigate the meromorphic behaviour of

• multiple discrete sums of tensor products of symbols with conical con-

straints,

• multiple integrals of tensor products of symbols with linear constraints,

and compare their pole structures. We discuss how to extract reasonable finite

parts at poles leading to “renormalised” multiple discrete sums and integrals

which factorise on tensor products. The first generalise “renormalised” multiple

zeta values at non positive integers, whereas the second relate to “renormalised”

Feynman integrals in physics.
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We study the following problem for the steady plane Navier–Stokes equations

−ν∆v + (v · ∇)v +∇p = f in Ω,
divv = 0 in Ω,

v = h on Γ,
(1)

lim
|x|→∞

v = 0 (2)

in an exterior domain Ω ⊂ R2 (Ω = R2 \ B, where B is a compact connected

set with a boundary Γ). The first mathematical investigation of this problem is

due to J. Leray, who proved in 1933 that problem (1) admits at least one solu-

tion with the finite Dirichlet integral
∫

Ω
|∇v|2dx < ∞, provided the boundary

datum h has zero total flux through the boundary:

F =

∫

Γ

h · n dΓ = 0, (3)

where n is the outward (with respect to Ω) unit normal to Γ. However, the

question whether or not the Leray’s solution satisfies condition (2) remained

open in the two–dimensional case (in the three–dimensional case the answer

is positive). The asymptotic behavior of solutions to problem (1) with finite

Dirichlet integral was investigated by many authors during the last 70 years.

However, for problem (1), (2) no existence results were available other than in

the case when B has two orthogonal axes of symmetry, f and h satisfies suitable

parity conditions and the the boundary datum h has zero total flux (see (3)).

In this paper we prove the existence of a solution (v, p) of problem (1), (2)

assuming that B has two orthogonal axes of symmetry and that data satisfies

parity conditions. However, the flux F is arbitrary in our case. To the best of our

knowledge this is the first existence result for the two–dimensional stationary

exterior problem without restrictions on the value of F .
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The equations of non-stationary three-dimensional wind induced motion of a

viscous nonhomogeneous liquid with the corresponding boundary conditions

are used for concrete reservoirs [1, 2, 3]. However, analytical solutions for such

problems are known only in special cases neither in three-dimensional, nor in a

two-dimensional case. It is pointed out that analytical solutions for the Ekman’s

type model (model without taking into account horizontal viscosity) in case of

stationary current are known for constant and variable values of the vertical

turbulent exchange [4, 5] and are widely used for the analysis of the solution and

computation of specific problems. In the present paper these results has been

extended on the model with taking into account horizontal viscosity. Namely, we

have found the analytical solution of stationary model of wind induced motion

of a viscous homogeneous liquid in the closed reservoir of rectangular form. It

is supposed that the value of the vertical turbulent exchange is constant. The

obtained solution is compared with the solution for the Ekman’s type model,

so it makes possible to determine the application area for this simpler model.

One can apply obtained solution for testing the computational algorithms of

the wind-induced motion of liquid [6, 7].

References
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Elastic-plastic stresses have been derived for a disc having variable thickness

and variable density with edge loading by using Seth’s transition theory. The

transition theory utilizes the concept of generalized principal strain measure

and asymptotic solution at critical points or turning points of the differential

system. In this work, it is our main aim to eliminate the need for assuming

semi-empirical laws, yield conditions like those of Tresca’s, von-Mises. The ef-

fect of edge loading has been discussed numerically and depicted graphically.

It is concluded that a rotating disc having variable thickness and variable den-

sity with edge loading requires higher percentage increase in angular speed to

become fully plastic from it’s initial yielding as compared to a rotating disc

having variable thickness under density variation without edge loading.
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Plane symmetric model is studied with source cosmic cloud strings coupled

with electromagnetic field in Rosen’s bimetric theory of relativity and vacuum

models are established.
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We study black hole solutions of Einstein’s field equations in non-commutative

geometry in three- and four-dimensional cases. We are particularly interested

in their thermodynamical properties and compare these properties with those

of the corresponding solutions in commutative geometry.

❖ ❖ ❖

Spectral Expansion on the Entire Real Line of the Green
Function for a Three-Layer Medium in Fundamental
Functions of an Adjoint Sturm -Liouville Operator

Evgeny G. Saltykov

Department of Computational Mathematics and Cybernetics, Lomonosov Moscow

State University, Leninskie Gory Moscow GSP-1 119991, Russian Federation

E-mail: saltykov@cs.msu.su

2000 Mathematics Subject Classification. 35J99, 35P99, 35Q60, 86A25

We give a new representation of the Green function in the space R2 for the

Helmholtz equation with coefficent that is a real-valued piecewise constant

function depending on a single variable and taking three values. This repre-

sentation has the form of an expansion in fundamental functions, i.e., bounded

(on the entire line R1) solutions of the Sturm-Liouville equation with a real

coefficient [1].
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The thermal convection of compressible Walters B
′

viscoelastic fluid in porous

medium is considered to include the effects of Hall currents and suspended

particles. Following the linearized stability theory and normal mode analysis,

the dispersion relation is obtained. For the case of stationary convection, Hall

currents and suspended particles are found to have destabilizing effects whereas

compressibility and magnetic field have stabilizing effects on the system. The

medium permeability, however, has stabilizing and destabilizing effects on ther-

mal instability in contrast to its destabilizing effect in the absence of magnetic

field. The magnetic field, Hall currents and viscoelasticity parameter are found

to introduce oscillatory modes in the system.
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An Alternative Well-posedness Property and Static
Spacetimes with Naked Singularities

Marcela Sanmartino

In the first part of this work, we show that the Cauchy problem for wave

propagation in some static spacetimes presenting a singular time-like boundary

is well posed, if we only require the waves to have finite energy, although no

boundary condition is required. This feature does not come from essential self-

adjointness, which is false in these cases, but from a different phenomenon that

we call the alternative well-posedness property, whose origin is due to the

degeneracy of the metric components near the boundary.

Beyond these examples, in the second part, we characterize the type of

degeneracy which leads to this phenomenon.
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The disturbance of SH-type of waves due to shearing stress discontinuity in a

visco-elastic layered half space has been considered in this paper. With The

help of Laplace and Fourier transform the displacement is obtained in exact

form. The numerical calculations are performed for two cases of shearing stress

discontinuity. The numerical results are shown graphically. Some special cases

are discussed.
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Throughout its journey universe follows strong gravity. By unifying general

theory of relativity and quantum mechanics a simple derivation is given for

rotating black hole’s temperature. It is shown that when the rotation speed

approaches light speed temperature approaches Hawking’s black hole temper-

ature. Applying this idea to the cosmic black hole it is noticed that there is

“no cosmic temperature” if there is “no cosmic rotation”. Starting from the

planck scale it is assumed that- universe is a rotating and expanding black

hole. Another key assumption is that at any time cosmic black hole rotates

with light speed. For this cosmic sphere as a whole while in light speed rotation

“rate of decrease” in temperature or “rate of increase” in cosmic red shift is

a measure of “rate of cosmic expansion”. Since 1992, measured CMBR data

indicates that, present CMB is same in all directions equal to 2.726 ◦K, smooth

to 1 part in 100000 and there is no continuous decrease! This directly indicates

that, at present rate of decrease in temperature is practically zero and rate

of expansion is practically zero. Universe is isotropic and hence static and is

rotating as a rigid sphere with light speed. At present galaxies are revolving

with speeds proportional to their distances from the cosmic axis of rotation.

If present CMBR temperature is 2.726 ◦K, present value of obtained angular

velocity is 2.17×10−18 rad

sec
∼= 67 Km

sec.Mpc
. Present cosmic mass density and cosmic

time are fitted with a ln (volume ratio) parameter. Finally it can be suggested

that dark matter and dark energy are ad-hoc and misleading concepts.
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Analytical fluid dynamics presents a host of problems involving system of non-

linear partial differential equations and we know that there are no general meth-

ods of solutions to solve these system. Some problems like the ones considered

in this paper make use of transformation to render the problem analytically

tractable. The dynamics of rotating fluids is a fertile area to scout for general

analytical solutions using transformations.

The present study concerns the streamline motion of an incompressible vis-

cous liquid in a rotating frame of reference. The transformation from physical

plane to hodograph plane, introduction of Legendre transformation in it, so-

lutions obtained to the flow variables for five special classes of flows and the

geometry of streamlines in each case are discussed. The variation of pressure

with angular velocity is also analyzed.
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E-mail: fabios@mat.ufg.br

2000 Mathematics Subject Classification. 35Q35, 35P15, 35B35

Linear stability for general viscous 2D micropolar shear flows[3]

U = (U(y), 0, 0), W = (0, 0,W (y)), y ∈ (0, 1),

is determined by the (dimensionless) equations[2]

iα
[

(U − c)(D2 − α2)− U ′′
]

ψ̃ =

(

1

Rµ

+
1

2Rk

)

(D2 − α2)2ψ̃ −
R0

Rk

(D2 − α2)w̃,

iα
[

(U − c)w̃ −W ′ψ̃
]

=
1

Rγ

(D2 − α2)w̃ −
2R0

Rν

w̃ +
1

Rν

(D2 − α2)ψ̃, (1)

where Rγ , Rµ, Rν , Rk, and R0 are dimensionless parameters and D := d
dy
.

Let c = cr + ici be any eigenvalue of system (1). We show the following

bounds for ci, which are analogous to the classical result of [1] for flows gov-

erned by the Navier-Stokes equations: If max {
Rµ

2
, Rk} < min {Rν ,

Rk

R0

}, and

max{ Rν

2R0

, Rγ} < min {Rν

2
, Rk

2R0

}, then

ci ≤
q1 + q2
2α

−
π2 + α2

αR
,

where 1

R
:= min { 1

R1

− 1

R2

, 1

R3

− 2

R2

}, q1 := maxy∈[0,1]|U
′(y)|, q2 :=

maxy∈[0,1]|W
′(y)|. Moreover, there are no amplified disturbances if











αRq1 <
(4, 73)2π

2
+ 2

3

2α3,

and

αRq2 <
√

2(π2 + α2)(4, 73)2,

or







αRq1 < (4, 73)2π + 2α2π,
and

αRq2 < 2α2
√
π2 + α2.
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FRW models of universe interacting with massive scalar mesonic field are in-

vestigated in the cosmological theory based on Lyra’s Manifold. By considering

the well known Hubble’s principle and source energy in the wave equation to

be absent, exacts solutions have been obtained from which different forms of

model of the universe are derived. Also some physical and geometrical aspects

the models are also investigated.
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In this talk, we consider a periodic media and we study the dependence of

the dispersion tensor in terms of the microstructure (for the definition of this

tensor, we refer the reader to [1] and [2]). We treat one-dimensional and lami-

nated structures, and also we give some perspectives on other cases in higher

dimension.

Considering the one dimensional and laminated periodic medium, we com-

pletely describe the set in which the dispersion coefficient lies, as the microstruc-

ture varies preserving the volume proportion (see [3]). In higher dimension, we

study properties on the dispersion tensor for Hashin structures and we charac-

terize the bounds of this tensor in terms of some geometric properties on the

reference cell.
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The connection between the instability of one-dimensional waves to transverse

disturbances and the formation of bubbles in fluidised beds is still unclear.

Moreover, recent theoretical and experimental studies have observed the for-

mation of bubbles in gas-fluidised beds, but not in liquid-fluidised beds and,

despite a detailed characterisation of the structures is already available, the

physical mechanism leading to this differentiation is still unknown [1, 2, 3]. In

this work, we focus on the study of the instability of the one-dimensional concen-

tration waves to transverse disturbances, leading to gravitational overturning.

We propose an extension of models available in the literature to describe the

gravitational instability of unbounded stratified flows [4] to account for the slip

velocity between the particles and the fluid, and also to include the inertia of the

particles. The rheology of the particulate phase is simplified to retain only the

relevant mechanisms in the model [2]. A linear stability analysis is performed

in order to determine the dispersion relation of the transverse modes. In addi-

tion, a numerical simulation of the full governing equations is carried out and

is checked against the theoretical results of the linear stability. The influence of

the physical parameters and constitutive relations of the particulate phase rhe-

ology in the stability of the waves is evaluated. It is found that fluidised beds

are gravitationally unstable to long wavelength transversal modes. However,

the results obtained here indicate that the enhanced drag of the fluidising flow

on heavy concentrated regions tends to lift them, reducing the growth rates of

long waves and even stabilising short waves.
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The effect of g-jitter on the buoyancy driven convection in a binary viscoelastic

fluid saturated porous layer has been studied using linear stability analysis. The

Rivlin-Ericksen model [1] has been employed to characterize the viscoelasticity

of the fluid, whereas, the porous domain is considered to lack the local thermal

equilibrium. The governing equations were converted into a system of ordinary

differential equation using the Galerkin method. The stability of the periodic

system is investigated using Floquet’s analysis [2] and the obtained stability

results are presented in detail. It was found that g-jitter has significant effect

on the onset of thermosolutal natural convection.
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Two dimensional steady , laminar heat and mass transfer by mixed convection

from a semi infinite , isothermal and isosolutal vertical plate embedded in a

Darcian porous medium in the presence of transverse magnetic field, thermal

radiation and Soret and Dufour effects has been studied. The Rosseland ap-

proximation for the radiative heat flux is used in the energy equation. It is

found that the similarity solution exists in the present case. The resulting set

of coupled non-linear ordinary differential equations is solved numerically us-

ing shooting technique. Dimensionless velocity, temperature and concentration

profiles are presented graphically against ? for various values of the mixed con-

vection parameter RP. The numerical values of local Nusselt number and local

Sherwood number have been tabulated for various values of involved parameters

and discussed in detail.
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An investigation is made out to study the effect of vertical harmonic vibration

in a horizontal porous layer heated from below when the solid and fluid phases

are not in local thermal equilibrium. The Brinkman model of flow through

porous media is used for the momentum equation and a two-field model that

represents the fluid and solid phase temperature fields separately is used for the

energy equation. The porous layer is subject to vertical vibrations of arbitrary

amplitude and frequency. Linear stability analysis is performed using Floquet

theory and the continued fraction technique is applied to solve the resulting

algebraic system. It is demonstrated that vibrations can produce a stabilizing

or destabilizing effect depending on their amplitude and frequency for a porous

layer heated from below. It is also found that increasing interphase heat transfer

coefficient in the presence of small values of porosity modified conductivity ratio

exposes the competition between synchronous and subharmonic modes for a

wider range of vibrational frequencies.
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Topological field theories can be realized as topological phases in certain inte-

grable models and two-dimensional strongly-correlated condensed matter sys-

tems. We particularly focus on the Kitaev honeycomb lattice model that ex-

hibits the Abelian doubled-Z2 and the non-Abelian Ising topological phases.

Quasiparticle excitations of these phases have attracted considerable attention

recently both for fundamental reasons as a system with non-Abelian fractional

statistics and for potential applications in topological quantum computation.

We present an exact solution of the Kitaev spin model on the honeycomb lat-

tice. We employ a Jordan-Wigner type fermionization and find that the Hamil-

tonian takes a Bardeen-Cooper-Schrieffer (BCS) type form, allowing the system

to be solved by Bogoliubov transformation. Our fermionization does not em-

ploy non-physical auxiliary degrees of freedom and the eigenstates we obtain are

completely explicit in terms of the spin variables. The ground-state is obtained

as a BCS condensate of fermion pairs over a vacuum state which corresponds

to the toric code state with the same vorticity. We show in detail how to cal-

culate all eigenstates and eigenvalues of the model on the torus. In particular,

we find that the topological degeneracy on the torus descends directly from

that of the toric code, which now supplies four vacua for the fermions, one for

each choice of periodic vs. anti-periodic boundary conditions. The reduction

of the degeneracy in the non-Abelian phase of the model is seen to be due

to the vanishing of one of the corresponding candidate BCS ground-states in

that phase. This occurs in particular in the fully periodic vortex-free sector.

The true ground-state in this sector is exhibited and shown to be gapped away

from the three partially anti-periodic ground-states whenever the non-Abelian

topological phase is gapped. The exact solution of the related star lattice chiral

spin liquid is also presented.
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Department of Mathematics, Universidad Nacional de Colombia, Bogota, Colombia

E-mail: cagomezsi@unal.edu.co

2000 Mathematics Subject Classification. 35C05



430 Mathematical Physics

Using the Lie groups theory we show a method for solving a one-parameter

family of Riccati equations. We obtain a new case of integration of the general

Riccati equation and we use it to solve several Riccati equations.

On the other hand, several computational techniques which use Riccati

equations have been implemented in the last two decades with the aim to find

exact solutions to NLPDE’s. Among these methods are the tanh method [1],

the generalized tanh method [2], the extended tanh method [3], the improved

tanh-coth method [4],[5], the G′/G-expansion method [6][7] and the General

Riccati equation method [8]. The principal objective of this work consists on

show that from the point of view of physical applications, all theses methods are

equivalents. We illustrate the results solving the one dimensional Burguers’, the

Tzitzeica–Dodd–Bullough (TDB) and the modified Korteweg-de Vries (MKdV)

equations.
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Tanaka et. al. [1, 2, 3] introduced the concept of fuzzy regression model with

fuzzy regression coefficients. Since a fuzzy number can be uniquely determined

through its position and entropy [4], therefore by using the concept of fuzzy

entropy, the estimators of the fuzzy regression coefficients may be estimated.

In the present communication, a fuzzy linear regression (FLR) model with

some restrictions in the form of prior information is considered. We have ob-

tained the estimators of regression coefficients with the help of fuzzy entropy

for the restricted FLR model. Further, a few numerical examples are provided

to illustrate the the proposed model and the obtained estimators.
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We consider a quasi-linear stochastic heat equation on [0, 1], with Dirichlet

boundary conditions and controlled by the space-time white noise. We formally

replace the random perturbation by a family of noisy inputs depending on a

parameter n ∈ N such that approximate the white noise in some sense. Then,

we provide sufficient conditions ensuring that the real-valued mild solution of

the SPDE perturbed by this family of noises converges in law, in the space

C([0, T ] × [0, 1]) of continuous functions, to the solution of the white noise

driven SPDE. Making use of a suitable continuous functional of the stochastic

convolution term, we show that it suffices to tackle the linear problem. For this,

we prove that the corresponding family of laws is tight and we identify the limit

law by showing the convergence of the finite dimensional distributions. We have

also considered two particular families of noises to that our result applies. The

first one involves a Poisson process in the plane and has been motivated by

a one-dimensional result of Stroock, which states that the family of processes

n
∫ t

0
(−1)N(n2s)ds, where N is a standard Poisson process, converges in law

to a Brownian motion. The second one is constructed in terms of the kernels

associated to the extension of Donsker’s theorem to the plane.
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Preliminary: Let K0 be a fixed interval of length L > 0 and In := [ω, ω + d],
n ∈ N, randomly placed intervals, i.e. segments, each of length d > 0 with ω
as uniformly distributed random variables. We examine the length L(Kn) of

growth processes (Kn)n∈N generated by Kn = Kn−1 ∪ In under the following

two conditions (1): Kn−1 ∩ In 6= ∅ and (2): K0 ∩ In 6= ∅ respectively, both in

continuous C := K ⊂ R and discrete D := K ⊂ Z space; so we get the four

random processes (1): (X̃n)n∈N = L(Cn) and (X̂n)n∈N = L(Dn) as well as (2):
(Ỹn)n∈N = L(Cn) and (Ŷn)n∈N = L(Dn).

Results: (1): Due to the unbounded growth of the random variables Xn we

investigate the order of the growth, i.e. of the expected value E(Xn):

Cont.: We proof O(
√
n) ≤ E(X̃n) ≤ O(n) due to Jensen’s inequality and

discuss a nice sequence based on E(X̃n+1) = E(E(X̃n+1 | X̃n)) = E(H(X̃n)) ≈
H(E(X̃n)) with H(x) := (x2+x ·d+d2)/(x+d) which motivates that E(X̃n) =

O(
√
n) holds.

Disc.: (X̂n)n∈N can be modeled as a Markov process and in the simplest

case d = 1 we compute via Chapman-Kolmogorov equation and inverse z-

transform the density of the distribution P(X̂n = i) = i+2

i!
·
∑i

k=1
(−1)i−k

(
i

k

)

(k+

2)i−1
(

k
k+2

)n
.

(2): The random variables Yn are bounded and we accomplish exact expres-

sions:
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Cont.: E(Ỹn) = L+2d− 2d+L
n+1

[

1−
(

L
d+L

)n+1]

, d+L > 0 and n ∈ N as well as

Disc. : E(Ŷn) = L+ 2d− 2
∑d

k=1

(

1− k
L+d+1

)n
, d+ L > 0 and n ∈ N.

A comparison derives: limN→∞

1

N

∑N

k=1

(

1− k/N

1+λ+1/N

)n
= 1+λ

n+1
·
[

1−
(

λ
1+λ

)n+1]

.

In both spaces we have a closer look to the density functions of the random

variables Yn. In the conclusion we will give an outlook of growth processes in

the plane where the intervals In are segments creating a convex hull by their

vertices.
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First passage times of appropriate stochastic process have often been used to

represent times to failure of devices or systems which are subject to shocks

and wear, random repair time and random interruptions during their oper-

ations: [2]. The life distribution properties of these processes have therefore

been widely investigated in reliability and maintenance literature. Use of to-

tal time on test transform in identification of failure rate models (Increasing
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failure rate/Decreasing failure rate/ Bathtub shaped/constant) in the binary

system case is discussed in literature: [3]. Later, [4] presented some relation-

ship between the total time on test transform transform and some other ageing

properties of random variable. In this paper, ageing properties of semi-Markov

performance process of a multistate system are considered: [1]. We give the

method of identification of the failure rate model of first passage time distribu-

tion of the semi-Markov system based on the transition probability functions.

An illustrative example is given.
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For the diffusion process Xε
t on R3, t ≤ T with a fixed initial distribution

p(0, x), x ∈ R3 and generator Lε = L1 + 1/εL2 + 1/ε2L3 where

L1 = 1/2Σ3
i,j=1σ

(1)

i,j (t, x)∂i,j +Σ3
i=1b

(1)

i (t, x)∂i,

L2 = 1/2Σ2
i,j=1σ

(2)

i,j (t, x)∂i,j +Σ2
i=1b

(2)

i (t, x)∂i

and

L3 = 1/2σ3
3(t, x)∂33(t, x) + b33(t, x)∂3,

we shall develope the asymptotic expansion (with double layers) of its density

functions p(t, x). If all the coefficients σk
i,j(t, x) and bki (t, x) are in C(n,2n+1),

we show that there exist functions ui(t, x), vi(t/ε, x) and wi(t/ε
2, x) such that

supt∈[0,T ],x∈R3 |p(t, x)− Σn
i=0ε

iui(t, x)− Σn
i=0ε

ivi(t/ε, x)− Σn
i=0ε

iwi(t/ε
2, x)| =
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O(εn+1). Our results generalize that in [1] where there are only two time scales

and only one boundary layer. The proof is based on the associated Fokker-

Planck equation.
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We study the asymptotics of the even moments of solutions to a stochastic wave

equation in spatial dimension 3 with linear multiplicative noise. Our main theo-

rem states that these moments grow more quickly than one might expect. This

phenomenon is well-known for parabolic stochastic partial differential equa-

tions, under the name of intermittency. Our results seem to be the first ex-

ample of this phenomenon for hyperbolic equations. For comparison, we also

derive bounds on moments of the solution to the stochastic heat equation with

linear multiplicative noise. This is joint work with Carl Mueller [1]. It makes

strong use of a Feynman-Kac type formula for moments of this stochastic wave

equation developed in joint work with Carl Mueller and Roger Tribe [2].
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The survivorship function plays a vital role in life tables. Inefficient registration

of vital events and geographically remote areas in many developing countries

hinder the regular availability of accurate data. Hence mathematical modeling

of such data is of utmost importance because of their role as development indi-

cators. In this paper, survivorship function of a developing country particularly

Nepal is regressed on age and time variables. A parsimonious regression model

with a very few regression coefficients, specially suited to such countries, keep-

ing the constraints of limited and defective data is developed. The developed

form satisfies all the criteria of a good model not only for developing countries

like Nepal and India, but also for developed countries like Germany. A compar-

ison of results is made between the data of countries with abundant and good

quality data on one hand and limited and defective data on the other hand.
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A novel method for making small sample inference on the nonlinear parame-

ter in a conditionally linear nonlinear regression model is proposed. It is based

on Saddlepoint approximations to the distribution of the estimating equation

whose unique root is the parameter’s maximum likelihood estimator (MLE) are

obtained, while substituting conditional MLE’s for the remaining (nuisance) pa-

rameters. A key result of Daniels [1] enables to relate these approximations to

those for the estimator of interest. Standard methods either rely on large sam-

ples or fail to provide guidance in this context. The method’s performance relies

on a model reparametrization that orthogonalizes the nonlinear parameter with

the nuisance parameters, thereby also validating the substitution of conditional

MLE’s in for the latter. The methodology is shown to be applicable for infer-

ence on ratios of regression parameters in ordinary linear models, calibration

and many others. Simulations results for the proposed method yield confidence

intervals with lengths and coverage probabilities that compare favorably with

those from several competing methods.
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Maximum Likelihood Estimates (MLE) for a model with mixture of distribu-

tions is usually an unaffordable task from a computational point of view, even

for simple cases when the number of distributions is known. The EM algorithm

is frequently used in this context to approximate the MLE. Louis (1982) in

a celebrated paper [1] provides the information matrix for the EM (“pure”)

estimates. The EM algorithm provides approximate MLE, thus the informa-

tion matrix to be used must be the Fisher information matrix for the marginal

log-likelihood of the observations. Pure EM estimates are computed and com-

pared to the MLE. Some comparisons of the two information matrices are also

performed. Finally, optimal designs are computed for a mixture of normal dis-

tributions with modeled means throughout an explanatory variable.
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A multiple linear regression model with replicated observations is adopted. It is

considered that all the variables in the model are observed with additive mea-

surement errors. It is also assumed that some prior information on regression

coefficients is available in the form of exact linear restrictions. Under such a

setup, the usual estimators are either inconsistent or do not satisfy the given

exact linear restrictions on regression coefficients. We obtain such estimators

of regression coefficients which are consistent as well as satisfy the given re-

strictions. Asymptotic properties of the estimators are analyzed. A simulation

study is also conducted to study the small sample properties of the estimators.

It is common to assume the normal distribution of measurement errors. In the

present work, no such assumption is made.
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In many diverse fields, the measurements are directions- A biologist may be

interested in the direction of flight of the bird or orientation of an animal while

geologist may be measuring the direction of earth’s magnetic field. Such di-

rections may be in two or three dimensions. A set of such observations on

the directions is referred to as ’directional data’. In particular analysis per-

taining to two dimensional directional data falls under the topic ’CIRCULAR

STATISTICS’. For such data, several Statistical models were constructed and
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inference procedures were studied. Most of the existing circular models were

constructed using the method of wrapping the corresponding linear models. In

order to study the characteristics of a new circular model the convenient form

of the density function is in terms of trigonometric moments which is basically

derived using the characteristic function of the corresponding linear model. In

this note an attempt is made to derive wrapped versions of Logistic distribution,

Extreme Value distribution, Lognormal distribution, Weibull distribution, Half

Logistic distribution and Binormal distribution. Also it was pointed out that

there is one - one correspondence between Toeplitz Hermitian Positive Definite

(THPD) matrix obtained using positive definite sequence from the character-

istic function and a circular model. Therefore, this process can be treated as a

method of construction of a new circular model. In addition to this construction

of circular model based on the Rising Sun function is also included.
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This work presents an application of the Response Surface Methodology (RSM)

for optimizing the value of the factors influencing the production of pectynolitic

enzymes (pectinases) in a process for the growth of yeast using grape skin as a

substrate.
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The context of the research focuses on the industrial production of enzymes

using grape skin. In the process of yeast growth, those pectinases used in the

stage of wine fermentation are synthesized because they help release wine color

and bouquet. For this growth, grape skin were used as a substrate since their

use in industrial production involves not only an economic advantage, but also

an environmental one for the grape and wine-growing areas, leading to the

exploitation of this fermentation sub-product. This study consists of designing

a model with which we can obtain the ideal conditions for the growth of certain

type of yeast so that it synthesizes the largest amount of pectinases. Thus,

we applied the sequential character of RSM until we obtained a second-order

model adjusting it with a compound central design (CCD).
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It was shown in [3] that uniform boundedness in a Šerstnev PN space

(V, ν, τ, τ∗), (named boundedness in the present setting) of a subset A ⊂ V
with respect to the strong topology is equivalent to the fact that the proba-

bilistic radius RA of A is an element of D+. Here we extend the equivalence

just mentioned to a larger class of PN spaces, namely those PN spaces that are

topological vector spaces (briefly TV spaces), but are not Šerstnev PN spaces.

Section 2 presents a characterization of those PN spaces, whether they are

TV spaces or not, in which the equivalence holds. In Section 3, a characteriza-

tion of the Archimedeaness of triangle functions τ∗ of the type τT,L is given.

This work is a partial solution to a problem of comparing the concepts of dis-

tributional boundedness (D–bounded in short) and that of boundedness in the

sense of associated strong topology.
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Jain et.al [1] and Misra et. al [2] studied various properties of reliability mea-

sures of weighted distributions of life distributions. Reliability properties regard-

ing the weighted distributions of random variables (and vectors) in univariate

and bivariate cases have been discussed by Nanda and Jain [3]. In the present

communication, we study the preservation of mean inactivity time under some

weight function. Some reliability properties of weighted distributions for mean

inactivity time order has also been discussed.
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Being inspired by the observation that the Stein’s identity is closely con-

nected to the quantum decomposition of probability measures [3] and the Segal-

Bargmann transform [2], we are able to characterize the Lévy white noise mea-

sures on the space S ′ of tempered distributions associated with a Lévy spectrum

having finite second moment. The results not only extends the Stein [4]and

Chen’s lemma [1] for Gaussian and Poisson distributions to infinite dimensions

but also to many other infinitely divisible distributions such as Gamma and

Pascal distributions and corresponding Lévy white noise measures on S ′.
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In this paper, we extend a delayed geometric Brownian model by adding a

stochastic volatility term, which is assumed to have fast mean reversion, to the

delayed model. Combining a martingale approach and an asymptotic method,

we develop a theory for option pricing under this hybrid model. Core result

obtained by our work is a proof that a discounted approximate option price

can be decomposed as a martingale part plus a (ignorable) small term. We

demonstrate a correction effect driven by the option price under our new model.
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Small value (deviation) probability studies the asymptotic rate of approaching

zero for rare events that positive random variables take smaller values. In the

literature, small value probabilities of various types are studied and applied to

many problems of interest under different names such as small deviation/ball
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probabilities, lower tail behaviors, boundary crossing probabilities, asymptotic

evaluation of Laplace transform for large time, etc. We will provide an overview

on recent progress and future prospects in the area.
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LQ45 Index consists of 45 stocks with high liquidity and market capitalization

in Indonesia Stock Exchange (IDX). Every 6 months, there is a review process

for determination of stocks that can be included in the LQ45 Index. It serves

as a benchmark of stocks in IDX and describes the current market condition.

The classical model for stock price dynamics is the Geometric Brownian Motion.

Using such a model we can successfully apply the Black-Scholes model for option

price on stock. However there is a drawback of the GBM model when applied

to LQ45 Index data. In a long term period, constant volatility assumed by the

GBM model is violated. LQ45 Index data also present multiple mean levels

and its return presents fatter tails than a normal distribution. In our paper

we attempt to model the dynamics of LQ45 Index data from January 2004 to

December 2009 using two stochastic models, viz., mean-revertion model and

potential diffusion model, besides the GBM model. We will use some statistical

tests to determine which model is the most suitable model for the LQ45 Index.
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Inferential statistics has been pivotal tool for the analysis of stochastic pro-

cesses. Author has described the futility of inferential statistics in determining

the down fall and stagnation. Author has tried to cover as many field as pos-

sible to depict the failure of inferential statistics at critical point of time. The

critical point of time here means the time period in which statistical analysis

was supposed to be proven productive, but failed to avoid calamity. The goal

of the paper is not to criticize the denouement of inferential statistics; it is

rather a critique on inferential statistical analysis. The frequency of failure of

inferential statistical analysis may be very small, but failing at critical point

of time is devastating. Author has provided statistical surveys and analysis of

Great Depression of 1929 in United States of America, astrology, statistical

signal processing and a natural disaster in order to support the argument of

failure of inferential statistics. All these events were not supposed to transpire

as per probability theory, but endured. The proposed alternative for inferen-

tial statistics is game theory. The analysis is done using gretl freeware version

1.8.6 [1].
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Structured matrix power series equation of the following form

∑

XiDi = 0 (1)

Where Di’s the sub-matrices of the generator matrix arise in the equilibrium

analysis of structured (G/M/1 type) Markov chains. The author questioned the

possibility of finding a closed form expression (Jordan Canonical Form) for R.

In this research paper, arbitrary matrix power series of the form in (1)

is considered. The following Lemma provides a method of determining the

eigenvalues of all possible solutions of (1).

Lemma1 : Consider a matrix Y which satisfies (1) and let H(λ) =
∑

∞

j=0
λjDj

Then H(λ) has the following representation H(λ) = (λI − Y )(
∑

∞

j=0
λjNj)

Theorem1 : Consider a matrix power series equation of the form in (1). Let

the dimension of X be ‘n’. Let there be “finitely” many, say ‘m’ (m > n)
roots of the transcendental function Det (H(λ) =

∑
∞

j=0
λjDj). Then all

possible solutions of (1) are divided into atmost

(

m
n

)

equivalence classes

and solution in each class is determined as the solution of a linear system of

equations.

The results are generalized to multi-matrix/tensor variate polynomial equa-

tions.

• It is reasoned that ARBITRARY multi-variate polynomial/power series

equations can be imbedded in PROPERLY CHOSEN TENSOR VARI-

ATE POLYNOMIAL/POWER SERIES EQUATIONS (central goal of

algebraic geometry ).

• Using Lemma 1 and a localization theorem, the author succeeded in find-

ing a Jordan canonical form for the rate matrix R of a structured matrix

power series equation (arising in the case of G/M/1-Type Markov chains).

• TheoryofChances : QuantityTheory : Also, in this paper, the author

proposes the idea of allowing the chance (like probability) to assume neg-

ative and complex values. Novel stochastic chains based on real/complex
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valued chances are formally discussed. Basic ideas of “quantity theory”

(like measure theory) and “unification” (like integration) are formally

discussed.
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In various statistical, data compression, signal processing applications and sim-

ulation, it could be used to convert the problem of analyzing a continuous-time

random process to that of analyzing a random sequence, which is much simpler.

Multiresolution analysis provides an efficient framework for the decomposition

of random processes.

We consider stationary Gaussian random processes X(t) and their approx-

imations by sums of wavelet functions, reading as follows:

Xn,kn
(t) :=

∑

|k|≤k′
0

ξ0kφ0k(t) +

n−1
∑

j=0

∑

|k|≤kj

ηjkψjk(t) , (2)

where kn := (k′0, k0, ..., kn−1).
On the contrary to many theoretical results with infinite series form of

Xn,kn
(t), in direct numerical implementations we always consider truncated

series like (2), where the number of terms in the sums is finite by application

reasons. However, there are almost no stochastic results on uniform convergence

of finite wavelet expansions to X(t).
We have obtained the exponential rapidity of convergence of a wide class of

wavelet expansions. Namely,

P

{

sup
t∈[0,T ]

|X(t)−Xn,kn
(t)| > u

}

≤ 2 exp

{

−
(u−

√

8uδ(εkn
))2

2ε2
kn

}

,
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where u > 8δ(εkn
), εkn

are constants which depend only on the covariance

function of X(t) and the wavelet basis.

This work was partly supported by La Trobe University Research Grant

”Stochastic Approximation in Finance and Signal Processing.”
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Pearson’s Correlation coefficient is frequently used to study the relationship be-

tween two variables. In situations where qualitative variables such as nominal

variables, ordinal variables are involved, alternative measures such as Spear-

man’s Rank correlation coefficient, Kendall’s Tau and other similar measures

are used. Even these measures are originally derived when the underlying vari-

ables are continuous, and modified later by accounting for ties (see e.g. [1]),

which exist in discrete data, and these do not perform well for qualitative data

as proved in this paper using simulation study. In this paper, we propose a Gini-

type statistic to quantify the relationship between ordinal variables. We derive

an estimate of the measure, and derive a test for independence among ordinal

variables. Using a Monte-Carlo simulation study, we show that the measure

performs well for qualitative variables as compared to other existing measures.

We also discuss some important applications of this new measure.
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Symmetric and skew Levy and other similar heavy tail distributions are studied

by Rathie et al. (See, for example, [1]–[4]) and applied to stock market and

currency data sets.

A generalized t distribution function is defined and k-th moments are de-

rived. The results estimating parameters by the method of moments and max-

imum likelihood method are obtained. This distribution is applied to fit nicely

two data sets involving daily change in Petrobras (PETR4.SP PN; 1948 data

points) stock market value and the daily change in exchange rates between

Brazilian Real and US dollar (3491 data points). The three parameters in-

volved are estimated by maximum likelihood method for these data sets and

maximum error is obtained in each case.

The distribution function for the symmetric Levy distribution is derived

and used to fit nicely the following six data sets involving: (a) mean monthly

sun spots, (b) daily maximum temperature of a Brazilian ecological reserve,

(c) daily fluctuations in exchange rates in US dollars of three world currencies

(Brazilian Real, Euro, and Swiss franco), and stock market value of J. P. Mor-

gan. Maximum and mean errors are obtained in each case showing a nice fit in

each case.

Graphical representations are also given in all the cases.
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Limit distributions of partial maxima of independent and identically distributed

(iid) random variables under linear normalization are the well known extreme

value laws, also called as l-max stable laws, l denoting that the normalization

is linear. If the normalization employed is power in place of linear, then the

limit laws have been called as p-max stable laws. Under some conditions on the

underlying distribution of the iid random variables, entropy convergence of the

density of the normalized partial maxima to the corresponding entropy of the

limit law is discussed in this article.

❖ ❖ ❖

Solutions of the Navier–Stokes and Burgers Equations via
Forward-backward SDEs

Ana Bela Cruzeiro

Evelina Shamarova∗

Mathematics Department, University of Porto, Rua do Campo Alegre 687, Portugal

E-mail: evelinas@fc.up.pt

2000 Mathematics Subject Classification. 65C30, 35Q30, 35Q53

We establish a connection between the strong solution to the spatially peri-

odic Navier–Stokes equations and a solution to a system of forward-backward

stochastic differential equations (FBSDEs) on the group of volume-preserving

diffeomorphisms of a flat torus. Assuming the existence of a solution to the

Navier–Stokes equations with the initial data in the Sobolev space Hs for suf-

ficiently large s, we construct a solution of the associated system of FBSDEs.

Conversely, if we assume that a solution of the system of FBSDEs exists, then

the solution of the Navier–Stokes equations can be obtained from the solution

of the FBSDEs. In fact, the constructed FBSDEs on the group of volume-

preserving diffeomorphisms can be regarded as an alternative characterization

to the Navier–Stokes equations for studying the properties of the latter. On the
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other hand, we describe a probabilistic construction of Hs-regular solutions to

the spatially periodic Burgers equation by proving the existence and uniqueness

theorem for the associated forward-backward stochastic system.
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We consider a classical dilute particle system in a large container with pair

interaction given by a Lennard-Jones-type potential. The inverse temperature



454 Probability and Statistics

is picked proportionally to the logarithm of the number of particles. We identify

the free energy per particle in terms of a variational formula and show that this

formula exhibits a cascade of phase transitions as the temperature parameter

ranges from zero to infinity. Loosely speaking, the lower the temperature, the

larger the relevant crystal structures that give the main contribution to the free

energy. The phases are characterised by the size of the relevant configurations.

Our main tool is a new large deviation principle for sparse point configurations.
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For an arbitrary probability law with support on (0,∞), define

λ(s) = λs(X) :=







(EXs − (EX)s)/s(s− 1), s 6= 0, 1;
log(EX)− E(logX), s = 0;

E(X logX)− (EX) log(EX), s = 1.

It is known [1] that λ(s) is log-convex (hence convex) for s ∈ R, that is,

ξ(s, t) := λ(s)λ(t)− λ2(
s+ t

2
) ≥ 0; s, t ∈ R,

providing that the corresponding moments exist.

Some refinements of the above are

[

λ(s)− 2λ

(

s+ t

2

)

+ λ(t)][λ(u)− 2λ

(

u+ v

2

)

+ λ(v)

]

≥

[

λ

(

s+ u

2

)

− λ

(

s+ v

2

)

+ λ

(

t+ v

2

)

− λ

(

t+ u

2

)]2

;

or

ξ(s, t)ξ(s, v) ≥

[

ξ

(

s,
t+ v

2

)

− ξ

(

s+ t

2
,
s+ v

2

)]2

.

Note that for s, t, u, v ∈ 2N, the above moment inequalities are valid for arbi-

trary probability distributions with support on (−∞,+∞), [2].
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In this paper, an organization subjected to random exit of personnel due to the

policy decisions taken by the organization is considered. There is an associated

loss of manhours if a person quits. As the exit of personnel is unpredictable, a

new recruitment policy involving two thresholds—one is optional and the other

is mandatory is suggested to enable the organization to plan its decision on

recruitment. Based on shock model approach, a mathematical model is con-

structed involving an appropriate univariate recruitment policy. The mean and

variance of the time to recruitment are obtained when (i) the loss of manhours

process forms a sequence of independent and identically distributed continuous

random variables (ii) the inter-decision times are exchangeable and constantly

correlated exponential random variables and (iii) the optional threshold level as

well as the mandatory threshold level follow SCBZ property. The present results

extend those in [1] for correlated case. The analytical results are numerically

illustrated and analysed by assuming specific distributions.
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The concept of weighted distribution introduced by Rao [5] is widely used.

These distributions arise when the observations generated from a stochastic

process are recorded with some weight function. Let X be a non-negative con-

tinuous random variable (r.v.) with p.d.f. f(x) and Xw be a weighted r.v.

corresponding to X with weight function w(x).When w(x) = x, Xw is said to

be a length biased random variable.

Consider X and Y two non-negative r.v’s representing time to failure of two

systems with p.d.f. f(x) and g(x) respectively, and let F (x) and G(y) be failure
distributions. Then the measure of differential entropy associated with the r.v.

X, measure of discrimination ofX about Y and measure of inaccuracy are given

by Shannon [6], Kullback and Leibler [4] and Kerridge [3] respectively. Using the

information theoretic approach to measure the uncertainty of a system which

has survived up to time t, the corresponding dynamic measure of uncertainty,

discrimination and dynamic inaccuracy are given by Ebrahimi [1], Ebrahimi and

Kirmani [2] and Taneja et al. [7] respectively. Extending the concept of residual

inaccuracy, in the present communication we introduce a length biased weighted

residual inaccuracy measure between two residual lifetime distributions over the

interval (t, ∞) . Based on proportional hazard model (PHM), a characterization

problem for this inaccuracy measure has been studied and a lower bound has

been derived.
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In this article we address the problem of valuing and hedging American op-

tions on baskets and spreads, i.e., on portfolios consisting of both long and

short positions. We adopt the main ideas of the Generalized Lognormal (GLN)

approach introduced in Borovkova et al. (2007) and extend them to the case

of American options. We approximate the basket price process by a suitable

Geometric Brownian motion, shifted by an arbitrary parameter and possibly re-

flected over the x-axis. These adjustments to the GBM are necessary for dealing

with negative basket values and possible negative skewness of basket increments

distribution. We construct a simple binomial tree for an arbitrary basket, by

matching the baskets volatility, and evaluate our approach by comparing the

binomial tree option prices to those obtained by other methods, whenever pos-

sible. Moreover, we evaluate the delta-hedging performance of our method and

show that it performs remarkably well, in terms of both option pricing and

delta hedging. The main advantages of our method is that it is simple, compu-

tationally extremely fast and efficient, while providing accurate option prices

and deltas.



458 Probability and Statistics

References

[1] S. Borovkova, F. J. Permana, and J. A. M. van der Weide, A closed form approach

to the valuation and hedging of basket and spread options, Journal of Derivatives
Vol. 14 No. 4 (2007), 8–24.

[2] J.C. Cox, S. A. R. and M. Rubinstein, Option pricing: A simplified approach,
Journal of Financial Economics 7 (1979), 229–263.

[3] F. Longstaff and E. Schwartz, Valuing American options by simulation: A simple

least squares approach, The Review of Financial Studies Vol. 14 No. 1 (2001),
113–147.

[4] M. Rubinstein, Implied binomial trees, Journal of Finance Vol. 49 No. 3 (1994),
66–82.

❖ ❖ ❖

Comparative Study of Normal Plots for Analyzing
Unreplicated Factorial Designs

Manasses Pereira Nóbrega
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Unreplicated two-level factorial designs are very useful in many applications,

especially in industrial experimentation [4]. One of the reasons of their wide

spread use is the cost savings associated with such designs [3]. However, without

replication, a direct estimation of error variance is not possible [2]. One common

method to assess the significance of effects is to use normal or half-normal

probability plots [1]. Some experimenters use the normal plot, while others

prefer the half-normal plot [5]. The choice between these two plots seems to be

subjective. In this paper we present a study carried out to compare these two

graphical techniques.

We intend to verify in what situations one plot could be better than the

other. We use simulation and case studies to evaluate the abilities of both graph-

ical techniques to identify significant effects, to detect outliers, and to identify

inadvertent split-plotting in unreplicated two-level factorial designs. We show

that these simulations can provide potentially useful insights to practitioners

when interpreting results from an experiment. We also discuss the advantages

and limitations of each procedure.
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We consider a game played on a graph with n vertices, or countries, and b
edges, or borders. A tournament consists of n games where no player plays the

same country twice, represented by n labellings of the graph where no label

is given to the same vertex twice. A tournament is balanced if the number of

times each pair of players shares a common border is strictly within 1 of n · b

(n2)
.

We determine all pairs (n, b) with n ≤ 7 for which there is a graph having no

balanced tournament. We also consider the problem of finding an algorithm

which will always produce an “almost balanced” tournament.
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Let G be a connected graph and η(G) = Sz(G)−W (G), where W (G) denotes

the Wiener index and Sz(G) denotes the Szeged index of G. A well-known result

of Klavžar, Rajapakse and Gutman [3] states that η(G) ≥ 0 and by a result of

Dobrynin and Gutman η(G) = 0 if and only if each block of G is complete [1, 2].

In this paper an edge-path matrix for the graph G is presented by which it is

possible to present a new characterization for the graphs in which the Wiener

and Szeged are the same. It is also shown that η(G) 6= 1, 3 and a classification

of all graphs with η(G) = 2, 4, 5 are presented. Finally, it is proved that for a

given positive integer k, k 6= 1, 3, there exists a graph G with η(G) = k.
We apply our result to compute the Wiener index of some molecular graphs

applicable in nanoscience.
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In this paper, we develop a family of new codes and investigate whether this

family of codes holds a square design or not[1]. Let Fn
q denote the linear space

of all n-tuples over the finite field Fq = GF (q). An (n,M) code C over Fq is

a subset of Fn
q of size M. If C is a k-dimensional subspace of Fn

q , C is called

an [n, k] linear code over Fq. The field F2 is very special in coding theory, and

codes over F2 are called binary codes and similarly, codes over F3 are called

ternary codes and so on. Thus codes over Fq are called q-ary codes [2, 3].

C is an (n,M, d)q code over Fq of length n with M codewords and minimum

distance d. The code C can be either linear or nonlinear. A t-(v, k, λ) design D

is a set X of v points together with a collection of k-subsets of X (called block)

such that every t-subset of X is contained in exactly λ blocks [1, 4]. Here, a

new family of binary codes ( 3
n
−1

2
, 3

n
−1

2
, 2.3n−2), n ≥ 3 is developed and some

of their properties are studied. It is also shown that this family of codes holds

2-( 3
n
−1

2
, 3n−1, 2.3n−2) design.
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A nontrivial connected graph G is called a chain if every block is incident

with atmost two cutpoints of G and every cutpoint is incident with exactly

two blocks. In other words a graph is a chain if its block- cutpoint graph is

a path.The total-ctree of a graph is the graph whose points can be put in

one-to-one correspondance with the set of blocks and cutpoints of a graph in

such a way that two points of total-ctree graph are adjacent if and only if the

corresponding members of a graph are adjacent, co-adjacent or incident.

In this paper, the concept of chainos total-ctree graph of a graph is intro-

duced. We present a characterization of those graphs whose chainos are eulerian,

hamiltonian, planarity, outerplanarity and minimally nonouterplanarity. Also,

the necessary and sufficient conditions for chainos total-ctree graph to have

crossing number one or two are established. Further covering invariants and

chromatic number are studied.
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For any given graphs G and H, the notation F → (G,H) means that any

red-blue coloring of the edges of F forces F to contain a red subgraph G or a

blue subgraph H. Graph F is a Ramsey (G,H)-minimal graph if F → (G,H)

but F ∗
9 (G,H) for any proper subgraph F ∗ ⊂ F . The class of all (G,H)-

minimal graphs is denoted by R(G,H). The pair (G,H) is called Ramsey-finite

or Ramsey-infinite depending upon whether R(G,H) is finite or infinite. Some

results related to the finite class R(2K2, H) for some H have been obtained as

follows.

Burr, Erdös and Lovász [3] showed that R(2K2, 2K2) = {3K2, C5}. Then
Burr et al. [2] determined all graphs in R(2K2, C3). Mengersen and Oecker-

mann [5] determined the members of R(2K2, tK2) for t ≤ 5 and characterizing

its members for t ≥ 5. Another results are the determination of all graphs be-

longing to R(2K2,K1,n) for n ≤ 3 and the characterization of its members for

n ≥ 3 in [4]. Recently, Yulianti et al. [6] determined all graphs in R(2K2, C4)

and gave some necessary conditions for graphs in R(2K2, Cn) for n ≥ 3. It has

been shown in [1] (without proof) and [4] that R(2K2, P3) = {2P3, C4, C5}.
In this paper we will characterize the graphs belonging to R(2K2, Pn)

for n ≥ 3.
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For any edge x = uv of an isolate free graph G(V,X), Vx = {w ∈ V |w is

adjacent to u or v}. Then 〈N [x]〉 is the subgraph induced by the set Vx. The

edge degree of x = uv is defined as de(x) = d(u)+d(v)−2. We say that an edge

x, e-dominates an edge y if y ∈ 〈N [x]〉. An edge x strongly e-dominates an edge

y if y ∈ 〈N [x]〉 and de(x) ≥ de(y). A set L ⊆ X is an Edge-Edge Dominating

Set (EED-set) if every edge in X − L is e-dominated by an edge in L. And
L is said to be a Strong Edge-Edge Dominating set (SEED-set) if every edge

in X − L is strongly e-dominated by an edge in L. The edge-edge domination

number γee(G) (strong edge-edge domination number γsee(G)) is the minimum

cardinality of an EED-set (SEED-set). In this paper, we find the relation ship

between the new parameters and some known graph parameters. Further the

Edge-Edge degree of an edge is defined and bounds for γee in terms of maximum

Edge-Edge degree is established.
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The development of effective prevention and control strategies requires taking

into account the uncertainties inherent in any realistic dynamical process, be-

cause they often induce complex behaviors (oscillations, instability, poor per-

formance, etc). Problems with uncertainty are the most ambitious and most

difficult of control theory, but their analysis is necessary and of great impor-

tance for real-word applications. The basis of robust control theory is to con-

sider these uncertain behaviors, and analyze how the control system can cope

with this problem. The uncertainty can be of two types: errors or defects from

the model and unmeasured noises and disturbances that affect the dynamical

systems. These terms of uncertainty often lead to great instability. The aim

of robust control theory is to control these instabilities, either by acting on

certain parameters to maintain the system in a desired state, or by calculating

the limit of these parameters before the system becomes unstable (“observe,

measure and provide for effective actions”).

The fundamental idea of our approach is the connection between the

game theory approach and the problem of stabilizing uncertain nonlinear dis-

tributed parameter systems, described by nonlinear partial differential equa-

tions (NPDE’s). This is motivated, by the fact that: first, it is well now that

the most appropriate mathematical models for the real dynamical systems are

the full nonlinear ones, and second, the robust control theory can be repre-

sented as a differential game between an engineer seeking the best control which

stabilizes the system with limited control efforts, and simultaneously plant or

unexpected events seeking the maximally malevolent disturbance which desta-

bilizes the system with limited disturbance magnitude. This area concerns in-

vestigation of the minimax control, stability and adjoint control optimization

of infinite-dimensional dynamical systems (which are, in general, systems of

coupled and time-varying NPDE’s). Details of our approach and several phys-

ical and biological applications are reported in [1]. In this review, we provide

an overview of our approach, by presenting the basic ideas behind the main

theories as well as the reasons why such an approach is a good alternative for

the robust regulation of full nonlinear dynamical systems, and by showing how

to apply them in a practical way. Finally, in order to explain our theoretical

proposals on practical cases, we give a biological application.
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In this paper, we prove that if M is a binary connected and vertically 3-

connected matroid of cogirth at least 4 and girth at least 3, then the matroid

obtained by splitting away any pair of elements of M is connected.
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Department of Mathematics, National University of Colombia, Kra 30 calle 45,

Colombia

E-mail: amorenoca@unal.edu.co

2000 Mathematics Subject Classification. 05A17 ; 11D25; 11D45; 11D85; 11P83.

The theory of ordinary P -partitions which is a common generalization of the

theory of partitions and the theory of compositions was introduced by Richard

Stanley in 1972 [3]. I must recall that an ordinary P -partition is an order-

preserving map from a partially ordered set P to a chain with special rules

specifying where equal values may occur ([1], [3]).

In this talk, I will describe how we can use the generating function for some

P -partitions and the ordinary graph induced by the covering relation of P in

order to obtain a formula for the number of partitions of a positive integer n
into four cubes with two of them equal. In particular, these results allow us

to provide advances to the question Can every natural number k be put in the

form x3+y3+2z3, where x, y, z are integers? mentioned by Richard Guy in [2].
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Transit functions of arity 2 and associated convexities is a well studied topic

since 1951, see [3], [2] and [1]. We generalize the transit function from binary to

n-ary, n > 2. Let V be a non-empty set. Then a function R: V ×V ×. . .×V → 2V

is a transit function of arity n (or n-ary transit function) on V if R satisfies

the following axioms.

(t1) ui ∈ R(u1, u2, . . . , un) for all ui ∈ V , i = 1, . . . , n;
(t2) R(u1, u2, . . . , un) = R(π(u1, u2, . . . , un)) for all ui ∈ V , where

π(u1, u2, . . . , un) is any permutation of (u1, u2, . . . , un);

(t3) R(u, u, . . . , u) = {u} for all u ∈ V .

If R is a transit function on V , a subset W of V is R-convex if

R(u1, u2, . . . , un) ⊆ W for any u1, u2, . . . , un ∈ W .

A convexity C on V is of arity ≤ n if C = {C ⊆ V | F ⊆ C, |F | ≤ n ⇒
〈F 〉

C
⊆ C}. We have that: C is an S1-convexity on V of arity ≤ n if and

only if C is an R-convexity for some n-ary transit function R on V . We extend

the betweenness properties of binary transit functions to n-ary functions and

analyze their implications. The following betweenness axioms can be considered

for an n-ary transit function R. For any u1, u2, . . . , un, x, x1, x2, . . . , xn ∈ V ,

define

(b1) x ∈ R(u1, u2, . . . , un), x 6= uk ⇒ uk 6∈ R(y1, y2, . . . , yn), where
yi = ui if yi 6= uk else yi = x for i = 1, 2, . . . , n.
(b2) x ∈ R(u1, u2, . . . , un) ⇒ R(x, u2, . . . , un) ⊆ R(u1, u2, . . . , un).

(m) ∀ x1, x2, . . . , xn ∈ R(u1, u2, . . . , un) ⇒ R(x1, x2, . . . , xn) ⊆
R(u1, u2, . . . , un).

Also discuss some examples of n-ary transit functions on simple graphs and

study the underlying hypergraphs of n-ary transit functions.
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Structures (M. Changat, S. Klavžar, H.M. Mulder, A. Vijayakumar, eds.), Lecture
Notes Ser. 5, Ramanujan Math. Soc. (2008) 117–130.

[3] M.L.J. van de Vel, Theory of Convex Structures. North Holland, Amsterdam,
1993.

❖ ❖ ❖



470 Combinatorics

Domination Parameters of Circulant Graphs

T. Tamizh Chelvam

Department of Mathematics, Manonmaniam Sundaranar University, Tirunelveli

627012, Tamil Nadu, INDIA.

E-mail: tamche59@gmail.com

2000 Mathematics Subject Classification. 05C

Let Γ be a finite group with e as the identity. A generating set of the group Γ

is a subset A such that every element of Γ can be expressed as the product of

finitely many elements of A. Assume that e /∈ A and a ∈ A implies a−1 ∈ A. The
Cayley graph G = (V,E), where V (G) = Γ and E(G) = {(x, y)a|x, y ∈ V (G),
there exists a ∈ A such that y = xa} and it is denoted by Cay(Γ, A). A Cayley

graph on a finite cyclic group is called a circulant graph. Suppose G is a graph,

the open neighbourhood N(v) of a vertex v ∈ V (G) consists of the set of

vertices adjacent to v. The closed neighbourhood of v is N [v] = N(v) ∪ {v}.
For a set S ⊆ V , the open neighbourhood N(S) is defined to be ∪v∈SN(v)
and the closed neighbourhood of S is N [S] = N(S) ∪ S. A set S ⊆ V of

vertices in a graph G = (V,E) is called a dominating set if every vertex v ∈ V
is either an element of S or adjacent to an element of S [1]. A dominating

set S is a minimal dominating set if no proper subset is a dominating set.

The domination number γ(G) of a graph G is the minimum cardinality of all

dominating sets in G [1] and the corresponding dominating set is called a γ-
set. One can refer [1] for definitions of other domination parameters. Let n is

a fixed positive integer, Zn = {0, 1, 2, . . . , n − 1} and G = Cay(Zn, A), where
A = {1, n−1, 2, n−2, . . . , k, n−k} where 1 ≤ k ≤ n−1

2
. In this paper, we obtain

the value of domination number, total and connected domination numbers of

G = Cay(Zn, A). Also we describe under what conditions subgroups of Zn

become efficient dominating sets in of G = Cay(Zn, A).
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In this poster we give the construction of trees having only integer eigenvalues

with arbitrarily large diameters. In fact, we show that for every finite set S of

positive integers there exists a tree whose positive eigenvalues are exactly the

elements of S. If the set S is different from the set {1} then the constructed

tree will have diameter 2|S|.
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This paper is based on the element splitting operation for binary matroids that

was introduced by Azadi as a natural generalization of the corresponding oper-

ation in graphs. In this paper, we consider the problem of determining precisely

which graphic matroids M have the property that the element splitting opera-

tion, by every pair of elements on M yields a graphic matroid. This problem is

solved by proving that there is exactly one minor-minimal matroid that does

not have this property.
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Given a connected graph G not necessarily finite, denote by V the family of

all the spanning trees of G. Define an adjacency relation in V as follows. The

spanning trees T1, T2 are said to be adjacent if T1, T2 differ by a single edge.

The resultant graph is called the Spanning Tree Graph of G and is denoted

by T (G) (see[1]). The operator T is called the spanning tree graph operator.

The purpose of this paper is to study the dynamics of this operator such as

T -Convergence, T -Divergence, T -Depth and T -Root using the T -Operator.

We prove that

1. For a connected graph G not necessarily finite, T (G) is connected if and

only if any two spanning trees of G differ by at most a finite number of

edges.

2. A connected graph G is T-convergent if and only if G has no cycle or G

has exactly one cycle and its length is 3.

3. The T-depth of any finite connected graph is finite and no infinite con-

nected graph has a T-root.

4. For any graph G which has a root there are infinitely many roots under

the T-operator.

The T -Root problem is still not completely solved but we obtain some partial

results on that also.
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Interval digraph D(V,E) is a directed graph for which to each vertex v, we
can assign an ordered pair (Sv, Tv) of interval such that uv is an edge iff Su

intersects Tv. Interval bigraph is a bipartite graph where to each vertex we can

assign an interval so that vertices in opposite partite sets intersect.This two

concepts are equivalent [2,4]. Ferrers digraphs are digraphs satisfying any of

the conditions.

i) Successor sets (or, predecessor sets) are linearly ordered by inclusion.

ii) The rows and columns can be permuted (independently) so that the 1s

cluster in the upper right (or, lower left) as Ferrers diagram.

iii) The adjacency matrix has no 2-by-2 permutation matrix as a submatrix.

The following theorem characterizes interval digraphs. Theorem ( Sen, Das,

Roy and West [3]) The following conditions are equivalent

i) D is an interval digraph.

ii) The rows and columns of A(D) can be permuted (independently) so that

each zeros can be replace by one of {R,C} in such a way that every R

has only R’s to its right and every C has only C below it.

iii) D is the intersection of two Ferrers digraph whose union is complete.

We discuss interval (di/bi)graphs wholly in terms of binary adjacency matrices,

and call such a matrix an interval matrix. Das and Sen [1] obtained partial

results on forbidden configuration for interval matrices. Our aim in this paper

is characterization of interval matrix in terms of forbidden configurations.
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A Steiner triple system of order v, STS(v), is an ordered pair S = (V, T ), where
V is a set of size v and T is a collection of triples of V such that every pair of

V is contained in exactly one triple of T . A k-coloring of (V, T ) is a function

c : V −→ {1, . . . , k} such that |{c(x), c(y), c(z)}| ≥ 2, for every triple {x, y, z}
of T . A k-coloring of a STS(v) is called a balanced coloring if the size of color

classes are the same. A Steiner triple system, S, is called k-chromatic if it admits

a k-coloring but not a (k−1)-coloring. In this talk, we show that if there exists

a balanced k-chromatic STS(v), then for every natural number w, w ≡ 1 or 3

(mod 6), there exists a balanced k-chromatic STS(vw). Moreover, it is shown

that if there is a k-chromatic STS(v) and v is divisible by a prime number less

than k + 1, then there exists a k-chromatic STS(2v + 1).
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A pseudo (v, k, λ)-design is a pair (X,B) where X is a v-set and B =

{B1, . . . , Bv−1} is a collection of k-subsets (blocks) of X such that each two

distinct Bi, Bj intersect in λ elements; and 0 < λ < k < v − 1. We use

the notion of pseudo designs to characterize graphs of order n whose spec-

trum contains either ±1 or ±
√
2 with multiplicity (n − 2)/2 or (n − 3)/2. It

turns out that the subdivision of the star K1,k is determined by its spectrum

if k 6∈ {`2 − 1 | ` ∈ N} ∪ {`2 − ` | ` ∈ N}. Meanwhile, partial results confirming

a conjecture of O. Marrero on characterization of pseudo (v, k, λ)-designs are

obtained.
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We obtain several characterizations of the adjacency matrix of a probe interval

graph. In course of this study we describe an easy method of obtaining interval

representation of an interval bigraph from its adjacency matrix. Finally, we note

that if we add a loop at every probe vertex of a probe interval graph, then the

Ferrers dimension of the corresponding symmetric bipartite graph is at most 3.
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The well-known Ekeland Variational Principle ([1]) says roughly that for any

lower semicontinuous function f bounded from below on a complete metric

space X, there exists an approximate minimizer of f which is an exact mini-

mizer of a perturbed function. When X is a Banach space and f is Gâteaux

differentiable, its derivative can be made arbitrarily small. Moreover, if f sat-

isfies the Palais-Smale condition then it attains a minimum on X.

Our aim is to extend the above results to the case of a set-valued map F
which is defined on a Banach space and takes values in a partially ordered

Banach space. We obtain ([2] and [3]) several variants of the variational prin-

ciple for F involving its coderivative in the senses of Ioffe, Clarke and Mor-

dukhovich, and establish sufficient conditions for F to have a weak minimizer,

a properly positive minimizer, a Henig proper minimizer and a superminimizer

under Palais-Smale type conditions.
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In solving problems on finding the number of arrangements of n objects with

restriction, it is usually required to find the coefficients of certain polynomials

called rook polynomials. See [1], [2], and [3] for topics on rook polynomials.

It is not difficult to find these coefficients when n is not large. However, when

n becomes larger the calculations becomes laboring and less practical. In this

paper we propose a simple algorithm for finding these coefficients. Also, this

algorithm can be modified for more general problems on rook polynomials
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Topological indices are numerical parameters of a graph which invariant un-

der graph isomorphism. For a graph G, let V (G) and E(G) be the vertex-set

and edge-set of G respectively. Vukicevic and Furtula in [2] introduced the

geometric-arithmetic index, GA, of G as follows:

GA(G) =
∑

uv ∈E(G)

2
√
dudv

(du + dv)
,
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where du denotes the degree of vertex u ∈ E(G). A class of geometricarithmetic

topological indices is defined [1]

GAgeneral(G) =
∑

uv ∈E(G)

√
QuQv

1

2
(Qu +Qv)

,

where Qu is some quantity that in a unique manner can be associated with the

vertex u of the graph G. Some of thus class GA indices have been studied in

[1, 3]. It is natural that we consider the ordinary geometric-arithmetic index of

G. To this poruses for each positive real number k we define

OGAk =
∑

uv ∈E(G)

[√
2dudv

du + dv

]k

=
∑

uv ∈E(G)

(4dudv)
k
2

(du + dv)k
.

In this paper we obtain some results related to this index, especially we ob-

tain lower and upper bound in terms of other graph invariants and topological

indices. Also, we obtain this index for some nanotubes and nanotorus.
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Let f(n) be the maximum number of edges in a graph on n vertices in which

no two cycles have the same length. In 1975, Erdös raised the problem of

determining f(n) (see [1], p.247, Problem 11). Shi [7] proved that f(n) ≥
n+[(

√
8n− 23+1)/2] for n ≥ 3. Boros, Caro, Füredi and Yuster [2] proved that

f(n) ≤ n+1.98
√
n(1+ o(1)). Lai [6] proved that f(n) ≥ n+

√
2.4

√
n(1− o(1))
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and make the following conjecture: limn→∞

f(n)−n
√

n
=

√
2.4. We think it is dif-

ficult to prove this conjecture. It would be nice to prove the following sixteen

years old conjecture [5]: lim infn→∞

f(n)−n
√

n
≤

√
3. Let f2(n) be the maximum

number of edges in a 2-connected graph on n vertices in which no two cycles have

the same length. Shi [7] proved that f2(n) ≤ n+ [ 1
2
(
√
8n− 15− 3)], for n ≥ 3.

Chen, Lehel, Jacobson, and Shreve [3] proved that f2(n) ≥ n+
√

n/2− o(
√
n).

Boros, Caro, Füredi and Yuster [2] improved this lower bound significantly:

f2(n) ≥ n+
√
n−O(n

9

20 ) and make the following conjecture: lim
f2(n)−n

√

n
= 1.

Markström [4] raised the problem of determining the maximum number of edges

in a hamiltonian graph on n vertices with no repeated cycle lengths.
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A proper edge coloring of a graph is said to be acyclic if any cycle is colored

with at least three colors. The acyclic chromatic index, denoted a′(G), is the

least number of colors required for an acyclic edge coloring of G. An edge-list

L of a graph G is a mapping that assigns a finite set of positive integers to

each edge of G. An acyclic edge coloring φ of G such that φ(e) ∈ L(e) for any
e ∈ E(G) is called an acyclic L-edge coloring of G. A graph G is said to be

acyclically k-edge choosable if it has an acyclic L-edge coloring for any edge-list

L that satisfies |L(e)| ≥ k for each edge e. The acyclic list chromatic index is

the least integer k such that G is acyclically k-edge choosable.

In [1, 2, 3], upper bounds for the acyclic chromatic indexes of several classes

of planar graphs without short cycles were obtained. Let the girth of a graph be

the shortest length of a cycle in that graph. We establish various upper bounds

for the acyclic list chromatic indexes of planar graphs with girth at least 4, 5,

6, or 16, respectively.
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The b-chromatic number ϕ(G) of a graph G is the largest integer k such that

G admits a proper k-coloring in which every color class contains at least one

vertex adjacent to some vertex in all the other color classes [3]. A graph G is b-
perfect [1] if every induced subgraphH of G satisfies ϕ(H) = χ(H), where χ(H)

denotes the chromatic number of H. In [2] a collection of twenty two minimally

b-imperfect graphs were given and it was conjectured that these are the only

ones. In this paper, we characterize b-perfect distance hereditary graphs and

observe that the above conjecture is true for this class.

The b-chromatic number of a d-regular graph G lies in the interval 2 ≤
ϕ(G) ≤ d+ 1. In [5] and [6] classes of d-regular graphs for which ϕ(G) = d+ 1
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are obtained and from these results it follows that there are only a finite number

of d-regular graphs with ϕ(G) ≤ d. In [4], it is proved that except for 4 graphs,

ϕ(G) = 4 for every cubic graph G. In the last section, we discuss the possible

values of k ≤ d for which there exists a d-regular graph with ϕ(G) = k.
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[2] C.T. Hoáng, C. Linhares Sales, F. Maffray, On minimally b-imperfect graphs, Dis-
crete Appl. Math., 157 (2009), 3519–3530.

[3] R.W. Irving, D.F. Manlove., The b-chromatic number of graphs, Discrete Appl.
Math., 91 (1999), 127–141.
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In this paper we establish a set of sufficient conditions for the controllability of

nonlinear fractional integrodifferential systems of the form

Dqx(t) = Ax(t) +Bu(t) + f(t, x(t),

∫ t

0

g(t, s, x(s))ds, u(t)), t ∈ J = [0, b],

x(0) = x0,

where 0 < q < 1, x ∈ Rn, u ∈ Rm, A is an n × n matrix, B is an n × m
matrix and g : J × J × Rn → Rn and f : J ×R2n × Rm → Rn are continuous

functions. The results are obtained by using the recent formula for solution

representation of system of fractional differential equations [1, 2, 4] and the

application of the Schauder fixed point theorem [3]. Examples are provided to

illustrate the results.
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A proper edge coloring of a graph is said to be acyclic if any cycle is colored

with at least three colors. An edge-list L of a graph G is a mapping that assigns

a finite set of positive integers to each edge of G. An acyclic edge coloring φ of

G such that φ(e) ∈ L(e) for any e ∈ E(G) is called an acyclic L-edge coloring

of G. A graph G is said to be acyclically k-edge choosable if it has an acyclic

L-edge coloring for any edge-list L that satisfies |L(e)| > k for each edge e.
The acyclic list chromatic index is the least integer k such that G is acyclically

k-edge choosable. We develop techniques to obtain bounds for the acyclic list

chromatic indexes of outerplanar graphs, subcubic graphs, and subdivisions of

Halin graphs.
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The Cook problem, notably P=NP?, was raised years ago. At the same time in

graph theory a problem on the duality between vertex and edge graphs exists

[1]. A Church-Turing thesis on the principle normalization of any algorithm

exists too [2]. In addition we know that a directed graph can serve as a picto-

rial representation of any algorithm. Unfortunately all attempts to reach the

solution of “Graph isomorphism’s Problem” in the statement of searching for

the effective algorithm for the proving of the equivalence between the vertex

graphs [3] still are fruitless. Can we find the equivalent conversion of the vertex

graph into the edge graph which will considerably differ from the exhaustion

method? Yes, the problem is solved and published [4]. The justification of the

application of this solution to the theory of algorithms is also proved.

Still at the graph’s converting a problem between the strict duality and

semi-duality arises. Generally the converting of the vertex graph into the edge

graph not always happens to the equivalence of the cyclomatic numbers. But for

some mass problems the strict duality is necessary. The analysis of the convert-

ing process unequivocally reduces us to the fact that generally the graphs can

be divided into three classes. The strict duality exists only for the graphs with-

out the contours and some special intervals (holonomic graphs) [4]. The strict

duality does not exist in principal for the graphs with the contours (progressive-

heteronomous graphs). The graphs without the contours, but with some special

intervals, can be reduced to the form which possesses the property of the strict

duality (bounded-heteronomous graphs). It is reasonable to make a sugges-

tion that any mass problem against the task’s graph also could be divided

into three classes of tasks, possessing different properties. And the solution of

P=NP? problem will be different for the different classes inside the concrete

mass problem. But we’ll never succeed in proving P=NP.
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Erdös-Ko-Rado Theorem states the following: Let d, n be positive integers such

that 2d < n. Let X be a set with n elements. The size of any intersecting family

of d-subsets in X is ≤

(

n− 1

d− 1

)

and it is equal to

(

n− 1

d− 1

)

if and only if the

family consists of all d-subsets containing a fixed element.

Our theorem states the following: Let d, n be positive integers such that

2d < n. Let X = {a1, . . . , an} where a1, . . . , an are real numbers and a1 + a2 +
. . . + an ≥ 0. A d-subset of X is nonnegative if the sum of all the elements in

A is ≥ 0. Then any family consisting of nonnegative d-subsets in X must have

size ≥

(

n− 1

d− 1

)

and it is equal to

(

n− 1

d− 1

)

if and only if the family consists

of all d-subsets containing a fixed element. Is this a dual to E-K-R theorem?
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Let Ph be a path on h vertices. A graph G = (V,E) admits a Ph-covering if

every edge in E belongs to a subgraph of G that is isomorphic to Ph. That

G is called Ph-magic if there is a total labeling f : V ∪ E → {1, 2, . . . , |V | +
|E|} such that for each subgraph H = (V ′, E′) of G that is isomorphic to Ph,
∑

v∈V ′ f(v) +
∑

e∈E′ f(e) is constant. Additionally, G is called Ph-supermagic

if f(V ) = {1, 2, . . . , |V |}.
The Ph-(super)magic labelings was first studied by Gutiérrez et.al [2] in

2005. They gave Ph-(super)magic labelings of Pn and a cycle Cn. In [3] Maryati
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et.al provided Ph-(super)magic labelings of some trees, namely, shrubs and

banana trees. For further information of the (super)magic labelings, see [1]

and [4].

We study the Ph-(super)magic labelings of some graphs constructed from

Cn by adding a number of pendant edges p, denoted by C+p
n . We characterize

the Ph-(super)magicness of this graph. We give the necessary condition for

a graph which contain a cycle with a pendant being Ph-(super)magic for a

fixed h. We also consider the Ph-(super)magic labeling for C+p
n . We obtain the

following results.

Theorem 1. If G contains C+1
n , for n ≥ 3 then G is not Pn+1-magic.

Theorem 2. If G contains C+1
n , for n ≥ 4 then G is not Pn−1-magic.

Theorem 3. Let n ≥ 3 and 3 ≤ p ≤ n. For odd n or even n with p < n, C+p
n

is Pn+2-supermagic.
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The idea of the principle of Inclusion-Exclusion is a counting technique to count

the elements of a specified subset of a finite non-empty set X satisfying a

finite collection of dichotomous properties which are not necessarily mutually

exclusive. see for instance [1].

In this talk [2], we propose several settings of that principle in the case

of finite fuzzy subsets of X taking degrees of membership values in the unit

interval I; that is, a finite set X on which several properties are defined, each
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property may or may not be a dichotomous property or in other words, each

may be crisp, fuzzy, vague or linguistically defined. The ideas are all based on

the α-cuts of fuzzy subsets and some equivalence relations on the fuzzy subsets.

We illustrate the ideas with some applications to problems encountered in day-

to-day shopping.

We also briefly discuss the associated concept of Möbius functions and the

Möbius inversion formula. The results are published in [3].

I wish to thank M. Talwanga for some discussion and Joint Research Com-

mittee of Rhodes University for financial support.
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Let R be a commutative ring and A(R) be the set of ideals with non-zero anni-

hilator. The annihilating-ideal graph of R is defined as the graph AG(R) with

vertex set A(R)∗ = A(R) \ {(0)} and two distinct vertices I and J are adjacent

if and only if IJ = (0). In this paper, we study some connections between the

graph theoretic properties of this graph and some algebraic properties of the

commutative rings. We investigate commutative rings whose annihilating-ideal

graphs are a complete graph. Also, we present some results on the clique num-

ber and the chromatic number of the annihilating-ideal graph of a commutative

ring.
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For a simple graph G with the vertex set V and the edge set E, a labeling

λ : V ∪E −→ {1, 2, ..., k} is called a vertex irregular total k-labeling of G if for

any two different vertices x and y in V we have wt(x) 6= wt(y) where wt(x) =
λ(x) +

∑

xz∈E λ(xz). The total vertex irregularity strength of G, denoted by

tvs(G), is the smallest positive integer k for which G has a vertex irregular total

k−labelling. In this paper, we determined the total vertex irregularity strength

of an amalgamation of stars.

❖ ❖ ❖
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For a positive integer n, consider the finite set Dn given by the set of absolute

values of the determinant function over the set of all real n-by-n matrices whose

coefficients are either 0 or 1. Dn is called the determinant spectrum for order

n (0,1) matrices.

At the 1998 ICM in Berlin, it was suggested [3] that approximatingDn could

solve the Hadamard maximum determinant problem. Finding Dn exactly is

called the determinant spectrum problem; it was studied in [1] and has appeared

in more recent research, cf. [2] and [4]. We report on the progress made on the

spectrum problem as well as its application to Hadamard’s problem.
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Let G be a finite simple graph and L(G) be its Laplacian matrix [2]. The largest

eigenvalue of L(G) is called the Laplacian spectral radius of G. Let Un,g be the

class of all unicyclic graphs on n vertices with fixed girth g. In [1], the author

has determined the graph which maximizes the Laplacian spectral radius over

the class Un,g. In this work, we have studied the minimum Laplacian spectral

radius over the class Un,g. Consider a cycle on g vertices and append a pendent

vertex of the path on n − g vertices to one of the vertices of the cycle. The

new graph is a unicyclic graph on n vertices with girth g and we denote it by

Cn,g. We have studied the eigenvectors corresponding to the Laplacian spectral

radius of Cn,g. We show that when g = 3 or 4, Cn,g has the minimum Laplacian

spectral radius over the class Un,g. We prove that the same result is true when

n is large with respect to fixed girth g. However, this need not be true when n
is small comparing to large girth g.
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Let X be a finite set of v elements, called points and β be a finite family of

distinct k-subsets of X, called blocks. Then the pair D = (X,β) is called a block

design (or 2-design) with parameters (v, b, r, k, λ)(v > k ≥ 3) if |X| = v, |β| = b,
each block contains k points, each point occurs in r blocks. each pair of points

occurs in λ blocks.

For 0 ≤ x < k, x is called an intersection number of D if there exists

B,B′ ∈ β such that |B ∩ B′| = x. A 2-design with two intersection numbers

is said to be quasi-symmetric design. We denote these intersection numbers by

x and y, and assume 0 ≤ x < y < k. We consider the proper quasi-symmetric

designs i.e., both the intersection numbers occur.

Symmetric designs are 2-designs with b = v, equivalently r = k. It is well

known that any two distinct blocks of symmetric design intersects in λ points.

Block residual of a symmetric design is a design with parameters (v − k, v −
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1, k, k−λ, λ) obtained by removing a block B and all points in B from remaining

blocks. In view of the parameters of a block residual, 2-design satisfying r =

k + λ is said to be quasi-residual. Quasi-residual design is called residual or

embeddable if it actually is the block residual of a symmetric 2-design. Quasi-

residual design with λ = 2 has parameters v = k(k + 1)/2, b = (k + 1)(k +

2)/2, r = k+ 2 and x = 1, y = 2. Hall and Connor proved that a quasi-residual

2-design with λ = 2 is residual. Symmetric design with λ = 2 is called biplane.

Biplane with parameters v = (m+3)(m+2)/2+1, k = m+3, λ = 2 are known

to exist only when m = 1, 2, 3, 6, 8, 10 and it is an open question if there are

other values of m for which a biplane exists. In view of this the following result

is proved.

Let D be a quasi-symmetric design with intersection numbers x, y and y −
x = 1. Then D is a design with parameters v = (1 + m)(2 + m)/2, b = (2 +

m)(3 + m)/2, r = m + 3, k = m + 1, λ = 2, x = 1, y = 2 and m = 2, 3, . . . or
complement of one of these design or D is a design with parameters v = 5, b =
10, r = 6, k = 3, λ = 3 and x = 1, y = 2.

Classification of quasi-symmetric designs with y − x = 2 will be discussed.
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Given a polytope P in a vector space V equipped with a lattice Λ and a function

f on V , can one relate the sum of f over the lattice points in P to the integral

f over P? One would expect a main term, the integral of f over P , as well as

correction terms involving the integrals of f over the proper faces of P .

If f is a constant function, one wishes to express the number of lattice points

in P in terms of volume of P and the volumes of the faces of P . One hopes for

a local formula, meaning that for each face F of P , the formula contains a term

that is the volume vol(F ) multiplied by a coefficient µ(Supp(P, F )) that depends

only on the supporting cone Supp(P, F ) to P along F . McMullen [McM] proved

the existence of local lattice point counting formulas in a nonconstructive way.
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The second author and Thomas [PT] gave an explicit construction of a rational

valued function µ, given a fixed complement map on V .

Berline and Vergne constructed in [BV] an explicit local Euler-MacLaurin

formula for the sum of a polynomial function f over the lattice points P ∩ Λ

of a rational polytope. This construction is local and requires an inner product

on the vector space V . The formula results from a relationship between the

integral and the sum of an exponential function over a polytope.

In this work, we introduce the concept of an interpolator between the

families of exponential sums (S) and exponential integrals (I) over rational

polytopes in a rational vector space V . Our main result states that a comple-

ment map on the vector space V gives rise in a natural way to an effectively

computable SI-interpolator on V , and hence a local Euler-Maclaurin formula,

an IS-interpolator (and a reverse local Euler-MacLaurin formula) and an IS0-

interpolator. In particular, an inner product on V or a complete flag in V gives

rise to a local Euler-Maclaurin formula. These formulas generalize the work of

Berline-Vergne, Pommersheim-Thomas, and Morelli.
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The anti-Gallai graph ∆(G) of a graph G has the edges of G as its vertices and

any two vertices of G are adjacent in ∆(G) if the corresponding edges of G lie

on a triangle in G and hence is a spanning subgraph of the line graph of G.

The study on the structure of the anti-Gallai graph is well motivated in

[2] where it is shown that the four color theorem can be equivalently stated in

terms of anti-Gallai graphs.
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A root graph of an anti-Gallai graph H is a graph G such that H ∼= ∆(G).

In [1] it is shown that there are infinitely many anti-Gallai graphs with more

than one root graph. In [3] an algorithm is provided to partition the edge set

of a line graph to the edges of Gallai and anti-Gallai graphs of its root graph.

In this paper we introduce an algorithm to recognize and hence find all the

root graphs of anti-Gallai graph.
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A semi-complete graph,a weaker graph than a complete graph is introduced

and its properties are studied.These graphs are very useful in safety problems

of defence and banking.

Definition: A graph is said to be semi-complete iff it is simple and for any

two of its vertices there exists a third vertex with which these two vertices are

adjacent(in the graph).

To avoid trivialities,we consider a non-trivial graph with atleast three ver-

tices.

Observations: (i) Any semi-complete graph is a non empty graph (i.e it has

edges) (ii) Any complete graph is semi-complete but the converse is false. (iii)

Any semi-complete graph is connected and hence contains a spanning tree.

(iv) Any semi-complete graph contains K3 and hence it is not a tree and not

bipartite. Its girth is atleast 3 and is 3 colourable.
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Main Results:

(i) The Harary graph Hm,n is semi-complete iff either

(a) m is even and 4 ≤ m < n ≤ 2m+ 1 (or)

(b) m is odd,3 ≤ m < n ≤ 2m.

(ii) A simple graph G with atleast three vertices is semi-complete iff any two

vertices lie on the same K3 or on different K3 having a common vertex

in G.

(iii) If a semi-complete graph is such that its edge set is a union of triangles

such that no two triangles have a common edge then all the triangles have

a common vertex.

Further concepts like weak semi-complete,strong semi-complete,super strong

semi-complete graphs are introduced.

Characterization theorems for semi-complete graph to be (i) weak semi-

complete (ii) strong semi-complete (iii) super strong semi-complete are ob-

tained.
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Let L = {L(v), v ∈ V (G)} be a list assignment of a graph G. The graph G is

acyclically L-choosable if there is a proper coloring c of the vertices of G such

that c(v) ∈ L(v) for any v ∈ V (G), and G does not contain any bicolored cycle.

A graph G is acyclically k-choosable if it is acyclically L-choosable for any list

assignment L with |L(v)| = k for all v ∈ V (G). In this short communication

we will survey recent results on acyclic 4-choosability of planar graphs with

forbidden cycles. In particular, we prove [4] that every planar graph without

{4, i, j}-cycles, for 5 ≤ i ≤ j ≤ 8, is acyclically 4-choosable.
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A graph G is an ordered pair (V,E), where V is a some set and E is a set of

2-point subsets of V . The elements of the set V are called vertices of the graph

G and the elements of E edges of G.

A type of transformation on a graph, which leaves invariant the number of

edges of the graph is known as a ∆Y transformation. A ∆ → Y transformation,

is the deletion of three edges of a triangle with vertices x, y, z, and the addition

a new vertex w together with three new edges wx, wy, wz. A Y → ∆ trans-

formation, is the deletion of one vertex w of degree 3 together with its three

incident edges wx, wy, wz, and the addition of three edges xy, yz, xz [2, 4].
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A graph is ∆Y reducible if it can be reduced to only one vertex by means

of a sequence of ∆Y transformations and series-parallel reductions. It is known

that every plane graph is ∆Y reducible [1, 2]. In this work we generalize the

definition of ∆ →Y transformation in a graph to that of n-polygon → n-star
transformation, and explore the case n = 4.

It is said that a graph is 4-polygon reducible if it can be reduced to only one

vertex by means of a sequence of 4-polygon→ 4-star transformations and series-

parallel reductions. We present some families of graphs which are 4-polygon

reducible, one of them is the family of finite grids. Among the families of graphs

with chords which will be shown to be 4-polygon reducible are wheels and

complete graphs. The complete graphs Kn with n ≥ 6 are not ∆Y reducible,

but they are 4-polygon reducible. In this talk, we also exhibit families of quasi-

cubic graphs which are not 4-polygon reducible, and non-polygon reducible

cubic graphs that are minimal with respect to the number of vertices.
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Graphs that play an important role in artificial intelligence are introduced

and their useful properties are obtained. The elementary study is being done

by Saradhi [2], we follow the terminology and notation given in Bondy &

Murthy [1].
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Definition: Let m,n be positive integers and s be a non negative integer

≤ (m − 1), then the simple graph G with vertex set V = V (G) = {1, 2, ..., n}
and the edge set E = E(G) = {(u, v) : where u, v ∈ V with v 6= u and

u + v ≡ s(mod m)} is called a number theoretic graph. (and is denoted by

Gm,n(s)).

The following are the main results:

Theorem (1): For the (simple) graph Gm,n (s) m,n ≥ 3 and s =

0, 1, 2, ..., (m − 1) with vertex set V = V (G) = {1, 2, ...,m} and with Vi={v ∈
V : v ≡ i(mod m)} (i = 0, 1, 2, ...,m − 1), the number of edges ε(Gm,n) (s) of

(Gm,n) (s) is

(i)
∑ s

2
−1

i=0
|Vi||Vs-1|+ |V s

2
|(

|V s
2

|−1

2
)+

∑m
2
−1

i= s
2
+1

|V s
2
+i||Vm+s

2
−i|+ |Vm+s

2

|(
|Vm+s

2
−1

|

2
)

if both m and s are even (and a similar expressions when (ii) m is even and s

is odd (iii) m is odd and s is even and (iv) m and s are odd.)

Theorem (2): (a)G2,n(0)is bipartite iff n = 2, 3, 4 and G2,n (1) is bipar-

tite for all n ≥ 2. (b) For all n,m ≥ 3 and s ∈ 0, 1, ...,m− 1, the graph

Gm, n (s) is bipartite iff any one of the following holds: (i) m is even and

s is odd. (ii) m is even, and s = 0 n ≤ ( 5m−1

2
) (iii) m is odd and s = 0

n ≤ 3m−1 (iv) s assumes even integers from 2 to λ where λ = m−2 orm−1 ac-

cording as m is even or odd n ≤ 4m+s−2

2
(v) both m and s are odd n ≤ 5m+s−2

2
.

Theorem (3): For n,m ≥ 3 and s ∈ {0, 1, ...,m − 1}, & n = mq + r(r =

0, 1, ...,m − 1), the graph Gm,n (s) has a perfect matching iff any one of the

following holds: (i) m is even and s is odd and r = 0. (ii) m is even and s = 0,

q is even r = 0; (iii) m is odd s = 0, q is even r = 0 or m − 1 (iv) m is even

and s is even and s ∈ {2, ...,m− 2}, q is even and r = 0 (v) m is odd,s is even

and s ∈ {1, 2, ...,m − 1}, either q is even, r = 0 or q is odd and r = s − 1 (vi)

m is odd, s is odd, q is even and r = 0.
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Consider a rooted tree T labelled with the integers 1, . . . , n, where n is the

number of nodes of T . An inversion in T is a pair of nodes (i, j), such that

i > j and node i lies on the (unique) path from the root to node j.
We study the number of inversions in labelled families of simply generated

trees, i.e., families T which can be described by a formal equation of the form

T = ◦ × ϕ(T ), where ◦ is a node and ϕ(T ) a substituted structure, cf. [4]. For

some important families of this type exact results on the number of inversions

are known, see, e.g., [3] for inversions in Cayley trees and [2] for inversions in

ordered trees and cyclic trees. Furthermore, in [1] the distributional behaviour

of the number of inversions in Cayley trees has been studied via relations to

cost measures in a linear probing hashing algorithm.

We extend the existing work by a study of the limiting distribution be-

haviour of the number of inversions in arbitrary simply generated tree families.

For a randomly chosen tree T of size n, we analyze both the total number Xn

of inversions in T and the number Yn,j of inversions generated by node j, i.e.,
the number of inversions of the type (i, j), i > j.

We can show that after proper normalization Xn is asymptotically Airy

distributed, whereas Yn,j follows asymptotically a Rayleigh distribution. We

can even characterize the behaviour of Yn,j if we let j = j(n) grow with n. In
this case we obtain three different limit laws depending on the order of growth

of j.
Our considerations are not limited to simply generated trees, generalizations

to other combinatorial structures, e.g., to so-called k-trees (or k-dimensional

trees), are possible.
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Let R be a commutative ring with identity and A(R) be the set of ideals with

non-zero annihilator. The annihilating-ideal graph of R is defined as the graph

AG(R) with the vertex set A(R)∗ = A(R) \ {0} and two distinct vertices I and

J are adjacent if and only if IJ = 0. In this paper, we study some connec-

tions between the graph theoretic properties of this graph and some algebraic

properties of a commutative ring. We prove that if AG(R) is a tree, then either

AG(R) is a star graph or a path of order 4 and in the latter case R ∼= F × S,
where F is a field and S is a ring with exactly one non-trivial ideal. Moreover;

we prove that if R has at least three minimal prime ideals, then AG(R) is not

a tree. It is shown that for every reduced ring R, if R has at least three mini-

mal prime ideals, then AG(R) contains a triangle. Finally, it is proved that, if

|Min(R)| = 1 and AG(R) is a bipartite graph, then AG(R) is a star graph.
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We develop the polyhedral approach to integer partitions [3]. Its main idea is

to study the set of partitions of any positive integer n as a polytope Pn ⊂ Rn,
which is the convex hull of the set of incidence vectors x of all partitions of

n. With the use of representation of Pn as a polytope on a partial algebra, we

give subadditive characterization of its non-trivial facets. They correspond to

extreme rays of the cone of subadditive functions on {1, 2, . . . , n} with some

additional requirements.

Studying vertices of Pn is the first attempt to reduce the sets of partitions

to their subsets. We show that the vertices of all partition polytopes form a

partition ideal of the Andrews partition lattice [1] and propose a lifting method

for constructing them. Of special importance is the criterion of whether a given

partition x is a convex combination of two others: this is true iff there exist two

equal sum collections of parts of x. The criterion yields necessary conditions for

vertices, in particular, exact upper bounds on the numbers of all parts dn/2e
and distinct parts blog(n+1)c of a vertex. It also reveals relations of vertices to

sum-free sets, Sidon sets [4], and knapsack partitions [2], the latter being just

those partitions that cannot be convexly expressed via two others. We prove

that the problems of recognizing knapsack partitions, as well as certain multisets

embracing the additive structures mentioned above, are co-NP-complete.

We find that there exists a subset of support vertices of Pn, from which

all other vertices can be recursively generated using two operations of merging

parts of partitions. Starting from any vertex, one can also use these operations

to build sequences of vertices generating complete subgraphs of the partition

polytope graph. Numerical data testify to the number of support vertices being

considerably less than the number of vertices, which, in its turn, is much less

than the total number of partitions.
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A signed graph (or sigraph in short) is an ordered pair S = (Su, σ), where Su

is a graph G = (V,E), called the underlying graph of S and σ : E → {+,−} is

a function from the edge set E of Su into the set {+,−}, called the signature

of S. For a sigraph S, its line sigraph L(S) is a sigraph in which the edges of S
are represented as vertices, two of these vertices are defined adjacent whenever

the corresponding edges in S have a vertex in common and any such edge ef
is defined to be negative whenever both e and f are negative edges in S. The
×-line sigraph of S denoted by L×(S) is a sigraph defined on the line graph

L(Su) of the graph Su by assigning to each edge ef of L(Su), the product

of signs of the adjacent edges e and f in S. The canonical marking on S is

defined as: for each vertex v ∈ V (S), µ(v) =
∏

ej∈Ev
σ(ej), where Ev is the

set of edges ej incident at v in S. Now, if every vertex of a given sigraph S
is canonically marked, then a cycle Z in S is said to be canonically consistent

(C-consistent) if it contains an even number of negative vertices and the given

sigraph S is said be C-consistent if every cycle in it is C-consistent. In this

paper, we obtain a characterization of sigraphs whose line sigraphs and ×-line

sigraphs are C-consistent.
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We consider only simple graphs. A new domination parameter, namely, λ -

domination number γλ(G) of a graph was introduced in [1]. Let λ be such that

0 < λ < 1. Let G be a graph. To each vertex u of G, define a map fu on V (G)

as follows:

fu(v) =









1 if d(u, v) ≤ 1

λ if d(u, v) = 2

0 otherwise.

where d(u, v) is the distance between the vertices u and v. A subset D of V is

said to be a λ - dominating set of G if for each v in V (G),
∑

u∈D

fu(v) ≥ 1 holds.

The minimum cardinality of a λ - dominating set is called the λ - domination

number of G and is denoted by γλ(G). A λ - dominating set with cardinality

γλ(G) is said to be a γλ - set of G. By taking λ = 1

2
, various bounds for γ 1

2

(G)

have been obtained in [1]. In this paper also we take λ = 1

2
.

Given a graph G, we associate a new graph denoted by γ 1

2

·G and called the

γ 1

2

- graph of G. The vertex set of γ 1

2

·G is the set of all γ 1

2

- sets of G. Two

γ 1

2

- sets A and B are adjacent in γ 1

2

·G if and only if |A∩B| = γ 1

2

(G)− 1. For

various standard graphs G; γ 1

2

- graphs of G are determined in [2]. A graph G
is said to be a γ 1

2

- graph if it is a γ 1

2

- graph of some graph H, in otherwords

G is isomorphic to γ 1

2

·H for some graph H. In this paper we initiate a study on

γ 1

2

- graphs. We show that not all graphs are γ 1

2

- graphs. Complete bipartite

graphs Km,n, where 2 ≤ m and 3 ≤ n are not γ 1

2

- graphs; Every tree is a
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γ 1

2

- graph, every unicyclic graph is a γ 1

2

- graph. We also find various methods

to obtain new γ 1

2

- graphs from known γ 1

2

- graphs. We prove that cartesian

product of two γ 1

2

- graphs is a γ 1

2

- graph. We establish that every induced

subgraph of a γ 1

2

- graph is a γ 1

2

- graph.
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Mod difference labeling is a compact representation for many digraphs wherein

we represent a digraph with n positive integers. A digraph D = (V,E)

is a mod difference digraph if there exist a labeling L (called mod differ-

ence labeling) and a positive integer m such that (x, y) ∈ E if and only if

L(y) − L(x) ≡ L(w)(mod m) for some w ∈ V . This is an extension of the

definition of monographs defined for undirected graphs by Bloom et.al. [1] and

difference digraphs defined by S.V. Gervacio [4], made in order to label more

classes of digraphs, particularly those with cycles.

In this paper we discuss some properties of mod difference digraphs, labeling

of some important classes of digraphs like directed cycles, paths, acyclic directed

graphs and tournaments.

In addition to giving a labeling for these classes of digraphs, we characterize

the label sets which are often referred to as signatures of digraphs. For example

we define a relationship between the power set of a set and signatures of non-

isomorphic tournaments.
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All the graphs considered here are simple and finite. An edge coloring of a

graph is proper if no pair of incident edges at any vertex receive the same

color. A proper edge coloring of a graph is called acyclic if it does not have any

bi-chromatic cycle.

A one-factor of a graph G of even order is a one regular spanning subgraph

of G. A one-factorization of a graph G of even order is a partition of the edge

set into a set of one-factors. Analogously, a near-one-factor of a graph of order

2n+ 1 is a set of n edges and one vertex (call it isolated vertex) that between

them cover all vertices; a near-one-factorization is a set of near-one-factors

that contain every edge precisely once. In general, (near-)one-factorization of
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a graph may or may not exist. But complete graphs always admit a (near-

)one-factorization. It can be easily visualized that the union of two disjoint

near-one-factors is always a collection of disjoint cycles of even length and a

path connecting the isolated vertices.

In this paper, cycle structure of the union of a pair of near-one-factors is

completely determined up to the edge level. These near-one-factors are from the

near-one-factorization of a graph of order pq, where p and q are twin primes,

produced by the method given in [4]. The knowledge of the cycle structure is

then exploited to design an algorithm that uses pq+2p colors. Color assignment,

in this algorithm, is carried out by evaluating an expression. This is in contrast

to all the existing algorithms in the literature [2, 3] except the one in [1].
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In this paper, we have introduced a concept of strong poset and the forbidden

configuration is obtained for strong posets in terms of LU-subsets. We have

shown that the concept of strongness, and property being balanced are equiva-

lent in upper semimodular J∗-posets. Also, characterizations of atomistic and

dually atomistic posets are obtained. Further, we have shown that for balanced

poset of finite length, the length of the subposet of join-irreducible elements

equals the length of its subposet of meet-irreducible elements. This result gen-

eralizes the results of Ganter and Rival, Reuter and Stern for modular and

balanced lattices respectively.
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For a graph G, a zero-sum flow is an assignment of non-zero real numbers on

the edges of G such that the total sum of the assignments of all edges incident

with any vertex of G is zero. A zero-sum k-flow for a graph G is a zero-sum flow

with labels from the set {±1, . . . ,±(k − 1)}. In [1] a necessary and sufficient

condition for the existence of zero-sum flow for a graph is given. Also it was
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conjectured that if G is a graph with a zero-sum flow, then G has a zero-sum

6-flow. It is shown that the conjecture is true for a 2-edge connected bipartite

graph, and also for r-regular graphs with even r. In [2] the authors proved that

every 3r-regular graph has a zero-sum 5-flow. In this talk we give an affirmative

answer to the conjecture except for r = 5.

References

[1] S. Akbari, G. B. Khosrovshahi, A. Mahmoody and N. Gharaghani, Zero-sum flows
in graphs, linear Algebra and its Applications 430 (2009), 3047–3052.

[2] S. Akbari, A. Daemi, O. Hatami, A. Javanmard and A. Mehrabian, Zero-sum flows
in regular graphs, Graphs and Combinatorics, to appear.

❖ ❖ ❖



Section 15

Mathematical Aspects of

Computer Science

A Logic Game for classification of Regular Languages

Arihant Agarwal

Department of Machine Learning, Snolr Labs, Lucknow, India

E-mail: arihant@snolr.com

2000 Mathematics Subject Classification. 68Q99

We present a novel logic game for classification of Regular Languages. We

discuss the motivation behind the game and demonstrate how the game can

be applied towards a solution to the long-standing generalized star height 2

problem, which can be stated as the following.

Generalized Star Height 2 Problem. Does there exist a Regular language

L such that no regular expression of star height ≤ 1 represents L.
There have been similar attempts from Qiqi Yan and Wolfgang Thomas

[1]. However, our game is more generalized and the application to the general-

ized star height 2 problem is more straight forward. In addition, we present a

rigid framework for similar logic games to be developed and applied to other

fundamental problems related to Regular languages.

It has been a common trend to classify Regular languages by their star

height [2]. We see the Star Height 2 Problem as a very basic question about

Regular Languages and if we cannot yet answer it, we believe we lack the basic

tools for our understanding of Regular Languages at large. Insight into this

particular problem is important to solve the even rigorous star height problem

which deals with the existence of an algorithm to compute the star height of a

given regular language.

In this short communication, we introduce our game, demonstrate it’s ap-

plications and introduce a flexible framework on which similar games can be

developed in future. We also discuss the close relation of our game to existing
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games in logic, such as the FO(TC) game by Erich Grädel [3], for instance. We

also discuss the similarities and differences of our game with similar previous

attempts [1].
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Molodtsov [1] introduced the theory of soft sets as a generalized tool for model-

ing complex systems involving uncertain or not clearly defined objects. Owing

to the fact that many mathematical objects such as fuzzy sets, topological

spaces, rough sets [see [1, 2]] can be considered as particular types of soft sets,

it is a very general tool for handling objects which are defined in terms of loose

or general set of characteristics. A soft set can be considered as an approximate

description of an object precisely consists of two parts, namely predicate and

approximate value set. Exact solution to the mathematical models constructed

are needed in classical mathematics. If the model is so complicated that we

cannot set an exact solution, we can go for approximate solution and there

are many methods for this. In contrary to this, in soft set theory as the ini-

tial description of object itself is of approximate nature, we need not have to

introduce the concept of exact solution.

There are many mathematical tools available for modeling complex systems

such as probability theory, fuzzy set theory, interval mathematics etc. But there

are inherent difficulties associated with each of these techniques. Probability

theory is applicable only for a stochastically stable system. Interval mathe-

matics is not sufficiently adaptable for problems with different uncertainties.

Setting the membership function value is always been a problem in fuzzy set

theory. Moreover all these techniques lack in parametrization of the tools and
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hence they could not be applied successfully in tackling problems especially in

areas like economic, environmental and social. Soft set theory is standing in

a unique way in the sense that it is free from the above difficulties and has a

wider scope for many applications in a multidimensional way.

This paper is an attempt to open up the theoretical aspects of soft sets by

extending the notions of relations, composition of relations and partitions to

the framework of soft sets. Rather than defining relations as as subsets of the

cartesian product, we also obtain induced relations from universal set and the

attribute set. Equivalence relations and partitions on soft sets are defined and

a one one relationship between them is also established. Further composition

of functions are introduced in soft set context with related results.
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We show a deterministic constant-time parallel algorithm for finding an almost

maximum flow in multisource-multitarget networks with bounded degrees and

bounded edge capacities. As a consequence, we show that the value of the max-

imum flow over the number of nodes is a testable parameter on these networks.
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In 1982, Z. Pawlak [4] introduced the theory of rough sets and it found wider

applications in computing the minimal features in the information systems.

In 1988, Dubois and Prade hybdrized Rough and Fuzzy approaches [3] which

helped the industries to develop the tools on rough approaches in the informa-

tion systems working under fuzzy environment. Several Researchers including

Yao, Slezak, Skowran etc. have been effective in developing various mathemat-

ical tools as well as in implementing the concepts into the information systems.

In 2004, G. Ganesan [2] contributed the concept of rough fuzzy groups.

In his paper, the construction of the closure axioms are defined in terms of

the iterative approaches on fuzzy ordered pairs using max-min and min-max

operators. In 2007, G. Ganesan [1] discussed the importance of using max-max,

max-min, min-max and min-min operators in the information systems using

intuitionistic fuzziness.

In this lecture, the methods of computation of minimal features in the infor-

mation systems are discussed under the four compound operations mentioned

above and the various levels of significance of the constructing rough fuzzy

groups using these operations.
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The rth-order nonlinearity of an n-variable Boolean function f denoted by

nlr(f), is defined as the minimum Hamming distance of f from all n-variable
Boolean functions of degrees at most r (r ≥ 1). In this paper we tighten the

lower bounds of fourth-order nonlinearity of monomial Partial Spread Function
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on 10-variables. It is also demonstrated that this lower bound is better than the

lower bound of inverse function and Dillon bent function obtained by Carlet [1].
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We consider a new class of linear codes, called affine Grassmann codes. These

can be viewed as a variant of generalized Reed-Muller codes and are closely

related to Grassmann codes. We determine the length, dimension, and the min-

imum distance of any affine Grassmann code. Moreover, we show that affine

Grassmann codes have a large automorphism group and determine the number

of minimum weight codewords. In geometric terms, some of our results could

be viewed as a generalization of elementary facts about hyperplanes over finite

fields to “determinantal hyperplanes”, that is, hypersurfaces defined by linear

combinations of minors (of varying sizes) of a generic matrix. The auxiliary

results obtained in the course of proving the main theorems and the techniques

employed may also be of some independent interest.
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The current trend in cryptography is to search for approaches to the crypto-

graphic algorithm design. One such possibility is to use other algebraic struc-

tures such as quasigroup rather than the traditional. Even though quasigroups

are not in the mainstream of cryptographic research, but there is hardly other

single mathematical paradigm to develop cryptographic applications.

Quasigroups are algebraic structures closely related to Latin Squares which

have many different applications. This article describes a block cipher based

on quasigroup. Almost all ciphers based on quasigroups consider a scenario

where the quasigroups(which acts as a part of key) to be used for encryp-

tion/decryption are predetermined. The existing algorithm has been modified

as the proposed cipher uses two randomly generated quasigroups, a method is

illustrated to construct two random Latin Squares which in turn creates a pair

of quasigroups of dual operations. The construction of the block cipher is based

on quasigroup string transformations. Since quasigroup in general do not have

algebraic properties such as being associative, commutative, neutral elements,

inverting these functions seems to require exponentially many readings from

look up tables that define them in order to check whether the initial conditions

are satisfied, thus making them strong candidates for cryptographic functions.

According to analysis the method is extremely secure, some theoretical proofs

about the cryptographically secure algorithm are presented. Besides that the

plaintext and its ciphertext are of same length and the enciphering is of stream

nature guarantying a very fast implementation.
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Classical set theory implicitly assumes that all mathematical objects occur

without repetition in a set. Many fields of modern mathematics have emerged

based on this principle. In classical set theory, a set is a well-defined collection

of distinct objects. If repeated occurrences of any object is allowed in a set,

then a mathematical structure, that is known as multiset (mset, for short), is

obtained. In 1986, R R Yager [3] gave a formal definition for the multiset and

developed an elementary algebra of multisets. W. D. Blizard [1] provides the

relevance and logical implications of multisets in various fields of mathematics

and other disciplines.

Rough set theory, proposed by Zdzislaw Pawlak [2] in 1982 can be seen as

a mathematical approach to vagueness. Rough set theory is a powerful tool for

dealing with the uncertainty, granularity and incompleteness of knowledge in

information systems. When there is a huge amount of data, it is very difficult

to extract useful information from the information systems. In any information

system, some situations may occur, where the respective counts of objects in

the universe of discourse are not single. In such situations we have to deal

with collections of information in which duplicates are significant. In such cases

multisets play an important role in processing the information. The information

system dealing with multisets is said to be an information multisystem.
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In this paper we provide a new dimension to Pawlak’s rough set theory by

replacing its universe by multisets. This is called a rough multiset and it is a

useful structure in modeling information multisystem. Rough multiset is defined

in terms of lower and upper mset approximations,many properties connected

to lower mset approximations and uppermset approximations are obtained.
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Graphs are used almost everywhere in computer science and are routinely in-

cluded in many courses in undergraduate and graduate programs. Students,

researchers and specialists who need to work with graphs and implement graph

algorithms may not have the necessary knowledge to do so. In the paper, we de-

scribe the Wiki GRAPP and WEGA systems intended to help in teaching and

research in graph theory, graph algorithms and their applications to computer

science.

In 1999 our dictionary [1] was published, which covered more than 1500 main

graph-related terms from monographs in Russian. It was the first dictionary

of graphs in computing and it aroused a great interest of readers. Our new

dictionary [2] is an extended dictionary of 1999 and it includes more than 1000

new terms from journal articles whose abstracts were published in Abstract

Journal “Mathematics” in section “Graph Theory”, as well as from volumes

of annual conferences “Graph-Theoretic Concepts in Computer Science” and

book series “Graph Theory Notes of New York”. The Wiki GRAPP system is

an on-line “edition” of the dictionaries on the basis of the MediaWiki system.

At present it includes definitions of all terms from our first dictionary.

The WEGA system is a Web-Encyclopedia of Graph Algorithms which is

based on the book [3]. We use a high-level and language-independent repre-

sentation of graph algorithms in our book and system. In our view, such an

approach allows us to describe algorithms in a form that admits direct analysis
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of their correctness and complexity, as well as a simple translation of algorithms

to high-level programming languages without disturbance of their correctness

and complexity. We also believe that visualization could be very helpful for

readers in understanding graph algorithms. Therefore, we give a particular at-

tention to embed capabilities of interactive animation of graph algorithms into

the WEGA system.

The author is thankful to all colleagues taking part in the projects described.

The work is partially supported by the Russian Foundation for Basic Research

under grant RFBR 09-07-00012.
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Homomorphic encryption [1] is a special class of encryption functions which al-

lows the encrypted data to be operated on directly without requiring knowledge

about the decryption function. Let Ek(.) be an encryption function with key k

and Dk(.) be the corresponding decryption function. Then Ek(.) is Homomor-

phic with the operator (.) if there exists an efficient algorithm Alg such that

Alg(Ek(x), Ek(y)) = Ek(x) . Ek(y), where x and y are two different messages.

There are mainly three types of Homomorphic encryption schemes (i) Mul-

tiplicative Homomorphic encryption scheme where Ek(x*y) = Ek(x) * Ek(y)

(ii) Additive Homomorphic encryption scheme where Ek(x+y) = Ek(x) + Ek(y)

and (iii) Scalar Homomorphic encryption scheme where Ek(tx) = sMulti(Ek(x),

t). i.e ., Ek(tx) can be found easily from t and Ek(x) without needing to know



518 Mathematical Aspects of Computer Science

what x is. Besides these, there are some special Homomorphic schemes [2] which

are both multiplicative as well as additive Homomorphic [3]. Homomorphic en-

cryption schemes have recently gained importance and are widely used in cloud

computing, secure packet forwarding in mobile adhoc networks, wireless sensor

networks and electronic voting system.

Our work includes efficient implementation of Homomorphic schemes over

large integers which depict Multiplicative as well as Additive Homomorphism.

We are also designing fast and secure Homomorphic encryption schemes for

wireless sensor networks based on simple integer arithmetic [4] and computa-

tions on Elliptic Curves. Implementation has been carried out on Linux platform

with GMP libraries for large number arithmetic using the C++ programming

language.
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Graph Isomorphism is the prime example of a computational problem with a

wide difference between the best known lower and upper bounds on its complex-

ity. There is a significant gap between extant lower and upper bounds for planar

graphs as well. We bridge the gap for this natural and important special case

by presenting an upper bound that matches the known log-space hardness [2].

In fact, we show the formally stronger result that planar graph canonization is

in log-space. This improves the previously known upper bound of AC1 [4].

Our algorithm first constructs the biconnected component tree of a con-

nected planar graph and then refines each biconnected component into a tri-

connected component tree. The next step is to log-space reduce the biconnected

planar graph isomorphism and canonization problems to those for 3-connected

planar graphs, which are known to be in log-space by [1]. This is achieved

by using the above decomposition, and by making significant modifications to

Lindell’s algorithm for tree canonization [3], along with changes in the space

complexity analysis. The reduction from the connected case to the biconnected

case requires further new ideas, including a non-trivial case analysis and a

group theoretic lemma to bound the number of automorphisms of a colored

3-connected planar graph. This lemma is crucial for the reduction to work in

log-space.
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Let G = (V,E) be an interval graph with n vertices and m edges. A positive

integer R(x) is associated with every vertex x ∈ V . In the conditional covering

problem, a vertex x ∈ V will cover a vertex y ∈ V ( x 6= y ) if d(x, y) ≤
R(x) where d(x, y) is the shortest distance between the vertices x and y. The
conditional covering problem (CCP) asks to find a minimum cardinality vertex

set C in V so as to cover all the vertices of the graphs and every vertex in

C to be covered by another vertex of C. This problem is NP-complete for

general graphs. In this paper, we propose an efficient algorithm to solve the

CCP with nonuniform coverage radius in O(n2) time when G is an interval

graph containing n vertices.
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An L(2, 1)−labelling of a graph G is an assignment of nonnegative integers

to the vertices of G such that the difference between the labels assigned to

any two adjacent vertices is at least two and the difference between the labels

assigned to any two vertices which are at distance two is at least one. The span

of an L(2, 1)−labelling is the maximum label number assigned to any vertex of

G. The L(2, 1)−labelling number of a graph G, denoted by λ(G), is the least

integer k such that G has an L(2, 1)−labelling of span k.
A cactus graph is a connected graph in which every block is either an

edge or a cycle. In this paper, we label the vertices of a cactus graph by

L(2, 1)−labelling.
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NMR quantum computation system executes parallel bulk ensemble computa-

tion, in which an Avogadro’s number of molecules are used as individual quan-

tum computers. As pointed out by Collins([1]) and Nishino([2]), since measure-

ments in NMR quantum computer are given by the expectation value quantum

computation, the Grover’s algorithm will be faster than a single quantum com-

puter.

In [3], we discussed some of the implications on the Deutsch-Jozsa algorithm

in a bulk quantum computing, and presented some new approach to realize

experimentally.

According to Nishino’s result, this speed-up effects in the bulk ensemble

computation will appear in 4 qubits or more.

So, our main objective in this reserch is to discuss experimental realizations

of quantum algorithms with Lie group techniques.
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The study is to show a nice interplay among L-fuzzy approximation operator

(L is a complete orthomodular lattice) on an ‘L-fuzzy approximation space’,

L-valued topology and L-valued automaton. We begin by noting that each L-
fuzzy approximation space is associated with a L-fuzzy approximation opera-

tor, which turns out to be Kuratowski L-fuzzy closure operator, if the L-fuzzy
relation associated with approximation space is reflexive and transitive, which

in turn give rise to a L- valued fuzzy topology. Also, if the lattice is distributive,

we can get a dual L-valued fuzzy topology. It is shown that many properties

of L-valued fuzzy automata can be conveniently described in terms of these L-
valued fuzzy topologies.
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In this paper we define various forms of a probabilistic finite state automata,

and probability of strings generated by a probabilistic finite state automata

is discussed in terms of extended transition functions. On the same line, the

ambiguity of probabilistic deterministic finite state automata is discussed.
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Logic of any programming languages that can be written in the form of math-

ematical notations can be verified by their syntactic and semantic properties.

This paper presents how to verify the logic by denotational semantics or dy-

namic semantics. In order to verify the accuracy of programming language logic,

the syntax and semantics must be defined in the form of ”Lambda calculus”.
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The theory of Lambda calculus is one of many useful tools for dealing with

higher-order functions in denotational semantics. The verification of a simple

but representative programming language including two issues; i.e., substitution

and types, is presented as an example.
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In conventional fuzzy set theory, a membership function assigns to each element

of the universe of discourse, a number from the unit interval to indicate the

degree of belongingness to the set under consideration. Since Zadeh introduced

fuzzy sets in 1965, many new approaches and theories treating imprecision and

uncertainity have been proposed. In 1986, Krassimir.T.Atanassov [1] introduced

the concept of Intuitionistic fuzzy set (IFS) as a theory developed in (a kind

of) intuitionistic logic. Intuitionistic fuzzy set is characterized by two functions

expressing the degree of belongingness and the degree of nonbelongingness,

respectively. The name Intuitionistic fuzzy set is due to George Gargove, with

the motivation that their fuzzification denies the law of excluded middle-one of

the main ideas of intuitionism. This idea, which is a natural generalization of

a standard fuzzy set, seems to be useful in modelling many real life situations,

like negotiation processes, psychological investigations, reasoning etc.
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Many fields of modern mathematics have been emerged by violating a basic

principle of a given theory only because useful structures could be defined this

way. While sets permit us to have at most one occurrence of each element,

multisets or bags, permit us to have multiple occurrences of the elements. A

complete account of the development of multiset theory can be seen in [2]. As

a generalization of multiset, Yager [3] introduced the concept of fuzzy multiset

(FMS). An element of a fuzzy multiset can occur more than once with possibly

the same or different membership values.

In this paper an attempt is made to consider all the above concepts together

by introducing a new concept named as Intuitionistic fuzzy multiset (IFMS). We

discuss operations on Intuitionistic fuzzy multisets such as union, intersection,

addition, multiplication etc. We introduce αβ− cut of an Intuitionistic fuzzy

multiset, Cartesian product of Intuitionistic fuzzy multisets and discuss their

various properties. Also we define two operators over the set of all Intuitionistic

fuzzy multisets which will transform every Intuitionistic fuzzy multisets into

fuzzy multisets and discuss various properties connecting all these.
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Many of the economical decision problems lead to multiple criteria transporta-

tion model of fractional type with identical denominators, where the “bottle-

neck” criterion appears as a “minmax” time constraining. In [1] is proposed a

method for solving the single-criteria transportation problem of fractional type.

We studied the transportation problem of “bottleneck” type
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with multiple fractional criteria [3], that is defined as follows:

min z1 =

m∑

i=1

n∑

j=1

c1ijxij

max
i,j

{ti,j/xi,j > 0}
min z2 =

m∑

i=1

n∑

j=1

c2ijxij

max
i,j

{ti,j/xi,j > 0}

. . .

min zr =

m∑

i=1

n∑

j=1

crijxij

max
i,j

{ti,j/xi,j > 0}
min zr+1 = max

i,j
{ti,j/xi,j > 0} (1)

n
∑

j=1

xij = ai, ∀i = 1,m

m
∑

i=1

xij = bj , ∀j = 1, n

m
∑

i=1

ai =

n
∑

j=1

bj

where ckij , k = 1, . . . , r, i = 1, . . . ,m, j = 1, . . . , n correspond to the concrete

interpretation of the respective criteria, ai− availability at source i, bj− require-

ment at destination j xij− amount transported from source i to destination j.
In order to solve the model (1), I suggest its reducing to another multicriterial

linear model like in [2], after that I propose an iterative procedure to found

the all basic efficient solutions of it. The Theorems that prove the equivalence

of the both models are given, meaning the common set of their basic efficient

solutions.
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A quasigroup (Q, o) is a set Q with a binary operation ‘o′ (that is a magma),

such that for all a, b in Q, there exist unique elements x, y in Q such that
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aox = b and yoa = b. These quasigroups are not required to be associative and

commutative. A cryptographic message authentication code is a short piece of

information used to authenticate a message. In [5] Kristen Ann Meyer created a

new kind message authentication code whose security based on non associativ-

ity of Quasigroups. This paper focuses on a new kind of message authentication

code based on quasigroup and its non-associativity and such quasigroup struc-

ture is also studied.
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Any cryptographic bit function f like the n-th output bit of a stream cipher

can be written – as can every Boolean function – in Disjunctive and Alge-

braic Normal Forms. Let f depend on the IV bits v1, . . . , vn1
and the key bits

k1, . . . , kn2
:

f =
∨

I⊂{1,...,n1}

(

v∧I v∧
I
∧
( ⊕

J⊂{1,...,n2}

dI,Jk
∧

J k
∧

J

)
)

=
⊕

I⊂{1,...,n1}

(

v∧I ∧
( ⊕

J⊂{1,...,n2}

aI,Jk
∧

J

)
)

,

where ∨,∧,⊕ are the logical or, and, and exclusive or, respectively, v∧I = ∧i∈Ivi

and k
∧

J = ∧j∈{1,...,n2}\Jkj , kj = 1− kj . dI,J , aI,J ∈ F2 exclude (if 0) or include

(if 1) the respective term. Each DNF coefficient dI,J can be obtained by one

simulation.
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AIDA consists in first observing that aI,J = ⊕M⊂IdI,J by the inclusion-

exclusion-principle, requiring 2|I| simulations, and second searching for index

sets I such that aI,J = 1 only for one-element sets J = {j} that is linear

dependence on the key bits. Given n2 such linear relations, we recover the key

by Gaussian elimination.

AIDA [2] was republished a year late(r) by Dinur and Shamir in [1], renamed into

“cube attack”.

Results

1. AIDA successfully attacks TRIVIUM with reduced setup length of 792

[4]. However, linear AIDA will not break TRIVIUM with full setup length

of 1152 [3].

2. AIDA completely breaks BIVIUM-A and -B in just minutes, see [5].

3. The Fast Reed-Muller Transform speeds up AIDA by a factor of 5000,

see [3].

4. The Wavefront Model [3] as linearity test requires d + 13 simulations (d
the hypercube dimension), while the BLR test [1] needs 3(d + 1) + 1

simulations.

5. Fast multiplication of ANFs over n variables (N := 2n entries) is possible

in 4N logN steps instead of O(N2), using the fast RMT [3].
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This paper sets up P -operator defined by two standards: class A - the realis-

tic existence of polynomial algorithm, and class B - the possible existence of

polynomial algorithm. Prove:

Lemma 1: (C 6= Φ) → (C = A ∩ B). (C denotes an obscure class. Φ denotes

an empty set.).

Lemma 2: (NP ⊆ B) = Φ. (“NP is a subset of B” can not be true).

Lemma 3: NP = Φ. The definition of NP is not correct.

Lemma 4: (NP 6= Φ) → (NP = A ∩ B = C). If the NP is correct, then

NP = C.

Theorem 5: P 6= NP .

Due to above theories, no matter what standard of P taken, and regardless of

the definition of NP right or wrong, will be P 6= NP . The answer to question

P/NP is P 6= NP .

This problem-solving using logical analysis of the new method is proposed

criteria for the classification must be consistent with the definition of correct-

ness, feasibility, and distinct requirements, but also pointed out that the ex-

isting theories such as “P is a subset of NP”, “Hanoi Tower problem is an

arithmetic problem in P” and “cannot determine the P = NP or P 6= NP”

errors and their causes, from the algorithm, arithmetic problems, structure,

function, standards, five levels of analysis of the plight of the definition of NP ,

it is recommended to abandon this chaos concept.
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We give classification of some distance-regular graphs with intersection array

a1 ≥ 2 and with the second largest eigenvalue of its local graph at most 1.
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The paper is devoted by questions modeling of Numbers Tree arising at the

analysis of the numerical and corresponding text information. It is shown that

many questions of mathematical analysis of problems and their applications are

reduced to construction of models in extremes regimes and connected with it

and construction of Model Numbers Tree. For any positive number N there are

natural numbers p, n,m > 1 and positive numbers ai,aij ,...,ai,m for which take

place Np = an1 +an2 + ...+anm, apj = an1j +an2j + ...+anmj , a
n
ij = an1ij +an2ij + ...+

anmij , a
p
ijk = an

1ijk+an
2ijk+ ...+anmijk, ..., a

p
ijk...s = an

1ijk...s+an
2ijk...s and in last

presentation members of the right part can not beat are submitted as the final

sum composed n− th degrees of some integers so-called by a basis of a tree[1].

Main results are next: 1). The number N is uniquely represented as Numbers

Tree representation:Np =
∑

kjqa
n
ijj1j2...jq

, where kjq are numbers of occurrence
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of a basic element aiij1···jq in a tree of numbers. 2). Representation for N
and corresponding Numbers Tree representation are optimum representation.

More over with help of transformation aim = xaim−1, i = 1,m− 1 , amm =

y n

√

Np
m−1, Nm = zNm−1, where xn + yn = zn we have the polinom Np

m =
(

xm−1
)n

+
∑m

i=2

(

yxm−iz
p(i−2)

n

)n

which describes the process of Numbers Tree

grows[2].
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The purpose of this study is to present a uniform finite difference method for

numerical solution of nonlinear singularly perturbed second order convection-

diffusion problem with nonlocal and third type boundary conditions. The nu-

merical method presented here comprises a fitted-difference scheme on a piece-

wise uniform mesh. We have derived this approach on the basis of the method

of integral identities using interpolating quadrature rules with the weight and

remainder terms in integral form. This results in local truncation errors con-

taining only second-order derivatives of exact solution and hence facilitates ex-

amination of the convergence. In the boundary layers, we introduce the special

uniform meshes, which are constructed by using the estimates of derivatives of

the exact solution and the analysis of the local truncation error. Optimal order

error estimates, uniformly in the diffusion parameter, are proven. Some numer-

ical results illustrate in practice the result of convergence proved theoretically.
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The following Camassa-Holm (CH) equation is used to model the statistical of

turbulent fluid flows.

ut + 2kux − uxxt + auux = 2uxuxx + uuxxx, u(x, 0) = f(x), uxx(x, 0) = g(x).
(1)

In recent years, some works have been done in order to find the solution of

(1)[1–4]. In this work, we apply the homotopy analysis method (HAM) [5] to

solve the Eq. (1) and compare this method with the homotopy perturbation

method (HPM) [3]. For this purpose, the uniqueness of the solution and the

convergence of the method are proved. Also, an algorithm is proposed in order

to compute the approximate solution of the eq. (1) and it has been shown that

the computational complexity of the algorithm for HAM is less than HPM. The

results of the algorithm show that the approximate solution of Camassa-Holm

equation is calculated with smaller error and less number of iterations for HAM

in comparison with the HPM. Hence, one can observe that the HAM is more

rapid convergence and accurate than the HPM.
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Convection is the process in which heat moves through a gas or a liquid as the

hotter part rises and the cooler, heavier part sinks, where as in the diffusion

a gas or liquid diffuses or is diffused in a substance, it becomes slowly mixed

with that substance. In the linear convection-diffusion problem with variable

co-efficients, transport mechanism dominates where as diffusion effects are con-

fined to a reasonably small part of the domain. In this paper the asymptotic

nature of solution to stationary convection-artificial diffusion problem is con-

sidered and a numerical technique to control the oscillatory behavior of the

computed solution at the specific value of argument is studied. The co-efficient

of diffusion introduced controls the oscillations at the boundary layer. On in-

creasing artificial diffusion by a certain amount the solution pattern matches

with the series solution of the same problem.
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Granular Materials (GM) are everywhere in nature and are the second-most

manipulated material in industry after water, but as once written by Pierre-

Gilles de Gennes, their statistical physics is still in its infancy.

In this presentation, after a short overview of the mathematical challenges

and the state of the art related to the diverse set of behaviors of GM, I will

present new numerical simulations, by using the contemporary Discrete Element

Method in order to simulate a wide variety of cases in both rapid and dense

granular flow regimes. I will also characterized the industrial relevance of the

simulations, the link with the cracks propagation and what can these two active

research fields learn from each other.

Granular Matter is often referred to as the fourth state of the matter and

depending on the situation, GM can behave as a solid, a liquid, or a gas. When

dry sand is poured, it acts as a fluid, while the pile on which it is poured is

solid-like. When dry sand is fluidized by blowing air through it or by strong

shaking, it behaves gas-like. Leo P. Kadanoff quoted “One might even say that

the study of the granular materials give one a chance to reinvent statistical

mechanics in a new context”!
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Abstract: Recently, we witness brand new developments on the construction

of the spline functions by using slops or derivative values at the knots or the

integral values in each of the subintervals, see for example [1], [2] and [3]. This is

totally a new approach and new idea to construct spline functions without using

the function values. In this talk, few interesting methods will be presented for

cubic and quintic splines. Also, numerical examples and the order of convergence

analysis will be discussed. These are shortcut algorithms to build cubic and

quintic splines to approximate the original function when the function values

are not given.

References

[1] H. Behforooz, Approximation by integro cubic splines, Applied Math and Com-
putation 175 (2006), 8–15.

[2] H. Behforooz, Approximation by integro quintic splines, Applied Math and Com-
putation 216 (2010), 364–367.

[3] E.J.M. Delhez, A spline interpolation technique that preserve mass budget, Appl.
Math. Lett. 16 (2003) 17–26.

❖ ❖ ❖

Operator Splitting Methods for Maxwell’s Equations in
Dispersive Media

Vrushali A. Bokil

Department of Mathematics, Oregon State University, 368 Kidder Hall, Corvallis,

OR 97330, USA

E-mail: bokilv@math.oregonstate.edu

2000 Mathematics Subject Classification. 35Q60, 65M06

The accurate simulation of wave propagation in complex media is an impor-

tant issue that arises in various fields such as acoustics, electromagnetics and

elasticity. We consider here the electromagnetic interrogation of dispersive di-

electrics which are of interest in applications including biomedical imaging.

Biological tissue interactions with electromagnetic fields are defined by their
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complex permittivity, which is a function of the various electric and magnetic

polarization mechanisms, and conductivity of the biological media [2]. These

electromagnetic properties of dispersive dielectrics are frequency dependent.

Computational simulations of the propagation and scattering of transient

electromagnetic waves in dispersive dielectrics can be studied by numerically

solving the time-dependent Maxwell’s equations coupled to equations that de-

scribe the evolution of the induced macroscopic polarization [3]. The latter

incorporates the physical dispersion of the medium and its response to the

electromagnetic pulse.

We consider Maxwell’s equations in dispersive media of Debye type (e.g., bi-

ological tissue). In such relaxing dielectric media, the presence of different wave

speeds leads to stiffness in the temporal domain [1]. We present an operator

splitting scheme that decouples fast and slow moving processes in the problem

to develop separate sub-problems. This alleviates the stringent requirements

on the time-step which, along with stability conditions, requires small spatial

steps and hence excessive computations for long-time integration of Maxwell’s

equations.
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In this work, we implement the high-order local discontinuous Galerkin method

[1] with the numerical flux proposed by Guyomarc’h et. al. [3], to solve the

elliptic interface problem.
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Instead of the triangular elements and the P k-polynomial space used in [3],

we use the quadrilateral elements and the Qk-polynomial space. To treat the

curved interface and boundaries, we use the transfinite blending mappings [2]

to construct curved elements. The discretization generates a symmetric system

and the system can be solved directly with standard methods or reduced into

smaller systems with matrix reduction techniques.

The numerical experiments show the h and p convergence properties of

the our high order scheme. Moreover, our numerical experiments show that the

high-order method is more efficient than the low-order one. To achieve the same

magnitude of accuracy, the degree of freedom of the generated system using the

coarsest mesh is much smaller than the one using the finest mesh. As a result

the CPU time required to solve the system using the coarsest mesh is much

smaller, too.
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There are various interpolation formulae, which are useful when given tabular

values correspond to a polynomial function. Problem arises when the tabular

values do not correspond to a polynomial function, rather, to a function of

the type y = ax. For example, given the tabular values of x and y as (1,3),

(2,9), (3,27); where y(x) = 3x. Using Newton’s Forward difference interpolation

formula we get y(4) = 57 and y(5)=99. But as the values were derived from the

function y(x) = 3x we have actual values of y(4)=81 and y(5) = 243. We can

interpolate this type of functions, by extending Newton’s forward difference
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interpolation formula in a generic fashion taking Newtons forward difference

table as the base.

We have to take the initial ordinates of each higher order difference as the

values of y corresponding to x denoting it by y1(x) and form another difference

table. From this difference table we form another difference table in the same

manner and term the values of y corresponding to x as y2(x) and so on till

ym(x), when the values become constant. This is shown in the table below:

Table 1. Extended Difference Tables

x y ∆ ∆2

1 3

2 9 6

3 27 18 12

x y1 ∆ ∆2

1 3

2 6 3

3 12 6 3

x y2 ∆ ∆2

1 3

2 3 0

3 3 0 0

Depending upon the number of difference tables so formed, we extend the

Newton’s forward difference interpolation formula as follows:

yn(x) =(m+1)y0 + p(∆y0+∆y10+∆y20+...+∆ym0 ) + 1

2!

p(p-1)(∆2y0+∆2y10+∆2y20+...+∆2ym0 ) +....+ 1

n!

p(p-1)(p-2)...(p-n+1)(∆ny0+∆ny10+∆ny20+...+∆nym0 )
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We consider electromagnetic interrogation of dispersive dielectrics. We are in-

terested in polydisperse materials which exhibit relaxation mechanisms not suf-

ficiently modeled by first order linear (Debye) polarization models. Heuristic
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generalizations, including the Cole-Cole model, have been successful in repli-

cating the complex permittivity of such materials. However, these models no

longer correspond to ODEs in the time-domain, and therefore are difficult to

simulate.

We implement an alternative approach based on using the first order linear

ODE Debye model, but with distributions of relaxation times. The need for

multiple relaxation times was first discussed by von Schweidler in 1907, long

before the Cole brothers published their model in 1941, and even before Debye

published Polar Molecules in 1929. Since then various efforts have been made

both in fitting Cole-Cole parameters and distributions to data. A significant

amount of this work is reviewed in the survey paper by Foster and Schwan [1].

However, with regard to time-domain simulations using these models, there

have been relatively few attempts to develop numerical methods, and these have

been nearly exclusively aimed at the Cole-Cole model (see [2] for an exception).

Indeed, most practitioners attempt to replace the Cole-Cole representation with

a multi-pole Debye model instead. While significantly faster, this approach is

limited to a narrow frequency range of applicability.

We develop a novel approach to the time-domain simulation of polydisperse

materials by applying Polynomial Chaos [3] to the Debye polarization model

including a distribution of relaxation times. The traditional Yee scheme is em-

ployed to discretize Maxwell’s equations which are coupled to the mean value

of the polarization. We examine the accuracy and efficiency of the resulting

method as compared to competing approaches using the Cole-Cole model and

multi-pole Debye.
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In this talk, I propose an exponential explicit integrator for the time discretiza-

tion of quasilinear parabolic problems. My numerical scheme is based on Mag-

nus methods. In an abstract formulation, the initial-boundary value problem is

written as an initial value problem on a Banach space X

u′(t) = A
(

u(t)
)

u(t) + b(t), 0 < t ≤ T, u(0) given, (2)

involving the sectorial operator A(v) : D(v) → X with variable domainsD(v) ⊂
X with regard to v ∈ V ⊂ X. Under reasonable regularity requirements on the

problem, I analyze the stability and the convergence behaviour of the numerical

methods.
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We recently [1] proposed a new paradigm for solving the steady-state

two-dimensional (2D) Navier-Stokes (N-S) equations using a compact

streamfunction-velocity (ψ-v) formulation. This formulation has been shown

to avoid the difficulties associated with the traditional formulations (primitive

variables, and streamfunction- vorticity formulations). The new formulation

has been found to be second order accurate, and yields accurate solutions of a

number of fluid flow problems.

In this presentation, we describe the ideas behind the development of the

streamfunction-velocity (ψ-v) formulation for steady state as well as transient

flows, and present results for a variety of fluid flow problems.
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Parametric splines, which are equivalent to seven-degree polynomial splines,

are used to develop a class of numerical methods for solution of sixth-order

boundary-value problems are presented.The spline function is used to de-

rive some consistency relations for computing approximations to the solution

of sixth-order two point boundary-value problems. Second, fourth,sixth, and

eighth order convergence is obtained. It is shown that the present method gives

approximations, which are better than those produced by other splines and do-

main decomposition methods. Two numerical examples are given to illustrate

the practical usefulness of the new approach.
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The concept of wave packet has been studied in a series of papers by La-

bate, Christensen, Hernandez et al, see for example [3], [4] and [5] and refer-

ences therein. Vector-valued multiresolution analysis and associated wavelets

and wavelet packets have been investigated in [1], [2] and [3]. A concept of

vector valued wave packet is introduced and its basic properties are investi-

gate including relationship with vector-valued multiresolution analysis and its

variants.
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Hamiltonian ODEs conserve a symplectic form, ωt = 0, and can be integrated

numerically by symplectic integrators that conserve ω. Hamiltonian PDEs have

a multisymplectic conservation law such as ωt + κx = 0; numerical methods

that have a discrete multisymplectic conservation law can be derived using dis-

crete Lagrangian methods or (what is often equivalent) symplectic partitioned

Runge–Kutta (SPRK) in space and time applied to a multi-Hamiltonian for-

mulation of the PDE. We survey the following results on the numerical and

dynamical behaviour of these methods:

1. Symplectic RK methods (including the popular box scheme) can un-

conditionally preserve the form of the dispersion relation of any multi-

Hamiltonian PDE.

2. The implicit discrete equations of symplectic RK may not have solutions,

even for fine grids.

3. We give sufficient conditions on the PDE for SPRK to yield explicit local

semidiscretizations.
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4. We characterize those SPRK methods that yield stable semidiscretiza-

tions and determine their dispersion relation.

5. We express the frequency response of s-stage Lobatto IIIA–IIIB family of

SPRK methods (whose simplest member is the central difference approx-

imation of the nonlinear wave equation) explicitly in terms of continued

fractions and hence prove that the entire family is stable in this sense.

6. We describe the ability of these methods to capture steady states and

travelling wave solutions and compare to non-multisymplectic methods.
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In post-Jeffrey [1] period, from 1990 till “Hierarchical multifractal representa-

tion of symbolic sequences” [2], “Wavelet-based multifractal analysis of DNA

sequences by using chaos-game representation” [3], and interestingly an on-

line chaos game at “http://www.g-language.org/wiki/cgr” [4], any convergence

a propos general pattern on DNA has not been attained. CGR (Chaos Game

Representation) is just another window to represent a string of letters in a DNA

word in the form of self-similar fractal image, but the “mini” image, of the unit

which is supposed to generate self-similarity in the whole image, is a function

of the exact composition of the DNA word, and so clearly the generality resides

in just being self-similar, which is rather a direct consequence of implementing

CGR algorithm or its fork.

To investigate farther deep into the DNA fractal images in the hope of ex-

tracting some pattern, one would, a priori, require knowing some general truths

(biological or real contrasted against theoretical) regarding DNA sequences. As

to the current status-quo of DNA-CGR analyses, one must know a perfectly

“good” word size, regardless of composition.
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Because in certain sense a pattern, be it “visual” or “theoretical”, is user-

defined hence there could be a multitude of idiosyncratic heuristics to repre-

sent or treat a given DNA sequence or a set of sequences to arrive at some

putative pattern and idiosyncrasy also exists in using a particular software en-

vironment and so there could arise a need of a unified and dedicated DNA

software base to put all such idiosyncrasies and also to leave room for future

developments and such a software base run on bare-metal-machine would fi-

nally give way to analyses and manipulations of everything structured as such

into address space in a unified-user-defined and clear-cut manner. It may be

noted in passing that the very “object” called pattern is actually unknown, in a

sense, though researchers are searching for pattern yet nobody precisely knows

the description of that pattern per se. Keeping such issues in the backdrop, it

could be worthwhile to design a kernel rather than just writing an ordinary

program specifying another idiosyncratically defined pattern finding algorithm

in an arbitrarily chosen software environment; and moreover a kernel, which is

by definition standalone, and in this case designed solely for putting A-C-G-T-

pattern on platform, can easily import all open source codes for the existing

symbolic sequence pattern-finding programs, along with, if required, the source

codes for DNA sequence analysis programs and the whole of the DNA database

on the fly.

GENEUS does exist [5], but started to develop during pre-Jeffrey period,

hence the developers somehow missed to get the system optimized for allowing

some convergence vis-à-vis fractal-like or some exotic pattern even for locally

defined scenarios.

Commercial Simics environment [6] has been used as a full-system virtual

model for the present Unix-like Kernel, which is complete and stable, and upon

being booted starts running “idle”, “init”, and “shell” without human inter-

vention, and shows no propensity to fall into Simics debugger, at least when no

new DNA words are integrated.

A 32-bit application, exemplified with three DNA words (E.coli K-12 chro-

mosome [7]; Mexican Cotton or Upland Cotton, biological nomenclature -

Gossypium hirsutum, BAC sequences, Phase 1 BACS, Segment ID 124001821,

150 kilobase long, source “http://www.plantgdb.org”; and Human chromosome

22, Contig NT 027140.6,) has been written and installed in this present ker-

nel. This application randomly fragmentizes a given pair of DNA sequences

into user-defined size of fragments, and then pair-wise compares the generated

fragments, extracted from the given DNA sequence-pair, yielding a 0/1 score

matrix, a 0 for a mismatch and a 1 for a match; whereupon, the matrix elements

get summed up row-wise (all rows) and column-wise (all columns), to yield a

row-vector and a column-vector, and then the inner-product of these vectors

gets imaged in an inner-product space and finally, the generated image gets

distorted following the template of classic barrel distortion. The so called, here,

“barrel image” shows some humanly perceptible pattern consistency depend-

ing on whether the image gets generated using pure fragments (with all same
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DNA letters) compared with all fragments (irrespective of pure or hybrid) or

hybrid fragments (all or some DNA letters/letter not same) compared with all

fragments.
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Fällman, Mikael Häggström, Leif Wahlström and Petter Gustafsson

[6] Simics: A Full System Simulation Platform - Peter S. Magnusson, Magnus Chris-
tensson, Jesper Eskilson, Daniel Forsgren, Gustav Hllberg, Johan Högberg, Fredrik
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Positive definite linear systems Ax = b are solved by Conjugate Gradient meth-

ods. For the indefinite systems, polynomial preconditioning techniques [1] are

applied. This method cannot be used for nonsymmetric systems. Instead of gen-

erating parameters dynamically in the conjugate gradient methods, parameters

are generated in advance based only on the smallest and largest eigenvalues;

and the size of the nonsymmetric matrix. These parameters are used in the

conjugate gradient methods to solve the system.
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In this paper a numerical method is suggested for singularly perturbed second

order ordinary delay differential equations of convection-diffusion type. The nu-

merical method is based on the standard finite difference operator applied on

the piece wise uniform mesh(Shishkin type) A parameter uniform error bound

for the numerical solution is obtained. Numerical results are provided to illus-

trate the theoritical results.
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The basic requirement for the stability of the mortar element method is to con-

struct finite element spaces which satisfy certain criteria known as inf-sup (well

known as LBB, i.e., Ladyzhenskaya-Babuška-Brezzi) condition. Many natural

and convenient choices of finite element spaces are ruled out as these spaces
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may not satisfy the inf-sup condition. In order to alleviate this problem La-

grange multiplier method with penalty is used in this article. The existence

and uniqueness results of the discrete problem are discussed without using the

discrete LBB condition. The results of numerical experiments support the the-

oretical results obtained in this article.
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Let (µ0, µ1) be a vector of non-negative measures on the real line, with µ0 not

identically zero, finite moments of all orders, compact or non compact supports,

and at least one of them having an infinite number of points in its support. We
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show that for any linear operator T on the space of polynomials with complex

coefficients and any integer n ≥ 0, there is a constant γn(T ) ≥ 0, such that

‖Tp‖S ≤ γn(T )‖p‖S ,

for any polynomial p of degree ≤ n, where γn(T ) is independent of p, and

‖p‖S =

{∫

|p(x)|2dµ0(x) +

∫

|p′(x)|2dµ1(x)

} 1

2

.

We find a formula for the best possible value n(T ) of γn(T ) and inequalities

for n(T ). Also, we give some examples when T is a differentiation operator

and (µ0, µ1) is a vector of orthogonalizing measures for classical orthogonal

polynomials.

This poster is an abridged version of the paper of the same title [3].
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In this paper we propose a new wavelet based approach for solving bihar-

monic equation. The wavelets are constructed from cubic Hermite spline, these

wavelets are based on recent papers on semi-orthogonal [1] and biorthogonal

wavelets [2], the wavelets are adapted over the boundaries of domain. The

extension to two dimensions is performed via tensor product [3]. The bihar-

monic equation is discretized using wavelet Galerkin method. The condition-

ing of multiresolution stiffness matrices are experimentally verified for various
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wavelet constructions, and are found to be asymptotically optimal. Whereas

the classical approaches using finite element and hierarchical bases lead to poor

conditioning. Our numerical experiments clearly demonstrate the advantages

of wavelets in providing a stable, hierarchical, incremental [4] and scalable algo-

rithm for an efficient, adaptive solution of biharmonic plate bending equation.
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Constructing numerical methods for stiff stochastic ordinary differential equa-

tions in the Itô sense, where the stiffness in the diffusion coefficients domi-

nates or is at least as significant as the stiffness in the drift coefficient, has

been an open problem for a while [1] because of the narrow coverage of drift-

diffusion plane by the (mean square) stability regions of the existing implicit

schemes [2]. In this contribution we show that it is possible to construct a fully

impicit method that can have a stability region that covers almost the whole

drif-diffusion plane. The method uses a low pass filter to deal with the stiffness

by effective homogenization and the stability is maintained by a modified real
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Schur decomposition in the time stepping of the method. An analysis shows

that this method is convergent with strong order 1.0 and can have a mean

square stability region covering almost all of the drift-diffusion plane for cer-

tain choice of its algorithmic parameters. A stiff chemical Langevin equation

is used to demonstrate the effectiveness of the method. A fuller account of the

method can be found in [3].
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The steady problem of free convective heat transfer from an isothermal in-

clined elliptic cylinder and its stability is investigated. The cylinder is inclined

at an arbitrary angle with the horizontal and immersed in an unbounded, vis-

cous, incompressible couple stress fluid. It is assumed that the flow is laminar

and two dimensional and that the Boussinesq approximation is valid. The full

steady Navier-Stokes and thermal energy equations are transformed to ellipti-

cal coordinates and an asymptotic analysis is used to find appropriate far-field

conditions. A numerical scheme based on finite differences is then used to ob-

tain numerical solutions. Results are found for small to moderate Grashof and

Prandtl numbers, and varying ellipse inclinations and aspect ratios. A linear

stability analysis is performed to determine the critical Grashof number at

which the flow loses stability. Comparisons are made with longtime unsteady

solutions.
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For data that can be sparsely generated, one can obtain good reconstructions

from reduced number of measurements - thereby compressing the sensing pro-

cess rather than the traditionally sensed data. A wealth of recent develop-

ments [1][3][4] in applied mathematics, by the name of Compressed Sensing or

Compressive Sampling (CS) aim at achieving this objective through l1-norm
minimization. Recent results on CS indicate that CS has a lot of potential

applications in fields such as Image Processing, Siesmology [3], to name a few.

Constrained by the practical and economical aspects, one often uses data

sampled irregularly and insufficiently. The use of such data in applications does

in deed result in certain artifacts and poor spatial resolution. Therefore, be-

fore being used, the measurements are to be interpolated onto a regular grid.

One of the methods [2] achieving this objective is based on the Fourier recon-

struction, which involves an underdetermined system of equations. The present

work applies CS to the Fourier-based interpolation problem. For the signals

having sparse Fourier spectra, the algorithm computes the Fourier coefficients

on a regular grid from a few samples of the signal measured over irregular

locations. The algorithm being deterministic in nature generates error out of

irregularity in the measurement coordinates, and then applies CS to achieve its

objective. To justify the applicability of our algorithm, we present the empirical

performance of it on different sets of measurement coordinates as a function of

number of nonzero Fourier coefficients. Our simulation results and the explicit

error bounds indicate that CS based technique has promising features for the

regularization of data from irregular and incomplete set of measurements.
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In this paper, we extend a second order temporally and spatially accurate fi-

nite difference scheme for biharmonic form of the transient incompressible 2D

Navier-Stokes (N-S) equations in rectangular domains to problems on irregular

physical geometries that are expressible in terms of conformal mappings. This

formulation is used to simulate viscous flow past an impulsively started circular

cylinder for Reynolds number (Re) ranging from 10 to 9500. We have studied

time evolution of flow structure and compared our computed solutions with

the experimental and numerical results available in literature[1, 2]. Excellent

comparison has been obtained both qualitatively and quantitatively.

Considering conformal transformation x = x(ξ, η), y = y(ξ, η) of the physi-

cal plane into a rectangular computational plane, the biharmonic form of tran-

sient N-S equation in terms of stream function ψ is given as

∂

∂t
∇2ψ =

1

JRe

[

∇4ψ − (2C +Reψη)
∂

∂ξ
∇2ψ − (2D −Reψξ)

∂

∂η
∇2ψ (3)

+ (E + CReψη −DReψξ)∇
2ψ

]

where C = Jξ/J, D = Jη/J, E = 2C2 + 2D2 − Jηη/J − Jξξ/J , J being the

jacobian of the conformal transformation.
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Equation (3) is discretized by the proposed extension that uses values of ψ
and its gradients ψξ, ψη in the compact square cell. For time marching we have

adopted a predictor-corrector approach and also carry out a stability analysis.

The flows for 10 ≤ Re ≤ 40 were time marched to the steady state while

for Re = 200 and 300 periodic flow state was reached. For higher Reynolds

numbers Re = 3000, 5000, 9500 only early stages of the flow were analyzed.

References

[1] Bouard R. and Coutanceau M., The early stage of development of the wake behind

an impulsively started cylinder for 40 < Re < 104, J. Fluid Mech. 101(3) (1980),
583–607.

[2] Kalita J.C. and Ray R.K., A transformation-free HOC scheme for incompressible

viscous flows past an impulsively started circular cylinder, Journal of Computa-
tional Physics 228(14) (2009), 5207–5236.

❖ ❖ ❖

Parameter-uniform Numerical Method for Singularly
Perturbed Differential Equations with Discontinuous Data

T. Valanarasu

Department Mathematics, Bharathidasan University College, Perambalur-621 107,

India

E-mail: valan tmj@yahoo.co.in

A. Ramesh Babu

Department Mathematics, SASTRA University, Kumbakonam-612 001, India

E-mail: matramesh2k5@yahoo.co.in

N. Ramanujam

Department Mathematics, Bharathidasan University, Tiruchirappalli-620 024, India

E-mail: matram2k3@yahoo.com

2000 Mathematics Subject Classification. 65L10, CR G1.7

We propose a parameter-uniform numerical method for singularly perturbed

differential equations of reaction-diffusion type with discontinuous data. In ad-

dition to presence of boundary layers at both end points, strong interior layers

can also be present due to the discontinuities in the source term and/or co-

efficients. Numerical method based on piecewise uniform Shishkin meshes are

constructed and parameter-uniform error bounds for the numerical solution and

its derivatives are established. Numerical results are presented to support the

theoretical results.

❖ ❖ ❖



Section 17

Control Theory and

Optimization

More Realistic Mathematical Models of Traffic Equilibria

Rhoda P. Agdeppa

Department of Mathematical Sciences, College of Arts and Sciences, Mindanao

University of Science and Technology, Lapasan, Cagayan de Oro City, Philippines

E-mail: rhoda@must.edu.ph

2000 Mathematics Subject Classification. 20K

The traffic equilibrium problem (TEP) has been studied for many decades.

Several formulations have been proposed under various assumptions. Earlier

TEP formulations made use of assumptions which are found to be unnatural

or unrealistic (e.g., that the travel costs are independent of the link flows) in

order to obtain TEP models which are easy to analyze. Most of the existing

TEP formulations assume that route costs are additive, that is, the route costs

are simply the sum of the arc costs for all the arcs on the route being consid-

ered [3, 4]. Another assumption used in most TEP models is that every traveler

has a complete and accurate information about the characteristics of the traf-

fic network and all travelers have the same route cost perception and travel

behavior. There are various situations, however, when the route costs are non-

additive [5]. Moreover, different individuals may have different travel behavior

and such travel behavior may be affected by the different time or weather of

the day.

In this paper, we consider a more realistic TEP model which is solvable

using existing solution methods. In particular, reformulations of the TEP with

nonadditive route costs and the TEP under uncertainty will be discussed.
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The classical proximal point algorithm is basically an approximative method for

finding fixed points of nonexpansive mappings in Hilbert spaces. This method

seems to have been applied for the first time to convex optimization by Mar-

tinet [4]. Later it was thoroughly explored in a subsequent path-breaking paper

by Rockafellar [6].

We consider the following general version of the proximal point algorithms

for solving the inclusion 0 ∈ T (x), where T is a set-valued mapping acting

from a Banach space X to a Banach space Y . First, choose any sequence of

functions gn : X → Y with gn(0) = 0 that are Lipschitz continuous in a

neighborhood of the origin. Then pick an initial guess x0 and find a sequence

xn by applying the iteration 0 ∈ gn(xn+1 − xn) + T (xn+1) for n = 0, 1, . . . We

prove that if the Lipschitz constants of gn are bounded by half the reciprocal

of the modulus of regularity of T , then there exists a neighborhood O of x̄
such that for each initial point x0 ∈ O one can find a sequence xn generated

by the algorithm which is linearly convergent to x̄. Moreover, if the functions
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gn have their Lipschitz constants convergent to zero, then the convergence is

superlinear. Similar convergence results are obtained for the cases when T is

strongly subregular and strongly regular. Finally, we show that the convergence

of this algorithm is stable under small perturbations whenever the set-valued

mapping T is metrically regular at a given solution.
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In this study, an optimal outsourcing policy for a two warehouse supply chain

production inventory model with partial backlogging and deteriorating prod-

ucts under inflation has been developed. Cost minimization technique is used

to get the approximate expressions for total cost and other parameters. A nu-

merical example and sensitivity analysis are presented to illustrate the model.

when only rented or own warehouse is considered, the present value of the to-

tal relevant cost is higher than the case when two warehouse is considered.
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From the sensitivity analysis, it can be shown that the total cost of the system

is influenced by the deterioration rate, the inflation rate and the backlogging

ratio.
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A time scale is a closed subset T of the set R of real numbers. It is a model of

time, which can be continuous (T = R), discrete (e.g. T = Z - the set of integers,

or T = {qn : n ∈ N} - the quantum scale), or mixed (e.g. a union of closed

intervals). Calculus on time scales, based on the concept of delta derivative,

is a unification of the classical differential calculus and the calculus of finite

differences. Nabla differential equations generalize differential and difference

equations (see e.g. [4]).

Let T be an arbitrary time scale. We are interested in local observability of

a control system Σ with output: x∆(t) = f(x(t), u(t)), y(t) = h(x(t)), where
t ∈ T, x(t) ∈ R

n (state), u(t) ∈ R
m (control or input), y(t) ∈ R

r (observation or

output) and x∆(t) is the delta derivative of x at time t. Local observability at a

point x0 ∈ R
n is defined in the same way as for continuous-time or discrete-time

systems.

Similarly as in the continuous-time and discrete-time cases we define the

observation algebra H(Σ) of the system Σ. It is an algebra of analytic functions

on R
n. Let Ix0

denote the ideal of the algebra Ax0
of germs of analytic functions

at x0 that consists of the germs of functions from H(Σ) that vanish at x0. Then

Ix0
is contained in the unique maximal ideal mx0

of Ax0
. Let R

√

Ix0
denote the

real radical of the ideal Ix0
.
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Theorem. The system Σ is locally observable at x0 if and only if R

√

Ix0
= mx0

.

It is an extension of the characterizations of local observability obtained for

continuous-time ([1, 3]) and discrete-time ([2]) systems.
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The aim of this paper is to develop a fuzzy control system with a smaller rule

base for queuing control in traffic system. Here we have considered the control

of queue in rail and air traffic as the field of study. A similar fuzzy control

system for road traffic has already been developed and sent to Fuzzy Sets and

Systems. Also a comparative study is done throughout this paper related to

the other rule bases formed for the traffic system.

References

[1] Niittymaki, J., and M. Pursula, Signal control using fuzzy logic, Fuzzy Sets and
Systems, vol. 116, no. 1, pp. 11–22, 2000.



Control Theory and Optimization 561

[2] Pappis, C.P., and E.H. Mamdani, A fuzzy logic controller for a traffic junction,
IEEE Transactions on Systems, Man, and Cybernetics, vol. 7, no. 10, pp. 707–717,
1977.

[3] Trabia, M.B., M.S. Kaseko, and M. Ande, A two-stage fuzzy logic controller for
traffic signals, Transportation Research, vol. 7, no. 6, pp. 353–367, 1999.

[4] Zadeh L.A., Fuzzy sets, Information and Control, Vol. 8, 338–353, 1965.

[5] Zarandi Mohammad Hossein Fazel and Rezapour Shabnam, A Fuzzy Signal Con-
troller for Isolated Intersections, Journal of Uncertain Systems Vol. 3, No. 3,
pp. 174–182, 2009 Online at: www.jus.org.uk

[6] Zhang, L., H. Li, and P.D. Prevedouros, Signal control for oversaturated intersec-
tions using fuzzy logic, TRB Annual Meeting, 2005.

[7] Zhang R, Phillis Y.A., Kouikoglou V.S., Fuzzy control of queuing systems,
Springer.

[8] Zimmerman H. J.,Fuzzy Set Theory and its Application

❖ ❖ ❖

GA based Reliability Optimization in Stochastic Domain

A. K. Bhunia

Department of Mathematics, The University of Burdwan, Burdwan-713104, India

E-mail: math-akbhunia@buruniv.ac.in

2000 Mathematics Subject Classification. 90B25

The basic objective of a reliability allocation model is to assign reliability to sub-

systems so as to arrive at a prefixed reliability goal for the system as a whole,

subject to various constraints operating on the system/subsystems. Earlier,

heuristic methods, reduced gradient method, dynamic programming method

and branch and bound method were used to solve such reliability allocation

problems. However, with the advent of genetic algorithm and other numerical

optimization methods, researchers have started paying more attention on reli-

ability optimization via numerical methods. In almost all the works, the design

parameters involved in the optimization problem have usually been taken to be

constants. However, the design parameters are not constant in nature. These

parameters can be viewed as estimated values, which in turn follow certain

stochastic laws. Unfortunately, constraints involving these estimated values of

the optimization problems are usually solved in the deterministic domain and

need to be solved in the stochastic domain. Further, distributional parameters

may not be of single value. They may be allowed to vary over an interval to

take care of the sensitivity of the factor market. Keeping these considerations

in the backdrop, the reliability optimization problem can be best described as a

problem of chance constraints with distributional parameters assuming interval
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values. Study of the system reliability where the component reliabilities are im-

precise and/or interval valued has already been initiated by some authors (see

[1], [2]). The goal of this work is to examine the redundancy allocation problem

under imprecise reliability with constraints, expressed in terms of coefficient

matrix and availability vectors, as chance constraints. Even for the random co-

efficient matrix and availability vector, it is proposed to consider interval valued

means and variances so that the optimization problem can be dealt with under

a generalized setup and specific solutions can be arrived at by collapsing an

interval valued parameter into a point.
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In this paper we shall consider two nonlinear and nonmonotone optimal control

problems governed by parabolic hemivariational inclusions in W (0, T ) =
{

y ∈

L2(0, t;V ) : y′ ∈ L(0, T ;V )
}

, where V is a real reflexive Banach space,







y′(t) +A(t)y(t) + χ(t) = f(t) a.e. t ∈ (0, T )
y(0) = y0
χ(x, t) ∈ β̃

(

x, t, u(x, t), y(x, t)
)

a.e. (x, t) ∈ Q

and 





y′(t) +A(t)y(t) + χ(t) = (Bu)(t) a.e. t ∈ (0, T )
y(0) = y0
χ(x, t) ∈ β̂

(

x, t, y(x, t)
)

a.e. (x, t) ∈ Q

where the time derivative is understood in the sense of distribution and u is

the control variable. The multivalued functions β̃ and β̂ are nonmonotone and
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include the vertical jumps. The operator A is assumed to be monotone and

satisfy certain coerciveness and boundeness hypotheses. These problems arise

in many important real-life models of control.

The optimal control problem formulation is to find an optimal pair (u0, y0)
which minimizes a continuous convex and coercive functional J .

After giving some results on the existence of an optimal control, we treat

the optimization problem by Galerkin approximation. Then we prove the con-

vergence of optimal values for approximated optimization problems to the ones

for the original problem. Finally we compare the results received in that two

cases of control.
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It has been observed that most of the classical EPQ models assumed perfect

production. But it is not necessary that all the units of an item produced are

of perfect quality. There may be the mixture of perfect and imperfect quality.

This type of production falls in the category of imperfect production process.

In the present paper, we develop the model for imperfect production/inventory

system of ameliorating items with time varying demand. Here, ameliorating

term is used in the reference of the items whose value or utility or quantity

increases with time. The unit production cost is taken to be a convex function

of the production rate which is also a variable. The mathematical expression

for the expected profit function is derived and the effects of amelioration on
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the inventory replenishment policies are studied with the help of numerical

examples.
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The Lagrange multiplier rules and the KarushKuhnTucker (KKT) necessary

optimality conditions lie at the heart of non-linear optimization. To derive the

necessary optimality conditions of KKT type in which the Lagrange multiplier

associated with the objective function is non-zero, one needs to impose some

kind of constraint qualification. However, in absence of constraint qualifications,

the KKT optimality conditions may fail to hold.

In this work, we consider non-smooth Lipschitz programming problems with

set inclusion and abstract constraints. Here we develop approximate optimality

conditions for minimax programming problems in absence of any constraint

qualification. The optimality conditions are worked out not exactly at the opti-

mal solution but at some points in a neighbourhood of the optimal solution. For

this reason, we call the conditions as approximate optimality conditions. One
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may wonder as to why we do not aim to achieve the desired scenario of optimal-

ity conditions at the exact optimal solution instead of approximate optimality

conditions. The reasons are twofold. Firstly (purposefully) we want to avoid

constraint qualification and secondly the approximate optimality rules seem to

be more advantageous in the sense that they may allow us to work with the

gradients of the functions rather than their subdifferentials. It all sounds very

promising, however, even for a locally Lipschitz function the proximal subdif-

ferential may turn out to be an empty set. This bottleneck can be improved

by moving to the limiting subdifferential which is non-empty and possess good

calculus rules. We extend the results in terms of the limiting subdifferentials

in presence of an appropriate constraint qualification thereby leading to the

optimality conditions at the exact optimal point.
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For the control system ẋ = f(t, x, u) + F (t, x) v, consider the problem of min-

imizing the cost J = ϕ0(x(0), x(T )) under constraints ϕ(x(0), x(T )) ≤ 0 and

η(x(0), x(T )) = 0, where x ∈ Rn, u ∈ Rru , v ∈ Rrv , ϕ ∈ Rm, η ∈ Rs.
Take a process w0 = (x0(t), u0(t), v0(t)) satisfying the first order necessary

conditions for a weak minimum with a unique collection of multipliers. Let Ω be

the second variation of the corresponding Lagrange function, and K be the cone

of critical variations w̄ = (x̄, ū, v̄), i.e. those satisfying the linearized relations

of the problem. Define the quadratic order of minimum

γ(x̄, ū, v̄) = |x̄(0)|2 +

∫ T

0

(|ū|2 + |ȳ|2) dt + |ȳ(T )|2, ˙̄y = v̄ , ȳ(0) = 0.
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Here ȳ is the variation of an additional, artificial state variable. The control

variation v̄ does not come explicitly in γ.

Theorem 1. a) Let w0 provide a weak minimum with respect to both u and v
(weak–weak minimum). Then Ω(w̄) ≥ 0 for all w̄ ∈ K. In particular, Ω satisfies

the Legendre condition with respect to u (i.e. −Huu ≥ 0), the Goh conditions

with respect to v (see [1, 2]).

b) Let Ω satisfy the above Legendre and Goh conditions, and also ∃ a > 0

such that Ω(w̄) ≥ a γ(w̄) for all w̄ ∈ K. Then w0 provides a strict weak–weak

minimum. Moreover, in some uniform neighborhood of w0 the increment of the

cost is estimated from below by γ.

These conditions are close to each other with no gap between them. We

also consider a weak minimum with respect to u and a so-called Pontryagin

minimum with respect to v (weak–Pontryagin minimum). Theorem 1 remains

valid if the Legendre and Goh conditions are complemented by some condition

of equality type on the third variation of the Lagrange function with respect to

x, v (see [1, 2]).
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We propose an extension to Merton’s famous continuous time model of optimal

consumption and investment, in the spirit of previous works by Pliska and Ye,

to allow for a wage earner to have a random lifetime and to use a portion of

the income to purchase life insurance in order to provide for his estate, while

investing his savings in a financial market composed by one risk-free security

and an arbitrary number of risky securities whose diffusive term is driven by a

multi-dimensional Brownian motion. The wage earner’s problem is then to find

the optimal consumption, investment, and insurance purchase decisions in order

to maximize expected utility of consumption, of the size of the estate in the

event of premature death, and of the size of the estate at the time of retirement.

We use dynamic programming methods to obtain explicit solutions for the case

of constant relative risk aversion utility functions. We obtain new theoretical

results for this class of utility functions and provide the corresponding economic

interpretations with the help of suitable numerical examples.

References

[1] S. R. Pliska and J. Ye, Optimal life insurance purchase and consump-
tion/investment under uncertain lifetime, Journal of Banking and Finance, 31:
1307–1316, 2007.

[2] I. Duarte, D. Pinheiro, A. A. Pinto, S. R. Pliska, An overview of Optimal Life In-
surance Purchase, Consumption and Investment problems, in: Dynamics, Games
and Science. Eds: M. Peixoto, A. A. Pinto and D. A. Rand. Proceedings in Math-
ematics series, Springer-Verlag, 2010.

[3] I. Duarte, D. Pinheiro, A. A. Pinto, S. R. Pliska, Optimal Life Insurance Pur-
chase, Consumption and Investment on a financial market with multi-dimensional
diffusive terms. In preparation (2010).

❖ ❖ ❖



568 Control Theory and Optimization

Revisiting Optimality Conditions in Convex Programming

Joydeep Dutta

Department of Mathematics and Statistics, Indian Institute of Technology Kanpur,

Kanpur-208016, Uttar Pradesh, India

E-mail: jdutta@iitk.ac.in

C. S. Lalitha

Department of Mathematics, University of Delhi, Delhi-110007, Delhi, India

E-mail: cslalitha@rediffmail.com

2000 Mathematics Subject Classification. 90C25

The phrase convex optimization refers to the minimization of a convex func-

tion over a convex set. However the feasible convex set need not be always

described by convex inequalities. In this article we consider a convex feasible

set which are described by inequality constraints which are locally Lipschitz and

not necessarily convex and need not be smooth. We show that if the Slater’s

constraint qualification and a simple non-degeneracy condition is satisfied then

the Karush-Kuhn-Tucker type optimality condition is both necessary and suf-

ficient.
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After establishing a general Gordan-type alternative theorem involving cones

with possibly empty interior (generalizing that in [2]), we apply it to character-

ize the Lagrangian strong duality in nonconvex optimization problems. Thus,

we revise those results in [1]. The case with a single constraint is particularly

analized. If time allows, applications to vector optimization will be presented

as well.

This is a joint work ([3]) with Cristián Vera from Universidad Católica de la Sant́ısima

Concepción, Concepción.
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Sequential optimality conditions provide adequate theoretical tools to justify

stopping criteria for nonlinear programming solvers. We present new sequential

optimality conditions related to the Aproximate Gradient Projection condi-

tion (AGP [4]). When there is an extra set of linear constraints, we define a

linear-AGP condition and prove relations with CPLD and KKT conditions.

The CPLD [2] is a new constraint qualification strictly weaker than MFCQ

and CRCQ. Similar results are obtained when there is an extra set of con-

vex constraints. We define approximate KKT conditions and prove relations to

AGP–like conditions. We provide some further generalizations and relations to

an inexact restoration algorithm [3].
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We study the optimal control problem governed by a parabolic hemivariational

inclusion. We derive some results on the existence of optimal solutions. Then

we introduced Galerkin approximation and prove the convergence of optimal

values for approximated control proplems to the one for the original problem.

Finally, we give a simple example.
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Mixed-model just-in-time (MMJIT) production system is controlled by setting

an evenly distributed sequence of different products. Sequencing of different

products with even distribution works when there is a constant rate of usage

of all parts. The rate of usage of parts is kept as constant as possible under the

consideration of the demand rates of the products. The sequencing problem is

called the mixed-model just-in-time sequencing problem (MMJITSP).

The MMJIT production system consists of a hierarchy of a finite and distinct

levels. The sequence at the final level is crucial and affects the entire supply

chain as all other levels are also inherently fixed because of the pull nature

of the system. The MMJITSP only with the final level is the product rate

variation problem (PRVP). This is the minimization of the variation in the

rate at which different products are produced on the line. This problem with

bottleneck objective is the bottleneck PRVP [1].

The bottleneck PRVP with the objective of absolute deviation between the

actual and the ideal productions has been solved in pseudo-polynomial time [2].

In this presentation, the bottleneck product rate variation problem with a gen-

eral objective function is solved and a relation between optimal solutions of the

problem with different objective functions is established.
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Numerous mathematical models in applied and industrial mathematics take

the form of variational and quasi variational inequalities involving certain co-

efficients. These coefficients are known and they often are associated to some

physical properties of the model. The direct problem in this context is to solve

the variational or the quasi-variational inequality. By contrast, an inverse prob-

lem asks for the identification of the coefficients when certain measurement of

a solution to the variational or quasi variational inequality is available.

This talk will focus on the inverse problem of identification of certain vari-

able parameters in ill-posed variational and quasi variational inequalities. Reg-

ularization will be used to handle the data perturbation as well as non-coercive

operators. Applications of our results to the identification of variable parame-

ters in partial differential equations will also be discussed. Finite element based

numerical examples will be presented. This talk is supported by an AMS/NSF

travel grant.
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We prove results in optimization theory of two integer variables which corre-

spond to fundamental results in convex analysis of real variables, viz. that a

local minimum of a convex function is global; that the marginal function of a

convex function is convex; and that two disjoint convex sets can be separated by

a hyperplane. We show by simple examples that none of these fundamental re-

sults holds for functions which are restrictions to Z2 of convex functions defined

on R2. But for a class of functions of two discrete variables called integrally

convex functions there are perfect analogues of the three results.
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Define a difference operator Da for a ∈ Z2 by Daf(x) = f(x + a) − f(x),
x ∈ Z2, f : Z2 → R.

A function f : Z2 → R is said to be integrally convex [1, 2] if it satisfies

DbDaf ≥ 0 for all (a, b) ∈ Z2 × Z2 with a = (1, 0), b = (1,−1), (1, 0), (1, 1) as

well as a = (0, 1), b = (−1, 1), (0, 1), (1, 1).
If, given a point p ∈ Z2, an integrally convex function satisfies f(x) ≥ f(p)

for all x such that ‖x−p‖∞ ≤ 1, then it satisfies f(x) ≥ f(p) for all x. Actually
sometimes a smaller neighborhood can suffice [2].

For any integrally convex function f : Z2 → R, its marginal function h(x) =
infy∈Z f(x, y), x ∈ Z, is convex.

Given two integrally convex functions f, g : Z2 → R, consider the sets

A = {(x, y, z) ∈ Z3; z ≥ f(x, y)}, B = {(x, y, z) ∈ Z3;−g(x, y) ≥ z}.

Then there exists a plane z = H(x, y) separating A and B, i.e., there is an affine

function H : R2 → R such that f ≥ H|Z2 ≥ −g, if and only if f 1

2

+ g 1

2

≥ 0,

where f 1

2

: Z2 ∪ (Z + 1

2
)2 → R is defined for (x, y) ∈ Z2 by f 1

2

(x, y) = f(x, y)
and

f 1

2

(x+ 1

2
, y + 1

2
) = 1

2
min

[

f(x, y) + f(x+ 1, y + 1), f(x+ 1, y) + f(x, y + 1)
]

.

Work on more than two variables is in progress.
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In this paper, we study the controllability of second order voltrra integrodif-

ferential systems with nonlocal initial conditions by using Banach fixed point

theorem and the theory of strongly continuous cosine family.
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In this paper, we prove some sufficient conditions for the controllability of

non-densely defined first order semilinear integrodifferential control systems.

Consider the semilinear control system

x′(t) = Ax(t) +Bu(t) +

∫ t

0

f(t, s, x(s))ds; 0 ≤ t ≤ T

x(0) = x0

where x : [0, T ] → V is the state function, u : [0, T ] → U is the control function.

Let Z = L2[0, T ;V ] and Y = L2[0, T ;U ] be functions spaces and B : Y → Z a

bounded linear operator, f : [0, T ] × [0, T ] × V → V a nonlinear operator and

A : D(A) ⊂ V → V a closed (not necessarily bounded) linear operator whose

domain need not be dense in V , that is, D(A) 6= V .

In this work, using the Schauder fixed point theorem, we establish the con-

trollability for a class of abstract first order semilinear integrodifferential sys-

tem, where the linear part satisfies the Hille-Yosida condition. An example is

provided to illustrate the theory.
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One of the important issues in this competitive world, for the decision makers

of manufacturing firms, has been the efficient methodologies and the selection

of best possible delivery routes. There are different types of vehicle routing

problems (VRP) prevailing in the literature. Taking into account the real world

applications, the vehicle routing problem has been considered with stochas-

tic demand (VRPSD) in which the customer demand has been modeled as a

stochastic variable. To solve VRPSD model an efficient metaheuistic procedure

based on traditional Ant Colony Optimization (ACO) which is based in the

pheromone strategy, inspired in the natural Ants behavior. Ants are inclined to

move over the edges with higher pheromone concentration and this behavior is

assigned to vehicles. Considering the computational complexity of the problem

and to enhance the algorithm performance a neighborhood search embedded

Adaptive Ant Algorithm (ns-AAA) is proposed as an improvement of the ex-

isting Ant Colony Optimization. ANalysis Of VAriance (ANOVA) is performed

to determine the impact of various factors on the objective function value. This

algorithm demonstrates better results and proved to be a competitive method

related with other metaheuristics. A new method has been proposed to solve

the Multi Depot Vehicle Routing Problem (MDVRP) and a modified Ant Algo-

rithm has also been proposed. The effectiveness of Ant Algorithm is compared

and the results are proved to be competitive. A comprehensive modeling ap-

proach towards stochastic vehicle routing is studied by Bertsimas [1]. In existing



576 Control Theory and Optimization

VRPSD models, ACO has empirically shown superior results (Reimann [2]) in

resolution of computational complexity. Chao et al.[3] provides a review of the

previous heuristics for the multi-depot vehicle routing problem in the operations

research literature and introduces a new heuristic, as well.
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We apply the optimal control theory to a model of the peer-driven dynamics of

ecstasy use. Ecstasy use has continued to be in raves and nightclubs in recent

years and the reduction of ecstasy use has become one of the important issues

in society. Our goal is to minimize the ecstasy use class and the cost. Optimal

control is characterized in terms of the solution of optimality system, which

is the state system coupled with the adjoint system and the optimality equa-

tions. The numerical simulations show the ideal (optimal) prevention policies

of ecstasy use in various scenarios.
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Mathematical model of the inductive heating process of oil-well casing is rep-

resented as the equation of heat conduction that involved the control action

with the boundary conditions and the criteria of heat quality. The performance

criterion is energy functional that involves penalty function with penalty pa-

rameters governing heat quality during the process [1]. Control action satisfies

the constraints according to the physical significance of the process of induc-

tive heating. The optimal control action structure for the internal source heat

intensity in cold, intermediate and hot modes is obtained in the paper. It is
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performed using the necessary condition of optimality for distributed systems

[2] and application of optimization method with internal control actions [3].

The practical problem of optimal inductive heating of oil-well casing in

hot mode is solved numerically in this work. Numerical computation is carried

out by means of integro-interpolation method using Crank-Nikolson scheme

[4]. Numerous experiments and analysis allow tracing the dependence of mini-

mized functional on the penalty parameters and get its three-dimensional plots.

The analysis prompts to assign penalty parameters which provide optimal heat

mode. According to the results of the carried research recommendations are

given how to use them in practice.
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In control theory there are different problems that can be studied. In this con-

tribution we focus on the tracking problem for mechanical control systems given

by an affine connection as described in [2]. The tracking techniques are used

either to design suitable feedback control laws or to achieve a particular trajec-

tory within a relatively small error.

In the literature [2] there exist sufficient conditions for tracking affine con-

nection control systems. However, in [3] it was found a control system associated
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with a submarine where tracking was feasible, even though those sufficient con-

ditions were not fulfilled. This leads us to generalize the results in [2] that

are given in terms of the finite family of the control vector fields using only

symmetric products up to degree two.

In this contribution we will describe how to approximate the target trajecto-

ries by means of the solutions to the original control system. In order to achieve

this we use chronological calculus [1] and some results from average theory [4].

As a result we are able to state new sufficient conditions for tracking. These

new conditions are of higher order because symmetric products of higher order

of the control vector fields are involved. Moreover these conditions are given in

terms of an infinite family of vector fields in contrast to the finite family vector

fields known in the literature.
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It has been observed that the Internet fair service models use some variant

of fair queueing like Deficit Round Robin (DRR) for traffic flow scheduling.

Each flow corresponds to a particular differentiated service and its constituent

packets get treated accordingly at each network node. It is assumed that per

flow Service Level Agreement (SLA) may be acheived using this approach. But

there are certain data flows which lose their meaning if they get imperfect

service due to any network condition. In this paper, we develop an inventory

model for fair services of Internet traffic using DRR service discipline. The

different SLA schemes have been analysed for traffic flows for establishing a

mathematical model. The analysis proposes a new signalling mechanism for

inference of drawbacks in SLA implementation.
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In the present survey we consider the controllability problem for systems gov-

erned by semilinear differential inclusions in a Banach space E of the form

y′(t) ∈ Ay(t) + F (t, y(t)) +Bu(t).

Here A is a closed linear operator in E generating the strongly continuous

semigroup eAt, F is a multivalued nonlinearity, u is a control function and

B is a bounded linear operator. We do not assume the compactness of the

semigroup eAt, but we suppose that F satisfies a regularity condition expressed

in the terms of the Hausdorff measure of noncompactness in E.
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We present the multivalued operator whose fixed points are solutions of the

controllability problem and describe its properties. It allows to apply the topo-

logical degree theory for condensing operators and to obtain the controllability

results for both upper Carathéodory and almost lower semicontinuous types of

nonlinearity under various growth conditions. As application we consider the

controllability for a system obeying a perturbed wave equation.

Some extensions are given to the cases of systems governed by degenerate

(Sobolev type) inclusions and functional differential inclusions in presence of

impulse effects and (finite or infinite) delays.
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The following criterium of weak compactness in the dual of a JB*-triple is ob-

tained in [1] and [2]: a bounded set K in the dual of a JB*-triple E is not

relatively weakly compact if and only if there exist a sequence of pairwise or-

thogonal elements (an) in the closed unit ball of E, a sequence (ϕn) in K, and

ϑ > 0 satisfying that |ϕn(an)| > ϑ for all n ∈ N. Consequently, a bounded sub-

set in the dual space of a JB*-triple, E, is relatively weakly compact whenever

its restriction to any abelian subtriple of E is.

This result generalizes the characterization of weak compactness in the dual

of a C∗-algebra obtained by H. Pfitzner in [3].
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Global Optimization plays an important role in theory of optimization and

applications. Many engineering and economics problems can be formulated as

global optimization problems[3]. We consider so called D.C programming prob-

lem (difference of two convex functions) which belongs to a class of global

optimization. Based on the global optimality conditions by Strekalovsky[4, 5],

we derive global optimality conditions for D.C programming. We reduce the

problem to concave programming and propose some algorithm and method for

solving it. The subproblems of the proposed algorithm are convex optimization

problems. Also, we show that indefinite quadratic programming problem can

be reduced to D.C programming. Some numerical results are provided.
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The research on forward numerical models, by large, has almost reached a

saturation, wherein, the limitations if existed, have to coexist. It is the data as-

similation techniques that provide a hope to minimize the numerical limitations

using Inversion Techniques.

Optimization is the prescribed medicine from Vedas(Ati Sarvatra Varjayet).

It is the need of the hour, which enforces a control of the process for ensuring

a kind of balance in any field. Numerical modeling is not an exception.

In this paper, the Inversion and Optimization techniques used in Meteorol-

ogy and Ocean related fields are highlighted. The deficiencies of various numer-

ical forward models, the effective and efficient way they can be minimized using

above techniques are discussed. Improvements that can only be made possible

with mathematicians are sought.
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In this paper, neural network (NN) based controller for the tracking control of

robot manipulators in the task-space under uncertainties, is considered. Espe-

cially, this controller does not need the prior information of the upper bound

of the unstructured uncertainties. By adaptively estimating the upper bound

by using feedforward neural network (FNN), effects of unstructured uncertain-

ties can be eliminated and asymptotic error convergence can be obtained for
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the closed-loop system. Simulation studies are carried out for a two-link elbow

robot manipulator to show the effectiveness of the control scheme.
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The classical Eckart-Young formula for square matrices [2] identifies the dis-

tance to singularity of a matrix. The main purpose of this paper is to get gener-

alizations of this formula. We characterize the distance to non-surjectivity of a

linear operator W ∈ L(X,Y ) in finite-dimensional normed spaces X,Y , under

the assumption that the operator W is surjective (i.e. WX = Y ) and subjected

to structured perturbations of the form W −→ W + E∆D. The proof of the

main result is based on the theory of multi-valued linear operators [1]. As an

application of these results, we derive formulas of the distance r(A,B) from a

linear controllable system ẋ = Ax + Bu, t ≥ 0, x ∈ Cn, u ∈ Cm to the nearest

uncontrollable system under structured perturbations [A,B] −→ [A,B]+E∆D.

The main result reads

r(A,B) ==
1

supλ∈C ‖EW−1

λ D‖
,

where W−1

λ = [A − λI,B]−1 : Cn × Cm → Cn is a multi-valued linear opera-

tor. The results are extended to the more general case of multi-perturbations
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[A,B] −→ [A,B] +
∑N

i=1
Ei∆iDi. Our results unifies and covers some well-

known results. In particular, a recent result due to Karow and Kressner [3] is

shown to be a consequence of our result.

References

[1] R. Cross, Multivalued Linear Operators, Marcel Dekker, New York, 1998.

[2] C. Eckart, G. Young, The approximation of one matrix by another of lower rank,

Psychometrika 1(1936) 211–218.

[3] M. Karow, D. Kressner, On the structured distance to uncontrollability, Systems
Control Lett. 58(2009) 128–132.

❖ ❖ ❖

On the Optimal Control Problem and Galerkin
Approximation for an Extensible Beam Equation

Zdzislaw Stempien

Centre of Mathematics and Physics, Technical University of Lodz, 90-924 Lodz,

Al.Politechniki 11, Poland

E-mail: stem@p.lodz.pl

2000 Mathematics Subject Classification. 49J20, 49M15

We discuss the optimal control problem governed by equations

∂2y

∂t2
+∆2y −

(

α+ β

∫

Ω

|∇y|2dx

)

∆y = f +Bu on S × Ω

y(t, x) =
∂y(t, x)

∂n
= 0 on S × Γ

y(0, x) = y0(x) and
∂y(0, x)

∂t
= y1(x) on Ω

where x ∈ Ω ⊂ Rn, t ∈ S = (0, T ), u is a function representing the control

actions, and Γ is boundary of Ω, and n is a normal vector to Γ. The quadratic

cost function is classical.

We present the Galerkin approximation of this optimal control problem and

we study the approximate family of control problems. The condensation points

of a set of solutions of the approxiamte optimization problems are the solutions

of the initial optimization problem.

The main result of our paper are the theorems of convergence of optimal

values for control problems approximated by the Galerkin method to the one

for orginal problem.
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Let τ2 > τ1 > 0 and t3 > t2 > t1 be given numbers with t3 − t2 > τ2;
suppose that O ⊂ Rn is an open set and the n-dimensional function f(t, x, y) is
continuous on the set [t1, t3]×O2 and continuously differentiable with respect

to x and y; next, let ∆ be a set of measurable initial functions ϕ(t) ∈ Φ, t ∈
[t1−τ2, t2], where Φ ⊂ O is a compact set; let X0 ⊂ O be a compact and convex

set of initial vectors x0.
Under initial data we imply the collection of initial moment t0 ∈ [t1, t2]

and initial vector x0 ∈ X0, delay parameter τ ∈ [τ1, τ2] and initial function

ϕ(·) ∈ ∆.
For each initial data w = (t0, τ, x0, ϕ(·)) ∈ W = [t1, t2] × [τ1, τ2] ×X0 ×∆

we assign the delay differential equation

ẋ(t) = f(t, x(t), x(t− τ)), t ∈ [t0, t1]

with the initial condition

x(t) = ϕ(t), t ∈ [t0 − τ, t0), x(t0) = x0.

An initial data w = (t0, τ, x0, ϕ(·)) ∈ W is said to be admissible if there

exists the corresponding solution x(t) = x(t;w), t ∈ [t0, t3] satisfying the con-

ditions qi(t0, τ, x0, x(t3)) = 0, i = 1, l. We denote the set of admissible initial

data by W0.
An initial data w0 = (t00, τ0, x00, ϕ0(·)) ∈ W0 is said to be optimal if for

arbitrary w ∈ W0 the following inequality holds

q0(t00, τ0, x00, x0(t3)) ≤ q0(t0, τ, x0, x(t3)).

Here x0(t) = x(t;w0), x(t) = x(t;w) and qi(t0, τ, x0, x1), i = 0, l are contin-

uously differentiable on the set [t1, t2]× [τ1, τ2]×X0 ×O.
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In this work, the existence theorems of an optimal initial data and necessary

optimality conditions for initial data are proved.
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In this communication, quantum control for nucleus is considered in theoretical

and computational issues. Particularly, for the quantum dynamics described

by Yukawa interaction, we proceed the study in the framework of variational

method in Hilbert spaces. Resultant demonstration is well verified the theoretic

conclusion with numerical simulation (cf. [1, 2, 3, 4]).
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In this paper, we study a portfolio optimization problem under CEV model

with stochastic volatility. we use an Asymptotic Analysis to extend the con-

stant volatility case of Gao(2009) to obtain the effective volatility result as a

leading order term and the correction effect due to the fast mean-reversion of

the stochastic volatility.
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An attempt has been made to study and analyze the performance of a magnetic

fluid based squeeze film between rough truncated conical plates. The lubricant

used here is a magnetic fluid and the external magnetic field is oblique to the

lower plate. The bearing surfaces are assumed to be longitudinally rough. The

roughness of the bearing surfaces is modeled by a stochastic random variable

with nonzero mean, variance and skewness. Efforts have been made to average

the associated Reynolds equation with respect to the random roughness pa-

rameter. The concerned non-dimensional equation is solved with appropriate

boundary conditions in dimensionless form to obtain the pressure distribution.

This is then used to get the expression for load carrying capacity, resulting in

the calculation of response time. The results are presented graphically. It is ob-

served that the bearing system registers an improved performance as compared

to that of a bearing system dealing with a conventional lubricant. The results

indicate that the pressure, load carrying capacity and response time increase

with increasing magnetization parameter. This investigation reveals that the
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standard deviation induces a positive effect. Besides, negatively skewed rough-

ness increases the load carrying capacity and this performance further enhances

especially when negative variance is involved. Although, aspect ratio and semi-

vertical angle tend to decrease the load carrying capacity, there is a scope for

obtaining better performance in the case of negatively skewed roughness.
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The theory developed by [1] is employed to study the phenomena of reflection

and transmission when a plane elastic wave (longitudinal/transverse) becomes

incident at the interface between two dissimilar isotropic porous media con-

taining two immiscible fluids. The possible extent of connections between the

surface pores of two solids at their common interface is discussed and the effect

of connections on different reflected and transmitted waves is studied. Partition

of incident energy among various reflected and transmitted waves is also stud-

ied. Numerical example calculates the amplitude and energy ratios of reflected

and transmitted waves at a plane interface between sandstone containing air-

water mixture and a lime stone containing mixture of kerosene-water.
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We analyse the living system belonging to the human being using (ANs) net-

works, within the biostructural theory (MBt), throught formal mathematical

aspects regarding the configuration and functionality of noesistructure (brain-

structure). The (ANs) are networks of multidimensional hierarchic evolution,

with various ranks. Their complexity varies horizontally, within the same level

and vertically, from the lower to the upper level. The biostructural theory (MBt)

considers the hierarchic levels of the living matter: 1-coexisting molecular mat-

ter; 2-biostructure (the spongy mass); 3-noesistructure (noesismass and coex-

isting biosic matter (the cortex and the cerebral hemispheres)). The effect of

phenomenological functions is quantified by:

I
j,j+1(k)

i =

∫

Ω
j,j+1(k)

i

((∂ϕ
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x vector of spatial coordinates; τ time. ANs(k) networks (k = 1, 2, 3) associated
to three levels of living matter, identified within the biostructural theory (MBt).

ANs(k) complexity: C
(k)
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Indices k, p, i are shown. The cooperative and hierarchical system

of ANs(k) networks is characterized by the evolution equations: hor-

izontal: s
j,j+1(k)

i (x, τ) = ϕ
j,j+1(k)

i (x,
∫

...,∇, α, τ), vertical: s
(k)

i,i+1
(x, τ) =
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shown, also, the mathematical aspects in the psychological systems.
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The problem of tsunami wave generation due to time-dependent arbitrary bot-

tom motion on a beach of uniform slope y = −qx(at equilibrium) is solved

by Tuck and Hwang [1] and also by Liu et.al [2]. There seems to have been

no attempt so far of finding analytical solution for forced linear long waves

on a beach with variable slope. Further the short time analysis of the wave

behaviour was not found even on constant slope beaches. In our article an an-

alytical solution is provided for the same problem on a beach of variable slope,

y = −qxr, q > 0, r > 0. To understand the influence of bottom slope on wave

elevation and velocity, the problem is studied both at small-time and while at

the steady-state assuming a time periodic ground motion f(x)eiωt. This might

be of some importance for the evolution of tsunami waves induced by near-shore

earthquakes [3]. Our solution at the steady-state shows a notable feature of no

radiation of energy from a finitely distributed time-periodic ground motion for

a certain set of values of ω, the circular frequency of the disturbance function.

This kind of paradoxical result was first observed by Stoker for steady-state sur-

face waves in infinitely deep water and this peculiar ’resonance’ may perhaps be

eliminated by assuming small viscosity of the fluid. Although physical settings

are different, the generation of long waves by variable atmospheric pressure

distribution is analogous to the problem of tsunami formation by bottom dis-

placement [4, 5]. As a result our linear solutions may be used as a benchmark
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of various corresponding computational models when one takes into account

the non-linear aspect of wave generation not only in steady-state but also in

short-time analysis for the first few waves. Finally, we conclude that the char-

acteristics of these forerunners may be useful for tsunami prediction.
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Our presentation is about the methodology of “COCO” “Component-based

Object Comparison for Objectivity” a recently developed Hungarian, Linear

Programming based context-free similarity analysis method.

The method investigates the connection between the independent variables

Xi, X ∈ R
n and the depending variable Y ∈ R – as regression, but with
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a new idea. A certain variable in this method has not got only one constant

multiplicative weight in the approximating formula, but the weight is a staircase

function of the variable value. The Linear Programming based methodology

constructs this staircase functions depending on the approximating formula

type (linear, polynomial, multiplicative, mixed, etc.) the error minimization

type (linear or nonlinear least squares, etc.) and other parameters (number of

the steps in the staircase, etc.).

This datamining method can handle evaluation, benchmarking, forecasting

problems from diverse fields [1, 2, 3].

Since there is an available COCO tool on the net [4], we present how to use

that tool, we give some examples [5] to show the scope of the method, and we

try to specify the theoretical details of it as well [6]. So at our poster we will

provide all information about COCO method to the potential users.
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The problem of wave propagation in an interacting random inhomogeneous

conducting magneto-generalized-thermo-viscoelastic medium has been studied.
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The perturbation technique relevant to stochastic differential equations has

been employed to obtain the relation connecting displacement amplitudes of

waves propagating in the interacting media. The appropriate Green’s tensor

essential for discussion has been obtained in course of the analysis. A more gen-

eral coupled dispersion relation for longitudinal and transverse waves has been

deduced to determine the effects of generalized thermal parameters and con-

ductivity on the phase velocity of the coupled waves. The equations have been

analyzed for a particular form of thermo-mechanical coupling auto-correlation

function to show that the effect (of the order of ε2 only) of the thermal field is

to attenuate the longitudinal type waves and to alter the phase-speed depend-

ing upon the values of the viscoelastic parameters and conductivity. Cases of

low and high frequencies have also been studied and numerical calculations are

being attempted to determine the effects of generalized thermal and viscoelastic

parameters, conductivity and thermoelastic coupling on the phase velocity and

attenuation coefficients of the waves.
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It is our tradition to use mathematics in social life and making a better world.

I may be a child to say that we can make better world if we can find answer to

the question raised by our ancestors (may be mathematicians). I have tried to

find the answer to solution of non-linear differential equation,specially in non

linear dynamics [1], which is a less transparent example. I found its answers in

natural happenings; but how? we can understand it by observing one example:

If we drop a stone in still water, ripples will come. If we use differential equation

obtained due to this process and try to get computer graphing (trajectory) in

abstract space [1] we will get some graph, that graph should match with those

ripples in some way. If we follow the reverse path (working back ward) from

ripples, the answer is clear. Similarly if bucket full of water is disturbed from

bottom, some curves will be formed on the surface of water. The question is that

why computer graphing comes like that, it is the miracle of our brain working

system and its affiliation with nature. Non linear dynamics and chaos [1], [5]

is the important topic in applied mathematics, I have gone through the book

written by Steven H. Strogatz [1]. After seeing its one of the graphical work

concerning weakly non linear oscillators [1] and comparing with nature’s graph-

ing [1], [3], [5] they match each other. I conclude that it is because either earth

is oscillating or one of the whole universe is oscillating (depends on time which

may be unknown to us) inside which our earth is present. It means that earth
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is not only revolving around the sun and spinning around its axis but also some

thing more. This backword working can be completely true or completely false,

depends on further cooperation with sir Strogatz.
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Patients with diabetes suffer from an absolute or relative lack of the hormone

insulin. Insulin is produced by pancreatic β–cells in so-called regulated exocyto-

sis. In type 1 diabetes (juvenile diabetes), β–cells are destroyed in auto-immune

attacks. In type 2 diabetes and in prediabetic states, we meet a declining β–
cell function. Recent advances in observational techniques (ranging from ge-

netic epidemiology and proteomics to multiparameter cell sensoring and MRI,

ET and nanoparticle-based cell imaging) have brought about the generation of

huge new data sets, dealing with ions, DNA, proteins, electrical phenomena, cell

membranes, cell organelles, and tissue, in spatial and temporal extreme scale

from Ångström to micrometers and from picoseconds to minutes and hours,

see [2, 3].

In my talk, I shall briefly describe the common phenomenological approach

to relate the various data by fancied or statistically more or less well sup-

ported ad–hoc assumptions about the regulation. Then I shall advocate for

supplementing the phenomenological approach by a theoretical approach based
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on first principles. As an example, I shall explain how a combination of rigor-

ous geometrical and stochastic methods and electro-dynamical theory naturally

draws the attention to fault-tolerant signalling and self-regulation. I consider

the making of the fusion pore, anteceding the lipid bilayer membrane vesicle

fusion of regulated exocytosis, as a free boundary problem and show that one of

the applied forces is generated by glucose stimulated intra-cellular Ca2+ ions

oscillations resulting in a low-frequent electromagnetic field wave.

This approach unveils new aspects of the biochemical pathways; provides

a new explanation of the basic control of regulated exocytosis; and can direct

new model-based measurement in cell analysis. It serves as a Mathematical

Microscope.

This is joint work with Darya Apushkinskaya (Saarbrücken), Evgeny

Apushkinsky (St. Petersburg), and Martin Koch (Copenhagen). For details I

refer to [1].
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We consider a nonlinear cyclin content structured model of a cell pop- ulation

divided into proliferative and quiescent cells. Under suitable hypotheses, we

show existence and uniqueness of a steady state of this model.

We also show, for particular values of the parameters, existence of solutions

that do not depend on the cyclin content and hence satisfy an ordinary dif-

ferential equations system. We analyze the complete asymptotic behavior of

this ordinary differential equations system showing that the unique nontrivial

steady state (when it exists) is asymptotically stable under some conditions and

unstable when the reverse conditions hold. The instability appears through a
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Hopf bifurcation which leads to the existence of stable self-sustained oscillations

of the populations.

We make numerical simulations for the general case obtaining, for some

values of the parameters convergence to the steady state but also oscillations

of the population for others.

This is a joint work with Ricardo Borges and Àngel Calsina.
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[2] R. Borges, À. Calsina, S. Cuadrado, Oscillations in a mollecular structured cell

population model, prepublicacions CRM, 894, (2009), submitted.

[3] F. Bekkal Brikci, J. Clairambault, B. Ribba and B. Perthame, An age-and-cyclin-

structured cell population model with proliferation and quiescence, J. Math. Biol,
57, no. 1, (2008), 91–110.

❖ ❖ ❖

Stability of Narrow-gap Taylor-Dean Flow with Radial
Heating: Stationary Critical Modes

R. K. Deka

Department of Mathematics, Gauhati University, Guwahati-14, Assam, India

E-mail: rkdgu@yahoo.com

2000 Mathematics Subject Classification. 76Exx, 76E15

A linear stability analysis for Taylor-Dean flow, a viscous flow between concen-

tric cylinders with a pressure gradient acting in the azimuthal direction keeping

the cylinders at different temperatures, when the inner cylinder is rotating and

outer one is stationary has been implemented. The analysis is made under the

assumption that the gap spacing between the cylinders is small compared to

the mean radius (small gap approximation).

A parametric study covering wide ranges of β, a parameter characterizing

the ratio of representative pumping and rotation velocities and N , the parame-

ter characterizing the direction of temperature gradient (T2−T1) is conducted,
where T1 and T2 are the temperatures of the inner and outer cylinders re-

spectively. The most stable state is always accompanied by keeping the inner

cylinder is at higher temperature than the outer one. In the isothermal case

(N = 0), the flow is most stable near a critical value of β ∗ = −3.667, at which
the critical wave number (ac) jumps discontinuously and the discontinuity of

ac corresponds to the fact that the neutral curve consists of two separated
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branches occurs precisely at β ∗, where there exists an oscillatory axisymmetric

mode of approximately equal stability.

Emphasis is given to the occurrence of critical stability for the onset of

instability by finding the intersection of the two neutral curves for the inner

and outer part in a range of values of the radial temperature gradient −1.25 <
N < 0.25. We point out the existence of such critical point of stability, where

the two neutral curves intersect and disappearance of oscillatory mode when

N = −1.0.
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The building blocks of mathematical morphogenesis were put several decades

ago in the seminal works of Turing [1] and Eden [2]. Their goal was under-

standing how a macroscopic structure, in particular one breaking the initial

homogeneity, could arise out of a multiplicity of simple interactions. While

the approach of Turing implied the use of reaction–diffusion equations, Eden

concentrated on a probabilistic abstraction of a developing cell colony. In par-

ticular, he studied the architecture of a lattice cell colony to which new cells

were added following certain probabilistic rules. The objective was studying the



600 Mathematics in Science and Technology

asymptotic colony profile. The original Eden problem can be greatly general-

ized by means of the use of stochastic partial differential equations. They allow

a systematic study of the properties of the colony periphery, particularly of the

interface fluctuations. In this work we will summarize our recent progress in

this field [3, 4, 5, 6, 7], concentrating on the properties of the realizations of

the stochastic growth process. Our goal is unveiling under which conditions the

developing radial cluster asymptotically weakly converges to the concentrically

propagating spherically symmetric profile.
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We apply Game Theory concepts [6, 7, 8, 9] to the Theory of Planned Behavior

[1], that studies the decision-making mechanisms of individuals. We propose the

Bayesian-Nash Equilibria as one, of many, possible mechanisms of transforming

human intentions in behavior. This process corresponds to the best strategic

individual decision taking in account the collective response [2, 4]. We show

that saturation, boredom and frustration can lead to splitted strategies, in

opposition to no saturation that leads to a constant strategy. Furthermore, we

study the role of leaders in individual/group behavior and decision-making [3,

5]. We apply this model to a students success model, describing Nash equilibria,

“herding” effects and identifying a hysteresis in the process.
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In this talk efficient numerical method for PDE-constrained optimization prob-

lems will be discussed. It is based on simultaneous pseudo-time-stepping in

which preconditioned pseudo-unsteady KKT system is integrated in time until

a steady state is reached [1, 2, 4]. The preconditioner stems from the reduced

SQP methods. Optimization-based multigrid strategy is used for convergence

acceleration [5, 3]. The method is applied to problems in aerodynamics.
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The process of localized wall heating or cooling (in which a certain portion of

the wall is being heated or cooled while, the remaining portion is unchanged) is

of practical interest for various scientific and technological applications includ-

ing thermal protection, energizing the inner protection of the momentum and

thermal boundary layer, and in boundary layer control etc. In the present inves-

tigation, the effects of localized wall heating (cooling) for the laminar boundary

layer flow due to a point sink with an applied magnetic field have been studied.

The localized heating or cooling introduces a finite discontinuity in the math-

ematical formulation of the problem and increases its complexity. In order to

overcome this difficulty, a non-uniform distribution of wall temperature is con-

sidered at finite sections of the plate. The non linear, coupled partial differential

equations governing the flow under boundary layer approximations have been

solved numerically by using an implicit finite - difference scheme, along with

quasilinearization technique. The effect of the localized wall heating or cooling

is found to be very significant on the heat transfer, but its effect on skin fric-

tion is comparatively small. The magnetic field enhances both skin friction and

heat transfer. The momentum and thermal boundary layer thicknesses become

slightly thinner in the presence of wall heating(cooling).
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The term ‘double-diffusive convection’ applies to convection in a fluid where

there are two diffusing components. The archetypal case is heat and salt where

the faster diffusing component is ‘heat’ and the slower diffusing component

is ‘salt’. Convection that is dominated by the presence of two components is

very common in geophysical systems and oceanography. In the present work

we have considered the effect of Hall currents and permeability on a rotat-

ing Rivlin-Ericksen elastico-viscous fluid heated and soluted from below. The

relevant hydromagnetic equations are linearized using Boussinesq approxima-

tion and the perturbations are analyzed in terms of normal modes. A dispersion

relation governing the effects of visco-elasticity, salinity gradient, rotation, mag-

netic field, Hall currents and medium permeability is derived. For stationary

convection, Rivlin-Ericksen fluid behaves like an ordinary Newtonian fluid due

to the vanishing of the visco-elastic parameter. Compressibility is found to post-

pone the onset of thermosolutal instability. In the absence of Hall currents and

rotation, permeability hastens the onset of instability and therefore has the

usual destabilizing influence on the thermosolutal instability problem. In the

presence of rotation and/or Hall currents though various conditions for stabi-

lizing/destabilizing effect of permeability are derived yet it has been found that

for the permissible range of values of various parameters permeability has desta-

bilizing influence. Similarly, the conditions for stabilizing/destabilizing effects

of Hall currents are derived and its destabilizing influence for permissible range

of various parameters is established. Also, the dispersion relation is analyzed

numerically and the results drawn analytically are depicted graphically.
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A variety of both modern theoretical and practical problems of molecular bi-

ology are successfully modelled using mathematical apparatus by means of ap-

plying of continuous media laws. The obtained mathematical models are rep-

resented by the initial-boundary problems for the linear or nonlinear equations

in partial derivatives and/or by the systems of the linear or nonlinear ordinary

differential equations. A prominent feature of mathematical models in molecu-

lar biology is the case of sourcing the initial data (e.g., coefficient-functions of

the equations; initial and/or boundary conditions; some dynamic parameters,

etc.) that is either incomplete, or obviously inaccurate. Thus, it is required to

determine characteristics of the studied molecular process or the phenomenon

with admissible accuracy. For example, if it is required to determine the nu-

cleotide sequences of DNA and RNA at incomplete information on the source

data in genetic engineering; in protein engineering it is required to identify the

relationship of structure and function of proteins. Other examples are the prob-

lem of determining the intermolecular interactions in living systems; problem of

determining the molecular mechanisms of cell cycle regulation, etc. In terms of
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mathematics, in the above-mentioned problems of molecular biology it comes

to determine the cause under some known initial data (often inaccurate and/or

incomplete), derived from observations of the investigation. In other words, in

terms of mathematics, these models, which are described using the language of

the theory of differential equations, are considered to be inverse problems.

In this paper some linear and nonlinear inverse problems of molecular biol-

ogy are investigated, there are resulted both analytical and numerical methods

for its solution, which are based on the principles of the Tikhonov regularization

method.
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There have been several papers dealing with clustering of the SwissProt amino

acid sequence database. Most of the methods used involve heuristics at sequence

alignment score calculation and/or single-linkage-type or greedy clustering al-

gorithms. In this poster we present a whole different approach: we use (1)

exact pairwise alignment score calculation (with an optimized version of the

Smith-Waterman algorithm) and (2) the density-based OPTICS [1] clustering

algorithm. We also propose a way to assign colours to SwissProt entries based

on taxonomy information that may help in visually seeing the composition of

clusters consisting of amino acid sequences from different species.

In this work, we classified 389046 sequences occurring in SwissProt release

55.5 using the OPTICS algorithm. We proposed a quality measure that is specif-

ically useful in comparing the reachability plot created by the OPTICS algo-

rithm with an arbitrary reference-clustering. We proposed a colouring scheme

that is based on taxonomy information and helps analyze the composition of

clusters. We validated our results with the Pfam [2] database and concluded

that we obtained clusters of high quality.

Compared to the available, usually greedy sequence clustering algorithms,

the proposed clustering method might provide a more precise alternative for

sequence clustering. Of course, this comes at an expense of a tolerable increase
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of required computing power. Furthermore, we proposed a method to visualize

the composition of clusters, making cluster composition and quality evaluation

much easier.
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This paper presents our experience in using ABS algorithm to develop an on-

call schedule for medical residents at Sawai Man Singh Medical College and

Hospital, Jaipur. The ABS methods have been used broadly for solving lin-

ear and nonlinear systems of equations comprising large number of constraints

and variables, thereby saving time and effectively dealing with resulting com-

plexities. Computational results are presented using programming in MATLAB

environment. Key challenges are discussed primarily on a few issues. They pro-

vide a very large scale combinatorial challenge to the healthcare personnel who

are usually from a non-mathematical background. We present a pragmatic ap-

proach for finding an optimally feasible solution which may be applicable in

other real world problems as well.
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The triple correlation of an ordinary function on the real line is the integral

of the product of that function with two independently shifted copies of itself.

Triple correlation methods are frequently used in signal processing for treating

signals that are corrupted by additive Gaussian noise; in particular, triple cor-

relation techniques perform well when multiple observations of the signal are

available and the signal may be translating in between the observations,e.g.,a

sequence of images of an object translating on a noisy background. What makes

the triple correlation particularly suitable for such tasks are three properties:

(1) it is invariant under translation of the underlying signal; (2) it is insensitive

to additive Gaussian noise; and (3) it retains most of the phase information

in the underlying signal. This paper investigates whether properties (1)-(3) of

the triple correlation extend to functions on arbitrary locally compact groups,

in particular the groups of rotations and rigid motions of euclidean space that

arise in computer vision and signal processing.

After defining the triple correlation for any locally compact group by using

the group’s left-invariant Haar measure, it is easily shown that the resulting ob-

ject is invariant under left translation of the underlying function and insensitive

to additive Gaussian noise. What is more interesting is the question of unique-

ness: when two functions have the same triple correlation, how are the functions

related? Our results show that for most cases of practical interest, the triple

correlation of a function on an abstract group uniquely identifies that function

up to a group translation. We show how our results utilize the duality theorems

of Pontryagin, Tannaka-Krein [1], Iwahori-Sugiura [2], and Tatsuuma [3]. We
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also develop explict algorithms for recovering bandlimited functions from the

triple correlation on the rotation groups in two and three dimensions. Finally

we describe the formal relationship between our triple correlation analysis and

the Tauberian theorem of N. Wiener concerning the span of translates of a

function.
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State-space and eigenvalue approaches are used to investigate the problem of

thermoelastic interaction in an infinite elastic body with a spherical cavity in

the context of two temperature generalized thermoelasticity (2TT) (Youssef:

2006, 2007, 2008). The basic equations have been written in vector matrix dif-

ferential equation in Laplace transform domain. The numerical inversion of the

transform is carried out using Fourier series expansion techniques. The ther-

moelastic stresses, conductive temperature and thermodynamic temperature,

the quantities of physical interest for any thermoelastic interaction problem

are shown graphically for two temperature Lord Shulman model and for two

models of two temperature Green Nagdhi.
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HIV is a disease caused by a deadly virus HIV (Human Immunodeficiency

Virus). Over the past few years HIV is spreading rapidly among the population.

Everyday there are thousands of new cases of HIV infection in the world and

these occur in almost every country, but its spread is very fast in developing

countries, which have limited resources to deal with the spread of this disease [1].

In worldwide, 70% of HIV infections in adults have been transmitted through

hetrosexual contact and vertical transmission accounts for more than 90% of

global infection in infants and children [2].

In this paper, a nonlinear mathematical model is proposed to study the

spread of HIV by considering transmission of disease by heterosexual contact

and vertical transmission. A stage structured model is proposed and analyzed
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by considering total population variable and dividing whole population under

consideration into three stages: children, adult and old. Also it is assumed that

the rates of recruitment are different in different groups of population. Various

equilibria of the model and their stability are discussed. Using stability theory of

differential equations and computer simulation, it is shown that due to increase

in the awareness of the diseses in the adult class, the total infective population

decreases in the region under consideration. Numerical simulation also supports

theoretical findings.
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The POSCO New Harbor (PNH), located at northeast part of Pohang City,

has been experienced extreme wave hazards of about 3.0-5.0 meters high in

surface elevation due to the wave induced oscillations. Firstly, to find these

resonant wave frequencies, theoretical studies are introduced to investigate the

wave induced oscillations in the arbitrary shaped harbor, which are based on the

reduced wave equation, i.e., Helmholtz equation. Then numerical simulations

are conducted to find the resonant frequencies in the PNH. The geometry of

the PNH, based on the actual topography and bathometry data, is constructed

and then the numerical scheme is implemented using the boundary matching

technique with the Weber’s solution of Helmholtz equation. Secondly, to analyze

the hydroelastic response of a moored ship due to these resonant frequencies in

the PNH, a numerical scheme is developed further. We assumed the constant
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depth and incident waves are completely reflected along the coast in addition

to the usual assumptions made for free surface problem. The fluid domain is

divided into three subdomains which are named as Region I (moored ship),

region II (bounded harbor) and region III (outside the harbor). The solutions

in the region III are used to provide a numerical radiation condition for the

region II and region I. In this method, we introduce a artificial boundary which

enclose the ship inside, and define this inner subdomain (region II). The solution

in region II is obtained using matching condition at entrance of harbor and

boundary condition at region I. The simulation results are compared with the

real time measurements of wave heights (WTG) at the specified eight track

recorder points inside the PNH and show good agreements.
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The paper deals with the use of finite difference technique on the study of

propagation of shear waves in viscoelastic medium. General dispersion relation

has been obtained for the case of multilayered case when (n-1) layers lies over
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a half space. The result is in agreement for the single/double viscoelastic layers

lying over a semi infinite viscoelastic medium. The stability analysis has been

done for the used finite difference scheme, also phase and group velocity have

been derived using finite difference scheme in terms of dispersion parameter

and courant number.
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An analysis and numerical results are presented for transverse vibrations of

nonhomogeneous orthotropic equilateral triangular plates of variable thickness

using two dimensional boundary characteristic orthogonal polynomials in the

Rayleigh-Ritz method on the basis of classical plate theory. Gram-Schmidt pro-

cess has been used to generate orthogonal polynomials. The nonhomogeneity

of the plate is assumed to arise due to linear variations in elastic properties and

density of the plate material with the in-plane coordinates. The thickness vari-

ation is taken as linear along one direction. The first three natural frequencies

for four different combinations of clamped, simply supported and free edges

have been computed correct to three decimal places. Effect of nonhomogeneity

parameters together with variation in thickness has been studied. Three dimen-

sional mode shapes for specified plate for all the four boundary combinations

have been plotted. Results in particular cases have been compared with those

available in the literature.
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In recent decades, wave structure interaction problems have gained consider-

able importance to analyze wave interaction with very large floating structures

(VLFS) and mobile offshore base (MOB) for utilization of ocean space for

various humanitarian activities and military operations in addition to wave in-

teraction with floating ice sheet which finds application in Arctic Engineering.

In these class of problems, higher order boundary conditions arise in a natu-

ral way on the structural boundary associated with three dimensional Laplace

equation which is satisfied in the fluid domain. Various mathematical theory

are developed to deal with wave structure interaction problems in two dimen-

sions and the three dimensional problems are analyzed in very special cases for

oblique incident waves.

In the present paper, a generalized Fourier type expansion formula in terms

of double series along with the corresponding orthogonal mode-coupling re-

lations are derived to deal with wave structure interaction problems in three

dimensional fluid domain in which the structure is considered two-dimensional

in nature. The present expansion formula is a generalization of the expansion

formula developed by Manam et al. (2006) in case of a semi-infinite strip to

deal with wave structure interaction problems in water of finite depth. Several

identities and results on the convergence of the double series are derived by

the direction application of Cauchy residue theorem. The present method of

solution can be easily applied to a large class of problems in the area of wave

structure interaction in the field of ocean engineering and other fluid struc-

ture interaction problems arising in various branches of applied mathematics,

engineering and mathematical physics.
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We compute the analytic expression of the probability distributions FIp,+ and

FIp,− of the normalized positive and negative Ip index returns r(t), with pe-

riodicity p, see [5, 6] . The main indices Ip that we study are the PSI-20 and

the Dow Jones Industrial Average but we also extend our study to north amer-

ican, european and world wide indices. The periodicity p varies from daily

(d), weekly(w) and monthly (m) returns to intraday data (60 min, 30 min,

15 min and 5 min). We define the α re-scaled Ip index positive returns r(t)α

and negative returns (−r(t))α that we call, after normalization, the α positive

fluctuations and α negative fluctuations. We use the Kolmogorov-Smirnov sta-

tistical test, as a method, to find the values of α that optimize the data collapse

of the histogram of the α fluctuations with the Bramwell-Holdsworth-Pinton

(BHP) (see [1]) probability density function. We also study, the probability

distributions FES,+ and FES,− of the normalized positive and negative spot
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daily prices or daily returns r(t) of distinct energy sources ES and the proba-

bility distributions FER,+ and FER,− of the normalized positive and negative

spot daily prices or daily returns r(t) of distinct exchange rates ER. Since the

BHP probability density function appears in several other dissimilar phenom-

ena, our results reveal an universal feature of the stock market exchange, see

[2, 3, 4].
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[3] Gonçalves, R., Ferreira, H., Pinto, A. A. and Stollenwerk, N. Universality in
nonlinear prediction of complex systems. Special issue in honor of Saber Elaydi.
Journal of Difference Equations and Applications 15, Issue 11 & 12, 1067–1076
(2009).
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One of the basic problem, the plane Couette flow, has been a source of many

research workers in dealing with the interplay of various fluid forces and their

interaction with the electromagnetic forces. The effect of electromagnetic fields

on (a) separation tendency in generalized Couette flow, and (b) heat transfer

in generalized Couette flow has been investigated. For the physical insight of

problem velocity distribution, temperature field is obtained and with the aid of

it the local Nusselt number is derived.
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The main goal in Planned Behavior or Reasoned Action theories, as developed

in the works of Ajzen and Baker, is to understand and forecast how individuals

turn intentions into behaviors. Almeida-Cruz-Ferreira-Pinto created a game

theoretical model for reasoned action, inspired in the works of J. Cownley and

M. Wooders. They studied how saturation, boredom and frustration can lead

to split or impasse strategies, and no saturation situations can lead to no-split

or heard strategies. Here, we introduce the Yes-No decision model that is a

simplified version of the Almeida-Cruz-Ferreira-Pinto decision model. In this

model, there are just two possible decisions D ∈ {Y es,No} that individuals
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can take. This model is in the core of psychological, educational and economical

models and exhibits the usefulness, and the high complexity, of characterizing

the split and no-split strategies that are Nash equilibria (see [1, 2]). Pinto’s

thresholds give a full characterization of no-split Nash equilibria and describe a

hysteretic-like behavior, a usual concept in dynamics [3], that it is responsible

by the occurrence of catastrophes consisting of abrupt changes of individuals

and collective behavior. The way these thresholds evolve and interact, called

bifurcations in dynamics, is completely characterized by Pinto’s human decision

bussola that allow us to understand how small changes in psychological or social

variables can create or annihilate individuals or collective behavior.

References

[1] A. A. Pinto, Game Theory and Duopoly Models. Interdisciplinary Applied Math-
ematics series, Springer-Verlag (2010).

[2] Dynamics, Games and Science. Eds: M. Peixoto, A. A. Pinto and D. A. Rand.
Proceedings in Mathematics series, Springer-Verlag (2010).

[3] A. A. Pinto, D. A. Rand and F. Ferreira, Fine Structures of Hyperbolic Diffeo-
morphisms. Springer-Verlag Monograph (2009).

❖ ❖ ❖

Efficient and Accurate Numerical Solution for Optimal
Control of Reaction-diffusion Systems in Cardiac
Electrophysiology

Chamakuri Nagaiah∗

Institute of Mathematics and Scientific Computing, University of Graz, Heinrichstr.

36, Graz, A-8010, Austria

E-mail: nagaiah.chamakuri@uni-graz.at

Karl Kunisch

Institute of Mathematics and Scientific Computing, University of Graz, Heinrichstr.

36, Graz, A-8010, Austria

E-mail: karl.kunisch@uni-graz.at

Gernot Plank

Institute of Biophysics, Medical University of Graz, Harrachgasse 21, A-8010,

Austria

E-mail: gernot.plank@meduni-graz.at

2000 Mathematics Subject Classification. 35K55, 35K57, 49M15, 65K10

The focus of this work is on the development and implementation of an ef-

ficient numerical technique to solve an optimal control problem related to a
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reaction-diffusions system arising in cardiac electrophysiology. The bidomain

model equations consist of a linear elliptic partial differential equation and

a non-linear parabolic partial differential equation of reaction-diffusion type,

where the reaction term is described by a set of ordinary differential equations.

The monodomain equations are popular since they approximate, under many

circumstances of practical interest, the bidomain equations quite well at a much

lower computational expense, owing to the fact that the elliptic equation can

be eliminated.

The optimal control problem is considered as a PDE constrained optimiza-

tion problem. Specifically, we present an optimal control formulation for the

monodomain equations with an extra-cellular current as the control variable

which must be determined in such a way that excitations of the transmem-

brane voltage are damped in an optimal manner. In this study, we have chosen

the finite element method for the spatial and higher order linearly implicit

Runge-Kutta time stepping methods for the temporal discretization to solve

the primal and dual problem. A nonlinear conjugate gradient method and a

Newton method are compared for solving the optimization problem. A more in

depth description will be found in [1, 2]. The adaptive grid refinement (AMR)

technique and receding horizon methods are applied to get more efficient and to

do longer time horizons respectively. Finally, the numerical results are discussed

for higher order methods which show a superlinear convergence.
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This work is undertaken to study the free convective flow past an impulsively

started infinite vertical plate with thermal stratification and radiation in pres-

ence of transverse magnetic field. Shapiro and Fedorovich [3] recently revisited

the classical theory of one dimensional flow by introducing the thermal strat-

ification parameter in the energy equation. Magyari et. al. [2] also considered

the same problem in porous medium. Deka and Neog [1] studied it with MHD

effect. Here we have investigated the combined effects of thermal stratification

and radiation effects on magnetohydrodynamics free convection flow past an

impulsively started infinite vertical plate. The fluid considered is a gray, ab-

sorbing emitting radiation but a non-scattering medium. Pressure work term

and the vertical temperature advection are considered in the thermodynamic

energy equation. The dimensionless governing equations are solved by Laplace

transform technique. Velocity profiles, temperature profiles, skin-friction and

the rate of heat transfer are presented graphically and discussed the effects of

different physical parameters. The results obtained show that the flow field is

influenced appreciably by the thermal stratification and radiation.
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During the 16th century, the concept of subtlety has been theorized and applied

by G. Cardano [3]. Relate to this subject he said: “Praevident spiritus quod

mihi imminent and emphasis on diagnostic analysis and the forecast” [1]. L. A.

Zadeh (1965) defined the concept of “Fuzzy Sets”, which differs from the crowd,

in respect with Cantor [5]. Recently, Petre Osmătescu [2], continued the spirit

of L. A. Zadeh, and defined the notion of subtle sets and insidious concept of
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subtle space, by using the idea of fiber and by the instrument called “operator

of act”.

Assumed to be defined by the observer O, there are a lot of elements (sys-

tems, subsystems, complex objects, etc.), {e1, e2, ..., en}, with the charactersitic

S. Let be SY O = {O}∪MO, whereMO is a lot of means of observation SPO =

{e1, e2, ..., en} ∪ S, SO is the supporting observed. The global socio-economic

S, could be estimated by O, who provides a series of criteria f01 , f
0
2 , ..., f

0
k ,

W 0
ik(k = 1, p) is the event, that consists in estimating the consequences a0ik of

the criterion fk; the observer O attaches the elements ei(i = 1, n). The charac-

teristic S0 is as: S0 = {f01 , f
0
2 , ..., f

0
k ; e1, e2, ..., en; a

0
ik, i = 1, n; k = 1, p}, where

p is the number of the influencing factors (criteria, tests), ei are the elements

under observation, a0ik = consequences of criterion k, estimated by O, for ele-

ments i. Both the subtle set and the “global characteristic”, will be denoted by

S0. The observer O can be outside the element ei or can be part of this. The

first case is when an “invisible” statistics is developed, the second one, when

an “apparent” statistics has resulted.

Following [4] and recent contributions, after defining the general concept

of subtle set (basic concept, the subtle sets without frequentist (probabilistic)

sequences with deterministic/fuzzy appearance), using the membership degree

concept and the square root approach, we obtained the following results: Fuzzy

appearance paradigm covers a higher specificity than the deterministic appear-

ance approach, and the deterministic appearance thinking is more specific re-

lated to the basic concept. According to the concrete necessities of the study,

other versions of a subtle set can be also defined, and used in various real-life

applications.
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In finance, many option pricing models generalizing the Black-Scholes model

do not have closed form, analytic solutions so that it is hard to compute the so-

lutions or at least it requires much of time to compute the solutions. Therefore,

asymptotic representation of options of various type has important practical im-

plications in finance. In this paper, asymptotic option pricing is developed to

connect the Black-Scholes model and the constant elasticity of variance model.

We obtain the relevant results for the European vanilla, barrier, and lookback

options and prove the accuracy of each asymptotic formula.
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The steady laminar flow of an electrically conducting fluid over a radial stretch-

ing porous sheet rotating with an angular velocity, is considered for investiga-

tion in the presence of a transverse magnetic field. The axi-symmetric flow of

conducting fluid is induced due to radial stretching of a sheet rotated with an

angular velocity which generates the boundary layer type of flow. Introduc-

ing the dimensionless quantities the governing partial differential equations are

transformed into non-linear ordinary differential equations. An expression for

pressure distribution is derived. A series solution is obtained analytically for

different existing parameters. The effects of magnetic fields are shown on the

radial, peripheral and axial velocity across the boundary layer.
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We outline a sheaf-theoretic formalism as a new framework to study the process

of interpretation of text written in some unspecified natural language, e.g. in

English.

A text is a finite sequence of its constituent sentences, and so it is formally

identified with a graph of function. A part of text is a subsequence whose graph

is a subset of the whole sequence graph. The meaning of a given part is ac-

cepted as the content grasped in a particular reading following the reader’s

attitudes formalized by the term sense. Whether a part of an admissible (writ-

ten for human understanding) text X is meaningful or not depends on some
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accepted criterion of meaningfulness. For such a criterion conveying an ideal-

ized reader’s linguistic competence, the set of meaningful parts O(X) is stable

under arbitrary union and finite intersection, and hence defines a topology we

call phonocentric. We argue that the connectedness and the T0-separability of

phonocentric topology are two linguistic universals.

For a given admissible text X and an adopted sense F , we collect into the set

F(U) all meanings of an open U ⊆ X read in the sense F . It defines a presheaf

F : O(X) → Sets, acting as U 7→ F(U) and U ⊆ V 7→ resV,U : F(V ) → F(U),

where restriction maps resV,U are defined following the precept of hermeneu-

tic circle “to understand a part in accordance with the understanding of the

whole”.

Two meanings s, t ∈ F(U) should be considered as identical globally on U iff

they are identical locally on each Uj of a covering U = ∪j∈JUj by opens already

read. The hermeneutic circle prescribes “to understand the whole by means of

understandings of its parts”. Whence the generalized Frege’s compositionality

principle:

The presheaf of fragmentary meanings naturally attached to an adopted sense

of reading of an admissible text endowed with phonocentric topology is really a

sheaf. We define so the Schleiermacher category Schl(X) of sheaves of partial

meanings.

The generalized Frege’s context principle describes the set Fx of con-

textual meanings of a phrase x ∈ X as the inductive limit Fx =

lim
−→

(F(U), resV,U )U,V ∈O(x). We define this way the category Context(X) of

étale bundles of contextual meanings.

The section-functor and the germ-functor establish a Frege Duality of cate-

gories Schl(X) � Context(X). So, the belief in one Frege’s principle implies

the other.

These topologies and sheaves study is formal syntax and semantics in lin-

guistics.

References

[1] O.B. Prosorov, Sheaf-theoretic formal semantics, TRAMES. Journal of the Hu-
manities and Social Sciences, 10(1), (2006), 57–80.

[2] O.B. Prosorov, Topologies et faisceaux en sémantique des textes. Pour une
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In the recent years, mathematical models have been assisting in various pub-

lic health planning and policies in India, especially for controlling spread of

AIDS, Swine flu, Avian Influenza. Most of these models involve representing

transmission dynamics of diseases spread through a set of non-linear differential

equations and estimating the parameters involved. These models, in principle,

can assist in deriving theoretical conditions under which disease spreads in a

given population will eventually attain stability, time taken to extinct the in-

fective population etc. In this talk, some of the recent works of the author

and also collaborative works with public health experts, medical profession-

als in planning AIDS control and other infectious diseases will be described

([1], [2], [3], [4]). Some of these models were practically adopted by the govern-

ment in their respective five year or annual policies. Mathematical population

biology has substantially contributed in the developing foundations for the in-

fectious disease epidemiology ([5], [6]). Models have been helping in deriving

reproductive rates ([7], [8]). We will also discuss theory of evaluation of our

models and their fitting with the observed data.
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The use of a homomorphism for defining new numerical methods applicable

to the solution of differential equations is proposed, with the aim of possi-

bly increasing the efficiency of computational modeling in presently available

microprocessors. This analysis has shown the advantage of using an iterated

exponential for building-up the appropriate mapping function applied in the

homomorphism. In this case, it is possible to get a significant conversion of the

numerical scale, applicable to very large or very small numbers. The solution of

this problem is obtained by defining a new format of number notation (the RRH

hyper-format) [1]. This new number notation uses the iterative exponential

operation, known as “tetration”. Unfortunately, tetration (super-power, power-

tower, tower) and its two inverse operations (super-root and super-logarithm)

cannot be directly employed for the creation of this new numbers format. Nev-

ertheless, introducing a new functional operator “*”, obtained as a homomor-

phism of addition, and using the tetration operation (nx, in Maurer’s notation)

and super-logarithm as mapping function (nk = a ⇒ n = slogka), this can

be solved, leading to: a
[k]
∗ b = (slogka+slogkb)k. Based on a homomorphism

of addition and using tetration, the authors have developed a new RRH of a

real number D ∈ R, by putting: D = m
[k]
∗
(
nk

)

. The use of a homomorphism,

tetration, super-logarithm and of this number hyper-format notation allows the

authors to define an innovative procedure to the solution of some problems.

For example, the well known functional equation f(f(x)) = ex, by the authors

exactly solved by f(x) = 1/2e
[e]
∗ x = (1/2+slogex)e = (0,5+sln x)e. A new number

notation format is therefore proposed, formally similar to the “floating point”
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format, but using tetration instead of exponentiation. A practical machine stor-

age format has been implemented. Prototypes of a hyper-calculator and of a

number notation hyper-converter have also been developed.
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The influence of suspended particles on the thermosolutal stability is examined

for viscoelastic polymeric solutions. These solutions are known Rivlin-Ericksen

fluids and their rheology is approximated by the Rivlin-Ericksen constitutive

relations, proposed by Rivlin and Ericksen [1955][2]. For stationary convection,

the suspended particles density parameter has a destabilizing effect and the

stable solute parameter has a stabilizing effect on the system. These effects

have also been shown graphically. Further, Rivlin-Ericksen fluid also behaves

like Newtonian fluid [1] and the convection in fluid in the presence of suspended

particles sets in earlier than no-particles case. The oscillatory modes are intro-

duced due to the presence of stable solute parameter, suspended particles and

viscoelasticity which were non-existent in their absence. The sufficient condition

for the non-existence of overstability is also obtained.
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Many real-world complex networks, in contrast to random graph models, con-

tain a significant amount of structural redundancy, in which multiple vertices

play identical topological roles. Such redundancy arises naturally from the sim-

ple growth processes which form and shape many real-world systems. Since

structurally redundant elements may be permuted without altering network

structure, redundancy may be formally investigated by examining network au-

tomorphism (symmetry) groups.

We give a complete description of spectral signatures of redundancy in undi-

rected networks and, in particular, we describe how a networks automorphism

group may be used to directly associate specific eigenvalues and eigenvectors

with specific network motifs. In addition, we compute the most common of

these motifs and demonstrate there presence in a variety of real-world empiri-

cal networks.
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We analyse the effect of the Regulatory T cells (Tregs) in the local control of

the immune responses by T cells in a mathematical model [1]. We obtain an

explicit formula for the level of antigenic stimulation of T cells as a function of

the concentration of T cells and the parameters of the model [2]. The relation

between the concentration of the T cells and the antigenic stimulation of T cells

is an hysteresis, that is unfold for some parameter values [3]. We also study an

asymmetry in the death rates. With this asymmetry we show that the antigenic

stimulation of the Tregs is able to control locally the population size of Tregs

[4]. The rate of increase of the antigenic stimulation determines if the outcome

is an immune response or if Tregs are able to maintain control. This behaviour

is explained by the presence of a transcritical bifurcation [4]. We study the

appearance of autoimmunity from cross-reactivity between a pathogen and a

self antigen [1] and from bystander proliferation [5]. This model has a good fit

to experimental data from infected mice.
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Animal diet is a key variable that must be controlled and managed to achieve

the objective of accurate results and meaningful conclusions. Optimization

models are the best way to achieve the objective of best nutrient diet. An

optimization model consists of an objective function defined on a set of vari-

ables, restricted by various kinds of constraints. The diet identified was rep-

resented by a set of nutrient weights, subsequently called nutrient variables,

each representing a decision variable for the models. In this paper, the nutrient

optimization is done by linear programming method and then it is compared to

proposed model by non-linear programming. Proposed model with Non-linear

programming measures its performance and gives a comparative result with

linear programming models. We are focusing here on application of Nonlinear

programming and statistical techniques in the field of animal nutrition. It also

points out that the application of Nonlinear Programming gives the benefit

of simultaneous inclusion of different kind of nutrient ingredient satisfying the

feeding standards.
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In the organizational portfolio of projects, there is a need to identify related

projects so as to effectively share system resources, save costs, increase benefits

and cut down development time by having proper resource utilization. The ma-

jor interdependencies are of cost, benefit and technical which makes a portfolio

risk and takes a considerable amount of judgment for project selection [1].There

are explicit trade-offs of stock out costs but service level is a measure of how ef-

fective a company is at supplying demanded services from its stock on hand by

preventing chances of loosing sales and backorders. There are several methods

of expressing quantitative measure of service level [2].

In case of service sensitive items, organizations must model optimal cost

control policies, with long and short costs as main criteria of control as they have

a direct bearing on service levels. I have related demand, profit, and customers

with inventory costs which has a direct bearing on service level and for this

I have modified the model given by Ernst and Powell [3]. Actually demand,

profit, revenue, and new potential customers are directly related to stocking

decisions w.r.t. long/short costs and also bringing in the difference in inventory

control costs and bring in the difference in profits. This shows that customers

can react independently to changes in stock out and overstock costs. The loss

of future profits in no doubt a direct consequence of stock out.I have inferred

two results, First One is for optimal service level I have to balance Cs, the

cost of probable units required (if short) during lead time AND Cl, the cost

of probable units not used (over stock) during lead time. It means P (Cs) =

(1−P )ClorP = 1−Cs/Cl+Cs = Cl/Cs+Cl = Risk. P is the probability of

needing an item and 1− P is probability of not needing that item. The second

one ls for portfolio risk that is calculated as square root of Dr, as given by

Dr = (sumXi)∗ (sumXj)∗ (Rij)∗ (ai∗aj) where Rij is common risk between

projects i and j, ai and aj are individual risks,and Xi and Xj are portions of

portfolio invested in projects. Here i and j varies from 1 to n.
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A mathematical model for the pulsatile flow of blood through an artery with

axially symmetric linear and multiple stenoses in the presence of Lorentz force is

considered. Blood in the artery is considered as two-fluid model comprising core

and peripheral region. The core region which is suspension of erythrocytes (a

non-Newtonian fluid) surrounded by plasma (a Newtonian fluid) in the periph-

eral region. The flow in the core region is modelled by the Casson fluid model.

In view of cardiac flow behavior the pulsatile pressure gradient is considered.

The governing equations of motion are solved numerically to compute velocity

and the volumetric flow in the presence of the axial symmetric linear/multiple

stenoses in the artery. The effects of location of the multiple stenoses, curvature

of the stenoses, haematocrit concentration and magnetic field on the pressure

drop, plug core radius, Wall Shear Stress (WSS), Oscillating Wall Shear Stress

(OWSS), Wall Shear Gradient and the resistance to flow are simulated and

analyzed graphically.
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Aim of the paper is to investigate unsteady heat transfer in a two-dimensional

steady laminar forced stagnation point flow of a viscous fluid through porous

medium [1] on a flat permeable plate when the sudden step change (linear/non-

linear) in the surface temperature of plate occurs. The fluid is sucked/injected

through the plate in the presence of viscous dissipation. The governing bound-

ary layer equations of continuity and momentum for flow are transformed into

ordinary differential equations using similarity transformation and solved us-

ing Runge-Kutta fourth order method along with shooting technique, while the

transformed energy equation is solved using finite difference scheme. The results
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obtained are compared with earlier results by Yih[2].The effect of permeability

and other parameters on the skin-friction coefficient, rate of heat transfer, ve-

locity and temperature distributions are discussed numerically and presented

through graphs. It is observed that fluid velocity increases with the increase

in permeability parameter, Prandtl number or suction/injection parameter at

low permeability parameter, but as permeability parameter increases the ef-

fect diminishes. Fluid temperature decreases with the increase in permeability

parameter, while it increases with increase in Eckert number. Skin- friction coef-

ficient increases with the increase in permeability parameter, suction/injection

parameter or Prandtl number.
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The main integral equation of three-dimensional contact interaction problems

is ϕ(p)+
∫∫

Ω
k(p, ψ(p, µ))/rdΩ, µ = cos n̂, x/r, [1]. It is the first kind equation in

case of smooth surface (ϕ(p) = 0). Taking into account roughness by ϕ(p) the
second kind equation is obtained, and without friction in symmetrical problems

its solution methods are known, for example, a solution for circle was found

in [1].

At present work the solution is developed for multi-connected domain Ω

with nonsymmetrical density caused by friction or special loading. When the

domain Ω is doubly-connected, the equations of its contours depend on small

parameter ε. The domain mapping onto annular ring S is obtained. Simple

fiber potential expansion by ε is found under conditions that the mapping is

one-to-one and continuously differentiable.
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Also potential expansion is developed when the density has no circular sym-

metry:

∫∫

S

σ(ρ) cos 2mθ

r
ds = 2π cos 2mθ0

∞
∑

n=0

[

(2n− 1)!!

(2n)!!

]2

Cm,nU2n(ρ),

U2n(ρ) =

∫ ρ0

a

σ(ρ)

(

ρ

ρ0

)2n+1

dρ+

∫ b

ρ0

σ(ρ)

(

ρ0
ρ

)2n

dρ.

The proof is made by mathematical induction. The expansion convergence is

shown and at the bounds also. The similar expansion was made at [2] when

the density is presented in view of series on cosines of odd arcs. Such expansion

makes easier to use computational methods in [3] for the contact problems with

central loading.

So, proposed numerically-analytical method is based on potential expansion,

regularization of the first kind Fredholm equation that leads to the second kind,

smoothing of the kernels as they have singularity. Then integral equations sys-

tem could be solved by numerical methods, here the successive approximations

is used.
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The object of the present paper is to investigate horizontally polarized shear

waves through the non homogeneous monoclinic layer with an irregularity. The

irregularity is taken in the form of parabola at the interface of heterogeneous

monoclinic layer and monoclinic semi-infinite medium. The dispersion equation

has been obtained in closed form. The effect of size of irregularity and non

homogeneity parameter on the dispersion curve is being depicted by means of

graphs. It is also observed that the dispersion equation reduces to the standard

SH wave equation in the isotropic case, when heterogeneity and irregularity are

absent.
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Aim of the paper is to investigate steady mixed convection stagnation point flow

of an incompressible viscous fluid through highly porous media and clear fluid
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along a permeable non-isothermal vertical plate in the presence of first order ho-

mogeneous chemical reaction, which consumes species, and heat source/sink [1].

The governing equations of continuity, momentum, energy and specie diffusion

in the boundary layer are transformed into coupled non-linear ordinary differen-

tial equations using similarity transformation and are solved using Runge-Kutta

fourth order method with shooting technique and results verified in special cases

with Yih [2]. It is seen that as the permeability parameter transits from zero to

non-zero value, the effect of suction/injection parameter, heat source/sink pa-

rameter, chemical reaction parameter, buoyancy, modified buoyancy parameter

and surface temperature parameter diminish also the skin-friction coefficient

and the fluid velocity increase with the increase of permeability parameter,

suction/injection, heat source/sink, buoyancy or modified buoyancy parame-

ter, while they decreases with increase in chemical reaction parameter, Prandtl

number or Schmidt number.

References

[1] A.J. Chamkha, MHD flow of a uniformly stretched vertical permeable surface in

the presence of heat generation/absorption and a chemical reaction, International
Communications in Heat and Mass Transfer 30(3) (2003), 413–422.

[2] K.A. Yih, Heat source/sink effect on MHD mixed convection in stagnation flow

on a vertical permeable plate in porous media, International Communications in
Heat and Mass Transfer 25(3) (1998), 427–442.

❖ ❖ ❖

Love Wave at a Layer Medium Bounded by Irregular
Boundary Surfaces

S. S. Singh

Department of Mathematics, Pachhunga University College, Mizoram University,

Aizawl - 796 001, Mizoram, INDIA.

E-mail: saratcha32@yahoo.co.uk

2000 Mathematics Subject Classification. 74J15

The problem of propagation of Love wave in a corrugated isotropic layer over a

homogeneous isotropic half-space has been investigated. The dispersion relation

of Love wave propagation in a corrugated layer medium bounded by irregular

boundaries is derived. In special cases, the dispersion relation is reduced for the

corrugated layers bounded by periodic boundary surfaces, d cos(px), d1 cos px
and d2 cos px. The dispersion relation is found to be a function of the ampli-

tudes of the corrugation, frequency and position parameters of the corrugated

boundary surfaces. The results of Ewing et al. [1] and results similar to Noyer

[2] are recovered from our analysis. The phase velocity and group velocity of

Love waves are computed numerically and the results are depicted graphically.
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The theory for complex flow ducts bound by developable surfaces, the generic

mathematical models, and the algorithms to unfold the same have been dis-

cussed at length in a previous paper [1]. The parametric Beta-Theta equation

derived for the generators is of a generic nature. Investigations carried out by

the authors has shown that numerous simplifications are possible which have

many advantages.

a) They can be explained geometrically,

b) The equations become very simple for specific cases which are very useful

in numerous industrial applications,

c) These equations are computationally very efficient,

d) Can serve as a very simple educational aid for teaching Differential Ge-

ometry and the physical significance of Gaussian Curvature zero surfaces

can be demonstrated.

Based on the generic mathematical model and equations, corollaries have

been derived which have immense practical value for the industry. Briefly, the

Corollaries can be stated as follows:

Corollary - 1: If the two end curves bounding the developable surface are

parallel, the tangent plane reduces to the case of parallel tangents.
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Corollary - 2: If the sections are parallel, the Beta-Theta relationship is

independent of the lateral shift between end curves.

Corollary - 3: If the two end curves are circular, or elliptic very simple

analytical equations are obtained which are computationally much more

efficient than the generic equation [1].

Corollary - 4: If the two end curves are planar with any angle Phi between

them, the Beta-Theta equation can be shown to be independent of the angle

Phi between them. The tangent plane can be geometrically interpreted as

tangents intersecting the common axis of intersection of the planes containing

the end curves.

The simplified Beta-Theta equations derived from the corollaries increase

computational efficiencies many-folds and also form a part of mathemati-

cal/graphics software packages developed by the authors.
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This paper is sharing of self innovated method ’GANEET DARSHAN’ of

teaching-learning process. With the great extent of our sense organs, abstract

subject like mathematics can be made enjoyble and meaningfull. It helps in

learning of mathematics as well as transforming oneself into a wonderful hu-

man being.

GANEET DARSHAN involves some activities which make students aware

of their qualities and to know their inner potentials. It sharpens their thoughts

and provide them a vision towards realities.
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The Lilavati is an ancient book on arithmetic written in the twelfth century in

which techniques for the solution of problems are simple and easy to use and,

moreover, there is a lot of interesting information in the problems presented

therein. It was used in India as a textbook for many centuries.

In this poster we are presenting the history of this book with the aim of

finding interesting ideas and problems we can use to motivate the transmission

of mathematical knowledge, since knowing it will help the teacher, and the

pupil, understand mathematics as an activity that is part of peoples’ culture.
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The Proposal: “Cave Man Math” is a practicum course focused on aspects

of the environment that have occupied human thought for more than 12,000
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years: survival and development. At the dawn of the Neolithic Age, a crea-

ture possessing great capabilities became dominant. They spoke a language,

planted food, kept animals, made tools, cooked meat and survived the winter.

As their culture grew, their first concerns were the same as ours: stay out of

danger, feed everyone, keep strong and learn how to make life more secure.

Studying the questions these early humans faced may now provide students

with a valid foundation for studying challenges of the future. The Logistics

and Content Life in all ages is characterized by questions. Questions arise from

challenges, opportunities, choices, threatening situations, disparate needs or

purposes, long-range planning, avoidance and problems of fairness or coopera-

tion. Early society, like traditional societies today, was not free of complications

or questions. Mathematics is our most valid way questions are answered and

problems are solved. Mathematic ideas generate our best analyses of complex

situations, process and relationship. Early humans organized aspects of their

society and worked cooperatively on large projects such as building shelter,

animal care, hunting and gardening. Students will analyze challenges faced by

Homo Sapiens, use mathematical ideas to model them and present their ideas

using modern technology. Models constructed by student groups take forms as

lists, drawings, charts, graphs, networks, fractals, sequences, designs, diagrams

and maps. Students use computers to translate data from traditional societies or

animal populations as difference equations, difference equations, logistic growth

rates, matrices and graphs. Local elk and sea lion populations provide oppor-

tunity for sample data collection of protected herds. Predator-prey studies use

data on coyote and mice populations in Yosemite National Park. The course is

designed for liberal arts students and carries no prerequisites. It is a practicum

and requires active student participation and cooperative learning to develop

the mathematic understanding every student needs, in any discipline. Students

study the direct connection and influence of mathematics to the environment

and to development of a successful society. The goal of the course is to intensify

the liberal arts program by developing students’ mathematic purview, through

non-proscribed active learning experiences. Beginning with these components

of life in the Neolithic Age underscores the two fundamental reasons for mathe-

matic study today: (1) Math is power. The natural world can be understood in

terms of the natural numbers. Modeling with mathematics is the single reliable

way we have to learn about the natural world and create new knowledge. (2)

Math is forever. The more we learn, the safer, larger and more secure our lives

become.

❖ ❖ ❖
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This work pretends to open a window (web page) to the entire mathematical

community, to define what are the main goals and strategies, which we as a

conscious community should establish, in order to assume (in the best possible

way and free from the prejudices of the present) the challenges and tasks that

mathematics undertakes today, as key-, transversal-, and guiding-science.

Shouldn’t we ask:

(1) Which actions/changes should finally be done in order to minimize/

stop the psychological blockades/social prejudices/scaring mythos that

blocks/weakens the normal development/expansion/communication of

mathematics worldwide? Why don’t we replace the mythos by the re-

cent scientific truths on psychology, epistemology, brain functioning, . . . ?

Which strategies could be useful to update the mathematical image in

the collective unconscious? What should the mathematical community

propose to the non-mathematical world?

(2) Which is the mathematics to be thought/taught in this decade/century/

millennium?

(3) Has mathematics a mystic dimension? Or is such a dimension exclusivity

of the natural sciences?

What else should we actually ask? The only desired consensus is that of an

urgent need of up-dating!
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Today, as technology has grabbed the whole arena of life including the human

mind; a need for reformation of our mind is felt by various organizations in the

world. These organisations are trying to make an awareness of human ability to

do arithmetical computations mentally and faster than electronic calculators.

A simple formula for the calendar containing a few steps is demonstrated

below. Using this formula any person with the knowledge of basic arithmetic

operations and a little logic can calculate the weekday of any given date within

a minute. One only requires to remember the twelve codes for the months of

the year.

Table 1. Month - Code Table

Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Code 7 10 10 6 8 4 6 9 5 7 10 5

Given a date, say 06 Apr 1921, steps are as follows:

Step 1: Add the date and the month-code that is 06+06 = 12.

Step 2: Take the last two digits of the given year, divide it by 4, ignore the

remainder and add the quotient with it, that is 21+5 = 26

Step 3: Add these two results, that is 12+26 = 38.

Step 4: Divide the year by 400 and check the remainder. If the remainder

is

between 0 and 99, subtract 0; if between 100 and 199 subtract 2;

if between 200 and 299 subtract 4; if between 300 and 399 subtract

6.

Here, we get remainder as 319. So we subtract 6 and get 38-6 = 32.

Step 5: As we have 7 days in a week, divide this result by 7 and take the

remainder. Dividing 32 by 7 we get the remainder as 4.
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Finally converting the remainder from table 2 we get the day as Wednesday.

Table 2. Conversion Table

Remainder 0 1 2 3 4 5 6

Days Sat Sun Mon Tue Wed Thu Fri

This formula is valid for all the years except for the first two months, that

is January and February, of the leap years. In this case we have to subtract 1

more from the final result to get the exact day.
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I will describe an undergraduate course in differential geometry that uses

piecewise-linear curves and surfaces.

The usual course in differential geometry uses smooth curves and surfaces.

The prerequisites for this course are linear algebra and several semesters of

calculus. Concepts may be subtle, computations may take work, and proofs

may be involved.

The analogous concepts in polyhedral differential geometry are easier to

work with. The prerequisites for this course are minimal. Plane curves are

polygons (possibly with self-intersections). The curvature at a vertex is simply

the exterior angle between the two line segments forming this vertex. It is easy

to prove, for instance, that a simple closed polygonal plane curve has total cur-

vature ±2π. For surfaces, the concepts involved in the Theorem Egregium and

the Gauss-Bonnet theorem are straightforward, and the theorems are relatively

easy to prove.

In fact many of the concepts in smooth differential geometry have polyhedral

analogues. I will describe some of these.

❖ ❖ ❖
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In this poster contribution we describe an ADAPTATION of the Ishikawa’s

Cause-Effect diagram [1] for mathematics problem solutions. Ishikawa’s dia-

gram has been used with big success to minimize student difficulties to solve

math problems [2]. The algorithm adaptation goes as the following steps:

1. Confront and understand the raised problem.

2. Teachers, acting as mediators prepare general questions: What type of

problem is this? Do we know a method to solve it? Which one (Previous

ideas)? Student answers are registered at the beginning of the diagram

scheme. This part is known as the diagram backbone.

3. At this step, teacher proposes a function, related with a formula to be

used. Usually, this relation implies secondary problems, which will require

another formula application. Those expressions are registered besides the

original formula (backbone formula), generating the adaptation branches

of the Ishikawa diagram: solving secondary problems helps to solve the

original problem.

4. Then, we substitute numerical values in the original formula, creating a

another backbone branch. New secondary problems arise associated with

this new branch.

5. Again, we substitute those partial solutions in the backbone; if it is nec-

essary, a new branch is generated, managing it as in the previous cases.

We continue with this procedure until we obtain the definitive solution,

placing it at the head part of the diagram.

6. Finally, we review and inspect the procedure to catch possible mistakes.

The diagram scheme helps greatly because it brings a visual overview of

the solution methodology chosen.
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Most of the current problems in the teaching of mathematics emerge from

pairs of contradictory dialectical categories. These effectively characterize the

problems. When one makes an epistemological study to determine the object of

investigation in which this problem is immersed it is possible to find essential

pairs of dialectical categories that are deeper with study and should provide us

with enough elements for the determination of appropriate didactic actions for

solving the researched problem.
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Mathematics is a practical subject and can be very easily related to the practi-

cal life-situations. Therefore this paper recommends that to popularize Mathe-

matics, traditional theoretical approach of teaching Mathematics should be re-

placed with a practical approach. The paper finds new methods that should be

included in Mathematics Education to popularize Mathematics. The suggested
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methods are: Classroom Games and Skits, Creating awareness of importance

and advantages of acquiring and applying the Knowledge and Skills of Math-

ematics, Creating awareness of Disadvantages of not acquiring and applying

the Knowledge and Skills of Mathematics, Activities to acquire and apply the

Knowledge and Skills of Mathematics, E-Group a common platform on In-

ternet to communicate and share with other students what they have learnt,

Daily Check-list to keep learning Mathematics and working everyday. By ap-

plying the suggested methods in Mathematics Education many benefits to the

students are anticipated, like: they will learn to acquire and apply the Knowl-

edge and Skills of Mathematics in a practical way, they will understand the

importance of acquiring the Knowledge and Skills of Mathematics and apply-

ing them in real lifesituations, they will be prepared to meet future challenges

in real lifesituations associated with use of Mathematics, they will understand

the importance of team-work and learning cooperatively, they will develop con-

fidence, and above all they will develop interest for learning Mathematics.
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Mathematics Training and Talent Search Programme (M.T. & T.S.) is a na-

tional level four week intensive summer training programme in mathematics
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which has been running since 1993 in India. This programme is funded by the

National Board for Higher Mathematics (NBHM) and is directed by S. Kumare-

san since its inception. It has been one of the most significant and successful

training programmes in India and has made an impressive impact in mathemat-

ical scene in India over the years, especially at undergraduate and post graduate

levels. About 170-180 talented students in three levels, selected from all over

the country, undergo this training programme every year at various centres in

India. The main aim of this programme is to expose bright young minds to

the excitement of doing mathematics, to promote independent mathematical

thinking, and to prepare them for higher aspects of mathematics.

In this paper, we discuss the main features of this programme, the teach-

ing methodology, its evolution and its impact in mathematical scene in India.

We also look at some of main hurdles and challenges faced, in spite of these

challenges, this programme continues to live up to its expectations.

References

[1] http://http://www.mtts.org.in/

❖ ❖ ❖

Intuition and Optimization Problems in the Teaching-learning
Processes in Basic Education

Uldarico Malaspina∗

Sciences Department, Pontifical Catholic University of Peru, Av. Universitaria

1801, Lima 32, Peru

E-mail: umalasp@pucp.edu.pe

Vicenç Font
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The teaching and learning of mathematics should take into account the pro-

cesses in the mathematical activity and their connection with intuition. Some of

the fundamental processes in the mathematical activity are: idealization, gen-

eralization and argumentation [1]; and intuition is strongly related to them, to

such an extent that it metaphorically can be represented as a vector whose com-

ponents are these three processes [2]. In daily life, situations in which -naturally

or intuitively - an optimal solution is searched are very frequent (when deciding

a way to go from one place to another, when choosing a seat at the theater,

when making a purchase, etc.) and such situations take place since childhood
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(when searching the most preferred toy or the best strategy to win a competi-

tion game, etc.) In our research we have found bases to state that just as there

is, for example, intuition of probability, it is plausible to state that there is in-

tuition for optimization [2]. However, optimization problems are very scarce in

the curriculum for elementary school and high school, in textbooks, and in the

math classes at these levels. As a way to strengthen the intuition for optimiza-

tion of children of the first grades of elementary school, we asked several groups

of them to solve some optimization problems. One of them was an adapted

linear programming problem with five integer variables, which was solved by

second-graders.

We make proposals for the development and training of math teachers,

for modifying some methodological approaches of topics like functions, least

common multiple and greatest common divisor, and for introducing new math

contents in elementary education, such as elements of game theory and of graph

theory.
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The state of mathematics in many African universities is characterized by high

student/staff ratios, a small postgraduate classes, limited support by govern-

ments for postgraduate training, among other factors [1] and [2]. A number

of initiatives have emerged to supplement efforts by established universities

to enhance learning and teaching of mathematics, for instance the African
Mathematics Millennium Science Initiative (AMMSI)[3]. The main ob-

jectives of AMMSI include strengthening mathematics teaching, research and

applications, and raising general awareness in the importance of mathematics

for science and modern nations.
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AMMSI has provided partial postgraduate scholarships to supplement the

funding obtained by postgraduate students from other sources. It has also

awarded fellowships to enable staff visit other African universities in order to

engage in research and postgraduate training. In collaboration with other or-

ganizations, AMMSI is involved in implementing a project called Mentoring
African Research in Mathematics (MARM) whose main objective is to

promote mentoring relationships between mathematicians in countries with a

strong mathematical infrastructure and their African colleagues. The sharpest

focus of MARM is on cultivating longer-term mentoring relations between in-

dividual mathematicians and students. To date nearly a dozen universities in

Africa are participating in the MARM project.

In this paper we present the activities of AMMSI and the impact they have

made on the development of mathematics in Africa.
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Reformed Ordinary Differential Equations (ODE) courses’ spokesmen under-

line that traditional teaching and learning of ODE do not provide knowledge

sufficient for solving realistic situations problems, as the reformed and com-

puter based courses do. On the other hand, some research indicate that not all

computer based courses lead to success in learning and understanding ODE

concepts. The aim of this paper is to investigate role of different teaching

and learning settings to students’ solutions of ODE in mathematical and non-

mathematical context. The teaching/learning settings vary from solely tradi-
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tional one to those implementing computers as well as some of reformed ap-

proaches in process of teaching and learning. Results indicate on proposals to

integrate traditional and reformed teaching and learning ODE settings.
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The historical background of using mathematics in economic analyses is di-

vided into three broad and somewhat overlapping periods. The first period

is calculus-based marginalist (1838–1947), the second period is set-theoretical,

linear models (1948–1961), and third is current period(1961-now).

Teaching calculus to non-mathematics students, like Economics, Manage-

ment, Accounting, etc., is different from teaching the students with major in

pure mathematics. In some universities, the lecturers teach pure theory and

don’t pay much attention to applications of the topics. Non-mathematics stu-

dents should learn mathematics as a tool that they need to use in their other

courses, and they are not interested in the theory.

Although it is an important tool for economics and management analysis,

most of the students are not very interested in mathematics. I show that giv-

ing applied examples in Economics and Management will create interests in

mathematics among students. Also, by the help of an opinion poll, we observed

that the students prefer the second method of teaching mathematics. Also we
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observed that students who have learned mathematics using the second method

are more successful.
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The inspiration for this investigation is the editorial in Notices of AMS (2002):

Although technical writing like teaching is a primary activity of many math-

ematicians, the principles of good mathematical exposition are rarely made

explicit [1]. The reasoned guidance to writers on reporting of research/authoring

a book in mathematical sciences presented in [2] runs into 270 principles – each

explicitly stated in a crisp sentence. The principles (not exhaustive) are sub-

stantiated with examples from the core topics like algebra, analysis, geometry

as well as simple applications to physical/social/natural sciences with special

reference to history and philosophies of mathematics right up to World Mathe-

matics Year 2000/World Physics Year 2005. The discovery of euphony, elegance,

and etiquettes as the three characteristics of professional writing in [2] leads

to the principles (15+40+215) supporting (i) Euphony – pleasantness to

the ears of the audience, facilitating, speakability of a methematical text in a

conference. (ii) Elegance – pleasantness to the eye and the mind of the reader,

facilitating printability and readability of the text. (iii) Etiquettes – pleasant-

ness to the professional colleagues through authenticity (observance of inter-

national conventions), facilitating the publishability of research and increasing

the Science Citation Index of the research paper.
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Providing uniform standard of education across different parts of a country is a

difficult task. One reason is non-availability of suitable teachers/instructors. To

bridge this gap to a certain extent we propose an internet based framework that

can be used by instructors to design the instructional content. The goals of the

framework are supplementing classroom learning and also provide independent

home based learning even at remote places where proper teaching infrastructure

(e.g. teaching personnel) is not in place.

We leverage the framework for mathematics education by using tools at

the content creation level. A storyboard tool is designed for this purpose. This

tool consists of various objects used in mathematics such as numbers, symbols,

two dimensional figures, three dimensional shapes and special characters. X3D

system is considered for this purpose. At the learner end a standard web browser

can be used to view the content.

The advantage is that many instructors can collaborate in creating the con-

tent enabling translation into different languages and exchange of instruction

ideas across different cultures.

The framework will be released under open source and can be bundled with

various Linux distributions for inexpensive creation and maintenance.

Technologies: Python, X3D, Java, Openlaszlo, Flash Player, Linux OS, Win-

dows OS, Blender 3D
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Understanding mathematics depends to a large extend on the way it is pre-

sented. An attempt to facilitate this for linear algebra has been undertaken

some time ago (cf. [2]) using a combination of media (web based training soft-

ware [5], CD-ROM [4] , textbook [3]). The content covers a complete basic

course for the first year, including additional material which can be used for

seminars with graduate students as well.

Technically, the online-script [5] uses the computer-algebra system Singu-

lar [1] to interpret a graph of logical dependence between basic parts, to add

exercises with random initial data and thus to write for each reader individual

textbooks on demand corresponding to his or her recent level of knowledge.

Meanwhile, this has been successfully tested over several years and has led

to a recent, refined version which is to be presented in this poster.
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This report is based on a classroom study of 20 4th grade pupils, acting in

groups of five, in a Norwegian primary school during a mathematics lesson.

The pupils are occupied with a very well defined practical task in that they are

going to prepare batter for making waffles, and in this process they are following

a given recipe stating the correct amount of milk, flour and other ingredients.

The amount of the various ingredients is given in different units according to

the nature of the ingredient, and the pupils have different artefacts (mental and

physical) available with which they can determine the correct amount. They

are free to apply whichever procedure they want. In this presentation I will

focus on the process of measuring 15 dl of milk, coming from boxes with 1/4

litre in each.

The analysis of the classroom discourse is based on activity theory (En-

geström, 1999; Leont’ev, 1979), and in this analysis an important issue is the

tension that can be observed between the motives and goals of the pupils and

those of the teacher, and how this tension affects the activity and the actions.

This could also be seen in light of what is often referred to as the problem of

transfer in mathematics education (Evans, 1999). The mathematical content of

the classroom episode is connected to measurement; conversion between units

and different ways of representing the numbers involved. The analysis of the

mathematical content is based on semiotic theory, inspired by Peirce (1998).
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Chaim Zelig S lonimski was born on March 31, 1810 in Bia lystok in Eastern

Poland and died on May 15, 1904 in Warsaw. S lonimski had wide interests. He

wrote several book in Hebrew for astronomy, physics, pure and applied math-

ematics. He is an author of many Hebrew scientific terms (also mathematical

terms).

S lonimski was a very talented inventor. Among other inventions two calcu-

lating machines are worth noting. The first machine, invented in 1840, served as

a tool for addition and subtraction. The second one carried out multiplication.

The multiplication machine was presented in September 1844 to Berlin

Academy of Sciences and in 1845 to Tsarist Academy of Sciences in St. Pe-

tersburg. The construction of this machine was based on a theorem in number

theory. This theorem, named after its inventor, enabled S lonimski to arrange

the table of numbers, which was the construction base for the calculating ma-

chine. Thanks to the theorem S lonimski’s machine had very simple construction

and was cheap. At that time there were only a few calculating machines which

were based on such good theoretical background. In 1845 S lonimski won a prize

of Tsarist Academy of Sciences. Unfortunately the machine did not survive to

our days.
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In his introduction to Théorie des fonctions analytiques (1797), Lagrange anal-

yses the metaphysics of infinitesimal calculus and gives John Landen the credit

for having worked out a purely analytical method, in which the finite differences

of the variables substitute the infinitesimal differences, although he adds: “on

doit convenir que cette manière de rendre le Calcul différentiel plus rigoureux

dans ses principes lui fait perdre ses principaux avantages, la simplicité de la

méthode et la facilité des opérations”.

Preceded in 1755 by Mathematical Locubrations, in which the method of

fluxions is systematically applied to the solution of algebraic equations and

the inverse calculus of fluents, in 1758 John Landen (1719–1790) published A

Discourse concerning the Residual Analysis, an announcement of the treatise

which was to appear in 1764: The Residual Analysis, a New Branch of the Al-

gebraic Art. In this Landen intended to release the method of fluxions from the

principles derived from the doctrine of motion, and from a basis of pure algebra

he would develop methods for immediate application to the main problems of

analysis: maxima and minima of functions, curvature, quadrature and recti-

fication of curves. Only finite increments are considered, which are equalized

to zero only after having simplified the factor that in their ratio makes them

null. An algebraic identity on the differences of rational powers plays a central

role [1].

While teaching at the military academy in Turin in the years 1756-59, La-

grange wrote a treatise of Cartesian geometry and differential calculus in which

he accomplished a compromise between the Newton method of the “prime and

ultimate ratios” and the Leibnitzian notation [2]. Differential calculus and in-

tegral calculus were preceded by algebraic calculus of finite differences from
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whose formulas those of differential calculus are obtained. The initial concor-

dance then becomes an explicit influence in the basic inspiration of the theory

of analytical functions, and even Lacroix was to give credit to Landen for having

solved the drawbacks of the theory of fluxions, using a “très-élégant” algebraic

identity as its basis [3].
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B. G. Pachpatte has contributed to various disciplines in mathematics such as:

(1) Analysis and Applications, (2) Analytic Inequalities, (3) Ordinary and Par-

tial Differential Equations, (4) Integral Equations and Inequalities, (5) Finite

Difference Equations and Inequalities and (6) Stochastic Analysis and Appli-

cations. He has published more than five hundred and fifty research papers in

reputed journals. He has written independently five research monographs con-

taining most of his research work. The aim of the present talk is to present his

brief biography and to provide an overview of some of his basic discoveries, over

the past four decades. In particular, we focus our attention to his fundamental

research findings related to some integral and finite difference inequalities and

applications; in the hope that it will further broaden developments and the

scope of future investigations.
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No sequence contains all real numbers. The popular proof of this theorem, based

on Cantor’s second diagonalization procedure, is not one of the two proofs pub-

lished by Cantor himself. Moreover, it depends on the base of the number sys-

tem used to represent the reals and does not work in binary at all. We propose

a most elementary proof which is independent of the number representation

employed.
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The three classical problems (the quadrature of the circle, the trisection of the

angle and the duplication of the cube) were formulated in ancient Greece, but it

took more than two millennia before they were proved impossible by ruler and
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compass (1882 and 1837). In the talk I shall argue that although the impos-

sibility result had been formulated already in late antiquity, it was considered

as a kind of meta-result about mathematical problem solving rather than as

a mathematical theorem amenable to proof. This only changed in the 17th

century when Descartes, Leibniz, Gregory and others formulated impossibility

proofs. I shall briefly sketch the main ideas of these “proofs” and point to their

main merits and shortcomings. Finally I shall recall the different fate of the

19th century proofs that we now consider the first correct ones.
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In the paper the very beginnings of set theory in Poland after the First World

War will be considered. The emphasis will be put on the program of developing

set theory as well as on the philosophical background of it.

At the end of the First World War after re-establishing of the university in

Warsaw Wac law Sierpiński, Zygmunt Janiszewski and Stanis law Mazurkiewicz

became professors of mathematics there. They had similar scientific interests.

In 1917 Janiszewski wrote a paper in which he sketched the program of develop-

ing mathematics in Poland. He proposed to concentrate on one discipline, more

exactly on set theory and related domains and to establish a new journal Funda-

menta Mathematicae devoted (exclusively) to them as well as to topology and

mathematical logic. The first issue appeared in 1920. Janiszewski and others

stressed the interconnections between set theory and other domains of mathe-

matics. They understood it as a foundation of mathematics in a methodological

(rather than philosophical) sense. This implied the stress put on applications of

set theory. One should underline that in the Warsaw school connections of set

theory with mathematical logic, the foundations of mathematics and the phi-

losophy of mathematics were stressed. Two philosophers working in the field of
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logic, namely Jan  Lukasiewicz and Stanis law Leśniewski became members of the

editorial board of Fundamenta. This contributed to the broadening of the per-

spective in set-theoretical research. The collaboration of mathematicians with

logicians and philosophers in the Warsaw school was a specific phenomenon dis-

tinguishing it from other schools. Another typical feature was the fact that the

school was an adherent of no definite tendency in the philosophy of mathemat-

ics – though one had good knowledge of actual trends and theories. Important

was only the correctness and fruitfulness of the applied methods, important

were the results and not the particular methods used. It found its expression

first of all in the case of investigations on the axiom of choice.
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Lorenzo Mascheroni (1750-1800) is one of the leading Italian mathematicians of

the eighteenth century (Geometria del Compasso, 1797). He was also an impor-

tant politician of the Cisalpine Republic [1]. Mascheroni’s deservedly famous

works on Mathematical Analysis and Numerical Analysis are the Adnotationes

ad calculum integralem Euleri published in two parts in 1790 and in 1792 [2].

On 8th January 1790 Mascheroni was very pleased to announce the first part

of the work to his friend and correspondent Girolamo Fogaccia [3].

When studying the harmonic sequences, Euler dwelt upon that of the recip-

rocals of natural numbers, and he found that the limit of its difference from the

natural logarithm was a constant, of which he calculated the first six decimal

places. Shortly after this, he introduced greater precision to the calculation of

the constant:

0, 5772.56649 01532 9

Euler took up the question once more in his treatise on differential calculus,

using, for the calculation of the constant, Bernoulli’ numbers. He then came

back to the constant in the first volume of the Institutiones calculi integralis.
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In a final memoir on the subject published posthumously, Euler provided two

other ways to calculate the constant without, however, improving his results [4].

Mascheroni succeeded in rectifying Euler’s value, reaching the calculation

of thirty-two decimal places of which only the first nineteen turned out to be

exact:

0, 577215 664901 532860 618112 090082 39

Considering the fact that in the nineteenth century it was shown that the

transcendence of e and of π, the irrationality and transcendence of the Euler-

Mascheroni constant, usually denoted by γ, remains the most important open

problem [5].
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Much has been written about Bhaskaracharya’s (1150 A.D.) ‘Lilavati’. However

its relavance to the present day mathematics is not mentioned.

The purpose of this paper is to highlight its relevance in the present context.

The general form of Binomial theorem was not known to Bhaskara. But then

the way the theorem was used to extract the square and cube roots of a number

is ingenious, more so because it is extended to find root of any order.

The similarity and difference between Bhaskara’s semi algebraic, and Eu-

clid’s purely geometric, demonstrations of Pythagoras theorem is highlighted.

The use of algebra in geometry and vice versa in Indian method is amazing.
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Geometrisation of square of the sum by Chinese and that of the square of the

difference by Bhaskaracharya demonstrates Pythagoras theorem.

The construction of a rectangle equal in area to a cyclic quadrilateral to

derive the formula for its area is new, though the derivation is not flawless. The

construction of 3 cyclic quadrilaterals(in a circle), given 4 sides, using 2 pairs

of similar right angled triangles, is a clever device. The idea of radian measure

was used in Astronomical works. The method of doubling the sides of a regular

polygon leads to an infinite sequence with limit equal to π. An ingenious guess

gives a close approximation for a chord in terms of the arc and vice versa.

The primitive concepts of limits are expressed by an algorithm to deal with

expressions containing zero multiples and zero devisors. This algorithm, ac-

cording to Bhaskara, is used in planetary calculations. The use is illustrated by

finding derivatives of sin(x) and x3 + 2 ∗ x − 5. This is compared with New-

ton’s method. The small difference formula given sin(x) = cos(x)dx follows as

a corollary from the derivative of sin(x).
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Historically, philosophical knowledge has played an important role in math-

ematical development. Pythagoras, and later Socrates and his followers have

been attributed to have given integers their existence at the mental level, beyond

the reach of the senses [1]. Later, in the 16th and 17th centuries, the tradition

of philosophy along with mathematical and physical knowledge was continued.
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Works of Descartes [2] and Leibniz [3] are in that spirit. Subsequently, the

development of mathematics has been pursued independent of philosophy.

Shorn of philosophy, the validity of mathematical knowledge became an

important issue in the 20th century. For that purpose, a formal mathematical

system was developed by Hilbert and his colleagues. However, Gdel presented

his well known result of incompleteness of such a system [4]. It implies that not

all the true propositions can be proven to be true by the formal approach only.

In other words, mathematical truth cannot be contained in a formal system.

The purpose of this presentation is to examine the implications of the phi-

losophy of North Indian Saints [5-6] to mathematical thought. In addition, an

attempt is made to compare the use of basic concepts, axioms, and logic in the

formal structure of mathematics, with those implicit in the structure of the sys-

tem practiced by the North Indian Saints to achieve their absolute knowledge.
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Āryabha .ta (b. 476 C.E.), V arāhamihira (b. 485 C.E.), Brahmagupta (b. 598

C.E.), Bhāskara II (b. 1114 C.E.) and other Indian astronomers have discussed

methods of interpolation for evaluating values of trigonometric functions. How-

ever, Brahmagupta is credited for using second-difference interpolation formula

to evaluate various values of Hindu trigonometric functions. It is not known

whether he was the pioneer of this kind of formula or he simply used it. The
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main purpose of this paper is to present a brief account of the work done on

interpolation by Brahmagupta in his astronomical work Khaṅ .dakhādyaka.

Further, we give a remark on its probable impact on other cultural areas.
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It has often been argued that interest in study of geometry and more advanced

mathematical sciences languished in the Arabic/Islamic community especially

because the sciences were said to have been excluded from the madrasa educa-

tional system. This interpretation is now known to be too limited, if not actu-

ally incorrect. Science and mathematics were regularly taught in the madrasas

over the centuries [2]. If anything, the “decline” of the sciences may have come

not because they were excluded from but because they were so well integrated

into the educational system [1]. This integration enforced specific styles and

formats of presentation on the sciences which are often at odds with modern

sensibilities.
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When print technology became “naturalized” into nineteenth century Ot-

toman and Islamic societies, mathematics textbooks were produced along with

textbooks in other subjects. Initially, these early printed textbooks perpetu-

ated many of the basic features of the manuscript tradition. The same trea-

tises continued to be used for studying mathematics. And even the traditional

manuscript format and appearance of the text continued to be followed [3].

This paper will very briefly describe a number of nineteenth century printed

editions of traditional mathematical (mainly geometrical) textbooks from Mo-

rocco to India, looking both at content and format of presentation. The focus

then narrows to an Indian printing of an Arabic geometry textbook (Calcutta,

1826), which broke with the more traditional printed Arabic geometry text-

books in several ways. These changes in presentation style imply a new peda-

gogical approach in the Arabic Euclidean tradition. The paper concludes with

a brief attempt to situate this Calcutta edition of Euclid within the intellectual

and mathematical landscapes of the time.
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When people mention the mathematical achievements of Euclid, his geometrical

achievements always spring to mind. But, his Number-Theoretical achievements

(See Books 7, 8 and 9 in his magnum opus Elements [1]) are rarely spoken. The

object of this paper is to affirm the number-theoretical role of Euclid and the

historical significance of Euclid’s algorithm.
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It is known that almost all elementary number-theoretical texts begin with

Division algorithm. However, Euclid did not do like this. He began his number-

theoretical work by introducing his algorithm. We were quite surprised when

we began to read the Elements for the first time. Nevertheless, one can prove

that Euclid’s algorithm is essentially equivalent with the Bezout’s equation and

Division algorithm. Therefore, Euclid had preliminarily established Theory of

Divisibility and the greatest common divisor. This is the foundation of Num-

ber Theory. After more than 2000 years, by creatively introducing the notion

of congruence, Gauss published his Disquisitiones Arithmeticae in 1801 and

developed Number Theory as a systematic science. Note also that Euclid’s al-

gorithm implies Euclid’s first theorem (which is the heart of ‘the uniqueness

part’ of the fundamental theorem of arithmetic) and Euclid’s second theorem

(which states that there are infinitely many primes and represents undoubtedly

a major advance in Ancient Greek). Thus, in the nature of things, Euclid’s

algorithm is the most important number-theoretical work of Euclid. For this

reason, we further summarize briefly the influence of Euclid’s algorithm. Ac-

cording to Knuth [3], ‘we might call Euclid’s method the granddaddy of all

algorithms...’. It leads to the conclusion that Euclid’s algorithm is the greatest

number-theoretical achievement of the Euclidean age.

Remark: For the preprint of paper, it is at http://arxiv.org/abs/0902.2465.

Recently, by studying Euclid’s algorithm and related problems, we obtained

some interesting results (http://eprint.iacr.org/2009/151;

http://arxiv.org/abs/0912.0147; http://arxiv.org/abs/0905.1655;

http://arxiv.org/abs/0911.3679). Particularly, we found a special sequence

(http://arxiv.org/abs/0903.1019) which leads to a new weakened form of

Goldbach’s Conjecture [2], and a refinement of the function g(x) on Grimm’s

Conjecture (http://arxiv.org/abs/0811.0966), and so on.
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KNOPPIX/Math is a project to archive free mathematical software and doc-

uments and offer them on KNOPPIX, a bootable CD/DVD that contains a

collection of GNU/Linux software. The KNOPPIX project was started in Ger-

many by Klaus Knopper. KNOPPIX can be used for Linux demos, educational

presentations and system recovery. KNOPPIX/Math provides a desktop for

mathematics that can be set up easily and quickly. This project began in Febru-

ary 2003. The newest product is “KNOPPIX/Math/2010 The next generation”,

which contains many open source mathematical software: CoCoA, GeoGebra,

Macaulay2, Maxima, Reduce, Risa/Asir, Sage, and Singular, . . . Once you run

the live system, you can enjoy a wonderful world of mathematical software with-

out needing to make any installations yourself. KNOPPIX/Math also includes

many documents, sample files and flash movies. As an experimental attempt,

KNOPPIX/Math has full-text search capability for mathematical documents.
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MRS is an open C++ class library for statistical set processing. The goal of

MRS is to improve the accuracy and reliability of numerical results in computa-

tional statistical problems and provide a cohesive object-oriented framework for

set-valued and set-oriented computational statistics. This is generally achieved

by extending arithmetic beyond the built-in data types and applying fixed-

point theorems. MRS has a suite of methods at the interface of randomized

algorithms, interval analysis, validated numerics and extended arithmetics over

tree-based multi-dimensional metric data structures with nice algebraic prop-

erties.

Computational statistical applications with the MRS library include exact

samples from highly multi-modal target densities in a trans-dimensional set-

ting, importance sampler from pseudo and quasi random numbers by adaptive

bisections in the domain, and L1 consistent high-dimensional density estimators

for massive data problems on the basis of data-dependent randomized priority

queue and posterior mean of Markov chain over dense histogram spaces.

This C++ class library is the mathematical software behind recent appli-

cations [1, 2, 3] and the source code is publicly available at

http://www.math.canterbury.ac.nz/ r.sainudiin/codes/mrs/.
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Sage: Creating a Viable Open Source Alternative to Magma,
Maple, Mathematica, and Matlab

William Stein

Department of Mathematics, University of Washington, Seattle, WA, USA

E-mail: wstein@gmail.com

2000 Mathematics Subject Classification. 20K

I started the Sage mathematical software project (http://sagemath.org) in

2005 to provide a powerful free open source alternative to Magma, Maple,

Mathematica, and Matlab. In 2007, Sage was awarded first prize for scientific

software in the Trophees du Libre competition. Sage has since grown dramati-

cally, with well over 200 developers around the world.

Sage can be used to study a wide range of subject areas: algebra, calculus, el-

ementary and advanced number theory, cryptography, numerical computation,

commutative algebra, group theory, combinatorics, graph theory, exact linear

algebra and much more. Sage combines nearly 100 open source software pack-

ages such as Python, Singular, Pari, GAP, etc., and seamlessly integrates their

functionality into a common experience. Sage is well suited for both education

and research. The interface is a notebook in a web browser or the command

line. Using the notebook, Sage connects either locally to your own Sage instal-

lation or to a Sage server on the network. Inside the Sage notebook you can

create embedded graphics, typeset mathematical expressions, add and delete

input, and share your work across the network.

This talk will explain the history and motivation behind Sage and demon-

stration how Sage is useful to working mathematicians.
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The software “Graphsoft” is developed to help the researchers in graph theory.

With the help of this software they can input graphs for their programs using

the mouse. There is no need to input the graph by its adjacency matrix or by

its incidence matrix. With the help of this software they can check the results,

before trying to prove them, by verifying the results by drawing as many graphs

as needed with the desired properties.
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With the help of this software one can draw a graph, using the mouse, and

save the graph. One can retrieve any already saved graph and edit the graph

by inserting new vertices or edges, or deleting any of the existing vertices or

the edges. One can assign labels and colors to the vertices and the edges. The

software also gives the LATEX file for the graphs drawn which can be used as

input files in any LATEX project.

The software is developed in C++. The program (the source code) is also

given with the software. So one can easily modify the program so as to design a

software for one’s own use. Some examples of such modifications, with proper

instructions, are also available with the software. The size of the software is

very small. No supporting files are needed and there is no restriction on the

configuration of the computer to use the software.

As the size of the software is very small and as no supporting files are

needed, the software is easily portable. Among all the available such softwares,

this is the simplest, the smallest, easily modifiable, and user friendly one which

is available with the source code.
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For n ≥ k ≥ 2, and for k = 3, 4, n ≥ 2, we find a necessary and sufficient

condition for every n×n matrix over a dedekind domain D to be a sum of k-th
powers of matrices over D. We also deduce the discriminant criterion (see [2]

and [1]) for every matrix over the ring of integers of a number field to be a sum

of k-th powers in these cases. This work is motivated by [4] and [3].
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Let (S,+, ·) be a semiring and (S,+, ·,≤) be a totally ordered semiring (t.o.s.r.).

In this paper we study the properties of zero-square semirings. Also properties

of semirings in which ab = a+b+ab for all a, b in S are studied . It is established

that in a semiring with IMP (Integral Multiple Property), if (S,+) is a band

then the following are true.

1. (S, ·) is a band.

2. If (S,+, ·) is a Positive Rational Domain (PRD) then S reduced to sin-

gleton set.

3. If (S, ·) is quasi commutative then (S, ·) is commutative.
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We prove constructively that for any finite-dimensional ring R and n ≥ dimR+

2, the group En(R[X]) of elementary matrices of size n×n with entries in R[X]
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acts transitively on the set Umn(R[X]) of unimodular vectors of length n with

entries in R[X]. In particular, we obtain, without any Noetherian hypothesis,

that for any finite-dimensional ring R, all finitely generated stably free modules

over R[X] of rank > dimR are free.
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Let S be a general set of s points in P4, and R the homogeneous coordinate

ring of P4. Then the ideal of S, IS has a minimal free resolution of the form:

0 −−−−→ F3 −−−−→ F2 −−−−→ F1 −−−−→ F0 −−−−→ IS −−−−→ 0

where Fp = R(−d− p)ap−1

⊕

R(−d− p− 1)bp ,

d is the smallest integer such that s ≤ h0(P4,OP4(d)),

ap = h0(TS ⊗ Ω
p+1

P4 (d+ p+ 1)), bp = h1(TS ⊗ Ω
p+1

P4 (d+ p+ 1)) and

(
d+3

4

)

< s ≤
(
d+4

4

)

, with 0 ≤ p ≤ 3, ap−1 =
(
d+4

4

)

− s, when p = 0.

C Walter in [2] proved for what set of s points in P4 does apbp 6= 0 for some p.
In this paper I prove that either a0 = 0 or b0 = 0 by proving maximal rank for

the map: H0
(

P4,ΩP4(d + 1)
)

−→
⊕s

i=1
ΩP4(d + 1)

|Si
by use of the methods

of Horace, used for P3 in [1] to prove bijectivity for a specific number of fibres

and then maximal rank for a general set.

We wish to prove that µ is of maximal rank and as a consequence we have

the following theorem.
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Theorem 1. Suppose we have a general set S, of s points in P4, s ≥ 5 such that

the map µ : H0
(

P4,ΩP4(d+1)
)

−→
⊕s

i=1
ΩP3(d+1)

|Si
is of maximal rank then

the homogeneous ideal IS ⊂ k[X0, X1, X2, X3, X4] has
(

4s− 1

6
d(d+2)(d+3)(d+

4)
)

number of minimal generators of degree d+1 and
(
1

6
d(d+2)(d+3)(d+4)−4s

)

number of minimal relations of degree d.
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The Law of Vector Fields is a relative Poincaré-Hopf theorem first proved by

Morse [2]. It expresses the Euler characteristic of a manifold X with boundary

M in terms of the total indices of a generic vector field V and the inner part

∂−V of its tangential projection on the boundary as

IndV + Ind ∂−V = χ(X). (1)

Endowing X with a Riemannian metric, we give in [3] two differential-

geometric proofs of this topological theorem. In his famous proof [1] of the

Gauss-Bonnet theorem, Chern constructed a differential form Φ on the tangent

sphere bundle STX to transgress the Euler curvature form Ω of X, i.e., dΦ =

−Ω. In terms of the secondary Chern-Euler form Φ, the Law of Vector Fields

(1) is equivalent to
∫

~n(M)

Φ−

∫

αV (M)

Φ = Ind ∂−V, (2)

where ~n is the outward unit normal of M and αV is the normalized V .

A first proof of (2) is achieved by constructing a chain on STX|M away

from the singularities of ∂−V connecting αV (M) to ~n(M) and applying Stokes’

theorem. A second proof employs a detailed study of Φ on STX|M , which may

be of independent interest. More precisely, we explicitly construct a differential

form Γ that, away from the outward and inward unit normals, transgresses Φ

up to a pullback form. That is, on STX|M\(~n(M) ∪ (−~n)(M)), we have

Φ− π∗~n∗Φ = dΓ,
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where π : STX|M → M is the natural projection. Then an application of

Stokes’ theorem again proves (2).
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The Gromov-Hausdorff distance dGH was introduced by M. Gromov [2]. It turns

the set of all isometry classes of compact metric spaces into a metric space. If

X and Y are two compact metric spaces, then dGH(X,Y ) is defined to be the

infimum of all Hausdorff distances dH(i(X), j(Y )) for all metric spaces M and

all isometric embeddings i : X → M and j : Y → M . Clearly, the Gromov-

Hausdorff distance between isometric spaces is zero; it is a metric on the set

GH of isometry classes of compact metric spaces. The metric space (GH, dGH)

is called the Gromov-Hausdorff hyperspace. It is a challenging open problem to

understand the topological structure of this metric space. The talk contributes

towards this problem.

For a metric space X, we denote by GH(X) the subspace of GH consisting

of the classes [E] whose representative E is a subset of X.

In this paper we prove that the Gromov-Hausdorff hyperspace GH([0, 1]) of
the unit interval is homeomorphic to the Hilbert cube, thus giving a positive

answer to Question 1307 from the book of open problems [4].

As usual, by the Hilbert cube we mean the product Q =
∏

∞

k=1
{Ik | Ik =

[0, 1]} endowed with the product topology.

Our proof is based on some facts and methods of the theory of Hilbert cube

manifolds (see [3] and [5]) and the equivariant theory of retracts [1].
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After the introduction of Bitopological Spaces by Kelly [3] in 1963, many re-

searchers investigated compactness and other weaker covering properties in

Bitopological spaces using different types of open covers. Various versions of

paracompactness were introduced by many authors (See [2, 4]). In [1], Bose

et.al. introduced paracompactness in terms of locally finite families and pair-

wise parallel open covers and obtained a characterization for that. In this paper

we define point finite families and define pairwise metacompactness in terms

of parallel open refinement. A characterization of metacompactness in bitopo-

logical spaces together with many related results are obtained. Further, some

other relatioships of the introduced concept with other covering properties and

its behaviour under various types of mappings are also investigated.
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Leibniz algebras appear as a generalization of Lie algebra and are one of the new

algebras introduced by Loday in connection with the study of the periodicity

phenomena in algebraicK-Theory [4]. The naturally graded algebras constitute,

in certain way, the basic structure of the algebra which we are considering and so

they are interesting in this line of investigation. This family of Leibniz algebras

plays a fundamental role in the cohomological study of the nilpotent Leibniz

algebras [5]. The natural gradation of nilpotent Leibniz algebras, the subspaces

of gradation, and the existence of an appropriate homogeneous basis (needed to

obtain the classification) are derived from the central descending sequences ([3]).

Recently, several papers are focused to the study of some interesting families

of Leibniz algebras, such as p-filiform and quasi-filiform Leibniz algebras (see

[1, 2]). These algebras have their characteristic sequences equal to (n−p, 1, 1, , 1)
and (n− 2, 2) with dim(L) = n.

In this work we study a subclass of naturally graded Leibniz algebras with

nilindex n−3. In this case, for the characteristic sequence we have the following
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three possibilities: (n− 3, 1, 1, 1), (n− 3, 2, 1) and (n− 3, 3). We will show the

classification of those with characteristic sequence is equal to (n − 3, 3). To
highlight that along the work we have used the software Mathematica.
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The notion of length of a Lie algebra was introduced by Gomez, Jimenez-

Merchan and Reyes in [3]. In this work they distinguished a very interesting

family: algebras admitting a graduation with the greatest possible number of

non-zero subspaces, the so-called algebras of maximum length. Leibniz algebras

appear as a natural generalization of Lie algebras (Loday,[4]) and the concept

of length can be defined in a similar way in this setting. It is therefore expected

that Leibniz algebras of maximum length will play a similar role to the Lie case.

The cohomological properties of Leibniz algebras have been widely studied (see

for example [2] and [5]). A remarkable fact of the algebras of maximum length

is the relative simplicity of the study of these properties [1]. The study of the
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classification of non associative nilpotent Lie algebras is too complex. In fact, it

appeared two centuries ago and it still remains unsolved. As to Leibniz algebras

the problem is analogous thus we will restrict our attention to two important

families of Leibniz algebras: p-filiform and quasi-filiform.

In this work we will study the length of the quasi-filiform Leibniz algebras.

The classification of null-filiform, filiform and 2-filiform case are already done.

We will show the classification of the algebras with characteristic sequence

(n − 2, 2) in order to completely classify the Leibniz algebras of maximum

length with nilindex n − p, with 0 ≤ p ≤ 2. For this study we will extend the

naturally graded quasi-filiform Leibniz algebras, which are well-known in this

line of investigation.
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In the last years new families of orthogonal matrix polynomials on the real line

have been found along with their orthogonality measure. Typically they are

joint eigenfunctions of some fixed differential operator with matrix coefficients.

We give an overview of the techniques that have led to these examples in the last

years, focusing on new phenomena which are absent in the scalar theory. We

also show applications that these families have in quantum mechanics, quasi-

birth-and-death processes or time-and-band limiting problems.
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The object of the talk is to present a transparent and complete proof of Koebe’s

General Uniformisation Theorem which asserts that “Every planar Riemann

surface is biholomorphic to a domain in Riemann sphere”. We also indicate
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how Koebe’s Theorem can be used to construct compact Riemann surfaces of

every genus (explicitly in case of g = 1) in a very concrete way.

We show here how, for a relatively compact domain with good boundary,

the planarity condition just means that the boundary curves generate the ho-

mology of the domain. In the sequel we use this result along with the beautiful

construction of Weyl [3] to prove that the boundary curves form an integral

basis for the homology of the domain.

Finally we show that the method of proof used in [1] (to prove that plane

domains of finite connectivity with analytic boundary are biholomorphic to

circular-slit annuli) can be carried over for domains with analytic boundary

on planar Riemann surface. However, our proof for the injectivity of the con-

structed mapping function seems to be new, and we feel it is more satisfactory

than the one given in [1].
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Let X be a real Banach space, D an open subset of X with 0 ∈ D and T a

mapping defined on the closure D of D and taking values in X. It is well known

that if D is bounded and T is a condensing mapping, then the Leray-Schauder

boundary condition is sufficient to guarantee the existence of a fixed point of

T . Indeed this result is due to Petryshyn [5] who observed that it follows eas-

ily from Nussbaum’s degree theory [4]. In a recent paper [3] A.J. Melado and

C.H. Morales have introduced and studied a new condition called the Interior

Condition, which resembles the Leray-Schauder condition. However unlike the

Leray-Schauder condition which is a boundary condition, the interior condition
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holds for the interior points, which lie near the boundary of the domain D of

the map T . This interior condition is formulated as follows.

A mapping T : D → X satisfies the Interior Condition if there exists

δ > 0 such that T (x) 6= λx for x ∈ D∗, λ > 1 and T (x) /∈ D, where

D∗ = {x ∈ D : dist(x, ∂D) < δ}.

The fixed point theorem similar to the one obtained by Petryshyn does not

necessarily hold true under this new interior condition. Therefore a more re-

stricted class of domains called strictly star-shaped sets is introduced, in order

to obtain fixed points.

In section two of this paper we extend the main result obtained by Melado

and Morales to 1-set contraction maps and use our result to deduce new fixed

point theorems for various other classes of mappings. In section three we have

fixed point results for nonexpansive, LANE, and uniformly strictly contractive

maps with compact or completely continuous perturbations under the interior

condition.
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A problem an approximation of classes of function determined only on the

boundary of domain takes important place simultaneously with studying ap-

proximation by means of polynomials analytic in the domain G and with some

conditions on the boundary Γ of functions.

Obviously, generally speaking, it is impossible to approximate such classes

of function by means of polynomials. Therefore, in this case, usually different

forms of rational functions or so called generalized polynomials are used as

approximation aggregate. My followers D. Israfilov, I. Botchaev and me studied

problems on approximation of function determined only on the boundary of

domain by means of rational functions of the from Rn(z) = Pn(z,
1

z
).

In the given report, we consider a rational function of the form Rn(z) =

Pn(z, z) as an approximate aggregate. For this case, analogies of Jackson’s direct

theorems on closed curves of complex plane are proved.
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We present an alternative proof of a result of M. Fujii, D. Jung, S.H. Lee, M.Y.

Lee, and R. Nakamoto. The authors obtained a result that “if T(p, p) for p>0,

then T is p-paranormal”, treating x as unit vector. T. Ando has proved that an

operator T is paranormal if and only if T ∗2T 2 + 2k T ∗T + k2 ≥ 0 for all real

k. Taking a quadratic form analogous to this we have established the result for

all x . We have also introduced a new class *A(p, q) parallel to A(p, q) (for p,

q > 0) and established its monotonicity.
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Iterative methods for approximating fixed points of nonexpansive mappings

have been extensively studied (see e.g. [1, 2, 3, 5]). But, iterative methods for

approximating pseudocontractive mappings are far less developed than those of

nonexpansive mappings. However, on the otherhand pseudo contractions have

more powerful applications than nonexpansive mappings in solving nonlinear

inverse problems. In recent years many authors have studied iterative approx-

imation of fixed point of strongly pseudocontractive mappings. Most of them

used Mann iteration process [4]. But in the case of pseudocontractive mapping

it is well known that Mann iteration fails to converge to fixed point of lips-

chitz pseudocontractive mappings in compact convex subset of a Hilbert space.

Hemicontractive mappings is an important generalization of pseudocontractive

mappings.

In the present paper, we consider problem of finding a common fixed points

of finite family hemicontractive mappings. We suggest a new algorithm for

solving this problem. Strong convergence of this algorithm for a finite family of

hemicontractions will be proved which generalizes the recent result of [6] and

others.
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In Hilbert space H consider a second-order linear differeitail equation

u′′(t) +Du′(t) +Au(t) = 0, u(0) = u0 (1)

under the following assumptions

(A) Operator A : D(A) ⊂ H → H is m-sectorial and <(Ax, x) ≥ a0(x, x) for
some positive a0 (x ∈ D(A)).

Since A is m-sectorial there exist a self-adjoint positive definite operator T and

a self-adjoint S ∈ L(H), such that

<(Ax, x) = (T 1/2x, T 1/2x) ≥ a0(x, x), A = T 1/2(I + iS)T 1/2.

By Hs (s ∈ R) denote a collection of Hilbert spaces generated by a self-adjoint

operator T 1/2. By (·, ·)−1,1 denote a duality pairing on H−1 ×H1 and by ‖ · ‖s
denote a norm on Hs.



694 Dynamical Systems and Ordinary Differential Equations

(B) D is a bounded operator D ∈ L(H1, H−1), and

β = inf
x∈H1,x 6=0

<(Dx, x)−1,1

‖x‖2
> 0.

Denote D1 = <D,D2 = =D ∈ L(H1, H−1) and D = D1 + iD2.

Theorem Let the assumptions (A) and (B) hold and for some k ∈ (0, β) and

m ∈ (0, 1]

ω1 = inf
x∈H1,x 6=0

1

k
(D1x, x)−1,1 − ‖x‖2 − 1

4m

∥
∥( 1

k
S̃ −D2)x

∥
∥
−1

‖x‖2
≥ 0.

Then for all u0, u1 ∈ H1, Du1 +Au0 ∈ H there exists a unique solution of (1)

and

‖u(t)‖21 + ‖u′(t)‖2 ≤ const · exp{−2kθt}
(

‖u0‖
2
1 + ‖u1‖

2

)

, t ≥ 0

where

θ = min

{

ω1

2
,
1−m

ω2

}

≥ 0

and

ω2 = sup
x∈H1,x 6=0

‖x‖21 + k(D1x, x)−1,1 + k2‖x‖2

‖x‖21
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An analysis is made on a four dimensional mathematical model where there is a

constant rate of flow of input nutrient. An organism is introduced in the model

which is growing on that nutrient. Two other predators are also introduced

on that organism. The predators at the second and third trophic levels belong

to the same species, though of different age groups. The predator at the third

trophic level exhibits a distinct cannibalistic attitude to the predator of the

second trophic level. A local stability of the system is obtained when one or

more predators goes extinct. Under appropriate circumstances a positive rest

point of the system is obtained. Computer simulations have been carried out

to illustrate different analytical results.
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Asymptotic properties of solutions have been considered for some nonlinear

differential equations. The paper deals with investigation of bounded solutions,

oscillatory solutions and another asymptotic properties.We consider some equa-

tion and we obtain necessary conditions and sufficient conditions for existence of

certain monotonic, oscillatory solutions, and estimates eigenvalue for operators

of higher order.

For the nonlinear equation

(r(x)y(n))(n) = yf(x, y) (1)
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we obtain necessary and sufficient conditions for existence of certain monotonic,

oscillatory solutions.

As special cases we will consider generalizations of the Emden-Fowler equa-

tion

(r(x)y(n))(n) = f(x)|y|γy (2)

where γ > 0. We also consider the Emden-Fowler equation

y′′ = Axσyn, A = const, σ = const (3)

which arises in a number of physical problems, connected with problems of

gas dynamics. We obtain asymptotic formulas for all positive solutions of the

equation. (see [3],[5]).
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We are concerned with the second-order nonlinear neutral type dynamic equa-

tions on a time scale T, which may be an arbitrary closed subset of the reals.

The study of dynamic equations on time scales has been created in order to

unify the study of differential and difference equations. The oscillatory behavior

of solutions of the second-order nonlinear dynamic equations of neutral type

is discussed by employing the Riccati transformation technique and some os-

cillation criteria are established for the dynamic equations. Our results in the

special case when T = R and T = N extend and improve some well-known oscil-

lation results for second-order nonlinear neutral delay differential and difference

equations and are essentially new on the time scales T = hN, h > 0, T = qN for

q > 1,T = N
2, etc. Some examples are considered to illustrate our main results.
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Second order nonlinear ordinary differential equations are of importance in

dynamics. We propose a method of deriving first integrals of second order non-

linear ordinary differential equations through canonical transformations. Every

second order ordinary differential equation can be represented by a Hamilto-

nian function and the corresponding non-conservative force though the rep-

resentation is not unique. Hamilton’s canonical equations of motion for non-

conservative dynamical system are derived in the new canonical variables [1].

We define new Hamiltonian function to incorporate non-conservative force term

appearing in the generalized momentum equation. Non-conservative force in

the new canonical variables is defined to retain the form of Hamilton’s canon-

ical equations. Thus a family of Hamiltonian functions and the corresponding

non-conservative force is generated. These families represents the given sec-

ond order ordinary differential equation in new coordinate system. Application

of Noether’s theorem [2] to this family gives the first integral of given ordi-

nary differential equation. With this approach the first integrals of equations

representing nonlinear Harmonic oscillators, Helmholtz oscillator with friction,

Duffing Vander Pol oscillator, Emden Fowler equation and generalized Emden

Fowler equation are constructed.
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We consider an equation combining the Korteweg-de Vries (KdV) and modi-

fied Korteweg-de Vries (mKdV) equations, or simply the combined KdV-mKdV

equation. Exploiting the Lie-point symmetries and conservation laws of the un-

derlying equation, we construct the invariant solutions thereof. Invariant so-

lutions allow reduction of partial differential equations (PDEs) into ordinary

differential equations (ODEs) which can be solved either analytically or numer-

ically.
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An exact solution to the problem of unsteady one dimensional free convective

flow over an infinite vertical cylinder under the combined buoyancy effects of

heat and mass transfer along with chemical reaction is presented. The dimen-

sionless unsteady governing equations are solved by using the usual Laplace-

transform technique. Numerical computations for velocity, temperature, con-

centration profile, skin friction, Nusselt number, Sherwood number are obtained

for various set of physical parameters viz. chemical reaction parameter, Prandtl

number, Schmidt number, buoyancy ratio parameter and time and computed

results are presented in graphs.
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In this paper we study cosmological models with particles attached to them in

LRS BI type space time. The dynamical and physical properties of such uni-

verses are studied, and the possibility that during the evolution of the universe

the strings disappear leaving only the particles is also discussed here . It is

found that the bulk viscosity plays a great role in the evolution of the universe.

In these models we can find critical instant of time when there is a “Bounce”.

The models we study here are found to be of inflationary type and since a

desirable feature of a meaningful string cosmological model is the presence of

an inflationary epoch in the very early stages of evolution, our models can be

thought of as realistic universes.
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The talk deals with stochastic Volterra equations of the form

X(t) = X0 +

∫ t

0

a(t− τ)AX(τ) dτ +

∫ t

0

Ψ(τ) dW (τ), t ≥ 0, (1)

in a separable Hilbert space H. In (1), X0 ∈ H, a ∈ L1
loc

(R+;R), A is a closed

linear unbounded operator, Ψ(t) is an appropriate operator-valued process and

W (t) is a cylindrical Wiener process.

Let us note that the equation (1) contains a big class of equations and is an

abstract version of several problems.

To the study of the equation (1) we use the resolvent approach, which en-

ables us to obtain results in an analogous way as in the semigroup approach

usually applied to stochastic differential equations. It is worth to emphasize

that in our, resolvent case, new difficulties arise because the solution operator

corresponding to the Volterra equation (1) in general does not create any semi-

group. So, in consequence, powerful semigroup tools are not available in our

case.

The aim of the talk is to present results concerning fundamental and the

most important questions related to the equation (1), like the existence of strong

solutions to (1) and some kind of regularity of these solutions.

We shall point out some consequences and complications coming from de-

terministic and stochastic convolutions connected with the stochastic Volterra
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equations (1). Next, we will show, how to overcome these difficulties for some

classes of kernel functions a(t), t ≥ 0, and the operators A, relevant for appli-
cations.
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Shannon entropy [5], given by H(X) = −
∫
∞

0
f(x) log f(x)dx, plays an im-

portant role in the context of information theory. An alternative notation

of entropy called cumulative residual entropy (CRE) defined by ξ(X) =

−
∫
∞

0
F̄ (x) log F̄ (x)dx is proposed in Rao et al. [4]. This measure is based on

cumulative distribution function (CDF) rather than probability density, and

is thus, in general more stable, since the distribution function is more regular

because it is defined in an integral form unlike the density function, which is

defined as the derivation of the distribution.

These entropy measures are not applicable to a system which has survived

for some unit of time. Ebrahimi [2] considered the Shannon entropy of the

residual lifetime Xt = [X−t|X > t] as a dynamic measure of uncertainty. Asadi

and Zohrevand [1] have considered the dynamic cumulative residual entropy

(DCRE), defined as the cumulative residual entropy of the random variable

Xt = [X − t|X > t]. Extending the concept of cumulative residual entropy, we

consider generalized cumulative residual information measure based on Renyi

entropy [3] for a continuous random variable which is useful in life testing. The

exponential, the pareto and finite range distributions, which are commonly used
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in the reliability modeling have been characterized in terms of the proposed

dynamic entropy measure.
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In the statistical physics literature Shannon entropy [2] is called Gibss entropy,

and is meant to be the amount of “disorder” of a system. Shannon entropy

has been extended in several ways. One particular generalization is q− entropy,

known as Tsallis nonextensive entropy [3]. The Tsallis nonextensive entropy of

the statistical physics literature exactly matches with the Havrda-Charvat α
entropy [1] of information theory.

The present communication considers non-additive Havrda and Charvat en-

tropy measure for residual lifetime distributions. It is shown that the proposed

measure determines the lifetime distribution uniquely. We characterize resid-

ual lifetime distributions and draw the probability curves for the distributions

characterized for some specific values of the parameters.
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Albert, Atkinson and Brignall. [1] completely characterize sets Π such that the

class of permutations avoiding the patterns of Π has polynomial growth. They

also provide a complete classification when the set Π has size 2 or 3. When

the set contains two permutations α and β, only two cases are possible. One of

these cases (α increasing and β decreasing) has been thoroughly studied. The

other case (α increasing and β quasi-decreasing) still presents some interesting

open questions. In particular, Albert, Atkinson and Brignall provide bounds

for the degree δ of the polynomial expressing the growth of the corresponding

permutation class in terms of the sizes of permutations α and β. We provide

more accurate bounds for this degree, showing in particular that δ grows at

most linearly with respect to the size of α, whereas the upper bound provided

by Albert et al. still left open the possibility that such dependency could be

quadratic.
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In this study, we investigate the numerical solutions of the initial-boundary

value problem for singularly perturbed Boussinesq system. First, asymptotic

estimates for the original problem are established. Next, two level fitted dif-

ference method on a special non-uniform mesh, for the numerical solution of

this problem is presented. The difference scheme is shown to converge to the

continuous solution uniformly with respect to the perturbation parameter.
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We consider the singularly perturbed coupled elliptic-elliptic transmission

boundary value problem, where in one subregion the coefficient of the sec-

ond derivative is a small parameter. The solution of such problems typically

contain strong interior layer rather than boundary layer. Parameter-uniform

error bounds for the solution and its first scaled derivative are established us-

ing the Streamline-Diffusion Finite Element Method (SDFEM) on piecewise

uniform meshes. We prove that the method is almost second order convergence

for solution and first order convergence for its derivative in the maximum norm,

independently of the perturbation parameter. Numerical results are provided

to substantiate the theoretical results.
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In the present paper, a numerical method is proposed for the numerical solution

of nonlinear Swift-Hohenberg equation

ut + uxxxx + 2uxx + (1− α)u− u3 = 0

This equation is widely used as a model for the study of various issues in pattern

formation. It has been used to model patterns in simple fluids (e.g. Rayleigh-

Bénard convection) and in a variety of complex fluids and biological materials,

such as neural tissues. The equation is solved using the quintic B-spline colloca-

tion scheme on the uniform mesh points with appropriate initial and boundary

conditions. The scheme is based on the Crank-Nicolson formulation for time

integration and quintic B-spline functions for space integration. Computed re-

sults are obtained on domain [0, L] and for different values of α and time T.

By means of numerical simulations it is shown how different values of α and

parameter L give different profiles. Solutions are depicted graphically and are

compared with those already available in the literature. It is shown that quin-

tic B-spline collocation method can effectively be used to solve these kind of

non-linear equations.
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A fourth order difference scheme using adaptive cubic spline for solving a self

adjoint singularly perturbed two point boundary value problem of the form

ε y′′ = q (x) y + r (x)

y (a) = α0 y (b) = α1

is presented. Our scheme leads to a tri diagonal linear system. The conver-

gence analysis is given. This method gives second and fourth order convergence

depending upon the choice of parameters A1, A2, A3 and A4. Numerical illus-

trations are given to verify the theoretical analysis of our method.
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In recent years there has been a growing interest in the fractional Fourier trans-

form driven by its large number of applications. The literature in this field

follows two main routes [1]–[8]. On the one hand, the areas where the ordi-

nary Fourier transform has been applied are being revisited to use this inter-

mediate time-frequency representation of signals, and on the other hand, fast

algorithms for numerical computation of the fractional Fourier transform are

devised. In this paper we derive a Gaussian-like quadrature of the continuous

fractional Fourier transform. This quadrature is given in terms of the Hermite

polynomials and their zeros. By using some asymptotic formulas, we rewrite the

quadrature as a chirp-fft-chirp transformation, yielding a fast discretization

of the fractional Fourier transform and its inverse in closed form. We extend

the range of the fractional Fourier transform by considering arbitrary complex

values inside the unitary circle and not only at the boundary. We find that, the

chirp-fft-chirp transformation evaluated at z = i, becomes a more accurate

version of the fft which can be used for non-periodic functions.
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We have numerically simulated the solution of the linear diffusion equation

and wave equation, which are both time-evolution partial diferential equations

(PDE). We have used a class of Galerkin method [5] and the Matlab ODE

solvers ode45 and ode15s. The solver ode45 is based on an embedded Runge-

Kutta method of orders 5(4) proposed in [1] and it is useful when solving

non-stiff problems, due to its minor stability regions. It uses an error control

based on local extrapolation as mentioned in [2] and an error estimation per

step unit [3]. The solver ode15s is based on the Backward Differentiation For-

mulae (BDF) which are methods of orders 1:5 proposed in [4]. They have good

stability properties, hence, they are efficient in solving stiff differential equa-

tions, whenever the eigenvalues do not lie near the imaginary axis. The ode15s

uses the local truncation error as the error estimation in each step, as detailed

in [2].

As the elements of the discretization increase, the eigenvalues differ signif-

icantly from each other, so the problem becomes stiff. Predictably, the ode15s

behaves better than the ode45 when solving the heat equation, although the

ode45 performs better with the wave equation. The reason is that the error es-

timation of the ode15s does not let the algorithm take major steps when solving

rapidly oscillating problems such as the wave equation.
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Thermal stratification has been studied numerically for axi-symmetric turbu-

lent flow in a cylindrical vessel. The governing equations for different turbulent

model (k-epsilon and k-omega) have been discretized by using finite volume

method. Semi-implicit method for pressure linked equations (SIMPLE) algo-

rithm has been used. Various numerical schemes such as; 2nd order upwind

scheme, Power law and Quick have been used. The effect of turbulent model

parameters on flow characteristics has been studied. It is interesting to note

that by varying the values of turbulent model parameters a good agreement

between predicted and experimental results have been observed. Furthermore,

it is observed that, k-omega model predicts a better result in comparison with

k-epsilon model. The obtained results have also been compared with the result

obtained by Open source code such as Open FOAM and commercial code such

as FLUENT.
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In order to understand the evolution of a vortex patch, Goldstein and Petrich

obtained in [2] the following geometric flow:

Xt = −ksn−
1

2
k2T. (1)

The motion happens only in the tangential and normal directions, so an initial

planar curve remains planar for all t. Hence, we can identify z ≡ X, and z
satisfies:







zt = −zsss +
3

2
z̄sz

2
ss, z(s, t) ∈ C, (s, t) ∈ R

2,

|zs|
2 = 1,

(2)

where s is the arc-length parameter. Denoting with κ(s, t) the curvature of

z(s, t), κ satisfies the modified Korteweg-de Vries (mKdV) equation:

κt + κsss +
3

2
κ2κs = 0. (3)

Looking for self-similar solutions of (3), Perelman and Vega proved in [3] that

(2) has a one-parameter family of regular solutions that develop a corner-shaped

singularity at finite time. We give a method for reproducing numerically the

evolution of those solutions, as well as the formation of the corner, showing

several properties associated to them [1].
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In this paper, authors obtain some results on generalized reciprocal factorial

using generalized difference operator ∆±`, for the positive real `. Also we derive

the formulae for the sums of reciprocal of generalized factorial in number theory

using inverse operator. Suitable examples are provided to illustrate the main

results.
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Axial dispersion models have been used for decades to describe mass transport

processes of solid and semi solid particles in chemical and process industries,

namely, the displacement of an initially homogeneous solute from a porous

medium of finite thickness by the introduction of a less concentrated solvent.
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The numerical solution of the axial dispersion model involving Langmuir

adsorption isotherm (non linear) is attempted via orthogonal Hermite colloca-

tion method. The discretized non-linear differential equations are solved using

MATLAB software. The results are given in dimensionless form for the exit

concentration of solute leaving the packed bed of pulp fibers. The purpose of

this paper is to provide accurate numerical solution to the mathematical models

involving longitudinal dispersion in porous medium.
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We study theoretical and practical issues arising in the implementation of the

Finite Element Method for a strongly elliptic second order equation with jump

discontinuities in its coefficients on a polygonal domain Ω that may have cracks

or vertices that touch the boundary. We consider in particular the equation

−∇ · (A∇u) = f ∈ Hm−1(Ω) with mixed boundary conditions, where the

matrix A has variable, piecewise smooth coefficients. We establish regularity

and Fredholm results and under some additional conditions, we also establish

well-posedness in weighted Sobolev spaces. When Neumann boundary condi-

tions are imposed on adjacent sides of the polygonal domain, we obtain the

decomposition u = ureg + σ, into a function ureg with better decay at the ver-

tices and a function σ that is locally constant near the vertices, thus proving

well-posedness in an augmented weighted space. The theoretical analysis yields

interpolation estimates that are then used to construct improved graded meshes

recovering the quasi-optimal rate of convergence for piecewise polynomials of

degree m ≥ 1. Several numerical examples will be presented.

See [1, 2, 3, 4] and references therein for related discussions on a-priori anal-

ysis of elliptic PDEs and numerical treatments for different aspects regarding

the finite element method.
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We study the propagation properties of the solutions of classical (finite diffe-

rence - FD) and non-conforming (discontinuous Galerkin - DG) space semi-

discretizations of the 1 − d wave equation on an uniform grid of size h. The
continuous wave equation has the so-called observability property: for a suffi-

ciently large time, the total energy of its solutions can be estimated in terms of

the energy concentrated in the exterior of a compact set (cf. [2]). For the FD

scheme, we show that this fails to be true, uniformly on h, whatever the ob-

servability time is, so that the observability constant blows-up at an arbitrarily

large polynomial order. We construct high frequency wave packets that propa-

gate along the discrete bi-characteristic rays of Geometric Optics with a group

velocity arbitrarily close to zero. We also explain how these constructions can

be adapted to the P1-DG approximation (cf. [1]), for which the Fourier symbol

of the Laplacian is a matrix, having two eigenvalues: a physical one and a spu-

rious one. Each of them contains wave numbers where the corresponding group

velocity vanishes.

The second purpose is to describe several filtering mechanisms for the DG

semi-discretization, aimed to recover the uniformity of the observability con-

stant with respect to h in suitable subspaces of numerical solutions, which is a

quite well understood topic for classical approximations (cf. [3]). For the DG

methods, the most feasible filtering strategy consists in first choosing the jump

of the numerical initial data to vanish and then to apply the bi-grid algorithm.

It has the advantage of being applicable in the physical space and guarantees

the energy of solutions to be concentrated in the low frequencies of the physical

branch.
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Study of convective process in porous media has always been a topic of great

interest. Several problems with simple to complex geometries have been solved

in two dimensions. However, some of the real life problems like thermal insula-

tion of buildings, environmental chambers, coal gasification, geothermal heating

due to nuclear waste disposal, etc., would require three-dimensional analysis.

In applications such as nuclear waste disposal, one will be interested in trac-

ing three- dimensional convection process due to three-dimensional hot objects

buried deep in earth. Here such three-dimensional hot objects are assumed to

be cubical in shape and the convection due to such objects in a cubical enclo-

sure is analyzed. In many of the engineering applications such as solar central

receivers exposed to wind currents, electronic devices cooled by fans, heat ex-

changers, vented enclosures filled with micro spheres, which require a detailed

study on mixed convection process the spatial location of inlet/outlet windows

become very vital [3]. In this study our numerical investigation on Darcy mixed

convection in a porous enclosure with a injection on bottom surface and fluid

suctions at the top surface of the cube.
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In this work we develop an algorithm for solving the time-dependent heat con-

duction equation [4]

cpρ∂tT − kT,ii = 0

in an analytical, exact fashion for a two-component domain. The formal solution

of the problem is obtained by the Green’s function approach [1, 2]. As an inter-

mediate result an integral-equation for the temperature history at the domain

interface is formulated which can be solved analytically. The method is applied

to a classical engineering problem, i.e. to a special case of a Stefan-Problem

[6]. The Green’s function approach in conjunction with the integral-equation

method is very useful in cases were strong discontinuities or jumps occur. The

system parameters and the initial conditions of the investigated problem give
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rise to two jumps in the temperature field. Purely numerical solutions are ob-

tained by using the FEM (finite element method) [3] and the FDM (finite dif-

ference method) [5] and compared with the analytical approach. At the domain

boundary the analytical solution and the FEM-solution are in good agreement,

but the FDM results show a significant smearing effect.
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In this paper, sixth order boundary value problems is solved numerically by

collocation method. The solution is approximated as a linear combination of

septic B-spline functions. The septic B-splines constitute a basis for the space of

septic polynomial splines. In the method, the basis functions are redefined into

a new set of basis functions which in number match with the number of selected

collocation points. To test the efficiency of the method, several numerical ex-

amples of sixth order linear and nonlinear boundary value problems are solved

by the proposed method. Numerical results obtained by the proposed method

are in good agreement with the exact solutions available in the literature.
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This study examines the parallel computing as a tool to minimize the execution

time in the optimization applied to thermodydrodynamic (THD) lubrication.

The objective of the optimization is to maximize the load capacity of a slider

bearing with two design varibales with minimum friction coefficient. A global

optimization method, DIviding RECTangles (DIRECT) algorithm is used. The

first approach is to apply the parallel computing within the THD model in

a shared memory processing (SMP) environment to examine the parallel effi-

ciency of fine - grain computation.After that, a distributed parallel computing in

the search level was conducted by use of the standard DIRECT algorithm.Then

the algorithm is modified to a version suitable for effective parallel computing.

It is found that the standard DIRECT algorithm is an efficient sequential but

less parallel computing friendly method. When the modified algorithm is used

the slider bearing optimization, a parallel efficiency of 98
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In this paper, we derive a higher order multipoint method for solving nonlinear

equations. The methodology is based on Ostrowski’s method and further de-

veloped by using inverse interpolation process. The adaptation of this strategy

increases the order of Ostrowski’s method from four to eight and its efficiency

index from 1.587 to 1.682. The method is compared with its closest competitors

in a series of numerical examples. Moreover, theoretical order of convergence is

verified on the examples.
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In this paper, the MHD mixed convection heat transfer of viscous fluid over an

unsteady stretching sheet placed in a porous medium in the presence of heat

source/sink have been examined. A uniform magnetic field is applied trans-

versely to the direction of the flow. The problem has scientific and engineering

applications, for instance, in a melt-spinning process, where the quality of the

final product greatly depends on the rate of cooling and the process of stretch-

ing. The mathematical model of problem is highly non-linear whose analytical

solution is very hard to find out, so the only choice left is approximate numerical

solution.

A variety of grid or mesh based numerical techniques such as the FDM,

FVM, FEM etc. are developed by researcher to solve these types of problems.

Although grid based method are most general numerical method but the dis-

cretization, meshing and re-meshing of complex geometries of the problems are

very difficult and expensive. To overcome these problems, a number of Meshfree

methods [1] have been developed in last two decades, which has been success-

fully used to solve various types of problems in different areas of engineering

and science.

Most of the studies of stretching sheet were restricted to the steady state

conditions. In this paper we consider the unsteady case of stretching surface

problem. The time dependent nonlinear differential equations governing the

problem have been transformed by a similarity transformation into a system

of non-linear ordinary differential equations, which are solved numerically by

Element Free Galerkin method (Meshfree method). Some of the result has
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been compared with finite element method. Finally, excellent validation of the

present numerical results has been achieved with the earlier steady state results

of [2] for local Nusselt number.
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A generalization of multiresolution analysis has been introduced and studied by

Gabardo and Nashed, see references [1], [4], [5], [6] and [8]. On the other hand

vector-valued multiresolution analysis and associated vector-valued wavelets

have been investigated in [2], [3] and [7]. Motivated by these papers authors have

introduced the concept of non-uniform vector-valued multiresolution analysis.

Besides various results related to this new concept a necessary and sufficient

condition for existence of vector-valued wavelets has been obtained.
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A linear system of singularly perturbed first order ordinary differential equa-

tions with discontinuous source terms is considered in the form

~L~u(t) = E~u′(t) +A~u(t) = ~f(t), t ∈ Ω = (0, T ]

with ~u(0) prescribed. Here ~u and ~f are column n-vectors and ~f(d−) 6= ~f(d+)

is assumed. E and A(t) are n × n matrices, E = diag(~ε), ~ε = (ε1, ..., εn). The
parameters εi, i = 1, . . . , n are assumed to be distinct and for convenience, the

ordering 0 < ε1 < ε2 < · · · < εn < 1 is assumed. Also ~f has a jump at t = d
and the solution ~u is continuous at d.

The solution of the system exhibits n overlapping initial layers as well as

interior layers near the point of discontinuity d, where 0 < d < T. A numeri-

cal method that resolves the layers and convergent in Ω, uniformly in all the
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perturbation parameters is constructed. The method uses a classical finite dif-

ference scheme on a piecewise uniform Shishkin mesh and is convergent in the

maximum norm. Related works are found in [1].

Numerical illustrations are presented in support of the theory.
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In this paper, the authors discuss properties of infinite series solutions of second

order generalized difference equation ∆2
`u(k) + f(k, u(k)) = 0, k ∈ [0,∞) =

∪j∈[0,`) N`(j), where ∆` is the generalized difference operator, f and u are real

valued functions.
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Here we propose a hybrid numerical scheme for the following class of sin-

gularly perturbed mixed parabolic-elliptic problems posed on the domain

G− ∪G+, G− = (0, ξ)× (0, T ], G+ = (ξ, 1)× (0, T ] :












(

∂u

∂t
− ε

∂2u

∂x2
+ b(x, t)u

)

(x, t) = f(x, t), (x, t) ∈ G−,
(

−ε
∂2u

∂x2
− a(x, t)

∂u

∂x
+ b(x, t)u

)

(x, t) = f(x, t), (x, t) ∈ G+,
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where 0 < ε � 1 is a small parameter and the coefficients a, b are sufficiently

smooth functions and the source term f is sufficiently smooth on G− ∪ G+

such that a(x, t) > 0, x > ξ, b(x, t) ≥ 0 on G = [0, 1]× [0, T ], with suitable

initial, boundary and the interface conditions at x = ξ. Such kind of problems

describe, for example, an electromagnetic field arising in the motion of a train

on an air-pillow. In general, the solutions of this class of problems possess both

boundary and interior layers. Due to the presence of layers, classical numerical

methods on equidistant mesh usually fail to decrease the maximum point-wise

error as the mesh is refined, until the mesh parameter and the perturbation

parameter have the same order of magnitude.

To solve these problems, we discretize the time derivative by the classical

backward-Euler method. While for the spatial discretization of the problem,

we use the classical central difference scheme on the first subdomain and we

propose a hybrid finite difference scheme (a proper combination of the midpoint

upwind scheme in the outer regions and the classical central difference scheme

in the interior layer regions) on the second subdomain. At the point of dis-

continuity, a second-order one-sided difference approximations are used to keep

the continuity of the spatial derivative. The proposed method is analyzed on a

layer resolving piecewise-uniform Shishkin mesh and is shown to be ε-uniformly

convergent with almost second-order spatial accuracy in the discrete supremum

norm, provided that the perturbation parameter ε satisfies ε ≤ N−1. Here, N is

the number of mesh-intervals in the spatial direction. Finally numerical results

are presented to validate the theoretical results.

❖ ❖ ❖

Numerical Study of Visco-elastic Fluid Flow over an
Exponentially Stretching Sheet

T. Hymavathi

School of Mathematical and Information Sciences, Adikavi Nannaya University,

Rajahmundry, Andhra Pradesh, India

E-mail: talla.hymavathianur@gmail.com

2000 Mathematics Subject Classification. 76A10

Most of the fluids which are used in industry are non-Newtonian and par-

ticularly visco-elastic in nature. So, in recent years, the study of visco-elastic

fluids gains the attention of researchers. In polymer processing applications, it

is essential to consider flow over a stretching sheet as mentioned by Rajagopal

et.al. [1]. Several Mathematicians and the Scientists obtain the analytical so-

lutions similar to [2]. However, the constitutive equations of this type of fluid

flows are highly non linear. So, getting analytical solution may not be always

possible.
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This paper deals with the numerical study of visco-elastic fluid flow over an

exponentially stretching sheet [3] using the method of quasilinearization [4] [5].

The higher order non-linear momentum equation is converted as system of si-

multaneous first order equations and the solution of the boundary value problem

is obtained using quasilinearization technique. The velocity profiles are drawn

for various values of visco-elastic parameter. It is observed that with very ap-

proximate initial guesses, only in six to seven iterations good accuracy up to

five decimal places is obtained.
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The paper is devoted to the study of computational widths, the idea of definition

of which is in optimization on the set of computational units [1]–[5].

We study the problems of numerical integration and differentiation (includ-

ing the quasi-Monte Carlo method), the problems of recovery of functions, and

discretization of solutions of partial differential equations.

Computational units are defined by functionals, supplying numerical infor-

mation on the studied function or on the initial and boundary conditions, which

are then processed through the algorithm that depends on the same variable,

as the approximated operator.

Note that with appropriate specifications of the general definition of com-

putational width [1] we obtain the entire arsenal of problems in approximation

theory and numerical analysis: Fourier series, bases, wavelets, interpolations,

etc.
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We obtain two-sided estimates of the same order for computational widths

in the case when all possible linear functionals and algorithms serve as the

carriers of information [1]–[2].

Numerical integration is represented by two methods based on algebraic

number theory and the tensor product of functionals in combination with har-

monic analysis [3]–[5].
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In the present study, we propose a Three-step Taylor Galerkin Finite Element

Scheme for a Singularly Perturbed Convection-Diffusion problem. Traditional

finite element techniques with linear shape functions do not give rise to uni-

formly convergent methods for Singularly Perturbed differential equations on a

uniform mesh. Here we have used exponentially fitted shape functions to gener-

ate a uniformly convergent scheme. In Three-Step Taylor Galerkin Method time
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dicretization is carried out prior to spatial discretization. This leads to higher

order accuracy in the numerical solution. Further, the method is also known for

its inherent upwinding capability. In the present work, the error estimates for

the proposed scheme has been derived and it has been shown that the proposed

method is of third order accurate in time and linear in space. Numerical results

have been presented for convection-dominated singularly perturbed problems.
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A Clenshaw-Curtis-Filon-type method Qs[f ] for highly oscillatory Bessel trans-

form

I[f ] =

∫ b

a

f(x)Cm(rx)dx or I[f ] =

∫ b

a

f(x)Dm(−irx)dx

is considered, which is based on a special Hermite interpolation polynomial

in the Clenshaw-Curtis points that can be efficiently evaluated in O(N logN)

operations, where N is the number of nodes of the Clenshaw-Curtis points

in the integral interval. Moreover, the error bounds related to frequency and

approximation of the polynomial for this quadrature

O





max0≤j≤s+2

{

‖f (j)(x)− p
(j)

N+2s(x)‖∞

}

rs+5/2



, 0 6∈ [a, b]

or

O





max
{

‖f (s+1)(x)− p
(s+1)

N+2s(x)‖∞, ‖f (s+2)(x)− p
(s+2)

N+2s(x)‖∞

}

rs+2



 , 0 ∈ [a, b].

is given. In particular, this method can be easily applied to computation of a

class of Volterra integral equations containing highly oscillatory Bessel kernels

∫ x

a

(x− t)mJm(r(x− t))y(t)dt = g(x), x ∈ [a, b], (1.a)

or ∫ x

a

(x− t)m/2Jm/2(r
√
x− t)y(t)dt = g(x), x ∈ [a, b]. (1.b)
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In this paper, we deal with a two-person zero - sum game with fuzzy payoffs.

The aim of the paper is to extend the decision theory framework of Bellman and

Zadeh [1] to a game theoretic platform so as to solve those problems in game

theory, that are imprecise in nature using current techniques of Fuzzy Math-

ematics. Since fuzziness can exist if the components of the game are specified

with some impreciseness or when the players have their own subjective percep-

tion of the game, the constraints faced by the players as well as the outcomes of

the game warrant fuzzy mathematical treatments [2]. Hence by assuming that

the components of the game involve subjective perception on the part of the

players, we develop a descriptive theory to analyze games with imprecise char-

acteristics using fuzzy tools. We provide illustrations and numerical examples

to study the adequacy of the theory.
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In this paper, a new hybrid method based on Region Reduction Division Crite-

ria (RRDC) and Advanced Real Coded Genetic Algorithm (ARCGA) has been

proposed for solving the suspension design problem. The dynamical model of a

half-car with two passengers’ seat suspensions, one at the front and the other

at the rear position of the vehicle has been considered. The developed hybrid

method has been applied to minimize the vibration, experienced by the passen-

gers due to road bump and irregular terrain when the vehicle runs over the road

with uniform velocity. In order to find the optimal solutions/design parameters

of the suspension system we have formulated a non-linear constrained optimiza-

tion problem in which the bouncing transmissibility of the sprung mass at the

center of mass has been minimized in time domain with respect to technological

constraints and the constraints which satisfy the performance as per ISO 2631

standards [1]. The solutions/parametric values of the suspension so obtained

have been compared with the existing suspension parameters by simulating the

vehicle model over the roads. Also, the vibration behavior of the passengers

over different roads has been studied graphically using the convex combina-

tion of the two sets of solutions obtained after optimization. These results have

been then compared with the results obtained using existing suspension param-

eters via simulation. It has been shows that the use of the convex combination

suspension parameters improves performance over all the road conditions.
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In order to understand the role of information in the price competition we

study the Hotelling model [1] with uncertainty in the production cost of both

firms. The incomplete information consists in each firm to know its production

cost but to be uncertain about the competitor cost. We find that the Bayesian

Nash Equilibrium (see [2, 3]) prices does not depend on the distributions of the

production costs of the firms except on their first moments, and that the prices

of each firm, at equilibrium, are proportional to the expected cost of both firms

and to their own costs. The corresponding profits increase monotonously with

the expected cost of both firms and decreases with its own cost. We also do the

ex-ante versus ex-post analysis of the profits.

As an application of our result, we choose to introduce a new network model

where the nodes are firms competing along the edges (markets) where the con-

sumers are allocated. The firms compete according to the Hotelling’s model in

each link. We investigate the effects of the network structure on firms’ prices

and profits. We assume that each firm’s production cost depends only upon

the degree of the firm’s node. Thus, when firms have information about their

competitors’ nodes they also know their production costs. We first analyze the

benchmark case where every firm knows its node degree and its direct rivals’

degree nodes. This is the case where all the firms have complete information

about the network. In incomplete information each firm only knows its node de-

gree and the probability distribution of the degrees of the nodes in the network.

As a corollary of the Bayesian Nash equilibrium, we determine explicitly the

Bayesian Nash equilibrium prices and associated equilibrium expected profits

of each firm in the network as a function of a firm’s degree node.
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Process of washing of porous structure of compressible and cylindrical par-

ticles fibers has been modelled through an axial dispersion model involving

Peclet number (Pe) and Biot number (Bi). Non linear Langmuir adsorption

isotherm has been followed to relate bulk fluid and intra-pore solute concen-

trations. Model equations comprising a set of differential algebraic equations

have been solved using orthogonal collocation in conjunction with finite ele-

ments. Lagrangian interpolating polynomials has been taken as base functions.

Displacement washing was simulated using a lab scale washer and experiments

were performed on pulp beds composed of wheat straw. Model predicted values

have been used to calculate the efficiency of the washer and displacement ratio.
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For nearly two decades J.D. Anderson and coworkers at the Jet Propulsion Lab-

oratory have observed, confirmed and reconfirmed an inexplicable acceleration

∼ 10−8 − 10−9cms/s2 in the Pioneer 10 and Pioneer 11 spacecrafts which are

leaving the solar system. An independent analysis of the data was performed

by the Compact High Accuracy Satellite Motion Program using different algo-

rithms. This too confirms the anomalous acceleration. Anderson and coworkers

have considered various possible causes for this anomaly such as additional

gravitation due to the Kuiper belt or radiation pressure from solar winds and

so on and have eliminated these possibilities. Thus the Pioneer anomaly poses

a major challenge to celestial mechanics, and clearly new ideas need to be in-

voked. We suggest in this paper that this Pioneer anomaly maybe a footprint

of the time variation of the gravitational constant.
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The present work reports studies on the association between the mean annual

sunspot numbers [1] and the summer monsoon rainfall over India. Fascinating

property of sunspots is the approximate 11-year cycle [2] and its association

with the meteorological events is well discussed in the literature [3]. The statis-

tical properties of both of the time series have been studied in the present work

and it has been found that although the sunspot numbers exhibit persistence,

the mean annual summer monsoon rainfall does not have any persistence. The

cross correlations have also been studied. After Box-Cox transformation [4],

spectral analysis [5] has been executed and it has been found that both of the

time series have an important spectrum at the fifth harmonic. A neural net-

work model [6] has been developed on the data series averaged continuously by

five years and the neural network could establish a predictor-predictand rela-

tionship between the sunspot numbers and the mean yearly summer monsoon

rainfall over India.
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There are several types of tumors that invade the surrounding normal tissue

by diffusion. Radical treatment is not possible to such diffusive tumors. There

are several mathematical models of cancer in the literature. Most of them are

using the statistical modeling of cell behavior. But it requires high magnification

images of surgically removed human tissue. This article is on a new method for

cancer detection using low magnification images. Based on the location of the

cells in a low magnification image of a tissue sample, surgically removed from

a human patient, it is possible to construct a graph G with nodes as cells,

called cell graph [1]. By analyzing the physical features of the cells, for example

color and size, we can assign a membership value to the nodes of G. This

value will range over (0, 1] depending on the nature of the cell; that is healthy,

inflammatory or cancerous. Also, arcs of G can assign a membership value based

on the distance between the cells [2, 3]. Thus the cell graph can be converted to a

fuzzy graph in this manner. A new fuzzy graph clustering method is introduced

to cluster fuzzy cell graphs. Applying the new fuzzy clustering procedure to such

a fuzzy graph, the cancerous cell clusters can be detected at the cellular level

in principle. This process, classifies cell clusters in a tissue into different phases

of cancer, depending on the distribution, density and the fuzzy connectivity of

the cell clusters within the tissue. Moreover this process helps in examining the

dynamics and progress of the cancer qualitatively.

References

[1] C. Gunduz, B. Yener, S.H. Gultekin, The cell graphs of cancer, Bioinformatics,
20(1) (2004) 145–151.

[2] J.N. Mordeson, P.S. Nair, Fuzzy Graphs and Fuzzy Hypergraphs, Physica - Verlag,
New York, 2000.

[3] Sunil Mathew, M.S. Sunitha, Types of arcs in a fuzzy graph, Information Sciences

179(2009) 1760–1768.

❖ ❖ ❖



Mathematics in Science and Technology 745

R&D Dynamics on Costs

M. Ferreira

Escola Superior de Estudos Industriais e de Gestão, IPP, Portugal

E-mail: migferreira2@gmail.com

B. Oliveira

Faculdade de Ciências da Nutrição e Alimentação Humana, UP, Portugal

A. A. Pinto

Faculdade de Ciências, UP, Portugal

2000 Mathematics Subject Classification. 91A10, 91A20, 91A50

We consider a Cournot competition model where two firms invest in R&D

projects to reduce their production costs. This competition is modeled by a

two-stage game (see d’Aspremont and Jacquemin [1]). In the first subgame,

two firms choose, simultaneously, the R&D investment strategy to reduce their

initial production costs. In the second subgame, the two firms are involved in

a Cournot competition with production costs equal to the reduced cost de-

termined by the R&D investment program. We use an R&D cost reduction

function inspired by the logistic equation which was first introduced in Ferreira

et al [2]. The main differences between this cost function and the standard R&D

cost reduction function (see [1]) are explained in that same paper. For the first

subgame, consisting of an R&D investment program, we observe the existence

of four different Nash investment equilibria regions that we define as follows

(see [2]): a competitive Nash investment region C where both firms invest, a

single Nash investment region S1 for firm F1, where only firm F1 invests, a

single Nash investment region S2 for firm F2, where only firm F2 invests, and

a nil Nash investment region N , where neither of the firms invest.
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When the viscosity of the injected sample in a liquid chromatographic column

is different from that of the carrier liquid, a hydrodynamic instability occurs at

the interface of both the fluids where the more viscous fluid is displaced by the

less viscous one. The latter penetrates into the more viscous zone, forming some

kind of fingers which grow as they migrate. This may cause a distortion of the

peak shapes and, generally, a decrease in separation performances. Evidence

of this phenomenon in present-day liquid chromatographic columns has been

clearly provided by the in situ optical visualization experiments [1]. We present

a mathematical modeling on the influence of viscous fingering instability [2]

due to a difference between the viscosity of the displacing fluid and that of the

sample solvent on the spatiotemporal dynamics of the concentration of a passive

solute initially dissolved in the injected sample and undergoing adsorption on

the porous matrix. Such a three component system is modeled using Darcy’s law

for the fluid velocity coupled to mass-balance equations for the sample solvent

and solute concentrations [3]. The influence of the various parameters that
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control the viscous fingering phenomenon, especially the adsorption parameter

k′, are shown. Numerical simulations appear to be a particularly well suited

tool for unraveling the separated influences of the various effects that affect

the peak shapes of the analyte zones, like viscous fingering effects and solvent

strength effects which interplay in experimental studies.
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In many industrial and engineering systems, spontaneous explosions may occur

due to internal heating in combustible materials such as industrial waste fuel,

coal, hay, wool wastes and so on. This may lead to a huge loss of life and proper-

ties. In order to prevent the thermal runaway scenario, a theoretical evaluation

of the critical regimes thought of as regimes separating the regions of explosive

and non explosive ways of chemical reactions is extremely necessary and im-

portant. In this paper, the thermal stability analysis for a strong exothermic

chemical reaction in a cylindrical pipe with variable thermal conductivity and

heat loss is presented. Approximate solutions are constructed for the govern-

ing nonlinear boundary-value problem using perturbation technique together

with a special type of Hermite-Pad approximants. The important properties of

the temperature field including bifurcations and thermal stability criteria are

discussed.
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The aim of this study was to analyze students’ algebraic thinking. The study

was conducted in two Indian middle schools located in Delhi and Gurgaon,

India from March to October 2009, and was carried out on grade 6, 7, and 8

levels where elementary algebra was being introduced. The participan of the

study were school students and their mathematics teachers. Problems related

to algebraic topics were given to the students, and their algebraic thinking

were studied through three different lenses: problem solving, representation,

and reasoning skills. Based on the students’ worksheets, classroom observations,

and questionnaires collected from students and teachers, it can be figured out

that the students’ algebraic thinking in middle school level are quite good.

This study also showed that the sudents with good problems skills’ ability were

those who could manipulate their language translation and well-organized their

representations in verbal, picture, sentences, etc.
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The use of problem-based mathematical tasks in classrooms presents a multi-

dimensional pedagogical challenge for teachers. Designing well-thought out

tasks is the first step. Subsequently, some other important questions that teach-

ers must address are: What other heuristic strategies must be used alongside?

What role is played by the construction of mathematical representations in

working through such mathematical tasks? How should students’ unique ways

of interpreting, representing and resolving such questions be handled so as to

promote the overall understanding of the discipline? My presentation will ad-

dress some of these questions in the context of middle and high school content. I

will discuss the use of problems that may be used with specific content material

and questioning skills that can facilitate the development of problem solving

strategies in students, and focus on how such problems can challenge students

and assist them in developing a variety of connections, particularly those among

different representations of the same problem.
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India is a religious country. In ancient India people give much importance to

the religious ceremonies. They evaluate the utility of any knowledge by its use

in understanding the religion and its philosophy and performing religious cer-

emonies. Due to these special circumstances the religious centres and religious

texts are very important source to bring out the developments of knowledge in

any field. In the old age the hermitages were the centres of research and higher

learning. In the group of Jaina saints (Sramana Sangh) many saints (Acharyas

or Munis) also composed several religious and technical texts for the benefit of

sangh and society. Religious literature and literature which was useful in under-

standing these philosophical texts and useful in performing religious ceremonies

is also composed here. Jaina literature is very vast and varied. It includes many

branches of knowledge but so far we have not given much attention towards

these books. The structure of cosmos and System of Karma is available in

Jaina literature elaborately. In this process a lot of mathematics is involved.

Some work to explore it has been done by B.B. Datta (1), A.N. Singh (2),

Takao Hayashi (3), R.C. Gupta (4), Anupam Jain (5), Padmavathamma, Pra-

gati Jain (6), Dipak Jadhav (7), and N. Shivakumar (8). In the present paper

we present a glimpse of the mathematics found in the Jaina canonical litera-

ture. Few of them are following: Sthananga Sutra,Bhagavati Sutra, Anuyogad-

vara Sutra, Uttaradhyayan Sutra, Jambudvipa Prajnapti, Visheshavashyaka

Bhasya,Tiloyapannatti, Dhavala, Trilokasara, Gommatasara, Jambudvipapraj-

naptisamgaho, Lokavibhaga.
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Vedic metrics is one of the six limbs of Vedas. Its age is as old as Vedas. However,

the oldest surviving composition on metrics is Chandah. Sūtram (The Science

of Meters) composed by Ācārya Piṅgala Nāga, younger brother of the great

grammarian Pān. nini. This is one of the most glorious texts in the history of

ideas which is of vital significance both to scholars of prosody and mathematics.

The eighth chapter of this important text deals with various applications of

mathematics to study the sequencing and position of meters of a finite syllabic-

order. The purpose of this talk is to discuss Piṅgala’s varn. ic and moric binary

systems and their mapping to decimal number system. Depth and originality

of traditional way of learning may well be understood from the fact that the

moric binary system is not available in modern text-books of mathematics and

computer science.

The talk is organized in four sections. The first section offers some fun-

damentals to Sanskrit Prosody. The intent of the second section is to present

Piṅgala binary numbers and a brief discussion on Varn.nic Meru (mountain)
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generally called Pascal’s triangle. The third section offers a new class of binary

numbers and its mapping with decimals. Finally, we give a remark on probable

impact of Sanskrit Prosody on Chinese literature.
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Motilal Banarsidass, Delhi, 2001; reprinted 2006.

[7] Sreeramula Rajeswara Sarma (Translated from German), The Pratyayas: Indian
Contribution to Combinnatorics by Ludwig Alsdorf, Indian J. History of Science
26 (1991), 17–61.

❖ ❖ ❖





Author Index

A., Arsenashvili, 586

Abdellaoui, Boumediene, 366

Abdollahi, Alireza, 10
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Cañadas, Agust́ın Moreno, 468
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Csóka, Endre, 511

Cuadrado, Śılvia, 597
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Reséndis O., L. F., 247

Rezaei, Zeinab, 56

Rico-Melgoza, J., 712

Roczen, Marko, 655

Rodrigues, G. S., 451
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Šabanac, Zenan, 228

Sabu, P. N., 92

Sadyrbaev, Felix, 326

Saeb, Ali, 452

Sahai, Vivek, 184

Sahni, Manoj, 415

Sahoo, Binod Kumar, 490

Sahoo, P. K., 416

Sahoo, Pravati, 234

Sahoo, T., 364, 614

Sahraoui, Fatiha, 327

Sahu, Akshaya K., 715

Sahu, S. A., 612, 635

Saifullah, Khalid, 417

Sainudiin, Raazesh, 670

Sajid, Mohammad, 329

Salehi, Saeed, 8

Salman, A. N. M., 486, 489

Saltykov, Evgeny G., 417

Samarah, R., 617

Sanabria, Lorena Armas, 153

Sánchez, Guadalupe Rodŕıguez,
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