

Your complimentary use period has ended. Thank you for using PDF Complete.

Click Here to upgrade to Unlimited Pages and Expanded Features

We investigated the transepithelial potential (TEP) and its responses to changes in the external medium in Alcolapia grahami, a small cichlid fish living in Lake Magadi, Kenya. Magadi water is extremely alkaline (pH = 9.92) and otherwise unusual: titratable alkalinity (290 mequiv L(-1), i.e. HCO(3) (-) and CO(3) (2-)) rather than Cl(-) (112 mmol L(-1)) represents the major anion matching Na(+) = 356 mmol L(-1), with very low concentrations of Ca(2+) and Mg(2+) (<1 mmol L(-1)). Immediately after fish capture, TEP was +4 mV (inside positive), but stabilized at +7 mV at 10-30 h post-capture when experiments were performed in Magadi water. Transfer to 250% Magadi water increased the TEP to +9.5 mV, and transfer to fresh water and deionized water decreased the TEP to -13 and -28 mV, respectively, effects which were not due to changes in pH or osmolality. The very negative TEP in deionized water was attenuated in a linear fashion by log elevations in [Ca(2+)]. Extreme cold (1 vs. 28°C) reduced the positive TEP in Magadi water by 60%, suggesting blockade of an electrogenic component, but did not alter the negative TEP in dilute solution. When fish were transferred to 350 mmol L(-1) solutions of NaHCO(3), NaCl, NaNO(3), or choline Cl, only the 350 mmol L(-1) NaHCO(3) solution sustained the TEP unchanged at +7 mV; in all others, the TEP fell. Furthermore, after transfer to 50, 10, and 2% dilutions of 350 mmol L(-1) NaHCO(3), the TEPs remained identical to those in comparable dilutions of Magadi water, whereas this did not occur with comparable dilutions of 350 mmol L(-1) NaCl-i.e. the fish behaves electrically as if living in an NaHCO(3) solution equimolar to Magadi water. We conclude that the TEP is largely a Na(+) diffusion potential attenuated by some permeability to anions. In Magadi water, the net electrochemical forces driving Na(+) inwards (+9.9 mV) and Cl(-) outwards (+3.4 mV) are small relative to the strong gradient driving HCO(3) (-) inwards (-82.7 mV). Estimated permeability ratios are P (Cl)/P (Na) = 0.51-0.68 and [Formula: see text] = 0.10-0.33. The low permeability to HCO(3) (-) is unusual, and reflects a unique adaptation to life in extreme alkalinity. Cl(-) is distributed close to Nernst equilibrium in Magadi water, so there is no need for lower P (Cl). The higher P (Na) likely facilitates Na(+) efflux through the paracellular pathway. The positive electrogenic component is probably due to active HCO(3) (-) excretion.