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Abstract

Studies of fertilizer use in sub-Saharan Africa have been dominated by analyses of economic and market factors having to do with infrastructure,
institutions, and incentives that prevent or foster increased fertilizer demand, largely ignoring how soil fertility status conditions farmer demand
for fertilizer. We apply a switching regression model to data from 260 farm households in western Kenya in order to allow for the possibility of
discontinuities in fertilizer demand based on a soil carbon content (SCC) threshold. We find that the usual factors reflecting liquidity and quasi-fixed
inputs are important on high-SCC plots but not on those with poorer soils. External inputs become less effective on soils with low SCC, hence
the discernible shift in behaviors across soil quality regimes. For many farmers, improved fertilizer market conditions alone may be insufficient to
stimulate increased fertilizer use without complementary improvements in the biophysical conditions that affect conditional factor demand.

JEL classification: Q12, Q18, Q24
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1. Introduction

The growing contrast between the productivity-enhancing
role played by fertilizer in other regions and the very limited
use of fertilizer in sub-Saharan Africa (SSA) has reenergized
debate on the types of policies needed to realize fertilizer’s po-
tential benefits in Africa. SSA farmers use only 9 kg of fertilizer
per hectare (ha), compared to 73 in Latin America and 100–135
in Asia, where as much as 50% of the Green Revolution yield
growth is attributed to fertilizer use (IFDC, 2006). The litera-
ture highlights the development policy imperative of increasing
fertilizer use in SSA (Crawford and Jayne, 2006; Gregory and
Bumb, 2006; Kelly, 2006; Kherallah et al., 2002; Morris et al.,
2007; Poulton et al., 2006). These studies show that while agri-
cultural sector reforms in the last two decades have increased
private sector participation in input and output markets, SSA’s
agricultural sectors have registered only marginal increases in
fertilizer use overall. While in some cases these marginal in-
creases represent improvements in use rates over the pre-reform
period, in most places, farm, and plot-level demand for fertil-
izer remain inadequate to deal with declines in soil fertility and
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food supply. The result is that agricultural productivity growth
in SSA over the past several decades has lagged far behind that
in other world regions and remains well below that required to
meet food security and poverty reduction goals (Poulton et al.,
2006).

What drives low fertilizer application rates among SSA farm-
ers? Studies of fertilizer market development in SSA have been
dominated by analyses of economic and market factors hav-
ing to do with infrastructure, institutions, and incentives that
impede or foster increased fertilizer demand (Gabre-Madhin,
2005; Gregory and Bumb, 2006; Jayne et al., 2003; Kheral-
lah et al., 2002; Omamo et al., 2001; Poulton et al., 2006).
These factors are undeniably important. However, the apparent
sluggish response by farmers to improved market conditions in
the wake of widespread liberalization over the past 20 years
suggests that more is involved in fertilizer demand than just
market level factors. Waithaka et al. (2007) allude to the role
that nonmarket factors such as climatic and soil conditions play
in determining farmers’ input use rates. But there has been little
explicit study by social scientists of how soil biophysical con-
ditions affect farmer fertilizer demand, in particular whether
economic factors commonly thought to impede or foster fer-
tilizer purchase—such as cash liquidity—cease to be relevant
once soil quality degrades sufficiently.
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Using plot-level data on soil quality and plot age (i.e., how
long plots have been continuously cultivated since initial con-
version from native forest), we investigate the possibility of
discontinuities in fertilizer demand patterns, and in the fac-
tors determining fertilizer application rates conditional on soil
quality status. We find notable differences between farmers op-
erating higher quality plots and those managing lower quality
plots, with the latter generally cultivated for longer time pe-
riods than the former. Our findings suggest that biophysical
variables, captured here by soil carbon content, play an impor-
tant role in determining rates of fertilizer use in addition to the
usual household socioeconomic and transaction cost variables
used in the literature (de Janvry et al., 1991; Jayne et al., 2003;
Omamo et al., 2001). Considering the high-profile policy efforts
now underway in SSA to promote market-led agricultural de-
velopment through increased fertilizer use (IFDC, 2006), these
issues have important policy implications that we explain in the
article’s concluding section.

2. Background

The problem of fertilizer adoption is both important in it-
self and because it embodies all the problems of technology
adoption that we encounter in developing countries. The anal-
ysis of fertilizer demand has largely employed familiar models
of adoption analysis. For example, several studies have em-
phasized farmers’ lack of access to credit and insurance as a
limiting factor to fertilizer uptake (Croppenstedt et al., 2003;
Duflo et al., 2005; Duong and Izumida, 2002; Gregory and
Bumb, 2006; Jayne et al., 2003; Kherallah et al., 2002; Omamo
et al., 2001; Poulton et al., 2006). This has led to the call for
microfinance and microfinance services for the poor liquidity
constrained rural households (Morduch, 2000; Robinson, 2001;
von Pischke et al., 1983). There is also widespread recogni-
tion that rural markets do not work well in rural SSA. Mineral
fertilizers are imported, expensive to ship overland given the
often-poor state of roads and physical security, and thus tend to
be very expensive (Diagne and Zeller, 2001; Jayne et al., 2003;
Omamo et al., 2001).

An emerging body of literature on smallholder market partic-
ipation has similarly emphasized the role of transaction costs in
smallholder behavior (Bellemare and Barrett, 2006; de Janvry
et al., 1991; Goetz, 1992; Key et al., 2000; Renkow et al., 2004;
Staal et al., 1997; Vakis et al., 2003). The core point of this lit-
erature is that household-specific transaction costs give rise to
idiosyncratically missing markets among agrarian households
that may have important consequences for peasant household
response to price incentives. A subthread of the fertilizer adop-
tion literature has similarly focused on transactions costs. For
example, a Tobit analysis of factors determining fertilizer use
rates in eastern Kenya shows that while there was an increase in
the number of farmers using fertilizer due to increased village
input retailing, use rates remain low due to high transaction
costs that reduce fertilizer’s profitability for farmers (Freeman

and Omiti, 2003). Another adoption study, by Adesina (1996),
similarly found distance from a farmer’s field to the market an
important factor that discourages fertilizer use.

But in a recent review of research on smallholder market
participation in SSA, Barrett (2008) shows that in addition to
transaction costs, which are largely determined by public goods
such as roads, physical security, contract enforcement mecha-
nisms, and information availability, households’ productive as-
sets have an important bearing on the ability and incentives of
smallholders to participate in agricultural markets. Private asset
endowments not only enable self-insurance and liquidity that
circumvents some of the financing constraints that commonly
limit market participation or technology uptake, they can also
provide crucial complementary inputs to production, increasing
the returns of other inputs, such as fertilizer. As a result, inter-
ventions aimed at improving poor households’ access to pro-
ductive assets may be central to stimulating smallholder market
participation and escape from semi-subsistence poverty traps.
This point may be critical to understanding fertilizer market par-
ticipation and application rates since natural capital in the form
of soil nutrients is typically nontradable but complementary to
purchased fertilizer inputs in determining crop production. If
a farm household’s ex ante endowment of soil capital affects
the productivity of fertilizer it might purchase, then we would
expect fertilizer application (and purchasing) behavior to vary
markedly with farmers’ soil quality.

This point has been largely ignored in the literature to date.
Farm size is the most common, and often the only, measure
of land assets in most studies of fertilizer application. But this
kind of formulation implausibly assumes homogeneity in the
quality of land among households. Adesina (1996) found that
a favorable biophysical environment is as important as proxim-
ity to markets in determining fertilizer use by smallholder rice
cultivators in Cote d’Ivoire. Similarly, Mwangi (1997) showed
that unfavorable soil quality depresses farmers’ fertilizer de-
mand. One important difference between Mwangi (1997) or
Adesina (1996) and this article is that we use precise measures
of soil quality data at plot level, as opposed to coarse subjec-
tive categorizations. Additionally, we hypothesize soil quality
affects fertilizer demand patterns not only directly but, more
fundamentally, by conditioning how factors such as household
income or credit access affect fertilizer demand.

The core contribution of this article is to determine how
complementarities between fertilizer and soil carbon content
(SCC) that have recently been reported in the literature on
SSA agriculture (Marenya and Barrett, forthcoming; Zingore
et al., 2007) affect smallholder fertilizer demand. We introduce
a novel approach to the study of smallholder fertilizer adoption
and application rates by developing a simple behavioral model
that explains why one might see threshold effects in farmer
fertilizer application behavior and then using plot-level soils,
fertilizer use and plot age data in an endogenous switching re-
gressions model we examine fertilizer use conditional on soil
quality. We thereby not only reinforce the intuitive point that
soil quality matters to fertilizer uptake, we also explicitly show
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how plot-level biophysical measures of soil quality influence
the salience of more conventional transaction costs and liq-
uidity constraints variables in determining fertilizer application
rates among smallholders. We do this by endogenously splitting
our sample into two soil quality regimes to allow for the possi-
bility that different soil condition regimes may lead to distinct
fertilizer demand behaviors.

The choice of SCC as a measure of soil quality is appro-
priate because soil carbon is increasingly recognized as the
single best summary statistic for soil fertility status associated
with soil organic matter (SOM) stocks (Manlay et al., 2007).
SCC is itself a function of a complex suite of factors, includ-
ing soil conservation, cropping patterns, and the application of
organic fertilizers and biomass recycling. Soil carbon itself is
biochemically slow-moving, so that changes in SOM do not
occur quickly in response to a single season’s activities but
are, rather, the cumulative result of patterns over an extended
period, commonly measurable in years or even decades. Thus,
plot SOM can be reasonably taken as exogenous to farmer fertil-
izer application decisions in a given period. Additionally, SOM
pools act as nutrient reservoirs and regulate the availability of
soluble nutrients to plants, both directly and because organic
matter provides carbon needed by soil microbial communities
for metabolic processes that in turn release nutrients for crop
uptake (Bationo and Mokwunye, 1991). When farmers fail to
replenish soil carbon, either due to scarcity of organic resources
(e.g., animal manure, reincorporated crop residues) or failure
to rest soils after a period of continuous cultivation that draws
down nutrient and SOM stocks through harvest and leaching,
loss of soil carbon may create conditions that make the use
of inorganic fertilizers less productive because nutrients intro-
duced by fertilizer application are then less available to plants.
Of course, if farmers apply less fertilizer and thereby gener-
ate less biomass that can be reincorporated into the soil this
can generate a reinforcing feedback loop that undermines the
restoration of soil health.

Where SCC is low, fertilizer use may prove unprofitable
for a broad range of application levels due to low expected
returns via marginal crop yield gains (Marenya and Barrett,
forthcoming). In this case, fertilizer market reforms or relax-
ing household-specific liquidity or transaction cost constraints
may not markedly improve incentives to increase fertilizer use
because the SCC-conditional yield response is too low to make
fertilizer use profitable, even if transactions costs are lower or
credit becomes available. For such farmers, fertilizer use might
only increase if market and price incentives are accompanied by
programs that also increase SCC, thereby boosting the expected
marginal productivity of fertilizer.

On the other hand, farmers whose plots have reasonably high
levels of SCC already enjoy high-expected marginal product of
fertilizer use. In this soil quality regime, improvements in mar-
keting infrastructure that make fertilizer more available and less
costly to purchase, or improvements in output prices or farmer
liquidity, should lead directly to increased fertilizer use as soil
fertility is not limiting and farmers therefore respond more

readily to marginal price incentives. We need to be cautious,
however, not to project the behaviors of this more familiar—
and in some environments perhaps a larger—cohort onto those
other farmers who struggle to cultivate SOM-deficient soils.

3. Conceptual model

We conceptualize smallholder farmer demand for fertilizer
using a simple, stylized model of household behavior. Assume
a representative household maximizes utility defined over con-
sumption of a vector of agricultural commodities, qa , and a vec-
tor of other goods bought from the market, qm . The household
earns income from production and possibly sale of agricultural
crops and from off-farm earnings, I (which includes unearned
income). Crop output qo is generated using a production tech-
nology, qo = qo (V |A, S, G, Z) that transforms purchased
variable fertilizer inputs, V, given quasi-fixed inputs (land area,
labor, livestock, machinery) represented by A, soil quality, S,
public goods and services such as roads, grades and extension
services, G, and household characteristics that act as productiv-
ity shifters such as education, farming experience, age, etc. (Z),
into crop output, part of which is consumed in the household as
qa . The household utility function is represented by

U = U (qa, qm) (1)

subject to two constraints: the household’s cash budget con-
straint and the production technology

pvqv + pmqm + paqa = paqo(V |A, S,G,Z ) + I, (2)

qo = qo(V |A, S,G,Z ), (3)

where pa ,pm, and pv are, respectively, the market prices for
agricultural goods, manufactured goods bought from the mar-
ket, and variable inputs. Assuming an interior solution to the
household’s optimization problem, we can in theory solve for
the variable input demand as a function of all exogenous or
quasi-fixed variables

qv = qv(pa, pv, pm, Z, S,G,A, I ). (4)

A final element is the household-specific variation in shadow
prices due to household-specific variation in transactions costs.
While market prices are common to everyone, the transactions
costs of bringing fertilizer or manufactured goods back to one’s
farm or evacuating harvested crop from farm to market will
vary across households. Furthermore, while public goods will
be common to all, A, I, S, and Z will vary across households as
well, making the marginal returns to inputs vary depending on
household-specific capabilities as expressed in A, S, and Z, as
well as household-specific shadow prices.

Thus each household has its own conditional factor demand
for fertilizer. Whether a household buys fertilizer depends on
whether the market price per unit of fertilizer pv , adjusted for the
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Fig. 1. Estimated marginal value product of nitrogen fertilizer (Kshs/kg N) conditional on plot soil carbon content (line shows the nonparametric regression, while
the shaded areas reflect the 95% confidence band around the conditional mean). From Marenya and Barrett (forthcoming).

household-specific transactions costs of buying the fertilizer, is
at least equal to the marginal value product (MVP) of fertilizer,
evaluated at pa , i.e., po(∂qo/∂v) less the household-specific
transactions costs of selling crop.

The household’s net market position for fertilizer can be rep-
resented by an indicator variable denoted M = 1 if the house-
hold enters the market to buy fertilizer amount qv > 0 and M =
0 if it elects not to buy the input. The household pays the price
pv plus transaction costs τ v per unit of fertilizer bought. These
transaction costs depend on public goods and services (e.g., ra-
dio broadcast of prices that affect search costs, extension service
information on crop marketing strategies, road accessibility to
market), household, and farm-specific characteristics, Z (e.g.,
educational attainment, gender, age) and other household as-
sets, A (e.g., transport equipment) and liquidity from farm and
nonfarm earnings, I, all of which might affect transaction costs.
Therefore the household’s fertilizer market participation deci-
sion can be represented as follows:

M= 1 if po(∂qo
/
∂v) ≥ pv + τ v (Z,A,G, I )

M= 0 if po(∂qo
/
∂v) < pv + τ v (Z,A,G, I )

}
.

(5)

In this article, we focus in particular on how soil qual-
ity, S, affects fertilizer demand due to the complementar-
ity between SOM reflected in SCC and nutrients introduced
through inorganic fertilizer application. This complementarity
is clearly reflected in the sigmoid-shaped estimated relationship
between SCC and the expected MVP of nitrogen fertilizer, as re-
ported in Marenya and Barrett (forthcoming) and reproduced in
Fig. 1. The vertical axis shows the marginal value product per

kg of nitrogen applied on maize plots in the same sample of
farms studied in this article. At an average nitrogen price of
Kshs 200 per kg, it appears that many farmers whose plots have
SCC below about 3% may find the use of fertilizer subopti-
mal because low SCC causes the MVP of nitrogen fertilizer
to fall below its price. In the low-SCC regime (below roughly
3% SCC), farmers should not respond to marginal changes in
the price of maize. Above that threshold, the expected MVP
of fertilizer increases rapidly, so that marginal changes in the
price of either maize (which shifts the MVP curve upward) or
fertilizer can lead to a significant increase in fertilizer uptake
at the extensive, as well as intensive, margins. At higher levels
of SCC, liquidity constraints in particular may limit farmers’
fertilizer purchases.

These two regimes, defined by the threshold at which fertil-
izer application starts to become profitable, have distinct pol-
icy implications for farmers in the two soil quality regimes.
For those whose SCC falls below the profitability threshold,
market reforms that marginally improve prices or initiatives
to relax farmer liquidity constraints may not markedly im-
prove incentives to increase fertilizer use because the SCC-
determined yield response is too low for fertilizer to be prof-
itable without massive subsidies, which may not be the best use
of scarce resources to aid poor smallholders. For such farm-
ers, fertilizer use may only increase if such standard economic
incentives are accompanied by programs that help them im-
prove the fertility of their soils by replenishing depleted SOM.
On the other hand, farmers whose plots have reasonably high
levels of SCC and therefore high-expected marginal product
of fertilizer can benefit immediately from improvements in
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seasonal credit availability or in marketing infrastructure that
make fertilizer more available and less costly and that boost
crop prices. Such interventions should lead to increased fertil-
izer use at the intensive margin, among farmers already using
fertilizer.

4. Empirical model

The conceptual model above suggests that the factors that
influence fertilizer uptake vary depending on whether one lies
above or below the SCC level at which fertilizer uptake be-
comes profitable in expectation. If this is true, then estimation
of fertilizer demand on a sample that pools plots across the SCC
threshold would lead to biased estimates, reflecting an artificial
composite of farms with low SCC whose fertilizer use rates
are largely nonresponsive to liquidity constraints and prices
and those with higher SCC who are responsive. We therefore
hypothesize that controlling for household- and farm-specific
factors, farmers’ fertilizer application behavior will be struc-
turally different between two regimes defined by a SCC thresh-
old. Of course, we do not know exactly where that threshold
lies, although prior results suggest it is in the neighborhood
of 3% SCC (Fig. 1). But we can estimate that threshold and
then, conditional on the estimated threshold, test whether fer-
tilizer demand patterns vary on either side of it. To achieve this
we apply a switching regression framework, splitting the data
into two segments following the method developed by Hansen
(2000) to identify an optimal threshold.

Differences in fertilizer use rates on either side of an apparent
SCC threshold may arise under either of two different situations.
First, if there is no behavioral difference across SCC levels, but
SCC levels are associated with different farmer characteristics,
then we may still find differences in fertilizer application rates
between the low-SCC and high-SCC groups. But these differ-
ences in fertilizer application rates would not arise due to SCC
differences. Alternatively, fertilizer use rate differences may
result from otherwise-identical farmers responding differently
based on their SCC status. In this case, SCC regime matters
fundamentally to fertilizer demand patterns. After establishing
that there are differences in fertilizer application rates across
the two groups of farmers, we set out to see which of these
explanations fits the data best.

We use recent sample splitting methods based on grid search
techniques, as discussed in Hotchkiss (1991) and Hansen
(2000). Let v1i and v2i, i = 1, . . . , N , denote the dependent
variable fertilizer use rates (kg/ha) to be explained in each of
the two regimes. Let X1i and X2i be 1 × k1 and 1 × k2 vectors
of all the explanatory variables (pa, pv, pm, Z, S,G,A, I ) that
explain fertilizer use rates in each regime. Let β1 and β2 be
k1 × 1 and k2 × 1 parameter vectors, respectively. Based on
the von Liebig understanding of limiting soil factors in crop
production, we think of SCC as the variable that determines the
threshold that separates the two regimes. Finally, u1i and u2i are
error terms. The switching regression can then be defined by

the following set of equations

v1i = X1iβ1 + u1i (6)

v2i = X2iβ2 + u2i. (7)

Note, however, that X1i and X2i are observed only partially,
since X1i is only observed for that part of the sample belonging
to regime 1 and X2i is only observed for the subsample belong-
ing to regime 2. What is actually observed is a single variable
vi defined by

vi =
{

v1i iff Si ≥ λ∗

v2i iff Si < λ∗ , (8)

where λ is the characteristic of the observations used to clas-
sify them in the two regimes and λ∗ is the cutoff value that
determines the initial classification. We hypothesize that S is
a relevant variable for λ. So if Si exceeds the cutoff value S∗,
observation i falls into regime 1, and into regime 2 otherwise.
The switch point, S∗, is unknown and thus needs to be estimated
as well. We can now define the indicator variable R to classify
observations into either regime as

Ri =
{

1 iff λi ≥ λ∗

0 iff λi < λ∗ . (9)

This allows us to summarize (5)–(7) as

vi = RiX1iβ1 + (1 − Ri)X2iβ2 + gi. (10)

Here, gi = Riu1i + (1 − Ri)u2i is the error term. Following
Hansen (2000), we select the parameter vector {β1, β2, λ∗} that
minimizes the sum of squared errors,

En(β1, β2, λ
∗) =

n∑
i=1

g2
i . (11)

By estimating Eq. (10) over a range of values of λ∗—i.e.,
estimating β1 and β2 conditional on λ∗—and then doing a grid
search to choose the optimal λ∗, we determine the optimal
sample splitting point.

A further complication is introduced by the inherent censor-
ing of observed fertilizer application within a given regime. One
could assume that the factors that lead farmers to self-select out
of fertilizer use are the same as those that determine application
rates conditional on use and use a conventional Tobit estima-
tor, as several previous papers have. However, since variables
such as fixed transactions costs (e.g., travel time between the
farm and fertilizer purchase or crop sales points) should affect
the dichotomous choice of whether or not to participate in the
market, but not the continuous choice of fertilizer application
rate conditional on purchase, we opt instead for a Heckman
selection model specification for Eqs. 5–7 above. We then test
statistically to verify that this choice is appropriate in these
data.
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5. Study area and data description

The data were collected from sites in seven different villages
in Vihiga and South Nandi Districts in western Kenya, with one
site per village. The region is classified by the Kenya Agricul-
tural Research Institute (KARI) as a moist transitional agroeco-
zone characterized by medium to low soil fertility levels. The
cropping system is dominated by maize, often with bean in-
tercrops, grown on small plots averaging 0.5 to 1.0 ha. (Place
et al., 2002). The rural populations in this region are among the
poorest in the country, with 49.9 and 58.1% of the population
in Nandi and Vihiga Districts, respectively, living below the
national rural poverty line of Kshs 1239/month (US$0.57/day)
per person (Kenya, 2000a, 2000b).

Participants for this study were selected from an original sam-
ple of 60 farms used in a soil science experiment by Kinyangi
et al. (2005). These had been selected in a stratified random
sample on the basis of how long cultivation had been going
on in each village since the agricultural plots were originally
converted from forest. The aim was to sample farms that had
been cultivated for less than five years to 100 or more years.
The data thus represent a chronosequence of sites that were
converted from forest to agriculture in roughly 1900, 1930,
1950, 1970, 1985, 1995, and 2000, on which Kinyangi et al.
(2005) conducted experimental trials. To establish that use
of these sites actually changed at the times specified, we in-
vestigated local records from district and agricultural offices
and spoke with elderly community members. Specific locales
within the study area had been cultivated for varying lengths
of time providing more continuous variation in plot ages. Since
these areas are socioculturally similar and physically proximate
to one another, with similar institutional and physical infras-
tructure, intersite differences for other reasons are likely quite
modest.

In addition to the original 60 households, we randomly sam-
pled a further 200 households from the same sites, for a total
of 260 households. Within each conversion age stratum (site), a
census of all maize growing households was conducted with the
help of local provincial officials. From those lists, each house-
hold was subjectively assigned by the field survey team and the
local chief, subchief and village elders to a wealth tercile based
on quality of dwelling, farm size, educational attainment, type
of employment, and social standing in the village. Households
were then selected randomly from these conversion age-wealth
tercile strata to include 10–15 households from each wealth
tercile in each selected village. Household- and plot-level data
were then collected in June–July 2005 using a structured ques-
tionnaire to elicit recall responses on farm production and other
pertinent data for the preceding long rainy season. All the maize
and maize–bean plots cultivated by each of the 260 households
were included in the survey. The data collected from the adult
responsible for managing each plot included variables such
as crop outputs, variable inputs (family labor and hired labor
used, disaggregated for each major activity, fertilizer, manure,

and other inputs used), the age of the plot (i.e., the specific year
in which it was converted from forest) and details on the plot
manager (gender, age, educational attainment). Data were also
collected from each household on variables such as time taken
to bring fertilizer to the farm and availability of formal and
informal credit.

We also collected soil samples from each of these house-
holds’ 445 maize and maize–bean plots at 10 cm depth (i.e.,
the ploughing layer) at five different positions within each plot.
The samples within a plot were mixed to create a composite,
plot-specific soil sample. We then had the World Agroforestry
Centre (ICRAF) soil laboratory use wet chemistry and near-
infrared spectroscopy (NIRS) methods to establish the SCC
and nutrient content of these plot-specific soil samples, follow-
ing protocols developed by Shepherd and Walsh (2002) and
Cozzolino and Moron (2003).1

Table 1 presents definitions and descriptive statistics for all
the variables used in the empirical analysis. Households av-
eraged 1.7 plots sown in maize; we focus on those plots ex-
clusively, some of which were intercropped with beans. The
two right-hand columns separate the sample based on the es-
timated optimal SCC threshold (the estimation of which we
explain below). As is plain in that table, there is considerable
dispersion within each SCC regime, but also important—if not
always statistically significant—differences between the two
regimes. In particular, we note that fertilizer application rates
are nearly twice, on average, on the high-SCC plots than on
the low-SCC plots. But the former households also have higher
incomes and better credit access, enjoy more frequent extension
agent visits and somewhat larger farms than do those on poorer
soils. So it is impossible to sort out the extent to which soil
conditions affect fertilizer use patterns on the basis of descrip-
tive statistics alone. Hence the need for multivariate regression
analysis.

From Eq. (4), demand for variable input fertilizer is given
by qv = qv(pa, pv, pm, Z, S,G,A, I ). Since the data were
collected within a compact geographical area, there was no ob-
served variation in the prices for fertilizer or maize between
households. That leaves only variables reflected in Z, S, G, A,
and I to be used in the empirical model. In the vector Z we in-
clude age, years of education, and gender of household head. We
also included variables that captured liquidity constraints such
as access to institutional credit, if the fertilizer dealer allowed
credit purchase, and household per capita income. Other vari-
ables included were those that affect transaction costs such as
ownership of bicycles and ox-carts, time taken to reach dealer,
and whether farmers had quality problems with fertilizer.

1 See Marenya and Barrett (forthcoming) for more details on these data and
the soil testing methods used. Please note that the average SCC of 3.36% in
our sample may appear slightly higher than in other studies that do not stratify
to ensure inclusion of samples from plots recently converted from forest. In
the present sample, 23% of the plots had been cultivated for less than 10 years
since conversion from forests.
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Table 2
Regime-specific estimates of fertilizer use and application rates (SCC excluded)

Variables Probit of fertilizer use ( = 1 if yes, 0 if no) Fertilizer application rate (kg/ha N per plot)

Subsample Subsample at/ Subsample Subsample at/
below 2.70% above 2.70% below 2.70% above 2.70%

Coefficient Standard Coefficient Standard Marginal Standard Marginal Standard
error error effect error effect error

Constant 1.73∗∗∗ 0.64 0.08 0.65 9.54∗∗∗ 3.01 7.12 26.33
Age of household head −0.01 0.01 −0.01 0.13 −0.03 0.03 −0.08 0.15
Plot size 0.0002∗∗ 0.0001 0.0003∗∗∗ 0.0001 0.0001 0.0001 0.001 0.001
Education of household head 0.04 0.05 0.003 0.04 0.10 0.13 0.16 0.63
Male household head 0.11 0.22 0.30 0.22 0.54 0.65 3.69 4.28
Per capita income 0.77 0.50 0.66 1.25 0.24 0.21 0.00002 0.00005
Extension visit frequency 0.11 0.22 2.20 0.22 0.34 0.60 1.64 3.74
Institutional credit access 0.04 0.31 0.30 0.24 1.46 4.60 1.60∗ 0.92
Credit obtained from dealer 0.04∗∗ 0.02 0.009 0.26 2.76 1.59 2.76∗ 1.59
Total time taken to dealer −0.26∗ 0.15 0.06 0.13
Use of hybrid seed 0.25∗∗∗ 0.08 0.25∗∗∗ 0.08 3.78∗∗ 1.70 4.31 1.04
Use of machinery 0.36 0.25 0.07∗∗∗ 0.02 0.12 0.64 3.74 5.88
Plot age −0.003 0.001 −0.005 0.005 −0.03∗∗ 0.01 −0.06 0.08
Problem with fertilizer quality −0.16 0.26 −0.58 0.4 −0.54 0.73 −3.74 5.88
Bicycle/ox-cart ownership 0.21 0.24 0.99 0.22 0.43 0.69 2.02 3.51
Inverse Mills ratio 2.54∗∗ 1.28 3.93∗∗ 1.86
Correlation coefficient between pro-
bit and application rate equations
(rho)

0.77 0.32 0.87 0.46

LR test (χ2(1)) of independence of
equations/rho = 0 (P-value)

47.18(0.00) 64.65 (0.00)

LR test (χ2(18)) of βSCChigh =
βSCClow(P-value in parentheses)

87.34 (0.00) na

Observations (N) 202 243

Note: Standard errors appear in parentheses. ∗,∗∗,∗∗∗ denote statistically significant at the 10%, 5%, and 1% level, respectively.

6. Regression results

Ultimately, we want to see if the determinants of fertilizer
application rates are affected by ex ante soil quality not just
directly but also by changing the relation between fertilizer use
and standard economic incentives reflected in cash liquidity,
via household income and credit access, and in ownership of
quasi-fixed inputs such as machinery or farmer education. If
there exists a soil quality threshold that creates an extensive
margin for profitable fertilizer use, then the usual behavioral
responses to changes in liquidity, prices, and quasi-fixed input
availability may only apply above the threshold, at the intensive
margin of fertilizer use.2

The key first step is thus to identify the soil fertility threshold,
as explained above. We used the entire range of SCC observed in
our sample plots (0.9–6.0%), using a grid search with intervals
of 0.3. The minimum sum of squared errors occurred at a SCC

2 In principle, it would be desirable to control for household-specific unob-
served heterogeneity by using household fixed effects in estimating plot-specific
fertilizer application rates. However, this requires restricting estimation to a sub-
sample having at least two plots. Since the mean number of maize plots per
household was only 1.7, we lose too many observations to make that estimation
strategy work with these data, unfortunately.

level of 2.70%, reasonably close to the level that seems visually,
per Fig. 1, to reflect the point at which fertilizer use becomes
remunerative on these farms. We therefore divided the 445 plots
into two samples, with 202 plots with SCC below 2.70 being
low-SCC and the other 243 at or above 2.70 being classified in
the high-SCC regime.

Tables 2 and 3 present the Heckman selection model results
for the two regimes. First we estimate two different specifica-
tions, one which only uses SCC to split the sample, thereby
assuming no fertilizer use response to changing SCC within
a given regime (Table 2), and the other including SCC as a
regressor, as well as using it to split the sample optimally
(Table 3). The latter model is clearly preferable, noting that
the LR test for the joint significance of all the SCC, SCC2,
and SCC3 rejects the null at less than the 1% significance level
for the low-SCC, high-SCC, and whole sample regressions. We
therefore restrict the ensuing discussion to the results displayed
in Table 3. We offer Table 2 purely to establish how important
it is to control for SCC both as a regime-shifter and as an inde-
pendent variable that matters in its own right. Other covariates
are plainly correlated with SCC and thus the point estimates of
non-SCC regressors are significantly affected by the omission
of SCC from the regression, as casual comparison of Tables 2
and 3 clearly indicates.
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Table 3
Regime-specific estimates of fertilizer use and application rates (SCC included)

Variables Probit of fertilizer use ( =1 if yes, 0 if no) Fertilizer application rate (kg/ha N per plot)

Subsample Subsample at/ Subsample Subsample at/
below 2.70% above 2.70% below 2.70% above 2.70%

Marginal Standard Marginal Standard Marginal Standard Marginal Standard
effect error effect error effect error effect error

Constant 2.17 7.19 2.10 1.40 4.80 24.87 2.80 2.80
Age of household head −0.01 0.02 −0.03∗ 0.02 −0.07∗∗∗ 0.02 −0.0004 0.001
Plot size 0.0002∗∗ 0.0001 0.0004∗∗∗ 0.0001 0.24 0.87 0.06∗∗ 0.03
Education of household head 0.05 0.05 0.09∗∗∗ 0.03 0.13 0.12 0.03∗∗ 0.01
Gender of household head 0.001∗∗ 0.0005 0.21∗∗∗ 0.05 0.45∗∗∗ 0.14 0.22 0.27
Partial income per capita 0.56 0.39 0.20 0.40 0.00001 0.00001 0.00004∗∗∗ 0.00001
Extension frequency 0.07∗∗ 0.03 0.25∗∗∗ 0.11 1.60∗ 0.99 0.78 1.56
Institutional credit access 0.03 0.31 0.32 0.25 0.34 0.80 0.64∗∗∗ 0.18
Credit obtained from dealer 0.01 0.33 0.07 0.26 0.46 0.54 1.29 1.79
Total time taken to dealer −0.81∗∗∗ 0.31 −0.07 0.13 n.a. n.a. n.a. n.a.
Use of Hybrid 0.16∗∗∗ 0.03 0.21∗∗ 0.09 0.23 0.62 0.11 1.99
Use of machinery 0.30 0.26 0.60∗∗∗ 0.25 0.19 0.59 0.64∗∗∗ 0.14
Plot age −0.23 0.22 −0.04 0.05 −0.03∗∗ 0.01 −0.04 0.06
Problem with quality −0.15 0.27 −0.67 0.55 −0.64 0.67 −0.30 2.07
Bicycle/ox-cart ownership 0.56 0.63 0.17 0.23 0.56 0.63 1.93 1.55
SCC 0.27 0.26 1.60∗ 0.94 1.25 4.07 0.64∗∗ 0.29
SCC2 −3.82 6.61 −2.13 1.49 −1.96 21.68 −3.97∗∗ 1.71
SCC3 0.64 1.17 1.62 1.09 0.54 3.74 0.31∗∗ 0.15
Inverse Mills ratio 2.25∗∗ 1.06 1.01∗∗ 0.49
Correlation coefficient between

probit and application rate
equations (rho)

0.87 0.56 0.69 0.22

LR χ2(1) test of independence
of equations/rho = 0 (P-
value)

61.20 (0.00) 54.37 (0.00)

LR test (χ2(18)) of βSCChigh =
βSCClow(P-value in parenthe-
ses)

96.54 (0.00) na

LR χ2(3) test of SCC =
SCC2 = SCC3 = 0 (P-value)

57.34 (0.00) 51.91 (0.00)

Observations (N) 202 243

Note: Standard errors appear in parentheses. ∗,∗∗,∗∗∗ denote statistically significant at the 10%, 5%, and 1% level, respectively.

We begin by discussing the selection equation describing the
choice whether or not to apply fertilizer. This equation is iden-
tified by the time taken to reach the agro-input dealer, a fixed
cost that should not affect the fertilizer application rate condi-
tional on using any fertilizer. Within the low-SCC regime, the
likelihood of fertilizer use is negatively and statistically sig-
nificantly related to travel time to reach the nearest fertilizer
dealer. It is positively and statistically significantly associated
with the frequency of extension visits, plot size, farmer’s use
of hybrid seed, and with the household head being male. By
contrast, in the high-SCC regime, better educated, male farm-
ers and those operating larger maize plots are more likely to
use fertilizer. Older farmers are statistically significantly less
likely to use fertilizer in this regime. Visits by extension agents
have a significant positive effect on fertilizer use. The market
access variable (time to dealer) has no significant effect on
the discrete choice to use fertilizer on more fertile soils in the
high-SCC regime. The use of machinery and hybrid seed were

also positive predictors of the decision to use fertilizer in this
regime.

There are some common patterns to fertilizer uptake across
the two regimes, in particular based on farmer gender, extension
access, and the use of hybrid seed. This may show that female
farmers still face unequal access to resources as compared to
their male counterparts (De Groote and Coulibaly, 1998). And
extension agents may have a positive impact on farmers’ man-
agerial capabilities and productivity (Hussain et al., 1994), or
they may merely create social pressure for farmers to use inputs
and methods the agents advocate (Moser and Barrett, 2006),
manifest in the use of both inorganic fertilizer and hybrid seed.
But there are important differences across SCC regimes as well.
In the high-SCC regime where fertilizer use should be prof-
itable, plot SCC is statistically and significantly associated with
the decision to use fertilizer. Older and less educated farmers
are less likely to use inorganic fertilizers, reflecting a tendency
toward traditional cultivation methods without modern inputs.
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We overwhelmingly reject the null hypothesis of indepen-
dence of the dichotomous fertilizer use and continuous fertilizer
application rate equations in both high- and low-SCC regimes,
as indicated by the likelihood ratio test of the null hypothesis
that the estimated correlation coefficient between the errors in
the two equations equals zero. The χ2(1) test statistics are 61.2
and 54.37 for the low- and high-SCC regimes, respectively,
both with a P-value of zero. Discrete fertilizer use decisions
are clearly not statistically independent of the application rate
decision. We therefore include the inverse Mills ratio (IMR)
as a regressor in the second stage equation to control for the
predicted probability of fertilizer use in order to correct for
possible selection effects associated with unobserved factors
that might simultaneously affect the discrete decision to use
fertilizer at all and the continuous decision as to how much to
apply. The coefficient estimate on the IMR regressor in the sec-
ond stage regression is statistically significant in both regimes.
Moreover the LR tests for the equality of parameters in the
low- and high-SCC regime also reject the null hypothesis (P
= 0.00), reinforcing the appropriateness of splitting the sample
into these two regimes.

The second stage fertilizer application rate equations re-
veal striking behavioral response differences conditional on
soil quality regime, as hypothesized earlier. Farmers’ fertilizer
application behaviors, conditional on expected use, appear to
vary markedly with plot soil quality (high-SCC regime), and not
just in direct response to soil quality, but also in their response
to other variables conditional on soil quality.

On high-SCC plots, fertilizer application rate decisions fol-
low patterns familiar from other adoption studies. Fertilizer
application rates are increasing in plot size, the educational at-
tainment of the household head, per capita household income,
institutional credit access, and possession of quasi-fixed inputs
such as agricultural machinery. Households with greater as-
sets and greater borrowing or self-financing capacity (through
cash income, usually from off-farm sources) use more fertil-
izer. Further, in the high-SCC regime, fertilizer use rates also
are strongly and positively associated with SCC, and at an
increasing rate, as reflected in the positive estimates of the
coefficients on the higher-order polynomials of SCC. Farmer
behavior seems to follow standard textbook models of behavior
reasonably well at the intensive margin, within this soil fertility
regime. Familiar policy prescriptions thus seem quite relevant:
increase extension coverage and the availability of seasonal
credit, improve marketing systems so as to increase crop prices
and bring down fertilizer prices, enhance access to quasi-fixed
inputs, etc.

The determinants of fertilizer application rates on low-SCC
plots appear quite different, however. Fertilizer application rates
are sharply lower on older plots and among older farmers and
higher for among male farmers and those farmers who had better
extension contact, but little else matters significantly. The result
with respect to plot age is especially interesting since older plots
grow less fertile due to continuous cultivation. The significant
coefficient estimate on plot age may signal that farmers grad-

ually abandon fertilizing older plots with low SCC. They have
become, in practical effect, irreversibly degraded. By contrast,
plot age has no effect on fertilizer application rates within the
high-SCC regime, indicating that so long as soil organic matter
can be conserved on the plot, farmers will continue to fertilize
it regardless of plot since conversion uncultivated from forest.

In order to highlight the difference that this sample splitting
estimation strategy makes, we also reestimated the Heckman
selection model for fertilizer application, this time pooling the
full sample. As reported in Table 4, the results (predictably)
blend those from the two SCC-conditional regimes in Table
3. Younger and better educated farmers appear more likely to
use fertilizer. The larger the plot size, the more likely fertilizer
was applied. Similarly extension contact, use of hybrid, and
plot SCC were shown to be positively associated with deci-
sion to apply fertilizer. Regarding factors associated with the
rate of fertilizer application, we again find that better educated
farmers and plots with higher SCC are associated with higher
fertilizer application rates. Although statistically significant,
there appears to be mild response to SCC and institutional
credit access—masking the robust response that in fact prevails
on high-SCC plots. Additionally there is a significantly nega-
tive effect due to plot age—which does not exist on high-SCC
plots—and a significant positive effect of household liquidity
on fertilizer use rates. These conventional, pooled regressions
thus yield the familiar results of relatively modest farmer be-
havioral sensitivity to estimated returns and strong relations to
underlying asset stocks and cash liquidity. Hence the famil-
iar policy prescriptions for increasing fertilizer uptake among
African smallholders. The problem is that if behaviors differ
markedly depending on the quality of plots farmers own, as it
seems to be the case in this sample, then the appropriate policy
responses should differ by soil quality regime as well.

7. Conclusions

Our estimation results suggest that western Kenyan farmers’
fertilizer application behaviors differ markedly across plots of
different soil quality. Higher fertilizer application rates on soils
with greater SCC do not appear to be due merely to a correlation
between SCC and farmer characteristics. Rather, the relation-
ship between those characteristics and fertilizer use patterns
varies sharply depending on where a plot’s SCC stands relative
to an apparent fertility threshold at which point fertilizer use be-
comes remunerative. This new and important finding could only
be uncovered using the novel switching (selection) regression
approach we take.

Our results suggest that increased fertilizer uptake due to
increased marginal returns through market-level interventions
(e.g., subsidies to farmers or traders, improved infrastructure,
etc.) is highly likely to occur at the intensive margin, among the
wealthier farmers who cultivate high-SCC soils, while farmers
cultivating low-SCC soils have statistically insignificant respon-
siveness to marginal improvements in the returns to fertilizer
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Table 4
Whole sample estimates of factors affecting fertilizer use rates

Variable (n = 445 plots with plots
fertilizer applied on 351 plots) Probit of selection equation for fertilizer Application rate equation

Coefficient Standard error Coefficient Standard error

Constant 2.54 1.39 13.31∗∗ 6.44
Age of household head −0.002∗ 0.001 −0.05 0.05
Plot size 1.01∗∗∗ 0.24 2.2 1.94
Education of household head 3.9∗ 2.18 0.04∗ 0.03
Gender of household head 1.27 0.97 1.27 0.97
Partial income per capita 0.000002 0.000002 0.0002∗∗ 0.00009
Extension frequency 0.08∗∗∗ 0.02 0.22 088
Institutional credit access 0.20 0.19 0.07∗ 0.04
Credit obtained from dealer 0.01 0.19 1.03 1.09
Total time taken to reach dealer 0.53 0.97 na na
Use of hybrid 0.15∗∗∗ 0.02 0.55 0.97
Use of machinery 0.50 0.47 0.07 1.02
Plot age −0.001 0.003 −0.11∗∗ 0.05
Problem with quality −0.24 0.17 −0.25 1.03
Bicycle/ox-cart ownership 1.04 1.48 0.99 0.90
SCC 0.63∗∗ 0.26 0.006∗∗∗ 0.0015
SCC2 −0.47 0.36 −0.48 2.20
SCC3 0.04 0.03 0.51∗ 0.20
Inverse Mills ratio 2.29∗∗ 1.06
Correlation coefficient between probit and ap-

plication rate equations (rho)
0.89 0.29

LRχ2(1) test of independence of equations/
rho = 0 (P-value)

59.46 (0.00)

LRχ2(3) test of SCC = SCC2 = SCC3 = 0 50.08 (0.00)

Note: Standard errors appear in parentheses. ∗,∗∗,∗∗∗ denote statistically significant at the 10%, 5%, and 1% level, respectively.

use, limiting the likely expansion of fertilizer use onto more de-
graded plots. Since high population density in western Kenya
effectively precludes increasing average farm size for low-SCC
farmers, and plot age and farmer gender are immutable, the
main policy levers for increasing fertilizer application rates on
degraded, low-SCC plots in the region appear to be through in-
creased extension visits—which may not be beneficial if farm-
ers are mainly conforming to agents’ wishes rather than learn-
ing and increasing their productivity—and by recapitalizing soil
organic matter on degraded farms. Standard economic instru-
ments associated with increased farmer liquidity and market
function seem unlikely to have much effect on more degraded
plots. Since the more degraded plots also tend to be the ones
cultivated by the poorest farmers in the region (Marenya and
Barrett, forthcoming), this has significant implications for the
design of pro-poor fertilizer strategies.
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