portfolio return charactrestics of different market sectors at the nairobi stock exchange

BY

MURIUKI J. MUTURI

D61/P/7723/2001

A project submitted in the partial fulfilment of the award to the Masters of Business Administration (MBA), University of Nairobi

DECLARATION

I, Muriuki John Muturi, hereby certify that...

1. Except where due acknowledgement has been made, this project work is mine alone.
The project has not been previously submitted in whole or in part,
to qualify for any other academic award.

Muriuki John Muturi

(D61/P/7723/2001)

I, Mr. Otieno Odhiambo Luther, hereby certify that this project has been presented for examination with my approval as the University of Nairobi supervisor.

Signed

Mr. Luther

Lecturer, Faculty of Commerce,
University of Nairobi

DEDICATION

This project is dedicated to my family members- my loving wife Brenda, daughter Anita Wambui, brother, sisters and my mother. May God bless you all in abundantly.

ACKNOWLEDGEMENT

I am greatly indebted to a number of persons, without whom, this project work would not have been completed. I wish to convey my sincere gratitude to my family for the patience and understanding during this period. I also wish to thank the management and staff of the Faculty of Commerce, University of Nairobi, the management of the Housing Finance and my fellow students for the time, logistics and moral support they have accorded me all along.

Special thanks also go to my supervisor Mr. Luther whose guidance on development and organization of my project helped me a great deal.

Special thanks goes to my colleagues, MBA 2001 CLASS. Your intelligent ideas, constructive criticism and peer evaluation added value to the successful completion of the project.

ASANTENI SANA

LIST OF ABBREVIATIONS

	FULL NAME	SHORT NAME
1.	Nairobi Stock Exchange	NSE
2.	Portfolio	Port.
3.	Brooke Bond Ltd.	BBOND
4.	George Williamson Kenya Ltd.	GWK
5.	Kakuzi	KAKUZI
6.	Kapchorua Tea Co. Ltd	KAPCHO
7.	Limuru Tea Co. Ltd	LIMTEA
8.	Rea Vipingo Plantations Ltd.	REAVIP
9.	Sasini Tea \& Coffee Ltd	SASINI
10.	Eaagads Ltd.	EAGADS
11.	A.Baumann \& Co.Ltd	ABOUM
12.	Uchumi Supermarket Ltd.	UCHUMI
13.	Car \& General (K) L.td	CGEN
14.	CMC Holdings Ltd	CMC
15.	Express Lid	EXPRES
16.	Kenya Airways Lid	KENAIR
17.	Marshalls (E.A.) Ltd	MARSH
18.	Nation Media Group	NMG
19.	Tourism Promotion Services Ltd (Serena)	SERENA
20.	Standard Newspaper Group	SMG
21.	Barclays Bank Ltd	BBK
22.	C.F.C Bank Ltd	CFC
23.	City Trust Ltd	CTRUST
24.	Diamond Trust Bank Kenya Ltd	DTK
25.	Housing Finance Co Ltd	HFCK
26.	I.C.D.C Investments Co Ltd	ICDC
27.	Jubilee Insurance Co. Ltd	JUB
28.	Kenya Commercial Bank Ltd	KCB
29.	National Bank of Kenya Ltd	NBK
30.	National Industrial Credit Ltd	NIC
31.	Barclays Bank Ltd	PANAFR
32.	Standard Chartered Bank Lid	SCB
33.	NIC Bank Ltd.	NICB
34.	Athi River Mining	ARM
35.	Bamburi Cement Ltd	BAMB
36.	British American Tobacco Kenya Lid	BAT
37.	B.O.C Kenya Ltd	BOC

38.	Carbacid Investments Ltd	
39. Crown Berger Ltd CARB 40. Dunlop Kenya CBERG 41. East African Breweries Ltd EUN 42. E.A.Cables Ltd EABL 43. E.A.Packaging Ltd EAPACK 44. E.A.Portland Cement Ltd EAPORT 45. Firestone East Africa Ltd FIRE 46. Kenya Oil Co Lid KENOL 47. Kenya National Mills Ltd KNM 48. Kenya Power \& Lighting Lid KPLC 49. Total Kenya Ltd TOTAL 50. Unga Group Ltd UNGA 51. Portfolio Return Characteristics PRC		

ABSTRACT

This study compares the portfolio stock return characteristics of different market sectors at the Nairobi Stock Exchange from January 1997 to December 2001. We begin by examining the average returns of each of the stocks in the Agricultural, Commercial, Financial and Industrial market sectors, without considering the risk level of each of the stocks included in the sample. We then factor in risk dimension into the analysis, both at the individual stock and portfolio levels.

The analysis of sectoral portfolio return characteristics does indicate that there are significant differences between sectors in terms of their risk-return relationships. The portfolio return characteristics do not only differ across sectors but also from one period to the other. These differences were intermittent. The existence of these risk-return differences is a manifestation of the inherent differences in market conditions and sector characteristics.

Empirical evidence suggests that stock returns across market sectors are not uniform. According to Fama and French $(1992,1996)$, much of the cross sectional variation in equity returns can be explained by firm characteristics such as market capitalization, price-to-earnings ratios, change in operating earnings and book-to-market ratios. They examine many of these factors simultaneously and conclude that size and book-to-market, explain the majority of the cross sectional variation in stock returns.

The differences observed in our study were significant enough to influence investor choice while determining which stocks to include in the investment basket and their respective proportions.

TABLE OF CONTENTS

DECLARATION I
DEDICATION II
ACKNOWLEDGEMENT III
LIST OF ABBREVIATIONS IV
ABSTRACT VI
TABLE OF CONTENTS VII
CHAPTER 1: INTRODUCTION 1
1.1 BACKGROUND 1

1. 2 STATEMENT OF THE PROBLEM 5
1.3 HYPOTHESIS 6
1.4 OBJECTIVE OF THE STUDY 7
1.5 IMPORTANCE OF THE STUDY 7
1.5 OVERVIEW OF THE STUDY 8
CHAPTER 2: LITERATURE REVIEW 9
2.1 CAPITAL MARKETS IN KENYA 9
2.1.1 History and Operation of Nairobi Stock Exchange (N.S.E) 9
2.1.2 Market Structure Reforms at Nairobi Stock Exchange (N.S.E.). 10
2.1.3 Role of Capital Markets Authority (C.M.A) 12
2.2 THEORETICAL FOUNDATIONS OF PORTFOLIO THEORY 12
2.2.1 The Concept 12
2.2.2 Markowitz Portfolio Theory \& Efficient Frontier 12
2.2.3 Capital Market Theory \& Capital Market Line. 13
2.2.4 Capital Asset Pricing Model \& Security Market Line. 14
2.3 EMPIRICAL EVIDENCE ON MARKET/SECTOR PORTFOLIO RETURN CHARACTERISTICS OUTSIDE KENYA 15
2.4 EMPIRICAL EVIDENCE ON MARKET/SECTOR PORTFOLIO RETURN CHARACTERISTICS IN KENYA. 20
CHAPTER 3: RESEARCH METHODOLOGY/DESIGN 22
3.1 POPULATION OF INTEREST 22
3.2 SAMPLING DESIGN 22
3.3 DATA COLLECTION METHOD 22
3.4 DATA ANALYSIS METHOD 23
CHAPTER 4: DATA ANALYSIS \& FINDINGS 26
4.I Agricultural Sector Portfolio Return Characteristics 26
4.2 Commercial Sector Portfolio Return Characteristics 32
4.3 Financial Sector Portfolio Return Characteristics 39
4.4 Industrial Sector Portfolio Return Characteristics 46
4.5 Inter- Sectoral Portfolio Return Characteristics Comparisons-Graphs 53
4.6 Yearly Sectoral Portfolio Return Characteristics Comparisons- Statistics 58
4.7 Inter- Sectoral Portfolio Return Characteristics Comparisons-Analysis of Variance (ANOVA) 60
CHAPTER 5: SUMMARY FINDINGS \& CONCLUSION 62
5.1 Findings 62
5.2 Recommendations 63
5.3 Problems and Limitations 64
5.4 Suggestions for future work 64
BIBLIOGRAPHY \& REFERENCES 65
APPENDICES 69
Appendix A-List of companies quoted at N.S.E. as at Ist January 1997 69
Appendix B-Key Definitions 71
Appendix C-Sector Returns 72
Appendix D-Correlation Coefficient 92
Appendix E-Covariance 97

CHAPTER 1: INTRODUCTION

1.1 BACKGROUND

Investors are interested in earning good returns from the investments they make. This they can only achieve when they select their investments carefully. This is because investment is about sacrifice of current shillings for future shillings. It involves waiting (time) and risk. Whereas the sacrifice takes place now and is certain, the reward comes later or may not come at all. Furthermore investors have different preferences for different assets that show different risks. In simple words, risk and return dominate the investor's world; and the risk tolerance varies from one investor to another or over a period of time.

The primary objective of an investor is to invest in assets that will achieve the investment objective. The starting point for establishing an investment portfolio must be the investor. No two people have the same set of personal circumstances, and those circumstances change as you move through life. Different people also have different emotional responses to risk and varying expectations on return.

Modern finance theory allows us to consider the investor and his or her perception differently from the asset that is being considered for investment. This allows us to determine the return and risk characteristics of an asset or portfolio of assets and match it with the investor's requirements. The advantage of this approach is that we can design a series of efficient portfolios that appeal to different investors.

What emerges is that different assets or portfolios compete and the investor or investor's adviser has to choose and rank them. Investors have different preferences; some may prefer investing in specific sectors, others in specific
companies within sectors, and others may be indifferent to sector classification thus investing in any company regardless of the sector the firm falls.

However it does not make sense performing security analysis for each sector if the risk and return characteristics is not significantly different across sectors. There is no evidence that show that in the case of the Nairobi Stock Exchange (NSE), risk and return amongst different sectors is significantly different to warrant sector or sector analysis. This study sought to explore the risk/return characteristics of various sectors at the NSE.

The stock exchange is a market that facilitates trading in securities issued by public listed institutions and the Government. Stock Exchanges encourage investment in real assets by providing Secondary market where investors can sell or buy shares and other securities.

In Kenya, stock exchange practice can be traced back in the 1920's when the country was still a British colony. Nairobi Stock Exchange was initially setup as an overseas stock exchange in 1953. In the following year (1954), Nairobi Stock Exchange was constituted as a voluntary association of stockbrokers registered under the societies Act. Since then Nairobi Stock Exchange has deyeloped to be one of the admirable stock exchange in Africa.

The structure of the Nairobi Stock Exchange has witnessed tremendous transformation during the last 10 years that has seen its operating environment and trading systems improve as part of measures aimed at improving market transparency and efficiency. Fundamental reform of the market structure was undertaken in year 2000.

The Nairobi Stock Exchange offers a wide range of counters where investors can minimize their risk. The establishment of collective investment vehicles allows investors to access a full-diversified investment in a single unit, greatly enhancing
their ease of access to the market, diversifying their investment and minimizing risk.

Common stocks and other equity related securities are highly responsive to conditions in the economy. The business cycle reflects the current status of a variety of economic variables, including GDP (Gross Domestic Product), industrial production, personal disposable income, and the unemployment rates.

The environment in which firms operate is characterized by rapid technological change and dynamic intervention with the external environment. According to Pearce \& Robinson (1997), factors that more directly influence a firm's prospects originate in the environment of its sector including entry barriers, competitor rivalry, the availability of substitutes and the bargaining power of buyers and suppliers. The operating environment comprises factors that influence a firm's immediate competitive situation-customer profiles, supplier's creditors and the labor market. These three sets of factors provide many of the challenges that a particular firm faces in its attempts to attract or acquire needed resources and to profitably market its goods and services and thus maximizing on the shareholder wealth.

A strong economy is reflected in an expanding business cycle. When business is good, firm make profits and therefore stock react by increasing in volume and return. Growth oriented speculative stocks tend to especially do well in strong markets. To a lesser extent, so do low risk and income oriented stocks. In a declining economy, the opposite has been observed.

Pouchkarev, Spronk and Vliett (2001) link the two-dimensional BCG matrix to the new and old economy stock. In their study, the new economy stocks represent 'stars' or 'question marks' while the old economy stocks represent 'dogs' or 'cash cows'. What these new stocks and new sectors characterize is their growth potential, which largely determines their value. They further state that, growth
potential depends on firm specific and sector specific factors e.g. management capability to identify and exploit valuable growth options on the number of strategic alliances and the rate of technological change within a sector.

The firm potential to generate positive cash flows is greatly influenced by the risk - return relationship characteristics of the investments engaged in. The objective of portfolio management is to attain risk and returns that satisfy shareholders wealth maximization - objectives. The assumption is that shareholders are risk averse. That suggests that investors expect to be adequately compensated for the risk they assume. At least they expect fair return from their investments.

That investors expect to be compensated for the risk they assume suggest that investments have uncertain outcomes and are thus risky. The problem facing any investor is to determine which particular risky asset to invest in. Furthermore modern investors do not own individual assets but a portfolio of assets. Portfolio is a collection of assets and the investor's problem becomes selecting an optimal portfolio from a set of possible portfolios.

Makowitz (1952) put forth a solution to this portfolio selection problem when he advanced the modern portfolio theory approach to investing. Makowitz (1952) begins by assuming that an investor has a sum of money to invest, in the present time, for a known length of time referred to as holding period, then sold off. His approach to portfolio selection assumes that investors seek both maximum expected returns for a given level of risk and minimum risk for a given level of expected return. Expected return is the measure of potential reward associated with a portfolio and standard deviation is a measure of a portfolio risk.

The question that then arises is how Makowitz (1952) approach can be used once it is recognized that there is infinite number of portfolios available for investment? What emerges is that portfolios compete and it is investors wish to choose the best one.

In this study we investigated portfolio return characteristics of different market sectors and determined the sector that outperforms the other sectors. This involved designing efficient portfolios for each sector then evaluated the difference between the market sectors.

1. 2 STATEMENT OF THE PROBLEM

The study sought to examine and compare the Portfolio Return Characteristics (PRC) of Different Market Sectors at the Nairobi Stock Exchange. The relationship between risk and return is useful in evaluating and ranking portfolios.

In addition we set to determine whether there is a sector that dominates all other sectors in terms of share price performance. In an efficient market it is not possible earning excess return on the basis of observable market sector characteristics because arbitrageur will take advantage and push the prices to their equilibrium levels.

Different market sectors exhibit different characteristics. It is a reasonable assumption that the differential in market sector characteristics will have a significant bearing in their returns and risks. This then becomes an empirical issue. Furthermore, market conditions are difficult to predict and usually can be identified only after they exist.

This study sought to establish whether by comparing portfolios across sectors, we may conclude that discriminating conditions exist to warrant incurring search costs and additional security analysis required of investors when selecting assets (shares) from individual sectors to include in the portfolio.

If the sector classification picks up differences between sectors, then we expect an insignificant difference in risk and return within a sector and significant differences across sectors. The differences should be significant enough to influence shareholder choice. For example, firms in sectors with erratic demand
or large fixed costs are expected to have higher risk than the firms in sectors with more stable demand or greater variable costs. If for example the capital structure is sector specific then we should expect the financial risk and return characteristic to vary from sector to sector.

The asset allocation problem is an important one in investment finance. This is a problem faced by an investor who has to decide how to allocate his/her wealth across different assets or asset classes. The issue that arises is whether the investor should be indifferent to the sector classification at NSE when deciding on the assets to include in the portfolio.

The investor's dilemma in this case is at two levels. First is choosing assets to include in a portfolio. In choosing the assets to include in the portfolio, the risk return trade off features prominently. Secondly is choosing the best portfolio. We want to address the two issues by examining whether differences in return exist across the market classifications. We achieved this by modeling the past performance of different combinations of stocks within market sectors and across the market sectors.

In doing this, we were able to quantify and understand better the risk and return potential of different portfolios across the market sectors.

The key question that we addressed in the study was to what extent do these different market sectors differ in terms of portfolio return characteristics. Specifically we determined whether the difference is empirically regular.

1.3 HYPOTHESIS

We set the following hypothesis, which our investigation either confirmed or rejected:
$\mathrm{H}_{0} \quad$ Portfolio Return Characteristics of the Different Market Sectors at the Nairobi Stock Exchange do not differ significantly.

1.4 OBJECTIVE OF THE STUDY

The objective of this study was to determine whether there exist Portfolio Return characteristics differentials across the different market sectors.

1.5 IMPORTANCE OF THE STUDY

The study will be important in the following ways:
i. Academic: The study will give a good insight to scholars who want to do further research on the theory of Portfolio Return and Risk Diversification.
ii. Individual and Institutional Investors: The study will provide guidance on how best to construct investment portfolio's across market sectors.
iii. Capital Market Intermediaries: The study will provide important market sector return characteristics that can be used in designing optimal investment selection for their clientele.
iv. Asset Management/Fund Managers: The study will provide guidance on how best to place investor funds in a combination of high yield returns across the different market sectors.

1.5 OVERVIEW OF THE STUDY

Chapter 1 gives a brief background of the study, the problem that the study will address, the objectives of the study and finally the value that is likely to accrue from this study.

Chapter 2 looks at what has been done by scholars both in Kenya and the rest of the world as pertains to this area of Portfolio Return Characteristics of different market sectors.

Chapter 3 outlines the research procedures that were adopted in resolving the research problem and specifically addresses the tools that were used in interpreting and understanding the data collected on the subject.

Chapter 4 gives a summary of the data analysis and the observations made from the research.

Chapter 5 outlines the key findings of this study, limitations and areas where this research can be modified or refined in future.

CHAPTER 2: LITERATURE REVIEW

2.1 CAPITAL MARKETS IN KENYA

2.1.1 History and Operation of Nairobi Stock Exchange (N.S.E)

The Nairobi Stock Exchange was established in 1954. It operated as an association of stockbrokers with no trading floor until October 1991. The introduction of the trading floor has led to a substantial increase in trading volumes and dramatic upward movement in the various indexes. The Nairobi Stock Exchange has been instrumental in enabling the public and private sectors in Kenya to raise large amounts of capital for expansion projects and for the financing of new businesses. It has also allowed for the participation of foreign investors in a bid to increase the investor base and bring into the country the much-needed foreign investment. This has in effect increased the number of participants in the bourse.

The NSE thus represents the financial market in Kenya. It has 51 registered brokers and has about 52 firms listed on the exchange. It deals in ordinary shares and fixed income securities such as Preference shares and most recently treasury bonds. The NSE also has some of its shares cross-listed with other stock exchanges in South Africa, Uganda and Tanzania. Both operational and informational efficiencies are key to ensuring that the NSE fulfils its mandate as the capital markets intermediary for Kenya and the world over.

2.1.2 Market Structure Reforms at Nairobi Stock Exchange (N.S.E.)

The structure of the Nairobi Stock Exchange has witnessed tremendous transformation during the last 10 years that has seen its operating environment and trading systems improve as part of measures aimed at improving market transparency and efficiency. Fundamental reform of the market structure was undertaken in year 2000. This saw the market recognized into four independent market classes namely: -

- The Main Investments Market Segment (MIMS)

This is the main quotation market, with more stringent listing requirements. The main investment market Segment is further divided into four markets namely:
i. Agricultural market Segment
ii. Commercial and services market Segment
iii. Finance and investment market Segment
iv. Industrial and allied market Segment

- The Alternative Investments Market Segment (AIMS)

AIMS is aimed at providing access to the capital markets for small and mediumsized companies with high growth potential. This provides an alternative method of raising capital to those companies that find it difficult to meet the more stringent listing requirements of the MIMS. This is particularly necessary in order to respond to changing needs of issuers and to provide access to the capital markets to younger innovative companies with high growth potential.

AIMS facilitates liquidity to companies with a large shareholder base through the process of "introduction". This is the process by which existing shares are listed for the purpose of marketability and not for the purpose of raising capital.

AIMS offers investment opportunities to institutional investors and high net worth individuals to diversify their portfolios and access high growth sectors of the economy.
This market segment has its own eligibility and listing requirements.

- Fixed Income Securities Market Segment (FISMS)

This is a special trading window for fixed income securities. It is aimed at providing a separate independent market for fixed income securities such as treasury bonds, corporate bonds, preference shares and debenture stocks.

The segment also lists other short-term financial instruments such as treasury bills and commercial papers.

The money market presents wide opportunities that are yet to be taken up by specialist money market players. Expertise in this area has grown rapidly over the years as proven in the launch of the EADB Bond, which pioneered the secondary trading in fixed income securities at the Exchange. Investment advisors have a real challenge to design solutions to the problems currently facing Kenya's financial markets regarding the need to structure and arrange securities customized to meet the specific needs of the Kenyan economy.

- Futures and Options Market Segment (FOMS)

FOMS will provide a mechanism to market participants to hedge against the risk associated with market volatility. The market segment is currently under development and will be implemented after further research on the necessary operational systems.

2.1.3 Role of Capital Markets Authority (C.M.A)

The Capital Markets Authority (CMA) under which the NSE operates enforces maximum disclosure by listed companies and all those seeking a listing on the exchange. CMA has also established a mechanism for monitoring the affairs of stock-broking houses and other players in the market, to ensure fair play.

2.2 THEORETICAL FOUNDATIONS OF PORTFOLIO THEORY

2.2.1 The Concept

The major aim of portfolio theory is to reduce risk without reducing returns. The Markowitz (1952) Model indicates that the proper goal of portfolio construction should be to generate a portfolio that provides the highest return at a given level of risk. A portfolio having this characteristic is known as an efficient portfolio. In the Markowitz's mean-variance framework the relevant information about securities can be summarized by 3 measures:
i. Mean return
ii. Standard Deviation of the returns
iii. Correlation with other assets' returns

2.2.2 Markowitz Portfolio Theory \& Efficient Frontier

The fundamental assumption underlying the Markowitz approach to portfolio analysis is that investors are basically risk-averse and that the market gives prices. This means simply that investors must be compensated with higher return in order to accept higher risk. Consequently, given a choice, for example, between two securities with equal rates of return, an investor will select the security with the lower level of risk, thereby rejecting the higher-risk security. In more technical terms, this assumption means that investors maximize expected utility rather than merely trying to maximize expected return. Utility, a measure of satisfaction, considers both risk and return.

2.2.3 Capital Market Theory \& Capital Market Line

The Markowitz's efficient frontier did not consider the existence of a risk-free asset. Adding the risk-free asset to the Markowitz's portfolio construction process allows portfolio theory to develop into capital market theory. The introduction of a risk-free asset changes the Markowitz efficient frontier into a straight line. This straight efficient frontier line is called the capital market line.

Source: P. Peterson, Risk Return and Diversification, FIN3403, Florida State University.
The Capital Market Line indicates that the expected return on a portfolio is equal to the risk free rate plus a risk premium, equal to the price of risk (as measured by the difference between the expected return on the market and the risk-free rate) times the quantity of market risk for the portfolio (as measured by the standard deviation of the portfolio). This can be represented as follows:

$$
\begin{aligned}
E(R p) & =R f+\frac{[E(R m)-R f]}{\sigma(R m)} \sigma(R p) \\
E\left(R_{p}\right) & =R_{f}+\text { Market Price of Risk } \times \text { Quantity of Market Risk }
\end{aligned}
$$

2.2.4 Capital Asset Pricing Model \& Security Market Line

The Capital Asset Pricing Model (CAPM) allows us to find the returns required for a given level of risk. When return is plotted against systematic risk (beta) rather than total risk (σ), you get the security market line (SML). The equation of the SML is:

$$
E R_{\text {stock }}=R_{f}+\text { Beta }_{\text {stock }}\left(E R_{M}-R_{t}\right)
$$

The equation is called the capital asset pricing model (CAPM). The CAPM is a single risk factor (beta) model explaining security return.

The Security Market Line (SML) is the relationship between risk, as measured by the risky asst's covariance with the market, and its required return. The systematic risk for any asset is measured by its Beta which is calculated as the periodic covariance between the security's return and the market's return, expressed as a proportion of the variance of the market index.

$$
\beta=\frac{\operatorname{Cov}_{x m}}{\sigma_{m}^{2}}
$$

Beta measures how volatile the asset has been, compared with the market average. The risk premium can be estimated from the Beta, in proportion to the market risk premium;

$$
R_{x}=R_{f}+\operatorname{Beta}\left(R_{m}-R_{t}\right)
$$

Systematic Risk - refers to fluctuations in asset prices caused by macroeconomic factors that are common to all risky assets and cannot be diversified away; hence systematic risk is often referred to as market risk.
Examples of systematic risk factors include the business cycle, inflation, monetary policy and technological changes.

Firm-Specfic Risk - refers to fluctuations in asset prices caused by factors that are independent of the market such as sector characteristics or firm characteristics. Examples of firm-specific risk factors include litigation, patents, management, and financial leverage.

The systematic risk depends on the sensitivity of the individual assets to market movements as measured by beta. Assuming the portfolio is well diversified, the number of assets will not affect the systematic risk component of portfolio variance. The portfolio beta depends on the individual security betas and the portfolio weights of those securities.

On the other hand, the components of firm-specific risk are not perfectly positively correlated with each other and as more assets are added to the portfolio those additional assets tend to reduce portfolio risk. Hence, increasing the number of securities in a portfolio reduces firm-specific risk. For example, a patent expiration for one company would not affect the other securities in the portfolio. An increase in oil prices might hurt an airline stock but aid an energy stock. As the number of randomly selected securities increases, the total risk (variance) of the portfolio approaches its systematic variance.

The riskiness of a portfolio will depend on how a security blends with the existing securities and contributes to the overall risk of a portfolio. The covariance is a statistical that measures the riskiness of a security relative to others in a portfolio of securities. In essence, the way securities vary with each other affects the overall variance, hence the risk, of the portfolio.

2.3 EMPIRICAL EVIDENCE ON MARKET/SECTOR PORTFOLIO RETURN CHARACTERISTICS OUTSIDE KENYA

A number of studies have been done to determine whether there are market sectors that dominate other market sectors in terms of share price performance. In an efficient market it is not possible earning excess return on the basis of observable market segment characteristics because arbitrageur will take advantage and push the prices to their equilibrium levels.

The Efficient Market Hypothesis (EMH) explains how security prices should behave under the conditions of perfect market characterized by free availability of
information, homogenous investor expectations and zero transaction costs. These conditions sufficiently ensure that prices "fully reflect" what is knowable, obviously, when relevant information to the value of a security is reflected in its current price, the same is unbiased estimate of its intrinsic value. Every time new information is released, the price adjusts towards a new value.

As the fortunes of the issuing firms change with economic and industry conditions so do the prices of their stocks (Gitman and Joehnk (2001)). They further state that, not all stocks are affected in the same way or to the same extent. Some sectors of the economy may only be mildly affected by the economy. Others are usually hard hit when times are rough.

According to Lofthouse (2001), The original CAPM is a single index or single factor model. It states that return on assets is linked to a single factor, the market, by the asset's beta. The theory assumes that the only reason two stock prices would move together is because they are both moving with the market. That is not clearly the case. It is evident that there are sector or sector effects as well. This naturally leads to the notion of Multifactor Models, where returns depend on both market and sector factors.

Carow, Heron and Larsel (2002), "Portfolio optimization techniques applied to characteristic constituent portfolios result in enhanced returns in comparison to appropriate value weighted and equal-weighted custom benchmark portfolio's formed from the same population of stocks." They find that, enhanced portfolio returns with risk characteristics that do not depart materially from the benchmark and enhanced risk return performance can be consistently achieved relative to the custom benchmark portfolios.

Previous research provides evidence that much of the cross sectional variation in equity returns can be explained by firm characteristics such as market capitalization, price-to-earnings ratios, change in operating earnings and book-to-
market ratios. For example, the market capitalization anomaly is documented by Banz (1981). When Fama and French $(1992,1996)$ examine many of these variables simultaneously they conclude that two factors, specifically, size and book-to-market, explain the majority of the cross sectional variation in stock returns.

In a recent study, Daniel, Titman and Wei (2001) provide evidence that characteristics based return models tend to do better than the factor model of Fama and French (1993) in explaining the return in the U.S. and Japanese stock markets.

Dreman and Lufkin (1997) ranked stocks by price to earnings ratio etc. of the industry they are in. They found differences in the behaviour and performance of the market portfolios that they studied.

According to Pouchkarev, Spronk and Vliet (2003), the environment in which new economy firms operate is dynamic. The environment is characterized by rapid technological change and versatile interaction. In this environment, pro-active management style becomes a core competence. Growth potential depends on firm specific factors e.g. management's capability to identify and exploit valuable growth options, or the number of strategic alliances, and the rate of technological change within a sector.

Brealey and Myers (1991) note that, risk is best judged in portfolio context. Most investors do not put all their eggs in one basket; they diversify. Thus the effective risk of any security cannot be judged by an examination of that security alone. Part of the uncertainty about the security return is "diversified away" when the security is grouped with others in a portfolio. They further conclude that unique risk stems from the fact that many of the perils that surround an individual company are peculiar to the company and perhaps its immediate competitors.

The research done by Carow, Heron and Larsel (2002) was an extension of the work of Larsen and Resnick (2001) where they examined the use of portfolio optimisation techniques on firms stratified according to variety of characteristics that were shown to explain much of the cross-sectional variation in stock returns. The primary focus of their research was to determine if the characteristic portfolio approach provides consistent improvements in the risk return relationship relative to naive investment strategies such as investing in cross-section of stocks, on either a value weighted or an equal weighted basis, from which the benchmark is constructed. They concluded that enhanced portfolio returns with risk characteristics could be achieved relative to the custom benchmark portfolios.

Gitman and Joehnk (2001) state that a wide variety of risk return behaviors are associated with each type of investment vehicle. Some common stocks offer low returns and low risk. Others offer high return and high risk. They conclude that a broad range of risk return behaviors exist for specific investments of each type.

Pouchkarev, Spronk and Vliet (2003) state that growth potential of firms influences the risk return profile of their cash flows. Projects or activities can be abandoned if conditions turn out unfavorable. This limits downside risk. On the other hand, successful projects can be expanded, thus leaving upside potential open. Because of this flexibility the distribution of the growth company's expected cash flows is characterized by asymmetry. The distribution characteristics of firm's cash flows are of course not automatically valid 'descriptions of the firms stock returns characteristics.

Three reasons are given for this phenomenon; Firstly, the market has its own perception of the firm's cash flows (e.g. due to information asymmetries), Secondly, after interest payments, only a residual of the cash flows goes to the stockowners. Therefore the degree of financial leverage affects the pay-off structure and could also introduce asymmetry in stock returns. Thirdly, the
market has the possibility of diversification, which means that, in general, not all cash flow risk is priced.

If cash flows distributions are not symmetrical, the stock return distributions may well be. However, empirical research shows that stock return distributions are not normally distributed (Fama 1965). The fat tail phenomenon is well documented. Not only individual stocks returns but also market indices are characterized by asymmetry. Several studies have demonstrated that systematic skewness is priced as market risk e.g. Kraus, Alan and Litzenberger (1973).

Boyle and Lin examine the portfolio selection problem in the presence of transaction costs. They use a discrete time approach by developing analytical expressions for the investor's indirect utility function and also for the boundaries of the no transactions region. The proof of their main theorem provides a constructive analytical procedure for determining the no transaction region. According to them, once this region is known the investor problem is solved.

Investor transaction costs can be summarized as follows:
i) Costs incurred before transacting e.g. search costs etc. ,
ii) Costs incurred during transacting e.g. commission etc.
iii) Costs incurred after transacting e.g. capital losses, opportunity costs etc.

2.4 EMPIRICAL EVIDENCE ON MARKET/SECTOR PORTFOLIO RETURN CHARACTERISTICS IN KENYA

A review of the empirical studies done in Kenya on portfolio return characteristics and portfolio theory indicate that very little work has been done in this area.

Risk is seen as a problem but investors still choose to invest in risky projects (Nyariji 2001)). The justification is that the most risky projects, if successful, offer the greatest reward. Investors therefore usually have to make a selection decision, as to which particular assets from the available alternatives to put their money in and how much to allocate to each of the selected securities.

Kamanda (2001) set out to determine and evaluate quoted equity portfolios of insurance companies. He did this by examining the risk return characteristics of the equity portfolio's held by the individual insurance companies. His major finding was that quoted equity portfolios held by Insurance companies were poorly diversified as they had performed worse than the market portfolio.

Kangethe (1999) set out to investigate the effect of Government ownership on share price volatility of companies quoted at Nairobi Stock Exchange for the period 1997 to 1998. The specific objective of the study was to establish whatever Government ownership influences the share price volatility of the companies quoted at the Nairobi Stock Exchange. He found that there was a significant difference in the share stock volatility between the companies in which the government had share holding and the market index.

The Efficient Market Hypothesis (EMH) explains how security prices should behave under the conditions of perfect market characterized by free availability of information, homogenous investor expectations and zero transaction costs. These conditions sufficiently ensure that prices "fully reflect" what is knowable. Obviously, when relevant information to the value of a security is reflected in its
current price, the same is unbiased estimate of its intrinsic value. Every time new information is released, the price adjusts towards a new value (Kiweu 1991).

Nyariji (2001) did a study to evaluate the risk reduction benefits of portfolio diversification at the Nairobi Stock Exchange. His analysis (using the meanvariance model) indicates that there is significant risk reduction at the Nairobi Stock Exchange as a portfolio grows in size. This continues until a portfolio size of 13 securities is held, beyond this size, the risk reduction becomes insignificant. At this optimal portfolio size the proportion of total risk eliminated is 34%. He concludes by saying that, the current size of the NSE does not fully diversify specific risk and therefore the need to widen the market to enhance further diversification.

CHAPTER 3: RESEARCH METHODOLOGY/DESIGN

3.1 POPULATION OF INTEREST

The population of interest consisted of all the companies quoted at the Nairobi Stock Exchange and classified under the various market sectors. Appendix A gives details of the companies quoted at Nairobi Stock Exchange as at $1^{\text {st }}$ January 1997. The period of analysis entailed 5 years spanning from 1997 to 2001.

3.2 SAMPLING DESIGN

The sampling frame consisted of all the active trading companies quoted at the Nairobi Stock Exchange i.e. as at beginning of January 1997. We picked all the stocks for analysis using the traditional market classifications sectors as follows: -
(i) Agricultural market sector
(ii) Commercial market sector
(iii) Financial market sector
(iv) Industrial market sector

3.3 DATA COLLECTION METHOD

The research relied on secondary data obtained from Nairobi Stock Exchange or other financial intermediaries. Where data was not available from Nairobi Stock Exchange, we referred to financial statements published by companies studied. Such data included; movement in share prices, dividends paid, share price index etc.

3.4 DATA ANALYSIS METHOD

The main strategy in this study was to construct a set of portfolio formation opportunities in each individual market sector based on target returns. We used the mean- variance model to evaluate each of the portfolio formation (Nyariji 2001 and Nzioka 2002).

We then estimated the distribution of the performance values (e.g. average return, variance etc) of the entire portfolios that were constructed from stocks listed within a market sector.

Weekly return (R_{j}) of an individual stock was obtained as follows:

$$
R_{j}=\frac{P_{1}-P_{0}+D_{1}}{P_{0}}
$$

Where,
$\mathrm{R}_{\mathrm{i}}=$ Return of Asset j
$\mathrm{P}_{\mathrm{l}}=$ Price of share at period t
$P_{0}=$ Price of share at period $t-1$
$D_{1}=$ Dividend paid during the period

The behavior of average returns over a period of time was observed in each market sector to get a picture of the average development of the sampled market sector over a certain period of time.

Also, the behavior of the dispersions of these distributions provided a picture of the development of the market sector dynamics overtime.

We excluded short sales and companies whose share prices were flat while looking at portfolio opportunities in a market sector. The opportunity set consisted of all the constructed portfolios in each market sector with their respective weights equaling to 1 .

The number of portfolio in the opportunity was infinite but distributions of portfolio performance value existed. We adopted the following procedure in determining the portfolio opportunity set and their respective values:

Step 1: We picked all shares in each of the market sector to constitute sector portfolios. We obtained return statistics of all the stocks at the Nairobi Stock Exchange. These statistics were calculated using observations i.e. by evaluating each market sector performance weekly from Jan 1997 to Dec 2001.

Step 2: We then used SAS optimizer (investment software) to set target return and determine the proportion of stock to be included in each of the market sector in order to achieve the expected return. Portfolio risk was then determined for each of the portfolio. This was done for each of the 5 years. By use of SAS statistical package, the weights associated to each of the security included in a given portfolio were determined. Then portfolio risk was computed (Nzioka 2002).

Step 3: We then plotted the results in a graph in order to determine the efficient frontier for each of the market sector.

Step 4: We then compared efficiency frontiers across the market sectors using descriptive statistics and ANOVA.

We incorporated the total return data of different market sectors at the Nairobi Stock Exchange over the sampled analysis period for:

- Agricultural Market Sector
- Commercial Market Sector
- Finance Market Sector
- Industrial Market Sector

The return of each of the stock was calculated as the weekly percentage increase of the stock price adjusted for dividends earned during the year.

One of the important aspects was how to handle changes in the respective market sectors. Such changes entailed new admissions, mergers, bankruptcies etc.

Incase of newly admitted companies we inserted a company stock into the market sector opportunity set as soon as the company shares started trading.

4.1 Agricultural Sector Portfolio Return Characteristics

4.1.0 Background

There were 8 agricultural based companies trading at the Nairobi Stock Exchange during the period under review. The average estimated total assets held by these companies during the period amounted to Ksh. 16 billion. This represented around 4% of the total assets held by companies quoted at Nairobi Stock Exchange then. The average profitability before taxation was around 855 million being 6% of the total average profitability recorded by quoted companies during the period under review.

4.1.1 Risk-Return for the year 1997

Tablel: Agricultural Risk-Return for 1997

Vere 68															
	Port 1	Pot 2	Pot 3	Pot 4	Pat 5	Put 6	Pot 7	Pat 8	Pot9	Pot 10	Pat 11	Pot 2	Pat 13		
$\begin{aligned} & \left(\ln ^{\circ} \%\right. \\ & \text { Wuthy Rim(Esintand } \end{aligned}$	005	015	025	035	046	055	065	075	085	095	1.05	1.123	128		
Rex StaderdEaviaia)	0004	040	086	123	159	1.95	2351	277	3104	3480	3883	586	9150		
Nutbesof Sods	4	4	4	$\begin{gathered} 4 \\ \text { Parifion } \end{gathered}$	$\begin{array}{r} 4 \\ \text { Whigtt } \end{array}$	4	4	4	4	4	3	2		Wealdy Renm	Rek
EBCND	0000	000	0000	0000	000	000	0.000	000	000	000	000	000	000	.a7a	282
SAEN	0018	0089	0160	0231	035	033	043	0514	055	0666	0748	0336	0000	0980	429:
FAM	000	000	0000	0000	000	000	000	000	000	000	000	000	000	.00\%	5774
UMEA	0000	0000	000	0000	000	0000	0000	000	000	0000	0000	000	0000	-0.5\%	2615
KAPOD	0.95	0874	0774	0673	0572	042	0371	0271	0.10	0068	0000	000	0000	000	0000
KAKD	0.00	000	000	000	0000	000	0.000	000	000	000	000	000	0,000	017	6100
GKK	0008	0013	00.3	0033	0043	0063	0064	0.074	0084	0094	0034	0000	0000	060	62
EAGPDS	0005	0024	0044	0063	0083	0.102	0122	0.41	0160	0180	027	0614	100	12x	9065
Todal Vigt	1	1	1	1	1	1	1	1	1	1	1	1	1		

Shows portfolio sets constructed in the Agricultural sector for the period 1 January to 31 December 1997. The table also shows the annual return and risk associated with each of the stock in the Agricultural sector during the period. The highest weekly return was recorded by EAGADS with a return of 1.209% but with a very high risk of 9.089%. The lowest weekly return was recorded by BBOND with a return of -0.766% and risk of 2.827%. It is noted from the table that most of feasible portfolio sets contain 4 stocks with the optimal being portfolio 9 . This is line with the Makowitz mean-variance framework, which holds that risk is diversified by adding more assets in the portfolio. Figure 1 plots the efficient frontier for the Agricultural sector in 1997.

Figure 1: Agricultural Portfolio Return for 1997

The graph shows the efficient frontier for the Agricultural sector based on the portfolios depicted in Table 1. Arguably, Portfolio number 10 was the most optimal as it lies just before the 'turning point' of the efficient frontier curve. At this point, an investor would have got the highest return relative to the level of risk. The graph also places individual company risk-return and it can be seen that all the stocks risk- return lie below the efficient frontier. This justifies why investors should invest in a group of assets in order to reduce risk as suggested by Makowitz mean-variance framework. In 1997, SASINI recorded highest risk-return compared to the other companies while Bbond was the lowest.

4.1.2 Risk-Return for the year 1998

Table 2: Agricultural Risk-Return for 1998

The highest weekly return was recorded by GWK with a return of 0.999% but with a high risk of 4.82%. The lowest weekly return was recorded by REAVI, which had a return of -0.548% and with a risk of 3.672%. We constructed 11 portfolios sets with majority of them containing 7 stocks. Where the portfolio weight was more than 1 , then it meant that an investor would have borrowed to invest in the best portfolio.

Figure 2: Agricultural Portfolio Return for 1998

The efficient frontier in 1998 was an improvement over the one in 1997. Portfolio 11 would have been the most efficient in 1998. The shape of the slope after the turning point meant that an investor could have earned higher returns at a proportionally lower risk. A stock like SASINI, which showed remarkable risk-return in 1997, was this time not doing well. The number of stocks, which yielded negative returns, reduced from 3 in 1997 to 1 in 1998.

4.1.3 Risk-Return for the year 1999

Table 3: Agricultural Risk-Return for the year 1999

The weekly risk- return for the sector deteriorated during the period. A total of 7 stocks out of 8 recorded negative weekly returns. KAPCHO was the best with a return of
0.791% and risk of 3.731%. A stock like KAPCHO was represented in all the portfolios meaning that it was a superior stock. Most of the portfolios contained 3 stocks.

Figure 3: Agricultural Portfolio Return for 1999
Agriculture 1999: Portfolio Risk-Return

Risk

The efficient frontier declined as from the 1998 level in line with the decline in NSE 20 share index. As indicated in Table 1, majority of the stocks performed poorly with the exception of KAPCHO. The worst stock was KAKUZI. Otherwise, diversification was unattainable in this year due to flat or negative returns dominating the stock performance.

4.1.4 Risk-Return for the year $\mathbf{2 0 0 0}$

There were no portfolios constructed for the period because of negative returns in almost all the stocks in the sector. The target return that we set was all positive. In which case, if negative returns dominate the set then we will not expect any solution. It is unlikely that a rational investor will prefer negative returns. In this year, the sector was at its worst.

4.1.5 Risk-Return for the year 2001

Table 4: Agricultural Risk-Return for 2001

Year 2001											
	Port 1	Port 2	Part 3	Port 4	Port 5	Port 6	Port 7	Port 8	Port 9		
($\ln \%$)											
Weekly Return(Estimated)	0.025	0.125	0.225	0.325	0.425	0.525	0.625	0.725	0.825		
Risk(Standard Deviation)	0.938	1.315	1.752	2.221	2.713	3.498	5.367	7.643	12.536		
Numbers of Stocks	6	6	6	5	4	3	3	3	1	Weekly	
				Portfoli	Weigh					Return	R isk
BBOND	0.107	0.120	0.133	0.114	0.077	0.000	0.000	0.000	0.000	-0.187	3.016
SASINI	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	-1.320	4.304
LIMTEA	0.045	0.063	0.081	0.095	0.106	0.218	0.432	0.646	1.043	0.749	12.021
KAPCHO	0.268	0.138	0.008	0.000	0.000	0.000	0.000	0.000	0.000	-0.149	1.061
KAKUZI	0.359	0.314	0.268	0.129	0.000	0.000	0.000	0.000	0.000	-0.128	1.165
GWK	0.019	0.029	0.039	0.048	0.056	0.110	0.208	0.306	0.000	0.723	19.948
EAGADS	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	-0.599	3.528
Total Weight	0.202	0.336	0.470	0.614	0.761	0.672	0.360	0.048	0.000	0.418	2.988

The table depicts a slight improvement of the agricultural sector stocks in 2001 as compared to 1999 and 2000. The highest weekly return was recorded by REAVI of 0.749% with a risk of 12.021% ! Equally KAKUZI was not left behind with a weekly return of 0.723% and with a very high risk of 19.948% ! A total of 5 out of 8 stocks recorded negative return. As indicated earlier, an investor interested in portfolio 9 had to borrow in order to attain that size of investment. With the exception of portfolio 9 , the other portfolios i.e. portfolio 1-8 contained 3 to 6 stocks. This is in line with investment diversification principle.

Figure 4: Agricultural Portfolio Return for 2001

We managed to construct 9 feasible portfolios with portfolio 6 recording the highest riskreturn. EAGADS appeared to be close to portfolio 6 indicating that it was the best individual stock in relation to risk-return trade off. The efficient frontier curve resembled the one constructed in 1997. SASINI was way off the rest with a record of -0.132% weekly return and risk of 4.304%.
4.1.6 Agricultural Portfolio Risk-Return comparisons for the years 1997 to 2001

Figure 6: Agriculture Portfolio Risk-Return for the years 1997 to 2001

Out of the 5 years i.e. 1997 to 2001 in the agricultural sector stocks, 1998 was the best for a wealth maximizing investor. The efficient frontier curve for 1998 was much superior compared to 1997, 1999, 2000 (not attainable) and 2001. The efficient frontiers for 1997, 1999 and 2001 were all inferior compared to 1998 with 1997 performing better than 1999 and 2001. The 1998 better performance could have been attributed to the after 1997 general elections investor sentiments. It is further observed that this trend of 1998 betler performance is replicated in the commercial and industrial market sectors. The yearly differentials are a manifestation of the varying business conditions (both at micro and macro level) from one to the other. It is a reflection of the many business cycles that our economies face all over the world. In the circumstances, it means that investors have to continue reviewing and re-defining their investment portfolios to be in line with their investment objectives. This justifies an active approach strategy in the management of investments.

4.2 Commercial Sector Portfolio Return Characteristics

4.2.0 Background

There were 10 commercial based companies trading at the Nairobi Stock Exchange during the period under review. The average estimated total assets held by these companies during the period amounted to Ksh. 30 billion. This represented around 8% of the total assets held by companies quoted at Nairobi Stock Exchange then. The average profitability before taxation was around 1.7 billion being 13% of the total average profitability recorded by all the quoted companies during the period under review.

4.2.1 Risk-Return for the year 1997

Table 5: Commercial Risk-Return for the year 1997

Shows portfolio sets constructed in the Commercial sector for the period I January to 31 December 1997. The table also shows the weekly return and risk associated with each of the stock in the Commercial sector during the period. The highest weekly return was recorded by MARSH with a return of 2.121% but with a risk of 8.615% ! The lowest weekly return was recorded by SERENA with a return of -0.887% and risk of 3.388%. The highest portfolio formation had 10 stocks while the lowest had 6 stocks and the efficient frontier is as depicted in Figure 7.

Figure 7: Commercial Portfolio Return for 1997

The graph shows the efficient frontier for the Commercial sector based on the portfolios depicted in Table 5. The graph also places individual company weekly risk-return. It can be seen from the graph that all the individual stock weekly risk- return lie below the efficient frontier. This means that diversification of investments reduces firm-specific risk. In 1997, NMG recorded highest weekly risk-return compared to the other companies while SERENA was the lowest. SMG stock was the riskiest.

4.2.2 Risk-Return for the year 1998

Table 6: Commercial Risk-Return for the year 1998

The highest weekly return was recorded by NMG with a return of 1.797% but with a high risk of 9.021% ! The lowest return was recorded by EXPRESS, which had a weekly return of -1.204% and a risk of 6.046%. We constructed 19 portfolios sets and the results are depicted in Figure 8. The number of stocks included in the 19 portfolios ranged from I to

10 stocks. Portfolios, which had 4 stocks, dominated the portfolio formations. NMG was present in all the portfolio formations meaning that it was much superior than all the others. An investor had the choice of including as many stocks as possible in the portfolio but obviously one has to bring search costs in the equation.

Figure 8: Commercial Portfolio Return for 1998

The efficient frontier in 1998 was an improvement over the one in 1997. This trend was replicated in the agricultural and industrial market sectors. This may have been contributed to investor sentiments immediately after the general elections. The 'twist' in the curve as you approach the weekly return of 1% is due to graph scaling problem. Out of 10 stocks in the commercial sector, 6 stocks had negative weekly returns. The worst was SMG and was closely followed by EXPRESS and CarGen. The investor could have effectively enhanced returns through diversification.

4.2.3 Risk-Return for the year 1999

Table 7: Commercial Risk-Return for the year 1999

Year 1999									
	Port 1	Port 2	Port 3	Port 4	Port 5	Port 6	Port 7		
$\begin{aligned} & (\ln \%) \\ & \text { Weekly Return(Estimated) } \end{aligned}$	0.025	0.125	0.225	0.325	0.425	0.525	0.625		
Risk(Standard Deviation)	1.312	1.669	2.091	2.561	3.134	3.989	4.523		
Numbers of Stocks	6	5	5	3	3	2	1	Weekly	
				ortfolio W				Return	Risk
CGEN	0.000	0.000	0.000	0.000	0.000	0.000	0.000	-1.427	7.506
ABOUM	0.270	0.159	0.035	0.000	0.000	0.000	0.000	-0.226	1.546
UCHUMI	0.133	0.101	0.061	0.000	0.000	0.000	0.000	-0.263	2.644
SMG	0.000	0.000	0.000	0.000	0.000	0.000	0.000	-0.213	12.576
SERENA NMG	0.202	0.302	0.400	0.517	0.662	0.922	1.048	0.548	4.314
NMG MARSH	0.000	0.000	0.000	0.000	0.000	0.000	0.000	-0.498	4.252
MARSH KENAIR	0.231	0.256	0.281	0.228	0.054	0.000	0.000	-0.075	2.525
KENAIR EXPRESS	0.139	0.183	0.224	0.255	0.284	0.078	0.000	0.231	4.693
$\begin{aligned} & \text { EXPRESS } \\ & \text { CMC } \end{aligned}$	0.000	0.000	0.000	0.000	0.000	0.000	0.000	-0.546	6.878
Total Weight	0.025	0.000	0.000	0.000	0.000	0.000	0.000	-0.129	3.173
Helar Weight	1	1	1	1	1	1	1		

The weekly risk- return for the sector deteriorated during the period. The number of portfolio formations reduced to 7 compared to 19 in 1998. This was mainly due to poor performance in the commercial sector during the period. The highest portfolio formation had 6 stocks while the least had only 1 stock. SERENA stock featured in all the portfolio formations indicating superior performance over the others. An investor would have been compelled to obtain external funds in order to invest in portfolio7. A total of 8 stocks out of 10 recorded negative weekly returns. SERENA was the best with a weekly return of 0.548% but with a high risk of 4.314%. CGEN was the worst with a return of -1.427% and a risk of 7.506%.

Figure 9: Commercial Portfolio Return for 1999
Commercial 1999: Portfolio Risk-Return

The efficient frontier deteriorated as compared to 1998. As indicated in Table 1, majority of the stocks performed poorly with the exception of SERENA and KENAIR. Majority of the stocks had negative returns. The worst stock was CarGen. An investor would have mitigated his/her loss by including more stocks in the investment basket, more so from the other sectors or other forms of investments.
4.2.4 Risk-Return for the year 2000

Table 8: Commercial Risk-Return for the year 2000

Yes 2000													
	Port 1	Port 2	Port 3	Port 4	Port 5	Port 6	Pat 7	Pont	Part 9	Part 10	Pat 11		
Wedy Return(Estimatied)	0.025	0.12	0.285	0.325	0.425	0.52	0.65	0.72	0.85	0.925	1.005		
Reld Standard Devation)	1.000	1.138	1.32	1.508	2000	3.080	5.099	7.369	9.745	12008	14.234		
Nimbers of Slooks	8	8	7	5	4	2	2	2	2	2	1	Whaldy	
				artiolio N								Rehm	Risk
CGEN	0.0095	0.0175	0.0317	0.0463	0.0534	0.1917	0.3583	05250	0.6917	0.8583	1.0075	1.00g	14128
ABOUM	0.0753	0.0116	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	-1808	2361
UORM	0.3164	0.3098	0.4539	0.6013	0.7816	0.8083	0.6417	0.4750	0.3083	0.1417	00000	0.407	2253
SMG	0.0281	0.0023	0.0064	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	-0.462	5.51
SEEENA	0.3014	0.3161	0.3009	0.2296	0.0100	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	-0.04	1.956
NMG	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	-068	2656
MAPSH	01065	0.0767	0.0084	00000	0.0000	0.0000	00000	0.0000	0.0000	0.0000	0.0000	-0.48,	2952
MENAR	0.0558	0.0688	0.0889	0.1216	01449	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	027	3716
EPFESS	0.1071	0.1166	0.1089	0.0011	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	-0.0.9	2313
CMC	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	00000	0.0000	0.0000	0.0000	0.0000	-1.142.	4192
Totar Whit	1	1	1	1	1	1	1	1	1	1	1		

The situation was not any better than in 1999. A total of 7 stocks out of 10 stocks recorded negative weekly return. We were able to construct 11 portfolios as compared to 7 in 1999. CGEN had the highest weekly return of 1.006%, but with a very high risk of 14.128% ! Stocks included in the 11 portfolios ranged from 1 to 8 stocks. A portfolio of 2 stocks dominated the portfolio formations. CGEN was included in all the stocks indicating superior performance over the others. An investor interested in portfolio 11 would have been required to obtain external finances in order to attain that level of investment.

Figure 10: Commercial Portfolio Return for 2000
Commercial 2000: Portfolio Risk-Return

The efficient frontier improved slightly as compared to 1998. UCHUMI was the best in terms of risk-return relationship. That explains why UCHUMI was included in most of the portfolios depicted in Table 8. CMC was the worst stock. The CGEN stock clearly
demonstrated that the higher the return, the higher the risk. In this perspective, the investor risk profile determines what investments an investor engages in.

4.2.5 Risk-Return for the year 2001

Table 9:Commercial Risk-Return for the year 2001

+ 51 l															
	Pot 1	Pat 2	Pot 3	Port 4	PMO 5	Port 6	Pat 7	Patil	Port 9	Pot $\frac{1}{10}$	Fof 11	Pat	Part th		
$\begin{aligned} & (\ln \bar{x} \\ & \text { Varky Remy Esimated } \end{aligned}$	0005	0125	025	0355	045	0.53	065	a72	0825	095	1.05	1.15	122		
Rst Sattard Daviation)	0271	1.13	2043	2900	4078	5231	6445	7.615	8824	10040	11.28	12488	1370		
Nutbesof Sods	3	3	3	2	2	2	2	2	2	2	2	2	2	Wem ${ }^{\text {H }}$	
				Rafillo	gím									Reatm	Psk
CREN	QSP	0533	0158	0000	0000	0000	0000	0000	0000	0000	0000	0000	0×1	0.17	00II
ABOM	0000	0000	0000	0000	0000	0.000	0000	0000	0000	0000	0000	0000	0000	0480	3901
UOHM	0000	0000	0000	0000	0000	0000	0000	0000	0,000	0000	0,000	0000	acos	-0.tis	397
SMG	0007	0036	0065	0116	0182	0248	0315	0381	0447	0513	0579	0646	0712	1.f6)	tom
SEEM	0086	0.431	076	0884	0818	0752	0685	0619	0.553	0487	0421	0354	0 㐌	014	1.67
MGG	0000	0000	0000	0000	0000	0000	0000	000	0000	000	0.00	0000	0000	0878	390
NMEH	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0.000	000	0000	-01080	0295
HENR	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0,000	000	0000	0481	4781
Efress	0000	0000	0000	0000	0000	0000	0000	0000	0,000	0000	0,000	0000	000	-1.774	5698
OMC	0000	000	000	0000	0000	0000	0000	0000	0000	0000	0000	000	0000	$0 \mathrm{CrO}_{2}$	4461
tcalwagt	1	1	1,000001	1	1	1	1	1	1	1	1	1	1		

The situation was not any better than what was experienced in year 2000. The highest weekly return of 1.657% was recorded by SMG but with the highest risk of 19.049% ! We managed to construct 13 portfolios with the highest having a weekly return of 1.225% but with a risk of 13.707%. SMG and SERENA stocks were both included in the 13 portfolios being an indication of superior performance than the others. Out of the 13 portfolio formations, 10 had 2 stocks while 3 had 3 stocks. This is an indication that most of the stocks performed poorly during the period. Figure 11 depicts this fact.

Figure 11: Commercial Portfolio Return for 2001

With the exception of SMG and SERENA all the other stocks had negative returns. CARGEN was flat during the period. The performance of the commercial sector in 2001 is well documented in Table 9.

4.2.6 Commercial Portfolio Risk-Return comparisons for the years 1997 to 2001

Figure 12: Commercial Portfolio Risk-Return for the years 1997 to 2001

Out of the 5 years i.e. 1997 to 2001 in the commercial sector stocks, 1998 was the best for a wealth maximizing investor. The efficient frontier curve for 1998 was much superior compared to 1997, 1999, 2000 and 2001. The efficient frontiers for 1997, 1999 and 2001 were all inferior compared to 1998. The efficient frontiers ranked as follows; 1998, 1997, 2000, 1999 and finally 2001. As noted elsewhere, the good performance in 1998 could have been attributed to the investor sentiments following the general elections in 1997. This trend was also observed in the agricultural and industrial market sectors. It would have been wiser for an investor targeting commercial sector to diversify elsewhere as returns in 1997, 1999, 2000 and 2001 were not anything appealing for a wealth maximizing investor.

4.3 Financial Sector Portfolio Return Characteristics

4.3.0 Background

There were 12 financial based companies trading at the Nairobi Stock Exchange during the period under review. The average estimated total assets held by these companies during the period amounted to Ksh. 245 billion. This represented around 65% of the total assets held by companies quoted at Nairobi Stock Exchange then. The bulk of these assets were in form of loans advanced to corporate and individual customers. The average profitability before taxation was around 6 billion being 47% of the total average profitability recorded by all the quoted companies during the period under review.

4.3.1 Risk-Return for the year 1997

Table 10: Financial Risk-Return for the year 1997

$\square \mathrm{ET}$													
	Pat 1	Pat 2	Pot 3	Pot 4	Rot 5	Pot 6	Rot 7	Pot 8	Pot9	Pot 10	Port 11		
($\mathrm{n} \%$)													
Weldy Ram(Esinzed)	005	$0 \boxed{5}$	025	035	045	055	065	076	085	095	108		
REK SandedLanation	1.467	1.566	1748	190	245	2464	302	408	5300	6766	7.64		
Nintesof Sods	7	8	8	7	6	5	4	3	3	3		Wexty	
				Orictow:								Ratum	Psk
田K	018	020	029	025	0278	0.63	0000	000	000	000	000	027	3π
508	0×19	0047	0014	000	000	000	0000	000	000	000	000	.010	3589
PAN	0096	012	024	0158	0152	0111	0008	000	0000	0000	000	027	49 F
NCB	0064	0067	0071	0088	0087	0108	0100	0069	0087	0006	0000	04	54
NEX	039	028	0172	0087	000	000	0000	000	000	0000	000	0.40	24x
108	0066	0089	0083	0066	006	000	0000	000	000	000	000	00	474
1 B	000	0000	0000	000	0000	0000	0000	0000	0000	0000	000	036	6501
110	0000	000	0069	006	0064	0451	0278	0466	0696	0906	1.08	0.9	7.4X
HPK	000	000	0000	000	0000	0000	000	000	000	000	000	-0t0	3008
DK	000	000	000	000	0000	0000	000	0000	0000	0000	000	-0.42	5217
CIRET	027	026	0339	0400	0462	0573	0620	046	0267	0689	000	0.1	2871
OPC	0000	000	0000	000	0000	000	0000	000	0000	0000	000	\bigcirc An	668
Tald Vilot	1	1	1	1	1	1	1	1	1	1	1		

Shows portfolio sets constructed in the financial sector for the period 1 January to 31 December 1997. The table also shows the weekly return and risk associated with each of the stock in the financial sector during the period. The highest return was recorded by ICDC with a weekly return of 0.97% but with a risk of 7.466%. The lowest weekly return was recorded by DTK with a weekly return of -0.524% and risk of 5.217%. The stocks included in the 11 portfolio formations ranged from 1 to 8 stocks. The optimal portfolio selection would have lied between portfolio 5 and portfolio 7 . Figure 13 plots the efficient frontier for the financial sector in 1997.

Figure 13: Financial Portfolio Return for 1997

Financial 1997: Portfolio Risk-Return

Risk

The graph shows the efficient frontier for the financial sector based on the portfolios depicted in Table 10. The graph also places individual company risk-return and it can be seen that all the individual stock risk- return lie below the efficient frontier. This is a proof that risk-return relationship can be improved by investing in-group of assets whose return is negatively correlated.

4.3.2 Risk-Return for the year 1998

Table 11: Financial Risk-Return for the year 1998

The highest return was recorded by CTRUST with a weekly return of 0.747% but with a risk of 18.292% ! The lowest weekly return was recorded by PAN, which had a weekly return of -0.936% and a risk of 2.916%. We constructed 9 portfolios sets and each of the portfolios was composed of stocks ranging from 1 to 8 stocks. Portfolio 6 would have
been the optimal for a risk conscious investor. The results of the portfolios are as depicted in Figure 14.

Figure 14: Financial Portfolio Return for 1998

The efficient frontier in 1998 was an improvement over the one in 1997. Out of 12 stocks in the financial sector, 5 stocks had negative returns. The worst was PAN. CTRUST was the riskiest stock. Portfolio 6 would have been best in terms of risk-return relationship. BBK was the most promising stock as it nearly matched the best portfolio indicated above.

4.3.3 Risk-Return for the year 1999

Table 12: Financial Risk-Return for the year 1999

The weekly risk- return for the sector deteriorated during the period. A total of 8 stocks out of 12 recorded negative weekly returns. PAN had the highest weekly return of 1.528% but with a risk of 12.45% ! KCB was the worst with a weekly return of -1.064% and a risk of 4.955%. We managed to construct 16 portfolios, which composed of 1 to 11
stocks. PAN and DTK featured in most of the portfolio formations indicating superior performance over the others.

Figure 15: Financial Portfolio Return for 1999
Financial 1999: Portfolio Risk-Return

The efficient frontier deteriorated as compared to 1998. As indicated in Table 12, majority of the stocks performed poorly with the exception of ICDC, DTK, SCB and PAN. The worst stock was KCB. The best stock was ICDC. The most optimal region would have been between portfolio 4 and portfolio 5 .

4.3.4 Risk-Return for the year 2000

Table 13: Financial Risk-Return for the year 2000

The situation was much worse than in 1999. A total of 10 stocks out of 12 stocks recorded a negative weekly return. We constructed 9 portfolio formations during the period. The small number of portfolio formation is explained by the poor performance of the sector and that most stocks were flat during the period. SCB had the highest weekly return of 0.751%, but with a very high risk of 5.224% !

Figure 16: Financial Portfolio Return for 2000

Financial 2000: Portfolio Risk-Return

Risk

The efficient frontier deteriorated further in 2000. CTRUST was the best in terms of riskreturn relationship. Only CTRUST, SCB and BBK stocks recorded positive weekly returns. All the other stocks recorded negative weekly returns with PAN, DTK and HFCK being the worst in this period. KCB had the highest risk that was not compensated for.

4.3.5 Risk-Return for the year 2001

Table 14: Financial Risk-Return for the year 2001

The situation improved compared to 2000. The highest weekly return of 1.57% was recorded by NBK but with the highest risk of 23.412% ! We managed to construct 17 portfolios with the highest having a weekly return of 1.625% but with a risk of 23.913%. The stocks included in the above portfolio formations ranged from 1 to 11 stocks. NBK featured in all the portfolio formations. This was an indication of superior performance as compared to the others. Equally ICDC was represented in most of the portfolio formations except in portfolio 17.

Figure 17: Financial Portfolio Return for 2001

The stocks that had negative weekly return reduced from 10 to 6 . DTK was the worst stock. NBK had the highest return but was the riskiest. A risk taker would have invested in either portfolio 16 or 17 , which mostly were made up of the NBK stock.

4.3.6 Financial Portfolio Risk-Return comparisons for the years 1997 to 2001

Figure 18: Financial Portfolio Risk-Return for the years 1997 to 2001

Out of the 5 years i.e. 1997 to 2001 in the financial sector stocks, 1999 was the best for a wealth maximizing investor. This was then followed by 1997, 1998, 2000 and finally 2001. Years 2001 and 1999 had the highest portfolio formation as compared to the other years. This is explained by the fact that the stocks in this sector for these two years performed relatively better compared to the other years. Also, most of the stocks in the 2 years experienced active trading as compared to the other years. The periodical differentials in stock performance imply that investors need to continuously review their investment portfolio with regard to the investment objective(s).

4.4 Industrial Sector Portfolio Return Characteristics

4.0 Background

There were 17 industrial based companies trading at the Nairobi Stock Exchange during the period under review. The average estimated total assets held by these companies during the period amounted to Ksh. 85 billion. This represented around 23% of the total assets held by companies quoted at Nairobi Stock Exchange then. The bulk of these assets were in form of plant and machinery. The average profitability before taxation was around 4.5 billion being 34% of the total average profitability recorded by all the quoted companies during the period under review.

4.4.1 Risk-Return for the year 1997

Table 15: Industrial Risk-Return for the year 1997

Shows portfolio sets constructed in the Industrial sector for the period 1 January to 31 December 1997. The table also shows the weekly return and risk associated with each of the stock in the Industrial sector during the period. The highest return was recorded by KPLC with a weekly return of 3.339% but with a risk of 14.95% ! The lowest weekly return was recorded by ATHI with a weekly return of -0.953% and a risk of 8.558%. We constructed 24 portfolios in sector based on the weekly return-return features of the stocks within the sector during 1997. The high number of portfolio formation as compared to the other sectors is to a larger extent explained by the high number of companies that traded at the NSE i.e. 17. (Agricultural-8, Commercial- 10\& Financial12). Stocks included in each of the portfolio construction ranged from 6 to 14. Portfolios with 6 stocks accounted for 18 sets out of the 24 formations. BOC, BAMB, DUN and KPLC appeared in all the 24 portfolio formations. This was indication of superior performance over the other stocks in the sector.

Figure 19: Industrial Portfolio Return for 1997

The graph shows the efficient frontier for the Industrial sector based on the portfolios depicted in Table 15. The graph also places individual company risk-return. It can be seen that all the individual stock risk- return lie below the efficient frontier. This implies that investors need to invest in a group of assets in order reduce risk and improve on the overall return of an investment.

4.4.2 Risk-Return for the year 1998

Table 16: Industrial Risk-Return for the year 1998

The highest weekly return was recorded by UNGA with a return of 5.317% but with a risk of 31.116% ! The lowest weekly return was recorded by EAPACK, which had a return of -2.032% and a risk of 5.198%. We constructed 20 portfolios sets. This was a reduction as compared to 1997 . Stocks included in each of the portfolio set ranged from 2
to 11 stocks. BAT and UNGA featured in most of the portfolio formations and that was an indication of superior performance over the other stocks.

Figure 20: Industrial Portfolio Return for 1998
Industrial 1998: Portfolio Risk-Return

Eapack Risk

The efficient frontier in 1998 was an improvement over the one in 1997. As indicated earlier, this could have been attributed to the investor sentiments immediately after the 1997 general elections. Out of 17 stocks in the industrial sector, 6 stocks had negative returns. The worst was EAPACK. UNGA and DUN were the riskiest stocks. BAT was the most promising stock.

4.4.3 Risk-Return for the year 1999

Table 17: Industrial Risk-Return for the year 1999

The weekly risk- return for the sector deteriorated during the period. A total of 8 stocks out of 17 recorded negative weekly returns. CARB had the highest weekly return of 2.714% but with a risk of 28.757% ! DUN was the worst with a weekly return of -1.01% and a risk of 6.882%. We constructed 21 portfolios during the period. The stocks included in each of the portfolio set ranged from 2 to 13 stocks. CARB and CBERG featured in most of the portfolio formations, indicating superior performance over the other stocks.

Figure 21: Industrial Portfolio Return for 1999

The efficient frontier deteriorated as compared to 1998. As indicated in Table 17, majority of the stocks had negative weekly return with the exception of CARB, Cberg, ATHI, TOTAL, KENOL, EABL, FIRE and EACABLES. As can be seen from the graph, CARB was the riskiest stock. A risk seeker would have preferred to invest in CARB and as well expect to be compensated for the high-risk undertaken.

4.4.4 Risk-Return for the year 2000

Table 18: Industrial Risk-Return for the year 2000

Year 2000									
	Port 1	Port 2	Port 3	Port 4	Port 5	Port 6	Port 7		
($\ln \%$)									
Weekly Return(Estimated)	0.025	0.125	0.225	0.325	0.425	0.525	0.625		
Risk(Standard Deviation)	0.768	0.840	0.936	1.084	1.301	1.667	1.818		
Numbers of Stocks	15	14	12	10	7	2	1	Weekly	
				ortfolio W	ights			Return	Risk
BOC	0.000	0.000	0.000	0.000	0.000	0.000	0.000	-0.525	3.691
CARB	0.052	0.046	0.036	0.012	0.000	0.000	0.000	-0.466	5.786
CBERG	0.122	0.105	0.080	0.030	0.000	0.000	0.000	-0.378	3.393
ATHI	0.006	0.000	0.000	0.000	0.000	0.000	0.000	-0.602	5.496
BAMB	0.332	0.407	0.486	0.599	0.734	0.974	1.062	0.526	1.710
BAT	0.041	0.046	0.050	0.047	0.040	0.000	0.000	0.140	4.494
TOTAL	0.014	0.015	0.019	0.037	0.067	0.026	0.000	0.335	3.846
PORT	0.041	0.050	0.055	0.049	0.024	0.000	0.000	0.144	3.584
KNM	0.026	0.027	0.028	0.025	0.015	0.000	0.000	-0.290	8.645
KENOL	0.095	0.080	0.071	0.068	0.046	0.000	0.000	0.045	3.128
FIRE	0.016	0.015	0.012	0.000	0.000	0.000	0.000	-0.446	5.762
EAPACK	0.013	0.009	0.005	0.000	0.000	0.000	0.000	0.071	10.041
EACABL	0.000	0.000	0.000	0.000	0.000	0.000	0.000	-0.867	10.947
EABL	0.136	0.145	0.147	0.122	0.073	0.000	0.000	0.089	2.561
DUN	0.063	0.026	0.000	0.000	0.000	0.000	0.000	-0.705	3.020
UNGA	0.008	0.011	0.012	0.010	0.000	0.000	0.000	-0.830	7.687
KPLC	0.036	0.018	0.000	0.000	0.000	0.000	0.000	-1.245	6.135
Total Weight	1	1	1	1	1	1	1		

The situation was much worse than in 1999. A total of 10 stocks out of 17 stocks recorded negative weekly returns. BAMB had the highest weekly return of 0.526%, but with a very high risk of 1.71%. We constructed 7 portfolios and stocks included in them ranged from 1 to 15 . Portfolios 1 to 4 were the most diversified. BAMB appeared in all the portfolios constructed indicating superior performance over the others. An investor investing in portfolio 7 would have been required to borrow more funds in order to attain that level of investment.

Figure 22: Industrial Portfolio Return for 2000

Industrial 2000: Portfolio Risk-Return

The efficient frontier deteriorated further in 2000. BAMB was the best in terms of weekly risk-return relationship. KPLC was the worst stock. EACABLES was the riskiest stock.

4.4.5 Risk-Return for the year 2001

Table 19: Industrial Risk-Return for the year 2001

The situation was not impressive in 2001 . The highest return of 1.224% was recorded by KENOL but with the highest risk of 9.005% ! We managed to construct 11 portfolios with the highest having a return of 1.125% but with a risk of 7.83%. Number of stocks included in each of the stock ranged from 3 to 11 stocks. EACABL and KENOL appeared in all the portfolio formation indicating superior performance over the other stocks in the sector during the period.

Figure 23: Industrial Portfolio Return for 2001

The number of stocks with negative weekly returns stood at 10 . KPLC exhibited the worst performance. PORT was the riskiest stock.

4.4.6 Industrial Portfolio Risk-Return comparisons for the years 1997 to 2001

Figure 24: Industrial Portfolio Risk-Return for the years 1997 to 2001

Out of the 5 years i.e. 1997 to 2001 in the industrial sector, 1998 was the best for a wealth maximizing investor. This was then followed by 2000, 1997, 2001 and finally 1999. As noted in the agricultural and commercial sectors, the better performance in 1998 may have been attributed to the investor sentiments immediately after the 1997 general elections. The variation in stock performance from one period to the other justifies why investors need to keep on redefining their investment mix in order to attain their investment objective(s).

4.5 Inter- Sectoral Portfolio Return Characteristics Comparisons-Graphs

4.5.1 Comparison for the year 1997

Figure 20: All sector comparison for 1997

The graph shows the efficient frontier for all the market sectors at the Nairobi Stock Exchange for 1997. The efficient frontier for commercial sector was the best compared to the other 3 sectors. The commercial sector was then followed by the agricultural sector. In third place came the industrial sector and then finally the financial sector. The graph documents observable significant portfolio risk-return characteristics across the sectors. For instance, the commercial sector efficient portfolio is far much superior compared to the other 3 sectors. Another deduction from the above graph is where the efficient frontiers inter-cross each other. For instance, the agricultural sector efficient frontier intercrossed that one of commercial. What it means is that investors would have been
indifferent as to which sector to invest in. This is a common feature through out our analysis.

4.5.2 Comparison for the year 1998

Figure 21: All sector comparison for 1998

The graph shows the efficient frontiers for all the market sectors at the Nairobi Stock Eẋchange for 1998. As in 1997, the efficient frontier for commercial sector was the best compared to the other 3 sectors. The commercial sector was then followed by the agricultural sector. The efficient frontier for commercial and agricultural sectors showed remarkable improvement as compared to 1997. As seen in our earlier analysis, this trend was consistent with the good return-risk recorded by individual company stocks in these 2 sectors. Ranked number 3 was the industrial sector while the financial sector was ranked $4^{\text {th }}$. Again, as noted earlier there were significant differences in portfolio riskreturn characteristics across the sectors. The commercial and agricultural sectors portfolio nisk-return characteristics departed significantly from the industrial and financial sectors. As noted earlier, where the efficient frontiers inter-crossed, it meant that investors would have been indifferent as to which sector to invest in.

4.5.3 Comparison for the year 1999

Figure 22: All sector comparison for 1999

The graph shows the efficient frontiers for all the market sectors at the Nairobi Stock Exchange for the period 1999. In 1999, the efficient frontier for financial sector emerged the best compared to the other 3 sectors. The financial sector was then followed by the industrial sector. Ranked number 3 was the agricultural while the commercial sector was ranked $4^{\text {th. }}$ The efficient frontiers for all the market sectors at the Nairobi Stock exchange deteriorated during the period. This was a reflection of the poor performance and return volatility exhibited by individual stocks across all the market sectors. The differences between market sectors were not as significant as in 1997 and 1998. Industrial and financial sectors presented the widest portfolio formations. The inter crossing of efficient frontiers is documented elsewhere.

Figure 23: All sector comparison for 2000

All Sectors Portfolio Risk \& Return:2000

\rightarrow CommercialPortfolios \rightarrow - FinancialPorttolios \rightarrow - IndustrialPortfolios

The graph shows the efficient frontiers for all the market sectors (with the exception of agriculture) at the Nairobi Stock Exchange for the period 2000. In 2000, the efficient frontier for industrial sector emerged the best compared to the other 2 sectors. The industrial sector was then followed by the commercial sector. Ranked number 3 was the financial sector We were not able to generate portfolio formations for the agricultural sector in 2000 as almost all the stocks in the sector had negative returns. The target return that we set was all positive. No investor places his/her investment with the intention of making losses. In which case, if negative returns dominate the set then we will not expect any solution. The differences between market sectors were not as significant as in 1997 and 1998. The commercial sector had the largest portfolio formations than any other sector.

Figure 24: All sector comparison for 2000

The graph shows the efficient frontiers for all the market sectors at the Nairobi Stock Exchange for the period 2001. In 2001, the efficient frontier for industrial sector emerged the best compared to the other 3 sectors. The industrial sector was then followed by the agricultural sector. Ranked number 3 was the financial sector while the commercial was the $4^{\text {th }}$ Evidently the graph depicts significant differences in the formation of the efficient frontiers. For instance, there was significant difference between the industrial sector and the commercial sector. The financial sector had the largest portfolio formations. We also observed the inter-crossing of efficient frontiers. The implication of this is that investors would have been indifferent as to which sector to invest in.

4.6 Yearly Sectoral Portfolio Return Characteristics Comparisons-Statistics

4.6.1 Descriptive statistics

Table 20: Descriptive statistics: Risk

Descriptive Statistics (Weekly \%): Risk						
Agricultural						
	Year	N	Mean	Median	StDev	
	1997	7	1.223	1.223	0.813	
	1998	7	0.834	0.805	0.464	
	1999	7	2.233	2.176	0.611	
	2001	7	2.543	2.221	1.513	
Commercial						
	Year	N	Mean	Median	StDev	
	1997	20	2.100	1.984	0.661	
	1998	13	2.602	2.196	1.491	
	1999	7	2.754	2.561	1.193	
	2000	6	1.689	1.457	0.769	
	2001	6	2.617	2.517	1.863	
Financial						
	Year	N	Mean	Median	StDev	
	1997	7	2.049	1.910	0.566	
	1998	6	1.736	1.609	0.403	
	1999	9	2.134	1.378	1.486	
	2000	8	2.920	2.556	1.222	
	2001	6	2.557	2.137	1.396	
Industrial						
	Year	N	Mean	Median	StDev	
	1997	18	3.517	3.325	1.639	
	1998	15	2.374	1.956	1.435	
	1999	12	3.132	2.618	1.619	
	2000	7	1.202	1.084	0.410	7
	2001	8	2.030	1.761	1.116	

The table gives a summary of the descriptive statistics (mean, median and standard deviation) of the weekly risk on the quoted stocks for the Agricultural, Commercial, Financial and Industrial sectors for the period from 1997 to 2001.

The Agricultural sector weekly risk standard deviation ranged between 0.813% and 1.513%. The average weekly risk for the sector ranged between 0.834% and 2.543%.

The Commercial sector weekly risk standard deviation ranged between 0.661% and 1.863%. The average weekly risk for the sector ranged between 1.689% and 2.754%.

The Financial sector weekly risk standard deviation ranged between 0.403% and 1.486%. The average weekly risk for the sector ranged between 1.736% and 2.920%.

The Industrial sector weekly risk standard deviation ranged between 0.410% and 1.639%. The average weekly risk for the sector ranged between 1.202% and $3,517 \%$.

4.6.2 One-Way ANOVA

Table 21: One-way ANOVA Statistics (Weekly \%): Risk

The table gives a summary of the yearly analysis of the variance (ANOVA) at 95% confidence level of the weekly risk of the quoted stocks for the Agricultural, Commercial, Financial and Industrial sectors for the period from 1997 to 2001.

The results as denoted by the P-VALUE indicate that only Agriculture and Industrial sectors weekly risk characteristics for the period 1997 to 2001 were significantly different. As for the Commercial and Financial sectors, the weekly risk characteristics for the period were not significantly different.

4.7 Inter- Sectoral Portfolio Return Characteristics Comparisons-Analysis of Variance (ANOVA)

Table 22: One-way ANOVA Statistics (Weekly \%): Risk

The table gives a summary comparison of the yearly analysis of the variance (ANOVA) at 95% confidence level of the weekly risk of the quoted stocks across the Agricultural, Commercial, Financial and Industrial sectors for the period from 1997 to 2001.

The results as denoted by the P-VALUE indicate that for the years 1997, 1998 and 2000, there were significant differences between sectors in terms of the weekly risk characteristics. In 1999 and 2001, the weekly risk characteristics were not significantly different between sectors.

CHAPTER 5: SUMMARY FINDINGS \& CONCLUSION

5.1 Findings

The analysis of sectoral portfolio return characteristics does indicate that there are significant differences between sectors in terms of return and risk. The portfolio return characteristics do not only differ across sectors but also from one period to the other. We were able to establish that these differences are intermittent i.e. not steady. The existence of these risk-return differences is a manifestation of the inherent differences in market conditions and sector characteristics.

Empirical evidence suggests that stock returns across market sectors are not uniform. According to Fama and French (1992, 1996), much of the cross sectional variation in equity returns can be explained by firm characteristics such as market capitalization, price-to-earnings ratios, change in operating earnings and book-to-market ratios. They examine many of these factors simultaneously and conclude that size and book-to-market, explain the majority of the cross sectional variation in stock returns.

According to Pouchkarev, Spronk and Vliet (2003), the environment in which new economy firms operate is dynamic. The environment is characterized by rapid technological change and versatile interaction. In this environment, pro-active management style becomes a core competence. Growth potential depends on firm specific factors e.g. management's capability to identify and exploit valuable growth options, or the number of strategic alliances, and the rate of technological change within a sector.

In this study we were able to pick up risk-return differences between sectors by modeling the past performance of different combinations of stocks within market
sectors. These differences were significant enough to influence investor choice while determining which stocks to include in the investment basket. The intersector and periodic stock performance differentials justify why investors need to regularly appraise and keep on redefining their investment choice in relation to their investment objective(s).

While the commercial sector risk-return dominated the other sectors in 1997 and 1998, the industrial sector dominated in 2000 and 2001. The financial sector dominated in 1999. This is an interesting observation for the investor. It means that market conditions are difficult to predict and usually can be identified only after they exist.

Another deduction from this study is that diversification of investments reduces risk and thus improving the risk-return relationship of investments held by an investor. In all the sectors analysed in Chapter 4, it clearly emerged that individual company stock risk-return were inferior to the risk- return recorded by investment portfolios constructed in this study.

5.2 Recommendations

The study sought to establish whether by comparing portfolios across sectors, we might conclude that discriminating conditions exist to warrant incurring search costs and additional security analysis required of investors when selecting assets (shares) from individual sectors to include in the portfolio.

The investor's dilemma is at two levels. First is choosing assets to include in a portfolio. In choosing the assets to include in the portfolio, the risk -return trade off features prominently. Secondly is choosing the best portfolio.

In this case it makes sense for an investor to perform security analysis for each sector, as the risk and return characteristics differ significantly across sectors.

Also a similar analysis should be carried from one period to the other. This way the investor's dilemma is resolved.

5.3 Problems and Limitations

The project was not without limitations.

A project of this magnitude requires ample time and financial resources to be able to achieve a wide coverage. In this project, our coverage was limited to a period of 5 years i.e. from 1997 to 2001. With abundant resources, a wide coverage of say 10 years would have been more ideal to give a better picture of the behaviour of the portfolio return characteristics of the different sectors over a long period of time.

5.4 Suggestions for future work

In this study, a new way of looking at the stock market performance of different market sectors and their differences has been introduced and illustrated. A number of refinements and extensions can be made though. It is recommended that the project be modified later to enable:

- Construction of portfolios that entail all the listed stock market sectors (market portfolios) and comparing the same with the individual market sectors.
- Establishing firm and sector characteristics at the Nairobi Stock Exchange (e.g. capital structure, asset base, management style etc.) and relate to the portfolio return characteristics.
- Study of the macro-economic variables over a period of time and how such variables have impacted on the portfolio return characteristics of the different market sectors at the Nairobi Stock Exchange.

BIBLIOGRAPHY \& REFERENCES

Banz R., The Relationship Between Return and Market Value of Common Stock, Journal of Financial and Quantitative Analysis, March 1981, Pgs 421441

Brealey Richard A. and Myers Stewart V. (1991), Principles of Corporate Finance (Fourth Edition), McGraw-Hill, Pgs 129-173

Business and Investment insight, volume 1.1, March /April 2001, Maroko Investment Advisory Services.

Coopeland Thomas E. and Weston J. Fred (1988), Financial Theory and Corporate Policy (Third Edition), Addison-Wesley, Pgs 77-228

Daniel K., S. Titman, Explaining the Cross-section of Stock Returns in Japan. Factors or Characteristics, Journal of Finance, Vol. 56, 2001 Pgs 743-766.

> Duman, D. N. \& Luftlin, E.A. (1997), Do Contrarian Strategies Work within sectors? JI 6, Fall, Pgs 7 - 29

Elton \& Gruber (1995), Modern Portfolio Theory and Investment Analysis (5 $5^{\text {th }}$ Edition), John Wiley \& Sons, Inc. Pgs. 43-69

Emery Gavy W. (1998), Corporate Finance; Principles \& Practice, Addison Wesley, Pgs 173-215

Fama E. and K. French, The Common Risk Factors in the Returns on Stocks and Bonds, Journal of Financial Economics, Vol. 33 1993, pp 3 - 56

Fama, E. and F. French, The Cross Section of Expected Stock Returns. , Journal of Finance, Vol. 47 492, Pgs 427 - 465

Fama, E. and K. French, Multi Factor Explanations of Asset Pricing Anomalies, Journal of Finance, Vol. 51 1996, Pgs 55 - 84

Fama, Eugene F. (1965), The Behavior of Stock Market Prices, Journal of Business 38, pp 34-105

Igor Pouchkarev, Jaap Spronk \& Pim Van Vliet (2003), Portfolio Return Characteristics of Different Sectors, ERIM Report Series in Management, ERS - 2003-014-F \& A

Jaffe Ross Westerfield (1990), Corporate Finance (Second Edition), Irwin, Pgs 295-329

Kamanda N. Stephen (2001), An Empirical Evaluation of Equity Portfolio's held by Insurance Companies in Kenya, MBA Thesis, UoN

Kangethe P. K. (1999), The Effect of Government Ownership on'Share Price Volatility of Companies Quoted at Nairobi Stock Exchange, MBA Project, UoN

Kiweu J. M. (1991), The Behaviour of Share Prices in the Nairobi Stock Exchange: An Empirical Investigation, MBA Thesis, UoN

Kraus Alan and Robert Litzenberger (1976), Skewness Preference and the Valuation of Risky Assets, Journal of Finance 31, pp 105-1100
L.J. Gitman \& M.D. Joehnk (2001), Fundamentals of Investing (Eighth Edition), Pearson Education. Pgs 272-315

Larsen, Jr. G. and B. Dennick, Paremeter Estimation Techniques, Optimization, Frequency, and Porffolio Return Enhancement, Journal of Portfolio Management, Summer 2001, pp 1 - 8

Levy Harm and Sarn Marshall (1994), Capital Investment and Financial Decisions (Fifth Edition), Prentice Hall, Pgs 211-350

Market Fact Fill, Nairobi Stock Exchange Limited

Markowitz, Harry M., (1952), Portfolio Selection, Journal of Finance 7, No. 1 (March 1952).

Markowitz, Harry M., (1991), Portfolio Selection (Second Edition), Black-well

Nyariji, Bowa Thomas (2001), Determining The Risk Minimizing Portfolio At the Nairobi Stock Exchange, MBA Project, U.o.N.

Nzioka, Onesmus Mutunga (2002), An Empirical Test Of The Relative Value Theory As An Approach To Asset Selection (A case of Nairobi Stock Exchange), MBA Project, U.o.N.
P. Peterson (2001), Risk, Return and Diversification, Fin 3403, Florida State University

Pearce J. A. and Robinson R. B, Strategic Management; Formulation, Implementation and Control (Sixth Edition), MC Graw Hill, Pgs 61-102

Phelim P. Boyle \& Xiaodong Lin, Optimal Portfolio Selection with transaction costs, North American Actuarial Journal, Volume 1, Number 2

Reilly Frank K. \& Brown Keith C. (1997), Investment Analysis and Portfolio Management (Fifth Edition), Dry Den, Pgs 6-33, 253-270

Sawaya A. W. (2000), Beta Co-Efficient as a Measure of Risk of the Common Shares Listed at the Nairobi Stock Exchange, MBA Thesis, UoN

Stephen Lofthouse (2001), Investment Management, John Wiley \& Son Inc. Pgs 285-296.

APPENDICES

Appendix A-List of companies quoted at N.S.E. as at 1st January 1997

	Company Name	Short Name
	Agricultural Sector	
1.	Brooke Bond Ltd.	BBOND
2.	George Williamson Kenya Ltd.	GWK
3.	Kakuzi	KAKUZI
4.	Kapchorua Tea Co. Ltd	KAPCHO
5.	Limuru Tea Co. Lid	LIMTEA
6.	Rea Vipingo Plantations Ltd.	REAVIP
7.	Sasini Tea \& Coffee Ltd	SASINI
8.	Eaagads Ltd.	EAGADS
	Commercial Sector	
1.	A.Baumann \& Co.Ltd	ABOUM
2.	Uchumi Supermarket Ltd.	UCHUMI
3.	Car \& General (K) Ltd	CGEN
4.	CMC Holdings Ltd	CMC
5.	Express Ltd	EXPRES
6.	Kenya Airways Ltd	KENAIR
7.	Marshalls (E.A.) Ltd	MARSH
8.	Nation Media Group	NMG
9.	Tourism Promotion Services Ltd (Serena)	SERENA
10.	Standard Newspaper Group	SMG
	Financial Sector	
1.	Barclays Bank Ltd	BBK
2.	C.F.C Bank Ltd	CFC
3.	City Trust Ltd	CTRUST \quad,
4.	Diamond Trust Bank Kenya Ltd	DTK
5.	Housing Finance Co Ltd	HFCK
6.	I.C.D.C Investments Co Ltd	ICDC
7.	Jubilee Insurance Co. Ltd	JUB
8.	Kenya Commercial Bank Ltd	KCB
9.	National Bank of Kenya Ltd	NBK
10:	National Industrial Credit Ltd	NIC
11.	Barclays Bank Ltd	PANAFR
12.	Standard Chartered Bank Ltd	SCB
13.	NIC Bank Ltd.	NICB
	Industrial Sector	
1.	Athi River Mining	ARM
2.	Bamburi Cement Ltd	BAMB
3.	British American Tobacco Kenya Ltd	BAT
4.	B.O.C Kenya Ltd	BOC
5.	Carbacid Investments Ltd	CARB
6.	Crown Berger Ltd	CBERG
7.	Dunlop Kenya	DUN

8.	East African Breweries Ltd	EABL
9.	E.A.Cables Ltd	EACABL
10.	E.A.Packaging Ltd	EAPACK
11.	E.A.Portland Cement Ltd	EAPORT
12.	Firestone East Africa Ltd	FIRE
13.	Kenya Oil Co Ltd	KENOL
14.	Kenya National Mills Ltd	KNM
15.	Kenya Power \& Lighting Ltd	KPLC
16.	Total Kenya Ltd	TOTAL
17.	Unga Group Ltd	UNGA

Total count $=48$

Appendix B-Key Definitions

Expected Return is the return on a portfolio of assets that an investor anticipates receiving over a period of time.

Risk is defined as the uncertainty associated with the end of period value of an investment.

The variance (or standard deviation) measures the dispersion of returns around the expected return. It is our measure of risk in this study. The standard deviation is the square root of the variance. The idea is that the greater the dispersion of possible outcomes the greater the variance or standard deviation.

Variance-Covariance Matrix is a table that symmetrically arrays the covariance between a number of random variables. Variances of the random variables lie on a diagonal of matrix, whereas covariance's between the random variables lie above and below the diagonal.

Correlation Coefficient is a statistical measure similar to covariance. It measures the degree of mutual variation between two random variables. It rescales covariance to facilitate comparisons across among pairs of random variables. The value +1 and -1 bound this coefficient.

Portfolio is a collection of investments. It can be a collection of securities (stocks and bonds) or assets such as buildings, inventories, trademarks, patents etc.

Diversification refers to the combination of assets whose returns do not vary with one another in the same direction and at the same time.

Appendix C-Sector Returns

Agriculture 1997

WeokEnd	Series	BBond	SASINI	REAV	LTEA	KAPCHO	KAKUZI	G W K	EGAADS
03-Jan-97	40	1.02	9.85	0.65	0.00	0.00	0.00	0.26	0.00
10-Jan-97	41	-7.75	-0.97	2.92	0.00	0.00	0.00	0.60	0.00
17-Jan-97	42	-4.73	10.54	10.66	0.00	0.00	0.51	4.10	0.00
24-Jan-97	43	-0.66	5.93	9.43	0.00	0.00	2.02	0.00	0.00
31-Jan-97	44	0.61	-12.75	-14.28	0.00	0.00	-0.49	-0.23	0.00
07-Feb-97	45	0.63	10.83	2.84	0.00	0.00	0.45	0.23	0.00
14-Feb-97	46	-0.02	0.51	11.74	0.00	0.00	0.06	0.85	0.00
21-Feb-97	47	-0.06	0.00	-2.42	0.00	0.00	0.97	0.12	0.00
28-Feb-97	48	0.57	2.12	-13.72	0.00	0.00	0.56	0.00	0.00
07-M ar-97	49	0.00	-0.05	-2.03	0.00	0.00	1.24	-0.52	0.00
14-Mar-97	50	-4.86	7.06	-1.60	0.00	0.00	-2.15	-0.46	0.97
21 -M ar-97	51	-4.69	-5.09	-6.68	0.00	0.00	0.39	-0.29	0.00
28-Mar-97	52	-4.07	-0.23	-3.11	0.00	0.00	0.00	0.00	0.48
04-Apr-97	53	-6.96	2.28	-0.72	0.00	0.00	0.70	-2.96	-0.09
11-Apr-97	54	-1.40	-1.49	-1.09	0.00	0.00	-0.67	-1.21	0.01
18-Apr-97	55	2.50	3.94	5.35	0.00	0.00	0.00	-0.29	-0.39
25-Apr-97	56	-0.17	-3.05	-3.83	0.00	0.00	0.00	-0.05	0.00
02-May-97	57	1.62	-0.67	0.04	0.00	0.00	0.56	0.71	0.00
09-May-97	58	-0.68	4.85	-0.34	0.00	0.00	-0.34	-0.71	0.00
16-M ay-97	59	-0.99	-4.38	0.19	0.00	0.00	0.71	0.00	0.00
23-May-97	60	0.55	0.32	-1.19	0.00	0.00	0.32	-1.16	0.00
30-May-97	61	0.61	0.16	0.40	0.00	0.00	1.51	-0.27	0.00
06-Jun-97	62	-3.50	2.28	0.07	0.00	0.00	-8.49	1.45	0.00
13-Jun-97	63	4.09	0.69	1.33	0.00	0.00	12.05	0.00	0.00
20-Jun-97	64	-2.27	3.91	0.22	0.00	0.00	-1.13	0.11	0.00
27-Jun-97	65	-3.93	0.21	2.69	0.00	0.00	0.65	0.94	0.00
04-Jul-97	66	2.10	3.73	8.10	-14.94	0.00	-5.60	0.81	0.00
11-Jul-97	67	2.15	-6.15	1.39	0.00	0.00	5.00	-1.13	0.00
18-Jul-97	68	-2.33	2.39	-0.47	-0.66	0.00	1.32	1.39	0.00
25-Jul-97	69	-3.34	0.63	-23.25	0.00	0.00	-0.36	0.38	0.00
01-Aug-97	70	6.46	-0.54	9.78	0.00	0.00	0.00	0.61	0.00
08-Aug-97	71	-0.93	-1.76	0.43	0.59	0.00	2.60	-1.13	0.00
15-Aug-97	72	-1.23	1.19	3.36	0.00	0.00	5.75	2.99	0.00
22-Aug-97	73	4.84	6.60	0.05	0.00	0.00	7.44	4.08	0.00
29-Aug-97	74	-3.16	4.82	-2.97	0.00	0.00	3.33	0.00	0.00
05-Sep-97	75	-2.58	3.04	4.98	0.00	0.00	4.77	15.58	0.00
12-Sep-97	76	0.81	5.85	1.40	0.00	0.00	20.87	22.05	0.00
19-Sep-97	77	0.38	0.68	-0.40	0.00	0.00	1.79	8.92	0.00
26-Sep-97	78	-0.35	-1.93	1.05	0.00	0.00	-5.97	6.34	0.00
03-Oct-97	79	0.19	1.83	-1.69	-11.76	0.00	-3.86	1.00	65.38
10-Oct-97	80	0.76	-4.78	-2.64	0.00	0.00	0.00	0.46	-0.20
17-Oct-97	81	0.67	-0.09	0.00	0.00	0.00	-2.52	-5.40	0.00
24-Oct-97	82	-2.35	-1.88	-3.12	0.00	0.00	0.00	5.00	0.20
$31-\mathrm{Oct-97}$	83	-0.83	0.07	-0.73	0.00	0.00	0.00	-6.67	0.00
07-Nov-97	84	1.48	-2.71	-0.07	0.00	0.00	-4.14	0.00	-3.49
14-Nov-97	85	0.00	3.53	-3.98	0.00	0.00	0.00	0.00	0.00
21-Nov-97	86	0.33	-1.80	1.05	0.00	0.00	-30.36	0.00	0.00 0.00
28-Nov-97	87	-1.04	-3.53	-1.51	0.00	0.00	-4.82	-31.37	0.00
05-Dec-97	88	-7.59	-1.10	3.38	0.00	0.00	2.02	1.75	000
12-Dec-97	89	0.82	6.88	-1.04	0.00	0.00	-1.82	0.00	0.00
19-Dec-97	90	-0.51	-0.04	4.63	0.00	0.00	0.00	1.67	0.00
26-Dec-97	91	0.00	0.00	1.25	0.00	0.00	4.02	2.99	
Avarage		-0.766	0.994	-0.067	-0.515	0.000	0.171	0.607	1602
Variance		7.990	18.443	33.313	6.836	0.000	37.308	39.103	
	ndard L	2.827	4.295	5.772	2.615	0.000	6.108	6.253	

	N ○
	-
	8\%8ㅇㅇ స
$\begin{aligned} & N \sim O \\ & \text { yo } \\ & \text { ON } \end{aligned}$	N N000~000000000000000 ज N N 0000000000000000
$\begin{aligned} & \text { No } \\ & \text { No } \\ & \text { Now No } \\ & 0 \end{aligned}$	-

80Z＇9	Stl＇$¢$	$\angle E O$＇t	1 1EL \mathcal{L}	1ع8＇	LZL＇	tot ${ }^{\text {c }}$	Stit	J puepuels әэиеие＾	
0ts 88	ャ68＇6	66で91	$\angle 16$ ¢ 1		068 ¢	899.8	281－21		
L89 0－	$649^{\circ} 0^{-}$	8080^{-}	1620	てsで0－	$6 \pm$ ¢ 0^{-}	2620－	Stto ${ }^{-}$		
Et9－	00.0	000	$00 \cdot 0$	00%	$9 \varepsilon^{\circ}{ }^{\circ}$	00°	＋6．0	961	66－эəロ－เع
000	2600^{-}	L8 \mathcal{E}	000	00%	$66 \cdot$	St＇z	20゙し	S61	66－эə入－七乙
000	00.0	000	00%	00%	$\angle \mathrm{SG} \mathrm{S}^{-}$	$91.0-$	c9\％－	D61	66－эəロ－＜1
$00^{\circ} 0$	$6 \varepsilon^{\circ} \varepsilon^{-}$	乙と๕－	000	00%	$01 \cdot 9$	＋80－	LくO	ع6।	66－эəロ－01
$00^{\circ} 0$	てع8－	689	00°	00%	09.0	0 がく	$\angle \varepsilon^{\circ} 0$	261	66－əə๐－を0
000	86 ¢	± 60	00%	00%	9 ¢＇$^{\text {－}}$	て¢ ε^{-}	$90^{\circ} \mathrm{L}$	161	66－＾0 ${ }^{\text {－92 }}$
$00{ }^{\circ}$	ャ6で	$00^{\circ} 0$	000	000	$8 て ゙ \checkmark$	てع8－	$\mathrm{t}_{2} \mathrm{O}^{-}$	061	66－＾0 N^{-61}
000	ででて	00°	00°	00%	6L＇6	00%	¢9＇z	681	66－＾0N－ZL
000	000	000	00%	00%	91.0	00°	00°	881	66－＾0 ${ }^{\text {－}}$－ 0
00°	$\dagger<\mathcal{L}^{-}$	$00^{\circ} 0$	00°	00%	¢S 0	て0で	$26.0-$	L81	66－100－62
00°	00%	$80{ }^{-}$	00%	00%	61.9	L6で	260	981	66－ヶロ－てz
000	Gで	$98.0{ }^{-}$	00%	00.0	$60^{\circ} \mathrm{E}$	カ1＇z	$00 \cdot 0$	S81	66－50－91
00.0	98＇レ－	00°	00°	00°	เ¢ 9 －	00°	29＇1	781	66－150－80
16.7	000	00°	00%	00%	$85^{\circ} 0^{-}$	$6 \mathfrak{6}$－	6 C＇$^{\prime}$	ع81	66－90－10
00%	000	$98 ゙ く L-$	00°	00%	Sl＇0	9 9でて	18．し－	281	66－das－七て
99＇＊	00.0	000	00%	00.0	$9 \mathrm{~S}^{\circ} 0^{-}$	¢で0	\＆$¢^{\prime} 9$	181	66－dəs－ 21
OS．L	$98.21-$	00°	00%	00%	$9 \varepsilon^{\circ} 0$	とで七	t9＇tu－	081	66－dos－01
$00^{\circ} 0$	$00 \cdot 0$	00.0	$00^{\circ} 0$	00.0	980－	$0 \varepsilon^{\circ} 0$	000	621	66－des－を0
000	$00 \cdot 0$	00°	00°	000	$88^{\prime} \mathrm{S}^{-}$	00°	ts ${ }^{\text {b }}$	8LL	66－6n $\forall-\angle Z$
\＆¢ ε°－	000	000	00%	00%	LL＇で	98.1	$6 \downarrow^{\circ} 0$	LLL	66－6nv－0z
000	000	00°	00%	000	16%	00°	ャ®0	9＜L	
00.0	00.0	ででで	00%	$00 \cdot 0$	260	L．＇っ－	$\angle 10$	GLL	66－6n \downarrow－90
000	000	$8 \mathrm{ra}^{\text {\％}}$	00%	00%	$85^{\circ} \mathrm{L}$	81.	00%	t＜L	$66-\ln -0 \varepsilon$
$00^{\circ} 0$	00°	00°	00%	00.0	000	$0 \mathrm{E}^{-}$	000	$\varepsilon \angle L$	$66-1 n 5-\varepsilon z$
68.0	¢ $\varepsilon^{\circ} \mathrm{L}^{-}$	$2 \mathrm{H}^{\circ} \mathrm{O}$	00%	00%	zzo－	$0 \varepsilon^{\circ} 0$	$10^{\circ} 0$	ZLL	$66-1 \Gamma^{-}-91$
00%	9200	00°	00%	00%	900	00%	カ1．L	1くL	66－nn－60
00.0	เ¢ 0^{-}	90.0	00%	000	110	いO	がし－	021	66－ın¢－zo
000	S0＇L	00°	00%	\＆\＆とレ－	010	00%	O1．0－	691	66－un¢－sz
00.0	00^{-}	LL＇ε	$00^{\circ} 0$	000	28 ¢	$6 て ゙ \varepsilon$	010	891	66－un¢－81
00.0	$0 L^{\circ}$	$\varepsilon \varepsilon^{\text {¢ }}$	00°	000	tG＇＊	$6 \varepsilon^{\prime}$ 乙	$91.0{ }^{-}$	L91	66－un¢－IL
000	000	$80^{\circ} \mathrm{L}$	00%	00%	＋9 L^{-}	00%	860	991	66－unc－to
000	000	と9\％－	00%	000	とで8	いOO－	$180{ }^{-}$	c91	66－кеW－8Z
000	Sto ${ }^{-}$	てでで	Ll＇t	00%	加も	69°	21\％	＋91	66－KeW－LZ
000	91.1	000	00%	$00 \cdot 0$	60%	OS＇L－	$85^{\circ} 0^{-}$	$\varepsilon 91$	66－Kew－tr
00.0	00.0	LS＇レ－	00%	00%	$\angle \mathrm{CO}$	62\％${ }^{\circ}$	ZL＇0	z91	66－KeW－L0
000	$65^{\prime} 0^{-}$	$8 \varepsilon^{\circ} \mathrm{t}$	00%	00%	$90^{\circ} 0$	ع0＇t	61.1	191	$66-1 d y-0 \varepsilon$
000	61.1	$9 \mathrm{ZG}^{-}$	OZ＇sı	000	00%	61.0	180^{-}	091	$66-1 d \forall-\varepsilon z$
000	210	896	000	000	18 ¢－	\pm ャ®	ガ0	6S1	$66-1 \mathrm{~d} v$－91
00.0	000	¢8＇G1－	00%	000	$9 \varepsilon^{\circ} \mathrm{L}$	0 がで	Es＇z	8SL	$66-\mathrm{dd}$ V－60
000	000	00°	000	000	ャでャ	O2\％${ }^{-}$	8 LL	LSL	66－Jdy－z0

Agriculture 2000

WeekEnd	Series	BBond	SASINI	REAV	LTEA	KAPCHO	KAKUZI	GWK	EGAADS
07-Jan-00	197	0.00	0.00	1.05	0.00	0.00	0.00	0.00	0.00
14-Jan-00	198	0.00	0.00	3.05	0.00	0.00	5.17	0.00	-3.85
21-Jan-00	199	-0.82	-8.62	-3.05	0.00	0.00	3.15	0.93	0.00
28-Jan-00	200	0.17	8.05	-0.94	0.00	0.00	0.00	1.08	0.00
04-Feb-00	201	0.00	0.00	1.76	0.00	0.00	3.46	-1.06	0.00
11-Feb-00	202	0.00	-11.92	-3.74	0.00	0.00	-0.15	0.00	0.00
18-Feb-00	203	0.00	-1.34	-16.44	0.00	0.00	0.00	0.00	0.00
25-Feb-00	204	-6.12	-6.49	2.76	0.00	0.00	0.00	-3.23	0.00
03-Mar-00	205	-17.55	0.00	12.64	0.00	0.00	-7.69	-1.62	0.00
10-Mar-00	206	0.00	-2.78	-11.04	0.00	0.00	-14.92	-1.74	0.00
17-Mar-00	207	22.29	0.02	-5.37	0.00	0.00	0.00	0.00	0.00
24-Mar-00	208	-4.51	2.83	-0.22	0.00	0.00	-8.58	-0.05	0.00
31-Mar-00	209	-4.28	-2.73	1.03	0.00	0.00	0.04	0.00	0.00
07-Apr-00	210	-7.80	0.15	4.66	0.00	0.00	0.08	0.05	0.00
14-Apr-00	211	-4.68	-2.17	0.58	0.00	0.00	2.01	0.04	0.00
21-Apr-00	212	-0.85	-14.69	0.65	0.00	0.00	-1.40	3.41	0.00
28-Apr-00	213	-0.52	7.14	-0.96	0.00	0.00	-3.34	0.00	0.00
05-May-00	214	0.00	0.00	-0.10	0.00	0.00	0.00	0.00	0.00
12-May-00	215	-0.10	5.23	-0.20	0.00	0.00	0.00	0.00	0.00
19-May-00	216	-0.40	5.41	0.62	0.00	0.00	-1.68	-9.71	0.00
26-May-00	217	0.50	3.54	-0.31	0.00	0.00	0.00	-5.24	0.00
02-Jun-00	218	-3.13	5.55	0.52	0.00	0.00	0.00	0.00	0.00
09-Jun-00	219	0.19	-3.81	-0.39	0.00	0.00	0.00	0.05	0.00
16-Jun-00	220	-0.41	0.00	-0.13	0.00	0.00	-0.75	0.00	0.00
23-Jun-00	221	-0.62	-4.20	-0.19	0.00	0.00	-3.76	-1.62	0.00
30-Jun-00	222	-1.36	0.21	-1.62	0.00	0.00	0.00	-0.60	0.00
07-Jul-00	223	1.01	0.00	1.64	0.00	0.00	0.00	0.00	0.00
14-Jul-00	224	-0.75	-0.31	-2.23	0.00	0.00	-0.78	-4.47	0.00
21-Jul-00	225	0.00	-1.80	2.26	0.00	0.00	-2.50	-0.65	0.00
28-Jul-00	226	-0.54	0.00	-9.85	0.00	0.00	1.76	0.00	0.00
04-Aug-00	227	0.42	-1.08	-0.13	0.00	0.00	0.00	0.00	-0.97
11-Aug-00	228	-0.24	0.77	-4.96	0.00	0.00	0.00	-4.90	0.00
18-Aug-00	229	-7.21	-0.63	-10.86	0.00	0.00	0.00	-5.88	0.00
25-Aug-00	230	5.84	-0.29	15.56	0.00	0.00	0.00	-7.50	0.00
01-Sep-00	231	4.92	0.00	2.44	0.00	0.00	0.00	0.00	0.00
08-Sep-00	232	-2.43	0.16	-3.06	0.00	0.00	0.00	20.00	0.00
15-Sep-00	233	7.79	2.91	6.52	0.00	0.00	-3.57	5.34	0.00
22-Sep-00	234	0.63	-7.82	-5.62	0.00	0.00	2.06	3.18	0.00
29-Sep-00	235	-0.15	-0.70	-0.15	0.00	0.00	-3.97	1.02	0.00
06-Oct-00	236	1.97	0.47	3.62	0.00	0.00	-7.27	7.75	0.00
13-Oct-00	237	1.02	5.66	3.00	0.00	0.00	0.00	0.00	0.00
20-Oct-00	238	6.88	0.00	-0.26	0.00	0.00	4.48	8.20	0.00
27-Oct-00	239	2.38	0.00	0.00	0.00	0.00	4.01	15.70	-18.31
03-Nov-00	240	-0.67	0.00	0.26	0.00	0.00	-12.47	3.75	0.00
10-Nov-00	241	3.06	0.00	1.37	0.00	0.00	-1.32	0.03	0.00
17-Nov-00	242	-1.53	0.74	3.68	0.00	0.00	4.21	0.00	1.36
24-Nov-00	243	6.05	1.40	-4.13	0.00	0.00	2.07	-1.10	0.00
01-Dec-00	244	-0.24	0.00	-0.75	0.00	0.00	1.18	0.00	0.00
08-Dec-00	245	0.38	0.83	-0.88	0.00	0.00	-1.38	0.29	0.00
15-Dec-00	246	0.00	-0.11	-8.36	0.00	0.00	0.00	0.82	0.00
22-Dec-00	247	-0.34	-0.05	-11.63	0.00	0.00	0.00	0.13	0.00
29-Dec-00	248	0.60	-2.76	-0.13	0.00	0.00	0.00	6.46	0.00
Avarage		-0.022	-0.446	-0.732	0.000	0.000	-0.805	0.170	-0.419
Variance		24.799	16.868	28.851	0.000	0.000	14.107	14.919	6.738
Standard [4.980	4.107	5.371	0.000	0.000	3.756	3.863	2.596

886 Z	82G＇ε	$8 \mathrm{t6} 6 \mathrm{~L}$	S91．	190＇	120＇Z1	ャ0どャ	910＇ε	J p．epuets әэиеиел әбелел	
1868	6tt゙で	乙 \％6＊ 26 ¢	$89 \varepsilon^{\prime}$	92t＇L	86がもガ	12c．81	9606		
8ドロ	$669^{\circ} 0^{-}$	\＆zL＊o	$8 \mathrm{LL}{ }^{-}$	$6 \pm 10^{-}$	6 L く 0	OZと＊－	281\％${ }^{-}$		
000	00%	00%	00°	00%	ع0．1	$1 \mathrm{E}^{\circ}{ }^{-}$	L6＇ E^{-}	662	10－コッロールス
$00^{\circ} 0$	じって	00%	00°	00%	ع1\％	＋L＇9－	000	862	ト0－əッコ－カ！
$00^{\circ} 0$	26.6	00%	£9＇1	000	S8で	L9\％－	00.0	L6z	10－əッロ－＜0
$00^{\circ} 0$	91＇81－	00%	19\％－	000	8で0－	OZ＇s	O1\％－	962	$10-\wedge 0 \mathrm{~N}-0 \mathrm{E}$
00%	00%	00%	00°	00%	99.7	ドOロー	00%	96z	$10-10 \mathrm{~N}-\mathrm{Ez}$
000	00%	00%	00°	$00^{\circ} 0$	ャ0＇z	OS 0	$\angle \varepsilon^{\circ} 0$	เ62	$10-10 \mathrm{~N}-91$
ャモ゙レて	てでて	00%	00°	00%	\＆s．u	00%	Ls＇0	\＆6乙	$10-10 \mathrm{~N}$－60
000	$20 \cdot 1$	20＇z	00%	00%	00%	OS 0^{-}	＜8．1	262	$10-\wedge 0 \mathrm{~N}-\mathrm{ZO}$
$00^{\circ} 0$	00°	くt．9	00°	00°	$0 \mathrm{~S}^{\circ} \mathrm{t}$	－$\sim^{\circ} \mathrm{O}^{-}$	$\angle 9^{\circ} 0$	162	10－ヶ0－92
00.0	91.8	$00^{\circ} 0$	00.0	$00^{\circ} 0$	0 ¢ ${ }^{\circ}$	Lて＇と－	$\angle 9^{\circ} 0$	062	10－ヶ0
00°	000	00.0	00%	00%	てLıL－	00%	$26^{\circ} 0^{-}$	682	10－ヶ゚ーで
00%	00%	00.0	00°	00%	SLL	00%	$96{ }^{-}$－	88%	10－ヶ0－50
000	00%	00%	00°	00°	86.5	$65^{\prime 2}$	\＆s＇0	L82	10 －dos－8z
000	00%	00.0	00°	$85^{\circ} L^{-}$	00%	00\％ 0 －	¢9\％で	982	10－des－ız
00%	00°	00%	O1でで	00°	29＇s	00%	88^{\prime} ¢－	98\％	10 －das－tl
00°	00.9%	てL゙で	8 8\％$^{\circ}$	00%	569－	00%	00%	¢82	10－dəs－ 20
$00^{\circ} 0$	$96.1-$	00%	00°	00.0	Sで6	00%	86°－	ع8乙	10－6n＊－18
$00^{\circ} 0$	66.0	$00 \cdot 0$	00°	00.0	80%－	59\％	£と＇0－	282	เ0－6n $\forall-\downarrow$ \％
$00^{\circ} 0$	860 －	Oどで	$00 \cdot 0$	00.0	－$L^{\circ} 0^{-}$	9て＇9－	100	182	$10-6 n \forall-L 1$
00%	66°	90\％－	00°	00.0		00%	L8で	082	$10-6 n \forall-01$
$00^{\circ} 0$	12\％	ド9－	$\angle 9^{\circ} \varepsilon$	00°	9 がで	120－	90°	$6 \angle 2$	$10-6 n \downarrow$－80
$00 \cdot 0$	96\％	OSでて	00°	00°	210	とでし－	ts＇レ－	8LZ	$10-\mathrm{Inf}-\mathrm{Lz}$
00°	S80－	00%	00°	00°	LL＇L－	t6．0	$00^{\circ} \mathrm{L}$	LLZ	10－Inc－0z
00°	$85^{\circ} 0$	00.0	$00 \cdot 0$	00°	$0 \varepsilon \downarrow$	00°	00.0	$9 \angle Z$	10－In¢－El
00°	00°	00°	00°	00%	\＆どてレ－	980－	O1＇L	GLZ	$10-\mathrm{mr}$－90
$00 \cdot 0$	ع8\％	00°	00°	00.0	とがとて	LS＇ε^{-}	\＆でし	ナLZ	10－un5－6z
$00 \cdot 0$	10.1	9 9＇Z	000	00°	28．	セ¢ ¢	$690-$	$\varepsilon L Z$	10－unr－zz
00°	L8で	$\varepsilon \varepsilon \cdot$	00°	$00^{\circ} 0$	L＇Z	L9\％${ }^{-}$	Slı	ZLZ	10－un¢－S1
$00 \cdot 0$	28＇s	00%	000	00.0	\＆でし	92°	Stて	$1 \angle Z$	to－un¢－80
00%	00°	てでて	000	00.0	Sci－	ゅで0－	Es＇レ－	$0 \angle Z$	10－unr－10
00°	เ8．-	$90{ }^{\circ} \mathrm{\varepsilon}$	000	00°	00%	19\％－	00°	692	10－Kew－sz
00°	00%	L6で	000	00°	96゙てで	sで0－	10\％－	892	10－Kew－81
$00 \cdot 0$	$00 \cdot 0$	$00 \cdot 0$	$00 \cdot 0$	00.0	00%	¢Z＇0	\＆でと	L92	10－Kew－IL
$00 \cdot 0$	$00 \cdot 0$	00°	$00^{\circ} 0$	$00^{\circ} 0$	ZS＇s	6 Z＇と $^{-}$	$6 \downarrow$ し－	997	10－Kew－to
00°	00.0	$00 \cdot 0$	000	$00^{\circ} 0$	68.0	$6 \downarrow^{\text {¢ }}$－	$0 \mathrm{OH}_{0}$	¢9z	$10-1 d v-L z$
00°	00°	$9 \mathrm{CO}^{-}$	000	00°	しで9－	00%	$9 \mathrm{CO}^{-}$	t92	$10-1 \mathrm{~d} v-0 z$
$00^{\circ} 0$	00°	8 8゙で－	00.0	$00^{\circ} 0$	LL6	$08{ }^{\text {\％}}$	9L＇9－	£92	$10-1 \mathrm{~d} v$－ε L
00°	16 \％	00°	L9 9^{-}	00°	908	$80^{\circ} 8^{-}$	$61 . \varepsilon$	292	$10-1 \mathrm{~d} \forall-90$

Commercial 1997

WeekEnd	Series	CarGen	ABOUM	UCHUM	SMG	SERENA	NMG	MARSH	KENAR	EXPRESS	MC
03-Jan-97	40	0.000	0.000	0.700	4.750		-0.477	0.000	0.574	0.483	0.479
10-Jan-97	41	0.000	0.000	1.758	-0.703		1.311	0.000	9.464	-0.369	-1.260
17-Jan-97	42	0.000	0.000	10.761	2186		1.780	0.000	11.369	0.452	5.496
24-Jan-97	43	0.000	0.000	0.871	2.897		0.429	0.000	-4.040	0.305	3.778
31-Jan-97	44	0.000	27.452	-2.780	3.190		-0.953	2.139	-13.744	-11.360	-0.380
07-Feb-97	45	5.000	-0.141	-7.392	12.631		-3.927	0.000	-0.103	0.000	0.000
14-Feb-97	46	-3.095	-1.468	10.459	-1.396		0.002	0.000	2.664	-8.178	-3.740
21-Feb-97	47	-1.720	1.490	6.383	37.398		2979	0.147	1.602	7.962	6.651
28-Feb-97	48	0.000	2.548	-1.580	5.605		-1.043	-1.715	-3.963	10.344	12.786
07-Mar-97	49	0.000	3.901	-1.985	-1.975		-0.371	2.128	2.748	-1.351	-0.819
14-Mar-97	50	0.000	-3.687	-8.859	-0.584		0.484	0.000	-2.897	3.645	-0.215
21-Mar-97	51	0.000	-2.947	-5.002	-1.206		0.913	0.000	1.878	-1.252	4.970
28-Mar-97	52	0.000	0.000	-0.373	-0.052		-0.666	0.000	-4.609	-2.306	-2.742
04-Apr-97	53	0.000	0.000	4.880	0.437		9.831	0.000	-2.522	-2.222	0.490
11-Apr-97	54	2.450	0.000	0.754	0.020		5.178	3.447	0.515	-0.221	-0.654
18-Apr-97	55	-2.391	-49.762	-0.134	-13.099		16.633	-3.332	-0.952	0.000	-14.182
25-Apr-97	56	0.000	0.000	-0.059	1.156		3.641	0.000	1.918	-3.499	-0.330
02-May-97	57	0.000	0.000	6.965	6.629		4.126	0.000	8.067	-3.738	-0.594
09-May-97	58	-15.000	0.000	2.774	6.300		3.093	0.000	-0.593	-5.175	2.468
16-May-97	59	0.000	28.190	-0.421	0.301	-4.184	0.312	0.000	-0.638	1.575	2.247
23-May-97	60	-5.294	0.000	0.478	2.644	-4.973	5.622	31.250	-5.344	3.828	0.402
30-May-97	61	0.000	0.000	-2.653	0.000	-5.118	-3.769	4.762	-2.932	0.917	-0.621
06-Jun-97	62	2.484	0.000	0.088	55.117	-2.261	-10.547	-15.909	2.019	-0.926	-0.068
13-Jun-97	63	0.000	0.000	0.000	5.632	-0.079	10.302	37.609	11.407	-4.698	9.668
20-Jun-97	64	2.242	0.000	0.000	6.996	3.983	4.234	4.392	-9.490	0.000	1.118
27-Jun-97	65	0.771	0.000	-3.620	7.331	2.453	-0.591	-3.421	12.799	0.308	3.603
04-Jい-97	66	-0.176	0.000	-2.600	-7.486	0.330	1.248	3.896	-6.614	0.048	12.315
11-Jul-97	67	-5.716	-7.169	-0.400	19.785	-1.153	3.186	-3.078	-7.487	-1.511	0.314
18-Ju-97	68	0.000	0.000	3.731	0.653	-0.261	-12.007	10.120	-4.227	-0.340	-2.012
25-Ju-97	69	1.563	0.000	-1.161	9.958	-0.068	11.606	3.807	14.070	-1.040	0.000
01-Aug-97	70	0.000	0.000	-1.805	-1.389	0.149	-5.902	4.361	-7.689	-0.215	-2.174
08-Aug-97	71	-1.538	0.000	0.942	2.209	-0.049	6.866	0.000	-2.887	-2.665	-1.623
15-Aug-97	72	0.000	0.000	-0.654	2.809	0.014	1.563	-8.108	3.041	-2.579	-4.000
22-Aug-97	73	0.000	0.000	2.628	16.999	-1.207	0.697	0.961	-2.163	0.000	-0.805
29-Aug-97	74	-0.562	-19.968	1.411	5.109	-9.412	0.253	0.269	18.261	-0.371	-3.554
05-Sep-97	75	0.000	-0.500	0.474	14.829	1.526	1.573	0.000	-18.745	1.952	-1.619
12-Sep-97	76	0.000	-3.116	0.229	17.259	9.478	2.585	0.000	0.902	-9.459	-2.893
19-Sep-97	77	0.566	-1.452	1.942	0.000	-1.544	0.133	0.000	10.451	-3.264	3.178
26-Sep-97	78	0.000	0.000	-1.743	-7.753	0.195	0.124	11.867	0.779	0.000	0.015
03-Oct-97	79	0.000	0.000	-2.851	-4.685	-1.010	4.894	0.000	2.435	1.651	-8.524
10-Oct-97	80	0.000	0.000	-0.391	3.082	-0.189	-3.113	0.000	-14.869	0.000	-1.443
17-Oct-97	81	0.313	0.000	-2.492	-4.122	-3.304	-1.146	15.625	-0.734	0.000	0.782
24-Oct-97	82	0.000	-3.158	1.821	-1.123	-8.184	1.113	21.356	-3.579	2.542	-4.743
31-Oct-97	83	-0.561	0.000	-0.280	-3.974	-5.222	-1.163	4.673	-1.036	-3.168	-3.737
07-Nov-97	84	0.251	0.000	-4.065	-5.911	-0.797	0.686	-1.596	0.030	-0.996	0.772
14-NOV-97	85	0.063	0.000	-2.993	-8.998	0.992	1.669	-0.627	-0.841	2.299	4.001
21-Nov-97	86	0.375	-2.174	4.945	-6.603	-1.269	1.121	-12.968	-0.825	0.000	0.000
28-Nov-97	87	0.498	0.000	-1.706	1.340	0.715	0.174	2.500	1.128	0.000	0.420
05-Dec-97	88	-0.929	0.000	0.847	-7.902	0.087	-1.404	0.000	0.547	0.000	3.849
12-Dec-97	89	0.625	0.000	-1.080	25.952	0.933	-0.028	0.000	1.705	-0.562	3.402
19-Dec-97	90	0.000	-13.611	3.792	17.479	0.744	0.049	-4.268	0.797	0.000	3.223
26-Dec-97	91	0.000	0.000	1.938	0.857	-0.576	0.138	0.000	3.000	0.000	0.000
	Avarage	-0.380	-0.876	0.240	4.242	-0.887	1.220	2121	0.012	-0.638	0.456
	Variance	6.800	92.063	13.224	134.661	11.480	21.690	74.210	47.885	12.039	19.428
	Standard [2.608	9.595	3.636	11.604	3.388	4.657	8.615	6.920	3.470	4.408

WeekEnd	Series	CarGen	ABOUM	UCHUMI	SMG	SERENA	NMG	MARSH	KENAIR	EXPRESS	MC
02-Jan-98	92	0.000	0.000	0.000	0.000	0.000	1.065	0.000	-1.328	0.000	0.000
09-Jar-98	93	0.000	0.000	4.001	-8.448	0.319	-0.873	0.000	-0.271	1.695	0.000
16-Jan-98	94	12.422	0.000	19.282	21.694	8.020	1.102	0.000	16.592	-5.633	0.547
23-Jar-98	95	11.878	0.000	5.119	-2.420	4.359	0.297	0.000	4.678	0.000	15.067
30-Jan-98	96	0.000	0.000	-14.701	-9.649	21.372	0.708	4.459	-1.841	28.046	26.600
06-Feb-98	97	0.000	0.000	-2.101	5.273	-18.331	0.161	5.951	-15.312	0.000	2.790
13-Feb-98	98	4.938	0.000	3.944	-1.192	2.058	1.131	0.965	2.224	-25.517	-3.686
20-Feb-98	99	-9.035	0.000	-0.639	-7.914	0.213	0.385	0.000	3.849	0.926	-0.398
27-Feb-98	100	-0.310	0.000	0.497	0.943	1.866	0.531	-3.084	-3.441	0.262	-10.231
06-Mar-98	101	3.788	0.836	1.404	-3.490	1.562	-0.419	-1.183	-0.925	0.654	-3.023
13-Mar-98	102	0.000	0.000	4.291	-3.398	-0.206	0.160	-0.009	-1.588	0.000	-6.549
20-Mar-98	103	0.000	2.041	-3.655	-1.452	-0.403	1.785	0.595	-1.270	-4.317	-0.843
27-Mar-98	104	-34.100	0.000	-5.248	1.355	-0.648	5.363	-0.592	-3.912	-4.633	-0.860
03-Apr-98	105	0.000	0.000	-5.554	27.305	-15.380	1.395	0.000	11.927	0.194	-1.000
10-Apr-98	106	0.000	0.000	-4.720	-15.416	0.183	34.048	0.000	-10.175	0.000	-0.786
17-Apr-98	107	0.000	0.000	2.929	-33.909	2.019	2.068	0.000	-0.265	0.000	0.000
24-Apr-98	108	-24.127	0.000	1.253	0.000	0.495	0.662	0.000	9.824	0.000	-14.016
01-May-98	109	30.000	0.000	0.670	0.000	-1.595	1.431	-1.786	-9.953	-9.019	-7.362
08-May-98	110	4.231	0.000	-0.375	-0.892	-0.259	1.337	0.000	-0.646	-4.918	-0.555
15-May-98	111	-0.369	0.000	0.831	0.000	-10.130	0.538	0.000	12.553	-7.949	-0.167
22-May-98	112	-2.148	0.000	2.040	-10.076	-3.452	-0.102	0.000	-11.503	-3.125	0.133
29-May-98	113	-9.160	1.563	9.647	0.000	7.228	0.420	0.000	-0.060	0.000	-0.362
05-Jun-98	114	-2.083	0.000	0.754	-14.123	6.757	-0.642	0.000	0.671	-7.097	-0.015
12-Jun-98	115	-1.021	-3.077	-5.906	10.649	-0.632	46.528	0.000	-2.981	-0.408	0.332
19-Jun-98	116	-3.267	0.000	-4.408	10.993	-4.843	-20.910	0.000	2.079	-3.216	-0.121
26-Jun-98	117	-1.778	-1.587	5.038	-3.484	5.937	-8.953	3.030	1.046	-5.663	0.168
03-Jul-98	118	0.724	0.000	5.847	0.000	-6.240	2.878	0.000	-0.106	-8.355	0.081
10-Jul-98	119	8.985	0.000	-7.116	0.000	1.515	-1.294	1.176	10.486	0.000	0.547
17-Jul-98	120	0.000	0.000	-1.717	0.000	1.187	3.961	0.000	3.160	0.000	0.023
24-Jul-98	121	-1.072	0.000	1.262	-19.853	-1.355	-3.215	-3.573	0.111	-1.448	0.294
31-Jul-98	122	0.000	0.000	-0.709	-14.583	-1.701	5.948	-4.998	5.327	1.469	-0.371
07-Aug-98	123	0.000	0.000	0.473	-2.312	0.175	-2.709	-3.532	-6.388	0.000	0.142
14-Aug-98	124	0.000	0.000	-1.926	-0.047	-0.061	5.788	-27.632	-0.622	0.124	-0.466
21-Aug-98	125	0.000	0.000	2.815	0.149	0.020	-1.462	0.000	1.457	0.709	0.463
28-Aug-98	126	0.000	0.000	-0.659	-1.112	0.461	2.469	1.634	2.279	0.661	1.259
04-Sep-98	127	0.000	0.000	1.018	0.217	-2.674	0.207	-1.576	-14.566	0.000	-0.791
11-Sep-98	128	0.000	0.000	0.548	0.756	-12.953	1.121	-1.617	- 7.150	-2.963	1.667
18-Sep-98	129	0.000	0.000	0.075	-1.300	0.467	0.408	-0.077	1.131	0.000	0.000
25-Sep-98	130	0.000	0.000	2.510	1.064	-0.352	-0.672	-3.789	0.646	0.000	0.000
02-Oct-98	131	0.000	0.000	-2.904	-39.850	0.760	-0.189	-2.885	0.699	1.530	0.000
09-Oct-98	132	0.250	0.000	-1.125	-3.020	2.138	-9.955	-0.990	0.852	0.000	0.030
16-Oct-98	133	-0.249	9.677	0.658	-14.419	1.360	-6.048	0.000	-0.081	4.167	-0.973
23-Oct-98	134	0.000	0.000	2.917	1.386	0.269	4.962	0.000	0.456	0.000	-6.058
30-Oct-98	135	0.000	0.000	1.663	47.467	-0.917	8.404	0.000	0.902	0.000	4.666
06-Nov-98	136	0.000	0.000	-1.094	21.767	0.260	0.790	0.000	1.471	0.000	1.242
13-Nov-98	137	2.917	0.000	-2.750	13.130	-3.618	0.357	0.000	-0.923	2.000	0.038
20-Nov-98	138	0.000	0.000	-6.171	-12.249	8.183	-0.198	0.000	0.403	-1.836	1.212
27-Nov-98	139	-2.834	0.000	-7.728	0.000	-4.167	1.911	0.000	-0.408	-4.921	0.267
04-Dec-98	140	0.000	0.085	2.036	-0.072	-0.725	1.365	1.000	-0.104	1.681	-2.464
11-Dec-98	141	0.000	0.000	3.837	-0.830	4.833	1.907	0.000	2.104	-2.927	2.418
18-Dec-98	142	0.000	0.000	8.747	0.092	4.548	-0.515	0.000	0.167	0.000	0.000
25-Dec-98	143	0.000	-0.588	8.397	2.169	1.463	7.990	-0.990	1.297	-2.774	-8.333
Avarage		-0.220	0.172	0.448	-1.137	-0.012	1.797	-0.760	0.165	-1.204	-0.182
Variance		64.376	2.191	26.418	173.605	34.845	81.372	17.622	34.463	36.550	29.717
Standard D_{1}		8.023	1.480	5.140	13.176	5.903	9.021	4.198	5.871	6.046	5.451

Commercial 1999

WeokEnd	Series	CarGen	ABOUM	UCHUMI	SMG	SERENA	NMG	MARSH	KENAIR	EXPRESS	
01-Jan-99	144	0.000	0.000	-2.981	16.500	6.833	-1.037	0.000	7.354	0.000	0.000
08-Jan-99	145	0.000	0.000	-1.444	0.000	6.857	1.457	0.000	0.644	0.000	0.000
15-Jan-99	146	0.000	0.000	2.395	13.398	11.270	3.473	2.000	6.097	4.950	10.606
22-Jan-99	147	0.000	0.000	0.393	3.322	7.386	0.246	0.000	-3.324	25.432	-4.040
29-Jan-99	148	0.000	0.000	-1.159	-0.780	-14.880	-0.881	0.000	4.215	3.769	-0.072
05-Feb-99	149	0.000	0.000	-1.533	3.204	-13.430	-4.524	0.801	-6.079	0.000	-5.263
12-Feb-99	150	0.000	0.000	2.263	-2.808	6.263	0.020	0.000	-10.495	0.000	-9.166
19-Feb-99	151	3.500	0.000	2.212	-1.340	2.386	0.791	0.000	6.102	0.000	-0.394
26-Feb-99	152	0.644	0.000	2.621	1.879	-7.664	0.726	0.000	-3.159	-0.589	0.017
05-Mar-99	153	0.000	0.000	2.706	-3.643	-2.518	0.999	0.000	-1.334	0.000	-3.161
12-Mar-99	154	0.000	0.000	2.588	0.239	6.932	0.568	0.000	0.112	-1.331	3.280
19-Mar-99	155	0.000	0.000	1.425	-0.758	1.168	-1.360	0.000	4.236	-8.225	-0.467
26-Mar-99	156	2.640	0.000	1.545	1.571	-6.944	-0.826	0.000	1.758	-1.392	-5.760
02-Apr-99	157	0.000	0.000	-0.521	-56.693	0.122	-0.397	1.618	-3.401	-16.230	-0.498
09-Apr-99	158	0.000	0.000	-2.484	50.901	3.266	-0.531	0.000	1.342	21.498	0.000
16-Apr-99	159	0.000	0.000	0.447	15.497	0.958	-0.293	0.000	3.242	-5.864	-7.143
23-Apr-99	160	0.000	0.000	-0.445	9.377	1.690	0.604	-7.159	-4.876	0.000	9.615
30-Apr-99	161	0.000	0.000	-3.169	-0.080	2.271	-0.351	0.000	2.331	2.508	-1.161
07-May-99	162	0.000	0.000	-0.135	-0.516	-1.195	1.356	0.000	3.672	0.000	-0.600
14-May-99	163	0.000	0.000	-1.066	4.087	0.357	-0.709	-9.278	-0.152	-14.706	0.000
21-May-99	164	0.000	0.000	0.712	-8.498	-0.187	-11.686	0.000	1.436	-0.396	0.000
28-May-99	165	-1.247	0.000	-0.185	0.000	0.521	11.344	0.000	-0.557	-7.381	-5.382
04-Jun-99	166	-1.342	0.000	0.690	0.000	-0.570	-1.187	0.000	0.771	-6.353	5.688
11-Jun-99	167	0.000	0.000	-0.204	-5.013	0.879	-14.394	0.000	0.481	3.778	0.000
18-Jun-99	168	-20.000	0.000	2.676	1.944	-3.139	14.019	0.000	2.583	0.136	1.338
25-Jun-99	169	0.000	0.000	-2.512	-2.034	-0.288	-0.541	0.000	-2.132	4.665	-1.321
02-Jul-99	170	0.000	0.000	0.270	-22.094	0.013	1.368	0.000	-1.622	-6.287	0.000
09-Jul-99	171	0.300	0.000	0.234	-5.595	1.627	-0.424	0.000	1.962	-2.102	0.893
16-Jul-99	172	-50.150	0.000	2.189	0.000	0.926	1.860	0.000	0.516	0.000	0.885
23-Jul-99	173	0.000	0.000	0.513	-21.415	3.351	-0.012	0.000	-15.073	0.000	1.754
30-Jul-99	174	0.000	0.000	0.627	5.911	-0.239	-1.486	0.000	0.021	4.000	3.134
06-Aug-99	175	0.000	0.000	1.027	9.050	0.726	0.023	0.000	-2.025	-1.767	0.043
13-Aug-99	176	0.000	0.000	0.069	0.833	0.087	-2.101	0.000	-1.215	0.000	0.294
20-Aug-99	177	0.000	0.000	-1.755	-0.735	0.004	-5.507	12.500	-4.021	-2.116	0.001
27-Aug-99	178	0.000	0.000	2.672	0.000	0.361	-6.812	1.010	-5.497	0.000	-0.014
03-Sep-99	179	0.000	0.000	0.287	-0.092	0.265	-6.165	0.000	0.618	-11.070	0.013
10-Sep-99	180	0.000	0.000	0.073	0.000	1.738	4.635	0.000	\% -1.945	3.452	0.102
17-Sep-99	181	0.000	0.000	-0.243	-7.500	3.976	-0.294	0.000	-0.770	0.000	-0.002
24-Sep-99	182	0.000	0.000	-2.581	0.000	4.802	-2.894	0.000	-1.029	-19.104	1.565
01-Oct-99	183	0.000	0.000	-1.156	0.000	2.595	1.205	0.000	-9.844	-1.645	-1.530
08-Oct-99	184	0.000	0.000	-4.807	0.000	-0.192	-0.128	0.000	12.326	1.113	-0.111
15-Oct-99	185	0.000	-11.243	0.028	-0.901	-0.033	-0.500	0.000	-0.420	-0.483	0.000
22-Oct-99	186	0.000	0.000	-1.080	2.273	0.013	-0.267	0.000	-0.005	0.000	0.000
29-Oct-99	187	0.000	0.000	2.022	-7.931	-0.091	-1.420	0.000	0.656	-0.078	-0.057
- 05-Nov-99	188	0.000	0.000	-11.793	-1.523	-0.040	3.204	0.000	-0.036	-0.598	0.057
12-Nov-99	189	0.000	0.000	-6.232	-0.224	-0.322	-5.639	0.000	5.446	0.000	0.000
19-Nov-99	190	0.000	0.000	0.150	-1.740	0.791	2.493	-5.480	5.138	0.000	0.000
26-Nov-99	191	-10.000	0.000	-0.131	0.000	-0.283	-4.655	0.000	5.783	0.000	0.000
03-Dec-99	192	0.000	0.000	-5.626	0.031	0.585	0.900	0.000	8.949	-1.586	0.000
10-Dec-99	193	0.000	0.000	2.458	11.965	0.213	1.061	0.000	3.342	0.000	0.000
17-Dec-99	194	0.000	-0.727	0.996	-9.821	0.117	-2.029	0.000	-1.780	5.556	0.000
24-Dec-99	195	0.000	0.000	0.058	-0.402	-0.872	0.935	0.000	2.031	-0.505	0.000
31-Dec-99	196	0.000	0.000	2.949	-1.153	0.579	-0.638	0.000	-0.122	0.000	0.000
	Avarage	-1.427	-0.226	-0.263	-0.213	0.548	-0.498	-0.075	0.231	-0.546	-0.129
	Variance	56.347	2.389	6.990	158.152	18.611	18.083	6.377	22.020	47.310	10.070
	Standard [7.506	1.546	2.644	12.576	4.314	4.252	2.525	4.693	6.878	3.173

Commercial 2000

WeekEnd	Series	CarGen	ABOUM	UCHUMI	SMG	SERENA	NMG	MARSH	KENAIR	EXPRESS	
07-Jan-00	197	0.000	0.000	0.233	0.000	-0.566	0.021	0.000	-1.947	0.000	0.000
14-Jan-00	198	0.000	0.000	2.376	10.526	0.828	0.658	0.000	0.282	0.000	-0.537
21-Jan-00	199	0.000	0.000	-1.773	0.091	0.038	-1.475	0.000	-0.314	8.241	0.000
28-Jan-00	200	0.000	0.000	0.231	-1.818	-0.093	-2.723	0.000	-1.753	-2.258	0.000
04-Feb-00	201	0.000	0.161	2.706	0.347	-0.246	-3.049	0.000	-1.609	-3.214	-6.163
11-Feb-00	202	0.000	0.000	4.229	-3.114	-0.042	-1.196	0.000	-1.248	-1.845	7.143
18-Feb-00	203	0.000	0.000	-1.247	0.000	0.155	-1.251	0.000	-0.742	1.316	0.000
25-Feb-00	204	0.000	0.000	-2.172	-2.678	0.278	-0.068	0.000	-16.011	-0.762	0.000
03-Mar-00	205	0.000	0.000	2.255	0.000	-0.300	-1.268	0.000	11.690	1.292	0.000
10-Mar-00	206	0.000	0.000	2.379	2.534	0.210	0.561	0.000	1.405	0.000	0.000
17-Mar-00	207	0.000	-3.297	3.167	-4.560	0.494	-0.705	0.000	-0.619	-0.074	0.013
24-Mar-00	208	0.000	-0.694	1.528	0.000	1.001	-0.124	0.000	0.621	0.000	0.000
31-Mar-00	209	0.000	0.000	-6.708	0.056	0.128	-0.851	0.000	3.617	0.000	0.000
07-Apr-00	210	0.000	0.000	3.534	0.440	0.922	-1.077	0.000	2.557	1.625	-16.667
14-Apr-00	211	0.000	-1.958	-0.912	0.003	-0.814	-6.405	0.000	0.649	0.000	0.000
21-Apr-00	212	0.000	-0.143	0.050	0.000	-6.313	-13.299	0.000	0.262	0.000	-20.211
28-Apr-00	213	0.000	0.000	2.742	0.000	-2.672	1.758	0.000	0.161	0.000	0.405
05-May-00	214	0.000	0.000	-2.655	-23.919	4.962	1.484	0.000	3.067	0.000	-1.291
12-May-00	215	0.000	0.000	0.006	5.936	4.575	2.407	0.000	-1.555	0.000	1.166
19-May-00	216	13.889	0.000	0.207	4.938	-0.089	0.121	0.000	1.770	0.000	1.646
26-May-00	217	0.000	0.000	-0.686	6.423	-3.028	-1.101	0.000	-0.169	0.000	0.250
02-Jun-00	218	0.000	0.000	0.083	0.000	0.401	-0.304	0.000	1.679	0.000	-11.201
09-Jun-00	219	0.000	0.000	-1.492	-3.272	0.805	-0.919	0.000	3.800	-3.159	-1.643
16-Jun-00	220	0.000	-1.429	-1.407	6.286	-0.275	-0.270	0.000	0.462	0.000	0.000
23-Jun-00	221	0.000	0.000	1.021	-14.516	-0.278	0.127	0.000	-2.045	0.000	0.000
30-Jun-00	222	0.000	0.000	1.101	-14.430	0.563	0.109	0.000	-1.155	0.000	-5.258
07-Jul-00	223	-1.951	0.000	1.181	-11.122	-0.561	0.154	0.000	-0.144	0.000	0.000
14-Jul-00	224	89.055	0.000	-0.442	0.164	-0.312	0.364	0.000	-0.126	0.000	-2.580
21-Jul-00	225	0.000	-1.637	-0.107	0.000	-0.009	0.843	0.000	-2.423	-5.409	2.805
28-Jul-00	226	0.000	-2.388	0.295	0.000	0.009	0.264	0.000	0.347	0.000	-0.328
04-Aug-00	227	0.000	-1.887	0.245	2.000	0.020	-0.494	0.000	-10.391	-2.778	-0.500
11-Aug-00	228	0.000	0.000	-2.806	13.319	-0.029	0.006	0.000	-0.082	-2.857	0.000
18-Aug-00	229	0.000	0.000	1.441	0.000	1.494	-0.188	0.000	3.509	0.000	-1.791
25-Aug-00	230	0.000	-3.675	1.211	0.000	4.675	0.081	0.000	3.884	0.000	0.000
01-Sep-00	231	0.000	-4.170	2.587	0.000	0.619	-4.246	0.000	5.966	0.000	0.000
08-Sep-00	232	0.000	0.000	0.041	0.000	-0.291	4.217	0.000	2.603	0.000	-0.304
15-Sep-00	233	0.000	-1.667	0.435	0.000	-0.471	-0.412	0.000	\% 5.041	0.000	-0.219
22-Sep-00	234	0.000	0.000	1.284	0.000	0.184	-1.434	0.000	1.201	0.000	0.000
29-Sep-00	235	0.000	0.000	0.600	0.000	-2.134	-6.924	0.000	-0.887	-0.735	0.000
06-Oct-00	236	0.000	0.000	-0.124	0.000	-4.292	-0.264	0.000	1.127	0.000	-2.225
13-Oct-00	237	-45.789	0.000	2.790	0.000	2.830	-1.181	-21.287	1.479	-2.519	0.000
20-Oct-00	238	0.000	0.000	2.692	0.000	-0.429	4.187	0.000	1.913	-1.216	0.000
27-Oct-00	239	-2.913	0.000	0.936	0.000	1.351	-0.571	0.000	0.087	0.000	0.000
03-Nov-00	240	0.000	0.163	2.699	3.315	0.337	2.660	0.000	-0.133	10.769	0.000
10-Nov-00	241	0.000	-15.613	3.905	-0.704	-0.481	-1.162	0.000	0.132	0.000	0.000
17-Nov-00	242	0.000	-3.403	-1.359	0.263	0.096	0.532	0.000	-4.037	0.000	0.041
24-Nov-00	243	0.000	0.000	0.001	0.722	0.120	-1.854	0.000	-1.126	0.000	0.000
01-Dec-00	244	0.000	0.000	-0.591	3.420	1.065	0.426	0.000	0.598	0.000	0.000
08-Dec-00	245	0.000	-1.175	-7.614	0.000	-0.447	0.789	0.000	1.699	-0.556	-1.915
15-Dec-00	246	0.000	0.000	0.928	0.000	0.483	1.141	0.000	1.731	0.000	0.000
22-Dec-00	247	0.000	0.000	0.708	0.000	0.089	-0.725	0.000	-0.586	0.000	0.000
29-Dec-00	248	0.000	0.000	1.422	-4.667	-5.278	-1.870	0.000	0.260	0.000	0.000
	Avarage	1.006	-0.823	0.407	-0.462	-0.014	-0.663	-0.409	0.279	-0.080	-1.142
	Variance	199.608	5.577	5.075	32.161	3.825	7.054	8.714	13.811	5.349	17.577
	Standard [14.128	2.361	2.253	5.671	1.956	2.656	2.952	3.716	2.313	4.192

WeekEnd	Series	CarGen	ABOUM	UCHUMI	SMG	SERENA	NMG	MARSH	KENAIR	EXPRESS	CMC
05-Jan-01	249	0.000	0.000	2.636	0.000	-0.371	-1.040	0.000	1.371	0.000	-2.201
12-Jan-01	250	0.000	0.000	-2.302	0.000	0.748	-0.475	0.000	-1.308	-19.329	-7.653
19-Jan-01	251	0.000	-10.580	0.689	0.000	0.716	-1.720	0.000	0.156	-3.048	-4.791
26-Jan-01	252	0.000	0.000	2.282	0.000	1.226	1.299	0.000	源	-0.089	-3.715
02-Feb-01	253	0.000	0.000	5.253	0.297	0.504	2.560	0.000	2.742	0.000	4.362
09 -Feb-01	254	0.000	1.480	0.021	-49.490	-1.288	-0.014	-1.613	-2.054	0.000	0.992
16-Feb-01	255	0.000	0.000	-0.200	93.251	1.596	1.313	0.000	-0.016	-7.061	. 003
$23-\mathrm{Feb}-01$	256	0.000	0.000	-3.224	0.000	0.994	0.099	0.000	0.69	0.000	0.000
02-Mar-01	257	0.000	-9.574	0.440	0.000	0.374	0.557	0.000	-0.357	0.000	-0.710
09-Mar-01	258	0.000	-10.256	0.101	0.000	0.067	-0.378	0.000	-0.282	0.000	-0.387
16-Mar-01	259	0.000	-7.096	-0.755	0.000	2.414	-0.546	0.000	-12.524	0.000	0.105
23-Mar-01	260	0.000	6.870	-5.015	0.000	.118	-1.018	0.000	-2.532	0.000	-13.062
30-Mar-01	261	0.000	0.000	-2.022	0.000	-0.033	-2.497	0.000	0.725	0.000	0.000
06 -Apr-01	262	0.000	0.000	0.939	0.000	0.067	-7.314	0.000	-1.813	0.000	0.000
13-Apr-01	263	0.000	0.000	-2.070	0.000	-0.096	-5.582	0.000	-0.045	0.000	-3.655
20-Apr-01	264	0.000	-0.719	0.013	0.000	0.019	0.122	0.000	2.675	0.000	0.000
27-Apr-01	265	0.000	0.000	-0.097	0.000	0.048	-5.802	0.000	1.541	0.000	-12.766
04-May-01	266	0.000	0.000	-2.207	0.000	0.076	2.088	. 000	-3.122	. 000	. 000
11-May-01	267	0.000	0.000	-2.051	0.000	-0.103	-2.372	0.000	-0.381	0.000	0.000
18-May-01	268	0.000	0.000	-0.173	-4.286	0.286	-2.061	0.000	1.656	-2.885	-9.915
25-May-01	269	0.000	-2.899	-6.927	0.000	-0.426	-6.321	0.000	1.529	0.000	-2.314
01-Jun-01	270	0.000	13.267	5.852	32.233	0.121	-4.537	0.000	0.870	0.000	0.000
08-Jun-01	271	0.000	12.006	-0.378	29.803	0.212	-8.293	0.000	1.899	0.000	-0.039
15-Jun-01	272	0.000	0.000	-0.221	-9.565	0.360	-5.358	0.000	8.430	0.000	2.313
22-Jun-01	273	0.000	0.000	1.239	0.000	-0.208	-3.322	0.000	-0.723	0.000	-2.222
29-Jun-01	274	0.000	0.000	-0.513	0.000	-0.703	2.526	0.000	-0.983	0.000	-1.136
06-Jul-01	275	0.000	0.000	3.845	-51.442	-3.198	8.855	0.000	-2.451	0.000	1.149
13-Jul-01	276	0.000	0.000	0.046	0.000	1.380	8.028	0.000	0.180	0.000	3.977
20-Jul-01	277	0.000	-2.353	0.093	0.000	2.318	0.572	0.000	1.825	0.000	0.000
27-Jul-01	278	0.000	0.000	-0.095	0.000	-1.070	-0.191	0.000	-0.867	-10.891	0.000
03-Aug-01	279	0.000	4.011	-0.039	34.053	-1.832	-2.505	0.000	1.085	0.000	0.401
10-Aug-01	280	0.000	0.000	-1.348	0.000	0.134	0.798	0.000	-8.011	0.000	8.853
17-Aug-01	281	0.000	-1.540	-0.875	13.854	-0.033	0.300	0.000	-1.542	0.000	0.000
24-Aug-01	282	0.000	0.000	-0.070	0.000	-0.684	-2.310	0.000	1.046	0.000	1.061
31-Aug-01	283	0.000	0.000	-7.168	-0.098	-2.300	-0.143	0.000	0.268	-33.676	-0.197
07-Sep-01	284	0.000	0.000	-1.111	0.000	-0.164	0.602	0.000	-0.196	-6.993	-0.855
$14-\mathrm{Sep}-01$	285	0.000	0.000	-0.992	-3.896	-1.883	-0.444	0.000	-0.555	-4.606	0.000
21-Sep-01	286	0.000	0.000	-3.152	0.000	-4.547	-0.172	0.000	-0.698	0.000	0.000
28-Sep-01	287	0.000	0.000	-4.327	-10.135	-2.215	-9.517	0.000	-0.018	0.000	-6.285
05-Oct-01	288	0.000	0.000	-1.253	-17.331	-0.418	-3.160	0.000	-4.112	0.000	-10.072

Financial 1997

WeekEnd	Series BaK		$5 C B$	PAN	NC8	NEK	KCB	JB	1000	HFCK	DTK	CTRUST	CFC
03-tan-97	42	13.428	13636	0.000	8.988	-2508	2009	18.983	19.269	13.256	17.355	8.501	37.931
10.an-97	43	-4.449	-5.786	1.026	7.492	-1.519	4.733	14.658	2813	0.683	12303	13562	1.891
17Jan-97	44	-1.226	-2823	-1.016	1.53	-0.398	-0.447	-18.264	-11.850	-1.696	-11.360	0.204	-15820
24Jang 7	45	0.515	3962	0.000	0.378	-3.059	1.206	-7.840	-4.406	-0.342	0.149	2241	1.969
31-ar-97	46	3074	-0.694	0.000	-0.216	2533	1.565	12783	-2755	0.076	-6.064	2515	0.267
07-Feb-97	47	1.109	2100	0.983	-6.429	0.327	3386	8945	16.197	-0.087	-1.146	4.082	1.472
14Feb-97	48	-5,029	-4.207	3.422	-1.319	-0.136	4.206	5458	5.335	0.021	9.036	0.000	-1.244
21Feb-97	49	-2190	-12913	0.000	2179	0.207	5203	-8865	0.152	0.091	-18.360	-2778	-0.971
28Feb-97	50	0.434	-1.514	1.496	2637	-0.113	-7.60	-0.204	3.863	-0. 109	1.896	0.000	1.123
07-Mar-97	51	-0.743	0.259	0.000	-0.383	0.217	0.053	-2214	5.345	-1.949	-0.538	-4.899	-0.518
14-Mer-97	52	-8697	-0.335	0.000	-1.485	-0.222	-0.746	20.351	-6.529	-0.821	-10.513	-0.148	-5.724
21-Mer-97	53	-0.745	-2801	0.000	3.978	0.078	1.460	-11.468	6.544	1.685	6.717	0.752	-10.408
28-Mer-97	54	-0.631	-2184	-5.600	0.975	-0,069	0.138	-2004	-10.216	1.137	2858	0.666	-8016
04Apr-97	55	0.974	-2396	0.000	-1.550	- 0.246	-1.997	-7.179	-1.757	-0.096	-0.248	1.516	4.167
11-Apr-97	56	2970	0.561	0.000	-0.118	0.037	-7.421	-1.451	-2993	0.124	3265	-0.684	2044
18-Apr-97	5	6.118	3003	0.000	0.109	-0.165	2400	-3.290	-2431	-9.260	-2816	0.000	2516
25Apr-97	58	5.120	1.263	0.000	4.826	0.098	4.565	4.203	4.938	2410	1.326	0.000	-2.321
Q2-May-97	59	-0.039	1.711	0.261	1.368	-0.403	1.007	0.203	1.268	3.598	-0.373	3.416	1.786
09 May -97	60	-2560	-0.302	0.000	0.719	0.828	0.714	-3.243	4.461	-0.226	1.644	-0.459	8.796
16-May-97	61	0.885	0.186	9.713	3.659	-3503	0.904	-7.220	2349	2232	2509	0.000	-5.078
23-May-97	62	-0.797	0.987	12958	0.215	1.736	3016	7.158	1.415	0.37	-1.296	1.429	0.047
$30-\mathrm{May} 97$	63	0.134	-0.160	0.000	0.983	0788	4.176	1.74	7.609	-0.108	-2023	-0.704	3.549
$06 \mathrm{Jros}-97$	64	0.000	1.244	-10.667	1.434	-1.907	12303	1.964	-1.837	1.116	-1.698	0.065	1.571
13-40-97	65	-0.589	-0.425	6.176	4.372	2513	5.878	1.734	1.156	0.146	0.582	4.187	4.092
20.10 n 97	66	-0.606	1.336	-1.990	13.137	-0.077	-0.390	-2256	11.311	-1.458	-0.472	0.000	6.434
27Jun-97	67	-0.230	5.107	0.000	-13.762	0.328	-14.053	-0.515	17.900	0.330	0.022	-1.206	-1.51
$04 / \mathrm{ll} 1-97$	68	-0.421	0.062	0.114	1.012	0.506	-2455	-0.299	-1.302	0.275	-0.143	-1.112	-3014
11-U-97	69	-3.421	-3.988	0.000	2274	0.196	2050	-3556	-10.404	0.800	-0.002	-2090	2363
18-4-97	70	-0.945	-2229	0.000	0.373	-0.009	-4.773	0.261	4.831	-3.568	-0.009	0.000	-1.755
25-4-97	71	0.769	-3.781	12554	-16.462	-1.044	-4.201	2852	12379	2681	-0.637	-3.280	-0.698
01-Aug-97	72	2587	1.122	0.000	2966	-14.521	1.076	-2382	1.001	-5.616	-2485	0.000	-2105
08 -Alg-97	73	-2136	5.057	0.000	-1.846	1.332	1.905	-0.629	0.325	-8.334	-3.275	0.000	-2.050
15-ALg-97	74	-0.127	-2501	0.000	6.480	0.123	0.035	-0.127	-4.227	0.729	-1.374	2941	1.025
22-Aug-97	75	-2129	1.108	0.000	-3.901	-0.610	1.181	-0.744	-0.408	1.071	-6.166	-5714	-0.042
29 Aug-97	76	0.980	-1.835	0.000	4.499	-0.463	-0.245	0.534	-2306	1.520	0.321	4.055	-0.927
05 Sep-97	7	0.599	-4.419	10.000	3.610	-0.654	-0.250	0.510	-4.820	-0.177	-1.940	-0.985	0.238
12-Sep-97	78	0.422	-0.051	-22592	-1.865	-2416	-0.114	-2906	-5.309	-353'	-2621	0.000	-0.284
19 Sep-97	79	0.085	0.918	0.000	-11.420	-0.903	-7.006	-0.142	-12652	-1.201	-0.474	0.000	0.000
$26-\operatorname{Sep} 97$	80	0.83	0.124	-0.762	0.036	-0.232	-1.828	-4.255	22937	-0.187	-3.096	0.224	-0.960
03-Oat-97	81	1.862	-1.846	0.000	2204	-2542	-11.322	-0.765	-6.814	-0.138	0.251	-0.223	0.988
10-0d-97	82	-0.206	-1.030	-0.592	3519	-4.450	4.193	-0.456	-7.875	-3.698	-1.953	0.000	0.000
17-Od-97	83	-0.882	0.419	0.000	-2873	0.014	4.979	-0.795	-5.036	-2086	-3.810	1.471	-4.650
$24-0 \mathrm{ct-97}$	84	-0.542	0.316	-2381	0.494	-0.026	3.016	-1.453	0.425	0.463	1.267	0.000	-2817
31-Oct-97	85	-1.369	-2406	0.000	-1.106	0.227	-11.349	0.790	-5.976	0.388	0.366	-2174	-0.084
07-Nov-97	86	-4.096	-1.882	0.000	5.259	-0.891	-7.318	0.593	-1.081	-2239	-0.198	0.000	-0.093
$14 \mathrm{Nov-97}$	87	5.067	5.969	0.000	-10.424	0.197	0.966	1.453	0.651	-0.165	-3.907	0.000	0.000
21-Nov-97	88	4.513	1.177	0.000	0.233	0.893	-1.452	-0.415	2381	-0.429	-0.932	0.000	-3.605
28-Nov-97	89	2529	-1.078	-2439	5.098	0.551	2551	2133	0.635	-1.693	0.299	0.741	-1.126
$05-\mathrm{Deo-97}$	90	-0.853	1.265	4.375	1.958	2318	2741	2174	2565	4.755	-4.287	0.000	-0.008
12-Deo-97	91	1.284	0.435	0.000	0.747	-0.361	1.638	0.000	1.398	-0.306	0.000	0.000	-0.174
19-Deo-97	98	-1.202	3.288	0.000	-1.961	0.565	-2025	0.000	0.000	0.631	4.961	0.085	0.000
26-Dec-97	98	2262	1.711	0.000	0.967	0.512	2.754	1.809	1.983	0.132	-0.089	0.000	-1.126
	varage	0.225	-0.102	0.288	0.453	-0.506	0.021	0.314	0.970	-0.170	-0.524	0.505	0.021
	ariance	10.107	12903	24.759	26.290	5774	22564	42249	56.736	9.566	27.212	8.278	44.310
	Sandard [3179	3.592	4.976	5.127	2403	4.749	6.500	7.466	3.096	5.217	2871	6.657

Financial 1998

Week End	Series BEK		508	PAN	NCB	NEK	KOB	JB	IODC	HFOK	DTK	CTRUST	OFC
QR-Jan-98	94	3337	4.727	0000	1.898	2941	13.45	7.798	13883	11.276	4.199	0.000	4.419
OPVan-98	96	0.726	0.176	-9810	0589	12386	-1.033	1.049	13.041	7.681	0.942	0.735	11.112
16utan98	96	-3.082	-1.451	-4.393	-0.818	-4.987	-4.256	-0.812	6.489	-9.956	-1.170	0.000	-1.539
23-1an98	97	-1.561	-3.630	1.471	-0.056	-10.116	-3213	1.336	1.236	0.568	-3374	117.518	0000
30-ar-98	98	4.454	-0.716	-0.487	-0.287	2623	-0.786	2583	2133	-0.343	-0.60	-54.027	0.607
06 Feb-98	99	2132	-2755	1.508	0.918	-1.064	-0.429	-1.008	-0.817	-0.401	0.475	3.769	-0.583
13 Feb-98	100	5298	-1.966	-1.762	2261	-0.598	-0.884	1.400	-8.978	-1.175	3318	-1.404	1.966
20Feb-98	101	-1.611	-8.221	-3.448	0.213	1.457	0.26	3685	-7.523	2387	-1.602	-0.845	-1.221
27-Feb-98	102	0.801	2437	0.171	-5.33	0.898	-4.550	1.094	-3397	5.198	-0.566	-2147	0.416
06 Mr-98	103	-7.561	-0.348	0.685	3074	-1.073	-4.390	2390	0.589	2961	-0.206	0.735	-0.098
$13 \mathrm{Mr-98}$	104	-1.328	0.417	-3447	-3732	-13662	-6987	0.124	-2685	1.308	-1.401	-7.243	-5162
20-Mer-98	105	-1.675	2486	0.000	4.219	-5.617	-0.050	-0.377	-9.088	-1.540	0.385	10.169	10.209
27-ME-98	106	-0.202	0.616	-1.394	-2853	-1.54	2043	0.412	-1.590	-9.326	-9.451	0.000	0.000
03-Apr-98	107	-2239	-2865	-10.671	-0.934	0.850	3689	1.394	-0.280	-2204	0.863	0.000	-3.232
10-Ap-98	108	-2343	-5.282	-0.067	-4.034	0.654	-3428	-1.363	0.854	-2198	0.805	0.000	-13.622
17-Ap-98	109	0.288	-1.688	0.000	-18732	-1.900	-0.311	-0.266	-0.491	-1.776	0.580	0.000	-3963
24Apr-98	110	-1.272	-0.507	3.333	-2105	-1.239	-0.017	-2780	222	-0.834	6089	0.000	-11.210
01-My-98	111	0.083	-0.348	-0.194	0.528	4.468	-0.320	2921	0.695	-0.127	0.606	0.000	0.238
08Mey-98	112	2435	7.329	-3480	5.198	3813	-8.299	-5.242	207	2803	1.227	-288	9.511
15May-98	113	5890	-1.807	0.000	19.598	-7.315	5812	-2471	1836	5.051	0.732	-3.676	9.306
22-May-98	114	6.417	3.548	0.000	-3770	0.206	4.728	-4.143	-1200	5.473	-0.297	0.000	-3858
29 May 98	115	2014	4.683	0.000	-1.230	0.761	1.268	0.365	5008	-15.139	3387	0.000	-1.397
05 Ju 98	116	-2244	-1.988	0.000	-4.149	-0.817	-4.583	0.102	-3.533	12205	-0.198	0.000	-0.601
12JJ0-98	117	-3726	0.07	0.458	0.437	9968	0.886	-5170	2663	-2613	-2878	-3.502	0.599
19Jun98	118	1.336	-3.60	0.000	2296	15.562	1.470	-0.519	-1.369	-0.188	-0.900	0.000	-0.931
26 ur -98	119	-0.123	-0.864	0.168	-0.520	-21.394	-0.172	1.033	0.838	2361	-0.190	-8.179	0.890
00 ld -98	120	-2\%\%	1.216	0.000	6.120	-0.361	-0.608	0.971	-253	1.766	-9.091	-5.724	1.015
10.ld-98	121	-3015	-4.364	0.000	-4.966	-0.516	-0.145	-2560	0.288	1.762	0.000	0.000	0.000
17-JJ-98	122	-0.066	0.924	0.000	-0.200	-0.049	1.015	2169	-1.166	0.106	-0.056	-6.730	1.690
24.ul-98	123	2340	-1.906	0.058	6.703	-2258	0.700	1.012	-0.886	-0.590	-0.112	0.000	-8.362
31-山l-98	124	1.213	1.667	-0.058	-5576	-8.987	1.138	-0.072	0.477	-6.241	0.065	0.000	0.000
07-Aug-98	125	-0.303	-1.707	-0.064	-6086	0.749	-1.095	1.129	1.077	-0.648	0.091	0.000	-0.024
14Aug98	126	0.63	0.879	0.000	-0.397	0.540	-1.112	-4.940	3693	-1.396	-0.005	0.000	0.000
21-Aug98	127	0.405	-1.527	-3.271	-15.990	0.047	-0.327	0.904	-10.352	0.125	- -8.872	0.000	0.000
28-Aug-98	128	-2917	5.370	-0.578	12798	-0.162	0.061	1.374	9.924	-1.062	1.061	0.000	-0.104
04 Sep 98	129	0.181	0.464	-4.622	-5427	-0.021	-5.234	-0.497	1.634	-7.414	2005	0.000	0.104
11-Sep-98	130	0.306	-5.760	1.818	-5.074	0.782	-2711	-0.448	-6665	-3.362	2358	0.000	-1.563
18 Sep-98	131	0.603	-1.649	-1.786	-0.079	-2369	-2384	-0.389	-5840	1.211	1.611	0.000	-1.497
$25.5 e p-98$	132	0.561	0.610	-7.455	-0.353	-10.421	-5834	0.106	-5698	1.828	-2472	0.000	-3401
02-Oct-98	133	0.228	-1.863	-4.715	0.626	-5883	-0.912	0.462	2750	3444	-2134	0.000	-3.136
09-0at-98	134	-0.671	-0.274	-0.736	-0.675	4.313	0.966	0.013	-1.897	0.901	3841	0.000	0.000
16-0t98	135	0.331	0.178	-0.297	-1.796	3.257	-1.549	-0.582	-1.985	-2707	1.151	0.000	3206
23-0t-98	136	0.610	1.077	0.000	2562	-0.500	0.703	-0.122	1.196	-1.312	2075	2350	0.061
30-0t-98	137	0.303	0.347	0.000	-11.714	-5.210	1.402	-2600	-2876	-0.464	2137	-0.145	0.133
06-Nou-98	138	-0.013	0.779	-4.167	-1.198	-8.140	0.668	3769	-2686	12149	-0.079	0.000	0.000
$13 \mathrm{Nou}-98$	139	0.503	1.279	7.510	-3338	-10.466	-0.517	-2551	2953	-2805	-1.563	0.000	-0.133
$20-\mathrm{Nou} 98$	140	2730	0.916	0.000	3679	1.485	-6610	-2690	1.438	-8,195	-2244	0.000	0.000
27-Nou-98	141	5.473	2301	0.000	-0.715	-5016	-5036	2761	0.742	1.089	3211	0.000	0.358
04-Deo-98	142	9.096	4.874	1.103	6.398	12034	-0.161	-5.282	2038	-0.121	6.832	0.148	0.000
11-Dea-98	143	7.754	13.478	0.000	8848	9.772	12672	-1.297	15.021	6.996	0.000	0.000	3.57
18-De0.98	144	-3883	5.606	-0.064	8.146	16.485	3872	9.838	8.63	6.239	-4.817	0.000	0.000
25-De0-98	145	3324	-0.215	0.000	3698	-0.175	0.237	0.000	0.482	-1.285	4.506	0.000	0.000
	arage	0.567	0.215	-0.936	-0.368	-0.497	-0.397	0.076	0.528	0.220	0.042	0.747	-0.118
	iance	9.484	12284	8.506	37.790	47.298	15802	7.946	36.500	26.276	9.538	334.581	18413
	ndard [3.080	3.505	2916	6.147	6.877	3.975	2819	6076	5.126	3087	18.298	4.291

Financial 1999

WeekEnd	Series BEK		598	PAN	NCB	NBK	KCB	JB	ICDC	HFOK	DTK	CTRUST	OFC
017an-99	146	2168	0.568	0.000	15.631	39.27	0.216	2310	0.495	7.350	1.461	-11.730	3.435
Ob-tan99	147	0.785	-3533	0.064	-10.607	-2607	9.855	25.971	0.671	13.368	1.965	0.000	12523
15-Jan99	148	-6.604	1.440	-3000	5.749	-34.310	-6.424	-2969	-1.675	-7.332	8145	0.000	9.809
22-Jan-99	149	-1.019	-10.992	0.000	-9.393	11.147	-0.103	-10.677	0.443	-19.371	1.600	16.304	0.792
29-5ar99	150	6.489	0.586	0.000	7.655	-1.220	-0.050	-4.874	0.237	7.109	0.305	0.000	-0.454
05Feb-99	151	0.029	1.838	4.101	0.910	2203	2740	1.578	0.881	1.514	2163	0.000	0.291
12Feb-90	152	-1.640	3398	-0.814	-1.935	-10.978	-0.096	-0.768	-0.394	-3.507	1.200	0.000	0.000
19Feb-99	153	-2868	-1.483	-0.156	0.744	-3662	-6.177	-0.206	2533	-4.987	0.236	0.000	-8.775
26Feb-90	154	-2209	0.897	0.000	2299	-3907	-6.988	0.339	2704	-5.296	0.000	0.000	-1.088
05-Mar-99	155	-2018	0.910	0.000	-3.279	-1.403	0.720	0.743	0.713	-1.303	0.125	0.000	0.000
12-Mar-99	156	-12189	-3.234	0.000	5.122	-1.188	-6.512	0.816	1.729	3.145	-3698	8411	-11.867
19-Mer-99	157	5803	2664	0.000	-2716	-7.245	-7.230	0.075	-0.5\%	1.008	-0.285	-9.863	-11.569
$26-\mathrm{Mar}-99$	158	2152	-2762	0.289	-2.237	1.403	-1.728	1.098	-0.519	-0.669	1.098	-2448	6.334
CQ-Apr-99	159	-0.856	-0.581	0.000	4.898	1.756	-5.963	-1.186	0.170	-0.295	-1.066	0.000	4.000
09-Apr-99	160	0.216	1.034	0.000	1.024	-0.544	6.462	0.196	1.964	0.114	-0.016	0.000	-0.421
16-Apr-99	161	-0.658	-0.329	-0.288	11.938	-4.410	-8.113	-0.144	1.469	-2.191	1.571	-3,302	-2758
23-Apr-99	162	-3105	-1.231	0.153	-17.150	-5.107	-0.866	-0.088	2594	-2213	-1.552	0.000	-5.650
30-Apr-99	163	0.660	0.729	0.000	-2541	-0.983	-0.443	0.037	0.093	-9.842	0.000	3.313	-1.420
07-May 98	164	2096	-6.447	23.565	5.908	-0.543	-0.424	-0.008	-0.256	0.223	-3.924	-14.916	-0.242
14-May-99	165	0.252	2201	51.798	3.485	-1.091	2843	0.008	0.287	1.354	-0.109	4.475	-0.114
21-May-99	166	-0.011	8472	-27.604	0.167	0.969	-2822	0.000	-0.062	4.851	-3249	0.000	0.000
28-May-99	167	-1.304	-2354	6.086	-0.181	2104	1.771	-6.608	0.090	3.520	2210	0.000	0.000
04, Jn -99	168	1.101	2553	24.768	-1.67	0.377	-1.715	-5815	0.031	1.379	1.211	1.428	6.972
11-Ju-99	169	-0.252	0.719	-18.295	-0.236	11.743	-0.154	-2836	0.572	-0.803	3.196	-1.408	-3.179
18-Ju-99	170	0.758	1.485	-2093	-0.690	-6.405	-0.173	0.748	0.069	-2471	-3631	0.000	4.035
25.40 Cl 9	171	1.847	1.604	0.000	5.320	-0.521	0.588	2.515	0.182	-2201	-1.574	0.000	-0.558
O2-ul9	172	2228	2522	0.000	1.643	-2329	5.862	3.036	1.138	-1.453	-0.601	0.000	1.586
096lide	173	3724	5.861	0.000	-0.830	-2066	6.63	-0.010	1.724	-0.498	1.331	4.444	2848
16-lu-99	174	-0.813	0.868	0.626	-4.198	-8.151	-7.028	0.412	0.321	-0.139	1.373	0.000	0.335
23-4-99	175	0.77	-1.304	-0.622	-3.087	1.351	-4.747	-0. 158	0.645	0.689	-0.506	0.000	-3.787
3014-99	176	1.426	0.990	0.000	-4.098	0.118	1.039	-0.289	0.656	0.632	0.432	0.000	-0.858
06 Aug-9	177	-3.312	3.662	0.000	0.403	-6.002	0.926	0.000	0.616	-1.596	1.910	-2128	0.021
13-Aug99	178	-5.913	0.423	1.268	3.055	-0.825	-13.013	0.499	-0.752	-0.680	-5779	0.000	0.274
20-ALg-99	179	-0.641	-2253	0.000	3.066	-1.632	0.779	-1.621	1.416	4.087	-8.656	0.000	-2816
27-Aug-99	180	-8.123	-1.185	9.634	-2555	2262	3.259	-5.172	-1.350	-2.266	-3.823	-2174	-4.245
03-Sep-99	181	3.449	0.882	-4.855	7.072	0.840	-6.288	2458	0.709	-8.999	-1.042	-5.566	0.000
10-5ep-98	182	-0.390	-0.381	-5.334	-9.920	-4.153	-3.502	-4.682	1.793	-5.539	0.724	0.000	0.000
17-Sep-99	183	-3970	-0.282	0.209	4.591	-0.058	4.594	4.507	-2805	-7.192	3.369	0.000	7.143
24Sep-98	184	0.710	0.611	0.231	0.374	0.155	2190	-4.892	-0.175	2811	10.931	0.000	0.333
01-Od-99	185	2178	1.475	0.000	3.354	-0.446	2908	-5.271	-0.597	4.610	4.077	0.000	-3.080
08-Od-99	186	2132	0.625	52.107	1.531	-3.754	-0.890	-0.850	1.076	0.284	-4.302	0.000	2884
15-0a-99	187	-0.012	1.745	-3.636	-2.533	-7.072	-0.275	1.446	1.522	-0.405	4.348	0.000	1.209
22-Oat-99	188	-0.531	2057	-1.887	-0.515	0.478	-4.124	-3535	-2330	0.451	-2083	0.000	-1.796
29-0a-99	189	-2463	0.965	-6.465	0.969	9.634	-3.113	0.035	-0.111	-0.169	-2744	3.965	-3.180
05-Nov-99	190	0.174	2237	-9.594	1.330	-8.791	-11.098	-0.377	0.045	-0.533	-1.404	0.000	-0.455
12-Nov-99	191	0.459	-0.285	-5.982	-2935	7.079	-0.486	0.167	0.464	-0.404	2066	0.000	0.000
$19 \mathrm{Nov-99}$	192	2099	-0.470	-1.991	-6.398	2953	11.385	3.334	-0.551	-2778	0.306	0.000	-2913
26-Nov-99	198	0.048	-6.657	-1.333	-0.937	0.237	-1.103	1.076	0.194	3.629	2098	0.174	0.000
03-Deo-99	194	-2022	-0.947	1.351	-0.224	0.170	5.721	-0.060	-0.097	-0.971	2841	0.000	-0.097
10-De0-99	196	2.101	0.467	0.000	-5.378	0.302	-8.008	-3.336	5.678	1.299	5.973	0.000	0.000
17-Dec-99	196	-0.702	0.110	-7.407	5.701	-0.451	4.494	-0.069	-2252	7.315	-1.439	0.000	0.000
24-Deo-99	197	0.488	0.630	7.412	1.587	0.462	2241	-8.911	-1.394	-4.491	2763	0.000	2321
31-Dec-98	198	0.606	0.675	-1.311	0.247	1.083	4.142	9.143	-1.573	3.126	-0.080	0.000	-0.729
	varage	-0.317	0.211	1.528	-0.048	-0.630	-1.064	-0.242	0.348	-0.658	0.366	-0.219	-0.085
	riance	9.788	8.551	156.015	29.387	71.981	24.556	24.304	1.973	24.160	10.518	17.758	18.132
	andard [3.129	2924	12450	5.421	8.484	4.955	4.930	1.405	4.915	3.243	4.214	4.258

866ε	2982	201\％	$6 \mathrm{CL} \mathrm{O}^{\circ}$	$61.8{ }^{\circ}$	HL6て	8989	18Z9	－4	188%	DZZS	968	jprepueis roveut	
むもら！	む心G	E8891	0897	SRE	ぼV8	たEL E\％	20812	6＜2Z	661 61	1ヒでル	06800		
$6 ¢ 0$	LZLO	260\％	190%	2100	EtSO－	OSZO－	L8GO－	0 Oto	$600{ }^{\text {b }}$	1 SLO	6100		
8 taO	0000	0000	L＋92	0660	1610	とっでゅ	02001	96S＇ll	OLZ6	Ecl 9	8580	OSZ	00－0ө］－6z
$82 \mathrm{t}^{\text {c }}$	0000	0000	が19	6815	0000	61E๕Z	Qくを	E／8を	0000	ELE61	198．L2	6 b 2	$00-000-2$
966 ＇t	0000	0000	S2゙ロ	＋010	9×2	60615	9991－	8にで	9188	2088	281じー	852	$00-000 \mathrm{Sl}$
2009	0000	929\％－	9810	061＇LL	＋91\％	988	81003－	HLIO－	9ESL－	8886	216 6^{-}	$\angle \mathrm{LC}$	$00-080-80$
O6\％ 0	0000	208で	4190	190	LLE	LEで	509\％－	269 －	にでい	980	6st	962	00－0e0－10
CEO	9910	2660	E\％O\％	山で	レぐレー	2890	て19で	LL8と－	L190	$6 E 50$	L6でし－	962	$00-\mathrm{NaNtz}$
OLEO－	0000	8980	$6{ }_{6} 1$	1000	6600	EStO	LLE91－	1680	898＇－	เCO\％	28SE－	W\％	$00-\mathrm{NaN}-21$
6 たで，	0000	0¢2て－	9681	200%	888	いLO	ト9を込	9 CL	98 O	ESG	¢90で	EtZ	O0－n9N－OL
\＆LOZ	0000	6067	602じ	8662	OLO	88 CO	20	LLOS	てしがし	ル它	ガOL－	CbC	00－naN－E0
1ES＇L－	0000	ヤくじ「	966^{\prime}	ちゃ0	OLO	ど8＇t	620%	9800	0000	2900	066	\downarrow ¢	$00-\mathrm{pO}-\angle Z$
000	2801	6150	0060	$\angle 60^{\circ}$	てい゙	91E゙ち	L¢S	OLIE	0000	8850	LLL＇	062	$00-\mathrm{pO}-0 \mathrm{z}$
166	00091	SOLO	968	Eg\％	1080	เ๒¢	2JES	8000	SR2\％	$8<20$	6SOE	$6 \mathcal{C}$	00－pO－El
960\％	0000	＋100	9881	£90	400	160	て 590	$\overline{810}$	0000	£¢ర0	TC8：	88	00－po－90
961.1	0000	499	890	てい＇゙	$18 \mathrm{ZO}^{-}$	0902	61%	ルで0	0000	960°	E\％t	$\angle E Z$	00 －des 6
$209{ }^{\circ}$	0000	0000	$\angle E E O$	とキ8＇	でぐト－	209s	18でレー	¢ct	866	2100	OEL＇	98	00 －des－z
0000	0000	ZLEO－	\％	以ைで	てたぐー	＋010	6015	せたど	2069	9600	60^{0}	9EZ	00 －des－st
9890	0000	8SLSi－	985	ZSZ	ع180	ほしo	501．1	896て	0000	9 CO	2901		00 －des 80
$\angle 150$	0000	8910	H08	0901	0000	L20¢	ER\％	2180	0000	L8t＇l	O0EO－	モூ	00 －des－10
950て－	0000	0000	960て！	8085	E5\％O－	16L 6	とE゙レー	LZL 0	0000	છ゙でし	t90 0	CZ	$00-6$ in－SZ
0612	0000	908L－	Cil 9	L6ロ $¢$	000 ＇－	8Lts	ほぐし	H6O	0000	9 SO	000	เモZ	$00-6$ ¢ $-8-81$
0000	0000	＋96て－	606 LV	c／90	1606－	＋90で	OLO	560\％	0000	2090	2980	$0 ¢ Z$	00 －oinv－lt
0000	0000	0000	O＜LO	888	0000	000	LLL 0	くてしで	0000	6602	868を	$6 \mathscr{C L}$	$00^{-6} \mathrm{n} \sim+0$
0000	0000	¢TV0	6S5	19\％－	0000	6960	LES 0	9 GE	920	HZ1	902E	$8 Z Z$	$00-\mathrm{mr}-\mathrm{z}$
606	0000	\＄260－	900	＋8\％レ－	0000	くZl＇t		1890	0098		\％	LZZ	$00-m-1 z$
0000	0000	2000－	6Z1．1	8960	8 8¢＇	80	1くL2		0000	0800	1280	982	$00-\mathrm{mrtb}$
6082	0000	0000	162レー	089\％－	カ9Cて	E99\％	91でし	8くを゙けし	$920 \cdot$	L6ZS	130	SRZ	$00-\mathrm{m}-20$
$969{ }^{\text {bl }}$	0000	SLEL－	6090	099 ¢	9812	Ox9	99% 亿	E898	CSTV	1600	1690	toz	00 －uns $0 ¢$
Sts	0000	900^{-}	0．85－	ルぐレー	た¢ 0	0001	とเカて	189\％－	0000	\＆山0	Stで0	モZ	00 －un ${ }^{\circ}$
SCES	0000	868%	L49\％	965°	0000	1509	$0 ¢$	8160	0000	6 Ll 0	EOZし	Z2I	00 －un ${ }^{\text {a }}$－
8681 －	0000	くEL＇	OEE ${ }^{\text {c－}}$	691を	ESE	くもっで	－\％	E6＜0	0000	くてもを	ESto	$12 Z$	00 －un 60
9691	0000	9810	188\％	820	1960	6ん1E	0620 －	S880	0000	¢J゙も	OLでし－	$0 \angle Z$	$00-41 \sim 00$
0000	0000	coso	$080{ }^{\circ}$	2000	9210	0SZE	290\％	むでし	906%	てLLL－	ほんて	612	00－181－9\％
レーロ゙レー	LIES	切2	Ela＇－	なして	0109	く6て	0000	CEL	8ちも	G1O－	灾0	812	00－10 1
9800	0000	¢ ¢	もじい	120	992で－	2FO	0000	0690	0000	ほとて	28\％	$\angle L Z$	00－Kentzi
9066	0000	1698\％	1く90	2002	1600	16691	8200	¢\％－	0000	gror－	91， 10	912	00－1㐌1－90
0000	986\％	0000	2910	1L2O	0000	298て，	16L 0	$\varepsilon \nabla \angle 0$	0000	ャ0で	C80	SLZ	$00-8 v-88$
0000	0000	LSL＇	006を－	91EG	0000	9619	$\overline{\mathrm{Cr}} \mathrm{C}^{\circ} \mathrm{O}$	bくEO	LGE	00\％	¢L゙レ－	thz	$00-10-L Z$
400	0000	LEZO－	2988	6909	91815	9×1	90bて	8 － 0	0000	cito	LtG\％	$\varepsilon 1 Z$	$00-\mathrm{d} V$ ¢1
888 ＇t	0000	288＇，	0490	200%	C9\％－	1989	Sto	ヤぐト－	0000	0880	0050	ZIZ	$00-18-20$
SL90	0000	968＇－	2200	$610{ }^{\circ}$	8610	898	OLEO－	0680	0000	961．＇	$ఱ 00$	112	$00-\mathrm{eN}-1 \varepsilon$

Financial 2001

WeekEnd	Series BEK		508	PAN	NOB	NEK	K08	JB	1000	HFCK	DTK	CTRUST	CFC
O5van-01	251	5889	-2550	-0.051	3742	-51.494	-21.610	2503	5.491	-2937	2922	0.000	0.000
12-Jan-01	252	-4.397	-3.326	0.000	-2032	146.521	-0.751	0.389	3.908	2372	-0.757	0.000	0.000
19tan-01	253	-5.886	-5.750	0.359	-0.598	-6.525	1.203	-2536	1.001	-1.028	-2256	0.000	-0.362
26atan01	254	1.513	6.806	-2104	1.481	0.981	1.650	0.000	5026	4.915	-6.025	0.000	0.354
QRFeb-01	256	1.736	3.089	1.725	-11.104	-9.961	-0.977	1.522	-0.831	0.460	-1.029	0.000	3.333
09 Feb-01	256	2298	-1.233	-1.250	7.482	0.162	1.317	-2437	-5.582	0.168	0.024	0.000	-3.908
16-Feb-01	257	-0.106	4.005	-0.844	-4.266	4.048	-2088	-4.610	-0.396	0.384	1.816	0.000	6.361
23 Feb 01	258	3722	12027	2128	-0.208	-2656	19.233	-0.088	6.438	-4.764	2127	0.000	1.000
$0 \mathrm{C}-\mathrm{Mar-01}$	259	3.588	-3.300	-0.189	3.130	-1.980	11.532	-2752	-4.056	-1.489	-3.852	0.000	-0.521
$09 \mathrm{Mer}-01$	260	-4.836	1.653	-5.656	-8.817	0.015	-1.172	0.000	0.654	0.614	0.009	-19.570	1.875
$16-\mathrm{Mer-01}$	261	-1.363	0.840	0.000	-3898	-1.722	-9.840	-1.471	0.472	0.257	0.376	0.000	-0.299
$23 \mathrm{Mar-01}$	262	2751	-19.049	-2677	-5.206	3381	3864	1.309	0.974	-1.673	-0.383	0.000	-0.628
$30-\mathrm{Ma}-01$	263	-0.296	7.929	0.000	0.662	0.201	0.250	0.182	5.161	-1.967	2084	-8.200	-0.292
06 Apr-01	264	0.424	0.852	0.000	-2702	-1.185	0.093	-1.082	7.184	3.655	-2042	0.000	0.000
13-Apr-01	265	-0.425	0.088	-6.268	-0.384	-11.453	6.076	-2.502	-4.315	-1.321	0.000	0.000	0.000
20-Ap-01	266	0.825	-0.036	2936	-2886	-1.040	-1.040	-1.652	16.371	-0.799	0.000	0.000	0.105
27-Apr-01	267	-9.296	2064	-5715	-0.183	-3.107	-0.397	-0.772	0.825	-0.843	0.000	0.000	-4.250
$04 \mathrm{May}-1$	268	-2232	1.484	-0.044	0.010	0.211	4.455	0.000	0.876	-8.580	-0.399	-6.796	-2303
11-May-01	269	0.711	-0.279	4.939	-0.234	-8.572	11.039	-6.246	-0.785	0.138	-7.323	0.000	-2938
18May-01	270	-0.146	0.133	12441	-5.519	-5.684	-2794	0.174	-1.205	1.129	-2500	0.000	-1.407
$25 \mathrm{May-01}$	271	1.961	-3009	0.000	-1.010	2761	-4.983	0.552	-0.206	-0.396	0.000	0.000	-0.873
01-un01	272	7.965	1.753	0.000	0.581	24.178	1.812	-0.421	-0.056	-2262	-5.804	0.000	-0.292
Obrun-01	273	-1.370	2651	4.961	3.871	14.219	-5.811	0.659	-0.167	0.942	-0.190	0.000	1.246
15-un01	274	2987	4.099	0.523	2946	-10.111	2832	3.615	-0.496	1.518	1.818	0.000	-1.231
22 lu 01	275	7.371	2697	-1.851	-0.087	-7.986	3.103	-0.089	-0.042	-0.987	0.504	0.000	-0.145
2 rlu 01	276	-1.077	-2460	2298	0.256	-4.722	-2178	-1.302	-1.816	2656	-2369	0.000	-0.811
O6-Ju-01	277	-4.898	-1.772	4.000	1.167	-3.525	-4.251	0.324	-1.812	-2972	0.198	1.250	-0.177
13-ul-01	278	0.571	0.158	0.151	0.297	2854	1.246	-1.187	-4.922	0.089	0.000	0.000	-0.605
20-Ju-01	279	0.731	1.930	3.306	3611	5803	-4.119	-1.116	-5.087	-1.328	0.218	0.000	-1.145
27-Ju-01	280	0.697	-0.304	0.000	0.029	-0.919	18031	-3929	0.109	1.969	1.329	0.000	-1.659
03-Aug 01	281	1.301	1.542	0.411	-2.117	5.167	-4.307	-9.536	-2281	-1.732	-1.482	0.000	0.979
10-Aug01	282	-2596	-1.645	-0.040	0.307	0.364	-7.449	0.000	2168	-3.283	-0.045	0.000	3.382
17-Aug-01	283	-0.953	-8.714	0.000	-3.302	-2681	-5.489	13.383	-1.993	-9.135	2273	0.000	0.268
24 Aug-01	284	-2964	-5.676	0.000	-7.471	-9.294	-0.422	-1.010	0.292	-6.916	-2202	0.000	0.000
31-Aug-01	285	-4.748	-0.752	0.000	0.556	3.895	-0.079	-1.812	-0.550	-1.042	0.000	0.000	0.000
07-Sep-01	286	-2296	-4.064	3.457	-0.077	0.377	-2964	-2.108	0.119	-4.571.	0.000	1.852	0.000
$14 \mathrm{Sep}-1$	287	-1.652	1.639	-1.909	-12686	-0.002	-6.431	3.285	-0.061	0.386	-3.564	-3489	-4.609
21-Sep-01	288	0.044	10.349	0.000	-0.948	-2754	-0.449	2071	0.235	2838	0.000	-5.804	-1.285
$28-5 e p-01$	289	0.232	0.056	-1.460	-7.764	-12893	0.576	-3.043	-0.335	1.698	-10.941	0.000	-0.051
$05-0 a t-01$	290	4.758	0.643	0.000	4.237	15.454	1.005	1.622	0.670	0.759	-12.638	0.000	-2500
12-Od-01	291	4.336	-0.046	-0.741	11.408	10.63	8.500	0.404	0.862	-1.212	2480	0.000	6.410
19-0a-01	292	1.199	0.668	0.000	3.613	7.470	19.530	-2007	6.538	0.472	6.416	0.000	0.186
26-Od-01	293	4.199	-3.461	0.000	13.129	1.278	-2902	4.132	-8039	0.308	0.060	27.882	4.996
CQ-Nbv-01	294	-2064	-1.873	-3.731	2653	0.861	-7.643	2653	-1.448	11.263	-0.009	0.000	-0.352
$09 \mathrm{Nov-01}$	296	2610	3.268	1.550	-4.819	-5.052	-10.881	-0.172	0.387	-8.666	0.000	0.000	-0.5/5
16-Nov-01	296	0.671	-0.796	0.000	1.151	-8742	-2395	0.627	0.776	-2280	1.174	0.000	3.468
$23 \mathrm{Nov-01}$	297	-0.769	2064	0.000	0.055	2316	-3.551	-1.098	4.271	-11.400	-1.101	0.000	-2235
$30-\mathrm{Nov-01}$	298	3.105	1.929	0.000	0.134	1.156	0.369	0.000	0.280	10.565	0.450	0.000	4.659
07-Dec-01	299	-2365	1.446	0.000	0.072	-3.296	0.880	0.494	0.506	2436	-1.673	0.000	-0.620
	arage	0.062	0.152	0.217	-0.443	1.570	0.034	-0.308	0.338	-0.644	-0.864	-0.263	0.052
	iance	11.389	21.898	8.463	22568	548.110	52.964	9.768	15.154	16.852	10.596	27.527	5.471
	andard [3375	4.680	2909	4.751	23412	7.278	3.125	3.893	4.105	3.255	5.247	2339

000	000	201	000	000	coo	coo	000	＋900	000	200	000	000	000	000	000	16	16 Q
ca	000	＋000	685	92W	998	¢92	£01	000	Is0	0800	082	H01	820.	\＄219	до	6	10000
ce99－	ていで	œ๐O	질	000	gio	190	910	000	196	40	cap	881	cry	地て	1919	©	150007
$\underline{660}$	a	SL2	000	000	\pm ¢	202		9612	20	0800	960	山	488 －	ter	いで	¢	
め®Z	1529	1500	19 ¢で	000	auz	น80	987	698	gco	cre	192	H26	Ero	ほZ	cell	B	C－19\％
t9， 9	ad	928	880	000	920	100	\＆20	000	al	060	HLV	9062	HS0	2er－	000	9	somer
¢88\％	000	12LO	906	000	啫	4889	git	即与	¢0	280	L2	ters	28	885	000	¢	Sowtr
00	62 L	比 2	cat	OBt	268	000	tar	1505	19.	HSO	L9\％	1002	9	crt	ct－	郆	Lotar
at－	000	$\square_{\text {® }}$	¢f1	000	12\％	01	40	8128	car	900	\＄4．	te28－	629	とLE	000	®	－10
1490	690	S181	180	000		909	O	48	\＆	9 Il	＋291．	4cg	20	98		8	
cos－	00	286	9t1	000	¥0E	69	924	Lut	590		ta	00	000	mol	CBO	18	10 O
gro	000	too	吹し－	000	1000	0 EL	છ®	t28		cal	HSL	800	000	2182－	ほO	08	$10+1$
$\pm \notin \mathrm{C}$	000	\％20	800	9	967	छcl	900	26\％	cl	8EV	छ⿴囗十介	68	区	000	000	6	$16+1080$
$9{ }^{\text {a }}$	000	－	880	0000	ゅゃて	叫て	Ub	000	cyl	98l	z82	200	cs	9E1	60	${ }^{2}$	
＋650	Q8	छ6	480	000	เ8®	000	910	000	19 ¢	981	cobr	crlt	Scit－	E6z－			－
1082	000	csio	000	car	qua	¢bE	域で	घとణ	82	202－	＋000	¢6\％	8 cz	100	00	\％	1045
El	\％	¢9	888	000	¢88	000	姫	$46 E$	201	USl	2000	282	910	22	Al	¢	10.4
18 E	000	999	cal	620	209	¢aと	1899	000	t00	¢	Cors	166	¢в	ald	8102	\％	10076
9 20	000	800－	0	6290	aico	000	¢8E	196	以゙V	¢	HL	2151－	925	900	902	ε	$10^{\text {fr }}$
glo	000	601	000	000	¢GE	885	tero	¢ 60	$6{ }^{6}$	cti	009		990	Cot	以゙	2	150
®Bt	cra	9 ®2－	E20	907	G¢\％	gre	040	¢8	20	ml	40		1600	910	1 HEO	K	15968
1805	$\Delta \mathrm{ta}$	192－	¢10	000	－	¢49	108	Sto	260	छ60			边	46	घとて	α	二イサー
900	000	L20	tezo	000	92\％	000	2	L9	80	घ67			1602	4 C	OLL	${ }^{69}$	fomc
al	000	4 CO	CLLO	0	LEL	000	O22	09	น60	£2	662		P8E		－	\％	9
๕oで	280	900	2\％	£u2	9	2	soza	mb	200	tic	ars		ca	alz	29	4	A－1
gat	000	088	cri	000	9 ar	6 ± 2	98	4 so	cero	000	g20		\％＜2	$6001-$	000	9	－omt
000	000	988	000	000	900	－	gsa	¢¢	1501	corl－	spo		Egl－	06	000	99	Burze
000	000	6 mb	900	92－	¢0ㅏㅏ	\＆8a	92191	¢80	60	£2	680			8 C	819	19	boure
000	000	¢ 41	900	000	GEL	U21	¢ct	9	m	－	40		toter	00	1950	c9	
000	000	cor	¢ ¢	tall	aco－	$6{ }^{2}$	909	㸴山	680	$\underline{9}$	징		cors	Cab	$10 b^{\circ}$	2	bur
000	tar	घ1E	deE	0918	988	42	0 O	以上で	凹	1807	260		208	cel－	¢	19	0for
P00	180	Eso	¢f9	6885	9 Ex	902	qut	帐々	409	9 E	嗗		\％20	420	HEO	∞	sotur
000	000	8002	$\triangle B E 1$	\％	968	60L	atz	982	ald	± 8	m^{8}		20	92	69\％	${ }_{6}$	sorwa
000	000	900	6Et	ぃ®®	セセE	860	90	$\underline{1} 5$	000	050	\ldots		8 clv	090	81	ד	Lotweo
000	000	$00^{6} 2$	901	Cole	aro	000	Hez	$\triangle E L$	セEL	620	－bl		6zl	1851		Δ	Hotwo
000	899	8800	000	000	むEE	000		ゆ゙z	OLO	200	940		99.	๒๐	ax	¢	10－dy
000	000	6Fz－	ast	000	789	000	627		090	940	teso		ש®t	920	\＆	¢	crab
000	¢50	tell	WEz	000	¢00	000	2001	OZE	L	1580			8 El	atr	000	ts	10.041
000	000	800	1 Ez	000	てひで	962	480	980	46	6×0	9s9		¢	WS	\％ 20	ε	15.80
000	000	Ocs	9Z1	000	－19	๕0	ઘゆで	1000	［cE	9 El	c\％		0×0	6162－	920	c	O－T
000	000	190	\％m9	000	OBE	686－	9798	930	zCO	Mo			455	吹て－	000	เs	coraz
O	tell	い上r	0	如で	，	00	兂	aIt	8，	gezo	あど－		der	soz	00	¢	fotive
000	cul	\％c9	688	£	1002	£91－	15^{651}	छ66	\％8て	4 LE	E_{2}		ar	000	ゆ1	Et	15an
000	000	960	1000	区o	612－	000	69	E\％	${ }_{6}$	Cobl	$\underline{69}$		C8B	G20	640	8	10Р¢
000	000	9\％8	620	68 r	1000	\＆	tex	189	06	セ8゙L－	9620		OLL＇	ゅ⿺𠃊	qֻE	4	$1098+{ }^{\text {c }}$
000	000	0800	698	000	400	8 22	686	98	L66	Cob	Cor 9		ctiv－	צ80	ти	9	$10 ¢$
000	घ68	Let	6sz	000	9to	๕0	± 0	9		म19e	1800		86 C	$8{ }^{2}$	4181	d	109940
000	102	\＃5	950－	9000	806	Su2－		987	289	mo	90		188	960	6 Ex	\＄	
000	000	比	086	120．	198	1421	¢ral	92Lb	［00\％	1259	9 Pz		LEE	6 Lt	99	E	4tu
000	＋98	40	9\％8	4．9b	g	¢として	0¢1－	At8	come	cex	$4 x$		27	ャ8〕	000	\％	80tar
00	000	H2Cl	000	000	068	8682	802	400	Sur	968	1888		000	C298	H｜t	1	18480
000	156	$0 \not \square 1$	0000	\％82－	618	9Rt－	แr－	gice	吡	1000	®®		000	000			84
		姻	¥B		커	тов	WH	did	ep 1	D日	90＊	H2	6ex	\％	208	9898	6 1gat

Weakid	Saries BOC		CAFB	Clorg	$\begin{array}{r} \text { ATH } \\ -634 B \end{array}$	$\begin{gathered} \text { BANB } \\ 4468 \end{gathered}$	$\begin{array}{r} \text { BAT } \\ -1.87 \end{array}$	$\begin{aligned} & \text { Tdda } \\ & \text { aT0 } \end{aligned}$	$\begin{aligned} & \text { PORIL } \\ & 0000 \end{aligned}$	$\begin{aligned} & \text { INM } \\ & 0000 \end{aligned}$	$\begin{aligned} & \text { MAD } \\ & 2612 \end{aligned}$	RFE EAPAOGACAEES			$\begin{aligned} & \text { EAGI } \\ & 000 \end{aligned}$	DUNUNA FAC		
Qutang	-9R	000	000	3340								0000	-1.010	0000		0000		0000
Cotans	93	0000	11.60	0.90	1.441	4000	1.90	0000	0.000	0002	0000	0193	0000	-1200	-1.140	0000	000	4315
16.ine8	-94	-0¢8	000	4304	360	19194	000	3889	5098	8941	0000	2388	0510	3007	2718	000	000	. 300
23/angs	96	0000	2991	5884	020	-089	0007	1667	2001	058	000	7.989	. 3989	0240	5131	2531	0.88	1888
301ancs	96	0000	447	8341	2196	4738	0007	9444	0000	10204	21.212	947	0000	027	-2713	0211	10790	-2045
$06 F 698$	- 7	0000	275	0887	-2478	3989	1.33	8864	21.213	1002	6781	2488	0000	0064	137	0567	000	-334
1FF+98	98	4519	272	3734	08\%	000	-1. 131	-5733	000	6980	1.454	-1286	000	-2812	-1.57	Q319	334	4085
20FEb98	98	-1.311	-2407	1.50	-0737	-100	0506	-1.484	0000	053	3047	-228	0000	-029	050	-2911	5750	2046
27-Fb998	100	3378	-4487	1.812	499	-1980	Q371	1.78	0000	- 0.19	0169	25	-24112	0000	1.030	0002	3110	96
06 Mr -98	101	0000	-1.719	1.084	4487	1227	0.133	-278	-0387	4477	0.24	8487	0.089	0000	0168	0000	4111	5
L3Nr-98	102	-0381	1.002	-16233	-0365	7.383	-0504	-4441	0388	-0768	-1.156	3980	0783	-5172	096	0000	-065	058
20MEr98	103	1.304	034	-7.441	Q1\%0	3494	925	-556	4167	33748	0789	-19836	-137	-6074	0089	088	13062	4
74Mr98	104	-1.84	9407	-1.485	0074	005	0864	3366	0000	654	-0.901	11.724	8780	-2307	0145	-2\%1	-1.946	4912
OBAFS8	105	0588	-1.86	0603	0.012	0.150	0089	3349	-13043	0751	0.00	0441	0000	032	0175	0000	-1.485	3118
10-9-98	106	0000	1.606	0000	375	-13000	0742	5891	0000	0137	-17.015	-1. 54	1.141	314	87R	0000	3190	4578
17-4r98	107	000	-1.619	-100	-1.374	-7.887	acco	-365	0000	024	0880	5006	- 23534	7.608	53 J	0000	-1.424	,
244098	108	- 275	-2614	-260	-2407	0.006	-1.046	0.611	-12000	-0235	-1.086	-235	0000	0000	0014	-1.968	-1.15	-120
01Mey98	108	-a730	-055	1.961	-21.066	4466	0312	-3356	0000	-0764	0000	4.568	0000	-4000	-1.46	096	0848	0461
08Neys	110	000	0.05	0705	9738	-7.504	-0572	-264	1363	040	000	7.06	0000	0000	-1.56	3172	-1.608	0274
1519y988	111	3765	420	-2100	0204	1.97	000	-1.72	8.000	-124	-3,66	4196	0000	406	-14201	000	0.174	1
22 May 98	112	-2017	037	-1.941	540	499	2088	-426	-13063	1.524	000	- 073	-260	-2m2	2103	-7.46	Q150	3
2 May 98	113	2883	2088	-0.98	9506	045	000	0.46	009	000	-1224	-1.30	000	-000	11.535	-1.344	5146	2
Orun98	114	0410	0000	0210	476	5981	-0089	-1.818	0009	-25208	000	1.246	0000	000	906	0000	21.98	6
12 ln 98	115	0000	9019	0106	13468	0007	0000	1.985	0988	627	4.27	008	-11.822	5076	1.00	3303	2196	413
19 ln 58	116	1289	-1.686	1.891	8.461	Q486	0050	0069	0000	0.188	0.95%	318	-058	1.679	0774	106000	0961	
3 mu 1088	117	-1.561	4.531	-2062	3048	-0.46	-0446	0378	9072	-065	0000	0.50	0000	-597	1.63	-11.518	6115	-0.32
CuH198	148	$2 \pi 3$	0448	0.073	-050	028	0471	0.582	043	-18648	2000	4483	-1850	1.13	4687	360	-10133	7
10 u 108	119	0000	-1.47	Q848	-7.398	0067	0069	-1223	4750	6.87	000	-137	0000	4494	0411	-1.205	1.413	-262
17.4-98	120	298	-238	0.06	-10184	-2198	-250	0814	1.63	-11.336	1.584	1.331	0000	3648	0×6	-7.974	-19839	938
241458	12	0778	-2682	000	-13012	-asm	2190	- 1500	-12951	. 033	0000	-339	-0,27	-10402	1.78	3788	22759	11.906
3hlu-98	122	-0086	-3688	-1.063	4.911	-9794	037	Q9\%	-2430	0.043	1.75	454	- 299	-0388	0102	-1.26	1.412	1.511
(1)AOS8	123	0086	$-2 \ldots 8$	068	9988	3750	000	-2088	0250	0944	000	050	000	000	1.719	-2581	06t2	2077
14Ag98	124	000	0.300	000	7.181	-1.762	2313	-0.107	0.248	076	0.00	0.051	1.572	0000	0.081	Q312	-1.55	0107
$21+498$	12	0000	0.00	-1.268	4108	-2310	2841	Q192	0.054	-2462	-1.56	0.548	-2006	000	. 2314	-1.46	-2144	0.420
284098	12	-2887	299	3640	6.984	5507	1.65	2904	000	-0013	0216	0.50	0000	-250	0788	-2122	- 196	-1.3
04 Sep98	17	0000	2487	- 0111	846	6.507	068	-1.863	0000	1.189	1.308	58\%	0000	000	0011	-250	327	0.005
$11.59 p 98$	128	0000	000	827	204	3580	036	1. 141	088	072	097	506	1720	2564	-0.09	0756	-1362	0763
189898	129	0000	-29/3	275	6584	3690	1.475	-4213	-1.769	-0.116	2488	0034	0000	0000	-0759	006	6797	1215
258998	130	0676	3064	0000	0.52	6067	296	-1.788	-2630	0288	-0.501	0.218	0000	0000	-7.17	-17.20	1.86	0879
COT-98	131	2200	-29/3	0000	1294	- 0639	1.172	3341	0000	-1.70	-2009	0661	0000	0000	1.763	6841	-194	475
000488	138	0029	0000	-14800	2489	-488	3423	-2377	0000	3347	0000	276	0000	0000	-007	Q,43	0689	,
1604-98	133	0.714	-2686	6, 103	222	4108	0228	1.466	0000	-0.433	5983	3473	000	-1.250	A283	-089	3466	624
230498	134	0000	-1.973	485	5731	3081	2206	0.422	3.3047	0681	0000	- 127	000	-1.122	-1.370	0712	-1.131	-1.168
3004-88	135	0000	1.606	-1.446	-681	0000	1.916	437	-1.077	4.464	360	0338	-14147	000	-173	6062	-0792	027
$06 \times N u 98$	136	0×1	0000	000	4099	-1.250	0903	1.885	-1.888	6138	-1230	388	4212	-1.62	-5171	608	-2924	0.43
t3Nouss	13	0000	0.488	3887	1.88	8101	-1.234	4886	1.803	3857	-7.65	-1.610	000	-1.02	894	2284	-73433	8462
20-Nu-98	138	0000	-16234	859	5798	-1.614	1.249	0485	0000	. 0237	5486	1.66	0000	1.063	1.38	1.878	15953	a312
27 - 0 -98	19	-1.381	-4.65	271	3140	5240	0411	0636	. 0270	16461	020	-1.888	0000	0000	0968	2003	26548	0.50
0408098	140	1.54	6773	4750	5280	Q 070	0357	-2754	-283	11.72	0000	0038	-2700	006	Q886	1.686	1073	3988
11-58098	141	0.65	6\%历	3988	4308	Q3B3	6721	0.59	000	4406	- 2909	-0324	000	0000	0378	1.484	4515	1.181
180808	12	-0.461	0000	0.000	52	2884	4.54	9171	3667	-1.50	097	0179	1.26	-005	4506	-1.408	23111	290
2500098	143	000	4746	0.00	-2118	31.988	10789	2388	-1.688	688	000	622	-1.782	1.468	9462	1.588	2487	2688
Avare		0174	0100	0288	0701	033	0.63	0513	0.106	-0.34	0361	0198	-203	-074	0488	0.54	5317	0006
Variace		2027	18174	19793	3.46	5674	6.458	16821	101.051	93610	19648	3803	7.019	11.056	17.70	236715	988.27	12400
Stantar		1.44	4.33	449	6 ¢ 20	7.462	2541	4101	10062	965	4433	6.165	5198	335	4207	1533	31.116	3524

解畧管

 용

Industrial 2000

$\begin{aligned} & \text { Weakd } \\ & 07 \text {-Jano } \end{aligned}$	Senes BOC		CAFB	Oberg	$\begin{aligned} & \text { ATH } \\ & \text { a00 } \end{aligned}$	$\begin{array}{r} \text { B4NB } \\ 0.962 \end{array}$	$\begin{aligned} & \text { BAT } \\ & 0476 \end{aligned}$	$\begin{aligned} & \text { Totad } \\ & 0.480 \end{aligned}$	$\begin{array}{r} \text { PORIL } \\ 0.166 \end{array}$	$\begin{array}{r} \mathrm{NMM} \\ -1.98 \end{array}$	$\begin{array}{r} \text { kada } \\ 0000 \end{array}$	RIE EAPACKACAELES			$\begin{aligned} & \text { EABL } \\ & 2817 \end{aligned}$	DNUNGA		KRL
	197	000	0000	-2200								-143	9808	000		350	1.17	-220
14 lan 0	198	-07/5	0.000	000	-5266	-0962	000	0008	0.118	0000	0000	348	1215	-18809	0000	000	-2118	-353
2Tunco	198	0000	-1.487	0.00	-1а306	1.308	3016	-046	0.00	057	0369	-1.199	0000	-1.158	0834	223	-18.140	18
2B,	200	0000	6000	0000	3193	-2873	-1.085	1.885	2400	-450	1.088	-069	0000	020	0869	-088	-1.094	13
04FEb00	201	0000	-1.404	0,000	2053	0661	0073	0111	0.174	-006	2702	-0.54	0000	0080	3007	0384	0.185	0072
14Febco	2 P	0000	-2854	0000	0374	-0885	0000	-01031	Q301	4111	-0112	-0.988	0000	-048	207	-0.50	-2888	-070
18 Feb -0	203	0000	0000	0000	0000	072	0073	-2381	0.000	-006	6313	0000	0000	-0031	0440	0.503	3308	0.801
2Feb 00	204	0.000	4.44	0000	0000	-0963	1. 186	1.5\%	0309	-284	12343	-0.201	0000	2035	1200	-1500	-1.074	54
@ЗMer-0	205	0000	-0738	0000	0000	0088	16596	7059	000	-1.56	-5238	-1497	0000	2810	-0,64	0000	1.60	27B
$10 \mathrm{Ma}-00$	206	0000	0786	0000	-0317	0288	12624	18.32	0.00	-0378	-0285	8687	0000	-25561	4188	0384	1.192	3605
17-M3-00	207	1.047	0000	0000	-350	-0230	१. 145	-44.507	-12073	0111	-1.013	-1.654	2371	-6.580	0.58	-0.23	0.02	0500
$24 \mathrm{Mr-00}$	208	006	0.000	0000	4011	356	-14.562	-8068	0000	0562	2308	286	0000	-1.35	1.686	0000	0.92	-2601
31Mer-00	20	0000	0000	0000	10082	3888	1.59	1.20	000	3 3 410	-2833	3583	0000	6992	5647	359	0.00	90
07-A-00	210	0000	0000	0000	13705	-488	-1.250	-1.478	0000	34464	0000	-2912	0000	456	-2488	-243	28016	-1.002
14Aprob	211	-0387	0000	0000	2647	1.315	0841	2381	0000	-0.851	0315	-0888	0000	0000	1.960	-290	8.98	-4211
21-40-00	212	0.900	-1.423	0000	1.198	-1.500	0519	0271	0000	5303	4212	3444	1.982	0088	2665	0000	21.339	-8025
28A5-00	213	0000	000	0000	0.738	-2108	0376	0.888	14.925	2895	0000	3033	0000	3088	3678	0000	-0063	-1.904
05 May 00	214	-3000	0.08	0000	- 0730	1.960	-6223	0082	0000	0.72	363	-0.302	0000	-27t3	0248	0000	-1.678	0.989
12NE-00	215	4837	-12062	0000	-7.208	5547	0283	0.109	-3896	-1.008	1.107	-4083	-0383	-0338	1.488	0.73	3705	027
19M3y-00	216	5000	15346	0.000	0862	0322	-0488	0.012	0000	4301	-467	2000	0000	0000	-0153	0236	0098	-15238
2 Mayc	217	-10746	0.00	0.000	-1.106	0.000	1.200	0.58	0.000	-6519	. 6.50	-0.901	0000	0000	-0383	000	-1.862	3
Culnco	218	-10190	6515	0000	1.136	1.300	-0478	-0.483	0000	-656	0.436	-1.07	0.000	0.000	-1290	2316	-1533	-8
Qulnco	219	000	1.119	0000	-1.350	0281	-1.142	0785	0.000	0000	068	-14916	0000	-1.053	3988	1.05	0.00	-1560
16 l	20	0000	1.32	0.000	0000	127	-1.108	. 0.961	-0.300	1.215	0784	2687	0.000	-2616	3.441	000	-1.889	0.72
2ulnco	221	-14396	0215	0000	0000	-0.019	-1.863	0.987	0.000	-2373	000	-10772	0.000	-1.683	4228	325	0.000	- 101
3 l	22	0.000	4161	0000	-15014	0.61	360	1.433	0.00	-863	5088	13095	2308	-1.900	- 366	-6125	-20295	08
Orutco	223	0000	6888	0.00	-11.419	0.415	1.702	228	4.24	-575	1.087	-1.074	- 275	-7.78	1.508	1.008	-18539	
14u-00	224	0.000	-1.000	0.000	-9017	0866	5338	3322	0.000	0200	0205	. 236	0000	-1.761	2340	0000	-266	5
21-1100	25	9089	-0546	0000	9615	4542	-0318	3039	14.685	-8793	0.60	-2624	-1.515	-0397	1.158	-0,06	4.141	-2300
28 L	28	0000	-1.341	0000	-9812	4443	1.174	-0.8t2	0.000	-0881	-060	-0309	7.691	-8740	0418	0000	-1.888	500
044.000	27	0000	0000	0000	11.060	0063	-0498	-1.48	4384	-4.207	-2439	0000	0.745	-10116	0.63	0000	0.588	-3312
11 Ma00	28	-6491	0.515	0000	-0088	0031	0060	2404	-1.186	0000	0000	3707	-2178	5550	-0.903	-0,427	0.000	24
18-4.000	29	-2480	0.000	0.174	317	-0750	5164	3787	0.000	-0.52	0000	0000	0000	0000	0085	0000	6.414	44
25.400	230	0000	-1.688	0000	-1.788	0787	-0158	-0. 171	0000	-1.176	0000	-5682	5072	0000	6363	0000	1.696	3280
O-Sep 0	231	461	0.000	0000	2818	013	0333	1.338	0000	0.000	-3566	-2588	0000	0000	7236	0000	-2752	03
08Sap00	23	000	0000	0.00	-205	-098	1.503	-1.06	0.000	-669	0.000	0250	0.000	0000	-0.98	0000	0.22	-
15sepm	23	0.00	0000	0.000	0.59	1.008	249	-2713	0.000	4324	1.096	5005	0000	0.00	228	4000	2940	-2387
22Sep00	234	248	-6146	0000	3513	0.561	9000	0281	0.000	0861	6040	4.40	0000	61.884	0259	-3846	9707	-1.986
2959000	23	-1.762	0000	0.00	-3866	-0.589	-0088	1.594	0000	4498	0.000	-0983	0000	-13160	0.56	0000	3112	-058
$06 \cdot 0 \pm 0$	23	4023	10.96	0000	-1.120	0.624	-2179	086	0.00	986	-2077	0304	0000	0000	-0,050	0000	-2516	-1.844
13.0 ± 00	238	0186	0000	-17.104	-0740	1.519	0278	-1.765	-2000	566	0.67	076	-1.379	-2062	1.688	0000	-2422	-1.988
20-atco	28	0000	0000	-0.218	-5340	1.877	1.058	1.083	0.000	4301	0.000	0083	0000	2105	0.038	0000	1.018	4881
$27.00+\infty$	239	0.000	0000	8862	517	- 220	0409	-0118	0.00	4880	0613	-0.685	0000	0000	0091	0103	-1.4\%	24646
cratal	240	0000	22004	-13869	10822	1.384	-1.069	0.898	0.000	-8567	-1.885	0068	0000	3505	0.979	-4,000	-0.46	20
10-Nam	241	2366	-4411	0117	0350	-1.306	-0340	0.301	-1.23	372	0000	0775	¢f065	-6983	3004	0000	-0,366	12412
17-Nbw00	24	0000	1.75	-2214	-0523	-0301	1.181	0.582	-2214	494	0000	-0253	0000	-4308	-0.66	-11.141	-1.488	238
24N0w00	243	1.156	0000	-1.689	0534	-0.482	-1.407	-0.73	0000	4818	-3080	-0900	0000	0000	-0015	0000	0069	2705
01-0eoco	244	000	-18740	2303	-1.365	-0,061	1.042	-0241	0.00	0000	0000	-0.119	20.105	-4988	-1.30	0000	0000	2839
0808000	245	0000	3112	1.303	-1.058	0.485	. 0254	-1.109	-0663	4077	3388	-0046	0000	000	. 0007	0000	0.000	-2288
1500000	246	6.180	023	2924	0000	1.06	-5090	-0.07	0.000	1.23	-1.831	-1.772	0.000	-6125	4688	0000	-076	058
2200000	247	0000	406	1.47	-2749	0.746	425	Q 0.136	-0.46	0041	- 5.405	-0.741	15.189	-668	4.081	0000	-0988	-0.114
290000	248	000	-40.443	050	-640	0.415	-10022	-062	0.00	-0172	3571	Q 171	8.408	1068	-0. 0104	0000	0.000	-2144
	Avage	-0.05	0.466	-0378	-060	0.56	0140	035	0144	-020	0.046	-0446	0071	-0867	0089	-0705	-a830	-1.245
	Variace	1365	33483	11.512	30.06	296	20196	14.790	12844	74.733	9786	33198	10087	11987	6.588	9118	59087	37.63
	Standerd	3691	5786	3388	5496	1.710	4494	3866	3584	8646	3128	5762	10.041	10947	2561	3000	7.687	6135

End	Sries BC		CAFB	Clag	ATH 000	$\begin{aligned} & \text { BAMB } \\ & -0413 \end{aligned}$	$\begin{gathered} B 4 \\ 4788 \end{gathered}$	$\begin{aligned} & T_{\text {tad }} \\ & 000 \end{aligned}$	$\begin{aligned} & \text { PCRIL } \\ & 0000 \end{aligned}$	NM000	$\mathrm{KANL}$$7.866$	RIE EAPROKACOEET			$\begin{aligned} & \text { EAB } \\ & 0740 \end{aligned}$	DNUNOA	
len	24	000	025	023								000	0000	23			-27
and	230	0000	445	000	1340	108	6012	553	-213	0816	000	006	0000	0000	146	000	4
and	251	0000	000	0000	\%88	616	150	398	000	0823	030	-046	000	O	198	7.813	
3 bu anc	22	052	m	000	4748	1.063	073	-1201	2163	0000	000	-1.08	005	0000	3433	0000	
CFFbo	23	-1.08	0000	333	048	0466	18	0.050	000	0008	862	-868	0000	000	1.189	2512	168
cofebo	254	-1064	8016	2688	-389	029	0433	0085	0000	008	13	481	660	515	156	000	-108
16	$2{ }^{2}$	34	-0661	10	W	0753	0092	-1008	000	2641	848	-387	000	288	094	438	88
2Fbbor	26	0000	088	-1006	0451	-156	4338	0005	0000	O97	116	-1.30	000	4649	183	. 4	14
Marci	27	000	000	068	1432	-1220	1312	000	-1282	42	0.81	-1460	000	000	072	000	308
Cantr-01	28	-2301	000	00	-2728	195	111	-10218	129	250	924	-1428	000	039	808	000	148
16NETOI	28	00.5	000	146	7.96	78	-2984	430	1455	038	55	-136	000	-564	C2	338	
23ME001	260	000	00	78	548	22	-185	26	0	236	0×2	13	0000	019	041	38	
3PMes-01	261	-092	120	7.62	-013	006	218	255	3000	79	-121	048	000	-1.30	089	433	
$06 \mathrm{~A} \times \mathrm{O}$	26	000	000	000	00	00	-998	68	000	1051	33	076	amom	8088	132	-1010	
BAD	203	952	4289	148	-031	00	74	208	346	000	393	633	220	-108	623	1097	7.581
20AFO	364	4762	00	16	0221	0000	-1.35	215	000	000	3370	027	000	226	072	000	0408
2AD	あ	000	00	000	061	-351	58	261	0000	-2098	0000	00×8	000	558	52	970	OME
O4May	26	00	3986	00	00	-338	280	1.43	3000	-12512	-3432	-086		-055	-008	000	4/E
11Hay	27	00	0000	0000	000	7.333	-338	5011	-12	00	196	614	000	000	-1802	000	
18Nay	28	0000	0000	4018	56	008	-1984	248	-39	938	437	010	660	7.5	1008	00	03
25MaOP	280	-2881	597	16	0540	Om	-0083	2003	000	80	048	133	-1832	023	02m	9780	
Ohinor	20	000	00	000	-11111	∞	- $0: 8$	81	000	2318	433	-1.32	000	-096	-2213	1.81	
Oblent	21	-11.061	585	-233	050	0000	-1.07	389	000	00	94	064	000	000	39	000	
15 l	212	-897	270	З614	33	0000	337	2086	467	000	-08	064	000	210	254	000	40
2 ln 01	23	250	2996	000	0611	-®æ	-26	6179	000	9918	-10	-280	0000	253	1.46	-1.33	
3ulnor	23	1.88	00	-889	-0664	2918	-199	68	0016	0.08	-0513	107	000	00	0588	-1.388	
caltor	25	10714	0000	-1697	3564	-9988	122	58	0000	- 183	-13	288	00	0150	281	00	
U-1	26	000	0000	-0513	6147	8019	18	-008	000	000	-088	000	000	-010	0089	264	
caltar	27	0000	0000	-	250	-241	-1831	178	9001	3413	00	-00	1220	000	аж	00	
Therr	28	0000	00	104	з๕3	-1.183	зенб	1.78	00	-7.913	999	0023	000	24	0145	0000	10,
cragor	29	2288	000	319	3	374	488	458	000	0000	-2989	as	000	-149	.08	000	10
DAgO	280	00	00	450	4789	-2433	-091	-526	000	000	-992	0.10	000	ast	-0081	943	
17 AgOO	281	0060	0000	014	416	-024	- 0 \%	0236	50	620	000	-0410	0000	000	1.66	000	
24 AgOr	22	-1.630	973	000	150	51	15	1. 28	0000	-1.333	- 48	-673	241	000	0830	137	
3Hagr	33	000	-0241	-067	-117	-1.999	5446	-5513	-2498	000	4000	69	000	-0013	-1.664	478	
(1)-900	284	1.67	4603	-675	000	00	1034	476	-1000	00	02	41	000	248	-1.3	341	400
148901	26	-1.69	-146	-0¢	-6788	-629	-0688	000	000	000	83	6088	-682	-2999	261	am	
2hepo	26	000	-	54	000	67	-137	-11.38	-1596	00	000	360	0000	000	108	000	and
2 Bsp 01	287	-217	-0063	259	-7.489	000	3322	472	00	0000	-1282	-11.832	620	0000	0152	5000	-115
Coma	28	2022	0	344	000	-130	3146	4	00	-1320	-082	-332	1.15	000	10	000	13
200401	269	000	0000	-10010		12	220	O	5	659	+	589	0000	0000	0004	523	158
	20	000	0000	974	7.57	000	246	-1.54	0000	000	1054	073	697		183	am	
360401	291	53 L	000	000	. 026	3465	43	-005	0000	51.746	a31	384	0	0×0	415	000	18
Catow	22	-1.192	1429	165	1103	A	-1/6	9972	007	32	48	-7.18	000	000	$2 \oplus 8$	500	21.
Corturas	288	. 024	-1.408	165	4	0264	-(\%)	103	6495	998	00	1729	000	0000	-094	0000	
16.6001	24	000	149	-0.420	000	452	-1108	1.68	00	31.949	0	0084	000	3466	315	48	6
23NuO1	${ }^{25}$	351	0000	000	315	4916	0×8	41	2380	336	068	68	0000	2083	058	0000	8
3-10001	26	1.504	1394	-123	0×10	-a111	075	031	000	-1.43	155	129	000	000	671	00	48
W-Coo01	28	0	2	-as	511	-104	1.62	A	aw	-031	-258	082	0	-3\%	034	000	00
142000	28	5982	3646	000	472	-100	036	-985	5180	0000	-17.74	-048	000	034	008	0000	58
2 HEOOH	29	3810	070	-7.481	06	0000	1316	05	000	357	21.	014	00	306	040	000	
Avagp		0.013	$0 \cdot 154$	-062	0123	-1 198	0152	-1.10	0531	037	124	0.081	0169	0488	008	038	析
Veneric		13838	19972	2269	2986	1419	8980	2028	96087	98T1	81.09	2236	64	6	3081	1998	8422
Stacta		3720	4469	473	5088	367	2989	4504	9812	963	9005	47	250	4089	175	44	$9 \pi 7$

Appendix D-Correlation Coefficient

Correlation Agricultural 1998								
	BBond	SASINI	REAV	LTEA	KAPCHO	KAKUZI	GWK	EGAADS
BBond	1							
SASINI	-0.05722	1						
REAV	-0.02525	-0.011	1					
LTEA	-0.1548	-0.07068	-0.16765	1				
KAPCHO	0.019924	0.15244	0.033378	-0.00044	1			
KAKUZI	0.05763	0.262357	-0.15156	0.02709	0.090304	1		
GWK	-0.21256	0.045894	-0.08273	0.161357	-1.9E-05	0.12472	1	
EGAADS	-0.03283	-0.04288	0.111543	-6E-05	-0.01042	-0.09571	-0.06932	1
Correlation Coefficient Agricultural 1999								
	BBond	SASINI	REAV	LTEA	KAPCHO	KAKUZI	GWK	EGAADS
BBond	1							
SASINI	-0.10588	1						
REAV	0.191184	0.000216	1					
LTEA	-0.0116	-0.03766	-0.01701	1				
KAPCHO	0.01338	0.067222	-0.15637	0.029679	1			
KAKUZI	-0.03964	0.072985	-0.28225	-0.02802	-0.08231	1		
GWK	0.37656	-0.05802	0.066138	-0.07677	-0.10676	0.058422	1	
EGAADS	-0.05678	-0.08361	0.11145	-0.0155	0.023915	-0.02226	-0.1686	1

Correlation Coefficient Agricultural 2000

	BBond	SASINI	REAV	LTEA	KAPCHO	KAKUZI	GWK	EGAADS
BBond	1							
SASINI	0.077442	1						
REAV	-0.12299	0.125363	1					
LTEA	\#DIVIO!	\#DIVIO!	\#DIVIO!	1				
KAPCHO	\#DIV/0!	\#DIV/0!	\#DIVIO!	\#DIV/0!	1			
KAKUZI	0.184153	-0.05779	-0.02478	\#DIVIO!	\#DIV/0!	1		
GWK	0.202046	-0.13043	0.008308	\#DIVIO!	\#DIVIO!	0.061375	1	
EGAADS	-0.07071	-0.0141	-0.03165	\#DIVIO!	\#DIV/0!	-0.21141	-0.55501	1

Correlation Coefficient - Agricultural 2001

	BBond	SASINI		REAV	LTEA	KAPCHO	KAKUZI	GWK
BBAN	1							
SASINI	-0.19819	1						
REAV	-0.50488	0.132894	1					
LTEA	0.116507	0.288075	0.008904	1	1			
KAPCHO	-0.0418	0.126003	-0.09159	-0.01573	1			
KAKUZI	-0.02552	0.101199	-0.41613	0.005174	-0.01239	1		
GWK	0.111087	0.006603	-0.03465	-0.02427	0.089798	0.012685		
EGAADS	0.035758	0.043775	0.12814	0.02	0.01573	-0.00517	0.114164	1

Correlation Commercial 1997										
	CarGen	ABOUM	UCHUMI	SMG	SERENA	NMG	MARSH	KENAIR	EXPRESS	CMC
CarGen	1									
ABOUM	0.120303	1								
UCHUMI	-0.25351	-0.07693	1							
SMG	0.055975	0.085308	0.140583	1						
SERENA	0.235124	0.066435	-0.11949	0.162398	1					
NMG	-0.20927	-0.3671	0.112743	-0.2287	0.126468					
MARSH	-0.10363	0.085609	-0.05644	-0.24098	-0.2392	0.208395	1			
KENAIR	0.098012	-0.19503	0.202158	0.02585	-0.16186	0.199464	-0.00088	1		
EXPRESS	0.139846	-0.12831	-0.14356	0.065175	-0.47253	-0.07073	0.028697	-0.07692	1	
CMC	0.01928	0.396582	-0.01543	0.173066	0.218195	-0.13414	0.135907	0.077203	0.273297	1
Correlation Commercial 1998										
	CarGen	ABOUM	UCHUMI	SMG	SERENA	NMG	MARSH	KENAIR	EXPRESS	CMC
CarGen	1									
ABOUM	-0.00929	1								
UCHUMI	0.177046	0.042668	1							
SMG	0.056154	-0.16464	0.111048							
SERENA	0.030996	0.037334	0.076193	-0.24833	1					
NMG	-0.02422	-0.29984	-0.15352	0.071185	-0.01614	1				
MARSH	-0.01867	0.00909	-0.0113	0.068435	0.030086	-0.06143	1			
KENAIR	-0.02551	0.002303	0.215526	0.205457	0.132335	-0.17991	-0.00766	1		
EXPRESS	-0.11699	0.120178	-0.39294	-0.10028	0.341829	0.025835	0.039161	-0.08087	1	
CMC	0.139989	-0.02235	-0.31817	-0.01144	0.343053	-0.02336	0.165814	-0.01561	0.533308	1
Correlation Commercial 1999										
	CarGen	ABOUM	UCHUMI	SMG	SERENA	NMG	MARSH	KENAIR	EXPRESS	CMC
CarGen	1									
ABOUM	-0.02832	1								
UCHUMI	-0.16377	-0.01969	1							
SMG	-0.01142	0.014557	-0.06565	1						
SERENA	0.027514	0.019728	0.023639	0.108224	1					
NMG	-0.22677	0.003313	0.064942	0.0738	0.084327	1				
MARSH	-0.00578	-0.00444	-0.0153	-0.10167	-0.00912	-0.15478	1			
KENAIR	-0.05113	0.023291	-0.224	0.270012	-0.01186	0.05154	-0.07287	1		
EXPRESS	-0.01155	-0.00931	0.002308	0.464914	0.106615	0.011322	0.10126	0.015474	1	
CMC	-0.07925	-0.00607	0.022546	0.062958	0.260798	0.013729	-0.12759	0.161818	-0.01664	1
Correlation Commercial 2000										
	CarGen	ABOUM	UCHUMI	SMG	SERENA	NMG	MARSH	KENAIR	EXPRESS	CMC
CarGen	1									
ABOUM	0.0253	1								
UCHUMI	-0.1174	-0.19825	1							
SMG	0.031584	-0.00995	-0.01056	1						
SERENA	-0.11405	-0.04807	-0.00793	-0.13724	1					
NMG	0.064896	0.066244	-0.01143	-0.01429	0.463763	1				
MARSH	0.468319	-0.04929	-0.14956	-0.01151	-0.20561	0.027529	1			
KENAIR	-0.02573	-0.00858	0.108255	0.00629	0.081444	-0.01422	-0.04565	1		
EXPRESS	0.071698	0.046025	0.051473	0.019575	-0.00532	0.093227	0.149105	0.143619	1	
CMC	-0.04874	-0.09391	-0.02135	0.051572	0.260721	0.46299	-0.0385	-0.08537	-0.06615	1
Correlation Coefficient Commercial 2001										
	CarGen	ABOUM	UCHUMI	SMG	SERENA	NMG	MARSH	KENAIR	EXPRESS	CMC
CarGen	1									
ABOUM	\#DIV/0!	1								
UCHUMI	\#DIV/0!	0.070918	1							
SMG	\#DIV/0!	0.224911	0.021483	1						
SERENA	\#DIV/0!	-0.11614	0.324252	0.284392	1					
NMG	\#DIV/0!	-0.19281	0.194727	-0.06476	0.288059	1				
MARSH	\#DIV/0!	-0.06076	-0.02592	0.3835	0.122781	-0.03062	1			
KENAIR	\#DIV/0!	0.105963	0.380744	0.036514	0.34655	-0.02218	0.055932	1		
EXPRESS	\#DIVIO!	0.016035	0.266849	-0.0938	0.159928	-0.08381	-0.04442	0.004462	1	
CMC	\#DIV/0!	-0.04548	-0.03527	0.114667	0.094797	0.35233	-0.06303	-0.01161	0.053181	1

Correlation Financials 1997												
	ВВК	SC8	PAN	N／CB	NBK	KCB	JUB	ICDC	HFCK	DTK	CTRUST	CFC
8日K	1											
SCB	0569	1000										
PAN	－0．032	－0．099	1.000									
NICE	0067	－0．115	－0．096	1.000								
NBK	－0．153	－0．069	0.127	－0．109	1.000							
KCB	0.022	－0．019	－0．075	0.324	0.002	1.000						
JU日	0.079	0.289	0.123	0.015	0.107	0.120	1.000					
ICDC	0.285	0.329	0.194	－0．060	0.068	－0 005	0.237	1.000				
HFCK	0290	0197	0.198	0.126	0.158	0.043	0.331	0.325	1000			
DTK	0289	0.352	0.069	0.230	－0．081	－0．059	0.315	0.317	0.425	1.000		
CTRUST	0196	0.174	－0．003	0.375	－0．040	0255	0.453	0.144	0.299	0.517	1.000	
CFC	0.525	0.463	0.011	0.240	－0．060	0.056	0.465	0.392	0.535	0.493	0.373	1000
Correlation Financial 1998												
	B8K	SCB	PAN	NICB	NBK	KCB	JUB	ICDC	HFCK	DTK	CTRUST	CFC
BBK	1											
SCB	0.368153	1										
PAN	0.102126	0.090322	1									
NICB	0.217971	0.314224	0.03084	1								
NBK	0.117744	0.234935	－0．04745	0.217459	1							
KCB	0.307087	0.323724	0.129705	0.243786	0.271924	1						
JUB	－0．233	－0．02224	－0．17267	0.068262	0.042671	0.243782	1					
ICDC	0.119458	0.402636	0.012676	0.556657	0.224903	0.398108	0.105144	1				
HFCK	0.074703	0.13397	－0．10528	0.191266	0.085679	0.269642	0.307993	0.112935	1			
DTK	0.372209	0.09136	0.114588	0.07556	0.088269	0.075145	－0．16598	0.154571	0.02642	1		
CTRUST	－0．15778	－0．12162	0.099852	－0．01509	－0．17274	－0．07176	0.005216	－0．01661	－0．00084	－0．09957	1	
CFC	0209081	0.354275	－0．13815	0.278776	0157605	0.161481	0.035127	0.297358	0.228295	－002062	0.007076	1
Correlation Financials 1999												
	日日K	SCB	PAN	NICB	NBK	KCB	JUB	ICDC	HFCK	DTK	CTRUST	CFC
BAK	1											
SCB	0.179	1.000										
PAN	0.077	－0．138	1.000									
NICB	0.099	0.154	0.105	1.000								
NBK	0206	－0．195	－0．047	0.341	1.000							
KCB	0.262	－0．022	0153	－0．197	0.208	1000						
JUB	0058	0.023	－0．081	－0 058	－0 013	0.247	1.000					
ICDC	0087	－0．035	0.017	－0．175	0042	－0．071	0.008	1000				
HFCK	0.197	0.222	0.026	0.212	0.187	0.193	0.414	－0 032	1.000			
DTK	0.122	0.043	－0．136	－0．177	－0．113	0.144	－0．095	0.030	0.011	1.000		
CTRUST	－0．324	－0．155	－0．022	－0．359	－0．107	0.087	－0．191	0.100	－0．328	0.052	1.000	
CFC	0159	0.034	0.128	－0．059	－0．092	0.207	0.284	－0．226	0.069	0.311	0.004	1.000
Correlation Coelficients－Financials 2000												
	BBK	SCB	PAN	NICB	N日K	KCB	JUB	ICDC	HFCK	DTK	CTRUST	CFC
BBK	1											
SCB	0.564	1.000								i		
PAN	0.037	－0．020	1.000									
NICB	0.198	0.292	0.354	1.000								
NBK	0.216	0.181	0.280	0.339	1.000							
KCB	0.361	0.493	0.231	0.206	0.283	1.000						
JU日	0169	0.167	－0．042	－0．012	0008	0.011	1000					
ICDC	0.021	－0．118	0.237	0.335	0.358	0.269	0.080	1.000				
HFCK	0.044	0.050	－0．116	0.126	0.089	0.100	0.066	0.007	1.000			
DTK	0.086	0.137	－0．018	0.045	－0．020	－0．171	－0．027	－0．168	－0．030	1.000		
CTRUST	0.117	0.074	－0．098	－0．018	0.135	0.116	0.190	0.018	－0．174	0.010	1.000	
CFC	0.160	0.083	－0．066	0.333	0.026	0.233	－0．055	0.204	－0．140	－0．156	0.104	1.000
Correlations Financial 2001												
	B8K	SCB	PAN	N／CB	NBK	KCB	JUB	ICDC	HFCK	DTK	CTRUST	CFC
B日K	1											
SCB	0.152	1.000										
PAN	0.099	0.062	1.000									
NICB	0.158	0028	0.016	1.000								
NBK	－0．176	－0．074	－0．001	0.027	1.000							
KCB	0.165	0.145	－0．051	0.161	0.120	1.000						
JUB	－0．009	－0．164	－0．065	0.035	－0．012	－0．297	1.000					
ICDC	0.110	0.180	0.049	－0．193	0.069	0.093	－0．020	1.000				
HFCK	0.020	0.132	－0．111	0.091	0.131	0.070	－0．093	0.066	1.000			
DTK	－0．096	0.025	－0．061	0.195	－0．061	0.008	0.186	0.120	－0．142	1.000		
CTRUST	－0．011	－0．235	0.180	0.484	0.011	－0．042	0.105	－0．290	0.032	－0．014	1000	

Critaion inderial 199																	
	$B C$	OAB	Obsg	A AH	B4B	BAT	Tda	PORL	KM	kEVa	APE	549\%	5ACAEE	EAEI	DN	UGA	KAC
BOC	1																
OFA	-00239	1															
Oarg	-006880	0148845	1														
ATH	009886	005139	-0.7780	1													
bavb	0078821	04458	-0,4112	-01262	1												
BAT	-00630	008619	0388197	a21rscs	010849	1											
Toda	004888	-10259	008875	018085	048442	2061588	- 1										
FCRIL	024525	-0008	-1337	-1363	аз3368	008801	а0ахеб万	1									
INM	008869	a 188062	0018086	-0075	-0,043	000011	-011003	0083611	1								
kEnL	-1013\%	-20133	-004198	-0,15088	a3/5465	03388441	042976	008881	1005102		1						
RFE	0148732	a,2001	Q \% 27	-0,0882	acesr84	a,108778	0004338	$0063 / 2$	- - 18772	-016008		1					
EAPAOK	0023080	а004 6103	-0064 4	OC88882	0040333	0128151	ar7\%	100485	0080	0087210	-0.0988	8					
EACAEE	0.10887	0081014	-00579	0088804	0 वF\%81	1018249	028886	02108	-22396	0238838	024863	-01480	- 1				
EAGL	006641	-0,6832	0×138	-03654	10639	-008151	a 19804	-20085	-acobr	Q15000	204572	2 -0.7316	ac2459				
ON	-01774	004163	018371	-00889	0004803	004662	00174	-14438	01674	015781	1003196	-008166	-00386	0188873	1		
UNA	0.2080	-008156	-01078	009405	0087894	-00244	0011089	a0\%858	017386	0255088	8 -0,0134	4-a16784	0.27414	-00886	Q221564	1	
HRE	0010879	а28689	0051812	-0306	00489548	050\%63	0065	01338	0×24415	0303361	10152438	316848	025089	008071	-0140	015802	
Conralionindistia 1908																	
	$80 C$	O\&B	Corg	$A T H$	BAB	B9T	Tdd	PORSL	NM	keva	FFE	EAPAOK	540AE	EAE	ON	UNGA	KAC
BOC	1																
OAB	-00968	1															
Ozeg	012362	-1004	1														
ATH	0122616	018868	-acrea	1													
banb	-02638	0151054	-0,8374	-0,0886	1	1											
BAT	-015646	$01 \% 98$	-00029	$0041 \% 8$	03336												
Tda	-006m	0108463	0388267	0102031	014006	024464	1										
PORL	-0134	00:005	a192t5	a0brezs	024048	-00866	040373	1									
INM	-11338	005188	000088	ас312	0.167587	-01185	00629	-00032	1								
kENC.	008882	0020143	азбпй	000736	0063152	асегая8	0294888	-00678	а27883	1	1						
FFe	-000683	-1/635	а226388	0089113	- 01605	030467	0333108	015348	-	017803		1					
EAPACK	-22406	004029	-0003	-0.0023	02850	000682	-004191	0012888	0088811	-1063	-03343	3					
EACABE	001869	а080678	а272463	at50886	-वс3*	0.10064	0065384	017433	- 127873	-00886	500822	$4-000684$	- 1				
EAPL	0246198	-0662\%	0020212	Q 151917	088007	014638	016×0	0148191	-02438	012558	80127640	- 0.12387	-0042	1			
ON	000025	-003\%8	0002373	1200m6	0013111	-0,24	005186	000006	0063801	0066192	200390	2000961	011763	005853	1		
UNGA	0020888	-138882	a14186	-003365	009645	-02035	001979	-008911	astrocs	024563	- - 19226	60001100	-00882	-0,0085	006162	1	
KHC	-006744	015227	O01025	Q138005	0361402	024883	024652	0168888	0174679	0073888	$8-000334$	4000630	-011376	.00619	012856	0204333	
Ondationirdstria 1990																	
	BOC	OFA	Cagg	ATH	B4AB	BAT	Tad	PORIL	KMM	KEVa	FEE	EAPAOK	EACAEAE	EAR	DN	UNGA	KRC
BCC	1													\%			
CAFB	-004831	1															
Otrg	002355	-00083	1														
ATH	-00683	014346	-0,0983	1													
BAMB	00836	042368	-00433	Q06060	1												
BAT	-00862	0031844	-000068	01733	-015/2	1											
Tata	аг7465	0011013	008169	Q137400	0.198258	0.230151	1										
PCRIL	0053888	-010248	- 11008	-ax2	Q0385	-01688	001374	1									
MM	009146	-00066	0115975	-08817	0088086	acmbi54	014313	-00038	1								
kENa.	03003	-00080	0120548	- 21150	-006/3	-00075	0044008	0196163	0087488	1							
RFE	-0086\%	006\%	0120829	0182943	028883	Q00080,	Q10007	006er2	048986	0063888	$8 \quad 1$	1					
EAPAK	-01	00883	-1236	0113788	0c83101	-23F9	002201	-01878	-00671	- - +2012	2127745	5					
EACAEE	$0 \ldots 0359$	0018819	Q200882	0.71646	020687	-00892	0548884	0111814	006024	0000007	233543	30087482	1				
EAGL	-10473	-0,4\%1	-0017\%	a,7456	-0.17172	a300821	0175248	-008884	-17388	001645	- -12213	- 230159	-00089	1			
ON	-002215	000062	a07007	$0+53506$	0018612	acresers	0133382	-008063	0151538	004536	Q40157	-12204	0.2675	204338	1		
UNGA	0032483	0209\%	-00079	-00068	018231	00t220	00918%	008726	0.19886	व10008	004197	-01333	-000488	000665	-23063	1	
HRC	009487	-00t22	004238	a 88801	0125407	a 2336	व72438	0016217	004881	-01451	10646116	6 Q008r34	0320845	00636	03202	0005	

Contaiocefliot hdstial 300														
	$B C$ OAB logg AIH	BAM	B ${ }^{\text {T }}$	Thd	ROKL	KM	cana	FE	EAPAK	ERABP	EARL	QN	USA	
80 C														
CAFB 018016														
AH 00015203005 - 12354														
BAM 0080885														
BT $\quad 00081-00533-001620008544^{-185611}$														
FWrl $\quad 0256$														
FIE	$0102500883+1.00333$-00740	010036	-02ד	Q23FB	-0658	010836	02262							
BCOBE 0018186														
Canderiocafioet Indirid 201														
	ECC CAB Cog ATH	BAB	BAT	cad	PORL	KM	kAX	FE	EAPOK	808BP	ER	DN	UAA	$\underline{\mathrm{H} 2 \mathrm{C}}$
BCO 1														
OFPB														
6eg	-02209 -001881													
AHH 1164530000888														
HEND -0128														
ERCFBE $010196 B$														
E8R 0088550003898														
WNA - 12350002370														
HPC		00648	OOAB8 4	-02356	-02319	-02010	004741	-1862	00865	011033	004F39	. 03353	03389	

Appendix E-Covariance

Covariance Matrix Agriculture 1997								
	BBond	SASINI	REAV	LTEA	KAPCHO	KAKUZI	GWK	EGAADS
BBond	7.989958	-0.22981	2.025298	-1.04099	0	1.542859	0.414142	0.938134
SASINI	-0.22981	18.44311	8.348656	-1.04453	0	4.228361	6.400325	1.410249
REAV	2.025298	8.348656	33.31305	-2.00789	0	1.219269	4.804652	-2.18336
LTEA	-1.04099	-1.04453	-2.00789	6.836401	0	2.639093	-0.18154	-14.4483
KAPCHO	0	0	0	0	0	0	0	0
KAKUZI	1.542859	4.228361	1.219269	2.639093	0	37.30835	13.909	-4.94479
GWK	0.414142	6.400325	4.804652	-0.18154	0	13.909	39.10286	0.55657
EGAADS	0.938134	1.410249	-2.18336	-14.4483	0	-4.94479	0.55657	82.60242
Covariance Matrix 1998								
	BBond	SASINI	REAV	LTEA	KAPCHO	KAKUZI	GWK	EGAADS
BBond	11.00057	-1.37592	-0.30751	-0.16628	0.183033	1.00369	-3.39791	-0.40084
SASINI	-1.37592	52.55775	-0.2929	-0.16595	3.060997	9.987449	1.60363	-1.14441
REAV	-0.30751	-0.2929	13.48715	-0.1994	0.339523	-2.92278	-1.46437	1.50819
LTEA	-0.16628	-0.16595	-0.1994	0.104884	-0.0004	0.04607	0.251865	-7.2E-05
KAPCHO	0.183033	3.060997	0.339523	-0.0004	7.671709	1.313404	-0.00025	-0.10628
KAKUZI	1.00369	9.987449	-2.92278	0.04607	1.313404	27.57321	3.156496	-1.85036
GWK	-3.39791	1.60363	-1.46437	0.251865	-0.00025	3.156496	23.23019	-1.23015
EGAADS	-0.40084	-1.14441	1.50819	-7.2E-05	-0.10628	-1.85036	-1.23015	13.55517
Covariance Matrix Agricultural 1999								
	BBond	SASINI	REAV	LTEA	KAPCHO	KAKUZI	GWK	EGAADS
BBond	17.18217	-1.29218	2.953482	-0.08809	0.206908	-0.66332	4.9097	-1.46101
SASINI	-1.29218	8.668376	0.002373	-0.20307	0.738353	0.867518	-0.53731	-1.52826
REAV	2.953482	0.002373	13.88954	-0.1161	-2.17408	-4.24665	0.775315	2.57855
LTEA	-0.08809	-0.20307	-0.1161	3.354298	0.202785	-0.20721	-0.44225	-0.17619
KAPCHO	0.206908	0.738353	-2.17408	0.202785	13.9175	-1.23965	-1.25281	0.553875
KAKUZI	-0.66332	0.867518	-4.24665	-0.20721	-1.23965	16.29857	0.741881	-0.5579
GWK	4.9097	-0.53731	0.775315	-0.44225	-1.25281	0.741881	9.893807	-3.29228
EGAADS	-1.46101	-1.52826	2.57855	-0.17619	0.553875	-0.5579	-3.29228	38.53954
Covariance Matrix - Agricultural 2000								
	BBond	SASINI	REAV	LTEA	KAPCHO	KAKUZI	GWK	EGAADS
BBond	24.80	1.58	-3.29	0.00	0.00	3.44	\% 3.89	-0.91
SASINI	1.58	16.87	2.77	0.00	0.00	-0.89	-2.07	-0.15
REAV	-3.29	2.77	28.85	0.00	0.00	-0.50	0.17	-0.44
LTEA	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
KAPCHO	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
KAKUZI	3.44	-0.89	-0.50	0.00	0.00	14.11	0.89	-2.06
GWK	3.89	-2.07	0.17	0.00	0.00	0.89	14.92	-5.56
EGAADS	-0.91	-0.15	-0.44	0.00	0.00	-2.06	-5.56	6.74
Covariance Matrix Agriculture - 2001								
	BBond	SASINI	REAV	LTEA	KAPCHO	KAKUZI	G WK	EGAADS
BBond	9.095998	-2.57232	-18.304	0.372807	-0.14693	-1.53555	1.182084	0.322282
SASINI	-2.57232	18.5206	6.87487	1.31535	0.631981	8.68762	0.100254	0.562984
REAV	-18.304	6.87487	144.4977	0.113559	-1.28313	-99.7832	-1.46956	4.603148
LTEA	0.372807	1.31535	0.113559	1.125682	-0.01945	0.109505	-0.09084	0.063413
KAPCHO	-0.14693	0.631981	-1.28313	-0.01945	1.358277	-0.28816	0.36925	0.054786
KAKUZI	-1.53555	8.68762	-99.7832	0.109505	-0.28816	397.9224	0.892788	-0.30844
GWK	1.182084	0.100254	-1.46956	-0.09084	0.36925	0.892788	12.44859	1.203728
EGAADS	0.322282	0.562984	4.603148	0.063413	0.054786	-0.30844	1.203728	8.93055

Covariance Matrix Commercial 1997										
	CarGen	ABOUM	UCHUMI	SMG	SERENA	NMG	MARSH	KENAIR	EXPRESS	CMC
CarGen	6.800458	3.010145	-2.40409	1.693885	1.254298	-2.54152	-2.32792	1.768676	1.265366	0.221606
ABOUM	3.010145	92.0625	-2.68435	9.498463	1.51047	-16.4039	7.076075	-12.949	-4.27177	16.77202
UCHUMI	-2.40409	-2.68435	13.22392	5.932445	-0.88552	1.909388	-1.76803	5.087107	-1.81141	-0.24738
SMG	1.693885	9.498463	5.932445	134.6614	6.98851	-12.3597	-24.0894	2.075815	2.624224	8.852086
SERENA	1.254298	1.51047	-0.88552	6.98851	11.48019	1.978215	-8.53882	-4.14911	-3.75168	2.855047
NMG	-2.54152	-16.4039	1.909388	-12.3597	1.978215	21.68964	8.360745	6.428221	-1.143	-2.75366
MARSH	-2.32792	7.076075	-1.76803	-24.0894	-8.53882	8.360745	74.20977	-0.05254	0.857753	5.160415
KENAIR	1.768676	-12.949	5.087107	2.075815	-4.14911	6.428221	-0.05254	47.88508	-1.84694	2.354761
EXPRESS	1.265366	-4.27177	-1.81141	2.624224	-3.75168	-1.143	0.857753	-1.84694	12.03903	4.179661
СМС	0.221606	16.77202	-0.24738	8.852086	2.855047	-275366	5.160415	2.354761	4.179661	19.42774
Covariance Matrix Commercial 1998										
	CarGen	ABOUM	UCHUMI	SMG	SERENA	NMG	MARSH	KENAIR	XPRESS	CMC
CarGen	64.37551	-0.11036	7.30122	5.936377	1.468031	-1.75271	-0.62869	-1.20155	-5.67492	6.12287
ABOUM	-0.11036	2.191329	0.324642	-3.21117	0.326233	-4.00391	0.056484	0.020017	1.075529	-0.18038
UCHUMI	7.30122	0.324642	26.41799	7.520446	2.311721	-7.11788	-0.24384	6.503177	-12.2102	-8.91479
SMG	5.936377	-3.21117	7.520446	173.6054	-19.3142	8.460699	3.785182	15.89204	-798841	-0.82141
SERENA	1.468031	0.326233	2.311721	-19.3142	34.84496	-0.85925	0.745527	4.585874	12.19894	11.03902
NMG	-1.75271	-4.00391	-7.11788	8.460699	-0.85925	81.37238	-2.32612	-9.52725	1.408953	-1.14876
MARSH	-0.62869	0.056484	-0.24384	3.785182	0.745527	-2.32612	17.62209	-0.18872	0.993866	3.794453
KENAIR	-1.20155	0.020017	6.503177	15.89204	4.585874	-9.52725	-0.18872	34.46299	-287027	-0.49963
EXPRESS	-5.67492	1.075529	-12.2102	-7.98841	12.19894	1.408953	0.993866	-2.87027	36.55002	17.57605
CMC	6.12287	-0.18038	-8.91479	-0.82141	11.03902	-1.14876	3.794453	-0.49963	17.57605	29.71658
Covariance Matrix Commercial 1999										
	CarGen	ABOUM	UCHUMI	SMG	SERENA	NMG	MARSH	KENAIR	EXPRESS	CMC
CarGen	56.34742	-0.32857	-3.25019	-1.0778	0.891007	-7.23856	-0.1095	-1.80107	-0.59632	-188766
ABOUM	-0.32857	2.388871	-0.08045	0.28294	0.131543	0.021777	-0.01732	0.168926	-0.09893	-0.02978
UCHUMI	-3.25019	-0.08045	6.989945	-2.18276	0.269615	0.730131	-0.10213	-2.77899	0.041979	0.189154
SMG	-1.0778	0.28294	-2.18276	158.1522	5.871409	3.946662	-3.22876	15.93409	40.21479	2512458
SERENA	0.891007	0.131543	0.269615	5.871409	18.61084	1.54698	-0.09931	-0.24003	3. 163571	3.570268
NMG	-7.23856	0.021777	0.730131	3.946662	154698	18.08318	-1.6621	1.028466	0.331166	0.185261
MARSH	-0.1095	-0.01732	-0.10213	-3.22876	-0.09931	-1.6621	6.376945	-0.86352	1758817	1.02246
KENAIR	-1.80107	0.168926	-2.77899	15.93409	-0.24003	1.028466	-0.86352	22.01976	0.499446	2.409614
EXPRESS	-0.59632	-0.09893	0.041979	40.21479	3.163571	0.331166	1.758817	0.499446	47.30989	0.36315
CMC	-1.88766	-0.02978	0.189154	2.512458	3.570268	0.185261	-1.02246	2.409614	-0.36315	1006993
Covariance Matrix Commercial 2000										
	CarGen	ABOUM	UCHUMI	SMG	SERENA	NMG	MARSH	KENAIR	EXPRESS	CMC
CarGen	199.6084	0.844124	-3.73649	2.530592	-3.15144	2.43524	19.53143	-1.35117	2.342804	-2.88709
ABOUM	0.844124	5.576679	-1.05462	-0.13329	-0.22202	0.415492	-0.34363	-0.07529	0.251372	-0.92974
UCHUM	-3.73649	-1.05462	5.074709	-0.13489	-0.03494	-0.06838	-0.99458	0.906299	0.268178	-0.20166
SMG	2.530592	-0.13329	-0.13489	32.16142	-1.52221	-0.21532	-0.19276	0.132573	0.256745	1.226157
SERENA	-3.15144	-0.22202	-0.03494	-1.52221	3.825248	2.409115	-1.18705	0.591983	-0.02408	2.137827
NMG	2.43524	0.415492	-0.06838	-0.21532	2.409115	7.054465	0.215836	-0.14039	0.572682	5.155498
MARSH	19.53143	-0.34363	-0.99458	-0.19276	-1.18705	0.215836	8.713752	-0.5008	1.017969	-04765
KENAIR	-1.35117	-0.07529	0.906299	0.132573	0.591983	-0.14039	-0.5008	13.81132	123444	-1.33015
EXPRESS	2342804	0.251372	0.268178	0.256745	-0.02408	0.572682	1.017969	1.23444	5.349097	-0.64143
СMC	-2.88709	-0.92974	-0.20166	1.226157	2.137827	5.155498	-0.4765	-1.33015	-0.64143	1757654
Covariance Matrix Commercial 2001										
	CarGen	ABOUM	UCHUMI	SMG	SERENA	NMG	MARSH	KENAIR	EXPRESS	CMC
CarGen	0	0	0	0	0	0	,	0	0	$\overline{0}$
ABOUM	0	15.22054	1.086426	16.71456	-0.76025	-2.96517	-0.05354	1.977716	0.356258	-0.78972
UCHUMI	0	1.086426	15.41922	1.606927	2.136418	3.014063	-0.02299	7.152485	5.967208	-0.61653
SMG	0	16.71456	1.606927	362.8601	9.089905	-4.86276	1.649904	3.327567	-10.1757	9.722805
SERENA	0	-0.76025	2.136418	9.089905	2.815432	1.905233	0.046529	2.78184	1.528167	0.70803
NMG	0	-2.96517	3.014063	-4.86276	1.905233	15.53779	-0.02726	-0.41821	-1.88144	6.181994
MARSH	0	-0.05354	-0.02299	1.649904	0.046529	-0.02726	0.051009	0.060433	-0.05713	-0.06337
KENAIR	0	1.977716	7.152485	3.327567	2.78184	-0.41821	0.060433	22.88687	0.121553	-0.24726
EXPRESS	0	0.356258	5.967208	-10.1757	1.528167	-1.88144	-0.05713	0.121553	32.43021	1.348071
CMC	0	-0.78972	-0.61653	9.722805	0.70803	6.181994	-0.06337	-0.24726	1.348071	1981386

Covariance Matrix 1997												
	BBK	SCB	PAN	NICB	NaK	KCB	JU日	ICDC	HFCK	DT゙K	CTRUST	CFC
BBK	10.1073	6.49462	－0．5063	1.098679	－1．16894	0.324807	1.62602	6.758859	2.858387	4.78637	1.796804	11.11384
SCB	6.49462	12.90272	－1．76214	－2．11932	－0．59545	－0．32933	6.737783	8.816407	2.193768	6.587248	1.795655	11.06228
PAN	－0．5063	－1．76214	24.75865	－2．4393	1.518867	－1．76604	3.963914	7.188938	3.052165	1.793024	－0．04221	0.377641
NICB	1.098679	－2．11932	－2．4393	26.28961	－1．34765	7.899586	0.50231	－2．29653	2.005481	6.157212	5.537207	8.19373
NBK	－1．16894	－0．59545	1.518867	－1．34765	5.774406	0.018315	1.666662	1.217766	1.174109	－1．01702	－0．27672	－0．96704
KCB	0.324807	－0．32933	－1．76604	7.899586	0.018315	22.55402	3.708963	－0．18547	0.630631	－1．46345	3.486886	1.770458
JUE	1.62602	6.737783	3.963914	0.50231	1.666662	3.708963	42.24942	11.48267	6.657305	10.695	8.477171	20.11938
ICDC	6.758859	8.816407	7.188938	－2．29653	1.217766	－0．18547	11.48267	55.73614	7.514986	12.35988	3.101408	19.48199
HFCK	2.858387	2.193768	3.052165	2.005481	1.174109	0.630631	6.657305	7.514986	9.586137	6.865081	2.666981	11.01745
DTK	4.78637	6.587248	1.793024	6.157212	－1．01702	－1．46345	10.695	12.35988	6.865081	27.21197	7.763107	17.11161
CTRUST	1.796804	1.795655	－0．04221	5.537207	－0．27672	3.486886	8.477171	3.101408	2.666981	7.763107	8.277615	7.138129
CFC	11.11384	11.06228	0.377641	8.19373	－0．96701	1.770458	20.11938	19.48199	11.01745	17.11161	7.138129	44.31014
Covariance Matrix Financial 1998												
	BBK	SCB	PAN	NICE	NEK	KCB	JU日	ICDC	HFCK	DTK	CTRUST	CFC
BEK	9.310641	3.973765	0.917215	4.126547	2.493764	3.759318	－2．02269	2.235322	1.179269	3.539049	－8．88796	2.762942
SCB	3.973765	12.1588	0.923227	6.770282	5.662973	4.510277	－0．21975	8.574698	2.406941	0.988635	－7．79692	5.328177
PAN	0.917215	0.923227	8.817386	0.552901	－0．95168	1.50364	－1．41944	0.224615	－1．57383	1.031761	5.326552	－1．72878
NICB	4.126547	6.770282	0.552901	37.44412	9.193664	5.957323	1.182888	20.79257	6.027107	1.43413	－1．69659	7.35373
NBK	2.493764	5.662973	－0．95168	9.193664	43.21857	7.433954	0.827239	9.398188	3.020459	1.874271	－21．7308	4.651048
KCB	3.759318	4.510277	1.50364	5.957323	7.433954	16.05665	2.731663	9.615722	5.494381	0.922261	－5．21783	2.75444
JUB	－2．02269	－0．21975	－1．41944	1.182888	0.827239	2.731663	6.287112	1.800904	4.450362	－1．44453	0.268934	0.424893
ICDC	2.235322	8.574698	0.224615	20.79257	9.398188	9.615722	1.800904	37.0575	3.517545	2.899743	－1．84576	7.753019
HFCK	1.179269	2.406941	－1．57383	6.027107	3.020459	5.494381	4.450362	3.517545	26.55467	0.418134	－0．07908	5.021554
DTK	3.539049	0.988635	1.031761	1.43413	1.874271	0.922261	－1．44453	2.899743	0.418134	9.032896	－5．62328	－0．27321
CTRUS	－8．88796	－7．79692	5.326552	－1．69659	－21．7308	－5．21783	0.268934	－1．84576	－0．07908	－5．62328	348.2138	0.555375
CFC	2.762942	5.328177	－1．72878	7.35373	4.651048	2.75444	0.424893	7.753019	5.021554	－0．27321	0.555375	19.16388
Covariance Matrix Financial 1999												
	B8K	SCB	PAN	NICB	NEK	KCB	JUB	ICDC	HFCK	DTK	CTRUST	CFC
BBK	10.148	1.638	2.993	1.676	5.462	4.055	0.899	0.384	3.026	1.239	－4．266	2.120
SCB	1.638	8.885	－5．009	2.437	－4．832	－0．314	0.338	－0．142	3.185	0.408	－1．908	0.423
PAN	2.993	－5．009	160.358	7.078	－5．009	9.459	－4．969	0.291	1.616	－5．506	－1．158	6.796
NICB	1.676	2.437	7.078	30.506	15.677	－5．290	－1．537	－1．335	5.661	－3．107	－8．194	－1．356
NBK	5.462	－4．832	－5．009	15.677	74.774	8.732	－0．548	0.497	7.816	－3．103	－3．825	－3．328
KCB	4.055	－0．314	9.459	－5．290	8.732	24.749	6.023	－0．494	4.705	2.318	1.819	4.369
JUB	0.899	0.338	．4．969	－1．537	－0．548	6.023	22.011	0.057	10.033	－1．526	－3．965	5.957
ICDC	0.384	－0．142	0.291	－1．335	0.497	－0．494	0.057	4.912	－0．219	0.137	0.592	－1．350
HFCK	3.026	3.185	1.616	5.661	7.816	4.705	10.033	－0．219	24.546	0.179	－6．801	1.449
DTK	1.239	0.408	－5．506	－3．107	－3．103	2.318	－1．526	0.137	0.179	10.818	0.714	4.289
CTRUST	－4．266	－1．908	－1．158	－8．194	－3．825	1.811	－3．965	0.592	－6．801	0.714	18.466	0.063
CFC	2.120	0.423	6.796	－1．356	－3．328	4.369	5.957	－1．350	1.449	4.289	0.063	18.732
Covariance Matrix Financials 2000												
	B8K	SCB	PAN	NICB	N日K	KCB	JU日	ICDC	HFCK	DTK	CTRUST	CFC
BBK	32.62638	18.83989	1.035985	6.051253	7.301909	15.16135	3.141734	0.656116	1.349968	2.258439	1.761888	4.023296
SCB	18.83989	20.34987	－0．4528	7.289341	4.995069	16.91728	2.540802	－2．96251	1.250682	2.934343	0.909949	1.702165
PAN	1.035985	－0．4528	17.57562	7.393187	6.47237	6.636573	－0．54202	5.005251	－2．42046	－0．32301	－1．00757	－1．13522
NICB	6.051253	7.289341	7.393187	20.27105	8.538545	6.449396	－0．1691	7.717613	2.860248	0.880635	－0．20283	6.248487
NBK	7.301909	4.995069	6.47237	8.538545	26.34601	9.814006	0.130625	9.12166	2.23447	－0．43064	1.675233	0.536858
KCB	15.16135	16.91728	6.636573	6.449396	9.814006	32.8239	0.213314	8.50662	3.112778	－4．61611	1.799094	6.015044
JUB	3.141734	2.540802	－0．54202	－0．1691	0.130625	0.213394	8.831249	1.121318	0.910098	－0．32263	＇ 1.301216	－0．63339
ICDC	0.656116	－2．96251	5.005251	7.717613	9.12166	8.50662	1.121318	23.93645	0.164458	－3．32335	0.204536	3.867985
HFCK	1.349968	1.250682	－2．42046	2.860248	2.23447	3.112778	0.910098	0.164458	22.77143	－0．57955	－1．94934	－2．62425
DTK	2.258439	2.934343	－0．32301	0.880635	－0．43064	－4．61611	－0．32263	－3．32335	－0．57955	17.45939	0.09596	－2．51567
CTRUST	1.761888	0.909949	－1．00757	－0．20283	1.675233	1.799094	1.301216	0.204536	－1．94934	0.09596	5.757156	0.960037
CFC	4.023296	1.702165	－1．13522	6.248487	0.536858	6.015044	－0．63339	3.867985	－2．62425	－2．51567	0.960037	12.74564
Covariance Matrix Financial 2001												
	BBK	SCB	PAN	NICB	NBK	KCE	JU日	$1 C D C$	HFCK	DTK	CTRUST	CFC
BBK	11.555	2.403	0.975	2.533	－13．873	4.046	－0．099	1.450	0.274	－1．057	－0．186	0.750
SCB	2.403	22.741	0.849	0.613	－8．103	4.939	－2．398	3.283	2.544	0.385	－5．782	0.270
PAN	0.975	0.849	8.829	0.227	－0．047	－1．075	－0．595	0.558	－1．323	－0．582	2.746	－0．125
NICB	2.533	0.613	0.227	23.536	3.022	5.573	0.523	－3．573	1.775	3.009	12.052	1.956
NBK	－13．873	－8．103	－0．047	3.022	571.409	20.475	－0．845	6.253	12.635	－4．657	1.324	1.544
KСB	4.046	4.939	－1．075	5.573	20.475	55.248	－6．745	2.646	2.077	0.193	－1．588	－0．586
JUB	－0．099	－2．398	－0．595	0.523	－0．845	－6．745	10.176	－0．244	－1．193	1.890	1.725	0.281
ICDC	1.450	3.283	0.558	－3．573	6.253	2.646	－0．244	15.813	1.050	1.519	－5．918	0.392
HFCK	0.274	2.544	－1．323	1.775	12.635	2.077	－1．193	1.050	14553	－1．902	0.683	1.283
DTK	－1．057	0.385	－0．582	3.009	－4．657	0.193	1.890	1.519	－1．902	11.004	－0．236	2.328
CTRUST	－0．186	-5.782	2.746	12.052	1.324	－1．588	1.725	－5．918	0.683	－0．236	28.721	3.013
CFC	0.750	0.270	－0．125	1.956	1.544	－0．586	0.281	0.392	1.283	2.328	3.013	5.231

Covanance Matix Indistnal 1997																
	${ }^{80}$	CABB	Oberg	ATH	BAMB	BAT	Tad	PORIL	MWM	kava	FIE EAAMOS	退				
BC	3880	0.120	0771	05	1.285	－0．56	0.591	4173	0.970	－176	1.9340 .324	0.93	0496	868		
CA	0 200	6.588	1.948	1． 192	178	387	－0411	－2066	044	229	3.2541 .710	0891	－077	2101		
Oberg	－0771	1.948	＜ 112	6118	－6139	583	2761	－6084	0462	－1．400	$4.801-2318$	－1．289	2044	16749		
ATH	0.587	1．192	－6118	73245	－8049	729	2514	－32475	－0． 174	3908	－0．803 4.085	2179	－17．185	－12480		
B	1.28	3178	－6．130	－8049	72484	3746	24.147	24.63	－1．006	21．180	1.4452421	2883	3822	0806		
BAT	－056	0.367	5836	272	3746	18008	17.446	2466	000	9240	30783841	3516	－1．517	3980	－0．484	
Tatal	0.581	－0．411	2761	254	24.48	17.446	38441	2146	3603	17.602	01777.43	6.903	5348	1.434	3	
PORIL	4173	－2086	－6，084	3245	24.63	2466	2146	否218	3632	3792	3070 a885	7.863	0.332	－24．158		
1	0970	2044	0462	－ 174	－1．066	00	－3603	3632	25080	1.667	$\begin{array}{ll}-6.175 & 1.977\end{array}$	－505	－ 0.193	16521	3	
kana	－ 2176	－0．29	－1．400	－3908	21.180	248	17．652	79	1.667	43882	－7．354 4.074	6.546	4.542	2052	6688	
FRE	1.934	3254	4801	－0，03	1.445	078	017	3070	6.175	－7．35	$43345-1372$	4.202	18	1	－0，041	
EAPAO	0324	1.710	－2318	4.035	2421	3841	463	a28s	1.967	4.074	－1372 49.723	4.412	－2258	－11．344	589	
EACAB	0.923	0891	－1．289	2179	883	3516	93	7.863	5006	6.546	$4.202-4.412$	18464	0.461	－2887		
EAB．	0.495	－0．77	2044	－17．185	822	－1．517	348	－0，332	－ 0.193	4.542	$1.378-2258$	0.46	19.165	16300	－1．208	
DiN	－6．858	2101	16740	－12490	806	3980	134	－24，158	16.521	21527	4．141－11．34	－2867	16.360	338185	11.248	
UNGA	1.812	0.981	－2587	5944	3918	－0．484	0.323	3192	4.137	6.683	－0041－5589	4.580	－1．208	11.249	2088	
KPLC	0322	10211	3988	－15983	45	35000	61.698	17.386	828	30344	1500617.76	14.832	5288	4.389	1	
Covarianca Matrix Indstrial 1998																
	${ }^{\text {BOC }}$	CAB	Cberg	AIH	BAMB	BAT	Tad	PORTL	19M	Keval	FIFE EAAMC	＋	迷			
BOC	2100	－ 0.121	0.78	1.103	－25／5	－0．50	0.306	－ 1193	－1．892	0.246	－0086 -1.821	0087	1.475	2170	1.311	
CA	－Q 12	472	－1．906	886	4.806	2006	886	1.721	236	0381	$4.306 \quad 1.095$	1.2	－1．12	4175	39	
Oberg	0783	－1．905	20598	－2139	－1．100	－0，03	5980	8582	2608	7.015	$6.200-0.886$	4.031	a378	6310	19.63	
A	1.160	4.896	－2130	38.519	－0318	0648	567	5408	1.837	0.200	$\begin{array}{lll}2607 & -6.407\end{array}$	2005	3912	18875	－15980	
BA	－25／5	4.805	－1．100	0.318	30.887	415	347	18038	12090	2089	－7394 11.212	－0．064	8447	4.989	22394	
BAT	－0．562	2066	－003	0648	15	232	2238	－2161	－2915	0.230	4.730 .484	1.682	1.5	－0836	－16071	
Ta	－0386	1.806	5990	2567	4377	2238	15364	16645	1.994	5361	$9180-1.883$	1.301	2883	3243	16	
Paric．	Q193	1.721	859	5409	18038	－2161	16.645	104.808	－0031	－2468	$9511 \quad 0.155$	5834	6.268	0.40	－21．616	
MM	－1．898	2386	2608	1.83	000	－2915	1.904	－0031	96.340	11.144	－5067 4.306	4.463	$\underline{0.900}$	7.956	15263	
kenal	0246	0381	7.075	a200	2099	0230	5351	－2468	11.144	20.441	$4.836-2426$	0.882	2267	2305	8	
FIRE	－0，08	4.306	6.208	2607	－7．394	4.773	9.180	9511	－5067	4.836	38796－11．367	0.167	3311	7.945	－36878	
EAPAC	－1．82	1.085	－a886	－6．407	11.212	0484	－0．883	0155	4.368	－2466	－11．367 27.898	－0066	－2840	3146	14.736	
EACA	00	1．144	4031	2665	－0864	1.698	1.301	5834	4.463	－0．862	$0167-0.006$	11.388	－05\％	6005	32	
EAB	1.45	－1．122	аз78	3912	447	1.556	2883	268	．900	2267	$3311-2840$	056	16336	3264	． 40	
Du	2170	4.175	6310	18875	4.939	－0．835	3243	0140	7.966	2396	7945 3．146	6.006	3264	245234	98	
UN	1.31	－5269	1963	－15990	22394	－16．071	2516	－21．616	152637	33838	$\cdots 387814.736$	－8362	－1．420	16.788	201．20	
HPLC	－0．338	2287	Q 161	2906	9.241	2175	3603	5968	5968	1.151	$-1.876 \quad 0116$	－1．333	0008	6847	，	
Covarianoe Martix Indistial 1990																
	BOC	CARB	Corg	TH	BAMB	BAT	Tad	PCRIL	19M	kava	FRE EAPAO：5	CABE	SAR			
BOC	13013	4.949	0814	3.963	1.354	－1．419	5805	1.908	398	6.435	－1．404 3735	21.504	－1．768	－0543		
CAPB	4.946	889.285	－2350	46080	52.241	4.125	1.853	－7．420	－0．589	－1．068	215317.735	0803	588	12008	97.205	
Coarg	0814	－238	100281	－10．406	－2706	－4．008	5235	－104c9	18027	6.677	5422－12723	20.330	－0．831	5138	$0 \mathrm{CO1}$	
ATH	－3903	46.080	10.406	129706	1.341	8.736	8.981	－23691	32753	－7．245	933616.017	18991	9.088	10462	4.65	
BAN	1.354	56.241	－0．706	1.341	21.987	－327	5335	3300	224	－1．488	4.8093042	12331	－3．742	0.586	9798	
BAT	－1．419	4.125	4.008	8736	3257	21.075	6.303	－7．703	1.698	－0． 197	$1.888-12129$	2638	66	0907	0.646	
Tatal	5805	1.863	5266	8981	5336	6.303	35466	084	8734	1.452	2720748	31.799	4.88	5.331	6279	
PORTL	1.903	420	10409	-23691	3300	－7．703	0.847	14.642	－360	11.564	0924－20674	11.208	－2778	－5836	170	
KMM	3398	－0．589	1808	． 32753	4.224	1.698	8734	－a30	112888	5.144	$6947-6.308$	6.820	－857	10883	23950	
keva	6436	－1．068	6.67	－7．245	－1．488	－0．197	1.452	11.554	5144	3271	$1.383-7.679$	5.531	0.440	1.768	6789	
FIE	－1．404	2153	5422	9335	4.809	1.868	272	0.924	6.947	1.383	21.6805781	16.000	－266	15453	2198	
EAPAOK	3735	17.735	－12723	16.017	3042	－12129	0748	－20674	－6，308	－7．679	5781114.200	9.083	－14．980	8876	16.57	
EACAE	21.504	0.803	20.330	18991	12331	－2638	31．790	11.28	6.800	5.531	16.0009 .083	102034	－0．981	18.868	0.57	10.
EABL	－1．778	5.828	－1831	0.080	－3742	6.613	4.888	－2778	－8．571	0.440	－2066－14．980	－0．981	23221	－1．415	0148	
DW	－0．543	12003	5138	10402	0.586	0.97	5331	-5866	10883	1．768	15453888	18.86	－1．415	47.544	－16， 12	
UNEA	1.352	97.206	－0091	4.652	9798	0646	6.259	10702	23950	6789	2198－16．57	057	0148	－16． 122	141.005	
KHC	－1．161	－1．200	1.661	7.250	1.980	1.913	5513	0.585	1.643	－0．281	101193554	10.908	0429	9049	a3	11.9

Covarance Matix hndstial 2000																	
	BOC	CAB	Corg	ATH	BAMB	BAT	Tad	PORIL	NMM	kava	FIFE	5990	C98E	EAAI	DN	UNGA	KHC
BOC	14168	3848	0049	2002	0.506	0.005	-0.59	2905	7.991	08\%	4003	-289	1.96	-1.683	022	387	-035
CAFB	3848	32480	-7.396	10467	-0948	- 0.14	1089	0.613	-1.672	-1.732	0.678	5084	6010	0.561	3.360	4.648	3011
Obarg	0040	-7.385	11.891	4.017	-0.63	- 168	0371	0783	0134	0143	Qemo	1.339	0823	-1.067	1.158	0305	-9.86
ATH	2052	10.487	-407	30.33	-1.164	0980	-0311	2501	16.60	-1664	-2454	- 5216	5233	-034	-1.798	2340	3986
BAMB	0.506	0.948	-аண	-1.164	3044	-1.200	-0191	0216	-1.500	-123	0989	2540	-0318	-0,044	0803	4542	0510
BAT	-0005	-0,19	- 1168	0.980	-1.200	18439	9612	-0.172	0006	-0.417	-7.134	-1.946	5439	1.82	-0,47	$4 \mathrm{T2} 2$	0786
Tda	-0.590	1.889	0.301	-0.311	- 0191	9612	1530	4335	-2071	-0.581	-6109	-1486	-5792	1.446	-0817	-1.39	0068
PORIL	2905	0.613	0783	2501	0216	-172	4306	13361	-1.911	Q6\%	-1.132	0528	2998	-0.96	Q55	-2133	-1.124
ITM	7.991	-1.672	Q134	16.60	-1.500	0006	-2071	-1.911	71.780	-1.872	5134	4087	5453	-7.499	2006	28616	-0980
keva	086	-1.732	Q143	-1.664	-0123	-0.47	-0.581	Q6Es	-1872	929	4048	-2041	12887	0662	4144	0973	-1.171
FFE	4083	0.678	-680	-2454	0989	-7.134	-6.109	-1.132	5134	4048	34.50	- 0900	6103	3409	-1.50	5638	3350
EAPAOK	-2831	-5084	1339	-5216	2540	-1.946	-1488	0.58	4.097	-2041	-0.90	9863	3150	5.53	0487	0394	-1526
EACAELE	1987	-6010	0883	5223	-0318	5439	-5798	2988	5453	12887	6103	3150	121.209	-134	-9398	16.580	-588
EAEL	-1.683	0551	-1.067	-0343	-0044	1.85	1.446	- 1987	-7.499	0602	-3409	-553	-034	6462	0178	1.415	058
DUN	-amb	3450	1.150	-1.798	0803	-0437	-081	а55	0036	-4144	-1.50	0467	-9398	0178	9489	-1.180	3220
UNGA	387	464	0305	2 L 140	-454	$4 \pi 2$	-1.379	-2133	28616	0973	-5\%	0394	16.50	1.415	-1.120	61.484	3217
H2C	-03\%9	3011	-983	398	0510	0786	0006	-1.124	0.980	-1.171	3370	15216	5808	0.568	. 320	3217	39120
Covaiame Matrix Indistial 2001																	
	$B 0 C$	CAB	Oborg	ATH	BAMB	BAT	Tad	PORTL	KW	k ${ }^{\text {ana }}$	FRE	SAPAOS	ABE	EAPI	DN	LNGA	KFC
BOC	1327	-1.752	4074	2962	363	0006	326	0.136	3220	433	1.975	0.506	0.290	0240	3061	-4.200	1.708
CAFB	-1.752	2053	-at6	1.613	1.182	0008	-2.27	027	-0,70	-1.961	-2034	088	-0892	0733	-2800	3786	4308
Oberg	-4074	-0.126	2264	4.432	4180	-1.763	1.063	23511	3466	-2921	2231	-1.308	0.58	-0,40	-2961	16.213	-7.3
ATH	2968	1.613	-4432	26589	6321	3798	263	-6963	-2489	3614	3548	-2087	0331	1192	4.680	-4.303	0.486
BAMB	3638	1.182	4180	-6321	14752	-2.20	-1.356	0.98	-266	5407	376	0701	0.918	-0.588	-1.373	2800	-1.882
BAT	0063	0008	-1.763	3798	-020	925	0762	-0156	1.962	3942	0487	-0.26	2115	087	5322	-0037	1.147
Tatal	326	-027	1.063	2633	-1.36\%	0768	21.12	18583	9404	-7.72	683	-0,000	-2001	-0350	5264	23209	7.400
PCRRL	-0136	-027	23511	-6953	0903	-0.156	18.58	99387	12988	-2609	24.078	0.463	-0.523	-1.782	1.336	5mm	-17.425
LTM	-3242	-0700	3486	-2469	-260	1.962	9494	12988	96730	-1.062	8583	1.108	-2588	-2256	. 333	35015	-15588
keva.	4337	-1.981	-2921	-364	5407	-392	-7.723	-2690	-1.062	68444	8954	-3184	2335	-1.940	-15433	5309	2880
fRE	1.975	-2034	2231	3549	3763	0.487	683	24.078	8583	8954	23219	3680	-1.388	-1.57	-1.516	15.205	-6004
EAPACK	0506	088	-1.308	-2087	0701	-0.276	-0.060	0463	1.108	-3184	360	6828	1.983	-0986	0200	-1.630	1.694
EACAEIE	0290	-0898	0587	0321	0918	2115	-2001	-0.53	-2588	233	-1.388	1.933	16982	0594	-1.688	-2760	3468
EAEL	0.240	0733	-0.40	1.192	-0.588	082	-a350	-1.782	-223	-1.940	-1.52	-0995	0594	3211	-0202	1.291	1.318
DN	-3061	-2880	-2961	4.680	-1.373	5322	5334	1.336	333	-15433	-1.516	0200	-1.6 ± 8	-am2	2075	5872	-7.986
UNGA	4.200	3786	16213	4.303	2800	-0.037	23200	5522	36015	-5309	15.206	-1.63	-2702	1.291	$58 / 2$	87.285	27.78
KPC	1.703	4.303	-7.306	0495	-1.882	1.147	-7.409	-17.43	-15588	2880	6034	1.694	3468	1.318	-7.986	-27.708	61.500

HOUSEHOLD (iIENDER ROLES AND) ADOPTION OF AGROFORESTRY AMONG SM SCALE FARMERS IN KWANZA DIVISION. TR NZOIA DISTRICT. KENYA.

BY: MUSA KIMOMO OKANGO

REGISTRATION NUMBER:C/50/P/8245/200

A RESEARCH POJECT SUBMITTED TO TH DEPARTMENT OF SOCIOLOGY, UNIVERSITY NAIROBI IN PARTIAL FULFILLMENT FOR I' CONFERMENT OF THE DEGREE OF MASTER ARTS IN SOCIOLOGY (RURAL SOCIOLOGY COMMUNITY DEVELOPMENT).

MARCH 2005

DFCLARATION.

This project is my original work and has not been presented to any other University for the conferment of a degree.

This project has been submitted with our approval as university supervisors.

PROFESSOR E.N H NJERU DEPARTMENT OF SOCIOLOGY UNIVERSITY OF NAIROBI

DEDICATION.

TO.
L.A.O

ACKNOWLEDGEMENT

I hereby extend my appreciation to all those whose efforts made this research project a success. First and foremost to my project supervisors Professor P.O Chitere and Professor E.N. Njeru of the Department of Sociology, University of Nairobi whose constructive criticism and valuable suggestions has made this research project a success. I would also like to extend my gratitude to my classmates and friends for their guidance, encouragement and support throughout the writing of this research project.

Thanks Again.

MUSA KIMOMO OKANGO

ABSTRACT.

Kenya is faced by the problem of degradation of forests, which in turn negatively affects agricultural productivity. Agroforestry is one of the strategies that the government and other stakeholders have used to try and curb forest destruction in the country. Agroforestry is encouraged especially among small-scale farmers because they make the greater percentage of farmers and also because they play a leading role in agricultural production in the country. However in small-scale households, roles are organized according to sex, which tends to impede the practice of agroforestry. This study critically analyzes in what ways the organization of roles in the household according to sex affect the practice of agroforestry by focusing on the small scale houscholds of Kwanza

Division in Trans-Nzoia District this study also gives some recommendations on how farmers can be motivated to adopt the practice of agroforestry.

TABIF OF CONTENTS

CHAPTER ONE

1. INTRODUCTION
I.I Background I
1.2 Problem Statement -3
1.3 Objectives 4
1.4 Justification -4
CHAPTER TWO
2. LITERATURE REVIEW
2.1 Adoption Of Farm Practices -7
2.2 Gender 12
2.3 Division Of Gender Roles 13
2.4 Household Work Burden 15
2.5 Household Gender Role Differentiation 18
2.6 Time Management 19
2.7 Theoretical Framework 21
2.8 Hypothesis- 26
2.9 Operationalization Of Variables 27
CHAPTER THREE
3. METHODOLOGY
3.1 Study Site 30
3.2 Unit Of Observation And Analysis 30
3.3 Sampling 30
3.4 Method Of Data Collection 32
CHAPTER FOUR
4. DATA ANALYSIS AND INTERPRETATION
4.1 Respondents Background 34
4.2 Role Allocation 34
4.3 Time 36
4.4 Degree of Role Differentiation 38
4.5 Adoption of Agroforestry -40
4.6 Hypothesis Testing 43

CHAPTER FIVE

5. SUMMARY, CONCLUSION AND RFCOMIMENDATIONS
5.1 Summary and Conclusion 46
5.2 Recommendations 47
APPENDIX
Bibliography 47
Questionnaire A

LIST OF TABLES

TABLE I-Average Daily Working Hours In Economic Activities By Sex- 20
TABLE 2-Distribution Of The Number Of Household Roles Performed By Women 35
When Compared To The Number Of Roles Performed By Men.
TABLE 3 The Distribution Of The Number Of Roles Performed By Women When 36
Compared To The Number Of Roles Performed By Men In The llousehold. (according to the type of household)
TABLE 4- The Distribution Of The Amount Of Time Women Spent Performing 37
Household Roles When Compared To The Amount Of Time Men Spent On Household Roles.
TABLE 5- The Distribution Of The Amount Of Time Spent Performing Household Roles By-38 Women When Compared To The Amount Of Time Spent Performing Houschold Roles By Men In The Household (according to the type of household)
TABLE 6-The Distribution Of The Degree Of Differentiation Between Roles 39
Performed By Men And Those Performed By Women In The Household.
TABLE 7-- The Distribution Of The Degree Of Differentiation Between Roles
Performed By Men And Those Performed By Women In The Household (according to the type of household.)
TABLE 8- The Distribution Of The Level Of Agroforestry Adopted By The- 41
Households.
TABLE 9 --The Distribution Of The Level Of Agroforestry Adopted By The Households ----42 (according to the type of household).

TABLE 10- The Distribution of The Relationship Between The Number Of Houschold-...-43 Roles Performed By Women When Compared To That Performed By Men And The Adoption Of Agroforestry.

TABLE 11-The Distribution of The Relationship Between The Amount Of Time Spent By-44 Women Performing Household Roles When Compared To That Spent By Men And The Adoption Of Agroforestry.

TABLE 12- The Distribution of The Relationship Between The Degree Of Differentiation-45 Of Roles Between Men And Women In The Household And The Adoption Of Agroforestry.

1. INTRODUCTION.

I. B BACKGROUND.

The agricultural sector plays an important role in Kenya's socio-economic development. Despite its important role the contribution of the agricultural sector to the gross domestic product (GDP) has progressively declined from 37\% of the GDP in the early 1970's to about 25% at the end of the year 2000. (Republic of Kenya, 2002).

Kenya has been facing major challenges in sustaining high agricultural productivity as a result of wanton destruction of forests; currently forest cover is less than 2% of the Kenya's total land surface, which is against the recommended 10% of the forest covering the total land mass. (East African Standard, 2002). Deforestation has contributed to the problem of degradation of watersheds, unreliable rainfall, landslides, soil erosion, floods etc, all of which tend to undermine agricultural productivity. For instance soil degradation through deforestation has resulted in declining soil fertility and although soil can be improved through mineral fertilizers most small-scale farmers cannot afford sufficient quantities of fertilizers to replenish soil nutrients. This has negatively affected agricultural productivity in the country. In Kenya there is a high demand of woodfuel, according to the Ministry of Energy approximately 80% of Kenya's population is dependent on woodfuel for its domestic energy needs, it provides for 93% of rural household energy requirements and 80% of the household energy needs in the urban areas mainly in the form of charcoal. (Republic of Kenya, 2002). This high demand for woodfuel threatens the government's efforts in forest conservation.

The government and other stakeholders have responded to these challenges by encouraging agroforestry, agroforestry is the practice of growing trees on the same land
that one grows food and or cash crops Agroforestry offers a wide range of benefits to farmers: According to Beets (1989) agroforestry helps maintain or improve soil fertility: trees recommended for agroforestry are able to add nutrients to the soil and hold the soil together thus preventing soil erosion. By improving soil fertility agroforestry helps in increasing substantially crop yields thereby helping in solving the problem of food insecurity, also by improving the productivity of land that has already been cleared agroforestry reduces the need to convert additional forestland into farmland thus helping to conserve forests, agroforestry trees produce several valuable commodities e.g green manure, firewood, timber, mulch, fruits, fodder etc. Through the production and the sale of these products, low-income households can meet their subsistence needs. Some of these trees are of medicinal value and some can be used as high quality substitute for commercial livestock feeds, using these feeds according to East African Standard (May, 2002) saves the Kenyan smallholder dairy farmer about 6240 to 9360 shillings per year, in addition these fodder trees have an added benefit because they are able to increase butterfat content of milk thereby increasing its marketability and nutritive value. Agroforestry therefore improves social and economic development, sustains agriculture, improves bio-diversity on farms and enhances the environment.

On the other hand some cultural and social norms exist in many communities in Kenya that have created division of labour along gender lines so that planned objectives to be achieved through agroforestry systems are likely to be thrown into jeopardy if gender issues and concerns are not addressed (Nwonwu, 1996)

1.2 PROBLEM STATEMENT.

The benefits of agroforestry are well documented and if widely adopted agroforesty promises a bright future for Kenyan farmers. In order to realize these benefits research in agroforestry should not only focus on the bio-physical aspects of agroforestry but also on the socio-cultural and economic conditions of farmers, because it is the farmers who understand better their situation, priorities and needs who based on their priorities, situation and needs will make a choice of whether to adopt or reject the practice of agroforestry. To realize the benefits of agroforestry there is need to encourage farmers to move away from planting a few trees on the household compound to planting trees on farms alongside crops and livestock, and this cannot be done effectively when agroforestry promoters do not know or understand the farmers' socio-economic conditions. This calls for an examination and deeper understanding of the farmers' social conditions so that obstacles to adoption of agroforestry emanating from the farmers socio-economic conditions can be unearthed and addressed by agroforestry promoters This study seeks to contribute to deeper understanding of farmers' socio-economic conditions. Specifically this study seeks to understand the social organization of labour in the household in terms of household gender roles and its implication for agroforestry adoption among small-scale farmers in Kwanza Division of Trans-Nzoia District. This study will attempt to establish:
i. How does the number of roles performed by each sex affect the household's adoption of agroforestry?
ii. How does the management of time by sex in the performance of household roles affect the adoption of agroforestry?
(iii) How does the degree of differentiation of roles between men and women in the household affect the adoption of agroforestry?

1.3 OBJECTIVES.

The broad objective of the study is to investigate the social organization of labour in the household in terms of household gender roles and its implication for agroforestry adoption among small-scale farmers.

The specific aims of the study are.
i. To investigate how the number of roles performed in the household by sex affect the adoption of agroforestry.
ii. To examine how the management of time by sex in the performance of household roles affect the adoption of agroforestry.
iii. To find out how the degree of differentiation of roles between men and women in the household affect the adoption of agroforestry.

I.4 JUSTIFICATION

Among the data to be gencrated from this study will be the percentage of households studied that have adopted the practice of agroforestry in Kwanza Division. The government or organizations that promote this practice in this region can use this information to evaluate the extent to which they have been successful or not in promoting agroforestry activities in Kwanza Division of Trans-Nzoia District.

Secondly this study will reveal how the organization of roles at the household level affects the adoption of agroforestry. This information will help those involved in agroforestry promotion to design measures to counter the negative influences of the organization of household roles on agroforestry activities and or to promote the positive
influence on agroforestry activities emanating from the organization of roles at the household level, by helping organizations design and take measures to enhance agroforestry adoption. This study will have contributed to the realization of the benefits of agroforestry to farmer's i.e higher agricultural productivity, food security, and higher incomes to farmers, forest conservation and sustainable development. Findings from this study will help in reducing poverty levels in Trans-Nzoia District and Kenya at large. Thirdly there are about three million smallholders farmers in Kenya of whom 80% have less than two hectares of land. Despite their small farm size smallholders account for over 75% of the total production and over 50% of the market production (Chemengich, 1996) ln order to improve and sustain the smallholders' vital contribution to agricultural production. There is need to focus on the constraints smallholders face in agricultural production, so that the government and other stakeholders can formulate appropriate and informed policies aimed at improving the smallholder agricultural production, by focusing on the smallholder this study will contribute to a deeper understanding of the challenges faced by small holder farmers' in agricultural production, that emanate from his ther social conditions.

Fourthly, although this study will focus on agroforestry adoption it will also give an insight into the adoption of other farming technologies e.g new varieties of maize, beans, bananas or new types of farm machinery. This will help change agents to anticipate the challenges they might face in introducing new technologies to farmers and prepare themselves appropriately for these challenges.

Finally this study is topical, the issues that this study seeks to address, gender issues and agroforestry are very critical for the success of many development projects and ensuring
sustainable development in Kenya and most developing countries According to Emerton (1996) many development projects are bound to fail if they fail to recognize and address gender issues and implications. As for agroforestry it is according to Harrison (1988) "arguably the single most important discipline for the future of sustainable development in Africa. It should be given priority and resources that it deserves both nationally and internationally." Agroforestry can convert all of the Africa's smallholders into potential foresters and it is by far the speediest way to reforesting Kenya and Africa at large

CHAPTER TWO

2. LITERATURE REVIEW.

This section will focus in detail on the adoption process of farm practices before focusing on gender roles, household work burden, gender role differentiation and time management.

2.1 ADOPTION PROCESS OF FARA PRACTICES

Adoption is the process through which individuals arrive at the decision to accept an innovation from the time he or she first became aware of it. For many practices people appear to go through a series of distinguishable stages. Lionberger (1960) and Rogers and Shoemaker (1971) identified five stages, which people follow in the adoption process Avareness: At this stage a person first learns about a new idea, product or practice, he or she has general information about it. He or she knows little or nothing about its qualities its potential usefulness or how it would likely work.

Interest: At this stage the individual develops an interest in the new idea or farm practice that he or she has learned about, helshe wants more detailed information about it and actively seeks the information desired.

Evaluation: At the stage of evaluation, a person weighs the information and the evidence accumulated in the previous stages in order to decide if the new practice is basically good. However evaluation is involved at all stages of the adoption process but it is at this stage that it is most evident.

Trial stage: At this stage the individual is confronted with the problem of putting the innovation into practice. It is the tentative trying out of the farm practice and acquisition of information of how to do it.

Adoption stage: At this stage the person decides that the farm practice is good for fullscale and continued use.

However Lionberger (1960) points out that these do not necessarily represent distinctly separate stages in the individual adoption process nor is it implied that they are universally followed by all people in all decisions they make or that these are the most useful and appropriate stages. These stages do represent a useful way of describing a relatively continuous sequence of actions, events and influences that intervene between knowledge about a farm practice and the actual adoption of it. Furthermore not all decisions involve a clear cut five stage sequences many are simply made on the basis of habit or traditions and even after the final adoption any issue may be re-opened for consideration and not all practices will result into adoption, farmers can reject a farm practice innovation.

Many factors influence the rate of adoption and diffusion of a farm practice including agroforestry. Most of these factors are non-technical and revolve around socio-cultural, economic and personal factors. (Noordin, 1996).

(i) Social Factors

People do not live apart from others and independent of their influence and we are all members of many social groups or systems. By belonging to various social groups we most of the time strive to conform to the expectations of the group. These social groups tend to establish norms that govern the group. Group pressure or social influence keep people in line with local expectations regarding many aspects of life including the adoption of farm practices. Conformity to the group may hinder initiation of new ideas and farm practices because individuals wait to see whether anybody else in the
community supports the new farm practice, conformity to the group could also facilitate the adoption of a new farm practice in an area where the farm practice is already popular

(ii) Cultural Factors

Culture is the accumulated experience of generations, expanded, adjusted and transmitted from one generation to the next. (Van Doome, 2000). Culture is a way of life and people who share culture together form a society. The ideas and beliefs of human beings (nonmaterial culture) and the things that he/she has to work with (material culture) set limits to what he/she can do at a given time and place and very often on how it may be done. (Lionberger, 1960). Culture provides ready-made answers to many agricultural problems facing farmers. Culture determines which tools to use or what to grow in what season and which technology to be used.

(iii) Economic Factors

Availability of resources is an important factor in the adoption of farm practices. These resources include among others income, the size of the farm and tenure status.
a) Income

High farm income is nearly always associated with high farm practice adoption levels higher income means that capital is available for the adoption of new farm practices.
b) Size of the farm

Size of the farm is nearly always positively related to the adoption of new farm practices Many technological advances require large-scale operations and substantial economic investment for their use. Also the use of improved farm practices produces economic benefits that permit expansion of farming operations that in turn makes it economically possible to use more and advanced improved farm practices.
c) Tenure Status

Farm owners have a complete control over farming operations than tenants, owners can make decisions to adopt new farm practices but tenants must obtain permission from landowners before trial or use of a farm practice. Consequently adoption rates are usually higher for owners than for those who rent land. (Lionberger, 1960).
(iv) Personal factors

The fact that some people adopt new ideas and practices more quickly than others relates in part to the individual. Individual and personal factors include; age, level of education. psychological characteristics such as attitude, rationality, mental flexibility, e.t.c. All these will determine the rate of adoption of farm practices or whether adoption will occur or not.

Finally, some unpredictablelsudden happenings do occur that can enhance or retard the adoption of farm practices, for instance environmental phenomena such as earthquake floods or drought may provoke out-migration of individuals and thus retard the adoption of a farm practice. Similarly an outbreak of pests may force farmers to adopt measures that will ensure and enhance the control of pests.

Another important ingredient in the adoption process is the nature of the farm practice itself. The characteristics of a farm practice as perceived by individuals in the society affected its rate of adoption. Rogers and Shoemaker (1971) enumerated five attributes of a farm practice that could affect the rate and scale of its adoption.

Relative advantage: This is the degree to which a new farm practice is perceived to be better or superior than the old practice it seeks to replace in terms of economic profitability, low initial cost, lower perceived risk, decreasing discomfort or saving time
and effort and immediacy of the reward Farm practices that are more advantageous than the previous ones will be adopted faster.

Compatibility: Compatibility is the degree to which a farm practice is perceived consistent with the existing values, past experiences and needs of the community A farm practice may be compatible with the socio-cultural values and beliefs, the previously introduced ideas and the clients' needs.

Complexity: This is the degree to which a farm practice is perceived to be difficult to understand and use, some farm practices are clear in their meaning and use to potential adopters than others. Complexibility of a farm innovation is more highly related in a negative direction to the rate of adoption.

Triability: This is the degree to which a farm innovation may be experimented on a limited scale to determine its efficacy before adopting it on a large scale. Innovation that can be tried on a limited scale are more likely to be adopted faster due to their lower risks to adopter.

Observability: This is the degree to which the results of a farm innovation is visible to others, for example the killing power of new pesticide can be easily, understandably and convincingly demonstrated and therefore one can easily convince people to adopt it Apart from the nature of the farm practice, the communication process plays an important role in the diffusion process of farm practices. Communication is the process through which ideas, innovations or messages are transmitted from the source to the ultimate users in order to modify the behaviour of the receivers in a desired direction. The process is continuous and has distinct elements such as communicator (researcher, scientist, extension worker, key communicator e.t.c) message (new discoveries,
innovation, new ideas etc) channel (media, interpersonal) and recipient (farmers, students, members of society) directed towards eliciting a specific intended response from the recipient.(Singh,1981). Thus any element in the line of communication or diffusion of the farm innovation from the source of origin to the final destination of the message is in a position to exercise some control over what is transmitted how and in what form.

Effective communication is instrumental in determining farmers' needs, constraints and priorities, educating them on the values of agroforestry, recommending suitable trees for different agro-ecological zones, encouraging adoption of appropriate technical packages and evaluating farmers' reaction and attitudes towards the practice and the agroforestry promoter (Roling 1996).

In conclusion many of the factors considered are not independently related to the adoption of farm practices. One factor is interrelated with many others to determine whether an individual will adopt a farm practice or not.

2.2 GENDER

Gender is a socio-cultural construct that refers to roles, responsibility, attitudes and beliefs about and towards men and women. These roles, responsibilities, attitudes and beliefs are defined, supported and reinforced by societal structures and institutions they are learned and change overtime and vary within and between cultures (Joldersma, 1996). Gender focuses on women, men, girls and the elderly men and women. Gender roles are patterns of attitude and behaviour that a society expects of its members because of their sex. Tasks and roles assigned to men and women in most cultures are assumed to be highly correlated with anatomy and people have long viewed gender roles as natural,
innate, God-given and universal. However, Margaret Mead's (1935) research on gender roles in three societies of New Guinea in comparison with gender roles in USA has disproved this. In the USA she found that males were aggressive and independent, whereas females were gentle and passive. But among the Tchambuli people in New Guinea the females were dominant and aggressive and the girls were encouraged to take interest in economic activities whereas boys were not, males were sentimental, emotional, passive, took care of children, and did housework. Among the Arapesh both men and women behaved in similar ways, both displayed similar attitudes and behaviour, they were found to be cooperative, unaggressive, sensitive to each others' needs, they were gentle and males were as enthusiastic as the females in taking care of the family and bringing up children. Among the Mundugumor male and female alike were selfish, aggressive, insensitive and violent. They continually quarrel and Mundugumor mothers have little to do with their children. Mead's research indicates that gender roles vary from society to society and that culture and socialization are the major influences on gender roles.

2.2.1 THE DIVISION OF HOUSEHOLD GENDER ROLES

Roles and responsibilities are designated according to gender in most of the cultures (Kabutha and Hambly, 1996). Each gender role has its own associated behaviour, expectations and status.

Moser (1993) divides gender roles into three categories. Reproductive roles, productive roles and community managing /community politics roles.

According to Moser (1993), "Reproductive roles comprise the child bearing/rearing responsibilities and domestic tasks undertaken by women required to guarantee the
maintenance and reproduction of labour force. They include not only biological reproduction but also the care and maintenance of the work force (husband and working children and future work force (infants and school going children)." The second category of gender roles is the productive role. " Productive roles comprise work done by both women and men for payment in eash or in kind." The third category of the gender roles is the community managing and community politics role. Community managing role comprise of "activities undertaken primarily by women at the community level as an extension of their reproductive role. This will ensure the provision and maintenance of scarce community resources such as water, health care, and education. It is voluntary unpaid work undertaken in free time." The community politics role comprises "activities undertaken by men at the community level organizing at the formal political level. It is usually paid work, either directly or indirectly through wages or increases in status and power." For Moser (1993) women have a triple role of productive, reproductive and community-managing role while men are only involved in the productive and community politics roles. And when women's reproductive roles are many their productive roles are jeopardized.

Although patterns of division of labour run through all societies there is a wide variability in gender roles a cross cultures. The roles associated with being female or male are by no means universal. However a general pattern of gender roles can be observed a cross human cultures.

Generally men undertake work that require a lot of physical energy such land preparation and jobs which are specific to distant locations such as livestock herding and generally jobs that are perceived to be prestigious by members of the society. Women generally
carry out repetitious extremely boring, time consuming tasks like weeding and fetching water and firewood and those tasks that are located close to the home such as care of the kitchen garden, milking, nurturing of children e.t.c. women's work is generally perceived to be less prestigious than men's work. Some activities in the household are shared, for example looking after livestock, men can look after large animals and women look after smaller ones. Children may assist in these activities but in many circumstances male children would assist in tasks that are associated with males while females would assist in tasks that are associated with females, some tasks or roles are gender neutral and some roles may shift to the opposite sex, for example the introduction of new technology may cause a particular job to be reassigned to the opposite sex and men most often tend to assume tasks that become mechanized (Oppong, 1997).

2.3 HOUSEHOLD WORK BURDEN

Women especially in rural areas in Kenya have a long and arduous working day. For instance the source of most of the domestic energy used in Kenya is wood fuel and it is the women who use woodfuel most of the time at home, e.g in cooking the responsibility of collecting or gathering fuelwood is placed on women. To collect fuelwood, women usually walk long distances looking for fire wood and carry heavy loads of it to home, where there is scarcity of woodfuel every dawn brings with it a long march in search of fuelwood. In addition women are involved in the cutting and drying of fuelwood sometimes illegally from protected forests. Men can assist in the cutting of fire wood and carrying of it using carts or bicycles. But most often men are involved in charcoal making which is in most for commercial purposes rather than for home use. Men also assist in the
collection of firewood in situations where there is extreme shorage of firewood that could threaten the survival of the family. Women are also involved in the collection of animal fodder especially among the sedentary communities in Kenya, in nomadic communities it is usually men who move out with animals to look for greener pastures and water. Women also assist to gather grass, branches, leaves and fruit to feed small domestic animals such as goats, rabbits, pigs and poultry.

The task of supplying and managing water falls squarely on women. It is the women who in most instances have the knowledge of the location reliability and the quality of the local water sources.

Collecting water is usually a tiring and arduous task that usually needs to be undertaken several times each day the nearest source of water may entail walking several kilometers and this walk usually become longer in the dry season (Rodda 1993). In addition to walking long distances the women have to carry this water to their homes and sometimes the paths to and or from the water sources may be steep thus increasing the burden of carrying the water. Men assist in ferrying water but usually men use bicycles, carts or donkeys to carry the water thus lessening the burden of carrying water for men. (bid) In the agricultural sector women have made and continue to make a considerable contribution to agricultural production. In Africa rural women account for 60% of the agricultural labour force and up to 80% of the total food production (Jazairy et.al). Men are increasingly relinquishing their managerial roles in farms to women either inadvertently through death or deliberately due to mral to urban migration in search of non-farm jobs or through nomadic livestock herding that calls for the occasional moving of bigger livestock away from homesteads in search of greener pastures in distant
locations, (Nwonwu, 1996).Women are increasingly assuming leadership roles and decision making status in the management of agricultural production.(Formann and Rocheleau, 1985). One study revealed that 27% of smallholdings are solely headed by women who are also the legal heads of the households and another 47% of the smallholdings are managed by women whose husbands are away from home (Thomas et.al, 1995). Housekeeping is essentially a woman's role. Women are responsible for the domestic chores, childcare, providing homecare for the sick and the elderly. Women in rural areas in Africa do up to 95% of housework (Rodda, 1993). The house is viewed as a woman's place even when women have a waged job outside the home, the women's allocation of domestic work particularly childcare remains extraordinarily rigid and persistent and at the global level (Moser, 1993). Men do not have clearly defined housekeeping roles but this does not mean that they cannot or do not assist in housekeeping. Men can be widowed or can be separated from their lives and thus assume the females roles and responsibilities in the house. Women have a heavier work and physical burden in the households than men, while men in most instances use bicycles, carts, donkeys, oxen or camels or other machines to make their work easier. Women generally use their heads, backs to carry fuel wood forage water or children. This has serious health implications on the women as frequent carrying of heavy loads on their heads and backs produces frequent headaches, fractures, bruises, chest pains, backaches or miscarriages in cases where the woman is pregnant. Poor health in turn affects the energy available for agricultural activities (Rodda, 1993).

Agroforestry is a labour intensive technology, which requires a lot of attention and management for it to yield the intended benefits (Nwonwu, 1996). As a labour intensive
technology, with its adoption agroforestry brings with it a heavier workload to farmers especially women farmers.

2.4 HOUSEHOLD GENDER ROLE DIFFERENTIATION

The extent of gender division of work in the household can vary from almost nil to very strictly defined separation of men and women's domains. The degree type and terms of division vary substantially between regions, ethnic groups, religions and classes. People hold different attitudes; negative or positive, strong or weak towards what society expects them to be or to do as a result of their anatomy. Male members of the family are generally less devoted to household chores than the female members of the family. The men and male children perceive certain farm and household chores such as firewood collection, planting vegetables, cooking, childcare as degrading and should be left to the females. Some men are afraid of ridicule from other men if they were seen assisting or doing what is perceived to be feminine. Men who assist with housekeeping duties are perceived to be dominated by the wife and many men are afraid to be labeled as such. Women may also perceive house chores to be the domain for women and may resist letting men perform these chores.

Men would rather cut and saw timber, burn charcoal, fetch poles or tend livestock. Most men do favour or involve themselves in activities or tasks that involve capital expenditure and in tasks that will bring to them high monetary gains or where they are able to control important resources.

Beliefs and social taboos exist in some communities that tend to enhance peoples perceptions and attitudes (positively and negatively) towards certain roles and activities

Chavangi, Engelhard and Jones (1988) noted that several taboos and beliefs exist among the Maragoli of Western Kenya that restrains women's active participation in tree planting activities.
. If a woman plants a tree she will become barren.
. If a woman plants a tree her husband will die.

- If a woman plants a tree it is viewed as a direct cha!lenge to her husband and hence viewed as grounds for divorce.
- Certain tree species are believed to be sensitive to women and if women were to carry the seedlings from the nursery to the planting site it is said that the seedlings will wither and die.

These strongly held beliefs affect people's effective participation in agroforestry activities. In situations where there is male out-migration agro forestry activities are bound to suffer.

Negative attitudes towards performance of household chores by men held by both men and women means that women cannot be assisted in the housework unless they hire somebody to assist them where they cannot or are unable to hire labor this leaves many women with a lot of time and physical burden and this effectively limits women participation in agroforestry projects. Generally farming activities especially agro forestry practices will suffer if gender related inhibiting rules and regulations are strictly observed and adhered to.

2.5 HOUSEHOLD TIME MANAGEMENT

Among the key issues that need to be considered in any assessment of women's and men's access to resources is that of time (Greco, 1996). Time budget studies show that
women have a far longer hours of labor and therefore less leisure than men do in their households (Oppong, 1996).

According to rural labour survey in Kenya (1995) girls and women aged $8-85$ perform economic activities to an average level of 26.5 hours a week compared to 24.5 hours for men per week. In addition women spend 6-7 hours daily on housework (Kabutha and Hambly 1996).

This pattern is not unique to Kenya as shown in Tablel below.
Table1: Average Daily Working Hours in Economic Activities by Sex.
Agricultural Non-Agricultural Total

Burkina Faso	Men	7.0	1.7	8.7
	Women	8.3	6.0	14.3

Kenya	Men	4.3	3.8	8.1

Nigeria	Men	7.0	1.5	8.5
	Women	9.0	5.0	14.0
Zambia	Men	6.4	0.8	7.2
	Women	7.6	4.6	12.2

Source: Saito et al:In Kabutha and Hambly: 1996.
On average in African societies women put in 70% of all the time expended on food production, 100% of the time spent on food processing, 50% of that spend on food storage and animal husbandry, 60% of all marketing, 90% of time spent obtaining water and 80% of the time spent to obtain the fuel supply. (Sunday Nation, April 13, 2003).

It can be concluded that despite women's longer hours of work they receive much smaller incomes than do their husbands.

Women also use their time working on the men's fields without appropriate remuneration and this restricts the availability of women's labour on their own fields (ArdayfioSchardorf 1996). Such time burdens reduce both the time availability to women in their own fields on agroforestry activities as well as their ability to search for information necessary to improve agroforestry activities or to look for better markets for their produce.

2.6 THEORETICAL FRAME WORK:

A theory is an explanation of the relationship between two or more facts.
In this study the following theories will be applied.

Social Behavioral Theory, Marxian Feminism and Adoption and Diffusion Theory

2.6.I Social Behavioral Theory.

According to the social behaviour theory, people learn gender role behaviour, just as they learn other forms of behaviour. This theory suggests that observation learning and reinforcement histories are sufficient to explain the acquisition of gender roles. (Baron and Graziano 1991).

(a) Reinforcement

According Baron and Graziano1991, reinforcement is the pattern of rewards and punishments one has encountered in the past in response to ones behaviour. Children are rewarded more by their parents and society for exhibiting behaviours appropriate to their
sex than exhibiting behaviours appropriate to the opposite sex Children are also punished for engaging in behaviours stereotyped as more appropriate for members of the opposite sex, conformity to same sex roles is more insisted for male children than for female. Reinforcement provides children with information about which gender role behaviours will yield rewards and which will yield disapproval and rejection in the future, anticipated rewards and punishments in turn influences whether or not people engage in particular behaviours people are drawn towards behaviours and activities that will elicit positive consequences and are reluctant to engage in behaviours and activities that they believe will yield negative consequences.

(b) Observational Learning

Observational learning refers to the process of acquiring new patterns of behaviour by watching others perform them (also referred to as modeling). Observational learning occurs when children model the behaviours they observe. Children pay attention to the same-sex models and imitate the behaviours of same sex models especially if the child thinks that imitating this behaviour will have positive consequences (ibid).

Social behaviour theory views gender role acquisition as a social process. The process of socialization of individuals by significant institutions encountered in daily life. The most important of these institutions being the family, peer groups, schools, religion or mass media. Social behaviour theory also explains why gender roles differ from one society to another, because societies differ in the way they socialize its members this difference in the socialization process between societies also tend to produce differing gender roles

One criticism against behaviour theory is that it doesn't explain the origin of gender roles.

2.6.2 Marxian Feminism

This theory was propounded by Friedrich Engels in 1884; Marxian Feminism laid the basis of a materialist analysis of gender inequality by locating it in the family and within the economic structure of society. According to this theory, the changes in the mode of production, i.e the way society organizes to produce the things needed for life affected the whole mode of human existence including the relationship between men and women. Engels (1884) wrote: "The determining factor in history is in the last resort, the production and reproduction of immediate life But this itself is of a two-fold character. On the one hand, the production of means of subsistence of food clothing and shelter and tools requisite thereof, on the other the propagation of species."

Production and reproduction are therefore not independent of one another, the first, production, is decisive in shaping the second, reproduction, and the more society develops the more is this the case. According to Marxian Feminism women enjoyed a status equal to that of men in the primitive communist societies which preceded the emergency of classes. Under the mother right descent was traced through the mother and not the father This was because in the group marriage that existed then ones link to the mother was far more easily demonstrated than ones ties to the father. Primitive communist societies were also matriarchal, with significant power resting in the hands of women who had great decision-making power and access to resources. As society advanced the primitive comnunism was replaced by slave-owning, feudal and capitalistic societies, with these changes there was an increase in productivity and accumulation of
private property, with these changes the social relations between men and women also changed Gradually women who had been previously supreme within the home found their position eroded. As property accumulation increased men wanted to be able to pass it on to their own male children, children whom they had undisputed paternity and also to have a compliant labor force slaves captives women or children. Mother right stood on their way and so it was overthrown in its place was set the monogamous family which became the first form of family not founded on the natural but on the economic condition of society that is the victory of private property over primitive and natural collectivism, with monogamy one woman is bound to one man for life and subject to his will. The "overthrow of the mother right was the world historic defeat of the female sex." Since then there has been the exploitation of labour of women as housewives or mothers they are exploited through domestic labour to support the men. Domestic labour is unpaid for and its real cost cannot be quantified. There is need to destroy the class structure, property rights and exploitation of labour in order for women to attain social political economic and personal freedom to choose which roles to play or not to play.

In conclusion, although this theory has been challenged on the question of lack of evidence,
it, however, provides a very important analysis of gender roles and inequalities. The theory traces the origin of gender roles and inequalities to the changes that occur as societies advance from a primitive communist society to a capitalistic society, from a simple to a complex society; particularly the emergence of the monogamous marriage and the accumulation of private property.

2.6.3 Adoption and Diffusion Theory.

Diffusion is the process by which innovations spread to members of a social system (Rogers 1971). According to this theory ideas or technology is spread from the source of origin to the receiver via a medium. Diffusion of innovations has stimulated the grouth of human culture as a whole and also has enriched the content of individual cultures (both material and non material culture) by allowing members of one society to come into contact and borrow or adopt ideas and technologies that are superior than the ones that already exist in the society. Rogers (1971) points out some principles of diffusion of innovations these include: An innovation will be taken up first by those societies that are closer to the point of origin than those at far of places. Secondly, an innovation may be diffused alone or with other elements that are functionally related. Thirdly, the presentation of a new innovation to the people does not necessarily mean acceptance of those innovations. Fourthly, material culture elements (artifacts, tools, technologies e.t.c) are more easily accepted than non-material culture elements (language, beliefs e.t.c). Finally, innovations are accepted on the basis of perceived utility and compatibility to the existing culture.

Adoption is the decision to make full use of a new idea as the best course of action available. Adoption of an innovation by farmers is a process rather than a single unit. According to Rogers (1971), farmers can be categorized according to the period they had taken to adopt a given farm practice these categories include: Innovators; these are the first people to adopt a new farm practice. They constitute 3% of all the potential adopters; Early adopters, are the second group to adopt a farm practice and constitute 13% of all the potential adopters; Early majority, follow the early adopters in the adoption of a farm
practice and they constitute 34% of all the potential adopters; Late majority, adopt a new farm practice after the early majority and constitute 34% of all the potential adopters. Laggards are the last group to adopt a farm practice they constitute 16% of all the potential adopters. The difference in the period of adoption can be attributed to the difference in the personal characteristics of the adopters. Many factors affect the rate of adoption of a farm practice alter it has been introduced to the farmers. These factors include the nature of the farm practice the type of the innovation decision, the communication process, the nature of the social system, the extent of change agents promotion efforts; and the personal characteristics of the farmers (Rogers, 1971). The adoption and diffusion theory in this study will help to explain the diffusion or the spread and adoption of agroforestry technology by farmers.

In summary in this study the Marxian Feminism theory will help to explain the origin of gender roles, social behaviour theory explains how these roles are sustained from one generation to the next while the adoption and diffusion theory will help to explain both the adoption of agroforestry and new gender roles.

2.7 RESEARCH HYPOTHESES

A hypothesis is a tentative answer to a research problem expressed in the form of a clearly stated relation between the independent and the dependent variable. (Singleton et.all988). In this study the following hypotheses will be put to test:

1. Ha, -- The more the household roles performed by women when compared to those performed by men in the household the less is the adoption of agroforestry.
2. Ha, -- The more the time utilized by women performing household roles when compared to that utilized by men the less is the adoption of agroforestry.
3. Ha, -- Rigid differentiation of household roles between men and women negatively affects agroforestry adoption.

2.8 OPERATIONALIZATION OF VARIABLES.

The aim of operationalizing variables in the hypothesis is to transform the variables from what cannot be observed and measured into what can be observed and measured. The researcher comes up with an observable and measurable concept that represents a basically unobservable phenomenon.

For the purpose of this study:
Household. This refers to a person or a group of people who are related in some way through blood marriage or adoption and who stay in the same homestead under one or several roofs in the compound and share food and other resources.

In the first hypothesis the independent variable is the number of household roles. In this study it is defined as the number of roles performed by women when compared to the number performed by men in the household.

This will be indicated by:
The number of tasks allocated and performed by each sex in the household. :
Categories to respond to include.
More household roles, about the same number of household roles, and less number of household roles

In the second hypothesis the independent variable is time utilized performing household roles: It is defined as the number of hours spent by women performing household roles when compared to that spent by men. .

This will be indicated by the number of hours spent on each activity performed by each sex each day.

Categories to respond to are:
More time, about the same amount of time, and less amount of time
In the third hypothesis the independent variable is, rigid differentiation of household roles it is defined as the degree to which the household members are resistant towards change of traditional household sex roles.

The variable will be indicated by.
Resistance towards change of traditional household sex roles.
Categories to respond to include.
Rigid, somewhat rigid and not rigid.
In all these three hypotheses the dependent variable will be; adoption of agroforestry: Is defined the number of trees on the land that one grows food and or cash crops or rear livestock as a percentage of the recommended tree carrying capacity of that land.

Tree carrying of land is given by dividing the recommended spacing area of a tree over the total area of land.

Indicated by.
(a) The number of trees in rows or column planted on the land that one grows food, cash crops and or rear
livestock. Categories to respond to are:
(i) High adoption (where the farmer has planted above 60% of the recommended number of trees on a specified acreage of land)
(ii) Average adoption (where the farmer has planted between 31% to 59% of the recommended number of trees on a specified acreage of land).
(iii) Low adoption (where the farmer has planted between 5% to 30% of the recommended number of trees on a specified acreage of land).
(iv) None adoption (where the farmer has planted below 5% of the recommended number of trees on a specified acreage of land).

CHAPTER THREE

3. METHODOLOGY

This study took place between 12th July 2004 and 27th August 2004 in Kwanza Division of Trans-Nzoia District. The main objective of the study was to find out how the social organization of work in the household in terms of gender roles affects the adoption of agroforestry. A total of one hundred (100) small-scale farm households were surveyed.

3.1 STUDY SITE.

Kwanza Division in Trans-Nzoia District shares borders with West Pokot District to the North, Cherangani Division to the North East, Saboti Division to the East and to the West it borders the Republic of Uganda. Inhabitants of Kwanza Division engage in agriculture as the main economic activity.

3.2 UNITS OF ANALYSIS

In this study the units of analysis were:

- Households Roles. . Adoption of Agroforestry

3.3 UNITS OF OBSERVATION

The units of observation were:

1. Household Heads 2. Agroforestry Extension Staff 3.Household Farms

3.4 SAMPLING

3.4.1 Area Sampling

The sub-location in Kwanza Division where the study was conducted was selected using purposive sampling.

The reasons for using purposive sampling to select the sub-location were:

Frequent cattle rustling and general insecurity in some parts of the division especially those parts that share border with the neighboring West Pokot District. People who live in this area have refused to initiate meaningful development projects on their land for fear of frequent attacks by cattle rustlers from the neighbouring district. If the researcher was to use random selection chances are that these uninhabited areas would be selected as the area where the study will be conducted. Data relating to this study cannot be easily obtained because farmers have abandoned agricultural activities in this area. Secondly there was need to select areas where the idea and practice of agroforestry has already been introduced and people are aware of the practice of agroforestry the researcher can easily obtain data and rate the peoples' response towards agroforestry i.e. whether farmers have rejected or adopted the practice of agroforestry.

Finally due to lack of access to necessary records, information and an effective sampling list which necessitated the need to develop a sampling frame and due to limited availability of resources in terms of time, money and manpower. The researcher will select the sub-location in the Division for study where he can easily access and where the available resources can easily cater for.

The researcher with the help of key informants from VI Agroforestry Project, a local NGO that promotes the practice of agroforestry identified one sub-location, Bidii, which meets the above-mentioned criteria. Within Bidii sub-location five villages; Bidii Juu. Bidii Chini, Misemwa, Kewaa and N'gambo were identified as appropriate for the study. One viliage. Misemwa, within Bidii sub-location was selected using simple random sampling technique.

3.4.2 Sampling of Respondent Households.

A list of households in the village was provided by the village head and from the assistant chief's office. The village had about three hundred and twenty households. In order to identify those households that were eligible for the study and to develop an effective sampling list, with the aid of the village head and a few knowledgeable people a sketch map of the village was drawn with approximate positions of some key features like main road, village paths, streams, shops and the village boundary that would be used as a guide around the village. With this sketch map together with the list of households residing in Misemwa village. Nearly every household in the village was visited in order to identify those households that were eligible for the study. In this preliminary study all those households with less than 5 acres of land, those whose main economic activity is subsistence agriculture, and those households who were familiar with the practice of agroforestry were identified and listed down on the sampling list. Households were also asked whether they were male or female headed. In total two hundred and ten (210) households were found to be eligible for the study. One hundred and seventy eight (178) households were found to be male headed while thirty two (32) were female headed. From the list of male-headed households 68 households were selected using simple random sampling technique. While all the 32 female headed households were all included for the study. A total of 100 househoids were sampled for the study.

3.5 METHODS OF DATA COLLECTION

The researcher using scheduled questionnaires that contained both open and closed ended questions personally interviewed a total of one hundred (100) households. The farms of those households interviewed were also observed and with the permission of the
household head, trees on the farms were physically counted and recorded. Records and documents from a local NGO and from the village head and assistant chief office provided information that enabled the preliminary study to identify eligible households for the study possible.

CHAPTER FOUR

4. DATA ANALYSIS AND INTERPRETATION

4.1 RESPONDENTS BACKGROUND

A total of one hundred (100) households were surveyed, 68% of those interviewed were men, while 32% of those interviewed were women, those who were interviewed were also the household heads. Of those interviewed 5% were between the ages of 18 to 30 years and the rest 95% were over the age of 30 years. In the survey 41% of those interviewed had primary level education 52% had secondary level education while 7% of those interviewed had attained middle level college education. Among the households studied the average number of household members is seven (7). In all households family members assist in the performance of household duties although in 12% of the households they sometimes hire labour to assist with household duties. All the households studied engage in agriculture as the main economic activity, although they also engage in other income generating activities and own less than five acres of land,

4.2 ROLE ALLOCATION

Households were also asked to list roles performed by men and women in the household. Household roles were divided into three main sectors; farm sector, livestock sector and housework. Since the number and type of work varies from household to household a fourth section named 'other'was provided to cater for those household roles that had not been mentioned under the three main sectors. Households then listed roles according to who performed them i.e. whether the roles were performed by men, women or by both men and women. Household roles listed under the farm sector were listed as equally
shared between men and women except ploughing using oxen, which was consistently listed on the side of men. Cultivation of trees was listed as both men and women affair. In the Livestock sector most tasks like herding, dipping, milking and selling of milk were listed on the side of men. While poultry keeping was listed on the side of women. In the house all work was listed on the side of women except house repair and gardening. which was consistently listed on the side of men. Most of the 'other' activities were listed as equally shared between men and women of the household. Based on the list of roles performed by men and women provided by the respondents 58% of the respondents confirmed that women perform more roles than men in their household, 27% of those interviewed indicated that the number of roles allocated and performed by men and women are about the same while 15% indicated that men performed more roles than women in their household. Table 2 below summarizes these responses.

TABLE 2.

DISTRIBUTION OF THE NUMBER OF HOUSEHOLD ROLES PERFORMED BY WOMEN WHEN COMPARED TO THE NUMBER OF ROLES PERFORMED BY MEN.

COMPARISON OF THE NUMBER OF ROLES	NUMBER OF HOUSEHOLDS	PERCENT
MORE ROLES	58	58
SAME AMOUNT OF ROLES	27	27
LESS NUMBER OF ROLES	15	15
TOTAL	100	100

The households studied were 68% male-headed and 32% female-headed.
In male headed households, in 44% of the households it was found that women perform more tasks than men, in 37% the number of roles performed by men and women were
about the same while in 19\% of male-headed households, women were found to perform less number of household roles than men.

In female-headed households that were studied, in 88% of the households women perform more tasks than men, in 6% of the households the number of roles performed by men and women were about the same, while in the remaining 6% respondents indicated that women perform less number of roles than men in their households.

Table 3 below summarizes the above information.

TABLE 3

THE DISTRIBUTION OF THE NUMBER OF ROLES PERFORMED BY WOMEN WHEN COMPARED TO THE NUMBER OF ROLES PERFORMED BY MEN IN THE HOUSEHOLD. (according to the type of household)

COMPARISON OF THE NUMBER of Roles	TYPE OF HOUSEHOLD			
	MALE HEADED		FEMALE HOUSEHOLD	
	NUMBER OF MALE HEADED HOUSEHOLD	PERCENT	NUMBER OF FEMALE HEADED HOUSEHOLD	PERCENT
MORE	30	44.1	28	87.4
SAME	25	36.8	2	6.3
LESS	13	19.1	2	63
	68	100	32	100

4.3 TIME:

The respondent households were asked to develop a schedule of how men and women spent their time on a typical day and based on what they had developed, the time spent by men performing household duties was compared to the time spent by women performing household duties in each household. 55% of the household studied indicated that women spent more time than men in performing household duties, 28% indicated that the amount of time spent by men and women performing household duties were basically the same
while 15% indicated that men spent more time than women performing household duties
Table 4 below summarizes this information.

TABLE 4:

THE DISTRIBUTION OF THE AMOUNT OF TIME WOMEN SPENT PERFORMING HOUSEHOLD DUTIES WHEN COMPARED TO THE AMOUNT OF TIME MEN SPENT ON HOUSEHOLD DUTIES

AMOUNT OF TIME	NUMBER OF HOUSEHOLDS	PERCENT
MORE TIME	55	55
SAME AMOUNT OF TIME	28	28
LESS AMOUNT OF TIME	17	17
TOTAL	100	100

It was found that in male-headed households 41% of the women in those households spent more time than men performing household duties, 37% of the male-headed households studied indicated that women spent about the same amount of time as men performing household duties, while in 22% of the male-headed households women spent less amount of time than men performing household duties.

Among the female-headed households studied, women spent more time than men performing household duties in 84% of the households, in 10% of the households the amount of time spent by men and women are about the same, while in 6% of the female headed households men spend more time than women performing household duties

Table 5 below summarizes the above information.

TABLE 5

THE DISTRIBUTION OF THE AMOUNT OF TIME SPENT PERFORMING HOUSEHOLD ROLES BY WOMEN WHEN COMPARED TO THE AMOUNT OF TIME SPENT PERFORMING HOUSEHOLD ROLES BY MEN IN THE HOUSEHOLD (according to the type of household)

COMPARISON OF THE	TYPE OF HOUSEHOLD			
AMOUNT OF TIME	MALE HEADED		FEMALE HOUSEHOLD	
	NUMBER OF MALE HEADED HOUSEHOLD	PERCENT	NUMBER OF FEMALE HEADED HOUSEHOLD	PERCENT
MORE TIME	28	41.2	28	84.4
SAME	25	36.8	2	9.4
LESS TIME	15	22	2	6.
	68	100	32	100

4.4 DEGREE OF ROLE DIFFERENTIATION

On the issue of the degree of role differentiation, households were asked whether there were certain roles in the household that members cannot perform because of their sex. All 100% confirmed that indeed there were roles that one cannot perform because of their sex. The respondents also provided a list of what roles men and women cannot perform because of their sex. Some of the roles that cannot be performed by men include babysitting, cooking, collecting firewood, and milling. Some of the roles that are not performed by women include herding, milking, house construction etc. Based on this differentiation of roles in the household, respondents were asked to rate the degree or extent to which the distinction of roles between men and women is adhered to in the process of performing household roles. 29% of those interviewed indicated that the distinction of roles between men and women in their households were rigidly adhered to i.e. there was strict separation of men's and women's, roles, 40% confirmed that the degree of differentiation of roles was somewhat rigidly adhered to in the process of
performing household duties, while 31% indicated that the separation of roles between men and women in the household was not rigidly adhered to in the process of performing household duties. Table 6 below summarizes the above information.

TABLE 6
THE DISTRIBUTION OF THE DEGREE OF DIFFERENTIATION BETWEEN ROLES PERFOMED BY MEN AND THOSE PERFOMED BY WOMEN IN THE HOUSEHOLD.

DEGREE OF ROLE DIFFERENTIATION	NUMBER OF HOUSEHOLDS	PERCENT
RIGIDLY ADHERED TO	29	29
SOMEWHAT RIGIDLY ADHERED TO	40	40
NOT RIGIDLY ADHERED TO	31	31
TOTAL	100	100

Rigid adherence to role differentiation between men and women is found in 37% and 13% of the male headed and female headed households respectively, in 44% of the maleheaded and 31% of the female headed households the differentiation of roles between men and women is somewhat rigidly adhered to in the performance of household duties, while in 19% of male headed and 56% of female headed households when members perform household duties they do not rigidly adhere to the differentiation of roles between men and women.

Table 7 below summarizes the above information.
Table 7
THE DISTRIBUTION OF THE DEGREE OF DIFFERENTIATION BETWEEN ROLES PERFOMED BY MEN AND THOSE PERFOMED BY WOMEN IN THE HOUSEHOLD (according to the type of household.)

DEGREE OF ROLE DIFFERENTIATION	TYPE OF HOUSEHOLD			
	MUMBER OF MALE HEADED HOUSEHOLD		PERCENT	NUMBER OF FEMALE HEADED HOUSEHOLD
	25	36.8	4	PERCENT
SOMEWHAT RIGIDLY ADHERED TO	30	44.1	10	12.5
NOT RIGIDLY ADHERED TO	13	19.1	18	51.3
		100	32	100

4.5 ADOPTION OF AGROFORESTRY.

In all the households studied no household had planted trees that one could characterize as high adoption i.e. no household had planted more than 60% of the recommended number of trees on its land. Only 14% had planted trees one could categorize as average adoption (they have planted between 31% to 59% of the recommended number of trees on its land). 26% of the households could be categorized as low level adopters of agroforestry (i.e. they have planted between 5% to 30% of the recommended number of trees on its land). The majority of households studied (60\%) were categorized as having not adopted the practice of agroforestry i.e. they have planted less than 5% of the trees recommended number of trees on their land. Most households had just a few stems of trees on their farms.

In all households studied, duties and tasks relating to trees were performed by both men and women and that there were no restrictions. Table 8 below summarizes the above information.

TABLE 8
THE DISTRIBUTION OF THE LEVEL OF AGROFORESTRY ADOPTED BY THE
HOUSEHOLDS.

LEVEL OF AGROFORESTRY ADOPTION	NUMBER OF HOUSEHOLDS	PERCENT
HIGH	0	0
AVERAGE	14	14
LOW	26	26
NONE	60	60
	100	100

No male headed household had adopted the practice of agroforestry that one can characterize as high, 30% of male-headed households had adopted agroforestry at an average level, their was low level of adoption of agroforestry in 29% of male headed households while 55% of male-headed households had not adopted the practice of agroforestry.

Among the female headed households studied their was no high level of adoption of agroforestry, 9% can be characterized as average adopters of agroforestry, 19% are characterized as low adopters and the majority 72% had not incorporated agroforestry in their farming system.

Table 9 below summarizes the above information.
TABLE 9
THE DISTRIBUTION OF THE LEVEL OF AGROFORESTRY ADOPTED BY THE HOUSEHOLDS (according to the type of household).

	TYPE OF HOUSEHOLD HEAD			
AGROFORESTRY ADOPTION	MALE HEADED		FEMALE HEADED	
	NUMBER OF HOUSEHOLDS	PERCENT	NUMBER OF HOUSEHOLDS	PERCENT
HIGH	0	0	0	0
AVERAGE	11	16.2	3	9.4
LOW	20	29.4	6	18.7
NONE	37	54.4	23	71.9
	68	100	32	100

4.6 HYPOTHESIS TESTING.

In determining whether the relationships between the variables under the study are significant or not chi-square test was performed. The coefficient of correlation was calculated using the gamma method in order to determine the strength and direction of the association.

4.6.1 THE RELATIONSHIP BETWEEN THE NUMBER OF HOUSEHOLD ROLES PERFORMED BY WOMEN WHEN COMPARED TO THOSE PERFORMED BY MEN AND THE ADOPTION OF AGROFORESTRY.

TABLE:10

THE DISTRIBUTION OF THE RELATIONSHIP BETWEEN THE NUMBER OF HOUSEHOLD ROLES PERFORMED BY WOMEN WHEN COMPARED TO THOSE PERFORMED BY MEN AND THE ADOPTION OF AGROFORESTRY.

DEGREE OF AGROFORESTRY ADOPTION	MORE	SAME	LESS	TOTAL
HIGH	0	0	0	0
AVERRAGE	4	7	3	14
LOW	11	8	7	26
NONE	43	12	5	60
TOTAL	58	27	15	100

degrees of freedom $=6$, level of confidence $=95 \%$, chi-square $=13.11$
From Table 10, the calculated chi-square is 13.11 and the tabulated chi-square at 6 degrees of freedom and 95% level of confidence is 12.59 . Since the calculated chi-square is greater than the tabulated chi-square. The null hypothesis is rejected and the alternative hypothesis is accepted therefore it's concluded that there is a significant relationship between the number of roles performed by women when compared to those performed by men and the adoption of agroforestry.

The strength and direction of the correlation was calculated using gamma because the variables are measured at the ordinal level the coefficient of correlation was found to be 0.503 this means that there is a strong positive association between the amount of time
spent by women performing household duties when compared to that spent by men and the adoption of agroforestry.

4.6.2 THE RELATIONSHIP BETWEEN THE AMOUNT OF TIME SPENT BY WOMEN PERFORMING IIOUSEHOLD ROLES WHEN COMIPARED TO THAT SPENT BY MEN AND THE ADOPTION OF AGROFORESTRY.

TABLE: 11

THE DISTRIBUTION OF THE RELATIONSHIP BETWEEN THE AMOUNT OF TIME SPENT BY WOMEN PERFORMING HOUSEHOLD ROLES WHEN COMPARED TO THAT SPENT BY MEN AND THE ADOPTION OF AGROFORESTRY

DEGREE OF AGROFORESTRY ADOPTION	MORE TIME	SAME TIME	LESS TIME	TOTAL
HIGH	0	0	0	0
AVERRAGE	4	6	4	14
LOW	17	10	9	26
NONE	44	12	4	60
TOTAL	55	28	17	100

level of confidence $=95 \%$, degrees of freedom $=6$, chi-square $=22.22$
From Tablell above, the calculated chi-square is 22.22 while the tabulated chi-square at 6 degrees of freedom and 95% level of confidence is 12.92. Since the calculated chisquare is greater than the tabulated chi-square, the null hypothesis rejected and alternative hypothesis is accepted. This means that there is a significant relationship between the amount of time women spent performing household duties when compared to the amount of time men spent performing household duties and the adoption of agroforestry.

The strength and direction of the correlation was calculated using gamma because the variables are measured at the ordinal level the coefficient of correlation was found to be 0.6 this means that there is a strong positive association between the amount of time spent by women performing household duties when compared to that spent by men and the adoption of agroforestry.

4.6.3. THE RELATIONSHIP BETWEEN THE DEGREE OF differentiation of roles between men and women in THE HOUSEHOLD AND THE ADOPTION OF AGROFORESTRY.

TABLE: 12

THE DISTRIBUTION OF THE RELATIONSHIP BETWEEN THE DEGREE OF DIFFERENTIATION OF ROLES BETWEEN MEN AND WOMEN IN THE HOUSEHOLD AND THE ADOPTION OF AGROFORESTRY.

DEGREE OF AGROFORESTRY ADOPTION	RIGID	SOMEWHAT RIGID	NOT RIGID	TOTAL
HIGH	0	0	0	0
AVERRAGE	2	7	5	14
LOW	8	12	6	26
NONE	19	21	20	60
TOTAL	29	40	31	100

degrees of freedom $=6$, level of confidence $=95 \%$, chi-square $=2.93$
From Table 12 above, the calculated chi-square is 2.93 while the tabulated chi-square at 6
degrees of freedom and 95% level of confidence is 12.59 the null hypothesis is accepted and the alternative hypothesis is rejected. It's therefore concluded that there is no significant relationship between the degree of differentiation of household gender roles and the adoption of agroforestry.

The strength and direction of the correlation was calculated using gamma because the variables are measured at the ordinal level the coefficient of correlation was found to be 0.05 this means that there is a very weak positive association between the degree of differentiation of household roles between men and women and the adoption of agroforestry

CHAPTER FIVE

5. SUMMARY AND CONCLUSION.

The number of roles performed by women and the amount time they spent performing these roles in the household when compared to the number of roles and the amount of time men use to perform these household roles affects the level and extent of agroforestry adoption. The more the number of roles and the amount of time women use to perform household duties the less is the time and energy devoted to agroforestry activities or tree planting activities. This kind of scenario has a negative implication for the environment as this means less and less number of trees will be planted to cater for household fuelwood and other needs. It also means continued degradation of forests because as farmers do not plant more trees they will continue to deplete the already existing trees. Therefore farmers will continue experiencing the negative effects associated with destruction of forests or lack of tree planting.e.g low agricultural productivity.

Although it has been also shown that the degree of role differentiation has no effect on the level of agroforestry adoption. Strictly separating roles between men and women in the households means that members of the household cannot easily and willingly perform roles associated with the other sex these restrictive and rigid attitudes increases time and physical burden of household roles on one or both sexes as members of the opposite sex cannot assist each other in performing household duties less time and energy will therefore be available for agroforestry activities.

From the findings it can be concluded that the relationship between men and women affect agroforestry activities. Where the relationship between men and women is negative i.e. where one sex is overburdened with household duties, less time and energy will be
available to be spent on other vital productive and reproductive activities that will make the household adapt better to the environment and produce goods and provide services necessary for survival. Generally negative relationships between men and women negatively affect the capacity of households to engage in productive and reproductive activities.

5.1 RECOMMENDATIONS

From the findings it is recommended that:
There is a need to encourage members of a household to negotiate for a more equitable sharing of workload at home so as to enable all the productive and reproductive activities to be performed and also lessen the burden of household duties on women and also relaxing the rules on strict differentiation of roles between men and women in the household this can be encouraged through the media both print and electronic. Agroforestry programs, if they are to be successful and sustainable should incorporate into them gender issues and concerns and take into gender issues facilitate or impede agroforestry activities and therefore devise measures like agroforestry systems and technologies that are not only less time consuming but also those technologies that would not add extra burden to farmers, especially women farmers there is need for provision of effective advisory services and good agroforestry extension education to farmers that will focus on the importance and short term and long term benefits of agroforestry to farmers and the how to plant and take care of trees and also the types of trees to be planted in which season. Agroforestry promoters should aim at motivating farmers to plant trees and to create a tree planting culture among the small-scale farmers.

BIBLIOGRAPHY.

Ardafio-Schardorf. E, 1996, "Household Structure and Rural Food Security in Africa." In: Breuth S. A (eds), 1997, Women Agricultural Intensification And Household Food Security, Mexico City, Sasakawa Africa Association.
Baron R.M and Graziano G.W, 1997, Social Psychology Holt, Rhine Hart and Wilson Inc, USA.

Beets C W, 1989, The Potential Of Agroforestry In ACP Countries Wagenigen, Netherlands.

Chavangi, N.A, Engelhard R.J. and Jones V. 1988, "Cultures as the Basis for Implementation of Self-Sustaining Woodfuel Development Programmes" In: Fortmann, L. Weeks.J, (eds) Whose Trees? Proprietary Dimensions Of Forestry Rural Studies Series West View Press: Colorado.

Chemengich M.K, 1996. "Agricultural Sector Performance in Kenya. Its Institutional Settings and Constraints."In:Okech A.B, Mitullah, W and Awiti L.M, 1996, Agricultural Sector Management Reform and Policy Analysis: The Kenyan Case. IDS Nairobi.

East African Standard, National Tree Planting Day Monday May 13,2002, The Standard Limited. Pg 24-27.
Emerton Lucy, 1996, "Socio-Economic Issues in Agroforestry Extension"In: Mugah J.O 1996, Proceedings of the First Kenya Agroforestry Conference on People and Institutional Participation in Agroforestry for Sustainable Development; Kenya Forest Research Institute.
Engels Fredrich (1884) "The Origin of the Family Private Property and the State" In:Ritzer G 1992 Sociological Theory $3^{\text {rd }}$ edition McGraw Hill, New York.
Fortmann Louise and Rocheleau Dianne, 1985, Women and Agroforestry: Four Myths And Three Case Studies Wjunk Publishers Netherlands.
Greco Margaret, 1996,"Beyond the Policy Table Gender Agriculture and Africa Rural Household" In: Breath Steven A (eds) 1997. Women, Agricultural Intensification and Household Food Security, Mexico City Sasakawa Africa Association.

Harrison Paul, 1987, The Greening of Africa, Collins Publishing Group, London Jazairy, I. Alamgir M. and Pannucio T, 1992. The State Of World Rural Poverty An Inquiry In Its Causes And Consequences: New York University Press U.S.A Joldersma R. 1998, " Glossary." IN:Curry J Margo K, Helga, R(eds), 1998 , Institutionalizing Gender in Agriculture Research Experiences from Kenya Proceedings of Gender Conference . KARI Headquarters, Nairobi. Kabutha Charity and Hambly, Helen, 1996, "Gender Concerns in Agro-forestry" In:

Mugah J.O. 1996 Proceedings Of The First Kenya Agro-Forestry Conference On
People For Sustainable Development: Kenya Forestry Reaserch Institute Lionberger F. Herbert, 1960. Adoption Of New Ideas And Practices. Iowa State Unjversity Press, Iowa.

Mead Margaret, 1935, "Sex and Temperament": In Baldridge V.J., 1975, Sociology A Critical Approach To Power Conflict And Change, John Willy and Sons New York U.S.A.

Melkote R. Srinivas, 1991, Communications for Development in the Third World: Theory and Practice, Sage Publications, New Delhi.
Moser O.N. Caroline, 1993, Gender Planning And Development Theory Practice And Training, Routledge; New York
Nachmias Chava-Frankfort and Nachmias David, 1996, Reaserch Methods in the Social Sciences, St. Martin Press Inc New York.

Noordin Qureish 1996, " Community Participation in Agro-forestry Development and Extension; Experience of the Kenya Woodfuel Agro-forestry Programme (KWAP) Busia District Kenya." In: Mugah J.O. 1996, Proceedings of the first Kenya Agro-Forestry Conference on people for Sustainable Development: Kenya Forestry Research Institute.
Nwonwu F.O.C, 1996, "The Gender Role and the Future Of Agroforestry in Africa" In:
Mugah J.O, 1996, Proceeding of the First Kenya Agroforestry Conference on
People and Institutions Participation in Agroforestry for Sustainable
Development: Kenya Forestry Research Institute.

Oppong Christine, 1996, "The Multiple Roles of Rural Africa Women Some Implications for Agricultural Production Family Nutrition and Survival and Women". In:

Breuth S.A, (eds), Women Agricultural Intensification and Household Food Security, Mexico City, Sasakawa Africa Association.
Republic of Kenya, 2002,National Development Plan 2002-2008 Government Printers, Nairobi.

Republic of Kenya, 1997, Trans-Nzoia District Development Plan, 1997-2001 Government Printers, Nairobi.
Rodda,Annabel, 1991, Women and The Environment. Zed Books Ltd. London
Rogers M.Everrett and Shoemaker F. Floyd, 1971, Communication of Innovations:A Cross-Cultural Approach, Fine Press, London.

Rolling N, 1995, The Changing Role of Agricultural Extension, Agricultural Extension in Africa Proceedings of an International Workshop held in Yaounde, Cameroon. Singh, K.N, 1981, "The Need for a Communication Strategy for Rural Development." In: Crouch, R.B and Shankaria Chenala (eds), 1981,Extension Education and Rural Development. John Wiley and Sons; USA.
Singleton A. Royce (Jr), Straits C. Bruce and Straits ,Miller Margaret, 1988, Approaches to Social Research. Oxford University Press, New York.
Sunday Nation April $13^{\text {th }} 2003$ Nation Media Group. Pg 5.
Thomas-Slater and Rocheleau, 1995, "Research Frontiers at the Nexusof Gender Environment and Development. Linking Household Community and Ecosystem." In:The Women International Development Annual, 1995.
Van Doorne J.H,2000, Introducing Social Science, Zapf Chancery, Eldoret.

QUESTIONNAIRE

1.Name:
2.Sex: Man [i] Woman [ii]
3.Age: Under I8yrs [i] 18-30yrs[ii] Over 30yrs [iii]
4.Level of Education. None [i] Primary [ii] Secondary[iii] College [iv] Other Specify 5.Marital Status: Single[i] Married [ii] Divorced [iii] Widowed [iv]
6.Occupation
7. What is your relationship to the household head.

Head[i] Spouse[ii] Child[iii] Relative[iv] Other(specify)
8. How many members are there in this household; by sex.

Males [i] Females[ii]
9.How many acres of land does this household own?
[i] 0.1-2 [ii] 2.1-4 [iii] 4.1-5
10. What kind of economic activity or activities does this household derive there livelihood?
11.Do the members of this household assist in performing various activities in this household.
Yes [i] No [ii]
12.Are there other sources of labour apart from the family members? Yes [i]

No [ii]
13. Could you please indicate whether males, females or both male and female perform the following roles in this household?
Put a tick where appropriate.

SECTOR	ACTIVITY	MALES	FEMALES	MEN\&WOMEN
FARM	Ploughing Oxen Ploughing Hoe			
	Planting			
	Weeding			
	Chemical application			
	Harvesting			
	Processing/Winnowing			
	Storing			
	Selling Produce			
	Planting Trees			
	Lerding			
	Fetching fodder			
	Dipping			
	Milking			
	Giving animals water			
	Selling Milk			
	Poultry Keeping			

HOUSEWORK	Cooking			
	Washing Cloths			
	Washing Utensils			
	Washing Children			
	House Cleaning			
	House Repair			
	Caring For the sick			
	Collecting Firewood			
	Splitting Firewood			
	Collecting Water			
	Milling			
	Gardening			

14.Basing your answer on Question 13 above. Which of the following statements would you agree with?
Women perform more household roles than men in this household.
-The amount of household roles performed by women is the same as those performed by men in this household.
TThe amount of household roles performed by women is less than that on men in this household.
15. Can you please indicate the kind of activity men and women in this household engage in at different times of atypical day starting from the time they wake up to the time they go to bed.

TIME OF THE DAY (IN HOURS)	MALES ACTIVITY	FEMALES ACTIVITY

16.Basing your answer on Question 15. Which of the following statement about this household would you agree with.
[] The amount of time women utilize performing household roles than that utilized by men performing household roles in this household.
[] The amount of time women utilize performing household roles is about the same amount of time men utilize performing household roles in this household.
[] The amount of time women utilize performing household roles is less than the amount of time men utilize performing household roles in this household.
17. Are there roles in the household that one cannot perform because of their sex? Yes [i] No [ii]
18. If Yes in Question 17 above please can you list the roles that men and women cannot perform because of their sex.

MEN	WOMEN

19. In most households you will find that roles are divided between men and women. For instance in some communities women fetch water while men look for pasture for the cattle. When it comes to the performance of these roles in this household to what extent would you say that household members adhere to the differentiation of sex roles.
[i] Rigidly [ii] Somewhat Rigidly [iii] Not Rigidly
20.Would you say that trees are planted on the same land that crops are planted and or livestock reared in this household?
Yes[i] No [ii]
20. If YES above how would you rate the extent of to which this household plants trees on the land that you also grow and or rear of required livestock?
[i] High(Where over 60% of the recommended number of trees are planted on specified acreage of land)
[ii] Average (Where between 31% to 59% of the recommended number of trees are planted on specified acreage of land)
[ii] Low (Where below 30% of the recommended number of trees are planted on specified acreage of land)
22.In your own opinion what do you think should be done in order to increase or sustain the practice of growing trees on the same land that one grows crops and or rear livestock?
\qquad

DIRECT OBSERVATION.

What to observe:

1. Count the number of trees on the farm.
2. Calculate the adoption level
