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1
CHAPTER.i. INTRODUCTION

1.1 Introduction.
Studies in population dynamics have been carried out 

solely to predict future characteristics of a population 
when the past or the present is known.

One such characteristic is the population size which 
will be discussed in the sequel. Various models have been 
derived to predict future population size given the 
present/past.

These models can further be classified as:
(i) Calculus models
(ii) Matrix models

In calculus models the population parameters are assumed 
to be continuous on time scale whereas in matrix models they 
are assumed to be discrete.

The notable calculus model describing the growth of a 
population is

nt = n0 ert (1.1.1)
where nt is the population size at time t, no is the initial 
population size(i.e. at time t=o) and r is the intrinsic 
rate of natural increase and often referred to as "Lotka's 
r". (1.1.1) is also called the Malthusian model (Malthus
(1798)) and studied by Lotka (1925).
Remark.
r>o will result in an indefinite population growth and r<o
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will result in extinction of the population. These two 
cases are not applicable hence this type of model is only 
suitable for short term projection.

An improved model yields the logistic equation (so- 
called Verhulst-Pear1 logistic equation, (Verhulst (1838)); 
Pearl (1927)).

na* (K-n„) s'c-c

( 1 . 1 . 2 )

where nt and n© are as defined for the exponential growth 
equation given by (1.1.1.). r© is some initial growth rate 
and can be estimated using the available data and K is the 
carrying capacity of the population.
Remark
The logistic equation has an advantage of long term 
projection.

In arriving at the above equations the assumptions taken 
were;
(i) Birth and death rates were independent of age or that 
population growth occured in such away that the age 
distribution remained unaltered.
(ii) Density dependence i.e. a decrease in birth rate and an 
increase in death rate as the population become larger.

The study of population dynamics concepts has 
demonstrated the complexity of calculus and the simplicity 
of matrices. In reversing the above assumptions we have the
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following:
(i) An individual's chances of reproducing and dying are a 
function of its age.
(ii) These chances are unaffected by the size of the 
population in which it finds itself, perhaps because the 
population numbers never rise so high that density 
dependence begins to exert any influence.

This latter set of assumptions characterizes the matrix 
models. The need to employ the matrix models rather than the 
calculus models is because the calculus models merely 
predict the size of the population after a lapse of time, 
given the initial size, but matrix models have an added 
advantage that it also gives the age
structure(distribution).

Other inherent advantages of matrix models over the 
calculus models are:
(i) Matrix processes are assumed to take place in discrete 
time units whilst the very nature of calculus implies 
continuous process taking place in infinitesimally small 
time intervals. It would appear then that the matrix 
approach is more reminiscent of biological process of birth 
and death with which we are concerned with when modelling.
(ii) Matrices are relatively dealt with by numerical rather 
than algebraic techniques. This is a feature of importance 
when simulation of populations is required.

The Leslie Matrix model or the Age-Structured Model is
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deterministic. It predicts the age structure of a population 
of female animals, given the age-structure at some 
past/present time and given the age-specific survival and 
fecundity rates.

Instead of the differential and integral calculus, 
matrix algebra is used, a step which leads to a great 
economy in the use of symbols and consequently to equations 
which are more easily handled. Moreover, many quite 
complicated arithmetical problems can be solved with great 
ease by manipulating the matrix which represents the given 
system of age specific rates (fecundity and survival rates).

But the question then arises whether these advantages 
mentioned may not be offset by a greater degree of 
inaccuracy in the results as compared with those obtained 
from the previous methods of computation. It is not easy, 
however, to settle this point satisfactorily at the moment 
and requires investigation.

The study shall be based on data of a Gorilla species, 
Gorilla Berengei (Mountain Gorilla).

The data compiled from several sources including:- 
*Harcourt A. H, D.Fossey, and J .Sabater-Pi. 1981.
Demography of Gorilla J. Zool., 195, 215-233.
*Webber, A.W., and A.Veder. 1983 Population Dynamics of the 
Virunga gorillas:1959-1978 Biol. Conser. , 26, 341-346.
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1.2 Objective and Significance of the study.

Concerned to predict the size and age structure of a 
population after a lapse of time (or at successive 
intervals of time) given the age-specific rates of fecundity 
and survival.

To employ matrix algebra and numerical methods to 
determine the latent vector of the stable age distribution 
and the intrinsic rate of natural increase.

More precisely, if A is the matrix describing the model
then

limt-^ A* nej « na (1.2.1)
where nQ is the initial age distribution and na is the age 
distribution at time s. The elements of na are proportional 
to the sizes of the age groups when the age distribution is 
stable. We shall establish that when the population has 
stabilized

ria+ 1 — A na — X na (1.2.2)
where il is a dominant eigenvalue of A.

If the population size increases from n to In over one 
period of time, we shall show that the harvest that can be 
taken is given by

H = 100(1-1)/A. (1.2.3)
where H is expressed as a percentage of total population.
A constant population size is maintained if the harvest is 
spread proportionately over all of the age groups. However, 
if the exploitation is aimed at only one age group then an
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enhanced exploitation can be taken.
If there is no harvesting the model predicts that the 

population size continues to increase at a constant rate, 
namely by a multiplicative factor of X every period of time. 
The model thus closely approximates the calculus model 
describing exponential growth of population given by 
(1.1.1). Assuming stability the matrix model is described 
by the equation

nt = A. nt-i (1.2.4)
and by induction

nt : ^  no (1.2.5)
where X is the dominant eigenvalue of A. These two models 
in population dynamics can be related by the equation

r = log® X (1.2.6)
It is remarkable to note that the matrix model takes into 
consideration the age structure of the population.

The essence of predicting the size and age structure of 
a population at some given time in future is to be utilized
in economic and social planning with respect to the
population under study.

In human populations, in particular, the classes are
usually the quinquennial (or other) age groups 0-4, 5-9,
..., 85 and over, and once the number of individuals in an 
age group has been predicted one can plan for the
requirements appropriate for that age group. The
requirements being referred to above are schools, hospitals,
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infrastructure, recreation facilities, employment
opportunities, housing, food e.t.c.

The system of age specific rates can also be used to 
model the dynamics of a wide variety of ecological 
populations e.g. Forests, Wildlife, Insects e.t.c. In
populations of pupating insects the classes might be the 
three stages larvae, pupae and adults.

The results of the study also provide information on 
harvesting. Harvesting here refers to removal of some 
individuals from a given age group for consumption or 
otherwise. Often the harvest is not spread proportionately 
over all age groups but is taken chiefly from some subset of 
the age groups.

Finally the results of the study will provide reading 
and reference material for further researches/investigations 
by scientists both in Physical/Biological sciences and 
Social Sciences. The study is also useful to
Biostatisticians in their research activities.
1-3 Brief literature review.

Since Leslie(1945, 1948) first put their use on a firm 
footing, projection matrices have proved exceedingly 
valuable in ecological and human demography. Further 
research still continues to expand their use in many 
directions. A very similar model had, independently been 
described earlier by Bernardelli (1941) and Lewis (1942).

Herebelow is a brief review on the use of the Leslie's
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Matrix Model and its developments.
(i) Polard (1966) showed that the predictions based on the 
model are not markedly affected by changes in the time 
interval. Thus he compared two estimates of the rate of 
increase per annum of Australian human females and showed 
that the estimates were very close, regardless of whether 
the age classes were one year or five years long. The error 
introduced by altering the time interval appears to be
small.
(ii) When a projection matrix is used it is normally assumed
that the age intervals are of equal length. However, 
Lefkofitch (1965) has generalized Leslie's model by
considering unequal age groupings as characterized by the
insect populations. The structure of these populations can
most simply be in terms of the four developmental stages - 
eggs, larvae, pupae and adults. The lengths of time 
occupied by each of these four stages are in general not 
equal and hence one of the premises of the basic model, 
namely that an animal moves up by exactly one class is no 
longer tenable. Lefkofitch demonstrated the usefulness of 
his model in studies of the growth of experimental 
populations of the cigarette beetle, Lasioderma Serricone 
(Fabricus).
(iii) A modified projection matrix for the two sex situation 
has been explored by Williamson (1959). A considerable
extension of the basic model for the two sex situation has
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been made by Goodman (1969). He applies his model to the 
structure of human populations of the United States. His 
model records not the actual population age structure at 
time t but. rather how many female descendants aged under 
five that a female alive in the ith age group will have. 
From such studies Goodman is able to predict the eventual 
age structure of the United States, exactly analogous to the 
Stable age structure predicted by the basic model.
(iv) Forest trees are generally classified according to 
their size rather than their age. Usher (1966) developed 
the basic Leslie model for selection forests, these forests 
which contain an uneven age and size structure of the trees 
and in which there is no regeneration phase. In a similar 
manner to the development for the insect populations, trees 
can either remain in the same size class during the period 
of time over which the matrix operates or they move to a 
larger class. Usher (1966, 1967/68, 1969) has assumed that 
the period of time over which the matrix operates is 
sufficiently small for a tree not to move up by more than 
one size class. The major difficulty for the forest model 
concerns the analogue to the fecundity terms of the model. 
Usher (1972) has applied the model to forest management on 
pine trees.
(v) Stochastic versions have been described by Sykes (1969b) 
and Polard (1966/73). In particular, Polard (1966) has 
developed a stochastic form of Leslie's basic model, giving
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for each integral point of time the mean and variance of the 
female population of Australia, showing that after 250 
periods of time (in this case one year) the ratio of the 
numbers in the age groups gives a very close approximation 
to the latent root.
(vi) Keifitz (1964) has applied the model to human 
demography. In particular, he discussed empirically the 
approach to stability and illustrated several different ways 
of calculating the intrinsic rate of natural increase, and 
examined how these calculations are related to one another.
(vii) Polard (1966) has described some deterministic 
extensions which allow for immigration, naraely:-
(a) It is assumed that each year a constant immigration 
vector b is added to the population. Then

nt+i = A nt + b (1.3.1)
(b) It is assumed that, instead, a population vector 
proportional to the actual population vector is added to the 
population each year. That is

n-t+i = ( A + a I )nt (1.3.2)
(c) It is assumed that immigration may be represented by a 
combination of the following three factors:-
* An immigration vector whose elements are proportional to 
those in the population.
* A constant immigration vector; and
* An immigration vector whose elements grow exponentially at 
the same rate with time.
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Mathematically the model may be represented by the 
recurrence equation

nt + i = Ant + ant + b +  c (1.3.3)
1.4 Eigenvalues and Eigenvectors.

Generally, we shall be concerned with the exposition and 
proof of results of the eigenvalue/eigenvector problem. 
Defn.l. characteristic root/vector
If A is an nxn matrix and A. is a scalar the characteristic 
polynomial of A is defined as

f (A.) =1 A - Al I (1.4.1)
and when it is expanded it produces an nth degree polynomial 
in A.. f(A)=0 is called the characteristic equation of A
i . e .

An + ki A.n-1 +k2 A.n-2 + ... + kn-1 A + kn = 0 (1.4.2)
and it factors out linearly as f(A) = (A-Ai) (A-A2 ) ... 
(A An) and the n roots A1 , A2 , ... , An of f(A) are called
the characteristic roots of A (also called latent roots, 
proper roots, secular roots, eigenvalues). The set { Ai,
A2 , . . . , An } is called the spectrum of A. Although an n x 
n matrix always has n characteristic roots, they need not be 
distinct.

If u is a non-zero column vector such that
A u = A u  (1.4.3)

for some scalar A, u is called a characteristic vector of A 
corresponding to A (other names latent vector, proper 
vector, eigenvector). Clearly u is any non-trivial solution
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of the homogeneous system of linear equations 
(A - A I)u = o. Such a system has a non-trivial solution
iff I A -Al I = 0, thus iff A is a characteristic root of A. 
Defn.2. Diagonal matrix
A square matrix A=(aij) of order n is called diagonal if 
its elements off the diagonal are all zero i.e. aij = 0 V 
i * 3 and is denoted by

A =diag(an, a2 2 , ann) (1.4.4)
Theorem.1.
A and A' (A transpose) have the same characteristic 
equation.
Proof.
We note that I Al =1 A'l and I' = I
Let f(A)=0 , f*(A)=0 be the characteristic equations of A 
and A' respectively. We show that f(A) = f^CA).

f(A)= I A - AI I =1 A' - Al' I =1 A7 - Al I = f*(A)
Theorem.2.
If A is an eigenvalue of A corresponding to u then 1+A is an 
eigenvalue of I+A corresponding to the same eigenvector u. 
Proof .
A u = A u by definition.
(I+A)u = u+Au = u+Au = (1+A)u and by definition the proof is
complete
Corr.

(1+A)n_1 is an eigenvalue of (I+A)n_1 corresponding to u.
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Defn.3. Similarity.
Two n x n matrices A and B are called similar if

B = P-i A P (1.4.5)
where P is an arbitrary non-singular n x n matrix.
Theorem.3.
Similar matrices have the same characteristic equation( and 
hence same eigenvalues).
Proof.
Let A and B be similar matrices and f(A.)=0, f’,e(A.)=0 be their 
characteristic equations respectively. we show that
f(A)=f*(X)
f(A) = I B - Al I =1 P-1 (A-AI) P I

= I P-i| I A-All I Pi =1 A-All = f*(A) 
since I P-1l = 1 / I Pi 
Remark.
If two matrices do not have the same characteristic
equation, then we can say categorically that they are not 
similar, however, if two matrices have the same
characteristic equations, they may or may not be similar.
Defn.4.
Let u± denote the eigenvector corresponding to the
eigenvalue A.i then for i=l,2,..., n

Aui = liui (1.4.6)
Arrange the column vectors u± side by side to form the n x n 
matrix U. Let D be a diagonal matrix whose elements are 
the characteristic roots of A. We note that the
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characteristic roots may be made to appear on the diagonal 
of D in any desired order by suitable choice of U. Then

U-i A U = D (1.4.7)
Proof.
Given that A.i, A.2 ,...,An are the eigenvalues of A and ui,
U2,...,un are the corresponding eigenvectors, provided that 
A.i's are distinct then the eigenvectors ui's are linearly 
independent, then I Ul *0 and U-1 exits where 
U=[ui,U2 ,...,un]. Using (1.4.6) we have

A U = U D (1.4.8)
which reduces to (1.4.7) on premultiplying both sides by 
U_1. U is called a modal matrix for A, and D is called a 
spectral matrix for A. The similarity transformation 
(1.4.7) of A into D is called diagonalization and has many 
important applications.
Remark.1.
A matrix is diagonalizable if it is similar to a diagonal 
matrix.
Remark.2.
Any suitable vectors, ui will do. There is no need to use 
normalized eigenvectors. It should be noted that if some of 
the A/s are repeated then A is similar to the diagonal 
matrix D only if A possesses n linearly independent 
e igenvectors.

Remark.3.
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A matrix will have n linearly independent eigenvectors if 
all the eigenvalues are distinct or, depending upon the 
matrix, even if some or all of the eigenvalues are equal. A 
priori, therefore, we place no restrictions on the
multiplicities of the eigenvalues.

Similar results can be obtained for matrices which are 
not diagonalizable. We begin by generalizing the concept of 
the eigenvector. It will follow that every matrix A has n 
linearly independent generalized eigenvectors and hence 
similar to an "almost diagonal" matrix.
Defn.5.
A vector Um is a generalized eigenvector of rank m 
corresponding to the matrix A and the eigenvalue X if

(A-Al)m Um = o and (A-A. I)m“1 um * o (1.4.9)
Defn.6.
Let Um be a generalized eigenvector of rank m corresponding 
to the matrix A and the eigenvalue X. The chain generated 
by Um is a set of vectors {um , um-i,...,ui) given by

uj = ( A-vtl )m~J Um =( A-A.I )uj-*-i (1.4.10)
for j = 1,2,..., m-1.
Remark.1.
uj given by (1.4.10) is a generalized eigenvector of rank j 
corresponding to the eigenvalue X.
Remark.2.
A Chain is a linearly independent set of vectors.
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Remark.3.
A generalized eigenvector of rank 1 is in fact an
eigenvector.
Theorem.4. (without proof).
Every n x n matrix A possesses n linearly independent 
generalized eigenvectors, abbreviated liges. Generalized 
eigenvectors corresponding to distinct eigenvalues are
linearly independent. If A. is an eigenvalue of A of
multiplicity \i, then A will have u liges corresponding to X.

Defn.7.
A set of n liges is a canonical basis if it is composed 
entirely of chains.

We now generalize the concept of a modal matrix yielding 
the following defnition.
Defn.8.
Let A be an n x n matrix. A generalized modal matrix M
for A is an n x n matrix whose columns, considered as
vectors, form a canonical basis for A and appear in M
according to the following rules.
(i) All chains consisting of one vector appear in the first 
columns of M.
(ii) Each chain appears in M in order of increasing rank(i.e. 
the generalized eigenvector of rank 1 appears before the 
generalized eigenvector of rank 2 of the same chain, which 
appears before the generalized eigenvector of rank 3 of the
same chain, e.t.c.)
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Defn.9. Jordan canonical matrix
A square matrix J is in Jordan canonical form if it is a 
diagonal matrix or can be expressed in either one of the 
following two partitioned forms.

D O . .  
0 0 . 
0 0 J2 0

0 0 0 . . 0 <7,

. 0

. 0

or

0 . . 
0 J2 0 . 
0 0 J3 0

0 0 0 .

. 0

. 0

. 0

0 J.<U

(1.4.11)

(1.4.12)
where D is a diagonal matrix, 0's are null matrices and 
Jk (k=l,2,...,q) is given by

* * 1 0 .  
0 Xk 1 0

0 0 0
0 0 0

0 0 
0 0

0 Xk 1
0 X k

(1.4.13)
Remark.
Here k represents some +ve integer and has no direct bearing 
on the order of Jk. A matrix in Jordan canonical form has
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non-zero elements on the superdiagonal and the main 
diagonal, and that the elements on the superdiagonal are 
restricted to be either zero or one. In particular, a
diagonal matrix is a matrix in Jordan canonical form that 
has all its superdiagonal elements equal to zero.
Theorem.5.
Every n x n matrix A is similar to a matrix in Jordan 
canonical form.
Proof.

If (um,Um-i,...,ui} is a chain generated by Um, then 
rewriting (1.4.10) we have

Auj + i=Xu j-»-i+uj (1.4.14)
for j=l,2,...,m-l. Next, each complete chain of more than 
one vector in length that goes into composing M Will give 
rise to a Jk submatrix in J. The order of Jk is identical 
to the length of the chain. The chains consisting of only 
one vector give rise collectively to the D submatrix in J- 
The elements on the diagonal of D would be the eigenvalues 
corresponding to the one element chains. Analogously to 
(1.4.8) we have

A M = M J (1.4.15)
Noting that I Ml *0 (see thm.4.), we postmultiply (1.4.15) 
by M-1 yielding

A = M J M-i (1.4.16)
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CHAPTER.2s AGE STRUCTURED MATRIX POPULATION MODEL

2.1. Basic Concepts of Matrix Population Model 
Introduction.

We shall now explore the basic concepts associated with 
the matrix population models. These concepts shall be
discussed under a special class of matrices viz the Non­
negative matrices.

We shall be devoted to the exposition and proof of 
results concerning the eigenvalues and eigenvectors of Non­
negative matrices. We will, in particular, be interested in 
the existence of a non-negative or strictly positive
eigenvector and of a positive largest eigenvalue. 
Non-negative matrices 
Defn.l. Non-negative matrix

A matrix A with real elements A=(aij)
(i = l,2, . . .,m;j = 1,2, .. .,n) is said to be non-negative denoted 
(A>0) or positive denoted (A>0), if all the elements of the 
matrix A are non-negative (respectively positive): aij>0 
(respectively a±j>0).
Corr .
If A>0, B>0, AB=0 then A=0
If A>0 then Am>0 for a finite integer m.
If A>0 then Am>0 for a finite integer m.
Defn.2. Permutation matrix.
An n x n Permutation matrix P is one in which there is a
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single element equal to 1 in every row and column, all other 
elements being zero. In other words, the rows of P 
consists of a permutation of the rows of In . Premultiplying 
any n x m matrix A by P has the effect of applying the 
same permutation to the rows of A. Similarly regarding the 
columns of P as a (different) permutation of the columns of 
In, then postmultiplying an m x n matrix by P performs 
this permutation on its columns. We remark that P' = P_1 
for a permutation matrix.
Defn.3. Reducible matrix.
An n x n matrix A is reducible (or decomposable) if 
there exists a permutation matrix P such that

p 'ap
\  0 
A, A , or

^  A,
0 Aj

( 2 . 1 . 1)

where Ai and A3 are square submatrices. 0 is a
rectangular null submatrix and A2 is a rectangular
submatrix. If A is not reducible it is called irreducible 
(or indecomposable).
Lemma.

Let Z(x) denote the number of zero components of the 
vector x. Then, if A is non-negative and irreducible, and 
x>0, x*0 then

Z [ (I + A)x] < Z(x) ( 2 . 1 . 2 )

Proof.
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Put y = (I + A)x. It is clear that Z(y) < Z(x) (Since

Ax>0 and y=(I+A)x, any coordinate of y will be positive if 
the corresponding coordinate of the vector x is positive). 
Suppose that Z(y) = Z(x), i.e the zero components of y are 
the same as those of x. Without lose of generality, it can 
be supposed that the column vectors y and x have the form

y =

where xi, yi, have the same dimension and are strictly 
positive. Corresponding to the above subdivision, we set

Ail A,
A21 Ajj

where Aij, (i,j=l,2) are submatrices and in particular A n
are square.

> 1 X+A11 A t,  '

0 . *11 J +A ,a 0

yi = (I + An)xi implies 0 = A2 1X 1 . These requires A2i=0, 
since xi>0, which contradicts the assumption of 
irreducibility. Therefore the number of zero components of 
y is strictly less than those of x.
Corr.
If A is non-negative, and irreducible of order n, then

(I+A)n-1>0 (2.1.3)
Proof.
If we take any non-negative vector x and apply the lemma
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repeatedly, then (I+A)n_1 x can have no zero components. 
As x is arbitrary we must have (I+A)n-1>0.
Theorem.1. Due to Perron.
An nxn positive matrix A = (aij) always has an eigenvalue 
r which is real and positive, which is a simple root of the 
characteristic equation, and which exceeds in modulus all 
other eigenvalues. To this dominant (or maximal) eigenvalue 
there corresponds an eigenvector of the matrix A with 
positive coordinates.
Remark.
A positive matrix is a special case of a non-negative 
matrix. Frobenius generalized the theorem of Perron in an 
investigation of the spectral properties of irreducible non­
negative matrices.
Theorem.2. Due to Frobenius.
An irreducible non-negative matrix A of order nxn always has 
a positive eigenvalue r, which is a simple root of the 
characteristic equation. The moduli of all the other 
eigenvalues are at most r. In the special case when A is 
positive then r is strictly greater than the modulus of any 
other eigenvalue.
Remark.
Since the theorem of Perron is a special case of the theorem 
of Frobenius, it suffices to give a proof of the latter. 
Proof.

Define a number rCv**) associated with the matrix A and
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demonstrating its properties. The number is defined by

r(v*)=Max„s { min,*,*, }

for i=l,2,...,n; where

S {■v / v̂ O,

(2.1.4)

(Av)± is the ith component of the vector Av and v* is the 
vector for which the maximum occurs. In words r(v*) is 
found by taking weighted sums of the rows of A and choosing 
the row i with the lowest ratio of this weight to the weight 
for the ith element of each row (i.e. the ith column); then 
we maximize this value over all possible weightings. Now 
since A > 0, v > 0, we can easily show that r(v*)>0(strictly 
positive if at least one element of each row and column is 
strictly positive).
Let v = u = (1/n,1/n, . ..,1/n) G S. Then

/ \ (̂ U) , , . . (A 1) , Ar(u) - min. ---- - =» min.(1/n) / = min. V  afi *0
u t 1 (1/n) 1 fa

Since A > 0. By definition
r ( v * ) > r ( u ) > 0  (2.1.5)

Thus, we see that r(v*) is greater or equal to the minimum 
row sum of the matrix. We now show that r(v*) gives us the 
maximum value which might be taken by an eigenvalue of A; in
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other words r(v*) is the largest number satisfying the 
inequality :

A v > r v
The kth component of the inequality gives

Uv) t * r i.e. r * min*- Ur) *

Clearly for a maximum of r we will have the equality with 
r=r(v*). If this is not an equality, then

[Av* - r(v*)v*]>0
(i.e.is a non-negative vector). We multiply it by the 
strictly positive matrix (I+A)n-1 (see (2.1.3)) to obtain 
(I + A )n_ 1 [ Av* - r(v*)v"‘] > 0.
Noting that (I+A)n-1A = A(I+A)n-1 and putting 
y = (I + A )n-1v* we get

A y - r(v*)y > 0.
However, this contradicts the fact that r(v*) is the maximum 
over all r, so that we must have equality in A v* > r(v*)v* 
i.e. in other words r(v*) is an eigenvalue of A and v* the 
associated eigenvector, more precisely

A v* = r(v*)v* (2.1.6)
If r(v*) is an eigenvalue of A, l+r(v*) must be an 
eigenvalue of I+A (see thm.2, sec. 1.4), and thus 
[l+r(v*)]n_1 will be an eigenvalue of (I+A)”-1 with v* as 
the eigenvalue in each case.

Since (I+A)n-1 is strictly positive we have
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[l+r(v1K)]n“1v,K = (I+A)n_1v* > 0 and using (2.1.5) we have

v* > 0 (2.1.7)
Now consider any other eigenvalue X with eigenvector x 

so that A x-X x. Take the absolute values and put 
x-*- = (l xil ,1 X2I , . . . , I xj ) so that we get

I A! x+ <1 A.xi = I Axl = Ax^
(Since I al I bl < I abl for any real numbers a and b and 
I Axl = Ax* by the non-negativity of A). But r(v*) is the
largest number satisfying this inequality.
Therefore I Xl x+ < r(v*)x-" < Ax* . Hence

r (v* ) > I Al (2.1.8)
for every eigenvalue of A, we will call r(v*) the dominant 
root of A and denote it by X* .

Further it is clear that X* cannot be a repeated 
eigenvalue. Suppose not, so that there was another vector 
x* which would have to be strictly positive by the above 
argument and not equal to v* such that A x* = X*x* . Now we 
can choose x* such that ZiX*i = 1, so that since x* * v* 
for some i, xi* > vi*. Subtracting the two eigenvector 
equations we get

A(v* - x*) = X*(v* - x3*1) (2.1.9)
In other words the vector (v* - x*), which must have a 
negative element, is another eigenvector associated with X* . 
This contradicts the demonstration that the vector 
associated with X* must be strictly positive (see (2.1.6) & 
(2.1.7)). Hence X* cannot be a repeated eigenvalue.
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If A is a strictly positive matrix we can show that 

A* > I Al for all A*A*. Suppose not, so that A* = -Ai. 
Consider B=A-6I with two of its eigenvalues A*-6, Ai-6.
Since A>0, for small enough 5, B>0 so that its largest 
eigenvalue is X*-d (see thm.2, sec. 1.4). But I Ai-Sl =
I -A*-6l > I A*-5l , which contradicts the fact that X*-d is
the dominant root of B. This shows that, if a is the 
smallest element in A, then X*-a > X for any A*A* i.e.
X*>\ Al +a and hence

A* > I Al (2.1.10)
for all A*A*.
Defn.4. Primitive Matrix
Let A>0 be an irreducible matrix, and let the dominant 
eigenvalue be A*. Suppose there are exactly h eigenvalues 
of modulus A*, say A*=Ai then Ai=l Xz\ - ... =1 AhJ . If h=l, 
the matrix is called primitive. If h>l, the matrix is 
called imprimitive and the number h is called the index of 
imprimitivity. The index of imprimitivity can be quickly 
calculated if all the non-zero coefficients of the 
characteristic equation

An+aiAn~1+a2An~2+ ...+an-2A2+an-iA+an - 0 
of the matrix are known. More precisely, we suppose that 
ai>0 for (i=ai,a2,...»aq-i; q^n) and n where ai<a2<... 
<ctq-i<n. The exponents of A appearing in the characteristic 
equation are then n, n-ai, n-a2 , ..., n-aq-i, 0 and
considering the differences ai,a2-ai,...,aq-i-aq-2 , n-aq-i;
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A is primitive iff the g.c.d. of these 
differences is one. i.e. h=l where

h = g.c.d{ai,a2-ai,...,aq-i-aq-2 ,n-aq-1 } (2.1.11)
This is also a necessary and sufficient condition for 
primitivity.

The following theorem gives an important property of 
primitive matrices.
Theorem.3.
A non-negative matrix A>0 is primitive iff there is a power 
of A which is positive i.e. A^>0 for some integer p.
Defn.5. Change in sign
Given a polynomial f(A) of degree n, a change in sign is 
said to occur if two successive terms have opposite signs, 
missing terms being ignored. On the other hand a 
continuation is said to occur whenever the signs of two 
consecutive terms are the same.
Defn.6. Descarte's rule of signs
(i) The number of positive roots cannot exceed the number of 
changes in sign of f(A).
(ii) The number of negative roots cannot exceed the number of 
changes in sign of f(-A.).
Remark.
Whilst Descarte's rule does not give the exact number of 
real roots in an equation, it has the merit of simplicity. 
It still leaves an uncertainty as to the exact number of 
real roots in an equation, it only gives an upper limit to
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them.
Defn.6. Companion matrix
An nxn Companion matrix C is defined as

X X X  • •  • K-2 X-1 X
1 0 0 . .  . 0 0 0
0 1 0 . .  . 0 0 0
0 0 1 0 .  . 0 0 0

0 0 0 . -  0 1 0 0
.0 0 0 . .  .  0 1 0 .

( 2 . 1 . 12)

The nth degree polynomial
f(A)=An -kiA.n~1 -kaA^-2 - ... -kn-iA. -kn (2.1.13)

is associated with the Companion matrix or more precisely 
the characteristic equation of C is

1 *In - Cl (2.1.14)
and when expanded yields (2.1.13). The first row of C 
consists of coefficients of f(A) (except leading coefficient 
which is unity) with opposite signs. The polynomial f(A.) is 
called moniCy since its leading coefficient is one.
Remark.

Companion matrix is a basic tool which enables polynomial 
problems to be handled using matrices.
Defn.7. Leslie matrix
An nxn Leslie matrix L is defined as



29

A  2̂ A  * •
Pi 0 0 . . 0 0

L = 0 p2 0 . . 0 0

0 0 • 0 Pn-L 0

(2.1.15)
where fi > 0 and 0 < pi < 1 <i=l,2,...,n).
Remark.

If Pi = 1  for all 1=1,2, ..., n-1; then L reduces to a
Companion matrix C where ki = fi.
Defn.8. Vandermonde matrix
Given an nxn matrix A, having distinct eigenvalues 
Xi, A.2 , . . . , Xn ; the corresponding Vandermonde matrix has the 
form

xr1 xr1
xr2 xr2

V =

1 1 1

(2.1.16)
Remark.

Xi is an eigenvalue of C then an associated eigenvector
is

vi = [Xi"-i,Xi"-2, . . . ,Jli2,Xi,l]' 
which is the ith column of the Vandermonde matrix.

(2.1.17)



30
Similarity between C and L.
Define a transformation matrix
A = diag(pip2...Pn-l, P2P3...pn-l, P3P4...Pn-l, . .., Pn-1,1)
and let p<i> = PiP2P3...pi; i=l,2, n-1 then we have

1̂ 2̂ &{1) 3̂ -P(2)
1 0  0

AlA'1 = 0 1 0
0 0 1
m u  m

0 0 0

we note that ALA-1 = C where 
i=2,3,...,n. We conclude that 
defn.4, sec.1.4) and therefore 
characteristic equation given by
An-flAn-1-f2P<l)An-2-f3P<2)Xn_3- .

1 & (n-2) fa
0 0
0 0
0 0

1 0

(2.1.18)
ki = f i and ki = fip<i-i>,
L and C are similar (see
they must have the same 

...-fn-ip<n-2)l-fnP<n-l>=0
(2.1.19)

Theorem.4.
Given that the ith column of V is an eigenvector of C 
corresponding to X±, then the ith column of A_1V is an 
eigenvector of L corresponding to Ai.
Proof:
Let X±, i=l,2,...,n be distinct eigenvalues of a Companion
matrix C and v± their corresponding eigenvectors where vi is 
given by (2.1.17).
Cvi = Xivi i = 1,2, ..., n and in matrix form

C [V1 .V2 ,...,Vn] = [vi,V2,...,Vn] D
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where D = d iag( Xi, A.2 , . . . , A.n ).
From (2.1.16), (2.1.17) & (2.1.18) we have C V=V D and 
ALA-1=VDV_1 which yields

L(A-iV) = (A-iV)D (2.1.20)
Therefore the columns of A-1V constitute the eigenvectors of 
L. In particular if vi is the eigenvector of C then 
U i = A _1Vi is the eigenvector of L corresponding to X.± in each 
case and

Ui=[l,Pl/A.±,piP2/A.l2 ,pip2P3/A.i3 , •••> P1P2P3 . . . Pn—l/Xi"-1] '

( 2 . 1 . 21)

Determining dominant eigenvalue.
Basically the application of the model which will be 

discussed in the next section will require the determination 
of the positive real root with maximum modulus and its 
corresponding eigenvector. One of the most widely used
procedure is the power method.
The Power method.

Our basic assumptions are that A is a real nxn matrix, 
its eigenvalues satisfy

I Ail >1 A.2I >1 A.3I > . . . >1 Xn\ (2.1.22)
and that A has n linearly independent eiger 'ectors ui, 
i=l,2,...,n where

A ui = li ui (2.1.23)
^1 is the dominant eigenvalue.

Since corresponding eigenvectors 121,112, ...»Un are 
linearly independent they form a basis, so any arbitrary
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column n-vector xa can be uniquely expressed as a linear 
combination of the basis vectors.

xci = aiui+a2U2+ ... +anun (2.1.24)
where ai's are constants not all zero. If xi=A xe>, then 
from (2.1.23) we have

xi  = ctiAui+a2Au2+ . . .+anAun = aiAiui+a2>t2U2+ . . . +anAnUn 

Similarly if X2=Ax i , X3=Ax2 e.t.c. we have
Xk = aillkUi+a2l2kU2+. . .+anlnkun, k=1,2, . . . or

equ ivalently
Xk/Alk = aiUl + a2( A.2/A.1 )kU2+ . . .+an(Xn/A.l)kUn (2.1.25)

Since I A.1/X1I < 1 for i > 1, it follows that as k -♦ « the
terms (A.i/A.1 ) -M3, so that as k -»• «

Xk/Xik - aiui (2.1.26)
i.e. Xk/Xik tends to a multiple of the eigenvector ui.
However, as k increases the elements of Xk are growing quite 
large, so to avoid this it is preferable to scale Xk at each 
step so that its largest element is unity in order to keep 
within computational limits. We therefore define a modified
sequence xi,X2 ,___ as follows (i.e. 2.1.27/28/29)

yk-i = A Xk k=0,1,2,... (2.1.27)
Let £k+i = element of yk+i having largest modulus (2.1.28) 

Xk+i = yk+i/Sk+i (2.1.29)
as k tend to ® we will have xk tending to some multiple of
ui, so we can write

Xk - mui (2.1.30)
and then using (2.1.23), (2.1.27) & (2.1.30) we have
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yk tend to A(mui)=m(Aui )=m( A.iui ) = A.i(mui) and using (2.1.30) 
again we have

yk - Aixk (2.1.31)
as k oa.

Because the largest element of Xk is unity and using 
(2.1.28) & (2.1.29), it follows that the element of yk
having largest modulus approaches Ai, as k tend to ® . Thus 
0k and Xk defined by (2.1.27/28/29) respectively provide 
successively better approximations to ki and ui and the 
process is terminated when Xk+i and Xk are sufficiently 
close or equivalently when 0k-*-i and 0k are sufficiently 
close.

We wish to be fairly careful about the description of 
the power method, for this description has two parts, namely 
the “practical" part which shows how the method is actually 
carried out, and the "theoretical" part (described above) 
which shows why the method works.
Power method "practical".

Recalling (2.1.25), it is natural to write Xk as
Xk = A.ik{aiui+a2(A.2/A.1 )kU2+ . . .+an(A.n/A.1 )kun} (2.1.32) 

so that for large k, the approximation
Xk « lik(aiui) (2.1.33)

should be good because of (2.1.22).
In order to estimate Xi we replace k by k+1 in (2.1.31) 

to obtain
Xk+i ~ A.ixk (2.1.34)
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This suggests a number of ways to approximate Xi. For 
example Xk'xk-*-i « A-ixk'xk and thus

A.i s; xk 'xk+i/xk 'xk (2.1.35)
Another common procedure is to divide the largest 

component of Xk into the corresponding element of xk+i. If 
the largest component is the jth, then this amounts to

A.i « ej 'xk+i/ej 'xk (2.1.36)
where ej is the jth unit-vector. The estimates of Ai can be 
found by generating the sequence of scalars {0k} from the 
equat ion

0k = v'xk+i/v'xk (2.1.37)
where v is usually Xk or ej.

When programming the power method, it is a little easier 
to generate the estimate 0k from (2.1.35) than (2.1.36) 
which includes a test at each step to determine the maximum 
component of Xk (moreover the program will execute faster). 
The advantage in finding the maximum component of Xk is that 
round-off errors will tend to be reduced.

Finally, as k increases, the vectors Xk are usually 
growing quite large if I Ail >1 (or quite small if I A.il <1); It 
is desirable to "scale" or "normalize" Xk to keep within 
computational limits. This can be done by dividing Xk by 
||xk || at each step. The process is terminated when 0k and 
0k-*-i are sufficiently close.
Power method program algorithm.

First an initial (arbitrary) vector X0 is chosen where
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X0 /xci = l (i.e. ||x0 U2 — 1). The power method then proceeds for
i=l,2 ,... as follows
(a) Let yi=Axi-i (b) Set 0i=yi'xi-i (c) Let i\±^(y±'y±)
(d) Set x±-y±/r\± and return to step a. We note that $i is
the approximation to Xi and that each xi is an approximate 
e igenvector.
Remark.
If Ai=A.2 , and I A.il >1 A.3I  ̂ ...  ̂I A.nl , then the still
converge to A.i (that is, multiple eigenvalues do not affect
the power method). If Xi=-A2 and I Ail >1 A.3I > . . .>\ Xn\ , then 
the would exhibit a periodic behaviour while v/xi+2/v'xi 
would provide an estimate for (A1 )2 . Dominant complex
eigenvalues cause the most problems.
2-2 Age-Structured Model 
Introduction.

In the sequel we shall introduce and discuss a discrete 
time model with a discrete age scale viz, the age-structured 
model put forward by Leslie (1945). The model is
deterministic and predicts the age structure of a population 
of female animals, given the age structure at some past time 
(or present) and given the age-specific survival and 
fecundity rates.
Assumptions.
(i) The age-specific rates remain constant over a period of 

t ime.
(ii) Age groups are of equal length.
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(iii) The same unit of age is adopted as that of time i.e. 

time intervals have the same duration as the age 
intervals.

(iv) No migration.
Formulation of the Matrix Projection Model.

Given any arbitrary age distribution at time t the 
female population in one unit time, can be expressed in the 
form of m+1 linear equations, where m to m+1 is the last age 
group considered. Let

Ut = (U0t, Ult, ..., Umt)7 (2.2.1)
be a column vector representing the population's age 
structure at time t, where uit is the number of females 
alive in the age group i to i+1 at time t. A female in the 
age group i to i+1 is described as of age i and since m to 
m+1 is the last age group considered, none can live to be 
older than m. The m+1 elements in the vector (2.2.1) 
represent m+1 different age groups. ut+i is a column vector 
similar to at, but representing the age structure at time 
t+1.
Age-specific rates.
Let

P±=the probability that a female aged i to i+1 at time t 
will be alive in the age group i+1 to i+2 at time t+1. 0<
Pi ^1 for i=0,1,2,...,m-1. These values are termed as the 
s u r v i v a l rates.

fi=the average number of daughters who will be alive at



37
time t+1 in the age group 0-1 born in the interval t to t+1 
to each female who was in the age group i to i+1 at time t. 
fi>0 for i = 0,1,2, ..., m and until the first unit of 
time has passed their ages will be 0. These values are 
termed as the fecundity rates.

Now, given the age distribution at time t=0
U<3 = ( U00 , U10, U20, ..., Um0 ) ' (2.2.2)

the age distribution at the end of one unit's interval
ui = (U0 1 , uii, U2 1 , ..., Umi); (2.2.3)

is obtained as follows:-
The total number of daughters who will be alive in the 

age group 0-1 at time t=l born by females who were alive in 
the age group i to i+1 at time t=0 (i=0,l, ..., m) is given
by

u10 fi (2.2.4)
By definition of U0 1 we have

u01 § “” f‘
(2.2.5)

to
at

The number of individuals who 
i+1 at t=0 who will be alive in 
t=l for i=0,l,2, ..., m is given

Ui+l,l = PiU10

were in the age group i 
the age group i+1 to i+2 
by

( 2 .2 .6 )

Thus
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“i =

«i =

ui0 fi . Po U00 • Pi U10 • • •

f. ft ft • • • f. uoo
Po 0 0 • . . 0 0 U10
0 Pi 0 ■ . . 0 0 “20

O o £ 0 . . 0 0 •

0 0 0 . • 0 1 0 }Um0.

P*-i «Vi,i

(2.2.7)
ai : H U0 (2.2.8)

where in general the (m+1)x(m+1) matrix M describes the 
transition of the population from one age structure to 
another over one period of time. The matrix M is called the 
Projection matrix, and often referred to as Leslie matrix 
(cf.(2.1.15 ) ) . (2.2.8) defines the Projection Matrix Model
or the Age-Structured Model.

U2 = M ui = M(M U0 ) = M2 U0 (2.2.9)
and in general for t=0,l,2,...

ut = Mt U0 ( 2 .2 .1 0 )

Properties of the Basic matrix M.
The matrix M is square of order m+1; it is not 

necessary, however, in what follows to consider this matrix 
as a whole. For if i=k is the largest age within which 
reproduction occurs, or rather females are sterile in the 
last m-k age groups, fk is the last fi figure which is not 
equal to zero.
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The matrix M can now be partitioned as follows

( 2 .2 . 11)

The submatrix A is square of order k+1, B is of order (m-k) 
x (k+1), C is square of order m-k with only non-zero 
elements in the subdiagonal immediately below the principle 
diagonal. The remaining submatrix is null and of order (k+1) 
x (m-k). On investigating the powers of M it is found that

M
A c O'  

f (ABO C c

where

t-i
f  (A B O  =* B A  t - ^“ 1

( 2 . 2 . 1 2 )

(2.2.13)
C0=A0 = I and since Cm-k=0 -»• C'c=0 V t>m-k (2.2.14)
In biological terms this is merely an expression of the 

obvious fact that individuals alive in the post-reproductive 
ages contribute nothing to the population. The terms of 
f(ABC) are zero for j>m-k-l, and so f(ABC) has only m-k 
terms, each of which is readily computed if we know the 
powers of A.
limt-*> f(ABC) = limt-̂ o (BAt-1+CBAt_2+ ... +Cm-k~ 1BAt~ On-k >)

= (I+C+ ... +Cm-k_1) B limt-~ Afc
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= <I-C)-i(I-0-*) B limt-» A*
= (I-C) _1 B At (2.2.15)

so that if limt-'-oo At is known, limt-^ Mt is easy to find.
It is a submatrix A of M which is principally of 

interest, and in mathematical discussion which follows, 
attention is focused entirely on it and on age distributions 
confined to the pre-productive and reproductive age groups.

The matrix A is of order (k+l)x(k+l) where i = k is the 
last age group in which reproduction occurs, and written in 
full,

4  4 4  • • fk
Po 0 0 . oo

A = 0 P1 0 . oo

o 
- 

o 
•

. m 0 pk_L 0

(2.2.16)
Therefore we shall only consider the reduced model

ut+ 1 = A tit (2.2.17)
for t=0 ,l,2 ,... where

ut = (uat, uit, ..., ukt) (2.2.18)
is of course now taken to be (k+1)-dimensional. We shall 
from now henceforth treat the population under study only 
that part of the total population that is of reproductive 
age, i.e. we consider A only.

Repeated premultiplication by A of the column vector U0 

permits prediction of the future growth and age distribution 
of the reproducing part of the population made up of females
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aged k or less, i.e.

ut = At u0 (2.2.19)
Contribution to future population.

Moreover, it will be seen that with the help of the 
(j+l)th column of we can predict the contribution of some 
one particular age group, i.e. those of age j at time t=0 
say, to the population at some future time t. This can be 
obtained as follows.

Let the population projection matrix be A and A^Caij) 
i,j=0,1,2,...,k. Then using (2.2.19) we have

*oo a0i * * *0* Uoo

*10 *11 • • 
• • ■ •

*i* “10 = “it

ako akl • * *** Uk0. u*t

Showing only those contributions to the elements in ut that 
come from the elements uje of ua we have

. . +  * 0 J  U j  0 +  • • “ o t

. . +  a r  j  U j  o +  . .
3

U 1 t

■ ■ • ■ • • • 

. . +  a k  j  U j  o +  . .

•

U j c t

(2.2.20)
At time t, provided t>k, every element in ut has some 

contribution from the ujo individuals that were of age j at 
the start. At time t the number of living individuals 
contributed to the total population at time t by this 
particular age group for j-0,1,2,. . . , k is
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UJ 0

( 2 . 2 . 21)

which is the product of the number in the age group j to j + 1
(referred to as of age j) at time t=0 and the sum of the
elements in the (j+l)th column of A*. The age group j to
j+ 1 is the ancestral age group we are concerned with in
knowing the number of individuals it will contribute to the 
total population at time t. Moreover, it is noticeable that 
for i=0 ,1 , 2  , . . . , k the number contributed to uit in 
particular, is given by

aij uj0 (2 .2 .2 2)
i.e. the product of the (i,j)th element of A* and the number 
in the age group j to j + 1 at time t=0 .
Backward Projection.

The matrix A is non-singular, since the determinant
I Al = (-I)*-*-2 (pcpip2 . . . pk-if k) * 0 (2.2.23)

and therefore there exists an inverse of A.
In order to discover the age composition of a population 

prior to the time say t at which it came under observation 
provided we concern ourselves only with reproducing part of 
the population, having a projection matrix of the form A 
there is no difficulty since A-1 exits. The backward 
projection is described by the backward series A“1U0 , A_2U0 , 
A~3U0, ... e.t.c.
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Remark.
Whereas the forward series can be continued indefinitely 
into the future given any initial age distribution, the 
backward series can only be performed so long as uit>0, 
since biologically a negative number of individuals in an 
age group is meaningless.
Algebraic Properties of the Matrix A.

A is square matrix of order k+1. A is a non-negative 
matrix, a characteristic of projection matrices. A is non­
singular (see (2.2.23)).

We shall now show that A is irreducible so that the 
Perron-Frobenius theorem (see P-F thm. sec. 2.1)applies to 
this matrix. A can be expressed as the sum of two matrices 
Aa and Ar as follows:
A = Aa + Ar i.e.

0 0 . . 0 0 [4 4  • 4]
Pa 0 . . 0 0 0 0 . . 0 0

A = 0 . . 0 0 + 0 0 . . 0 0

0 0 . • Pk-1 0 0 0 . . 0 0 .

Without loss of generality, we may restrict ourselves to 
matrix Aa with fa=f1=...=fk-i=0 and fk>0, since we can 
easily show that if Aa is irreducible, then so is a more 
general matrix A, where Ar can have non-zero elements only 
in the first row.

Suppose that Aa is irreducible and A is reducible, then
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there exist a permutation matrix P (see defn.3, sec.2.1) 
such that

P'AP » P' (Ag+Af ) P - PjAb P + PJAf P »

(2.2.25)
where Ai and A3 are square. Since Ar > 0 then P'ArP > 0 and 
P'AsP is not of the required form by hypothesis. Hence A is 
irreducible, since the addition of the non-negative matrix 
to the matrix not already of the required form cannot result 
in a sum of that form.

Using (2.1.19), the characteristic equation of A is 
k̂-*-l_f0^k_f 1p0Ak_l-f 2P0PlAk-2- . .. -fk-ip0Pl...pk-2A.~
fkpopi...pk-i=0 (2.2.26)
We can now assert that the matrix A has exactly one 

positive real root say Xi since on applying Descarte's rule 
of signs (see defn.6, sec. 2.1) to the characteristic 
equation (2.2.26) we find that the number of positive real 
roots is at most one, and since A is non-negative and 
irreducible, the Perron-Frobenius theorem tells us there is 
at least one. Hence the remaining roots of A are negative 
or complex.

Also by Perron-Frobenius theorem the moduli of these 
remaining roots are at most Ai. Ai is referred to as the 
dominant root and a characteristic vector ui say, 
corresponding to Ai is positive (see pf of P.F .thm.sec.2.1)

Ax 0 
^2 A3
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A is primitive iff the index of primitivity is one. In 

particular, if fi>0 for all i=l,2, k+1, h=l and hence A
is primitive. If h>l then A is imprimitive (see defn.4, 
sec.2.1).

We remark that if a projection matrix A is primitive the 
powers A* approach a limiting form. In fact A* (and hence 
ut) will behave periodically if A is imprimitive with period 
equal to the index of imprimitivity. Pure periodicity is 
displayed when the initial age distribution ua is repeated 
periodically. We suppose that h=k+l such that

A*-1 = nl (2.2.27)
i.e. nua will be repeated periodically with period k+1. 
Cayley Hamilton theorem says that every square matrix 
satisfies its own characteristic equation therefore from the 
characteristic equation of A.
Ak-*-i_f0Ak_f lpsA*-1- ... -f k-ipapi. . . pk-2A-f kpapi. . . Pk-il = 0

(2.2.28)
and for (2.2.27) to be satisfied we must have

fa=fi= ... =fk-i = 0 (2.2.29)
and

f kpeipi. . . Pk-i = n (2.2.30)
Expression (2.2.29) results in the special case of the 

matrix A having only a single non-zero element in the first 
row. Whenever n=l in (2.2.30) pure periodicity will be 
displayed.

The question of approximation to case of pure
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periodicity may be of practical importance, for some lower 
animals with few age groups whose individuals are fertile 
for only a short period right at the end of their lives 
e.g. some locust species.

An interesting example of a case in which the 
requirement of primitivity is not met is provided by a 
hypothetical insect population(such as beetle), which lives 
for only three years and which propagates in the third year 
of life, considered by Bernardelli (1941) and referred to by 
Leslie (1945). The system of survival and fecundity rates is 
given by

0 0 6
1/2 0 0
0 1/3 0

Biologically this can be irite 
age group 2-3 produces, on 
f emales.

The matrix A above is c 
dominant root is not larger 
roots. In fact roots of 
modulus. Any initial age 
regularly every three years.

In the next section we 
with primitive projection

(2.3.31)
rpreted as each female in the 
the average, 6 new living

learly not primitive and the 
than the moduli of all other 
this matrix are of the same 
distribution repeats itself

shall particularly be concerned 
matrices and investigate on their

limiting behaviour.
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2 .3. Stable Population Theory.
Introduction.

Formally it was remarked that if a projection matrix A 
is primitive then the powers Afc approach a limiting form. 
In this section we are concerned with the behaviour of the 
sequence {u-t} over long periods of time or the stable 
population theories in discrete version.
Theorem.1.
Let A be a primitive population projection matrix with 
dominant eigenvalue A.i and associated( right) positive 
eigenvector ui. Then

limt-*> (A/Xi)* = Hi (2.3.1)
exists, where Hi is a matrix whose columns are positive 
multiples of ui. (Hi is of rank 1).
Remark.
The requirement that A be primitive ensures that Ai is the 
only eigenvalue of maximum modulus. To establish the above 
result (i.e. (2.3.1)) we shall assume that the remaining 
eigenvalues X±, (i=2,3,..., k+1) of A are distinct and then 
show that they need not be distinct in order for the above 
limit to exist.
Proof.
Suppose that A.i, (i=2,3,...,k+1) are distinct then A is 
diagonalizable and is similar to a diagonal matrix 
D=diag( A.i, A.2 , . . . , A.k-»-i) . Since complex roots occur in
conjugate pairs, the moduli of these eigenvalues need not be
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distinct.
Let U be a matrix whose columns constitute the eigenvectors 
of A. The eigenvalues may be made to appear on the diagonal 
of D in any desired order by suitable choice of U(see 
defn.4, sec. 1.4). Suppose they are arranged in order of 
decreasing modulli, i.e. I Xil >1 X2I d X3I >...d Xk-*-il .

A = U D U-1 (2.3.2)
and for the tth power of A we have 

A* = U D* U-i

Xf 0 . . . 0 
0 X| 0 . . 0

0 0 . . 0 XUi

cr1

and dividing both sides by Xifc we have
(2.3.3)

A t 

* 1
= U

1 0 
0 (X2 t

0

0 0
1 t

0 (^ti)
1̂

IT1

l i m  —  = U

3, . ,k+l so that

'1 0 . . 0
0 0 . . 0 CT1 = Hi
0 0 . . 0.

(2.3.4)
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Hi is a square matrix of rank 1. Moreover, columns of Hi 
are positive multiples of ui. The fact that columns of Hi 
are positive multiples will be made clear later.
Suppose now that the remaining eigenvalues X.±, i-2,3, . ..,
k+1 are not distinct. Let the distinct roots be A.i and 
i=2,3,...,q < k+1 and if X.± has multiplicity m  then A is 
similar to a matrix J in Jordan canonical form i.e. there 
exists a generalized modal matrix M for A (see defn.8 and 
thm.5,sec. 1.4) such that

A = M J M-1

( 2 . 3 . 5 )

AT

Ji 0 . . .  0 0
0 J2 0 . . 0 0

0 0 . . . 0
M -l

(2.3.6)
where Ji, i = l,2,..., q; is given by (1.4.12) is an m x m  
square matrix with diagonal elements k±, l's on the 
superdiagonal and zeros elsewhere. The tth power of A is

M

JT 0 .
0 0 
• • • 
0 0 . 0

(2.3.7)
Ji can be expressed as
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J± — A±In + Bn (2.3.8)

where In is the identity matrix of order m  and Bn is a 
nixm square matrix whose elements are zero everywhere 
except for ones on the superdiagonal. Noting that IB=BI and 
for x>m

B* = 0 (2.3.9)
Using binomial theorem and (2.3.9) (dropping subscript ni 
for convenience) the expansion of Jit is given by 

J - (Ail + B)fc

- £ U )

• £  U - x )  a ‘1 '

(2.3.10)
Since A is primitive, Ji = Xi and first column of M is ui, 
(see defn.8, sec. 1.4 and defn.4, sec.2.1) so that

lint-- (Ji/Ai)t = 1 (2.3.11)
For i * 1

jij-i
E { limt. Xj 1

X
3
X

y

(2.3.12)
We note that

l/y!{t(t-l) ... (t-(y-l))} < tv (2.3.13)
and for Ai > At

9i =loga Ai - log® Ai =loga(Ai/Ai) > 0 (2.3.14)
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/. (Xi/Ai)t = exp(-0it) (2.3

Using (2.3.13/14/15) we have
limt-'to (Ji/A.i)̂  = 0 (2.3

and finally using (2.3.11/16)

ri o

0 0
= *1

(2.3
Therefore, regardless of Xi, i=2,3,..., k+1 being
distinct, At/Xit still converges to Hi.

On investigation it is found that
Hi = uivi' (2.3

where ui is the right positive eigenvector and vi; is 
left positive eigenvector of A both corresponding to 
Consequently, since vi' is a positive vector then 
columns of Hi are positive multiples of ui.

This result will be established through a lemma 
first we shall examine

limt-'to A*z (2.3
where z is an arbitrary k+1 vector. Suppose that 
eigenvalues of A are X.±, the corresponding eigenvectors 
i=l,2,..., k+1 and ui form a basis for R ^ 1. Then we

E
Jc>l

• 15)

• 16)

• 17) 
not

• 18) 
the 
A.i.
the

but

19)
the
ui,
can

write
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(2.2.20)

where ai are constants not all zero.
Clearly as t gets large this sum will be dominated by 

the term involving the eigenvalue with the largest absolute 
value(modulus), provided that the associated coefficient is 
not zero. Let us assume that this eigenvalue has the index 
i=l, so that we can write for large t

A* z « aiAi^ui (2.3.21)
or equivalently

limt-^ Atz = ailitui (2.3.22)
Lemma..
Let A be an nxn matrix, x an n-vector, and a, X real 
numbers. Then for all z e Rn

limt*^ A*z = aA-tx (2.3.23)
iff

limt-w At = A^xy' (2.3.24)
y € Rn is arbitrary and a-y'z 
Proof.
Since z is independent of t

limt-*-® A*z = (limt->» A*)z
= (Xtxy/)z using (2.3.24)
-  X * x  y ' z  

= aX^x
conversely

limt-® Acz = aX^x where a-y'z

- X*xa
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= Xtxy'z
(Atxy/)z

so that
limt-*» Afc = A.txy/

which proves sufficiency.
Now suppose that

limt-^ A* = A^xy'+E (2.3.25)
where E*0 is an nxn matrix then

limt-'-™ A*z = (Atxy/ + E)z
- aA^x+Ez (2.3.26)

for arbitrary z we must therefore have E=0, which proves 
necessity.

We can now use the lemma to establish (2.3.8) where A 
is a primitive population projection matrix with dominant 
eigenvalue A.i and associated positive right eigenvector ui. 
Noting that A and A' have the same eigenvalues(see thm.l, 
sec.1.4). Let

where vi' are the right eigenvectors of A' corresponding to 
A.± or equivalently v±' are the left eigenvectors of A. 6 jl's 

are constants not all zero.
Using (2.3.22) we have

(2.3.27)

limt->»(A')* z = (2.3.28)
and using lemma
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A7 )t = A.itviw7 (2.3.29)

wGRk-*-1 is arbitrary and 0i=w/z and since (A7)11 = (A*)' we
have

limt-»(A7 )t = (limt-*® A11)7 (2.3.30)
From (2.3.22) and lemma

( lim-t-*® A*)7 = (Xitxui) 7 (2.3.31)
where xeR1̂ 1 is arbitrary and ai=x7z.
Using (2.3.29/30/31) we can take x=vi and w=ui so that

limt^ = Aituix7 = Xi^uivi7 (2.3.32)
or equivalently

limt At/A.1  ̂ = u i v i 7 (2.3.33)
where ui, vi7 are respectively the right (left) positive 
eigenvectors of A both corresponding to the dominant 
eigenvalue A.i. Using (2.3.5/33) then (2.3.18) follows.

Considering the spectral representation of the 
diagonalizable matrix A demonstrated by (2.3.18) we have

Jr+1
A = E  xi uivti

(2.3.34)
where ui, vi7 are respectively the right(left) eigenvectors 
of A both corresponding to the eigenvalue Ai, (i =
1,2 , . . . , k+1) so that

Hi = uivi7 (2.3.35)
Using (2.3.35) we can write (2.3.34) as
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A »
Jc*l

and model (2.2.19) can be rewritten as

Ar* 1
ue = ^ E (T i) Hi"°i-1 A1

(2.3.36)

(2.3.37)
i.e. the population is growing approximately geometrically 
so long as (A.i/Ai)t is close to zero.
Theorem.2.
For any non-negative vector x the relative values of the 
components of

y = Hix (2.3.38)
are independent of x.
Proof.

y = Hix
= ( m i u i ,  ra2Ui ,  . . . ,  m i t + i u i ) x

= um 'x (2.3.39)
where m=(mi, m2 , ..., mk+i)'.

The relative values of the components of y in vector 
form is given by

y(l'y)-1 - uin,x( l'um'x)-1
= uib,x(h 'x )“1(l'ui)-1 
= uid'ui)-1 (2.3.40)
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which is independent of x and hence the result.
Applying theorem 1 to (2.2.19) we note that 

limt-~ ut/Ai1 = (limt-̂ . At/Aid) uo

= Hi ua (2.3.41)
= c C (2.3.42)

The age distribution vector Ct. = atd'ut)"1 approaches 
a limiting value C which is independent of the initial 
population aa, depending only on the matrix A and satisfies

l'C = 1 (2.3.43)
A determines limt-*»ut to within a scalar c which 

depends on both ua and A.
limt-*-® ut/A.it( l'ut/Xit )_1 = limf^> ut( l'ut)-1 = C (2.3.44) 
Applying theorem 2 to (2.3.41)

lim-t-̂*. ut/A.it( l/ut/A.it: )_1 = ui(l,ui)-1 (2.3.45)
From (2.3.44) & (2.3.45)

C = ui(l'ui)-i (2.3.46)
and clearly satisfies (2.3.43).

The limiting vector C is called the stable age

distribution or stable population vector corresponding to A, 
and the fact that it is independent of ua is known as the 
ergodic property for population growth (i.e. it forgets its 
past) .

It is observed that as t gets large the matrix At 
displays a very interesting property i.e. the ratio of an 
element in A”-*"1 to the corresponding element in An will for 
large n tend to Xi and when the population has stabilized
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this ratio is Xi.

From (2.2.19), this is equivalent to saying that 
the population has stabilized

ut+i = Xi at (2.3
and by the definition of the model (2.2.17) we conclude

A ut = Xi at (2.3
which has non-trivial solution iff

I A - Xill = 0 (2.3
or equivalently iff the characteristic equation of A 
dominant root Xi.

We can now establish (2.3.47) by supposing that 
holds and show that the characteristic equation of A 
dominant root Xi.
Proof .
Let Y0 ,Yi,Y2 , . . . , Yk be a set of frequencies such that

Ut = (Y0,Yi,Y2,..., Yk)' (2.3
and by hypothesis

ut-t-i - (A1Y0 , X 1Y 1 , X 1Y2 , . . . , XiYk)7 (2.3
Using model (2.2.17)

Qt+i = [2ifiYi,p0Y0,piYi,...,Pk-iYk-i]7 (2.3
It is clear from (2.3.51) & (2.3.52) that

X1Y0 = f0Y0+flYi+f2Y2+ ...+fkYk (2.3
and for i=l,2,...,k

Yi = P0P1P2 ...P1-1Y0/X11

when

.47)
that
.48)

.49)
has

it
has

,50) 

• 51) 

.52) 

.53)

On substituting Yi, i=l,2,...,k into (2.3.53) we obtain 
Xlk-Hl-f0Xlk-f ip0Xlk-1-f 2P0PlXlk_2- ... - f k-iP0Pl . . . Pk-l = 0
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(2.3.54)

which is the characteristic equation of A given by (2.2.26) 
in dominant root A.i and hence the result.

It is clear from the established relation (2.3.47) that 
the dominant root Xi gives the rate of increase of the 
population in a single step; so that the population grows 
geometrically. It is related to Lotka's r(intrinsic rate of 
natural increase) by expression (1.2.6). A.i is also called 
population finite rate of natural increase.

If the dominant root A-i is greater than unity implies 
that the population is capable of increasing. If A.i is less
than unity then the population is capable of decreasing. If
A.i is unity then the population remains constant and is 
often referred to as stationary population.
2-4- Harvesting in Matrix Population Models. 
Introduction.

Before we focus specifically on harvesting we wish to 
briefly study or rather examine stochastic matrices and 
establish a relationship with a non-negative matrix. The
relationship will be utilized in a proof of a theorem on
positive harvesting. We shall consider harvesting problem 
in terms of matrix algebra with the intention of maximizing 
yields subject to maintaining a constant population size and 
age structure after each time period.
Stochastic matrices.
Defn.1.
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A square matrix, P = (pid) of order n is called stochastic if 
the matrix P is non-negative and if every row sum is equal 
to 1.

Thus, the matrix of transitional probabilities for a 
homogeneous markov chain is stochastic; and conversely, an 
arbitrary stochastic matrix may be taken to be the matrix of 
transition probabilities of some homogeneous markov chain.

A stochastic matrix is a special case of a non-negative 
matrix. Special addition properties of a stochastic matrix 
are the following. It follows from the definition, that 
such a matrix has characteristic root 1, to which the 
positive characteristic vector z = (1,1, . . . , 1)' corresponds. 
Conversely, it is clear that if the corresponding
characteristic root is 1, then the matrix P is stochastic. 
Further, the root 1 is the dominant characteristic root of 
every stochastic matrix, since the dominant characteristic 
root always lies between the largest and smallest row sums 
and each row sum is 1. These facts are restated yielding
definition 2 of a stochastic matrix.
Defn.2.
A non-negative matrix P (>0) is stochastic iff the vector 
(1,1,...,1)/ is a characteristic vector of P, with
corresponding characteristic root 1. For a stochastic 
matrix, 1 is the dominant characteristic root.

Now we establish a representation for certain non­
negative matrices. Let A = (aij) be a non-negative square
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matrix of order n; let the positive root r (>0) be a 
characteristic root of A, and let the corresponding
characteristic vector z=(zi,2 2 , . . .,zn )' (>0) be positive.

& z - r z (2.4.1)
so that for i=l,2,...,n

jC aU zj r z±

We define diagonal matrix Z by
Z = diag(2 1 ,Z2 , ...,zn ) 

and the matrix P=(p±j ) by

(2.4.2)

(2.4.3)

P = r-iZ-iAZ (2.4.4)
The elements pij of P are clearly non-negative:

Pij = r “ 1Z i ” 1aijzj > 0 (2.4.5)
for i,j=l,2,...,n and using (2.4.2.) we have the relation

a
Pi1 1

(2.4.6)
for i=l,2,...,n .
We have established the following definition,
Defn.3.
If A (>0) is a non-negative matrix which has a positive 
dominant characteristic root, to which there corresponds a 
positive characteristic vector z=(zi,2 2 , ...,zn ) '>0, it is 
similar to the product rP of r by some stochastic matrix P.
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where Z is given by (2.4.3).
Remark.1.
If r = 1 then A is similar to a stochastic matrix P.
Remark.2.
If A is primitive then P is also primitive.
Defn.4.
We call a stochastic matrix P and the corresponding 
homogeneous markov chain proper if the matrix P has no 
characteristic roots (*1) of modulus 1, and call a matrix of 
chain regular if it is proper and if 1 is a simple 
characteristic root (simple root of the characteristic 
equation) of P.
Remark.
A homogeneous markov chain is called aperiodic if the 
corresponding stochastic matrix P is primitive.

If P is the matrix of transition probabilities of a 
homogeneous markov chain, then the matrix P" of limiting 
probabilities exists iff the chain is proper.

P°° = limm-w Pm (2.4.8)
Remark.
The rows of the matrix Pm add to unity, and as they contain 
a fixed number of elements it is impossible that p±jm - 0 V 

pairs i,j (see Feller Vol.l, Pg. 392).
Harvesting.

Under favourable conditions, natural animal populations

A = Z ( r P ) Z - i  ( 2 . 4 . 7 )
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have a tendency to increase in numbers. It is, however, 
possible to remove some animals and maintain a constant 
population size. If the population is divided into groups 
by age, different proportions of the various groups can be 
harvested subject to the condition that a fixed population 
size and age structure is maintained after every time 
interval.

The problem of harvesting was introduced to matrix 
population theory by Lefkovitch and Williamson in 1967. If 
the population is distributed by ages according to the 
stable age distribution C, the latent vector corresponding 
to A.i then

A C = A.i C (2.4.9) 
and it is possible to remove the vector

(A.i - 1) C (2.4.10) 
from the population after it has reproduced, restoring the 
initial age structure and population size. This corresponds 
to harvesting equal fractions (Xi-1)/A.i from each age group 
or equivalently 100( Xi~ 1)/A.i % of the total population. This 
is called uniform harvesting.

It is required that the population size and age 
structure be restored after each time period(this is 
referred to as sustainable harvesting). Subject to this 
constraint, an age structure and harvesting policy may be 
chosen to maximize some value attached to the harvest (the 
number of animals harvested, the biomass harvested,e.t.c.)
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Both authors enquired whether some harvesting policy 

other than harvesting equal proportions from each group 
might produce a higher yield. Neither author attempted to 
solve the problem generally, but Williamson demonstrated 
that the above mentioned harvesting procedure is not always 
best(optimal).

He considers the matrices

0 9 12 ’ 0 3 36 '

Al =
1/3 0 0 & n 1/3 0 0
0 1/2 0 . . 0 1/2 0 .

Ai and A2 both have li = 2. The stable age structure for both 
is C = 1/29(24,4,1)'. The yield

l'(A u - u) (2.4.12)
is 1 per member of the population when u = £. However if 
u = 1/9(6,2,1)' is used instead of ( a yield of 8/3 per 
member of the population is possible for Ai and a yield of 4 
per member for A2 .
Harvesting problem in terms of matrix algebra.

For harvesting after reproduction, it is required to 
find a non-negative column vector u and a non-negative 
diagonal matrix

R = diag(r1 ,r2 , . . .,rn ) (2.4.13)
such that

R A u = u (2.4.14)
and
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is maximized over u and R. a is the chosen distribution of 
ages, the diagonal elements of R are the proportions of 
various groups remaining in the population after harvesting, 
c' = (ci,C2 ,...,cn ) is the set of weights given to the groups, 
(2.4.14) is the requirement that the initial age structure 
and population size be restored at the end of each cycle of 
reproduction and harvesting.

For harvesting before reproduction the value of the 
harvest is

c'(I - R) A u ( 2 . 4 . 1 5 )

c'(I - R) u (2.4.16)
and the initial age distribution and population structure is 
restored by the constraint

A R u = u (2.4.17)
Intuitively, it seems obviously better to harvest after 

rather than before reproduction. Without loss of generality 
the total population size can be constrained by the relation

1/ u = 1 (2.4.18)
so that the problem can be restated as that of maximizing 
(2.4.15) subject to (2.4.14),(2.4.18) and Au-u>0, where u>0 
or equivalently we are maximizing

c'(A u - u) (2.4.19)
for

A u - u>0, u>0 and l'u = 1 (2.4.20) 
This is a linear programming problem which can be solved by 
the simplex method.
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Since it is possible in some cases to increase the 

yield by not choosing u = £ (demonstrated by (2.4.11)), we 
may ask whether it is necessary that A.i>l for a positive 
harvest to be possible. If A is primitive (some power of A 
has positive entries)(see thm 3, sec. 2.1) then it is 
necessary that Xi>l. However, if Xi=l and A is not 
primitive a positive harvest may be possible. An example is 
any Leslie matrix A with a zero fertility in the last age 
group. The last age group can be harvested completely in 
this case with u = ( in the remaining components.
Theorem.
If the dominant root, A,i, of A is less than 1, no positive 
harvest is possible. If Xi- = 1 and A is primitive, no
positive harvest is possible.
Proof. (By contradiction).
For a positive harvest to be possible there must exist a u>0 
such that A u>u and strict inequality holds for at least one 
component. It follows that

Am u > u (2.4.21)
for any positive integer m.
(i) If Ai < 1 then Am -*■ 0 as m -»■ «> (all entries tend to 
zero). Therefore, there is no non-zero u satisfying
A u > u and no positive harvest is possible.
(ii) If ii = 1  and A is primitive, then ui is strictly 
positive. Also A is similar to a primitive stochastic 
matrix P (see rem.l of defn.3,sec.2.4).
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where Z is a diagonal matrix whose diagonal elements are the 
components of ui.

Since P is primitive (regular in markov chains, or 
aperiodic in homogeneous markov chains)(see rem.2 of defn.3, 
sec. 2.4)

limm-^ Pm = P°° (2.4.23)
exists and has all entries positive(see rem. of (2.4.8)). 
Therefore

limm-» Am = Z (limm-̂ o P“) Z"1 = Z P” Z"1 (2.4.24)
also exists and has all entries positive.
For any u,
1 imm-°> Am(A u - u) = limm-'® Am_̂ 1 u - 1 imm-*. Am u

= 0  (2.4.25)
But if Au-u has at least one positive component, then

limm-* Am (A u - u) > 0 (2.4.26)
i.e. is strictly positive. Therefore no positive harvest is 
possible .
Remark.
For the special case when u = £ i.e. harvesting equal 
proportions of (A.i-1)/A.i from each age group( un if orm
harvesting), it is quite clear that a positive harvest is 
not possible whenever AiSl.

In the next chapter we shall consider practical 
applications of the model we have described.

A = Z P Z-i ( 2 . 4 . 2 2 )
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CHAPTER.3. APPLICATION OF THE MODEL

3.1 Introduction
We shall apply the model to a population of a gorilla 

species (Mountain gorilla)(see last paragraph of sec. 1.1 
for source of data). The central problem is to determine 
the stable population vector, the intrinsic rate of natural 
increase and the harvest that can be taken subject to the 
condition that a fixed population size and age-structure is 
maintained after every time interval. With knowledge of A.i, 
the dominant root of the matrix A, all the above three are 
readily obtainable from the appropriate formulae; namely
(i) The stable vector is given by

C = uid'ui)-! (3.1.1)
where
in - (1, P0/A.1 , papi/Ai2, ..., papi. . . Pk-i/lik)' (3.1.2)
is the eigenvector corresponding to Ai.
(ii) The intrinsic rate r of natural increase (Lotka's r) is 
given by

r = log® A.i (3.1.3)
(iii) The harvest that can be taken so that a constant 
population vector is maintained after every time interval is 
given by

H = 100( A.1-D/A .1 (3.1.4)
where H is expressed as a percentage of the total population
i.e. harvesting a proportion of (A.i-1)/A.i from each age
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group. It is remarkable to note that this harvesting policy 
may or may not be optimal. If it is not optimal we can 
alternatively maximize (2.4.19) subject to (2.4.20).
3.2. Application to generate and maintain £

The general information includes the assumption that
(a) There is

(i) No migration, (ii) No density dependence
(b) Age-specific rates remain constant over a period of 

time .
(c) Same unit of age is adopted as that of time.

The sex ratio is 0.500 and the population is 
partitioned into 5-yr age groups and a maximum age of 6 will 
be considered i.e. we shall have 7 age groups. The initial 
age distribution and the age-specific rates are as tabulated 
be low.

Age Initial Fecund ity Surviva

0 80 0.00 0.682

1 57 0.00 0.896

2 46 1.15 0.730

3 34 1.15 0.730

4 25 1.15 0.730

5 19 1.15 0.730

6 14 1.15 0.730
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so that the initial age distribution is given by

U0 = (80, 57, 46, 34 , 25, 19, 14)'
the proj ect ion matrix A is given by

’ 0 0 1.15 1.15 1.15 1.15 1.15'
0.682 0 0 0 0 0 0

0 0.896 0 0 0 0 0
A = 0 0 0.730 0 0 0 0

0 0 0 0.730 0 0 0
0 0 0 0 0.730 0 0
0 0 0 0 0 0.730 0

(3.2.1)

(3.2.2)
Thus, the model is described by

ut = Q0 ( 3 . 2 .3 )

for t=l,2,3, ....
The non-negativity of A is obvious. The

irreducibility of A follows as already proved for a general 
matrix. It only remains to find the index of imprimitivity 
of A. The characteristic equation of A is given by (2.2.26) 
for k+l=7 i.e.
*7-0 . 7027328*^-0.512994944*3-0.374486309*2-0.273375005*- 
0.199563754 = 0 (3.2.4)

The index of imprimitivity h is the g.c.d. of the 
differences {7-4, 4-3, 3-2, 2-1, 1-0}. Here h=l, hence A is 
primitive which implies that the dominant root *i of A is 
greater than the moduli of all other roots and

limt^» A V * ^  (3.2.5)
exists. In other words there exist a stable population 
vector C-
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The power method procedure is used to determine the 

dominant root Xi. The algorithm is on page 34 and a fortran 
program utilizing this method is in the appendix. The 
dominant root is found to be

Xi = 1.1856588 (3.2.6)
Letting p<i> = P0P 1P2 ...P1 , i=0,1,2,3,4,5. we have
^l~( l*PC0)/Xl,p< l)/Xl2,p<2)/Xl3,p<3)/Xl‘̂jP(4)/Xl5>p<5}/Xl®)

= (1, 0.575207639, 0.43468327, 0.26630778, 0.164777985, 
0.10152398, 0.062463375)' (3.2.7)

Xi ui = (1.1856588, 0.681999999, 0.515386044, 0.317318787,
0.195370468, 0.120287928, 0.07406025)' (3.2.8)

Aui : (1.185658977, 0.682, 0.515386044, 0.317318787,
0.195370467, 0.120287929, 0.07406025)' (3.2.9)

(3.2.7) & (3.2.8) confirms that ui is an eigenvector of A 
corresponding to Xi. The stable population vector is

C = ui/d'ai)
- ui/2.606215445
= (0.383698132, 0.220706097, 0.166787158,0.102689429, 

0.063225005, 0.038927095, 0.02396708)' (3.2.10)
and satisfies

l'C = 1 (3.2.11)
The intrinsic rate of natural increase r is 

r = loga(l.1856588)
= 0.170298569
~ 0.1703 (3.2.12)

Noting that Xi > 1 a positive harvest is possible.



Subject to the condition of maintaining a constant 
population size and age-structure after each time period we 
can harvest a proportion of

(A1-D/A .1 = 0.156587038
* 0.1566 (3.2.13)

from each age group i.e 15.66% of the tatal population. 
This harvesting policy is equivalent to using (2.4.19) by 
taking e' = (1,1,.. . ,1), u = ( so that the yield is 

c'(Au-u) = 1/(AC-C)
= Ui-Dl'C
= A.i-1 (using 3.2.11)
= 1.1856588-1
= 0.1856588 (3.2.14)

per member of the population.
Carrying out the above harvesting policy after

reproduction will restore the stable population vector £ 
after each time period.
3-3 Concluding Remarks.

We have established that when the population has
stabilized the model ut = A ut-i reduces to ut = A.i ut-i 
where Ai is the dominant eigenvalue of the projection matrix 
A, so that the population grows geometrically. Moreover, 
the eigenvector u± of A corresponding to the eigenvalue li 
is a function of the survival rates pi (i=0,l,..., k-1) and
Ai.
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It is also found that when the population has not
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stabilized the population grows approximately geometrically 
so long as (Xi/A.i)t is close to zero( i=2,3, . . . , k+1)

For the Gorilla data Ai = 1.1856588 > 1 i.e. the
population is capable of increasing at a constant rate of 
1.1856588 in a single step and a positive harvest is
possible. To maintain the stable population vector C after 
every time period we should harvest a proportion of 
(A.i - 1 )/A.i = 0.1566 from each age group after reproduction.

The model we have considered is often referred to as
the classical (traditional) model. The projections are
intended only to indicate the future course of population 
growth if the present trends in vital rates continue. The 
predictions are therefore not exact if time intervals are 
long, however, for short intervals of time the 
approximations are good.

The matrix is defined as operating over a period of 
time, and thus the model can take the structure of the 
ecosystem at time t, and predict the new structures at times 
t+1, t+2, t+3, e.t.c. There is no way of using the model to 
predict what the structure would be at time t+(l/2), or any 
non-integer value of time. However, many biological 
processes occur in discrete periods of time and are not 
continuous in their operations.

It has been observed in practise that population growth 
is a highly variable process and that the projections using 
classical models are quickly invalidated. Any results
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obtained using this model are only as valid as the 
underlying assumptions made.

Models should incorporate insight into the biological 
mechanisms involved as well as being sufficiently general 
for the model to be applicable in a variety of situations 
merely by changes in the parameters or modifications of the 
underlying assumptions. Such models are called robust 
models.

If there is reason to suspect a violation of any of the 
postulates inherent in the construction of the model, or if 
sufficient information to judge their validity is not 
available then a more general model which includes variable 
factors is desirable (refer litrature review, (sec. 1.3)).

It is possible to develop models which represent 
specific growth events with a certain degree of precision 
but it is much more difficult to develop models with a 
general range of applicability, however, the extentions of 
the classical model (refer litrature review, (sec. 1.3)) has 
demonstrated its robustness.
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APPENDIX

PROGRAM DEVALU 
DIMENSION A(20,20), X(20)
REAL LAMBDA
OPEN( UNIT = 5, FILE = 'INPUT.', STATUS = 'OLD')
OPEN( UNIT = 2, FILE = 'OUTPUT', STATUS = 'NEW')
READ(5,10) ((A(I,J),I = 1,7 ) ,J = 1,7)
READ< 5,20) (X(I), I = 1,7)

10 FORMAT(7F5.3)
15 FORMAT(/,7F8.3)
20 FORMAT(7F9.7)
25 FORMAT<7(F13.10/)//)
30 FORMAT(5X,' INITIAL ARBITRARY VECTOR OF UNIT NORM'/) 
35 FORMAT(5X,' PROJECTION MATRIX A')
40 FORMAT(5X,'LIMITING VECTOR OF UNIT NORM'/)
45 F0RMAT(4X, '******************************************

TOL = IE-10 
N = 7  
M = 10000 
WRITER,30)
WRITE(*,25)(X(I),I=1,7) 
WRITE(2,30 )
WRITE(2,45)
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WRITE(2,25)(X(I),I=1,7)
WRITE(*,35 )
WRITE(*,15)((A(I,J), 1= 1,7),J = 1,7)
CALL POWERM<A,X,LAMBDA,TOL,N,M,ITERM)

50 FORMAT(/,' DOMINANT EIGENVALUE IS \F15.12///) 
WRITE(2,45)
WRITE(2,35)
WRITE(2,15) ((A(I,J),I=1,7),J=1,7)
WRITE(*,50 ) LAMBDA 
WRITE(2,45)
WRITE(2,50) LAMBDA 
WRITE(*,40 )
WRITE(2,40)
WRITE(*,25)(X(I),I=1,7)
WRITE(2,25)(X(I),I=1,7)
IF(ITERM.EQ.2) GO TO 60 
WRITE(2,55)

55 FORMAT(5X,'CONVERGENCE DUE TO TOLERANCE')
GO TO 70

60 WRITE(2,65)M
65 FORMAT(5X,' CONVERGENCE AFTER',14,'ITERATIONS')
70 STOP

END
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SUBROUTINE POWERM(A,X,LAMBDA,TOL,N,M,ITERM)
REAL LAMBDA
DIMENSION A( 20,20), X( 20), Y( 20 )

C
C SUBROUTINE POWERM USES THE POWER METHOD WITH 
C SCALING TO ESTIMATE THE DOMINANT EIGENVALUE OF A MATRIX
C A . THE CALLING PROGRAM MUST SUPPLY THE MATRIX A, A**
C INITIAL VECTOR X OF EUCLIDEAN LENGTH 1, A TOLERANCE 
C TOL, AN INTEGER N(WHERE A IS (NXN)) AND AN INTEGER M =
C MAXIMUM NUMBER OF POWER ITERATIONS DESIRED. THE 
C SUBROUTINE RETURNS WHEN THE DIFFERENCE OF TWO 
C SUCCESSIVE ESTIMATES IS LESS THAN TOL IN ABSOLUTE VALUE
C OR WHEN M ITERATIONS HAVE BEEN EXECUTED. IN THE F2 rst

C CASE, A FLAG, ITERM IS SET TO 1 AND IN THE SECOND ^ASE
C ITERM IS SET TO 2. THE APPROXIMATE EIGENVALUE IS
C RETURNED AS LAMDA AND AN APPROXIMATE EIGENVECTOR AS 
C X. LAMBDA MUST BE DECLARED REAL IN THE CALLING
C PROGRAM.
C

ITR= 1
C
C CALCULATE THE INITIAL EIGEN VALUE APPROXIMATION
C

DO 1 1=1,N 
Y(I)=0 .
DO 1 J=1,N
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1 Y(I)=Y(I)+A(I,J)*X(J)
TEMP=0.
YSCALE=0.
DO 2 1=1,N 
TEMP=TEMP+Y(I )*X(I)

2 YSCALE=YSCALE+Y(I)*Y( I)
YSCALE=SQRT(YSCALE)
ESTOLD=TEMP

POWER METHOD ITERATION WITH SCALING

3 ITR=ITR+1 
DO 4 1=1,N

4 X(I)=Y(I)/YSCALE 
DO 5 1=1,N
Y( I)=0 .
DO 5 J=1,N

5 Y(I)=Y(I)+A(I,J)*X(J)
TEMP = 0.
YSCALE=0.
DO 6 1=1,N 
TEMP=TEMP+Y(I)*X(I)

6 YSCALE=YSCALE+Y(I)*Y(I)
YSCALE=SQRT(YSCALE)
ESTNEW=TEMP

C
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TEST FOR TERMINATION OF THE POWER METHOD ITERATION

IF(ABS(ESTNEW-ESTOLD).LE.TOL) GO TO 7 
IF(ITR.GE.M) GO TO 8 
ESTOLD=ESTNEW 
GO TO 3

7 ITERM=1 
LAMBDA=ESTNEW 
RETURN

8 ITERM=2 
LAMBDA=ESTNEW 
RETURN
END
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OUTPUT FILE

INITIAL ARBITRARY VECTOR OF UNIT NORM
********************************************************

0.3779644966
0.3779644966
0.3779644966
0.3779644966
0.3779644966
0.3779644966
0.3779644966

********************************************************
PROJECTION MATRIX A

0.000 0.000 1.150 1.150 1.150 1.150 1. 150
0.682 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.896 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.730 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.730 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.730 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.730 0.000 

********************************************************
DOMINANT EIGENVALUE IS 1.185658812523

LIMITING VECTOR OF UNIT NORM
0.2175698429
0.3782458007
0.5005250573
0.4702009261
0.4209486246
0.3409535885
0.2110264301

CONVERGENCE DUE TO TOLERANCE
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