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Abstract

This study uses the Parsimonious Multivariate Markov chain model to de-

scribe the dependency of transitions of the daily Volume Weighted Average

Prices VWAP of Nairobi Securities Exchange prices. The model, unlike the

multivariate Markov chain model, can be used for both positively and neg-

atively associated sequence and has relatively fewer parameters. We consid-

ered 125 daily volume weighted average price (VWAP) values of three stocks

(portfolios) S1;S2 and S3 in the NSE for a period of 6 months starting 3rd

January 2011 to 31st June 2011. From this data we obtained 124 value rates

by dividing the VWAP of the day to be calculated with the value of the

immediate previous trading day to obtain a three-state (1, 2 and 3 respec-

tively) multivariate Markov chain indicating decrease, no change or increase

in price.The transition probability matrices, P (j;i) are estimated through nor-

malization of the transition frequency matrices of the S categorical data se-

quences. The model parameters � = f�j;ig are estimated by minimizing

jjBX �Xjj under the vector norm jj � jj1:
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Chapter 1

Introduction

1.1 Background

According to wikipaedia the phrase "stock market prediction" is de�ned as

the act of attempting to determine the future value of a company stock or

other �nancial instrument traded on a stock or securities market exchange.

The prediction of stock prices is not easy because of the unpredictable be-

haviour of the prices. In the Kenyan market, daily stock prices are greatly

in�uenced by a variety of factors including but not limited to day-to-day

politics,fuel prices, exchange rate of major international currencies, in�ation

rates, dividend announcements, introduction of new products and product
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recall.

The major motivation of attempting to predict stock prices is for opti-

mization of �nancial gain. In an attempt to forecast future prices traders

have used various approaches based upon the following techniques:

1. Fundamental analysis,

2. Technical analysis,

3. Psychological analysis

4. Machine learning methods

The technical analysts are not concerned with any of the company�s fun-

damentals. They seek to determine the future price of a stock based solely on

the (potential) trends of the past price -which is a form of time series analy-

sis. Technical analysis paradigm states that all price relevant information

is contained in market price itself. Thus, the instant processing of market

messages plays speci�c role, thus leading to permanent interactions among

traders. Technical analysis concerns with identi�cations of both trends and

trend reverses using more or less sophisticated procedures to predict future

price movements from those of the recent past.

2



Fundamental analysis entails the examination of the underlying forces

that a¤ect the well being of the economy, industry groups, and companies.

As with most analysis, the main aim of fundamental analysis is to derive

a forecast and pro�t from future price movements of assets or investment

portfolios.

Machine learning methods have been enhanced by technological advance-

ment. This method uses Arti�cial Neural Networks, which can be thought

of as mathematical functions, which simulates (mimics) the functioning of

human brains when computers are fed with massive data.

Psychological analysis is based on the belief that the exchange of goods is

more or less driven by human psychology and future expectations. Psychol-

ogists believe that emotions upon which expectations are built are fear and

greed, which in e¤ect compels humans to repeat the mistakes and triumphs

of the past. This believe that psychology drives market prices, to a great

extend, veri�es the use of the technical approach in predicting market prices.

In this study we shall use a Markov chain model technique to predict

future prices of selected stocks. Interest to invest in equities is fast gain-

ing momentum at the Nairobi Securities Exchange (formerly Nairobi Stock

Exchange) in Kenya. This has been shown by the recent initial public of-
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fers (IPOs) including the Safaricom Company, Kenya Electricity Generating

Company, Mumias Sugar Company among others which attracted huge in-

vestments. These IPOs signi�ed a considerable shift to the more risky and yet

more pro�table investment options to local and international investors. The

Nairobi Securities Exchange (NSE) is the leading securities market in East

and Central African region with a market capitalization of about Ksh.1.62

trillion (https://www.nse.co.ke/). With the favourable investment climate

in Kenya since the end of post-election violence in 2008 and the peaceful

general election in March 2013, investor con�dence has greatly improved

both in direct foreign investment and active participation in the securities

exchange market.

1.2 Problem Statement

Investors need market information so as to know which stocks to buy, when to

buy, when to sell and when to wait. However, due to uncertainties in the stock

market trends, investors can only maximize returns by seriously studying the

history of the listed companies, performance and development prospects of

such fundamentals and be familiar with a variety of technical analysis. In
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our study we shall investigate how the prices of various portfolios a¤ect the

future prospects of other portfolios (and themselves) using the parsimonious

multivariate Markov chain model.

1.3 Objective of study

1.3.1 The broad objective

The main objective is the application of the parsimonious multivariate Markov

chain model to forecast trends of stock prices in the NSE market.

1.3.2 Speci�c objectives

In this study we shall endeavour to achieve the following speci�c objectives;

1. Fit stock market trends in a parsimonious multivariate markov chain

model

2. To analyze and long-term behavior of individual stocks prices

3. To �nd out to what degree the selected stock a¤ect each other
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1.4 Signi�cance of the study

In the recent years investors have started to show interest in trading in the

stock several market indices in order to hedge their market risk. This has been

occasioned by the ample investment climate compared to other countries in

the region. With the current trend of regional or international integration as

envisioned in the Millennium Development Goals (MDGs) and the Kenyan

Vision 2030 it is expected that the rush for investment opportunities is going

to rise. This study shall apply the idea of studying behavior of multiple

sequences to determine which portfolios are likely to be more pro�table in

future when viewed collectively as opposed to when looked at individually.

The study will, therefore, provide a tool to enable investors reap the bene�ts

of diversi�cation of risk by giving an insight on the level "a¤ection" among

various investment ventures in the NSE.

6



Chapter 2

Literature review

Previous studies have veri�ed that stock markets have a Markov property

and hence they can be modelled as random walk processes. Markov chains

have been widely used in the modelling of many practical systems such as

telecommunications, inventory, queuing and manufacturing systems Ching

and Ng (2006). The Markov prediction model has become an indispensable

tool in modern statistics with many advantages because of its �no after-

e¤ect� properties or what is popularly known as the Markovian property

which has less demand for historical data.

Svoboda and Luká́s (30th ICMME) used the Markov chain analysis (MCA)

to predict the trend of Prague stock exchange PX using the time series of
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day closing prices for a period of 60 months from January 2004. Their study

compared models with di¤erent state sets. They applied �ltering algorithm

which involved omitting subsequently repeated states within the time series

data sequence. They �nally used the �ltered states to get the transition

matrix and a matrix of conditional probabilities of growth.

The use of the multivariate Markov chain models in social science was

fully embraced early this (third) millennium and thus the numbers of studies

on its application are few according to Ersoy & Semra (2011). In their study,

they attempted to measure the level of �a¤ection�of the daily closing selling

prices for three foreign currencies in Turkey. They concluded that the use

of multivariate Markov chain was e¢ cient in measuring the level of a¤ection

and the prediction of foreign exchange prices for positively correlated time-

discrete and state-discrete sequences.

Ching et al (2007) proposed a parsimonious multivariate Markov chain

model for credit risk. Their model provided great deal of �exibility in mod-

elling both the positive and negative associations between time series of credit

ratings. Another important feature of their model was its ability to handle

of shorter data sequences without compromising the e¢ ciency of their esti-

mates �this curbs the need for long data sequences as is the case with the
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multivariate Markov models. Their model had a relatively small number of

parameters and was more �exible compared to the model on previous work

on the same topic by Siu et al (2005). In the former model, the authors pro-

posed a model with two parts- the positively and negatively correlated parts.

They also introduced the concept of a normalizing constant in order to obtain

the negatively correlated part in their theory. They also made their model

more parsimonious by reducing the computational estate experience in the

previous models without compromising on the prediction accuracy. Wang

and Huang (2013) improved on the idea of Ching et al (2007) by introducing

a new convergence condition with a new variability to improve the predic-

tion accuracy and minimize the scale of the convergence condition which

according to numerical experiments performs better than the parsimonious

multivariate Markov chain model in prediction.

According to Zhang and Zhang (2009), the main di¤erence between the

Markov model and other statistical methods like time series and regression

analysis is that the former does not need to �nd mutual laws among the

factors from the complex predictor, only to consider the characteristics of the

evolution on the history situation of the event itself and to predict changes

of the internal state by calculating the state transition probability- which
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clearly shows that the Markov model has a broader applicability in stock

market predictions. Additionally, Markov chain models are e¤ective and

easy to construct given the time series data and a �nite number of states.

In a study on the prediction closing price trends of the Shanghai Compos-

ite index, Zhang and Zhang (2009) observed that an increase in trading days

under stable conditions resulted to the convergence of the state probability

to a value that is independent of the initial state and more or less stabilized.

The study further used past 24 trading-day�s closing prices to calculate a

forecast of the subsequent day�s closing price using a vector formula. After

the calculation, they were able to �nd out that the closing price state interval

after each day predicted was consistent with the actual situation.

In determining the relationship between a diverse portfolio of stocks and

the entire market Doubleday and Esunge (2011) used Markov chains to show

that the portfolio behaved the same way with the entire market. They further

observed that when the entire market is viewed as having the Markovian

property, the whole market is useful in measuring the behavior of a portfolio

of stocks.

Agwuegbo et al (2011) used Markov chains method to analyze the be-

havior of daily return of the stock market prices of all securities listed in the
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Nigeria Stock Exchange. Their study showed that the stock market follows

a random walk model and that the stock prices are but martingale and that

all what investors can do is to narrow di¤erences between the fairness and

otherwise in a way that high chances of small gains may be exchanged with

low chances of large gains.
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Chapter 3

Methodology

3.1 Assumptions

3.1.1 Assumptions for the parsimonious multivariate

Markov chain model

1. The number of sequences S � 2

2. Sequences are from the same or similar source

3. A �nite number of discrete states is considered

4. None of the states is absorbing
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5. The model must be convergent

6. Stock markets operate in a discrete time space

3.1.2 Assumptions about the NSE market

The NSE meets the criteria of an e¢ cient market where no trader is presented

with an opportunity for making an �abnormal� return, except by chance.

This assumption implies that prices are driven by multiple market forces,

the fundamentals state of the stock itself, macroeconomic policy, trade and

economic degrees and psychological factors of investors.

3.2 Reviews

3.2.1 The Markov chain (MC) model

AMC is a discrete stochastic process with Markov property. For a categorical

data sequence Xn we let its state set to be de�ned by:

M = f1; 2; 3; :::mg

The discrete-time Markov chain with �nite discrete states satis�es the
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following relationship:

Pr(Xn+1 = �n+1jX0 = �0;X1 = �1;X2 = �2; :::; Xn = �n)

= Pr(Xn+1 = �n+1jXn = �n) (3.1)

which is a one-step transition probability of the Markov chain. They are

conditional probabilities of moving from state i at time n to state j at time

n+ 1 .These probabilities are given as:

P (j;i) = (Xn+1 = �jjXn = �i); 8 i; j 2 M (3.2)

for 0 � P (j;i) � 1;
mX
i=1

P (j;i) = 1; 8i; j 2M (3.3)

If we assume that P (j;i) are not all zero 8j; we shall have the following

propositions:

Proposition 1 The matrix P has an eigen value equal to 1 and all eigen

values of the matrix have a modulus less that or equal 1

Generally ,for a non-negative matrix we have the following proposition.
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Proposition 2 Let A a non-negative irreducible square matrix of order m.

Then:

1. A has an eigen value � > 0 such that � =maxkj�k(A)j; where �k(A)

denotes the kth eigen value of A: In other words, A has a positive eigen

value � which is equal to its spectral radius.

2. To � there corresponds an eigen vector z
¯
of its entries being real and

positive such that Az
¯
=�z
¯

3. � is a simple eigen value of A.

From the above propositions we conclude that there exists a z
¯
> 0 such

that P z
¯
=z
¯
. The vector z

¯
is called a stationary vector probability vector of A

and z
¯i
is the steady-state probability at state i:

3.2.2 Multivariate Markov chain (MMC) model

In many occasions,data sequences may be correlated and therefore the in-

formation of other chains can contribute to explain the captured chain data

sequence. This calls for a holistic study of the bahaviour of the categorical se-

quences using the multivariate Markov chain (MMC) model. A multivariate

15



Markov chain model is used to represent behaviour of multiple categorical

sequences generated by a similar source.

In the MMC model, we shall consider a set S � 2 categorical sequences

each having m possible states in set M = f1; 2; 3; :::;mg:The state proba-

bility distribution of the jth sequence at time n + 1 depends on the state

probabilities of all the sequences (including itself) at time n: Let X(j)
n+1be the

state probability vector of the jth sequence at time n+ 1 , X(i)
n be the state

probability vector of the ith sequence at time n and X(i)
0 the initial proba-

bility distribution of the ith sequence. The Then, if P (j;i) is the transition

probability from the state in sequence i at time n to the the state in sequence

j at time n + 1; Ching et al (2002) de�ned the Multivariate Markov Chain

model as follow:

X
(j)
n+1 =

sX
i=1

�j;iP
(j;i)X(i)

n (3.4)
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which in matrix form can be expressed as

X
(j)
n+1 =

26666666666666666664

X
(1)
n+1

X
(2)
n+1

�

�

�

X
(s)
n+1

37777777777777777775

=

26666666666666666664

�1;1P
(1;1) �1;2P

(1;2) � � � �1;sP (1;s)

�2;1P
(2;1) �2;2P

(2;2) � � � �2;sP (2;s)

� � � � � �

� � � � � �

� � � � � �

�s;1P
(s;1) �s;2P

(s;2) � � � �s;sP
(s;s)

37777777777777777775

�

26666666666666666664

X
(1)
n

X
(2)
n

�

�

�

X
(s)
n

37777777777777777775
X
(j)
n+1 � �Xn

where �j;i � 0;
sX
i=1

�j;i = 1 ;8 j; i = 1; 2; 3; :::; s:

We notice that although the row sum for � do not equal to one ( the row

sum of P (j;i) is one) we still have the following proposition.

Proposition 3 Suppose that P (j;i) are irreducible 8 1 � j; i � s, and �j;i > 0

for 1 � j; i � s:Then there exists a vector

Xn =
�
X(1)
n ; X

(2)
n ; X

(3)
n ; :::; X

(s)
n

�T

17



such that Xn = �Xn and

mX
i=1

�
X(j)
n

�i
= 1; 1 � j � s (3.5)

where [�]idenote the ith entry corresponding of the corresponding vector.

The vector in the above proposition contains the stationary probability

distributions for the VWAP in the three stocks. In other words, for each

sequence j; there is a vectorX(j)
� which represents the probability distribution

for the jth portfolio (stock) in the long-run.

The transition probability matrices, P (j;i) are estimated through normal-

ization of the transition frequency matrices of the S categorical data se-

quences. The model parameters � = f�j;ig are estimated by minimizing

jjBX �Xjj under the vector norm jj � jj1:

With the assumption that �j;i � 0; the MMC model only allows positive

correlation among data sequences, that is, cases where an increase in the state

probability in any of the sequences at time n can only increase (but never

decrease) the state probabilities at time n + 1. Additionally, the number of

parameters for the MMC increases exponentially with increase in the number

of categorical sequences. For that reason, Ching et al.(2006) proposed a �rst-

18



order multivariate Markov chain model for modeling the sales demand of

multiple products in a soft drink company. Their model contained O(S2m2+

s2) number of parameters where S is the number of sequences and m is the

number of possible states. Their model captured both the intra- and inter-

transition probabilities among the sequences.

3.2.3 The Parsimonious Multivariate Markov Chain

(PMMC) model

In order to take care of the shortcomings mentioned above and to extend the

MMC,Ching et al (2007) considered the following equation to model the case

when the state probability vector Xn is negatively associated with a state

probability vector Zn+1:

Zn+1 =
(v �Xn)

m� 1 (3.6)

where v is a vector of all ones, (m � 1)�1 is a normalizing constant for

m � 2 states in each sequence.

With notations similar as the ones introduced in the previous section, the

19



improved parsimonious multivariate Markov chain model is de�ned as

X
(j)
n+1 = �

+X(i)
n + (m� 1)�1��(v �X(i)

n ) (3.7)

which in matrix form shall be

26666666666666666664

X
(j)
n+1

X
(j)
n+1

�

�

�

X
(j)
n+1

37777777777777777775

= �+

26666666666666666664

X
(j)
n

X
(j)
n

�

�

�

X
(j)
n

37777777777777777775

+ (m� 1)�1 � ��

26666666666666666664

v �X(j)
n

v�X(j)
n

�

�

�

v�X(j)
n

37777777777777777775
where �+Xn and (m � 1)�1 � ��Xn are respectively the positively and

negatively correlated parts of the transition probabilities.
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�+ =

26666666666666666664

�1;1P
(1;1) �1;2P

(1;2) � � � �1;sP (1;s)

�2;1P
(2;1) �2;2P

(2;2) � � � �2;sP (2;s)

� � � � � �

� � � � � �

� � � � � �

�s;1P
(s;1) �s;2P

(s;2) � � � �s;sP
(s;s)

37777777777777777775

(3.8)

�� =

26666666666666666664

�1;�1P
(1;1) �1;�2P

(1;2) � � � �1;�sP (1;s)

�2;�1P
(2;1) �2;�2P

(2;2) � � � �2;�sP (2;s)

� � � � � �

� � � � � �

� � � � � �

�s;�1P
(s;1) �s;�2P

(s;2) � � � �s;�sP
(s;s)

37777777777777777775

(3.9)

sX
i=�s

�j;i = 1; �j;i � 0; 8 1 � j � s; 1 � jij � s:

As observed in the previous section, the rows of �+and �� do not nec-

essarily sum one. However, Proposition 3 still holds and there exists two
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vectors

Xn =
�
X(1)
n ; X

(2)
n ; X

(3)
n ; :::; X

(s)
n

�T
and

Zn =
�
Z(1)n ; Z

(2)
n ; Z

(3)
n ; :::; Z

(s)
n

�T
each having a stationary probability vector (X� and Z� respectively) as

the time (n) increases.

in order to reduce the number of parameters in the model (and hence to

make the model more parsimonious) we set P (j;i) = I for i 6= j. This idea

was adopted, justi�ed and shown to be e¤ective in the forecasting of sales

demand by Ching W, Zhang S. and Ng M. (2006).

Lemma 4 Let A 2 Rm�m be non-negative and irreducible matrix, B 2

Cm�m a complex matrix and � an eigen value of B: If jAj > B; then

�(A) > j�j:

Application of the PMMC in the NSE market

In this study, we shall consider 125 daily volume weighted average price

(VWAP) values of three stocks (portfolios) S1;S2 and S3 in the NSE for a
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period of 6 months starting 3rd January 2011 to 31st June 2011. The VWAP

is obtained by dividing the turnover per counter by total number of shares

traded. To determine the change values, we form data sequences by taking

data of the previous day into consideration owing to the structure of the

Markov chains.

For this data we obtained 124 value rates by dividing the VWAP of the

day to be calculated with the value of the immediate previous trading day.

Then we note if the quotient is less than 1, equal to 1 or greater than 1. These

three values shall form a three-state (1, 2 and 3 respectively) multivariate

Markov chain.

Parameter Estimation for the PMMC model

Preliminary Analysis

Testing for association As stated in section 3.1, one of the assump-

tions of the MMC model is the correlation of the categorical data sequences.

In order to ascertain this assumption for our data we shall we perform sim-

ple linear regression and correlation analysis to the VWAP to determine the

direction and degree of a¤ection between the six possible combinations of
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three sequences. In simple regression, we have only two variables which are

assumed to have a real linear relationship between them. The two variables

are such that one is independent (which for convenience here we shall call Y )

while the other one is dependent (X). A simple linear regression equation

connecting X and Y is of the form:

Yi = �0 + �1Xi + " (3.10)

where �0 is the constant coe¢ cient that shows the intersection point, �1is

the slope coe¢ cient and " is the random noise or the error term.

The coe¢ cients and can be obtained by solving the following least squares

normal equations:

X
Y = n�0 + �1

X
X (3.11)X

XY = �0
X

X + �1
X

X2 (3.12)

The degree of linear relationship between X and Y is measured by the

correlation coe¢ cient (r) whose value ranges between �1where r values of

+1 and �1indicate perfect positive and perfect negative correlations respec-
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tively while a value of 0 indicates absence of correlation. The square of

the coe¢ cient of correlation (called the coe¢ cient of determination or just

" R-Squared" ) gives a measure used in statistical model analysis to assess

how well a model explains and predicts future outcomes. The correlation

coe¢ cient is de�ned as:

r =

P
XiYipP
X2
i �
P
Y 2i

(3.13)

The Durbin�Watson statistic The Durbin�Watson statistic (d) is a

test statistic used to detect the correlation of error terms after estimating the

regression model. This statistic ranges from 0 to 4 and if it is 2, this signi�es

the presence of autocorrelation (a relationship between values separated from

each other by a given time lag) in the residual terms from a regression analy-

sis. An acceptable range is 1.50 - 2.50. Where successive error di¤erences

are small, Durbin-Watson is low (less than 1.50); this indicates the pres-

ence of positive autocorrelation. Positive autocorrelation is very common.

Where successive error di¤erences are large, Durbin-Watson is high (more

than 2.50); this indicates the presence of negative autocorrelation. Negative

autocorrelation is not particularly common.
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If the Durbin-Watson statistic is greater than R- square, it is likely that

autocorrelation exists. Autocorrelation indicates that the forecast model

could be improved on. In time series with lagged variables, the Durbin-

Watson statistic is unreliable as it tends toward a value of 2.0.

This statistic is calculated using the formula:

d =

PT
t=2(et � et�1)2PT

t=2 e
2
t

(3.14)

Model Parameter Estimation First, we estimate the transition proba-

bility P (j;i). If data sequences are given and the state set isM = f1; 2; 3; :::;mg,

f
(j;i)
kj ;ki

is the frequency from the ki state in the ith sequence at time n to the

kj state in the jth sequence at time n + 1 with kj; ki 2 M , the transition
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frequency matrix can be represented as:

F (j;i) =

26666666666666666664

f
(j;i)
1;1 f

(j;i)
1;2 � � � f (j;i)1;s

f
(j;i)
2;1 f

(j;i)
2;2 � � � f (j;i)2;s

� � � � � �

� � � � � �

� � � � � �

f
(j;i)
s;1 f

(j;i)
s;2 � � � f (j;i)s;s

37777777777777777775
m�m

(3.15)

P (j;i) shall be obtained by normalizing the frequency transition matrix as:

P (j;i) =

26666666666666666664

p
(j;i)
1;1 p

(j;i)
1;2 � � � p(j;i)1;s

p
(j;i)
2;1 p

(j;i)
2;2 � � � p(j;i)2;s

� � � � � �

� � � � � �

� � � � � �

p
(j;i)
s;1 p

(j;i)
s;2 � � � p(j;i)s;s

37777777777777777775
m�m

(3.16)
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where

p
(j;i)
kj ;ki

=

8>>>>>><>>>>>>:

f
(j;i)
kj;kiPm

ki=1
f
(j;i)
kj;ki

if
Pm

ki=1
f
(j;i)
kj ;ki

6= 0

1
m

Otherwise

(3.17)

is the maximum likelihood estimator.

We shall then investigate the existence of a stationary distribution under

the Parsimonious multivariate Markov chain model, the rate of convergence

and how to speed up the rate of convergence. First, we represent the new

multivariate Markov chain model as the following vector-valued di¤erence

equation:

Xn+1=

26666666666666666664

X
(1)
n+1

X
(2)
n+1

:

:

:

X
(s)
n+1

37777777777777777775
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=

26666666666666666664

M1;1 M1;2 : : : M1;s

M2;1 M2;2 : : : M2;s

: : : : : :

: : : : : :

: : : : : :

Ms;1 Ms;2 : : : Ms;s

37777777777777777775

26666666666666666664

X
(1)
n

X
(2)
n

:

:

:

X
(s)
n

37777777777777777775

+ 1
m�1

26666666666666666664

J1;�1 J1;�2 : : : J1;�s

J2;�1 J2;�2 : : : J2;�s

: : : : : :

: : : : : :

: : : : : :

Js;�1 Js;�2 : : : Js;�s

37777777777777777775

26666666666666666664

1

1

:

:

:

1

37777777777777777775
�MsXn + b

where

Mj;i =

8>>>>>><>>>>>>:
(�j;i � �j;�i

m�1 )P
(j;i) if i = j

(�j;i � �j;�i
m�1 )I if i 6= j

Jj;i =

8>>>>>><>>>>>>:
�j;�iP

(j;i) if i = j

�j;�iP
(j;i) if i 6= j

We notice that

Xn+1 =M
2
sXn�1 + (I +Ms)b =M

3
sXn�2 + (I +Ms +M

2
s )

= Mn+1
s X0 +

Pn
k=0M

k
s b , where I =M0

s

The parsimonious multivariate Markov chain model has a stationary dis-

tribution if for jjMsjj < 1 we have
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limn!1Xn = limn!1
Pk

n b =
1

I�Ms
b

We also note that

jjMsjj1 � max1�k�s
n
mj�j;j � �j;j

m�1 j+
P

j 6=i j�j;i �
�j;i
m�1 j

o
:

The convergence rate of the process to stationary distribution can be

speeded up by controlling the value of jjMsjj1:To achieve this we shall impose

an upper bound � < 1 and introduce the following additional constraints

mj�j;j � �j;j
m�1 j+

P
j 6=i j�j;i �

�j;i
m�1 j � �

We observe that if a smaller value of � is chosen, the rate of conver-

gence to the stationary distribution becomes faster. Therefore,we can obtain

reasonably accurate estimates for the unknown parameters even when the

dataset is short.

One possible way of estimating �(j;i) is given as follows as proposed

by Ching W. et al (2005) is to formulate S linear programming problems

(Chvatal V. Linear programming ,Freeman,83). In order to avoid gross dis-

crepancies with the data we choose the vector norm jj � jj1 to minimize the

discrepancies. We have the following optimization problem:

min�j;i
�
maxi j

�Pm
i=1 �j;iP

(j;i)X(i) �X(j)
�
j
	

Subject to:
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sX
i=�s

�j;i = 1; �j;i � 0; 8j = 1; 2; 3; :::; s

�j;i � 0; 8i = �1;�2; :::;�s; 8j = 1; 2; 3; :::; s

mj�j;j �
�j;�j
m� 1 j+

X
j 6=i

j�j;i �
�j;�i
m� 1 j � �; j = 1; 2; 3; :::; s:

The PMMC model has a state vector, Xn (at time n) which can be

estimated from the sequences by computing the proportion of occurrence of

each state within each sequence. This vector shall be de�ned as :

Xn =
�
(X(1)

n )
T ; (X(2)

n )
T ; :::; (X(s)

n )
T
�T

; 2 Rsm�1

which satis�es: Xn+1 = �
+Xn + (m� � 1)�1 � ��(�v �Xn)

where �+ and �� are as de�ned in equation 3.8 and 3.9 respectively.

In the next chapter we shall perform preliminary data analysis to ascer-

tain that the sequences are correlated and then perfom the main analysis

to estimate the transition probabilities. Lastly, using linear programming

techniques we shall estimate �:
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Chapter 4

Data Analysis and Results

4.1 Preliminary Analysis

4.1.1 Testing relationship of sequences

1. The condition that the VWAP of S1 is dependent while the VWAP of S2

is independent:

Table 1: Testing of the Coe¢ cients

S1 Coe¤ Std Err t P>jt j 95% CI

S2 1.187 0.072 16.57 0.000 1.046 1.329

Constant -21.47 1.906 -11.27 0.000 -25.242 -17.698
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According to the �ndings derived in Table 1, both the constant coe¢ cient

in the regression equation and the coe¢ cient of S2 which represents the

independent variable are highly signi�cant. The regression equation shall be

estimated by:

S1 = �21:47 + 1:187S2

Table 2: Analysis of Variance

Source SS df MS

Model 513.396 1 513.396

Residual 229.871 123 1.869

Total 743.267 124 5.994

According to Table 2, the equation S1 = �21:47 + 1:187S2 formed on

the basis of data in Table 1 is highly signi�cant (Sig. 0:0000 < � = 0:05).

The results also show that the change in the VWAP of S1is 69:1% depended

on the VWAP of S2 ,implying that there is a 83:1% positive relationship

between the VWAPs of S1 and S2:The Durbin Watson test statistic is 0.1605

which implies presence of positive �rst-order serial correlation between error

terms.

2. The condition that the VWAP of S1 is independent while the VWAP

of S2 is dependent:
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Table 3: Testing of Coe¢ cients

S2 Coe¤ Std Err t P>jt j 95% CI

S1 0.582 0.035 16.57 0.000 0.512 0.651

Constant 20.700 0.363 57.03 0.000 19.982 21.419

According to the results derived from Table 3, the constant term and the

coe¢ cient of the VWAP of S1 are highly signi�cant at 95% con�dence level.

The regression of the VWAP of S2 on the VWAP of S2 can be estimated by

the equation:

S2 = 20:700 + 0:582S1

Table 4: Analysis of Variance

Source SS df MS

Model 251.545 1 251.545

Residual 112.628 123 0.916

Total 364.173 124 2.937

The results in Table 4 show that the equation S2 = 20:700 + 0:582S1 ob-

tained from data in Table 3 is highly signi�cant (Sig 0:0000 < � = 0:05). Fur-

ther, the results show that the change in the VWAP of S2 is 69:1% depended

on the VWAP of S1 ,implying that there is a 83:1% positive relationship be-
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tween the VWAPs of S2 and S1:The Durbin Watson test statistic is 0.1984,

which implies presence of positive �rst-order serial correlation between error

terms.

3. The condition that VWAP of S1 is dependent while the VWAP of S3

is independent

Table 5: Testing of Coe¢ cients

S1 Coe¤ Std Err t P>jt j 95% CI

S3 8.411 0.302 27.88 0.000 7.812 9.008

Constant -24.534 1.243 -19.74 0.000 -26.995

The results in Table 5 show that both the constant term and the coe¢ cient

of the VWAP of S3are highly signi�cant at 95% level of con�dence. The

regression of the VWAP of S1 on the VWAP of S3 will be estimated by the

equation:

S1 = �24:534 + 8:411S3

Table 6: Analysis of Variance
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Source SS df MS

Model 641.717 1 641.717

Residual 101.550 123 0.826

Total 743.267 124 5.994

According to the results in Table 6, the regression equation S1 = �24:534+

8:411S3 of the VWAP of S1 on the VWAP of S3 is highly signi�cant at 95%

level of con�dence. Further, the results show that the change in the VWAP

of S1 is 86:3% depended on the VWAP of S3 ,implying that there is a 92:9%

positive relationship between the VWAPs of S1 and S3:The Durbin Watson

test statistic is 0.4673, which implies the presence of positive �rst-order serial

correlation between error terms.

4. Condition when the VWAP of S1 is independent while the VWAP of

S3 is dependent:

Table 7: Testing of Coe¢ cients

S3 Coe¤ Std Err t P>jt j 95% CI

S1 0.103 0.004 27.88 0.000 0.095 0.110

Constant 3.08 0.038 80.90 0.000 3.005 3.155

The results in Table 7 show that both the constant term and the coe¢ cient
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of the VWAP of S1are highly signi�cant at 95% level of con�dence. The

regression of the VWAP of S3 on the VWAP of S1shall be estimated by the

equation:

S3 = 3:08 + 0:103S1

Table 8: Analysis of variance

Source SS df MS

Model 7.831 1 7.831

Residual 1.239 123 0.010

Total 9.071 124 0.073

The results in Table 8 show that the regression of the VWAP of S3 on the

VWAP of S1 given by the equation S3 = 3:08 + 0:103S1 is highly signi�cant

at 95% con�dence level. The results also show that the change in the VWAP

of S3 is 86:3% depended on the VWAP of S1 ,implying that there is a 92:9%

positive relationship between the VWAPs of S3 and S1:The Durbin Watson

statistic is 0.5179, which signi�es the presence of positive �rst-order serial

correlation between error terms.

5. Condition when VWAP of S2 is dependent while the VWAP of S3 is

independent:
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Table 9: Testing of Coe¢ cients

S2 Coe¤ Std Err t P>jt j 95% CI

S3 4.899 0.362 13.52 0.000 4.181 5.616

Constant 6.405 1.493 4.29 0.000 3.449 9.361

For the results in Table 9, both the constant term and the coe¢ cient of

S3 are highly signi�cant at 95% con�dence level. The resulting estimate of

the regression of the VWAP of S2 on the VWAP of S3 shall be given by:

S2 = 6:405 + 4:899S3

Table 10: Analysis of Variance

Source SS df MS

Model 217.659 1 217.659

Residual 146.513 123 1.191

Total 364.173 124 2.937

The results in Table 10 show that the coe¢ cients of the regression equa-

tion S2 = 6:405 + 4:899S3 are signi�cant at 95% level of con�dence. The

results also show that the change in the VWAP of S2 is 59:8% depended

on the VWAP of S3 ,implying that there is a 77:39% positive relationship
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between the VWAPs of S2 and S3:The Durbin Watson statistic of 0.2399,

which implies the presence of positive �rst-order serial correlation between

error terms.

6. The condition when the VWAP of S3 is dependent while the VWAP

of S2 is independent

Table 11: Testing of Coe¢ cients

S3 Coe¤ Std Err t P>jt j 95% CI

S2 0.122 0.009 13.52 0.000 0.104 0.140

Constant 0.873 0.240 3.63 0.000 0.397 1.348

According to the results in Table 11, both the constant term and the

coe¢ cient of the VWAP of S2 are highly signi�cant at 95% level of con�-

dence. From the results, regression of VWAP of S3on the VWAP of S2may

be estimated using the equation:

S3 = 0:873 + 0:122S2

Table 12: Analysis of Variance
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Source SS df MS

Model 5.421 1 5.421

Residual 3.649 123 0.030

Total 9.071 124 0.073

Table 12 shows that the regression equation S3 = 0:873+0:122S2 is highly

signi�cant at 95% level of con�dence. The results also show that the change

in the VWAP of S3 is 59:8% depended on the VWAP of S2 ,implying that

there is a 77:39% positive relationship between the VWAPs of S3 and S2:The

Durbin Watson statistic is 0.2272, which implies the presence of positive

�rst-order serial correlation between error terms.

4.1.2 The Durbin-Watson test

1. The condition that the VWAP of S1 is dependent while the VWAP of S2

is independent:

Durbin-Watson test

data: �t1

DW = 0.1605, p-value < 2.2e-16

alternative hypothesis: true autocorrelation is greater than 0
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2. The condition that the VWAP of S1 is independent while the VWAP

of S2 is dependent:

Durbin-Watson test

data: �t2

DW = 0.1984, p-value < 2.2e-16

alternative hypothesis: true autocorrelation is greater than 0

3. The condition that VWAP of S1 is dependent while the VWAP of S3

is independent

Durbin-Watson test

data: �t3

DW = 0.4673, p-value < 2.2e-16

alternative hypothesis: true autocorrelation is greater than 0

4. Condition when the VWAP of S1 is independent while the VWAP of

S3 is dependent:

Durbin-Watson test

data: �t4

DW = 0.5179, p-value < 2.2e-16

alternative hypothesis: true autocorrelation is greater than 0
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5. Condition when VWAP of S2 is dependent while the VWAP of S3 is

independent:

Durbin-Watson test

data: �t5

DW = 0.2399, p-value < 2.2e-16

alternative hypothesis: true autocorrelation is greater than 0

6. The condition when the VWAP of S3 is dependent while the VWAP

of S2 is independent

Durbin-Watson test

data: �t6

DW = 0.2272, p-value < 2.2e-16

alternative hypothesis: true autocorrelation is greater than 0

4.2 Model Parameter Estimation

4.2.1 Transition Frequencies

The transition frequency matrixes F (j;i) for all j = i indicate intra�sequence

�rst-lag state transition frequency counts and F (j;i) for all j 6= i indicate
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inter � sequence �rst-lag state transition frequency counts from the three

sequences (S1; S2 and S3) . The transition frequencies are as shown below:

F (1;1) =

26666664
43 8 19

9 1 3

19 4 17

37777775 F (2;1) =

26666664
27 23 20

5 5 3

11 14 15

37777775

F (3;1) =

26666664
26 28 16

6 3 4

14 8 18

37777775 F (2;2) =

26666664
19 11 13

15 18 9

9 13 16

37777775

F (1;2) =

26666664
24 4 15

25 3 14

22 6 10

37777775 F (3;2) =

26666664
17 15 11

15 15 12

14 9 15

37777775

F (3;3) =

26666664
20 8 18

12 18 9

14 13 11

37777775 F (1;3) =

26666664
26 6 14

25 4 10

20 3 15

37777775

F (2;3) =

26666664
16 18 12

14 10 15

13 14 11

37777775
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4.2.2 Transition Probabilities

Transition probabilities P (j;i) are matrixes are estimated by normalizing the

transition frequency matrices in the previous section. The transition proba-

bilities are as shown below:

P (1;1) =

26666664
0:614 0:114 0:271

0:692 0:077 0:231

0:475 0:100 0:425

37777775 P (2;1) =

26666664
0:386 0:329 0:286

0:385 0:385 0:231

0:275 0:350 0:375

37777775

P (3;1) =

26666664
0:371 0:400 0:229

0:462 0:231 0:308

0:350 0:200 0:450

37777775 P (2;2) =

26666664
0:442 0:256 0:302

0:357 0:429 0:214

0:237 0:342 0:421

37777775

P ((1;2) =

26666664
0:558 0:093 0:349

0:595 0:071 0:333

0:579 0:158 0:263

37777775 P (3;2) =

26666664
0:395 0:349 0:256

0:357 0:357 0:286

0:368 0:237 0:395

37777775

P (3;3) =

26666664
0:435 0:174 0:391

0:308 0:462 0:231

0:368 0:342 0:289

37777775 P (1;3) =

26666664
0:565 0:130 0:304

0:641 0:103 0:256

0:526 0:079 0:395

37777775
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P (2;3) =

26666664
0:348 0:391 0:261

0:359 0:256 0:385

0:283 0:304 0:239

37777775

4.2.3 State Probability Vectors

The state probability vectors X(1)
n ; X

(2)
n and X(3)

n for the sequences S1; S2

and S3 respectively shall be estimated by the proportion of occurrence of

each state within individual sequences as shown below:

X
(1)
n =

�
71
124

13
124

40
124

�T
=
�
0:573 0:105 0:323

�T
X
(2)
n =

�
43
124

42
124

39
124

�T
=

�
0:347 0:339 0:315

�T

X
(3)
n =

�
46
124

40
124

38
124

�T
=

�
0:371 0:323 0:306

�T
Thus, from the above three state probability vectors we can de�ne

Xn =
�
X
(1)
n ; X

(2)
n ; X

(3)
n

�T

=

266666664
0:573 0:105 0:323

0:347 0:339 0:315

0:371 0:323 0:306

377777775
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We note that the vector Xn ! a stationary probability vector X� as time

(n) increases a shown below:

X� =

26666664
0:46 0:228 0:317

0:46 0:228 0:317

0:46 0:228 0:317

37777775
De�ne

Bj;i =
h
P (j;1) �X(1)

n jP (j;2) �X(2)
n j:::jP (j;s) �X(s)

n j
i
;

8j = 1; 2; 3; :::; s.

In our study the matrices will be as follows:

B1 =
h
P (1;1) �X(1)

n jP (1;2) �X(2)
n jP (1;3) �X(3)

n

i

=

26666664
0:451 0:347 0:371

0:479 0:339 0:323

0:420 0:315 0:306

37777775

B2 =
h
P (2;1) �X(1)

n jP (2;2) �X(2)
n jP (2;3) �X(3)

n

i

=

26666664
0:573 0:335 0:371

0:105 0:337 0:323

0:323 0:331 0:306

37777775
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B3 =
h
P (3;1) �X(1)

n jP (3;2) �X(2)
n jP (3;3) �X(3)

n

i

=

26666664
0:573 0:347 0:337

0:105 0:339 0:334

0:323 0:315 0:335

37777775
In order for our model to apply for both positively and negatively corre-

lated data sequences we generate a state probability vector Zn+1 =
h
Z
(1)
n ; Z

(2)
n ; Z

(3)
n

i
=

1
m�1(v �Xn) which is negatively correlated to Xn; where (m� 1)�1is a nor-

malizing constant for m = 3 for number of states in our data, v is 3 � 3

matrix with all entries equal to 1 and Xn is the state probability distribution

vector for the three sequences. Thus,

Zn =

26666664
0:214 0:448 0:338

0:326 0:330 0:342

0:314 0:338 0:347

37777775

T

which is a state distribution probability matrix with each column representing

a state probability vector Z(1)n ; Z
(2)
n and Z(3)n which is negatively correlated

to X(1)
n ; X

(2)
n and X(3)

n respectively. We notice that
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Zn ! Z� =

26666664
0:19 0:241 0:225

0:19 0:241 0:225

0:19 0:241 0:225

37777775
which is a stationary probability matrix as n increases.

Using the de�nition of Bj;i given earlier, we shall get :

B1� =
h
P (1;1) � Z(1)n jP (1;2) � Z(2)n jP (1;3) � Z(3)n

i

=

26666664
0:274 0:326 0:314

0:261 0:330 0:338

0:290 0:342 0:347

37777775
B2� =

h
P (2;1) � Z(1)n jP (2;2) � Z(2)n jP (2;3) � Z(3)n

i

=

26666664
0:214 0:332 0:314

0:448 0:331 0:338

0:338 0:334 0:347

37777775
B3� =

h
P (3;1) � Z(1)n jP (3;2) � Z(2)n jP (3;3) � Z(3)n

i

=

26666664
0:214 0:326 0:331

0:448 0:330 0:333

0:338 0:342 0:331

37777775
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4.2.4 Solving optimization problems

In to get �j;i for j = 1; 2; 3; :::; s and i = �1;�2;�3; :::;�s; we solve the

following optimization problem using the Lingo Lindo 14.0 software.

min wj(�)

Subject to:

wj � X(j)
n �Bj�j;i

wj � �X(j)
n +Bj�j;i

wj � 0;
sX

i=�s
�j;i = 1; �j;i > 0;

8i = �1;�2; :::;�s; 8j = 1; 2; 3; :::; s

mj�j;j �
�j;�j
m� 1 j+

X
j 6=i

j�j;i �
�j;�i
m� 1 j � �; j = 1; 2; 3; :::; s:

for all Bj

Problem 5 We shall solve the following linear programming problem:

min w :

w � 0:573� 0:451�1;1 � 0:335�1;2 � 0:345�1;3
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w � �0:573 + 0:451�1;1 + 0:335�1;2 + 0:345�1;3

w � 0:105� 0:479�1;1 � 0:335�1;2 � 0:349�1;3

w � �0:105 + 0:479�1;1 + 0:335�1;2 + 0:349�1;3

w � 0:323� 0:420�1;1 � 0:337�1;2 � 0:342�1;3

w � �0:323 + 0:420�1;1 + 0:337�1;2 + 0:342�1;3

w � 0:214� 0:274�1;�1 � 0:332�1;�2 � 0:327�1;�3

w � �0:214 + 0:274�1;�1 + 0:332�1;�2 + 0:327�1;�3

w � 0:448� 0:261�1;�1 � 0:331�1;�2 � 0:325�1;�3

w � �0:448 + 0:261�1;�1 + 0:331�1;�2 + 0:325�1;�3

w � 0:338� 0:290�1;�1 � 0:331�1;�2 � 0:329�1;�3

w � �0:338 + 0:290�1;�1 + 0:331�1;�2 + 0:329�1;�3

subject to:

w � 0

�1;1 + �1;2 + �1;3 + �1;�1 + �1;�2 + �1;�3 = 1

�1;i > 0; 8i = �1;�2;�3

Solution 6 Global optimal solution found.

Objective value: 0.3198829

Objective bound: 0.3198829
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Infeasibilities: 0.000000

Extended solver steps: 0

Total solver iterations: 14

Elapsed runtime seconds: 0.12

V ariable V alue

w 0:3198829

�1;1 0:2842835

�1;2 0:000000

�1;3 0:3366718

�1;�1 0:000000

�1;�2 0:000000

�1;�3 0:3790447

Problem 7 We need to solve the following linear programming problem:

min w1 :

w1 � 0:347� 0:348�2;1 � 0:335�2;2 � 0:335�2;3

w1 � �0:347 + 0:348�2;1 + 0:335�2;2 + 0:335�2;3

w1 �= 0:339� 0:336�2;1 � 0:337�2;2 � 0:334�2;3

w1 � �0:339 + 0:336�2;1 + 0:337�2;2 + 0:334�2;3

w1 � 0:315� 0:3151�2;1 � 0:331�2;2 � 0:276�2;3
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w1 � �0:315 + 0:3151�2;1 + 0:331�2;2 + 0:276�2;3

w1 � 0:326� 0:327�2;�1 � 0:332�2;�2 � 0:332�2;�3

w1 � �0:326 + 0:327�2;�1 + 0:332�2;�2 + 0:332�2;�3

w1 � 0:330� 0:333�2;�1 � 0:332�2;�2 � 0:333�2;�3

w1 � �0:330 + 0:333�2;�1 + 0:332�2;�2 + 0:333�2;�3

w1 � 0:342� 0:342�2;�1 � 0:334�2;�2 � 0:275�2;�3

w1 � �0:342 + 0:342�2;�1 + 0:334�2;�2 + 0:275�2;�3

subject to

w1 � 0

�2;1 + �2;2 + �2;3 + �2;�1 + �2;�2 + �2;�3 = 1

�2;i > 0; 8i = �1;�2;�3

Solution 8 Global optimal solution found.

Objective value: 0.1708543

Objective bound: 0.1708543

Infeasibilities: 0.000000

Extended solver steps: 4

Total solver iterations: 36

Elapsed runtime seconds: 0.10
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V ariable V alue

w1 0:1708543

�2;1 0:000000

�2;2 0:3261797

�2;3 0:1802575

�2;�1 0:000000

�2;�2 0:00927658

�2;�3 0:4842863

Problem 9 We need to solve the following linear programming problems

min w2 :

w2 � 0:371� 0:329�3;1 � 0:336�3;2 � 0:337�3;3

w2 � �0:371 + 0:329�3;1 + 0:336�3;2 + 0:337�3;3

w2 � 0:323� 0:388�3;1 � 0:335�3;2 � 0:334�3;3

w2 � �0:323 + 0:388�3;1 + 0:335�3;2 + 0:334�3;3

w2 � 0:306� 0:367�3;1 � 0:332�3;2 � 0:335�3;3

w2 � �0:306 + 0:367�3;1 + 0:332�3;2 + 0:335�3;3

w2 � 0:314� 0:336�3;�1 � 0:331�3;�2 � 0:331�3;�3

w2 � �0:314 + 0:336�3;�1 + 0:331�3;�2 + 0:331�3;�3
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w2 � 0:338� 0:306�3;�1 � 0:332�3;�2 � 0:333�3;�3

w2 � �0:338 + 0:306�3;�1 + 0:332�3;�2 + 0:333�3;�3

w2 � 0:347� 0:317�3;�1 � 0:333�3;�2 � 0:331�3;�3

w2 � �0:347 + 0:317�3;�1 + 0:333�3;�2 + 0:331�3;�3

w2 � 0;

Solution 10 Global optimal solution found.

Objective value: 0.1914343

Objective bound: 0.1914343

Infeasibilities: 0.000000

Extended solver steps: 5

Total solver iterations: 31

Elapsed runtime seconds: 0.08
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V ariable V alue

w2 0:1914343

�3;1 0:000000

�3;1 0:000000

�3;3 0:5328358

�3;�1 0:000000

�3;�2 0:4671642

�3;�3 0:000000

Thus we have

� =

8>>>>>><>>>>>>:
�1;1 �1;2 �1;3 �1;�1 �1;�2 �1;�3

�2;1 �2;2 �2;3 �2;�1 �2;�2 �2;�3

�3;1 �3;2 �3;3 �3;�1 �3;�2 �3;�3

9>>>>>>=>>>>>>;

=

8>>>>>><>>>>>>:
0:284 0:000 0:337 0:000 0:000 0:379

0:000 0:326 0:180 0:0000 0:009 0:484

0:000 0:000 0:533 0:000 0:467 0:000

9>>>>>>=>>>>>>;
The parsimonious Multivariate markov chain is of the form

X
(j)
n+1 = �

+X(i)
n + (m� 1)�1��(v �X(i)

n )

hence we have

55



26666664
X
(1)
n+1

X
(2)
n+1

X
(3)
n+1

37777775 =
26666664
0:284P (1;1) 0:000I 0:337I

0:000I 0:326P (2;2) 0:180I

0:000I 0:000I 0:533P (3;3)

37777775�
26666664
X
(1)
n

X
(2)
n

X
(3)
n

37777775+
1
2

26666664
0:000P (1;1) 0:00I 0:379I

0:000I 0:009P (2;2) 0:484I

0:000I 0:0:467I 0:000P (3;3)

37777775
26666664
1�X(1)

n

1�X(2)
n

1�X(3)
n

37777775
X
(1)
n+1 = 0:284P

(1;1)X
(1)
n + 0:337IX

(2)
n + 1

2
� 0:379(1�X(3)

n )

X
(2)
n+1 = 0:326P

(2;2)X
(2)
n +0:180IX

(3)
n + 1

2
0:009P (2;2)(1�X(2)

n )+ 1
2
0:484I(1�

X
(3)
n )

X
(3)
n+1 = 0:533P

(3;3)X
(3)
n + 1

2
0:467I(1�X(2)

n )

56



Chapter 5

Conclusions and

Recommendations

5.1 Discussion of Results

The preliminary tests show that the sequences are all positively related in

the six conditions stated above. Thus all our assumptions for the PMMC

model have been ascertained.

The Durbin-watson test statistic is less than the "acceptable" level (less

than 1.5) which implies that the ordinary least squares method is not the

best method to test for level of a¤ection of the three sequences. This quali�es
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our approach to use a di¤erent method to test for level of a¤ection across

sequences using the multivariate markov chain.

Form the stationary probability vector vector X� of Xn we observe that

shares prices for the three stocks are eventually up about the probability of

31:7%, non-changing about 22:3% and decreasing in about 46%.Therefore,

investors should be less optimistic for the near future because they can only

avoid loss with a total probability of about 54:5%.

In the Parsimonious Multivariate Markov Chain model we considered

both positively and negatively correlated data sequences.Thus, di¤erent per-

spectives may be formed and di¤erent comments can be made compared to

the previous Multivariate Markov Chain model. In this study, daily VWAP

changes in three stocks in the NSE are taken as the categorical data se-

quences. The results of the extend to which the three sequences a¤ect each

other is discussed below:

X
(1)
n+1 variable in the daily changes of the VWAP of S1, at time n + 1 is

bound to itself (X(1)
n ) by 28:4% and is bound to the variable X(2)

n+1 in the

daily changes of the VWAP of S2 by 33:7% at time n:We also notice that the

variable depends on other variables which are negatively correlated to S3 by
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37:9% at time n:

X
(2)
n+1 variable in the daily changes of the VWAP of S2, at time n + 1

is bound to itself by 32:6% and is bound to X(3)
n by 18:0% at time n .The

varaible is also bound to a varaible negatively associated with the growth of

VWAP of S3at time n by 48:4%:

X
(3)
n+1 variable in the daily changes of the VWAP of S3, at time n + 1

is bound to itself (X(3)
n ) at time n by 53:3% and is bound to a sequence(s)

negatively correlated to X(2)
n by 41:7% at time n:

We observe that the prices of S3 are highly in�uenced by what happens

within the sequence by more than 50% compared to in�uence from other

sequences.We also observe that S3 is either directly or indirectly a¤ecting

the growth prospects of the other two sequences either directly or indirectly.

5.2 Conclusion

We have seen that the parsimonious multivariate markov chain model can

be used to predict future prospects of stock prices and how the level of

"e¤ection" among various stock. However, the prediction method used here

is only a probability forecasting method, the predicted results is expressed as
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probability of a certain state of stock prices in the future, rather than be in an

absolute state. Therefore, it is recommended that a combination methods

be used in addition to the prediction using the parsimonious multivariate

markov chain model so as to measure the e¤ect of the other factors (forces)

that drive stock prices in the NSE.

5.3 Recommendation for Further Studies

The use of Higher-order Parsimonious Multivariate Markov Chain model in

stock markets
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Appendix

1. \QTR{bf}{R codes for estimating Markov chain model}

b=read.csv("NSE_data_states.csv")

attach(b)

c=subset(b,x1==1)

d=subset(c,x4==1)

e=subset(c,x4==2)

f=subset(c,x4==3)

length(d$x1)###entry of the frequencey matrix###

length(e$x1)###entry of the frequencey matrix###

length(f$x1)###entry of the frequencey matrix###

s1=sum(length(d$x1)+length(e$x1)+length(f$x1))

#######

c1=subset(b,x1==2)

d1=subset(c1,x4==1)

e1=subset(c1,x4==2)

f1=subset(c1,x4==3)

length(d1$x1)###entry of the frequencey matrix###

length(e1$x1)###entry of the frequencey matrix###
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length(f1$x1)###entry of the frequencey matrix###

s2=sum(length(d1$x1)+length(e1$x1)+length(f1$x1))

######

c2=subset(b,x1==3)

d2=subset(c2,x4==1)

e2=subset(c2,x4==2)

f2=subset(c2,x4==3)

length(d2$x1)###entry of the frequencey matrix###

length(e2$x1)###entry of the frequencey matrix###

length(f2$x1)###entry of the frequencey matrix###

s3=sum(length(d2$x1)+length(e2$x1)+length(f2$x1))

F11=matrix(c(length(d$x1),length(e$x1),length(f$x1),

length(d1$x1),length(e1$x1),length(f1$x1),length(d2$x1),

length(e2$x1),length(f2$x1)),ncol=3,byrow=T)

P11=round(matrix(c(length(d$x1)/s1,length(e$x1)/s1,

length(f$x1)/s1,

length(d1$x1)/s2,length(e1$x1)/s2,length(f1$x1)/s2,

length(d2$x1)/s3,length(e2$x1)/s3,length(f2$x1)/s3),

ncol=3,byrow=T),3)
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##############################P21#############

c=subset(b,x1==1)

d=subset(c,x5==1)

e=subset(c,x5==2)

f=subset(c,x5==3)

length(d$x1)###entry of the frequencey matrix###

length(e$x1)###entry of the frequencey matrix###

length(f$x1)###entry of the frequencey matrix###

s11=sum(length(d$x1)+length(e$x1)+length(f$x1))

c1=subset(b,x1==2)

d1=subset(c1,x5==1)

e1=subset(c1,x5==2)

f1=subset(c1,x5==3)

length(d1$x1)###entry of the frequencey matrix###

length(e1$x1)###entry of the frequencey matrix###

length(f1$x1)###entry of the frequencey matrix###

s12=sum(length(d1$x1)+length(e1$x1)+length(f1$x1))

###########

c2=subset(b,x1==3)
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d2=subset(c2,x5==1)

e2=subset(c2,x5==2)

f2=subset(c2,x5==3)

length(d2$x1)###entry of the frequencey matrix###

length(e2$x1)###entry of the frequencey matrix###

length(f2$x1)###entry of the frequencey matrix###

s13=sum(length(d2$x1)+length(e2$x1)+length(f2$x1))

F21=matrix(c(length(d$x1),length(e$x1),length(f$x1),

length(d1$x1),length(e1$x1),length(f1$x1),

length(d2$x1),length(e2$x1),length(f2$x1)),ncol=3,byrow=T)

P21=round(matrix(c(length(d$x1)/s11,length(e$x1)/s11,

length(f$x1)/s11,

length(d1$x1)/s12,length(e1$x1)/s12,length(f1$x1)/s12,

length(d2$x1)/s13,length(e2$x1)/s13,length(f2$x1)/s13),

ncol=3,byrow=T),3)

###########################P31###########

c=subset(b,x1==1)

d=subset(c,x6==1)

e=subset(c,x6==2)
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f=subset(c,x6==3)

length(d$x1)###entry of the frequencey matrix###

length(e$x1)###entry of the frequencey matrix###

length(f$x1)###entry of the frequencey matrix###

s1_1=sum(length(d$x1)+length(e$x1)+length(f$x1))

############

c1=subset(b,x1==2)

d1=subset(c1,x6==1)

e1=subset(c1,x6==2)

f1=subset(c1,x6==3)

length(d1$x1)###entry of the frequencey matrix###

length(e1$x1)###entry of the frequencey matrix###

length(f1$x1)###entry of the frequencey matrix###

s1_2=sum(length(d1$x1)+length(e1$x1)+length(f1$x1))

###########

c2=subset(b,x1==3)

d2=subset(c2,x6==1)

e2=subset(c2,x6==2)

f2=subset(c2,x6==3)
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length(d2$x1)###entry of the frequencey matrix###

length(e2$x1)###entry of the frequencey matrix###

length(f2$x1)###entry of the frequencey matrix###

s1_3=sum(length(d2$x1)+length(e2$x1)+length(f2$x1))

######

F31=matrix(c(length(d$x1),length(e$x1),length(f$x1),

length(d1$x1),length(e1$x1),length(f1$x1),length(d2$x1),

length(e2$x1),length(f2$x1)),ncol=3,byrow=T)

P31=round(matrix(c(length(d$x1)/s1_1,length(e$x1)/s1_1,

length(f$x1)/s1_1,

length(d1$x1)/s1_2,length(e1$x1)/s1_2,length(f1$x1)/s1_2,

length(d2$x1)/s1_3,length(e2$x1)/s1_3,length(f2$x1)/s1_3),

ncol=3,byrow=T),3)

######################P22##########

c=subset(b,x2==1)

d=subset(c,x5==1)

e=subset(c,x5==2)

f=subset(c,x5==3)

length(d$x5)###entry of the frequencey matrix###
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length(e$x5)###entry of the frequencey matrix###

length(f$x5)###entry of the frequencey matrix###

s_1=sum(length(d$x1)+length(e$x1)+length(f$x1))

#######

c1=subset(b,x2==2)

d1=subset(c1,x5==1)

e1=subset(c1,x5==2)

f1=subset(c1,x5==3)

length(d1$x5)###entry of the frequencey matrix###

length(e1$x5)###entry of the frequencey matrix###

length(f1$x5)###entry of the frequencey matrix###

s_2=sum(length(d1$x1)+length(e1$x1)+length(f1$x1))

###############

c2=subset(b,x2==3)

d2=subset(c2,x5==1)

e2=subset(c2,x5==2)

f2=subset(c2,x5==3)

length(d2$x5)###entry of the frequencey matrix###

length(e2$x5)###entry of the frequencey matrix###
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length(f2$x5)###entry of the frequencey matrix###

s_3=sum(length(d2$x1)+length(e2$x1)+length(f2$x1))

######

F22=matrix(c(length(d$x1),length(e$x1),length(f$x1),

length(d1$x1),length(e1$x1),length(f1$x1),length(d2$x1),

length(e2$x1),length(f2$x1)),ncol=3,byrow=T)

P22=round(matrix(c(length(d$x1)/s_1,length(e$x1)/s_1,

length(f$x1)/s_1,

length(d1$x1)/s_2,length(e1$x1)/s_2,length(f1$x1)/s_2,

length(d2$x1)/s_3,length(e2$x1)/s_3,length(f2$x1)/s_3),

ncol=3,byrow=T),3)

###########################P12################

c=subset(b,x2==1)

d=subset(c,x4==1)

e=subset(c,x4==2)

f=subset(c,x4==3)

length(d$x1)###entry of the frequencey matrix###

length(e$x1)###entry of the frequencey matrix###

length(f$x1)###entry of the frequencey matrix###
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s1_=sum(length(d$x1)+length(e$x1)+length(f$x1))

###

c1=subset(b,x2==2)

d1=subset(c1,x4==1)

e1=subset(c1,x4==2)

f1=subset(c1,x4==3)

length(d1$x1)###entry of the frequencey matrix###

length(e1$x1)###entry of the frequencey matrix###

length(f1$x1)###entry of the frequencey matrix###

s2_=sum(length(d1$x1)+length(e1$x1)+length(f1$x1))

##############

c2=subset(b,x2==3)

d2=subset(c2,x4==1)

e2=subset(c2,x4==2)

f2=subset(c2,x4==3)

length(d2$x1)###entry of the frequencey matrix###

length(e2$x1)###entry of the frequencey matrix###

length(f2$x1)###entry of the frequencey matrix###

s3_=sum(length(d2$x1)+length(e2$x1)+length(f2$x1))
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#####

F12=matrix(c(length(d$x1),length(e$x1),length(f$x1),

length(d1$x1),length(e1$x1),length(f1$x1),length(d2$x1),

length(e2$x1),length(f2$x1)),ncol=3,byrow=T)

P12=round(matrix(c(length(d$x1)/s1_,length(e$x1)/s1_,

length(f$x1)/s1_,

length(d1$x1)/s2_,length(e1$x1)/s2_,length(f1$x1)/s2_,

length(d2$x1)/s3_,length(e2$x1)/s3_,length(f2$x1)/s3_),

ncol=3,byrow=T),3)

#####################################P32##########

c=subset(b,x2==1)

d=subset(c,x6==1)

e=subset(c,x6==2)

f=subset(c,x6==3)

length(d$x1)###entry of the frequencey matrix###

length(e$x1)###entry of the frequencey matrix###

length(f$x1)###entry of the frequencey matrix###

s_11=sum(length(d$x1)+length(e$x1)+length(f$x1))

##########

73



c1=subset(b,x2==2)

d1=subset(c1,x6==1)

e1=subset(c1,x6==2)

f1=subset(c1,x6==3)

length(d1$x1)###entry of the frequencey matrix###

length(e1$x1)###entry of the frequencey matrix###

length(f1$x1)###entry of the frequencey matrix###

s_22=sum(length(d1$x1)+length(e1$x1)+length(f1$x1))

####

c2=subset(b,x2==3)

d2=subset(c2,x6==1)

e2=subset(c2,x6==2)

f2=subset(c2,x6==3)

length(d2$x1)###entry of the frequencey matrix###

length(e2$x1)###entry of the frequencey matrix###

length(f2$x1)###entry of the frequencey matrix###

s_33=sum(length(d2$x1)+length(e2$x1)+length(f2$x1))

#########

F32=matrix(c(length(d$x1),length(e$x1),length(f$x1),
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length(d1$x1),length(e1$x1),length(f1$x1),length(d2$x1),

length(e2$x1),length(f2$x1)),ncol=3,byrow=T)

P32=round(matrix(c(length(d$x1)/s_11,length(e$x1)/s_11,

length(f$x1)/s_11,

length(d1$x1)/s_22,length(e1$x1)/s_22,length(f1$x1)/s_22,

length(d2$x1)/s_33,length(e2$x1)/s_33,length(f2$x1)/s_33),

ncol=3,byrow=T),3)

##############P33############

c=subset(b,x3==1)

d=subset(c,x6==1)

e=subset(c,x6==2)

f=subset(c,x6==3)

length(d$x1)###entry of the frequencey matrix###

length(e$x1)###entry of the frequencey matrix###

length(f$x1)###entry of the frequencey matrix###

s__1=sum(length(d$x1)+length(e$x1)+length(f$x1))

######

c1=subset(b,x3==2)

d1=subset(c1,x6==1)
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e1=subset(c1,x6==2)

f1=subset(c1,x6==3)

length(d1$x1)###entry of the frequencey matrix###

length(e1$x1)###entry of the frequencey matrix###

length(f1$x1)###entry of the frequencey matrix###

s__2=sum(length(d1$x1)+length(e1$x1)+length(f1$x1))

#####

c2=subset(b,x3==3)

d2=subset(c2,x6==1)

e2=subset(c2,x6==2)

f2=subset(c2,x6==3)

length(d2$x1)###entry of the frequencey matrix###

length(e2$x1)###entry of the frequencey matrix###

length(f2$x1)###entry of the frequencey matrix###

s__3=sum(length(d2$x1)+length(e2$x1)+length(f2$x1))

####

F33=matrix(c(length(d$x1),length(e$x1),length(f$x1),

length(d1$x1),length(e1$x1),length(f1$x1),length(d2$x1),

length(e2$x1),length(f2$x1)),ncol=3,byrow=T)
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P33=round(matrix(c(length(d$x1)/s__1,length(e$x1)/s__1,

length(f$x1)/s__1,

length(d1$x1)/s__2,length(e1$x1)/s__2,length(f1$x1)/s__2,

length(d2$x1)/s__3,length(e2$x1)/s__3,length(f2$x1)/s__3),

ncol=3,byrow=T),3)

##########################P13##########

c=subset(b,x3==1)

d=subset(c,x4==1)

e=subset(c,x4==2)

f=subset(c,x4==3)

length(d$x1)###entry of the frequencey matrix###

length(e$x1)###entry of the frequencey matrix###

length(f$x1)###entry of the frequencey matrix###

s1__=sum(length(d$x1)+length(e$x1)+length(f$x1))

#####

c1=subset(b,x3==2)

d1=subset(c1,x4==1)

e1=subset(c1,x4==2)

f1=subset(c1,x4==3)
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length(d1$x1)###entry of the frequencey matrix###

length(e1$x1)###entry of the frequencey matrix###

length(f1$x1)###entry of the frequencey matrix###

s2__=sum(length(d1$x1)+length(e1$x1)+length(f1$x1))

###

c2=subset(b,x3==3)

d2=subset(c2,x4==1)

e2=subset(c2,x4==2)

f2=subset(c2,x4==3)

length(d2$x1)###entry of the frequencey matrix###

length(e2$x1)###entry of the frequencey matrix###

length(f2$x1)###entry of the frequencey matrix###

s3__=sum(length(d2$x1)+length(e2$x1)+length(f2$x1))

F13=matrix(c(length(d$x1),length(e$x1),length(f$x1),

length(d1$x1),length(e1$x1),length(f1$x1),length(d2$x1),

length(e2$x1),length(f2$x1)),ncol=3,byrow=T)

P13=round(matrix(c(length(d$x1)/s1__,length(e$x1)/s1__,

length(f$x1)/s1__,

length(d1$x1)/s2__,length(e1$x1)/s2__,length(f1$x1)/s2__,
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length(d2$x1)/s3__,length(e2$x1)/s3__,length(f2$x1)/s3__),

ncol=3,byrow=T),3)

#####################23############

c=subset(b,x3==1)

d=subset(c,x5==1)

e=subset(c,x5==2)

f=subset(c,x5==3)

length(d$x1)###entry of the frequencey matrix###

length(e$x1)###entry of the frequencey matrix###

length(f$x1)###entry of the frequencey matrix###

s_1_=sum(length(d$x1)+length(e$x1)+length(f$x1))

##########

c1=subset(b,x3==2)

d1=subset(c1,x5==1)

e1=subset(c1,x5==2)

f1=subset(c1,x5==3)

length(d1$x1)###entry of the frequencey matrix###

length(e1$x1)###entry of the frequencey matrix###

length(f1$x1)###entry of the frequencey matrix###
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s_2_=sum(length(d1$x1)+length(e1$x1)+length(f1$x1))

#########

c2=subset(b,x3==3)

d2=subset(c2,x5==1)

e2=subset(c2,x5==2)

f2=subset(c2,x5==3)

length(d2$x1)###entry of the frequencey matrix###

length(e2$x1)###entry of the frequencey matrix###

length(f2$x1)###entry of the frequencey matrix###

s_3_=sum(length(d$x1)+length(e$x1)+length(f$x1))

F23=matrix(c(length(d$x1),length(e$x1),length(f$x1),

length(d1$x1),length(e1$x1),length(f1$x1),length(d2$x1),

length(e2$x1),length(f2$x1)),ncol=3,byrow=T)

P23=round(matrix(c(length(d$x1)/s_1_,length(e$x1)/s_1_,

length(f$x1)/s_1_,

length(d1$x1)/s_2_,length(e1$x1)/s_2_,length(f1$x1)/s_2_,

length(d2$x1)/s_3_,length(e2$x1)/s_3_,length(f2$x1)/s_3_),

ncol=3,byrow=T),3)

#########################Frequency Matrixes#####################
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###############Xt##########

xt1=subset(b,x1==1)

length(xt1$x1)

xt2=subset(b,x1==2)

length(xt2$x1)

xt3=subset(b,x1==3)

length(xt3$x1)

Xt1=t(cbind(length(xt1$x1)/124,length(xt2$x1)/124,length(xt3$x1)/124))

Xt1=round(Xt1,3)

##

xt1=subset(b,x2==1)

length(xt1$x2)

xt2=subset(b,x2==2)

length(xt2$x2)

xt3=subset(b,x2==3)

length(xt3$x2)

Xt2=t(cbind(length(xt1$x1)/124,length(xt2$x1)/124,length(xt3$x1)/124))

Xt2=round(Xt2,3)

######
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xt1=subset(b,x3==1)

length(xt1$x3)

xt2=subset(b,x3==2)

length(xt2$x3)

xt3=subset(b,x3==3)

length(xt3$x3)

Xt3=t(cbind(length(xt1$x1)/124,length(xt2$x1)/124,length(xt3$x1)/124))

Xt3=round(Xt3,3)

Xt=(matrix(c(Xt1,Xt2,Xt3),ncol=3,byrow=T))

Xt=round(Xt,3)

####################Matrix B#################

c1=P11%*%Xt1

c2=P12%*%Xt2

c3=P13%*%Xt3

B1=round(cbind(c1,c2,c3),3)

c11=P21%*%Xt1

c22=P22%*%Xt2

c33=P23%*%Xt3

B2=round(cbind(c11,c22,c33),3)
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##########

c111=P31%*%Xt1

c222=P32%*%Xt2

c333=P33%*%Xt3

B3=round(cbind(c111,c222,c333),3)

#############Zt+1####the negative correlation bit############

e=matrix(c(1,1,1,1,1,1,1,1,1),ncol=3,byrow=T)

Z=round(1/2*(e-(Xt)),3)

Zt1=round(matrix(c(0.214,0.448,0.338),ncol=1,byrow=F),3)

Zt2=round(matrix(c(0.326,0.330,0.342),ncol=1,byrow=F),3)

Zt3=round(matrix(c(0.314,0.338, 0.347),ncol=1,byrow=F),3)

###########Matrix B for negative part##########

c1=P11%*%Zt1

c2=P12%*%Zt2

c3=P13%*%Zt3

B11=round(cbind(c1,c2,c3),3)

c11=P21%*%Zt1

c22=P22%*%Zt2

c33=P23%*%Zt3
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B22=round(cbind(c11,c22,c33),3)

##########

c111=P31%*%Zt1

c222=P32%*%Zt2

c333=P33%*%Zt3

B33=round(cbind(c111,c222,c333),3)

################end#######################

\textbf{2. Lingo Commands for Optimisation

}

min=w;

w>=0.573-0.451*x-0.335*y-0.345*z;

w>=-0.573+0.451*x+0.335*y+0.345*z;

w>=0.105-0.479*x-0.335*y-0.349*z;

w>=-0.105+0.479*x+0.335*y+0.349*z;

w>=0.323-0.420*x-0.337*y-0.342*z;

w>=-0.323+0.420*x+0.337*y+0.342*z;

w>=0.214-0.274*x1-0.332*y1-0.327*z1;

w>=-0.214+0.274*x1+0.332*y1+0.327*z1;

w>=0.448-0.261*x1-0.331*y1-0.325*z1;
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w>=-0.448+0.261*x1+0.331*y1+0.325*z1;

w>=0.338-0.290*x1-0.331*y1-0.329*z1;

w>=-0.338+0.290*x1+0.331*y1+0.329*z1;

w>=0;

@bnd(0,x,1);

@bnd(0,y,1);

@bnd(0,z,1);

@bnd(0,x1,1);

@bnd(0,y1,1);

@bnd(0,z1,1);

x+y+z+x1+y1+z1=1;

#################

min=w;

w>=0.347-0.348*x-0.335*y-0.335*z;

w>=-0.347+0.348*x+0.335*y+0.335*z;

w>=0.339-0.336*x-0.337*y-0.334*z;

w>=-0.339+0.336*x+0.337*y+0.334*z;

w>=0.315-0.3151*x-0.331*y-0.276*z;

w>=-0.315+0.3151*x+0.331*y+0.276*z;
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w>=0.326-0.327*x1-0.332*y1-0.332*z1;

w>=-0.326+0.327*x1+0.332*y1+0.332*z1;

w>=0.330-0.333*x1-0.332*y1-0.333*z1;

w>=-0.330+0.333*x1+0.332*y1+0.333*z1;

w>=0.342-0.342*x1-0.334*y1-0.275*z1;

w>=-0.342+0.342*x1+0.334*y1+0.275*z1;

w>=0;

@bnd(0,x,1);

@bnd(0,y,1);

@bnd(0,z,1);

@bnd(0,x1,1);

@bnd(0,y1,1);

@bnd(0,z1,1);

x+y+z+x1+y1+z1=1;

#############

min=w;

w>=0.371-0.329*x-0.336*y-0.337*z;

w>=-0.371+0.329*x+0.336*y+0.337*z;

w>=0.323-0.388*x-0.335*y-0.334*z;

86



w>=-0.323+0.388*x+0.335*y+0.334*z;

w>=0.306-0.367*x-0.332*y-0.335*z;

w>=-0.306+0.367*x+0.332*y+0.335*z;

w>=0.314-0.336*x1-0.331*y1-0.331*z1;

w>=-0.314+0.336*x1+0.331*y1+0.331*z1;

w>=0.338-0.306*x1-0.332*y1-0.333*z1;

w>=-0.338+0.306*x1+0.332*y1+0.333*z1;

w>=0.347-0.317*x1-0.333*y1-0.331*z1;

w>=-0.347+0.317*x1+0.333*y1+0.331*z1;

w>=0;

@bnd(0,x,1);

@bnd(0,y,1);

@bnd(0,z,1);

@bnd(0,x1,1);

@bnd(0,y1,1);

@bnd(0,z1,1);

x+y+z+x1+y1+z1=1;

###########End###
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