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Abstract

In this study, construction of a density independent Leslie matrix used for projecting

Amboseli elephant population is discussed, where the only factors that determine

the population dynamics are survivorship and fertility rates. Only the female popu-

lation is considered and elephant population are grouped into age classes comprising

of individuals with similar characteristics. All elephants population in a certain

age class move to the next age class during the next time step. Properties of the

matrix relevant to population growth rate and stable population is highlighted and

discussed.Transient and asymptotic population dynamics are analysed.Perturbation

methods have also been discussed. It is noted that in the lower age classes, change in

survival rates have more e¤ect to the asymptotic growth rate than change in fertility

rates while in the older population,change in fertility rates bring greater e¤ect to the

asymptotic growth rate than change in survivorship. The eigenvalues of the Leslie

matrix are calculated and the dominant eigenvalue is found to represent the long

run growth rate.Its corresponding right and left eigenvectors represent stable age

structure and reproductive value respectively.Attempt to incorporate density depen-

dence into the model is made with density as the total number of population. Model

analysis shows that population increases in all the age classes.
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Chapter 1

Introduction

Studies in population dynamics have been carried out solely to predict future charac-

teristics of a population when the past or present is known. Various models have been

derived to predict future population size. These models can be broadly classi�ed as

calculus or matrix models.

In calculus models, the parameters are assumed to be continuous on time scale

whereas in matrix models , they are assumed to be discrete.

Calculus model describing the growth of a population is given by

N(t) = N0e
rt (1.1)

where

N(t)is the population size at time t

N0 is the initial population size

r is the intrinsic rate of natural increase
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The above type of model is only applicable for a short term projection when

resources are abundantly available.For a long-term projection, we need an improved

model. A good example is the Logistic population model given by the equation

N(t) =
N0K

N0 + (K �N0)e�r0t
(1.2)

where

r0 is some initial growth rate

K is the carrying capacity of the population

Matrix population models are as a result of studies by Bernadelli (1941), P.H

Leslie (1945, 1948) and Lewis (1942). They provide a good basis on which to analyse

population dynamics using the theory of matrix algebra. In his 1945 paper, Leslie

expressed the basic age-speci�c projection equations in matricial form and applied

matrix analysis to determine the stable age distribution. In his second paper in 1948,

he extended the use of matrix models by studying their connection with logistic

population growth and predator-prey interactions.

Leslie matrix model ,named after P.H Leslie due to his discovery,generally makes

use of age speci�c rates of fertility and mortality of a population. The matrix form

of the model makes it �exible and mathematically easy to study and perform analy-

sis. The basic model forms a strong base for projecting and describing population

dynamics of animals and plants. As a fairly recent innovation in mathematics , the

Leslie model is widely used to project the present state of a population into the fu-

ture as a way of forecasting the age distribution by considering survival and fecundity

parameters.
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1.1 Model Structure

In its simplest form, Leslie matrix model only considers female population. This

assumption is from the fact that there will always be enough males to fertilize the

females. The female population is then divided into several categories by age or by

size. If the grouping is by age, the group intervals may be uniform or non-uniform.The

grouping is done following characteristics and features shared by animals ( or plants).

Animals or plants with similar characteristics are put in the same age group. The

group length can be 1 unit of time ( e.g. second, day, year etc.) or more than 1.

For example, it may be 5 years for human and 2 years for large whales. We assume

that the fecundity and survival rates of each group do not vary with time and are

therefore not dependent on population density.

In calculus model, data is extracted from life tables. Below,are life table functions.

1.2 Life tables

Life table functions are indexed by x in continuous time.

De�nition 1 Survivorship schedule (lx)

This describes the probability of surviving through each age class. Survivorship

from birth to age class x is denoted lx and given by

lx =
Nx
N0

(1.3)

whereNx is the number of individuals of age x andN0 is the number of individuals

at birth.

Age speci�c survival is denoted sx or Px and given by
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sx =
Nx+1
Nx

=
lx+1
lx

(1.4)

De�nition 2 Fecundity schedule (mx)

This is the expected number of o¤spring (female) per female individual of age x

at a unit time.

De�nition 3 Gross reproductive rate:
P
mx

This is the total lifetime reproduction in the absence of mortality. It is the

average lifetime reproduction of an individual that lives to senescence and is useful

in considering potential population growth if all the ecological limits were removed

from a population.

De�nition 4 Net reproductive rate R0 =
P
lxmx

This is the average number of o¤spring produced by an individual in its lifetime

taking into account normal mortality. lxmx is the average number of o¤springs

produced by individuals of age x. If summed across all ages, we have the average

lifetime reproduction.

R0 is also called the replacement rate.

R0 < 1 =) individuals not fully replacing themselves and thus population shrinks

R0 = 1 =) individuals exactly replacing themselves and thus population size

remains stable

R0 > 1 =) individuals more than replacing themselves and thus population

grows

De�nition 5 Generation time: T
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This is de�ned as the mean age of a female when each of her children was born

and is expressed as

T =

P
xlxmxP
lxmx

(1.5)

If most o¤springs are produced when mothers are young T will be short. T will

be long if most o¤springs are produced when mothers are old.

In a stable population,R0 = 1 and therefore the denominator has no e¤ect on

generation time.

De�nition 6 Intrinsic rate of increase (r)

This is expressed as

r � lnR0
T

(1.6)

This equation only gives accurate results when R0 � 1 (or r � 0). The exact

solution comes from Euler�s equation below

1 =
X

e�rxlxmx (1.7)

1.3 Projection Matrix functions

Even if data are collected in continuous time, the construction of the life table requires

a discretization of age to form age classes.Here population is arranged in age classes.

Survival rate Pi and fertility rate Fi are the common projection matrix functions.

They are indexed by age class in discrete time.

Survival rates Pi is the probability of survival from time t to t+ 1 of age class i

5



Fertility rates Fi is the number of o¤spring born by a single parent in age group

i per unit time.

1.3.1 Objectives of the study

� To demonstrate how Leslie matrix model is constructed

� To build a mathematical model to predict the population size and age structure
of Amboseli elephants in the future

� To calculate Amboseli elephants growth rates in the long run

� To calculate the elasticity and sensitivity of the growth rate with respect to
di¤erent parameters.

� To incorporate density dependence into the model

6



Chapter 2

Literature review

Since its discovery, several studies have been done on the basic Leslie matrix pop-

ulation model. Over the years, major contributions have been made in order to

sophisticate the model.

� In his paper in 1945, Leslie expressed the basic age-speci�c equations in matrix
form and applied the usual methods of analyzing matrix to determine stable

age population. In 1948, he extended the use of matrix models by studying

their relationship to logistic growth and predator-prey interactions.

� Usher in 1966 developed further the Leslie matrix model by considering size
instead of age for forest trees.

� Skyles in 1969 showed that the Leslie matrix is irreducible and Brauer in 1962
called it unreduced matrix.

� Lefkovitch ( 1965,1966, 1967) built a stage structured matrix model for insect
using four stages, namely: eggs, larvae, pupae and adult and later in 1967,

he investigated the e¤ect of harvesting in the development structure of the

population.

In stage-classi�ed model, there is a possibility of an individual of a group i

moving backwards to the previous group, forward to the next group or staying
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in the same group at next time period. This occurs to organisms that grow in

stages.

� Lefkovitch showed that a population projection matrix modeled on stage clas-
si�cations rather than on age classi�cation is in the form shown below

A =

2666666666666664

F11 F12 F13 F14 � � � F1 ,n�1 F1 ,n

P21 P22 P23 0 � � � 0 0

0 P32 P33 P34 � � � 0 0

� � � � � 0

� � � � 0

� � � � 0

0 � � � 0 0 Pn�1; n�2 Pn�1 ,n�1 Pn�1; n

0 � � � 0 Pn ,n�1 Pn ,n

3777777777777775
(2.1)

� Leslie looked at time-lag in his model and he discovered that it showed oscilla-
tory solution.

� Usher in 1966 and Goodman ( 1969) together showed that the Leslie basic
model can be written as

A = F + P

where
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F =

26666666664

F1 F2 � � � Fn
0 0 � � � 0

� �
� �
� �
0 0 � � � 0

37777777775
and

P =

26666666664

0 0 � � � 0

P1 0 � � � 0

0 P2 � � � 0

� �
� �
0 � � � Pn�1 0

37777777775
� Lewis independently considered a group of individuals whose breeding occur
at regular intervals. He showed that if the individuals �lled the n age groups,

then the age frequency distribution after the nth breeding class would be the

nth power of the projection matrix. According to him, the age distribution will

generally display no periodicity but tends to a stable distribution depending

on the dominant eigenvalue of the matrix.

� Bernadelli in 1948 focussed on the intrinsic oscillations on population struc-
ture. By observing oscillations in the age structure of human population, he

developed a projection matrix and further showed numerically ,that this gave

rise to permanent oscillations in the age structure.

� If age and size are both important and signi�cant interactions exist between
the two, then we will need to formulate a two dimensional model.Yu in1990

showed that developmental stages are useful as age classes. He used stage-

classi�ed model to study population dynamics of corn earthworm (CEW). He
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divided the CEW into �ve stages and split the �rst stage into four age groups,

the second, third and fourth stages into six age groups, while the last stage he

considered as a single group. His projection matrix was of order 23.

� For large mammals and birds, we only consider age classi�cation and therefore
end up with the Leslie matrix model.

� Wen-Ching Li (1994) applied Leslie matrix model to wild turkey populations.
He considered three classes,namely: poults,yearlings and adults. He ended up

with a matrix of order three. Only yearlings and adults are productive.

� G. C Smith and R.C Trout used Leslie matrices to determine wild rabbit popu-
lation growth and the potential for control. To examine the rate of population

growth under various control policies, two age categories of rabbits were de-

�ned:young and old categories. A survival rate of 0.95 for young rabbits and

0.05 for old rabbits was used. It was found out that as the maximum age

of young rabbits increased, the variation of the rate of growth with timing of

the control increased. Also, overall � is greatest between late April to early

september and � is least between the periods November to January.

� Neon and Sauer studied population models for passerine birds. They recom-
mended an after birth-pulse censuring for population of passerine birds because

the rates of population change for these birds are highly sensitive to fecundity

and/or �rst year survival rate.

10



Chapter 3

Development of Leslie model

The Model is a powerful tool (named after P.H Leslie) and is used to determine the

growth of a population as well as the age distribution within a population.To be able

to develop this model, we make use of the following assumptions:

� We consider only the females in the population

� The maximum age attained by any individual is n years

� The population is grouped into age classes

� An individual chance of surviving from one age class to the next is a function

of its age.

� The survival rate Pi of each age group is known

� The reproduction rate Fi for each age group is known

� The initial age distribution is known

We will put a superscript on the upper right of quantities to signify the point in

time to which the symbol refers and a subscript on the lower right of the quantity

to signify the name of the age class.
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De�ne

x
(k)
i =the number of females alive in the group i at time tk
Pi=the probability that a female of group i at time tk will be alive in group i+1

at time tk+1
Fi=the number of daughters born per female in group i from time tk to time tk+1
We de�ne the age distribution x(k) at time tk by

x(k) =

0BBBBBBBBBBB@

x
(k)
1

x
(k)
2

x
(k)
3

:

:

:

x
(k)
n

1CCCCCCCCCCCA
(3.1)

where x(k)i is the number of females in the ith age class at time tk.

At time tk ,the number of females in the �rst age class, x
(k)
1 ; are those daughters

born between time tk�1 and tk. The number of o¤springs produced by each age class

can be calculated by multiplying the reproductive rate by the number of females

in that particular age class. The sum of all these values gives the total number of

o¤springs produced. Mathematically, we have

x
(k)
1 = F1x

(k�1)
1 + F2x

(k�1)
2 + :::+ Fnx

(k�1)
n (3.2)

The number of females in the second age class at time tk are those in the �rst

age class at time tk�1 who are still alive at time tk: Mathematically, this becomes

12



x
(k)
2 = P1x

(k�1)
1 (3.3)

The number of females in the third age class at time tk are those females in the

second age class at time tk�1 who are still alive at time tk: Mathematically, we have

x
(k)
3 = P2x

(k�1)
2 (3.4)

In genaral, the number of females in the nth age class at time tk are those females

in the age class (n� 1) at time tk�1 who are still alive at time tk , i.e

x(k)n = Pn�1x
(k�1)
n�1 (3.5)

We end up with the following system of linear equations:

x
(k)
1 = F1x

(k�1)
1 + F2x

(k�1)
2 + :::+ Fnx

(k�1)
n

x
(k)
2 = P1x

(k�1)
1

x
(k)
3 = P2x

(k�1)
2

�
�
�
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x(k)n = Pn�1x
(k�1)
n�1

In matricial form, we rewrite the above system of equations as

0BBBBBBBBBBB@

x
(k)
1

x
(k)
2

x
(k)
3

:

:

:

x
(k)
n

1CCCCCCCCCCCA
=

2666666666664

F1 F2 F3 : : : Fn�1 Fn

P1 0 0 : : : 0 0

0 P2 0 : : : 0 0

: : : : :

: : : : :

: : : : :

0 0 0 : : : Pn�1 0

3777777777775

0BBBBBBBBBBB@

x
(k�1)
1

x
(k�1)
2

x
(k�1)
3

:

:

:

x
(k�1)
n

1CCCCCCCCCCCA
(3.6)

The above matricial form can be compactly written as

x(k) = Lx(k�1) (3.7)

where

x(k) =

0BBBBBBBBBBB@

x
(k)
1

x
(k)
2

x
(k)
3

:

:

:

x
(k)
n

1CCCCCCCCCCCA
is the age distribution vector at time tk
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x(k�1) =

0BBBBBBBBBBB@

x
(k�1)
1

x
(k�1)
2

x
(k�1)
3

:

:

:

x
(k�1)
n

1CCCCCCCCCCCA
is the age distribution vector at time tk�1

L =

2666666666664

F1 F2 F3 : : : Fn�1 Fn

P1 0 0 : : : 0 0

0 P2 0 : : : 0 0

: : : : :

: : : : :

: : : : :

0 0 0 : : : Pn�1 0

3777777777775
is the Leslie Matrix

Matrix population models can be classi�ed by the nature of the projection matrix

L. In the simplest case, the matrix L is a constant. The resulting model is as given

above. This model is linear and time invariant.

If L is not constant, it may vary because of external factors e.g weather. A

variable enviroment leads to linear, time-varying model as shown below

x(k) = Lk x
(k�1) (3.8)

where each of Lk may be a function of time.

Variation due to the population yields the non-linear model

x(k) = Lx x
(k�1) (3.9)
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where each of Lx may be a function of the population vector x .These models

are what are normally referred to as density dependent models.

It is possible to combine environmental variation and density dependence to yield

a system of other non-linear equations shown below

x(k) = Lx;k x
(k�1) (3.10)

From equation (3:7) above,

x(1) = Lx(0)

x(2) = Lx(1) = L(Lx(0)) = L2x(0)

x(3) = Lx(2) = L(L2x(0)) = L3x(0)

�
�
�

x(k) = Lx(k�1) = Lkx(0) (3.11)

Thus if we know the initial age distribution vector

16



x(0) =

0BBBBBBBBBBB@

x
(0)
1

x
(0)
2

x
(0)
3

:

:

:

x
(0)
n

1CCCCCCCCCCCA
we can determine the age distribution vector at any later time.

The Leslie matrix

L =

2666666666664

F1 F2 F3 : : : Fn�1 Fn

P1 0 0 : : : 0 0

0 P2 0 : : : 0 0

: : : : :

: : : : :

: : : : :

0 0 0 : : : Pn�1 0

3777777777775

0 < Pi < 1; Fi � 0

is a non-negative , square matrix of order n with all the elements zero except

those that are in the �rst row and in the subdiagonal immediately below the principal

diagonal. L is based on age classi�cations.

We have already seen that the Leslie matrix L is a non-negative matrix. This leads

us to a brief study of non-negative matrices in order to understand the properties of

the Leslie matrix L.
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Chapter 4

Nonnegative matrices and Perron
Frobenius theorem

A 2 Rm�n is said to be a non-negative matrix whenever aij � 0 and this is denoted
by writing A � 0 . In general A � B means that aij � bij where aij is an element
in A and bij is an element in B: Similarly, A is a positive matrix when each aij > 0

and is denoted by writing A > 0: More generally, A > B means that each aij > bij
Since non-negative matrices have numerous applications, it is natural to inves-

tigate their properties and we do so in this chapter. A primary issue concerns the

extent to which the properties A > 0 or A � 0 translate to spectral properties e.g.
to what extent does A have positive ( or non-negative) eigenvalues and eigenvectors.

Here we will focus on matrices An�n and investigate the extent to which this

property (non-negativity) is inherited by the eigenvalues and eigenvectors of A.

First we notice that

A > 0 =) �(A) > 0 where �(A) is the spectral radius of A

18



We also note the following

P > 0; X � 0; X 6= 0 =) PX > 0 (4.1)

N � 0; u � v � 0 =) Nu � Nv (4.2)

N � 0; z > 0; Nz = 0 =) N = 0 (4.3)

N � 0; N 6= 0; u > v > 0 =) Nu > Nv (4.4)

where P and N are n� n matrices while u; v and z are vectors of dimension n

Statement If An�n > 0, then the following statements are true

� �(A) 2 �(A)

� �(A) is the only eigenvalue of A on the spectral circle and is termed as the

Perron root, latent root or the dominant eigenvalue.

A vector corresponding to this value (�(A)) is referred to as Perron vector.

While eigenvalues of A � 0 other than �(A) may or may not be positive, it

turns out that no eigenvectors other than positive multiples of the Perron vector can

be positive or even non-negative. Infact, there are no non-negative eigenvectors for

An�n � 0 other than the Perron vector and its multiples.

Perron�s Theorem

If An�n > 0 with r = �(A) , then the following statements are true:

19



� r > 0

� r 2 �(A) (r is called the Perron root)

� There exists an eigenvector x > 0 such that

Ax = rx (4.5)

The Perron vector is the unique vector de�ned by

Ap = rp , p > 0 and k p k1= 1

Except for positive multiple of p , there are no other non-negative eigenvectors

for A, regardless of the eigenvalue.r is the only eigenvalue on the spectral circle of

A

Now we seek to include zero and investigate the extent to which Perron�s results

generalize to non-negative matrices containing at least one zero entry.

For An�n � 0 with r = �(A) , the following statements are true:

� r 2 �(A)

� Az = rz for some z 2 Rn

4.0.2 Reducibility

An�n is said to be reducible matrix when there exists a permutation matrix P such

that
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P TAP=

"
X Y

0 Z

#

where X and Z are both square.

Otherwise, A is said to be an irreducible matrix

A reducible matrix can always be arranged by numbering the stages , into normal

form: "
B O

C D

#
(4.6)

where the square submatrices B and D are either irreducible or can themselves

be divided to eventually yield a series of irreducible diagonal blocks (Gantmacher

1959).

An irreducible matrix always has a real positive latent root �1 that is distinct.

The absolute values of all other roots are less than or equal to �1 and in practice the

other roots are either complex or else negative.

Corresponding to �1 is an eigenvector whose entries are non-negative. No other

eigenvector of non-negative elements exists, disregarding multiples of the eigenvector.

4.0.3 Primitive Matrices

Let A � 0 be an irreducible matrix and let the dominant eigenvalue be �� . Suppose
there are exactly h eigenvalues of modulus ��, say
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�� = �1

then

�1 = j �2 j= ::: =j �h j

If h = 1,the matrix A is called primitive , that is, a non-negative irreducible

matrix A having only one eigenvalue , r = �(A) , on its spectral circle is said to be

a primitive matrix.

If h > 1 , the matrix A is called imprimitive and h is called the index of imprim-

itivity.

We next state without proof a su¢ cient condition for primitivity.

Corollary 7 If a non-negative irreducible matrix A has at least one positive diagonal
element, then A is primitive.

Below is a statement to show how powers of a non-negative matrix determine

whether or not the matrix is primitive

Lemma 8 Frobenius test for Primitivity

A � 0 is primitive i¤ Am > 0 for some m > 0

This is to say that an irreducible non-negative matrix A is primitive if it becomes

positive when raised to su¢ ciently high powers. A reducible matrix cannot be prim-

itive because when the matrix (4:6) above is raised to powers , the upper-right block

remains zero.
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4.0.4 Evaluating irreducibility and primitivity numerically

Evaluating irreducibility and primitivity of large matrices can be very di¢ cult. Horn

and Johnson ( 1985 ) summarize several theorems that provide numerical methods

that enable one to quickly evaluate irreducibility and primitivity of matrices. Suppose

A is a nonnegative n� n matrix. Then

� A is irreducible i¤
(I + A)n�1 > 0 (4.7)

� A is primitive i¤
An

2�2n+2 > 0 (4.8)

Theorem of Perron-Frobenius
Let A be a square matrix with non-negative elements only , and such that all

elements of An are positive for some integer n (we say that A is primitive). Then

A has a positive eigenvalue of algebraic multiplicity 1, which correspond to a right

eigenvector V1 and to a left eigenvector U1 both of which have only positive elements.

This eigenvalue is greater in absolute size than any other eigenvalue of A

The summary of this theorem is as follows:

Primitive matrices:If A is primitive , then there exists a real, positive eigenvalue

�1 that is simple root of the characteristic equation. This eigenvalue is strictly

greater in magnitude than any other eigenvalue. The right and left eigenvectors V1
and U1 corresponding to �1 are real and strictly positive. There may be other real

eigenvalues besides �1, but �1 is the only eigenvalue with nonnegative eigenvectors.

i.e.

23



�1 > 0

U1 > 0

V1 > 0

�1 > j�ij ; i > 1

Irreducible but imprimitive matrices: If A is an irreducible matrix but imprimitive

, with index of imprimitivity h, then there exists a real positive eigenvalue �1 which is

a simple root of the characteristic equation. The associated right and left eigenvectors

are positive. The dominant eigenvalue �1 is greater than or equal to in magnitude

to any of the other eigenvalues

i.e.

�1 > 0

U1 > 0

V1 > 0

�1 = j�ij ; i = 2; :::; h
�1 > j�ij ; i > h

Reducible matrices: If A is reducible, there exists a real eigenvalue �1 � 0 with
corresponding right and left eigenvectors V1 � 0 and U1 � 0: This eigenvalue �1 �
j�ij ; i > 1
We have just shown that an irreducible non-negative matrix always has a real

positive latent root �1 . The absolute values of all other roots are less than or equal to

�1.Second, corresponding to �1 are eigenvectors whose elements are positive . There

is no other eigenvector of non-negative elements , disregarding multiples of these

eigenvectors .
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4.1 Properties of the basic matrix L

Leslie matrix L derived above is a square matrix of order n. If i = s < n is the last

age group within which reproduction occurs, Fs is the last Fi which is not equal to

zero. We can therefore partition matrix L as follows:

L =

"
A 0

B C

#
(4.9)

where

A is square of order s

B is of order (n� s)� s
C is square of order n� s
0 is of order s� (n� s)

A matrix of the above nature is said to be reducible. To study the properties

of the matrix L , it is su¢ cient to study matrix A which consists of reproductive

individuals.

Lk =

"
Ak 0

f(A;B;C) Ck

#
(4.10)

Ck is of the type such that Cn�s = 0; so that Lk, k � n � s will have all its

last n� s columns consisting of zeros. This is from the fact that individuals alive in

the post-reproductive classes will eventually contribute nothing after they are dead.

This a¢ rms why matrix A will be of interest in such a case.

Matrix A is nonsingular since

detA = (�1)s+1(P1P2:::Ps�1Fs) 6= 0 (4.11)

25



If the entire population is productive, then matrix A will be the entire matrix

and we say in this case that A = L is irreducible.

We will later show that the Leslie matrix L used in elephants demography falls in

a restricted subclass of irreducible non-negative matrices called primitive matrices.

From the Perron- Frobenius theory, L has a unique root �1 which is larger in

magnitude than any other root (eigenvalue) of L. Corresponding to �1 is a eigenvector

which is positive and no other non-negative eigenvector will exist for matrix L.

4.1.1 Parameter estimation

Survival probability Pi

The values of Pi is usually obtained from a life table or experiments. It is usually

assumed that ( Leslie 1945,Caughley 1977:87)

Pi =
li+1
li

(4.12)

Pi is assumed to be constant over a unit of time.

Fecundity rates Fi

Fi is determined not only by the average number of female births per mother per

time period , mi in the life table , but also including infant survival rates (Leslie

1945). We divide populations into two breeding systems: birth-�ow and birth-purse

populations.

Birth-�ow breeding Here reproduction is continuous. Estimation of Fi involves

integration of fertility and infant mortality functions over the continuous time inter-

val.
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Birth-pulse breeding Populations in this system reproduce during a short period

of time per year. In this system , it is important to know the exact breeding period

with respect to the time step . Estimation of Fi will be in�uenced by way of census.

Census before reproduction or after reproduction give rise to di¤erent value of Fi:

Since births occur during the next birthday of an individual, the probability of

surviving for a fraction 1� p is P 1�pi . For the individual to be counted in n1(t+ 1);

it must survive a fraction p of a time unit , and that probability is determined by

l(p):

Thus the fertility of a population is calculated as:

Fi = l(p)P
1�p
i mi =

8><>:
Pimi+1 postbirth-pulse sampling (p! 0)

l1mi prebirth-pulse sampling (p! 1)

9>=>; (4.13)

Fi is assumed to be constant and not dependent on density.
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Chapter 5

Eigensystem

5.1 Eigenvalues and corresponding eigenvectors

Consider the system

x(k) = Lx(k�1)

We apply linear algebra techniques to the above model to interpret several bio-

logical phenomena.

If L has the formula

LVi = �iVi (5.1)

then �i ; i = 1; 2; :::; n are the eigenvalues of L. For the above system

j�1j > j�2j � j�3j � � � � � j�nj

Vi are the corresponding linearly independent eigenvectors.

The eigenvalues are arrived at by solving the system

28



jL� �Ij = 0 (5.2)

that is

�����������������

F1 � � F2 F3 � � � Fn

P1 �� 0 � � � 0

0 P2 �� � � � 0

� � � � � � �
� � �
� � 0

0 0 � � � Pn�1 ��

�����������������
= 0

To each an eigenvalue , there corresponds an eigenvector. The eigenvectors are

linearly independent and are achieved by solving for V in the following equation

LV = �V

V is commonly referred to as the right eigenvector corresponding to the eigen-

value � of matrix L:

In demographic applications, the roots �i are always distinct. In particular, the

root �1 of largest magnitude compared to �i i � 2 is of much interest. It is referred
to as the dominant eigenvalue or the latent root or the Perron root.

The dominant eigenvalue describes the growth rate of a population in the long

run.
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�1 = 1; the population is stationary

�1 > 1; over population will be experienced.

�1 < 1; the population diminishes.

For �1 > 1, one may think of harvesting as an option in order to keep the

population stable.

For the system

x(k) = Ax(k�1) (5:1:3)

where A is an arbitrary matrix,

The system (5:1:3) is said to be asymptotically stable i¤ the eigenvalues of A

have magnitude less than 1, that is, j�ij < 1 for every i . The vector x(k) will tend to
an equilibrium point for any initial condition if the system is asymptotically stable.

Once the system state vector is equal to an equilibrium point, it will remain equal

to it for all time in the future.

The system (5:1:3) is said to be marginally stable if the magnitude of the eigen-

values are less or equal to 1. If 1 is an eigenvalue of A, then the corresponding

eigenvector is an equilibrium point. If 1 is not an eigenvalue of A , the origin is the

only equilibrium of the system.

Each eigenvalue de�nes a characteristic growth as well as a characteristic fre-

quency of oscillation. For a discrete-time system, we do not have oscillations if

the eigenvalues are positive. Oscillations are only derived from negative or complex

eigenvalues.
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5.2 Vertical Stable Vectors

From the Perron-Frobenius theorem, the Leslie matrix which is non-negative, has

a positive dominant eigenvalue which is simple. Thus a population based on Leslie

matrix will in the long run have a growth factor. That is , from some year on, next

year�s population will be a multiple of this year�s. Therefore, after some time, the

population in the age-classes will grow proportionally. The proportions of popula-

tions in the age classes will be constant. This age composition is called a stable-age

distribution.

Mathematically, we have

x(k+1) = �1x
(k) (5.3)

where the factor �1 is the dominant eigenvalue of the Leslie matrix L. If V1 is

the associated right eigenvector,we can obtain the stable-age distribution from V1:

Let

V1 =

2666666666664

v1

v2

v3

�
�
�
vn

3777777777775
and

C = v1 + v2 + � � �+ vn

Then the stable-age distribution ,S1, is expressed as
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S1 =

2666666666664

v1
C
v2
C
v3
C

�
�
�
vn
C

3777777777775
(5.4)

The sum of the elements of S is unity.

The right eigenvectors are linearly independent. This means that there exists no

nonzero constant bi such that

b1V1 + b2V2 + :::+ bnVn = 0

If the right eigenvectors Vi ; i = 1; 2; :::; n are arranged side by side to constitute

a matrix V below

V = [V1 V2 � � � Vn] =

26666666664

a11 a12 � � � a1n

a21 a22 � � � a21

� �
� �
� �
an1 a2n � � � ann

37777777775
(5.5)

then using the fact that the columns of the matrix V are Vi and that

LVi = �iVi

we have

LV = V � (5.6)
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where � is the diagonal matrix

� =

26666666664

�1 0 � � � 0

0 �2 �
� �
� �
� 0

0 � � � 0 �n

37777777775
(5.7)

that is

26666666664

F1 F2 : : Fn�1 Fn

P1 0 : : 0 0

0 P2 : : 0 0

: : : :

: : : :

0 0 : : Pn�1 0

37777777775

26666666664

a11 a12 � � a1;n

a21 a22 � � a2;n

� �
� �
� �
an;1 a2;n � � an;n

37777777775
=

26666666664

a11 a12 � � a1;n

a21 a22 � � a2;n

� �
� �
� �
an;1 an;2 � � an;n

37777777775

26666666664

�1 0 � � � 0

0 �2 �
� �
� �
� 0

0 � � � 0 �n

37777777775

From

LV = V �

we have

L = V �V �1 (5.8)

thus
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L2 =
�
V �V �1

� �
V �V �1

�
= V �

�
V �1V

�
�V �1

= V �2V �1

Repeating the multiplication gives

Lk = V �kV �1 ; k > 0 is an integer (5.9)

But

x(k) = Lkx(0)

This means

x(k) = V �kV �1x(0) (5.10)

or

0BBBBBBBBB@

x
(k)
1

x
(k)
2

:

:

:

x
(k)
n

1CCCCCCCCCA
=

26666666664

a11 a12 � � � a1;n

a21 a22 � � � a2;n

� �
� �
� �
an;1 an;2 � � � an;n

37777777775

26666666664

�k1 0 � � � 0

0 �k2 �
� �
� �
� 0

0 � � � 0 �kn

37777777775

26666666664

d1

d2

�
�
�
dn

37777777775
(5.11)

where
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!
d =

26666666664

d1

d2

�
�
�
dn

37777777775
= V �1x(0) (5.12)

From equation (5:11), we have

0BBBBBBBBB@

x
(k)
1

x
(k)
2

:

:

:

x
(k)
n

1CCCCCCCCCA
=

26666666664

a11�
k
1 a12�

k
2 � � � a1n�

k
n

a21�
k
1 a22�

k
2 � � � a2n�

k
n

�
�
�

an1�
k
1 an2�

k
2 ann�

k
n

37777777775

26666666664

d1

d2

�
�
�
dn

37777777775
(5.13)

or

x
(k)
1 = a11d1�

k
1 + a12d2�

k
2 + � � �+ a1ndn�kn (5.14)

x
(k)
2 = a21d1�

k
1 + a22d2�

k
2 + � � �+ a2ndn�kn (5.15)

�
�
�

x(k)n = an1d1�
k
1 + an2d2�

k
2 + � � �+ anndn�kn (5.16)

For large time tk, although the in�uence of �2; �3; :::; �n does not necessarily

35



disappear, the �rst term with the dominant eigenvalue will grow faster than the

others. That is, the population at time tk will approach closer and closer to d1�
k
1V1

That is

x(k) ' d1�k1V1 (5.17)

V1 is the right eigenvector corresponding to the dominant eigenvalue �1

This property is commonly referred to as the ergodic property in demography,

that is the tendency of a population to forget its initial age distribution.

5.3 Horizontal stable vector

We can pre-multiply matrix L by a new set of vectors Ui, this time horizontal, to

have

UiL = �Ui (5.18)

Condition of consistency still remains as below

jL� �Ij = 0

For each eigenvalue �i, we �nd the vectors Ui, which are commonly referred to

as the left eigenvectors.

Again, the dominant eigenvalue �1 will be of much interest. The corresponding

left eigenvector U1 tell us about the reproductive potential of a population.

Let U1 = [u11 u12 � � � u1n]
Let ! = u11 + u12 + � � �+ u1n
Then
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T1 =
1

!
[u11 u12 � � � u1n] (5.19)

is said to be the horizontal stable vector. It represents the reproductive value of

each of the age classes .

Reproductive value is the total prospective number of female children that would

be born taking into account mortality. Aggregate reproductive value is got by mul-

tiplying the reproductive value with a state vector, for example, if X(0)is the initial

state vector , then aggregate reproductive value will be

U1X
(0) (5.20)

5.4 Properties of the left and right eigenvectors

For each latent root �i,we �nd Ui = [ui1 ui2 ui3:::uin] from the set of linear equations

below

[ui1 ui2 ui3:::uin]

26666666664

F1 F2 � � � Fn

P1 0

� P2 �
� � �
� � �
0 � � 0 Pn 0

37777777775
= �i [ui1 ui2 ui3:::uin]

or UiL=�iUi

We have n horizontal vectors and can be arrayed one beneath the other to have

the vector U as shown below;
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U =

2666666666664

U1

U2

�
�
�

Un�1

Un

3777777777775
(5.21)

where each Ui is a row vector

The stable vectors posses an orthogonality property by which if i 6= j , then

UiVj = 0 (5.22)

where

LVj = �jVj (5.23)

(5:4:2) is from the fact that if we premultiply (5:4:3) by Ui, we get

UiLVj = Ui�jVj

= �jUiVj (5.24)

It is also true to have

UiL = �iUi (5.25)

Multiplying (4) on the right by Vj, we get
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UiLVj = �iUiVj (5.26)

Now (5:4:4) and (5:4:6) gives

0 = (�j � �i)UiVj , �j 6= �i

which gives

UiVj = 0 for i 6= j

In demography, the vector U1 corresponding to the dominant eigenvalue �1 is the

one of much interest. It represents the left eigenvector corresponding to the dominant

eigenvalue and tells us about the reproductive potential of a population.

The equation above can be rewritten as

UL = �U

where � is a diagonal matrix of order n whose diagonal elements are the various

eigenvalues of matrix L

The above equation can also be written as

L = U�1�U (5.27)

We also noted earlier that if V is the matrix of right eigenvectors, then

L = V �V �1

so that

U�1�U = V �V �1 (5.28)

Now normalising Ui by the dividing it with UiVi , we have
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U i =
Ui
UiVi

(5:4:9) (5.29)

This gives

U iVj = 1 for i = j (5.30)

= 0 for i 6= j

The above helps us express an observed age distribution, say the state vector X(0)

as a sum of the stable vectors each multiplied by a constant, that is,

X(0) = c1V1 + c2V2 + :::+ cnVn (5.31)

To �nd ci, premultiply (5:31) by the normalised U i and have

U iX
(0) = c1U iV1 = c2U iV2 + :::+ cnU iVn (5.32)

This gives

U iX
(0) = ci

or

ci =
UiX

(0)

UiVi
(5.33)

Premultiplying (5:31) by L gives;

LX(0) = c1LV1 + c2LV2 + :::+ cnLVn

= �1c1V1 + �2c2V2 + :::+ �ncnVn (5.34)
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This shows that after k steps, the population will be

LkX(0) = �k1c1V1 + �
k
2c2V2 + :::+ �

k
ncnVn (5.35)

After a long time has passed, only the �rst term in (5:35) counts and we write

X(k) = LkX(0) = �k1c1V1 (5.36)

c1 =
U1X

(0)

U1V1
is termed as the stable equivalent population (5.37)

5.4.1 E¤ects of eigenvalues

The long term behavior of a population depends on the eigenvalues �i as they are

raised to high powers.

� If �i > 1 , �ki produces exponential growth
� If � < 1 , we have exponential decay
� If �1 < �i < 0; then �ki exhibits damped oscillations.

� If �i < �1 ,then �ki produces diverging oscillations.
� Complex eigenvalues produce oscillations.

If � = a+ bi = j�j (cos �+ i sin �) , complex conjugate is � = a� bi: Thus raising
� to k th power yields

�k = j�jk (cos �k + i sin �k)

The solution to the projection equation will thus contain terms of the form
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�k + �
k
= j�jk 2 cos �k (5.38)

Thus ,as a complex eigenvalue raised to higher and higher powers , its magnitude

j�jk increases /decreases exponentially , depending on whether j�j is greater or less
than 1.

5.4.2 The damping ratio

We want to study the oscillations produced by the subdiagonal eigenvalue during

convergence. This rate of convergence to the stable age distribution is referred to

as the damping ratio. It is governed by the eigenvalue(s) with the second largest

magnitude.The damping ratio � is de�ned as

� =
�1
j�2j

(5.39)

where �1 is the dominant eigenvalue and �2 is the eigenvalue with the second

largest magnitude.

5.4.3 The period of oscillation

When complex eigenvalues are raised to powers, they produce oscillations in the

distribution. Here, the period of oscillation is given by

�i =
2�

�i
=

2�

tan�1( Im(�i)
Re(�i)

)
(5.40)

where �i is the angle formed by �i in the complex plane, Im(�i) and Re(�i) are

the imaginary and real parts of �i respectively.

The longest-lasting of the oscillatory components is that associated with �2: In

age-classi�ed models, �2 is approximately equal to the mean age of childbearing in
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the stable population (Lotka 1945, Coale 1972)

5.4.4 Sensitivity

We start from the general matrix population model

Av = �v

We then change a single element of A and analyse the e¤ect of this change to the

dominant eigenvalue of A: Thus, the basic formula for the sensitivity of the dominant

eigenvalue to a small change in element aij is given by the following equation

Sij =

�
@�

@aij

�
(5.41)

And the sensitivity matrix S, is thus expressed as

S =

�
@�

@aij

�

To �nd an explicit expression of eigenvalue sensitivity, we proceed as follows:

We begin by the equations de�ning the eigenvalues and the right and left eigen-

vectors, Vi and Ui respectively.

LVi = �iVi (5.42)

UiL = �iUi

Taking di¤erential on both sides of (5:42) and suppressing the subscript i gives

L(dV ) + (dL)V = � (dV ) + (d�)V (5.43)
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where dL = daij
Forming scalar product on both sides of (5:43) with the left eigenvector U1; we

get:

hL(dV ); Ui+ h(dL)V; Ui = � h(dV ) ; Ui+ h(d�)V; Ui (5.44)

Expanding the scalar products in (5:44) and cancelling like terms gives

d�

dL
=
hV; Ui
hV; Ui =

U � V
U � V (5.45)

Suppose that only one element,aij; is changed. Then dL contains only one nonzero

entry,daij; which is in row i and column j. Thus we have (5:45) becoming

d�

daij
=
U i � Vj
hV; Ui (5.46)

U i is the complex conjugate of Ui

5.4.5 Elasticity

This is another measure of the change in a matrix given a small change in an element

of the matrix.

The elasticity of � with respect to aij is given by the expression

eij =
aij
�

@�

@aij
=
@ log �

@ log aij
(5.47)

An important property of elasticities is that they sum up to 1, i.e

X
ij

eij = 1 (5.48)
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5.5 Some theorems and proofs for the Leslie Ma-

trix models

5.5.1 Theorem1

The eigenvalues of Leslie matrix L are given by the solutions to an equation of the

form

1 =
X
x

��xlxmx (5.49)

Proof
we have

0 =

2666666666666664

F1 � � F2 F3 : : : Fk

P1 �� 0 : : : 0

0 P2 �� : : : 0

0 0 P3 : : : 0

: : : :

: : : :

: : : :

0 0 0 : : Pk�1 0

3777777777777775

= (F1 � �)

26666666664

�� 0 : : : 0

P2 �� : : : 0

: : :

: : :

: : :

0 : : : Pk�1 ��

37777777775
� (F2)

26666666664

P1 0 : : : 0

0 �� : : : 0

: : :

: : :

: : :

0 : : : Pk�1 0

37777777775
+ :::
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= (F1 � �)(��)k�1 + (�1)F2[P1(��)k�2] + :::

= (F1 � �)(�1)k�1�k�1 � F2P1(�1)k�2�k�2 + F3P1P2(�1)k�3�k�3 � :::

= (�1)k�1[F1�k�1 � �k + F2P1�k�2 + F3P1P2�k�3 + :::]

or

F1�
k�1 � �k + F2P1�k�2 + F3P1P2�k�3 + ::: = 0

or

�k = F1�
k�1 + F2P1�

k�2 + F3P1P2�
k�3 + ::: (5.50)

dividing both sides by �k;we have

1 = F1�
�1 + F2P1�

�2 + F3P1P2�
�3 + ::: (5.51)

replacing Fi by Pimi , we have

1 = P1m1�
�1 + P1P2m2�

�2 + P1P2P3mi�
�3 + ::: (5.52)

since

l1 = P1
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l2 = P1P2

l3 = P1P2P3

we have

1 =
X
x

��xlxmx

5.5.2 Theorem 2

Equations of the form

1 =
kX
x=1

��xlxmx

have one and only one real positive root �1of algebraic multiplicity 1. The other

roots �i are either negative or complex in nature and �1 >j �i j

Proof
The function of �

f(�) =
X
x

��xlxmx

is positive on [0;1] and strictly decreasing from1 to 0 (since all lx and mx are

positive). Hence there is only one real positive root of multiplicity 1.

Let �i be any other latent root , and write �
�1
i = e�+�;where � and � are real

and positive and � 6= 2�r: That is ,�i must be negative or complex. We then have

��ni = e�(cos � + i sin �))n = en�(cos(n�) + i sin(n�)) (5.53)
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substituting for ��1i in the equation

1 =

kX
x=1

��xlxmx (5.54)

and equating the real parts of the left hand side and right hand side, we obtain

X
x

lxmxe
x� cos(�x) = 1 (5.55)

since � 6= 2�r; cos(�x) and cos((x + 1)�) cannot both be unity, we have either
both must be less than unity. A comparison of equation (5:54) and (5:55) shows that

e� must be greater than ��1 and we can conclude that

j �i j< �1 for all i 6= 1 (5.56)

Theorem 3 (Theorem of Perron-Frobenius)
Let T be a square matrix with non-negative elements only , and such that all

elements of T n are positive for some integer n (we say that T is primitive). Then

T has a positive eigenvalue of algebraic multiplicity 1, which correspond to a right

eigenvector V1 and to a left eigenvector U1 both of which have only positive elements.

This eigenvalue is greater in absolute size than any other eigenvalues of T

5.5.3 Theorem 4

The general solution to an equation such as

N(t) = LtN(0) (5.57)

with L diagonalizable,is
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ni(t) =
X
j

cij�
t
i (5.58)

where �i are the eigenvalues of L and and cij are constants whose values depend

on the initial population vector.

Proof

N(t) = LtN(0) (5.59)

= (PDP�1)tN(0)

(where P is the eigenvector matrix and D is the diagonal matrix containing the

eigenvalues of L denoted �i )

= (PDP�1)(PDP�1)(PDP�1):::(PDP�1)N(0)

= PDtP�1N(0)

where

Dt =

26666666664

�t1 0 : : : 0

0 �t2 : : : 0

: : :

: : :

: : :

0 0 : : : �tk

37777777775
(5.60)

now consider any element of N(t) , noticing that it is a sum of the various �ti
each multiplied by a value re�ecting a combination of the elements of P; P�1 and
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N(0) ,i.e.

ni(t) =
X

Cij�
t
j

where f�jg are the eigenvalues of L and the Cij are constants whose values depend
on the initial population vector.

50



Chapter 6

Application to Amboseli elephants

6.1 Facts about the African elephant

Elephants are the largest living land mammal found in most regions of Africa.They

have massive bodies, broad feet, loose skin with large, thin and �oppy ears which

provide extensive cooling to the body during hot periods. The upper lip and nose are

elongated into a �exible trunk reaching nearly to the ground. This is used for picking

food and drawing water during feeding.The upper incisor teeth are elongated into

tusks valued for ivory. A gland between the eye and the ear often produces a sub-

stance called musth. During these periods, the animal is in an excitable, dangerous

condition called musth period.

Elephants are browsing animals feeding on leaves ,shoots,tall grasses and fruits.

They are relational animals, living and travelling in groups called family units of

between 15 and 30 individual composed of a matriarch (female elder) , her daughters

and their o¤springs. Upto 5 family units associate in bond groups temporarily. Male

older than 13 years are generally solitary or live in small groups.

A single calf is born after a gestation period of 22 months and is nursed for

approximately 5 years . Elephants reach maturity at between 11-20 years of age

with a lifespan of up to 65 years.The African elephant is commonly referred to as

Loxodonta africana and are generally found at the south of the Sahara. Bulls may
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reach a shoulder height of 13 ft and weigh upto 8 tons. Cows are slightly smaller

with slender tusks.

6.2 Measuring elephant ages

Several equations for measuring elephant ages are available. An example is the

shoulder-height equations deduced by Von Bertalan¤y (1938). The equations relate

shoulder height (h) of elephants ,of di¤erent gender, to their ages (x).The equations

are given below:

male(1� 20years) : h(x) = 265(1� e�0:114(x+3:95))cm (6.1)

male(20� 60years) : h(x) = 307(1� e�0:166(x�10:48))cm (6.2)

female(2� 60years) : h(x) = 252(1� e�0:099(x+6:00))cm (6.3)

If we want to deduce the age from the height, we use the following equations:

male(96� 245cm) : x(h) = � log
(1� h

265
)

0:114
� 3:95years (6.4)

male(245� 307cm) : x(h) = � log
(1� h

307
)

0:166
+ 10:48years (6.5)

female(113� 252cm) : x(h) = � log
(1� h

252
)

0:099
� 6:00years (6.6)

6.2.1

52



6.2.2 Amboseli elephants

The Amboseli elephants are unusual in Africa because they have been relatively

una¤ected by human activities for example settlement, poaching and culling as part

of Park Management Program. This is because of the following:The land surrounding

Amboseli National Park belongs to the Maasai community who have coexisted well

with wildlife. Second, the presence of tourists in and around the National Park makes

it di¢ cult for poachers to operate. Finally, the presence and monitoring of elephants

by researchers has served well in conserving the elephant population.

6.2.3 Structure of the model

An age classi�ed model based on female Amboseli elephants is built. The female

elephant population is subdivided into 13 age classes named below

Age class (years) name

0-4 1

5-9 2

10-14 3

15-19 4

20-24 5

25-29 6

30-34 7

35-39 8

40-44 9

45-49 10

50-54 11

55-59 12

60-65 13

53



6.2.4 Vital rates to population growth

Fertility

Fertility refers to the number of o¤spring of a female of age i to i + 1 in a unit of

time tk that will survive to the next age class. Calving interval (CI) plays a major

role in determining the fertility of an elephant.

Survivorship

Survivorship refers to the likelihood or probability that an individual of age i at time

tk will survive to time tk+1 when her age will be i+ 1:

Man remains the only predator that has a limiting e¤ect on elephant population.

Other predators usually prey on isolated calves.

Mortality depends strongly on age and thus we have age-speci�c mortality. For

Amboseli elephants, mortality is higher during the drought periods.

Reproduction of female elephants starts at age 12 years but a few instances of

reproduction starting from as young as 8 years of age have been recorded.

The maximum age of a female population is 65 years.

We model the population of these large mammals by use of Leslie matrix popu-

lation model.

Let

Pi=the probability that a female elephant of group i at time tk will be alive in

group i+ 1 for i = 1; 2; :::; 12

Fi= the number of daughters born per female elephant in group i from time tk
to time tk+1 for i = 1; 2; :::; 13

The state variables are the number of female elephants at each age class and

denoted by
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x
(k)
1 = F1x

(k�1)
1 + F2x

(k�1)
2 + :::+ F13x

(k�1)
13 (6.7)

x
(k)
2 = P1x

(k�1)
1 (6.8)

�
�
�

x
(k)
13 = P12x

(k�1)
12 (6.9)

The system below is derived from the above equations

0BBBBBBBBBBB@

x
(k)
1

x
(k)
2

x
(k)
3

:

:

:

x
(k)
12

1CCCCCCCCCCCA
=

2666666666664

F1 F2 F3 : : : F12 F13

P1 0 0 : : : 0 0

0 P2 0 : : : 0 0

: : : : :

: : : : :

: : : : :

0 0 0 : : : P12 0

3777777777775

0BBBBBBBBBBB@

x
(k�1)
1

x
(k�1)
2

x
(k�1)
3

:

:

:

x
(k�1)
13

1CCCCCCCCCCCA
(6.10)

L =

2666666666664

F1 F2 F3 : : : F12 F13

P1 0 0 : : : 0 0

0 P2 0 : : : 0 0

: : : : :

: : : : :

: : : : :

0 0 0 : : : P12 0

3777777777775
0 < Pi < 1 i = 1; 2; :::; 12 Fi � 0 i = 1; 2; :::; 13
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Assumptions

We will assume that for Amboseli elephants :

� The individuals in each group always go to the next group from one time step

to the next

� The survival and reproductive rates are constant over time within each age
class and are therefore not dependent on population density

� The dynamics of the population are determined largely by females. We assume
that there will always be enough males to fertilize the females and therefore

the bulls do not play a major role in projecting the population

� Territory remains the same and is closed to migration. This implies that no
migration of elephants to and out of the park.

6.2.5 Parameter estimation

Data is extracted from a study by Cynthia Moss (2001) on Amboseli elephants.

Amboseli elephants life table is shown below
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Age class (years) Fecundity rates mi Survival rates Pi
1 0-4 0.000 0.917

2 5-9 0.015 0.976

3 10-14 0.600 0.956

4 15-19 1.010 0.939

5 20-24 1.135 0.918

6 25-29 1.150 0.911

7 30-34 1.165 0.890

8 35-39 1.190 0.832

9 40-44 1.075 0.842

10 45-49 0.905 0.844

11 50-54 0.705 0.802

12 55-59 0.515 0.718

13 60 -65 0.109 0

In calculating the fertility rates Fi , i consider the prebirth-pulse sampling, that

is,

Fi = l1mi (6.11)

Here l1 = 0:916

From the table above, we have

Age class (in years) Fi Age class (in years) Fi

0-4 0.000 35-39 1.090

5-9 0.014 40-44 0.985

10-14 0.550 45-49 0.829

15-19 0.925 50-54 0.646

20-24 1.040 55-59 0.472

25-29 1.053 60-65 0.099

30-34 1.067
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The Leslie matrix L is therefore obtained as follows:

L =2666666666666666666666666664

0:000 0:014 0:550 0:925 1:040 1:053 1:067 1:090 0:985 0:829 0:646 0:472 0:099

0:917 0 0 0 0 0 0 0 0 0 0 0 0

0 0:976 0 0 0 0 0 0 0 0 0 0 0

0 0 0:956 0 0 0 0 0 0 0 0 0 0

0 0 0 0:939 0 0 0 0 0 0 0 0 0

0 0 0 0 0:918 0 0 0 0 0 0 0 0

0 0 0 0 0 0:911 0 0 0 0 0 0 0

0 0 0 0 0 0 0:890 0 0 0 0 0 0

0 0 0 0 0 0 0 0:832 0 0 0 0 0

0 0 0 0 0 0 0 0 0:842 0 0 0 0

0 0 0 0 0 0 0 0 0 0:844 0 0 0

0 0 0 0 0 0 0 0 0 0 0:802 0 0

0 0 0 0 0 0 0 0 0 0 0 0:718 0

3777777777777777777777777775

Here, we see that

(I + L)12 > 0 (6.12)

and

L145 > 0 (6.13)

Thus, we conclude that Leslie matrix L is irreducible, primitive matrix.

We thus expect that L will have a simple dominant eigenvalue �1 which is

positive. The magnitude of all other eigenvalues of L are less than �1 .The other

eigenvalues are either negative or complex. Corresponding to �1 are eigenvectors V1
and U1 whose elements are positive.
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Chapter 7

Results and analysis

Here, we intend to carry out the following analysis:

a) Transient analysis: This focusses on the short-run behavior

b) Asymptotic analysis: This asks what happens if the life processes operate

for a very long time. What is the long-run behaviour of population? Does it grow,

decline or remain stationary?

c) Ergodicity : A model is said to be ergodic if its asymptotic dynamics are

independent of initial conditions

d) Perturbation analysis: Here, we ask what would happen to some dependent

variable if one or more independent variables were to change

7.0.6 Transient analysis

Matlab programming

Matlab programming is used to project future elephant population. First, we run

projection for the next 8 time steps to be able to see the trend and thereafter observe

population trend in the long run by considering many years. Here, what is of interest
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is the stable population. This is the behavior of population in the long run where

we consider future proportions according to age classes. Population projection are

also represented in graphs for easier observation.

First, we follow the changes in the �rst 7 steps of time. This is done by starting

from zero and end with step 8. There are 13 age classes to deal with in each iteration.

We begin by inserting the Leslie matrix L , then prepare matlab to accommodate the

�rst seven time steps by inserting a null matrix. The null matrix will have 13 rows to

represent each of the 13 age classes and columns columns to accommodate population

for the �rst seven time steps. The �rst column contains the initial population vector.

Population in the year 1990 is taken to be the initial vector

The results are shown in the table below.

Age classes 1994 1999 2004 2009 2014 2019 2024

0-4 280 251 231 337 506 673 874

5-9 29 257 230 212 308 464 617

10-14 31 29 251 224 207 301 453

15-19 31 29 27 240 214 198 288

20-24 30 29 28 25 225 201 185

25-29 29 28 26 25 23 207 184

30-34 29 27 25 24 23 21 188

35-39 29 26 24 22 21 21 19

40-44 27 24 21 20 19 17 17

45-49 27 22 20 18 17 16 15

50-54 27 23 19 17 15 14 13

55-59 25 22 18 15 14 12 11

60-65 23 18 15 13 10 10 9
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Figure 7.1: Elephant population over 8 time steps

0 1 2 3 4 5 6 7 8
0

200

400

600

800

1000

1200

Time steps

Po
pu

lat
ion

s

1st age class
2nd
3rd
4th
5th
6th
7th
8th
9th
10th
11th
12th
13th

Figure 7.1 shows the graph for population vs time.
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Figure 7.2: Logarithm of populations over 8 time steps

We notice that the number of female elephants generally increases with time but

with some oscillatory behaviour. Figure 7.2 shows the plot for the logarithm of the

population against time.
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7.0.7 Asymptotic analysis

Here, we analyse what happens in the long run.

From the equation

X(k) = Lkx(0)

we have ;

Population by age classes after 20 time steps, 21st time steps and 22 time steps

respectively are shown in the table below

Age classes Pop. at 20th time step at 21st time step at 22nd time step

0-4 19030 25538 34267

5-9 13004 17451 23418

10-14 9459 12691 17032

15-19 6741 9043 12133

20-24 4716 6330 8492

25-29 3224 4329 5811

30-34 2190 2937 3944

35-39 1454 1949 2614

40-44 900 1210 1621

45-49 564 758 1019

50-54 357 476 639

55-59 214 286 382

60-65 112 154 206

Totals 61965 83151 111577

From the table above 83151
61965

= 111577
83151

= 1:3419

This is to mean that in the long run, population grows with a constant rate

(asymptotic growth rate) from one time step to the next. Population at each age

class also grows at this rate from one time step to the next.
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Normalised population vector at each of the above time steps is given in the table

below;

Age classes 20th time step 21st time step 22nd time step

0-4 0.3071 0.3071 0.3071

5-9 0.2099 0.2099 0.2099

10-14 0.1527 0.1527 0.1527

15-19 0.1088 0.1088 0.1088

20-24 0.0761 0.0761 0.0761

25-29 0.0521 0.0521 0.0521

30-34 0.0353 0.0353 0.0353

35-39 0.0234 0.0234 0.0234

40-44 0.0145 0.0145 0.0145

45-49 0.0091 0.0091 0.0091

50-54 0.0057 0.0057 0.0057

55-59 0.0034 0.0034 0.0034

60-64 0.0018 0.0018 0.0018
We can use Matlab to calculate the age distribution vectors in the long run, say

the �rst 20 time steps. Instead of considering the number of individuals in a class,

we can choose to consider relative percentages of each age class.

Figure 7.3 shows the plot for the above normalised populations.

Once again, we have found out that in the long run, the population will follow a

distribution.

Power method

The dominant eigenvalue and the corresponding eigenvector of Leslie matrix L can

be computed using the power method.
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Figure 7.3: Elephant percentages at each iteration showing stable population

Choose an approximation to the eigenvector and label it �!y (0) . Then normalise
�!y (0) by requiring that one component be a particular non-zero, say 1.
Then �nd L�!y (0) , where

L�!y (0) = �! (1) = �(1)�!y (1) (7.1)

where �!y (1) is normalised the same way �!y (0) was normalised.

In the same manner,

L�!y (1) = �! (2) = �(2)�!y (2) (7.3)

In general,

L�!y (k) = �! (k+1) = �(k+1)�!y (k+1) (7.4)
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For the Leslie matrix

L =2666666666666666666666666664

0:000 0:014 0:550 0:925 1:040 1:053 1:067 1:090 0:985 0:829 0:646 0:472 0:099

0:917 0 0 0 0 0 0 0 0 0 0 0 0

0 0:976 0 0 0 0 0 0 0 0 0 0 0

0 0 0:956 0 0 0 0 0 0 0 0 0 0

0 0 0 0:939 0 0 0 0 0 0 0 0 0

0 0 0 0 0:918 0 0 0 0 0 0 0 0

0 0 0 0 0 0:911 0 0 0 0 0 0 0

0 0 0 0 0 0 0:890 0 0 0 0 0 0

0 0 0 0 0 0 0 0:832 0 0 0 0 0

0 0 0 0 0 0 0 0 0:842 0 0 0 0

0 0 0 0 0 0 0 0 0 0:844 0 0 0

0 0 0 0 0 0 0 0 0 0 0:802 0 0

0 0 0 0 0 0 0 0 0 0 0 0:718 0

3777777777777777777777777775

let
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y(0) =

2666666666666666666666666664

1

0

0

0

0

0

0

0

0

0

0

0

0

3777777777777777777777777775

(7.5)

then

Ly(0) =

2666666666666666666666666664

0

0:9170

0:0000

0:0000

0:0000

0:0000

0:0000

0:0000

0:0000

0:0000

0:0000

0:0000

0:0000

3777777777777777777777777775

= �! (1) = 1

2666666666666666666666666664

0

0:9170

0:0000

0:0000

0:0000

0:0000

0:0000

0:0000

0:0000

0:0000

0:0000

0:0000

0:0000

3777777777777777777777777775

= �(1)y(1) (7.6)
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Ly(1) =

2666666666666666666666666664

0:0128

0

0:8950

0:0000

0:0000

0:0000

0:0000

0:0000

0:0000

0:0000

0:0000

0:0000

0:0000

3777777777777777777777777775

= �! (2) = 0:0128

2666666666666666666666666664

1:0000

0

69:9213

0:0000

0:0000

0:0000

0:0000

0:0000

0:0000

0:0000

0:0000

0:0000

0:0000

3777777777777777777777777775

= �(2)y(2) (7.7)

Ly(2) =

2666666666666666666666666664

38:4567

0:9197

0:0000

68:8447

0:0000

0:0000

0:0000

0:0000

0:0000

0:0000

0:0000

0:0000

0:0000

3777777777777777777777777775

= �! (3) = 38:4567

2666666666666666666666666664

1:0000

0:0268

0:0000

9:1048

0:0000

0:0000

0:0000

0:0000

0:0000

0:0000

0:0000

0:0000

0:0000

3777777777777777777777777775

= �(3)y(3) (7.8)
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Ly(20) =

2666666666666666666666666664

1:3416

0:9170

0:6670

0:4749

0:3323

0:2277

0:1546

0:1022

0:0633

0:0401

0:0251

0:0148

0:0080

3777777777777777777777777775

= �! (21) = 1:3416

2666666666666666666666666664

1:0000

0:6835

0:4972

0:3540

0:2477

0:1697

0:1153

0:0762

0:0472

0:0299

0:0187

0:0110

0:0060

3777777777777777777777777775

= �(21)y(21) (7.9)
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Ly(21) =

2666666666666666666666666664

1:3419

0:9170

0:6671

0:4753

0:3324

0:2274

0:1546

0:1026

0:0634

0:0397

0:0252

0:0150

0:0079

3777777777777777777777777775

= �! (22) = 1:3419

2666666666666666666666666664

1:0000

0:6833

0:4971

0:3542

0:2477

0:1694

0:1152

0:0765

0:0472

0:0296

0:0188

0:0112

0:0059

3777777777777777777777777775

= �(22)y(22) (7.10)

The dominant eigenvalue of L is �1 = �(22) = 1:3419 while its corresponding

eigenvector is

V1 = �

2666666666666666666666666664

1:0000

0:6833

0:4971

0:3542

0:2477

0:1694

0:1152

0:0765

0:0472

0:0296

0:0188

0:0112

0:0059

3777777777777777777777777775

where � is any real constant (7.11)
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To arrive at the eigenvalues and corresponding eigenvectors directly, we use Mat-

lab programming .

The eigenvalues of matrix L are listed below

�1 = 1:3419 (7.12)

�2; �3 = 0:5964� 0:5585i (7.13)

�4; �5 = 0:2692� 0:7524i (7.15)

�6; �7 = �0:0293� 0:8560i (7.16)

�8; �9 = �0:4021� 0:6491i (7.17)

�10 = �0:7471 (7.18)

�11; �12 = �0:6292� 0:3769i (7.19)

�13 = �0:2050 (7.20)

The eigenvector corresponding to the eigenvalue � = 1:3419 is V1 below. The

normalised eigenvector corresponding to � = 1:3419 is eV1 which is also shown below.
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V1 = �

2666666666666666666666666664

0:7157

0:4891

0:3557

0:2534

0:1773

0:1213

0:0824

0:0546

0:0339

0:0213

0:0134

0:0080

0:0043

3777777777777777777777777775

, eV1 =

2666666666666666666666666664

0:3071

0:2099

0:1526

0:1088

0:0761

0:0521

0:0353

0:0234

0:0145

0:0091

0:0057

0:0034

0:0018

3777777777777777777777777775

(7.21)

We have found out that the long run growth rate is equivalent to the eigenvalue of

largest magnitude and the structure of the population is the same as the eigenvector

corresponding to the eigenvalue of largest magnitude.

7.0.8 Ergodicity

A population is said to be ergodic if its eventual behavior is independent of its initial

state. An understanding of ergodicity relies on a powerful theorem about eigenvalues

of non-negative matrices.

We have that

x(k) = d1�
k
1V1 + d2�

k
2V2 + :::+ d12�

k
12V12 + d13�

k
13V13 (7.22)

where the eigenvalues �i are numbered in order of decreasing magnitude.
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Since �1 is greater in magnitude than all the other eleven eigenvalues, we have

x(k)

�k1
= d1V1+d2

�
j�2j
�1

�k
V2+:::+d12

�
j�12j
�1

�k
V12+d12

�
j�13j
�1

�k
V13

(7.23)

As
j�ij
j�1j

< 1 for i = 2; 3; :::; 12 (7.24)

it follows that

�
j�ij
�1

�k
�! 0 as k !1 i = 2; 3; :::; 12 (7.25)

We then take limit as k !1 on both sides of (7:25) and have

lim
k�!1

�
x(k)

�k1

�
= d1V1 (7.26)

So for large values of k, we approximate x(k) by

x(k) � d1�k1V1 (7.27)

that is
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x(k) � d1(1:3419)k

2666666666666666666666666664

0:7157

0:4891

0:3557

0:2534

0:1773

0:1213

0:0824

0:0546

0:0339

0:0213

0:0134

0:0080

0:0043

3777777777777777777777777775

(7.28)

Result (7:28) is known as the strong ergodic theorem. It shows that if a nonneg-

ative matrix is primitive, the long-term dynamics of the population are described by

the population growth rate �1 and the stable population structure V1 .

7.0.9 Pertubation analysis: Sensitivities and Elasticities

Eigenvalue sensitivity

Here, we seek to perturb �1 by increasing/decreasing aij 2 L by a small component.
We then see the e¤ect of this change to the dominant eigenvalue. This is referred

to as sensitivity of the dominant eigenvalue to a small change in aij:We further seek

to identify which parameter is the most sensitive. This is helpful in management

purposes where one requires to identify which age category needs to be taken care of
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in order to prevent the overall population from being extinct. It also serves to know

which elephant category to avoid hunting in an event where hunting is legally allowed.

On the other hand,in an event of explosion in population, sensitivity analysis may

give information on which elephant category (with respect to age) should be removed

during harvesting in order to check on the population growth.

The formula for eigenvalue sensitivity is

S =

�
@�1
@aij

�
(7.29)

Eigenvalue elasticity

Survival probabilies does not exceed 1 but fertility rates have no restriction ,that is,

not bounded above. If the di¤erences between survival rates and fertility rates are

too big, then sensitivity analysis may not give a very reliable information. Here it

will be useful to consider the e¤ect of a proportional change of parameters to the

dominant eigenvalue. For example how much change to the dominant eigenvalue

will be caused by increasing fertility or survival rates by some proportion. The

proportional response to a proportional perturbation is known as elasticity.

The elasticities of � with respect to the element aij 2 L are often interpreted as
the contributions of each of the aij to � .

Eigenvalue elasticity is expressed as

eij =
aij
�

@�

@aij
(7.30)

The table below shows sensitivities and elasticities of the dominant eigenvalue of

matrix L (�1 = 1:3419) to a small change in di¤erent parameters:
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Parameters Sensitivity Elasticity

P1 0:2844 0:1943

P2 0:2653 0:1930

P3 0:2153 0:1534

P4 0:1514 0:1059

P5 0:1003 0:0686

P6 0:0630 0:0428

P7 0:0376 0:0249

P8 0:0208 0:0129

P9 0:0098 0:0061

P10 0:0041 0:0026

P11 0:0014 0:0008

P12 0:0002 0:0001

F2 0:1328 0:0014

F3 0:0966 0:0396

F4 0:0688 0:0474

F5 0:0482 0:0374

F6 0:0330 0:0259

F7 0:0224 0:0178

F8 0:0148 0:0120

F9 0:0092 0:0068

F10 0:0058 0:0036

F11 0:0036 0:0017

F12 0:0022 0:0008

F13 0:0012 0:0001

The sensitivity of the dominant eigenvalue �1 to fertility Fi is a strictly decreasing

function of age. The sensitivity of the dominant eigenvalue �1 to survival Pi also

decreases with age. We also note that �1 is more sensitive to survival than to fertility

at lower age classes but the inequality is reversed at older age classes. This is to say
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that at older age classes, �1 is more sensitive to fertility than to survival. Infact

a change in survival rates in the last two age classes has very little e¤ect to the

dominant eigenvalue �1:

From the above results, we conclude that the dominant eigenvalue is more sensi-

tive to survival of lower age classes of elephants than to fertility of these age classes.

This shows the importance of juvenile survivorship in determining future elephant

population.

Sensitivity of the damping ratio

The damping ratio � = �1
j�2j where �1 is the dominant eigenvalue and j�2j is the

modulus of the second largest eigenvalue, gives the rate of convergence to the stable

population. Here �2 = 0:5964 + 0:5585i is a complex eigenvalue and j�2j = 0:8171:
We want to investigate which parameter a¤ects the damping ratio the most.

Sensitivity of � to aij is denoted by

S� =

�
@�

@aij

�
(7.31)

while elasticity of � to aij is

e� =
aij
�

@�

@aij
(7.32)

Thus the damping ratio is � = 1:3419
j0:5964+0:5585ij = 1:6423

Here, we seek to perturb � by increasing/decreasing aij by small components.We

then see the e¤ect of this change to the damping ratio. This is referred to as sensi-

tivity of the damping ratio to a small change in aij : We will do so by adding 10%

to the fertility rates Fi
The table below shows some elasticity of the damping ratio of matrix L to 10%

change in di¤erent parameters:
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Parameter damping ratio elasticity

F2 1:6424 0:0714

F3 1:6479 0:1018

F4 1:6557 0:1438

F6 1:6604 0:1719

F8 1:6353 �0:0642
F12 1:6450 0:0572

F13 1:6437 0:1414

Increasing Fi in the middle age classes reduces � while increasing Fi in the lower

and higher age classes increases � . The e¤ects of survival changes to the damping

ratio are similar to those of fertility changes.

7.0.10 Reproductive value and stable equivalent

The table below shows reproductive value per Amboseli elephant born and aggregate

reproductive value. The stable equivalent is c1 = 75
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Reproductive value Aggregate reproductive value

0.1781 6

0.2606 8

0.3557 11

0.3968 13

0.3917 12

0.3708 12

0.3403 11

0.2997 10

0.2500 8

0.1901 6

0.1274 4

0.0697 2

0.0131 0

The annual rate of increase of Amboseli elephants is r=ln(1.3419)=0.294 and the

mean child-bearing age (generation time) is 30 years.
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Chapter 8

Incorporating density dependence
into the Leslie matrix model

A case of density independent Leslie matrix model has been considered above and

the general trend is that the elephant population increases with time and in the long

run population dynamics is an increment with a constant factor from one time step

to the next. This is basic model that seeks to get the overall trend of population

dynamics.

Due to limitation of Amboseli National park in terms of resources and competition

among elephants, the population will not grow inde�nately with time and thus there

is a need to incorporate density dependence into the model.This will ensure that in

the long run, elephant population will not grow inde�nately. Any incorporation of

density dependence decreases the vital rates.

There are several ways of incorporating density dependence and hereby, one way

is discussed. We consider density as the sum of all individuals in the population

irrespective of their ages. Let this sum be x(k), where

x(k) =
X
i

x
(k)
i where x(k)i is the number of individuals at age class i during time step k

(8.1)
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Now, let Pi and Fi be variables and not costants because they will be a¤ected by

the density. As the population increases, the survival rate Pi will decrease. This is

because of increased competition of resources among elephants. To ensure that this

is true, we de�ne a quantity q such that Pi is a decreasing function.

Let

q = 1 + �x(k) (8.2)

where � = ��1
K
is a density parameter. � is the asymptotic growth rate considering

density independence, K is the carrying capacity of the park.

Arrange the quantity q such it forms the diagonal element of an n � n matrix
Q, that is,

Q =

26666666664

q1(t) o � � � 0

0 q2(t) 0 � � 0

� � �
� � �
� � 0

0 0 � � 0 qn(t)

37777777775
(8.3)

We divide matrix L by this quantity Q and have that at time at time k+1,

x(k+1) = LQ�1x(k) (8.4)

This means that the new Leslie matrix will have its vital rates divided by the

quantity q.

8.1 Analysis of the density parameter �

If � = 0, then q = 1 and thus we have density independence as discussed earlier.

If � < 0, then q < 1 with necessarily no lower bound. This will lead to negative

entries in the vital rates of the new Leslie matrix. This will invalidate the model
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because ordinarily, projection matrices are supposed to be non-negative.

The only viable option is to have � > 0 . This means that q(t) > 1

After several projections,the population will reach stability say at time � .Thus,

from q = 1 + �x(k) , we have

q = 1 + (
�� 1
K

)x(k)

= 1 + (
�� 1
K

)K

= 1 + (�� 1)
= � (8.5)

and the new Leslie matrix becomes

L =

2666666666664

F1
�

F2
�

F3
�

: : : F12
�

F13
�

P1
�

0 0 : : : 0 0

0 P2
�

0 : : : 0 0

: : : : :

: : : : :

: : : � : :

0 0 0 : : : P12
�

0

3777777777775
(8.6)

0 < Pi < 1 i = 1; 2; :::; 12

Fi � 0 i = 1; 2; :::; 13

8.2 Results

This model shows that elephant population increases with up to a certain time where

the population becomes constant, that is, with no growth rate. This is where the
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park has attained its carrying capacity and will therefore not accommodate more

elephants. Infact, the dominant eigenvalue of the new Leslie matrix is 1 .
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Chapter 9

Findings and recommendations

9.1 Findings

The Leslie matrix L largely depends on two vital rates: fertility and survival rates.

This matrix is used to describe the population dynamics of Amboseli elephants by

calculating its eigenvalues and corresponding eigenvectors.

A time-invariant and density independent system was �rst considered. Here,

the Leslie matrix elements are considered to be constant over time. The elephant

population is grouped into uniform age classes where individuals in the same age class

are assumed to have almost similar characteristics. Each individual in a particular

age class is considered to have the same chance of surviving from its current age class

to the next. All populations are considered to move to the next age class during the

next time interval.

It is noted that all elephants age classes, except the �rst one, are productive.

The extreme age classes however, have lower productivity. The most productive age

classes are those in the middle.

Four types of analysis are carried out.

Transient analysis: Here, short-run behaviour of Amboseli elephants is observed.

The population is observed to be generally on the increase with oscillatory motion.
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In order to visualise this well, a graph of population with time is sketched.

Asymptotic analysis: Long-run population dynamics is analysed. It is noted that

the population of Amboseli elephants increase with time in all the age classes. A close

look at the behaviour of increment shows that from one time interval to the next,

the population in all the age classes increases with a constant factor. This constant

factor is what is referred to as asymptotic growth rate. In an attempt to �nd out

what this growth rate would mean with respect to the matrix L, the eigenvalues of

the matrix were calculated.

Since L is a nonnegative, irreducible matrix, it will possess ( using Perron Frobe-

nius theorem) an eigenvalue which is greatest in magnitude compared to all the

other eigenvalues. This eigenvalue is termed as the dominant eigenvalue of matrix

L. A famous method of calculating this dominant eigenvalue is called power method.

The dominant eigenvalue is found to be 1.3419 . The other 12 eigenvalues were got

by programming using Matlab software. They are either negative or complex. It is

noted that the asymptotic growth rate is indeed the dominant eigenvalue of matrix

L .

Another feature of the long-run population dynamics is the stable age distribu-

tion.The population is observed to grow proportionally in the long run. That is, the

percentages of elephants in each and every age class is constant. Once again, these

proportions are the same as the right eigenvector corresponding to the dominant

eigenvalue of matrix L .

Ergodicity: It is found out that the long run population dynamics does not

depend on the initial population vector but only on the dominant eigenvalue and its

corresponding eigenvector. The fact that we can use any population vector as the

initial vector and still arrive at stable population is an important thing to note in

population modelling.

Perturbation analysis: It is noted that the sensitivity of the dominant eigenvalue

to fertility rates Fi is a decreasing function. The sensitivity of the dominant eigen-

value to survival rates Pi is also a decreasing function. This is to say that the growth

rate is more sensitive to changes in survival and fertility rates at younger age classes

than older age classes of Amboseli elephants. A small change in Fi and Pi at younger
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age classes will cause greater impact to the asymptotic growth rate than when the

change is applied to older age classes. If one needs to cause some bigger changes to

the growth rate, then it should be applied to the lower age classes. The asymptotic

growth rate is also more sensitive to survival rates than fertility rates at younger age

classes but is more sensitive to fertility rates than survival rates at older age classes.

Damping ratio � refers to the rate of convergence to the stable population. Increas-

ing Fi in the lower and higher age classes of Amboseli elephants increases the rate

of convergnce to the stable population. Increasing Fi in the middle age classes re-

duce the rate of convergence to the stable population. An explanation of this is that

increasing Fi at the middle age classes would begin to make fertility periodic with

respect to age, which will slow down convergence to the stable population. E¤ects

of changing survival rates are similar to those of fertility changes.

Incorporation of density dependence was also considered. Density was de�ned to

be the total population of individuals irrespective of their age classes. Incorporation

of density dependence was found to decrease the vital rates and hence the asymptotic

growth rate. Once the population attains an equilibrium ( carrying capacity of the

park), the population in all the age classes remain constant at any time thereafter.

9.2 Recommendation

In this study, we have mostly concentrated on density independent Leslie matrix

model and later incorporated some density dependence with respect to total popula-

tion. As an extension to this study, i intend to fully incorporate density dependence

by also including e¤ects of di¤erent climatic conditions to population dynamics of

Amboseli elephants. Interraction between elephants and the environment (vegetation

in the park) and competition of resources among elephants will also be considered.

The model analysed was to a higher extent linear.The e¤ects of nonlinear terms have

not been addressed. This needs to be incorporated in order to make the model more

realistic.
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APPENDIX

1.Transient analysis

>> % Leslie matrix L

>> L=[0,0.014,0.550,0.925,1.040,1.053,1.067,1.090,0.985,0.829,0.646,0.472,0.099;0.917,0,0,0

0 0 0 0 0 0 0 0 0;0 0.976 0 0 0 0 0 0 0 0 0 0 0;0 0 0.956 0 0 0 0 0 0 0 0 0 0;0 0 0 0.939

0 0 0 0 0 0 0 0 0;0 0 0 0 0.918 0 0 0 0 0 0 0 0;0 0 0 0 0 0.911 0 0 0 0 0 0 0;0 0 0 0 0 0

0.890 0 0 0 0 0 0;0 0 0 0 0 0 0 0.832 0 0 0 0 0;0 0 0 0 0 0 0 0 0.842 0 0 0 0;0 0 0 0 0

0 0 0 0 0.844 0 0 0;0 0 0 0 0 0 0 0 0 0 0.802 0 0;0 0 0 0 0 0 0 0 0 0 0 0.718 0];

>> %Initial population vector

>> x0=[32;32;32;32;32;32;32;32;32;32;32;32;32];

>> %Preparing matlab to accommodate population vectors for the �rst 8 time

steps

>> X=zeros(13,9);

>> %The initial population vector occupies the �rst column of X

>> X(:,1)=x0;

>> % Population for the next 8 time steps

>> for k=2:9,X(:,k)=L*X(:,k-1);end

>> format short g

>> X;

Graph

>> t=0:8;

>> plot(t,X�)

>> xlabel(�Time steps�)

>> ylabel(�Populations�)

>> legend(�1st age class�,�2nd�,�3rd�,�4th�,�5th�,�6th�,�7th�,�8th�,�9th�,�10th�,�11th�,�12th�,�13th�)

Logarithm of population

>> t=0:8;

>> semilogy(t,X�)
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>> xlabel(�Time steps�)

>> ylabel(�Log(Population�)

>> legend(�1st age class�,�2nd�,�3rd�,�4th�,�5th�,�6th�,�7th�,�8th�,�9th�,�10th�,�11th�,�12th�,�13th�)

2. Asymptotic analysis

>> %Considering population percentages

>> X=zeros(13,25);

>> x0=[30;30;30;30;30;30;30;30;30;30;30;30;30];

>> X(:,1)=x0;

>> for k=2:25,X(:,k)=L*X(:,k-1);end

>> Y=zeros(13,25);

>> for k=1:25,Y(:,k)=(X(:,k)/sum(X(:,k)))*100;end

>> t=0:24;

>> semilogy(t,Y�)

>> xlabel(�Time steps�)

>> ylabel(�Log(Percentages�)

>> legend(�1st age class�,�2nd�,�3rd�,�4th�,�5th�,�6th�,�7th�,�8th�,�9th�,�10th�,�11th�,�12th�,�13th�)

3. Eigenvalues and eigenvectors

>> [V,D]=eig(L);%Right eignvectors V and eigenvalues in Matrix D

>> [U,D]=eig(L.�); U=conj(U) % Left eigenvector U and eigenvalues in D

4. Sensitivity matrix

>> [V,D]=eig(L);

>> D=diag(D);

>> imax=�nd(D==max(D));

>> W=conj(inv(V));

>> v=V(:,imax);

>> w=real(W(imax,:)).�;

>> senmat=w*v�
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