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Abstract  

Population modeling is an area of interest in mathematics, statistics, population studies and 
ecological management among others disciplines. Population of wild animals especially those classified 
as endangered species require to be managed in scientifically verifiably way. In this study emphasis has 
been put on the application of mathematical and statistical models to the African Elephant (Loxodonta 
Africana) population dynamics. Data from published sources, independent conservation and research 
organizations, and bodies mandated to conserve the elephant in different countries is used in our study. 
To be able to conserve African elephant population sustainably and make management decisions in a 
verifiable way, there is need for better understanding of; i) the current and expected future population 
trend, ii) the influence of each population vital rates to population dynamics, iii) the role of population 
demographic structure in population dynamics and management strategies, iv) how to incorporate 
processes uncertainty, observation error and model uncertainty in population models and forecasts, and, 
v) how scientific methods can be used to monitor population trends, study population regulation, and 
determine best management strategies. In the effort to study the elephant population it was noted that the 
biological, demographic, social processes and ecological characteristics governing the elephant 
population process are not understood with certainty.  

Integrated autoregressive moving average (ARIMA) models, log-linear, bootstrapping, structured 
population models were used in modeling the elephant population of different ecosystems and for 
different selected scenarios. The mathematical basis and analytical approach of these methods are given. 
The derived models were used to project, forecast future population and analyze age specific mortality 
required for zero population growth. A Bayesian state space modeling framework for unstructured and 
structured population was discussed. Most simulations and graphics have been done using MATLAB® 
or R, a statistical environment free ware. ARIMA model were fitted the Amboseli National Park (ANP) 
total population abundance and the populations’ growth rates time series. The log-linear fits indicate that 
the AENP population has a faster growth than the ANP elephant population. Population predictions and 
projection acquired from the log-linear models, time series models, and bootstrapping were compared. 
The populations considered showed increasing total population abundance.  

Important properties and analysis techniques of a transition matrix in age structured population 
models were reviewed. Sensitivity analysis and elasticity analysis showed that population trend and 
growth rate was more sensitive to calving interval than age sexual maturity or age at reproductive 
menopause. The survival of animals less than 24 years and the fecundity of animals between ages of 10 
to 30 years were found to be the most important to the elephant’s population dynamics. The most 
sensitive transitions were for those classes with age less than 24 years. Different age dependent mortality 
scheme are necessary to course zero percent growth rate depending on the frequency of occurrence. 
These age dependent mortality schemes are higher for population with low average calving interval. 
Populations with average caving interval above 5.5 year tend to stagnate or decline depending on the 
mortality levels. For population recovery purposes, it is recommended that management strategies that 
increase survival rates of classes with ages less than 24 years and fecundity of classes between 10 and 30 
years would be the most effective. Removal or induced mortality of classes with age less than 30 years 
produces zero percent growth for lower percentages and shorter time periods. 
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Equation Chapter 1 Section 1 

CHAPTER ONE: INTRODUCTION 

1.1 Background 
A population is a group of plants, animals, or other organisms, all of the same species, that 

live together and reproduce” (Gotelli, 2001). Population dynamics is an area of investigation 

between the fields of population biology and population mathematics. Thus population dynamics 

can be taken as a balance of biology and mathematics. 

Animal population models offer many challenges and interesting modeling problems to 

solve. These problems allow impetus for application both exciting mathematical and statistical 

methods or development new methods. Computer and numerical simulation is an example of fast 

developing area in modeling of both population dynamics and other research areas. Mathematical 

and statistical models can help solve a growing problem in biological research. As we seek to 

understand complex patterns of observations in collected data, statistical and mathematical models 

come in as an important tool.  

Elephants and their population have became popularized both by positive and negative 

human-elephant interaction. Tourism and game viewing are a form of positive interaction whereas 

spread of infectious livestock diseases, lose of human live, loss of biodiversity, crops and 

infrastructure as a result of damage by elephants, are a form of negative interaction. They are also 

large long-lived herbivores that can transform or destroy the landscape. Elephant populations and 

their management generate passionate debates among ecologist, wildlife conservationist, local 

wildlife management, international wildlife organizations, stakeholders and the general public.  

Most of the stakeholders are in agreement on the need to conserve elephant population. 

It is estimated that there were 3-5 million African elephants in the 1930s and 1940s in the 

continent. But a population decline was observed in the 1950s to 1980s. In the 1980s, for example, 

an estimated 100,000 elephants were being killed per year and up to 80% of herds were lost in some 

regions according to World Wildlife Fund (WWF). The African elephants were moved from 

Appendix II to Appendix I of the Convention on International Trade in Endangered Species of Flora 

and Fauna (CITES), declaring elephants an endangered species in October 1989. The listing of the 

African elephants in Appendix I of CITES demonstrated the danger faced by the African elephant 

populations. Appendices I, II and III to the Convention are lists of species afforded different levels 
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or types of protection from over-exploitation. Appendix I lists species that are the most endangered 

among CITES-listed animals and plants. 

Elephant numbers vary greatly over the 37 range states with some populations remain 

endangered, while others are now secure according to the International Union for Conservation of 

Nature (IUCN) African Elephant Specialist Group. Western African populations are still small, with 

few countries having more than 1000 animals. The southern Africa populations are large and 

expanding, with more than 300,000 elephants in the sub-region. Table B1 in appendix B gives 

population estimates of African Elephant in some sub-Saharan African countries. These estimates 

are based on available published and unpublished source by year 2007 (African elephant database 

(Barnes et al. 1998) and status reports (Blanc et al. 2003)). According to African Elephant Status 

Report (Blanc et al., 2007) there was an approximately 472,200 African elephant in the across the 

continent as a whole.  

As an example of the concerns on African elephant population, the WWF (2009) have 

identified five issues that need to be addressed in order to conserve African elephants and diminish 

the factors that threaten them. These are:  

i. Slowing the loss of natural habitat. 

ii. Strengthening activities against poachers and the illegal ivory trade. 

iii. Reducing conflict between human and elephant populations. 

iv. Determining the status of elephant populations through improved surveys. 

v. Enhancing the capacity of local wildlife authorities to conserve and manage elephants. 

  While these five issues are necessary to conserve elephant populations they also gives us insight 

into the need for scientifically verifiable and evidence based population management.  

Scholes et. al. (2008) while reporting on an assessment of South African elephant management, 

gives a wide range of issues that arise in managing African Elephant populations. These include; the 

history and distribution of elephant populations,  elephant population biology and ecology, effects 

of Elephants on ecosystems and biodiversity, reproductive control of elephants, controlling the 

distribution of elephants and lethal management of elephants, the economic value of elephants and 

national and international law among other. 

Save the Elephants (STE) in South Africa was started in the late 1990 launched the trans-

boundary Elephant program that followed elephant movements across private conservation 

reserves, Associated Private Nature Reserves (APNR), into the great Kruger National Park (KNP), 

and over the border into Mozambique. In a report of this project, we single out the classification of 

elephant males into three main size categories; immature males of one to twelve years, young adults 

of 12 to 35 years, senior adults older than 35 years.  These categories are observed over time and 
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capture recapture methods used to estimate total population of bulls. The importance of age/class 

structured model is easily captured in this STE project and study (Henley et. al. 2009). 

In Kenya, elephant’s population conservation has attracted local and international attention 

through the focused awareness efforts created by the Kenya wildlife Service (KWS) and other 

stakeholders. Through KWS-STE 2008 report (Thouless et al., 2008) and strategic plan, the KWS 

plans and creates awareness on status and conservation strategy for elephant population. The KWS 

conservation and management strategy for the elephant in Kenya 2012 to 2021 (Litoroh et. al., 

2012) has both a long term and a ten years goal focused on elephant management.  

“The long term vision for the strategy is; “A secure future for elephants and their habitats, 

based on peaceful and beneficial co-existence with people, now and for generations yet to 

come.  

While the overall goal for the next ten years is to “maintain and expand elephant distribution 

and numbers in suitable areas, enhance security to elephants, reduce human-elephant conflict 

and increase value of elephants to people and habitat”. 

In the KWS-2012 strategy, they do acknowledge the importance of research in conservation of 

elephants. I quote; “there is still a lot we need to know about elephants for their effective 

conservation and management and, therefore need more focused research and monitoring in 

partnership with research organizations and individual researchers”.  

One of the elephant’s population we used as an example in demonstrating our model is the 

Amboseli National park elephant population. The Amboseli landscape covers an area of 

approximately 5,700 Km² stretching between Mt. Kilimanjaro, Chyulu Hills, Tsavo West National 

Park and the Kenya/Tanzania border. Amboseli ecosystem consists of Amboseli National Park and 

the surrounding six group ranches namely; Kimana/Tikondo, Kuku, Olgulului/Olalarrashi, 

Imbirikani, Kuku, and Eselenkei cover an area of about 506,329 hectares in Loitokitok district. It 

also includes the former 48 individual ranches located at the foot slope of Kilimanjaro that are now 

under crop production, mainly rain fed agriculture (African conservation center, ACC; 2012). 

Elephant population has increased over the last two decade in the Samburu District and 

surrounding ecosystems 2312 in 1990 (Thouless1990), 2969 in 1992 (Thouless 1992), 3436 in 1999 

(Kahumbu et al. 1999) and 5447 in 2002 (Omondi et al. 2002) although the total range size may not 

be same for these counts. There is also mortality figure reported as a result of management actions 

by the KWS, though the focus of the management was to control troublesome animals (Thouless 

2008), 

 



4 

 

 

AM B OSE L I  EC OS YS TE M :  AFR IC A N C ONS E R VAT ION CE NT E R ,  (ACC;  2012) 
  

Changes in total elephant population numbers are the basis of many management plans and 

policies, but the effectiveness of management ought to be weighed response on impact of affected 

species, ecological processes, elephant range utilisation, and elephant numbers. It is thus important 

to increase understanding on social, spatial, and demographic profiles of Africa’s elephant 

populations since they affect the distribution and numbers of elephant population. 

 The demographic factors that affect elephant population include; age at first calving, calving 

interval, and age at last calving. These traits and any factors that alter them determine how fast a 

population will grow holding other factors constant. These factors are also the determinant of the 

total number of calves a single female reproduce, which gives the reproductive number. We note 

here that the gestation period of an elephants is 22 months (Hodges et al., 1994). 

Challenges exist in trying to define the economic value of elephant population. The use and 

non-use values are driven by perceptions and are influenced by specific contexts. With an optimal 

way of evaluating the economic value in mind, elephant populations need to be managed in an 

adaptive and sustainable way. If not managed in an adaptive manner elephant population may lead 

to environmental degradation and loss of ecological diversity (Blignaut et al, 2008).  

Human and elephants interaction have intensified and diversified with the growth of human 

populations, increases in elephant populations and expansion of conservation areas in some regions 

in Africa. Human–elephant conflict is gaining attention in the eastern and southern Africa, hence 

the need to manage elephant population in a scientifically verifiable way with consideration given 

to the benefit of wild life conservation to the local communities. Current human and elephant’s 
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competition for resources, human wildlife conflict, reducing ecological balance and endangered 

species are indication of the importance of this and other research work in this area. 

Population models encompass many factors that are known to determine a population trend. 

Population growth rate is a unifying parameter that incorporates all the different determinants of 

population trend. Single cohort population studies consider the animals in the group as being 

homogeneous, with all the vital parameter and characteristics of the population similar. In chapter 

four our focus will be on the central role of population growth rate for single population cohort.  

We will evaluate the importance of population structure in studying population growth rate 

and analyzing population management strategies. State space models, also considered, are important 

for studying structured population dynamics in the presence of process and measurement errors. 

State space models enable us to incorporate statistical inference in wild population dynamics. The 

important and indispensable role of mathematical, statistical and simulation principles were 

demonstrated all through different types of models.      

1.2 Statement of the problem 

African elephant populations although listed as endangered have shown remarkable 

recovery in most Eastern and Southern Africa ecosystems. Their increase in number has raised 

concern of the possible effects of their increased number to the ecological diversity and wildlife 

human conflict among others. In certain ecosystems where the populations have shown recovery, 

the optimal population management strategy need to be found and its possible effects evaluated 

before implementation.  There is thus need for scientifically verifiable research on Elephant 

population trends and an evaluation of whether the populations in different ecosystems are still 

threatened with extinction.  

If a population is classified as recovered, debates exist on whether the population should be 

left to regulate themselves through density dependent mechanisms or by other strategies such as 

reproductive control, culling or translocation should be applied. If it is scientifically decided that a 

population require to be controlled, questions arise as to the best strategies to be applied and what 

will be the outcome of applying such strategies. A management strategy may aimed at population 

conservation, maintain a stable population or population control, but in such cases the population 

managers are interested in evaluating such a strategy before implementation it. The population 

managers would like to know which of the vital parameters of the elephant population 

demographics they should focus their management strategy to attain the desired outcome.  There is 

need to evaluate what role population structure plays in developing successful management 

strategies. 
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  The biological, ecological, social processes and demographic characteristics governing the 

elephant population process are not fully understood.  We are thus unable with absolute certainty 

determine the future dynamics of a given population. Even if we could learn everything about the 

population though the observed data, question arise on how accurate is the data we have and how 

accurate are surveys conducted on the population under study. Both aerial and ground counts of 

elephant population have error due to our inability to fully recognize or observe all the animals to 

be counted. Thus the role of process and measurement errors in any population models used to 

study or forecast future population arises. Some of the questions or uncertainties that arise include; 

i. What are the expected elephant population trends? Are the population still threatened with 

extinction in selected ecosystems? 

ii. What certainty level can we attach to population forecast or predicted values using total 

population figures?  

iii. What is the importance of elephant population demographic structure in population 

management? And, 

iv. How do we manage process uncertainty, measurement errors and model uncertainty to be 

certain of the applicability of figures used in the management process?  

There is a heated debate as to whether elephant numbers need to be controlled or reduced in east 

and Southern Africa, and if so, how. Gathering, evaluating, and presenting all the relevant 

information on the African elephant and continued scientific studies are required to guide all 

stakeholders in the elephant population management. In this thesis we study explanatory population 

models, use of field data and simulation methods to model elephant population dynamics. 

Theoretical foundation and dynamical behavior of the underlying models is given with possible 

applications. 

1.3 Objectives 

1.3.1 General objective: 

It has been to model elephant population dynamics using time series of population 

abundance and age structured models, and explore techniques of incorporating multiple sources of 

uncertainty. With the purpose of being able to; understand the role of demographic variations in 

population dynamics, monitor and predict future population trend, and evaluate population 

regulation techniques for better conservation decisions.    

Objective population management requires to be done in scientifically verifiable way. Our 

goal was to be able to model some of the environmental and demographic factors that influence 

population dynamics of elephant population. This research re-evaluates the key concepts in African 
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elephant population dynamics models and the use of simulations to inform our understanding of the 

population. The models need to capture autocorrelation in data, demographic structure, uncertainties 

in process and data while maintaining simplicity in the models. Emphasis was put on the 

importance of the models in population management and enhancing decision making in elephant 

population management.  

1.3.2 Specific objectives; 

These were to: 

i. Review the dynamical behaviour of difference and differential equation models and give 

extensions incorporating stochasticity, process variability and observation errors: 

As part of the literature review we explored the role per capita growth rate plays in 

determining density dependence. We simulated the dynamical behaviour of the difference and 

differential equation models and the resulting computer graphic given to demonstrate different 

scenarios.   

ii. Explore different methods of modelling the time series of total elephant population abundance 

for selected conservation areas:  

We fitted log-linear and ARIMA models to elephant population data and used them to 

forecast future population and compare them. Where few data points are available we 

compared ARIMA results with bootstrapping methods. We derived a Bayesian distribution of 

the population growth rate and sample from its posterior distribution. Total population models 

are necessary since population data is mostly presented as total counts without other 

demographic details.  

iii. Formulate realistic population models for elephant population’s dynamics that capture 

population age structure: 

Although determining the exact age of an elephant is not easy unless the population is well 

monitored, individual animals vital characteristics differ by age.  We study structured 

population models that put into consideration these age dependent characteristics of the 

population. Leslie’s like matrix population models were used and analyzed using the 

reproductive value, dominant Eigen value, sensitivity and elasticity of the transition matrix. 

What-if analyses were conducted to demonstrate the effect of the different vital parameters 

and evaluate natural or artificial changes in these vital rates.    

iv. Demonstrate and model the effect of process, measurement and model uncertainty wild 

animals population modelling: 

The quality of data used to model, project and make management decision is very important 

in designing conservation goals and evaluating management options. We evaluated the effect 
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of uncertainty in data, model parameters and the models used in determining elephant 

population trend, conducting statistical analysis and designing management strategies. We 

derived models for a population with process and measurement error, in a Bayesian 

framework. The role of simulation in population modelling and embedding population 

dynamics models in inference was discussed considering the complexity of the 

multidimensional integrals involve. 

1.4 Significance of the Study 

Models are an important abstraction of a real world issue in order gain better understanding. 

Thus apart from demonstrating the important role that mathematical modelling, statistical tools and 

simulation play in population modelling, this study is important for the following purposes;  

i. Population prediction: Population forecast play a vital role in predicting population trend and 

possible effects of population management strategies. Every forecast should be accompanied 

with a measure of uncertainty that help determine the utility of the forecasts. We evaluate 

methods of predicting elephant populations in the presence of uncertainty. 

ii. Demographic structure: the study enables one to appreciate how population management can 

influence by understanding or the demographic structure of the population. The population 

demographic structure and individual characteristics were evaluated to determine their 

importance in the population management strategy.      

iii. Data collection strategies and research: Models can also be used to inform population experts 

and wildlife managers on better data collection strategies. What population characteristics and 

rate ought to be recorded to enhance monitoring of the selected population? The modular 

approach in modelling wild population sub-process like birth, survival, ageing and removal 

requires detailed data and study of the individual processes. 

iv. Population management strategy: establishing the population trend and chances of extinction 

enables better conservation decision.  There is also need to establish the most effective 

strategy to attain desired population scenario and to evaluate the impact of a selected 

population management policy. 

1.5 Basic population models  

1.5.1 Density independence 

If a population grows without bound it can be represented using the exponential growth model: 

 dx rx
dt


.
 (1.1) 
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With the solution given by ( ) (0) rtx t x e . Writing the exponential model as a difference equation we 

have 1 (1 )t tX R X    which iteratively give a solution 1 0(1 )t
tX R X   . Here tX is the population at 

time t and R is the finite rate of growth.  

1.5.2 Density Dependence logistic model 

As a differential equation the logistic model is denoted as 

 
( )( ) 1dx x trx t

dt K
     .

 (1.2) 

It can be shown that the solution of the equation (1.2) can be written as  

  (0)

( )
1 1 rtK

x

Kx t
e


 

.
  

where K is the carrying capacity and r is the instantaneous rate of growth. The logistic equation can 

also be expressed as a difference equation;  1 1 1t t tX X R X K      . 

1.5.3 Ricker model  

The Ricker model (Ricker, 1954) can be written as a difference equation:  

  0 1
1

tr X K
t tX X e 
  . (1.3) 

Here  0 1 tr r X K   is the growth rate for one time step, tX is the population or quantity at time 

t , 0r  is the per capita growth rate when 0 1X   and K  the carrying capacity. 

1.5.4 Theta Logistic Population Growth Model 

The theta-logistic which is a generalization of the standard Logistic equation is defined as  

 ( )( ) 1dx x trx t
dt K

         .
 (1.4) 

The parameter theta   is the shape parameter determining the form of density dependence. 

1.5.5 Leslie Structured Matrix Model  

Leslie matrix (Leslie, 1945), which is sometimes referred to as the projection matrix has the 

following form: 
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1 1 2 3 1

2 1 2

3 2 3

1

( 1) ( )
( 1) ( )
( 1) 0 0 0 ( )
( 1) 0 0 0 ( )

( 1) 0 0 0 ( )

n

n n n

X t LX t
x t F F F F x t
x t P x t
x t P x t

x t P x t

 

    
        
     
    
    
        







      



, (1.5) 

where, ( )ix t  is population in the thi  age class in generation t, iF = age specific birth rate for the thi  

age class, iP  is the fraction of the thi  age group surviving to the ( 1)sti  age. 0 1iP  , and the first 

age group 1x  consists of births from all age groups. The number in the thi  age group that survives to 

age 1i   is 1( 1) ( )i i ix t Px t   . The Leslie model is simply the following difference equations, 

 1
1

1

( 1) ( ),  1,

( 1) ( ),  2,3, .

n

i i
i

i i i

x t F x t i

x t Px t i n




  

  




 (1.6)  

1.5.6 McKendrick-Von Forester Equation 

The McKendrick–von Forster equation is a partial differential equation in which both time and age 

are continuous variable. The standard McKendrick-Von Forester age-structured population equation 

has the form, 

 

0

( , ) ( , ) ( ) ( , ),

(0, ) ( ) ( , ) ,

n x t n x t x n x t
t x

n t b x n x t dx

  
 



  

 
 (1.7) 

where ( , )n x t is the population aged x at time t , ( )x is the age dependent death rate, (0, )n t is the 

total new births at time t and ( )b x is the age dependent birth rate. 

1.5.7 Likelihood  

If 1 2, , , nx x x are values of a random sample from a population with the parameter , the 

likelihood function of the sample is given by,  

 1 2( ) ( , , , ; ),nL f x x x    (1.8) 

for values of   within the domain. Here 1 2( , , , ; )nf x x x  is the value of the joint density 

distribution or the joint probability density of the random variables 1 2, , , nX X X at 

1 1 2 2, , , n nX x X x X x   .  
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1.5.8 State space model 

Formally, a state space model consists of an p valued time series ( ,  1,2, )t t    and an 

p valued time series ( ,  1,2, )tY t   , satisfying the following assumptions. 

i. ,  1,2,t t   is a Markov chain, 

ii. Conditionally on ( ,  1, 2, )t t   , the ( ,  1,2, )tY t   ’s are independent and tY  

depends on t  only. 

The consequence of i) and ii) is that a state space model is completely specified by the initial 

distribution 0( )f   and the conditional densities 1( | )t tf     and ( | )  1t tf y t  .  

1.5.9 Dependence structure for a state space model 

 
0 1 2 1 1

1 2 1 1

t t t

t t tY Y Y Y Y

      

 

      
    

 

 

The dependence structure can be expressed as follows 

 
 0: 1 1: 1

0: 0: 1 1: 1 1

( | , ) | ,
( | , ) ( | ).

t t t t t

t t t t t

f y y f y
f y f

 

   
 

  




 (1.9) 

The time series 1 1 2( ) , , ,t t tY y y y   is Makovian if for any 1t  , 

 1: 1 1( | ) ( | ).t t t tf y y f y y   

1.5.10 Dynamic Linear Model (DLM) 

An important class of state space models is given by Gaussian linear state space models, 

also called dynamic linear models. A dynamic linear model (DLM) is specified by a Normal prior 

distribution for the p-dimensional state vector at time t = 0, 

 
0 0 0

1

( , ) ,
 ,       (0,  ),   1,

,    (0, ),   1,

p

t t t t t m t

t t t t t p t

N m C
Y F v v N V t

G w w N W t




  



   

   

 (1.10) 

together with a pair of equations for each time t ≥ 1, where  tG  and tF are known matrices (of order 

p p and m p respectively) and ( ) 1 tv t  and ( ) 1 tw t  are two independent sequences of 

independent Gaussian random vectors with mean zero and known variance matrices ( ) 1 tV t  and 

( ) 1 tW t   respectively. 



12 

 

1.5.11 Non-Linear Non-Gaussian State Space Model 

The state-space model can be given by the equations,  

 1( , ),
( ,  ),

t t t t

t t t t

x F x w
y H x v




 (1.11) 

where tF  and tH  are known functions that may depend on parameters   and tw and tv are white 

noise processes. The main component of the model is that the states are Markov, and the 

observations are conditionally independent, but we do not necessarily assume tF  and tH are linear, 

or tw and tv are Gaussian. If 1 1( , )t t t t t tF x w x w      and ( ,  )t t t t t tH x v A x v   and tw and tv are 

Gaussian, we have the standard DLM.  

1.5.12 Bayes’s Theorem: 

Bayes’s theorem states that;  

   ( | ) ( )|
( )

P E H P HP H E
P E

 . (1.12) 

In Bayesian statistics, H represents the event of interest for the researcher and E an experimental 

result which she believes can provide information about H.  

In general, suppose that 1 2, , , kB B B is a partition of the sample space   such that 

,  i jB B i j   and 1 2 kB B B     . For any set A , we have that 

      1 2 ,kA A B A B A B        

and since 1 2, , , kB B B are disjoint 

          1 2 1
.k

k ii
P A P A B P A B P A B P A B


          

Therefore, the general Bayes’s theorem is given as, 

      
 

   
 1

| |
| .J J J J

J k
ii

P A B P B P A B P B
P B A

P A P A B


 


 (1.13) 

Bayes's theorem is extremely important because it tells us exactly how to update our beliefs after 

observing new information. The Bayes’s Theorem in equation 1.12 can be expressed as,  

 (Data|Parameters) (Parameters)(Parameters | Data) .
(Data)

P PP
P

  (1.14) 

Bayes’s Theorem tells us how to rationally update the prior beliefs about  ,  p  in light of the 

data y , to yield posterior beliefs  |p y . It enables us to draw inference directly about the 
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parameters,  , or models of interest using the posterior distribution, (Parameters | Data)P , on the 

left hand side. The posterior probability distribution provides a information of what is known about 

the each parameter based on the data and the model, together with any prior information known 

about the parameters, (Parameters)P .   

Bayesian inference on   consists of computing its conditional distribution given the 

sampling results. Suppose that, based on her knowledge of the problem, the researcher can assign a 

conditional distribution ( | )f y  for Y given , the likelihood, and a prior distribution 

( )f  expressing her uncertainty on the parameter . Upon observingY y , we can use a 

generalization of the elementary Bayes’ theorem, to compute the conditional density of   given y: 

 ( | ) ( )( | ) ,
( )

f y ff y
f y
 

   (1.15) 

where the marginal distribution of Y is ( ) ( | ) ( )f y f y f d    .  

1.5.13 Elephant population modeling 

A model is an abstraction or representation of reality. The mathematical model describes 

interactions between biological components.  Analysis of the model, via statistical computational, 

simulations and applied mathematical methods, allows us to deduce the consequences of the 

interactions.  

One of the basic objectives of theoretical ecology research is finding the factors controlling 

and maintaining the size of a population. For African elephant the important demographic 

parameters include, age at sexual maturity, calving interval, sex ratio at birth, age-specific 

reproductive and survival rates, number of individuals per age class, and age at senescence. These 

vital demographic parameters, ecological factors and management strategies determine how fast the 

population grows. Evaluation of the sensitivity of an elephant’s population to these and other 

population vital parameters can enable conservation managers to predict the response of populations 

to various management actions. 
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Equation Chapter 2 Section 2 

CHAPTER TWO: LITERATURE REVIEW 

2.1 Modelling approaches 

2.1.1 Description of a model 

A model is an abstract and partial representation of some aspect or aspects of the world. A 

population model may be developed for research or policy purposes. Whatever the purpose of the 

model, all models must be built on good science, be based on good data, and address good 

problems. Research models are expected to exhibit a higher degree of scientific rigor and to 

contribute some original theoretical insights. In policy models originality is less of an issue but 

transparency, manipulability, and the inclusion of key policy variables are especially important.  

A more pragmatic approach considers a model as a hypothetical representation of reality, a 

focused problem-solving tool, whose design depends on the specific objective (Starfield et al, 1991 

and Starfield, 1997). In this case the effectiveness of the model is determined by its original purpose 

and the assumptions or conditions imposed in the light of the objectives of the modeling exercise. 

One of the basic objectives of theoretical ecology research is finding the factors controlling 

and maintaining the size of a population (May, 1974). In designing elephant population models, 

emphasis will be put on the variables that have a significant effect on the behaviour of the model. 

Observing how the model is affected by manipulating these variables can give population managers 

insights to the actual population behaviour. The main goals of the population models will be 

description, explanation, generalization or prediction. 

There are two complementary methodological and theoretical approaches to the study of 

systems that are useful in our modelling effort. The top-down modeling approach and the bottom-up 

paradigm are important for model building. In top-down modeling approach, problems can be 

decomposed into simpler sub-systems, which themselves may be subdivided into even simpler sub-

sub-systems, until a level is reached where the component parts may be treated as elementary. 

Starting with the objective of a model leads to a top-down modeling approach in which we  

capture the broad and essential aspects of the dynamics first as opposed to a bottom-up paradigm 

where start with ecosystem processes. In a top-down approach, further refinement can be added to 

the model successfully as need arises.  

Although population models are important tool for population management, Starfield (1997) 

gave seven common misconceptions about modeling that act as impediments to wide spread use of 

models in wildlife management. These are; 
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i. A model cannot be built with incomplete understanding of the behavior of a system or 

population.  

ii. It is not useful to build a model if there are gaps in the data it is likely to need (so the 

priority is to collect data). 

iii. A model cannot be used in any way or form until it has been validated or been proven to be 

accurate. 

iv. A model must be as realistic as possible, accounting for all the detailed intricacies of a 

biological system. 

v. Modeling is a process akin to mathematics; as such it cannot be used or understood by most 

managers and many field biologists. 

vi. The primary purpose of building models is to make predictions. 

vii. Modeling is time-consuming and expensive; it follows that models must be designed to 

answer all the questions that have been thought of, or questions that may arise in the future.  

Models are useful for informing decision making in ecosystem management even with the 

concerns and challenges raised by the issues above. A continuum for models that can help 

appreciate the role of each model is one starting with simple strategic models for description 

purposes, to tactical models for prediction. 

i. Strategic models: Simple highly abstract models for explanation developed to better 

understand population processes. Will usually use few parameter estimates and have minimal 

data requirement. Very general models are poor at making accurate quantitative predictions 

but can inform or help understand the population general behaviour. 

ii. Tactical models: these are models developed in an attempt to forecast quantitatively the state 

of a population. Require more parameter estimates and have more data requirement than 

strategic models (Hassell et al., 1976). 

The terms strategic and tactical models are only by preference and different ecological 

managers and researchers may use different terms. In between the two extreme are different models 

with different level of abstraction, parameter estimates and data requirement.  

2.1.2 Classes of models 

The class of models considered in this thesis can be classified as either discrete or continuous 

time models, or, deterministic or stochastic models.  This classification is simply for modeling 

approaches and is not mutually exclusive; 

i. Continuous verses Discrete: In designing a model we may deal with time continuously or in 

discrete steps. Continuous time models are usually expressed as one or more differential 
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equations, while discrete models are expressed using difference equations. In a discrete model 

the time steps are fixed, the length of which is determined by the structure of the model itself. 

Matrix models considered in this thesis are example of discrete models. The age-structured 

model given by McKendrick–von Forster equation is a continuous in both time and age. 

ii. Deterministic verses stochastic; Deterministic models are those without a random 

component and the population size in the next time period is entirely determined by the 

population size at the current time, or, by the previous history of population size in the case of 

time-delayed models. Stochastic models include one or more random components, so that the 

population size in the future follows a probability distribution. Both deterministic and 

stochastic structured models were derived for elephant population for selected ecosystems and 

used to evaluate the sensitivity of the population dynamics to various vital rates.  

Population models seek to approximate the real behaviour of the population dynamics using 

three features: a deterministic or systematic part, a random element to capture random variations, 

and a relation between the systematic and stochastic part. Modeller makes effort to construct a 

model that is parsimonious, robust and mathematically tractable Thomas et al. (2005). Capturing as 

well as possible the physical system under study while maintain simplicity.  

2.2 Non-structured population Modelling  

When population is treated as a single homogeneous group, our main interest will be the 

population rate of growth that captures the characteristics of the population. The annual change in 

abundance or density of a population is described as the rate of increase. The annual finite rate of 

increase is defined as 1t tN N  while the annual instantaneous rate of change is defined 

as 1ln( )t tr N N . The maximum annual population growth rate, mr , is the maximum increase in 

numbers that occurs when resources are not limiting and there are no predators (and no population 

control), parasites or competitors (Sibly & Hone, 2002), 

Eberhardt and Simmons (1992) states that: “Virtually all analyses of the dynamics of wild 

populations involve the concept of a rate of increase”.  Their results on estimating r  from trend 

data indicated that the record of trend of an individual population may provide a relatively unbiased 

estimate of the underlying rate of change, but they discounted on the ability to compare and contrast 

similar population and the population trend using such an estimate. Eberhardt and Simmons (1992) 

also identifies that annual fluctuations in  may result from chance, measurement errors, actual 

annual fluctuations in birth and death rates, and oscillations generated by any substantial deviations 

from the stable age structure.  
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The central role of the population growth rate is well captured by the statement of Sibly & 

Hones (2002). They stated: “We conclude that population regulation, density dependence, resource 

and interference competition, the effects of environmental stress and the form of the ecological 

niche, are all best defined and analysed in terms of population growth rate”. The role population 

growth rate plays include; 

i. Defining the form of density dependence: The way a populations size changes through time 

result from the precise relationship between the populations size ( N ) and its per capita 

growth rate ( pgr ). If the population growth rate is not affected by population size then the 

population is said to be density independent. The per capital growth rate is defined as, 

1 dN
N dtpgr  where t  is time (Silby et al 2005). The fundamental growth curves and models 

include the exponential, Logistic, theta logistic or generalized logistic and Ricker (1954).  

Through simulations we illustrate the relationship between population growth rate and 

population size or density, in section 2.5.  

ii. Population prediction: Population growth rate, r , gives an easy method for forecasting future 

population trend although the accuracy of the predictions is subject to error in r and may fail 

to capture expected annual fluctuations, and form of density dependence (Eberhardt and 

Simmons, 1992 ).  

iii. Ecological niche: Environmental stressors can be defined as factors that, when first applied to 

a population, reduce population growth rate. We define an organism’s ecological niche as the 

set of points in ‘niche space’ where the population growth rate is greater than zero. The axes 

of niche space are physical or chemical variables such as temperature, food size or pH. 

iv. The response of populations to management can best be evaluated by their growth rates. An 

important application of the maximum growth rate mr  is the estimation of the maximum 

proportion of a population that can be removed to stop population growth ( )p . We study the 

maximum proportion of animals can remove from and given elephant population in order to 

reduce population growth zero percent, which is equivalent to 1   for a structured elephant 

population.    

v. Silby et. al. (2005) states that the form of the pgr  density relationship has implications 

beyond population dynamics, and it is used to make predictions and to analyze management 

options in areas such as conservation, pest management, risk assessment, and disease 

epidemiology. Population management goals may be summarised in terms of population 

growth rate (Caughley, 1980); 
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a) Population conservation: this include measure intended to increase birth rate or reduce 

mortality, that is to keep 1r   

b) Sustained yield: equivalent to maintaining the population at a stable level with 1r  , 

and 

c) Population control:  to reduce population abundance the growth rate must be maintained 

at levels less than one ( 1r  ). 

Understanding the behaviour and determinants of population growth rate is thus important given 

its role in population dynamics and management. Different paradigms used to identify the 

determinants of population growth rate, although it is not easy to separate the effects of the multiple 

factors that affect it, include; 

i. Focusing on the link between population growth rate and population density gives the density 

paradigm. We theoretically demonstrate this paradigm in our work in section 2.6 as we lay the 

foundation of difference ad differential equation and their application to population dynamics.  

ii. Exploration of the link between population growth rate and the age-specific life table gives 

the demographic paradigm. In chapter five, emphases are put on the demographic approach to 

the study of elephant populations. What if analysis is conducted to establish the importance of 

each vital parameter in elephant population dynamics  

iii. Looking directly at the link between the causal factors of age-specific population birth and 

death rate, such as food supply per individual, parasite burdens, predation, environmental 

stressors and interference competition and the population growth rate gives us mechanistic 

paradigm. 

Hones (1999) describes the expected and observed patterns of population variation using the 

mean and the frequency distribution of the growth rate for three species, the European rabbit 

Oryctolagus cunculus L., red fox Vulpes vildpes L. and house mouse Mus domesticus Rutty in 

Australia, and examines the implications of the patterns for wildlife management. The frequency 

distribution of the rate of growth does not show departure from the normal curve. Hone (1999) 

studied the effect of the three population management goals mentioned above and documents the 

following; 

i. Conservation: it shifts the distribution of r to the right so that the mean is significantly larger 

than zero, 

ii. Sustained yield; Stabilize the distribution by reducing extreme high or low rates of increase. 

This does not shift the distribution either to the right or to the left. 
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iii. Control: acts to decrease abundance and hence shift the distribution of the rate of increase to 

lower or negative levels.      

 In chapter four we derive Bayesian distribution for elephant population growth rate and use it to 

compare two different African elephant populations. We link the goals of wildlife management 

suggested by Hones (1999) and Caughley (1980) to the Bayesian distribution of the rate of increase. 

We consider the important role of r in population forecasts for elephant population. A Bayesian 

approach to comparing r for multiple populations is also performed. This gives a method of 

comparing the dynamics of a population using the distribution of r  instead of a single estimate.  

Explaining and predicting patterns in stochastic population systems can be captured by the study 

of the interplay between stochasticity and low dimensional deterministic trends (Henson et. al. 

2003).  Studies have identified many low-dimensional deterministic phenomena in population data 

that shape population fluctuation.  

In order to be able to use age structured population dynamic and unstructured models we lay a 

foundation by studying the deterministic skeleton of stochastic model. This is in agreement with 

‘deterministic skeleton’ paradigm for analysing the mix of noise and order in population time-series 

(Chan & Tong 2001). In chapter two we study and illustrate basic deterministic population 

dynamics and give extension to the basic difference and differential models. These investigative 

studies offer important information on describing, predicting and generalizing on populations, and 

thus the need for us to explore them all over. 

2.3 Structured population models historical review  

2.3.1 Structured population models 

Demography is the study of populations with special attention to age or stage structure. 

Demography is, in part, the study of how demographic rates vary among ages or stages, and the 

consequences of those differences. The demography of a population is the age (or stage) structure 

and the survival, fertility, and other demographic rates associated with those ages or life history 

stages. Age structure is the number or relative abundance of individuals of different ages or age 

classes. Stage structure is the number or relative abundance of individuals of different stages. Stages 

are merely useful categories of individuals, such as size classes or life history stages.  

Structure or classification can be done by using age, stage, size, physiology, spatial location, 

behavior, or a combination of these, among others. Stages are particularly useful when, age is 

difficult to determine, and, when stage is a better predictor of demographic rates (e.g. birth, death, 

survival) than is age. 
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Structured population models provide important tools for evaluating conservation strategies 

and management actions. In a demographic model, that consists of a population projection matrix 

we are interested in; 

i. The finite rate of increase, , which is the asymptotic population growth rate. 

ii. The stable stage distribution, which is the population structure that would emerge if the 

demographic rates do not change. 

iii. The elasticity, which gives the relative importance of each transition to . 

iv. Methods of capturing environmental and demographic stochaticity in a structured model.  

Age-dependent population models are basic in population dynamics. Wild animal 

populations as well as plant and insect populations are age-structured. The analysis of an age-

structured population model is of great mathematical and biological interest. An age-structured 

population at a given time reveals a set of individuals who were born over a range of past times, and 

whose fertility and probability of survival depend on their age. When the age-structured models for 

biological species is not considered the individuals are treated as homogeneous with respect to age. 

The homogeneous assumption is not valid for African Elephant population since the fertility and 

probability of survival does depend on age (Whitehouse & Hall-Martin, 2009).  

Most of the mathematical models that have been developed to account for the dynamic of 

reproducing populations assume that the ages of individuals are known. When this is true, there are 

basically two alternatives approaches that can be used. The first is the continuous-time integral 

equation method pioneered by Sharpe and Lotka (1911). The second uses grouped age intervals and 

a matrix formulation, and was first proposed independently by Bernardelli (1941), Lewis (1942) 

and Leslie (1945). 

Leslie (1945, 1948) matrix model considers the female population only, at discrete intervals 

of time 0,1, 2, ,t    and break the population into age groups corresponding to the unit intervals of 

time. Let us assume that we have m  age groups. The number of females in age group 1 at time 

1t  will then be the sum of the offspring’s from different ages. In some cases the first age class is 

denoted using a zero to emphasize that this class includes the new born. Otherwise the first class is 

labeled with a one. The Leslie (1945) model is of the form 

 1 1 1 2 2

1

( 1) ( ) ( ) ( ),
( 1) ( ) for 2,3, , 1.

m m

i i t

x t f x t f x t f x t
x t s x i i m

    

   




 (2.1)  

This can be written together as the matrix equation as 
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where ( )ix t = the number of females in the age group i  at time ,t is  is the probability that a female 

in the age group i  at time t will survive to be in the age group 1i   at 1t  , and if  is the average 

number of female offspring born to females in age class i that survive to the end of the period. The 

matrix A , whose elements are the fecundity rates if , and the survival probabilities is , is usually 

called the Leslie matrix.  The Leslie matrix Model can in general be summarized as,  

 

1 2 3 1

1 2

2 3

1

( 1) ( ),
( )

0 0 0 ( )
0 0 0  and ( ) ( ) .

0 0 0 ( )

m

m m

x t Lx t
f f f f x t
P x t

L P x t x t

P x t

 

   
   
   
    
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   
   
   




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

 (2.2) 

Fertility ( 0iF  ) is the number of offspring of a female of age i  to 1i   in a unit of time t  that will 

survive to the next age class at time 1t   . Survival ( 0 1iP  ) is the probability that an individual 

of age i  at time t will survive to time 1t  , when her age will be 1i  .The elements of the square 

matrix are non-negative, the elements of the first row are greater than or equal to zero, the elements 

of its main sub-diagonal are positive and less than unity and the remaining elements are zero. We 

can easily solve equation ( 1) ( )x t Lx t   to get that ( ) (0)tx t L x . 

Many extensions and development have occurred over time on the basic Leslie matrix 

model to enhance the model applicability. The extensions include stochastic transition matrix, 

density dependence, sex structure and spatial structure among others. Environmental and 

demographic variability can be incorporated into a Leslie matrix by making the by having the 

transition matrix to consist of probabilities or random variables. 

The major studies and extension of the basic Leslie matrix models are summarized in the 

Figure 2.1 below. This figure is not exhaustive but captures major developments which are closely 

related to the initial structured model.   

 

 



23 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 Historical development of the basic Leslie matrix model. A graphic representation of the development 
and sophistication of the Leslie matrix model, (Mosimanegape, 2007).  
 

Lefkovitch (1963, 1964, 1965) modified the Bernardelli-Leslie-Lewis model to allow 

population to be modeled and to be grouped by life stage rather than by age. Individuals in a given 

stage are subject to identical growth, survival, and fecundity rates.  Lefkovitch (1965) is a more 

general case where all the transitions between stages are possible. The model becomes, 
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 (2.3) 

where ijm  reflect how the number in stage i  at time 1t   depends on the number in stage at j time 

t . Which can be put in the form 1t ty My  , so that 0
t

ty M y . There is an implicit assumption with 

Lefkovitch’s model that the age distribution within stages is constant enough to make any variation 

in the ijm  values with time unimportant.  

Another common extension of the Leslie matrix model is the Usher (1966, 1969) stage 

structure population model, where the time interval is such that individuals can only remain in their 

current stage, transit to the next immediate stage, or exit through death.   

BASIC MODEL 

Theory: Leslie 1945 

Application: Usher 1969 

Animal population 
Lefkoritch: 1956, 1966 
 

Plant population 
Usher 1969 

Stochastic treatment 
Pollard 1966 

Specific algebraic 
treatment  

Leslie 1948 

General Algebraic 
treatment 

Sykes: 1969 

Population density 
Leslie 1948 a 

Pennycuick 1969 

Seasonal & random 
environment change 

Leslie 1959 

Predator-prey 
Pennycuic et al 

1968 

Harvesting 
Williamson 1967 
Lefkovitch 1967 

Both sexes model 
Williamson 1959 

 

Spatial distribution 
Usher & Williamson 

1970 

Energy flow and 
Nutrient cycles 

Mosimanega, 2007 
 

Time Lag effects 
Leslie 1959 
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 (2.4) 

Similarly for Usher model population progression is given by the iterations, 

( 1) (0)tx t U x  . The Usher model results from the Lefkovitch’s model, if the time between 

samples is small so that the possibility of individuals developing through more than one stage in 

this time can be discounted. The , 'j jP s give the probability that an individual in class j in time t is 

still in class j , in time 1t  . The , 1 'j jP s give the probability that an individual in class j in time t is 

moves to class 1j  class in time 1t  . The iF  are the fertility values of respective classes.   

Usher (1969) was similar to the Leslie model but used size instead of age for forests trees. 

Leslie (1945), Lefkovitch’s (1965) and Usher (1969) are all linear and time invariant matrices for 

projecting the female population step by step recursively. Usher (1969) and Goodman (1969) 

together showed that the Leslie basic model can be written as 
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 (2.5) 

Other deterministic extensions to the deterministic Leslie matrix model include; 

i. Immigration models where constant immigration vector e  is added to the population such that  

 1t tx Ax e   . (2.6) 

A negative vector e would denote emigration from the population being studied. 

ii. Immigration or emigration models where a population vector proportional to the actual 

population vector is added to the population. The constant of proportionality is in this case  ,  

  1t tx A I x   , (2.7) 

iii. Harvesting can be treated either as an absolute loss from the population as in equation 2.8 or 

affecting survival of the classes from which harvesting is done as in equation 2.9. Equation 

2.8 and 2.9 also has a minor modification that allows individuals in the last class m to 
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continue in the population even after attaining age m . In animal population models, this 

allows us to put all animals past a given age in the same class. 
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Density dependence can be captured in the Leslie model by incorporating density dependent 

function ( )q t in the model such that 

 -1( 1) ( )x t AQ x t  , (2.10) 

where ( ) 1 ( )q t aN t   with 1a K   representing the density dependence strength, 

1
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ii
N t x t
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1

2

( ) 0 0
0 ( ) 0

( ) .

0 0 ( )m

q t
q t

Q t

q t

 
 
 
 
 
 





   



 

Variations in ( )q t can be done to capture time-lag in density dependence e.g.  

( ) 1 ( 1) ( )q t aN t i bN t     , with  and 0a b  . Leslie (1948, 1959) discussed density dependence 

in matrix models. Different recruitment functions which can be adapted are discussed later under 

basic population models include the logistic, Beverton-Holt and the Ricker. 

A model that considers the two sexes in the population is, 
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In this model ( )ix t  is the population of females in class i  at time t , ( )iy t  is the population of males 

in class i  at time t , if is birth rate of female to females and '
if is birth rate of male to females, is  and 

'
is the survival rates of females and males respectively. This is essentially equivalent to a one sex 

(female) model since the eigenvalues of the transition matrix are given by, 

 1 2
1 2 1 1 2 1( )m m m m

m mf f p f s s s    
     . 

The non-zero eigenvalue are the eigenvalues of the n n  female’s sub-matrices. Due to the 

fact that the ratio of birth in elephant population are basically in a 1:1 ratio of male to female we 

will consider only one sex models. Although there is minor variation in the survival of male to 

female (Moss, 2001) we will assume equal survival for both gender. 

A stochastic model takes into account of the randomness in the environment, birth and death 

processes where as a deterministic model do not. Accordingly, a stochastic age structured model is 

worth developing and investigating. Different source of variability that can be included in the 

structured population models (SPM) also known as population projection matrix models can be 

summarized as in Figure (2.2) below (Caswell 2001).  

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.2 Variability in structured population models. A classification of matrix population models according to 
the variability included in the projection matrix (Caswell 2001). 
 

The different classifications include; 

i. Constant: the projection matrix is constant and does not vary with time and is independent of 

population size and environmental variation. 
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ii. Endogenous factors causing internally generated variability: the projection matrix is 

dependent population size being either frequency or density dependent. When Endogenous 

factors causing population dynamics to depend on its own frequency or density are included, 

the resultant dynamics are non-linear.  

iii. Exogenous factors causing externally generated variability: the projection matrix is dependent 

on factors external to the population, for example, environmental factors. The eternal 

variability may be deterministic (predictable) or stochastic. Environmental variability can be 

classified further as either occurring with equal and known regularity (periodic) or with 

unknown and irregular variations. 

iv. Both internally and externally generated variability can be included in the projection matrix.  

 

Models can include other sources of uncertainty due to process and observation errors. Process 

variability may be due to demographic or environmental variability. An observation error is as a 

result of error in the measurement process or inability to measure the entire process. Environmental 

and demographic stochastic variations can be incorporated in a structured model by 

 ( 1) ( )tx t A x t  . (2.12) 

Or by an additive stochastic element such that 

 ( 1) ( ) tx t Ax t    . (2.13) 

Having linked the environment and the vital rates, population projections that captures 

environmental variation at each time point 1,2,t    is given by equation, 1 2 0( ) (0)t tx t A A A x   . 

Precaution must be exercised while selecting the elements of stochastic tA  to ensure that it 

maintains biological validity. Linear models that are not dependent on population abundance or 

density can be used if the population is assumed to be below carrying capacity and in a relatively 

constant environment.  Non-linear non-homogeneous models of the form in equation 2.14 will not 

be considered in the study for the of elephant population. 

 ( 1) ( ) ( )tx t A x x t  . (2.14) 

In demographic stochasticity the chance of individual in a population transiting from time t  

to tome 1t   is a random variable as opposed to deterministic. Even if the vital rates predict positive 

population growth on the average demographic stochasticity implies that population may go extinct 

by chance and vice versa. Demographic variation in the elephant population will be incorporated 

using both a structured matrix model and later using state space model with process and observation 

error. Analysis of both deterministic and stochastic matrix models will be discussed further in the 

method for specific case considered for the elephant population.  
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Matrix population models have become popular tools in research areas as diverse as 

population dynamics, life history theory, wildlife management, and conservation biology. 

Transition matrix models are recommended widely as an effective method for evaluating 

demographic data, especially for calculating population growth rate, extinction probability, and 

sensitivities (Burgman et al. 1993; Caswell, 2001). The long-term behavior of the population is 

determined by the dominant eigenvalue of the Leslie matrix for a deterministic. In chapter three we 

give the theoretical foundation of analysis of structured population models and later apply them in 

chapter five.  

Because matrix models can incorporate observed levels of stochasticity to simulate 

population dynamics through time, they can be used to calculate the chance of population loss under 

various conditions. Wildlife resource managers can use this information to determine whether a 

management action should be taken to benefit a species of concern (Schemske et al. 1994). This 

type of analysis, therefore, is directly applicable to management and conservation of elephant 

populations. 

In chapter three and five we utilize both deterministic and stochastic structured population 

models for population dynamics of the African elephant, establishing the dynamics of the 

population for given assumptions. We also consider a modular approach to processes such as birth, 

survival, aging and harvesting or removal. Transition matrix then becomes a product of multiple 

modular processes. Modularizing the processes involved makes it more flexible to study individual 

processes and hence model these processes using individual distributions. Incorporating process and 

measurement (or observation) error in these high dimensional models creates a challenge which we 

discuss using state space models in a Bayesian framework. 

2.3.2 Applications of Matrix population models 

In this section we give a few examples of resent study and application of matrix population 

models in modeling wild animal population dynamics. They help us to build on our methodology 

and review the various themes and objectives in the study of wild animal population.  

Li Wen-Ching (1994) uses a generalized Leslie matrix model to study wild turkey 

populations. Although the turkey population is different from elephant population, the application 

of matrix model may be useful to this study. The analysis of transition matrix is similar and their 

approach of determining the stationary population by varying individual matrix elements will be 

applied to the matrix model for the elephant population. They used their study to predict the future 

population size, population structure and effect of harvest on the population age structure and 
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growth. Similar objectives and simulations do have importance in the elephant population 

dynamics.  

Caswell (2001) work on matrix population models gives detailed discussion on construction, 

analysis and interpretation of such models. He emphases on the relationship between the 

construction, analysis and biological interpretation of the model. A model is constructed to answer a 

question; its interpretation influences the construction. Models once constructed need to be 

analyzed and require data to be parameterized. Caswell (2001) is useful in construction, analysis 

and interpretation of the matrix model for the elephant populations.   

Montshiwa (2007) discusses the construction of Leslie matrix population models and gives 

the mathematics behind the parameters in the matrix model. They reaffirm the importance of 

fertility and survival rates in a Leslie matrix model. Incorporating density dependence and 

stochastic variation into the matrix population model is considered.    

Wooley et. al. (2008) study models the effect of age-specific mortality on the African 

elephant populations. They studied the effect of episodic mortality and gave the age specific 

mortality schemes required for zero percent population growth rate. They established that natural 

mortality cannot provide regulation for the elephant populations in southern Africa populations.  

Their model though stochastic was base on the one year model of Wu and Botkin (1980). In this 

study we consider the use of fewer classifications in a matrix model. Methods for analyzing the 

matrix model are well established and can be used as an approximation when the population is 

large. 

Schnute (1994) and, Millar and Meyer (2000a, 2000b) discuss the importance  of 

incorporating measurement and process error into a population models, Although Millar and Meyer 

(2000a, 2000b) considers the construction of fisheries models, techniques for incorporating errors 

are important for other wild life population models. Recent studies on a framework that allows 

stochastic structured population dynamics models to be embedded into statistical inference include 

Buckland et al. (2004), Thomas et al. (2005) and Newman et al. (2006). The Bayesian state space 

model approach gives a general framework that can be applied to various wild life populations. The 

modular approach to deterministic and stochastic population sub-processes such as birth, survival, 

maturation harvesting and movement, adds a useful technique in modelling under multiple sources 

of uncertainty. 

2.4 African Elephant Population Models: 

A wide range of factors require to be considered while modeling elephant population. The 

demographic factors that affect elephant population include; age at first reproduction, inter-calving 
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interval, and age at senescence, the number of individuals by age and sex class, age- and sex-

specific survival  (Moss et al. 2011; Van Aarde, 2008; Moss 2001). These traits and any factors that 

alter them determine how fast a population will grow holding other factors constant. These factors 

are also the determinant of the total number of calves a single female reproduce, which gives the 

reproductive number. 

Fecundity is determined by age of sexual maturity, age at last calving, calving interval and 

factors which influence age of sexual maturity, age at last calving and calving interval.  

i. Ages at first calving for African elephant females differ from one population to the other (see 

table B4 in the appendixes). Mean age at first calving of 9-16 year which are common for 

populations in South Africa and elsewhere will be adapted for simulation purposes.  

ii. Mean calving interval of between 3-6 year have been observed in different regions with south 

African population showing shorter calving intervals, and 

iii. Maximum age at last calving will be approximated using 50-60 year depending on the 

population (Whitehouse & Hall-Martin, 2009, Moss 2001).    

Survival probabilities of African Elephant population do not show major variation form one 

ecosystem to the other. Incidence increased mortality due to predation are low and may not affect 

the survival of entire population significantly. Mortality of young calves can be affected by low 

level of predation and drought while the mortality of adults may increase with poaching especially 

for free roaming animals. Recorded estimates and simulated values will be use for different age 

classes in this study. 

Population dynamics of the African elephant are also affected by immigration and emigration. The 

dispersal is however limited by barriers and fencing for case of conservation area. Dispersal can 

also be influenced by provision of resources such as water through digging of dams. In modelling a 

closed ecosystem we will assume zero movement into and out of the conservation area (Rudi Van 

Aarde et al.  2008; Blanc et al., 2007; Moss, 2001)        

Apart from the stated factors and vital rates, the African elephant is a long-lived species 

characterized by deferred and intermittent breeding, relatively high adult survivorship and long 

maximum longevity.  The fecundity and mortality of individual animals is dependent on age and 

time varying processes. 

The important question is whether structured population models are applicable in modeling 

African Elephant population dynamics and if so how reliable are such models? We evaluate the 

application of structured models for African elephant population and consider why structure is 

important. Age or stage structure is an essential component in Elephant population management due 
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to varying demographic characteristics. Management strategies, trophy hunting and poaching, 

although some of these practices are banned or illegal, affect certain age-stage classes. 

In using a Leslie like model to model African elephant population we must put in 

consideration the following challenges (Wu and Botkin,1980), 

i. The Leslie Matrix model is deterministic where as the vital rates vary for over individual and 

time. 

ii. The birth and death are dependent on age only and assumptions of extended Leslie model 

should  agree with the population characteristics, and   

iii. Different processes affecting birth and death may occur at different time intervals, and the 

time interval appropriate may not be explicit.  

Monitoring population changes is important for implementing appropriate management 

options and evaluating their effectiveness. Demographic parameters, such as; sex, age at first 

calving, carving interval, survival rates and reproductive senescence, which are important for 

predicting population changes over time, vary over the life time of an elephant.  Determining these 

parameters pose a great challenge, since the age of the elephants in the population ought to be 

determined accurately. 

One reason to consider model with less classes is due to the fact that it is not easily viable to 

determine the age of each elephant in a wild elephant populations. Methods of determining the 

chronological ages of elephants include, measuring molar tooth wear and progression, elephant tusk 

dimensions, back lengths, shoulder height hind foot lengths, and Dung boli diameters.  

All these methods rely on the relationship between a particular body structure features and age 

to determine the age of an individual elephant. The relationships are the best available to assign age 

for cows up to age 15 and for bulls up to age 25 (Rudi Van Aarde et al, 2008).  Thus such age 

estimates are not precise and would better be classified as intervals where individual birth and dates 

are not tractable. 

Woodd (1999) in his study, “A demographic model to predict future growth of Addo 

elephant population”, used a one year class interval to model the Addo population. But the 

demographic parameters for the AENP animals show no major differences for animals in certain 

age classes (Woodd, 1999). His work gives important demographic rates for developing a structured 

population model for AENP elephants. Addo Elephant National Park (AENP) is a fenced and has a 

closely monitored population and thus Woodd (1999) model would face challenge if it were to be 

applied to wild and less monitored population. This model is also deterministic and there is a 
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challenge if we try to embedding inference into such a model. In chapter five we gives a framework 

that can be used to model elephant population with an ability to embed inference and study 

individual population sub-process. We also consider a deterministic structured population model 

framework with less number of classes that can be used for elephant population that are less 

monitored, due to their wild nature.       

Woodd (1999) while giving the demographic parameters for the Addo elephant population 

combines certain ages into a single group due to the equality of the parameters, he also assume that 

there is no difference in fecundity when female elephants attains maturity. This is an indication that 

elephant population can be modeled using fewer classes especially where populations are less 

monitored and exact age of individuals is not known. An example is the Tsavo National Park in 

Kenya where the population is less monitored, the park is not fenced and counts are done using 

Arial methods.   

Population growth rates can be derived from survival and fecundity estimates (e.g., matrix 

models; Caswell 2001). Identifying the relative contribution of age-specific fecundity and survival 

to growth may help identify the most important factors influencing population dynamics. Estimates 

of age-specific fecundity can be derived from age at first reproduction, from intervals between 

births, and from age of reproductive senescence, but these data are usually difficult to obtain (e.g., 

Whyte et al. 1998, Whyte 2001). Additionally, ages of individual elephants may also be difficult to 

estimate as stated above, further complicating calculation of fecundity and survival rates (Shrader et 

al. 2006). Examples of long-term observational studies of known individual elephants that help 

overcome the inaccuracies of age estimation are Whitehouse and Hall-Martin 2000 and Moss 2001. 

Multiple studies that have used structured models for elephant’s population dynamics exist. 

A nonlinear age-class model that captures density dependence in elephant population was 

developed for Kabalega (formally Murchison Falls National Park) population of elephants in 

Uganda by Fowler and Smith’s (1973). Habitat degradation due to restriction in its range was 

captured through density dependent calf survival and adult fecundity.   

The model by Fowler and Smith’s (1973) for elephant dynamics had the following form 

1
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where the elements ,  0,1, 65ix i    represent the number of female elephants per square mile in 

age class i . The calf survival function ( )y  depends on 1 2( , ) 'y yy  , where 1y  is the aggregated 

breeding population and 2y  is the total density variable given by 65
1 1
( ) ( )i ii

y t b x t


  and 

65
2 1
( ) ( )ii

y t x t


  . The exact form that Fowler and Smith chose for the calf survival function was  

1 2( ) (1 0.03 )y y y    which only applies to population densities below 2 33.3y   individuals per 

square mile.  

 Fowler and Smith’s (1973) used comparison of projected population age distribution and 

observed age distribution to verify their model. This method will be applied where no analytic 

proves are not given or required. In case where only the total population is available, or a subset of 

the population vector, the total population is determined by addition of the respective projected 

population vector. This agrees with the explanation purpose of population modeling.  This model 

gives us a method for capturing density dependence in an elephant population if density dependence 

is established to be present.  

A linear model with 60 age classes that uses the Leslie transition matrix was developed by 

Croze et al, (1981), for studying elephant populations of Tsavo National Park in Kenya.  The 

survival rates of juveniles and the fecundity rate of young adults in this model were assumed to vary 

in response to environmental conditions. The model was used to keep track of female population 

only and was used it to evaluate the effect of time varying parameters on population growth.  

Since the gestation period of elephants is just under two years, Wu and Botkin (1980) 

incorporated three female reproductive stages into the density independent Croze’s like model 

above. The female reproductive stages included susceptible to pregnancy, pregnant less than one 

year and pregnant more than one year. An illustration of the female reproductive stages and possible 

transitions for females in the same class is given in Figure (2.3) below.  

The model approach of Wu and Botkin (1980), with minor modification, can be represented 

using columns for; males, immature females, mature females (not pregnant, not lactating), pregnant 

females in the 1st year of pregnancy, pregnant females in the 2nd year of pregnancy, lactating 

females in different years of lactation. 

Determining the exact age of individual elephants required for Fowler’s, Croze’s and 

Botkin’s models is a clear challenge (Western, et al. 1983). There is need for models that require 

less monitoring of the population for use in management of wide-ranging populations. Using an 
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approach with the similar framework but with fewer classes we simulate structured population 

model for elephant population where estimates of vital parameters are available.  

 

 

 

 

 

 

 

  

 

 

Figure 2.3 Mature female African elephant reproductive life history. Female reproductive stages as in Wu and 
Botkin (1980) model for African Elephants population. The transition rates corresponding to each arrow in the figure 
have been omitted.  
 

In our models, fewer classes were used since elephants can be classified using age classes 

with more homogeneous demographic parameters. In extending the deterministic matrix models to 

stochastic matrix models we assumed that environmental and climatic variations are capture by 

individual animal stochastic survival and stochastic recruitments to the first class. 

The models for elephant population dynamics will generally have three basic goals, these are 

prediction, explanation, and generalization; 

i. We may want to predict its future elephant population size given past and current population 

estimates or population parameters.  

ii. We also want to describe its growth rate and population size in terms of mechanisms that 

could influence their growth rate. This includes population vital characteristics,  management 

option and other natural phenomenon’s.  

iii. We want to compare elephant’s population growth and relevant population mechanisms in 

one ecosystem to those of populations in other ecosystems. 

To understand the behaviour of the population of interest and evaluate management options we 

developed models that incorporate among others, birth process, death process, environmental 
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stochasticity and population structure. We then perform simulations to determine the required age 

specific mortality rates scheme  required to cause a zero population growth rate. 

It was important to note that African elephant live in a well structure and complex social 

setting. A family unit typically consisting of 1-20 cows, their daughters, and immature male 

offspring are lead by a female matriarch. Adult male are generally solitary associating with females 

occasionally. The family unit join with other to form groups, clans, subpopulations, and populations 

(Rudi Van Aarde et al, 2008). Thus, management strategies affecting some age classes in the 

population may indirectly influence vital rates of other classes in the population. Such indirect inter-

relationships of classes’ vital rates for elephant society were assumed to be minor and thus were 

ignored in our models.  

2.5 Basic population models   

In this section we used simulations to demonstrate the dynamics of basic population models. 

We reviewed basic phenomena such as bifurcation, attractors and perturbation analysis that relate 

either to difference equations, differential equations or structured models. We simulated the density 

independent and density dependent models such as the, exponential, Logistic and theta logistic.  

Although these models are known to be simplification of reality, they play an important role in our 

understanding and evaluation of population growth phenomena.  

2.5.1 Exponential growth 

Deterministic population models are the foundation and skeleton of most extensions in 

population modelling. In order to evaluate a stochastic model, it’s important to study the dynamics 

of the skeleton deterministic model. We thus reviewed the difference and differential population 

models for density independence and density dependence, and simulate their dynamics under 

assumptions or conditions that are natural and easy to relate to their ecological implications. 

Difference and differential equation models are the foundation to the study of population 

studies (Pielous 1976, Gotelli 2001). We reviewed their mathematical properties as a basis to fitting 

and simulating time series data necessary for illustration. We demonstrated their use in population 

prediction, explanation and generalization in chapter four. 

Simple discrete-time models can often be used to predict the size of certain populations after 

t discrete-time steps. This class of models works well in modelling densities of populations, where 

individuals reproduce only during specific breeding periods, or when the populations pass through 

distinct reproductive cycles. 
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The major components of population changes include births, immigration, deaths, and 

emigration. When these vital rates are modeled we acquire BIDE model: 

1t t t t t tN N B I D E      . Where tN is the total population, tB  is the number of birth, tI is the 

immigration, tD is the number of death, and tE is the number of emigration rate at time t. If a 

population is thought as operating on finite intervals, a difference equation may be derived for the 

exponential growth: 

 1 (1 ),t t t tN N N R N R      (2.15) 

 0 0 (1 ) ,    ,    1 .t t
t tN N R N N R       

where 1 1t

t

N R
N

    is the annual rate of change, and the finite growth rate R is give by: R=finite 

birth rate - finite death rate + finite immigration rate – finite immigration rate.  

  The total number of elephant in an area can change due to four reasons: births ( b ), deaths 

( d ), immigration ( i ), and emigration ( e ). The factors that influence births, deaths, immigration, 

and emigration determine population size and change in numbers over time. The difference 

equation for change in population size N  for a time interval t is given by 

 ( )N b d i e t      . (2.16) 

A stochastic equation would arise if we allow births, deaths, immigration, and emigration to 

be functions of time and environmental factors. In a closed environment like a national park where 

there is no emigration and immigration, and assuming that births ( b ) and deaths ( d ) are functions 

of ( )N t t , 

    ( ) ( )N b N t t d N t t
t


   


, (2.17) 

which as 0t   becomes 

    ( ) ( )dN b N t d N t
dt

  . (2.18) 

If the functional relation of births ( b ) and deaths ( d ) on ( )N t is linear we have, 

    ( ) ( ) ( )b N t d N t rN t  . 

This is the same as if the population is thought as changing continually, that is, continuous birth and 

death results in a differential equation:   



37 

 

 .dN rN
dt

  (2.19) 

With solution 0 1,    rt r
t t tN N e e N N    . If again we reintroduce immigration and emigration, 

the instantaneous rate of growth r b d i e    . This is the net value of instantaneous birth and 

immigration rates less the instantaneous death and emigration rates. Continuous time and 

instantaneous birth rate is not appropriate for a population with a birth pulse. The percentage 

population growth rate is given by, 

  1 100%re  . (2.20) 

For the continuous exponential growth case, 0
rt

tN N e , and 0ln( ) ln( )tN N rt  . We note 

that, r is the slope of the linear relation between ln( )tN and time t , and 0ln( )N is the y-intercept. If 

we fit a straight regression line to log-transformed data, the slope of that line would be r , where 

,re  and ln r  . In summary the parameters  and r  relate to population growth: 

i. There is no change if 1  , r = 0, 

ii. Population grows if 1  , 0r  , and 

iii. Population decline if 1  , 0r  . 

In chapter four, we fitted log-linear models to the transformed data of total population of the 

ANP and the AENP and use the results to compare and project future populations. Both 95% 

confidence intervals and confidence limits for each fit are given for the two populations. 

 
Figure 2.4 Density Independence. Figure a&b shows density independent growth ( 1  ) and decay ( 1  ) 
respectively, for various values . Figure c shows constant per-capital growth rate with increasing population a 
property of density independent growth. 
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Exponential growth is equivalent to density independence. No matter what the population size, 

the per capita birth rate and per capita death rate are the same as for all other population sizes (see 

figure 2.4c). Figure 2.4a illustrates unbounded population growth for 1   while figure 2.4b gives 

case of 1   in which case population decays to extinction.In the case of the exponential growth 

the per capita growth rate does not depend on density as in Figure 2.4c.  

Figure 2.5a show that the exponential growth with different initial population size. In this 

case, population size remains double the lower level as it is at the initial time as seen in the log scale 

if Figure 2.5b. 

 

Figure 2.5 Effect of initial population size. Population remains double the size of the lower population as in figure 
2.3a. Figure demonstrate the same population levels plotted on the log scale. 

2.5.2 Logistic growth 

Density-dependent population growth is the case where the per capita population growth rate 

depends statistically on the density of the population. Negative density-dependence is typically a 

characteristic of a population undergoing intra-specific competition.  

 (1 ).dx xrx
dt K

   (2.21) 

We can determine the solution from, 

 1 1 1 ,  ,
( )

dt dx r dt
dx r x K x x K x K

      
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Letting x represent population size and t represent time, the constant r defines the growth rate and K 

is the carrying capacity. 

 

Figure 2.6 Continuous Logistic Growths. Figure 2.6 demonstrate how populations selected between 500 and 2800 
approach the attractor K=2000 for different values of the growth rate r. The behavior in the region between 0 and K is 
called Logistic growth.  
 

Figure 2.6 demonstrate a logistic growth with 2000K   as an attractor for different values 

of r . Figure 2.7 (a) below shows density dependence effect on per capita increase, while Figure 2.7 

(b) gives per capita increase as a ratio of total population for equation (2.21) model. 

 

Figure 2.7 Logistic growth density dependence. In a logistic population model the per-capital growth rate reduces 
linearly with increasing population abundance.  
 

The simulation in Figure 2.6 show that in certain realization density dependence is quickly 

evident, while in other it take time and one may erroneously conclude that the population does not 

show any evidence of density dependence. Figure 2.4 gives 15 simulated curves for 1000K   for 

random 0N between zero and 1300 individuals, and r  randomly selected between 0 and 2. The 

populations decay with K  acting as an attractor. For a logistic population growth, the effects of the 

varying the initial population size, the carrying capacity K  are illustrated in Figure 2.8 below. 
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Figure 2.8. Varying initial population N and carrying capacity K. All the population approach the attractor K=1000 
no matter the initial population size. Figure 2.7b shows the varying the effect of varying K which alters the attractor. 

In Figure 2.8a K  acts as an attractor no matter the initial size of N , while in Figure 2.8b the 

attractor varies according to value of K . To fully illustrate the behaviour of the discrete logistic 

growth we perform bifurcation analysis. The point at which the limit cycle emerges, at 

2dr  (Figure 2.9), is called a bifurcation (Stevens, 2009); it is a splitting of the single attractor into 

two attractors. As dr  increases the number of attractors will continue to double, growing 

geometrically. Eventually, we reach a point when there are an infinite number of unique points as in 

Figure 2.8a below. 

Figure 2.9a illustrates discrete logistic bifurcation while 2.9b illustrate sensitivity to initial 

conditions. With the discrete Logistic model it’s important to note we can generate very different 

trajectories by varying initial conditions slightly. Figure 2.9b shows different trajectories generated 

for initial populations for 2.7r  .  

It is important to note that even the simplest deterministic model could create dynamics so 

complex that we could not distinguish them from random oscillations, (May; 1976). But we can 

distinguish random dynamics from some chaos-like dynamics, and the hunt for chaos could be very 

exciting, if most frequently disappointing.  

 
a)                                                                        b) 

Figure 2.9 Discrete Logistic Bifurcation and sensitivity. The point at which the limit cycle emerges is the bifurcation 
as shown in figure 2.9a. Figure 2.9b illustrate sensitivity to initial conditions 



41 

 

 

Chaos implies that the population growth rate exceeds the rate at which the density-

dependence feeds back into the process, i.e. the population overcompensates for existing density by 

either growing too fast or declining too fast, hence overshooting K  (Figure 2.10). 

The dynamics of a logistic model with  as the time lag is given by,   

 1 01 1 t
t t

NN N R
K




        
. (2.24) 

 

Figure 2.10 Discrete Logistic time lag. The demonstration of the effect of the time lag for the logistic population 
models 
 

2.5.3 Theta-Logistic Density Dependence 

Theta-Logistic population growth is a simple extension of the logistic model that, adds a 

parameter to increase flexibility and generality (Stevens, 2009). 

 log 1dN NrN
dt K

     
   

. (2.25) 

When 1  , the theta-logistic model reduces to a Logistic population model. The difference in these 

two models lies in the factor   which controls how significant the carrying capacity term is.  Figure 

2.11 illustrates the density dependence (Figure 2.11a), per capita growth rate (Figure 2.11b). The 

population growth for different values of  is demonstrated later. For instance, if   is large 

( 1  ), then for 

i. N K , the system is going to look like exponential growth for sometime before density 

dependence sets in. 

ii. N K , the rate of population growth is negative so the population decreases. 

iii. N K , the rate of population growth is zero so the population never remain constant. 
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Figure 2.11, The Theta-Logistic population models. The value of  determines the rate at which density dependence 
take effect (figure a) and hence affects population growth rate (figure b). 
 

Now, for 1  , we can find a numerical approximation of the exact solution. We have, 
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for 1h  . Since 2

21x xe x   , it is approximately equal to 1 x  by using the Taylor expansion 

and ignoring terms of order higher than two. Hence,   

 
  
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r N t K
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


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 
 (2.27) 

This gives us a discrete theta-logistic model. If we add a random environmental effect, we have  

 
  1 ( )

( 1) ( ) ,tr N t K
N t N t e

  
   (2.28) 

where time series data exist we can determine the kind of density dependence, if any, we can 

associate with a given wild population dynamics and especially that of the African elephant 

population. When 1  , this weakens density dependence at low N , so the population grows faster 

than logistic, all else being equal. When 1  , this strengthens density dependence at low N , 

causing the population to grow more slowly than logistic, all else being equal (Figure 2.12). 
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Figure 2.12, Theta Logistic total population dynamics. The shape of the total population growth is determined by the 
shape parameter   as evident from figure 2.11, for each of the shape parameter and population growth rate in figure 
2.11 above. 
   

Theta-Logistic population growth is a simple extension of the logistic model that, adds a 

parameter to increase flexibility and generality. To study of population models with process and 

measurement error we first evaluate if there is any change in the population dynamics by including 

small variability in the parameters. By introducing an error ~ (0,0.125)N in to a theta logistic 

population model the dynamics change significantly as demonstrate in Figure (2.13). In this case, 

the error delays the setting in of density dependence as illustrated in Figure (2.13b) as compared to 

Figure (2.13a).    

  1 0 ( ) ,t tN N r N K       

 

Figure 2.13 Theta logistic with error. Comparison of a theta-logistic population growth models with and without error 
term. 

An example of the application of the Theta-Logistic population growth model is Aanes et al. 

(2002).  They evaluated alternative harvest strategies for a willow ptarmigan (Lagopus lagopus) 

population on a private estate in Sweden. They fitted a theta-logistic model of the form, 
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  1log log 1
1

t t
t t t

N HrN N H
K K



 

           
, (2.29) 

where r is the rate of increase when there is 1 bird is in the population, tH is the harvested 

proportion and K is carrying capacity.  

2.5.4 Ricker Dynamical Model 

The Ricker's equation (Ricker 1954) invented this equation to model fishery stocks. It is a 

discrete population model: 

 1 0exp 1 t
t t

NN N R
K

       
. (2.30) 

We note that the density dependence in this model becomes stronger at higher densities, due to the 

exponential function. The Richards model (e.g. Fowler 1981), the per capita recruitment is  

 1 0 1
m

t
t

NR R
K

     
   

, (2.31) 

with the exponent m changing the shape of the relationship from linear to either concave or convex. 

If we substitute t tx N K in equation  1 exp (1 )t t tN N r N K   , we obtain the second format. 

  1
1 ( ) tr x

t t tx g x x e 
   . (2.32) 

 The Ricker model is a limiting case of the Hassell model (Hassel, 1975) which takes the form 

 1 1
2(1 )
t

t c
t

NN k
k N 


. (2.33) 

When c = 1, the Hassell model is simply the Beverton–Holt model. In Figure 2.14 we perform 

comprehensive simulations, and plot the point and periodic attractors. It illustrates of the dynamics 

of discrete Ricker population model with the attractors shown as a function of growth rate. 
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Figure 2.14, Ricker Bifurcation plot. It gives the points at which the limit cycles emerge for a discrete Ricker 
population model. The figure shows the attractors as a function of growth rate. 
 

The behaviour of many populations cannot be modelled using equation (2.32) alone however, as 

they are affected by an additional perturbation term u, 

  1
1

tr x
t tx x e u
   . (2.34) 

Constant perturbation terms are useful in modelling populations where individuals are either added 

to or removed from the population at each time step. 

i. 0U  , represent immigration to the environment at constant rate, or replenishment in a 

controlled environment. 

ii. 0U  , represent emigration out of the environment at constant rate removal at constant rate, 

or predation with constant number of predators. 

If tu  is a random variable that varies with time due to changes in the environment we acquire a 

Ricker model with random perturbations 

  1
1

tr x
t t tx x e u
   .  (2.35) 

A Ricker model with a minor variation to model a declining carrying capacity can be expressed as 

 
1

(1 )
1

t
t

xr
K

t tx x e 

 
   

  . 

Simulated dynamics are illustrated in Figure 2.15 below; 
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Figure 2.15 A Ricker population model with declining K . Comparison of Ricker population growth models with 
constant carrying capacity compared with models with declining K .  
     
The modified Ricker model can be used to investigate temporal variation in K the carrying capacity 

by introducing the parameter  , and a process error, ~ (0, )p pN  . 

 
1

(1 )
1

t
pt

xr
K

t tx x e




 
    

  . (2.36) 

Simulation of this model dynamics are given in Figure 2.16, 

 

Figure 2.16 Simulated Ricker population models with process error.  Figure a shows population growth for Ricker 
models with process error but constant K  while figure b shows the same Riker models with declining K . 
 
Figure 2.16a) is time series of abundance assuming a process error ~ (0,0.125)p N  and constant 

carrying capacity. Figure 2.16b) assumes that, K , the carrying capacity declines at 0.2% per time 

step. We proceed to add a measurement error to the abundance,  

 
1

(1 )
1

t
pt

m

xr
K

t tx x e e


 

 
    



 
 
 
 

, 
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where a measurement error ~ (0, )m mN   is added to tx . In this case tx has a process error as 

given by equation (2.36) above. We add to tx a measurement error ~ (0,2)m N  and generate and 

plot the new time series in Figure 2.17. The challenge in real data is to quantify and separate 

process and measurement errors. 

 

Figure 2.17 Time series with process and measurement errors. Figure a) shows Ricker population growth models 
with process and measurement error and constant K , while figure b) shows the same Riker models with declining K  
. 
 

Process and observation error affect our ability to detect significant temporal trends in the 

mean population size. As demonstrated by the foregoing simulations of the theta logistic and Ricker 

model with process and measurement error. 

We have also demonstrated the different density independent and density dependent 

population models by simulating population growths for different parameters. The Per-capita 

growth rate ( pgr ) is important in explaining the kind of density dependence of a population 

dynamics. Knowledge of the shapes of the growth rate and density relationship is required in all 

areas of population ecology to make projections as to future abundance and population dynamics.    

In an exponential growth the growth rate is constant and does not depend on abundance. A 

more legalistic scenario is that of the Logistic growth where the growth rate is a linear function that 

decreases monotonically with abundance. The relationship between growth rate and N is generally 

taken to be monotonic and decreasing and can be either concave or convex. Convex relationships 

1   in a theta-logistic model imply that growth rate varies little until population size is near 

carrying capacity, then drops rapidly. Concavity 1   means that growth rate is initially relatively 

high, so small populations grow quickly, but growth rate then declines rapidly as population size 
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increases, later flattening out so that the approach to carrying capacity is relatively slow. In the 

theta-logistic model  is the parameter determining the curvature.  

2.5.5 Differential equation models 

Differential equation models of population dynamics were derived by starting from the following 

simple format 

 

 
individual's contribution to( ) ( )
biomass change per unit time 

dN t N t
dt

 
  
 

, (2.37) 

 
where ( )N t denotes the biomass (or population density) of a single species at time t . If the 

individual's contribution to the change biomass in unit time is denoted by a function say ( , ( ))f t N t  

defined suitably for all 0,  0t N   then one obtains from (2.37) the Kolmogorov formulation in 

the form: 

 ( ) ( , ( )) ( )dN t f t N t N t
dt

 . (2.38) 

Depending on the population process and ecological assumptions, the form of ( , ( ))f t N t  

determine the population dynamics. If ( , ( ))f t N t r is equivalent to a positive constant r , then we 

obtain the exponential growth. If  ( , ( )) ( )f t N t r r K N t  , we acquire the logistic growth which 

implies monotonic approach as t  , of the biomass, to ( )N t K , the environmental carrying 

capacity. If the function  ( , ( )) ( )f t N t r r K N t    , and the delay 0  , it leads to Hutchinson's 

(1948) delay-logistic equation, 

 ( ) ( )( ) 1dN t N trN t
dt K

   
 

. (2.39) 

Other forms of ( , ( ))f t N t and delay function assumptions exist which gives non-monotonic 

dynamics. Volterra's (Volterra, 1926) model of a population which pollutes its environment is given 

by equation (2.40) below, 

 ( ) ( )( ) ( ) ( ( ))
tdN t rN tN t r H t s F N s ds

dt K 

 
    

 
 . (2.40) 

There is an advantage of modelling using the principle of equation (2.37). If the initial conditions 

are non-negative, the non-negativity of population density ( )N t at 0t  , follows from the idea that 

the solution of equation (2.38) is of the form; 

 0
0

( ) exp ( , ( ))
t

N t N f s N s ds
 

  
 
 . (2.41) 
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In modelling elephant population our assumption will be that population change is 

determined by birth and death, assuming there is no immigration or emigration as in model (2.420.  

 ( ) birth rate death ratedN t
dt

  . (2.42) 

 If for example, there is discrete delay   in recruitment, equation 2.42 becomes;  

 ( ) ( ) ( )dN t bN t dN t
dt

   . (2.43) 

A continuous distributed where H  is the delay kernel would give, 

 
0

( ) ( ) ( ) ( ( ))dN t b H s N t s ds d N t
dt

 
   

 
 . (2.44) 

Some structured population models can be reduced to delay differential equations ( Nisbet 

and Gurney, 1983). There are occasions, however, when this reduction of the structured system 

does not yield a standard delay differential equation. In such cases, the challenge is to reduce the 

equation or system of equation into one of the standard forms that can be studied using existing 

theory. 
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Equation Chapter 3 Section 3 

CHAPTER THREE: METHODOLOGY 

3.1 Introduction 

In this chapter we give the methods necessary to perform our analysis on population 

dynamics of elephants. Among the materials discussed include; 

i. Classical time series model: Integrated Autoregressive Moving Average (ARIMA) models 

with their well established model building procedure are given. An ARIMA model selection 

criterion is also discussed. 

ii. Structured population models: Methods of analyzing structured population models (SPM) are 

examined with emphasis on the dominant eigenvalue and eigenvectors, net-productive 

number, and stable age distribution. The importance of these methods in population 

management is explained. 

iii. An analytically derivation and application of the filtered, smoothed, and predicted 

distributions in a Bayesian framework. 

We begin with definition of classical time series models whose fitting, diagnosis and forecasting 

techniques are well established in mathematical literature.  

3.2 Time series models 

3.2.1 Modeling procedure  

Although our model construction adhere to the observation of Thomas et al. (2005) that the  process 

of formulating a model represents an attempt to construct a parsimonious, robust and tractable 

characterization of the system under study. Effort are made to make the models practical and as 

representative of the real world as possible. We have made efforts to capture uncertainty in the 

structure and parameterisation of the model as part of the model fitting. This enables us to capture 

adequately the nature inherent in the underlying elephant population dynamics. The general 

modeling procedure used is captured in the following three steps; 

i. Model verification: this is to ensure that the model internal logics work. 

ii. Model calibration:  is an attempt to find the best accordance between computed and 

observed data by verification of the parameters. 

iii. Model validation: consisting of objective test of how well the model fit the data. 
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For fitting time series model our model building strategy conformed to the Box and Jenkins 

multistep model-building strategy with iterative three main steps in the process. These steps are, 

model specification, model fitting, and model diagnostics. In model identification, the classes of 

models are selected that may be appropriate for a given observed data. We computed different 

statistics from the data that can be used to evaluate the fit. 

In choosing a model, we select the model with the smallest number of parameters that will 

adequately represent the curve fitted. Model fitting consists of finding the best possible estimates of 

those unknown parameters within a given model. Model diagnostics is concerned with assessing the 

quality of the model that one have specified and estimated. How well does the model fit the data? 

Are the assumptions of the model reasonably well satisfied? If no inadequacies are found, we return 

to the model specification step. In this way, we cycle through the three steps until, ideally, an 

acceptable model is found. Model diagnostics will include the analysis of fitted values and the 

residuals.  

3.2.2 ARIMA class of models 

Classical time series models have been used in forecasting population growth rate and their 

volatility. Integrated autoregressive moving average (ARIMA) models with Box et al., 2008) have 

clear ways of forecasting and quantifying uncertainty in forecasted values. We can consider state 

space models as part of these models or an extension to cater for specified modelling purposes.  

Autoregressive moving average ( , )ARMA p q  processes require the time series to be transformed to 

a stationary process, but state space models allows for more flexibility.  

A time series model can be used to model population dynamics using different approaches 

including; 

i. Modelling the time series of total population abundance 1 (1 )t t tx R x   , where tR is the 

rate of population change in a time step.  

ii. Modelling the time series of the rate of population change tR or the change in tR  using 

1t t ty R R   . The discrete population rates of change, tR , are approximately equal to the 

log transformed series 1ln lnt t tr x x   .  The continuous exponential model growth rate is 

given by tr .   

Time series ARIMA models can be used in each of the two cases. A time series 

{ ; 0, 1, 2, }tx t     is ( , )ARMA p q if it is stationary and 
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 1 1 1 1 t t p t p t t q t qx x x                 , (3.1) 

with 0,  0p q    and 2 0  . The parameters p  and q  are called the autoregressive and the 

moving average orders, respectively. If tx  has a nonzero mean  , we set 1(1 )p        and 

write the model as  

 1 1 1 1 t t p t p t t q t qx x x                    (3.2) 

where, { ; 0, 1, 2, }t t     is a Gaussian white noise sequence. In general the parameters in an 

( , )ARMA p q  can be summarized in the vector, 2
1 2 1 2( , , , , , , , , , , , ) 'p qp q             

An ( , )ARMA p q  model becomes an autoregressive  ( )AR p model or moving average  ( )MA q if 

order 0q   or 0p  respectively. In general the parameters in a ( )AR p  can be summarized in the 

vector, 2
1 2( , , , , , , ) 'pp         with 0p  , while the moving average parameters in a ( )MA q  

can be summarized in the vector 2
1 2( , , , , , , ) 'qq        , with 0q  . 

ARIMA models are useful in modelling series with non-stationary trend component and a 

zero-mean stationary component. A process tx is said to be ( , )ARMA p q  if  (1 )d d
t tx B x    is 

( , )ARMA p q , and we write the model as  

 ( )(1 ) ( )d
t tB B x B     (3.3) 

If [ ] ,d
tE x   we write model as  

 ( )(1 ) ( )d
t tB B x B      , 

 where 1 2(1 )p         . In an ARIMA( , , )p d q , p indicates the order of the autoregressive 

part, d  indicates the amount of differencing, and q indicates the order of the moving average part. 

If the original series is stationary, 0d   and the ARIMA models reduce to the ARMA models. We 

fit ARIMA and ARMA models to population abundance data and then use the model to forecast 

future abundance in chapter four. 

3.2.3 Steps in the ARIMA model building 

Model Identification  

The first step is to produce a time-series of tX  against t  and examine the plot to identify 

obvious trends, seasonal components, and outliers.  Determine whether the series is stationary or 

not by considering the graph of sample Autocorrelation Function (ACF).  
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We can use the graph of the ACF and the sample Partial Autocorrelation Function (PACF) 

to determine the model which a population time series process can be summarized. The behaviour 

of the ACF and PACF for causal and invertible ARMA models is as in Table 3.1. 

Table 3.1 The behaviour of the ACF and PACF for ARMA models 

 ( )AR p  ( )MA q  ( , )ARMA p q  

ACF Tails off Cuts off after lag q Tails off 

PACF Cuts off after lag p Tails off Tails off 

If the series is not stationary, it can often be converted to a stationary series by differencing. 

That is, the original series is replaced by a series of differences. An ARMA model is then specified 

for the differenced series. Differencing is done until a plot of the data indicates the series varies 

about a fixed level, and the graph of ACF either cuts off fairly quickly or dies down fairly quickly. 

By evaluating the behavior of the ACF and PACF of the data or the differenced series we can select 

the most appropriate model by use of characteristics given in Table 3.1.   

Model Parameter Estimation 

Once a tentative model has been selected, the parameters for that model must be estimated. 

The parameters in ARIMA models are estimated by minimizing the sum of squares of the fitting 

errors. Once the least squares estimates and their standard errors are determined, p-values can be 

constructed and used to determine whether a selected parameter is significant or not. Parameters 

that are judged significantly different from zero are retained in the fitted model while parameters 

that are not significant are dropped from the model. 

Model Checking 

In this step, model must be checked for adequacy by considering the properties of the 

residuals, whether the residuals from an ARIMA model must has the normal distribution and should 

be random. An overall check of model adequacy is provided by the Ljung-Box Q  statistic (Ljung 

and Box; 1978). The test statistic Q  is, 

 
2

2

1

( )( 2) ~ ,
m

h
m m h

k

r eQ n n
n h

 


 
  (3.4) 

where ( )hr e  is the residual autocorrelation at lag h , n is the number of residuals and m is the 

number of time lags includes in the test. Under the hypothesis of model adequacy, 

asymptotically ( )n  , 2~m m p qQ    Thus, we would reject the null hypothesis at level α if the 

value of Q  exceeds the (1 )th  quintile of the 2~ m p qQ    . If the p-value associated with the 



55 

 

Q statistic is small (probability value  ), the model is considered inadequate. The analyst should 

consider a new or modified model and continue the analysis until a satisfactory model has been 

determined. 

Moreover, we can check the properties of the residual with the following techniques:  

i. We can check about the randomness of the residuals by considering the graph of ACF and 

PACF of the residual. The individual residual autocorrelation should be small and generally 

within 2 n of zero. 

ii. Model evaluation criteria can also be performed using calculated values like the Akaike’s 

Information Criterion (AIC); 

 2 2ˆAIC ln k
n k

n
 

  . (3.5) 

In the case of regression model with k  coefficients (number of parameters in the model), n is the 

sample size and the maximum likelihood estimator for the variance given by, 

 2 k
k

RSS
n

  . 

In this case kRSS denotes the residual sum of squares under the model with k  regression 

coefficients. Then, Akaike (1973) suggested measuring the goodness of fit of a model by balancing 

the error of the fit against the number of parameters in the model. 

3.2.3.4 Forecasting with the ARIMA Models 

When an ( , , )ARIMA p d q has been selected and parameters estimated, it can then be used for 

forecasting.  The more accurate the population forecasts are, the more utility is likely to be gained 

from acting on them. 

Although ARIMA models involve differences, forecasts for the original series can be always 

computed directly from the fitted model. The iterative ARIMA modeling strategy can be captured 

as in the Figure (3.1) below. The process of fitting ARIMA models can be performed using R 

software (Venables and Ripley, 2002). 

3.3 Bootstrapping 

Bootstrapping is useful where the time series of population abundance estimate are few and 

fitting ARIMA models is not viable.  In bootstrapping we calculate the observed parameters of 

interest with a given model and data. We resample the data or calculated values with replacement to 

create a large number the parameters and then determine the distribution of the parameters.  
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In the case of a population modelled using 1 (1 )t t tx R x    or 1ln lnt t tr x x    we calculate 

tR  or tr  for the available data. Bootstrapping enables us to create large number of observation of tR  

or tr  from a small set of real data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 Flowchart of the ARIMA methodology. The three steps of fitting a ARIMA model are Model 
identification, model fitting and model diagnostics.   
  

It is then possible to determine measures of location, spread and a confidence interval for the 

bootstrapped parameter tR , tr or the population projections performed using the values. Population 

trend predictions acquired through bootstrapping thus presumes that the population vital parameters 

and the environmental conditions will remain relatively similar to those of the period of the data 

used.  

White Noise 
Residuals? 

Parameter 
Estimates OK? 

i. Plot of Observed Time Series 
ii. ACF and PACF of Observed Time Series 
iii. Stationarity Check, Transformations 
iv. Determination of Required Order of Differencing 
v. Determination of Tentative Model Form and Order 

i. Parameter Estimates, Fitted Values, Residuals 
ii. Significance Check of Estimated 
iii. Stationarity and Invertibility Conditions: Parameter 

Check 
iv. Correlation Check of Estimated Parameters 

i. ACF and PACF of Residuals 
ii. Significance Check of ACF and PACF: Every Lag 

Order 
iii. Overall Significance Check of ACF: Lag Orders 

Taken As a Group 

Forecast 

Stage 1: 

Identification 

Stage 2: 
Parameter 
Estimation 
 

Stage 3: 
Diagnostic  
Checking 
 

YES 
 

NO 
 

NO 

YES 



57 

 

3.4 Bayesian Inference 

In Bayesian approach to statistical models all unknowns, and in particular unknown 

parameters are considered to be random variables and their probability distributions specify our 

beliefs about their likely values. Estimation, prediction, model selection, and uncertainty analysis 

are implemented by using Bayes's theorem to update our beliefs as new data are observed. With the 

increasing power of computing Bayesian techniques are often the most satisfactory way to compute 

estimates for complex models. In a time series scenario the vector parameter , could include the 

classical unknown parameters, the white noise parameter and the future values of the series being 

forecast. 

Bayesian inference on   consists of computing its conditional distribution given the 

sampling results. Suppose that, based on our knowledge of the problem, we can assign a conditional 

distribution ( | )Tf y  for TY  given , the likelihood, and a prior distribution ( )f  , expressing our 

uncertainty on the parameter  . The likelihood ( | )Tf y   is the conditional distribution of the data 

given  .  

Many good statistical procedures employ values of the population parameters that ‘best’ 

explain the observed data. One meaning of best is to select the parameters values that maximize the 

joint density evaluated at the observations. This technique is called the maximum likelihood 

estimation, and the maximizing parameters called maximum likelihood estimators. 

Suppose we have a series of T observations 1 2, , , Ty y y . We label the first t observations 

as 1:ty , so subscript t  denotes the particular observation of y at time t, and subscript t  denotes the 

series of observations up to and including time T , i.e.  1 2, , , Ty y y .  

The likelihood of a possible choice of parameters  is defined as the probability that if those 

were the real parameters, they would have produced the observed data. This is written as 

 ( | y ) (y | ).T TL f    

Here ‘‘L’’ stands for likelihood and ‘‘f’’ for probability. The difference between them is that L is 

viewed as a function of the parameters given the data and f is viewed as a function of the data given 

the parameters. For a time series, the likelihood can be conveniently expressed recursively as 

 1 1: 1
2

( | y ) ( | ) ( | y , ).
T

T t t
t

L f y f y  


   (3.6) 
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An important step Bayesian inference is the use of Bayes's theorem to computing the 

conditional distribution of  given the data. The posterior distribution combines the prior 

knowledge about   with the information in the data. Upon observing T TY y , we can use a 

generalization of the elementary Bayes’ theorem to compute the conditional density of   

given 1 2{ , , , }T Ty y y y  . 

 ( | ) ( )( | ) ,
( )

T
T

T

f y ff y
f y
 

   (3.7) 

where ( )Tf y is the marginal distribution of TY , 

 ( ) ( | ) ( ) .T Tf y f y f d     

Bayesian estimation and uncertainty analysis are based upon the posterior. By sampling from the 

posterior we can acquire estimates of mean and measures of uncertainty. The expectation of the 

posterior is referred to as posterior expectation is given by 

 
( ) ( | )

[ | ] ( | )
( ) ( | )

T
T T

T

f f y d
E y f y d

f f y d

   
   

  
   

. (3.8) 

In forecasting we are interested in the value of a future observation sY  for s T given the data 

1 2{ , , , }Ty y y . The predictive distribution is given by;  

 ( | ) ( , | ) ( ) ( | , ) ( | ) .s T s T s T Tf y y f y y f d f y y f y d         (3.9) 

The joint predictive probability distribution of K  future values is given by, 

 1 2 1
1

( , , , | ) ( | ) ( | , )
K

T T T k T T T K T K
k

f y y y y f y f y y d       


   . (3.10) 

If we are able to specify the probability law of the time series TY , we know the joint densities 

1( , , )Tf y y  for any 1T  , the one-step-ahead predictive density is, 

 1: 1
1

( )( | ) .
( )

T
T T

T

f yf y y
f y


   

In practice, specifying the densities ( )Tf y directly is not easy, and one finds it convenient to make 

use of parametric models, 

 ( ) ( | ) ( ) .T Tf y f y f d     
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In particular, in many applications it is reasonable to assume that 1 2, , , Ty y y  are 

conditionally independent and identically distributed ( iid ) given , 

 1:
1

( | ) ( | )
T

T t
t

f y f y 


 . (3.11) 

If  1 2, , , Ty y y are only conditionally independent then the observations 1 2, , , Ty y y provide us 

information about the unknown value of   and, through  , on the value of the next 

observation 1Ty  . Thus, 1Ty  depends, in a probabilistic sense, on the past observations 1 2, , , Ty y y .  

The predictive density  
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1
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                   ( | , ) ( | ) ,

                    ( | ) ( | ) ,
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





 (3.12) 

the last equality following from the assumption of conditional independence, where ( | ) Tf y  is 

the posterior density of   , conditionally on the data 1 2, , , Ty y y . As we have seen, the posterior 

density can be computed by, 

 
1

( | ) ( )( | ) ( | ) ( ) .
( )

T
T

T t
tT

f y ff y f y f
f y
   



   (3.13) 

The marginal density ( )Tf y does not depend on  , having the role of normalizing constant, so that 

the posterior is proportional to the product of the likelihood and the prior. The posterior distribution 

can be computed recursively, at time ( 1T  ), the information available about   is described by the 

conditional density, 

 
1

1: 1
1

( | ) ( | ) ( ) .
T

T t
t

f y f y f  





  

 
1

1: 1 1: 1
1

( | , ) ( | ) ( | ) ( | ) ( ) ( | ).
T

T T T T t T
t

f y y f y f y f y f f y     


 


   (3.14) 

The recursive structure of the posterior will play a crucial role when we study state space models 

and the Kalman filter. 

Model uncertainty can be captured by extending equation (3.10) to cater for uncertainty in a 

set of m  models. If model m  has m  associated vector of parameters, the likelihood for model m  

is ( | , )T mf y m , the prior distribution for m is ( | )mf m an the posterior distribution is       
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 ( | , ) ( , )( | , ) ,
( | )

T m m
m T

T

f y m f mf y m
f y m
 

   (3.15) 

where ( )( | )Tf y m is normalizing constant known as the marginal likelihood for model m  given by  

 ( | ) ( | ) ( | , )T m T mf y m f m f y m d    . (3.16) 

The posterior probability of m  given data is, 

 ( | ) ( )( | )
( )

T
T

T

f y m f mf m y
f y

 . (3.17) 

The predictive distribution for population forecasts in the presence of model uncertainty is, 

1 2 1
1

1
1 1

( , , , | ) ( | ) ( , , | , ),

                                       ( | ) ( | , ) ( | , , ) .

M

T T T k T T T T K T
m

KM

T m T T K T K m
m k

f y y y y f m y f y y y m

f m y f y m f y y m d  

    


  
 







 

 

 (3.18) 

   This is the average of predictive distributions for individual models weighted by their posterior 

probabilities, ( )( | )Tf m y . Simulation techniques such as MCMC help us to compute, for example, 

the expectations of the posterior and predictive distribution in equation (3.7), (3.10), (3.15)    and 

(3.18), especially when   is multivariate parameter (Abel, et al. 2010). 

 Results from time series models are given in chapter four of this work. Later in section 3.7 

we discuss a Bayesian framework for structured population dynamics which enables us derive the 

sub-process stochastic matrix model for elephant population in chapter five. 

3.5 Filtered, smoothed and predicted recursions. 

3.5.1 State space models definitions 

Generally the state space model consists of an p valued time series 1 2{ ,  1,2, } { , , }t t      

and an p valued time series 1 2{ ,  1,2, } { , , }tY t y y   , satisfying the following assumptions. 

i. { ,  1, 2, }t t   is a Markov chain. 

ii. Conditionally on{ ,  1,2, }t t   , the{ ,  1,2, }tY t   are independent and tY  depends on t  

only. 

The consequence of i) and ii) is that a state space model is completely specified by the initial 

distribution 0( )f   and the conditional densities 1( | )t tf     and ( | ),   1t tf y t  .  
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3.5.2 Filtering recursion.  

The filtering approach to inference would be appropriate for population monitoring schemes 

that wish to obtain updated estimates of the current population as soon as new observations are 

made. The filtering distribution at time t  is the conditional distribution of state t  given the 

observations 1:ty . For a general state space model the following statements hold (Petris et al., 2009). 

a) The one-step-ahead predictive density for the states can be computed from the filtered 

density as; 

 

1: 1 1 1: 1 1

1 1: 1 1 1: 1 1

1 1 1: 1 1

( | ) ( , | ) , 

                  ( | , ) ( | ) ,

                  ( | ) ( | ) .
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f y f y d
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   

    

   











 (3.19) 

b) The one-step-ahead predictive density for the observations can be computed from the 

predictive density for the states. Since tY is conditionally independent of 1tY  given t . 
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 (3.20) 

c) The filtering density can be computed form the Bayes’ rule and the conditional 

independence of tY and 1: 1tY  given t ,as 

 1: 1 1: 1 1: 1
1:

1: 1 1: 1

( | ) ( | , ) ( | ) ( | )( | )
( | ) ( | )

t t t t t t t t t
t t

t t t t

f y f y y f y f yf y
f y y f y y

   
   

 

  . (3.21) 

d) The k  steps ahead predictive distributions for the state and for the observation is computed 

recursively by, 

 1: 1 1 1: 1( | ) ( | ) ( | ) ,t k t t k t k t k t t kf y f f y d              (3.22) 

 1: 1:( | ) ( | ) ( | )t k t t k t k t k t t kf y y f y f y d        . (3.23) 

Here t 1:t( | y )f  summarizes the information contained in the past observations 1:ty , which is 

sufficient for predicting t kY  , for any 0k  .  
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3.5.3 Kalman Filter for DLM 

Consider the DLM,  

 
0 0 0

1

( , ) ,
 ,       (0,  ),   1,

,    (0, ),   1.
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t t t t t m t
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   

 (3.24) 

Let 1 1: 1 1 1| ( , )t t t ty N m C     , then:  

i. The one-step-ahead predictive distribution of t given 1: 1ty  is Gaussian, with parameters 

 

1: 1 1

1: 1 1

( | ) ,
( | ) .

t t t t t

t t t t t t t

a E y G m
R Var y G C G W


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 
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   
 

ii. The one-step-ahead predictive distribution of tY  given 1: 1ty  is Gaussian, with parameters  

 1: 1

1: 1

( | )  ,  
( | ) .

t t t t t

t t t t t t t

f E Y y F a
Q Var Y y F R F V





 

   
 (3.25) 

iii. The filtering distribution of t given 1:ty  is Gaussian, with parameters 

 

1
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1
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( | ) ,

 ( | ) ,
t t t t t t t t

t t t t t t t t t
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where t t te Y f  is the forecast error. 

For the k  steps-ahead forecasts, since all the forecast distributions are Gaussian, it is 

enough to compute their means and variances. For 1k  , define 

 

1:

1:

1:

1:
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 (3.26) 

For a DLM, let  0t ta m and  0 .t tR C  Then, for k ≥ 1, the following statements hold. 

i. The distribution of t k  given 1:  ty  is Gaussian, with 

 , 1

, 1

( ) ,
( ) .

t t k t k

t t k t k t k t k

a k G a
R k G R G W

 
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ii. The distribution of t kY  given 1:  ty is Gaussian, with 
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For 1k  , 
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 (3.27) 
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Figure 3.5 Elephant population with filtered values. Determining the unobserved signal tx given data sy  with 

s t  

If we select a dynamic model with maximum likelihood estimators ratio of 0.5W V   or  

190W V  , the filtered values are almost equal to the observed values for 190W V  . In Figure 

3.5 the ratio of W V  determines how sensitive the state prior-to-posterior updating is to unexpected 

observations.  

3.5.4 Smoothing recursion  

In time series analysis one often has observations on Ty for a certain period, 0,1, 2, ,t T  , 

and wants to retrospectively reconstruct the behaviour of the system, to study physical phenomenon 

underlying the observations. In this case, one uses a backward-recursive algorithm to compute the 

conditional distributions of t given 1:TY , for any t T , starting from the filtering distribution 

1:( | )T Tf Y  and estimating backward all the states’ history.  
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The smoothing distribution at time t T  is the conditional distribution of 0:t  given 1:ty , or 

sometimes, any of its marginals. Smoothing and the smoothed distribution of  past state of the 

population conditional on all the observed data up to the current time period t  is useful when 

retrospective investigation of a population is the object of inference. For a general state space 

model; 

a) Conditional on 1:Ty  , the state sequence 0( )T  has backward transition probabilities given 

by 

 1 1:
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We note that t and 1:t TY  are conditionally independent given 1t  . Moreover, 1t   and 1:TY are 

conditionally independent given t . Using the Bayes formula, one has 
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 (3.28) 

b) The smoothing distributions of t given 1:Ty can be computed according to the following 

backward recursion in t , starting from 1:( | )T Tf y , as 
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Marginalizing 1 1:( , | )t t Tf y    with respect to 1t  gives, 
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 (3.29) 

Figure 3.6a below illustrates the KNP elephant population abundance with the smoothed levels. 

Smoothing refers to ddetermining the unobserved signal tx given data sy with s t . Figure 3.6b 

smoothed levels for AENP with 95% confidence intervals plots.  
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Figure 3.6 Elephant population with smoothing level and 95% confidence. Determining the unobserved signal 

tx given data sy  with s t . 

 
Using simulated maximum likelihood estimates of 0.181V   and 5.71W   in a DLM we acquired 

the smoothed levels as in Figure 3.6.  

3.5.5 Forecasting recursion  

The goal is to make inference on future states of the population given data up to current state. For a 

general state space model defined in section 3.5.1 and any 0k  , 

i. The k  steps-ahead forecast distribution of the state is  

 1: 1 1 1: 1( | ) ( | ) ( | ) .t k t t k t k t k t t kf y f f y d              

Using the conditional independence of the model: 
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 (3.30) 

ii. The k  steps-ahead forecast distribution of the observation is 

 1: 1:( | ) ( | ) ( | )t k t t k t k t k t t kf y y f y f y d         

1: 1:

1: 1:

1:

( | ) ( , | )

                  ( | , ) ( | )

                  ( | ) ( | ) .

t k t t k t k t t k

t k t k t t k t t k

t k t k t k t t k

f y y f y y d

f y y f y d

f y f y d

 

  

  

   

   

   











 (3.31) 

Figure 3.7 illustrates the AENP and KNP elephant population abundance with the one-step-ahead 

forecast for different ratios of W  and V errors. Forecasting is determining the unobserved signal 

tx given data sy  with s t . 
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Figure 3.7 AENP and KNP one-step-ahead forecasts. Determining the unobserved signal tx given data sy  with 

s t . 
In the following section we discuss construction, properties and theorems relating to age 

structured matrix models. The discussion on how to embed population dynamics into inference 

using a Bayesian framework is covered thereafter. 

3.6 Age Structured Population Models 

3.6.1 Population projection matrix Model 

Survival and fertility of elephants depend on age of the animal and thus age structured 

models are useful in the study of their dynamics. Fecundity is defined as the number of female 

offspring produced per adult female of age i  to 1i  in a unit of time t  that will survive to the next 

age class at time 1t   . Survival is the chance of that an individual of age i  at time t  will survive to 

age 1i   at time 1t  . A survival curve represents the death rate as a function of age. The structured 

population model can be built and analyzed by considering the following; 

i. 1, 2,3, ,x k   is the number of age categories, 

ii. xP  is the probability of surviving the interval ( , 1)x x   class. We have 0kP  if no animal 

survives beyond age class k , 

iii. The fertility function ( )m x , is the expected number of offspring (female offspring) per 

individual of age x  per unit time. Fertility depends on the distribution of births and deaths 

in the age class. ( )m x  is the fecundity or average number of of-spring produced by an 

individual in age category x  while in that age category. For a mature elephant population 

with calving interval denoted by CI , the number of female offspring in an interval of y  

years, is approximated using 2*y CI . This approach assumes that the probability of 

conception per average calving interval is one. A ratio of 1:1 of male to female birth is 

assumed though out this study (Moss 2001). 
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iv. The survivorship ( )l x is the proportion of individuals reaching age category x . The 

survivorship function is the chance of an individual surviving from birth to age x , and it can 

be rescaled to give a number of survivors from the initial cohort. For a birth-flow population 

where birth of offspring occurs continuously over the projection interval, survival 

probability is approximated by,  
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 (3.32) 

v. Net reproductive rate per generation or the average lifetime number of off-spring produced 

by a member of the study population is given by, 

 0
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vi. Mean generation time of the population is, 
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vii. The Malthusian parameter that measures the reproductive rate per unit time and can be 

calculated as, 

 0ln( )Rr
T

 . 

Such that ( ) (0) rtn t n e for an exponentially growing population. We can determine the 

annual growth rate using 1rg e  . 

viii. In matrix form the female and male population is represented by the vectors 

 
1 1

2 2

( ) ( )
( ) ( )

( ) ,    ( ) ,

( ) ( )

f m

f m
f m

fk mk

n t n t
n t n t

n t n t

n t n t

   
   
       
       

 
 

where ( ) ( ),  ( ) ( )f fx m mx
x x

N t n t N t n t   are the total female and male populations 

respectively. 

ix. Female population dynamics can be represented as, 
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1 0
1

2 1 1

3 2 2

, 1 , 1

( ) ( 1) 

( ) ( 1)
( ) ( 1)

( ) ( 1)

f x fx
x

f f

f f

f k k f k

n t p b n t

n t p n t
n t p n t

n t p n t



 

  
 
   

  
 
 
   





. (3.33) 

These equations can be put in matrix form as, 

 

1 10 1 0 2 0 3 0 , 1 0 ,

2 21

2

2

1

( ) ( 1)
( ) ( 1)0 0 0 0

0 0 0 0
,

0 0 0 0
( ) ( 1)0 0 0 0

f ff f f f k f k

f f

k

fk fkk

n t n tp b p b p b p b p b
n t n tp

p

p
n t n tp







    
         
    

    
    
    
            







    





 

 
( ) ( 1),

( ) (0).
f f

t
f f

n t Ln t

n t L n

 


 

x. The male dynamics can be modelled as 

 

1 0
1

2 1 1

3 2 2

1 , 1

( ) ( 1)

( ) ( 1)
,

( ) ( 1)

( ) ( 1)

k

m mx fx
x

m f

m f

mk k f k

n t p b n t

n t p n t
n t p n t

n t p n t



 

 
  

 
  
   
 
    





 (3.34) 

 

11 0 1 0 2 0 3 0 , 1 0 ,

22

1

2

( 1)( )
( 1)( ) 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0
( 1)( ) 0 0 0 0 0

0 0 0 0 0
0 0 0 0

0 0 0 0
             

0

fm f f f f k f k

fm

fkmk

n tn t p b p b p b p b p b
n tn t

n tn t

p
p

     
         
    

     
    
    
            









   











  

1

2

2

1

( 1)
( 1)

.

0 0 0
0 0 0 0 ( 1)

m

m

k

k mk

n t
n t

p
p n t





  
    
  
  
  
  
      







  

The ratio of male to female elephants born is approximately 1:1 and no major bias in this ratio has 

been observed in the case of most Eastern and Southern Africa populations (Moss, 2001). Keeping 

track of female population is sufficient for such population dynamics.     
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In general if we define age structure dynamics in terms of difference equations, the Leslie 

matrix, which is sometimes referred to as the projection matrix has the following form: 

 

1 1 2 1 1

2 1 2

3 2 3

1

( 1) ( ),
( 1) ( )
( 1) 0 0 0 ( )
( 1) 0 0 0 ( ) ,

( 1) 0 0 0 ( )

n n

n n n

x t Ax t
x t F F F F x t
x t P x t
x t P x t

x t P x t





 

    
        
     
    
    
        







      



 (3.35) 

where, ( )ix t  population in the thi  age class in generation t, iF = age specific fecundity rate for the 

thi  age class iP = fraction of the thi  age group surviving to the ( 1)sti  age. 0 1iP  , and the first 

age group 1x  consists of births from all age groups: 

 

1
1

2 1 1

3 2 2

1 1

( 1) ( ),

( 1) ( ),
( 1) ( ),

( 1) ( ).

n

i i
i

n n n

x t F x t

x t Px t
x t P x t

x t P x t



 

 
  

 
   
   
 
 

  





 (3.36) 

Two distinctions are usually made for population with a birth-pulse. In a birth-purse 

population birth is limited to a short breeding season within the transition interval. Let number in 

the thi  age group that survive to age 1i   is 1( 1) ( )i i ix t s x t   . In the first case the animal 

increment in age, mortality takes place then birth. The population census is after the birth-pulse 

(post-breeding) and the population is, 

 

0 0 1 1 2 2 2 1 1 0

1 1 1

2 2 2

1 1 1

( 1)  ( )
( 1) 0 0 0 ( )
( 1) 0 0 0 ( ) .

( 1) 0 0 0 ( )

m m m m

n n n

x t s b s b s b s b x t
x t s x t
x t s x t

x t s x t

   

  

    
        
     
    
    
        







      



 (3.37) 

In the second case reproduction takes place then mortality, the census of the population is before the 

birth-pulse (pre-breeding). 
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1 1 0 2 0 1 0 0 1

2 1 2

3 2 3

1

( 1)  ( )
( 1) 0 0 0 ( )
( 1) 0 0 0 ( ) .

( 1) 0 0 0 ( )

n n

n n n

x t b s b s b s b s x t
x t s x t
x t s x t

x t s x t





    
        
     
    
    
        







      



 (3.38) 

In the after birth-pulse matrix, the top row contains the survival rates of the reproducing 

animals. In the before birth pulse matrix, the top row contains the survival rate of newborn animals 

to 1 year of age. If we simply the first row the projection matrix model can be written as,  

 

1 1 2 3 1

2 1 2

3 2 3

1

( 1) ( )
( 1) 0 0 0 ( )
( 1) 0 0 0 ( ) .

( 1) 0 0 0 ( )

m

m m m

x t f f f f x t
x t s x t
x t s x t

x t s x t

    
        
     
    
    
        







      



 (3.39) 

This is the same as model 3.35 and the transition matrix is in the form of a simple Leslie 

(1945) matrix.  Fertility ( if ) is the number of offspring of a female of age i  to 1i   in a unit of 

time t  that will survive to the next age class at time 1t   . Survival is the probability that an 

individual of age i  at time t will survive to time 1t  , when her age will be 1i  .The elements of the 

square matrix are non-negative, the elements of the first row are greater than or equal to zero, the 

elements of its main sub-diagonal are positive and less than unity and the remaining elements are 

zero. We can easily solve equation ( 1) ( )X t AX t   to get that ( ) (0)tX t A X . 

The principles in the Usher model are used when the time between samples or projection 

time interval ( , 1t t  ) is small so that not all individuals move from one class/stage to the next 

(Usher 1966, 1969). The transition matrix is of the form, 

 

1 2 3 11 1

12 222 2

23 333 3

1, 11 1

1, ,

( 1) ( ),
( 1) ( )

0 0 0( 1) ( )
0 0 0( 1) ( )

0 0 0 0( 1) ( )
0 0 0( 1) ( )

n n

n nn n

n n n nn n

x t Ux t
F F F F Fx t x t
P Px t x t

P Px t x t

Px t x t
P Px t x t



  



 

     
         
   

    
   
   
          

      
.






 (3.40) 

A three classes/stages model using these principles would be of the form in equation (3.41). 

 
1 1 1 2 3 1

2 1 1 2 2 2

3 2 2 3 3 3

( 1) (1 ) ( )
( 1) (1 ) 0 ( ) .
( 1) 0 (1 ) ( )

x t s p F F x t
x t s p s p x t
x t s p s p x t

     
          
         

 (3.41) 
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In these models is is the chance of an individual surviving in given time interval, ip  is the 

proportion that develop or age and thus move from class i  to 1i  , ( )ix t  is the number of individual 

in stage i  at time t . The first class or stage in model 3.41 is assumed to be of juveniles who have 

not attained reproductive age. If the time interval is such that all individuals proceed to the next 

class/stage then 1ip   and the model reduces to the Leslie matrix model. Mathematical 

representation of population dynamics in matrix format are easy to visualize, analyze and the 

population projection is also easy to implement. In the next section we discuss important properties 

and analysis of transition matrix of the forms in model (3.35) and (3.40) 

3.6.2 Analysis of Structured Population Models 

3.6.2.1 Definitions and properties 

The following definitions and properties are important in the build up to the analysis of 

transition matrices; 

a) Let ( )ijA a  and ( )ijB a  be two n m matrices then A B if ij ija b  or A B if ij ija b  

for all 1, 2, , ,   1, 2, ,i n j m   . 

b) A matrix ( ) n m
ijA a    is said to be nonnegative if 0A  , positive if 0A  . 

c) A matrix ( ) n n
ijA a     is said to be reducible if there exists a permutation matrix P such 

that  

 11 12

220
T A A

C PAP
A

 
   

 
, 

where 11
m mA  , 22

n m n mA    and 12
m n mA    for 0 m n  . 

d) A matrix ( ) n n
ijA a     is said to be irreducible if it is not reducible. 

e) Perron-Frobenius theorem: Let 0A   be an irreducible n n  matrix, then:  

i. A  has a positive eigenvalue equal to its spectral radius ( )A , 

ii. To ( )A the  corresponds an eigenvector 0w  , 

iii. ( )A  increases when any entry ija  of A increases, 

iv. ( )A  a simple eigenvalue of A . 

v. There is not other nonnegative eigenvector of A  deferent from w . 

f) If 0A   is an irreducible matrix, then either 

    1 1 1
( )   1(1)   or min ( ) minn n n

ij n ij ijj j ji i
a A i a A a 

  
       , 
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which relates the row sums and the spectral radius. An analogous result can be stated for the 

columns of a matrix n nA  , if it possesses the Perron-Frobenius property. 

g) An irreducible nonnegative matrix A  is said to be cyclic of index 1k  , if it has k  

eigenvalues of modulus equal to ( )A . 

h) An irreducible nonnegative matrix A  is said to be primitive, if the only eigenvalue of A , of 

modulus ( )A is ( )A . 

i) The dominant eigenvalue of a matrix with positive entries is positive and the corresponding 

eigenvector could be chosen to be positive. 

j) The dominant eigenvalue of an irreducible nonnegative matrix is positive and the 

corresponding eigenvector could be chosen to be positive. Detailed analyses are given in 

many matrix analysis texts (see Bellman, 1997). 

3.6.2.2 Eigenvalues and eigenvectors analysis; 

For the female population model 3.35 above, the eigenvalues of A , the transition or 

projection matrix, are functions of the transition matrix elements ija as expressed implicitly by the 

characteristic equation: 

 | | 0A I  . (3.42) 

 The eigenvalues of A  are given by the solutions to an equation of the form, 

 
1

1 ( ) ( )
k

x

x
l x m x 



 . (3.43) 

A situation in which there is only one is positive and dominant eigenvalue. The other eigenvalues  

are either negative or complex and thus describe population oscillations. The proof of this property 

is given using the Penrron-Frobenius theorem below.   

Consider the discrete homogeneous system ( 1) ( )x t Ax t  the eigensystem of Aw w  is 

such that the eigenvalues 1 2| | | | | |n      and  1 2,  , , nw w w  are the corresponding linearly 

independent enginevectors. The right and left eigenvectors of a matrix A  are iw  and *
iv such that, 

i i iAw w  and * *
i i iv A v  respectively, where *

iv is the complex conjugate of iv . 

The solutions to  ( 1) ( )x t Ax t   have the form (Doucet and Sloep, 1992), 

 

1 11 1 12 2 1

1 21 1 22 2 2

1 1 2 2

( ) ,
( ) ,

                  
( ) ,

t t t
n n

t t t
n n

t t t
n n n nn n

x t c c c
x t c c c

x t c c c

  
  

  

   
   

   









 (3.44) 
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where ijc are constants. If the absolute value of 2 3| | | | | |n     are less than one, then ( )ix t is 

dominated by 1 1
t

ic   for large t . Each age class eventually will grow exponentially at the rate of the 

dominant eigenvalue. For the dominant eigenvalue 1  we  get,   

i. 1Aw w gives the right eigenvector w corresponding to 1 . Setting the first element of w  

to one, (1) 1w  , the thi  element of w  is given by, 

 1 2 1( ) i
iw i p p p   . 

ii. * *
i i iv A v gives the left eigenvector v corresponding to 1 . If (1) 1v   the th( 1)i   element of 

v  is given by, 

 1 ( )( 1) i

i

v i bv i
p

 
  . 

iii. The stable age distribution is such that,  

 1( 1) ( )x t Ax t x   . (3.45) 

 If A  has distinct eigenvalues 1 2,  ,  , n    we can write 1A Y Y    where   is the 

diagonal matrix with elements 1 2,  ,  , n   . The matrix Y is the matrix with columns as the right 

eigenvectors of A . So that 1t tA Y Y   and 1( ) (0).tX t Y Y X   Where  

 

11

2 2

 0 0 0 0
0  0 00  

,    .

0    0 0    0

t

t
t

t
n n


 

 

  
  
        
       



 

    

 

 

Thus we get 1 2 3 3( ) ,  1,2, ,t t t
i i i i i in nx t c c c i n        Hence, depending on the value of the 

dominant eigenvalue 1  there are following case to consider as t  ; 

i. If 1 1   the population will tend to extinction, 

ii. If 1 1   the population of all age groups will be asymptotically stationary. 

iii. If 1 1   the population of all age groups will grow. 

The following eigensystem theorems are important in establishing properties of the Leslie matrices 

useful in the study of a population. A Leslie matrix has at least one positive real eigenvalue, and if 

there are at least two consecutive age classes that are fertile, a positive real dominant eigenvalue 

always exists.      
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Penrron-Frobenius theorem: If 0A  , the all elements of tA  are strictly positive for some 

value of t  (a positive integer). There exists an eigenvalue 1 of  A  (Perron root) that is positive and 

larger in magnitude than the remaining 1n   eigenvalues. This implies that 

i. There exists one eigenvalue that is greater than or equal to any of the others in magnitude. 

ii. There exists an eigenvector such that its element are non-negative, 

iii.   is greater or equals to the smallest row sum of A  and less or equals to the largest row 

sum. 

Since 0A   and its dominant eigenvalue is positive, in order for the equation Ax x  to 

hold, the corresponding dominant eigenvector 1w  must have nonnegative elements. The importance 

of the Perron-Feronius theorem lies in the fact that for population modeled by the generalized linear 

model ( 1) ( )x t Ax t  , it guarantees the existence of a stable population structure, 1w , and growth 

rate, 1 , that determine the ultimate dynamical behavior of the population. That is , as t  ,  ( )x t  

aligns itself in the same direction as 1w  and changes in magnitude at a rate that approaches 1 . 

Let A  be a Leslie matrix with at least one pair of consecutive fecundity measures with both 

elements not zero and with 0 0ns b  , then A  has a positive eigenvalue of algebraic multiplicity 

unity, for which there is a corresponding eigenvector having positive elements and which is greater 

in absolute value than any other eigenvalue. The eigenvalues of A  are the roots of  
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
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
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




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





    



, 

   1 2 3
1 2 1 3 1 2 1 2 3 1 0n n n n

n nf f s f s s f s s s s       
        . (3.46) 

Since 1 2 3 1,  ,  , , ns s s s  are all positive and since also 0nf   we have    0 0,  0    , and hence 

  0    has at least one positive real root. 

   1 2 3 4
1 1 2 1 2 3 1 2 3 4 1 2 3 1 1n

n nf f s f s s f s s s f s s s s f         
        , (3.47) 

which gives  

   1 2 3 1 2 11 1 2
2 3 4 1

32' n n
n

s s f ns s s ff s ff 
   


     


 . 
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thus,  ' 0f    when 0;   therefore,   f   decrease strictly monotonically from   to 0 as   

increase from  0 to  . Hence there is one and only one real positive root of ( ) 1f    of multiplicity 

unity. 

 1 21 1 2
2 1

0 0 0

...s s1, , , , ,n
n

s s ssw
   

 
  
 

  (3.48) 

whose components are all positive. Consider a transition matrix model of the form, 

 

1 0 0 1 0 1 0

1 1

1 1

(1 )                  
                        0              0 
                                              
        0                   (1 )   0 
        0      

n n

n n

p s s f s f s f
p s

A
p s



 

 






 

   



1 -1

.

                        n n np s s

 
 
 
 
 
 
  

 

Since this matrix A  is nonnegative, the Perron-Frobenius theorem applies. By theory of expanding 

determinants, the characteristic equation for the eigenvalues associated with the matrix Adefined 

above is the thn  order polynomial,  

 
1

0
11 1 1

( (1 ) ) ( (1 ) ) 0,
n i nn

j j i j j j j
ij j j i

p s s f p s p s 


   

         (3.49) 

 0

1 1

1
(1 )

in
j ji

i ji i j j

p ss f
p s p s 


   , 

which are important for analysis of Leslie matrix model.  

3.6.2.3 Stable age distribution.  

A population attains a stable age distribution when the proportion of individuals in a 

particular stage or class does not change from one time interval t  to the next time interval 1t  .  

Stable age distribution may be used as an aid in predicting growth and anticipating ecological 

impacts (Fowler & Smith, 1973). It could also indicate stable undisturbed population whereas 

deviations indicate the impact of disturbance (Sukumar et al. 1988; Wittemyer, 2001). 

For the population model ( 1) ( )x t Ax t   the stable age distribution is such that, 

1( 1) ( )x t Ax t x   . The stable age distribution can be obtained from the eigenvector 1w , 

corresponding to 1 . If  
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w
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w

w

 
 
 
 
 
 


 (3.50) 

and 1 2 na a a a    , then the stable age distribution x̂  of the population is, 

 

1

2

1

ˆ n
ii

n

w a
w awx

a
w a



 
 
  
 
 
 

 
 (3.51) 

When a population attains a stable age distribution the growth rate is then referred to as 

intrinsic growth rate. A stable age distribution would basically imply that the vital demographic 

parameters are the same over time although not necessarily equal across the classes or stage. An 

equilibrium age structure is attained if the population has attained equilibrium by density regulation 

and the age structure is stable from one time period to the next.  

How fast the population approaches the stable age distribution depends on how much larger 

1| | is than  2 3| | | | | |n     . The larger the relative difference, the faster the population moves 

towards stability. 

In using stable age distribution of African elephant, managers would be interested in the 

time it takes to attain stable age distribution. An evaluation on how a management policy ought to 

consider the age structure. The expected or projected total population by the time the population 

attains a stable age distribution, informed by the range size and resource availability can be used to 

determine the best management strategy.  

Reproductive value is the expected contribution of each individual to present and future 

reproduction. We find each stage’s reproductive value by solving for the dominant left eigenvector 

v, where  vA v . Like the relation between the dominant right eigenvector and the stable age 

distribution, this vector is actually proportional to the reproductive values. For  1 2, , , 'nv v v v   

and 1 2 nb v v v    , the reproductive value is, 

 

1

2

1

V n
ii

n

v b
v bvR

v
v b



 
 
  
 
 
 

 
 (3.52) 

The stage structure and reproductive values each in their own way contribute to the 

importance of each stage in determining  . The stable age distribution provides the relative 
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abundance of individuals in each stage. Reproductive value provides the contribution to future 

population growth of individuals in each stage. 

From the fact that i i iAw w , where iw  is eigenvector of A , 

 1 1 2 2(0) n nx c w c w c w    , 

where 1 (0)c W x . We can recursively find that; 

 
2

1

(1) (0) ,

(2) (1) ,

                      
( ) ( 1) .

i i i i ii i

i i i i i ii i

t t
i i i i i ii i

x Ax c Aw c w

x Ax c Aw c w

x t Ax t c Aw c w



 

 

  

  

   

 
 

 


 (3.53) 

The dominant eigenvalue 1  determine the ergodic properties of the population growth since; 

 1 1 1 2 2 2 3 3 3( ) t t tx t c w c w c w       . 

Assuming the eigenvalues are arranged in order of decreasing magnitude with 1  being strictly 

greater. Dividing all through by 1
t we have; 

  
   1 1 2 2 1 2 3 3 1 3

1

1 1
1

( )   ,

( )lim .

t t
t

tt

x t c w c w c w

x t c w

   




   





 

Hence this shows that if A  is primitive the long term dynamics of the population are described by 

the dominant eigenvalue  , and the stable age distribution w . Let iAw w , then; 

 

1 1 2

2 2 3

3 3 4

1 1

,
,
,

         
.n n n
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s w w


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That is, the eigenvector w  has components, 

 1i
i iw s   . 

Since we can scale w so that 1 1w  , the stable age distribution with abundance of each age class 

measured relative to the first class is given by; 

 

1
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2 1
2

3 1 2

1
1 2 1

1
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w s

w s s
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

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 
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 
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 
 
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

, 



78 

 

where n  is the number of age classes in the structured model. 

3.6.2.4 Analysis using net reproductive value 

Fertility rates are among the most important vital parameters in population studies. The net 

reproductive value combines together the age-specific fertility rates and the age-specific rates and 

gives the expected number of offspring’s per individual over its life time. It can be used to 

characterize the stability of the trivial equilibrium and as a bifurcation parameter in the study of 

positive equilibrium for linear models (Cushing 1988). The net reproductive value, 0R  for a general 

class of matrix population models is equal to the expected number of off-spring per individual over 

its lifetime 

Let  ( )  1,2, , ,ix t i m   denote the number (or density) of individuals in the ith age class at 

time t, and suppose that the time unit is taken, without loss in generality, to be 1. Let 1, (0,1)i is   be 

the fraction of individuals in age class i  that survives to age class 1i  after one time unit. 

Let 1   1, 2, , ,if i m  , be the number of off-springs produced by an individual in age class i  that 

survives to age 1. For the discrete age-structured population model, 

 

1 1
1

1

0 0 0

( 1) ( ),

( 1) ( ),   1, 2, , ,
for  ,  1,  2,   .

m

j j
j

i i i i

x t f x t

x t s x t i m
t t t t





 

  

  






 (3.54) 

Given an initial population distribution 0
0( ) 0,   1, 2, , ,i ix t x i m     then the dynamics of the 

population are uniquely determined by these formulas for all 0t t . In this model the net 

reproductive value is defined as 

 
1

0 1 1,
1 0

 ,
im

i j j
i j

R f s



 

   (3.55) 

or in simply 0 ( ) ( )R l x m x . The number defined by (3.55) has a straightforward biological 

meaning. The product 
1

1,
0

i

j j
j

s




 is the probability that an individual lives to age i and the product 

1

1 1,
0

i

i j j
j

f s




 is the number of its offspring. Consequently, n is the expected number of offspring per 

individual over its life time. 
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Let  1 2( ) ( ), ( ) ( ) 'mx t x t x t x t  denote the age-distribution vector at time t. We have 

following theorem (Cushing, 1988). 

 Theorem: Reproductive number  

For any initial distribution 0
1 0( ) 0( 0) ,x t x    

i. 0 1R   implies lim ( ) 0it
x t


  for all 1,2, , .i m   

ii. 0 1R   implies lim ( )it
x t


   for all 1,2, , .i m   

If 0 1R  then there exist positive equilibrium solutions x cv of the model equations (3.54) where 

c  is an arbitrary positive constant and 

  21 21 32 21 32 43 21 32 , 10 1, , , , , 'm mv s s s s s s s s s     . 

The theorem above illustrates the role of the net reproductive value 0R  in determining the 

asymptotic dynamics of the population.  

i. The trivial solution 0x  of equations (3.54) is asymptotically stable if 0 1R   and is 

unstable if 0 1R  .  

ii. If 0 1R  , a nontrivial equilibrium exist. Biologically when 0 1R   an individual produces 

exactly one offspring to replace itself over its lifetime and, as a result, the whole 

population maintains itself at a constant level. 

iii. If 0 1R   means that an individual cannot fully replace itself during its life span and 

therefore the population decreases.  

iv. In the case 0 1R  , the situation is the opposite, and the population in grows exponentially.  

As we noted above the intrinsic rate of increase, r , is given by, 0lnr R T , where T is the 

generation time. The following is also true, 

i. If 0 1R  or 0r  , the population is stationary, 

ii. If 0 1R  or 0r  , the population declines, and  

iii. If 0 1R  or 0r  , the population grows exponentially. 
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3.6.2.5 Sensitivity and elasticity 

In perturbation analysis we ask what would happen to some dependent variable if we change 

one or more independent variable. Perturbation analysis enables us to predict result of future 

changes in the vital rates, quantify the effects of past changes, predicting the action of natural 

selection and designing sampling schemes. In designing sampling schemes we need to understand 

which vital rate and hence their estimate is  most sensitive. 

Sensitivity and elasticity combine the idea of stable age distribution and reproductive value 

to tell us the relative importance of each transition in determining  . Sensitivities of a population 

projection matrix are the changes in  given small changes in each element ija  of A . We denote by 

S  the sensitivity matrix giving the sensitivity of to all the ija : 

 

*

,
v.w

' .

ij ij

ij

ij

v w
a

vwS
a v w







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

 
   
 

 (3.56) 

Elasticities are sensitivities, weighted by the transition probabilities. Sensitivities are large 

when reproductive value and or the stable age distribution are high, and this makes sense 

biologically because these factors contribute a lot to . The elasticity matrix E  and elasticity 

of with respect to ija are defined as, 

 

log ,
log

1 ,

ij
ij

ij ij

ij

ij

a
e

a a

a
E S A

a

  
 


 


 



 
    



 (3.57) 

where S A is the hadamard product of S  and A  (see Appendix A). We note that if a transition is 

not possible it has elasticity equal to zero, because we multiply by the projection matrix itself and 

that elasticities sum to zero, and so it is easier to compare elasticities among different matrices and 

different organisms. Sensitivities and elasticities provide us with the predicted effects on   of a 

proportional change in demographic rates. This is particularly important in the management of 

invasive (or endangered) species where we seek to have the maximum impact for the minimum 

amount of effort and resources. Put in simple terms sensitivity is the slope of   as a function of the 

elements of the transition matrix ija  while elasticity is the slope of log  as a function of log ija .  
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3.6.3 Stochastic population dynamics models 

Stochastic matrices and integrated autoregressive moving average models (ARIMA) can be used to 

capture environmental stochasticity.  To capture environmental variation using a matrix model, 

different approaches may be used, 

i. Allowing the elements of the matrix to be independently distributed sequence of random 

variables. The elements may be selected from a given probability distribution. 

ii. Assuming discrete state Markov chains with finite number of environmental states, then the 

distribution at t  is given by ( ) ( )tx t A x t , where tA is a column-stochastic matrix such that 

0, 1ij iji
a a   for all j .  

  If we incorporate stochastic variations in our matrix dynamics we get, 

  

1 1 2 3 1

2 1 2

3 2 3

1

( 1) ( ) ( ),
( 1) ( ) ( ) ( ) ( ) ( )
( 1) ( ) 0 0 0 ( )

,
( 1) 0 ( ) 0 0 ( )

( 1) 0 0 ( ) 0 ( )

m

m m m

x t A t x t
x t F t F t F t F t x t
x t P t x t
x t P t x t

x t P t x t

 

    
        
     
    
    
        







      



 (3.58) 

where the transition ( )A t  matrix varies with time.  

 1 2 0( ) (0)t t tx t A A A A x   . (3.59) 

The population size at time t  is 

 
1 2 0

( 1) ( )

            (0) ,t t t

X t x t

A A A A x 

 

 
 

where the stochastic population growth rate can be approximated using. 

 1 2 0
1log lim log (0) .s t t tt

A A A A X
t

  
   (3.60) 

The demographic stochasticity can be incorporated in matrix by considering survival iP  and birth iF  

rates of class i as though fixed and mutually independent, but allowing an individual’s survival and 

reproduction to be a binomial variables. Survival and birth are then given by Bin( ( ), )i ix t P and 

Bin( ( ), )i ix t F respectively. In this scenario there is variability due to applying probability to a finite 

sample.  

3.6.4 Density dependence 

The linear Leslie Matrix formulation is limited because only density-independent population 

growth with just births and deaths is modeled. The survival for the first age class can be replaced 
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with a density dependent function, 0 0 1( )t ts x N   and survival of other age classes may also be 

dependent on the total population or other environmental factors (Winkelman, 2009). The matrix 

model becomes  

 

0 0 1 1 0 1 2 0 1 0 1

1
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 
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 
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 
 
  

  

Only density-dependence ( 0 0 1( )t ts N N   ) in one age class is needed to produce logistic 

growth.A density dependent form of the Leslie's (1945) model could also be of the form; 
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 (3.61) 

 

The new born are assumed to experience both density-dependent (  0 ( )N t ) and density-

independent ( 0s ) mortality in their first year of life.  In this model we note that  

  0 1 0 0 0
1

( ) ( ),   ( 1) ( ) ( )i i
i

N t b N t N t s N t N t




   . (3.62) 

If we define 0 1 2 1i il s s s s   , which implies that 1 0l s  and using equations of this model we acquire 

that, 
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Substituting for 0( )N t  using equations (3.62) we have; 
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 We then substitute for  1( ) ( 1)i i iN t l l N t i    we get; 
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The dynamics of 1( )N t are completely described by the maternity schedules, i ibl , the value of 

1l  and the function  . Therefore, since ib  and is only appear as a product, high values of adult 

mortality and fertility could produce the same dynamics as low values of adult mortality and 

fertility. In this case the reproductive value 0R  is given by, 

 0
1

n

i i
i

R bl


 . 

If *N  is an equilibrium solution then the equilibrium new born level satisfies; 

  0 0 0* * *N N N R  . 

Local stability for the density dependent Leslie model above is assured if the eigenvalues of the 

population matrix linearized around the equilibrium *N  all lie within the unit circle. 

3.6.5 Harvesting 

We can analyze or study harvesting or destruction using the Leslie model. For example we can use 

the Leslie matrix model to consider three harvesting strategies; 

i. Harvesting equal proportion 1 2, , nh h h h   from all the classes, 

ii. Harvesting equal proportion 1 2' , , kh h h h  1 2, , 0k k nh h h   ;  from all the classes, from 

the pre-reproductive groups and first reproductive groups,  

iii.  Harvest a proportion ''h from some ' 1k  of the first 1k  age groups for 'k k . 

We remove ( )HAx t  animals. Thus the population vector after growth and harvesting becomes; 

 ( ) ( )Ax t HAx t x   (3.63) 

Where   is a positive eigenvalue of the matrix ( )I H A . If we have 1 2, 0kf f f  , then; 
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 (3.64) 

  If 1 2, , nh h h satisfy equation (3.63) and 1 2(0), (0), , (0)nx x x  satisfy | ( ) | 0I H A I    then 

( ) ( )Ax t HAx t x  . The population will increase if 1  , decrease if 1  and remain constant 

if 1  .  

 The equations given by equation (3.64) for determining , 'h h and ''h as functions of 

1  are: 
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From where we deduce that; ( ) '( ) ''( )h h h    , (0) '(0) ''(0) 0h h h    and that ( ),  '( )h h  and 

''( )h  are monotonically decreasing functions of .  

In the next section we discuss the Bayesian state space models that are used to study process 

and measurement error in population time series. Analytical approach of determining general 

posterior distributions, filtered, smoothed and predicted distributions have been explored.  

3.7 Bayesian State space models 

3.7.1 State space models Structure and Inference  

State-space models describe dynamic systems as consisting of two linked time series processes 

running in parallel. The state process is the true underlying state of the population at a sequence of 

successive time steps is defined as n ;  0,1, 2, ,t t T  . It is a vector of states, some of which may be 

unobservable.  

The second time series is the observation process vector ;  1,2, ,ty t T   which provides a 

correspondence between the unobserved true state tn , and the recorded measurement on the 

population. The observation process is modeled using the probability distribution or 

process ( | )t tf y n  (Thomas L, 2005; Buckland et al, 2004; Bishop J.R, 2008). 

A state space model structure is represented as the sequence, 

 
0 1 2 1

1 2 1

(.) (.)
.

t T

t T

n n n n n
f f
y y y y





    
   



 

Important distributions include: 

i. Initial state distribution 0 0( , )g n  , 

ii. State process distribution 1( | , )t t tg n n   ,  

iii. Observation process distribution 1( | ; )t t tf y n   , 



85 

 

Where 1, 2,3, ,t T  and   is a vector of parameters. The state process is assumed to be first-order 

Markov, namely,  

 1 0 1( | , , ; ) ( | ; ).t t t t t tg n n n g n n     

For a state vector tn and vector of parameters , the three probability distributions that are important 

making inference at include:  

i. Filtering distribution 1( , | , , )t tp n y y   is used if the purpose of inference is to estimate the 

current state of the population given all of the data up until the current time period.  

ii. Smoothed distribution 1( , | , , )s tp n y y  , is important when the full series of observations 

up to time T is used to estimate the state vector at time s t , and  

iii. Predicted distribution 1( , | , , )r tp n y y  , is useful if observations up to year t are used to 

predict the state vector in year r t .  

The joint distribution of the states, tn , and observations, ty , is obtained by, 

 0 1
1

( , | ) ( , ) ( | , ) ( | , ),  0,1, , .
T

t t t t t t t n
t

P n y g n f y n g n n t T


        (3.65) 

This is useful in determining the maximum likelihood estimates for . The marginal distribution 

of yt , or the likelihood function is, 
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By the Bayes Theorem the smoothed distribution can be expressed as, 
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 (3.67) 

Using the smoothed distribution, the expectation of the state vector is, 
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. (3.68) 
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The posterior distribution of the model parameters   conditional on all the observed data 1:Ty  is 

given by, 

 1: 1:
1:

1:1:

( | ) ( ) ( | ) ( )( | ) .
( )( | ) ( )

T T
T

TT

p y p p y pp y
f yP y P



   
  

 
 (3.69) 

Numerator is the product of the prior ( )p   and the likelihood 1:( | )Tp y  . 

3.7.2 Sub-process Model Structure and Inference 

Suppose the population dynamics in a single time interval undergoes sub-processes such as 

birth, survival, maturation, harvesting and movement, we can model these processes in a modular 

approach. Suppose there are k  sub-processes between time 1t  and time t ,  
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 (3.70) 

where ,i tg is the distribution of the 1, 2, ,thi k  sub-process and ,i tu is the population state after 

process 1, 2, ,i k  . Assuming the sub-process are linear and Markovian, i.e. the state at time 

t only depends on the state at time 1t  , and that the sub-process are sequential. The sub-process 

model would be represented as, 
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 (3.71)  

In the modular approach, the state probability density function can be written as: 
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If each sub-process is assumed to be first-order Markov the state process distribution can be written 

as, 
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Direct analytical evaluation of 1( | , )t tg n n   and multidimensional integrals of other equations 

like (3.66) to (3.69), and (3.72) are not easy.  Such integrals become even more complex in the state 

space model with many sub-processes.  MCMC offer computation techniques that make the 

evaluation of these multidimensional integrals feasible (Gilks and Roberts, 1996). 

The modular modelling approach can be considered as an extension of the matrix modelling for 

the following reasons 

i. Observation model that can be either deterministic or stochastic is explicitly added to the 

model framework. 

ii. Modular approach: for example birth, survival, movement and maturation are modelled 

separately and can be either stochastic or deterministic. Each individual sub-process can be 

modelled separately from the others which allow a greater degree of flexibility in the 

approach to constructing the models and performing statistical inference.  State -1tn  evolves 

to nt  by intermediate sub-processes, the ,.ui . The observations -1ty  and ty are connected to 

the corresponding states -1tn   and tn  by the observation process probability density 

functions -1tf and tf .  

iii. Sub-process matrix representation: each of the sub-process models can be represented in 

the form of a matrix. For example if each sub-process i is represented by matrix iM  then 

the progression of a linear Markov process can be estimated by the generalised Leslie 

model, 

 1 1 1 1[ | , ]t t k k tE n n M M M n    . (3.74) 

The state space modelling framework may be used to incorporates multiple sources of 

uncertainty including, stochastic variation due to the process, model parameters, and measurement 

error. Alternative management strategies can be investigated with the outputs reflecting the multiple 

sources of uncertainty (Buckland et. al. 2004). It is also possible to combine either deterministic or 

stochastic sub-processes into a single model. 
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Equation Chapter 4 Section 4 
CHAPTER FOUR: MODELS FOR TOTAL POPULATION 

ABUNDANCE 

4.1 Introduction 

Unstructured models for elephants represent the population abundance with a single 

variable, aggregating all age classes together. Such models can be kept relatively simple, and the 

number of parameters required can be kept low. Models requiring few parameters are simple and 

useful tools for establishing the general population trends and for strategic decision making. 

In studying elephant population abundance we may consider a given population in a chosen 

ecosystem as a single homogeneous group. In such a case the vital rates such as reproductive rate, 

mortality or survival rates, are considered as uniform for all individuals in population. Models that 

consider the population age structure are discussed in chapter five. 

It is necessary to determine whether the time series of total population abundance data used 

is for a constant range size. In cases where population counts were done for varying range size it 

would be more appropriate to study population time series using density estimates. Open population 

where the animals can migrate into or out of the selected region pose another challenge in fitting 

models using total population count data, especially where no data on immigration and emigration 

exist.    

Different models can be used to explain observed elephant data and predict future elephant 

population trends. Log-linear models are used to fit a model using log transformed total population 

data. The log-linear model is thus, a deterministic model which can be used to project future 

population.  

To capture some of the randomness and autocorrelation in population data a time series model is 

necessary. Integrated autoregressive moving average (ARIMA) models are used to explain the 

observed data and give future predictions with a measure of prediction accuracy or forecast error. 

Due to the relatively few observations available in the population time series, bootstrapping was 

used to forecast future values and acquire empirical distribution of future populations.  

As stated earlier when population is treated as a single homogeneous group, our main interest 

was the population rate of growth since it captures the characteristics of the population. Due to the 

central role of the population growth rate (Sibly & Hones, 2002) we derived a method for 

comparing the distribution of the growth rate using a Bayesian approach.  
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4.2 Log-linear, ARIMA models and Bootstrapping 

4.2.1 Models and modelling challenges 

The following challenges arise when fitting both classical time series models and log-linear 

regression models to elephant’s population abundance data; 

i. Only a short lengths of the time series of abundance data is available, 

ii. Missing values and observations collected at unequal intervals in the time series, due to 

missing observations or irregular sampling, and 

iii. The possibility of process, observation and model uncertainty. 

 

Methods used estimating exponential trend parameters for abundance time series data may be 

classified by their assumption on process and observation error. They include models that consider; 

i. Observation error: Log-linear regression of counts against time, where the slope of the 

regression gives the population trend (Eberhardt and Simmons1992), 

ii. Process error: Population is surveyed without observation error and that variability in 

abundances is entirely due to process error captured by the growth rate fluctuations. 

Abundance (on the logarithmic scale) is described by a Brownian motion diffusion process 

with a constant drift rate. 

iii. Process and observation error: Method for estimating trend using a stochastic state-space 

exponential growth model that assumes both observation error and environmental process 

noise (Lindley 2003). Such an exponential growth state space model can be written as a 

linear mixed model and used to accommodate data with missing observations 

(Staudenmayer and Buonaccorsi, 2006) 

4.2.2 Data and exploratory analysis  

The elephants population data used is as published by Gough KF (2006) (See Appendix B) 

and Blanc et. al. (2007), and South Africa National Parks (SANP). The Addo Elephant National 

Park (AENP) and the Kruger National Park (KNP) elephant populations, both in South Africa, have 

been monitored and studied by various researchers and organisations (Blanc et. al. 2007; Gough 

2006; Woodd 1999, Rude. et al. 1999).  The Amboseli National Park population has been 

monitored and studied by Moss C.J (2011, 2001) and KWS among others.  

The time series plot of population abundance (Figure 4.1) showed that all the selected 

populations indicated recovery. The population of KNP seems to have stagnated between the years 

1970 to 1994 as in Figure (4.1c). This is due to the management policy adapted. Our analysis uses 

KNP elephant population data which include values of population size between 1967 and 1994 
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when culling was being done to maintain sustainable population size. The policy was to maintain 

about 7 000 elephants in the park, but fluctuations between 6 000 and 8 000 were deemed to be 

acceptable. The AENP and ANP population have grown exponentially (Figure 4.2 a and b) with 

minor fluctuation for the entire period of study.  

 
Figure 4.1 Time series plots of total elephant population. Population time series for AENP (figure a) and ANP 
(figure b) show exponential growth. Figure c show KNP population that stagnated during periods when culling was 
being done. 
 

For observed time series of population abundance analysis should  be  preceeded by 

exprolatory analysis. For the purpose of illustation, consider the population abundance of african 

elphants  from the ANP and AENP in Kenya  and  South Africa respectively. The descriptive 

statistics as in Table 4.1 show that the data is skewed and platykurtic with a negative Kurtosis. 

Table 4.1 Descriptive statistics of ANP &AENP 

Statistics Amboseli ANP Addo ANP 
Minimum 481 94 
Mean  836.5 195.7 
Median  736 175.5 
Maximum  1451 388 
Skewness  0.724 0.698 
Kurtosis -0.745 -0.665 

Both AENP and AENP elephant population data values (figure 4.1a & b) are not stationary in mean 

value. The Autocorelation functions (ACF) of the ANP and AENP show the presence of trend  as in 

Figure 4.2 a and b, respectively. We  difference twice to get a relatively stationary serie for both 

ANP and AENP  as in figure 4.2 c and d, respectively. 
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Figure 4.2 ACF of ANP and AENP Population Abundance. Both the ACF of the total abundance for ANP and 
AENP are not stationary (figure a and b), but the coresponding ACF of the second difference are (figure c and d). 
 

The ACF gives a profile of the linear correlation at all possible lags and shows which values 

of lag, h, lead to the best predictability. To check for nonlinear relations, it is convenient to display 

a lagged scatter plot matrix, as in Figure 4.3, that displays values of tx on the vertical axis plotted 

against t hx  on the horizontal axis for the AENP. None of the lags show a non-linear relationship 

between current population and its past size. KNP population show no linear relationship for lags 

greater than 3, possibly due to the management strategy adopted in 1967 to 1994 that allowed 

culling.  

 
Figure 4.3 Lagged scatter matrix plot for AENP population. The Scatter plots of the lagged values 
show that there is dependence of the population on past population sizes. Population dependence on past values (i.e. 
dependence of tx  to its past t hx  ) reduces as the lag increases. 

4.2.2 Log-linear fit 

Assume the population of elephant in a region is affected by births ( b ), deaths ( d ), 

immigration ( i ), and emigration ( e ). 

 
( ) ,

.

n b d i e t
dN rN
dt
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 
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Consider a deterministic exponential growth model; 

 ( ) (0) tN t N  , (4.1) 

where is the population growth rate per time step. Thus,  

 0log log logtN N t   . (4.2) 

A linear model can be fit to the log transformed data for both discrete and continuous case. For the 

continuous case the projection model is 

 0

0

,
log log .

rt
t

t

N N e
N N rt


 
 (4.3) 

 There is a bias in transforming back from logarithm scale to original population count. But 

transforming back is not necessary if the purpose is comparison. In this section we compare 

elephant population of ANP in Kenya with that of AENP in South Africa using the slope log .  

 
Figure 4.4 Log-linear population fit and projection. Linear fit of the log transform of total population 
against time with 95% confidence intervals and prediction limits for AENP population (figure a) and ANP (figure b). 

Figure 4.4 shows the plot of transformed population data for AENP in South Africa (figure 

4.4a) and ANP in Kenya (Figure 4.4b). The prediction bands are wider than the 95% confidence 

intervals for both cases as we would expect. The narrow bands, confidence bands, reflect the 

uncertainty about the line itself, while the wide bands, the prediction bands, include the uncertainty 

about future observations. The models for the two populations are as in Table 4.2 below, 

Table 4.2 Log-linear models 
National 
Park 

Model Residuals 
Standard 
Error 

Degrees 
of 
freedom 

Multiple 
2R  

Adjusted 
2R  

P-value 

AENP log 104.02 0.05498tN t    0.039 26 0.993 0.9927 < 2.2e-16 

ANP log 65.42925 0.0362tN t    0.0363 29 0.988 0.998 < 2.2e-16 
 

All the intercept and slope parameters in the two models are highly significant; 

 
AENP:  log 104.02 0.05498 ,
ANP  :  log 65.43 0.0362 .

t

t

N t
N t

  

  
 (4.4) 
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Elephant population in AENP have in general shown higher rate of growth than ANP with 

log 0.055   for AENP and log 0.0362  for ANP per annum increase rate on the log scale. If 

the assumption that the population is undisturbed and there is no catastrophe the population are 

expected to continue in the upward trend. In chapter five we considered how population structure 

and corresponding population vital parameter affect population trend and efforts to manage the 

population of elephants.   

4.2.3 ARIMA model fitting and forecasting 

The ( , , )ARIMA p d q  models are useful in modelling series with non-stationary trend component 

and zero-mean stationary component. We demonstrate the model search for both AENP and ANP 

series with a similar process also necessary for the KNP population series. In the three classes of 

models (0, , )ARIMA d q , ( , ,0)ARIMA p d and ( , , )ARIMA p d q the best fitting models using the AIC 

are:  

i. (0, 2,2)ARIMA , (3, 2,0)ARIMA and (1, 2,1)ARIMA for the ANP total population. The 

(0, 2,2)ARIMA  is the selected model for it has the least forecasts standard errors and the least 

AIC (Table 4.3), and 

ii.  (0, 2,2)ARIMA , and (1, 2,2)ARIMA for the AENP total population. The (0, 2,2)ARIMA  is the 

selected model for it has the least forecasts standard errors and the least AIC (Table 4.3).  

Another model with is sufficiently low AIC is (2, 2,2)ARIMA but the psi weights are not 

small enough for the Ljung-Box tests unless we increase the lag. 

Table 4.3 ARIMA Population models. 

Region Model Parameters AIC*n Log 
likelihood 

Amboseli 
ANP 

(0,2,2)ARIMA            ma1      ma2 
      -0.7464   -0.0389 
s.e.   0.1729   0.1636 

9.26575 -163.78 

(3,2,0)ARIMA            ar1         ar2        ar3 
      -0.6516   -0.4692  -0.4178 
s.e.   0.155    0.1719   0.150 

9.285278 -163.13 

(1, 2,1)ARIMA           ar1        ma1 
       0.0474   -0.7955 
s.e.  0.2077    0.1154 

9.26584 -163.79 

ADDO 
AENP 

(0,2,2)ARIMA            ma1     ma2 
       -1.2576  0.6589 
s.e.   0.1638  0.1503 

6.38704 -86.42, 

(1, 2,1)ARIMA           ar1        ma1      ma2 
       0.1510  -1.3504   0.7203 
s.e.  0.3081   0.2468   0.1942 

6.449427 -86.29 

(2, 2,2)ARIMA
 

          ar1      ar2      ma1     ma2 

      -0.278  -0.803  -0.892   1.00 

s.e.  0.134   0.129  0.192   0.3698 

6.178897 -81.5 
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Model diagnosis showed that the residuals are random with mean zero. The ACF of the 

standardized residuals shows no apparent departure from the model assumptions, and the Ljung-

Box-Pierce Q  statistic is never significant at the lags shown for both models. Figure 4.5a &b 

shows the diagnostics for these models, leading to the conclusion that the models are adequate. ).        

 

Figure 4.5 ARIMA(0,2,2) models diagnosis for ANP and AENP fits. Diagnosis of the selected models using 
standardized residuals, ACF of residuals and Ljung-Box-Pierce Q -statistic. The result shows that both models are 
adequate for the respective data. 
 

Both the models are fairly acceptable since the residual and probability values of the Ljung-

Box-Pierce Q  statistics are not significant for the given lags. After diagnosis we proceed to 

conduct population forecasting assuming the models are a sufficient representation of the 

population series. 

 

Figure 4.6 ARIMA(0,2,2) forecasts with 90,  95 and 99% confidence interval.  ARIMA models for ANP (figure a) 
and AENP (figure b) with respective forecasts and 95% forecast precision. Forecast show increasing prediction error as 
the forecast horizon increases.  
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For ( , , )ARIMA p d q models the accuracy of future prediction depends on the memory of the 

model. The higher the m steps-ahead forecast, the less accurate is the prediction (see Figure 4.6).  

Table 4.5 shows the forecasts with the respective forecast’s standard error. 

In Table 4.4 below, (0, 2,2)ARIMA  forecasts and their corresponding standard errors are 

given for selected years. Values without standard error are actual observed data values. The 

(0, 2,2)ARIMA  forecasts shows a much less doubling time for AENP of approximately 15-17 years 

compare to the ANP population 0f 22-25 years. This is as expected from other vital parameters as 

we will see later in chapter five. The AENP elephant population have shown relatively faster 

recovery than ANP population in Eastern Africa. 

We note the growth rate, tr , series for AENP and ANP have intercept 0.055 ( 0.005 ) and 

0.027 ( 0.0092 ) respectively. Fitting autoregressive ( ( )AR p ) models on the difference in growth 

rate, 1t t ty r r   , for the AENP and ANP give the following (Table 4.4) ( )AR p parameter estimates 

with mean of zero.  

Table 4.4 ARIMA Forecasts for population growth rate. 

Model AENP Parameters  ANP Parameters 

 1  2  3  Log L 1  2  3  Log L 

(1)AR
 

-0.55  

s.e. 0.18 

  50.86, -0.44  

s.e. 0.15   

  54.33 

(2)AR
 

-0.75  

s.e.  0.17 

-0.59 

s.e. 0.18 

 55.07 -0.53  

s.e. 0.17    

-0.19 

s.e. 0.17  

  54.95 

(3)AR
 

-0.96  

s.e.  0.18 

-0.89 

s.e. 0.21 

-0.44 

s.e. 0.20 

57.18 -0.59  

s.e. 0.16   

-0.37 

s.e. 0.18  

-0.32  

s.e. 0.16   

56.89 

 
Using the Ljung-Box tests, we select the (2,1,0)ARIMA  to model the rate of growth. As shown in 

the figure below, the confidence limits of the predicted growth rate grow wider as we move to the 

future. The plot shows the 90, 95 and 99 percent confidence limits for the predicted values (Figure 

4.7).    
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Figure 4.7 ARIMA forecasts for population growth rate. Forecasts for population growth rate with their respective 

90, 95 and 99 percent confidence intervals.  

Table 4.5 ARIMA Population Forecasts. 

Year ANP 
Amboseli 

AENP 
Addo 

 Population Standard Error Population Standard Error 
2002 1175  377  
2004 1281  412    6 
2006 1379  455    11 
2008 1451  497   19 
2012  1628  81 583   43 
2016 1806  155 669   73 
2020 1983  239 755  108 
2024 2160  334 841  148 
2028 2337  438 927  191 
2032 2514  551 1012  238 
2036 2691  672 1098  289 

4.2.4 Predictions using bootstrap 

4.2.4.1 AENP and ANP forecasts compared 

Bootstrapping is important in estimation of parameter and conducting statistical inference on 

these parameters. If we do not have enough data to perform statistical inference, bootstrapping is an 

option that helps us to draw more samples from the available sample and thus enhancing statistical 

procedures of parameter estimation. After simulating multiple trajectories of population abundance 

we were able to determine the empirical distribution of the predictions.  

Using historical data we calculate 1( )t t tR N N N   for consecutive years and assume that 

the conditions in the selected park remain relatively similar. Assuming that these 'R s  are 

representative of in the future, and that each is equally likely to occur, we resample the observed 

values with replacement for each year of the simulation. Bootstrapping results are illustrated in 

Figure 4.7a and 4.7b, for AENP and ANP respectively.  
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Figure 4.8 Bootstrapping population projections. Population projection plotted on the log scale. Bootstrapping on the 

rate of growth R shows that AENP population (figure a) shows higher growth rate with less variability compared to the 

ANP (figure b).   

 
We need to replicate this process a very large number of times (Figure 4.8), and examine the 

distribution of outcomes, including moments of the distribution such as the mean, median, and 

confidence interval of eventual outcomes. Plotting on the log scale as in Figure 4.8, helps reveals 

that the relative population change is independent of population size. 

 

Figure 4.9 Bootstrapping projections distribution. The empirical distribution of the population forecast of year 2030 
for AENP (figure a) and ANP (figure b). The population size will grow and there is a zero chance of population 
extinction if the conditions in the parks remain the same. 
 

Both the histogram in Figure (4.9a) and (4.9b) and the summary statistics of the empirical 

distribution showed a skewed distribution with mean 1530 and 2592 for AENP and ANP 

respectively. There is however a zero chance of extinction for both populations.  Table 4.6 gives the 

results for projected populations and summary statistics that help us quantify the level of 

uncertainty of the projections. The assumption in these projections is no animals are removed or 

added to the population unless through natural birth or mortality. 

 



99 

 

Table 4.6 Empirical distribution of bootstrapping projections 
Amboseli ANP  ADDO AENP 

Year Min 
1Q  Med mean 

3Q  Max  Year Min 
1Q  Med mean 

3Q  Max 

2008 1451 1451 1451 1451 1451 1451  2008 436 495 405 506 526 617 

2010 1312 1510 1560 1563 1620 1797  2010 458 536 561 564 589 713 

2015 1375 1763 1874 1883 3364 2453  2015 572 687 729 734 771 996 

2020 1466 2058 2256 2268 2456 3364  2020 684 879 947 956 1028 1341 

2025 1569 2432 2694 2723 2985 5001  2025 843 1134 1237 1249 1345 1825 

2030 1869 2885 3216 3280 3635 6283  2030 1120 1462 1610 1628 1772 2470 

2035 2008 3400 3865 3943 4395 8849  2035 1399 1874 2094 2114 2316 3183 

2040 2192 4044 4630 4755 5377 12160  2040 1639 2400 2700 2752 3044 4374 

 

The utility of forecasted values depends on their accuracy or precision error for time series 

forecasts. The Table (4.7) below shows a comparison of the projected future values for both the 

ANP and AENP for different models.  

Time series forecast are only useful for short forecast horizon. Values projected using a 

lineal model (straight line fit) do not give any measure of uncertainty as opposed to mean values 

from bootstrapping that come with a measure of uncertainty.        

Table 4.7 Population projections comparison table 
Amboseli ANP  Addo AENP 

Year 
Linear 

Model 

ARIMA 

Model  

Mean of 

Bootstraps 

 
Year 

Linear 

Model 

ARIMA 

Model  

Boot- 

strapping 

2008 1451 1451 1451  2008 489 497   506 

2012 1657  1628   1688  2012 610 583   627 

2016 1915 1806   1955  2016 760 669   773 

2020 2214 1983   2268  2020 947 755   956 

2024 2559 2160   2627  2024 1180 841   1184 

2028 2958 2337   3042  2028 1470 927   1465 

2032 3419 2514   3224  2032 1832 1012   1807 

 

Using the Table 4.7 above, the linear model gives a population doubling time of about 18 

years and 12 years for ANP and AENP respectively. These doubling time are almost equal for the 

bootstrapping method.  The population forecasts obtained from ARIMA models are only useful 

when the forecasting time horizon is small and become very unreliable as the forecasting time 

horizon increases, due to the increasing standard error. 
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4.2.4.2 Evaluating culling effect at KNP using bootstraps   

We calculate observed values of the finite growth rate, R , and perform multiple bootstraps 

to generate trajectories of population forecasts. This is used to compare population projections for 

values of R  calculated with and without culling period. Using KNP data for the period when there 

was culling and periods with minimal or no culling we obtain the following plot.  

 
Figure 4.10 50-years population predictions from 2000. Predictions are performed with R  re-sampled from the 
periods 1967-99 (figure a) when there was culling and 1985-99 (figure b) when there was minimal culling. Values are 
plotted on the log scale.  
  

For the projections in figure 4.10 (b), the minimum=9404, 1st quartile 1 21306Q  , 

median=26040, mean=27259, 3rd quartile 3 32110Q  , and maximum=78186. Giving an empirical 

confidence of (2.75%, 97.5%) as (14194.49, 45824.95). We might observe Elephant counts 

anywhere from 12,754 to 45824, where 12,754 and 45824 are equally likely. The forecast gives 

correct predictions for 2002 to 2006, which by counts done were 10,459 and 12,427. 

 
Figure 4.11 Population predictions distribution for R selected from 1985-99: Empirical distribution of KNP 
elephant population projections with minimal or no culling. 
 

The first histogram show a skewed distribution (Figure 4.11a) which when plotted on the 

log scale is bell shaped (Figure 4.11b). This is an indication that the predictions have a lognormal 
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distribution. There is no chance of extinction for that period. If we repeat the same simulations 

assuming some culling is done occasionally we obtain Figure 4.12. 

Similarly for Figure 4.10 (a), the following summaries are obtained: min=3628, 1st quartile 

1 11069Q  , median=15410, mean=17280, 3rd quartile 3 21716Q  and   maximum=68156. The 

0.0275th and 0.975th quintiles are 6138 and 38793. 

 

Figure 4.12 Population predictions distribution for R selected from 1967-99: Empirical distribution of KNP 
elephant population projections with random culling. 
  
Comparing Figures 4.11 and 4.12 shows that we have lower population median and mean while 

there is random removal. We conclude that random removal will in general reduce population 

growth although it may not lead to extinction if appropriate strategy is applied. The forecasts give 

correct predictions for 2002 to 2006, which by counts done were 10,459 and 12,427. Figure 4.13 

demonstrate a summary of methods performed above for the KNP.  

Using bootstrap on observed finite rate of growth R , the confidence limit for R (between 

1985 and 1999) are, (0.994, 1.048), and the confidence limit for R  (between 1967 and 1999) are, 

(0.986, 1.036). This confirms the results observed that the populations are expected be higher when 

there if reduced culling (Figure 4.13). Simulations using the first R  interval (0.994, 1.048), gave 

(6737, 94756), showing that population will not grow to extinction.   
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Figure 4.13 Predictions comparison KNP. Population projections with random culling gives lower mean and increase 
variability (figure a) compared to population projections with minimal or no culling (figure b) which shows higher 
means and reduced variability.  
 

Simulation using the second R  interval, (0.986, 1.036), gave (4367, 54821), showing that 

population will probably not grow to extinction but the figures are much lower. It important to note 

that these simulations are based on assumption that, population changes and management policy 

remain as for the periods between 1967 and 1999. 

Using bootstraps of the annual growth rate we have forecasted population growth for two 

different populations. Value predicted for the KNP agree with observed values for data available as 

shown in Figure 4.13. It is evident that culling increase the chance of extinction as the time line 

increases. But population management is necessary for the populations discussed to reduce the high 

growth predicted and observer during the years there was no culling. 

4.3 Bayesian inference on growth rate 

4.3.1 Assumption 

We define the basic growth rate  1ln t tr N N  which is also referred to as the annual 

instantaneous per capita growth rate. The finite rate of growth is given by 1t tN N   where tN the 

population size at time t . The relationship between r  and population abundance, density or 

recourses is used to determine population vitality.  As already mention in the introduction we seek 

to study and model r  for AENP and KNP and use the derived Bayesian distributions to compare 

the two populations. 

The observed values of r  for KNP excluding one outlier and those for AENP do not show 

departure from the normal distribution (Hones, 1999) as in Figure 4.14. Figure 4.14 shows normal 

theoretical qq -plots for both KNP and AENP comparing standardized values of r  with theoretical 

normal quantiles. Steven (2009) mentions the need for inference on 1log ln lnt tN N   and uses 
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the t  distribution due to its pervasive use in statistics and life. While deriving a Bayesian 

distribution of the rate of growth r  in section below, we assumed that the log the transformed data 

are normally distributed.   

 
Figure 4.14 Normal theoretical qq-plots for finite population growth rates: testing for the assumption of normality 
of the observed growth rate using qq-plots. Although the observations are few, they do not depart significantly from the 
normal assumption. 
 

Using a box plot to compare the KNP and AENP elephant’s exponential growth rates 

(Figure 4.15), we realize that AENP has relatively higher average exponential growth rate 

(Minimum=0.0, 1st quartile 1 0.02Q  , Median=0.053, Mean=0.0525, 3rd quartile 3 0.068Q  , and 

Maximum=0.115) compared to KNP (Minimum= -0.207, 1st quartile 1 0.027Q   , Median=0.026, 

Mean=0.016, 3rd quartile 3 0.062Q  . Max=0.157). KNP exponential growth rate has higher spread 

with a standard deviation of  0.073, compared to AENP with standard deviation equal to 0.027. It is 

important to note that the low values of r  and higher spread observed for KNP data was as a result 

of culling in the years before 1994 when culling took place. The box plots do not show major 

departure from normality. There is only one outlier in the case of KNP data which correspond to 

year 1984 when culling was still being done. 

 
Figure 4.15 Comparison of AENP and KNP growth rates. Box plot of AENP and KNP growth rates show lower 
mean and wider spread for KNP data. 
  

 In classical statistics parameters are assumed to be constant to be estimated, but in a Bayesian 

approach parameters are regarded as having distributions which provide information about the 

parameters. The aim of a Bayesian analysis is to estimate the joint posterior distribution of all of the 
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model parameters. Bayesian methods are data analysis tools that are derived from the principles of 

Bayesian inference. We use three steps common in Bayesian methodology and given in Hoff (2009) 

and Albert (2009). For a parameter   representing an unknown characteristic of the population with 

entire space , and observed sample data y belonging to the data spaceY .  Determine the individual 

yearly r ’s observed, 1 2, , , nr r r  form a large sample of independent random variables. By the 

central limit theorem they are assumed to be normally distributed with mean r and known standard 

deviation . This assumption can be justified by the fact that the sample size is large, hence the 

central limit theorem applies to the transformed data.  

4.3.2 Prior 

 For  , the prior distribution ( )p  describes our belief that   represents the true population 

characteristics. This is the prior function ( )p r giving the prior knowledge or guess by an expert on 

the rate of growth. Before collecting data, we assign weights on our belief that the population can 

increase or decrease with the following percentages: 

Percentage -25% -20% -15% -10% -5% 0% 5% 10% 15% 20% 25% 
Weight 1 2 3 5 7 9 7 5 3 2 1 

 

If we have no prior knowledge we use a non-informative prior or a diffuse prior that assigns equal 

weights to the possible population percentage changes.  

4.3.3 Likelihood 

For each  and y Y , our sampling model ( | )p y  describes the likelihood of observing y  

given  to be true. Once we obtain the data y , the last step is to update our beliefs about . We start 

by assuming normality and known constant variance, 2 , which does not vary over time in which 

case the likelihood is given by,  

 2
2( ) exp ( )

2
nL r r r


    
 

, (4.5) 

where n  is the sample size. If the observe annual rate of population growths are 1 2, , , nr r r , act like 

new data on r .  

4.3.4 Posterior 

 For each numerical value of  , our posterior distribution ( | )p y  describes our belief that   is 

the true value, having observed dataset y . The posterior distribution is obtained via 

 ( | ) ( )( | )
( | ) ( )

p y pp y
p y p d

 


  



   

. (4.6) 
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The observed data y  increases the information we have on . Since ( | ) ( )p y p d  
     does not 

depend on the posterior distribution ( | )p data  depends on the product of the likelihood 

( ) ( | )L p y   and the prior, ( )p  , probability distribution: 

 ( | ) ( ) ( )p data p L   . (4.7) 

The posterior density for r , by Bayes’ rule, is obtained, up to a proportionality constant, by 

multiplying the prior density by the likelihood: 

    | ( )p r data p r L r . 

Later in our analysis we drop the assumption of known variance in which case the joint 

posterior of the mean and variance  2,r   is given by equation (4.8) assuming a standard non 

informative prior 2 2( , ) 1p r    (Albert, 2009) : 

 2 2
2 2 1 2

1 1( , | ) exp ( ( ) )
( ) 2np r data S n r r
 

     
 

, (4.8) 

where 2
1
( )n

ii
S r r


  .  

We use R  package, LearnBayes ( R  Development Core Team, 2011), to plot contours and 

simulate values from the joint posterior. Bayesian methods allow for the relaxing of the normality 

assumption. If we compute the posterior probabilities of r for the case of AENP, the following 

weighted posterior is acquired;  

r  -.11 -.05 0 .05 .09 .14 .18 

Probability 0 0 0.013 0.95 0.033 0 0 

 

It is evident that after data observation we have more information on r  and only values in the 

interval 0 to 10% percent change have a high chance of being observed with probability of 0.99. 

The posterior probabilities of r for the case of AENP for the diffuse posterior gives: 

r  -.11 -.05 0 .05 .09 .14 .18 

Probability 0 0 0.009 0.94 0.046 0 0 

No major variation in result is realised for either assuming the weighted or diffuse prior 

probability. The posterior probabilities presented in figure 4.19 represent the discrete posterior by 

presuming the weighted or diffuse prior distributions. Comparing Figure 4.19a and 4.19c, it shows 

that the discrete posterior for r  will be between 0 and 0.05 and between 0.05 and 0.1 with high 

probability for KNP and AENP respectively. It is evident the on average r  will be high for AENP.  
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Treating r  as a continuous variable, we obtained a posterior distributions illustrated in 

Figure 4.16 a) and c) for AENP and KNP respectively. Sampling from these posterior distributions 

we obtained values illustrated using histograms in Figure 4.16 b) and d) for each case. 

 
Figure 4.16 Continuous posterior densities and simulated r values. The figure give a continuous approach in 
determining the distribution of the growth rate with values simulated from the corresponding posterior densities.  
 

Simulating a sample of 1000 values of r  from the posterior density we acquire the empirical 

distribution for r  (see figure 4.16 b, c). For 1000 simulated values from each posterior density the 

minimum= -0.073, 1st quartile 1 0.005Q   , Median=0.014, Mean=0.013, 3rd quartile 3 0.031Q  , 

and maximum=0.094 for KNP and Min=0.004, 1st quartile 1 0.042Q  , Median=0.052, 

Mean=0.052, 3rd quartile  3 0.062Q   and maximum=0.099 for AENP (figure 4.16). Figure 4.16 a 

and b are the posterior distribution of r  for AENP and KNP respectively, where as 4.16 b and c are 

the histogram of 1000 simulated values from respective posterior distributions.  These values 

closely agree with the boxplot and summary values in figure 4.15 above. Thus the posterior 

distribution of r  agrees with observed data. This approaches a normal curve as sample size 

increases. This procedure can also be used to perform predictions and determine the predicted 

distribution. 

We note that practically the simulated values are distributed normally and are concentrated 

on the values r  between 0 and 0.10. The modal class interval of r is 0.05 to 0.06 is in the middle of 

this empirical distribution of the simulated values for AENP. There is no reason to doubt our 

Bayesian model since it agrees well with the observed values. To compare the two populations we 

plot the continuous posterior distributions of r , for the AENP and KNP population assuming a 

continuous weighted prior. In this case, as in Figure 4.17  below, the posterior distribution of r is 

higher for AENP taking values larger than 0 and 0.1  compared to lower values of -0.05 and 0.09, 

for KNP as in figure 4.17.  
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Figure 4.17 Comparison of the Bayesian distributions of r . Figure 4.21 shows comparison of the distribution of the 
net growth rate for AENP with KNP. 
 

It is evident that posterior r  distribution has a higher mean for AENP than for KNP as in 

Figure 4.17 above. This method of comparing population is desirable, since we are comparing 

distribution of rate of growth instead of realized values. Culling in these calculations is assumed to 

increase mortality and thus reduce population growth.     

When we drop the known variance assumption, the joint posterior distribution of the mean 

and variance for growth rate is as in Figure 4.18. AENP shows higher mean and lower dispersion 

(Figure 4.18b) compared to KNP which has lower mean and higher dispersion (Figure 4.18a). 

 
Figure 4.18 Joint posterior distributions for mean and variance. Figure 4.22 shows comparison of the joint 
distribution of the net growth rate variance and mean for KNP with AENP. The contour lines are drawn at 10%, 1%, 
and 0.1% of the maximum value of the posterior. 
 

Figure 4.18 gives the contour for joint posterior distribution for mean and variance of r  

plotted together with 500 simulated points from the joint posterior. The contour lines are drawn at 

10%, 1%, and 0.1% of the maximum value of the posterior. Putting the contours and respective 

points in a single graphic gives a clear and better comparison of the two populations. AENP shows 

less variance compared to KNP but higher mean value as seen in Figure 4.18. 

This analysis shows the effect of culling on elephant population at KNP. Although the KNP 

elephant population continues to grow exponentially the effect of culling is evident in comparison 

with AENP population which shows less variation in values of crude population increase, r .  These 
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results hold if we keep in mind the assumption that the log transformed data are normally 

distributed. 

4.4 Concluding remarks 

As stated earlier in this chapter, one of the challenges that arise in modeling time series 

population abundance is the quality of population data available. Total elephant population count 

data should be accompanied by the range size of the area where the survey or total count was 

conducted. Population density or its trend, analyzed together with other ecological factors such as 

resource availability should be used to inform management decisions. Various approaches may be 

used in the determination of population density among them the crude density or the ecological 

density (Gaston et al., 1999). These would better replacement of total population when the range 

size has varied over time. But we should be cautious, since according to Gaston et al. (1999) 

estimates of density are not always independent of the area over which populations are censured. 

The two populations considered, the Amboseli National Park (ANP) and the Addo Elephant 

National Park (AENP) were selected as examples of an open and closed population. The AENP 

population was about 11 individuals in 1931 and had remained closed to migrants. The range size 

for the AENP has however, varied due to increase in park size. The model fitted showed a 

significant exponential growth rate.   The ANP elephant population which is an open population 

was about 480 animals in 1978, the population is much higher today. The model fitted also showed 

a significant exponential growth. 

Another challenge that arises is where the total population counts are not done on regular 

and equal intervals of time.  When the period interval is greater than one year only estimates annual 

of population growth can be found (Eberhardt and Simmons, 1992). More advance autoregressive 

models for irregular time series can be applied to such data. The Bayesian distribution of the growth 

rate approach discussed in section 4.3 offered a way of studying population rate of growth in cases 

where the population counts have varying range size or irregular time intervals. The Bayesian 

distribution also offers a method of evaluating the distribution of the growth rate over time and it is 

possible to sample from the posterior distribution and predictive distribution.   

Changes in total elephant population numbers are the basis of many management plans and 

policies, but the effectiveness of management ought to be weighed response on impact of affected 

species, ecological processes, elephant range utilisation, and elephant numbers. It is thus important 

to increase understanding on social, spatial, and demographic profiles of Africa’s elephant 

populations since they affect the distribution and numbers of elephant population. 
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Equation Chapter 5 Section 5 

CHAPTER 5:  AGE STRUCTURED MODELING OF ELEPHANTS 

POPULATIONS  

5.1 Introduction 

Age-structured models for biological species were traditionally ignored with the assumption that 

the populations can be treated as homogeneous with respect to age. But many vital population 

dynamics parameters are age dependent.  An age-structured population at a given time reveals a set 

of individuals who were born over a range of past times, and whose fertility and probability of 

mortality or survival depend on their age.  

Demographic parameters of the elephant population are age dependent. The demographic 

parameters include, age at reproductive maturity and menopause, calving interval, sex ratio at birth, 

and age-specific probabilities of conception and survival. We study the importance of these 

parameters by conducting what-if-analysis. It was establish that the optimal strategy of managing 

structured elephant populations through sensitivity and elasticity analysis of the transition matrices. 

In this chapter we demonstrate the importance of demographic structure in models used to assess 

population dynamics of the elephant species. Different structured population models are derived 

and analysis results given. Main areas considered include  

i. The relationship between different approaches to structured population models: matrix 

population models, integro-difference equations, delay-differential equations, and partial 

differential equation, 

ii. Derivation and application of deterministic and stochastic structured elephant population 

models to evaluate how population trends are affected by vital rates. 

iii. Modular approach to modelling sub-process such as survival, birth, harvesting and aging 

for a structured population.    

There are different types of structured population models, but they can be represented or 

converted from one form to the other.  In the next section we show the formulation of some of the 

structured population models and discuss their relationship. Structured population models are 

classified by whether the states are discrete or continuous or whether they project the population in 

discrete or continuous time. 
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 Discrete state Continuous state 

Discrete-time Matrix population 

models 

Integro-difference  

equation 

Continuous-time Delay differential 

equation 

Partial differential 

equation 

 
Figure 5.1 Types of structured population models. The different types of structured population models are classified 
by whether the states are discrete or continuous and whether they project the population in discrete or continuous time. 

5.2 Structured population models 

5.2.1 The Lotka’s renewal equation   

The continuous version of the age classified matrix model in given by the McKendrick Foerster 

equation; 

 

0

( , ) ( , ) ( ) ( , ),

(0, ) ( ) ( , ) .

n x t n x t x n x t
t x

n t b x n x t dx

 


 


  

 
 (5.1) 

The boundary condition (0, )n t given by the second equation corresponds to the first row of the 

Leslies model, gives the births. Note that for the first equation; 

 ( , ) ( , ) n nn x x t t n x t t x
t x

 
 

         , 

Since x t h     for the Leslies model then, 

 ( , ) ( , )n n n x h t h n x t
x t h

 
 

  
  , 

and first equation  in equation  (5.1) becomes a Leslie matrix with survival for a time interval h  

given by 1 ( )h x , 

  ( , ) 1 ( ) ( , )n x h t h h x n x t    . (5.2) 

If we denote the number of births at time t by ( )B t , 

 
0

( ) ( ) ( , ) .B t b x n x t dx


   

Then ( , ) ( ) ( )n x t B t x l x  where ( )l x is the survivor function. If we substitute in ( )B t , we have the 

renewal equation, 

 
0

( ) ( ) ( ) ( )B t b t x l x b x dx


  . (5.3) 

Substituting an exponential solution ( ) exp( )B t rt  of the linear function ( )B t , we have, 
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( )

0

0

( ) ( ) ,

1 ( ) ( ) .

rt r t x

rx

e e l x m x dx

e l x m x dx














 (5.4) 

The Lotka’s renewal equation in (5.4) is used to calculate intrinsic rate of increase. Given the 

functions ( )l x and ( )m x we tried different values in order to find r , where ( )m x  is the rate of 

reproduction at age x . 

5.2.2 Delay differential equation 

By the principle of causality, the future state of the system is assumed to be independent of 

the past and is determined solely by the present. This was our assumption in the deterministic and 

stochastic matrix models but this is an approximation to the true situation. A more realistic model 

must include some of the past history of the system. For example, an elephant calf, will take around 

ten years before reaching reproductive maturity inducing a delay in possible models. 

Where the age of an animal is not easy to ascertain, we would possibly use size or stage 

structured models. A delay differential equation model classifies individuals into discrete stages and 

describes their dynamics in continuous time. A model with juveniles ( JN ) and Adults ( AN ) as the 

two stages has the dynamics given by equations; 

 
( ) ( ) ( ),

( ) ( ),

J
J J J

A
A A

dN R t M t D t
dt

dN R t D t
dt

  

 
 (5.5) 

where ( )JR t and ( )AR t  are the recruitment rates, while ( )JD t and ( )AD t  are the death rates of the 

juveniles and adults respectively. If the per-capita rates are given by the equations, 
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Then noting that maturing juveniles are the survivors of newborn individuals  time units 

previously equations (5.5) become, 

 
( ) ( ) exp( ) ( ),

( )exp( ) ( ).

J
A A J J J

A
A J A A

dN bN t bN t N t
dt

dN bN t N t
dt

   

   

    

   
 (5.6) 

The dynamics of such a system are well discussed in Gurney and Nisbet (1983) and Nisbet (1997) 
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To demonstrate possible application of delay differential equation models for the dynamics 

of the elephant population, we start with a two stages model. The elephant can be classified as 

either belonging to either immature juveniles ( )tx , aged between zero to around ten year, or mature 

adults ( )ty  above the age of 10. Recruitment into the juvenile stage at any time 0t   is 

proportional to the existing adult population at a rate b . We then assume that the mortality rate of 

the juveniles is proportional to the existing juvenile population with proportionality constant j . We 

assume for the adult population the mortality rate is proportional to the adult population with 

proportionality constant m  . Finally, we assume that those juvenile born at time t   that survive to 

time t exit from the juvenile population and enter the adult population.  

 

( ) ( ) ( ) ( ),

( ) ( ) ( ).
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j

j

m

dx t by t x t be y t
dt
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


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  
 (5.7) 

To capture density dependence and thus consider a more practical model, we assume for the adult 

population the mortality rate is proportional to the square of adult population with proportionality 

constant m . The model (5.7) above becomes; 

 
2
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 (5.8) 

In the case of elephant population the new born and young calves are more likely to be affected by 

density feedbacks than adult elephant, which are more resilient. A variation on model (5.8) would 

be; 

 

( ) ( ) ( ) ( ) ( ),
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 (5.9) 

We note that: 

i. For continuity of initial conditions for equation (5.8), we require 

 
0

( ) ( ) ,jx t by e d 



 



   (5.10) 

the total surviving juvenile population from the observed births on 0t   . Assuming 

that ( )y   is continuous and nonnegative on[ ,0] ; then, solutions of system (5.8) exist and 

are unique for all 0t  . 
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ii. Let (0) 0,  ( ) 0y y   , on 0    . Then the solution of (5.8) with initial condition 

(0)y and (0)x given by (5.10) is positive for all 0t  . 

iii. There are two nonnegative steady states in system (5.8),namely, 0 (0,0)E and 

*( *, *)E x y where, 

 2 1 1 1* (1 ),   * .j j j
m j mx b e e y b e               

We note that 0 (0,0)E is a saddle point in the sense that it has eigenvalues with both positive 

and negative real parts, and *E  is globally asymptotically (Gurney and Nisbet,1998 and 

Nisbet, 1997). 

A three class model can be described similarly with elephants aggregated into juveniles from 0 

to 9 years, middle-aged from 10 to 39 years and old-aged from 40 to 60 years. Juveniles have not 

yet reached reproductive maturity while the middle-aged and many of the old-aged elephants are 

fertile. Such a classification may be represented using delay differential equation. The second stage 

is chosen such that individuals in this stage have passed the juvenile stage and can thus reproduce.  

The delay differential system, which is a deterministic approach, is appropriate for large 

population, where the stochastic element has a minimal effect in the long run. Delay differential 

equation models can be applied if the time interval x and t are not equal ( x t   ). If the time 

intervals are equal and population relationship are linear, the model is equivalent to the Leslie 

(1945) matrix model. A deterministic and stochastic matrix form of the three class model for 

elephants will be considered later. The delay differential approach was not pursued further in this 

work.   

5.3 Elephants population Model Structure 

The population dynamics of the African elephant, which is a long lived species if affected 

by the age structure of the population since birth and death are age dependent. Individuals in the 

population have life histories that affect the population dynamics. Birth and death or other transition 

probabilities are also affected by other sources of variation including time varying processes, such 

as environmental conditions.   

The Leslie matrix model is a simplified discrete approach of modeling the population 

dynamics of elephant population. The time interval selected determines the form of transition 

matrix, with small time intervals (less than or equal to 1 year) requiring attention to the individual 

life history. The three age-classified elephant models derived with a main aim of simplification and 

mathematical tractability are, 
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i. The simplified three age-class model, referred to as the three age-classes elephant’s 

population matrix model. This framework caters for elephants aggregated into juveniles 

from 0 to 9 years, middle-aged from 10 to 39 years and old-aged from 40 to 60 years. For 

model simplicity, if the class of middle-aged animals is divided into three classes and the 

old-age animals are divided into two classes. The resulting model is our next model,    

ii. The six age-classes elephant population matrix model. This model was further grouped into 

either a ten or one year projection time-scale models. 

iii. The fifteen age-classes elephant population matrix model. This model was further 

categorized into either a four or one year projection time-scale models. 

5.3.1 Three Classes Elephant’s Population Matrix Model (3-CEPMM) 

These are structured models where the states are discrete and population projection is done on a 

discrete time steps.  For a three-class elephants population model in the Figure 5.2 the dynamics can 

be described using equation (5.11)  

 

 

 

 

 

 

 

 
Figure 5.2: Three classes/stage elephant population model. A three age classes or stages model for wild elephant 
population dynamics. The three classes are 1 2,  n n  and 3n  representing juvenile (ages 0-9), middle-aged (age 10-39) 

and old-aged (age 40-60). 
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. (5.11) 

This is a discrete time scale equivalence of the model in equation (5.11). This model framework is 

for used in the discussion purposes but further work is required to study the transition matrix 

parameter estimates.    
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5.3.2 Six-Classes Elephant Population Matrix Model (6-CEPMM) 

Hypothesis: The African elephant population can be modeled using deterministic or stochastic 

matrix models with six age-classes of 10-years interval.  

The Leslie matrix approach can be used to define a basic model for African Elephant population 

dynamics using 10-years age classes. Consider the life cycle graph below, 

 

 

 

 

 

 

 

 
Figure 5.3: The life cycle graph for 6-CEPMM population model framework. A six age class model for wild 
elephant population dynamics.  
 

The framework in Figure 5.3 is similar to the framework in Figure 5.2 expect that in the 6-

CEPMM the classes are more. For this model the classes are aged between 0-9, 10-19, 20-29, 30-

39, 40-49, and 50-59.  If the population projections were done at discrete time scale, less than the 

age interval, not all individuals progress to the next class.  

A 6-CEPMM model with a one year projection timeframe is,    
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 (5.12) 

If the projection timeframe is 10 years, all surviving individuals proceed from their current 

class to the next class. Then the model reduces to the standard Leslies (1945) matrix model. Each 

age group was selected to be of length 10 years and population updated using a simple Leslie matrix 

model. Ten was selected since we can assume elephant’s populations attain sexual maturity at ten 

years. So the fecundity for the first class is equal zero. We also assumed that African Elephant reach 
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menopause at the age of 60 years (Wu & Botkin, 1980; Woodd, 1999; Moss, 2001), and that the 

African Elephant do not live beyond the age of 60. The 10-year vital rates are derived from the 

annual vital rate and population parameters. The resulting model with six age classes is of the form, 
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, (5.13) 

where  1 0f  , ,i tn  is the number of animals of age i in year t, i = 1, 2,…, if  is the number of young 

produced per unit time,  per animal in class i , and i  is the annual probability of survival of an 

animal of age i . Simulations were then conducted to investigate the effects of different population 

parameters that influence population dynamics. 

5.3.3 Fifteen-Classes Elephant Population Matrix Model (15-CEPMM) 

Hypothesis: The African elephant population can be modeled using a deterministic or a stochastic 

matrix model with fifteen age classes of 4-years each.  

Another Leslie’s approach to model definition is a model for African Elephant population 

with 15 age classes, updated using a simple Leslie (1945) matrix model. Each age group was 

selected to be of length four years. Four was selected since we can assume approximate age at first 

calving is twelve years and hence the first three classes that do not reproduce. These three classes 

include infants (0-3 years), weaned calves (4-7 years) and sub-adults (8-11years). A four year 

model is also more appropriate since population inter-calving interval can be estimated using an 

average of four years. The fecundity for the first three classes is equal zero and fecundity of the last 

classes above 50 years may be reduced to fit the selected population. We also assumed that African 

Elephant do not live beyond the age of 60 years. Four year vital rates were derived from the annual 

vital rate and population parameters as is the case with 10-year model above. 

In general using a fifteen age-class model, we get a life cycle graph similar to Figure 5.3 but 

having a total of 15 classes.  The 15-CEPMM for a one year projection time frame is of the form,   
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 It is important to note that even though the animals are classified into fifteen groups of four 

years each, the progression is done in one year interval resulting in model in equation (5.14). The 

models parameters must be estimated to fit this scenario. The number of model parameters to be 

estimated increase with number of classes. If the projection is done on a 4 years time scale then all 

the animals in one stage proceed to the next. The model is of the form (5.15), 
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where ,i tn  is the number of animals of age i in year t, i = 1, 2,..., if  is the mean number of young 

produced per four-year time unit per animal, and i  is the per period probability of survival of an 

animal of age-class i. model parameters in this model were estimated to fit four year projections. 

5.3.4 Assumptions 

In the matrix population models we incorporate population parameters as follows; 

i. Maximum expected lifespan; the life span of individual elephant is selected to be 60 years 

and age at sexual menopause ranges from 50 to 60 years, 

ii. Female age at sexual maturity; female age at sexual maturity range from nine to 16 years 

or more depending on chosen population. Integer values varying from 9 to 15 year were 

used for simulation.  The fifteen classes and the six classes’ models assumed an age at 

sexual maturity of 12 years and 10 years respectively. Age specific parameters estimates 

can be adjusted for any variation in age at sexual maturity.  

iii. Calving interval of a population; Inter-calving interval or period between consecutive 

births differs from one population to another and even among individuals in a population. 
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Simulations are done for values that ranging from 3 to 7 years with an average of 4 years 

used to study variation in other parameters.  

iv.  Age specific survival probabilities; although survival probabilities do not vary much for 

adult elephants, they are higher for calves and old animals. Induced mortality rates are used 

to evaluate the mortality level required to reduce population growth rate to zero percent.    

v. A birth sex ratio of 1:1 was used for all the models and although the probability of 

conception may vary with age and other environmental parameters, deterministic models 

assume that the probability of conception is one for a period equivalent to the calving 

interval.  

We focus mainly on the density independent models where parameters are not density 

dependent. In section 5.6 below we evaluated how to incorporate random variations due to 

model parameters and demographic variability.  

5.4 Models parameter estimates  

To choose a model with demographic structure, we first extract salient features from the 

observed data and then choose a model that possesses such features. After estimating parameters we 

seek to improvements in the model until it fits the data reasonably well. 

Demographic analysis in diverse African elephant populations reveal marked differences 

between elephant in different age classes. Whitehouse & Kerley (2002), for example, reveals 

difference in mortality for AENP population as in Table 5.1 below. 

Table 5.1Demographic structure of AENP population 

 Mortality rate in % 
Age Class Male Female 
0 6.2 6.2 
1-9 0.9 0.1 
10-19 2.0 0.4 
20-29 3.1 0.3 
30-44 5.1 1.2 
44-59 100 1.6 
60-63  100 

Natural mortality of free-ranging elephant populations is age-dependent, with the youngest 

being most susceptible to climatic conditions (Moss, 2001). In addition to drought and senescence 

other, less common, causes of elephant mortality include disease, injury, and predation by lions and 

humans.  Published natural mortality or survival parameters given in Table 5.2, for different 

elephant populations were used in our models (Whitehouse & Hall-Martin, 2005, 2009).  
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Table 5.2 Survival parameters for elephant populations 

Age (years) 

Population 0 1–9 10–19 20–29 30–44 45–60 60+ 
Addo 0.94 0.99 0.99 0.99 0.99 0.98 0 
Kruger 0.97 0.97 0.97 0.97 0.97 0.97 – 
Tembe 0.90 0.99 0.99 0.99 0.99 0.99 – 
Amboseli 0.94 0.99 0.98 0.99 0.97 0.95 – 
Buganga 0.97 0.97 0.97 0.97 0.97 0.97 – 
Etosha 0.84 0.87 0.90 0.93 0.92 0.88 0.84 
Kasungu 0.94 0.96 0.96 0.94 0.91 0.86 0.67 
Luangwa 0.59 0.92 0.89 0.87 0.86 0.50 0 
Maputo 0.82 0.94 0.95 0.97 0.97 0.97 – 
Mkomazi 0.95 0.95 0.95 0.95 0.95 0.95 – 
Murchison 0.97 0.97 0.97 0.97 0.97 0.97 – 
Sambura 0.98 0.99 0.98 0.98 0.97 0.97 – 
Tsavo 0.95 0.95 0.95 0.95 0.95 0.95 – 

 
We also used published age specific fecundity for selected populations in Africa (Whitehouse 

& Hall-Martin, 2005) as in Table 5.3. 

Table 5.3 Indices of age-specific fecundity for selected elephant populations 

Age (yrs) 
 

Kruger 
Pregnant or 
lactating 

Amboseli 
Giving birth 
 

Etosha 
Pregnant or 
Lactating 
 

Luangwa 
Pregnant 
 

Murchison 
Lactating 
 

0–4 0 0 0 0 0 
5–9 5.5 0 3.6 0 2.0 
10–14 52.0 14.0 32.2 5.2 3.0 
15–19 91.0 21.0 76.7 56.6 20.0 
20–24 80.5 23.0 94.1 50.6 50.0 
25–29 93.0 23.0 98.8 50.6 65.0 
30–34 86.5 23.0 89.6 50.0 66.0 
35–39 93.7 23.0 93.3 50.0 76.0 
40–44 92.9 20.0 100.0 42.1 60.0 
45–49 94.7 18. 0 93.3 42.1 57.0 
50–54 89.3 14.0 86.7 33.3 37.0 
55–59 85.7 10.0 56.7 33.3 0 
60–64 – 0 – – – 

Various measures serve as indices of age-specific reproductive output (Table 5.2), which 

usually is expressed as fecundity. Fecundity is defined as yearly production of female calves per 

cow of a given age group. Table 5.2 gives the age-specific reproductive rates (given as percentages) 

as indices of age-specific fecundity for selected elephant populations across southern Africa 

(Whitehouse & Hall-Martin, 2009).  
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Other parameters of importance for elephant population include age at first calving (Table 

5.4), calving intervals, and age at last calving. The elephant's gestation period is 22 months, the 

longest of any land animal. 

Table 5.4 Elephant age at first calving 

Location Mean 95%CI  Location Mean 95%CI 
 Addo 13.3 12.1-15.4  Kasungu 12.8  
Kruger 12.25   Kidepo 11.5  
Mabula 12.3 11.2-13.4  Luangwa 15.8  
Phinda 10.3 9.2-11.4  Maputo 9.8 9.3-10.3 
Pilanesberg 9.2 8.8-9.6  Mkomanzi 12.2 11.0-13.4 
Pongola 8.4 7.3-9.5  Murchison N 16.8 15.5-17.1 
Tembe 11.5 10.4-12.5  Muchison S 17.8 16.9-18.6 
Amboseli 13.7 12.5-14.6  Tsavo 11.7 18.8-12.6 
Augogo 22.4 19.9-24.9  Zambezi 15.5  
Etosha 13.53 11.5-16.2     

 
 

A box plot for age at first calving for different African elephant population produced a median 

of 12.3 years (figure 5.4). Cows in South Africa tend to have their first calves at an average age of 

11.3 years. Those elsewhere have their first calves at an age of 14.1 years. Average age at first 

calving of between 10 to 16 years was studied in our simulations. 

 

Figure 5.4 African elephant age at first calving.  A box-plot of age at first calving for selected locations in Africa. 
 

Matrix population models can thus be used to examine the effects of age-specific fecundity, 

age-specific mortality, age at first calving and inter-calving intervals, together with other 

determinants of population growth.  We evaluated the effect of these parameters through by 

simulating different scenarios after deriving appropriate models for different populations. Emphasis 

being on how much we need to change selected model parameter in order to attain a zero population 

growth rate (i.e. one dominant eigenvalue, 1 1  ).   
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5.5 Models simulations results 

5.5.1 Six-Classes (6-CEMPP) Structured Population Model 

We consider the results attained using the 10-years class model for both the one year 

projection (5.16) and ten years projection timeframe (5.17).  
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. (5.17) 

 It is important to note that even though the animals were classified into six groups of ten 

years each, the progression in done per one year (equation 5.16). All animals do not progress from 

one class to the next at the end of every. The models parameters must be estimated to fit this 

scenario. 

Result 5.1: The African elephant population can be modeled using deterministic or stochastic 

matrix models with six classes each of 10-year class interval.  

The elephant population life table below (Table 5.5), was developed using data and estimates of 

vital rates for Amboseli National park, elephant population in Kenya. The following assumptions 

and parameter estimates were used. 

i. Elephant population attain a maximum age limit of 60 years, 

ii. Average calving interval of 4.6 years (Moss 2001), 

iii. Average age at sexual maturity of 13.7 14 years, 

iv. The number xb is the number of female of-spring produced by an individual in age class x  

while in that age class. The ratio of male to female to 

v. Survival rates adapted are as in Table 5.2 above. 
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Table 5.5 Life table for ANP elephant populations 

Age in years xP  xl  xb  
0 0.94 0.94 

0 1 0.99 0.931 
      
9 0.99 0.859 

10 0.98 0.842 
0.58       

19 0.98 0.701 
20 0.99 0.695 

1.09       
29 0.99 0.635 
30 0.97 0.616 

1.09       
39 0.97 0.468 

40-  0.97 0.454 

1.09 45 0.95 0.382 
      

49 0.95 0.311 
50 0.95 0.295 

1.09       
59 0.95 0.186 
60 0 0 0 

 

A matrix model for African Elephant population with 10-years age classes and updated 

using a simple Leslie matrix model is given by equation (5.18). Each of the vital parameters was 

estimated for the interval of ten years each. So the fecundity for the first class is equal zero. We also 

assume that African Elephant reach menopause at the age of 60 years (Wu & Botkin, 1980; Woodd, 

1999; Moss, 2001), and that the African Elephant do not live beyond the age of 60. Five year 

survival rates were derived from the annual survival rate as in Tables 5.4 above.  
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, (5.18) 

where 6 0  , 1 0f  , ,i tn  is the number of animals of age i in year t, i = 1, 2,... 2,tn is the number of 

animals of age ≥2 in year t, if  is the number of young produced per unit time per animal in class i, 

and i  is the annual probability of survival of an animal of age i.  
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We simulate population growth for African elephant for ten-year age classes for the three 

different scenarios. For the ten-years class model the maximum expected lifespan is 60 years, 

female age at sexual maturity is assumed to be ten years, average calving interval for the population 

is take to vary for different ecosystems, age at menopause is estimated to be 60 years, sex ratio of 

newborns is take to be 1:1, and age-specific probabilities of survival are selected from documented 

estimates. The numbers of females of different ages were transitioned through a matrix in which the 

number of individuals of each age was recorded. 
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 (5.19) 
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 (5.20) 

 

1, 1, 1

2, 2, 1

3, 3, 1

4, 4, 1

5, 5, 1

6, 6, 1

0 .64 .91 .91 .91 .91
0.59 0 0 0 0 0

0 0.60 0 0 0 0
.

0 0 0.60 0 0 0
0 0 0 0.60 0 0
0 0 0 0 0.60 0

t t

t t

t t

t t

t t

t t

n n
n n
n n
n n
n n
n n













    
    
    
    

    
    
    
            

 (5.21) 

Equations 5.19, 5.20, and 5.21 were selected to fit the AENP, ANP and Tsavo National park (TNP) 

scenarios respectively. The dominant eigenvalue of each of the transition matrix are 

1.50,  1.31A L   and 1.02T   respectively (see Figure 5.5). These show how each population 

will increase after every 10-year time interval. The populations were assumed to be made up of an 

initial female population of 6, 41 and 50 individuals at around 1930 distributed in the six classes. 

The time selected was to allow the population to attain a stable age structure by the time we 

investigate effect of increased mortality and calving intervals. To a lesser degree the populations 

were also selected so as the observed female population in later years is close enough to the model 

projection.  
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Figure 5.5 Effect of inter-calving interval. Figure 5.5a and b illustrates two different scenarios each corresponding to 
the parameters selected for AENP and ANP with different calving interval. 
 
For matrix model in equation (5.27) to (5.29), the stable stage distributions are given by; 
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 (5.22)  

The corresponding reproductive values are, 

 
(1.0,  1.75,  1.82, 1.58, 1.23,0.65)',
(1.0,  1.52,  1.63, 1.40, 1.08,0.51)',
(1.0, 1.73,  1.89, 1.71, 1.41,0.89)'.
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 (5.23) 

The population with inter-calving interval of 3.8 years would recovers faster than the one with 

inter-calving interval of 4.5 or 5.5 years.   After attaining the stable age distribution the populations 

grows exponentially as in Figure (5.5), if 1   . There are some oscillations before population attains 

stable class distribution.  After a period of time, the population acquires stable age distribution. 

Figure (5.5) also shows population projections for a period of 40 years. Competition for resources 

may set in as population increases through increased carving interval. 

We note from equations 5.19, 5.20 and 5.21 that the population structure is almost equivalent 

in the three selected ecosystems, although the population growth rates are different. This is partly due 

to the survival rates used being almost equal with minor variations. Stochastic variability is bound to 

course variation from one ecosystem to the other.     
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 Performing sensitivity analysis gives the most sensitive transition as that from the juvenile (0-

10) to 11-20 for both models in equation (5.19) and (5.20). The next relatively sensitive transition is 

the transition from 11-19 to 21-29 years. This indicates that management policies that focus on the 

survival of juvenile and to a lesser extent 10-20 years would be most effective. The sensitivity values 

are given by matrices AS  and LS above for the two models respectively. 

For the case of ANP, elasticity of the survival of class 0-9 years show the highest values 

followed by the survival of 10-19 years. Fecundity of class 20-29 years shows the highest value 

followed by fecundity of class 10-19 years. The Elasticity for the models in equation (5.19) and 

(5.20) are given by AE and LE as below. 
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To investigate further the sensitivity of model projections to adjustments in mean calving 

interval, age specific mortality and age at maturity, we varied each of these parameters separately 

whilst keeping all else constant. We compare multiple scenarios of increased mortality of each group 

holding all else constant for a population with mean inter calve interval of 4 years. Mortality of 

classes of age lower than 20 years can be increased by prolonged draught while for classes with 

greater age by management policies or poaching.  We keep the B matrix constant and vary Survival 

parameters i in the survival matrix S, with   being the unknown vector of parameters ( , ) '   of the 

model  1 1| ,t t tE n n BASn  . By increasing mortality we examined the age-specific mortality levels 

required to prevent long-term population growth.  

 

Figure 5.6 Stable population size. Increase mortality rate causes population to stabilize  
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Figure 5.6 demonstrates the role of mortality in population growth. If a population with 

calving interval of 4 years and has attained stable age structure (as in Figure 5.4), is exposed to 

constant population mortality of 0.06 (or annual survival rate of 0.94 for all the classes annually) a 

constant population growth was observed. This may not be observed in reality, since the probability 

of a birth per female elephant in every four years varies and was not 1 as the model presumes. 

 The level of induced mortality required to produce 0% population growth for the 10-year 

model given in Table (5.6) below, 

Table 5.6 10-years mortality required to stabilize population. 

Calving interval 
All Classes 10-years 

frequency mortality  

3.8  32.2% 

4.5 23.2% 

5.5 1.2% 

 

For model in equation (5.19), (5.20) and (5.21), the mortality levels required to attain zero percent 

population growth are 32.2%, 22.2% and 2.2% respectively, all at 10 years frequency. Studying the 

models in equations 5.19, 5.20 and 5.21 further, we can identify the level of mortality required to 

stabilize the populations. The percentages reductions in the survival of each group are given in Table 

(5.7) below. The percentages are class specific and applied at a frequency of ten years and are thus 

not as large as they appear. 

Table 5.7 Increased mortality required for stabilizing population (10 years frequency). 

Class or category 3.8 years calving  
I. 

4.5 years calving I 5.5 years CI 

0-9 53.7% 42% 3.1% 
10-19 64.7% 50.7% 4.2% 
20-29 81.7% 59.7% 6.6% 
30-39 --- ---- 12% 
40-49 --- --- 24% 
50-59 --- --- 66% 

 

This analysis shows that if natural mortality remains constant; 

i. Population growth is most sensitive to calving interval as compared to age at sexual maturity. 

ii. Total mortality required to stabilize the population is higher for older classes than younger 

classes. 
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iii. Population with larger calving interval can decline for very low induced mortality. six percent 

mortality (in every 10 years) for a class lower than 30 year causes a population with calving 

interval of 5.5 years to decline.    

iv. A 100% total mortality for a class above 30 years will not cause a population to stabilize if 

the calving interval is less than 4.5 years, and 

v. Population stabilizes or is self-regulating if the calving interval is approximately 5.5 to 6.5 

years. A population with an average calving interval larger than 6.5 years will most likely 

decline and will be faced with high chance of extinction.      

 Using model in equation (5.19) we demonstrated that the effect of initial conditions on 

population dynamics of a structured model. A hypothetical initial population of six animals was 

introduced in an ecosystem with 1930 as the initial year. Animals were assumed to either be all 

juveniles in the first class 1 (as in Figure 5.7a), or aged between 10-19 years and thus in class 2 (as in 

Figure (5.7b), or aged between 50-59 years and thus in class six (Figure 5.7c). The resulting total 

female population was compared to expected female population of the ecosystem. Projections in case 

of Figure 5.7 a) and case c) were lower and took longer to acquire a stable age distribution compared 

to case b). This, as we would expect, is as a result of the number of reproductive animals and their 

relative reproductive importance. The case of Figure (5.7b) is favorable due to the high reproductive 

value of animals in 2nd class interval.    

 
Figure 5.7 Studying effects of initial conditions. A hypothetical population of six animals is introduced in a similar 
ecosystem but assuming the animals are either, all juveniles in the first class 1 (as in figure 5.5a), or aged between 10-19 
years and thus in class 2 (as in figure 5.5a), or aged between 50-59 years and thus in class 6 (as in figure 5.5c). 
 

To show the effect of perturbations or what happens when the entries in transition matrix are 

changed, we vary for case (b) above the survival of class 1, 3 and 6 by allowing them to vary by at 

most 25 percent separately and latter the reproductively of class 2, 4 and 6 by allowing them to vary 
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also by at most 25 percent separately. Perturbations of survival on the survival of juvenile showed 

that the most drastic effect on the observed population behavior compared to the other two cases. 

Perturbations on survival of the older adult showed the least effect on the population behavior (Figure 

5.8a, b and c). As shown by sensitivity analysis chance in fecundity of the middle aged animals 

causes the highest change in population projections.   

The one year transition scheme for the 10-year class model with 4.5 years calving interval, 

age at first calving of 14 years and annual survival parameters selected to fit ANP is; 
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 (5.24)       

 
Figure 5.8 Studying effects of perturbations. Perturbations on survival of the survival of juvenile shows the most 
drastic effect on the observed population behavior compared to the other two cases 

By analysis of model (5.24) showed that; 

i. The population grows annually ( 1.031  ), with the reproductive rates of the ages 10-19 and 

20-29 being the most significant in the population growth.  

ii. The survival rate of the first three classes, i.e. 0-9, 10-19 and 20-29 are the most vital in 

determining the population trend. This is evident from the elasticity matrix below 
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iii. The stable age distribution is given by 

 1 ˆ1.031,   (0.38,  0.25,  0.17, 0.11, 0.06,0.03)'L
Lx   . (5.25)  

iv. The corresponding reproductive values are, 

 1 (1.0,  1.52,  1.64, 1.22, 0.86,  0.37)'LRV  . (5.26) 

v. The induced annual mortality required to stabilize the population are given in Table (5.8), 

Table 5.8; Increase in class specific mortality for 6-CEPMM (at one year frequency). 

Class or category 3.8 years calving  I. 4.5 years calving I 

0-9 29.8% 15.2% 

10-19 27.3% 15.2% 

20-29 54.5% 22.7% 

30-39 --- ---- 

vi. Increase mortality of classes above 30 years does not reduce population growth to zero if 

average calving interval is less 4.5 years. For average calving intervals of 5.5 years the annual 

population growth tends to zero percent.  

5.5.2 Fifteen Classes (15-CEPMM) Structured Population Model 

Result 5.2: The African elephant population can be modeled using a deterministic or a stochastic 

matrix model with fifteen classes each of 4-year class interval.  

Using a matrix approach to the model definition, we considered an African Elephant 

population with 15 age classes, updated using a simple Leslie matrix model. Each age group was 

selected to be of length 4 years. Four was selected, since we can assume approximate age at first 

calving is twelve years and hence the first three classes that do not reproduce. These three classes 

include infants (0-3 years), weaned calves (4-7 years) and sub-adults (8-11years). We also assumed 

that African Elephant do not live beyond the age of 60 years. The one year transition model as 

derived above is of the form, 

 

1, 1, 11 12 4 15

2, 2, 11,2 2 23

3, 3, 12,3 3 34

14,15 14 15,1614, 15, 1

15,16 1515, 16, 1

1 0 0
1 0 0 0

0 1 0 0

0 0 0 1 0
0 0 0 0 1

t t

t t

t t

t t

t t

n np F F
n np p
n np p

p pn n
pn n



















    
       
    
   

   
   
   

    
      







      

.









 
 
 



 (5.27) 

We can also derive the four year survival rates from the annual survival rate as per Table 5.2 above to 

acquire the four year transition model as. 
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 (5.28) 

where ,i tn  is the number of animals of age i in year t, i = 1, 2,..., if  is the mean number of young 

produced per four-year time unit per animal, and i  is the per period probability of survival of an 

animal of age-class i. The following is a life table for elephant population using 4-year class intervals 

(Table 5.8). 

Table 5.8 Life table for Amboseli (ANP) with 4-year class intervals 

Age  xP  xl  xb  
0 0.94 0.94 

0 
1 0.99 0.931 
      
4 099 0.902 
5 0.99 0.894 

0       
8 0.99 0.867 
9 0.98 0.859 

0       
12 0.98 0.808 
13 0.98 0.792 

0.33       
16 0.98 0.645 
17 0.98 0.731 

0.43       
20 0.99 0.695 
21 0.99 0.688 

0.44       
24 0.99 0.667 
    
        
    

53 0.95 0.253  
      0.43 

56 0.95 0.217  
57 0.95 0.206 

0.43       
60 0.95 0.177 
61 0 0 0 
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The following assumptions and parameter estimates were used. 

i. Elephant population attain a maximum age limit of 60 years, 

ii. Average calving interval of 4.6 years (Moss 2001), 

iii. Average age at sexual maturity of 14 years 

iv. The number xb is the number of female of-spring produced by an individual in age class x  

while in that age class. The ratio of male to female was taken to be 1:1. 

v. Survival rates adapted are as in Table (5.2) above. 

 

Figure 5.9 15-Classes Structured Elephants Population model. Figure a and b gives the population projection for a 
AENP and ANP with 4 years and 4.5 calving interval respectively for a 15 classes deterministic population model.   
 

Using parameters in Table (5.4), we selected two scenarios using AENP and ANP data. 

Figure (5.9a) and b shows population dynamics for the AENP and ANP respectively. All the four 

year class models considered assumed age at reproductive maturity of 12 years.  Natural survival 

parameters were selected to fit population estimates from, AENP, ANP and Tsavo national parks. 

Calving interval were selected to be 3.8, 4.6 and 5.5 for AENP, ANP and Tsavo national parks 

respectively. The population increase in every four years for AENP, ANP and Tsavo are given 

by 1.20A  , 1.15L  and 1.00T   respectively. The stable age distribution given by, 
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
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The reproductive values give by,  

 
(1.0,  1.32, 1.65,  2.06, 2.02, 1.97,1.91, 1.84,  1.74, 1.63, 1.48,  1.30,  1.08,  .79,  .44)',
(1.0,  1.26, 1.50,  1.86, 1.83, 1.79,1.66, 1.51,  1.40, 1.30, 1.17,  1.01,  .87,  .67,  .39) ',
(1.0,  1.23, 1

A

L

T

RV
RV
RV



 .53,  1.84, 1.80, 1.75,1.69, 1.61,  1.52, 1.41, 1.28,  1.11,  .91,  .67,  .37) '.
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After attaining the stable age distribution the population structure remains constant as in Figure 5.9 

(a),  (b) and (c). Population dynamics of model A  and L  showed that the population will grow at 

rates 1.20A  and 1.15L  in every four years. The population represented by model T , where the 

calving interval is 5.5 years and natural survival rate for all class were 0.95, remains stable with 0% 

population change.  

 Sensitivity and elasticity analysis of the two models gave similar results with equivalent 

interpretations. The sensitivity of transitions from 0-3, 4-7, 8-11 and 12-15 gives the highest values in 

decreasing order of importance. The elasticity of survival, of classes 0-3, 4-7, 8-11 and 12-15 gave 

the highest values while the fecundity of classes 12-15, 16-19 and 20-23 had the most significant 

values.     

 

Figure 5.10: Effect of increased mortality. Indiscriminate application of management strategy that causes population to 
stabilize in one ecosystem may lead to population extinction in another. 

Figure 5.10 demonstrate the effect of exposing a population with 5 year calving interval 

(Figure 5.10, a) to the same level of mortality that courses a population with four years calving 

interval to be stationary. This would lead to the population having growth rate less than one, leading 

to extinction of the population in due time (Figure 5.10, b).  

Table 5.9, Increase in age specific mortality schemes, (4-years frequency). 

4-year Age class 3.8 calving interval 4.5 calving interval 
0 to 4 69.6 58.6 
4 to 8 70.5 59.4 
9 to 12 73.5 62.5 
13 to 16 73.7 61.3 
17 to 20 82.2 68.9 
21 to 24 92.3 79.6 
25 to 28  --- --- 
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The Table (5.9) gives the mortality level required every four years in order to stabilize the 

population. The percentage is specific to each class assuming that the survival rates of the other 

classes are normal. Percentages of induced mortality required to stabilize the population is dependent 

on the population calving interval and the selected age interval.   Figure (5.11) below demonstrate the 

stable population for two scenarios selected from Table (5.9). Figure (5.11a). shows the induced 

mortality specific to the 2nd class for 3.8 years calving interval, whereas figure b. shows induced 

mortality specific to the 4th class for 4.5 years calving interval.  

 

Figure 5.11: Stabilizing population by increased mortality. Induced mortality percentage depends on the population 
parameters and class interval selected. 
 
We considered the deterministic behavior of the 4-year class model with a one year projection 

scheme. We used the transition matrix of the form in equation (5.17) to evaluate three scenarios. The 

three scenarios were for average calving intervals of 3.8, 4.5 and 5 years. Assuming that, 

i. Age at sexual maturity is 12 years and fecundity of animals above 52 years decreases by a 

half that of other fertile animals.  

ii. Animals between ages 12 and 52 are assumed to be equally likely to conceive.  

iii. Juveniles aged between ages 0 to 10 do not reproduce.   

iv.  Annual natural mortality is selected using estimates of mortality from ANP. The age 

dependent annual mortality required for zero percent population growth rate in the long run 

are.   
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As in Table (5.10) below, results from this model showed that; 

i. Populations in all the three scenarios would grow exponentially for normal natural mortality 

with, 3.8 1.05  , 4.5 1.043  and 5 1.039  . Additional annual mortality rates of 5%, 4.3% 

and 3.9% is required for zero population growth rate in the case of 3.8, 4.5 and 5 years 

average calving interval respectively. 

ii. Annual mortality of 15.2%, 13% and 11.6% of juveniles (0-12 years) causes zero percent 

population growth rate, for the scenarios of 3.8, 4.5 and 5 years average calving interval 

respectively. 

iii. Annual mortality of 10.0 %, 8.1% and 7.1% of adults (13-60 years) causes zero percent 

population growth rate, for the scenarios of 3.8, 4.5 and 5 years average calving interval 

respectively. 

iv.  No age specific mortality scheme for classes with age greater than 24 years produces zero 

percent population growth rate.    

Table 5.10, Annual age class specific mortality rates, (1-year frequency). 

4-year Age classes 3.8 calving 
interval 

4.5 calving 
interval 

5 calving interval 

0 to 4 64.5% 52.8% 43.9 
4 to 8 64.5% 50.5% 41.9 
9 to 12 64.5% 50.5% 41.9 
13 to 16 64.6% 50.5% 41.9 
17 to 20 74.1% 69.0% 45% 
21 to 24 87% 80.7% 76.1% 
25 to 28  ---- ---- ---- 

 

5.6 Stochastic population dynamics models  

5.6.1 Deterministic modular matrix models 

We started by assuming that there three processes governing the dynamics of elephant population 

dynamics are survival, birth and aging. Later we considered migration ( M ) and removal ( R ) due to 

a given management policy.  

The survival process, for example, is represented as a matrix of the form S below, where i  is 

the interval’s or annual probability of survival for an animal belonging to age class i . The other 
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process may also be represented using matrices using a modular approach. The modular matrices 

model for the six age-classes (6-CEPMM) is;  

1 2 3 4 5 6
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 (5.29) 

Assuming that migration and removal are treated as affecting survival in an additive manner we have, 
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where ,  2,3,i i   are age specific reproduction rates. Management policies may affect one or 

multiple age classes. The population dynamics model can then be expressed as a product of the three 

matrices representing the individual sub-processes. The dynamics model for this population can then 

be written as: 
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 (5.30) 

Explicitly modeling each sub-process in this way increases the flexibility of the modeling approach. 

This particular formulation of the model is deterministic as stochastic variation has not been 

incorporated in any of the sub-processes. The order of the sub-process may also be altered to fit 

actual processes or stages when they occur.  For example to model survival, aging and then birth 

sequentially we have,  
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 (5.31) 

 For example, we could consider , binomial( , )sj t jt ju n   and , 1 , , 1, 2,multinomial( , , ,..)j t a j t j jn u p p   

we then study more on j and ,i jp ,  where ,i i j
i

p   . 

A realization of the state process at time t , here defined as : 1, 2, ,tn t T  , is a vector of 

states, some of which may be unobservable. The other time series is the observation process, a 

realization of which at time t is here defined as : 1, 2, ,ty t T  . The observation process provides a 

correspondence between the unobserved true states and the recorded measurement on the population 

and is completely observable.  An important process that requires further studies is the observation 

process probability distribution; 

  | nt t tf y . (5.32) 

 This would determine the probability density function of the observation process (census). Assume 

the two sub-processes S and B are stochastic with aging A being deterministic. If the survival of each 

individual is independent of others, the total individuals surviving in each category are binomially 

distributed. Assuming mature elephant have a chance of giving birth in every interval of five years, 

then the number born is distributed as Binomial( , ,i t in  ). 

5.6.2 Stochastic matrix simulations 

The different approach to capturing random variability include; making the individual matrix 

elements element to be random or considering the modular approach to the processes where each 

individual process is governed by a probability distribution. Stochastic and modular approach to 

population sub process is discussed in the next section. 
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We start with the Leslie matrix model similar to equation Leslie (1945) where the elements 

are random variable. We simulate stochastic models for parameters estimates corresponding to AENP 

and ANP population scenarios, as in equation (5.19) and (5.20). The transition and fecundity element 

are selected to be normally distributed random variable with mean equivalent to values in equation 

(5.19) and (5.20) and variance selected individually for each element. The following is observed; 

i. If the variability in vital rates has low variance and can increase or decrease the vital rates 

randomly, the mean population trajectory are almost equivalent to the deterministic model, 

ii. If the variations affect the population negatively by decreasing fecundity, i.e. increasing 

calving interval, population trajectories have much less means. The population with calving 

intervals of 5.5 years or more declines to extinction for high variability.    

 Increasing the variability of survival and fecundity by increasing their variance reduces the 

chance of acquiring population close to the observed levels. It is important to note that the model 

does not attain a constant stable age distribution for large variability of survival and fecundity 

parameters. For low variability the population stable age distribution converges to the equivalent 

deterministic models equation (5.19) and (5.20).  

 
Figure 5.12.  10-year classes stochastic matrix model. Simulation of stochastic matrix model with fecundity determined 
by calving interval and survival parameters selected from a normal distributions.    
 
In Figure 5.12, fecundity is selected to be a normal random variable with its mean and variability 

determined by the calving interval. Survival parameters are also normal random variable with mean 

values selected or calculated from Table 5.2 and variance allowed to vary from 0.05 to 0.2. Figure 

gives one such scenario showing the population dynamics for both AENP and ANP. Model 

projections are plotted together with the observed female population for verification purposes.  
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5.6.3 Stochastic modular matrix approach 

If elephants are aggregated into juveniles from 0 to 9 years, middle-aged from 10 to 39 years 

and old-aged from 40 to 60 years. Then the juveniles have not yet reached sexual maturity. Middle-

aged and many of the old-aged elephants can reproduce. Juveniles (0-9) make one class, middle-aged 

elephant can be partitioned into three classes of 10-19, 20-29 and 30-39, while old-aged adults are in 

classes 40-49 and 50-59. The simple deterministic models is of the form 
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 (5.33) 

When this model is fitted for a population with average calving interval of 4.5 years and annual 

survival parameters derived from the ANP data we have, 
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. (5.34) 

This model has 1 1.044  , a stable age distribution given by ˆ (0.42 0.45 0.13)n  , and a 

reproductive value of (1.0 1.54 0.98)RV  . Investigating the model further showed that the annual 

mortality required to produce zero percent growth rate are (see figure 5.13), 

i. 4.4% for the entire population, 

ii. 21.8% and 9.9% for juveniles (0-10 years) and middle-aged adults (11-39 years) respectively. 

No percentage mortality causes zero percent growth rate for old-aged adults (40-60).   

We note that for a population with no animals aged 40 years and above, 3% induced mortality for the 

remaining population cause population to stabilize. If total annual mortality is more than natural 

mortality plus the given percentages required to cause a zero population growth rate, the population 

decline to extinctions in the long run.   

 

Result 5.3: Assuming there is a population of in animals in class i , and each has a chance i  of 

surviving to the next time interval independent of other animals, the structured elephant population 

dynamics can be modeled using a three class modular stochastic matrix model (SMM) such that;  
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 (5.35) 

Aging was assumed to be deterministic, that is, the , 1i ip   are constant which can be determined 

for a population with stable age distribution.  By intuition, if the probability of an individual in class 

i  surviving in a time interval is i independent of other individuals, the total number of individuals 

who will survive to the next time interval is given by a binomial distribution bin( , )i in  . If only 

demographic stochasticity is operating, the probability distribution of those who survive will be 

binomial. The initial state vector is 0n , the number of adults ( 3, ,0au ) at time 0t  .  

The distribution for the state process was found by integrating the joint distribution for the 

survival and birth sub-processes over the survival process with the constraint that the number of 

adults at time t equals the sum of the number of surviving juveniles and the number of surviving 

adults from time 1t  , 

, ,

1 , , , , , , , 1 , ,( , | ) ( , | ) ( , | ) ( , | )
a t s t

t t b t t a t a t a t s t s t s t t s t a t
u u

g n n g n u g u u g u n du du       . (5.36) 

If in the observation process the number in each class is modeled by 2
,( , )i t iN n   and the initial 

distribution 0n is an unknown vector; 

 
1, 2 , 3,

2 2 2
1, 1, 2, 2, 3, 3,( , | ) ( , ) ( , ) ( , )

t t tt y t t y t t y t tf y n N n N n N n      , (5.37) 

where 2 2 2
1 2 3 2 3 1 2 3( ,  ,  ,  ,  ,  ,  ,  )         , is a vector of the unknown parameters. 
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Figure 5.13 A comparison of deterministic and stochastic (3-CEPMM) for ANP. Simulations of deterministic and 
stochastic matrix model with fecundity determined by the calving interval. In figure a) survival is deterministic while in 
figure b) it is stochastic with the binomial probability distribution.     

 

Figure 5.13 illustrates the stochastic population growth of model in equation 5.44.  The 

second class dominates the population structure due to the fact that stage interval is large catering for 

all the middle-age adults between the age of 10 to 39 years. This is a hypothetical scenario with 

initial population of 80 mature elephants, 1 0.89  , 2 0.95  , 3 0.93   2 0.11   and 3 0.11  . The 

model illustrates a density independent population growth with stochastic survival only.  The 

theorem above enables us to study each of the sub-processes in details.  

Assuming there were in animals and the probability of an animal being removed from a 

population, independent of each other is i , the removal sub-process R  can be modeled using the 

binomial distribution. The sub-process R  can be modeled as effecting survival in an additive manner 

and hence, model 5.44 becomes, 
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 (5.38) 
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If the number animals removed from the population is a random variable with a binomial distribution 

( , 1binomial(n , )i t i ), we investigated the removal rate that causes a population with stochastic 

survival to stagnate. We noted that in a stochastic environment different realizations are attained for 

similar parameters. The following results are in comparison to the results of the deterministic model 

(5.43) above. Investigating the model further showed that the annual mortalities ( )i  required for the 

populations’ trend to stagnate are, 

i. 3.0% for the entire population, 

ii. 9% and 6.1% causes the population trend to stagnate for juveniles (0-10 years) and middle-

aged adults (11-39 years) (figure 5.14). No percentage mortality causes population trend to 

stagnate growth rate for old-aged adults (40-60) .   

iii. Summary statistics of multiple simulation realizations should be used to make inferences for 

stochastic models and not a single realization. Another source of variation, is the stochastic 

nature of the calving interval, due to individual variations and environmental variability. 

Populations in a stochastic model do not actually become fully stationary, although a form of 

stability may be obtained (Figure 5.14). Distribution of multiple realization may be analyzed 

and empirical distributions derived.      

 

Figure 5.14 Stochastic population removals.  Figure a represent population trend by assuming survival and removal 
(e.g. by emigration) have a binomial distribution. 
 
Since population estimates are not without errors, lower population percentages ought to be removed 

in the effort to stabilize the population. Accurate population survey or estimate is required in order to 

remove a constant proportion of total abundance. Thus, percentage removed ought to be lower than 

those acquired for the deterministic population models.   



142 

 

 

 

 If the entire elephant population is divided into fifteen classes each having 4-years interval, 

then, the resulting model framework in analogy to model 5.37, is a stochastic 15-CEPMM (fifteen-

class model) below. The parameters in this case were for one year population projection. 
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For a four years population projection all the individuals in a class age and proceed to the next class. 

The resulting simpler model framework is,     
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 (5.40) 

Such a model requires greater monitoring of a population to be able to classify individual’s 

age up to 60 years. Predicted distribution can be used for population management strategy decisions 

such as examining the future effect on the population management policy.  

In this chapter, we started by looking at the relation between different approaches to 

structured population models. We considered the Leslie (1945) and Usher (1969) matrix models with 

10 years and 4 years class interval. In general, the models gave similar results and the class structure 
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and projection time didn’t influence the results significantly. In general, the following results were 

obtained: 

i. Elephant population growth is highly influenced by average calving interval compared to 

age at sexual maturity, age at reproductive menopause. Assuming low natural mortality, a 

population tends to stabilize for average calving interval of about 5 years. If average calving 

interval is more than 5.5 years, a population is most likely to decline. 

ii. Sensitivity and elasticity analysis showed that survival of age classes below 24 years is most 

crucial for population viability  and the reproduction of classes between the ages 10 and 30 

were the vital in the population dynamics.  

iii. Age specific mortality levels required for zero population growth rate, were lower for 

juvenile classes, aged between 0-12 years, than for adult classes, aged between 12-60 years. 

For four years and 10 years induced mortality frequencies, no percentage mortality levels, of 

classes above 30 years, produces zero percent population growth rate.   

A framework for studying structured population dynamics incorporating process and 

observation error was also discussed. In this framework individual process were incorporated in a 

modular approach, enhancing our ability to study individual processes. A Bayesian approach is 

necessary in evaluating the resulting distributions and expectations that involve multidimensional 

integrals.          

Prediction of future populations, given a management strategy is pivotal to population 

management. It is also necessary to know the important threshold of the population vital parameters 

that are affected by a management strategy, if we wish to conserve a population successfully. 

Application of management strategies must be based on the specific population that we desire to 

conserve, otherwise the population may become extinct due to indiscriminate application of 

management policies.  Scientifically verifiable methods of population conservation are thus 

encouraged.  

Due to the mathematical simplifications in most models, managing real populations requires 

models to be customized to the specific conditions of areas in question. Models show sensitivity to 

initial conditions and on whether environmental and demographic stochasticity is incorporated. In 

using the binomial distribution to model survival, destruction, dispersal, and the number of recruits 

(Akcakaya, 1991), the occurrence of each event is assumed to independent distributed. We also note 

that the Poisson distribution can be used as an estimator of the binomial distribution for the case of 

recruits or offspring’s.  Stochastic structured population models do not attain a stable age 



144 

 

 

 

distribution, but level of stochasticity on the demographic parameters determined whether the model 

exhibit a small fluctuations or becomes chaotic.   

Population predictions or projections based on time series models, linear models, 

deterministic or stochastic structured models and simulations play an important role in population 

management. A selected combination of the models to rely on should be informed by the data 

available. Data on age specific fecundity, age specific mortality, age at first reproduction, inter-

calving intervals, the number of individuals by age class, and age at senescence are important in 

modelling and predicting elephant populations. 

It should be noted that the age structure of elephant population may be nonstationary and may 

contain variation due to demographic parameters that are correlated to environmental factors. 

Rainfall, for example, may affect survival and fecundity of selected age groups due to increase or 

decrease of available resources. Thus, elephant population models should include time varying 

process, individual variations, demographic variations, and, process and observation error among 

other form of variation. One approach to capture such variation is the use of structured population 

models incorporating process and observation error as discussed in this chapter. Another method 

would be the use of systems of stochastic differential equations in a varying environment. 

There is also spatial variation in elephant population that both the single cohort and age/stage 

structured models considered here do not capture. First the spatial range of elephant population is 

usually larger than officially recognized areas, where the population counts are usually conducted. 

Second there is spatial autocorrelation in population spread due to reproduction, dispersal and 

resource availability. The effect of population size or population density of the environment will also 

depend on spatial spread of the elephant population in a selected ecosystem. Thus, models and 

management strategies that incorporate spatial variations together with consider population size 

would be more appropriate. 
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CHAPTER SIX: DISCUSSIONS AND CONCLUSIONS 

6.1 Population Models 

Population modelling and other ecological modelling has rapidly increased recently, partially 

due to development of computer technology and our increased knowledge in population and 

ecological problems. We have endeavoured to illustrate that a model is able to encompass our 

understanding about a system. Using such models, better study of the population processes and 

population regulation strategies can be developed.  

The different classes of models, we have discussed and developed including, the log-linear 

model, autoregressive models, and deterministic and stochastic matrix models, are useful for different 

purposes and users. Their abstraction levels of the population dynamics are different and have 

different parameter and data requirements. Simple difference and differential equation models of the 

total population can be used to access the overall population trend. Where few observations of the 

population abundance or growth rates are recorded, bootstrapping of the parameters can be used to 

increase the pool of values available. We have discussed, constructed and applied the age structured 

population model to: 

i. Determine the growth rate of a population for selected or real population parameters. 

Sensitivity analysis enables us to determine the sensitivity of the dominant eigenvalue to 

change in transition rate. 

ii. Determine the age distribution that the population attains over time. 

iii. Project future population size and determine population viability over time. 

iv. Evaluate population regulation methods, by varying the vital parameters or transition rates.     

By the use of population models for elephant population we were able to evaluate, expose 

important properties and conduct analysis that can be used to test hypothesis related to these 

populations. Simulations were used due to the absence of sufficient historical data to evaluate every 

hypothetical scenario. Simple model with few parameters can be used to set up more research studies 

on the population and to develop data collection schemes. Improvement can be done on the simple 

models in order to capture more complex relation that exist in the population processes, hence 

leading to better models. 
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6.2 Total population abundance models  

Important mathematical principles of both linear and nonlinear in population models were 

discussed in the literature review and methods. These phenomena include equilibria, cycles, 

bifurcations, multiple attractors, transient phenomena and chaos. Studies of the short term and long 

term dynamics of population models which make use of transient, asymptotic, ergodic and 

perturbation analyses are necessary especially for models which capture practical population 

processes and ecological assumptions. Analysis of stochastic models benefits from our understanding 

of the dynamics of the deterministic skeleton.  

Starting with discrete time and continuous time population models in chapter two, we discussed 

issues and concepts that relate to density independence and density dependence. The important role 

that the per-capita growth rate plays in population dynamics and model fitting for population data 

was discussed.The relationship between per capita growth rate  1 dN
N dt , and population size or density 

is important in determining the form of population dynamics.  

In the case of logistic growth the population growth rate declines linearly with increasing 

populations.  For the theta logistic model, the growth rate is given by [1 ( ) ]tN
m Kr r   , where mr is the 

maximum growth rate, when there is no resource scarcity and no predators. The value of theta 

determine the type of curvature with values of   greater or less than 1 corresponding to convex and 

concave relationships, respectively. 

The type of relationship between rate of growth and population abundance is also important in 

population forecasting and evaluating population management strategies.  Determinant of the growth 

rate r , such as resource availability, intra-specific competition and predator prey relationship can be 

varied so as to increase, stabilize or reduce the growth rate. The goals of varying the per capita 

growth rate may be to conserve, maintain a stationary population or reduce population.  

Relating population models statistically to data is central to answering many important 

questions in ecology and population management. Although real ecological data of population 

abundance are stochastic, they contain patterns that can be explained using deterministic models.  

To effectively manage an elephant’s population, the managers will require knowledge about the 

population trend and the rates at which their populations is growing. Three approaches were used to 

model single-population dynamics of the elephant population in chapter four. All the three, the log-

linear models, ARIMA models and bootstrapping showed close similarity in the projected values.  
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The log-linear fit has slope, 0.055r  for the AENP elephants’ population and 0.0362r  , for 

the ANP population. Using the conversion ( 1)100%re   to acquire an approximate 6% and 4% 

annual population increase in AENP and ANP respectively.  It is important to note that due to the log 

transformation of the data and the subsequent inverse transformation, the log-linear model has a bias 

(Eberhardt 1992). Yet, these models are crucial in populations that show an exponential growth rate 

where there is no evidence of density dependence.  

Integrated autoregressive moving average (ARIMA) methods for modeling autoregressive data 

and forecasting techniques are well established. An advantage of these models is that we can consider 

the total population figures observed, as capturing both biological processes and environmental 

variability in the data. ARIMA models fitted were used to forecast and compare elephant population 

of AENP in South Africa and ANP in Kenya. An (0, 2,2)ARIMA  was fitted for both populations 

although (1, 2,1)ARIMA  was also sufficiently adequate for ANP and an (2, 2,2)ARIMA for AENP. 

Time series models for the growth rate of each of these populations were also fitted and used in 

forcasting. 

The ARIMA models showed longer population doubling time in AENP of   14 to 16 years 

compared to forecasts of structured population models (Woodd (1999)) of 13.5 years. ARIMA 

models forecasts are accurate only for a short forecast time horizon. The main challenge of fitting 

ARIMA models is that the number of observations available was few and some counts were not done 

on uniform time intervals.  

Bootstrapping using crude growth rate, R , for the selected populations, gives forecast that 

agree with the ARIMA and log-linear fits. Bootstrapping methods also offer extra statistics from the 

empirical distribution which the log-linear and ARIMA methods don’t. The linear model gives a 

population doubling time of about 18 years and 12 years for ANP and AENP respectively. These 

doubling time are similar for the bootstrapping method.  The forecasts for ARIMA models are only 

useful in the near future and become very unreliable as the forecast time horizon increases. 

We have gone a step further to derive the Bayesian distribution of the instantaneous growth rate 

(continuous exponential growth rate r ). This method can be used to compare populations that differ 

terms of dynamics, size, location and structure. The method has been used to compare two elephant 

population in South Africa, one that has had population control policy applied and one that is 

recovering. The result agrees with the general study by Hones (1999) on rate of increase r  and has 
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implication on population management. Population culling shifts the distribution of the net growth 

rate to lower values. 

Given sample data we were able to calculate the growth rate of elephant population and use 

simulations to determine the chances that an endangered population will persist for given time period 

and what will be the general population trend. We can also predict what will be the population size in 

future years and attach a measure of uncertainty on the prediction. 

Models where the population is considered as homogeneous are useful in determining the 

general trend of a population but cannot be used to study the effect of the age dependent parameters. 

Both the AENP and ANP projections showed that the populations will continue to increase 

exponentially, if the conditions remain relatively similar.  

6.3 Age structured population models  

Structured population models for biological species are applicable to populations that can be 

classified to groups that are more homogeneous. Elephants have characteristics and life histories that 

enable us to classify them into age classes that are more homogeneous. The population dynamics of 

the African elephant, which is a long lived species has been shown to be affected by the age structure 

of the population, since birth and death are age dependent. Birth and death or other transition 

probabilities are also affected by other sources of variation including time varying environmental 

processes.  

The construction, properties, theorems and application of matrix models similar to the Leslie 

(1945) and Usher (1969) matrix were explained. The models which are deterministic and linear were 

used to incorporate age structure in the population of female elephants. The three models developed 

including the three, six and fifteen age classes models, are simple and easy to analyze. These models 

may not fully describe the elephant population dynamics but offer an important tool for evaluating 

population trends for selected hypothetical scenarios. The simulation of the linear structured 

population growths for the African elephant population has emphasized on explanatory models for 

evaluating the impact of change in vital rates due to a hypothetical change, natural change or 

management actions.  The models can be improved to cater for effects of density dependence and 

stochasticity on population vital parameters. 

A structured model, where the age groups for elephant’s population were aggregated into 

juveniles from 0 to 9 years, middle aged from 10 to 39 years and old aged from 40 to 60 years was 

the simplest structured model considered. This approach would be supported by the fact that 

determining the exact age of free roaming wild population is hard and can only be estimated with low 
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accuracy. A model that classifies elephant using the three classes is important since determining the 

exact age of wild population is not viable and the populations are large (Akcakaya H R. 2000). A 

stochastic framework for studying the three classes’ model and other age structured models were 

given. Migration and immigration data is not easily available and management decision ought to be 

reached using the scant details available.  

The Leslie (1945) and Usher (1969) transition matrix were used to evaluate induced age 

specific mortality regimes, average calving interval and age at reproductive maturity. Sensitivity and 

elasticity analysis was used to determining the role that each class plays in the population dynamics. 

We applied sensitivity analysis of the deterministic matrix models to make decisions about which 

vital rates to focus on in management and conservation efforts. Thus, sensitivity analyses of the 

models provide some insight into how best to manage a population.  

Sensitivity and elasticity analysis showed that the survival of animals less than 30 years and 

fecundity of animals aged between 10 to 30 years have the greatest effect on population trend. In the 

ten-year model, projections were found to be more sensitive to survival parameters of the first class 

and fecundity of the second class. For the ten-year structured population models, the most sensitive 

transitions were from juvenile (0-10) to 11-20 years and 11-21 to 21-30 years.  Elasticity of the 

survival of class 0-10 years, survival of 11-20 years and fecundity of class 10-20 years and 20-30 

showed the highest value. This indicates that management policies that target survival would be most 

effective if attention is focused on the survival of juveniles and young adults.   Management policies 

that alter fecundity will be most effective if targeted at ages between 10 to 30 years animals. A 

management strategy may affect many of the vital strategies concurrently and thus compound the 

effect on population dynamics.  

Similar observations were made for the fifteen classes’ model. Survival of animals less than 24 

years, and fecundity of animals between the ages of 10 and 32 years showed highest sensitivity and 

elasticity. The results are in agreement with Whitehouse & Hall-Martin (2005) that, in all elephant’s 

populations, elephants that are between 15 and 25 years old, contribute most to future growth of 

populations. The fifteen classes’ model and the six classes’ matrix models give comparable 

population projection for similar assumption about the population vital parameters. In the fifteen 

classes’ model, projections were more sensitive to survival parameters of the first three classes and 

fecundity of the next three classes.   

Population projections are most sensitive to changes in calving interval and probability of 

survival than the age at sexual maturity. These results support the fact that removal of proportions of 
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animals in the older classes (40 – 60 years) has the least effect on population viability.  In general, 

population projections were highly sensitive to survival of the juveniles and fecundity of the middle 

aged elephants.   

Assuming the vital rates are not correlated we can use elasticity analysis to provide insights 

into the effectiveness of selective management pressures on age-specific vital rates (Rose et al. 

2002). Recovery of a population highly depends on the survival of the animals, especially of 

juveniles, and the fecundity of middle aged elephants. Removal of animals of age greater than 40 

years showed least effect on the viability and regulation of a well established population.       

Management policies that put in to consideration population demographic structure are bound 

to be more efficient. Management strategies that aimed at conserving elephant population should be 

guided by the conservation goal. Strategies intended to increase population growth should focus on 

increasing survival rate of the juvenile or reducing the calving interval for the reproducing females 

between the ages of 10 to 30 years. To stabilize an elephant population growth or reduce population 

growth, focus should be on reducing the survival of the juvenile and adults below 30 years and 

reducing the fecundity of female between the ages of 10 to 30 years. The stable age distribution show 

that the population proportion of animals below 24 year is higher than those above and hence the 

emphasis on the classes below 24 years. 

The analysis of age specific mortality required to cause zero percent growth, showed that 

natural limitation of elephant populations, through natural mortality is unlikely to stabilize a 

population with average calving intervals less than 5 years. The percentage reduction in survival rates 

required in order to attain a stationary population was found to be affected more by the calving 

interval.  There is need for management intervention to stabilize a population with calving interval 

less than 5 years, especially if natural mortality is low and the population is within a protected area. 

Our analysis also showed that elephant population dynamics are sensitive to number of 

individuals and age structure of the initial population. All simulated populations attained a stable age 

distribution but after different time intervals. When the proportion of individuals in a given age class 

does not change from one time interval to the next, the structured population has attained the stable 

age distribution.  

 In the stochastic matrix model of population dynamics, the transition matrix elements were 

allowed to vary from one time unit to the next. The individual chance of survival or reproduction was 

considered to be probabilistic and determined by a probability distribution. Such stochastic models 

do not attain a stable age distribution especially if the variability is high. If the stochastic variations 

are low then the model’s stable age distribution tend to the equivalent deterministic model. The main 
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challenge in a stochastic model was quantifying the variability to be attached to an individual, the 

environment, and other sources of variability.  

We sought to establish the maximum number or proportion of animals that should be removed 

in order to cause the population to stagnate for a stochastic model. For selected population vital 

parameters, it was realised that the level of population mortality required to cause population to 

stabilise was much lower than the corresponding deterministic scenarios.  Results showed that a 

management policy that causes population to stagnate in one ecosystem may lead to extinction, if 

applied indiscriminately in another ecosystem. The vital elephant population parameters and the 

management goals, determines the best management policy for a given ecosystem.  

Related age structure population models include Woolley et al (2008) and Wood A.M (1999), 

which show comparable results for population projections and intrinsic growth rate. The study by 

Woolley et al (2008) is a concurrent study which focused on episodic and annual mortality required 

to produce zero percent population growth. 

The challenges that arise, while using Leslie like models for the case of elephant population 

include, overlapping calving intervals, environmental seasonality correlated with vital parameters and 

individual animals’ variability.  Due to social and family ties within the elephant population, the 

removal of animals may affect population vital parameters directly or indirectly. The effect of such 

social dynamics was not considered.   

6.5 Conclusions and recommendations 

We start this section by noting that continued longitudinal studies should be done on African 

elephant population in the eastern and southern Africa to ensure continued information on population 

trend and identify changes, if any, in numbers and demographic characteristics. The population 

studied and simulations can be used to inform management of newly introduced populations with 

close or equivalent ecological conditions.  

Considering the population as a single homogeneous group improved deterministic models for 

the total population abundance ( )y t , may include emigration and immigration data. Such models can 

be explored in a varying environment. The per capita birth, death rates and migration, ( )b t , ( )d t , and 

( )m t respectively would be functions of time and additional environmental variables. They would for 

example, have the forms 1 2( , , ,  . . . , )nb t v v v , 1 2( , , ,  . . . , )nd t v v v and 1 2( , , ,  . . . , )nm t v v v , respectively, 

where 1 2, ,  . . . , nv v v  represent the different environmental variables. This way of extending the model 
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would incorporate stochastic and temporal variation in an open ecosystem. Modeling of long term 

climatic data and other environmental data and their relation to population dynamics parameters can 

be pursued to enhance population management in light of climatic and environmental changes 

expected.  

Spatially explicit statistical models can be used to model the spatial distribution, 

environmental variations and effect of human disturbances on elephant’s population. The 

effectiveness of such spatially explicit models would be evaluated in characterising the 

environmental response of elephant’s population distribution, predicting their probability of 

occurrence, assessing variability and landscape transformation. There is spatial autocorrelation in 

population spread due to reproduction, dispersal and resource availability that both age structured and 

unstructured models do not capture. 

ARIMA models were basically used to model total population abundance and population 

growth rate. Models on population growth rate combines birth, death and migration into a single 

series. Multivariate autoregressive models offer better tool for analyzing the series but require more 

data on the series.  Another way to improve the ARIMA models is to use the additive approach of the 

state space models in modeling population time series with trend, seasonal component, and process 

and measurement error. The Bayesian state space approach makes it possible to quantify multiple 

sources of uncertainty including, uncertainty in data, parameters and model choice.  

Matrix population models considered were linear and did not incorporate density dependence 

and variability. Although we have made effort to incorporate stochastic variation, more realistic 

models that incorporate nonlinear relations are required. The modular approach to population process 

gives a more flexible way of studying individual processes of an elephant’s population. More studies 

on individual process such as survival, birth or fecundity functions can then be done and their 

distributions established, as more data becomes available.  

Processes that are not Markovian can be used to model non-linear processes in the population 

dynamics.   The application of HPM models in the study of individual process involved in elephant 

population can be studied further. The single step dependence structure assumed in Markov chains 

can be relaxed and analysis of non-linear non-Gaussian state space model fitted. Such models would 

also be vital in modelling African elephant population dynamics, where the dimension of the state 

vector differs from the dimension of the observation vector.   

More data on population trends is still necessary to be able to make clear conclusion on 

elephant’s population behavior and it’s relation to environmental variability. The accuracy of the data 
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also determines the reliability of the prediction results and the management decisions arrived at. Data 

observed and recorded ought to capture more variables relating to population age structure. These 

variables may be used to establish whether a give population has attained a stable age distribution, 

and if not, establish the age classes deviating from expected scenario. 

In conclusion, we have endeavored to demonstrate the important role played by mathematical 

and statistical models in modeling population dynamics of elephants. Both simple models with few 

parameters requirements and more detailed models have important role to play in understanding the 

dynamics of elephant’s population and their management.  In the absence of sufficient historical data 

population analysts may perform simulations using the available information. Using models we 

increase our understanding of the underlying population processes, forecast future population trend, 

and study the effect of selected population parameters.  
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APPENDICES   

Appendix A: Definitions 

Hadamard product: The Hadamard product of two matrices is denoted by A B is given by 

 11 12 11 12 11 11 12 12

21 22 21 22 21 21 22 22

a a b b a b a b
a a b b a b a b
     

     
     

  

Appendix B: Data 

Table B1: Elephant population estimates. African Elephants population estimates in some sub-

Saharan African countries.   

COUNTRY POPULATION  COUNTRY POPULATION 
South Africa 17270  Swaziland 30 
Nambia 10820  Botswana 156020 
Zimbabwe 99080  Zambia 25270 
Angola 1580  Malawi 2380 
Mozambique 12870  Tanzania 143650 
Kenya 42100  Uganda 10500 
DRC 15150  Rwanda 40 
Ethiopia 260  Sudan 16840 
Central A R 3400  Congo 17800 
Gabon 76700  Cameroon 17920 
Nigeria 430  Benin 2580 
Togo 10  Guinea 210 
Liberia 310  Mali 320 
Niger 90  Chad 350 
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Table B2: Mortality rates for Tsavo National Park. Mortality rates for the Tsavo National Park 

(Kenya), expressed as a percentage per year per annual age group ((Laws, 1969) and  (Corfield, 

1973)) 

Age 
Mortality before 

1970-71 
Mortality during 

1970-71 
 Female  Male  Female  Male  
0-1  36 36 18.2 18.2 
2-5 10.2 10.2 37.6 37.6 
6-10 2.4 2.4 17.1 17.1 
11-15 2.4 2.4 7.8 7.7 

16-20  2.1 2.1 6.5 1.9 
21-25  2 1.6 12.1 3.3 
26-30  2.5 7 29.3 3.7 
31-35  2.5 7.5 28.4 6.5 
36-40  2.6 6.9 61.3 12.1 
41-45  3 8.8 33.4 6.1 
46-50  8.1 27.4 66.3 26.7 
51-55  18.4 19 83.7 31.3 
56-60  29.8 100 63.2 100 

 

Table B3: Demography rates AENP, Woodd A.M. (1999). 

Demographic parameters for the Addo elephant population 
based on data for the period 1976--1998 

Age of first conception 11.2 

 
Intercalf interval 3.8 
Age of reproductive senescence 49.2 
Age and Sex specific mortalities Age class Male Female 

 

0 0.062 0.062 

1--9 0.009 0.001 
10--19 0.02 0.004 
20--29 0.031 0.003 
30--44 0.051 0.012 
45--59 1 0.016 

60+ 
 

1 
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Table B4: Demography rates. Gough K.F. and Kerley I.H.G. (2006) 

 
Mortality rate (%) 

   
Age class Male Female Total z P 

0 3.5 4.6 4 0.23 0.82 
1 0 0.6 0.3 0.05 0.96 
2 1.8 0 1 1.05 0.29 
3 2 0.4 1.7 4.98 0.001 
4 0.7 0 0.4 2.89 0.004 

5–9 0.4 0.2 0.3 0.04 0.97 
10–14 0.8 0 0.4 6.05 0.001 
15–19 1.9 0.6 1.1 1.11 0.27 
20–24 3.4 0 1.4 2.51 0.01 
25–29 4.7 0.5 2.1 2.18 0.03 
30–34 5.4 0 1.9 1.64 0.03 
35–39 10.6 2.3 5.3 1.65 0.1 
40–44 7.7 2.4 4.3 0.04 0.67 
45–49 0 3.2 2.6 

  
50–54 n/a 0 0 

  
55–59 n/a 0 0 

  
60–64 n/a 41.7 41.7 

  
 

Table B4: Age of sexual maturity. Age of sexual maturity in seven different elephant populations 

 

Sample  Mean Age 
of sexual 
maturity  

Confidence 
limits  

Mkomazi  12.24 11.33-13.15  

Mkomazi East  12.18 10.92-13.44  

Tsavo National Park  11.73 10.8-12.66  

Murchison Falls National Park N.  16.28 15.48-17.08  

Murchison Falls National Park S.  17.82 16.96-18.68  

Budongo Forest Reserve  22.38 19.86-24.90  

Luangwa Valley National Park  14 - 
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Table B6: Calving intervals for African Elephant: Lengths of calving intervals for elephant 
populations across Africa. Source: Van Aarde R., Sam Ferreira, Tim Jackson, and Bruce Page. 
(2008). 

 Calving interval (years) 
Locality  Method  Mean   95% Cl  Range  
Addo Individual histories  3.8 –  –  
 Individual histories  3.8 3.6–4.0  –  
 Individual histories  3.3 –  –  
 Cow-calf associations  4 3.3–4.6  –  
Kruger  Placental scars  4.5 4.0–5.0  –  
 Culled samples  3.7 –  –  
Mabula Cow-calf associations  2.4 2.3–2.5  –  
Phinda Cow-calf associations  3.9 3.5–4.3  –  
Pilanesberg  Cow-calf associations  3.3 3.1–3.5  –  
Pongola Cow-calf associations  3.1 2.7–3.5  –  
Amboseli  Individual histories  4.5 –  1.8–11.7  
 Cow-calf associations  4.6 4.1–5.1  –  
Bugongo  Culled samples  7.7 5.4–13.5  –  
Etosha  Culled samples  3.8 –  –  
 Placental scars  2.1 –  –  
 Placental scars  2.5 –  –  
Kasungu  Cow-calf associations  3.9 2.2–5.3  –  
 Cow-calf associations  3.3 –  –  
Kidepo  Culled samples  2.2 –  –  
 Culled samples  3.2 –  –  
Luangwa  Culled samples  3 –  –  
 Placental scars  4 –  –  
Maputo  Cow-calf associations  3.1 3.0–4.2  –  
Mkomazi  Culled samples  2.9 2.6–3.4  –  
Mkomazi East  Culled samples  4.2 3.1–5.0  –  
Murchison 
North  

Culled samples  –  –  2.6–5.8  

 Culled samples  9.1 7.5–11.5  –  
Murchison 
South  

Culled samples  5.6 4.8–6.8  –  

Tsavo  Cow-calf associations  4.6 –  –  
 Cow-calf associations  5 3.2–6.8  –  
 Culled samples  6.8 5.1–10.3  –  
Zambezi  Culled samples  2.8 –  –  
 Culled samples  3.4 –  –  
 Placental scars  3.8 3.0–4.6  –  
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Table B5: Addo National Park elephant population. Gough K.F. and Kerley I.H.G. (2006). 

Year Population Births Deaths Sex ratio 
M/(M+F) 

Exponential  
rate 

Population 
Growth % Mortality 

1976 94 11 0 0.45 0.12 13.3 0 
1977 96 4 2 0.5 0.02 2.1 2.1 
1978 96 2 2 1 0 0 2.1 
1979 98 9 7 0.38 0.02 2.1 3.1 

1980 103 5 0 0.4 0.05 5.1 0 
1981 111 12 4 0.25 0.07 7.8 3.6 
1982 113 4 2 0.75 0.02 1.8 1.8 
1983 120 8 1 0.75 0.06 6.2 0.8 
1984 128 9 1 0.67 0.06 6.7 0.8 
1985 138 10 0 0.3 0.08 7.8 0 
1986 142 11 7 0.5 0.03 2.9 4.9 
1987 151 10 1 0.5 0.06 6.3 0.7 
1988 160 11 2 0.36 0.06 6 1.3 
1989 170 10 0 0.4 0.06 6.3 0 
1990 181 11 0 0.36 0.06 6.5 0 
1991 189 8 0 0.5 0.04 4.4 0 
1992 199 12 2 0.83 0.05 5.3 1 
1993 205 13 7 0.69 0.03 3 3.4 
1994 220 15 0 0.67 0.07 7.3 0 
1995 232 18 6 0.69 0.05 5.5 2.6 
1996 249 19 2 0.32 0.07 7.3 0.8 
1997 261 17 5 0.56 0.05 4.8 1.9 
1998 284 29 6 0.36 0.08 8.8 2.1 
1999 315 32 1 0.66 0.1 10.9 0.3 
2000 324 15 6 0.4 0.03 2.9 1.9 
2001 336 16 4 0.81 0.04 3.7 1.2 
2002 377 42 1 0.62 0.12 12.2 0.3 
2003 388 18 7 0.42 0.03 2.9 1.8 

 
 
 
 
 
 
 
 
 
 
 
 
 



166 

 

 

 

Appendix C. Sample R-codes 

Sample R-codes from chapter two 

#--------------------------------------------------------------------------------------------------------------------- 
#Theta-logistic dynamics with and without error  
#--------------------------------------------------------------------------------------------------------------------- 
>Time<-seq(0.1,40,0.2);   set.seed(0);    paramaters <- c(r <- 0.65, alpha <- 0.0001, theta = 1) 
>Abundance <- sapply(theta, function(th) {paramaters["theta"] <- th 

+ode(y = 1, Time, thetalogistic, paramaters)[, 2]}) 
>matplot(Time, Abundance, type = "l",lwd=2) 
>legend("bottomright", legend = paste("theta =", c(1,0.9,0.7,0.5,0.3)),lty = 5:1,lwd=2, bty = "n") 
>title("(A)Theta logistic growths without Error ",cex.main = 0.85,) 
#--------------------------------------------------------------------------------------------------------------------- 
#Theta-logistic dynamics 
#--------------------------------------------------------------------------------------------------------------------- 
>Time<-seq(0.1,80,0.2);   set.seed(0);   paramaters <- c(r <- 0.25, alpha <- 0.0001, theta = 1) 
>Abundance <- sapply(theta, function(th) {paramaters["theta"] <- th 

+ode(y = 20, Time, thetalogistic, paramaters)[, 2]+rnorm(1,mean=0,sd=1.25)}) 
>matplot(Time, Abundance, type = "l",lwd=2) 
>legend("topleft", legend = paste("theta =", c(1,0.9,0.7,0.5,0.3)),lty = 5:1,lwd=2, bty = "n") 
>title("(B)Theta logistic growths with Error ",cex.main = 0.85) 
#--------------------------------------------------------------------------------------------------------------------- 
#Deterministic Riker dynamical model  
#--------------------------------------------------------------------------------------------------------------------- 
>ricker <- function(alpha = 0.001, rd = 0.5, N0 = 2, t = 400) { N <- c(N0, numeric(t)) 

+for (i in 1:t) N[i + 1] <- {N[i] *exp (rd * (1 - alpha * N[i])) } 
  +return(N)} 
#--------------------------------------------------------------------------------------------------------------------- 
#Deterministic Riker dynamical model with declining K 
#--------------------------------------------------------------------------------------------------------------------- 
>ricker2 <- function(alpha = 0.001, beta=0.002,rd = 0.5, N0 = 2, t = 400)  

+{ N <- c(N0, numeric(t)) 
+for (i in 1:t) N[i + 1] <- {N[i] *exp (rd * (1 - alpha * N[i]/(1-beta)^i)) } 
+ return(N)} 

>Abundance1 <- sapply(R, function(th) {ricker(rd=th)}) 
>Abundance2 <- sapply(R, function(th) {ricker2(rd=th)}) 
>par(mfrow=c(1,2)) # Two plots. 
>matplot(1:401,Abundance1,type="l",lty=1:5,ylab="Abundance",xlab="Time",lwd=2) 
>title("[a]Population Simulations with Constant K ",cex.main = 0.85,) 
>matplot(1:401,Abundance2,type="l",lty=1:5,ylab="Abundance",xlab="Time",lwd=2) 
>title("[b]Population Simulations with Declining K ",cex.main = 0.85,) 
#--------------------------------------------------------------------------------------------------------------------- 
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#--------------------------------------------------------------------------------------------------------------------- 
#Ricker population model with process error 
#--------------------------------------------------------------------------------------------------------------------- 
dricker <- function(alpha = 0.001, rd = 0.5, N0 = 2, t = 400) {N <- c(N0, numeric(t)) 

+for (i in 1:t) N[i + 1] <- {N[i] *exp (rd * (1 - alpha * N[i])+rnorm(1,0,0.125))} 
  +return(N)} 
#--------------------------------------------------------------------------------------------------------------------- 
#Ricker population Model with process error and declining K 
#--------------------------------------------------------------------------------------------------------------------- 
>dricker2 <- function(alpha = 0.001, beta=0.002,rd = 0.5, N0 = 2, t = 400) { 

+N <- c(N0, numeric(t)) 
+for (i in 1:t) N[i + 1] <- { 
+N[i] *exp (rd * (1 - alpha * N[i]/(1-beta)^i)+rnorm(1,0,0.125))} 

  +return(N)} 
#--------------------------------------------------------------------------------------------------------------------- 
# Riker dynamical model with process and measurement error plot 
#--------------------------------------------------------------------------------------------------------------------- 
>par(mfrow=c(1,2));    Time<-1:401 
>Abundance_1 <- sapply(R, function(th) {dricker(rd=th)}) 
>matplot(Time,Abundance_1,type="l",lty=1:5,lwd=1) 
>abline(v=50,lty=2,lwd=2); abline(v=54,lty=2,lwd=2); abline(h=500,lty=2,lwd=2) 
>title("(a)Population Simulations with Process Error ",cex.main = 0.85,) 
#--------------------------------------------------------------------------------------------------------------------- 
# Riker dynamical model with process and measurement error; declining K plot 
#--------------------------------------------------------------------------------------------------------------------- 
>Time<-1:401 
>Abundance_2 <- sapply(R, function(th) {dricker2(rd=th)}) 
>matplot(Time,Abundance_2,type="l",lty=1:5,lwd=1) 
>abline(v=50,lty=2,lwd=2);   abline(v=54,lty=2,lwd=2);  abline(h=400,lty=2,lwd=2) 
>title("(b)Population Simulations with Declining K ",cex.main = 0.85,) 
#--------------------------------------------------------------------------------------------------------------------- 

Sample R-code from chapter four 

#--------------------------------------------------------------------------------------------------------------------- 
>library(lattice); library(MASS); library(tseries); 
>library(timeSeries);library(timeDate); library(dlm); 
#--------------------------------------------------------------------------------------------------------------------- 
>par(mfrow=c(1,2)) 
>anp.fit1<-arima(Total,order=c(0,2,2)) #Total is the population abundance data 
>anp.pr=predict(anp.fit1,n.ahead=40)  #Predict using fit above 
>cbind(c(2009:2048),c(round(anp.pr$pred)),c(round(anp.pr$se))) 

U = anp.pr$pred + 1.64*anp.pr$se #confidence limits 
L = anp.pr$pred - 1.64*anp.pr$se 
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U1 = anp.pr$pred + 2*anp.pr$se 
L1 = anp.pr$pred - 2*anp.pr$se 
U2 = anp.pr$pred + 2.6*anp.pr$se 
L2 = anp.pr$pred - 2.6*anp.pr$se 

> YEAR=1973:2008 
>plot(YEAR, Total, type="o", xlim=c(1973,2050),  #Plot the data 
>ylim=c(300,3500), xlab="Year",ylab="Population Forecast",main="a)  

ARIMA(0,2,2) forecasts for ANP") 
>lines(2009:2048,anp.pr$pred, col="red", type="o")  #Plot the predicted values 
>lines(2009:2048,U1, col="blue", lty="dashed",lwd=2) #Plot confidence limits 
>lines(2009:2048,L1, col="blue", lty="dashed",lwd=2) 
>lines(2009:2048,U2, col="black", lty="dashed",lwd=2) 
>lines(2009:2048,L2, col="black", lty="dashed",lwd=2) 
>lines(2009:2048,U, col="red", lty="dashed",lwd=2) 
>lines(2009:2048,L, col="red", lty="dashed",lwd=2) #Plot confidence limits 
>abline(v=2008,lty="dotted") 
>AIC(anp.fit1)/length(Total)   #model diagnosis 
>hist(resid(anp.fit1),col="grey")  #model diagnosis 
>tsdiag(anp.fit1)    #model diagnosis 
>title(main=("a) Model ARIMA(0,2,2) for ANP diagnosis") 
#--------------------------------------------------------------------------------------------------------------------- 
# Bootstrapping: 1967:1999 KNP 
#--------------------------------------------------------------------------------------------------------------------- 
>PopSimulate <- function(R, N0, years = 21, sims = 50) { 

+R_Mat = matrix(sample(R, size =no.sims * years, replace = TRUE), 
+nrow = years, ncol = sims) 
+population <- numeric(years + 1) 
+population[1] <- N0 
+POPULATIONS <- sapply(1:no.sims, function(i) { 
+for (t in 1:years) population[t + 1] <- round(population[t] * 
+R_Mat[t, i], 0) 
+population}) 

  +return(POPULATIONS)} 
>set.seed(100) 
>POPULATION2 <- PopSimulate(R = Observe_R2, N0 = 9152, sims = 50) 
>matplot( 1999:(1999+years),POPULATION2, type = "l", log = "y",lwd=2) 
>title("Kruger NP Prediction R 1967:1999 ",cex.main = 0.95,) 
>N2.2050 <- POPULATION2[52, ] 
>summary(N2.2050, digits = 6) 
>quantile(N2.2050, prob = c(0.0275, 0.975)) 
>par(mfrow=c(1,2))  # Plotting the graphs 
>hist(N2.2050, main = "N",col="darkgrey") 
>hist(log10(N2.2050 + 1), main = "log(N+1)",col="darkgrey") 
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>abline(v = log10(quantile(N2.2050, prob = c(0.0275, 0.975)) +1), lty = 3) 
#--------------------------------------------------------------------------------------------------------------------- 

Sample R-codes from chapter five 

#--------------------------------------------------------------------------------------------------------------------- 
# Data, box plot and summary statistics of calving interval. Figure 5.2  
#--------------------------------------------------------------------------------------------------------------------- 
Eigenanalysis 
E<-eigen(A)    # eigenanalysis 
lambda<-Re(E$values[1])  # dominant eigenvalue 
## right eigenvector 
w<-Re(E$vectors[,1])  # stable age distribution 
w<-v/sum(v)    # standardize to total density 
## left eigenvector 
ET<- eigen(t(A) 
v<- Re(ET$vectors[,1]) 
v<-w/w[1]    # reproductive value 
#--------------------------------------------------------------------------------------------------------------------- 
E<-eigen(A)    # eigenanalysis 
lambda<-Re(E$values[1]) # dominant eigenvalue 
w<-Re(E$vectors[,1])   # stable age distribution 
w<-v/sum(v)    # standardize to total density 
ET<- eigen(t(A) 
v<- Re(ET$vectors[,1]) 
v<-w/w[1]    # reproductive value 
#--------------------------------------------------------------------------------------------------------------------- 
P <- as.vector(v%*%w) 
W <- t(w) 
M <- v %*%W  # Sensitivities of lambda to matrix elements 
SE <- M/P   # Elasticities of lambda to matrix elements 
elas <- A/lambda*SE 
#--------------------------------------------------------------------------------------------------------------------- 
# Deterministic matrix population projection, example. 
#--------------------------------------------------------------------------------------------------------------------- 
# ANP model 
>L15=diag(x=0,nrow=15,ncol=15) 
>L15[1,]<-c(0,0,0,0.45,0.45,0.45,0.45,0.45,0.45,0.45,0.45,0.45,0.45,0.45,0.45); 
>L15[2,1]=0.94*0.99^3; L15[3,2]=0.99^4; L15[4,3]=(0.98^2)*0.98^2 
>L15[5,4]=0.98^4; L15[6,5]=0.98^4;L15[7,6]=0.99^4;L15[8,7]=0.99^4 
>L15[9,8]=0.99^2*(0.97^2);L15[10,9]=0.97^4;L15[11,10]=0.97^4;L15[12,11]=0.97^4 
>L15[13,12]=0.95^4;L15[14,13]=0.95^4; L15[15,14]=0.95^4; L15; eigen(L15) 
#--------------------------------------------------------------------------------------------------------------------- 
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#Simulations and projection graph) 
>N1<-matrix(c(1, 2, 2,2,2,2, 2, 3,5,7,9,9,7,6,5), ncol = 1); years <- 30 
>projections <- matrix(0, nrow = nrow(L15), ncol = years +1) 
>totals <- matrix(0, nrow = years, ncol = 1); projections[, 1] <- N1; totals[1]=sum(N1) 
>for (i in 1:years) {projections[, i + 1] <- L15 %*% projections[,i]; 

totals[i+1]=sum(projections[,i+1])} 
>Time<-ts(seq(1930,2050,4)) 
>matplot(seq(1930,2050,4,start=1930,frequency=4), t(projections), type = "l",  

lty = 1:15,lwd=1,col = 1, ylab = "Class Abundance", xlab = "Years",ylim=c(0,3000)) 
 >legend("topleft", legend = c("0-3 Years", "4-7 Years", "8-11 Years","12-15 Years", 
  "16-19 Years","20-23 Years", "24-27 Years", "28-31 Years","32-35 Years", "36-39 Years", 

"40-43 Years","44-47 Years", "48-51 Years","52-55 Years","56-59 Years","Total"), 
lty = c(1:6,1:6,1,2,3,1),lwd=c(rep(1,15),2), col = 1, bty = "n") 

>lines(seq(1930,2050,4),totals,lwd=2) 
>title("b) Population ANP: 4.5 Year Calving Interval ",cex.main = 1) 
>points(1980,276,lwd=2,col="red"); points(1990,412,lwd=2,col="red") 
>points(2000,599,lwd=2,col="red"); points(2002,659,lwd=2,col="red") 
#--------------------------------------------------------------------------------------------------------------------- 
# Stochastic Sub-process model matrix model (Figure 5.13) 
#--------------------------------------------------------------------------------------------------------------------- 
#data 
>t<-c(1973,1974,1975,1976,1977,1978,1979,1980,1981,1982,1983,1984,1985,1986,1987,  

1988,1989,1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002) 
>p<-c(184,195,202,201,210,210,226,232,239,238,240,241,234,231,228, 

238,257, 270,282,305,305,330,337,360,365,371,379,401,418,422) 
>f<-c(296,300,302,289,282,263,262,276,305,319,333,372,353,375,379,  

401,397,412,425,440,460,474,496,535,556,572,575,599,650,659) 
#--------------------------------------------------------------------------------------------------------------------- 
># Simulating stochastic sub-process models 
># Stage structured growth - multiple steps 
>s1<-matrix(c(52, 57,27), ncol = 1);   years <- 90; 
>sproject1 <- matrix(0, nrow = length(s1), ncol = years +1) 
>sproject2 <- matrix(0, nrow = length(s1), ncol = years +1) 
>sproject3 <- matrix(0, nrow = length(s1), ncol = years +1) 
>Total <- matrix(0, nrow = 1, ncol = years +1) 
>sproject1[, 1] <- s1; sproject2[, 1] <- s1; sproject3[, 1] <- s1; Total[1]=sum(s1); 
>for (i in 1:years) { 
   sproject1[1, i + 1] <- rbinom(1,round(sproject3[1,i],0),0.91) 
   sproject1[2, i + 1] <- rbinom(1,round(sproject3[2,i],0),0.95) 
   sproject1[3, i + 1] <- rbinom(1,round(sproject3[3,i],0),0.94) 
   sproject2[1, i + 1]=sproject1[1, i + 1] 
   sproject2[2, i + 1]=((1/10)*sproject1[1, i + 1])+sproject1[2, i + 1] 
   sproject2[3, i + 1]=((1/30)*sproject1[2, i + 1])+sproject1[3, i + 1] 
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   sproject3[1, i + 1] <- sproject2[1, i+1]+((sproject2[2, i+1])*0.11)+ ((sproject2[3, i+1 ])*0.11) 
   sproject3[2, i + 1] <- sproject2[2, i+1 ] 
   sproject3[3, i + 1] <- sproject2[3, i+1 ] 
   Total[i+1]=sproject3[1, i+1 ]+sproject3[2, i+1 ]+sproject3[3, i+1 ] 
>} 
>Time<-ts(seq(1950,2040,1)) 
>Data<-cbind(t(sproject3),t(Total)) 
>matplot(seq(1950,2040,1,start=1950,frequency=1), Data, type = "l", lty = c(1,2,3,4),col=1, 
 lwd=2, ylab = "Class Abundance", xlab = "Years",xlim=c(1970,2040), 
 ylim=c(0,1500)) 
 legend("topleft", legend = c("0-10 Years", "11-40 Years", "41-60 Years","Female"), 
  lty = 1:4,lwd=2, col = 1, bty = "n") 
>title("b) Stochastic 3-CEPMM (ANP- 4.6 years calving interval)",cex.main = 0.95) 
>points(t,p,lwd=1,col="grey") 
>points(t,f,lwd=2,col="black") 
#--------------------------------------------------------------------------------------------------------------------- 
 
 


