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EXECUTIVE SUMMARY 
The daily rainfall data is one type of data that is not easy to fit a simple model. This is due 

to the fact that there may be several days when it rains and it doesn’t rain in other days. 

Besides, this special feature of rainfall, it has spatial dependence which complicates its 

predictions under the classical paradigm. In addition, if the daily amount of rainfall is taken 

over time say one year or so together with appropriately chosen covariates, temporal 

effects may also affect the reliability of prediction rule. Furthermore, we may need the 

average amount of rainfall on a particular day at given sites where we have ongoing 

experiments with unknown amount of rainfall. We propose to fit a semi-continuous model 

using Bayesian method and take advantage of Stochastic Partial Differential Equation 

(SPDE) approach as provided in the Integrated Nested Laplace Approximation (INLA). 

Due to scares resources, we may not be able to observe the amount or rainfall recorded 

within the entire statistical population. Sampled data can therefore be obtained from such 

sources including satellite images and weather stations. Irrespective of the data source, we 

need to determine with certainty;  the average daily rainfall at specified points for the days 

of interest , distribution of rainfall within  and outside the practical range over time and if 

possible interpolate and extrapolate  taking into account effects of the available 

covariates, spatial dependence and temporal effects. 

Surely, this problem is beyond classical interpolation methods like simple or ordinary 

kriging where; trend surface function is constant, variogram is constant in the whole area 

of interest and the target variable is assumed to follow approximately Gaussian 

distribution which at least is untrue in this case.  

Since, we always try to go for the most flexible, most comprehensive and the most robust 

technique, we have adopted a Bayesian method in this work. Both covariates and random 

effects will be treated as random. We know that covariates are fixed effects; therefore the 

randomness here is on the uncertainty about their true values. We will create two 

outcome variables; one for the occurrence of rainfall and the other for the amount of 

rainfall. The occurrence which depict either success or failure probability will be assume a 

binomial likelihood while the amount which is strictly positive will assume a gamma 

likelihood. On the other hand, fixed effects which include elevation and distance from the 
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sea will assume             where 0.001 is the precision parameter equivalent to 

variance of 1000 while the random effects; that is temporal effects will assume an 

autoregressive process of order one (ar1) and the spatial dependence will assume 

stochastic partial differential equation (SPDE). Due to the challenges that MCMC schemes 

have faced over the years, that is convergence and running time, we adopt the Bayesian 

technique using numerical methods as given by the Integrated Nested Laplace 

Approximation (INLA).   
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CHAPTER ONE 

1.0 Background of the study 

The aim of this project was to build robust models that may address spatial and temporal 

variation in data that may lead to misinterpretation of analysis results. We may want to 

predict agricultural produce based on a few sampled known farms in a given country. The 

produce is known to depend on a number of covariates, among them amount of rainfall 

which may largely have both space (spatial) effect and time (temporal) effect (or 

variation). What would be the best way to handle this situation?  

I suggest building two Bayesian spatial models where amount of rainfall is the dependent 

variable and its predictors are elevation and distance from the sea among other such 

covariates. We interpolate amount of rainfall and obtain the predictive means on specific 

points where the target farms are located. If the target farms are everywhere (the 

statistical population) then we obtain the corresponding predictive means for very point 

on the surface.  Having obtained the required estimates we can then build the second 

regression model with crop yield and the independent variables(predictor variables) 

including rainfall (the previously obtained predictive means will be used as the rainfall 

values) and  other predictors of interest included in the regression. If our interest was only 

rainfall interpolation, then the task ends at first model.  Data sources for rainfall might 

include satellite imagery, weather stations among other such sources. Whichever source, 

we can obtain the posterior estimates (updated means) for the parameters of interest as 

well as predictive means for the target locations whose amount of rainfall were 

unpredictable.  

When all the parameters of interest are represented by an appropriately chosen 

probability distribution we can obtain an exact posterior distributions (the estimate given 

data, assumption which might include the assumed prior distribution and likelihood) using 

R-INLA and subsequently the predictive means. Predictive means are not similar to 

posterior means, of course they are related.  Whereas, posterior means is the estimate 

given the data and other sets of assumptions, predictive means normally done after 

estimation is the posterior mean given the updated mean (previously obtained posterior 

mean) and information from the data excluding the one we are predicting. If we have say 
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100 observations in the data, posterior mean is the mean of parameter estimate given set 

of assumptions. Take for instance we wanted to know the value of 101th observation from 

another location.  Here we take into consideration the fact that our belief has been already 

updated and find the resultant posterior mean given the updated mean and 100 

observations. This can subsequently be done for all the possible unvisited locations which 

turn out to be interpolation if our target locations are equivalent to statistical population.  

One major breakthrough in Bayesian estimation came with invention of software called 

INLA which has been implemented as an R package (http://www.r-inla.org/home). With 

INLA, a number of statistical analyses are possible.  

The Bayesian methods in INLA are quite similar to Markov Chain Monte Carlo (MCMC) 

methods, commonly used in Bayesian analysis preferably in WINBUGS software, except: 

MCMC method requires that the simulation converges for one to be pretty sure that we 

have a reliable posterior distribution; otherwise we may obtain false positive estimates. 

Convergence is not guaranteed.  Also, even if we have convergence, what is normally 

referred to as posterior distribution is always almost an approximation to the posterior 

distribution but not the posterior distribution itself. We have worked in this scenario 

because this has provided a major breakthrough to Bayesian methods from around 1990. 

However, reducing the challenges of estimation such as long computing time and the 

difficulty of reaching convergence that affected MCMC based methods have always been 

intensified. INLA method though is still under development has since addressed this 

challenge. 

 INLA uses numerical methods to obtain “exact posterior distributions”. Where MCMC 

algorithm needs hours or days to run, INLA method provide more precise estimates in 

seconds or minutes (http://www.math.ntnu.no/~hrue/r-inla.org/papers/inla-rss.pdf) 

As in most analysis cases, we can adjust our assumptions when we wish to meet certain 

goals. Consider the semi-continuous case, where rainfall amount can only be represented 

logically as a positive value. As is customary in INLA, we use a Gaussian likelihood (the 

normal distribution), that assumes the variable rainfall can take any value from negative 

infinity to positive infinity. In such circumstances, we transform the variable by taking the 

http://www.r-inla.org/home
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logarithm, and later transform back the estimates we obtained for purposes of 

interpretation. In addition, we could use a gamma likelihood in which       where   

is amount of rainfall. In both cases, only a single likelihood is used rather than the previous 

case. Gaussian likelihood is computationally more effective than otherwise. Perhaps, due 

to the fact that every scenario tends to be Gaussian as sample size grows large. This could 

be one of the other advantages of using R-INLA. Applicability of likelihoods like Gamma, 

beta, zero-inflated discrete related distributions among many others have since been 

useful.  

In my analysis, I attached prior distribution to each of the parameters of interest. By 

default fixed effects (elevation and sea distance) are assumed to be from the normal 

distribution with mean zero and a small precision of 0.001, equivalent to variance of 1000, 

in notation form,             . The temporal correlation of rainfall values was assumed 

to take the form of Auto-regression order 1 (AR1) or order 2 (AR2), beyond which may not 

be computationally effective. Whereas in temporal effect; Markov property observations 

are related such that the (                                  ), in spatial effect; 

Markov property                                                are related by Mat  rn 

correlation function which incorporates distance between each point from the others. This 

leads to a sparse matrix rather than the traditional variance covariance matrix which is 

associated with the “big n” problem while using MCMC methods.  This is the basis of 

stochastic Partial Differential Equations (SPDE). Note: SPDE is used here as a probability 

distribution (random effect) that best approximates the space effect in a continuous 

domain setting.  

1.1 Problem statement 

Climate data provides a common example of data structure that requires spatial statistical 

methods for analysis. The daily rainfall data is a typical example of such datasets that is not easy to 

fit a simple model. This is partly because there are days when it rains and days when it doesn’t 

rain. The rainfall distribution is very asymmetric. Similarly, taking a point at which no rain was 

recorded, then it is likely that there is no rain at neighboring sites. In addition, choosing a site 

where larger rainfall was recorded then we are likely to find rainfall at neighboring sites.  If daily 

rainfall is recorded say, for a year or so, then we have an outcome with both spatial and temporal 

effects. Besides this, rainfall is a mixture of both occurrence and amount variables and as such no 

form of data transformation would be appropriate for such scenarios.  The principal problem 

however, is that we have ongoing experiments at locations with unknown rainfall measurement.  
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So we build a jointly model for rainfall, taking into account these facts.  We build a semi-continuous 

model that is a jointly model to occurrence and to positive values and interpolate accordingly. We 

will use a simple dataset from Kenya sampled weather stations to illustrate the method. 

1.2 Study objective 

The main objective of this study is to present the basic ingredients of the link between 

continuous domain and Markov models and show how to perform Bayesian spatial and 

spatiotemporal inference on a semi-continuous outcome using the R-INLA software 

package (http://www.r-inla.org). 

1.3 Significance of the study 

We might want to predict the amount of say maize production in the country and identify 

places with the highest production and more interestingly predict steps forward where n is 

large enough. This is a complex problem to focus on given that production depends on 

climate factors like rainfall with high variability. We might not know the average amount of 

rainfall at the known farms hence the need to develop a model using the data collected 

from the few available weather stations and predict based on the Bayesian model, the 

average amount of rainfall from the unvisited locations (non-weather stations including 

targeted farms). The predictive posterior means can then be used as covariate in the 

second model which in our view is more reliable and the second model may be more 

robust to predict the production with certainty. 
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CHAPTER TWO                                                                                                 

2.0 REVIEW OF CLASSICAL SPATIAL STATISTICS                       

2.1 Introduction  

The daily rainfall data is one type of data that is not easy to fit a simple model. This is due 

to the fact that there are not days when it rains and it rains in other days, the distribution 

of rainfall is logically asymmetric. Besides, this special feature of rainfall, it also have spatial 

dependence which complicates its predictions under the classical paradigm. In addition, if 

the daily amount of rainfall is taken over time say one year together with appropriately 

chosen covariates, temporal effects may also affect the reliability of prediction rule. In 

some cases, researchers have ignored the spatial effect and concentrated on a uni-

dimensional analysis of time series which has then been used to predict the future.  

Due to scares resources, we may not be able to observe the amount or rainfall recorded 

within the entire statistical population. Sampled data can therefore be obtained from such 

sources including satellite images and weather stations. Irrespective of the data source, we 

need to determine with certainty;  the mean daily rainfall at specified points for the days 

of interest , distribution of rainfall within  and outside the practical range over time and if 

possible interpolate and extrapolate  taking into account effects of the available 

covariates, spatial dependence and temporal effects. 

Due to the climatic variations, farmers for instance cannot plan for the beginning of 

growing season with some degree of certainty.  Other factors have since contributed to 

climate change and it has been difficult to predict future scenarios with certainty. A robust 

model will enhance climate adaptation and mitigation.  In East Africa for instance, the 

summer beginning of growing season used to be around January to early February. This 

has since been fluctuating between March and April and in our view, a robust model that 

account for the uncertainty may be necessary to predict future scenarios. 

Surely, this problem is beyond simple or ordinary kriging where; trend surface function is 

constant, variogram is constant in the whole area of interest and the target variable is 

assumed to follow approximately Gaussian distribution which at least is untrue in this case. 

The constant mean is usually subtracted from each of the data points and the residuals 

interpolated. 
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Similarly, the widely used universal kriging (kriging with trend) which has been called 

names depending on an individual’s interest including co-kriging, regression kriging and 

such other names. Here, a trend is modeled across the domain. The fitted model may 

contain both fixed effects (covariates) and random effects in the classical meaning which 

might include the temporal effects. The trend (fitted) values are subtracted from the point 

data values and the residuals interpolated. But, as in ordinary kriging, the variogram is 

constant in the whole area of interest and the outcome expected to be Gaussian so as to 

be computationally effective (Hengl, 2009). 

Indicator and probability kriging in which a threshold is established and  the probability 

that each data point is greater than the established threshold  interpolated might be 

irrelevant in this case where  we have covariates and other effects . In our view, this can be 

a more improved version of simple or ordinary kriging. 

A model may have to represent a reality, but it is not itself a reality.  According to (Box, 

1976) “All models are wrong but some are useful”. While a model can never be truth, a 

model might be ranked from very useful, to useful, to somewhat useful, to finally 

essentially useless. 

As we saw, there are many interpolation techniques that can be used to map rainfall and 

other climatic phenomena. In fact, we could not exhaust them. Researchers have 

sometimes adopted modified versions of the above techniques for instance weighted least 

squares have been used to obtain fitted values in regression kriging with the hope that the 

magnitude of noise will be minimized. 

In reality, we always try to go for the most flexible, most comprehensive and the most 

robust technique. In fact, many (geo) statisticians hence researchers believe that there is 

only one Best Linear Unbiased Prediction (BLUP) model for spatial data. 

Diggle and Ribeiro, 2007 (Model based geostatistics (Interpolation in a continuous space), 

page 157) after a six book chapters on classical interpolation techniques wrote in their 

final chapter (Bayesian method) “An obvious concern with the two phase approach in 

classical interpolation is that of ignoring uncertainty in the parameter estimates which may 

lead to optimistic assessments of predictive accuracy. It is possible to address this concern 
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without being Bayesian, but in our view the Bayesian approach gives a more elegant 

solution and it is the one which we have adopted in our own work”. 

(Cressie, 1993)asserts that one way to overcome the limitations of assumed constant 

variogram across the study area is by adoption of Bayesian methods which at the time had 

well-grounded theory in literature without computing. 

(Votano, Parham, & Hall, 2004)also emphasized this in his introduction to a 432 page book 

on Spatial data analysis theory and practice by saying “Bayesian approaches attracted 

attention in the 1990’s, in part because of availability of numerical methods within new 

software for fitting a wide range of models. Prior to 1990’s much spatial modeling was 

based on spatial modification to the linear regression model in which, for example, spatial 

dependence was modeled through the response variable and semi-variograms. There were 

few applications of Bayesian methods (Hepple, 1979). Bayesian methods despite having 

challenges of computational efficiency, have introduced more interesting ways for 

modeling the effects of spatial dependence” 

The invention of WinBugs for Bayesians using Monte-Carlo methods was therefore a major 

breakthrough in early 1990’s (Congdon, 2006) and (Ntzoufras, 2009). Since it uses the 

principle of Markov chain (present outcome depend on its immediate past), Metropolis 

and Gibbs algorithms were invented to cater for both dependent and independent 

outcomes. Despite this development, MCMC methods still faced computational and 

convergence challenges and many researchers would prefer the traditional classical 

methods than one that would run for hours or days.  Also, Mathematicians and 

statisticians concentrated on the theory of Bayesian methods which indeed is an applied 

mathematics problem.  Instead, researchers were shy getting involved mathematical 

jargons and preferred the said traditional methods for convenience (P. J. Diggle, 2011).  

INLA software which is also available as an R package (R-INLA) has since addressed these 

challenges.  We might not have any valid reason for assuming that the coefficients of 

independent variables are constants and unknown  any more especially now that a 

researcher friendly software is available that runs in seconds or minutes where MCMC 

could take hours or days besides being convergence problem free. That is Integrated 

Nested Laplace Approximation (INLA). 
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2.2 History of Spatial statistics 

It is past of human nature to discover patterns from a seemingly arbitrary set of events. 

According to applied spatial statistics for public health data, a book by Walter and Samuel 

Wilks, 1965, we are taught from an early age to `correct the dot, learning that if we correct 

the right dots in the right way, a meaningful picture will emerge. People around the world 

look to the right sky and create patterns among the stars. 

Although best known among spatial analysts for the broad street maps, it was Dr. Snow 

careful case definition and analysis of cholera deaths in a wider area of London that placed 

him among the founders of epidemiology rather than from his maps (Lilienfeld and stolley, 

1984) central to this was Snows. Natural experiment, where he categorized cholera deaths 

by two water companies, one drawing waters upstream from London (and its sewage) the 

other downstream. The water company service was so intermingled that in many cases a 

single house, has a supply different from that on either side (Snow 1936 p.75) 

This in addition to maps, study design and simple spatial statistics were important tools in 

Snows analysis. 

According to Walter and Samuel Wilks, 2004, applying statistical methods in a spatial 

setting raises several challenges. Geographer and statistician (Tobler, 1970) summarized a 

key component   affecting any analysis of spatially referenced data through his widely 

quoted and paraphrased first law of geography  

Everything  is related to everything  else, but near things are more related  than far things, 

(Tobler, 1970).This law succinctly defines the statistical  notion of(positive) spatial 

autocorrelation, in which .pairs of observations taken nearby  are more alike  than those 

taken  farther  apart .Weakening the usual assumption of the independent  observations  

in spatial trend in the probabilistic expected  values of each  observations. 

By allowing spatial correlation between observations, observed spatial similarities in 

observation may be due to a spatial trend, spatial autocorrelation, or both. Second, a set 

of correlated observations contains less statistical information than the same number of 

independent observations. (Cressie, 1993) provides an example of the reduction in 

effective sample size induced by increasing autocorrelation. The result is a reduction in 
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statistical precision in estimation and prediction from a given sample size of a correlated  

data compared to what we would see in the same sample size of independent 

observations e.g. confidence intervals based  on independent  observations are too narrow 

to reflect appropriate  uncertainly  associated with positive correlated data. This is well 

explained in the book applied spatial statistics for public health by Walter and Samuel 

Wilks 2004.  

In reference to model based Geostatistics by (P. Diggle & Ribeiro, 2007), geostatistics  

refers to the  sub branch of spatial statistics in which the data consist of a definite sample 

of measured  values relating to an underlying spatially  continuous phenomenon (P. J. 

Diggle, Menezes, & Su, 2010). Example they gave include; height above sea level   in 

topographical survey; determination of soil properties from care sample e.t.c. According to 

the clue, the subject has an interesting history. Originally, the term geostatistics was 

coined by Georges Malheron and colleagues at Fontainainebleau, France, to describe their 

work addressing problems of spatial ‘prediction arising in the mining industry. See, also 

(Malheron, 1963 and Malhenron, 1971b).The ideas of the Fontainebleau school were 

developed largely independently of the mainstream of spatial statistics. 

These parallel development included work by Kolmogorov, (1941) and Mat ́rn, (1960), 

reprinted as Mat ́rn, (1986) whittle (1954, 1962, 1963), Bartlelt (1964, 1967) and others. 

For instance, according to (P. Diggle & Ribeiro, 2007), the case geostatistical method 

known as simple krigging is equivalent to minimum mean squared error prediction under a 

linear Gaussian model with known parameter values. Papers by Wilson (1971, 1972) and 

the book by Ripley (1981) made this connection explicit. 

(Cressie, 1993) considered geostatistics to be one of three main branches of spatial 

statistics, the others being discrete spatial variation (covering distribution on lattices and 

mark or random fields) and spatial point processes. Fortunately, geostatistical methods are 

now used to in many areas of application and far beyond the mining context in which they 

were originally developed. 

Diggle and Ribeiro, 2007, despite the apparent integration with spatial statistics, much 

geostatistical practice still reflects its independent origins and from a main stream 

statistical perspective, this has some undesirable consequences. 
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In particular, explicit stochastic models are not always declared and adhoc methods of 

inference are often used, rather than the likelihood based methods of inference which are 

central; to modern statistics. 

The potential advantages of using likelihood–based methods of inference according to 

them are twofold. They generally lead more efficient estimation of unknown model 

parameters, and they allow for the property assessment of the uncertainty in spatial 

predictions including an allowance for the effects of uncertainty with the estimation of 

model parameters. 

Diggle, Town and Moyeed, (1998) coined the phrased model based geostatistics to 

describe an approach to geostatistical problems based on the application of formal 

statistical methods under an explicitly    assumed stochastic model. The book by Diggle and 

Ribeiro, 2007 takes this approach. 

According to a book titled “practical  guide  to geostatistical mapping by  (Hengl, 2009), in 

which he clarifies that spatial prediction model(algorithms) can be classified according  to 

the amount of statistical analysis i.e. amount of expert knowledge included in the analysis. 

He classified these models into three groups. First, mechanical (deterministic) models are 

models where arbitrary or empirical parameters are used. No estimate of the model error 

is available and usually no strict assumptions about the variability of a feature exist. 

The most common techniques that belong to this group include;  Thiessen polygons, 

inverse distance interpolation, regression on coordinate natural neighbor’s splines e.t.c. 

The second group, linear statistical (probability) models, the model parameters are 

commonly estimated in an objective way, following probability theory. The predictions are 

accompanied with an estimate of the prediction error. The drawback is that the input data 

set usually needs to satisfy strict statistical assumptions. There are at least four groups of 

linear statistical models; Krigging (plain geostatistics), environmental correlation (e.g. 

regression based) Bayesian based models (e.g. Bayesian maximum entropy) hybrid models 

(e.g. regression krigging) etc. 
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2.3 How classical kriging works 

The Inverse Distance Weighted (IDW) and Spline interpolation tools are referred to as 

deterministic interpolation methods because they are directly based on the surrounding 

measured values or on specified mathematical formulas that determine the smoothness of 

the resulting surface. A second family of interpolation methods consists of geostatistical 

methods, such as kriging, which are based on statistical models that include 

autocorrelation—that is, the statistical relationships among the measured points. Because of 

this, geostatistical techniques not only have the capability of producing a prediction surface 

but also provide some measure of the certainty or accuracy of the predictions. 

Kriging assumes that the distance or direction between sample points reflects a spatial 

correlation that can be used to explain variation in the surface. The Kriging tool fits a 

mathematical function to a specified number of points, or all points within a specified 

radius, to determine the output value for each location. Kriging is a multistep process; it 

includes exploratory statistical analysis of the data, variogram modeling, creating the 

surface, and (optionally) exploring a variance surface. Kriging is most appropriate when 

you know there is a spatially correlated distance or directional bias in the data. It is often 

used in soil science and geology. 

Kriging formula 

Kriging is similar to IDW in that it weights the surrounding measured values to derive a 

prediction for an unmeasured location. The general formula for both interpolators is formed 

as a weighted sum of the data: 

 ̂     ∑   
 
                                                                                                

 where: 

Z(si) = the measured value at the ith location  

λi = an unknown weight for the measured value at the ith location 

s0 = the prediction location 

N = the number of measured values 
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In IDW, the weight, λi, depends solely on the distance to the prediction location. However, 

with the kriging method, the weights are based not only on the distance between the 

measured points and the prediction location but also on the overall spatial arrangement of 

the measured points. To use the spatial arrangement in the weights, the spatial 

autocorrelation must be quantified. Thus, in ordinary kriging, the weight, λi, depends on a 

fitted model to the measured points, the distance to the prediction location, and the spatial 

relationships among the measured values around the prediction location. The following 

sections discuss how the general kriging formula is used to create a map of the prediction 

surface and a map of the accuracy of the predictions. 

Creating a prediction surface with kriging 

To make a prediction with the kriging interpolation method, two tasks are necessary: 

 Uncover the dependency rules. 

 Make the predictions. 

To realize these two tasks, kriging goes through a two-step process: 

1. It creates the variograms and covariance functions to estimate the statistical 

dependence (called spatial autocorrelation) values that depend on the model of 

autocorrelation (fitting a model). 

2. It predicts the unknown values (making a prediction). 

It is because of these two distinct tasks that it has been said that kriging uses the data twice: 

the first time to estimate the spatial autocorrelation of the data and the second to make the 

predictions. 

2.4 Variography 

Fitting a model, or spatial modeling, is also known as structural analysis, or variography. In 

spatial modeling of the structure of the measured points, you begin with a graph of the 

empirical semivariogram, computed with the following equation for all pairs of locations 

separated by distance h: 

Semi-variogram (         ) = 0.5 * average {               
 }                                     
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The formula involves calculating the difference squared between the values of the paired 

locations. 

Often, each pair of locations has a unique distance, and there are often many pairs of points. 

To plot all pairs quickly becomes unmanageable. Instead of plotting each pair, the pairs are 

grouped into lag bins. For example, compute the average semivariance for all pairs of points 

that are greater than 40 meters apart but less than 50 meters. The empirical semivariogram 

is a graph of the averaged semivariogram values on the y-axis and the distance (or lag) on 

the x-axis (see diagram below). 

 

Empirical semivariogram graph example 

Spatial autocorrelation quantifies a basic principle of geography: things that are closer are 

more alike than things farther apart. Thus, pairs of locations that are closer (far left on the x-

axis of the semivariogram cloud) should have more similar values (low on the y-axis of the 

semivariogram cloud). As pairs of locations become farther apart (moving to the right on 

the x-axis of the semivariogram cloud), they should become more dissimilar and have a 

higher squared difference (moving up on the y-axis of the semivariogram cloud). 
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Fitting a model to the empirical semi-variogram 

The next step is to fit a model to the points forming the empirical semivariogram. 

Semivariogram modeling is a key step between spatial description and spatial prediction. 

The main application of kriging is the prediction of attribute values at unsampled locations. 

The empirical semivariogram provides information on the spatial autocorrelation of 

datasets. However, it does not provide information for all possible directions and distances. 

For this reason, and to ensure that kriging predictions have positive kriging variances, it is 

necessary to fit a model—that is, a continuous function or curve—to the empirical 

semivariogram. Abstractly, this is similar to regression analysis, in which a continuous line 

or curve is fitted to the data points. 

To fit a model to the empirical semivariogram, select a function that serves as your model—

for example, a spherical type that rises and levels off for larger distances beyond a certain 

range (see the spherical model example below). There are deviations of the points on the 

empirical semivariogram from the model; some points are above the model curve, and some 

points are below. However, if you add the distance each point is above the line and add the 

distance each point is below the line, the two values should be similar. There are many 

semivariogram models from which to choose. 

2.5 Semi variogram models 

ArcGIS Spatial Analyst provides the following functions from which to choose for 

modeling the empirical semivariogram: 

 Circular 

 Spherical 

 Exponential 

 Gaussian 

 Linear 

The selected model influences the prediction of the unknown values, particularly when the 

shape of the curve near the origin differs significantly. The steeper the curve near the origin, 

the more influence the closest neighbors will have on the prediction. As a result, the output 

surface will be less smooth. Each model is designed to fit different types of phenomena 

more accurately. 
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The diagrams below show two common models and identify how the functions differ: 

A spherical model 
This model shows a progressive decrease of spatial autocorrelation (equivalently, an 

increase of semivariance) until some distance, beyond which autocorrelation is zero. The 

spherical model is one of the most commonly used models. 

 

Spherical model example 

An exponential model example 
This model is applied when spatial autocorrelation decreases exponentially with increasing 

distance. Here, the autocorrelation disappears completely only at an infinite distance. The 

exponential model is also a commonly used model. The choice of which model to use is 

based on the spatial autocorrelation of the data and on prior knowledge of the phenomenon. 
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 Understanding semi-variogram 
As previously discussed, the semi-variogram depicts the spatial autocorrelation of the 

measured sample points. Because of a basic principle of geography (things that are closer 

are more alike), measured points that are close will generally have a smaller difference 

squared than those farther apart. Once each pair of locations is plotted after being binned, a 

model is fit through them. Range, sill, and nugget are commonly used to describe these 

models. 

 

Range and sill 
When you look at the model of a semivariogram, you will notice that at a certain distance 

the model levels out. The distance where the model first flattens is known as the range. 

Sample locations separated by distances closer than the range are spatially auto correlated, 

whereas locations farther apart than the range are not. 

The value at which the semivariogram model attains the range (the value on the y-axis) is 

called the sill. A partial sill is the sill minus the nugget. The nugget is described in the 

following section. 

Nugget 
Theoretically, at zero separation distance (for example, lag = 0), the semivariogram value is 

0. However, at an infinitely small separation distance, the semivariogram often exhibits a 

nugget effect, which is a value greater than 0. If the semivariogram model intercepts the y-

axis at 2, then the nugget is 2. 
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The nugget effect can be attributed to measurement errors or spatial sources of variation at 

distances smaller than the sampling interval (or both). Measurement error occurs because of 

the error inherent in measuring devices. Natural phenomena can vary spatially over a range 

of scales. Variation at microscales smaller than the sampling distances will appear as part of 

the nugget effect. Before collecting data, it is important to gain an understanding of the 

scales of spatial variation in which you are interested. 

The standard version of krigging is called ordinary and simple krigging (O.K). Here the 

prediction are based on the model 
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y     Observation at site i depends on y      observation in its neighbourhood, then the above 

model is likely to inflate type I error which may lead to a good fit when indeed the model is poor 

fit. Such a model cannot be used to predict the future with certainty. 

Spatial lag model 

y         ∑    y       

With     ,
                                     
                                                  

 

In matrix form 

           

           

             

So that                                                 

 

With                                                                         

                    

Cov(     ) may or may not be Zero depending on whether or not they are neighbours. 

2.6 Simple/Ordinary kriging 

Use a known (at least assumed) a constant mean across the domain. Usually used by 

subtracting point data values from mean, interpolating the residuals, and then adding back 

to the mean. 

2.7 Universal kriging (kriging with a trend) 

Uses a modeled trend across the domain. The trend is subtracted from the point data 

values and the residuals interpolated. 

2.8 Indicator kriging 

Point data are transformed to indicator variables (usually binary). For example, a threshold 

value is defined and data points that are below the threshold are assigned a value of 1, 
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otherwise are assigned the value 0. The indicator values are interpolated and the resulting 

surface shows the probabilities (0-1) of exceeding (or being below) the threshold. 

2.9 Probability 

Similar to indicator kriging method but also incorporate the difference between a data 

point value and the defined threshold. Using this “proximity” to threshold information can 

result in more accurate probabilities. 

Where 𝞵 in the constant stationery function (global mean) and      is the spatially 

correlated stochastic part. 

The target variable is said to be stationary if several sample variograms are ‘similar’ (if they 

do not differ statistically) which is referred to as covariance stationary or second order 

stationary. In summary, three important requirements for ordinary and simple krigging are  

Trend function is constant (𝞵=constant). The variogram is constant in the whole area of 

interest. The target variable follows (approximately a normal distribution). In practice, 

these requirements are often not met which is a serious limitation of this form of 

interpolation. 

According to (Hengl, 2009) we always try to go for the most comprehensive and most 

robust technique (Preferably implemented in a software with a user friendly GUI). In fact, 

many (geo) statisticians believe that there is only one, best linear unbiased prediction 

(BLUP) model for spatial data, from which all other techniques can be derived. This is 

echoed by (Gotway and Stroup, 1997, Stein 1999, Christensen 2001).He introduces the 

concept of regression krigging, a superior version to .ordinary and simple krigging .It 

comprises of methods including universal krigging, krigging with external drift and co-

krigging. 

Despite the above development, all the geo (statistician) have a common believe that 

approximate Bayesian method will provide the most robust prediction of the outcome. 

(Peter Diggle, 2010) in his support for a Bayesian approach to spatial statistics introduces 

preferential sampling once more in Bayesian paradigm. This method extensively been used 

under classical approach in their book. Model based geostatistics, 2007. 
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According to Diggle, geostatistics involves the fitting of spatially continuous models to 

spatially discrete data. Preferential sampling arises when the process being modeled are 

stochastically dependent. Conventional geostatistical method assume if only implicitly, 

that sampling is non-preferential. However these methods are often used in situations 

where sampling is likely to be preferential. 

He would then give a general expression for the likelihood function of preferentially 

sampled geostatistical data and describe how this can be evaluated approximately by using 

Monte Carlo methods (MCMC) Diggle then proceeded to develop a geoR and geoRglm 

packages to facilitate these applications. However, as the tradition, this method was 

painfully slow even though its’ achievement motivated Bayes’ believers across the world. 

Rue et al, 2009 would two years later develop an Integrated Nested Laplace 

Approximation (INLA) which would give a more precise Bayesian estimates using numerical 

methods in seconds or minutes where the traditional MCMC methods would require hours 

or days. 

The development of R-INLA enhanced even more development of Bayesian spatial 

statistics. Lindgren et al (2011).Continuous indexed Gaussian fields (GFS) is the most 

important ingredients in spatial statistical modeling and geostatistics. The specification 

through the covariance function gives an intuitive interpretation of the field properties. On 

the computational side, GFS are hampered with the big n problem, since the cost of 

factorizing dense matrices is cubic in the dimension. Although computational power is all 

time high, this fact seems still to be a computational bottleneck in many applications. 

Along with GFs, there is the class of Gaussian Markov random fields (GMRFs) which are 

discretely indexed. The Markov property makes the precision matrix involved sparse 

matrices for fields in R2 only use the square root of the time required by general 

algorithms. Lindgren showed that using an approximate stochastic weak solution to 

(linear) stochastic partial differential equations, we can, for some GFs in the marten class, 

provide an explicit link for any triangulation of between GFs and GMRFs, formulated as a 

basic function representation. 

Cameletti et al (2012) then applied the concept developed in Lindgren et al 2011 to a 

hierarchical Spatio-temporal model in which R-INLA was used to developed approximate 
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Bayesian analysis giving more precise estimate than would be achieved using the only 

alternative traditional MCMC method that in addition comes at a high cost of 

computational time. The model for particulate matter (PM) concentration in the North 

Italian region Piemorite, involved a Gaussian field(GF), affected by a measurement error 

and a state process characterized by a first order autoregressive  dynamic model .the 

model is well discussed in the paper published December 2012. 

However, according to the paper, Bayesian inference though Markov chain Monte-Carlo 

(MCMC) techniques can be a challenge due to convergence problems and heavy 

computational loads. In particular, the computational issue refers to the infeasibility of 

linear algebra operations involving the big dense covariance matrices which occur when 

large spatio –temporal data sets are present. The main goal .of this paper was to present 

the most effective estimating and spatial prediction strategy for the considered spatio-

temporal model. The model consists of GF with marten covariance function as a Gaussian 

Markov Random field. (GMRF) through the stochastic partial differential Equations (SPDE) 

approach. The main advantage of moving from a GF to a GMRF stems from good 

computational properties that the latter enjoys using R-INLA 

Lindgren, 2012 has considered continuous domain spatial models giving step by step 

frameworks on how what traditionally has been called geostatistics can now be well using 

R-INLA and get the best prediction rule than ever before. Infant, Lindgren in his own words 

says ‘think continuous’ 

Finally in the (Krainski, 2013), he presents how we fit models to spatial point referenced 

data, the so called geostatistical models, using INLA and SPDE. He uses the try datasets and 

rainfall data to explicitly illustrate how to handle more complex model in this paradigm. 

He considers a case for a non-Gaussian response, Semi-continuous model to daily rainfall, 

joint modeling a covariate with misalignment and non-stationery models using INLA. Non 

stationary models and many more expected to address challenges that researchers may 

face when dealing with spatial statistics. 
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CHAPTER THREE                                                                                                            

REVIEW OF BAYESIAN STATISTICS                              

 3.1 INTRODUCTION 

Bayesian is a branch of statistics that concerns how we deal with evidence, how we deal 

with data, how we evaluate the evidence and measure the uncertainty involved. Update it as 

new knowledge arises and hopefully change minds in light of new data. 

The classical statistics which is often referred to as Null hypothesis significant testing 

(NHST) (Kruschke, 2010) has many problems that should not be allowed in the 21
st
 

century. For instance,   In NHST, the data collector must pretend to plan the sample size in 

advance and pretend not to let preliminary looks at the data influence. Bayesian design, on 

the contrary, has no such pretenses because inferences are not based on the p values which 

depend on the sample size which on the other hand depend on the intension of the 

researcher.  

In summary, the NHST analysis and conclusion depend on covert intensions of the 

experimenter, because those intentions define the space of all possible (unobserved) data. 

This dependence of the analysis on the experimenter‘s intentions conflicts with the opposite 

assumption that the experimenter‘s intentions have no effect on the observed data. The 

Bayesian analysis does not depend on the space of possible unobserved data. The Bayesian 

analysis operates only with the actual data obtained. 

Moreover, in NHST, analysis of variance (ANOVA) has elaborate corrections for multiple 

comparisons based on the intentions of the analyst. Hierarchical Bayesian ANOVA uses no 

such corrections, instead rationality mitigating false alarms based on the data. 

In many NHST analyses, missing data or otherwise unbalanced designs can produce 

computational problems. Bayesian models seamlessly handle unbalanced and small-sample 

designs. 

Similarly, in multiple regression analysis, traditional analysis breakdown when the 

predictors are perfectly (or very strongly) correlated or if the number of predictors is more 

than the sample size this has always been partly resolved by using Partial least square 

regression (Yu et al, 2012) which borrows the concept of principle component analysis 

hence is not purely classical regression analysis, but the Bayesian analysis proceeds as usual 

and reveals that the estimated regression coefficients are anti-correlated (Kruschke, 2010). 
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The crucial problem with NHST is that the P-value is defined in terms of repeating the 

experiment, and what constitute the experiment is determinant by the experimenter‘s 

intentions. The single set of data could have a risen from many different experiments, and 

therefore the single set of data has many different P values. In all the conventional statistical 

tests, it is assumed that the experimenter intentionally fixed the sample size. 

This dependence of P on the intended stopping rule for the data collection is well known, 

but rarely if ever acknowledged in applied textbooks on NHST. 

The only situation in which standard NHST textbooks explicitly confront the dependence of 

P-value on experimenter intentions is when multiple comparisons are made. When there are 

several conditions are compared, each comparison inflates the probability of spuriously 

declaring a difference to be non-zero. To compensate for this inflation of false alarms, 

different ―corrections‖ can be made on the P-value criterion used to declare significance. 

These corrections go by the names of Bonferroni, Scheff, Tukey, Dunnett, HSU or a 

variation called the false discovery rate (FDR) (Kruschke, 2010). 

McNemar‘s test which is a normal approximation used on nominal data on a 2x2 

contingency tables with dichotomous trait, with matched pair of subjects, to determine 

whether  the row and column marginal frequencies are equal (Marginal homogeneity), is 

marred with corrections (Yates‘ correction) ranging from 0.1 to anything  depending on the 

interest of the analyst. Bayesian methods are free of such influences.  

NHST summarizes a data set with a value as t or f, which in-turn is based on a point 

estimate from the data, such as the mean and standard deviation for each group. The point 

estimate is the value for the parameter that makes the model most consistent with the data in 

the sense of minimizing the sum squared deviation or maximizing the sum squared 

deviation or maximizing the likelihood (or some other measure of consistency). 

Unfortunately, the point estimate provides no information about the range of other 

parameter values that are reasonably consistent with the data. Some researchers use 

confidence intervals for this purpose. But some NHST analyses do not easily provide 

confidence intervals, such as    analyses of contingency table all probabilities. More 

fundamentally, confidence intervals are as fickle as P values because a confidence interval 

is simply the range of parameter values that would not be rejected by significance test. (And 

significance test depend on the intension of the analysts including the range of these 
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possible values). Point estimates of parameters also provide no indication of correlation 

between plausible parameter values (Kruschke, 2010). 

Statistical power in NHST is the probability of rejecting the null hypothesis when an 

alternative hypothesis is true. Because power increases with sample size, estimate of power 

are often used in research planning to anticipate the amount of data that should be collected, 

closely related in power is replication probability, which is the probability that a result 

found to be significant in one experiment will also be significant in another experiment. 

Replication probability can be used to assess the reliability of a finding. To estimate power 

and replication probability, the point estimate from a first experiment is used as an 

alternative hypothesis to contrast with the null hypothesis. Unfortunately, a point estimate 

yields little information about other alternative hypothesis that is reasonably consistent with 

the initial data. 

The other hypothesis can span a very wide range, with each one yielding very different 

estimates of power and replications probability. 

Therefore, the replication probability has been determined to be ―virtually unknowable‖. 

Thus, NHST in combination with point estimation leaves the scientists with unclear 

Estimates of power and replication probability, and hence provides a very weak basis for 

assessing the reliability of an outcome (Kruschke, 2012). 

As outlined above, NHST provides a palicity of dubious information. To obtain this, the 

analyst is also subject to many computational constraints for example, in analysis of 

variance (ANOVA), computations are much easier to conduct and interpret if all conditions 

have the same number of data points (i.e. so called balanced designs). Standard ANOVA 

also demands homogeneity of variances across the condition which is rarely practical 

(Kruschke, 2010). 

In real life situation, assumption is rarely satisfied bringing focus on existing gap between 

real life and academia. 

According to Benjamin Hobbs (1997), there is ample empirical evidence that people act 

contrary to the assumptions of Bayesians analysis. They fail to update prior beliefs using 

Bayes‘ law, and they have great difficulty specifying utility functions because their 

preferences are incoherent and consistent (Kahneman et al, 1982). 
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A Bayesian response to this criticism might be ―so what?‖ The point of Bayesian analysis is 

to improve of upon unaided human judgment, upon to imitate it. Bayes‘ Law is not meant to 

be a psychological theory that can be used to predict behavior; rather it is supposed to be a 

guide to making more rational, consistent, and defensible decisions. 

Bayesian analysis is the only integrated approach to inference and decision making that is 

fully consistent with a set of assumptions that have a normative appeal. Bayesian and 

application should complement each other otherwise the existing gap between academic and 

real world will continue to widen. 

3.2 Bayes’ theorem 

One thing we do know about, reverend Thomas Bayes (1702-1761) (Bellhouse, 2004) is 

that he was an English Mathematician and Presbyterian minister, known for having 

formulated a specific case of the theorem that bears his name: Bayes‘ theorem, (1940). 

Bayes never published what would eventually become his most famous accomplishment; 

his notes were edited 10-15 years later after his death and published by Richard Price. We 

know very little about his lifetime and the picture we see is in the Wikipedia allegedly 

belong to one named after him. However, the Google has his handwriting from the institute 

of actuaries in London. During the time, there was a religion controversy on the existence of 

God the cause (primary/first cause). We do not know whether Thomas Bayes wanted to 

prove the existence of God but we do know that Bayes tried to deal with cause and effect 

mathematically and in so doing of course he produced a one line theorem that will never die 

(Sharon Bertsch, 2010).  

According to Bayes‘, we modify our initial belief and he actually called it ―initial guess‖ 

and if nothing seems to work, starts with ―50-50‖ probability that it works and modify this 

guess with object new information and get an improved belief which we then carry with a 

commitment to update whenever new piece of information arrives.  But as stated above, 

Bayes‘ did not believe in his theorem enough to publish it and he dies about 20 years later 

with this theorem in his notebook. Going through Bayes‘ papers, Richard Price decides that 

the theorem will help prove the existence of God. He would then spend the next two years 

off and on editing Bayes‘ theorem get it posthumously published in 1764 unfortunately, in a 

British journal that was neither read by Statisticians nor Mathematicians hence not get 
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publicity. By today‘s standard, Richard Price would be considered as a Thomas Bayes‘ co-

author. 

However, we see two patterns emerging between the Bayesians and the then frequentist. 

Bayes‘ became an extreme example of the existing gap between academia and the real 

world (Sharon Bertsch, 2010).  

By rights and as they did until 50 years later after this discovery, the theorem was entirely 

called Laplace theorem. As a young man of about 25 in the year 1774 discovered 

independently Bayes‘ theorem (Sharon Bertsch, 2010). According to Wikipedia, ―in 

statistics, the so-called Bayesian interpretation of probability was developed mainly by 

Laplace.‖ So until about 50 years later, Bayes rule was called Laplace theorem (Sharon 

Bertsch, 2010). 

According to Laplace: 

This is the foundation of what today we call Bayesian statistics. As illustrated this is entirely 

the work of Simeon Laplace commonly remembered only through the Laplace transform. 

We also agree that the theorem should be renamed entirely as Laplace theorem as they did 

up to 1827. 

In a (very small!) nutshell, Bayesian inference boils down to the computation of 

posterior/predictive distributions. 

Note:    |           . The naïve version of probability that we learn of events that are 

independent. 

           
    |      

∫   |        
   

where:    |   = posterior distribution;  

      prior distribution and  

   |  =likelihood distribution 

Laplace theorem (Bayes‘ theorem). As a matter of fact from 1774 up to which Laplace died 

in 1827, applied statistics was entirely Bayesian (Sharon Bertsch, 2010). The normalizing 

constant at times would be a complex integral and Laplace transform a method of 
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approximation was developed to solve it explicitly. Unfortunately, after his death in 1827, 

his method of approximation was forgotten almost overnight & sophisticated statisticians 

preferred to judge the probability of an event happening by how frequently it occurred. 

They would then be called ―frequentists‖ and they became the chief opponents of Bayes‘ 

rule that will never die. For them modern science requires both objectively & precision and 

Bayes‘ of course, start with the measure of your belief a situation makes approximation and 

frequentists call this ―ignorance coined into science‖ and sometimes say ―they use Bayes 

rule with sigh as the only thing available under the circumstance‖. 

Despite Bayes‘ usefulness, Ronald Fisher (1890/1962) started attacking Bayesians in 1920-

1930s  (Sharon Bertsch, 2010) and theoreticians were then sigh applying Bayes‘ rule having 

been opposed by  a man well known to have  single-handed created the foundations of 

modern statistical science including maximum likelihood methods, sampling theory, non-

parametric statistics, randomization methods, fisher‘s information, analysis of variance, 

Fisher-Kolmogorov equation, Fisher‘s  geometric model coining the word ―null hypothesis‖ 

,Fisher‘s  exact test, F-distribution, he created Biometry as a potential way to reconcile the 

discontinuous nature of Mendelian inheritance with continuous variation and gradual 

evolution (Sharon Bertsch, 2010).   

As we will see later Fisher is an example of how personalizing a concept can be destructive 

to the growth and development of field especially a small field or an emerging area. Fisher 

publicly oppose Bayes‘ rule fortunately, without his knowledge, his classical discoveries 

made significant contributions in the development of Bayesian paradigm especially 

maximum likelihood method which is the likelihood function in Bayesian. 

He kept on with the bad fight which was publicly demonstrated around 1950 when Richard 

Doll and A.B Hill came to a conclusion that smoking caused lung cancer in which Bayesian 

method was used (Sharon Bertsch, 2010). Instead, he compared correlation in their papers 

to a correlation in the import of apples and the rise of divorce in order to show that 

correlation indeed does not imply causation. He went further to smoking for the first time at 

60 and in the public to contradict the findings (Sharon Bertsch, 2010). Fortunately, this 

result was supported by a study in 1938 at the John Hopkins University in which scientists 

suggested a strong negative correlation between smoking and lifespan. Moreover, five 

studies were published in 1950 in which smoking was powerfully implicated in the 

causation of lung cancer. Furthermore, four years later, in 1954 the British Doctors study, a 
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study of some 40 thousand doctors over 20 years, confirmed the suggestion, based on which 

the government issued advice that smoking and lung cancer rates were related. The British 

doctor‘s study lasted till 2001, with results published every 10 years and final results 

published in 2004 by Doll and Richard Peto. So it would then be clear later after 1950 that 

Fisher‘s problem was entirely Bayesian method that was used in the paper but rather not the 

findings. 

Despite this struggle, 30-40 years after the World War II, a group of 100 Bayes‘ believers 

kept on with the bad fight. For many years, the Bayesians took a lot of time to develop a lot 

of theories to show how Bayesian statistics work. During this period both Bayesians and 

frequentists‘ were busy trying to outdo each other in the public. A cold war that was too 

heavy to bear by Bayesians who were just a minority as far as science is concerned. 

By 1984, there was a host of techniques floating around, Bayes, Laplace transform, random 

sampling, Monte Carlo, Markov chain, iteration etc. & two men realized how they could 

work together Valan Gelfand and Adian Smith a student of Prof. Lindley at the University 

of Sidney (Sharon Bertsch, 2010). 

They wrote a paper in which they used the ―b‖ word only 5 times in a 5 page paper so as to 

persuade statisticians (the then Fisher‘s believers) who were the chief opponents of Bayes‘ 

rule to read the paper. In which MCMC method was re (discovered). 

Physicists were familiar with MCMC methodology from the 1950s Nick Metropolis and his 

associates had developed one of the first electronic supercomputers (for those days) and had 

been testing their theories in physics using Monte Carlo techniques. 

Implementation of the MCMC methods in combination with the rapid evolution of personal 

computers made the computational tool popular within a few years. Bayesian statistics 

suddenly re (became) fashionable. Using MCMC we could then set up and estimate 

complicated models that describe and solve problem that could not be solved with 

traditional methods. 

Fortunately, the paper came out at same time powerful desktops workstation become 

available. A couple of years later around  1990‘s there is off the shelf a software called 

―Bugs‖ become available for solving Bayesian problems through Lindley‘s academic 
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Grandson David Peterson. It could fit complicated models in a relatively easier manner 

using standard MCMC methods. 

This revolution brings together computer Scientists, Mathematicians, Physicists, and 

Statisticians and got adopted almost overnight. Researchers could then adopt the most 

suitable method of analysis for their work. Fortunately, even the famous frequentists 

(Fisher‘s believers) in the town could be heard saying. ―I‘m always a Bayesian‖. 

Since 1998, WinBugs the window version of BUGS, earned great popularity among 

researchers of diverse scientific fields (Ioannidis, 2005) . 

Given that the one line Bayes theorem that will never die is undisputed by everyone 

including the Fisher‘s believers, the main challenge then focuses on computation since a 

Standard Computation can run MCMC simulations for hours or days before convergence to 

a posterior distribution or sometimes convergence may not be guaranteed after hours or 

days of running depending on the complexity of the model. 

However, recently (Rue, Martino, & Chopin, 2009) introduced the use of Gaussian random 

field which has become increasingly popular among scientists. The integrated Nested 

Laplace Approximation (INLA) is an approach proposed by Rue et al (2009) to perform 

approximates fully Bayesian inference on the class of latent Gaussian models (LGM). INLA 

makes use of determinist nested Laplace approximations and, as an algorithm tailored to the 

class of (LGMS), it provides a faster and more accurate alternative to simulation based 

MCMC schemes. This is demonstrated in a series of examples ranging from simple to 

complex models in Rue et al, (2009). Although the theory behind INLA has been well 

established in Rue et al. (2009), the INLA method continues to be a research and in active 

research and development. 

3.3 Introduction to Bayesian Analysis 

As opposed to the point estimators (means, variances) used by classical statistics, Bayesian 

statistics is concerned with generating the posterior distribution of the unknown parameters 

given both the data and some prior density for these parameters. As such, Bayesian statistics 

provides a much more complete picture of uncertainty in the estimation of the unknown 

parameters, especially after the confounding effects of nuisance parameters are removed. 



30 | P a g e  
 

Our treatment here is intentionally quite brief and much information can be obtained in 

Lee(1997) and Draper(2000) for a complete introduction to Bayesian analysis, and the 

introductory chapters of Tanner (1996) for a more condensed treatment. While very deep 

differences in philosophy separate hard-core Bayesians from hard-core frequentists (Efron 

1986, Glymour 1981), our treatment here of Bayesian methods is motivated simply by their 

use as a powerful statistical tool. 

3.4 probability and statistics       

Statistics is the study of uncertainly, how to measure it and how to make choices in the face 

of it. 

Since uncertainty is an inescapable part of the human condition, statistics has the potential 

to be helpful in almost every aspect of daily life, including science (the acquisition of 

knowledge for its own sake) and decision-making (how to use that knowledge to make a 

choice among the available actions). 

When you notice you‘re uncertain about something-for example, the truth status of a true-

false proposition such as ―This patient is HIV-positive‖ or ―Obama will win a second term 

as U.S president in 2012‖- it‘s natural to want. 

a) To quantify how much uncertainty you have and 

b) To figure out how to reduce your uncertainty if the answer to (a) is higher than the level 

necessary to achieve your goals. 

Probability- Is the part of mathematics devoted to quantifying uncertainty, so it plays a 

fundamental role in statistics and so does data-gathering, because the best way to reduced 

your uncertainty is to get some relevant new information (data). 

3.5 Description, Influence and prediction 

Inference: about the nature of the underlying process generating the data. 

This is the statistical version of what the 18
th

 century philosopher Hume referred to as the 

problem of induction; it included as special cases 

a) Answering question about causality and 

b) Generalizing outward from sample of data values to a population (a broader universe 

of discourse). 
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Prediction of future data on the basis of past data, including quantifying how much 

uncertainty you have about your predictions. 

This is important in science, because good (bad) scientific theories make good (bad) 

predictions and it is important to do the best we can do to use Good models (Theories). 

Decision–Making; frequentist and Bayesian Probability 

Decision-Making: Predicting the future under all possible actions open to you, and 

choosing your favorite future on that basis. 

The systematic study of probability can be traced back to an exchange of letters between 

Pascal and Fermat in the 1650‘s, but the version of probability they developed turns out to 

be to two simplistic to help in 21
st
 century problems of realistic complexity. 

Instead, two other ways to give meaning to the concept of probability are in current use 

today: 

The frequentist (relative frequency) approach in which you restrict attention to phenomenon 

that are inherently repeatable under ― identical‖ conditions and define P (A) to be the 

limiting relative frequency with which A would occur in a repetitions, as     (this 

approach was developed around 1870 by Venn Boole and others and was refined in the 

1930s by Von Mises): and the Bayesian approach, in which the argument B of the 

probability operation P (B/A) is a true-false proposition whose truth status is unknown to 

you and P (B/A) represents the weights of evidence in favor of the truth of B, given the 

information in A (this approach was first developed by Bayes and Laplace in the 18
th

 

Century and was refined by Keynes, de Finetti, Hamsay. Jeffrey. Turung, Good Savage, 

Jaynes and others in the 20
th

 century). 

Internal and External Information 

The Bayesian approach includes the frequentist Paradigm as a special case, so you might 

think it would be the only version of probability used in statistical work today, but in 

quantifying your uncertainty about something unknown to you, the Bayesian paradigm 

requires you to bring all relevant information to bear on the calculation; this involves 

combining information both internal and external to the dataset you‘re gathered and 



32 | P a g e  
 

(somewhat strangely) the external-information part of this approach was controversial in the 

20
th

 century, and Bayesian calculation require approximating high –dimensional integrals. 

The Laplace approximation method commonly referred to as Laplace transform was 

forgotten almost immediately after the death of Laplace in the year. (Whereas the frequent 

approach mainly relies on maximization rather than integration), and this was a severe 

limitation to the Bayesian paradigm for a long time (from the 1750s to the 1980s). 

Metropolis Algorithm; Bayesian + frequentist 

Bayesian statisticians belatedly discovered that applied mathematicians (led by metropolis 

and Ulam, working at the intersection between chemistry and physics in the 1940s, had used 

Markov chains to develop a clever algorithm, for approximating integrals arising in 

thermodynamics that are similar to the kinds of integrals that come up in Bayesian statistics 

and Desk-top computers finally became fast enough to implement the metropolis algorithm 

in a feasible start amount of time. 

The 20
th

 century was definitely a frequentist century, in large part because maximization 

was an excellent technology for that moment in history from the 1920s (when the 

statisticians and geneticist emphasized it) through the 1980s; but a consensus is now 

emerging around the idea that in the 21
st
 century it‘s important for statisticians to be fluent 

in both frequentist and Bayesian ways of thinking. 

In the 20
th

 century many people acted as if you had to choose one of these paradigms and 

defend it against attacks from people who favored the other one, but it turns out that both 

approaches have strengths, and weaknesses so that can‘t be the right way to frame the issue; 

it seems to us instead that our job as a statisticians in this century is to develop a fusion of 

the two approaches that emphasizes the strength and de-emphasizes the weaknesses. 

Our passion fusion involves  

Reasoning in a Bayesian way when formulating my inferences, predictions and decisions 

because Bayesian paradigm is the most flexible approach so far developed for incorporating 

all relevant sources of uncertainty. 
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Reasoning in a frequentist way when paying attention to how often I get the right answer, 

which is an inherently frequentist activity that‘s central to good science and decision-

making. 

According to the useful history of mathematics website www-history.mcs.at-and.ac.uk, 

mathematics began in Babylonia in approximately 2000 BCE, with the development of a 

systematic way to record and manipulates numbers (both integers and fractions)). 

Gambling, which you would think might prompt the creation of mathematics based on what 

we now call randomness, is even older; che-like objects made from animal bones have been 

traced back to at least 4500 BCE. 

Thus we have been thinking mathematically as a species for about 4000 years and gambling 

for far longer than that, and yet no one seem to have  laid down the foundations of 

probability until around 350 years ago. 

Some specialized problems in games of chance had been solved by Italians mathematicians 

going back to the 1400s, and Galilei (1564-1642) worked in a fragmentary way on 

probability concepts in the early 17
th

 century, but the subject was not properly launched as a 

branch of mathematician until an exchange of letters between the French mathematicians 

Blaise Pascal (1623-1662) and Pierre de Fermat (1601-1665) in 1654. 

Conditional probability 

(Pascal and Fermat, 1654) invented what we now call the classical approach to probability: 

It enumerates the elementary outcomes (            ) (the fundamental possibilities in 

the process under study). In a way that makes them equi-possible (i.e., so that none would 

be favored over any other in hypothetical repetitions of the process) and compute the 

classical probability P (A) of an outcome A as the ratio                           

favoured to A to n=total number of             . 

This works for assigning probabilities to outcomes of idealized games of chance (dice coins, 

roulette, cards) but fails in complicated problems like those people think about routinely 

today (e.g., what are the             in a regression setting with 100,000 observation and 

1000 predictor variables?). 
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The Dutch scientist Christian Huygens (1629-1695) published the first book on probability 

in 1657. 

Another important early probability book was written by the Swiss Mathematician Jacob 

Bernoulli (1654-1705) and published in 1713, after his death; in it Bernoulli stated and 

proved the first (weak) law of large number (  of a sequence of random variables    to a 

non-random limit            

The Pascal-Fermat classical approach had no notion of conditional probability; it was 

remembered by Thomas Bayes (1702-1761), who gave the first definition of 

    |   
           

     
                          

                    |    For (true-false) propositions A and B, in a posthumous 

publication in 1764. Bayes was interested in causal relationships: you see an effect in the 

world. (e.g people dying of a disease) and you wonder what was its cause (e.g., drinking the 

water? eating something? breathing the air? etc). 

He had the bravery/imagination to consider this probabilistically, and he noticed that P 

(effect caused was a lot easier to think about than         |         So he wondered how 

    |   depended on    |   (he wanted to reverse the order of conditioning). 

Bayes’ Theorem for propositions 

To find out he wrote down his definition in the other order. 

    |   
          

     
                                                                                            

 

                 (A|B)                                     |       

                    |                                                              

                                          

                      ), and solve for what he wants to get Bayes Theorem for 

propositions: 
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    |   
         |  

     
                             

The main application he had in mind was more ambitious: B stood for an unknown rate at 

which something happens (today we might use the symbol (0<   <1) and stood for some 

data relevant to on (in today‘s notation his data set was.   (  ,...  

, y )                           variable with success rate  ). 

Bayes’ Theorem for real numbers 

In words he thought of his result as having the following meaning: 

          |      
                  |        

        
         

He conjectured (correctly) that his Theorem still applies when B is a real number (   and A 

is a vector of real numbers (y): in contemporary notation. 

    |   
        |  

    
                                                   

Where 

a)     |         |       conditional probability densities for   given y and y given   and  

(respectively) and 

b)        are (unconditional) probability densities for   and y (respectively). 

This requires some interpreting: I want to use after the dataset y had arrived, to quantify my 

uncertainty about   in light of the new  information, so I want to condition on the data, i.e to 

treat the entire equation as a function of   for fixed y: this has two implications: 

3.6 Diachronic interpretation of Bayes’ theorem 

            |                              

                   |           
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Likelihood function 

a)      is just a constant-in fact I can think of it as the normalizing constant, put into the 

equation to make the product         |   integrate to 1 (as all densities, e.g. ,    |    

must); and. 

b)    |   may look like the sampling distribution for y given    but, have to think of it as a 

function of   for fixed y. 

Much later, fisher (1922) popularized this same idea and called it the likelihood function. 

    |        |      where I=information                  

      

Where k is an arbitrary positive constant commonly referred to as the normalizing constant 

but Bayes (1764) saw its importance first we this new notation and terminology Bayes‘ 

Theorem becomes 

         |     |                                                                                           

    | ) represent s the information about the unknown   internal to the dataset y, but this is 

only one ingredient in the process of drawing together all of the evidence about    

Synthesis of knowledge 

As Bayes (1764) understood, there will typically also be information about    external to y, 

and p (    is where this other information comes into the Synthesis of knowledge.  

On the log scale, and ignoring irrelevant constants, Bayes‘ Theorem says. 

     |               |                             

Which, in words, could be interpreted as? 

 

(
                 

     
 

+  (
           
        
    

+  (
           
        
    

+                            
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One way (but not the only way) you could think about the information about   external to Y 

is to recall the sequential nature of learning; the temporal nature of learning; the temporal 

events of observing the data set y divided the time line into the period before y (a priori) and 

the period after y (a posteriori). 

Centuries after Bayes, researchers in the 1950s used this to suggest a different way to 

express . 

   |             |   

 

(

         
           

     
 

,  (

       
           

     
 

,  (
          
           
       

+          

 

With this in mind people called P ( |   the posterior distribution and P (   the prior 

distribution for   respectively. 

These are actually not very good names, because (as noted above) P ( |    is meant to 

quantify all information about   external to y (whether that information arrives before or 

after y is irrelevant but through widespread usage we‘re stuck with them now. 

With the notation and terminology Bayes‘ Theorem says. 

   |                      |   
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Bayes’ Theorem 

The foundation of Bayesian statistics is Bayes’ theorem. Suppose we observe a random 

variable   and wish to make infrences about another random variable  , where    is drawn 

from some distribution     .  From the above definition, 

   |   
        

    
                                                                                                                              

Again from the definition of conditional probability, we can express the joint probability by 

conditional probability by conditioning on   to give 

           |         

Putting these together gives Bayes‘ Theorem: 

   |   
   |        

    
 

With n possible outcomes (            ), 

 (  | )  
   |        

    
 

   |   

∑         |   
 
   

                                      

     is the prior distribution of the possible   values, while    |   is the posterior 

distribution of   give the observed data  . The origin of Bayes‘ theorem has a fascinating 

history (Stigler 1983).It is named after the Rev. Thomas Bayes, a priest who never 

published a mathematical paper in his lifetime. The paper in which the theorem appears was 

posthumously read before the royal society by his friend Richard Price in 1764. Stigler 

suggests it was first discovered by Nicholas Saunderson, a blind mathematician/optician 

who, at age 29, became Lucasian professor of Mathematics at Cambridge (the position held 

earlier by Isaac Newton). 
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Bayesian Perspective on Probability 

Probability is a measure of uncertainty. 

 Probabilities can be assigned to future events or to unobservable quantities, as well 

as sampling scenarios. 

 Subjective probability concerns the judgment of an individual about uncertain events 

or propositions 

 Such probability cannot be thought of as frequency (long-run) probabilities. 

 Subjective probabilities should obey the axioms of probability and a single person‘s 

probabilities should not be inconsistent. 

 Arguments based on decision theory and theory of betting provides support for using 

probability as the right measure of uncertainty. 

 Rational probability assignments are equivalent to betting in a coherent way; in a 

way that your opponent cannot be guaranteed to win based on inconsistency in your 

probability assignments. 

 Classical statistical procedures can be incoherent (informally: non-sensical; 

formally: can result in bets that your opponent is guaranteed to win) 

 Bayesian inference emerges naturally from subjective probability. i.e., if you are 

comfortable with using probability to measure uncertainty, then the Bayesian 

machinery is the principled approach to inference. 

Bayesian perspective on subjectivity 

 Both the likelihood and the prior are subjective and both must be specified as part of 

the model. 

 Bayesian statistics formalizes the scientific process in which beliefs are updated 

based on the data. No single experiment will determine one‘s beliefs (unless 

overwhelmingly compelling or there is no other information); prior distribution 

captures this. 
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Advantage of using Bayes’ method 

 Bayesian logic and interpretation are simple; scientific questions can often be 

easily framed as inferential questions. 

 Bayesian inference is simple in principle and provides a single recipe for 

coherent inference, all based on the posterior. Inference is conditional on the 

observed, and not on data that were possible but not observed, obeying the 

likelihood principle. In addition, it tells how to update prior beliefs and how to 

add additional information. 

 Utility of using prior information, allowing one to combine various sources of 

information, including constraints. 

 Inference for small samples is exact (but sensitive to the prior) 

 Interpretation: Uncertainty is naturally framed as probability statements based on 

the posterior in a way that non-statisticians easily relate to  (what else could 

‗statistical inference about  ‘ mean?) 

 Bayesian inference naturally deals with conditioning, marginalization, and 

nuisance parameters 

 Parameter uncertainty is naturally accounted for. 

 Bayesian inference naturally meshes with decision theory 

 Modern computational techniques allow models to be fit in other ways. 

 Bayesian results often have good frequentist properties and frequentist inference 

is sometimes a special case of Bayesian results under a particular prior. 

 Complicated hierarchical models can be naturally constructed in a Bayesian 

framework. 

 Bayesian inference naturally penalizes complex models 

 Bayesian inference can deal with multiple testing inherently if set up properly as 

a joint inference problem. 
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Disadvantage of using Bayes’ method 

 Computing the posterior, while simple in theory, is often difficult and time 

consuming in practice. 

 Frequentist inference is often simpler in simple or standard statistical settings, in 

part because of standardized software. 

 When it becomes more difficult to fit models, this may discourage full model 

exploration, assessment and comparison, which is key to good applied statistical 

work. 

 Bayesian inference is model-based and classical methods may not generalize 

(partial likelihood, non-parametric testing, robust estimation, marginal models). 

 Sensitivity to prior distribution and difficulty of specifying sensible priors in 

some cases, particularly for complicated models. 

Comparison of Bayesian and Non-Bayesian Inference 

Topics Non-Bayesian Bayesian 

Probability Limit of empirical 

frequencies;   is fixed 

Subjective believe;   is 

random 

Estimation Likelihood based (MLE) 

and other criteria (e.g. 

UMVUE) 

Baesd on posterior; often 

   |   

Sources of information Data only Data and prior beliefs 

Phylosophy Incoherent; criteria can 

lead to nonsensical 

procedures 

Coherent approach 

Biase Unbiasedness is often a 

criterion 

Biased; shrinkage and 

biase-variance tradeoff 

Interval estimation Interpreted in terms of 

long-run behavior of   

Interpreted as probability 

statements about   
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Likelihood principle May violate Obeys (except Jeffreys‘ 

prior) 

Invariance MLE is invariant to 

transformation 

Posterior mean is not ; but 

posterior for any derived 

quantity is easily obtained 

Computation Optimization Integration 

Uncertainty Often based on asymptotic exact 

Nuisance parameters  A nuisance Integrated over 

 

Current state of affairs 

Bayesian methods are widespread in statistics and some applied areas often used for 

practical, computational reasons, rather that philosophical reasons. However, some 

consensus on using Bayesian inferential techniques and evaluating them in a frequentist 

way. 

Proper posteriors 

If prior is ‗proper‘, then posterior 

 Is proper 

 Converse is not necessarily true. 

Recall, a distribution is proper if: 

i. ∫         
 

 
 if continuous 

ii. ∑         if discrete 

Improper priors are often used but require care (and have some interpretational issues). If 

the posterior is not proper, it makes no sense to use it (hence to summarize it). 
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Summaries of the posterior distribution 

i. Point estimate:  ̂     |   ∫    |  
 

 
   

ii. Posterior median: Choose  ̂ such that ∫    |  
 ̂

  
 

 

 
 

iii. Posterior mode: Choose  ̂ such that    ̂|      |     

When    |   is symmetric and unimodal, the 3 coincide. 

Note 

However, using any of the above estimators or even all the three simultaneously (mean 

mode and median), loses the full power of a Bayesian analysis, as the full estimator is 

the entire posterior density itself. If we cannot obtain the full form of the posterior 

distribution, it may still be possible to obtain one of the three estimators. However, as we 

will see later, we can generally obtain the posterior by numerical methods using Integrated 

Nested Laplace Approximations, and hence the Bayes estimate of a parameter is frequently 

presented as a frequency histogram from INLA samples of the posterior distribution. 

Summary of Interval estimation (Credibility Interval) 

The posterior credible intervals          . ―equal tailed‖ posterior credible intervals 

(central intervals). The range of values above and below which lies exactly    (  ⁄ )  of 

the posterior probability. 

―Highest Posterior Density‖ (HPD) region Def: A region   is an HPD region of constent 

(1  ) for   if:     |       |                  With ∫    |  
 

 
       

Therefore HPD is the region of the values containing            of the posterior 

probability and the density within the region is never lower than outside. Central posterior 

interval   HPD interval if the posterior is symmetric and unimodal. If     is large, then the 

interval is: 

 ̅  √
  

 
    

 ⁄
  (Classical sampling theory). HPD method will lead to the posterior region of 

the shortest length for a given  . 
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We can also plot marginal posterior distributions in one and two dimensions, avoiding the 

problem of having to summarize the posterior using posterior moments. 

If we have a closed form for the posterior, even without the normalizing constant, we can 

plot the density. 

More often we have a sample of values from the posterior. We can plot a histogram or 

(often better) a smoothed density estimate. 

Highest Density Regions (HDRs) 

Given the posterior distribution, construction of confidence intervals is obvious. For 

example, a 100(1  ) confidence is given by any (  
 ⁄      ⁄

) satisfying 

∫    |        

  
 ⁄

  
 ⁄  

 

To reduce possible candidates, one typically uses highest density regions, or HDRs, where 

for a single parameter the HDR 100(1  ) region (s) are the shortest intervals giving an 

area of (1  ). More generally, if multiple parameters are being estimated, the HDR region 

(s) is those with the shortest volume in the parameter space. HDRs are also referred to as 

Bayesian Confidence Intervals or Credibility Intervals.  

It is critical to note that there is a profound difference between a confidence interval (CI) 

from classical (frequentist) statistics and a Bayesian credibility interval. The interpretation 

of a classical confidence interval is that we repeat the experiment large number of times, 

and construct CIs in the same fashion, that (1  ) of the time the confidence interval with 

enclose the (unknown) parameter. With a Bayesian HDR, there is a (1  ) probability that 

the interval contains the true value of the unknown parameter. Often, the CI and Bayesian 

intervals have essentially the same value, but again the interpretational difference remains. 

The key point is that the Bayesian prior allows us to make direct probability statements 

about   , while under classical statistics we can only make statements about the behavior of 

the statistic if we repeat an experiment a large number of times. Given the important 
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conceptual difference between classical and Bayesian intervals, Bayesians often avoid using 

the term confidence interval. 

3.7 Why prior in Bayesian Statistics 

Some people may have the mistaken impression that the advantages of Bayesian methods 

are negated by the need to specify a prior distribution. In fact the use of prior is both 

appropriate for rational inference and advantages in practical applications. 

It is inappropriate not to use a prior consider the well-known example of random disease 

screening. A person is selected at random to be tasted for a rare disease. The test result is 

positive, what is the probability that the person actually has the disease? it turn out, even if 

the test is highly accurate, the posterior probability of actually having the disease is 

surprisingly small. Why? Because the prior probability of the disease was so small. Thus, 

incorporating the prior is crucial for coming to the right conclusion. 

Priors are explicitly specified and must be agreeable to a skeptical scientific audience. 

Priors are not capricious and cannot be covertly manipulated to predetermine a conclusion. 

If skeptics disagree with the specification of the prior, then the robustness of the conclusion 

can be explicitly examined by considering other reasonable priors. In most applications, 

with moderately large data sets and reasonably informed priors, the conclusions are quite 

robust to accommodate all the divergent views concerning the estimate. 

We emphasize on priors because it is the power of Bayesian statistics. Priors are useful for 

cumulative scientific knowledge and for leveraging inference from small-sample research. 

As an empirical domain matures, more and more data accumulate regarding particular 

procedures and outcomes. The accumulated result can inform the priors of subsequent 

research, yielding greater precision and firmer conclusions. 

When different groups of scientists have different priors stemming from different theories 

and empirical emphases then Bayesian methods provide rational means for comparing the 

conclusions from different priors. 

To summarize, priors are not problematic nuisance to be avoided. Instead, priors should be 

embraced as appropriate in rational inference and advantageous in real research. 
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If those advantages of Bayesian methods are not enough to attract change, there is a major 

reason to be repelled from the dominant methods of the 20
th

 century. 

3.8 Prior and likelihood specification; parametric modeling 

This creates a specification problem: how do you quantify ―information about 

              y  in the likelihood distribution             ―information about   external to 

y‖ in the prior distribution        

I‘ll give an example later of prior specification; what about specifying. 

                 

From a Bayesian perspective P (Y/    is the predictive distribution for how the data will 

come out before any data have arrived; how do you specify this? 

Typical solution from 1764 through 1937; try to find a standard parametric family of 

probability distributions (indexed by r= (     that captures what you expect to seek in the 

data (base on previous experience with similar problems); for example with binary 

outcomes, you would firs try the Bernoulli (4) distribution, with count data you would first 

think of the Poisson (4) distribution, and with continuous outcomes you might well start 

with the Normal distributions. 

This- parametric statistic modeling- was the standard approach for centuries, but there is a 

problem with it. Use the data to choose the model and then use the same data to draw 

conclusion on the basis of the same model. 

The choice of a prior 

Obviously, a critical feature of any Bayesian analysis is the choice of a prior. The key here 

is that when the data have sufficient signal, even a bad prior will still not greatly influence 

the posterior. In a sense, this is an asymptotic property of Bayesian analysis in that all but 

pathological priors will be overcome by sufficient amount of data. As mentioned above, one 

can check the impact of the prior by seeing how stable to posterior distribution is to 

different choices of priors.  If the posterior is highly dependent on the prior, then the data 

(the likelihood function) may not contain sufficient information. However, if the posterior is 
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relatively stable over a choice of priors, then the data indeed contain significant 

information. 

The location of a parameter (mean or mode) and its precision (the reciprocal of the 

variance) of the prior is usually more critical than its actual shape in terms of conveying 

prior information. The shape (family) of the prior distribution is often chosen to facilitate 

calculation of prior, especially through the use of conjugate priors that, for a given 

likelihood function, return a posterior in the same distribution family as the prior (i.e., a 

gamma prior returning a gamma posterior when the likelihood is Poisson). We will return to 

conjugate priors towards the end of this section, but we first discuss other standard 

approaches for construction of priors. 

Diffuse priors 
Bayes rule only provides mathematically correct re-allocation of credibility across the 

candidate parameter values (Kruschke, 2012). The result reveals how strongly we should 

believe in each candidate parameter value given the data.  

One of the most common priors is the flat, uninformative, or diffuse priors where the prior 

is simply a constant., 

       {
 

   
      

           
                  

This conveys that we have no priori reason to favor any particular parameter value over 

another. With a flat prior, the posterior just a constant times the likelihood., 

   |       |   

And we typically write that    |      |  . In many cases, classical expressions from 

frequentists statistics are obtained by Bayesian analysis by assuming a flat prior. 

If the variable of interest ranges over (   ) or (     ), then strictly speaking a flat prior 

does not exist, as if the constant take on any non-zero value, the integral does not exists. In 

such cases a flat prior (assuming    |      |  ) is referred to as an improper prior. 
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Sufficient Statistics and Data-Transformed Likelihoods 

Suppose we can write the likelihood for a given parameter   and data vector   as 

   |                             

Here the likelihood is a function       , where         . If the likelihood is of this 

form, the data    only influences   by a translation  on the scale of the function    , i.e.,  

from      to       . Further, note that      is the only value of the data that appears , 

and we call the function   a sufficient statistic. Other data sets with different values of  , but 

the same value of the sufficient  statistic     , have the same likelihood. 

When the likelihood can be placed  in the form  

   |            ,  a shift in the data gives rise  to the same functional  form of the 

likelihood function except  for a shift in the location, from (       ) to (       ). 

Hence, this is a natural scale upon which to measure likelihoods, and on such a scale, a flat 

/diffuse prior seems natural.  

Example  

Consider   independent samples from a normal with unknown mean   and known variance 

  . Here 

   |      

(

 
 
 
 
     ̅  

 ( 
 
 ⁄ )

)

 
 
 
 

 

Note immediately that  ̅  is a sufficient statistic for the mean, so that different datsets with 

the same mean (for n draws) have the same likelihood function for the unknown mean  . 

Further, note that 

        

(

 
    

   
 
 ⁄  

)
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Hence a flat prior for   seems appropriate. 

What is the natural scale for a likelihood function that does not satisfy  

   |            ? Suppose that the likelihood function can be written in data-

translated format as  

   |                

When the likelihood function has this format, the natural scale for the unknown parameter is 

    . Hence, a prior of the form                   (a flat prior on     ) is suggested. 

Using a change of variables to transform          back onto the   scale suggests a prior on 

  of the form 

     |
     

  
| 

Example 4. 

Suppose the likelihood function assumes data follow an exponential distribution, 

   |   (  ⁄ )   (   ⁄ ) 

Noting that 

 

 
    *  (

 

 
)+               

We can express the likelihood as  

   |                 ex             

Hence, in a data-translated format the likelihood function becomes 

           ex      ,                        

The ―natural scale‖ for   in this likelihood function is thus    , and a natural prior is 

               , giving the prior as 

     |
    

  
|  
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The Jeffrey’s’ Prior 

Suppose we cannot easily find the natural scale on which the likelihood  is in data-translated 

format, or that such a decomposition does not exist. Jeffreys (1961) proposed a general prior 

in such cases, based on the Fisher information   of the likelihood. Recall that 

   |      (
        |  

   
)              

Jeffreys‘ rule (giving the Jeffreys‘ prior) is to take as the prior  

     √   |   

More information on this can be found in Lee(1997, section 3.3). 

Example. 

Consider the likelihood for n independent draws from a binomial, 

   |               

Where the constant   does not involve  . Taking logs give, 

   |         |                           

Thus 

    |  

  
 
 

 
 
   

   
 

And likewise 

     |  

   
  

 

  
          

   

      
  (

 

  
 

   

      
* 

Since        , we have 

   (
       |  

   
)  
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Hence the Jeffreys‘ prior becomes 

     √             
 
 ⁄       

 
 ⁄  

This is a Beta distribution (which we discuss later in this section) 

When there are multiple parameters,   is the Fisher Information matrix, the matrix of the 

expected second partials, 

   |        (
       |  

      
) 

 

In this case, the Jeffrey‘s prior becomes 

     √       |    

Posterior Distributions under Normality Assumptions 

To introduce the basic ideas of Bayesian analysis, consider a case when data is drawn from 

a normal distribution, so that the likelihood function for the      observation,    is 

      |   
 

√    
   ( 

      
 

   
) 

the resulting full likelihood for all n data points is 

   |   
 

√    
   ( ∑

      
 

   

 

   

+ 

 
 

√    
   [ 

 

   
( ∑  

      ̅

 

   

    +] 
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Known Variance and Unknown mean 

Assume the variance    is known, while the mean   is unknown. For a Bayesian analysis, it 

remains to specify the prior for     . Suppose we assume a Gaussian prior,         
 
  , 

so that 

     
 

√     
   ( 

      
 

    
) 

The mean and variance of the prior          
 
  are reffered to as hyperparameters. 

One important trick we will use when calculating the posterior distribution is to ignore 

terms that are constants with respect to the unknown parameters. Suppose   denotes the 

data and    is a vector of known model parameters, while    is a vector of unknown 

parameters. If we can write the posterior as  

    |                         

With the prior given by the above equation;  

     
 

√     
   ( 

      
 

    
) 

Then we can express the resulting posterior distribution as 

   |      |        

    (
      

 

    
 

 

   
[∑  

      ̅

 

   

    ]+ 

We can factor out additional terms not involving   to give 

   |      ( 
  

    
 
   
   

 
   ̅

  
 
   

   
) 

Factoring in terms of  , the term in the exponential becomes 

 
  

 
(
 

   
 
 

  
*   (

  
   

 
  ̅

  
*   
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Where 

    (
 

   
 

 

  
)
  

 and        (
  

   
 

  ̅

  
) 

Finally, by completing the square, we have 

   |   ex  ( 
      

 

    
         

      ) 

The posterior density function for   thus become 

   |      ( 
      

 

    
) 

Recalling that the density function for          is 

        ( 
      

  
) 

Shows that the posterior density function for   is a normal distribution with mean    and 

variance    , e.g., 

 |              
 
    

Notice that the posterior density is in the same form as the prior. This occurred because the 

prior conjugated with the likelihood function- the product of the prior and likelihood  

returned a distribution in the same family as the prior.  The use of such conjugate priors  

(for a given likelihood) is a key concept  in Bayesian analysis and we explore it more fully 

below. 

We are now in a position to inquire about the relative importance of the prior verses the 

data. Under assumed prior, the mean (and mode)  of the posterior distribution is given by 

     
    
   

  ̅
    
  

 ⁄
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Note with a very diffuse prior on   (i.e.,        ), that      
  

 ⁄  and      ̅. Also 

note that as we collect enough data,      
  

 ⁄  and     ̅. 

Gamma, Inverse-Gamma, Chi-square (  ), and    ), Distributions 

Before we examine a Gaussian likelihood with unknown variance, a brief side is needed to 

develop    , the inverse chi-square distribution. We do this via the gamma and inverse 

gamma distributions. 

The    is a special case of the gamma distribution , a two parameter distribution. A 

gamma-distributed variable is denoted by             , with density function 

   |     {

  

    
                     

                                               
           

 

As a function of   note that 

              

We can parameterize  a gamma  in terms of its mean  and variance  by noting  that 

   
 

 
 ,      

 

  
 

      gamma function evaluated at   (which normalized the gamma distribution) is defined 

as 

     ∫     
 

 

      

The gamma function is the generalization of the factorial function (  ) to all positive 

numbers (and as integration by parts will show) satisfies the following identities 

                ,       ,   

 

 √  
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The    distribution is a special case of the gamma distribution, with a    with n digrees of 

freedom being a gamma random variable with   
 

 
 and   

 

 
, i.e.,  

  
        

 

 
  
 

 
 , 

 

With mean and variance given by 

 

The scaled inverse chi-square distribution is more typically used, where 

 

So that the 
 

  
 term in the exponential is replaced by an 

   

  
 term. If   follows this 

distribution, then       follows a standard    distribution. The scaled-inverse    

distribution thus involves two parameters,     and    and it is denoted by         

    . Note that if  

  

Then 

 

Unknown Variance: Inverse-   Priors 

Now suppose the data are drawn from a normal with mean  , but unknown variance      

The resulting likelihood function becomes 
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Where 

 

Notice that we condition on   and   (i.e., the values are known), the    is a constant. 

Further observe that, as a function of the unknown variance   , the likelihood is 

proportional to a scaled inverse-   distribution. Thus, taking the prior for  the unknown 

variance also as a scaled invers-   with hyperparameters    and    , the posterior 

becomes 

 

Unknown Mean and Variance 

Putting all the pieces together, the posterior density for draws from a normal with unknown 

mean and variance is obtained as follows. First, write the joint prior by conditioning on the 

variance, 

 

As above, assume a scaled inverse chi-square distribution for the variance and, conditioned 

on the variance, normal prior for the mean with hyper parameters     and   
 

  
⁄ . We write 

the variance for the conditional mean prior this way because    is known (as we condition 

on it) and we scale this by the hyper parameter      Hence, we assume 
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The resulting posterior marginal become 

 

Where        
 
   denotes a t-distribution with    degrees of freedom, mean    and 

variance   . Here 

 

Conjugate priors 
The use of a prior density that conjugates the likelihood allows for  analytic expressions of 

the posterior density. The table below gives the conjugate priors for several common 

likelihood functions. 

 

We first review some of the additional distributions introduced in the table above and 

conclude by discussion conjugate priors for members of the exponential family of 

distributions. 
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The Beta and Dirichlet Distributions 
Where we have frequency data, such as for data drawn from a binomial or multinomial 

likelihood, the Dirichlet distribution an appropriate prior. Here,  

                        , with 

                                     

 

Where 

 

Where 

 

An important case of the Dirichlet is the Beta distribution, 

 

Given that Uniform distribution with parameters (0,1) is a special case of Beta distribution 

with parameters (1,1), therefore, uniform distribution is a special case of Dirichlet 

process. 

Wishart and Inverse Wishart Distribution 
The Wishart distribution can be thought of  as the multivariate extension of the  

   distribution. In particular, if             are independent and identically distributed 

with        (0, V)    that is , each is drawn from  a                multivariate 

normal with mean vector zero and variance-covariance matrix   ,  then the random 

(                              ) matrix 
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Hence the sum follows a Wishart with n degrees of freedom and parameter  . For the 

special case of     with      , this is just a       distribution. The Wishart 

distribution is the sampling distribution for covariance matrices (Just like the     is 

associated with the distribution  of a sample variance). The probability density function for 

a Wishart is given by 

 

If        , then       
       , where     denotes the Inverse-Wishart distribution. 

The density function for an Inverse-Wishart distributed random matrix   is 

 

Thus, the Inverse-Wishart distribution is the distribution of the Inverse of the sample 

covariance matrix. 

Conjugate priors for the Exponential Family of Distributions 
Many common distributions (normal, gamma, Poisson, binomial, etc.) are members of the 

exponential family, whose general form is given by the equation below. Note that this 

should not be confused  with the simple exponential distribution, which is just one 

particular member from this family. When the likelihood is in the form of an exponential 

family of  an exponential family, a conjugate prior (also a member of exponential family of 

distributions) can be found. 

Suppose the likelihood for a single observation (out of n)  is in the form of an exponential 

family, 
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Using the prior 

 

Yields the posterior density 

 

Where 

 

From the above,      is the conjugate prior for the likelihood given by  

 

With the posterior having the same form as the prior, with     (in the posterior) replacing 

  and    . 
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CHAPTER FOUR 

4.1 INTEGRATED NESTED LAPLACE APPROXIMATION (INLA) 
In a (very small!) nutshell, Bayesian inference boils down to the computation of posterior/predictive 

distributions. 

Note:    |           . The naïve version of probability that we learn of events that are 

independent. 

           
    |      

∫   |        
  

 Where;    |   = posterior distribution;       prior distribution and    |  =likelihood 

distribution 

Let    |            

N:B: The    |      |   when we use flat priors.  

Fundamental of INLA (Rue et al, 2009); 

 ( │ ) 
      

    
 

The second “ingredient” is the Laplace approximation 

∫  y     

Main idea: approximate           using Taylor series expansion around the mode  ̂ and use 

Laplace approximation to obtain prior and likelihood equivalence to Gaussian distribution 

l          g   ̂  
       ̂ 

  
    ̂ +

 

 

  

   
    ̂  +R 

                      g   ̂ +
 

 

         

   
    ̂   

   (Since 
       ̂ 

  
=0) 

Setting  ̂ =           

   
⁄ , we can re-write 

  g        g   ̂ -
 

  ̂ 
    ̂   

Or equivalently; 

∫     ∫                ∫   ⌈ 
    ̂  

  ̂ 
⌉    

Thus under INLA                                   ̂  ̂   
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N: B. As will be illustrated in the following chapter, INLA thinks in terms of Latent Gaussian models 

(LGMs) and Gaussian Markov Random Fields (GMRFs). Thus a common mean for all the 

observations is specified in terms of regression. 

4.2 Laplace Approximation Example 
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4.3 INLA Example 
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INLA Summary 

 

4.4 The Gaussian field 

To fix the notion, let s any location on the study area and X(s) is the random effect at this 

location. We have X(s) a stochastic process, with s  , where D is the domain area of the 

locations and D   . Suppose, for example, that we have D and country and we have any 

data measured on geographical locations, d=2, within this country (Lindgren & Rue, 2011). 

Suppose that we assume that we have a realization of      ,            , a realization of 

     in n locations. It is commonly assumed that      has a multivariate Gaussian 

distribution. Also, if we assume that      is continuous over space, we have continuously 

indexed Gaussian field (GF). It is because we suppose it is possible that we get data in any 

location within the study region. To complete the specification of the distribution of     , it 

is necessary to define its mean and covariance. 

A very simple option is the definition of a correlation function based only on Euclidean 

distance between locations          . This assumes that if we have two pairs of points 

separated same distance h, both pairs have same correlation. Also is intuitive to choose 

any function decreasing with h. There is some work about the GF and correlation functions 

in (Abrahamsen, 1997), (Krainski, 2013) 

A very popular correlation function is the Mat ́rn correlation function, that depends on a 

scale parameter     and a smoothness parameter    . Considering two locations    

and  , the stationery and isotropic Mat ́rn correlation function is; 

    (           )   
    

       
    ‖     ‖ 

       ‖     ‖              
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Where ‖ ‖ denotes the Euclidean distance and    is the modified Bessel function of 

second kind order and order. Also, we define the Mat ́rn covariance function by  

      (       (  ))                                                   . 

If we have a realization       on n locations, we write the joint correlation, or joint 

covariance, matrix 𝞢 making each entry            (       (  ))   It is common to 

assume that      has a zero mean.  So, we have completely defined a multivariate 

distribution to       

Now, suppose now that we have a data    observed at locations   ,                    If 

we suppose that we have an underlie GF that generates these data, we are going to fit 

the parameters of this process, making the 

identity                                                     . In this case, the 

likelihood function is the multivariate distribution with mean                         

If we assume that  𝞵    , then we have four parameters to estimate.  

In many situations we assume that we have an underlie GF but we are unable to 

observe it , therefore, observe a data with measurement error, i.e.                  

Additionally, it is common to assume that    and     are independent for all     and 

        
 
  . This additional parameter,   , measures the noise effect, called the 

nugget effect. In this case, the covariance of marginal distribution of      is      . 

This model is a short of extension of the basic GF model, and in this case we have one 

additional parameter to estimate as in (Diggle and Ribeiro, 2007). 

It is possible to describe this model with larger class of models, the hierarchical 

models. Suppose that we have observations    on locations   ,            we start 

with 

  |              |      

          

Where                   is a matrix of covariates,   is random effects, 𝛉 are 

parameters of random effects, 𝜷 are covariate coefficients,      is a function of 

mapping the linear predictor         to          and    is a dispersion parameter 
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of the distribution, in the exponential family, assumed to    , with variance     and   

as GF. 

We have many extensions of this basic hierarchical model. But if we know the 

properties of the GF, we are able to study all the practical models that contain or are 

based on, this random effect. 

It is mentioned that the data, or the random effect, on a finite number of n points that 

we have observed is considered a realization of a multivariate Gaussian distribution. 

But to evaluate the likelihood function or the random effect distributions of the 

multivariate Gaussian density. So, we have, 

  g       
 

 
  g     | |  

 

 
         

               

Where 𝞢 is a dense     matrix. To compute this, we need a factorization of this matrix. 

Because this matrix is dense, this amount to an operation of order O(     s  is   e “big 

   r b em”  

An alternative used in some software that allow the practice of classical geostatistical 

analysis, is the use of empirical variogram to fit the parameters of the correlation 

fu cti    This   ti   d es ’t use a y  ike ih  d f r the data a d the mu tivariate 

Gaussian distribution to the random effects.  A good technique of this technique is 

made on (Cressie, 1991). 

However, it is adequate to assume any likelihood for the data and a GF for the spatial 

dependence, the model based approach on geostatistics, (Diggle and Ribeiro, 2007). 

So, in some times we need the use of the multivariate Gaussian distribution to the 

random effects. But, if the dimension of the GF is big, it is impractical to make model 

based inference. 

In another area of the spatial statistics like for the analysis of areal data, there is a 

model specified by conditional distributions that implies a joint distribution with a 

sparse precision matrix. These models are called the Gaussian Markov random fields 

(GMRF), (Rue and Held, 2005). So, inference when we use GMRF is more easy to do 

than when we use GF, because to work with two dimensional GMRF models, we have 
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cost of O( 
 
 ⁄ ) on the computations  with its precision matrix. So, it is easier to make 

a a ysis with “big  ”  

Additionally, it is common to assume 

 The parameter     which is usually kept fixed, measures the degree of smoothness of the 

process and its integer value determines the mean squared differentiability of the process. 

Instead,     is a scaling parameter related to the range   , i.e the distance at which the 

spatial correlation becomes small enough for the observation at site    and    to be 

declared independent.  

4.5 The Gaussian Markov Random Fields (GMRFs) 

Gaussian Markov random fields are frequently used as computationally efficient models in 

spatial statistics, Simpson et al, (2011). Unfortunately, it has traditionally been difficult to 

link GMRFs with the more traditional Gaussian random field models as the Markov 

property is difficult to deploy in continuous space.  

From a practical perspective, the primary difficulty with spatial Gaussian models in applied 

statistics is dimension. The bad situation becomes worse with increasing dimension. 

Computationally speaking, this is a disaster Simpson et al, (2011).  Time series models, for 

example, can suffer from the same problems. In the temporal case, such problems have 

been controlled by adding a conditional independence (Markovian), structure to the 

model, Simpson et al (2011). The key advantage of Markov property for time series models 

is that the computational burden then grows only linearly (rather than area wise or 

cubically) in the dimension, which makes inference on these models feasible for long time 

series, Simpson et al, (2011) and (Cameletti, Lindgren, Simpson, & Rue, 2012). 

However, Markov property has had a less exalted role in spatial statistics. Almost, all 

instances where the Markov property has been used in spatial modeling has been in the 

form of Markov random fields, Simpson et al (2011) and (Blangiardo, Cameletti, Baio, & 

Rue, 2013), defined over a set of discrete Markov random fields, in which the value of the 

random fields  at the nodes is jointly Gaussian Rue and Held (2005). 

GMRFs are typically written as; 
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          , 

Where   is a precision matrix and the Markov property is equivalent to requiring that   is 

sparse, that is 

                                                                        

As problems in spatial statistics are usually concerned with inferring a spatially continuous 

effect over a domain of interest, Simpson et al (2011), it is difficult to directly apply the 

fundamentally discrete GMRFs. For this reason, it is commonly stated that there are two 

essential fields in spatial statistics (Simpson et al, 2011) and (Simpson & Lindgren, 2010). 

The one that uses GMRFs and the one that uses continuously indexed Gaussian random 

fields. In a recent paper, (Lindgren et al, 2011) showed that these two approaches are not 

distinct. 

By carefully utilizing the continuous space of Markov property, it is possible to construct a 

Gaussian random fields for which all quantities of interest can be computed using GMRFs 

(Simpson et all, 2011) . 

The most exciting aspect of the Markovian models of (Lindgren et al, 2011), is there 

flexibility (Simpson et al, 2011). There is no barrier conceptually or computationally and 

the methods can be extended to non-Gaussian models, semi continuous models, joint 

modeling a covariate with misalignment and modeling a non-stationary models all  of 

which I will want to look into more details during my PhD program. This type of flexibility is 

not found in any other method for constructing Gaussian random field models (Simpson et 

al, 2011). 

4.6 Computations with Gaussian Markov random fields 

As in temporal setting, the Markovian property allows for first computation of samples, 

likelihoods and other quantities of interest (Rue and Held, 2005). This allows the 

investigation of much larger models than would be available using general multivariate 

Gaussian models, (Simpson et al, 2011). 

The situation is not, however, as good as it is in the one dimensional case, where all of 

these quantities can be computed using O(n) operations, (Simpson et al, 2011) where n is 
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the dimension of the GMRF. Instead, for the two dimensional spatial models, samples and 

likelihoods can be computed in O(  
 
 ⁄  operations , where is still a significant saving on 

the O     operations required for a generall Gaussian models , (Simpson et al, 2011). 

The key object when computing with GMRFs is the Cholesky decomposition     , 

where 

                                                                                             

                             . One the Cholesky triangle has been computed, it is easy 

to show that           is a sample from the GMRF            where        . 

Similarly, the log density for a GMRF can be computed as; 

  g       
 

 
  g     ∑      

 

   

 
 

 
              

Where     is the     diagonal element of   and the inner product  

          

                                             ca cu ati  s usi g the sparsity of   . 

It is also possible to use the Cholesky triangle L to compute          , which are the 

marginal variances of the GMRF (Rue and Martino, 2007). 

Furthermore, it is possible to sample from   conditioned on a small number of linear 

constraints |    , where        is usually a dense matrix and the number of 

constraints,  is very small. 

According to (Simpson et al, 2011), this occurs when the GMRF is constrained to sum to 

zero. However, if one wishes to sample conditional on the data, which usually corresponds 

to a large number of linear constraints, the alternative methods are usually more efficient. 

While direct calculation of the conditional dense is possible, when 𝜷 is a dense matrix, 

conditioning destroys the Markov structure of the problem (Simpson et al, 2011). It is still 

possible to sample efficiently using a technique known as conditioning by kriging (Rue and 

Held, 2005), whereby an unconditional sample   is drawn from          and then 

corrected using the equation; 
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Where   is small (Simpson et al, 2011). 

The conditioning by kriging update can be computed efficiently from the Cholesky 

factorization. Simpson et al (2011), however, reiterate that when there are a large number 

of constraints, the conditional by kriging method will be inefficient, and if 𝜷 is sparse (as is 

the case when conditioning on data), it is usually better to use alternative methods which 

includes but not limited to Bayesian methodologies. 

The conditional kriging sampling can be done by kriging update 

                                                                         

(
   

  
*    (

  
 
*   (

 
    

* , where   is an auxiliary variable. 

Fast Bayesian Inference          

The second and the most appealing property of GMRFs is that they behave well under 

conditioning. Consider the simple Bayesian hierarchical model; 

 |         
    and    (       ) where             are sparse matrices. A simple 

manipulation shows that          is jointly a Gaussian markov random field with 

precision matrix; 

     (
    

         
      

)  

And the mean defined implicitly through the equation; 

 

        (
   
 
) 

As          is jointly a GMRF, According to (Simpson et al, 2011), it is easy to see as 

proved in (Rue and Held, 2005) that; 

 |      (    
    )

  
                

     
   , Simpson et al (2011). 
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It is important to note that the precision matrices for the joint distribution in the above 

matrix of    and the conditional distribution 

 |                                                         only GMRFs - if A is 

sparse. This observation directly links the structure of the matrix   to the availability of 

efficient inference methods, (Simpson et al, 2011). 

If we group the unknown parameters into a vector 𝛉, we obtain the following hierarchical 

model; 

 |            
    

 |         
    

       

In order to perform inference on the above three models, it is common to use Markov 

Chain Monte-Carlo (MCMC) methods for sampling from the posterior distribution; 

     |  , however, this is not necessary (Simpson et al, 2011). It is an easy exercise in 

Gaussian density manipulation to show that the marginal posterior for the parameters 

denoted by     |   can be computed without integration and is given by; 

    |      
     |       

   |    
           

Where   can be any point, but is typically taken to be the conditional model    |     and 

the corresponding marginal’s     |   can be computed using numerical integration 

(Simpson et al, 2011), and the usual observation that for every ,      |   is a GMRF (Rue 

and Martino, 2007) and (Rue et al, 2009) holds. 

It follows that for models with Gaussian observations, it is possible to perform 

deterministic inference that is exact up to the error in the numerical integration (Simpson 

et al, 2011). In particular, if there are only a moderate number of parameters, this will be 

extremely fast, (Simpson et al, 2011). For non-Gaussian observation process, exact 

deterministic inference is no longer possible, (Simpson et al, 2011). However, (Rue et al, 

2009), showed that it is possible to construct extremely accurate approximate inference 

schemes by cleverly deploying series of Laplace approximations. The integrated nested 
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Laplace approximations (INLA) has  been used successfully on a large number of spatial 

problems, (Simpson et al, 2011); (Fong et al, 2010); (Akerkar et al, 2010); (Schrodle and 

Held, 2011); (Riebler et al, 2011); (Cameletti et al, 2011); (Cameletti et al, 2012); (Illian et 

al, 2011); (Lindgren et al, 2011); (Lindgren et al, 2012) among many others. 

4.7 Continuously specified, Markovian Gaussian random fields 

One of the primary aims of spatial statistics is to infer a spatially continuous surface      

over the region of interest (Simpson et al, 2011). It is therefore necessary, to build 

probability distributions over the space of functions, and the standard way of doing this is 

to construct Gaussian random fields, which are the generalization of functions  of 

multivariate Gaussian distributions in the sense that for any collection of points; 

                       
 , the field evaluated at those points is jointly Gaussian, (Simpson et al, 

2011). 

In particular,                         
         , where the covariance matrix is 

given by; 

             for some positive definite covariance function c(.  .  .). In most commonly 

used cases, the covariance function is non-zero everywhere and as a result 𝞢 is a dense 

matrix, (Simpson et al, 2011). 

It is clear that we would like to transfer some of the pleasant computational properties of 

GMRFs which are outlined above to the Gaussian random field setting. 

The obvious barrier to this is that classical GMRF models are strongly tied to discrete sets 

of points. Throughout this work, we would borrow heavily from the recent development 

lead by (Lindgren et al, 2011). 

4.8 The spatial Markov property 

For temporal processes, defining Markov property is greatly simplified by the structure of 

time (Simpson et al, 2011). Its directional nature and the clear distinction between past, 

present and the future allow for every natural discursion of neighborhoods. Unfortunately, 

space is far less structured and as such the Markov property is harder to define exactly 
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(Simpson et al, 2011). Informally, a Gaussian random field      has the spatial markov 

property if for every appropriate set   separating        , the values of           are 

conditionally independent of the values in   given the values in    

A formal definition of the spatial Markov property can be found in (Rozanov, 1977). In our 

view, this follows shortly after the first geography law (Tobler, 1970) in which observations 

that are separated by large distances are less related than those separated by short 

distances. Even only in line with this fact, a Markov property can be informally deduced.  

As far as (Cameletti et al, 2011) is concerned, it is not immediately clear how the spatial 

Markov property can be used for computational inference. However, in an almost ignored 

paper, (Rozanov, 1877) provided the vital characterization of Markovian Gaussian random 

fields in terms of their power spectra. The power spectrum of a stationery Gaussian 

random field is defined as the Fourier transform of its covariance function    , that is; 

     
 

     
∫ ex            
 

  
 

Rozanov showed that a stationery field is Markovian if and only if; 

     
 

    
  , where       is a positive, symmetric polynomial. More on this could be 

found on (Rozanov et al, 1977) and (Cameletti et al, 2011) where it is discussed into more 

detail. For the purpose of this work, we will consider another alternative that links GMRF 

with the continuous processes, that is Stochastic Partial Differential Equations (SPDE) 

settings. 

Preliminary and Main result 

We will further discuss the Mat ́rn covariance model and explain its relationship with SPDE 

methodology. 

4.8 Mat ́rn covariance model and its stochastic Partial Differential 

Equations (SPDE) 

Let ‖ ‖ denote the Euclidean distance in  . The Mat ́rn covariance function between two 

locations           is defined as; 
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  ‖   ‖      ‖   ‖  ,                    

Here,    is the modified Bessel function of second kind and order              is a 

scaling parameter and    is the marginal variance.  

The integer value of   determines the mean squared differentiability of the underlying 

process, which matters for predictions that are made by using such a model. However,    is 

usually fixed since it is poorly identified by the users in typical applications. A more natural 

interpretations of the scaling parameter   is as a range parameter   (rho); the Euclidean 

distance where              are almost independent. Lacking a simple relationship, we 

shall use the empirically derived definition   √  
 
⁄  which correspond to correlation 

near 0.1 at the distance  , for all  . This relationship is explained into much more detail in 

(Lindgren et al, 2011). 

Covariance function appears naturally in various scientific fields (Guttorp and Gneiting, 

2006), but the important relationship that we shall make use of is that a GF      with the 

Mat ́rn covariance function is a solution to the linear fractional SPDE. 

      
 
 ⁄                         ⁄                    

Where       
 
 ⁄  is a pseudo differential operator that is defined later in equation four. 

The innovation process 

                                                         is the  a  acia    

  ∑
  

    

 

   

 

And the marginal variance is; 

   
  

 
(  

 
 
)    

 
 ⁄     

 

We shall name any solution to equation two a Mat ́rn field in what follows. However, the 

limiting solutions to the SPDE in equation two as            do not have mater 

covariance functions but the SPDE still has  solutions when            which are well 
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defined  random measures according to (Lindgren et al, 2011). Further, there is implicit 

assumption of appropriate boundary conditions for the SPDE, as 𝛂   the null space  of 

the differential operator is non-trivial, containing for example, the functions 

ex        , for all ‖ ‖     

The Mat ́rn fields are the only stationary solutions to SPDE. The proof that was given 

by Whittle (1954, 1963) is to show that the number of spectrum of a stationary 

solution is; 

               ‖ ‖    , 

Using the Foriour transform definition of the fractional Laplacian in   , 

{       
 
 ⁄         ‖ ‖           },                           

Where   is a function on    for which the right hand side of the definition has a well-

defined inverse Fourier function. 

To construct a GMRF representation of the mater field on the triangulated lattice, we start 

with a stochastic weak formulation of SPDE in equation two. Define the inner product; 

      ∫            ,   eq5 

Where the integral is over the region of interest. The stochastic weak solution of the SPDE 

is found by requiring that 

{(     
    

 
 ⁄   )          }   {(    )         }  

For every appropriate finite set of test functions  {                   }            

denotes equality in distribution. 

The next step is to construct a finite element representation of the solution to the SPDE 

(Brenner and Scott, 2007); 

     ∑   
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For some chosen basis functions  {    and Gaussian distribution weights{    and   is the 

number of vertices in the triangulation.  If the functions     are piecewise linear in each 

triangle,    is 1 at vertex   and 0 at all other vertices. 

The second result is obtained using the                          with entries 

     〈     〉      〈       〉                         to get the precision matrix 

      as  a function of    and 𝛂. 

            

            
       

            
            

                   

Here too we have the notation that if   increases; we need a more dense precision matrix.  

The   precision matrix is generalized for a fractional values of 𝛂   (or ) using a Taylor 

approximation, this is thoroughly discussed in (Lindgren et al, 2011 [authors discussion 

response]). From this approximation, we have the polynomial of order        for the 

precision matrix 

  ∑   
 
                         

For 𝛂=1 and 𝛂=2 we have     (           )   
    

       
    ‖     ‖ 

       ‖     ‖   as 

indicated above. This is because for 𝛂=1 we have       and     , and for 𝛂=2 we 

have       and        and     . For fractional 𝛂=  ⁄ , we have    
  

 
 and 

      
 

 
. And for    

 ⁄ ,                             ,    
    

  
,    

   

 
, 

   
     

   
  Using these results combined with recursive construction for    , we have 

GMRF approximations for all positive integers and half integers. Therefore Mat ́rn 

correlation function connects MGRF to the continuous setting. 

Although the approach does give a GMRF representation of the Mat ́rn field on the 

triangulated region, it is truly an approximation to the stochastic weak solution as we use 

only a subset of the possible test functions. Please, refer to (Lindgren et al, 2011) for more 
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detailed information on how SPDE and other approaches have linked MGRF to the 

continuous settings. 

4.9 Summary of Stochastic Partial Differential Equations (SPDE) in 

INLA 
The simplest   model for      currently implemented in R-INLA is the SPDE/GMRF 

version of the stationery Mat ́rn family, obtained as the stationery solutions to     

  
 
 ⁄                ,    ,    

Where   is the laplacian,   is the spatial scale parameter,   controls the smoothness of the 

realizations,   controls the variance, and Ω is the spatial domain. The right hand side of the 

equation      is Gaussian spatial white noise process. As noted by Whittle (1954, 1963), 

the stationery solutions on    have Mat ́rn covariances, 

                
  

      
  ‖   ‖      ‖   ‖  

As illustrated above, the parameters in the two formulations are coupled so that the Mat ́rn 

smoothness is       ⁄  and the marginal variance is  

 

From this we can identify the exponential covariance with       
 ⁄  and    

 ⁄  and note 

that fields with     give     and that such fields have no point-wise interpretation (but 

do have well defined integration properties). From spectral theory one can show  that 

integer values for   gives continuous domain Markov fields (Rozanov 1982), and these are 

the easiest for which to provide discrete basis representations as introduced in the authors 

discussion response  in Lindgren et al, 2011. 
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Where the joint distribution of   {           is chosen so that the distribution of the 

functions       approximates the distribution of solutions to the SPDE on the domain. To 

obtain a Markov structure, and to preserve it when conditioning on local observations, we 

use basis function with compact support. The construction is done by projecting the SPDE 

onto the basis representation in what is essentially a Finite Element Method  (Lindgren & 

Rue, 2013). 

To allow easy and explicit evaluation, for two dimensional domains we use piece-wise 

linear basis functions defined by a triangulation of the domain of interest. This yield sparse 

matrices             such that the appropriate precision matrix for the weights is given 

by  

 

For the default case    , so that the elements of    have explicit expression as functions of 

        which have been estimated above.  Assuming the Gaussian distribution 

           now generates continuously defined functions      that are approximate 

solutions to the SPDE (in a stochastically weak sense) 

The simplest internal representation of the parameters in the model interface is   g       

and   g       where  v and    are assigned  a joint normal prior distribution.  Since 

        has a joint influence on the marginal variances of the resulting field, it is often 

more natural  to construct the parameter model using the standard deviation   and range   

where   
    

 
 ⁄

 
 is the distance for which correlation functions has fallen to approximately 

0.13 for all    
 ⁄ .  

 

Translating this into         yields 
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The internal parameterization is then obtained by setting 
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CHAPTER FIVE                      

COMBINATION OF BAYESIAN AND SPATIAL STATISTICS 

5.1 Latent Gaussian models 

We propose to use the Integrated Nested Laplace Approximation (INLA). This is an approach 

proposed by Rue et al. (2009) to perform approximate fully Bayesian inference on the class of 

Latent Gaussian models (LGMs). INLA makes use of deterministic Nested Laplace approximations 

and, as an algorithm tailored to the class of LGMs, it provides a faster and more accurate 

alternative to simulation-based MCMC schemes (Rue, Simpson & Lindgren, 2013). 

The INLA framework was designed to deal with latent Gaussian models, where the observation (or 

response) variable    is assumed to belong to a distribution family (not necessarily part of 

exponential family) where some parameter of the family    is linked to a constructed additive 

predictor    through a link function      so that         . The structured additive predictive    

accounts for the effects of various covariates in an additive way: 

     ∑          
  
   

 ∑   
  
                                                                                                        

Where {       ’s are unknown functions of the covariates  , used for example to relax the linear 

relationship of covariates and to model temporal and/or spatial dependence, the {  }’s  represent 

the linear effect of covariate   and the {  }’s are unstructured terms. Then a Gaussian prior is 

assigned to  , {       ,{  } and  {  }. 

We can also write the model described above using hierarchical structure, where the first stage is 

formed by the likelihood function with conditional independence properties given the latent field 

            and possible hyperparameter   , where each data point {                 } is 

connected to one element in the  latent field    (Martins, Simpson, Lindgren, & Rue, 2013) 

Bayes rule only provides mathematically correct re-allocation of credibility across the candidate 

parameter values (Kruschke, 2012). The result reveals how strongly we should believe in each 

candidate parameter value given the data. We assume that the prior parameter values for each of 

the fixed effects (                          ) have equal credibility across possibilities (non-

informative Gaussian distribution with mean 0 and variance 1000).  

The random effects, that is spatial random field and temporal will be Stochastic Partial Differential 

Equation approach (SPDE) (Lindgren & Rue, 2011) and autoregressive process of order 1 (ar1) 

respectively and the two are linked using group and control-group object in the model.  In other 
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words, each time point the spatial locations are linked by the SPDE model object, while across 

time, the process evolves according to an ar1 process. 

With INLA, missing rainfall data (outcome) on either occurrence or amount component will 

contribute nothing to the likelihood though too many missing data may compromise richness of 

information from the data. In fact, information from the non-informative prior tends to prevail as 

the number of missing rainfall data increases. Data on covariates are internally modified to be 

equal to zero hence is not used in prediction (Simpson & Lindgren, 2011). 

5.2 The Model 
Many climatic scenarios, if defined continuously over space and time, can be monitored 

and measured only at a limited number of spatial locations and time points (Krainski, 

2013). This is the case, for example of, amount of rainfall in a region and other 

meteorological fields including temperature, precipitation among others as well as geo-

hydrological approaches. 

Data coming from such fields are assumed to be realization of a continuously indexed 

spatial process (random field) changing in time denoted by; 

       {                                             

These realizations are used to make inference about the process that generated the data 

and subsequently predict it at unvisited locations. Usually, we deal with a Gaussian field 

(GF) that is completely specified by its mean and Spatio-temporal covariance function as 

illustrated by (Simpson & Lindgren, 2012) 

   (               )                      

Defined for each       and         for all       and       in        . In addition, the 

process is said to be second order stationery if its mean is not a function of time and the 

spatio-temporal  covariance depends only on the locations and time points through the 

spatial distance  vector  

               and the spatio-temporal lag                    

As illustrated in Ranergee et al (2004), Lindgren et al (2011), Cameletti et al., (2012) and 

Lindgren,(2012) even if a GF is easily defined directly through its first and second 
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moments, its implementation suffers from the so called  “bin n” problem that arises 

especially in case of large datasets in space and operations required for model fitting, 

spatial interpolation and prediction. 

In this paradigm, it has been suggested in the literature that possible ways to deal with the 

problem of “big n” includes covariance tapering, predictive process models and low rank 

kriging  (this is documented in Furrer et al (2006), Banergee et al (2008), Cressie and 

Johannesson (2008) among others).  

These approaches share one thing in common, they try to reduce the dimension or 

simplify the structure of the dense covariance matrix of the Gaussian field (GF). 

In this project, we consider approaches that include representing a continuously indexed 

GF with Mat ́rn covariance function as a discretely indexed random process. This is 

commonly referred to as a Gaussian Markov Random Field (GMRF) as illustrated in Rue 

and Held (2005), Rue et al (2009) and (Lindgren & Rue, 2011). This proposal is based on the 

work is illustrated further in Cameletti et al, (2012) and a more detailed step by step in 

Lindgren et al (2011), where an explicit  link between GFs and GMRFs was reformulated as 

a basis function representation. It is provided as a Stochastic Partial Differential Equations 

(SPDE) approach. The most important point here is that the Spatio-temporal covariance 

and the dense covariance matrix are substituted respectively by a neighborhood structure 

and by a sparse precision matrix that together form a GMRF. 

The idea behind moving from GF to GMRF stems from good computational properties that 

GMRF enjoys. According to Cameletti et al, (2012) which is the key paper in this project, 

GMRFs are defined by a precision matrix with sparse structure for which it is possible to 

use computationally effective numerical methods especially Integrated Nested Laplace 

Approximations (INLA) algorithm which was only recently proposed in Rue et al (2009) a 

more effective and efficient alternative to the traditional MCMC methods. The most 

outstanding advantage of INLA as indicated by Rue et al (2009), Lindgren et al (2011), 

Lindgren (2012) and Cameletti et al (2012) among others is computational because it 

produces almost immediately accurate approximate approximations to posterior 

distributions including in cases of complex models. Therefore, the joint use of SPDE 

approach together with INLA algorithm is a powerful solution in overcoming the 
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computational challenges related to GF modeling. In addition, the common inability of 

MCMC algorithm to converge leading to a false positive posterior distribution is another 

reason why INLA should be preferred. 

The main objective of this project is to illustrate the implantation of SPDE method using 

Integrated Nested Laplace Approximations focusing on the amount of rainfall in Kenya 

taken from the months of January to March 2013 from 24 weather stations each day. This 

would be a spatio-temporal model considering the effect of time component in the model. 

The model of analysis would be a modified version of what is presented by Cameletti et al 

(2012).  

       {                                                    

Where; 

             𝜷                  

                           

AS shown by Camelleti et al (2012), the equations define a hierarchical model 

characterized by a GF        built from covariate information      , measurement error 

        and a first order autoregressive dynamic model for the latent process        with 

spatially correlated innovations      .  

5.3 The spatio-temporal model 

Let         denote the realizations of the spatio-temporal process        that represents the 

amount of rainfall at station        located at    and day          .  

Further, let    the rain on the location  . We use the augmented data by definition of two 

new variables. We define the occurrence variable  

  {
                     
                        

                 

 

And the amount variable 
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  {
                    
                         

                  

 

With above modification, we use a model with two likelihoods. We use the Bernoulli for    

And the gamma likelihood for    such that 

                and                

So we need a two column response matrix one for each response and           we put the 

first response on first column at first n rows and the second response on the last n rows of 

second column. 

               𝜷                    

       ⏟    
       

 

       𝜷⏟    
                   

          ⏟  
                

                                   

         ⏟  
                    

Where 

                                              

Denotes the vector of   variates  for site    at time  , and                      is the 

coefficient vector. Moreover,               
 
    is the measurement error defined by a 

Gaussian white noise process, both serially and spatially uncorrelated. In classical 

geostatistical literature, the term        𝜷  is commonly referred to as the trend surface 

while the error variance     is commonly referred to as the nugget effect in variogram 

analysis. Finally,         is the realization of the so called state process, i.e. the true 

unobserved level of rainfall. According to Cameletti  et al(2012), such phenomenon are 

assumed to be spatio-temporal Gaussian field that changes in time with first order 

autoregressive dynamics with coefficient   and equation given by; 

                                        

  

For                   where | |    normally the weights of autoregressive process and  
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        derives from the stationery distribution which is  

    
   

    
⁄    

Furthermore,         has a zero mean Gaussian distribution, is assumed to be temporally 

independent and is characterized by the spatio-temporal covariance function (Tijms, 2003) 

and (Schrödle & Held, 2011). 

   (         (     
 ))     {

                                     

                           
        

 

For     . The purely spatial correlation function      depends on the location of 

            only through the Euclidean spatial distance  |       |   ; thus, the process 

is assumed to be second order stationery and isotropic (Cressie, 1993). 

According to Cameletti et al (2012), such a process follows immediately that; 

   (       ) =     , for each    and  . 

The spatial correlation function       is defined by the Mat ́rn function and is given by; 

      
 

       
                             

With    denoting the modified Bessel function of second kind and order  >0. The 

parameter     which is usually kept fixed, measures the degree of smoothness of the 

process and its integer value determines the mean squared differentiability of the process. 

Instead,     is a scaling parameter related to the range   , i.e the distance at which the 

spatial correlation becomes small enough for the observation at site    and    to be 

declared independent.  

In classical geostatistics, we use the empirically derived definition; 

  
√  

 
, with  

  Corresponding to the distance where the spatial correlation is close to 0.1, for each . 
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                                          at time t in a vector denoted by    

                                      
   

It follows that equation one and two can be written as; 

               , where           
 
       

And                 , where                         

Where    is the identity matrix of dimension , and 

           
                    

    and  

                              
   with    coming from the stationery distribution of the 

      process     
 

    
 .  

          ̂ is the dense correlation matrix of dimension   with elements  ‖      ‖, 

where       is the Mat ́rn function given by  equation four and is parameterized by 

        as shown above. 

      {𝜷          denote the parameter vector to be estimated. The joint posterior 

distribution is given by;      |         |           |          

Where the notation       is used for the probability density function, 

  {    and       with                  

Usually. Independent prior distributions are chosen for the parameters, so that; 

     ∏      

       

   

 

                                                                                

and that the state process follows a Markovian time dynamic process . With this 

additional information, equation seven can be written as follows; 

     |       ∏     |     
 
            |  ∏     |                   

 
     

From the Gaussian distributions defined in equations five and six, it follows immediately 

that the joint posterior distribution in equation eight is given by; 
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     |           
   
 ex (

 

    
∑           

 

 

   

           

    )     (
  

 

    
)

  
 

  | ̂|
 
  ex ( 

    

    
  
 
  ̂      )     

(   
   

      

    | |̂ 
     

  ex ( 
 

    
∑           

  
 )       ̂      

      )     ∏  
      
                

      | |̂                                                                   ̂. 

                                                                             

                                                         

                                  

                                                             

                         

                                                   . However, we will heavily rely 

on a summary of this paradigm as provide by Cameletti et al, (2012), Lindgren et al, 

(2012), Simpson et al, (2012) and unpublished reports including the Elias’s book 

chapters in progress on geostatistics using stochastic partial differential equations 

(SPDE).  
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CHAPTER SIX                                            

6.1 BAYESIAN SPATIAL APPLICATION TO RAINFALL DATA 

The daily rainfall data just like other climate related data like precipitation is one type of 

data that is not easy to fit using simple models.  This is because there are days when it 

rains and days when it does not rain moreover, whether it rains at station   depends on 

the status of rainfall at station   for                         This as earlier illustrated  

brings to the model the effect due to space with decreases with increasing distance from 

the     station. In addition, the complexity increases when the data is taken on the same 

stations over a time period say one year. There exist the effect due to time and just like in 

time series observations between adjacent days are more similar than those separated by 

many days. As indicated in the theory of SPDE, Markov chain which traditionally is 

associated with discrete time points observations; it could also begin to think continuous 

in paradigm.  

The distribution of rainfall (Assymmetric) 
Distributions that can be used in this set up could be  

 

     {

  

  
 ex                                  

                              

 

 

Which is gamma distributed. As can be seen above   takes values that are greater than 

zero but not zero. 

We therefore, let    be the rain on location   . We use the augmented data by definition of 

two new variables. That is the occurrence and the amount variable i.e; 

  {
             
                        

 

 

And the amount variable 

  {
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We will therefore use two likelihoods in the model building. We use the Bernoulli 

likelihood  for    and the gamma for   . 

                 and                 

So we need a two column matrix, one for the response and          We put the first 

response on the first column at first n rows and the second response on last n rows of 

second column. 

 

Later we associate on the model formulae, one likelihood for each column. We define the 

predictor to the first component by 

                

Where    is an intercept and    is a random effect modeled by a Gaussian field through 

the SPDE approach. 

To second component we consider that           
  

  
               

  

   
 

  

 
                                                                       g      

we have; 

  g            

Where    is an intercept and   is a scaling parameter to 

                                                                      A time 

random effect which is exchangeable must be added to the model in addition to the 

covariate which for the purpose of the project include elevation and distance from the sea. 

With this modification, we use a Bayesian method and develop a model with two 

likelihoods. We use the Bernoulli likelihood for    and a gamma for   . We define a linear 

predictor for first component                 where    is an intercept and    is a 

random effect modeled by a Gaussian field through the stochastic partial differential 

equations approach (SPDE). To second component, we consider   g            where 

   an intercept is and   is a scaling parameter to    that is a shared random effect with the 

first component of the model. 
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We propose to use the Integrated Nested Laplace Approximation (INLA). This is an 

approach proposed by Rue et al. (2009) to perform approximate fully Bayesian inference on 

the class of Latent Gaussian models (LGMs). INLA makes use of deterministic Nested 

Laplace approximations and, as an algorithm tailored to the class of LGMs, it provides a 

faster and more accurate alternative to simulation-based MCMC schemes. 

6.2 Exploratory data analysis 

This is a typical example of a daily rainfall recorded for only a single day for 100 locations for 365 

Julian days of 1998.  
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Taking a point at which no rain was recorded, and then it is likely that there is no rain at 

neighboring sites. In addition, choosing a site where larger rainfall was recorded then we 

are likely to find rainfall at neighboring sites.  If daily rainfall is recorded say, for a year or 

so, then we have an outcome with both spatial and temporal effects. Besides this, rainfall 

is a mixture of both occurrence and amount variables and as such no form of data 

transformation would be appropriate for such scenarios.   

Here is a map of area elevation 

 

Time series plot of amount of rainfall over time 

 

 

The mean annual rainfall over the 15 years of study 
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To make an initial exploration of relationship between the precipitation and the covariates, 

we visualize some dispersion graphs. After preliminary tests, we see that it is more adequate 

to construct a new covariate: distance from each station to the Indian Ocean. We found the 

coordinates of Kenya border that share a frontier with the sea and compute the distance 

from each station to the neighbor coordinate of this line. We see the dispersion plots in the 

figure below 
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From the above graphics, we observe that we do not have a well-defined non-linear 

relationship with altitude and there is a similar, but inverse, relation with sea distance. 

Therefore, we build two models, one with elevation as a covariate call it model one and 

another with distance from the sea as a covariate call it model two. 

In addition, compute the Deviance Information Criterion (DIC) to decide what model is 

more parsimonious. 

DIC is a measure of complexity and fit, introduced in Spiegelhalter et al, (2002) and used to 

compare complex hierarchical models. It is defined as: 

     ̅     

Where   ̅  the posterior is mean of the deviance of the model and    is the effective number 

of parameters. Smaller DIC values indicate a better trade-off between complexity and fit. 

Notice that by specifying both the spatial and temporal effect, we indicate that each time 

point the spatial locations are linked by the SPDE model object, while across the time, the 

process evolves according to an ar(1) process. 

Models selection 

Model DIC 

1 2514.754 

2 3011.499 

 

It is true that if we want a model for prediction, smaller models tend to be more 

generalizable than bigger models. We really must be parsimonious to avoid quark and 

idiosyncrasies relationships in the model. However, if we were interested in only controlling 

for confounding, bigger models are always better. In this case, we tend to be more liberal. 

Therefore, since our one objective is prediction, we chose a model with elevation as the 

covariate given that it has a better tradeoff between model complexity and the fit (DIC). 

We retrieve the posterior summary statistics of the fixed effects   from the selected model. 

The posterior marginal of the precision    
 
   
⁄  is included in the summary statistics. If 

we are interested in    , we employ the function inla.emerginal for computing the expected  
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6.3 Posterior Summary statistics 
Now, we look at the summary of the posterior distribution to 

                                     ca i g  arameter                  g        

  g                      s atia  sca e  arameter      
 
                               

                                

Fixed effects: 
              mean     sd 0.025quant 0.5quant 0.975quant   kld 

zIntercept -1.1185 0.4165    -1.8812  -1.1323    -0.2511 1e-04 

yIntercept  2.0672 0.4165     1.3044   2.0536     2.9347 1e-04 

Elevation  -0.0001 0.0000    -0.0002  -0.0001     0.0000 0e+00 

 

Model hyperparameters: 

                            mean    sd      0.025quant 0.5quant 0.975quant 

Precision(gamma)            0.6877  0.0148  0.6547     0.6896  0.7114    

Precision for time          1.6952  0.7283  0.5548     1.6132  3.3352    

Rho for time                0.7407  0.1163  0.4882     0.7515  0.9270    

Theta1 for iz              -1.0484  0.3374 -1.7132    -1.0490  -0.3851    

Theta2 for iz               0.3769  0.2166 -0.0513     0.3772  0.8015    

Theta1 for iy              -1.9413  0.7558 -3.7339    -1.7918  -0.7535    

Theta2 for iy               0.0566  0.3899 -0.6393     0.0293  0.8818   

6.4 Posterior densities 
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The posterior mean distribution with 2.5% and 97.5% credibility interval of the amount of  

rainfall in the country that includes both visited and unvisited stations including  non-

weather stations  for the 365 days in this study is given by; 
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From the above posterior means over time, it is clear that the amount of rainfall is 

relatively uniform for the first three months of the year. However, around 20th of January 

tend to be relatively higher compared to the other days under investigation. Nevertheless, 

from the graph, there exist seasonal effects after every 20 days the amount of rainfall 

tends to be higher. This might not be generalizable due to the small number of days 

considered in this study. 

As illustrated above, this is an autoregressive process of order one (ar1) with the 

coefficient given in the posterior means summary result for the hyper parameter for rho as 

0.7407 and the posterior mean for precision for rho is 0.1163 whose prior is inverse 

gamma distributed. In theory, it means that the value of the immediate past is lower than the 

present value by 0.7407. 

So that the ar1 process for the time effect will be given by; 

                  

To decide if the occurrence of rain and the amount of rain at a particular point have 

spatial dependency, we test for the significance of   . 

One approach is looking at the 2.5% and 97.5% quartiles of each element of the random 

effect. If for some, they have quantiles with same signal, then they are significantly none 

null which can be plotted. 
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The other approach, we prefer is to compare the DIC of the model with   with the DIC of 

the model without it. We can also extend this to an additional model with   and other 

effects excluding the SeaDist just to assess whether excluding distance from the sea might 

have led to even a better fit. The model with   plus all the other effects will be our full 

model for the purpose of this work as indicated above in the model fitting procedures at 

the beginning of this chapter. As shown, the full model excluding distance from the sea 

was the most parsimonious model. However, the reduced model (reduced model four) 

without temporal effect was the worst candidate model therefore our model cannot be 

reliable without temporal effect. We remember, the practical range gives the extent of 

spatial dependence beyond which the spatial relationship between stations    and    (where 

                                      is negligible.  
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6.5 Posterior densities for the predictive distributions 
The posterior estimated means are interpolated for both the visited and unvisited sites for 

the occurrence, its standard deviations and posterior distributions of amount variable as 

well as its standard deviation respectively. 
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6.6 DISCURSION 

On average, the spatial practical range of the occurrence of rainfall is 1.8653km with 

standard deviation of 0.5818. Similarly, the average spatial practical range of the amount of 

rainfall is 1.4293km with standard deviation of 0.0272. 

The above imply that beyond 1.8653km from a particular point (location) the correlation 

coefficient between rainfall occurrences is less than 0.13. Similarly, beyond 1.4293km from 

a particular point (location) the correlation coefficient between their corresponding rainfall 

amounts is less than 0.13. 

On the other hand, the average amount of rainfall at any given time is higher than the 

amount on the previous day by 0.7407 if indeed it rained on the previous day. 

The posterior mean of the amount of rainfall is generally higher towards the northern region 

which according to the grid is the region slightly below the equator. 

There was a dismal occurrence of rainfall towards the Indian Ocean. However, this result is 

limited to rainfall as experienced on the 200
th

 day, 1998 in Kenya region below the equator. 

Generally, amount of rainfall experienced across the spatial domain had a continuous trend 

though occurrence had a decline on around the 170
th

 index. 
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CHAPTER SEVEN 

CONCLUSIONS AND RECOMMENDATIONS                                                                            

7.1 CONCLUSIONS 

In this project we have provided Bayesian model based approach to geostatistics using 

Integrated Laplace Approximation (INLA) for spatial and Spatio-temporal models, their 

general complexity remains, potentially, a fundamental issue within the Bayesian 

approach.  

The INLA approach is in general able to provide reliable estimations in lower 

computational time than their corresponding traditional MCMC-based estimations. One of 

the fundamental differences between MCMC and INLA methods is that the former provide 

(asymptotically) exact inference, while the latter give, by definition, an approximation to 

the relevant posterior distributions. This particularly is significant especially with large 

datasets dealing with geostatistical inferences. The use of SPDE algorithms produce 

massive savings in computational times and allow the user to work with relatively complex 

models as we have seen above with semi-continuous model in an efficient way. 

Because of its recent inception, INLA is less established than MCMC-methods. 

Consequently, its development is still on-going particularly in regard to more advanced 

features that frequent users require.  

INLA framework has become a daily tool for many applied researchers from different areas 

of application ranging from (generalized) linear mixed to spatial and spatio-temporal 

models. Combined  with the Stochastic Partial Differential Equation approach (SPDE, 

Lindgren et al, 2011), one can easily accommodate all kinds of geographically referenced 

data, including areal and geostatistical ones, as well as spatial point process data  and 

epidemiological related studies. 

Because of its inception, INLA is less established than MCMC methods (although we 

acknowledge a flurry of activity in the development of new MCMC algorithms, e.g Girolami 

and Calderhead, 2011; and Hoffman and Gelman, 2011).  Consequently, its development is 

still ongoing, particularly with respect to some more advanced features (e.g. the SPDE 

approaches) (Lindgren & Havard, 2013). 
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Moreover, Bayesian inference is simple in principle and provides a single recipe for 

coherent inference, all based on the posterior distribution. Inference is conditional on the 

observed, and not on data that were possible but not observed, obeying the likelihood 

principle. In addition, it tells how to update prior beliefs and how to add additional 

information. Uncertainty is naturally framed as probability statements based on the posterior 

in a way that non-statisticians easily relate to (what else could ‗statistical inference about  ‘ 

mean?) With Bayesian framework, complicated hierarchical models can be naturally 

constructed. In addition, Bayesian results often have good frequentist properties and 

frequentist inference is sometimes a special case of Bayesian results under a particular prior. 

 

7.3 RECOMMENDATIONS FOR FURTHER RESEARCH                                      

7.3.1 Joint modeling a covariate with misalignment 

Here we wish to focus on a situation when we have a response   and a covariate  . But, we have 

misalignment, i.e.; we have   observed at    locations and   observed at    locations. We design a 

solution that not depends if we have or not some common observed locations for          

A restriction is the assumption that   have spatial dependency. This restriction is made because we 

want a good model to predict   at locations of  . So, the goodness of prediction is proportional to 

the spatial dependency. 

Taking into account that   have spatial dependency, a simple approach is to define a model for  , 

predict it on locations that we have   and build a model for  . But, in this two stage model, we 

don’t take into account the prediction error of   on the second model. The measurement error 

model is an approach to solve similar problems, (Muff et al, 2013). But, here we are able to 

consider the spatial dependency on  . So, we build a spatial model for   and another spatial model 

for  , and do the estimation process jointly. 

Taking an example of effect of a covariate   (amount of rainfall) on maize production. We know 

that the amount of rainfall has spatial dependency and since there are days when it rains and 

others when it doesn’t rain at certain points  we develop approach of model building for covariate 

first  that has been described in this project. So we must build a spatial model for rainfall first and 

predict it onto points (farms) so as to enable us build another model for   (maize yield) taking into 

account  both occurrence and amount of rainfall as described. 
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We consider semi-continuous likelihood (binomial for occurrence and gamma for amount) and 

build the model. Having predicted amount of rainfall at required points (available farms), we build 

the second model; 

Let the following model for  ;                   
 
   

Where    is an intercept,   is the regression coefficient on  ,     is the predicted covariate at 

locations   ,     is an zero mean random field and     measures the error that remain unexplained  

on Y.  

A particular case is when we don’t have the   term in the model for   . Another case, is when 

      and we don’t have white noise in the covariate i.e. covariate is considered just a 

realization of a random field. 
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