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ABSTRACT 

Kenya is becoming increasingly vulnerable to the low water levels in its major dams caused by 

recurrent droughts. This has resulted in the deployment of expensive thermal power generation for 

both standby and base load generation. With a view to addressing this problem, the government 

has undertaken significant steps in promoting renewable power generation. Wind energy is widely 

seen as one of the most cost-effective ways to generate electricity among renewables. After the 

introduction of feed in tariff in 2007 by the government, investors began showing interest in wind 

energy. Wind energy is projected to surpass 20% of installed capacity by the end of 2015. 

However, introduction of a significant amount of wind energy into a power system introduces the 

challenge variability and uncertainty. For correct operation of the power system, it is essential to 

balance the generation and load. As a result, the time-varying patterns of wind power production 

has to be taken into account in order to ensure security of supply. The objective of this study is to 

analyse the wind regime at three site (Ngong, Kinangop and Turkana) and quantify the reserve 

requirements for Kenya.  

In this study, the impacts of large-scale wind power production (exceeding 20% of installed 

capacity) have been taken into account with the consideration the time varying patterns of wind 

power production. The first step was to analyse the wind speed data using Windographer software. 

This was done through a six month monitoring cycle. After which a common set of statistical 

parameters have been employed to evaluate the site’s wind regime. This included the means, the 

standard deviations and the ranges. In addition to wind speed analysis, Weibull analysis was used 

to determine the site’s wind speed variability. The results of the wind speed analysis was plotted 

over time to assess the patterns and seasonal trends. The next step, wind speed data was further 
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converted into wind generation data using appropriate wind farm models designed in the 

MATLAB/Simulink software. In order to eliminate unnecessary up scaling of wind generation 

data, an appropriate number of turbines to suit the specified wind farm size. After which, the wind 

farms output were combined into six possible scenarios based on Kenya’s 2015 wind power 

expectations.  

Data validation was done through a comparison was made between the actual to simulated energy 

data to determine the simulation accuracy. The wind power estimates for 2015 were then plotted 

both sequentially and chronologically to determine the extent of the variations. Kenya’s additional 

reserve requirement in each scenario was quantified to cover about 99% of the mismatches 

between hourly demand and supply. Finally, the load following reserve requirement has been 

determined for different penetration levels. The findings showed no proof of symmetry between 

the reserve requirements and the wind penetration levels. Therefore, the net system variability does 

not directly correspond to the reserve size but to the wind generational diversity over within a 

region.   
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Chapter 1 INTRODUCTION 

1.1 Background  

Electricity is a major driving force to the social and economic development of Kenya. 

Currently, the electricity demand in Kenya is at 1,236 MW against an installed capacity of 

1,691 MW. The reserve margin gap between peak demands and available is at 24.5 per cent. 

This is way beyond the optimum limit of 15 percent. The Kenya electricity generating company 

limited (KenGen), a state-owned entity, is the primary generator, produces 80% of the 

electricity, with the independent power plants (IPP's) generating the rest (KenGen, 2011). Sixty 

five percent (766.88MW) of KenGen’s installed capacity comes from Hydro. Currently, the 

effective capacity under hydro is at 92.95 % (KPLC, 2011/2012). 

Kenya’s dependency of hydroelectric power has proved to be a problem due to its seasonal 

nature. Kenya is becoming increasingly vulnerable to weather conditions and the reliability of 

hydroelectricity as a primary energy source is insecure. Water levels in the major dams feeding 

the hydropower stations in the region have drastically decreased, culminating in the 

deployment of expensive thermal power generation for both standby and base load generation 

(KPLC, 2011/2012). The volatile and unpredictable lofty price of petroleum products used for 

thermal generation is transferred to the consumer in the form of high utility bills. Petroleum 

fuel accounts for about 28.57% of the final consumption while electricity while combustible 

renewable accounts for about 3.11% and 67.65% (DFIC, 2007). Available data shows, Kenya 

has some of the highest prices throughout the world. The cost of electricity in Kenya is about 

four times that of South Africa, the country’s main competitor in the region, and more than 

three times that of China (KIPRA, 2009). Kenya continues to miss foreign direct investments 

partly because of this problem, with considerable penalties on socioeconomic development. 
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The elevated cost of energy is one of the biggest bottlenecks for the attainment of Kenya Vision 

2030. The Kenya Vision 2030 is a long-term development strategy, whose aim is to transform 

Kenya into a globally competitive and prosperous economy with a high quality of life. It 

envisages that Kenya will be transformed into a newly industrialized, middle-income country 

providing high-quality life to all Kenyans in a clean and secure environment. In order to reach 

an average annual economic growth rate of 10 per cent for the next 18 years as outlined in 

Kenya Vision 2030, Kenya needs to adopt robust, well thought-out solution for the drought 

power crisis (KIPRA, 2009). 

With a view of addressing the drought-induced crisis, the government has undertaken 

significant steps in the promotion, development and utilization of renewable-energy resources. 

The aim is to increase the proportion of renewable contributing in meeting the country’s energy 

demand. There are three main renewable-energy sources currently being exploited in Kenya, 

i.e. Solar, geothermal and wind energy. 

1.2 Solar Energy in Kenya 

Solar-energy potential in Kenya is high. Kenya receives daily insolation of 4-6kWh/m2 (GoK, 

2011). Solar energy is a virtually inexhaustible resource. Solar-energy is currently under-

exploited although it is widely regarded as a plausible option to stimulate rural electrification 

(KIPRA, 2009). Solar utilization is mainly for photovoltaic systems (PV), drying and water 

heating. The solar PV systems around the country are primarily for domestic installations with 

the private sector playing a major role. The solar market in Kenya has been among the greatest 

and most dynamic per capita among developing countries. Since most rural households will 

not have their homes connected into the grid in the near future, solar is the largest source of 

new electrical connections in rural Kenya. The major challenges of using more solar power 
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include the lack of a satisfactory means of energy storage and concerns about flexibility and 

economics. Because no power can be produced when the sun is not shining, scientists must 

develop cost-effective methods of storing solar power in order to supply energy whenever it is 

needed. The development of effective and efficient storage systems will be one key to the future 

of our use of direct forms of solar energy.  

1.3 Geothermal Energy in Kenya 

Geothermal energy is the natural heat from the earth’s interior stored in rocks and water within 

the earth’s crust. This energy can be extracted by drilling wells to tap the steam at high 

pressures, which is then led through pipes to drive electricity. Geothermal resources in Kenya 

are located within the Rift Valley with an estimated power potential of between 7,000 MW to 

10,000 MW spread over 14 prospective sites (SREP, 2011). Kenya has 157 MW of installed 

geothermal electricity capacity. This accounts to about 9.5 % of the Kenya’s installed capacity. 

However, during the recent droughts in the country, geothermal energy played a critical role as 

it continued to operate at nearly 100% availability when hydropower stations throughout the 

country were crippled by the dry spell (Karekezi, 2005). Geothermal is a reliable way to 

produce energy, it is not affected by climatic variability, and it does not need transported fuels. 

The government has therefore identified geothermal as the suitable source to supply electricity 

for base load. The government has plans to increase geothermal power capacity to 576 MW by 

2019 (KPLC, 2000). The Government has opened up the industry for private sector 

participation with the first IPP, OrPower 4, operating in Olkaria III and generating 48 MW. 

Additionally, IPP’s have been licensed to develop Suswa and Longonot geothermal prospects. 

Kenya Electricity Generating Company (KenGen) has begun the implementation of an 
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ambitious 280MW project aimed at increasing our geothermal output to 315MW (SREP, 

2011).  

1.4 Wind Power sources in Kenya 

Wind energy is a renewable electricity production from converting the kinetic energy of 

moving air masses into electricity. When compared to other renewable energy sources, such as 

solar, wave and geothermal power, wind power is a relatively cheap source of renewable 

energy. Wind power installations cost 3.5 times less per Watt than PV installations and operate 

for 12-16 hours at good sites as opposed to 5-6 hours for PV systems (KIPRA, 2009). 

Therefore, the promotion of renewable energy by a number of governments has led to a strong 

growth of wind power in the respective countries. Wind energy has experienced rapid growth 

since the 1990’s. The global installed capacity increased by 44 GW in 2012 to 282 GW 

(GWEC, 2013). Kenya is located within the equatorial region where wind speeds are lower 

compared to those of higher latitude regions. However, specific parts of Kenya have significant 

wind resources throughout the year due to the complex topographical features and varying 

nature of surfaces (Mukabana, 1992). Parts of Nairobi, Rift Valley, Eastern North Eastern and 

Coast Provinces have wind potential as high as 346 W/m2 (GoK, 2011). Ever since the 

introduction of feed in tariff in 2007, the wind-power sector has attracted investors set on 

exploiting the country’s huge potential. One-wind generators was installed in Marsabit 

generating the 200kW wind turbine. It was later decommissioned in 2006, and replaced with 

two wind turbines of 250kW each at a total cost of Shs.198 million (KPLC, 2011/2012). 

Feasibility is ongoing for an additional 150 MW capacity of wind generators to the grid 

(KenGen, 2011). 



5 

 

Ngong wind farm is located 22km southwest of Nairobi, is the only wind farm connected to 

the grid. (KenGen, 2011). The first phase was commissioned in 1993 as a donation from the 

Belgian Government. At the time Ngong, was composed of two wind turbines with capacities 

of 0.15MW and 0.2MW. This summed up to an installed capacity of 0.35MW. The two wind 

turbines have since been decommissioned. The second phase was commissioned in August 

2009 to a capacity of 5.1 MW (KPLC, 2011/2012). The layout of the second phase of Ngong 

wind farm is as shown in Fig. 1.2. The Ngong wind farm is powered by six Vestas V52 wind 

turbines producing a total of 5.1MW (0.3% installed capacity) (KenGen, 2011). A feasibility 

analysis conducted done by KenGen using 14 years data confirmed that the Ngong site was 

capable of generating up to 14.9 GWh of energy per annum on average from a 5.1MW wind 

farm (KenGen, 2011). The turbines (doubly fed asynchronous type) have hub heights of 50 

meters and rotor diameters of 52 m. The turbines are networked to the Ngong wind substation 

and control via underground cabling. The Ngong wind farm is directly connected to the wider 

66kV distribution network within Nairobi. Wind power varies over time, mainly under the 

influence of meteorological fluctuations. The variations occur on all time scales: seconds, 

minutes, hours, days, months, seasons and years. Understanding these variations and their 

predictability is of key importance for the integration and optimal utilisation of wind in the 

power system.  

In this study, the basic parameters of the project will be assessed (e.g. the number and type of 

turbines and total installed power) taking into account the wind resource available. Wind speed 

data will be converted into wind generation data using wind farm models designed in the 

MATLAB/ Simulink. A comparison between the actual to simulated energy data will be 

undertaken to validate the model applicability to future scenarios. Six possible wind scenarios 
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will be considered based on Kenya’s 2015 wind power expectations. In order to avoid 

unnecessary up scaling of wind production data an appropriate number of wind turbine 

matching a specified wind farm size will be used.  

The impact of the wind variability may range from negligible to significant depending on the 

penetration levels and intermittency of the wind resource. Variations in wind plant output may 

adversely affect grid reliability and increase the operating costs of the system as a whole. To 

compensate for these variations, additional generation capacity is needed to provide regulation 

or set aside as reserves. The time-varying patterns of the site’s wind power production has to 

be taken into consideration while determining the reserve requirement. Consequently, the extra 

reserve requirement in each site will be quantified both in distinctiveness and additively to 

cover about 99% of the mismatches between wind and load fluctuations.  
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Figure 1.1 Wind Resources in Kenya (SWERA, 2008). 
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Figure 1.2 Diurnal profile for Turkana from October 2011 to March 

2012 
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1.5 Main Objective: 

The main objective of this study is to analyse wind regimes in Kenya and quantify the reserve 

requirements for different types of regimes, and wind penetration levels. To achieve this, the 

impact wind variability for three distinct sites will be determined and analysed using statistical 

methods. These sites are Ngong, Kinangop and Turkana. 

 Specific Objectives: 

1. Analyse and obtain the site-specific characteristics such as mean wind speed, standard 

deviations, maximums and the minimums for the three sites. 

2. Estimate the potential wind power for the sites mentioned using MATLAB/Simulink 

software. 

3. Determine and compare the site's wind variations and Kenya’s load variations. 

4. Estimate the net load variations and reserve requirements based on Kenya’s 2015 wind 

power estimates.  
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Chapter 2 LITERATURE REVIEW 

2.1 Wind power potential and distribution in Kenya and selected sites 

Wind power production in a specific region is highly dependent on its average wind speed. Due 

to the cubic relationship between wind speed and power, even a small variation in the wind 

speed may result in significant change in power. For example, an increase in the wind speed 

by 10 percent may enhance the productivity of the turbine by over 33 per cent. Wind is 

stochastic in nature i.e. Speed and direction of wind at a location vary randomly with time. 

Accurate estimation of wind potential of a specific region requires rescaling of near surface 

meteorological from near surface into turbine heights. Two laws are used for this extrapolation, 

specifically logarithmic law and power exponential law.  

The wind regime of a specific region is then modelled for energy production as derived power 

density by computing for topography, surface roughness and obstacles. Cabello (2010) 

analysed 9-year wind speed data for the Alicante Spain at a height of 2 meters above the ground 

and then recycled it to a height of 10 meters using logarithmic law. He concluded that strongest 

annual averages about 2.1 m/s and weakest annual averages about 1.2 m/s at a height of 10 

meters. However, extrapolation to 10 meters heights is still way below the hub heights for wind 

turbines. The height of 50 meters is considered as the average height of most commercial wind 

turbine hubs. Therefore, his conclusions would be more appropriate wind power estimation 

had he considered a height of 50 meters and above. The annual wind speeds are likely to 

increase if the study heights were to be increased. Archer (2002.) used both logarithmic and 

power-law relation to extrapolate wind speeds data obtained at 10 meters to 80 meters. Data 

from 1327 surface stations and 87 soundings in the U.S. for the year 2000 were used. Analysis 
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was then done to judge the regularity and spatial distribution of U.S. wind power at 80 m. She 

concluded that the five states with the highest percentage of stations with annual mean 80-m 

wind speed ≥ 6.9 m/s were Oklahoma, South Dakota, North Dakota, Kansas, and Nebraska. 

These wind speeds are suitable for the commercial wind turbine with a cut of wind speeds of 4 

m/s. 

The height of wind power estimation may also affect the diurnal cycle. Lindenberg, (2011-3) 

demonstrated the wind frequency using the probability distribution function. He concluded that 

between the heights of 60 to 80m the diurnal cycles strongest on clear summer days. He further 

established that Europe experiences high nocturnal wind speeds due to reduced download 

transfer moments. Then again, at a height of 33m above the ground the diurnal cycle was still 

strong with maximum around noon followed by decreasing wind speeds in the afternoon. This 

was due to thermal circulation with strong mixing of the near surface boundary. 

A comprehensive review of wind regimes of Europe and Kenya will enable us to understand 

the applicability of different studies undertaken on reserve requirement. Model calculations 

show that surface (10 m above ground level) wind speeds across the majority of Europe are 

less than 4 m/s. None the less, the annual mean greater than 4 m/s occur across 13.5% of the 

Europe’s land surface area. There is also a significant drop off in surface area between the wind 

speed bands, 3.5 to 4 m/s and 4 to 5.5 m/s (Eerens, et al., 2008). The Nordic region for example 

exhibits seasonal variations with averages ranging from 22 to 34 percent of nominal capacity. 

Wind production in winter usually exceeds that of summer. Wind power production is 110-140 

percent of average in winter month and 60-80 percent in the summer months (Holtinen, 2004). 

In the UK, winter months (December to February) account for about 33 percent of annual 

electricity while summer months account for about 17 percent (Sinden, 2005). Conversely, the 
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seasonal trends in wind speeds exhibited in Kenya correspond to that of rainfall; high wind 

speeds are exhibited during dry seasons while low wind speeds during wet seasons. The strong 

meridional flows that occur during the transition period of the rainy seasons and the stable 

stratification is marked by a decline in moisture content due to the winds travelling long 

distances over land (often relatively parallel to the coastline) and to the north-south orientation 

of the Kenyan highlands.  

The rainy seasons coincide with the periods of the year when the Inter-Tropical Convergence 

Zone (ITCZ) is passing over this part of the continent. Most parts of Kenya experience two 

rainy seasons and two dry seasons (Mukabana, 1992). The former is commonly known as the 

"Long Rains" (March-July). Showers and thundershowers are widespread during long rains, 

especially in the afternoons and at night. The wind speeds are lower in most parts of the 

country. The latter is known as the "Short Rains (Late October-mid December). Unlike the 

long Rains, north-south oscillations are rare during the short rains. Heavy storms are likely to 

occur during the season, and more so, during the rainfall peak month of November. However, 

the wind speeds are still low in most parts of the country (Mukabana, 1992). The two dry 

periods that occur over most parts of Kenya, run from mid-December to late February and June 

to late September. The speeds are high during dry seasons is brought inland by North-easterly 

and South-easterly monsoon winds (Mukabana, 1992). These monsoon winds have a direct 

effect on the different regions of the country. For instance, higher speeds between April and 

September are characteristic of the south-easterly monsoon winds while the lower speeds from 

December to March and May to August are characteristic of the north-easterly Monsoon 

(Okeyo, 1987 ).  
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Apart from seasonal variations in rainfall, Kenya has naturally occurring features that influence 

the wind speeds within certain regions. Mukabana (1992) showed how the local features (Lake 

Victoria, the Indian Ocean, orography, Turkana-Marsabit corridor, etc.) played some major 

role in the generation and control of the local mesoscale circulations in the absence of the large-

scale forcing. An example is the channelling effect known as the Turkana Jetstream. The 

Turkana Jetstream is triggered off by the orientation of the terrain that forms a corridor in this 

locality between the Kenyan Highlands to the south and the Ethiopian Highlands to the north. 

The Turkana Jetstream is ultimately responsible for the consistent winds found on the South 

Eastern shores of Lake Turkana. The strong winds exist throughout this channel with speeds 

decreasing where the channel is wider (Asnani & Kinuthia, 1979). Oludhe (2008) assessed the 

diurnal wind power potential for Marsabit taking into account the mesoscale winds associated 

with topographical features. Data was analysed to obtain the magnitude and duration of winds 

for each scale of motion. He concluded that the Marsabit region had the high wind power 

potential of more than 1000Wm/2 with strong diurnal and seasonal variability. 

Another example is the meridional wind maxima could be the southerly monsoon winds, which 

flows at the Kenyan coast and is reputed to have a core over the town of Garissa. Southern 

regions of the country and especially in the coast province are directly affected by the monsoon 

winds that blow over the Indian Ocean (Mukabana, 1992).  

Mukabana (1992) determined the influence of the large-scale flow on the diurnal weather 

patterns over Kenya using a three-dimensional limited-area model, the Regional Atmospheric 

Modeling System. He assessed the scale-interaction between the large-scale monsoonal flow 

and the local mesoscale circulations that are generated and controlled by local features like 

Lake Victoria and the Indian Ocean, orographic barriers, the Turkana-Marsabit corridor, and 
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the overall resultant effect on the diurnal weather patterns over Kenya. He concluded that the 

diurnal weather patterns for the coastal region, the eastern slopes of the Kenyan highlands, and 

the Lake Victoria region with the region in the Turkana-Marsabit corridor were related to the 

scale-interactions between the local circulations. Like the sea/land breeze and the lake/land 

breeze circulations, upslope/ downslope drainage winds with the prevailing southeast monsoon 

wind current. The intense precipitation over the Kenyan highlands is brought about by a strong 

convergence between the lake-breeze, coupled with upslope winds from the lowlands, with the 

large-scale southeast monsoon currents during the afternoon period. The intense convective 

precipitation rates over the highlands continued to drift westwards to the Lake Victoria Basin. 

Hence, the eastern parts of Lake Victoria received convective rainfall generated over the 

Kenyan highlands and this advances westwards to the Lake Basin by the South-easterly 

monsoon winds. 

Arthur (2011) used six-year data collected from twelve different stations to study the hourly 

wind speed. The data covers the six-year period between January 1995 and December 2000; 

measurements were taken for every hour of everyday at 10 meters above the ground. He then 

selected one site due to its wind potential, geographic location and socioeconomic potential. 

The measured data were then analysed in WindPRO/ WAsP simulation software to determine 

wind speed at different heights; optimize the system for different hub heights. He then 

concluded that the data collected from three sites with valid explicitly, Voi, Marsabit and Wajir 

have the top three annual average wind speeds of 8.9, 7.8 and 7.4 m/s respectively. Marsbit had 

a wind speed range of 14.53 m/s. Saoke (2011), analysed the wind speeds characteristics in 

Juja, Kenya using short-term (three months) data of daily wind speeds at 13 m and 20 m 

heights. Using the calculated shear exponent, an extrapolation of the speeds was done to higher 
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heights of up to 150m. The wind shear exponent and the roughness parameter for the selected 

site at Juja were found to be 0.16 and 0.048 m respectively. He then concluded that the wind 

speed frequency distribution at the 20 m was determined and the mean wind speed found to be 

5.04 m/s with a standard deviation of 2.59. While the maximum wind speed obtained at the 

150 m height was 8.4 m/s during the month of October. The wind potential was modelled using 

the Weibull probability function and power density of Juja site was found to be 131.35 W/m2. 

2.2 Wind power estimation 

Wind power production is normally simulated using system models or analytical methods. 

Analytical method, wind speed data in time series format is used together with system variables 

(Ackermann, 2005). System models have been successfully used for defining the distribution 

of wind in a region, over a given period. Successful analysis of wind velocity and its 

distribution at a prospective site is necessary for the assessment of the energy potential. The 

distribution describes the amount of time on a particular site that the wind speed is between 

different levels. Wind turbines installed at two sites with the same average wind speed may 

yield entirely different energy output due to differences in the velocity distribution. The 

quantification of the impacts of wind resource integration into the grid requires a wind 

generation model with the appropriate level of detail for representing the uncertainty in the 

wind speed and its impacts on the wind power output.  

There are two main approaches for wind power modelling namely: Deterministic and 

Probabilistic. Probabilistic approach is based on the site’s wind speed. Probabilistic approach 

is preferred by many researchers because it can be used in almost all sites and for all types of 

wind turbines (Ackermann, 2005). However, this approach fails to represent the characteristic 

for the wind farm during nominal operation characterized by small deviations in grid quantities 
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from the nominal values and the occurrence of wind speed changes. Probabilistic model is 

widely used to evaluate the expected energy produced by each unit in the resource mix over a 

specified period and determine the expected system production costs, the expected emissions, 

the reliability indices, and other variable effects over the specified study period. The 

probabilistic simulation is used in long-term planning studies to investigate factors such as the 

optimal resource mix determination to serve the forecasted load (Maisonneuve & Gross, 2011). 

 

 

Figure 2.1 Wind Power Simulation Process 

The assessment of impacts of wind variations on the power system needs critical understanding 

of wind distribution. The Weibull distribution is the most common probability density function 

used in the wind data analysis. The Weibull distribution is used to represent probability 

distributions of many natural phenomena (Lun & Lam, 2000). The Weibull distribution is 

described by two parameters, the scale and shape values. The shape parameter describes the 
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shape of the curve, while the scale parameter describes amplitude. These parameters are 

manipulated to provide a Weibull distribution fit for almost any given wind speed data. If the 

confidence level of a Weibull distribution is low, meaning the Weibull distribution is not an 

accurate representation of the data; other probability density functions such as Rayleigh’s 

distribution can be used to express the wind behaviour.  

Besides the shape and scale parameters, the Weibull can be used to determine the wind speed 

range in a specified site. Waewsak (2011) analysed the statistical wind data obtained from 

measurements for the 12-month period of January to December 2008 at Thasala district in 

Nakhon Si Thammarat province, southern Thailand. He analysed statistical wind data set using 

Weibull distributions in order to investigate the Weibull shape and scale parameters. The 

Weibull parameters obtained from WAsP 9.0 analysis as well as from the probability density 

function and cumulative distribution function of graphical methods was compared and the 

mean bias error between the methods was determined. He concluded that the monthly Weibull 

shape parameter was in the range of 1.1-2.8, while the monthly Weibull scale parameter was 

in the range of 2.27-5.94 m/s corresponding to monthly mean wind speeds in the range of 2.2-

9.4 m/s. The mean wind speeds at 20 m, 30 m, and 40 m determined by WAsP 9.0 from the 

observational data were in the range of 2.4-7.8 m/s, 2.7-8.3 m/s, and 3.1-8.8 m/s respectively. 

Arthur (2011) analysed the Data for the three locations; Voi, Marsabit and Wajir using 

Windorgrapher software to determine the details about the diurnal cycles and Weibull 

distribution curves. He then concluded that Wajir generated smooth and promising monthly 

average speed curve. The representation of the diurnal cycle of wind speeds in Marsabit shows 

a range between the highest speeds and lowest is approximately 1.8 m/s. The effect of low wind 

speed below the cut off the wind is more severe than stormy events above cut out speeds. 
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Sinden (2005) demonstrated how low wind speeds > 4m/s can cause a majority of hours with 

no generation (zero) while the high wind speed causes less hours of no generation about 1% of 

the incidents. Sinden (2005) reported that the impact of low wind speed could be less severe 

during peak hours. 

In general, for a fixed set of data and underlying statistical model, the method of maximum 

likelihood is used for selecting values of the model parameters that produce a distribution that 

gives the observed data the greatest probability (i.e., the shape factor and velocity factor). 

Maximum-likelihood estimation gives a unified approach to estimating experimental wind 

data. Ahmad (1995) computed using maximum likelihood method, the modified maximum 

likelihood method and the graphical method. The three methods were compared to their 

performance. He concluded that root mean square values (RMSE) values show that the 

modified maximum likelihood method performed better than the low root mean square error in 

frequency distribution format. Maximum likelihood has the limitation of a low root mean 

square error while the least square method is less accurate and its accuracy is affected by the 

bin size in the cumulative distribution format. The least squares regression was carried out in 

its cumulative frequency distribution and not on its actual wind speed data. This way, all the 

points are given equal weightage although some of the bins may have a larger number of data 

points than others. The maximum likelihood method curve fit seems reasonable, but it resulted 

in a substantial under prediction of wind power density (Waewsak, Chancham, Landry, & 

Gagnon, 2011). 

Deterministic approach, the turbine model designed by use the maximum value of the 

production is used for transforming wind speed data into power production data (Ackermann, 

2005). This approach is based on wind power curve as stated in the data sheet for the wind 
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turbine. Alternatively, it can be based on actual turbine parameters (system variables) designed 

to produce the same power duration curve. Sinden (2005) used a hypothetical wind turbine 

model to convert wind speed to wind power production. Wind speed measurement collected 

from the sites was used to generate a hypothetical model of all wind turbines located in the UK. 

One major drawback to the use of hypothetical model is the fact that the model accuracy 

depends on the system variables used in the wind farm. Papavasiliou (2011) uses a power curve 

that has been superimposed on the data sample of the two wind integration (penetration) levels. 

The power curve used in the study resembled that of a typical wind generator, although it is 

smoother due to the geographical diversity of the wind sites. 

Some researchers opt for the actual wind production data for analysis. Holtinen (2004) uses a 

single point measurement of actual data up-scaled to represent wind power production of a 

larger area. The wind production data has been rescaled to a specified wind penetration level. 

However, up-scaling approach has the limitation of up scaling the wind variation. Up scaling 

also neglects the small deviations in grid quantities resulting to erroneous representation of 

wind power characteristic over a region. In order to depict the grid quantities in individual sites, 

Holtinen relies on the correlation between different sites with distance. However, the distance 

correlation assumes equal site distribution over a region as opposed to concentration of sites 

over regions with favourable wind regimes. This often results to the linearity of the smoothing 

effect in a region. Halamay (2010) used unadjusted wind power data from wind farms 

(1600MW) within the Bonneville Power Administration representing up to 14 percent. He then 

rescaled the wind power data to desired penetration levels based on different scenarios. He uses 

historical data as baseline data adding a coaction term to cater for growth.  
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Maisonneuve (2011) determined the need in the planning domain through the development of 

a computationally efficient probabilistic production simulation approach with the capability to 

quantify the variable effects of systems of varying levels of wind penetration with the 

uncertainty in the variability/intermittent effects of wind generation at multiple sites together 

with the other sources of uncertainty explicitly represented. The simulation approach is based 

on the identification of the prevailing wind regimes in the regions where wind resources are 

located and the judicious application of conditional probability concepts in incorporating the 

wind regime representation. The regimes-based approach effectively captures both the seasonal 

and the diurnal variations of renewable resources and their correlation with the load seasonal 

and diurnal changes. 

2.3 Wind Variability Estimation 

The additional reserve requirement and cost in balancing the system on different timescales are 

primarily due to fluctuations in the power output generated from the wind. The impact of wind 

variability in the power system depends on the size and the inherent flexibility of the power 

system (Ackermann, 2005). Wind variability has to be taken into account to reap the maximum 

benefits of wind power. The variability of wind has been widely studied. Recently also 

measured large-scale wind power production data have identified that wind variability in a 

region reduces due to “smoothing” effect of geographical spread and timescale. Smoothing 

effect is quantified using statistical parameters such as production (𝑃�) and fluctuation (𝛥�𝑃�) 

time series i.e. the maximum variation of production (extreme ramp rates), the probability 

distribution of the variations and the standard deviation�(𝜎). The precise smoothing effect of 

the geographical distribution depends very much on local wind regime and on the total size of 

the geographical area. Holtinen (2004) studied the statistical parameters of large-scale wind 
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production to establish the smoothing effects. She established that the relative standard 

deviation of uncorrelated time series reduces due to geographic spread and number of turbines. 

The  smoothing effect  of  wind  power  production  from  larger  areas  is  due  to  the low 

correlation of production from different sites. She further demonstrates how zero and peak 

are common for an individual turbine; as the number of turbines increases in a region the 

number of zeros and peak reduces. 

Ideally, to maximise the smoothing effect, the number of wind turbines within a wind farm 

needs to be very large and the wind speeds occurring in different parts of the system should be 

as uncorrelated as possible. Holtinen also concludes that it never reaches total calm all over the 

Nordic region. However, her conclusion less applicable to Kenya’s 2015 wind power estimates 

since she tends to overlook the site-specific characteristics and the wind farm concentration in 

areas with favourable wind regimes. The siting of wind power plants in Kenya is primarily 

governed by the characteristics of the local wind regime, which varies both geographically and 

temporally. Consequently, the net system variability may not smooth out linearly due to 

concentration of wind farms on the northern and coastal regions of the country.  

2.3.1 Short term variability 

Wind variability can be divided into two distinct timescales i.e. Short term and long variability. 

Short-term variability, the consequence of turbulence or transient events includes inter-hour 

variability and intra-hour variability. Inter-hour variability, which covers timescales of seconds 

to minutes, is the sub-hourly differences between scheduled energy and forecasted demand. 

These differences are usually met by load-following units that can ramp output quickly to 

balance supply and demand. Intra-hourly variability covers several hours; determined using the 
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average dispatch capacity that is made available for intra-hour load following. Halamay (2010) 

calculated the reserve requirement using forecasted renewable resources (wind, solar & wave) 

and load. Regulation requirement was calculated using 10 minutes difference between the 

actual and forecasted values. The same was repeated in the hourly timeframe to calculate the 

imbalance requirement. This approach is more accurate because of different timeframes; 

however, analysis of variability for different renewables at the same time could result in errors 

since there is no correlation. Due to data limitations and the fact that short-term variability is 

quite small and hardly affects the system, Inter-hour variability will not be considered this 

study.  

The maximum wind power fluctuations experienced in the power system are reduced due to 

turbine smoothing effect. The smoothing effect of a specified area has an upper limit. There 

will be a saturation for variation; that is, where an increase in the number of turbines will not 

decrease the (relative) variations in the total wind power production of the area. Beyond the 

point of saturation, the smoothing effect can be increased only if the area covered becomes 

larger. Holtinen (2004) carried out time series analysis of load forecast errors and wind power 

variations. In  order  to  assess  the  additional  resources  to  manage  the  balance between 

generation and demand in the hourly horizon, 4𝜎 confidence level covered about 99% of the 

mismatches. The Load forecast was dropped by half of load variability. She concluded that the 

smoothing effect of a specified region has an upper limit i.e. a point where an increase in the 

number of turbines in a region will not increase the relative variation. Wang (2005) quantified 

the average variations in large-scale wind plant in the Midwest of the US. He concluded that 

the average hourly variations reduce from 7.0 to 5.2 percent as standard deviation reduces from 



23 

 

10.7% to 7.9 percent when wind turbine numbers increase from 14 to 250. This shows that 

hourly variation increases as the number of turbines in a wind farm increase. 

Load Following reserve refers to spinning and non-spinning capacity required to meet within-

hour shifts of average energy due to variations of actual load and generation from forecast load 

and generation (Ackermann, 2005). Spinning reserve is used by system operators to 

compensate for unpredictable imbalances between load and generation caused by sudden 

outages of generating units, errors in load forecasting or unexpected deviations by generating 

units from their production schedules. Non-spinning reserve is connected to the system but can 

be accessed after a short delay after the generator powers up. These reserves usually are ready 

to generate within ten minutes (Miguel, Ortega, & S.Kirschen, 2008).  

The maximum step changes experienced in the power system depends on the penetration levels 

and power system's flexibility. This phenomenon has been extensively studied throughout 

Europe. Holtinen (2004), reported that the maximum hourly step changes are inside ±20 

percent of installed capacity per country. Hourly variations are between 91 to 94 percent of the 

time between 5 percent of installed capacity and 99 percent of the time ± 10 percent of 

capacity. Brandberg (2005) investigated how the market reacts to 4000MW of wind power in 

Sweden. He used hourly step changes to estimate wind forecast errors: the difference between 

the production the hour prior to the hour of operation and hour of operation. He concluded that 

a regulating power of 2680MW was required. Holtinen (2004) studied the impact hourly step 

changes on large-scale wind production in the Nordic electricity system. She concluded that 

the increase in reserve requirement would be about 0.33 TWh/annum at 10 percent penetration 

level and 1.15 TWh/annum at 15 percent penetration level. Axelsson (2005) determined the 

increase in reserve requirements in Sweden for different penetration levels and timescales. He 
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concluded that the hourly variations increase from 20MW (0.5 percent installed capacity) to 

80MW (1.0 percent installed capacity) as wind power penetration increased from 4000MW to 

8000MW. This shows that reserve requirement corresponds to step changes and increases with 

penetration levels.                    

2.3.2 Long-term Variability 

Long-term variations of wind power relevant for integration in the power system include the 

seasonal and inter-annual variations, caused by climatic effects. Monthly and Seasonal 

Variations are important for electricity traders that have to deal with electricity forward 

contracts, where wind power volume has an influence on price. They are also important for 

power system planning. However, it appears that for both electricity trading and system 

planning purposes, these deviations, resulting from annual statistics of wind power produced, 

can be sufficiently hedged. Inter-annual variations are relevant for long-term system planning, 

rather than daily power system operation. Various studies have been undertaken to determine 

the impacts long-term variability in a power system. Sinden (2005) studied the characterization 

of the UK wind resources and relationship to demand using 34 years, hourly wind speed data 

recorded from 66 onshore sites. He concluded that wind power availability in the UK varies at 

a rate of 7.4 percent per annum. Wind power availability corresponds to wind speed 

availability. These are not particularly important for the daily operation and management of 

the grid, but plays a role in strategic power system planning. Different studies have shown that 

wind power in a region experiences seasonal effects. Sons (2005) analysed hourly wind speed 

data from 2001-2003 to estimate the level of aggregated wind power production has some 

seasonal effects with higher averages in winter than in summer. Soens concludes that large-

scale wind integration in Belgium does not require a substantial increase in balancing reserves, 



25 

 

even if wind power is evenly spread across the country. However, one serious weakness of the 

study is that the impacts of meteorological forecasts in reserve management have been 

overlooked. Assuming that the entire region around the study site has a normal distribution 

could result to less accurate results. This is one serious weakness considering the fact that 

different wind regions have different distributions. Cabello (2010) studied the wind 

characterization in Alicante Spain based on data of station distributed over the study area. He 

demonstrated the fact that that both Bimodial and Trimodial frequency distribution were 

observed in Alicante Spain. Calif (2005) categorized wind speed fluctuations into distinct 

classes to estimate the probability of a distribution to belong to a class. Wind speed probability 

distribution function was classified using Dirichlet distribution mixtures. SAEM (Simulated 

Annealing Expectation Maximization algorithm) algorithm was used to give a distinction 

between the classes of wind speed distribution. He concluded that 90% of wind speed 

sequences are symmetrical monomodal is modelled by a Gaussian probability distribution 

function; 9% of wind speed sequences are dissymmetrical monomodal probability distribution 

function modelled by a Gram‐Charlier function while the remainder is bimodal probability 

distribution function. 

Wind regimes-based approach described in the project is an effective methodology for 

capturing both the seasonal and the diurnal variability of wind resources at a specific site. For 

the realistic emulation of the actual system operations, the simulation has to capture the 

seasonality effects, as well as changes in the resource mix and resource characteristics, the new 

policy and legislative initiatives, the investment decisions, and the maintenance schedule of the 

resources (Maisonneuve & Gross, 2011). Sinden (2005) analyses both long-term and seasonal 

variability. Long-term analysis of wind variability requires the express the hourly wind power 



26 

 

output as a percentage of rated capacity to allow for variability analysis. This makes it easier 

to fit data for long time fames in a single diagram. Sinden presents electricity demand by 

percentile rank from 1 hour to 8760 hours. His approach makes it easier to summarize several 

hour data into a single point. However, this method of analysis makes it difficult to establish 

the trend and the variability. Holtinen (2004) analyses the wind production and corresponding 

electricity demand arranged chronologically and by duration from 1 hour to 8760 hours. Her 

approach makes it easier to establish both the trends and variability from a single plot. For 

example, it is easier to depict the seasonal trends for an entire year using long time steps 

(approximately 500 hours) as opposed to short time steps. This suggests that two separate data 

sets have to be plotted to establish the variability in short periods and trends over long periods. 

2.4 Load analysis 

Generally, a power system is operated so that the generation portfolio satisfies the load demand 

using the transmission and distribution network. The loads vary, and their statistical 

distributions and the correlation between them must be modelled (Boehme, 2006). The changes 

in demand may be represented by load curves or by load duration curves. Load curve is crucial 

to power system analysis because the demand for power is traditionally described by a load 

duration curve. The load curve is a graphical summary of the relationship between of varying 

load with respect to chronological time. A load duration curve in contrast illustrates the 

variation of a certain load in a downward form such that the greatest load (peak load) is plotted 

in the left while the smallest one in the right. As seen later in the study both load curves and 

load duration curves can be represented in a single plot. Thus, the load curve will be viewed 

with respect to time while load duration curve independent of time. 
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Figure 2.2 Annual electric load curve (Liik, 2005). 

 

Figure 2.3 Annual load duration curve (Liik, 2005). 

Electricity demand is traditionally divided in three load periods from the longest to the shortest: 

base load, shoulder and peak demand. A common modelling approach to integrate renewable 
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with the screening curve methodology is to use the net load duration curve; derived by 

subtracting hourly wind power output from hourly load. Wind is thus modelled as a negative 

load (Brun, 2009). The examples of the load curve and curve for one year are shown in Fig. 

2.2 and Fig. 2.3. 

The load duration curve (seen in Fig. 2.3) provides a useful summary of a year’s worth of 

hourly fluctuations in electricity demand; the area under the load duration curve represents the 

energy demanded by the system. The height of each slice is a measure of capacity, and the 

width of each slice is a measure of the utilization rate or capacity factor. The product of the 

two is a measure of electrical energy (e.g. kWh). It is more convenient to deal with load 

duration curve than the load curve. The load duration curve illustrates the behavior of the 

electricity market, for example, the likelihood of peaking plant to be required for service, and 

the impact that this might have on price. A load-duration curve is a useful tool for comparing 

the impacts of different renewable portfolios on the grid. Liik (2005) demonstrated that 

generating capacity planning could use also load duration curves determined for shorter periods 

than a year, as separate curves for winter, spring-autumn and summer. Either the actual load 

level (MW) is represented as the percentage of the peak load over the course of the year (Pu). 

The latter, a normalized form of load duration curves is used for the modelling of electricity 

demand for the generation optimization model. The load-duration curve for a particular system 

makes it easy to see, for example, that the total system load exceeds 90% of peak load in 200 

hours out of the year, or that in 50% of the year, the load is at or above some level of capacity 

in MW. In general, a flatter load-duration curve is better for grid operation, allowing 

dispatchable generation to run at a higher capacity factor over the entire year and requiring less 
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peaking reserves. The easiest system to operate, for example, would be one with a load-duration 

curve that is a horizontal line indicating the demand is entirely constant for the whole year. 

A fundamental characteristic addressed by power system operation and planning is the diurnal 

and seasonal variations in system load. It is axiomatic that system loads have daily peaks and 

valleys and that those extremes vary with season and between years. The installed generation 

must be capable of serving the load at all times. In wind integration studies, load curve can be 

used to establish the seasonal variations in electricity demand. Liik (2005) derives the seasonal 

and diurnal variations of load from the annual consumption. Three seasons (winter, 

intermediate, summer) and differentiates day and night in each season splitting a year so into 

six time divisions. The user of the model can determine the lengths of the seasons and day/night 

in each season. The load in each time division is calculated by dividing the energy consumption 

in that interval by the length of the interval (number of hours in it). As a result, six average 

load levels will represent the annual load curve. To account the peaks of electric load, a special 

coefficient is used. It shows the amount by which installed capacity exceeds the average load 

in the time division of maximum demand. He concludes that the Estonian power system, the 

base-load forms about 35%, intermediate load about 40% and peak-load about 25% of the 

maximum load. Boehme (2006) demonstrated the use of power flow solutions with hourly time 

steps over a year or more to produce load duration curves for system components. He concluded 

that load duration curves give a much more comprehensive picture of the system compared to 

single, seasonal figures. Furthermore, statistical analyses and detailed investigations of 

phenomena can easily be performed. 

The effect of additional reserve requirements for the power system is estimated by combining 

the standard deviation of load and wind variations. However, what the system sees is net load 
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(load minus wind power production). The net load duration curve is obtained by deducting the 

hourly wind generation from the load demand for the corresponding hour. If load and wind 

power production are uncorrelated, the net load variation is a simple root mean square (RMS) 

combination of the load and wind power variation. The larger the area in question and the larger 

the inherent load fluctuation in the system the larger the amount of wind power that can be 

incorporated into the system without increasing variations. The reserve requirement can be 

expressed as three times the standard deviation (4𝜎 covers 99% of the variations of a Gaussian 

distribution). Examples of net load duration curves for different wind penetration levels of wind 

power in the U.S. from 10% to 30 % of peak demand are shown in the Fig. 2.4. The gap between 

the reference the load curve and any of the net load curves highlights the significant number of 

hours that net load is lesser than that of load. At the right hand side, a more pronounced 

downward tail for any of the net load duration curves than for the load duration curve can be 

explained by a high availability of wind during periods of low demand. On the contrary, a 

similar upward tail between net load curves and reference load curve at the left hand side is 

due to a low percentage of wind power during periods of high demand.  
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Figure 2.4 Annual Net load duration curves (Brun, 2009) 

Studies have shown that the distribution of changes in net load flattens and broadens when 

large-scale wind is added to the system. Halamay (2010) analyzed the reserve requirements for 

the Pacific Northwest of the U.S. including wind, solar, and ocean wave energy specifically, 

using actual load and wind power data, and solar and ocean power data generated from 

resourcemeasurements. The load was compared with net load the variability added by wind to 

the net load increases the reserve requirements. Consequently, the net loads were calculated 

using the sum of the forecasts for each component: load, wind, wave, and solar. He concluded 

that the decremental reserve required for the load alone was 379.3 MW while for the load minus 

15% wind it is 447.3 MW, and for the load minus 5% wind, 5% solar, and 5% wave, it is 412.1 

MW. The implication is that high renewables penetrations will likely increase the ramp 

requirements for many hours of the year. Boehme (2006) analysed long-term statistical data 

for both demand and onshore wind turbine output in Scotland, and generally applicable in north 
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Western Europe. He concluded that they show some similarities in behaviour: Demand and 

generation in winter are higher than in summer, and around midday, they are higher than at 

midnight. Despite this resemblance, it is possible that the combined wind farm output across 

an area as large as Scotland will be well below 10% of the rated capacity while demand is 

above 90% of the annual peak. 
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Chapter 3 METHODOLOGY 

3.1 Ngong Wind Farm Survey 

Site survey was carried out at the Ngong wind farm, currently the only wind farm connected to 

the Kenyan grid. The site survey lasted from January to March 2012. The main task was to 

establish the performance of individual turbines based on their wind speed characteristic and 

further validate the MATLAB simulations. The turbine wind speeds was measure at the hub 

height 52 meters. Twelve-month period was considered sufficient to determine seasonal 

variations at the site i.e. the wind speed characteristics for both the wet and dry seasons. 

However, due to several data limitations, wind speeds was recorded for only six months 

(October 2011 to March 2012).  

The simulation of wind speed was performed using Windographer software (see section 3.2) 

and the computation of site variability was done use of Weibull Analysis. The Maximum 

Likelihood Method and Least square Method methods for determining k and c are outlined in 

section 4.4. The wind farm model (used to convert wind speed data into to simulated power 

output) was implemented in MATLAB/Simulink software as described in section 3.4 to 3.6. 

After which, the actual and simulated turbine outputs were compared to establish the 

applicability of MATLAB/Simulink simulation. The wind farm input parameters were based 

on the Vestas V52 turbine nameplate details. The turbine Wind Turbine Modelling parameters 

are as describe in section 4.2. Subsequently, necessary adjustments were made to the turbine 

input parameters to reduce the error margin between the simulated and actual data. The 

functionality of the anemometers (installed in each of the turbine) requires power; hence, no 

data can be recorded during power failure (blackout). Therefore, data was assessed to establish 
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the link between the turbine failures and zeros (or gaps) in the wind speed data. All these gaps 

as results of turbine failure were then filled using Windographer software. This eliminated all 

traces of power failure in the data and improved simulation accuracy. 

 

Figure 3.1 Maintenance work at the Ngong Wind Farm 
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Figure 3.2 Control and switching centre at the Ngong Wind Farm 

3.2 Data 

The data required to achieve the study objectives was obtained as follows:- 

1. Wind speed data for Ngong was obtained directly from the KenGen turbines at a hub 

height of 50 meters in excel format. This data covered a period from October 2011 to 

March 2012 with a sample time of one hour. 

2. The wind speeds data for Kinangop and Lake Turkana was sourced from the Ministry 

of Energy at a height of 40 meters in .row format. This data was later converted to excel 
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format. This data covered a period from April 2011 to September 2011 with a sample 

time of one hour. 

3. Historical load data were sourced from KPLC load database in excel format. This data 

covers a period from June 2008 to November 2008 with a sample time of 30 minutes. 

4. All the load and wind data obtained at a sample time of shorter than an hour was then 

averaged to obtain the hourly data. 

5. The measured height of the wind speed data for Kinangop and Turkana (sensor height, 

40 meters) used in this research does not correspond to the hub height of Vestas V52 

wind turbine (50 meters). Therefore, a height transformation must be applied to the 

wind speed time-series from the measurement height to the turbine hub height.  

 

The relationship between wind speed and height was determined by the function shown in 

equation 3.1. 

𝑉50 = 𝑉ℎ𝑒𝑖𝑔ℎ𝑡 × (
50

ℎ𝑒𝑖𝑔ℎ𝑡
)

1
7
 

                                                                                                                                  (3.1)  

Where 𝑉50 is the wind speed in meters/ second, height is the height in meters of the data-

collection station (either 40 or 50 meters) and 1/7 is the power factor used to convert wind 

speed from one height to another (Milligan 2003).   
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3.3 Wind Regime Analysis 

The wind speed data (time series format) was fed into Windographer to estimate the wind 

probability function, the diurnal range and the monthly statistics for Ngong, Kinangop and 

Turkana. The wind speed at a height of 50 m above ground level covers a six-month period 

running from October 2011 to March 2012. Statistical wind data set was analysed using 

Weibull distributions in order to investigate the Weibull shape and scale parameters. The 

Weibull shape and scale parameters, k and c, corresponding to the wind speed distributions 

were then obtained from the maximum likelihood algorithm for Weibull fitting. The findings 

are as discussed in chapter 6. 

3.4 Simulation work flow 

The wind power simulation workflow used in this study is as described below;- 

1. Wind speed data were imported from an excel file into the MATLAB workspace using 

the Import Wizard. The Import Wizard lets you select the data to import when analysing 

a portion of an Excel worksheet or specific columns or rows in a MATLAB array. A 

time plot for the wind speed was then created to gain insight into the data features before 

commencing the simulation.  

2. The workspace model imports the correct data subset to the DFIG wind farm model.   

3. Simulation was then run on Phasor mode. A Phasor model allows the transient stability 

study with long simulation times (<100 time steps). In the wind, farm model shown in 

figure 3.1 the simulation has a run time of 3171 hours; this corresponds to the study 

period from October 2011 to March 2012. 
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4. After the simulation was complete, the wind generation data also in time series format 

were then loaded to a scope while it is also tapped from the file block in excel file 

format. The generation data was then exported to an excel file for further analysis. 

The chronological presentation of hourly wind generation and electricity demand is sorted by 

in descending order. Total duration of every load level over a period is calculated. Wind 

generation and Load Duration Curve; the function of wind generation and load level depending 

on its duration is produced. Both wind generation and load duration curves are then normalized 

to determine the Normalized Generation and Load Duration Curve. The normalized function 

of wind generation and load level for its duration is produced. 

3.5 MATLAB/Simulink Wind Farm Model 

The Aggregate wind farm Model was designed and implemented using different electrical 

components shown in Fig. 3.3. The wind farm is composed of a specific number of turbines 

depending on the wind capacity each rated at 0.85MW. The wind farm is connected to a 25 kV 

network, via 25 km line 120 kV/25 kV transformer. The 25 kV network is further connected to 

the 120 kV network through a 30 km 25 kV line and a 120/25 kV transformer. All the network 

parameters were set to a frequency of 50Hz to comply with the Kenya’s grid specifications. 
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Figure 3.3 MATLAB/Simulink wind farm model layout 

3.6 Simulation assumptions 

This study made the following simulation assumptions;- 

1. Vestas turbine use Opti-speed concept, a term that refers to their technical variance 

between the fixed speed and variable speed wind turbine. This concept is based on 

speed or torque control by use of variable impedance at the rotor of the induction 

machine. The benefit of the Opti-speed concept is the simplicity of a fixed wind turbine, 

but at the same time having the possibility of flicker regulation and load minimization 

especially at high wind speed. However, this concept was overlooked in the MATLAB 

simulation.  
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2. The concept of full aggregation (which assumes that all wind speeds and mechanical 

speeds are almost the same) has been applied in this study. Aggregation makes it 

possible to represent the entire wind farm using only one turbine model hence reducing 

data requirement and computational time. 

The model takes into account one aggregate generating capacity based on the number of wind 

turbines. In reality, turbines located close to each other are affected by the same wind blowing 

through. However, for the purpose of this study, the correlation coefficient of wind between 

turbines is assumed negligible and the aggregate capacity of the wind farm is used. 

3.7 Study scenarios  

This study therefore determines site specific the reserve requirements for different types of 

regimes based on futuristic scenarios. The estimated wind penetration level in each scenario 

was selected based on Kenya’s 2015 wind power expectations. Wind penetration level refers 

to the fraction of energy produced by wind in comparison to the installed capacity. Since there 

is no generally acceptable maximum wind penetration level, 0.374 Pu was chosen as the 

maximum penetration level. Some of the scenarios have single sites while others multiple sites. 

The scenarios with multiple wind sites are chosen to analyse the effects of geographical spread 

of the power system. The different scenarios analysed in this study are as described below;- 

Scenario 1: Load only 

Scenario 2: Ngong wind farm (phase I (1 &2) and II) 0.024 Pu    

Scenario 3: Ngong (phase I (1 &2) and II) combined with Kinangop 0.083 Pu 
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Scenario 4: Ngong (phase I (1 &2) and II) combined with Turkana 0.316 Pu 

Scenario 5: Ngong (phase I (1 &2) and II) combined with Kinangop and Turkana 0.374 Pu 

Scenario 6: Ngong wind farm up-scaled up to 0.374 Pu 

3.8 Estimation of hourly variations and load following requirements 

In order to determine the impact of wind variability on operational reserve this study was 

undertaken on the control area basis. This refers to a state in which wind output is not matched 

one on one by a change in another generating unit in the opposite direction: the total 

aggregation that has to be balanced.  

The procedure for determining hourly variations and the net load following requirement is as 

described below;-   

1. Data from the Normalized wind generation and Load Duration Curve was used to 

determine the load and wind variations. The difference between wind and load 

generations of two consecutive hours was used to determine the hourly load and wind 

variations as expressed in equation 3.2 & 3.3. Load variation and wind variation results 

were stored in excel format for further analysis. 

∆𝑃 = 𝑃(ℎ + 1) − 𝑃(ℎ) 

                                                                                                                                                                   

(3.2) 
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∆𝐿 = 𝐿(ℎ + 1) − 𝐿(ℎ) 

                                                                                                                                                  

(3.3) 

Where (ℎ) is represents the current hourly and (ℎ + 1) represents the following hour.  

2. The net hourly variations in each of the scenarios are determined by subtracting the 

wind variations from the load variation as shown in equation 3.4. The net load in this 

case is defined as the system demand requirement to be met by wind generation alone 

i.e. wind power is seen as a negative consumption. The Net Load variation results were 

stored in excel format for further analysis. 

 

∆𝑁𝐿𝑖 = 𝑁𝐿𝑖 −𝑁𝐿𝑖−1 = (𝐿𝑖 − 𝑃𝑖) − (𝐿𝑖−1 − 𝑃𝑖−1) = ∆𝐿𝑖 − ∆𝑃𝑖 

                                                                                                                                        (3.4)                                                     

Where 𝑁𝐿 denotes the net load (MW), 𝐿 the load (MW) and 𝑃 the wind production and 𝑖 is the 

hour (from 2 to 3170).   

3. The standard deviation 𝜎�for the hourly variations was then determined as shown 

equation 3.5.  

𝜎 = √
∑ (𝑥𝑖 − 𝜇)2𝑛
𝑖=1

𝑛
 

                                                                                                                                        (3.5) 
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4. The standard deviations for two wind farms were then combined to determine the 

overall wind power forecast error�𝜎𝑊12 as shown in equation 3.6 (Doherty, July 2005). 

𝜎𝑊12 = √𝜎𝑊1
2 + 𝜎𝑊2

2 + 2𝑟12𝜎𝑊1𝜎𝑊2 

                                                                                                                                        (3.6) 

Where cross-correlation 𝑟12 is measure of how well two time series follow each other. Cross-

correlation 𝑟12,���gets near max value 1 if the vicissitudes within the two time series occur 

simultaneously, zero (o) if the vicissitudes do not follow each other and -1 value if there is 

tendency of increasing on one side while decreasing at the other side. 

𝑟12 =

1
𝑛
∑ (𝑊1 − 𝜇𝑊1)(𝑊2 − 𝜇𝑊2)
𝑛
𝑖=1

𝜎𝑊1𝜎𝑊2
 

                                                                                                                                        (3.7)                                                                                                                             

5. The standard deviation of net variations  𝜎𝑁𝐿 was then determined by a simple square 

root sum of the standard deviations of load 𝜎𝐿 and wind power 𝜎𝑊� (The equivalent 

value of overall wind power forecast error�𝜎𝑊12) as shown in equation 3.8. 

𝜎𝑁𝐿𝑛+1 = √𝜎𝐿
2 + 𝜎𝑊𝑛

2  

                                                                                                                                        (3.8) 

6. The increase in the variations was then determined �as shown in equation 3.9.  

𝐼 = 4 {(√𝜎𝐿
2 + 𝜎𝑊

2 ) − 𝜎𝐿} 
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                                                                                                                                        (3.9) 

7. The increase in variation for scenarios with more than two wind farms (e.g. Scenario 

5), the assumption is additional wind capacity will result to additional variation of the 

system a result of the nth wind farm was calculated using equation 3.10 below. 

𝐼𝑛 = 4𝑛{(𝜎𝑁𝐿1 − 𝜎𝐿)(𝜎𝑁𝐿2 − 𝜎𝜎𝑁𝐿1)………(𝜎𝑁𝐿𝑛 − 𝜎𝑁𝐿−1)} 

                                                                                                                                       (3.10) 

8. Depending on the scenario, the load time series was then multiplied by the 

increments�𝐼�𝑜𝑟�𝐼𝑛 to determine the net load time series.   

9. The frequencies net load variations for the different scenarios was determined and 

plotted using Microsoft Excel.  

10. The maximum upward and downward net load variations were determined using the 

tails of their respective distributions. Step 8 was then repeated for the load time series. 

11. The maximum net load variation for the different scenarios was then compared to the 

maximum load variations to estimate the load following reserve requirements in each 

scenario.  

12. The load following requirements at different penetration levels was plotted in Microsoft 

Excel. The findings are discussed in the next chapter.  
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Chapter 4 WIND ANALYSIS AND MODELLING 

4.1 Analysis of Wind Speed characteristics using Weibull Distribution 

A proper analysis of statistical wind data is a very important step when performing a wind 

resource assessment, which supports a wind energy feasibility. The performance of wind 

turbine generators (WTG) on a particular site can be determined by the wind speed 

characteristics and the corresponding WTG power curve. Wind energy production is high 

during the high-load periods, the wind resources can displace one or more peaking and, 

typically, expensive controllable units. On the other hand, if the wind energy production is 

significant during the low-load periods, the system operators need to lower the output of the 

base loaded and non-flexible units. As the shape of the daily wind power production depends 

directly on the diurnal wind speed pattern, the wind speed model must reflect this characteristic. 

The diurnal wind-farm power production pattern directly influences the scheduling of the 

controllable resources. Multiple daily patterns may occur throughout a year depending on the 

site wind characteristics (Maisonneuve & Gross, 2011). 

The Weibull distribution is a mathematical expression that provides a good approximation to 

many measured wind speed distributions. Despite claims by several researchers, that Weibull 

does not fit well when the wind regimes present bimodality (Cabello & Orza, 2010) , the 

Weibull distribution technique is still widely accepted and used in the wind energy industry as 

the preferred method for describing wind speed variations at a given site. The Weibull 

distribution density is as shown by equation 4.1 (Biswas, February 2010). 

𝑓(𝑣) =
𝑘

𝑐
(
𝑣

𝑐
)
𝑘−1

exp {(
𝑣

𝑐
)
𝑘

} 

                                                                                                                                         (4.1) 
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Where c is the scale parameter, in the units of the speed and k is the shape parameters are:  

𝑐 =
𝑣̅

Γ (1 +
1
𝑘
)
����� 

,�����                                                                                                                                   (4.2) 

𝑘 = [
𝜎

𝑣̅
]
−1.086

���(1 ≤ 𝑘 ≤ 10� 

                                                                                                                                        (4.3) 

                                                                                                                                   

Where the mean wind speed 𝑣̅ and the variance 𝜎2 are: 

𝑣̅ =
1

𝑁 − 1
∑𝑣𝑖

𝑁

𝑖=1

������ 

                                                                                                                                         (4.4) 

𝜎2 =
1

𝑁 − 1
∑(𝑣𝑖 − 𝑣̅)2
𝑁

𝑖=1

 

                                                                                                                                         (4.5) 

Here, Γ is the gamma function. The k and c are important in describing in describing the wind 

power potential in a specific site. The Weibull k value is the unit-less shape factor that reflects 

the breadth of the distribution. Lower values of k values correspond to broad distributions 

where the wind speed tends to vary widely, while higher k values correspond to tighter 

distributions where the wind speed tends to stay within a narrower range. For a typical 
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commercial turbine like the Vestas V52 850kW (Currently installed by KenGen at the Ngong 

wind farm) the two extreme values of the shape can have a large difference in wind power.  

 

Figure 4.1 Examples of Weibull distributions for varying values of the shape parameter 

k and scale parameter c 

The parameter k is key in the analysis of wind potential in a specific site. As its name suggests, 

the shape parameter controls the form of the distribution, ranging from exponential (k = 1), to 

Rayleigh (k = 2), to an approximation of a Gaussian (k = 3.6), to more skewed distributions of 

higher values of k. For k equals three, the Weibull distribution looks like a bell-shaped function, 

thus winds blow all the time at a constant speed (Archer & Jacobson, 2002.). When the k 

surpasses three, the wind distribution approaches the normal distribution, often referred to as a 

Gaussian distribution. Under this situation, the relatively stable wind speeds provide ideal 

conditions for wind turbine operation. If a wind regime has a value of k lesser that the two then 

it is regarded as a weak regime. Any wind regime with the value of k lower than 1.5 can pose 
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a serious challenge to wind integration because of its high variability. However mixing 

different wind regimes with different value of k will reduce variability, increase predictability 

and reduce zero outs. Besides the shape parameter k, the influence of the scale parameter c 

should also be taken to account. The scale parameter c describes how much the distribution is 

stretched the distribution is along the horizontal axis. The scale parameter c is directly related 

to the mean wind speed for a given value of the shape parameter k. The higher the value of c 

is the higher the mean wind speeds are.  

When analysing Weibull distribution for experimental data, we have to estimate the Weibull 

parameters k and c. The common methods for determining k and c are Maximum Likelihood 

Method and Least square Method. Other methods not described here include; Graphical 

method, Standard deviation method, Moment method and Energy pattern factor method 

4.1.2 Maximum Likelihood Method 

The method of maximum likelihood (the term first used by Fisher, 1922a) is a general method 

of estimating parameters k and c in for experimental data. To estimate the parameters 𝑐 and 

𝑘�using maximum-likelihood, an initial guess of 𝑘̂ = 2 is used for solving the following 

equation for the estimation�𝑘̂. Once the value of 𝑘̂  is found, the value of 𝑐̂  is determined by 

the equation 2.6. 

𝑐̂ = [
1

2𝑁
∑𝑣𝑖

𝑘̂�

𝑁

𝑖=1

]

1

𝑘̂�

 

                                                                                                                                         (4.6) 
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This equation for 𝑐̂  is seen to be a generalization of the equation for k = 2 for the Rayleigh 

distribution to the general k for the Weibull distribution (if we substitute 𝑘̂ = 2 in this equation 

we get equation 2.7.  

𝑘̂ =
∑ 𝑣𝑖

𝑘𝑖𝑛𝑣𝑖
𝑁
𝑖=1

∑ 𝑣𝑖
𝑘𝑁

𝑖=1

−
1

𝑁
∑𝑖𝑛𝑣𝑖

𝑁

𝑖=1

 

                                                                                                                                         (4.7) 

4.2 Wind Turbine Modelling 

The purpose of the wind turbine is to covert wind speed into an electric power output. The 

performance of a wind turbine depends on the wind speed, which varies with time and depends 

on regional weather patterns and type of landscape. Relationship between wind speed υ (m/s) 

through a sweeping area A (m) of wind turbine and wind energy per unit time or wind power 

P (W) is as follows;  

 

𝑃 =
1

2
𝐶𝑝𝜌𝐴𝑉

3 

                                                                                                                                     (4.8) 

Where ρ represents the air density (kg/m3).  

From this relationship, it can be seen that the relationship between wind speed and power is 

nonlinear, cubic. Any error in wind speed forecast will actually give a large (cubic) error in 

wind power. In addition, for entire wind farm, this relation is more complex as different 

turbines in the farm use multiple wind directions and speed to achieve optimal power output of 
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wind farms. The power coefficient 𝐶𝑝 gives the fraction of the kinetic energy that is converted 

into mechanical energy by the wind turbine. It is a function of the tip speed ratio (λ) and 

depends on the blade pitch angle for pitch-controlled turbines. The tip speed ratio may be 

defined as the ratio of turbine blade linear speed and the wind speed as follows; 

 

𝜆 =
𝑅𝜔

𝑉
 

                                                                                                                                     (4.9) 

Substituting (4.8) in (4.9), we have:  

�𝑃 =
1

2
𝐶𝑝(𝜆)𝜌𝐴 (

𝑅

𝜆
)
3

𝜔3 

                                                                                                                                     (4.10) 

As seen in the previous chapter, simulations of Doubly Fed Induction Generators (DFIG) wind 

farms was performed in MATLAB/Simulink. The turbine model was developed to represent a 

wind farm for converting wind speed into power. The six basic model elements include 

aerodynamic system; Mechanical system (turbine rotor, shafts, gearbox and the generator 

rotor); generator drive (generator and power electronic converters, if any): pitch control and 

protection system of the wind turbine.  
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Figure 4.2 Wind Turbine Control 

4.2.1 Aerodynamic system 

The aerodynamic system of a wind turbine is the turbine rotor (i.e. the blades of the wind 

turbine). The turbine rotor reduces the wind speed and at the same time transforms the absorbed 

kinetic energy of the air into mechanical power. In this study, various topological aspects that 

influence the performance of the aerodynamic model have been neglected. Therefore, the 

mechanical power output calculated based on the blade radius and the measured hourly wind 

speed data (blade tip speed). The aerodynamic system is a lumped mass one, i.e. it does not 

model the double mass phenomenon. The turbine pitch controlled is controllable. The control 

signal for the pitch angle (𝛽)�comes from the DFIG control block. The coefficient 𝐶𝑝 is 

calculated through a look-up table and the output of the wind turbine block is the torque on the 
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induction generator axis. The pitch angle β is only varied to limit the over-speed of the 

generator. 

4.2.2 Mechanical system 

The wind turbine is connected through a gearbox to the generator, which in turn is connected 

directly to the power system. The gearbox transmits torque and revolutions from the rotor to 

the generator. The main gearbox consists of a planetary gearbox combined with a two-stage 

parallel shaft gearbox, and a tooth coupling transmits the torque and the rotary motion of the 

planetary stage to the two-stage parallel shaft gearbox. The main shaft of the rotor is mounted 

into a hollow shaft (input shaft) of the gearbox, and a shrink disc transmits the torque. As the 

main shaft is supported by two main bearings, only pure torque is transmitted to the gearbox. 

Two torque arms support the gearbox and torque and oscillation are absorbed by pre-tensioned 

oscillation dampers, which are located between the torque arms of the gearbox and the main 

frame. Finally, the torque is transmitted from the high-speed shaft to the generator by a flexible 

composite coupling, which is located immediately after a 3-caliber disc brake. The 3-caliber 

disc brake is mounted directly on the high-speed shaft. The values of the induction generator 

parameters are default. 

4.2.3 Induction generator 

An important part of the turbine is the induction generator. It converts the mechanical energy 

from the gearbox to electrical energy. The generator is connected to the grid, which transfers 

the electrical energy to the consumer. The generator is coupled to the grid with the stator and 

the rotor is supplied from a converter via a slip ring. The generator can be coupled in star or 

delta connection. The generator is coupled in star mode if the total power is low (equivalent to 

a small generator); in the case of high total power the generator is coupled in delta mode. The 
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advantage of the star coupling is that the speed range is increased and the losses in the generator 

and converter are reduced. The values of the induction generator parameters are reported in 

Appendix 2.  

4.2.4 Pitch Control System 

The goal of the protection system is to protect the wind turbine from damage caused by the 

high currents that can occur when the terminal voltage drops because of a short circuit in the 

grid. The pitch angle controller is active only in high wind speeds. In such circumstances, the 

rotor speed can no longer be controlled by increasing the generated power, as this would lead 

to overloading the generator and/or the converter. Therefore, the blade pitch angle is changed 

in order to limit the aerodynamic efficiency of the rotor. This prevents the rotor speed from 

becoming too high, which would result in mechanical damage. The optimal pitch angle is 

approximately zero below the nominal wind speed. The DFIG has an AC-DC-AC converter 

system consisting of two control sub-systems (two semiconductor power converters, one on 

the rotor side and one on the grid side), as illustrated in Fig. 5.1. The stator side is connected 

directly to the 50Hz grid while the rotor side is fed at variable frequency through an AC/DC/AC 

converter. 

The AC-DC-AC converter system is used for controlling both the active and reactive power 

flows independent of rotor speed. The DFIG wind turbine configuration consists of an 

induction machine (vector control) based on a double-axis theory of electric motors. The rotor-

side converter vector control system makes use of the aligned to stator magnetic flux vector 

coordinate system, while the grid-side converter regulation system employs the grid voltage 

vector. The Grid Side Converter is modelled using a universal bridge model with IGBT’s 

(Insulated-Gate Bipolar Transistors) connected to the IG (Induction Generators) terminals 
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through a series RL filter. The control of the Grid Side Converter aims at keeping the DC-link 

capacitor voltage constant at nominal value. The DC-link consists principally of electrolyte 

capacitors and a bus-bar, which connects the grid inverter to the rotor inverter. The converter 

maximum power is half the IG rated power. The nominal DC-link capacitor voltage is 1200V. 

The rotor side converter is modelled using a universal bridge model with IGBTs connected to 

the IG rotor windings. The values of the protection system parameters are reported in Appendix 

2.  

4.2.5 Network Model 

In order to take into account specific site characteristic like variability, wind turbine models 

have been combined to develop a stochastic model of an aggregate wind farm. Aggregate wind 

farm models are very suitable for simultaneous simulation of a large number of wind turbines, 

making it possible to estimate efficiently the impact of a large wind farm on the power quality. 

Aggregation adequately represents the characteristics of the wind farm during normal 

operations characterized by small deviations of the grid quantities from nominal values and 

wind variations. The main advantages aggregation is the fast computation, reduced memory 

requirements and the ease of use, either for variable or constant speed models. This is more 

accurate than up scaling which neglects small deviations in grid quantities. The layout for a 

large wind farm is as shown in appendix 2.  
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Chapter 5 RESULTS AND DISCUSSION 

5.1 Simulation validation 

The simulated data were validated at the site using direct comparison actual wind production 

data at the Ngong wind farm. Simulation was done on MATLAB/Simulink at the current wind 

penetration levels. This was later on followed by a simulation of Ngong phase 2 and 3 to 

determine the impacts of Kenya’s 2015 wind power expectations. The wind farm model input 

parameters were based on the Vestas V52 turbine. The MATLAB / Simulink software uses an 

aggregated wind turbine model representing an entire wind farm. All aspects wind farm aspects 

including disturbances have been considered in the aggregated model.  

 

Figure 5.1 Wind production data for Ngong based on 2011/12 and 2015 expectations 

The results show a similar pattern for 5MW and 25MW wind farm, peak and zero-outs 

coincide. However, the up-scaled 25MW wind farm appears to be slightly smoother compared 

to the wind farm. As seen in Fig. 5.1 unlike up scaling the smoothing effect is considered. The 
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peaks and zeros coincide since the same data has been used in both cases. Since the measured 

data from KenGen was available in kWh, The Wind production data shown in Fig. 5.1 was 

further converted into energy by multiplying with the number of hours. The monthly power out 

was classified into the high wind seasons running from December to February and low wind 

months running from March to September. The Nominal Turbine output is a hypothetical 

scenario in which the turbine produces peak power for the entire month. The simulated 

production is a product of the average simulated power kW and the actual number of hours the 

turbines has been running. The actual number of hours are hypothetical assumptions that wind 

turbines will be running for the entire month while as Simulation time depends on data 

availability. The actual hours caters for zeros and gaps in the data caused by instrumentation 

error or when the turbines are shut down during maintenance or when wind speeds speed were 

lower than the cut-off wind speeds. The same hour simulation output is the product of the 

average simulated power kW and the actual hours in a month. Therefore, the same hour power 

out can produce a positive or negative error depending on whether the value of actual data 

surpasses or below the simulated data. The simulation time were as follows; June for 107 hours, 

July for 744 hours, August for 276 hours, October for 347 hours, November for 720 hours, 

December for  744 hours, January for 744 hours and  February 696 hours. Conversely, the 

actual time determined from the grid ok hours were as follows; June for 697 hours, July for 

722 hours, August for 740 hours, October for 710 hours, November for 664 hours, December  

for 724 hours, January for 715 hours and February for 662 hours. Comparing the two time sets 

the error time consequence to missing data was as follows; June for 590 hours, July for 22 

hours, August for 464 hours, October for 363 hours, November for 56 hours, December for 2 

hours, January for 29 hours and February for 34 hours. 
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Fig. 5.2 to 5.5 shows the annual energy outputs for turbines 1, 2, 4 and 6 respectively. As seen 

from both figures no turbine reaches its peak in any of the turbines from June 2011 to February 

2012. When the peak production and actual production are compared in all the turbines, the 

actual production exceeds 1/2 the peak production during the high wind speed months and its 

2/3 the peak during the low wind speed months. Furthermore, when the simulated production 

and actual production are compared in all the turbines, the simulated total production is slightly 

lower compared to the actual total production during the low wind months but has the same 

shape (follows the same trend). On the contrary high simulation accuracy during the month of 

December, January and February can be attributed to the fact that low amount of data that was 

missing during these months while the low simulation accuracy during the month June, August 

and October can be attributed to the large amount of data missing, resulting in underestimation 

of energy. When we consider the energy output for turbine 1 the same hour simulation output 

compares well with the actual output in most of the months following a similar trend. However, 

June and October have the least simulation accuracy due to the difference between their 

Simulation time and Actual hours. This shows that the reliability of the wind turbine will also 

have an impact to the simulation accuracy. Ultimately, MATLAB simulation is more reliable. 

The real and simulated output from the turbines compared well for several months. This shows 

data availability has great influence to simulation accuracy. Turbines 2 and 4 show similar 

trends in the energy outputs when compared to Turbine 1. However, Turbine 5 appears to be 

slightly different. The simulation output is slightly lower than the actual output in all the months 

except for February. In summary the validity of the MATLAB/Simulink simulation is depends 

to data availability. 

 



58 

 

 

Figure 5.2 Turbine 1 Energy Output from June 2011 to February 2012 
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Figure 5.3 Turbine 2 Energy Output from June 2011 to February 2012 
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Figure 5.4 Turbine 4 Energy Output from June 2011 to February 2012 
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zeros with no spikes; Kinangop depicts fewer spikes with no zeros, and Turkana depicts more 

spikes but with no zeros. 

 

Figure 5.5 Wind speeds from Ngong from October 2011 to March 2012 

 

Figure 5.6 Wind speeds from Kinangop from October 2011 to March 2012 
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Figure 5.7 Wind speeds from Turkana from October 2011 to March 2012 
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Figure 5.8 Diurnal profile for Ngong from October 2011 to March 2012 
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Figure 5.9 Diurnal profile for Kinangop from October 2011 to March 2012 
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Figure 5.10 Diurnal profile for Turkana from October 2011 to March 2012 
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5.3 Monthly Variations 

Figure 5.11 shows the statistics for Ngong from October 2011 to March 2012. The mean 

monthly wind speeds for Ngong are higher in January and February ranging between averages 

of 4 to 17 m/s and lower in October to December ranging between averages of 2 to 14 m/s.  

 

Figure 5.11 Monthly average wind speeds for Ngong from October 2011 to March 2012 
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Figure 5.12 Monthly average wind speeds for Kinangop from October 2011 to March 

2012 
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Statistical analysis of the sites wind regime will pave way for variability studies. The next 

sections introduce the probabilistic function that can describe its frequency of occurrence 

against bins of speeds ranges. 

 

Figure 5.13 Monthly average wind speeds for Turkana from October 2011 to March 2012 
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5.4 The Weibull Distribution 

The Weibull distribution parameters for this study have been generated using Windographer 

Software. Figure 5.14 shows the Weibull distribution function based on the maximum 

likelihood algorithm for Ngong from October 2011 to March 2012. The Weibull shape 

parameter k, describes the wind variability and the scale parameter c is the velocity factor. The 

Weibull fit for Ngong shows a leftward skew due to the high number of zeros. The shape 

parameters k and the speed parameters c at 50 m for Ngong are 1.67 and 9.44 m/s respectively. 

Despite a high mean wind speed of 11.5 m/s, the value of k is low due to the elevated standard 

deviation value at 6.92 m/s. The average wind speeds at Ngong range from zero to 23 m/s. This 

shows that Ngong has high variability. The hourly variations for Ngong exhibited can be 

attributed to channelling effects of wind due to the hills around Ngong.  

Despite this, Ngong is still an ideal site for wind power production because of the high average 

wind speed. Higher wind speeds in Ngong compensate for the occasional zero outs in Ngong, 

especially when the wind farm size is larger Fig. 5.15 shows the Weibull distribution function 

based on the maximum likelihood algorithm for Kinangop from October 2011 to March 2012. 

The maximum likelihood Weibull fits properly because Kinangop has a near-normal 

distribution around the average wind speed of 8.846m/s. The value of k and c at 50 m for 

Kinangop are quite high at 3.36 and 9.96 m/s respectively with a low standard deviation of 

2.997 m/s. Clearly, Kinangop is an ideal site for wind turbine operation because of its lower 

variability. However, Ngong still has the potential to produce more power per turbine because 

the elevated average wind speeds.   
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Figure 5.16 shows the Weibull distribution function based on the maximum likelihood 

algorithm for Turkana from October 2011 to March 2012. Turkana exhibits the highest 

variability of the three sites. The maximum Likelihood Weibull does not fit properly because 

of the high wind speed range of 3 to 35 m/s and lower values of k and c at 0.84 and 9.33m/s 

respectively. Despite this, Turkana is still an ideal site for wind power production because of 

its high average wind speeds of 9.43m/s. 

 

 

Figure 5.14 Probability Distribution for Ngong from October 2011 to March 2012. 
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Figure 5.15 Probability Distribution for Kinangop from October 2011 to March 2012. 
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Figure 5.16 Probability Distribution for Ngong from October 2011 to March 2012. 
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5.6 Wind Power Production. 

The wind farm model (seen Figure 3.1) was used to generate wind production data for analysis. 

These data were loaded with Microsoft Excel to generate respective wind power profiles. 

Figures 5.17 to 5.19 show the hourly productions for Ngong, Kinangop and Turkana from 

October 2011 to March 2012. The wind production patterns on the three sites are similar to 

their wind speed. However, the spikes and zeros seen in their respective wind speeds tend to 

disappear due to smoothing effect. The turbine outputs are not correlated therefore largely 

balance out each other. As a result, the maximum amplitudes of wind power fluctuations 

experienced in a site are reduced. 

 

Figure 5.17 Wind power production for Ngong from October 2011 to March 2012. 
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Figure 5.18 Wind power production for Kinangop from October 2011 to March 2012. 

 

 

Figure 5.19 Wind power production for Turkana from October 2011 to March 2012. 
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Figure 5.20 Duration plot for the percentage production capacities at different 

penetration levels from Oct 2011 to Nov 2012. 

One method of representing the smoothing effect of aggregation on system scale is the load 
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production (percentage of capacity). Peak production, a phenomenal where all the turbines 

produce at their rated capacities is represented by 100% in wind production. The duration 

curves for Ngong depicts peaks for 55 hours and zeros for 176 hours. In contrast, the duration 

curve for Kinangop and Turkana show no peaks at all; zero's outs occur in single instances. 

Kinangop (0.058 Pu) and Turkana (0.292 Pu) have higher production capacities compared to 

of Ngong (0.024 Pu). The variations in Kinangop are the least, concentrated between 20 and 

60%; Turkana is concentrated between 20 and 80%; and Ngong is evenly distributed from zero 

to 100%. Ngong has a small wind farm size compared to Kinangop and Turkana. This shows 

that the number of hours with zero out diminishes, while the maximum value of instantaneous 

aggregated power produced is decreasing when wind power aggregated over a large area.  
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5.7 Wind Power Variations 

The wind-power variability may increase or reduce that of the whole system. Wind production 

data from underlying Figures 5.17 to 5.19 was used for assessing power variations i.e. the 

differences between consecutive time steps. The positive and negative power variations were 

further sorted in the order of reducing magnitude. The results were then plotted chronologically 

and sequentially as shown in Figures 5.21 to 5.23. The corresponding wind power variations 

and the standard deviation 𝜎𝑤�(determined as a percentage of the�𝑃𝑛𝑜𝑚) are characterized by 

the statistics presented in Table 5.1. Where max up variations and max up, variation is the 

extent of the hourly wind variations; �𝑃𝑛𝑜𝑚 is the production capacity of the wind farm; and the 

wind standard deviation 𝜎𝑤 is the variability the site. As seen from these results, the respective 

values wind power fluctuations, for Ngong Kinangop and Turkana are 3.45, 2.47 and 1.7 

percent of rated power. Ngong has penetration levels of 0.24 Pu; corresponding to 30 turbines, 

Kinangop has a penetration level of 0.058 corresponding to 70 turbines while Turkana with 

penetration levels of 0.292 Pu corresponding to 353 turbines. This indicates that as the number 

of turbines in a site increase the site wind variability reduces.  
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Figure 5.21 Hourly wind variations for Ngong from October 2011 to March 2012. 

 

Figure 5.22 Hourly wind variations for Kinangop from October 2011 to March 2012. 
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Figure 5.23 Hourly wind variations for Turkana from October 2011 to March 2012. 

Table 5.1 Results for hourly wind variations for Ngong, Kinangop and Turkana from 

October 2011 to March 2012. 
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5.8 Kenya Load Profile 

Historical data (covering 30 minutes) from June 2008 to November 2008 was processed in 

excel to calculate the hourly average loads from October 2011 to March 2012. Fig. 5.24 shows 

the generated time series for the electricity consumption in Kenya from October 2011 to March 

2012. The solid line shows the electricity consumption for Kenya and the dashed line shows 

the trend. Clearly, the pattern of electricity consumption in Kenya from October 2011 to March 

2012 is consistent, varying from a minimum of 0.3560 Pu to a maximum of one Pu. The 

electricity consumption for Kenya increases annually at a rate of 0.26298 Pu. Fig. 5.25 shows 

the 24 hours extract of the electricity consumption divided into weekdays and weekend days. 

The dashed line shows the plot for Sunday (weekend) while the solid line shows the plot for 

Monday (weekday). The different characteristics of electric load by daily pattern are 

noticeable, with a higher on weekdays than weekend. The off-peak load hours start from 00:00 

to 07:00hrs and 23:00hrs up to 24:00hrs while the hours in between peak hours. This shows 

that load peaks occur during the day whereas the off peaks during the night. 
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Figure 5.24 Hourly Load of Kenya from October 2011 to March 2012, chronologically 

and duration curve. 

 

Figure 5.25 The comparison of Kenya’s hourly load during the first week of June 2011 
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5.9 The Load Variations 

 

Figure 5.26 Hourly load variations in Kenya from October 2011 to March 2012. 

Fig. 5.26 shows the hourly load variations for Kenya from October 2011 to March 2012. The 

load variations were assessed from the consecutive hourly difference in the actual the electricity 

consumption shown in Figure 5.24. The corresponding hourly load variations are characterized 

by the statistics presented in Table 5.2. On both the max up variation, the max down variations 

and the standard deviation, the extent and variability of load is obvious. Comparing Tables 5.1 

and 5.2, clearly the system demand variations dominate and surpasses wind variability even as 

penetration levels reach 0.374 Pu. 

 

 

 

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0 500 1000 1500 2000 2500 3000 3500

V
ar

ia
ti

o
n

s 
(p

.u
)

Hour

Hourly Load Variations pu

Load (p.u) Load (p.u) Descending Order



83 

 

Table 5.2 Results for hourly load variations for Kenya from October 2011 to March 2012. 

Statistics   

Load Max-Up Variations  0.217 Pu 

Load Max-Down Variations  0.202 Pu 

Load Standard Deviation 𝝈𝒍 6.216 Pu 

5.10 The Net Load Variations 

Wind power variations and load variations must be considered in combination create a 

counterbalance effect. The counterbalance between the two may reduce of increase the overall 

system variations. The coincidence of wind generation with the load and the coincident change 

in load are very important as their combination determines the rate of change of the operation 

reserve. Figure 5.27 shows duration curves for the net hourly variations individually sorted, 

based on five different scenarios. The gap between the duration curves for load and net load 

indicates the amount of operating reserve required for the curtailment of the net load variations. 

Comparing the gap the duration curves, there is no sufficient evidence that additional wind 

generation results in the need for additional operating reserve. The size of operating reserve 

required for Ngong phase I and II with Kinangop (0.083 Pu) exceeds that of Ngong phase I and 

II with Turkana (0.316 Pu) despite the contrast in wind penetration levels. The same result is 

also seen when comparing Ngong phase II and I (0.024 Pu) with Kinangop (0.083 Pu) or Ngong 

phase II and I (0.024 Pu) with Turkana (0.316 Pu).  
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Figure 5.27 Duration curve of load variations (without wind power) and net load 

variations (load minus wind power). 
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Figure 5.28 Frequency distribution for load at different penetration using distinct site 

data. 
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The frequency distribution of the system variations due to additional varying wind resources 

are presented in Fig. 5.28 and 5.29. The distributions were determined to a confidence level of 

99.99 percent(4𝜎) of the hourly variations. The corresponding hourly load variations are 

characterized by the statistics presented in Table 5.3. The normalized distributions of Net 

hourly variations are shown in Appendix 3. The overall impact of Kenya’s 2015 wind power 

expectations and the statistical nature of net load variations can be seen from these plots. The 

frequency distribution is generally normal with slight variance on the extremes. Note that the 

wider the distribution is the higher the variability in a site i.e. load only scenario has the lowest 

variability. 
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The relationship between the wind penetration levels and the frequency of the net variations is 

also not symmetrical. The standard deviation of the load only variations from October 2011 to 

March 2012 is 0.060 Pu. When Ngong phase I and II is added to the power system the standard 

deviation (𝜎) increases from 0.060 Pu to 0.080 Pu (an increase of 0.020 Pu). The standard 

deviation increases from 0.080 Pu to 0.102 Pu (an increase of 0.022 Pu) when Kinangop is 

added to the mix, consistent with the expectation based on 4σ. The standard deviation increases 

from 0.080 Pu to 0.091 Pu (an increase of 0.010 Pu) when Ngong phase I and II with Kinangop 

is replaced by Ngong phase I and II with Turkana, The standard deviations for Ngong phase I 

and II with Kinangop surpass Ngong phase I and II with Turkana by 0.011 Pu, despite having 

lower penetrations. These findings show the effect of the wind resource mix to the net variation 

and contradict the expectation based on 4σ. The coincidence between the maximum and the 

minimum output from individual sites has an impact to the aggregate output in which wind 

variability is derived. The correlation between Ngong and Kinangop surpass those of Ngong 

and Turkana despite its small wind farm size. The strong correlation between Ngong and 

Kinangop is a result of the near simultaneous occurrence of lower wind power fluctuations. 

Conversely, the weak correlation between Ngong and Turkana is attributed to the balance effect 

between the high fluctuations. The aggregation of Ngong phase I and II with Turkana by 0.011 

Pu significantly reduces the possible imbalance within one hour. Hence, the impact of site 

correlations outstrips that of wind farm size. 

The maximum net system variations distributions can be seen at the tails of the events. For load 

without wind scenario, the maximum variation from October 2011 to March 2012 is at 0.208 

Pu. When Ngong phase II and I is added to the power system the standard deviation increases 

from 0.208 Pu to 0.0278 Pu (an increase of 0.070 Pu). When Kinangop is added to the mix, the 
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maximum variations in the system further increases from 0.278 Pu to 0.356 Pu (an increase of 

0.078 Pu). This is consistent with the expectation based on 4σ. When the combination of Ngong 

phase I and II with Kinangop is replaced by that of Ngong phase I and II with Turkana the 

maximum variations increases by a lesser value of 0.278 Pu to 0.317 Pu (an increase of 0.039 

Pu). The maximum variations for Ngong phase I and II with Kinangop surpass Ngong phase I 

and II with Turkana by 0.039 Pu, despite having lower penetrations contradicting the 

expectation based on 4σ. This can be attributed to the low correlation of production from 

different sites. The peaks in the power system reduce due to smoothing effect of wind power 

production from larger areas, thus lowering the net system variability.  

Considering scenarios with the same wind penetration levels but with different wind mix, the 

variations for scenarios 5: combination of Ngong phase I and II with Kinangop and Turkana 

(0.374 Pu) is compared to that of scenario 6: Ngong wind farm up-scaled up to (0.374 Pu). The 

maximum variations differs by 0.821 Pu, yet both scenarios have penetration levels 0.374 Pu. 

This also contradicts the linearity in 4𝜎 expectations and further demonstrate the impact of site 

interconnectivity into a power system. The wind resources in scenarios 5 a combination of 

three wind sites are well interconnected unlike scenario 6 that comprises of a single farm. Site 

interconnection causes smoothing effect resulting lesser need for operating reserves.  
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Fig. 5.30 summarizes the details in Fig. 5.28 and Fig 5.29 the net system variability in six 

different from October 2011 to March 2012. Clearly, there is no proof of symmetry on the 

variations, maximum variations and standard deviations; the net system variations do not 

increase consistent with the penetration levels. These results can be attributed to wind 

generational diversity experienced within the system and the concentration of wind sites in 

designated areas. The distribution of wind sites in Kenya will have an impact when it comes to 

the size of the operating reserve. If more wind farms are located on sites with low wind 

variability like Kinangop than the net system variability will reduce. The size of the wind farm 

also has some impact when it comes to the size of the operating reserve. If large wind farms 

were located far apart as in the case of Kinangop and Turkana then the net system variability 

will reduce. On the contrary, if large wind farms are concentrated in a region the net system 

variability will increase.  

  



91 

 

 Table 5.3 Results for net hourly variations for Kenya from October 2011 to March 

2012. 

 

 

  

Scenario Max-up 

Variations 

(Pu) 

Max-down 

Variations 

(Pu) 

Standard 

Deviation σ 

(Pu) 

4σ (Pu) Load 

Following 

Reserve 

(MW) 

Load-without 

wind 

0.2077 -0.1938 0.0596 0.2382 244.6314 

Ngong up scaled 

to 0.024 Pu 

0.2778 -0.2589 0.0796 0.3185 327.0995 

Ngong, Kinangop 

0.083 Pu 

0.3557 -0.3316 0.1016 0.4065 417.4755 

Ngong, Turkana 

0.316 Pu 

0.3173 -0.2958 0.0905 0.3620 371.774 

Ngong, Kinangop 

& Turkana 0.374 

Pu 

0.4980 -0.4643 0.1419 0.5674 582.7198 

Ngong up scaled 

to 0.374 Pu 

0.7163 -0.6677 0.2053 0.8214 843.5778 
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5.11 Load following requirements 

The increase in hourly variations due to wind power can be taken as an estimate of the increase 

in load following requirement in the system. Fig. 5.27 shows the increase in load following 

requirement for wind power at different penetration levels. The linearized trend line in the plot 

shows the load following requirements for distinctive wind penetration levels. The load 

following reserve requirement for Kenya is estimated to increase at a rate of 29.6755 MW per 

percentage increase in wind penetration levels. However, the load following requirement at 31 

percent penetration level is lesser than that at 9 percent. This shows the effect of regime and 

the geographical spread to hourly variations. At 31 percent, the correlation between the wind 

power generated in the two wind sites, Ngong and Turkana reduce the standard deviation 

between hence the Load following reserve requirement.   

As seen in section 5.5 Kinangop and Turkana, have lower values of k signifying lesser wind 

variability. The low wind variability translates to low wind power variability. At 9 percent wind 

penetration level, Ngong is in the energy mix with Kinangop. Ngong has a high value of k 

signifying high wind variability. The low value of k has no significant effect to the overall 

system variability in this case because of low wind penetration levels. The wind penetration 

level for Kinangop exceeds that of Ngong by just 45 MW. At 31 percent wind penetration 

levels, one would expect total system failure. However, the low wind variability in Turkana at 

high penetration levels depicts itself as low power variability.  
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Figure 5.31 Increase in hourly load following requirement for wind power, calculated 

from the standard deviation. 
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Chapter 6 CONCLUSION AND RECOMMENDATIONS 

6.1 Conclusion 

The following conclusions can be drawn from this work;- 

1. The general wind speed pattern in the three sites is predominantly random. Ngong 

exhibits high variability with high means of 11.5 m/s and high standard deviations of 

6.92 m/s. Wind speeds for Ngong exhibits more zeros and spikes with seasonal 

properties, Kinangop exhibits lesser zeros and spikes with no seasonal properties while 

wind speeds for Turkana exhibits more spikes but with lesser zeros and no seasonal 

properties. The analysis of wind regime in Kinangop shows lesser variability compared 

to Ngong and Turkana by high means of 9.96 m/s and low standard deviations of 2.997 

m/s. The analysis of wind regime for Turkana shows that high variability with high 

means of 9.43 m/s and low standard deviations of 3.09 m/s.  

2. Ngong, Kinangop and Turkana exhibit high wind speeds during the night with low wind 

speeds during the day. The low wind variability translates to low wind power 

variability. However, wind power estimations for the sites exhibits the same pattern of 

intermittency but with lesser zeros and spikes. Wind variability in the three sites 

increases with the size of the wind farm. On the hand, the load pattern for Kenya also 

varies but consistently from peak to off peak. The weekend load varies in a similar 

manner as the weekday. However, weekdays load surpasses weekend loads. 

3. The changes in net system variations contradicts the 4σ expectations. The findings 

showed no prove of symmetry on the variations, maximum variations and standard 

deviations consistent with the wind penetration. This is attributed to wind generational 
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diversity within Kenya. Sites concentration in areas with favourable wind regime has 

an impact on the net system variability. The load following reserve requirement for 

Kenya is estimated to increase at a rate of 29.6755 MW per percentage increase in wind 

penetration levels. 

6.2 Recommendations 

The following recommendations are made with reference to this study;- 

1. Data for twelve months would be more appropriate for the analysis of monthly statistics 

and diurnal variations. 

2. Analysis of wind regime in the sub hourly period would give critical information about 

the net system variability. 

3. Unit commitment modelling will give more details how wind power behaves with other 

generation sources. 
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Appendix 1 

 

 

Fig. A.1 Large of Multiple wind Farms Connection to the Grid   
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Appendix 2 

 

Table A.1 MATLAB/Simulink simulation input Parameters 

Type Unit Turbine Data 

Rotor diameter [m] 52 

Nominal Power  [kW] 850  

No of blades  [No.] 3 

Controller type  [Hz] VMP-850-690-50 

Frequency  [Hz] 50Hz +1/-3 

Current (cos ϕ=1)  [A] 711 

Current (cos ϕ=0.95)  [A] 749 

Maximum Pitch Angle  [deg] 90  

Pitch at low idling speed  [deg] 36  

Generator Data   

Nominal speed  [m/s] 16 

Cut in speed  [m/s] 4  

Cut out speed  [m/s] 25 

No of Poles  [No.] 4 

Stator Resistance (Rs)  [Ω] 0.0029 

Stator Leakage Resistance (LIs )  [Ω] 0.0417 

Rotor Resistance (Rr)  [Ω] 0.0031  

Rotor Leakage Reactance (LIr)  [Ω] 0.0425 
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Table A.2 Actual Turbine parameter 

Type Unit Ver. 1 Ver. 1 Ver. 3 Ver. 5 Ver. 1 

50Hz 

Ver. 1 

60Hz 

Rated 

voltage 

[V] 690 690 690 690 690 690 

Rated 

frequency 

[Hz] 50 50 50 50 50 50 

Rated 

power 

[kW] 800 800 800 800 800 800 

Rated 

power 

factor 

(Inductive

) 

Cos phi 0.9 0.895 0.895 0.92 0.91 0.92 

Rated 

stator 

current 

[A] 742 756 756 729 736 730 

Rated 

rotor 

current 

[A] 268 256 256 254 254 247 

In-rush 

current 

ratio 

[Iblocked/

In 

] 

9.6 7.3 7.3 9.1 7.0 5.9 

Rated slip [%] -0.6 -0.6 -0.6 -0.53 -0.6 -0.56 

Rated 

torque 

(TN) 

[kNm] 5.2 5.2 5.2 5.3 5.2 5.3 

Starting 

torque 

(TS) 

[kNm] 2.2 4.0 4.0 9.0 1.64 0.93 

Break 

down 

torque 

(Tmax) as 

generator 

[kNm] 17.0 15.3 15.3 16.0 19.0 12.1 

Break 

down 

torque 

(Tmax) as 

motor 

[kNm] 15.0 13.5 13.5 15.0 17.4 11.1 
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Consumed 

active 

power 

[kW] 9.8 11.8 11.8 11 8.1 7.7 

Consumed 

reactive 

power 

[kVAr] 239 257 257 215 221 155 

Rotational 

loss 

[kW] 2.1 1.5 1.5 2.5 3.0 3.9 

Copper 

losses 

[kW] 0.4 0.4 0.4 0.3 0.4 0.2 

Iron losses [kW] 7.5 9.9 9.9 8.2 5.7 3.6 

Stator 

current 

[A] 200 216 216 180 185 130 

Power 

factor 

(Inductive

) 

P.U. 0.041 0.046 0.046 0.05 0.04 0.05 

Stator 

current at 

rated 

voltage 

[A] 7150 5500 5500 6600 5165 4330 

Power 

factor 

 0.09 0.19 0.19 0.24 0.10 0.08 

Voltage on 

open rotor 

terminals 

[V] 1811 1820 1820 1820 1849 1850 

Voltage 

ration 

Stator/Rot

or 

[U open 

rotor / Un] 

2.62 2.64 2.64 2.64 2.68 2.68 

Stator 

resistance 

R1 

[Ω] 0.0029 0.0028 0.00303

3 

0.00337 0.00436

7 

0.00495 

Stator 

leakage 

reactance 

X1 

[Ω] 0.0417 0.05 0.05 0.0432 0.02803 0.0390 

Iron loss 

resistance 

RFE 

[Ω] 0.070 0.06208 0.07095 0.0944 0.03767 0.065 

Magnetizi

ng 

[Ω] 1.97 1.77624 1.7984 2.194 1.967 2.94 
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reactance 

Xm 

Rotor 

leakage 

reactance 

X2 

[Ω] 0.0425 0.05451

5 

0.05401

9 

0.0477 0.0481 0.060 

Rotor 

resistance 

R´2 

[Ω] 0.0031 0.00365 0.00329

3 

0.00303 0.00336

7 

0.0034 

Voltage 

(phase – 

star 

       

point) 

UN/√3 

[V] 398.4 398.4 398.4 398.4 398.4 398.4 

Frequency [Hz] 50 50 50 50 50 60 
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Appendix 3 

 

 

Fig. A.3.1 Normal Distribution of Net hourly variations from October 2011 to March 

2012. 
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Fig. A.3.2 Normal Distribution of Net hourly variations from October 2011 to March 

2012. 
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Fig. A.3.1 Normal Distribution of Net hourly variations from October 2011 to March 

2012. 
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