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The present work considers the donor states in a 
GaAs/Ga1_xAlxAs QWW of circular cross section. Several 
trial wave functions are used to describe the ground state 
of the donor impurity. Using these trial wave functions the 
binding energy of the donor impurity in the ground state is 
determined for the hydrogenic case e(o), and for the 
non-hydrogenic case, e(r).

The binding energy for the first excited state is also 
determined using a trial wave function which is orthogonal 
to the ground state trial wave function. Here again the 
calculation is carried out for the hydrogenic case e(o), and 
for the non-hydrogenic case e(r).

It is found that in the ground state the binding energy 
increases with decreasing QWW radius for both the hydrogenic 
(€(o)) and non-hydrogenic (e(r)) cases. However, the 
binding energy increases much more rapidly with QWW radius



in the non-hydrogenic than in the hydrogenic case. The 
spatial dielectric function leads to substantially enhanced 
binding energy.

For the first excited state the binding energy also 
increases with decreasing QWW radius but here the screening 
effect of e(r) is negligible.

It is seen from the present work that the binding 
energy of a donor in a GaAs/Ga1-xAlxAs increases with 
decreasing QWW radius and that for the ground state binding 
energy it is sensitive to the screening effect of e(r).
This is because in the first excited state the donor 
electron does not approach the impurity ion as closely as in 
the ground state.
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I. INTRODUCTION
In recent years, the development of thin film growth 

techniques, such as molecular beam epitaxy [1,2 ,3], liquid 
phase epitaxy [4], and metal organic chemical vapor 
deposition [3,4] have made it possible to fabricate quasi- 
two and quasi-one dimensional structures. An example of the 
quasi-two dimensional structure is a GaAs layer sandwiched 
between two thick slabs of G a ^ ^ ^ A s .  This structure is 
called a quantum well (QW) since the (x-dependent) 
discrepancy between the band gaps in the two semiconductors 
effectively confines a free electron to the GaAs layer. An 
example of the quasi-one dimensional structure is a GaAs 
wire of circular, rectangular or triangular cross section, 
embedded in a Ga1_J{AlxAs matrix. This structure is called a 
quantum well wire (QWW), and for the reason mentioned above, 
in this structure a free electron is confined to the GaAs 
wire.

An imperfection that is critical in the fabrication and 
performance of GaAs electronic devices is impurity 
substitution, where a foreign atom intentionally (by doping) 
or unintentionally replaces either a Ga or an As atom at a 
regular site. The foreign atoms may remain neutral, promote 
electrons as donors, acquire electrons as acceptors, or act 
as charge traps. The type of effect that an impurity 
exhibits in the GaAs lattice depends on its valence state 
and binding energy. Impurities lying at shallow energy



levels can readily contribute to the conduction process.
The nature of impurity energy levels in a QW or in a 

QWW is of considerable interest. A number of potential 
device applications (see Sect. V.A.) such as photodetectors, 
fast pulse lasers, phototransistors solar cells, and fast 
electronic switches [4,5] are the motivating factors for 
research into the behavior of impurities in the QW and QWW 
structures.

A number of workers [4,7,8 ,9] have studied hydrogenic 
impurity states in GaAs QWW of various cross sections. Some 
of these workers have used variational calculations to 
determine the binding energy of a donor as a function of the 
QWW radius. In these calculations the image charges on the 
interfaces arising from the dielectric mismatch between GaAs 
and Ga1-xAlxAs are neglected. In the variational 
calculations, a one-band spherically symmetric effective 
mass was assumed. This is reasonable since P. Sercel and
K.J. Vahala [7] have shown that for infinite potential 
barrier, the effective mass of the charge carriers is 
independent of the QWW radius. In most of these 
calculations the donor impurity was located on the axis of 
the QWW (on-axis). Lee and Spector [8] performed a general 
calculation for an impurity located anywhere in the GaAs QWW 
but determined the binding energy only for an on-axis donor.

These binding energies of the donor have been 
calculated with the assumption that the depth of the

2
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potential well between GaAs and Ga Al As is infinite 
[8 ,9]. it is found in all these calculations using wires of 
circular cross sections that the binding energy increases as 
the QWW radius decreases. Calculations by Osorio, et al. 
[10], using a QWW of rectangular cross section, confirm this
trend.

A non-hydrogenic donor in a Ga Al As/GaAs/Ga, Al Asx x  x 1—X X
QW has been considered by Csavinszky and Elabsy both for
infinite [11] and for finite [12] q w depths, m  the non- 
hydrogenic calculations the static dielectric constant of 
GaAs is replaced by the spatial dielectric function of Resta 
[13], and Cornolti and Resta [14], Weber et al. [15] 
considered a shallow on-axis hydrogenic impurity for an 
infinitely long QWW of rectangular cross section. These 
authors assumed an infinite potential barrier and replaced 
the static dielectric constant with the spatial dielectric 
function proposed by Hermanson [16]. This dielectric 
function is independent both of the location of the impurity 
and of the shape of the QWW cross section. The spatial 
dielectric function referred to possesses complete spherical 
symmetry. Weber et al. [17] have found that the effect of 
the spatially dependent screening of the donor ion becomes 
less pronounced as the impurity approaches the edges of the
QWW.
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In these calculations [17] they found a substantial 

increase in the on-axis acceptor binding energy with respect 
to the binding energies obtained with the static dielectric 
constant. The importance of the spatially dependent 
screening diminishes as the QWW cross section increases.
This finding has its origin in the spreading out of the 
donor wave function. Thus, the effect of the spatially 
dependent dielectric function on the binding energy is 
important only for very small (less than 200 a.u.) QWW cross 
sections.

The objective of the present work is the determination 
of the binding energy of on-axis hydrogenic and non- 
hydrogenic donors in the ground and first excited states.
The donor impurity is considered to be located in an 
infinitely long GaAs QWW of circular cross section, and the 
barrier potential is assumed to be infinite.

The objective stated above is achieved by using 
different types of trial wave functions for the ground state 
of hydrogenic and non-hydrogenic donors. In the case of the 
hydrogenic and non-hydrogenic donors in the first excited 
state, the trial wave function used is constructed from the 
sum of the ground state hydrogen atom wave function and the 
first excited state hydrogen atom wave function with an 
appropriate envelope wave function to satisfy the boundary 
conditions. The wave function for the first excited state 
is orthogonal to the ground state trial wave function.
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In the present calculations the parabolic band

effective mass Hamiltonian is used with m* = 0.067 m r81.e L J
The static dielectric constant used in the hydrogenic case 
is that of the bulk GaAs, e(o) = 12.56 [8], and the spatial 
dielectric function used is that first suggested by 
Hermanson [16]. The constant c represents the screening 
distance beyond which c(r) = e(o) and is determined to be 
c = 0.8 a.u. The procedure leading to this c-value is 
discussed in Section A.2.

The organization of this work is as follows: Section
II presents the theory/ Section II.A. deals with the ground 
state binding energy of an on-axis donor with ordinary 
Bessel function as the envelope wave function. This section 
is divided into two parts: (1) hydrogenic donor, and (2)
non-hydrogenic donor. In Section II.B., the binding energy 
of an on-axis donor is considered but here the envelope wave 
function is a spherical Bessel function. Again, this 
section is subdivided into two parts: (1) hydrogenic donor,
and (2) non-hydrogenic donor. Section II.C. considers the 
binding energy of an on-axis donor but this time the 
envelope wave function is unity. This section is also 
divided into two parts: (l) hydrogenic donor, and (2) non-
hydrogenic donor.

Finally, Section II.D. deals with the binding energy of 
an on-axis donor in the first excited state. This section 
is subdivided into two parts: (1) hydrogenic donor, and



(2) non-hydrogenic donor.
Section III presents the data obtained in tabular form 

Section IV shows the plots of the binding energy as a 
function of the QWW radius for the on-axis hydrogenic and 
non-hydrogenic donors both in their ground and in their 
first excited states.

Section V is a presentation of the results and 
discussion of these results. Section VI gives the 
conclusions. Section VI consists of a brief summary of 
techniques used in the measurement of the binding energies 
of donor impurities in GaAs.

Section VII lists papers published and lectures 
presented which have resulted from this thesis. Literature 
citations by other researchers are given in Section V i n  
and Section IX contains the Appendices which present the 
details of the calculations and discussion of the numerical 
integration techniques employed in this work.
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II. THEORY

A. GROUND STATE DONOR IMPURITY
A.1. Ground State Binding Energy of an On-Axis 

Hvdrocrenic Donor Impurity with an Ordinary 
Bessel Function as the Envelope Wave Function.

In the present work, the variational method [18] is 
employed in calculating the ground state binding energy of 
an on-axis hydrogenic donor as a function of the QWW radius.

Assuming a parabolic conduction band with a 
corresponding scalar effective mass m* and neglecting image 
forces, the Hamiltonian in circular cylindrical coordinates 
is given by [19]

H = -
2m*

A -
€ (O) [p2 + Z2] 1/2 V p >

i fi_a_
2m*\p dp dp

a2
3z:}- + Vfl(p) II-A.le(o)[p2 + z2]1'2

2 2after setting h = 1  and e = 1 and where m* = 0.0667 m ise
the effective mass of an electron at the bottom of the 
conduction band of GaAs, €(o) = 12.56 is [8] the static 
dielectric constant of GaAs, while VB (p) is the potential 
energy barrier which confines the electron to the GaAs 
cylinder of radius a, such that

o p < a
vB (p) -

00 p > a .
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The coordinate p = (x2 + y2)3* measures the distance 
perpendicular to the axis of the QWW, and the coordinate z 
measures the distance along the axis of the QWW. Both p and 
z have their origin at the (point) donor ion. The geometry 
of the structure is illustrated in Figure 16.

The trial wave function used in the calculation, is 
that suggested but not used by Lee and Spector [8], namely

yla(p,z) = N  Jo(kl0p) e-PvV* * II-A.2

where N is the normalization constant, and /3 is a 
variational parameter. The function JQ (kx p) [20] is a 
Bessel function of order zero (called the envelope wave 
function) and argument k1Qp. The quantity k is related 
[21] to the first zero of the Bessel function JO •

in the present work, the function JQ (k10p) is replaced 
by J0 (“P)» where a = k1Q is given [22] by

2.4048
k10 = a = ------a

Thus, when p = a
2.4048

jQ (“P) = Jo (------ *a> = (2.4048) = 0a
Similarly, when p = 0

2.4048
Jq (------  p) = JQ (o) = 1

a
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The detailed calculations of the normalization 

constant, and the expectation values of the kinetic, 
potential, and total energy operators, are given in Appendix 
A.

The above quantities are related by

where < T >, < V >, and < H > are, respectively, the 
expectation values of the kinetic, potential, and total 
energy operators, and are given by

< H >  = < T >  + < V > II—A.3

II-A.4

< V >
(apjl(ap)K0(2^p)dp1 Jo ______ II-A.5c(o) fap2J^(ap)K1(2fip)dp

J O

B2  ̂ a2<’ «■> =  C—  + ---
2/77* 2m*

II-A.6
1

e(o) f‘p2jl(ap)K1(2Pp)dp J O

The normalization constant is obtained from

u 2 = [4it f  " p2 Jo (ap ) (2P p) dp] -1
J o

II-A.7
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In Equations II-A.5 and II-A.6 the quantities Kq and are 
the modified Bessel functions [23] of order zero and one, 
respectively, and of argument 20p.

In the variational approach, the minimum energy, 
Emin(a)' is obtained bY minimizing the expectation value of 
the total energy < H > with respect to the variational 
parameter 0,

d < H >

The minimizing value of 0 is then substituted back into 
Equation II-A.6, for a given value of the quantum well wire 
radius.

The expression for the expectation value of the total 
energy is not analytical. The minimization procedure 
involving 0 must be done numerically. The details of the 
numerical procedure and accuracy are given in Appendix IX.F. 
This procedure leads to the minimum energy Em^n (a) for each 
QWW radius a.

The binding energy Eb (a,0) is then obtained by 
subtracting Emin^a'^ ^rom the "free" particle energy 
Efree(a) [24]. Efree^a  ̂ the ener9y in the absence of the 
hydrogenic donor ion.
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One can then write

E b ( a f P) = E free(a)  -  E min(a , p)

g2 _ | a2 + p2
2m* 2m* 2m*

f apJo (ap) AT (2Pp) dp_ -l O ________________ |
e ( o )

J o

____p:
2/n* g (o)

[ apjl (ctp) K0 (2 ftp)dpj o___
/‘ap2j|(ap)iC1(2Pp)dp)•J o II-A.10

P2 + 1 A
2m* e(o) B

where

A = f apdo(ap)iC0(2Pp)dpJ O

and
B = fap2J^(ap) JC1(2Pp)dp.J o

The calculation of the free particle energy Efree(a) is 
given in Appendix E.

The numerical results for the binding energy Ê (a,/3) , 
the minimizing values of the variational parameter 0, and 
the respective QWW radius a, are presented in Table 1. The 
plot of as a ^unc^̂ -on °f the QWW radius a is shown
in Figure 1.

II-A.11

II-A.12
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A. 2. Ground State Binding Energy of an On-avi <=

Non-Hydrogenic Donor with an Orrtinarw Bessel 
Function as the Envelope Wave Function.

In the case of a non-hydrogenic donor in the ground 
state/ the static dielectric constant of GaAs is replaced by 
the spatial dielectric function of GaAs. in the present 
work, the spatial dielectric function used is that suggested 
by Henaanson [16]. This function has recently been used by 
Oliveira and Falicov [17]. The analytical form of this 
function is

e(r) e(o) + (1 e(o) >e c H - A .13

The quantity e(o) in Equation II-A.l is replaced by e(r) in 
Equation II-A.13. In Equation II-A.13, r == Vp2' + z2— is 
the position of the electron, and c is a constant that is 
determined in the present work by requiring that, in the 
screening region, e(r) should agree as well as possible with 
the spatial dielectric function of Resta [13]. in other 
words, e(r) approaches 1 for small r and €(o) for large r. 
The Fourier transform of II-A.13 also should fit the 
dielectric constant of GaAs, i.e., 12.56. it should also be 
noted that the dielectric function II-A.13 is independent of 
the location of the impurity in the z direction.

This goal is achieved by plotting e(r) as a function of 
r for various values of c until the appropriate value of c 
is obtained. The value of c which is used in the present
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work is c = 0.8 (a.u.) . The numerical results for e(r) as
a function of r are displayed in Table 15, and the graph of 
e(r) against r is presented in Figure 15.

It can be seen from Equation II-A.13 that e(r) becomes 
unity as the distance r from the (point) donor ion goes to 
zero. It is also seen from the same equation that e(r) 
becomes e(o) as the distance r from the (point) donor ion 
goes to about 9 a.u..

The expectation value of the total energy, < H >, is 
then calculated using the same method as in II-A.l. The 
expression for the expectation value of the total energy 
becomes:

< H i > = < t > + < V *  >

= < T >  + < V >  + < AV >
= < H > + < AV > II-A.14

-1

= _il +
2m*

«2
2 m*

x f * p j l  ( a p) /f0 (2 P p) dp 

e(o) /  Sp2*7o (ap) (2Pp) dp* O

(eQ - l) foapJo^P)Kot(2P + 1 ) p] dp 
e(o) / Vj|(«p)Jf1(2|Jp)dpJ O

II-A.15

where < H 1 >, < T > and < V > have the same meaning as in 
II-A.4, II-A.5 and II-A.6, and < AV > is given by
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< A V > (e(o) - l) 
e(o)

f («P) -Ko [ (2P + -i) p] dp
f ap2j|(ap)Jf1(2Pp)dp

J o

II-A.16
The minimum energy Eb (a,jff) , is then determined in a 

manner similar to that used for the hydrogenic donor, except 
that in this case there is an extra term in the potential 
energy due to the extra term in the dielectric function.
The binding energy is then obtained by subtracting the new 
minimum energy Emin (a'0) from the free particle energy

The numerical values of Eb (a,0), the minimizing value 
of 0, together with the respective values of the QWW radii 
are presented in Table 2. A plot of Eb (a,/?) as a function 
of the QWW radius a, is displayed in Figure 2.

B.l. Ground State Binding Energy of an Qn-avis
Hydroaenic Donor with a Spherical Bessel Function ag the Envelope Wave Function.

In this section, the ground state binding energy for an
on-axis hydrogenic donor is calculated using (instead of the
ordinary Bessel function) the spherical Bessel function [25]
j0 (MP) •

The Hamiltonian for the total energy is the same as the 
one used in section II.A., that is:
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H = - 2 777* i _a_ 
p ap

a2

â r2
II-B.l

e(o) [p2 + z2p /2 +

where the terms retain their definitions as given in 
Equation II-A.l.

The trial wave function used in this calculation is 
given by

7 lg(p,z) = N  ja(pp) e-Pv^T?- II-B.2
where [25]

j0(ap) = - inPP_ 
PP II-B.3

is the spherical Bessel function of order zerouer zero and argument
pp, [26] where p is given by

.. Jinf1 = —  >n = 1,2,3 . . .
CL

It is seen from II-B.3 that j0 (pp) has the following 
properties:
30 (MP) = 0 at p = a, i.e. at the radius of the q w w , and 
j0 (MP) = 1 at p = 0.

The detailed calculations for the •une expectation value of
the total energy < H > are presented in Appendix D. The
expression for the expectation value of th»wie total energy is
non-analytical and the minimum enercrv E /a o\ *min(a'P) for each
value of the QWW radius a is obtained by numerical
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techniques. The expression for the expectation value of the 
total energy is given by

< h > = < t > + < v >

= - 2«h2P2̂ - /■apj02(np)JC1(2Pp)dp m* J o

2it N2h2 
m» [" Jo(HP)^i(2Pp)cfp 

J O

-  2nhZ^N2. f ap j 0 (pp ) i \0 ( p p ) K l (2Pp)dp
m *  J o

- 4tia2PiiiP r a p2 jo((ip)11o(np)jro(2pp)dp
m *  J o

+ 2nhZ\i2Nl  f a p j l i p p )  /C1(2Pp) dp 
m* Jo

-  -4 2 ^ *1  / a p i| (np) jr0(2Pp)dpe(o) Jo

II—B .4
where the normalization constant N can be expressed as

N2 [4 * / / p 2*^  (HP) (2 P p ) dp II-B.5

and
T]0(pp) = " “ °S^P II—B. 6

PP

where r? (x) [26] is the spherical Neumann function of order
o v

one.
The binding energy is obtained by subtracting the 

minimum energy Emin (a,;8) ' obtained by minimizing < H > with 
respect to /?, from the free particle energy • The
result is a long complicated expression:
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- 2'Khi^L r  j K u p ^ u p p j d p  
m* J o

-  2 % h 2 V N 7 ,  f a  p j0(np)ri0(pp)j?1(2Pp)dp777* J o

+ 2” A2P2ij2- f a p j f  ( n p ^ U P p j d p777* J o

- 4ltA2P^—  f “ p2 J0(pp)llo(PP)^(2pp)dp 777* Jo

-  47tf2f-  fa P j|(pp)i<ro(2Pp) dp 1 IX-B.7e(o) Jo J

B 2 . Ground state Binding Energy for an On-Axis
Nnn-Hvdrocrenic Donor with a Spherical Bessel 
Fnnrrbion as the Envelope Wave Function.

As in II-A.2, the static dielectric constant e(o) is
replaced by the spatial dielectric function e(r), which is
given by Equation XX—A.13 as

1
e(o)

1
e(o) + (1 II—A.13

The expectation value of the total energy now has an 
extra term compared with the hydrogenic donor case of 
Equation II-B.7. This expression is now given by
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< H >  = _ ? * * £ £ #  P i|(^p)jq(2pp)dp

- 2*%r-2 /" j|(np)^(2pp)dpifl̂ J o

-  2*h*PN2 j * P j 0 ( ( ip ) i i0 (pp)j<r1 (2p p )d p

+ 27t̂ — ' f *  P j | ( p p ) ^ ( 2 P p )d p  

-  47lÂ fl—  // p2 J0(PP ) ’l 0(PP)^o(2Pp)dp  

-  4”( o^2- //  P Jo (PP) (2Pp) dp

4ffi/2e 2 [e (o) - l l  p jf| (p p ) jro [ (2 p + A ) p ] d p

II-B.8

The minimum energy is obtained by numerical methods.
The result, ®min^a'^ ' ^ en subtracted from the free 
particle energy ®£ree(a) °ktain the binding energy 
Eb (a,/3). The numerical results for Eb (a,0) , the minimizing 
values of /3, and the respective QWW radii a are displayed in 
Table 5. A plot of Eb (a,/3) as a function of the QWW radius 
a is presented in Figure 5.
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C.1. Ground State Binding Energy of an On-Axis

^_Donor with an Envelops Wsvs Functionof Unity. -----
The wave function used here is that of a simple 

isolated hydrogen atom embedded in a GaAs cylinder 
surrounded by a G a ^ A ^ A s  matrix. The wave function does 
not vanish at the boundary, namely at p = a, but is finite 
at p = o. This is a drawback in this choice of trial wave 
function.

The Hamiltonian used is the same as that in Equation 
11-A. 1, i. e. ,

J .  + J L l .  i
2m* }  p 3p dz2 ) e(o)  [p2 + z 2] 1/2 + vb (P>

The trial wave function is given by

Y lfl(p,z) = N e’Pv'p* +

II-A.1

II-C.i

The expectation value of the total energy is obtained by 
determining the expectation value of < H >. The details of 
the calculations are presented in Appendix C.

The result is given by

h P2 _ f 0 P**(2Pp) dp
m* fa . " ~

J o 92Kx (2pp) dp
II-C.2

This is a non-analytical expression and the 
minimization is carried out using numerical techniques.
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C.2. Ground State Binding Energy of an On-Axis 

Non-Hvdroaenic Donor with an Envelope Wave 
Function of Unity.

The spatial dielectric constant in Eq. II-A.l is 
replaced by the spatial dielectric function

1
e (r)

1
e(o) + (l l

e(o) ) exp - —  VP2 + z2 c II-A.13

The resulting expression for the expectation value of the 
total energy is again non-analytical and the minimum energy 
is determined numerically from

02 1 f*pK0 (2 P p) dp

2m* ‘ e(o) f V j q ( 2pp)dpJ O
IX—C.3

(e(o) - 1) / V q [(2P + ^ ) P ^ P
e(o) f  *p2K1 (2Pp) d(l• o

With the above expression, the binding energy becomes

ft x f*pK0(2Pp)dp
EAa, P) = or 

2m*
- < +

2m* e(o) f ap2K1(2Pp)dpJ o
II-C.4

( g ( o ) _ 1) /c 2̂P + p] C?p
e(o) f ap2K1(2fip)dp

J  O
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The numerical results for Eb (a,/3), 0, as function of the QWW 
radius a are presented in Table 8, while a plot of the 
binding energy Eb (a,/J) as a function of the QWW radius a is 
shown in Figure 8.

D-l- Binding Energy of the First Excited stat.ft nf ^  
On-Axis Hydrogenic Donor Impnr-i.tv with~ ^  the Envelope Wave Function. Q"

In this section the first excited state binding energy of an
on-axis hydrogenic donor is calculated. The Hamiltonian is
the same as in Eguation II-A.l, and the quantities are as
defined in Section II.A.1:

H = 1
2 m*

1 _d_ _d_
P dp dp

1
e(o) [ p2 + z2 ] 1//2 VB(p)

II.A.1

The trial wave function is given by

W 2s(p,z) = NJa (ap) [ e-^'^~r7T + k [ 2 - X<f^ + 22' ] e-VFT7*- ]

II—D .1
Here K is an orthogonality constant and X is a variational 
parameter which is determined when the minimization of the 
expectation value of the total energy is done. This 
expectation value is given by

< H > = < \p2s | H | <p2s > II-D.2
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The expression is very long and is given in Appendix E. The
expectation value of the total energy is then minimized to
obtain E . (a,X) and the result is subtracted from the free min
particle energy Efree(a) to obtain the binding energy 
Eb (a,/3). Most of the integrals in the expectation value of 
the total energy are non-analytical and therefore have been 
evaluated numerically.

D.2. Binding Energy of the First Excited State of an on—Axis Non-Hvdrogenic Donor.
The Hamiltonian for the expectation value of the total

energy now has an extra term and is given by

H = - __1__ f _1 J_
2m* { p

______ 1______
6 (o) [p2 + z 2] 1//2

[c (o )  - 13 
e(o) [p2 + z 2] 1/2

. + z"
+ V p )

II-D.3
The expectation value is given by

< H > = < ^2S 11 H* |

A(ftC
M

II A to (ft 1 H | > + < iZr 1^2s ^2s 11 AV I ^2s >
II-D.4

The extra term in the expectation value of the total energy 
is due to the spatial dielectric function which has been 
substituted for the static dielectric constant.
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Again, the expression for the expectation value of the 

total energy is non-analytical and the rest of the 
calculations are done numerically. The expression is given 
in Appendix E.

The minimum value of the expectation value of the total 
energy, Emin (a '̂ ) • *-s subtracted from the free particle 
energy Ef (a) and the result is the binding energy Eb (a,\).
In sections D.l and D.2 the parameter 0 is determined by the 
technigue presented in section A.
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III. TABLE CAPTIONS

The extensive numerical results of this study air© 
presented in this chapter as a sequence of tables. The unit 
q£ the QWW radius is the atomic unit, (a^), those of the 
variational parameters 0 and X are the inverse atomic unit, 
fa-1! and the binding energy is given in millielectron
volts, meV.

Table 1.

Table 2.

Table 3.

Table 4.

Table 5.

This table shows the results for the on-axis 
hydrogenic donor with an ordinary Bessel 
function as the envelope wave function.
This table shows the results for the 
non-hydrogenic on-axis donor with an 
ordinary Bessel function as the envelope 
wave function.
This summary table shows data from Tables 1 and 
2 on the same page for comparison.
This table shows the results obtained with 
the spherical Bessel function as the 
envelope wave function for an on-axis 
hydrogenic donor•
This table shows the results for the spherical 
Bessel function as the envelope wave function 
for the non-hydrogenic donor.



25
Table 6. This table shows the results for the hydrogenic 

and non-hydrogenic for comparison in the 
spherical Bessel function case.

Table 7. This table shows the results for the unit 
envelope wave function.

Table 8. This table shows the results for the case of 
non-hydrogenic donor with unit envelope wave 
function.

Table 9. This table shows the data for the hydrogenic 
and non-hydrogenic donor with unit envelope 
wave function.

Table 10. This table shows the results for the 2s excited 
state hydrogenic donor with the ordinary Bessel 
function as the envelope wave function.

Table 11. This table shows the results for the non- 
hydrogenic donor in its first excited (2s) 
state with the ordinary Bessel function as the 
envelope wave function.

Table 12. This table shows the results for the hydrogenic 
and non-hydrogenic donors in the first excited 
states.

Table 13. This table shows results for the ground state 
and first excited state hydrogenic donors (with 
an ordinary Bessel function as the envelope 
wave function).



Table 14.

Table 15.

This table shows the results for the 
non-hydrogenic ground state and first excited 
state with the ordinary Bessel function as the 
envelope wave function.
This table shows the data used [17] in the 
determination of c = 0.8 in the spatial 
dielectric function.

26



TABLE 1
27

a (a.u.) 0 x 10~2 (a.u.)-1 Eb (a,/3) (meV) j

5.0 1.963 158.51
10.0 1.556 118.55
20.0 1.207 73.63
30.0 1.035 57.48
40.0 0.926 47.96
50.0 0.852 41.55
60.0 0.792 36.91
70.0 0.747 33.35
80.0 0.710 30.53
90.0 0.680 28.22
100.0 0.654 26.30
120.0 0.613 23.27
140.0 0.582 20.98
160.0 0.557 19.18
180.0 0.537 17.73
200.0 0.521 16.52
300.0 0.474 12.67
400.0 0.456 10.59
500.0 0.452 9.30
600.0 0.456 8.45
700.0 0.463 7.85
800.0 0.472 7.43

1000.0 0.488 6.88
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TABLE 2

a (a.u.) /? x 10-2 (a.u.)-1 Eb (a,/3) (meV) (
5.0 3.219 343.73

10.0 1.918 147.44
20.0 1.306 81.07
30.0 1.080 60.38
40.0 0.953 49.45
50.0 0.868 42.45
60.0 0.806 37.50
70.0 0.757 33.77
80.0 0.719 30.84
90.0 0.687 28.46
100.0 0.660 26.49
120.0 0.618 23.40

140.0 0.585 21.08

160.0 0.560 19.25

180.0 0.539 17.76
200.0 0.523 16.55

300.0 0.574 12.68

400.0 0.456 10.59

500.0 0.452 9.31

600.0 0.456 8.45
700.0 0.464 7.86

800.0 0.473 7.43

1000.0 0.489 6.90
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TABLE 3

HYDROGENIC DONOR NON-HYDROGENIC DONOR
a 0 x 10"? E.(a,j3) 0 x 10'2 | Eh (a,0) |'

(a.u.) (a.u.) (meV) (a.u.) (meV)

5.0 1.963 158.51 3.219 343.73
10.0 1.556 118.55 1.918 147.44
20.0 1.207 73.63 1.306 81.07
30.0 1.035 57.48 1.080 60.38
40.0 0.926 47.96 0.953 49.45
50.0 0.852 41.55 0.868 42.45
60.0 0.792 36.91 0.806 37.50
70.0 0.747 33.35 0.757 33.77
80.0 0.710 30.53 0.719 30.84
90.0 0.680 28.22 0.687 28.46

100.0 0.654 26.30 0.660 26.49
120.0 0.613 23.27 0.618 23.40
140.0 0.582 20.98 0.585 21.08
160.0 0.557 19.18 0.560 19.25
180.0 0.537 17.73 0.539 17.76
200.0 0.521 16.52 0.523 16.55
300.0 0.474 12.67 0.574 12.68
400.0 0.456 10.59 0.456 10.59
500.0 0.452 9.30 0.452 9.31
600.0 0.456 8.45 0.456 8.45
700.0 0.463 7.85 0.464 7.86
800.0 0.472 7.43 0.473 7.43
1000.0 0.488 6.88 0.489 6.90



TABLE 4

a (a.u .) 0 x 10 - 3 (a.u . ) - 1 Eb (a,0 ) (meV) j
2 0 . 0 6 . 0 2 6 1 9 1 1 . 5 5

3 0 . 0 5 . 6 0 2 1 0 1 5 . 4 0

4 0 . 0 5 . 2 1 7 6 1 8 . 3 7

5 0 . 0 4 . 9 1 0 4 1 8 . 0 2

6 0 . 0 4 . 6 5 6 3 0 2 . 9 9

7 0 . 0 4 . 4 4 6 2 3 0 . 8 9

8 0 . 0 4 . 2 5 7 1 8 2 . 6 8

9 0 . 0 4 . 0 9 1 1 4 8 . 8 0

1 0 0 . 0 3 . 9 5 7 1 2 4 . 0 4

1 2 0 . 0 3 . 7 2 8 9 0 . 9 5

1 4 0 . 0 3 . 5 3 9 7 0 . 3 5

1 6 0 . 0 3 . 3 8 6 5 6 . 6 0

1 8 0 . 0 3 . 2 5 2 4 6 . 9 3

2 0 0 . 0 3 . 1 4 4 3 9 . 8 4

3 0 0 . 0 2 . 7 6 7 2 2 . 0 3

4 0 0 . 0 2 . 5 5 1 1 5 . 0 8

5 0 0 . 0 2 . 4 2 3 1 1 . 5 3

6 0 0 . 0 2 . 3 4 1 9 . 5 2

7 0 0 . 0 2 . 2 8 8 7 . 9 0

8 0 0 . 0 2 . 2 5 7 7 . 0 6

1 0 0 0 . 0 2 . 2 7 2 5 . 8 0



TABLE 5
31

a (a.u.) j8 x 10-3 (a.u.)-1 Eb (a,/3) (meV)

20.0 6.356 1969.64
30.0 5.754 1016.61
40.0 5.306 619.17
50.0 4.970 418.43
60.0 4.697 303.26
70.0 4.473 231.09
80.0 4.277 182.82
90.0 4.116 148.91

100.0 3.975 124.16
120.0 3.740 90.01
140.0 3.550 70.39
160.0 3.390 56.63
180.0 3.260 46.96
200.0 3.150 39.86
300.0 2.770 22.04
400.0 2.555 15.08
500.0 2.425 11.53
600.0 2.340 9.41
700.0 2.290 8.03
800.0 2.260 7.06

1000.0 2.245 5.80
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TABLE 6

HYDROGENIC DONOR NON-HYDROGENIC DONOR
a

(a.u.)
0 X 10~_2 
(a.u.)

Eb (a,/3)
(meV)

0 X 10~2 1(a.u.) Eh (a,j8) |' ImeV)
20.0 6.026 1911.55 6.356 1969.64
30.0 5.602 1015.40 5.754 1016.61
40.0 5.217 618.37 5.306 619.17
50.0 4.910 418.02 4.970 418.43
60.0 4.656 302.99 4.697 303.26
70.0 4.446 230.89 4.473 231.09
80.0 4.257 182.68 4.277 182.82
90.0 4.091 148.80 4.116 148.91

100.0 3.957 121.04 3.975 124.16
120.0 3.728 90.95 3.740 91.01
140.0 3.539 70.35 3.550 70.39
160.0 3.386 56.60 3.90 56.63
180.0 3.252 46.93 3.260 46.96
200.0 3.144 39.84 3.150 39.86

300.0 2.767 22.03 2.770 22.04

400.0 2.551 15.08 2.555 15.08
500.0 2.423 11.53 2.425 11.53
600.0 2.341 9.52 2.340 9.41
700.0 2.288 7.90 2.290 8.03
800.0 2.257 7.06 2.260 7.06

1000.0 2.272 5.80 2.45 5.80



33
TABLE 7

a (a.u.) 0 x 10-3 (a.u.)-1 Eb (a,/3) (meV)

20.0 9.761 787.10
30.0 8.268 367.11
40.0 7.333 217.26
50.0 6.696 146.45
60.0 6.219 107.15
70.0 5.841 82.91
80.0 5.542 66.81
90.0 5.284 55.52

100.0 5.085 47.25
120.0 4.746 36.12

140.0 4.468 29.08

160.0 4.328 24.30

180.0 4.169 20.88

200.0 4.069 18.32

300.0 3.831 11.62

400.0 3.990 8.86

500.0 4.408 7.51

600.0 4.484 6.82

700.0 5.105 6.47

800.0 5.224 6.27

1000.0 5.304 6.07
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TABLE 8
a (a.u .) 0  X  1 0 -3 Eb (a,|3) (meV) j

2 0 . 0 9 . 9 8 0 7 8 8 . 4 7

3 0 . 0 8 . 8 3 7 3 6 7 . 6 5

4 0 . 0 7 . 3 9 3 2 1 7 . 5 4

5 0 . 0 6 . 7 3 6 1 4 6 . 7 1

6 0 . 0 6 . 2 3 9 1 0 7 . 2 5

7 0 . 0 5 . 8 6 1 8 2 . 9 8

8 0 . 0 5 . 5 6 2 6 6 . 8 7

9 0 . 0 5 . 3 0 3 5 5 . 5 7

1 0 0 . 0 5 . 1 0 5 4 7 . 2 9

1 2 0 . 0 4 . 7 6 6 3 6 . 1 4

1 4 0 . 0 4 . 5 2 5 2 9 . 1 0

1 6 0 . 0 4 . 3 2 8 2 4 . 3 2

1 8 0 . 0 4 . 1 8 9 2 0 . 8 7

2 0 0 . 0 4 . 0 7 0 1 8 . 3 3

3 0 0 . 0 3 . 8 3 1 1 1 . 6 2

4 0 0 . 0 3 . 9 9 0 8 . 8 7

5 0 0 . 0 4 . 4 2 8 7 . 5 1

6 0 0 . 0 4 . 8 4 6 6 . 8 3

7 0 0 . 0 5 . 1 0 4 5 . 8 8

8 0 0 . 0 5 . 2 4 1 5 . 8 2

1 0 0 0 . 0 5 . 3 5 1 5 6 . 0 8
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TABLE 9

HYDROGENIC DONOR NON-HYDROGENIC DONOR
a

(a.u.)
P X 10~_l 
(a.u.)

E^a,#)
imeV)

0 X 10-3 I Eh (a,j8) | 
imeV)

20.0 9.761 787.10 9.980 788.47
30.0 8.268 367.11 8.837 367.65

40.0 7.333 217.26 7.393 217.54

50.0 6.696 146.45 6.736 146.71

60.0 6.219 107.15 6.239 107.25

70.0 5.841 82.91 5.861 82.98

80.0 5.542 66.81 5.562 66.87

90.0 5.284 55.52 5.303 55.57

100.0 5.085 47.25 5.105 47.29

120.0 4.746 36.12 4.766 36.14

140.0 4.468 29.08 4.525 29.10

160.0 4.328 24.30 4.328 24.32

180.0 4.169 20.88 4.189 20.87

200.0 4.069 18.32 4.070 18.33

300.0 3.831 11.62 3.831 11.62

400.0 3.990 8.86 3.990 8.87

500.0 4.408 7.51 4.428 7.51

600.0 4.484 6.82 4.846 6.83

700.0 5.105 6.47 5.104 5.88

800.0 5.224 6.27 5.241 5.82

1000.0 5.304 6.07 5.3515 6.08
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TABLE 10

a (a.u.) X x 10-2 (a.u.)-1 Eb (a,X) (meV) j
20.0 0 . 6 8 7 5 7 3 5 . 4 2

3 0 . 0 0 . 5 9 4 0 3 2 7 . 8 6

4 0 . 0 0 . 5 3 3 0 1 8 5 . 1 2

5 0 . 0 0 . 4 9 0 0 1 1 9 . 0 3

6 0 . 0 0 . 4 5 4 3 8 3 . 1 0

7 0 . 0 0 . 4 2 5 6 6 1 . 4 0

8 0 . 0 0 . 4 0 2 3 4 7 . 3 1

9 0 . 0 0 . 3 8 2 6 3 7 . 6 4

100.0 0 . 3 6 5 6 3 0 . 8 4

1 2 0 . 0 0 . 3 3 7 9 21.68
1 4 0 . 0 0 . 3 1 6 4 1 6 . 2 3

1 6 0 . 0 0 . 2 9 9 4 1 2 . 6 7

1 8 0 . 0 0 . 2 8 5 1 1 0 . 2 3

200.0 0 . 2 7 3 5 8 . 4 9

3 0 0 . 0 0 . 2 3 3 8 4 . 3 5

4 0 0 . 0 0 . 2 1 2 8 2 . 9 1

5 0 0 . 0 0 . 1 9 9 3 2 . 2 6

6 0 0 . 0 0 . 1 8 9 5 1 . 9 1

7 0 0 . 0 0 . 1 8 1 6 1 . 7 0

8 0 0 . 0 0 . 1 7 4 8 1 . 5 3

1000.0 0 . 1 6 1 9 1 . 2 7



TABLE 10
36

a (a.u.) X x 10-2 (a.u.)-1 Eb (a,X) (meV)
20.0 0.6875 735.42
30.0 0.5940 327.86
40.0 0.5330 185.12
50.0 0.4900 119.03
60.0 0.4543 83.10
70.0 0.4256 61.40
80.0 0.4023 47.31
90.0 0.3826 37.64

100.0 0.3656 30.84
120.0 0.3379 21.68
140.0 0.3164 16.23
160.0 0.2994 12.67
180.0 0.2851 10.23
200.0 0.2735 8.49
300.0 0.2338 4.35
400.0 0.2128 2.91
500.0 0.1993 2.26
600.0 0.1895 1.91
700.0 0.1816 1.70
800.0 0.1748 1.53
1000.0 0.1619 1.27



TABLE 11
a (a.u.) X x 10-2 (a.u.)-1 Eb (a,\) (meV) (

20.0 0.7459 735.96
30.0 0.62112 328.11
40.0 0.54938 185.28
50.0 0.49971 119.13
60.0 0.46170 83.17
70.0 0.43155 61.46
80.0 0.40683 47.36
90.0 0.38638 37.68
100.0 0.36882 30.76
120.0 0.34040 21.71
140.0 0.31860 16.24
160.0 0.301100 12.69
180.0 0.28621 10.25
200.0 0.27404 8.50
300.0 0.27197 4.95
400.0 0.21309 2.92
500.0 0.19934 2.26
600.0 0.18957 1.92
700.0 0.182045 1.70
800.0 0.17520 1.54

1000.0 0.16225 1.27
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TABLE 12

HYDROGENIC DONOR NON-HYDROGENIC DONOR
a

(a.u.)
X x l c T ,  (a.u.)

Eb (a,X)
(MeV)

x  x i o j ! |
(a.u.)“ Eh (a,X) |' (meV)

20.0 6.87 735.42 7.46 735.96
30.0 5.94 327.86 6.21 328.11
40.0 5.33 185.12 5.49 185.28
50.0 4.90 119.03 4.99 119.13
60.0 4.54 83.10 4.62 83.17
70.0 4.26 61.40 4.32 61.46
80.0 4.02 47.31 4.68 47.36
90.0 3.83 37.64 3.86 37.68

100.0 3.66 30.84 3.69 30.76
120.0 3.38 21.68 3.40 21.71
140.0 3.16 16.23 3.18 16.24
160.0 2.99 12.67 3.11 12.69
180.0 2.85 10.23 2.86 10.25
200.0 2.73 8.49 2.74 8.50
300.0 2.34 4.35 2.72 4.95
400.0 2.13 2.91 2.13 2.92
500.0 1.99 2.26 1.99 2.26
600.0 1.89 1.91 1.89 1.92
700.0 1.82 1.70 1.82 1.70
800.0 1.75 1.53 1.75 1.54

1000.0 1.62 1.27 1.62 1.27
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TABLE 12

HYDROGENIC DONOR NON-HYDROGENIC DONOR
a

(a.u .)
X x 10 * (a.u .)~ E. (a,X) (SeV)

X x 10J* | 
(a.u.)” Eh (a,X) |'imeV)

20.0 6.87 735.42 7.46 735.96
30.0 5.94 327.86 6.21 328.11
40.0 5.33 185.12 5.49 185.28
50.0 4.90 119.03 4.99 119.13
60.0 4.54 83.10 4.62 83.17
70.0 4.26 61.40 4.32 61.46
80.0 4.02 47.31 4.68 47.36
90.0 3.83 37.64 3.86 37.68
100.0 3.66 30.84 3.69 30.76
120.0 3.38 21.68 3.40 21.71
140.0 3.16 16.23 3.18 16.24
160.0 2.99 12.67 3.11 12.69
180.0 2.85 10.23 2.86 10.25
200.0 2.73 8.49 2.74 8.50
300.0 2.34 4.35 2.72 4.95
400.0 2.13 2.91 2.13 2.92
500.0 1.99 2.26 1.99 2.26
600.0 1.89 1.91 1.89 1.92
700.0 1.82 1.70 1.82 1.70
800.0 1.75 1.53 1.75 1.54

1000.0 1.62 1.27 1.62 1.27
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TABLE 13

GROUND STATE 
HYDROGENIC DONOR

1ST EXCITED STATE 
HYDROGENIC DONOR

a
(a.u.)

& x 10~_2 (a.u.)
Eh (a,0)(meV)

X x 10“  ̂ | 
(a.u.)~ Eh (a,X) |'imeV)

5,0 1.963 158.51
10.0 1.556 118.55
20.0 1.207 73.63 0.6875 735.42
30.0 1.035 57.48 0.5940 327.86
40.0 0.926 47.96 0.5330 185.12
50.0 0.852 41.55 0.4900 119.03
60.0 0.792 36.91 0.4543 83.10
70.0 0.747 33.35 0.4256 61.40
80.0 0.710 30.53 0.4023 47.31
90.0 0.680 28.22 0.3826 37.64
100.0 0.654 26.30 0.3656 30.84
120.0 0.613 23.27 0.3379 21.68
140.0 0.582 20.98 0.3164 16.23
160.0 0.557 19.18 0.2994 12.67
180.0 0.537 17.73 0.2851 10.23
200.0 0.521 16.52 0.2735 8.49
300.0 0.474 12.67 0.2338 4.35
400.0 0.456 10.59 0.2128 2.91

500.0 0.452 9.30 0.1993 2.26

600.0 0.456 8.45 0.1895 1.91

700.0 0.463 7.85 0.1816 1.70
800.0 0.472 7.43 0.1748 1.53
1000.0 0.488 6.88 0.1619 1.27
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TABLE 13

GROUND STATE 
HYDROGENIC DONOR

1ST EXCITED STATE 
HYDROGENIC DONOR

a
(a.u.)

0 X io"j
(a.u.)

Efa(a,j3)
TmeV)

X x 10“  ̂ | 
(a.u.)“ Eh (a,X) |ImeV)

5-0 1.963 158.51
10.0 1.556 118.55
20.0 1.207 73.63 0.6875 735.42
30.0 1.035 57.48 0.5940 327.86
40.0 0.926 47.96 0.5330 185.12
50.0 0.852 41.55 0.4900 119.03
60.0 0.792 36.91 0.4543 83.10
70.0 0.747 33.35 0.4256 61.40
80.0 0.710 30.53 0.4023 47.31
90.0 0.680 28.22 0.3826 37.64
100.0 0.654 26.30 0.3656 30.84
120.0 0.613 23.27 0.3379 21.68
140.0 0.582 20.98 0.3164 16.23
160.0 0.557 19.18 0.2994 12.67
180.0 0.537 17.73 0.2851 10.23
200.0 0.521 16.52 0.2735 8.49
300.0 0.474 12.67 0.2338 4.35
400.0 0.456 10.59 0.2128 2.91

500.0 0.452 9.30 0.1993 2.26

600.0 0.456 8.45 0.1895 1.91

700.0 0.463 7.85 0.1816 1.70
800.0 0.472 7.43 0.1748 1.53
1000.0 0.488 6.88 0.1619 1.27
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TABLE 14

GROUND STATE 
NON-HYDROGENIC DONOR

1ST EXCITED STATE 
NON-HYDROGENIC DONOR

a _i(a.u.)
& X icT^(a.u.)

E.(a,/3)
(meV)

X x 10“  ̂ | 
(a.u.)“ Efa(a,X) |‘“meV)

5.0 3.219 343.73
10.0 1.918 147.44
20.0 1.306 81.07 0.7459 735.96
30.0 1.080 60.38 0.6211 328.11
40.0 0.953 49.45 0.5494 185.28
50.0 0.868 42.45 0.4997 119.13
60.0 0.806 37.50 0.4617 83.17
70.0 0.757 33.77 0.4315 61.46
80.0 0.719 30.84 0.4068 47.38

90.0 0.687 28.46 0.3864 37.68

100.0 0.660 26.49 0.3688 38.76

120.0 0.618 23.40 0.3404 21.71

140.0 0.585 21.08 0.3186 16.28

160.0 0.560 19.25 0.3011 12.68

180.0 0.539 17.76 0.2862 10.25

200.0 0.523 16.55 0.2740 8.50

300.0 0.474 12.68 0.2719 4.95

400.0 0.456 10.59 0.2131 2.92

500.0 0.452 9.31 0.1993 2.26

600.0 0.456 8.45 0.1896 1.92

700.0 0.464 7.86 0.1820 1.70

800.0 0.473 7.43 0.1752 1.54

1000.0 0.489 6.90 0.1622 1.27



TABLE 15
C = 0.8

r c(r)

0.0 1.0
0.25 1.3280497
0.50 1.747448
0.75 2.2724965
1.00 2.91280
1.25 3.66918
1.50 4.5297
1.75 5.468
2.00 6.4446
2.50 8.3294
3.00 9.87526
3.50 10.96446
4.00 11.6523877
4.50 12.057308
5.00 12.2858288
5.50 12.41174
6.00 12.4802058
6.50 12.5171628
7.00 12.5370344
7.50 12.547696998
8.00 12.553411678
9.00 12.55811
10.00 12.5594589
12.00 12.55995558



IV. FIGURE CAPTIONS
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The following figures show the plots of the data given 
in the tables Chapter III. The same system of units is 
employed, that is the unit of the QWW radius is the atomic 
unit, (aQ), those of the variational parameters 0, and X the 
inverse atomic unit, (a"1) and the binding energy is in meV.

Figure 1. This figure shows the plot of the results for 
the on-axis ground state hydrogenic donor with 
an ordinary Bessel function as an envelope wave 
function.

Figure 2. This figure shows the plot of the results
for the on-axis ground state non-hydrogenic 
donor with an ordinary Bessel function as the 
envelope wave function.

Figure 3. This figure shows the plot of the results of 
the on-axis ground state hydrogenic and non- 
hydrogenic donors with an ordinary Bessel 
function as the envelope wave function.

Figure 4. This figure shows the plot of the results of the 
on-axis ground state hydrogenic donor with a 
spherical Bessel function as the envelope 
wave function.
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Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

5. This figure shows the plot of the results of the 
on-axis ground state non-hydrogenic donor with a 
spherical Bessel functions as the envelope wave 
function.

6. This summary figure compares the plots of the 
results of Tables 5 and 6.

7. This figure shows the plot of the results for 
on-axis ground state hydrogenic donor with 
unit envelope wave function.

8. This figure shows the plot of the results for 
on-axis ground state non-hydrogenic donor with 
unit envelope wave function.

9. Figure 9 compares the plots of the results of
Tablfi 8 and 9•

10. This figure shows the plot of the results of the 
on-axis first excited state of a hydrogenic
donor.

11. Figure 11 shows the plot of the results of the 
on-axis first excited state of a non-hydrogenic
donor.

12 This figure shows the comparative plot of the 
data of Table 11 and 12.

13 This figure shows the plot of the data of 
Table 2 and Table 11.

14. Figure 14 shows the plot of the data of 
Tables 2 and 12.
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Figure 15. This figure shows the plot of the data

obtained in the determination of c = 0.8 
for the spatial dielectric function [17].

Figure 16. Figure 16 shows the geometrical configuration of 
the quantum well wire studied in this thesis.
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V. RESULTS AND DISCUSSION

A. Ground St**-* Binding Energy of On-Axis Hydrogenic and 
Non-Hydrogeni c Donors with an Ordinary Bessel Function 
as an Envelope Wave Function^

A. i. Ground stste Energy of an_On—Axis—Hydrogenic
Donor.

In this sub-section the results for the ground state 
energy of on-axis hydrogenic and non-hydrogenic donors are 
presented. A comparison is also made of the two results. 
These results were obtained using a trial wave function with 
the ordinary Bessel function of Equation II-A.2 as an
envelope wave function.

Table 1 shows the numerical results of the binding 
energy Eb (a,/J) of Equation II-A.6 as a function of the QWW 
radius, a, of a hydrogenic donor. Also shown are the
minimizing values of the variational parameter 0. The

 ̂ a function of the QWW radius, a, is binding energy/ as a fun
plotted in Figure 1.

It is seen from both Table 1 and Figure 1 that the
_ for large QWW radii, a, is constantbinding energy E^fa,P)

. , * « na meV. This compares favorably with theat a value of 6.00 mev.
bulk value given by D.R* Wright [27]

»„ the w .  radius decreases, the binding energy
increases. At a «»» radius a. s.all.r than twice the daA,

i nrrease in the binding energy with Bohr radius [ 8 ] / the in
becomes more and more pronounced anddecreasing QWW radius
is about twenty three times the bulk reaches a value that is

value at a radius of about 5 a.u.



A.2. Ground State Binding Energy of an On-Axis 
Non-Hvdrogenic Donor.

62

The results shown in Table 2 were obtained with the 
static dielectric constant replaced by the spatial 
dielectric function of Equation II-A.13. This changes the 
calculation of the expectation value of the potential 
energy.

Table 2 shows the variation of the binding energy 
Eb(a'£)/ with the QWW radius a. In Table 2, the minimizing 
values of the variational parameter are also shown. As in
the case of A.l, the envelope wave function is the ordinary 
Bessel function.

Figure 2 shows the dependence of the binding energy 
Eb (a,/3) on the QWW radius a. Here, again, the binding 
energy for a large QWW radius has about the same value as 
that in bulk [27] GaAs. It is seen from Figure 2 that the
hind;ling energy increases with decreasing QWW radius until at 
about a radius of 5 a.u. it becomes about fifty times the
bulk value.

•F thp for Hvdrogenic andA. 3. ^ ra’-isnn of the K ^ ---------MAn-Hyriroaenie Donors,-.
, , >1 \/r!rocjenic and non-hydrogenic donorTable 3 compares the hydrogem

bi^. . „ O, as functions of the QWW radius a.Dindmg energies Ej^(arP)
Th • , the variational parameter /? arethe minimizing values of t
also shown.

0f the binding energy Eb (a,0) 
Figure 3 shows the plots or

a for both hydrogenic and 
as a function of the QWW radius a
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non-hydrogenic donors. It is ssen from both Table 3 and 
Figure 3, that the binding energies for both the hydrogenic 
and non-hydrogenic donors are about the same at a large QWW 
radius but begin to show significant differences at about a 
< 80 a.u .. When the QWW radius becomes much smaller than 
5 a.u., the binding energy for the non-hydrogenic donor is
about twice that of the hydrogenic donor.

Thus, Table 3 and Figure 3 reveal that the screening of 
the donor ion by the spatial dielectric function displayed 
in Equation II-A.13 begins to be important for a QWW radius
of a < 80 a.u..

The finding that the binding energies of both the
hydrogenic and non-hydrogenic donors are sensitive functions
of the QWW radius, and increase as the radius decreases, is
in agreement with the results by Lee and Spector [8] who
used a different trial wave function with one variational
parameter. It should be mentioned, however, that Bryant
[28] has found that the binding energy first increases and

nuw radius decreases. This is then decreases as the QWW raaxus
attributed to the tact that in the calculations by Bryant a
finite potential barrier wan u.ed, »bil. in the present

4-  ̂ f n o t e n t i a l  barrier was used, calculations by Bryant a finite pocen
while in the present calculations, and in those by Lee and
Spector [8], an infinite barrier height is assumed.

. ranqsian donor wave function. Furthermore, Bryant used a Gaussian •
• ir Oof prencBS r 81 and [ 28 ] and inIn the calculations Of References l J



the present work, the non-parabolicity of the GaAs 
conduction band is not considered. This effect, for on- 
center donors, in a Ga1_xAlxAs/GaAs/Ga1_xAlxAs QW has been 
considered by Chaudhuri [28] and Bajaj [29], while in the 
same effect for off-center donors has been investigated by 
Csavinszky and Elabsy [30].

B. Ground State Binding Energy of On-Axis Hydrogenic and 
Non-Hydrogenic Donors with a Spherical Bessel Function 
as Envelope Wave Function.

B.l. Ground State Binding Energy of an On-Axis 
Hydrogenic Donor._

In this sub-section the results for the ground state 
energy of on—axis hydrogenic and non—hydrogenic donors are 
presented. The results were obtained by a trial wave 
function with spherical Bessel function of Equation II.b.2. 
as envelope wave function.

Table 4 shows the numerical values of the binding energy 
E (a B) as a function of the QWW radius a, for an on-axis 
hydrogenic donor. The minimizing values of the variational 
parameter fi are also shown. The binding energy, Ê (a,/?), as 
a function of the QWW radius a, is plotted in Figure 4.

It is seen from both Table 4 and Figure 4, that the 
binding energy for a large QWW radius is 5.80 meV which 
compares favorably with that given by Wright [27]. As the 
QWW radius decreases, the binding energy increases until at 
very small QWW radii the binding energy tends to infinity.

64
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3.2. (Ground St-afca Energy of an On-Axis Non-Hydrocrenic 

Donor.
The data shown in Table 5 were obtained with the static 

dielectric constant e(o) replaced by the spatial dielectric 
function e(r) in the calculation of the expectation value of 
the potential energy. The values listed in Table 5 are 
plotted in Figure 5.

It is seen from both Table 5 and Figure 5, that the 
binding energy approaches the bulk value for a large QWW 
radii. As in the case of the hydrogenic donor, the binding 
energy increases with decreasing QWW radius, ultimately 
approaching infinity for very small QWW radii.

B 3. o* Results for Hydro.genic and
Mon-HvdT-̂ qeriic Donors^

Table 6 presents a comparison of the binding energies, 
as functions of the QWW radius, of hydrogenic and non- 
hydrogenic donors. Figure 6 shows plots for the two cases. 
It is seen from both Table 6 and Figure 6, that the binding 
energies are about the same at a large QWW radius and 
compare favorably with the bulk value [27]. However, as the 
QWW radius decreases below about a S 100 a.u., the results 
begin to differ markedly, with the binding energy for the 
non-hydrogenic donor becoming bigger than that of the 
hydrogenic donor. Thus binding energies of both the 
hydrogenic and non-hydrogenic donors are again sensitive 
functions of the QWW radius, as was seen to be the case when
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the ordinary Bessel function was used as an envelope wave 
function. The binding energies obtained with the spherical 
Bessel function as envelope wave function are, however, much 
larger than those obtained with the ordinary Bessel function 
as the envelope wave function.

C. Ground State Binding Energy of On-Axis Hydrocrenic and Non-Hvdroaenic Donors with Unit Envelope Wave 
Function.

c.1# Ground State Binding Energy of an On-Axis 
Hydrocrenic Donor..

In this sub-section the results for the ground state 
energy of an on—axis hydrogenic donor are presented. Table 
7 shows the variation of the binding energy, Efe(a,/S), with 
the QWW radius a. The variational parameter 0 assumes only 
one value. This is calculated from the expectation value of 
the total energy, that is given by an analytical expression. 
In this case too, the binding energy assumes the bulk value 
for a large QWW radius. The binding energy then increases 
with decreasing QWW radii and approaches very large values
at very small QWW radii, a < 20 a.u.

Figure 7 shows the plot of the binding energy as a
function of the QWW radius.



C. 2 . Ground State Binding Energy of an On-Axis 
Non-Hvdrogenic Donor.

Table 8 shows the values of the binding energy,
Eb (a,(3) , as a function of the QWW radius a. With the use of 
the spatial dielectric function in the calculation of the 
expectation of the potential energy, the expectation value 
of the total energy is no longer analytical.

The plot of the binding energy as a function of the QWW 
;ccid.ius given in Figure 8. It is seen from both Table 8 
and Figure 8, that at large QWW radii the binding energy is 
about that of the bulk value. Again, as in the case of 
other trial functions, the binding energy for the non- 
hydrogenic donor becomes much larger with decreasing QWW 
radius, then the binding energy for the hydrogenic case.
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c 3 comparison of the Results for the Ground State of 
Hydrogen-io *nd Non-Hydrogenic Donor Binding 
Energies

Table 9 shows a comparison of the binding energies as 
functions of QWW radii for the on~axis ground state of 
hydrogenic and non—hydrogenic donors. The minimizing values 
of the variational parameter 0 are also shown in Table 9 for
comparison.

Both Table 9 and Figure 9 show that for large Qww radius 
the binding energies of the hydrogenic and non-hydrogenic 
donors are about the same and approach the bulk value. 
However, for a QWW radius of a < 90 a.u., the binding energy 
of the non-hydrogenic donor increases more rapidly with
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decreasing QWW radius than that of the hydrogenic donor. 
This effect has been observed in all three cases that have 
been presented in this work. In addition, the binding 
energy as a function of QWW radius determined with unit 
envelope wave function is observed to be intermediate 
between the values obtained with the ordinary and with the 
spherical Bessel functions as envelope wave functions.

n First Excited state Binding Energy of-r - . - ------ and Non-Hvdrogenic Donors
Quinary Bessel Function as the Envelope 

wavp. Function.,

in this section the calculated binding energies, as 
functions of the QWW radii, are given for the first excited 
state of on-axis hydrogenic and non-hydrogenic donors.

D 1 ' li£Mt Fvci+°H state Binding Energy of an On-Axis 
Hydrogenic Donor^

Table 10 shows the numerical results for the binding
, , values of the variationalenergy E.(a,X) , the optimal vaiue

parameter X, and the respective QWW radius a, for the first 
excited state of an on-axis hydrogenic donor.

Figure 10 shows a plot of the binding energy as a 
function of the QWW radius. It is seen from both Table 10 
and Figure 10, that the binding energy increases with
decreasing QWW radius.



D.2. First Excited Stats for an—On—Axis 
Non-Hvdroaenic Donor,
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11 shows the numerical values for the binding 
energy when in the calculation of the expectation value of 
the potential energy the static dielectric constant e(o) is 
replaced by the spatial dielectric function e(r). Also 
shown are the corresponding values of the QWW radius a, and 
the minimizing values of the variational parameter X.

Figure 11 shows the plot of the binding energy Eb (a,X), 
as a function of the QWW radius a. It is seen from both 
Table 11 an Figure 11, that the binding energy increases

. _.~,aitie until for a small wire radius itwith decreasing QWW radius until
approaches infinity.

„ the poults for the First Excited 
D*3- *nd Non-Hvdroqenic Doner

winding Energies
Table 12 presents values of the binding energy as a 

function of the QWW radius in both the hydrogenic and non-
. _ 12 shows the plot of the bindinghydrogenic cases. Figur

the OWW radius both for the energy as a function of the Qww r
hydrogenic and non“hydrogenic ca

It is seen from both Table 12 and Figure 12, that there
Jiff^rence between the binding energies for is very little difference

. _„r,_hvdroaenic cases at the same QWW the hydrogenic and non-hyarogenx
. _ASr>ective variational parameter valuesradius, although the respects
This indicates that the binding energy, are different. This

nww radius, is not too sensitive to while sensitive to the QWW raoxu ,
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the spatial dielectric function e(r). Furthermore, in the 
2s state the donor electron does not approach the impurity 
ion as closely as in the ground state.

E finiBpari son of the Binding—Energies—for theCT-mind state and First Excited State of On-Axis 
Hydrogenic Donors.,
13 shows a comparison of the binding energies as

functions of the QWW radius for the ground state, and for 
the first excited state of on-axis hydrogenic donors.
Figure 13 compares the plots of the binding energies for the
two cases.

It is seen from both Table 13 and Figure 13, that the 
binding energy, at a large QWW radius, is much smaller in 
the first excited state than in the ground state. As the 
QWW radius decreases, the binding energy in both cases

m. K-iTidina energy of the first excited state increases. The binding eaeiyjf
cH11 loss than that of the ground state until is, however, still ies&
_ ^ i o n a u .  is reached. In this region, a QWW radius of a < 120 a.u.

fnr the first excited state begins to the binding energy for tne
f,ster with decreasing QWW radius, than the increase much fasrer wxu

rrround state hydrogenic case, binding energy m  the grouna su
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F. Comparison of the Binding Energies—forOn-Axis remind State and First-Excited _S_t ate 

won-Hydrogenic Donors^
ip̂ ĵ 2_e 14 shows a comparison of the binding energy as a 

function of the QWW radius for the non-hydrogen ic ground 
state and for the first-excited state. Figure 14 shows 
plots of the respective binding energies as functions of the 
QWW radius. It is seen both from Table 14 and Figure 14, 
that the binding energy for the first excited state is much 
smaller than that for the ground state at a large QWW 
radius. Again, as the QWW radius decreases below a S 120 
a.u., the binding energy for the first excited state
increases much faster than that for the ground state. This

. _ a.hat the 2s trial wave function is notmay be an indication tha
very good.

G. ^w^inHinq pigcussipIU.
f impurity donors studied here are the (a) The type of impuri *

shallow lavel hyp.. Th.y ~ »  » •  ia .n h l.i.d  *  *—  

s p u t t in , [311. Furthamoi®. »y<ro,an h y d ro p ic  hyps
in GaAs because hydrogen is the of impurity are important in eaa

a. which GaAs is heated to remove other normal environment in
impurities.

(b) The lattice constant mismatch [32] between GaAs and
„ is Very small and this makes it easier Ga. A1 AS (X * 0.5) IS vei.*

X ,oMllar beam epitaxy. The MBE is used toto grow them by molec
wells which are then etched, forfabricate layered quan

into Quantum well wires, example, by photolithography, into q
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VI. CONCLUSION

A . Binding Energy of the Ground—State—of—On-Axis 
Hydrogeni n and Non-Hvdrogenic Donors^

(1) From the results obtained in the present work, one 
concludes that (a) the binding energies of both the 
hydrogenic and non-hydrogenic donors approach the bulk value 
for a very large QWW radius but (b) as the QWW radius 
decreases, the binding energy increases. The increase in 
the binding energy becomes more and more rapid as the QWW 
radius decreases below about a < 80 a.u. and thereafter
approaches infinity.

- i <-]opt'p 3S6S below about a  ̂ 80 a.u* ,(2) As the QWW radius decrea
 ̂ non-hydrogenic donor begins tothe binding energy of the non ny

4-v,an that of the hydrogenic donor, increase more rapidly th
 ̂ v. i„„, ahout a < 80 a.u. the screening This indicates that below about a _

, . . /H electric function begins to be more effect by the spatial di
and more important.

(3, ra. ahov. two conclusions apply to .11 trial ».v.
function, „..d in th. P ~ * » t  wort .to.pt th.t th. v.lu.s of

• _rp different in each case and that the the binding energies are a n
..al dielectric function also begins screening effect of spatia

. . _4- much larger QWW radii,to become more importan



B. Binding Energy of the First Excited State .of 
On-Ax is Hydrogenic and Non—Hydrogenic—D ono rs_»_

(1) in the case of the first excited state, the binding 
energy for both the hydrogenic and non-hydrogenic donors is 
much smaller than in the ground state at large QWW radii. 
However, the binding energy is still a sensitive function of 
the QWW radius. The increase in the binding energy with 
decreasing QWW radius is less rapid than in the case of the 
ground state. It is found that at a QWW radius of
a < 120 a.u., the rate of increase of the binding energy for

. ̂  heains to exceed that of the groundthe first excited state begins
., ho an indication of the breakdown state. This finding may be an inait.

„ . n_ c4-3te wave function,of the quality of the 2s

. difference between the binding(2) There is no s i g n i f i c a n t  a m
• 4* i r s t  excited state hydrogenic donorenergy of the on-axis first excx
hvdroaenic donor. This conclusion and that of the non-hydrogem

This means that the screening by
pertains to all QWW radii.

function is less important for the the spatial dielectric functio
frvr the ground state. This isfirst excited state than

•^d-state wave function is more spread expected since an excited s
 ̂ j e-t-ate wave function,out than a ground-state

c. r,enerai_esa£laaiaa-i£ga-^stud^
“ the binding energy of a hydrogenic

The study finds tha •mnurity generally increases with 
and non-hydrogenic donor i»Purl y

This leads to the phenomenon of
decreasing QWW radius.
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quantum confinement which was first observed by Sakaki et 
al. [33] in the form of negative differential resistance.

Furthermore, this purely quantum mechanical effect can 
be explained in the following way. The band gap A of a GaAs 
is much less than the band gap of G a ^ A l ^ s .  In the 
GaAs/Ga;L_xAlxAs boundary, the conduction band edge in GaAs 
lies at aXlower energy then the conduction band edge of

Gal-xA1xAs and the valence band ed9e °f GaAS UeS at 3 
higher energy than the valence band edge of G a ^ A l ^ s .

well and thG Ga.. Al As acts Thus the GaAs acts as a quantum w e n  a l-x x
. . •_„ Thus a donor electron in aas a potential barrier. Tn

^ r* Al As/GaAs boundary would
Gai xA1xAs on mak:Lng th Gal-xA x '
i ^  GaAS well and effect can beliterally drop into the GaAs

. i wire lasers with veryexploited to construct quantum
precise energy (wavelength)•

^  fhe auantum confinement of theOne other advantage o
. . . . it is then localized, thus reducingConor impurity is tnar i^

- ranae as a scattering center, its effectiveness in terms of range
nf the donor impurity reduces

Thus th e  quantum  confim em e

i t s  e f fe c t iv e n e s s  to  degrade condu

4. th- n"nor nindinq Enerqie~D. M pasurenrn 4- --------------

4-hat have been used in the Some of the techniques that ha
• 4.., binding energies are measurement of the impurity6 ,61 Raman scattering [36] and far- 

photoluminescence [34,35, '
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infrared magnetic spectroscopy [36] of intra impurity 
transitions on a series of center-doped QW's. However, 
there are as yet no reliable experimental data on impurities 
on QWW [38,39,40] although experiments of references 
[34,35,36] have confirmed the increase in binding energy 
with decreasing width of QW.

E. Appli cations.
GaAs has certain electrical and physical properties 

which makes it more attractive than silicon in certain 
device applications. Some of these are discussed below.

(a) The transferred electron effect [41]: This is a
4- .Q1 1 e and quantum well wires, in whichproperty of quantum wells an 4

 ̂ „ h if fuse towards the surface. Theyphotoexcited electrons d
.  ̂• ^o-rcrv to promore them to the valleysacquire enough kinetic energy to p

 ̂ FxDloitation of this effect has of the conduction band. P
ffirient photoemission with quantum resulted in more efficien p

. . _ ,, out to 1 . 6  MI", although thisefficiences as high as 5
operation requires a temperature

. i rect band gap material and because of (b) GaAs is a direct
„ w n t i e s  in it (typically 3500 - 4000the high electron mobilise

5 ,=*ful optoelectronic properties. It(cm2/vs) [45]. It has useful P
■n  he important in device 

is expected that the QWW wil
, their potential as QWW lasers [44]. 

applications because of
ate continuously at heat-sink These lasers can operate expects as in quantum well

temperatures. Furthermore,
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lasers, that the QWW lasers will have other advantages over 
other lasers used for electronic and communication devices, 
because of their small size, simple structure and ease of

operation [44].
(c) Woodall et al. [45] have developed heterojunction 

solar cells which show higher power conversion efficiencies
than corresponding silicon solar cell

(d) Others [46] have developed a G a A s / G a ^ A ^ A s
. —cxstor of relatively high optical heterostructure phototran

+- i T h e s e  have been extensively gain and short response tim .
^mnnication systems [47]. used in optical fiber communicati
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(which have resulted from this study to date)

lm "Variational Calculation of the binding energy of
hydrogenic donors located on the axis of a quantum well 
wire1'. (Lowell, Massachusetts, April 1990) (with p. 
Csavinszky). Bulletin of the American Physical Society 
15, 1546 (1990).

• "A variational approach to the binding energy of a donor 
in a gallium arsenide quantum well wire". (with p. 
Csavinszky) . (The Third Atlantic Theoretical Chemistry 
Symposium, Orono, Maine, May 1990).

"Dielectric response of a GaAs/Ga^_xAlxAs quantum well 
wire to the presence of a donor ion located on the axis 
of the QWW of circular cross section". (with P. 
Csavinszky) . (New Haven, Connecticut, October 1990). 
Bulletin of the American Physical Society (to be 
Published).

"Binding energy of on—axis hydrogenic and non~hydrogenic 
honors in a GaAs/Ga^Al^s quantum well wire of 
circular cross section". (with P. Csavinszky).
Physical Review B (accepted for publication, January 17, 
1991).
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A. Details nf the Calculations of the Ground State
Binding Energy with ^  Envelope Wave Function

IX. APPENDICES

in the wave function of the Is state, the normalization 
constant is determined as follows.

_ z \ _ - Bv/p2 + z* Y ls(p,z) = N Jja

the integral

/.
'Sis T ls dx 1

a l l  s p a c e

A. 1

is evaluated as:

N * f 2K de f a p Jo<«p>dP L  dz e
-2PvV + zT =1 A. 2

_ — o <= f ollows:The integrations are now don
■2f>V? *■

dz e-2 P 2 = 2

Let

r2 = p2 + z2
b e f o r e

2 2 2 z = r - p

/ ’ dz e A. 3

A. 4

2z dz = 2r dr

rdr
dz = rdr =

rdr A. 5

t



Substituting A. 4 and A. 5 into A. 3, with a change of limits 
from 0 to oo to p to °o, gives

82

2 dz e-2Pv/p2 + zI  ̂ i dr re 2pr 
Jp Jr2 - p2

A. 6

Use is made of the formula [44]

rc° r r̂ 2 _ p2)u_1 e"^r dr = 2 —  p1/l+u P1A_U r (PP) A *7 
Jn ^

. - _ o/? in A« 6 1 becomes.which for v = h and M = 20, as '
r- drre'
Jp ■Jz2 - P2

2 , ^ r r e ^ i  = 2P*1(2pP) A. 8

Therefore, the normalization A.2 becomes.

2 N2[ 2"dd/ y J c 2(«P>*i<2PP>dP = 1 

4 nN>(a PV 02(«P)^(2pp)dP = 1
J O

_=+-ant N is finally given byand the normalization constant N

N* = [4* (aP2J|(«P )^i(2Pp)dP]'1J o
A. 9
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Pal dilation i-hp Rinding Energy — in the ..Is
f % l L nH' St.atft in C v U M Hra 1 Coordinates with the
Trial Function

Y ls(p,z) = N  J a(ap

Here the detailed calculations for the binding energy 
Eb(a,/3) as a function of the wire radius for the Is (ground)

state is shown.
„„ot.ator H is defined by Equation A.l The Hamiltonian operator

c H^fined by Equation A. 2. Theand the trial wave function 
expectation value of H is given y

A. 10
H = T + V

• energy operator and V is thewhere T is the kinetic e 9 t
These quantities are given i

potential energy operator, 
cylindrical coordinates by.

n

T = - __1__
2m*

1 JL
p dp

d +
P dp dz 2

and

y = -
A. 12

where e (r) , the spatial diel 

defined by Equation II'A *

function of GaAs is



Now
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Then

a2
d z 2

i _a_ + a2 + a2 
p ap ap2 dz2

±  d 7 ls(p,z)
P Op

NJ0 (gp)  ( - PP) e -Pv/p2 - z* 
p jpr~r~z2

olNJ-l (ct p) g -pyp2 + z7
P~~

P^c70(ap) P g - p v / ? ^ 7 

P /p7”7 ”" ^

Therefore,

—  NJo{0Lp) e_Pv/p2 + * *  
d p

ccNJ-l (a P) e-pv/p2 + ̂ 7 
= P~

-P^pJ-0(ap) g-Pv̂ P2 + ̂

A. 13

A. 14
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Consideration of the first term in Equation A.14, leads to:

N  _J_ { -aj^ap) e ' ^ ”2* *2 } 
dp L '

= - «jfj } e-W>‘ zJ - (ap) f  ̂ p-P\/p2 + z2
| 3p e

= -  a N - -J

-  aiVU-! ( a p ) ~pp 1 g-Pv/p  ̂
\/p2 + ^ 2" 1

= - aN
a J n(ap)  a J 2 (ap) 1 Pn/p2 ♦ z2

CLfiNJi (gp)  P e-Pv/p2 7 

v/Pr T ^ T

a2NJ0 ( a p ) 
2

e-P\/p2 ♦ z* + a2NJ2 (ap)
2

e-pyP2 + z5

aPpiJi (ap) -py/P2 + 

\/p2 + ^
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Using the relation [45]

J2 (a p) —  Jl (ap) - (aP)ap

The result for the first term A.14 becomes:

a2NJ0( ap) (ap) a2NJ0 (ap) 
2

sf^Tz2 j

A. 15

Performing the same operation on the second term in Equation 
A.14 leads to:

M d j -PpJ~0(aP) e-pv/p2 ♦ z* | 
dp [ v/p2 + J

| -pc70(ap) e.Pv̂ -rp-
1 7p2 + ^

app^ (ap) e _Pv/p2 7 z2

Pp2J-c(ap) pv^-rTT + P2P2J0(«£l
[p* + z2]2/2 tP2 + z2]

A. 16



87

Now

Addition of . 
The detailed

J l * ,  (P/Z) = J L
3z2 3z2

a f b^ - pv'p2 * *a
T z \

. ( -p * Pg2= JW0<«P> | ^p2 l-jp [pa + **]*/*

+ __£!£!—  V x e  [p2 + z2] J
-PVpr*~zT

A.17

,.X3, A. 151 A. 16 and A. 17 yields V2* l e (p,z) 

expression for this quantity is

f -atfJi(ap) _ P^J°(gP.L 
V*Tla(p.g> + 1 p /p2 + 22

a2WJ0(«P) + g'WJl (gp- 
2 p

£MJ0(«Pj _
" 7 ^ f ? r 2

ttP̂ ( « p ) P  +
' /p2 + z“,2 +



$NJa ( a p ) p2 + P2.WJ0(ap) p2 
[p2 + z 2] 3/2 [p2 + z 2]

pAW0 (ap) + §NJa (ap) z 2 

y p 2 + z 2 tp2 + z 2] 3/2

+ P2.WJ0(«P) z2 1 x 
[p2 + z 2] I

3P«-J-0(ap) P^Jo<gP) / + ,21
[p2 + z2]3/2

P2ATJ0 (ap) ( 2 + z 2) _ a (a p ) 
[p2 + z 2]

2«PAi,J0(gp) p 1 x 
7p2 + z2~ J

2PiVJ0(<*P> + pa^fap) - a2iV<J0(ap) 
v/Pr r ?

2 a P-WJr (ap)p1 1 x  s -Pn/pj -
J

+
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* i s V 2 T ls = N J a ( ttp)
-2Pift70(ttp) 
7p2 + z2

+ P2M J 0 (ocp) - a2̂ J0(ap) + 2 f > a N J 1 (ap) p
+ Z'

x  e-Istf-T?

= | - 2 $ N 2 J o  (a P ̂ + P ^ (aP }

- a2N2Jl <aP) + 2apW2J0(ap)^(«P)P }

_2P\/P2 + ̂x  e

Multiplication of this equation by 2m*
gives

h 2 TO V2 Y---- 1 IS
2m*

IS

, 2( . £2p2iyv2(«p)

m*\P2 + Z'

h 2 a 2 N 2 J o  (a P } -
h*a p^2 J^P>3JlPif'

2/n* /77* V P2 + Z‘

A. 19

x  e

A. 20
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The calculation of expectation value of the kinetic energy 

operator T proceeds as follows:

< T > = I T *ls T *is dT
d z  e - 2 P V p 2 *  z1. hZM L  r  de fa9Ji(*p)dP r

m *  J o  J o  J ~c y j p 2 + Z 2

_ h2P2N2 [ 2« ^  fapJHap)dp [m dz e -* ''P ~ rp  
2m* Jo Jo

+ h 2a2N2 f 2n &  r apj|(ap)dp f m dz
2m* Jo Jo

_ h 2aflN2 j 2” ^  | ap2jo(ap) Ji(«p)dp J “ dz e-2fJ\/p5 + z2
/77* J o

A.21
The 6 integration gives 2tt , and < T > becomes

< T > =
( h W  _ Aifiil 2%Ifi [apjl(*p)dp f  dz e -2> y? -^  
{ 2m* 2m* ) Jo

+ 2% [* pJ% (cep) d? f
m* Jo

dz e-2̂ 2 * 
f̂p2~̂ ~z2

a f i 2 n N 2 f a p 2 j o ( a p ) J 1 ( « p ) d p  
m* Jo

/ :
dz e-2f</C2 ♦ ̂

/p2 + z 2

A.22
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Of the z integrals

I± (z)
dz e-2P%/p2 » 
y/g2 + Z*

and

J2(z) e-2P</p2 + Z>1

the second one I2(z) has already been evaluated in the 
calculation of the normalization constant, and the first
is evaluated as follows

r°° dz e~2̂ p2 *
•»—  /p2 + z*

/*» x e'2prdr 
= 2 i r(r2p2)1/2

= 2 f~ e-2Pr U 2Jp
p2) i/2dr

= 2Xc(2Pp)

In obtaining A.25, the same procedure and substituti 
been used as in Equations A.3, A.4, A.5, A.6 and A.7.

one

.25

have



92
Then < T > becomes

< T  > = Anh2PN2. f a p j 2o (ap)  K0 (2Pp) dp777* Jo

-  47lA2P2Af2 f a p2<7j (ap)J<r1 (2Pp) dp2777* J o

^nh2a2N2 fa
2777* ( a p2J 2(ap).K1(2Pp)dpJ o

Now

_ 47uh2aPi\L f a p2lJ2(ap) j-i ( a p ) ^ o(2Pp) dp
777* J O

f a p
J o

can be further integrated by parts to yield

fa p2J0(ap)J1(ccp)K0(2?p)dp 
J O

A. 26

_i_ f2 \ -ff-2a Jo dp
p2K0(2f>p) dp

2a

± a f  ‘ J02(ap){ 2pir0(2Pp)-2Pp2̂ (2pp)} dp 2 Jo

= -JL J20 (ap) p2î0(2PP) I o 2a

r a p J 2 ( a p ) (2 PP) c?P -  - f l  /o P2j ° ( a P) * i (2Pp)dpJ o

= ------—  J o ( a p )  p2i 0̂ (2Pp) | o2a

A  f p j J ( . p ) * i ( 2 f p > r f p  -  4  / V ^ L p M T . A P p ' d p
a J o

A. 27



Considering that the integrated part vanishes at the 
boundaries, the whole integral becomes:

fa p2J0 (ap)  Jx (ap) KQ (2Pp) dp 
J o

= —  rP Jo (ap)X-0(2pp)CL J O

-  _P p  ̂ J-02( a p ) ^ ( 2 p p ) d p  a Jo

93

A. 28
Substituting A.26 back into the expression for the kinetic 
energy Eguation A.26 leads to the following results:
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N _ 4 7t 722 P TV2
m*

2nh2f>2N2 f
m* Jo

2nh2a2N 2 r
m* Jo

^nh2a piV2 1
m* a

47iA22P2iV2 rm* Jo

4nh2 PiV2 r277* Jo

4tiA2P2W2 r2/77* Jo

&nh2OL2N2 r2m* J o

4nh2 PiV2 f‘
m* J o

&%h2f>2N2 rm* J o

f 1 p2 Jl( a p) K r (2 (3 p) dp
J o

A. 27

Now

N 2 = f47t j 2 p 2Jo(ap) (2Pp) dp
-1

Equation II-A.7
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Substituting this into Equation A.27 leads to

< T > h 2a2 + h 2 P2
2/n* 2/n*

A. 28

The expectation value of the potential energy is 

calculated as follows:

< v > = l  Vis V w ltdx

e2i72 
e (o)

/• ® W7 g-2Pv/p2 + *"
+ z

4 K e 2172 f 2 ” ddfa pJo(“ P ) ^ ( 2 P P )dP 
e (o)  ̂°

Which on substitution of

N2 p2j-J (a p )i^ i (2Pp)
-1

become:

< V > = -
f ap^(ap)ifo<2 P P )dp

e2 J ______________ ________
e(o) f ap V o ( ap)^i<2 P P )dp

J O
A. 29

and therefore
The rest of the integrals are non-analytic

• _ -I i v Here the static dielectnare carried out numerically-
„ used instead of the spatial

constant €(o) has been 
dielectric function e(r)
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The expression for the expectation value of the total 

energy now becomes:
< H > = c T >  + < V >

h2a2 + h2 P2
2m* 2m*

, f ap J 20 ( a p ) K 0 ( 2 f , p ) dp
e J __________________

f ap2j | ( a p )  fq ( 2pp)dpJ O

The expectation value of the total energy is now minimized
with respect to the variational parameter 0. The result,

 ̂ -F-h-rnn -t-he free particle energy Ê .(a) 
Emin(a'^)' is subtracted f tn 1▼-I /o /p\ Thus, one arrives atto yield the binding energy Eb (a,p).

EAa, P) = h2a _
2m*

h2 a2 + h2 P2
2m* 2m*

f V*<«P>*°(2Pp)dpe2 j ___________________
(o) f V J°<“P)Ki(2Pp)dpJ O

, fMpJ^(ap)K0(2fip)dp
h2P2 + e ---- ------2m* e(o) rap2t72(ap)iCi(2pp)dp

J o
A. 30
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Calculation of the expectation value of the potential 
energy, using the spatial dielectric function, proceeds as
follows:

e (r) e(o) \ e(o)
T~~T~ZT

1 + ll--- i-r-1 e c

II.A.13
enerdV now becomesThe expectation value of the potential energy

< V > = -e= -^2 f Y - *

e2i\f2 d6 J a P̂ P f x dz 7ls
1 + I e(o) - 1

e(o) l e<o)

X is
[p2 + z2]1/2

eft

e ( o )
p d d  faa pdp L dz

* 1 . ' *  X.
[p2 + z2]1/2

+ z‘

f«to) - 1) P  d9 f *  pdp /_, 
e(o) Jo j°

Vis'*
dz [p: + Z'2 ] 1/2

A. 31
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2 _ 2 , „
Let (2/3 + (1/c) = 7 and r " p

2 2 2 then z =  r - P

zdz = rdr

rdr
dz = --- —

z

rdr
A. 32

Therefore,

AV = ' (e(o) - 1)27tisp
e (0)

f3 P̂ <J o
2(ap)dp 2 j

dre _Yr

P /p^ + Z ‘

{e(o)_
e{o)

- 1 4TCA7’2

X 3 pj?«xp)^^p)dp
A.33
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This expression is now added to the expression for the 
expectation value of the total energy in Equation A.30
result is:

Et,(a, (3)
fapjl

h2p2 + §1 --------------
2 m* e(o) fap2jl

e2 (e.(o) ~ i)
+ r

The

A. 34
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B. Details r,f t-hs Ca 1 relations of the Ground State Bindin. 
Fnprav with ~i ̂ Envelope Wave Function^
The normalization constant is obtained as follows:

1 = N‘ / visV13 dx

= N> rde /; P ji<pp>dp £ dz

= 4 ^ f aP2Jo(pp)^<2Pp)dp
J  o

fflaii7ation constant becomes Therefore, the normalization

B. 1

N2 = 4* r  P2j2(pp)*i(2pp)dp
J  o

<r
4itfasin2ppJf1(2Pp)dP

J O

= P' [47tfasin2Ppifl(2|Jp)dplJ O
-1

B. 2
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Calculation of the Ex] 
< T >.

^ , H nn Value_gf_thg Kinetic Ener,

7 ls(p , z )  =

i aV2'Pis(p,z) p 3p

\ _-Pv/p2 ♦ Z 1(up) e PVH

_a_ i
dp Y ls( P.z)

+ _J1 T 15(P^)az*

The first 0 differentiation gives.

1  JL
p ^p

n_ _a_ 
p 5p

__a_-
3p.

sin.pp_ e-p/p2 + z1
PP

d jsirifcLE. g-Pv̂ p7̂ 7
p “Sp pp

ppsinjiP. x e

N  $  f _-sinjip. + pcospp
iip ap I p

psiJipjl_ l x e
fp2 + Z ‘

B. 3

N d 
pp 3p

-sint£ +
P2 p

B. 4

i
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The second p differentiation leads

N J s in p p  _ pcosPP 

PP l P2 P

s in p p  (~PpJ—  -  p2sinpp

(-|3p) _ _PsinH£=
+  p c o s p p

p,Bpcospp

v/pT T '7r
h n s i n u p ( -e l

p ps in p g ,  ( - p p )  
[p2 + z2]

x e-PvV B . 5

Nsin\ip
p p3

Ncosvl p + 

" P 7-
pwsinPP + QNcospP

BWcospp
VP^TP"

PNSJM\ip__

, P V ^ ^ sfp^^Z2

+ pATpsinuP ■ +
[p2 + Z2]3/2

p2i\rpsinjjLP 1
-J^TT^T)

x e

B. 5 1



N fo m (D ^p aZ2

Afeiiipp _d_
pp dp

(3 z e -Pv/p2 + z2
/p2 + Z:

Nsinpp
PP

P
yp2 + ^

pz:
[ p 2 + z 2]21 3/2

(32Z 2
+ [p 2 + ^ 2]

x e-P/p2 - z1

bNsin\ip 
pp'jpr~

fiNsinpp

+ Z ‘ PP [P : z2]3/2

p2̂ .qjjiUP z2 l x e‘̂ p2 * z/
HP [p 2 + z2 l J

BAfsiripp e -l>vV ♦ z' 
Hp / p~2 + * T

p j/s i / iU P  z 2 e -p /p 2 * z i + 
HP [p2 + z 2]3/2

p2Ksinpp 
HP [p 2 + z 2l

e-P̂ P
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Adding Equation B.5 and B.6' gives the following expression 
for V 2 \Pl s (p,z)

v  V u i P ' Z )  = 7
-PvP‘* z ‘ s m f ip

n3
Licos/jp 

p 2

P s in p p
p\/p2 + 22

u2s in n p  _ u P co sp p  
P y  p2 +

P s in p p  
pv/p2 + ^

uPcospp + Pp2sinnp
p [p 2 + z 2] 3/2

62p2sinpp
P [P2 + T 2!

B s in p p  j. P s in p p —_  z 2

P [P2 + Z2]

p2sinpp__ z 2 1
p [p 2 + J

B . 7

jV e~Pv/p2 * gT 
P

psinpp (p z 2)

P [p j z2]3/2

62s in p p  ( p2 + z2l  
p [p 2 + ^

2 u Q co sp p  + _ s in p p  
v/p2 + p

p c o s p p

p,2s in p p
P~

psinpp

B. 7 '
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= n  f J ls iS E P
p l  p

2 u P c o s ^ p  + _ s in yLP
a/p2 + p

ucosp.p _ ^2sinPP.
~ 2 PP ^ J

X  f B2s in n p  .
P |  p2 / p 2 + z /  P

|icosp.p _ p2sinPP_ l
n2 P J x e-P̂/p3

B. 8

The result in Equation B.8 is now multiplied by <Pl s  to

obtain:

Vis V2 V ls =
Nsin\ip e-2Pv/?

HP

(32sinp.p _ 
P2

2|l0cosp.p sinpp _ P££SJiP

u.2sinp.p

B. 9
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This expression is further multiplied by 2m* . This

gives

y :13 h2 
2m*

V2 Y IS

sin2pp
h2N 2 \ p2sin2̂ p _ 2p.psin|ipcospp + p4 
2n2m~* 1 P3

L L s in u p o ° s PP- l  x  e 2P%/p2
o3 J

B. 10

hW s i n ^ P  +
2̂ L2/n*p2 p/flp/p

h2N2sin2ii£ , hfw!£inii£COSii£
2^ ’P

h 2w2s i n 2PP l  x  e ' 1>v,p2 * *T
2m* p2

B. 11
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The expectation value of the kinetic energy is 
by integrating the terms in B.ll one by one:

now obtained.

< T > h2V2N2 [2n dO [ * 
2m *\i2  ̂°

isin'I /• o
M. dp dz e-2 P v/p“ +

h2fiN2 p  d0 fa dp /
m*\JL °

- dz ♦ z*
ip' + Z ‘

h2N̂ _ f2n dQ f *
2m*\i2

psin2pp
P4

dz e-2pvV + z*

+ h2N2 
2 m*\x2

j^inppcosp>£ dp dz e'2Pv/p2 
P3

+ h2N2 r2” d0 f * 
2 m" '°

psin2pp
P2

dz e-2Pv/p2 + ZT

B. 12

Using the integrals

dz e-2P\/prr*r̂ T 2pX1(2(3p)dP

and
= 2 K0(2f>p)dp

the final expression for the expectation value of the

kinetic energy i-s:



+ 4ttA 2|3W2 
m* \i

sinpp cospp -K’o(2P p ) dp

2« h2N2 fasin2np 
m' p2 P2

2nh2N2 Ca sinup cos|ip ^  (2 p p ) dp 
m*p p

+ 2tcA 2J/2 f a sin2pp jq(2Pp)dp 
m ’ Jc

2 n A 2P2î 2 f a sin2pp. jq(2 pp) dp

+ 4Tth2fiN2 r a s in p p  c o s  pp K0(2 pp)dp 
m*\i  ̂°

2nhWfa s i n 2pp. j ^ U P p ) dp
jn'p2 P2

2 i:h2N 2 C a s in p p  c o s p p  ^ ( 2 pp ) dp  
+ m*p •*° p

A2P2
2m*

B. 13
where

N2 + p2[4it f* sin2pp ^ ( 2 pp)dpl

B. 14
has been used in the last term.
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The determination of the expectation value of the potential 
energy with the spatial dielectric function is done as
follows:

1
e (r)

1
e(o)

vV + zie c

II-A.13
where

1
e (o)

e c

n  ouantitv in the expectation value of IS treated as a small quanri y
the total energy:

< H > = < T > + < v > + A V
iready been determined inwhere < T > and < V > have a 

Equations B.13 and B.15.

A V = - - f t  <e <o) ' 1)N e (o)
r  <je / a psin2H P. dp x

° h 2p 2

L

*> dz e
- (2P +
VP2 +

B. 17

B. 17 '

- 1) f a _sin^i£ ^
e (o) P2

2P + ~ dp

i iB. 17
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Therefore, with the spatial dielectric function, the 
expectation value of the total energy becomes.

„  s _ _ 2 n h 2P2-W2 f * _ s in 2|±£ K (2pp)dp 
< H> = - Jo P

+ 4 n h 2P Njra Sin p p  c o s p p  J<ro (2 P p )d p  
rn*\i  ̂°

2n h W  fa
m 'p.2  ̂°

s in ! ih £  jr ( 2 p p )c ? p  ? ±P

27ih2N 2 f a s in p p  c o SP_£ y ^ s p p i c f o
/77*|J. ^

d2p2
2/77 *

4 ite2N 2_ f a _ s in ! i i£  i<ro (2 (3 p )d p
eTo) ° P

ztTtg2(e(o) r-  ------ - ; Jce (o) P
s i n 2pp_ ^  

P
P dp

= < H >+ & v
B. 18
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„ p\ with static dielectric constant The binding energy E^(a,p)
e(o) is given by:

Eb{a,P) =
h2a2 — < H ̂ nxin

h2 « 2
2m*

2izh2$2N2
m*\i2

s i^ P P -  2Pp) dp 
P

4 Tth2$N2 f a s in p p  cospp K0(2$p)  dp 
m'p

2-k h2N2 fa JiS i t e -  (2 P p ) dp 
-  L  p2

2 n h 2N 2 f a s in p p  co g jif .

+ A V  -
2m’

4ne2N2 fa liliiLS-
"eTof~ p

i<T0 (2Pp) dp

B. 19
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„/ ra with the s p a t ia l  dielectricThe binding energy (a,pj ,
function e(r), is given by.

E'(a, P) = h2ct2 
2 m*

2nh2$2N2 fa ji£^£ K1(2pp)dp Jo P

[“ sinjip cospp K0(2 ^p)dp
m"p °̂

21Ia 2w 2 f a _si£Ji£. (2p p) dp
e2

2ltil2W2 fa jini££_£2§M£ ^(2pp)dp
+ — rrr" *° pm p

1 2,12 4 « e 2w2 f *  jr0 (2 p P) d P
+ ^ - " ^ r L  p 2/77

2 r a S ir̂ JA£4tr̂ 2(e(o) /'_______■___' -> Jo
2P + -  ) p dp

e(o) n*
B. 20

= < H > + A ^
B. 20 '
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of the normalization Here the detailed calculation or on

constant is given.

1 = l TIs *i. dT

= n2 c  der p dp £ d z
C. 21

= 4tzN2 f P2 ^(2PP>dP
J O

Therefore,

N2 = 47: r  p2 ^ <2pp)dpJ o

The detailed calculation of the binding energy of an on axis

donor proceeds as follow

Y ls(p/*> = N e
II.c.1

Now

V 2
C. 22
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Operating 

the p part
on the wave function with V2, first beginning with 
, the result is:

Vp2 Yis(p,z)

at
p

e -P y/^~rp-

C. 23

_ N d 
P 3$.

_ N d f  p p 2 e~Pv/p2 + z2 |
p p̂ { \/p2 + 2’2 J

N  [  2 13p e-P^Pz + + Pp3 e~P^a * z2
P { /p2 + z2 tP2 + z2J3/2

(~Pp) g-Pv/p2 * * '  
v/p2 + 2"

P2p3
[ p 2 + z 2]

2PJV e-P^P2 * + PiVp2 e~|iv/pZ * «
y p2 + z 2 fp 2 + z 2] 372

P2jyp2 * *2
[p 2 + z 2]

C. 24



The z part of the 
follows:

differentiation is performed as

V \  Y l s ( p , z )
e-Pv/p2 + z1

dz | JP-TP-

= N
n e-P’/prT?r p z2 e-iSv/p2 * **

— [p2 + z 2] 3/2 ~~

,-PvP +
tP‘ Z2]

P e-PvV P iV z : ,-Pv9

vP2 + Z' [p* z 2]21 3/2

e-Pv̂ r̂ T 
+ Z2]+



117

2
^ ^ls^'2) -”-s obtained by adding Equations C.24 and C.25
resulting in:

V2 * * * 7,.(p,z) = - 2 W  e-We2 ' + PiVp2 e-Pv/?T^ 7
v/p2 * + Z2 fp2 + Z2] 3/2

p2 JV p2 e~Pv/pi * 2:2 
[p2 + z2]

P N e~Pv/p2 * *a p N z2 e~V'/prT
v/p2 + z2 tP2 + 2:2]3/2

P2 N z2 e~WP2 + 2*
[p2 + z2]

3 P „ e- ^ ,

p2 jy (p2 + z2) e-Mfl ' 
[p2 + z2]

2 3^ e-^f2 T + p2 ̂  e-vSF~n*
y/p2 + Z2

C. 26
Therefore,

V2 Y ls(p, z) 2 0 N e-WP2 * 12
v/p2 + z2

+ p2 e - ^ 2 * zJ
C. 2 6 '
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h‘Multiplication of Equation G.5' by - and
gives

7* (P,z) h2 V2 Y l s ( p , z )
2m*

W p 2 + zT

h2p2W2 e~2|i'/pi * **' 
2m’

C. 27
Integration of the two terms in Equation C.30 gives the

_ . T >. The integration proceeds asexpectation value or
follows:

< T  >
■  /, 2777* j

dx

dz e~2̂ p2 ̂. = rm az e r
= JilMi f 2n ddfg p dP/ _

/ * r“ , _-2pp2 + zJp dp | _ dz e
2/17’ °

_ 4 f f A W 2_ f a p X0 ( 2 p p ) d p  
in’ Jo

4 tcA 2P2^ 2 r a p2 J ? i ( 2Pp )dP
2/77*

C. 28
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The evaluation of the expectation value of the potential 
energy with the static dielectric constant proceeds as
follows:

< 1/ > = -e‘
e (o)

f m* (n z) ____ i--- — X¥ls(p,z)dx
P ' z )  [ p 2 + z 2 ] l / 2  K

e2N2
e (o)

e-2Pv/p2 + 
/p2~*~ZT

4ne2N2 ra p iC0(2Pp)cfp 
e (o) Jo

C. 29
, 1nn nf the energy become!The expectation ValUe OL L11C

< H > < j' > + < U )

h2
h2 p2
2/77 *

r  P i<r0(2pp)cfP
PiV2 Jo ------- ---

m *  f a  p 2 iC1(2pP)c?PJ o
4nezN 2_ f s p K0 ( 2 P p ) d p
e (o) J °

c.  30

„ tlo dielectric constant i. repined by the 
When the stati # ,,. . „ the expectation value of the

spatial dielectric functio , fashion-
is calculated in the following fashion, 

potential energy is ca±

< v‘ > = < ^ > + A V

2 f  XU* (  i - r -  \= - e Jt ™ ls ̂ e (r) /

c. 31
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= - ew  / ”  de /; P dp /“ cte
, v/p2 + z21 + (e(o) - 1) e C

e(o) g (o)

X
e-2Pv/p2 ♦ ̂
fpT~*~~ZT

2ne2N2 f a n dp [" dz 
e (o) Jo

e-2Pv/p2 + z1 
sfp^T^

-(2P + — ) \/p2 + *4
/ » e ____ _̂_____

_________  Jo - dZ ^2 + ^ _e(o)
C. 3 2

The first term becomes ^
47ie2̂ 2 ra p i<ro(2Pp)cfp = " 
e (o) J°

and the second term becom
f* P ^ [ ( 2P + ^ > P ]dp

--------ST5)
• „ for the expectation value of the

and the expression i
potential energy becomes i

[ p K j ( 2 P  + — ) P]
e2 (e)_o)__i_lI Jo ------

< V' > = ' v & r  r  p2 ^(2pP)c?pJ o C. 33

f a p JC0 (2 P p ) dp
e2 jL____________

"gTo) J *p2K1 (2 P p) dp

\
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now becomes:

c h ' > = < H > + AV

• tor the expectation value of the total energyThe expression for tne kap

< T > - e*_
eo

f a p i<T0 (2 P p ) cZp 

f a p2 j q ( 2 P p )  dp
J  o C. 34

e2(e(o) - 11 
ejo)

L
Kj(2p + P]dp

fa p2X1(2Pp)dp 
J O

With this result,

(a, P) =

the binding energy becomes:

h^_
2 m*

< T > +

+

X

C. 36

• „ using numerical techniques.are obtained usingfinal results
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D • Calculation of the Binding Energy of an On-Axis Hvdroaenic and Non-Hvdrogenic Donor in the 

First Excited (2s) State.

In this appendix are presented the detailed 
calculations for the binding energy of an on-axis donor in 
its first excited 2s state.

The trial wave function is chosen as

where X is a variational parameter, /? is the variational 
parameter which was obtained in the calculation of the 
binding energy of the Is state of an on-axis hydrogenic 
donor using the static dielectric constant e(o). K is the

- X K\/p2 + z2 e - W  * }
D. 1

orthogonality constant. This constant appears since 
02s(p,z) is orthogonalized to tls(p,z) the ground state 
trial wave function. The orthogonality requirement is

D. 1'
This can be written as:

f { A N J20{uf>)

- X K A N j U a Pi/P1 + z2 e-(P + X)vV + z* ] dz

0

D. 2
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= i ■; nation constant in ils(P,z)- The where A is the normalization
. N cancel out and the remaining mtegr quantities A and N cancel

can be evaluated from.

/ :  ■* /.
a p Jl(ap)dp /_ dz e-2pv/p2 + Z1

D. 3

2 K r  ■ * /.
3 J2a(ctp)dP l „ dz e

_(P + X)vV + 2
P uo

D. 4

- ^  r  m  i : f  ■J iw)de 11J o

dz JV+z2 e
-(P+X)-/?7̂ 7 D . 5

Integration of the first

d 9  pJ o

term of D*3 gives

J 20 ( a p ) d p  / _ „  d z
,-2pVP

= 4 nf
J c

>2 cJ,2 (a p) Ki (2 P p

D. 6

while the second term

(2n dO f P J°J o

d .4 becomes:

2 K
a jl (ap) dP /_„ dZ e

_(P + X)v P

= 8 * K \ oP*
a 2/ r(P2 jr (a p) -K-iL v ̂

D . 7
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The third term D.5 yields

_x K f2* dQ f ‘ P («P) dP £  dz 6

= . Zn X K ( a P Î(«P){ 2plC0[(P-X)p]J o
2oiC [ (P + A-) | dp

+ 7pT X T p  J

=  - 4 7 i A , X ” f *  P » J 5 ( « P ) ^ {  ( P + X ) P >  d P  J o
_ 47ax. fa p2Jo (ap) •Kj. t <P+X)p ) dp
"Xp+ax j °

Adding D.3, q . 4 and D.5/ one obtains

477 XX f 8 P3 j I ( « P )J f ° [ ( P  + X )P ld PJ o
47tXX_ ra p2 Jo(ap)X1[(P+x)pldp

= 0

- (P + A.) \/p2 ♦ Z1

D. 8

D . 9
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Solving for K gives

K f 2 | 3 p2̂ (ap)^[(P+A')P]dp

-  X  [ *  P 3 J o ( “ P>*oC(P + X )p ]d p
J o

f a p2 j | ( a p ) ^ iC ( P + X )p ]d p  }
J O((} + A.)

= _ ra p2Jj(«p>*i(2Pp)dp J o

D. 10

Thus

K = -
r a 02Jo (ap)Jci(2Pp) dp_______

7------ f  f f V j F ( i p ^ i ^ P ^ p^ dp
2 fpTXT J

- x fa p3̂ ( « P > ^ [(P+X)pldpl
J o

D. 11

The calculations
of the normalization constant N proceeds

from

L
d)* <3>.„ dt = 1

D. 12
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* 2 3
= N2Jo(aP) e-2̂

+ 4XAr2Ja(aP>e (P+X) v/p2 ♦

- 2AiW2Jo(0CP)v/PrT_^ e (P+x) vV + zir

+ 4X2W2Jo(ap) e-2A/p2 ♦ **

e-2XvV ♦ z_r

+ x2if2w2j°(ap)
e-2ky/~?2 + zT

-2 X > / p 2 + z 7

D.12.a

D.12.b

D.12 . c

D.12.d

D .12 . e

D.12 . f

+ X2K2N2jl(ap)z 2 e
D.12 .g



127
In detail, one can write 
a.

N 2 f 2* dd J a p Jo (ap) dp dz e'2̂ 2^ 2 

= 4tzN2 f 3 p2Jo (“P> Ki (2Pp) dp

D.12.1
b.

4KN2 f2n dd f P d"o(ap)dp f dz e
Jo ~ o

(P+A) y/p2 + Z2

= 16nKN2 [ap2jHap)K1l
J O

C.

- 2XKN2 j 2J  dd f ‘ («P) L  dz J*
2 + z2 e_(P+;,)v/,p2+z2

= -4̂ Xi<7V2 f 3 dp pJ2o(«p){ 2p 2K0 [ (P+A) p] 
J O

2pK, [ (P +X) p] dp
nr̂ xj

8 n  X  K N 2  f aP3 [(P+X)p]dp J O

8itXKN2 fa p2 j|(ap)/^[(P+A.)p]dp 
(P + A,)



d.
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4K2n 2 J 2" ad f* PJ2o(«p)dp f dz e-21* ! ♦ z1

= 1671 h r2[* p 2 J 20 (a
J O

e.

-4 XK2N2J 2” d6 / /  P j 2( a p ) dp J"__ d z  ' / p 2 + z e-2Xv,P2 * z'

r , p j f1 (2Xp) \
-SuXKN2 J/ dp P J2(ap){2P2̂ <2XP) ♦ X  |

. 167tw ¥ / V J > p > ^ (2ip,dp 

-8nK2N2 [‘p2JU « p ) ^ X p ) d p
J O

f .

/“ -2Xi/p2 +
... .. - d

, 4 itX 2K 2\'(f3 p‘J2(ap>*i(2*P)dpJ o
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g-

X2KZN2 j** d0 P P>dP L  e'2"'/P^ T

, f ^
= 2nX2K2N2 f* dp p Jo(“P> j + X

= 2nK*Nz f V ^ < “P>^(2Xp)dp 
J O

+ 2t:AX2W2 fap^J2o^p)Kl>(2Xp)dp 
J o

The normalization consta
sum of D.12.a, b, c'

can now be obtained from the 
g. The result is

+ 16 ^ / V ^ ( “P)^ [(P+X)pldPJ o

- 8 ^ i W 2 / a p3J°(“p)^ t(P+X)PldPJ o

8itXKNz_ fa p2J2 (ap) Xi [ (P + ̂' P] dp
Tp+XT ■'<’
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- 8nK2N2 f ap2jl( ap )  Kx (2Ap)J o

+ ±k \2K 2N 2 [ “ p4j\ ( ap )  K. (2Ap)  dpJ o

+ 27 iK 2N 2 [ “ p2j | ( a p ) j q ( 2 A p ) d p  D -13J o

+ 271 \ K 2N 2f* p 2j f  ( ap )  AT (2Ap)  dp
J  O

From the above expression the normalization constant is 
liven by

-iXK2 f 3 p3Jo (aP) Ka(2Xp) dpJ O

+ 2X2K2 f 3 p*jl{ap)K1(2Xp)dp J O

+ 2 f a p2Jo ( a P) Ki ( 2A p ) dp

+ 8K f a p2Jo ( a p )  Ki [ ( P  + X) p] dp J O

- 4XK f a p3Jo (a P) K0[ (P+A) p] dp
J O

__f*p2J20(ap)K1[(P+\)p]dp( P + X ) J O

’he rest of the integration is done numerically.
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-f pxDectation value of the kineticThe calculation of the expecraui

energy is now given below.
• -For the kinetic energy in circular The Hamiltonian for

cylindrical coordinates is

T =
_a_ an

d2
r) <7 ̂

D. 15

One can then write

T ^  =

- -1- { 2m* l
l_ _JL 
p dp

a i 
p 1$

+ J l l  $2s(p ,z)
3z2 j

D. IS

many terms involved in this calculation, it
Since there are tiations term by term. nt to do the differentiationis convenient no u.

\ -Bi/p2 +$2s(p/Z) =NJ0(«P)e
D.17 . a

+ 2 K N J 0(“P>e-AVp5"
D.17 . b

-X KN Ja(aP*P:+
D.17 . c
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The p-diffe r e n t i a t i o n is performed first; thus the first

term D.17.a yields

N_ _d_ 
p dp

p J0(ap)dp
Pv̂

__d_ (
7  dp 1 P a J-l ( ap )  e-Pv/p2 + zT

pp J~Q (ap) e-pyp + z7

__d_ <
p dp

a p J-i ( a P)
Pp2J"0 (ap) e-Pv/p7”

/r + z'

f J-L ( a p )
| - aJ^ap) - ap a<̂o (aP ̂ P

a[3p2Ji(ap) 0p3jo(“pL
+

p2p3J0(ap) 1 x e-P'/̂
[p2 + z2] J
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M  I -  a J x (ap ) -  ct2pJ-0 (ap) + aJ^ccp) 
P l

aPp2J"i(ap) _ 2PPJ'o(apL

[p-
^ 2 j  3 / 2  [ p 2 +  Z 2 ]

x  e -PvV ♦ zJ

- a 2WJ0( « p )  "
2pWJ0(ap) + 2pctMJ1(gp) P_

-JV+z'' yp2 + z

U M ^ w i p i  . }
+ 1 ^ 7 7 ^  Ip2 + z 1 J

x  e

D.17 . a
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Differentiation of D.17.b leads to

2M  a | p a j|
p dp 1 dp J

2KN d
p dp

- a J ^ a p )  e ■Wp2 + - lpcJ0(ap) e
v^p2 + z 2

2KN d < 
p 5p

Ap2J „ (c p )
7p 2 + z 2

J i ( a p )

-  a p J x(ap) e - X y / p P + Z 2 -

2KN l - a J j  (ap)  -  ap
P l

a J,(cep) -

« p j ,  (<*p) ( -^P> 2Xp J 0 ( «P)

vV + zT

gA.p2J 1( « p )  +
y ^ T ^ r

A p V ^ a p )  ,  A.2p3J 0( «p )  |

i 7 ^ " + z 2] 3/_2 t p 2 + z 2 ]  J

x  e -A-v/p2 + ̂



Differentiation of D.17.b leads to
134

r
= 2 KN d i

P dp ap^ (ap) e~x +  z2 Xp2Jo(ap) e_A'/P2
+ Z‘

2 KN 
P - aJ1 (ap) ap a JQ (ap) J± (a p) 

P

apJx (ap) (~Ap) _ 21 pc70 (ap)
ŷ p2 + Z2 y/p2 + Z2

aAp2J1(ap) + Ap3J~0 (ap) + A2p3J~0 (ap) j
/̂pZ + z 2 [p2 + z2]3/2 [p2 + z2 J J

x e-A.v/p2 + z5
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which simplifies to

-2a!ifWJ>p) + 4 aXK J T J ^ i t p I P
ip + z"

4 A. KN  J D( a p )  21 if W J 0 (gp)_P 
------------ [p2 + z2]3/2

?.X2K N Jjap) P l x e'Wp2 * ?
+ j ^ T T 2] I

Differentiation of D-17-C gi

XiCW J_ f p JL J0(«P)
— r" ap r  9P

2 + z2 e -avV  + zJ

D.17.b'

XKN _3_ ( p [ -aJj.  (ap) e
= - — f  ap 1 1

-Av/p2 +

pJ"0(ap) e-AV̂
'fpr^ P

+ z — ^opWp3_Lf- e_Xv/p2

XKN JL ( -aJ,(«P) VP= — aP 1
2 + z2 e-Av/y + z‘

p2j"0(ap) e-A/prT”zr - *p2J0(«p> e-Av/p + z2
,2 + Z ‘

-XKN | -aJx(ap)

ap2Ji (ap)

2 + Z ‘ - ap/p2 + Z' aj„(“p) -Ji (ap)

aAp2Ji(apWPrT?" 2pt/0(aP̂

✓p2 + Z ‘ yfi>2 + z2
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ocp2J i ( a p )  _ P3J 0 <“ P' _
■ - 1̂T7̂[P2 + z 2]

A }
2ApJa(ap) + alp2ji(ap) ” /p2 + z~* J

x e-\x/pr~*~zT

I a2XK N  J0(*P) ^

- aX2K N Jx(ap) ~

7 -pr + a X K  N  J

2\KN J„(«

a X K N  J, («P> P
7p2 + Z‘

X K N  J 0 ( a p ) P 2

^  j c (op)_p; + 2\2K N J 0(ap)

- a X 2K  N

X^K N  J n ( « p ) P 2 |
/pt T ^ t J

D.17 . c
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Differentiation with respect to z of D.l, results m

XKz e

(cep) a2
az2

| e-PvV + + 2î  e ~ x'^pT

— 5“

+ z2

2 k 4 p 2 + z 2 } x  e ~ XyS p
z 2

a I p ze’f * 1 * *r 2 X K z  e ~■ Xv/p2 + 2:2

1 az r /p2 + z2 v/Pr_f z 2

-x/F"7 z2 XiC yp2 + ^ (-Xz) e - X y / p 2 +  Z2

'JPT * z

_B + - P2̂ -
JL_? + '[p2 + Z2]3" CP" + Z ^= NJ, (u vV + z

■̂ y/p~rp

3XK
s/?2 + Z7

3l*Z2 + _3A!^i-rTTipT? [P2 + z2]

+ X2K -
VKz^

'[pr ~+~Z‘
x e
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-P iVJ0 ( a p )  i PiVc70 ( a p ) z 2 
v/p2 + z 2 + [ p 2 + Z 2] 3/ 2

P2NJ0(a.p) Z2 
[ p2 + z 2]

X  Q  “Pv/p̂ + Z 2

3XKNJq (ccp)  ̂ 3XKNJq ( a p) z 2  ̂ 3X2KNJQ ( a p ) z2 
v/p2 + z 2 t p 2 + z 2] 3/2 + [ p 2 + z 2]

+ X2KNJQ(ap) X2KNJQ (a p ) z 2 
v/p2 + z 2

g-A\/p2 + Z2

D. 18
Addition of all the terms in Equation D.18 yields V2$z 2 s '
This quantity can be expressed by

V 2$2s ~PNJ0(ap) $NJ0 (ap) z2
yjp2 + Z2 + ^2J3/2

p2i\K7o(gp) z 2 | e -Pyp-777 + 3XKNJ0(ctp)
[p2 +  z 2 ] j  \  J p 2 + z2

3XKNJ0(ap) z2 + 3X2KNJa (ccp) z 2 
[ p 2 + z 2] 3/2 [ p 2 + z 2]

+ X2KNJQ (ccp) X3KNJq(ap )  z 2 
v/p2 + z 2

g-AVp2 z2

+ CL2NJ0{ctp)
2P NJ0(ccp) 
sjp2 + z 2

2<xf>NJ1 (ccp) p 
v/p2 + z 2

PNJ0(ap) p2 
[ p 2 + z 2] 3/2

P2M70 (« p )  p 2 1 
[ p 2 + z 2] J

+ x e-P̂ p2 + ** + { - 2ol2KNJq (ap)



4aXXMJ1(ap) _ 4 A W 0(»P) 
+ <Jp2 *

2XKNJ„(aP) p2 + 2X2KNJ0(ctp) p2 
[p2 + z2]3/2

+ a.2XKNJ0l«P'l'/̂ r + ^

ctXKNJ-,(«P) P _ («p) P
+

2XXWJ0(«P> | x e-iv'p2 - *T
' '7^rr?r_ I

/P2 + Z' [P'

X2XWJj«P> P2 + 2A.2XWJo(“P)

X3XWJ0(“P>P
,2 + Z‘aX2KNJ1(*P'> P "
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Multiplying the terms in Equation D.20.a to D.20.j by $*

) results in:
*2

and (----2m
* n 2

$9c (----:Z o 2m
D.20.a)

= 3h2XKN2J 20 {ap)

SJinmjlia e.2iv̂ r77r
m*y/pT~T~ZT

3h2X2K2N2J2 ( ap )  ^ y j r r p -
m*

which, upon integration, becomes

L * 2 S
( ~hZ 

2m* D. 20 . a

3hnKN2 r* de r  oj u *p> dP r
\/p2 + z2]\m i  r  be r  P Jo2(«P) dP r

f f l *  J o  J o  J - c

+ eh^KlNl [2n dd f a p J q ( a p )  dp f  
in* jo Jo J~‘

d g  0  - (P + A.) J p 2 + z 2

\ J p 2 + Z 2

3 h2X2K2N2 [2* de ra p j f ( a p) dp r dz e-21̂ 7
jY) * J o * o °°
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12 n h zXKN2 r a p j l ( a p )  i<ro [ (P + A.) p] cfp
m' io

24TCA2Ai<r2g2 ra p j2(ap) j<ro(2Ap)c?p 
m” Jo

\2nh2X2K2N2 fa p2 j2(ttp) K1(2Ap)dp
/7? *  ̂°

The second terms yields
/ J-,2

2S r*L D.20 .b2/n*

h2P^2J'o(aP) e-2p/P^

2h2f>KN2Jl («P) e-(P+x)v/p2
Tfl* Jp+z*

h 2$ \ K N 2J l  (ap) e-(p * X) s T tr^
m

When the integrations m
resultsfollowing ~~ ~-w"

D . 2 0 .b ' are carried out, the

expression

L 2 3
_ J*L D.20.b 

2m*

r°° dz o
h 2M l  p  do f *  p Jo(“ p> d p J -

,-2P\/p2 + zT

27?* Jo

. 20. a

. 2 0 . b
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D. 20 .

+ (ap) dp
1 _ - (P + A) y/p2 + z2r°° dz e KV

2i22(3iCN':■ /”  <* /:
T2P do J-® yp2 + z2

rci *

h2QXKN- /■■ ■» /; p d2(ap) dp rdz e-(P *X) v'pJ *z"
in

47tia2P^2 f a p J2 (“P) if0 (2 P p) dp
m* J o

finh2 $KN2 f a p j2(ap)iCo((P + X)P]dp+ — — ^  J m ' o

dnh2pXKV± _ * ra p:J o
D-2°’b

 ̂ y i e l d s

2 s J l L  D . 2 0 . C

2m'

= 3h*KNzJ2o(“ P) e
-(p+A) VP"

6h22U££- j|(« e
m

-2\y/V‘

+ 3il2X3K2̂ 2J°(ap)V̂ 2 + e -2 A\/ p2 + ^



integration, these terms yield:

12nh^ml f a p2 
m' Jo

'?ATzh2^2K2NL f  a 
m* Jo

127Th W K W  ra—  77* J om

f a-------"71 J o

D . 2 0 . C  J

Jl(ap) Ki [ (P+̂ ) PJ

p2 Jo(ap)^i(2AP) dp 

p2 J2 (ap) K0(2Xp) dp

p2 J2o (a p ) ^ i  (2Xp) C?p

L 2s
J l L  D . 2 0 . C

2m*

3hn*KN*r2" d0 /; p j°(ap)dp L dz
- 77* J a cm

e h ^ 2K^L r  d0 f ‘  p J ' (“ p)dp / - dz— —• ' 7 J om

3h2X2K*N2 f2* d0 /' P J ^ “p)dp dZ + ---- "71 J o 0

- ((J + X) y/p

-2ks/p

■2\s/P
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12W /"■  p2J|(«p)^ i[(P  + ̂ )p]dp

2A%h2\2K2N2 f a p2 jJ(ap)Jq(2A.p)dp 
in' Jo

1 ? «  h2VK2Nz f‘d3 j 2 ( a p ) i f 0 (2A-P) dp

+  ---------------- ^  '  J o

stch 2 X 2 K 2 N z [ “ o2 Jo (ap> df>
+ — V  J<’

while D.20.d becomes:

<*■;25 J i l  D . 2 0 . d

2m*

^pZtf^JaPi e-2l>/p
2m

~Z ■*■ zr

ft2p2XW2J=(«P) e(P*X)'/prT

!XjW *j2 ( a P i y p H H

h2B2̂ j'(gPL
2m'

h2$2KN2J2o(aP) e-(M>v^rT

^2p2XKN2Jl (ocP̂ V̂P
-(P + *)>/p2 + Z_T

D.20.C*

D.20.d'
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Integration of D.2 0 .d' yields

h2
2m* D.20.d

= ~ f* p2J2o{0Lp)K1(2$p)dp

" — - [ a P2Jo(ap)K1[(P+Z.)p]dp m* J o

+ 4 * ] S £ ^ r * p3jz(ap) [(fi+X)
m* J°

+ 4 * * F \ * 2 £. f  p V g ( a p ) ^ [ ( P ^ ) p ] d p  D . 2 0 .  d/77*(P+A) ^

* « ( -  £,-20‘e )

A 2A3CT2J q (ctp) y/p2 + g 2 g ^ p .D V F T ^ T  
2/77*

+ h2X2K2N2J% (“P) •fpr~*~zT e~2X'/pl * *2

- h2XlK2N2Jl(ap) p2 e-21*^7 7

A ^ 4jr2̂ 2j|(ap)z2 e.2Jv̂ rTTr D.20.e '
2/77 *



147

On integration with respect to p and , D.20.e 1 becomes

2 n h W W ?. tap3ĵ (ap)J<:0[(P+^)p]dP
m * °

2nh2X2KN2 p p2j2(ap)Jf1[(P + A.)p]dp 
+ m*(P+*> Jo

4 it h2V K 2N2 fa p^(«p)^(2iP)dP 
+ ----^  J°

%h2X2K2N2 (a ^ J 20(af>)K0(2Xp)dP ,
--- - * J o

+

D. 20.e
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on integration these terms in D.20.f yield

j > ( -  i ^ D-20-f r

Ai t h2ctA.2 r a p2J-c,(a p )J i(a p )A C 1 [ ( P +;'- )P ] d P

8-Kh2* y m 2 f a p i j 0 (ap ) J i( o tp )^ i( 2Xp)dp

4 f‘ p*J0(ctP) Ji<«P>*o<2*p)dp
----------------------- ^  J o

2ith2*\2K2V2 p  p3jo(ap)J-1(«p)x'1(2;lp)dp ’ D.20.f

2 5
Jil D.2Q-9 
2m*

J77

D. 20.f
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n integration become:
\

D.20.f /
dt

12ith2aXKN2 fa p2jo(ap) J1(ap)^0[(P+A.) p] dp
in*  ̂°

+

?. 4 fap2J2o(
+ m' io

7. 4n h 2XK2N 2 r * p j |  ( a p )  i f 0 (2Xp) dp
m* °

1 7izh2gX2K 2N 2 r* p3 j o (ap )  J 1 ( a p ) K 1 (2X p )dp  
m* Jo

D.20.f

2 5
^2- D.20.g
2 m ‘

e-Wsf?~rp:
2 m*

h2a2KN2Jl^P'<

h 2n 2X m 2J o («p)\/p
2m

2 + D.20.g
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Integration of the three terms in D.20.g gives the following 
result:

f $2% [ -v 2/71* J

=27lA2g2ij2 r  P2Jo(<*p) [ (P+A) p] dp m J o

+ 47lA2g2ĵ 2- fap2Ji(ap)rl[(P+X)p]dpm* J o

-  r *  p3 j 2 ( « p ) i ro [ ( Pn ) p ] d p
777 * J  o

- 2nh2 akKN_ r 3 p2jt (ap) K [ (p+X) p] dp D.20.g'
m * (P + X) J °

2s
h2
2m*

D.20 . h

h2aPN2J0(ctp)J1(ap) e_2Pv̂ -77r 
m* \jp2 + z2

2h2a^KN2J0(ctp)J1{a.p) p e.(p+X)V̂ 7 r
m* yfp2~V~z2

h2 0L$XKN2 JQ(&p) P g - (P+A) y/p2 + z2
m*
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Integrating D.20.h, one obtains

L 2s
h2 
2m*

D. 2 0 . h dx

=- fa P Jl(af>) K0(2f,p) dp
m* J o

+ A* h2&2J ^  r PV |(ap )J< r1 (2Pp)dp  
m* J o

_ S n h ^ m j  r  *p j |  (ap ) j<ro [ (P+A) p] cfp 
m* J °

, 47rA2P2i ^  f a p 2 j 2 ( a p ) K i [ ( p+X)p ]dp
m * J°

4Tzh2fUKtfj [* p2j2(ap)K1[(P+k)p]dp 
m * Jo

4nh2CL$XKN2 C* p2jo(ap)j1(ap)K1[(^+X)p]dp 
m* Jo

D

$12 3

h2-- t±—  D.2Q.1
2m*

h 2CL2KN2J0 ( ff P ) -̂(p+A) v̂P2 + z2
m* ~

2h2a2KzN2Jl («p) e-2Av/p2 + z*
777 *

_ h^XK^Ni j2 (ap) Jp^T-^ e-2Wp2 * z2 D. 20
777

. 20.h
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D.20.i on integration, becomes.

fJr {
A t- D . 2 0  . i  eft 
2m* )

4nh2(t2KN2 ra p2 j-2 (ap) Kx [ (P + A.) p] dp 
m* Jo

finh2a2K2N2 f ap2jZ ( ap) kx (2A,p) dp 
+ m* Jo

ATzh2cc2XK2N2 Ca p3 j20(cx.p)K0(2\p)dp
m* °

2^ht^tAlMl fa p2J20(ap)K1(2Xp)dp 
in* Jo

Finally/ the
last term D.20.j yields

2 S
( _ A 2_

2m*
D. 20. J

h2cL2XKN2 j 2(ap) VP2 + z2 e
2m*

(P+x) yp2 + ̂

h2a2XK2N2 j 2 (ap) e
/n*~~

h 2an 2K 2N 2_ j 2 ( ap )  P2 e - 2 i y F T ^  
+ 2/n*

h^a2X2K 2N 2_ j | ( a p ) z 2 e - 2 l' / p _ r ? r

+ 2/n*

D.20.i"

D.20.3



On integrating D.20.j one obtains
153

i d 2
2/n* D. 20 . jf dt

/

2nh2 cl2XKN2 Ca 3 -,-2
777

f a p2J20{ap)K0{ (P + A) p] dpJ O

2nh2a.2\KN2 Ca ■> T2
777 * (  P + A ) f 13 P2dJ (ap) ̂  [ (p + A) p] dp•7 o

4 K h 2a 2X K 2N 2 r “ .7 -rZ
m

[° p2Jo (ap) Ka(2\p) dpJ O

2nh2a2K 2N 2 r a . 2 t 2
777

[ a pzJ^(ap)K1(2Xp)dp
J o

2 7ih 2a2X2K 2N 2
777

f a p4Jo (ap) K1 (2Ap) dp•/ o

l Z h 2CL2K 2N 2 C a „2 t2
777

f a p2J 20(ap) (2lp) dpJ O

n h ^ a n K W  [* pij2(ap)Kj2Xp)dp 
ID * J o

] . 20.j"
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Now, the kinetic energy terms, comprising D.20.a to D.20.j, 
can be added together and simplified by making use of the 
following notations:

R1 = f 3 p 2 Jl ( a p ) ( 2 P p ) dp
J O

R 2 = f a p2 t/o(a p ) (2A.p ) dp
J O

R3 = f p4 jZ(ctp) K1(2Xp) dp 
J o

R4 = f  3 p 3 Jo  ( “ p)  K0(2kp) dp
J O

R5 = ra p3 J3 (ap) K0[ (P + A.) p] dp
J o

R6  = f a p 2 j | ( a p ) j q [ ( P  + ̂ ) p ] d P
J  o

R7 = f V  j|(ap)jq[(P+^)p]dP1 o

= f a p 3 J 3 ( a p ) ^ ( 2 X p ) d p
J O

= f a p3 J3(ap)^(2PP>dP 
J O

* 1 0  = f a P J * ( « p ) * „ [ ( P + * > P l d PJ O

= r  P J3(ap)Ko<2*P)dP 
J O

E. 1

E. 2

E. 3

E. 4

E. 5

E. 6

E. 7

E. 8

E. 9

E. 10

E. 11
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I n  t h e  i n t e g r a t i o n s  a b o v e ,  u s e  w a s  made  o f  t h e  r e l a t i o n  

[44] :
p 2 J 0 (ap) ( a p )  K a(2Xp) dp

_l  r \  4 -  j 2o(«p )2a Jo [ ap
K0 ( 2Xp)  p2dp

+ i f a j 2 (ap) { 2 p i ^ 0 (2A.p) 2XpzK1(2kp) } dp  
2a Jo

= Jliap) K 0(2\p)\ao
2a

i  f 3 p J 20 ( a p ) K 0 ( 2 k p ) d p
a io

1  f *  p2J l ( a p )  K1 ( .2Xp) dp
a io

E. 12

T h e  i n t e g r a t e d  p a r t  of E.12 
t h e  r e s u l t  i s

f  ap^ j 0 ( a p ) J 1 ( a p ) K 0 ( 2Xp)dp
J O

v a n i s h e s  a t  t h e  b o u n d a r i e s  a n d

E. 13

1 [ ap J 2 ( a p ) K j 2 X p ) d p

a Jo
1  f ap ^ J 2 ( c t p ) K 1 ( 2 X p )

a J o



The final expression for the expectation value of the 
kinetic energy becomes:

< T > = 13tth 2X2K 2N 2 RQ + 10iih2f>XKN2 R?
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m

2n h 2X2KN2 11 tt h 2 A.3 K2N 2 _---------  X6 - -------- --- R4
m m *

27Th2P 2iV2 ^  + 2 tt h 2 P 2 A.KJN'2 R5m m

4nh2P>2XKN2 , 471 h 2X2KN2 __+ -----1------ + ---------  i?5
777 * ( P + A ) 777 * ( P + A )

2nh2X‘iK 2N 2 R3 _ 2nh2p>X2KN2 R5
777 77?

7nh2a2XK2N 2 R4 + 5nh2a2K2N 2 RR
777 777 *

2nh2a2X2K 2N 2 RJ _ 2nh2pX2KN2 R5
777 777

2nh2ct2N 2 R1 E. 14
777

The expectation value of the potential energy with the 
static dielectric constant £ (o) is determined as follows:

< 1/ > = - < *■' 1 7  1 >
F. 1

e (o) + z2 ]'1/2 ® 2. ) ^
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$ 2s [ P 2 + z2 J-1/2 <5,J 2s

= _ e2W 2c72(ap)
0  _ 2 p y p*1 z2

F. 2
6  ( O) v̂ P2 + Z

4 e 2K N 2J 20

2

0  - (P■►A.) + 2 2

e (o) ŷ p2 + z2 F. 3

2 e 2X K N 2J 2 (ap) 
e(o)

0 -(P*A.)v/pi + z2 F. 4

4 e 2K 2N 2jl (ap) -2X.y/p2 -► z2

e(o) v/p2 + z2 F. 5

4 e 2X K 2N 2J 20 (ap)4- -2 Av/p2 + z2 17*e (o)

e 2X 2K 2N 2J 2a (ap) ^p2 + Z2 
e (o)

F. 7

The integration of the terms F.2 to F.7 yield the following
results for the potential energy:

[ (F.2) eft = -gi  F 2 /*27t dd f a p Jo (a p) dp x  Jx G ( O) Jo  Jo

dz e ~2Pv/p2 + 
y/p2 + Z2 F. 2

4jie 2iV2 [* p J 2 (a p) .Kf0 (2 P p) dp 
J Oe(o)



I  ( F - 3 >
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4 e 2K N 2 r 2n
e (o) fo * <30 p Jo (ap) dp f~ dz ̂ J -  CO / ~ -----------------/p"- + z-

ezKN2 r* 2 ,
(3 )------ Jo P J o ( a P ) K 0 [ ( p + X ) p ] d p

16 ne2KN2 
e

F. 3

f (F. 4) dx

2\ e 2K N 2 r 2n
e (o) 

QnXe2KN2 Ca

f dQ f p Jo (a p) dp f dz e ~ v/p*5 + z2*> O  ̂O J-oo
F. 4

G (O) f ‘ p2 Jo (ap) Kx[ (P + A) p] dpJ O

(F. 5) c?T

4e2K 2N 2 r 2n vi /•a —2 / xt r00 dz e~2k ̂, , ■ / dO p JQ (dp) dp / ------- — ---e(o) Jo Jo J-~ p ^5

16ize2K 2N 2 ra _ t-2
G (o) f a p J 20 (ocp) K0 (2lp) dp J o
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l  <F dx

2 K 2 N 2 /*2ji f <3 -) r
To) J o  dd  JoP J o ( a p ) d p

J —  OD
4 A e 2 k 2n 2 r2*

G
F. 6

_ 16 71 \ e 2K 2N 2 c a -> _? .
iTo)---  Jo P

l  (F -7) dx

e 2X 2K 2N 2 r2n
e (o ) c  <* p J o  (cep) dp f~ dz  / p 2 z 2 e -2A

4 n e 2X2K 2N 2 r *
Oe(o)

2n e 2X K 2N 2 r a

[ “ p 3 Jo (ap) K  (2kp) dp J 0

e(o)
f a p 2jl(ap)K1 (2Xp)dpJ O

F .  7

A d d i n g  all t he t e r m s  F.2 to F.7, and using the notations of 

E g u a t i o n s  E.l to E.ll, the e x p e c t a t i o n  value of the 

p o t e n t i a l  energy, w i t h  the static die l e c t r i c  constant e(o) 

b e c o m e s :
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< V  > = - 4tte2N 2 DQ _ 16tte2KN2__ R1Q
e (o) e(o)

n\e2KN2 _  _ 16 n e 2K 2Nj R11
e (o) R6 e (o)

16* Xe2K2N 2 R2 _ R4
e (o) e (o)

2 n\e2K2N2 R 2

eToT~
F .8

. . j i electric constant is replaced by theWhen the static di t-here are additional terms in 
s p a t i a l  d i e l e c t r i c  function, there

of the potential energy. These
the expectation va ue

are determined as follows:additional terms a --r v̂ p *_ / „ \ _ 1
A V = ' e2 £ ^

e ( o) -L e 
e (o)

^2s dx F. 9

/ :

r . l n l  -  lU H  j "  dO P  < “ P >  *

__ T _ / p + a. + — \ vV ♦
+ 4/ce cj

-  2 X K  i? '
4 K 2 e

- 4

X2 K2 (P :

, i P ♦ A. ' ^ \ Z1
'2 e v

- | 2\ + Xc ) ̂  +

( 2* * 7?z2 e '

/ . 1 1
z2) e (2X * c ]VP
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I n t e g r a t i n g  the terms one by one yields:

At/ = - _g2 [ e(o) -11 N 2 [2n W| 
e (o) lo* dd io p J°(aP) dP

X
J  — CO

4K e 2 f e(o) - 1 1 N 2 [2* 
e(o) f  f  p J2a (cc p) dp

f ciz e- (t * * ♦ i ) 'jv
\/p 2 + z2

2 \ K e 2 f e (o) - 1 1 iV2 /-2’1 
e (o) f “ dQ f a p J02(ap)dp

J o J o

X ate e (p -i )

4JC2e2 [ e(o) - 1 1 -W2 
e (o) f 2K dd f  3 p J02(ap)dpJo Jo

/' ate e-(2i ♦ -i ) v/F
^P2 + Z
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—  e2 { ! t o i ~ 1 ] N2 f ‘ p<7° <«P)  «>  dz  e- i-  * * ) ^

-  A ^ e ^ g ( o ) - l ] ^  [ 2*ddr  p.702 (a p )d p  f  d z  / F 7 F e '(214 ) ^
e ( o) J o Jo J-°°

4 7 i e 2 r e ( o )  1 ] | a p j 2 ( a p ) ^  ( 2P 4- - I  ) p 
e ( o )  Jo \ c )

dp

_ 1 6 7Ti<Te2 r e ( o )  - 1  ] r *  p^ ( a p ) * 0 [ ( 
e(o) Jo \ P + A + —  ] p dp

STrAi^e2 f e ( o )  -  1 ] ^ 2 T 3 p2 j 2 (ap )  ifj [ f e (o) Jo \ p + A. + -i- ) p dp

1 6 7tJC2e 2 f e ( o )  - 1 1  r a p j - J f a p ) ^  
e ( o)  J °

p 2A + JL ) p dp

16 n K e 2 f e ( o )  ~ 1 ] N \  f a p 2 J 2a ( a p ) K 1
(7 ( d ) Joe ( o)

2A + -  ] P dp

e (o)

47tl2i62e 2 f e ( o )  -  1 ] p2 d 2 ( a p ) ^  [ (

e ( o )  I 2 A + —

I 2A + — 1 P\ c

( 2A + — p
1 \ c i

dp

dp
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E. Calculation of the Free Particle Energy

In this appendix, the details of the calculation of the 
free particle energy are presented.

The Hamiltonian for a free particle in cylindrical 
coordinates is given by

H  = -  / —  + A  J t  + J L  l
2m* { dp2 P dp p2 (3p2 dz2 j

H. 1
The wave function for the free particle Hamiltonian1 is:

♦ =  R n l (P) ®  1 (*) Z m ( z )

where

" n̂l̂ nl ’ n l a
eii4) Q±kz

H. 2

and L is Length of the cylinder.
For the cylindrical case with f = 0, and (p/a) = l

Jn£(Xn£) = 0, the first node of the ordinary Bessel 
function. Then one has:

= AnoJno ( kno ^

H. 3



The normalization constant A
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no is obtained from

1 = l dt

/ Ano Jno | kno -P- j e Ano Jno | kno -£■ | elk: dx

= ALf*' a8 f ‘ p J2no ( Ano r  ) dp

x f dz e1{k~k)z
J  —  CO

H. 4
Therefore,

2it p J„20 ( Ano | dp j"" dz ei(k-k) z

27t f* p J2no| A.no j dp dz ei(k-k) z
-1

H. 5



The kinetic energy is determined as

a2
ap2

a

•no ano ( _£a
^0^1 ( n̂o 4"

ap

1_
P

'no
ap Ji 2
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The differentiated p-part becomes

d2
dp2

+ 1
P

^noJ 1 ( ^no a  ) 

ap“

( X no )

ap

Therefore,

V 2ptno(P'z)

H. 8

e iJcz

H. 8 '
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The z-differentiation yields

a2
dz2 'I'nofP / J. 1 X -2-1 9 1 d e i*z l

l "° a j dz \. az e |

= Jo I _£
dz { ikelkz }

= Jo ( ) [ ]

= -k2Ja ( *„ -f ) e"*

H. 9

After multiplication by —  , the V ^no(p,z) becomes,
2m

_ JiL v 2'i'no
2m*

h2X2
2/7?*a2

h2ic2
2m*

} J, eikz

H. 10
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Multiplying H.10 by >An*(p,z) and integration of the free 
particle kinetic energy yields

h 2 
2m* V2 tnofP. Z) dz

A 2 j h 2Xno2 , h2k2
n o  \ . ~ +[ 2m a2 2m r :  *  i n̂o dp

x f dz elik k) z
J — CO

| h 2X2no + h 2k2 
\ 2m*a2 2m* dp

h ^ L  + A2£ 2
2m* a2 2m*

h 2a2 + h 2k2 
2m* 2m*

where
H. 11



For the ground state j—0, hence k
energy becomes

,2 2 n a
T >free 2m*

For the first node n = 1 and Xno
and oc becomes

2.4048
a = a
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0 and the free particle

H. 12

= 2.4048 [45]lo

H. 13
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F . Numerical Integration Techniques

The algorithm used is the Q DAGS [47] which is a 
general purpose integrator. It uses a globally adoptive 
scheme to reduce the absolute error. It subdivides the 
interval [A,B] and uses a 21-point Gaussian-Kronrod rule to 
estimate the integral over each subinterval. The error for 
each subinterval is estimated by comparison with the 10- 
point Gauss quadrature rule. This subroutine is designed to 
handle functions with end point singularities. However, it 
performs as well on functions which are well-behaved at the 
end points.

G. Units Used in This Work_.__
The QWW radii are given in atomic units, where 1 atomic

unit is twice the bohr, aQ, and the bohr is given by
-9a = 5.29 x 10 cm o

The units of energy are in meV. From guantum mechanics one 
has (e2/a ) = 27.2 eV. Since the energies involved in this
work are much less than this, it is necessary to use meV, 
where 1 eV = 1000 meV. For example, the binding energy of a 
hydrogenic donor in bulk semiconductors is given by

Ed =
e4m*

2 e(o)2 h2
If one substitutes m - 0.067 in

e(o) = 12.56
one multiplies by 1000 and 27.2 eV one obtains Ed 
which is the bulk value for GaAs.

5.78 meV



Sample Program

C
C

C

C

2

C

PARAMETER (NSTEP=1000,BETA0=0.006,BETA1=.05E-3)
EXTERNAL FI, F2 , F3
REAL*8 MASS, EPSILON, ESQU,B,BETA,BETA2,N2,V ,H ,E 
REAL*8 RESULT(NSTEP), A(19)
REAL*8 INC, LOW, UP, ERRREL, ERRABS, ERREST,ALPHA,ALPHA2
REAL*8 Rl, R2, R3
INTEGER I, J, INDX
COMMON BETA,BETA2,ALPHA,ALPHA2
CALL ERRSET(208,280,-1,1)
INC = (BETA0-BETA1)/NSTEP 
LOW=0.0
ERRABS = 0.00001 
ERRREL = 0.5e-6
ESQU = 1.0 
EPSILON = 12.56 
UP = 1000.0 
ALPHA = 2.4 04 8/ UP 
ALPHA2 = ALPHA**2 
MASS = 0.067 
PI = 3.14159 
WRITE (6,*)'a= ',UP
WRITE(6,*)' E-VALUE BETA
BETA =BETA0 + INCNOW LOOP THROUGH THE BETAS FROM BETAO TO BETA1 IN NSTEP STEPS. 

CALCULATE <E> FOR EACH BETA AND STORE IN ARRAY RESULT.
DO 2 J=l,NSTEP 

BETA =BETA -INC 
BETA2 =BETA**2 

CALCULATE N2,V,HCALL DQDAGA(FI,LOW,UP,ERRABS,ERRREL,Rl,ERREST)
CALL DQDAGS(F2,LOW,UP,ERRABS,ERRREL,R2,ERREST)
CALL DQDAGA(F2,LOW,UP,ERRABS,ERRREL,R3,ERREST)

-N2*R2/12.56-N2*(11.56/12.56)*R3
H  =  0 . 5 * B E T A 2 / M A S S

CALCULATE E AND ST0^  ™  27200TQARRAY RESULT(J)= (H+V)*27200.U
S i!e (6,*) RESULT (J), BETA

CONTINUE
STOP

DEFINEN?HE FUNCTIONS F1...F3 FOR THE INTEGRALS
d o u b l e p r e c i s i o n func t i o n F1(R)
REAL*8 R,BETA
C O m ° » RBET»<DBsKi(2 0,bets,b)
r e t u r n
d o u b l e p r e c i s i o n FUNCTION F2(R)
REAL*8 R,BETA 
COMMON BETAP2 = (R)*DBSKO(2.0*BETA*R)
r e t u r n
END



DOUBLE PRECISION FUNCTION F3(R) 
COMMON BETAF3 = (R)*DBSKO((2.0*BETA+1.375)*R)
RETURN
END
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