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ON SOME CLASSES OF OPERATORS ON HILBERT SPACE

Notation

In this project, H will denote a Hilbert space
with inner projuct denoted by < -> and T, A, B, X
etc. will denote operators (i.e. bounded, linear trans-
formations) on a Hilbert space H into itself or into
another Hilbert space. Ker T, ran T, ker— T, ran* T
will denote the kernel of T, range of T, orthogonal
complement of ker T, orthogonal complement of ran T,
respectively. BMH) will denote the Banach algebra of
all operators on H. IT A,BeB(H) then [A,B] will
denote AB-BA C and JR will denote the fields of

complex and real numbers, respectively.

Introduction

The study of normal operators has been very suc-
cessful iIn the sense that a lot of interesting results
has been obtained concerning these operators e.g. the
classical Putnam - Fuglede theorem, which will be
stated later. Many authors have defined new classes
of operators by making them satisfy certain known
properties of normal operators in the hope that some
of the results which hold for normal operators, will

also hold for these new classes of operators.



For example, spectraloid operators have been
defined using some properties of the sepectrum, spectal
radius, etc. of normal operators. Others have defined
other classes of operators by generalising the concept
of normality e.g. binormal operators [2]- By relaxing
the condition of normality we can also define other
classes of operators e.g. dominant operators [17] and
try to see which properties of normal operators will

still hold for these larger classes of operators.

In this project, we have studied spectraloid,
binormal and dominant operators. For each of these
three classes of operators, we have studied their
properties, subclasses and the properties of these sub-
classes. We have also looked at extensions of the
Putnam-Fuglede theorem and finally we have given
a problem which can lead to further research in this

area of operator theory.

Preliminary defintions and results.

©O) The spectrum of an operator T, denoted by o(T),
is defined by o(T) = (Ae E - XI - T is not

invertible} where I = identity operator.

(ii) The spectral radius of T, denoted by r(T), is

defined by r(T) = sup {IX]:A e o(T)}.

(iii) The numerical range of an operator T, denoted

by W(T), is defined by W(T) = {<\TFf,f/:



n fil = 13-

(iv) The numerical radius of an operator T, denoted

by w(T), 1is defined by w(T) = sup {IX] :Xe W(T)}

™~ A set A is said to be convex iffor every
x,ye A, tx + (1-t)y e A, where O tl
(vi) Theconvex hull ofa set M denoted by conv M,

is the intersection of all the convex sets which
contain M. Note that conv M is i1tself convex
since 1t is the i1ntersection of convex sets and

it Is the smallest convex set which contains M.

(vii) Two operators A and B are said to be similar
if there exists an invertible P such that

P-1 AP = B.

The following result gives some properties of a

normal operator ([7])-

Theorem A

Let T be a normal operator. The following are

true:

@ r(M = w

() the closure of the numerical range of T is the .

convex hull of its spectrum i.e W(T) = conv ((0o(T))-



© w@ = |1ITn

. . we can now define spectra
Using this result,

loid operators.



CHAPTER ONE

Spectraloid Operators

Definitions

©O) Let T be any operator. T is said to be
spectraloid it r(M) = w(T).

(ii) Let T be any operator. T is said to be

convexoid if the closure of the numerical

range of T 1s the convex hull of its spectrum

i.e. if W(T) = conv (a(T).
(iii) Let T be any operator. T is said to be
normaloid if w(T) = |1 T I

The following result will be needed to show that

every normaloid operator 1is spectraloid.

Lemma 1.1

If w(A) = |lAi]. then rCA) = 1A |1l

Proof

By multiplying by a suitable positive constant,
we can assume without loss of generality that
I All = 1. Sincew(A) = || A]| there exists a sequence
{f } of unitvectors such that] A f , "> |-
Without loss of generality, by nuiltiplving by a suitable
constant of modulus 1, we can assume that

/ Af , F/m > |.Since / Af , fN <]JAf |l < | and

/ Afn, fn~n Ifit follows that | IAfn || —>-1.



2 2 .
This implies that Il Afn - fn || = ||Afn |1 -2Re <"Afn ,Tn/"

+ \ @0
so that 1 1is an approximate eigenvalue of A and

therefore r(A) = 1.

We can now prove that the class of spectraloid
operators contains both the convexoid and normaloid

operators.

Theorem 1.2

(€)) Every normaloid operator is spectraloid
() Every convexoid operator is spectraloid
Proof

@ Let T be a normaloid operator. Then w(T) = N TII-

By lemma 1.1, rdt = 11T = w(h) i.e

r(t) = w(T). Hence T 1is spectraloid.

() For any operator T, we know that o(T) < w(l)
(see [7D)- Thus we have r(t) £ w(T) for any T.
Now the closed disc with centre 0 and radius r(T)
includes c¢c(T) and is convex. Hence if T is
convexoid then that disc contains W(T) => w(T)

< r(7). Hence r(T) = w(T) i.e T is spectraloid.

Remark

Since the class of spectraloid operators contains

both the convexoid and normaloid operators, it is interestin



to iInvestigate whether the classes of convexoid and
normaloid operators are related. In other words, we
would like to know whether every normaloid operator is
convexoid or whether every convexoid operator is
normaloid. However we will show that these clases of

operators are independent.

Example 1.1

We First give an example of a convexoid operator

which 1s not normaloid. Let

Let N be a normal operator whose spectrum is the

then a@® = {03 O D = D and W@ = conv (W@ d W(N))
=d = A is convexoid.
Since 1A I = 1 (in fact I M1 = 1), A is not

normaloid.

Example 1.2

We now give an example of a normaloid operator
which 1is not convexoid. Let M be as in example 1.1.

Write



Since || A]l =1 and W(A) = conv(DU{l}) it follows
that w(A) =1 and hence that A is normaloid since
W@ = I All =1. However c(A) ={0}u{1} so that

conv a(A) = [0,1] + W(A). Hence A is not convexoid.

Other classes of operators

(i) T 1is said to be hyponormal if T*T £ TT*. This
means that T*T - TT* > 0 i.e. <(T*T-TT*) x,x>

> 0 "~ x e H.

(an T is said to be paranormal or an operator of

class () if

Il (T-z1)_11] = e ———

for all z t a(T). Note that we can talk of
(T - zI)_1 since =z t o(T) - Also since z t o(T),

d(z, o(T)) 1is not equal to =zero. Equivalently,
2 2

T is said to be paranormal if ||Tx |j £ IT x111I1x]]

V x €H, or T is paranormal if for all unit
vectors x eH (ice. I x I =1) we have

T 112 < [T x]1-

(i) T is said to be k-paranormal or an operator of

class (N;:K) if 1™ |1k < JITkx 1,11 x]11k_1

V X €& H, where k > 2 is some integer. Equivalently

T 1s k-paranormal if 11T 1IKET]ITkx |l for

X € H where IIx || 1 and k > 2 is some integer.

Note that a 2-paranormal operator 1is paranormal.



We now show that the above classes of operators

are, in fact, sub-classes of spectraloid operators.

Theorem 1.3

(€)) Every hypornormal operator is paranormal

() Every paranormal operator 1is k-paranormal
© Every k-paranormal operator 1is normaloid.
Proof

See the references cited in [11]

Remark
Since every normaloid operator is spectraloid it follows
that the class of spectraloid operators contains the

hyponormal, paranormal and the k-paranormal operators.

Theorem 1.4

Every paranormal operator is convexoid.

Proof.

To prove this theorem, we will need a result due to

Orland ([10]).- He proved that T is convexoid iff

I10-z1)-11] < = ——————— - for all Z t conv a(T).
d(z, conv a(T))

From this it follows that vevery paranormal operator is

convexoid.

Remark

The converses of the above implications are not true
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since there do exist counter examples, as the following

result shows.

Theorem 1.5

There exists an invertible paranormal operator

T such that

1. T 1s not hyponormal

2 T2 is not paranormal.

3. inm el > r(7T), and

4. -1 is not paranormal,

Proof.

Let A =1 | Let N be a normal operator such
that a(®N) = w W and let T = A O N. Then T is
paranormal . We know that a hyponormal operator is
hyponormal on invariant subspaces. Therefore since A
is not hyponormal, T 1is not hyponormal. Now W(A) is
the closed disc of radius ! about =z = 1 and W O\%;

is the closed disc of radius 1 about =z - 1. Therefore

0 e W(A2) C=W(T2) and

0O 1 conv «KT)Z): conv a(TZ)

Therefore conv a(T2) # W(T2) and so T2 is not paranormal

Let X =

/To
Then I x 1l =1 and | |AX
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Then 11Tl > 1A 11 > 8§ = r(T)

Therefore I Tl > r(T).

IfT T_1 were paranormal, then

T =1'r a"i-o)"1 ]| = --—-- i-————
d@©,a x))

= r(T) contradiction. Hence T

is not paranormal.

We now look at some properties of paranormal

operators.

Paranormal operators

We will use the following notation: IfT s 1is
compact subset of the complex number €E and it e>0,
*then let s + () = (z: d(z,s) < e}.
If S and S , n = 1,2,3,... are compact sets 1in

T, then the sequence {Sn} approaches S, written

S S if for every e>0 there exists a positive

n T
integer N such that, for n >N, Sn ~.S + (e) and

cds + (e). Note that it will always be assumed that
n
B(H), in this section, has the uniform operator (norm)

topology.

To prove our next result, we will need the

following lemma.

Lemma 1.6

If t Z B(H) and e > 0, then there exists 6> 0

such that if S e B(BE)
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and ||T-S ]| < 6, then a(s) £ a(M) + (e .-
Proof.
See [7/1 , problem 103.

Theorem 1/7

IT {T 3} is & sequence of pstrsnonr&l opers™fors sppro3.ch.inor fhe

operator T iInnorm, then cOp = o(T) as n + ».

Proof

Bjr lerrma 1.6, we know that for each e > 0 there exists a
positive integer N such that, for n>N, o(Tfn) a o(T) + (e)-

Therefore, to show that o(Tn)-»0(T), it is enough to sho"

that for each € >0, there exists a positive integer N such
that o(T) a(Tn) + (0 , for all n> N. IT this does

not hold then Without loss of generality we may assume that
there exists £ >0 and a seouence {zr } o(M) such that

> ¢ for all n- Since a(T) {is compact, we may
d(zn> a(Tn))

assume that

£ o(M). |If J?n—z l < 5 3 then

zn
, o(Tn - Z - Zn
diz, o{Tlq)) 1 d~n (> | I
(13 £ -_ k
> £ 7 7
Hence . 1 0
. < -
I - e “ Z
d(z,0(mn»
Now choose n so that
-1 Th
1|ICTra-T)CTm-rf) en

is invertible.
- (Cm=T) cmzyv1 'S INVertivie
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I“t A= (m-slIflLCX- (m-T) CTm - zir1l) Then

ACT -z1) = (T -2zI) A=1 sothat z e p(T. contradiction.



CHAPTER TVD
Pinormal Operators

Before we define what a binormal operator is, we first

study the polar decomposition of an operator.

Definitions

An isometry is a linear transformation tt ( from a

Eilbert space into itself or from one Hilbert space into another)
1orF i) II f11 for all T in the Hilbert space,

such that |[la M1

A necessary and sufficient condition that a linear transformation

0O be an isoretry is that U*0 = 1 (see [7] p- 60).

It Is sometimes convenient to consider linear transformations

U that act isometrically on a subset of a Hilbert space; this

means tha@ %%U? IJ_: Ml'f|f fer all f in that subset,

A r rtiai isometry is a linear transformation that is
"sometric on the orthogonal corrplement of its kernel. The
orthogonal complement of the kernel of a partial isometry is

) era-itinl space and the range is called the final
called its —_—

space.

Theorem 2.1.

boundecj linear transformation TI is a partial isometry

iff u*U 1is a Projection.

Proof.

Suppose that E and K are Eilbert spaces and suppose



15

that U is a partial isometry from H into K with initial
space M. If E 1is the projection from E onto M, and if
t"U, then <U*UFf, > = 1IWI12 - Il * N* = <% e*>

It f-i"M, then

AN u*uf, Fy =° = Ty

*

/ - / Ef F\ f°r aH f in H.
= (u*uf, T/ ™ N\ 7 /

= u*uU = E.

Conversely, gEBBBgQ EngF U 1s a bounded linear transforma-

) T K such that U*U 1is a projection with
tion from t into

- M sav. It Tollows that
domain H and range M, sa

nul|]I2 = * >
= [IEF 112 for all f°
»s ,l X 1 or ufF =0 according as
Hence 11 « 11 = 111 11

f eM or fl *

Theorem 2.2

b unded linear transformation from a Filbert space

I then there exists a partial isometry
E to a Hilbert space

to and there exists a positive operator
U (from H to W

a—tp The transformations U and P
PC on H ) such that A Lie.

- kpr T = ker P and this additional
can be found so that her

.. - nniaue' determines them,
condition unique ¥



Proof

We first oonstruct P. Since A*A is a positive operator

it has a unique positive square root, call it p Since

on H,
Il PF |12 = <~PF, >PF) = <(pz2>
= <A*AFf, fj> = I1IAF 112
for all f in H, the equation UPF = Af unambiguously defines

a linear transformation U from the range R of p 1into the

space K and that U is isometric on R. Since U is bound d

it has a unique bounded extension to the closure R and

on R

a unique extension to a partial isometry from H to K with

A = UP holds by construction

initial space R. The equation

The kernel of a partial isometry is the orthogonal complement

of its initial space and the orthogonal complement of the range

of a Hermitian operator is its kernel. |Ibis inplies that

ker U = ker P and this completes the existence proof

To prove uniqueness, suppose that A = UP; where U 1is

a partial isometry P 1is positive and ker U = ker P jt

follows that A* = PU* and hence that A*A = PU*UP = PEp where

E is the projection from H onto the initial space of U

Since that initial space is equal to ker ~ U and hence to

ran p , it follows that EP = P and hence that A*A =
Since the equation UPF = Af uniquely determines u for F

f 1is in ker p, it

in ran p and since Uf = 0 when

follows that U also is uniquely determined by the stated

conditions.
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Remark

The representation of A as the product of the unique
u and p satisfying the stated conditions is called the

polar deconposition of A or more accurately, the right-handed

polar decomposition of A.

Definition

the pOiar decomposition of an operator, the operators

T*T and TT* frequently occur. Wk want to know for uhich
do T*T and TT* comnute. Canpbell [ 2J called

an operator T binorml if [T*T, TT*J = 0 i.e

it (T*T)(TT*) = (TT*)(T*T).

The following result gives a simple characterization of

binormal operators.

Thpnrem 2.3

If T has the polar decomposition T = UP where

u = ker P, then,[T*T,TT*1 -0 iff [p, UPU*] 0.
ker
Proof
Note tha{ me is the projection onto the range of P.
Pnus W - p p - e°- N . o
0
<:>[p2, w 2 “x3 »

<=> [P, (DP2 U*)41 « °
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[p, UPU* ] = °=

Definition
An operator T 1is said to be quasinomjal if [t ,T*t] = O

ie. if T(T*TMT*T)T.

The next result shove that the class of binormal operators

contains the class of quasinoiml operators.

Theorem 2.4

Every quasinormal operator T is binotmal

since T 1is quasinormal, T(T*T) = (T»T)T. Taking adjoints

we get (T*T)T* = THT*T>

Now (M*DAT*) = (T*TDT*

™ T*

_ (™) (T*T).
Hence T is binormal.

nwvparties of bin02j aL°BgratoS

Theorem 2.5

If Te (BN) - <T: CTET.TTtd -0 ) and I1f @ Is any

complex number, then

L a Te (BN)

. IPce (BN) >
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= T*x e ker (T2) = ker T

- x e ker (IT%) = ker(T*)

i ker () C] ker (0%

Corollary 2.9

If T 1is binormal and ascents of T and T*
are both zero or

one, then ker(T) = ker (I%).

Proof

From theorem 2.8, it follows that ker(T)c ker(T»). SIflce T,

is binoimal and the ascent of T* _
is zero or one, * have that

ker (T%) jC. ker (T** = T).

ker (%) = ker (D).

Independence of binormal operators.

m now show that (BN) is independent of several maj
classes of operatos. We know that if T is hyponoimal then

t is noimaloid and hence spectraloid. If Tic? -
AS of these

need not satisfy the

three classes of operators, then T

equation [JT*T,TT*] = O.

Exanple 2,1

If T , then -
' w(T) = j

is binormal. However, T 1is not .
spectraloid

r() =0 and T
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3. T 1e (BN) if it exists.
Proof
cn@n@Enth* = @r)En@En@r)
= MDA

lal (a1m>)(T*T) (Since T e (BN))

- @@n*@n*@n
Hence alT e (BN).
2. let T = U. Then
(U*U) (UU*) = (TI*)(T*T)
= (T
= (ChIClas))
H;nce U=T* 1is binomial.
3 if T 1is invertible, so is T*. Hence both TF* and T*T

are invertible. Since T e (BN) we have

a>=mdamy = dmr d=*T1 - @

Let T-1 = v. Taking the inverse of both sides of (@),

we get

amy 1 a*mD1 = (T*1D 10T

‘1
-1 p-l T aT* 1 P

(T 1y T-! t-1(T-1)* = T-1(T-1)*(T-1

e. (W) - (WD)

0> V = T"1 £ (BN).
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Remark

Note that (BN) is not closed under addition even when

the operators”commute.

For let
and

= T 1 (BN).
This example also shows that if T e(BN) then it does not imply

that pi + T e(BN) for complex numbers wu. However, vyl + T

will belong to (BN) 1if in addition T is normal as the next

result shows.

Theorem 2.6

Suppose that T £ (BN). The T + Alt (BN) some conplex T o,

iff T 1is normal.

Proof.

Suppose that T e(BN). let \TO be real. Then

F + a13, €% £ aP@ + >0*1 =0

@*,tl ,t +t*

is equivalent to
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e (B\N) for some real A FO0, then

A. But O jF W(T + Al) for

Thus 1if T + Al
A

T+ Al e (BN) Tfor all real

T would be noirocal. The case whea

sufficiently large so

complex easily reduces to the one when A is real

Theorem 2.7

IfT Tx and T2 are doubly comnutative binormal operators 61

TiT2 * T2T1 ~” d W - W then ~» 2 Is binormal.

Proof

The proof is omitted since it is too lengthy.

Definition

of an operator T is defined to be the smallest

The ascent
for which Cdcer (TI) = ker (TnHi) for

positive integer n

all positive integers K.

Theorem 2.3

is zero or one, then

If T 1is binoimal and ascent of T

ker (T) C ker(T*)

Proof.

x e ker(T) => TI*T*TX 0
> t*t TT*X 0

TT*x e ker(T*T) = ker(T)

= T2 ™ x = 0.

1S
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= T*x e ker (M) - ker T
= IT* x =0

=> x e ker (IT*) = ker (T%)

- ker (1) G ker (T%)

Corollary 2.9.

H T |1Is binomhl and ascents of T and T* are both zero or

one, then ker (T) = ker tT»)

Proof.

, ¥y It follows that ker (1) ker (T»). Since
From theorem 2,.e,

Is binomial and the ascent of T* 1is zero or one, we have

that ker (M £ >« = T>"

,=> ker (T*) = ker ,T)-

Nuhnormal operators.
Tndependence_of------ a

________ + ran is independent of several major
We now show that »

We know that if T is hyponormal, then
rlasses of operators.

it is normaloid and hence spectraloid. if T 1is any of these

three classes of operators, then T need not satisfy the

equation [T*T, ~

Example 2.1-

0 then mi12? 1, w( =1,
If T =
i However, T is not spectraloid

r) = 0 and’ﬁn iiSS binormai-
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) /. U Wm Also, T is not nonnaloid since .
since r({; 7 y
I 711 a,hence X is not hyponormal. Thus there

are non-speetraloid operators in (LN).

Example 2.2

- HEt  Th S*S d Ss* both
Tet s beavvelg‘Tted% ut. en an are bo

diagonal operators and hence conmrte. In partisan, let T

the unilateral weired shift with «i*t sequence

=W = 11T Il=1. T 1is not
Then r(T) M 11

r .
{1,4,1,1.---}

weiglat sequence is not monotomc non-decreasing,
hyponormal since the w

) i hut it is binormal and normaloid.
E1US T 1is not hyponormal but

one of the problem of Hilbert space theory is whether or

not every operator has a non-TTivistl !nEn1deb- sufosp&CG 1.G. a

) tHnt tn M. The following theorem
,, OF h such that Xn —
subspace W o1
, - hrohlem in the case of binormal operators,

sheds so® light oh this pr

Theorem 2.10

} [T*T, TT*] = O then
If T 1is hyponormal and

nas an invariant subspace.

Proof.

Campbell  [2]

See

Remark

) i we have seen that T* is also binormal.
T 1Is binormal, we

, » therefore have assumed that T or T*
2.10 we could there
In theorem
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that T- was semi-normal.
were hyponormal, that

intersect the classes of binormal

) note that if we
Finally, we ,
we get the class of hyponoiral operators

and paranonnal operators,

as the next result shows.

Theorem 2.11 i i
If t 1is also paranormal, then it

Suppose that Tt (BN).

is hyponormal.

Proof

[31.
See CamFPEI !
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rHFtPTER THASH

first introduced

Dominant Open has aUo

a,,d Wadhwa LUJ e
by Stampf-l

trying to extend
.lass of operators

*L':“Gd thlS ® de theorem for larger classes of
@ |
I ENEEER

operators ’

,S sald tO0 be dominant if

A" 0(,eratOr T

? for all X « °(T) *
ran(T-x) £

Remark-

which Wni be stated
f DougT as L4 ~

Using a result o ivalent

definition of dominant
ran get an eq

below, we commonly used.

operators which 1is
Theorem” following statements are

Let ft 6 £ B(H)"

-equivalent:
, N ran B
1. ran A * , > 0; and
2 ,* for some
2. Tdt= 5

bou,,ded operator C on H so that

3. there o*I5tS

A = BC.

jougtas DO- (@)) i

in
eouivalence of C)
prom the X is dominant iff
npt that
a we 9ez
m A’ x8¢F-x)*rf-x> m
* <

r-x)
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Thus T s dofriE IR for each X e ofd\,

i} +.nf M > 0 SUCh tAat
there exists a con X

||(T—X)*f|| <|\/|jiif&|_'>)g)f'd-r for all feH.

Remark.

plave seen that there exists
, —-.ant we havé Seéeén

IfT T Ut~ such that ICT-X~FI1 < MXM(T-X)F]]|
a constant
qguestion which might arise 1is whether

for 311 f"H" ., will suffice for all X's |1:8.-fust the

a single eenstant n »"m -
9 , be bounded? The answer is negative since

** of all ~x"s i1,e N * dominant operator where
.t an example oi

here eXIS nf the dominant operator are

the associated of

lot bounded. (see

'roperileso§fdldmAnHt""1211°

. aliced Putnam-Fuglede).
a (Generajllse g )

rheoremJjiildj. ,pt N be normal .
————— be "dominant. Let

-Ct “ (C WN where ~ »<”> h8S dMSe ra"96"
*SSUme TM_ ” , and moreover W*W commutes
'Tl'hen 'E :llg normal anu
/vith N.
*vVjj- , vf T 1s similar
a0 hp hyponormal = #

1 B(H) normal .
tnr then T i>

-mal operator”’

ry 3jJ. Ipt TW = WN where
-""7 he dominant.
E 8(H) be
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] w is any non-zero operator in B(H).
iIs normal and

Invariant subspace,
Then T bas a PrOPer

Proof.

See JJ7[.

Definition
M is a linear subspace of H. M s
If A B(H)
H and AHN A
reducing if AV

1 emma 3.4

be dominant. Let m d- W be an

Let T e B(H) is normal,
If TIM

Invariant subspace -
M 1s @ reducing

” (i.e
then M reduces

subspace of
Proof.

See 00 =

Theorem 3§__ let T8 = BN where

be dominant.

Let T e B(H) Then T = Ti ® T2 on

is normal .
B>0 an™ 7 -
iIs normal .

where T2

ker B ® ker

(o]
Proof.

DO-
o remJj2 p(T) ts normal

T B(H be T
A ) p then T 'S normal .

some po"y"01" 3
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Proof

See Uu 13-

Quaiinniil-

@

Quasinor»al ope-

nl
studied by Brown LU *

He

an operator with property

that A(A*A)

A)B

NN\NN\"

were
called

d

an operator A such

n

w show that the CUSS of Puasinormal

We
operators contain

SLIcZz
Every normal

operator

Proofe

normal, TT

Since T 1s

the class of normal

operators,

IS quasinormal.

Now T(T*T) = (TT*)T

T 1s quasinormal.

= (T*T) T.

imarjc-

false for let T be

f theorem Je

,6 converse

necessary and sufficient

. s We know that
1 isometry. N transformation be an isometry
indition that a ,ine’ ™ ST = (TFDT *>=IT = T
T Then U1 o )
iat T*T = S J 1s quasinormal.
+p? with T*T V
me. T commute T™T =1. te. T is

T is not unitary.

»t normal-
The following the

aerators.

ieorem_ 3jj.
) . re mutual
ie following are

character!Zes quasinormal

| ivalent conditions on an
y
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arbitrary operator A.

1 a IS quasi normal .
If A _up 1S the polar decomposition of A,

then WP = PUe
A=Vp=P with P «0 and V 1isometric.

4 A =VB =BV with B self-adjoint and V
isometri c,

Proofe

see DJ e
nPfJ ni tion
Let A be a convex set. A point aeA is called an

i P a 1f 1t does not belong to the
extreme point o

snterior (r)1¥ %}// segment in the set A.

Theorem 3.9

is quasinormal, then T > neN. is

It T
guasinormal

DE =

rem_JjJJ. o
T .s quasi.normal and satisfies any one of the

owing conBit#gns - then T s normal

ker(T*) £ ker (T)°"

+ i~ i
the ascent 8¥ J iIs Oor 1

N0 1S an extreme point of W(T) .
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Ctv} ker (T*) = {o}

(v) T* is Invertible

T-Al is quasinormal for all real a

(vi)
Proof
(1) Since H = ker(T*) « T(H), for any
X = u+ v, uz ker(T*)and v ¢ T(hT.
normality of T follows from the fact that

11FX|J = 1IT*v ] = JJTv]| =
(11) x e ker(T*) * T*x = 0 = TFf*TTx = o

=

=0 = Tx e ker(T*2) = ker(T*)

= T*T*Tx =
T*Tx = 0 = x e ker(T*T) = ker(T) f.e.
ker(T*) ker T.

The result follows from ft)

(H1) T being hyponormal (to be proved Ilater)
and O being an extreme point of W(T), by a re 1
of Stampfl i D£J» Kker(T) = ker(T*), which 1is the
case (1).

(1v) ker(T*) = (0) ker(T*) ~ ker(T)

being invertible, ker(T*) = fo}

v T

The result follows from (iv).

(v1) For Aq/ cr(M, S =T - is an invertible
and consequently

S is normal

quasinormal. Hence
T is normal.
Theorem 3.11
Let r = A + IB be a cartesian decomposition



n N , JE aB
T is quasinormal if
of T. Then T
with A and
Proof .-
., A and o
T =A+ 1B Whef

A - A, B* * B-
* =

(T*T)T=(A+B

t(t*t) - (T*T)"21LB

since LAB)A = A<AB) a"'d
(AB)B * B(AB)
" a (AB)]
= Q ab)ald
; aba = BA
/DT s 0
t (t *T)
* *ti . (T*T)T-
, € T(T*T) -
T is qu»”~"°rmal-
o y o~ o~ AB . C+ iD-
Let T » A+iIB 8" , If both A and
U T 1S gquasin®rma
%?%H each and
"oof- N above, 1
rom the°renl " and B i-a-

commuil!:gg M

commutes

e Self-adjoint 1".e.

22

+ b(ab2-bab)

B commutes

t 1s quasinormal if

if



Ud
(ABA - A(B) ut)

(AB)B * b(ab)

From (1), «e get

(c+iD)A = A(C+iD)
< CA+i DA = ftC + IStl

\ CA - AC E»* DA = “ e

From (H). we ~

(C+i0)B m ®<C+t0>

* CB « ~ *BC + 1B°

" CB . BC and BB - BD

, B commutes with Both ¢ and O.
Jv A and B

Gii} thf hypOtheS6S °F

Another way defining subnormal

r ic that ot
normal operators

operatorse

A a H.lbert space « IS subnormal

An operator A In other words, A s

if It has a normal « # norB,I operator B on a

subnormal it th>t , is a Subspace of K,

Hilbert space * onder the operator B

the subspace H 1% 0 H

+ricti°n ot
and the restn

coincides with A.

TheoresJ”™11 ,oerator is subnormal.
\,asinormal op
Every du
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Proof.

Let A be quasinormal. Then ker A reduces A since
ker A = ker A*A for every operator A and since
A* commutes with A*A(A being quasinormal) it follows
that ker A*A is 1invariant under A*. Thus every
quasinormal operator is the direct sum of 0 and an
operator with trivial kernel. Without loss of gene-
rality, we can assume that ker A = 0, If UP 1is
the polar decomposition of A, then U 1is an
isometry and UP = PU and U*P = PIf*. Since

U is isometric, then if E 1is the projection UU*,

then
(a - B)U = U*(I-E) = 0.

We now construct a normal extension for A.

If A acts on H, then a normal extension B
can be constructed that acts on H © H (if H is
identified with H © O, then H 1is a subspace
of H© H). An operator on H ® H 1is given by a
two-by-two matrix whose entries are operators on

H. If in particular

then V is unitary, Q .is positive, V and Q
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commute and therefore

VP OE)P
B = \WQ

0 U*P
is a normal extension of A,

Remark

The converse of theorem 3.13 is false for consider

a non-zero scalar added to the unilateral shift.

This 1s subnormal just like the unilateral shift but
if 1t were also quasinormal, then the unilateral

shift would be normal,
Definition

A normal extension B (on K) of a subnormal operator

A (on H) 1is minimal 1if there 1is no reducing subspace
of B between H and K. In other words, B 1is
minimal over A if whenever M  reduces B and

H CL WM, it follows that M = K.

Theorem 3.14
If B and BN (on K™ and ) are minimal normal
extensions of the subnormal operator A on H, then

there exists an isometry U from onto
that carries B] onto B2 (i.e. UB] = B2U)

and is equal to the 1identity on H,

Proof,

See 00 pp- 306-307.

Remark.

In view of the result of theorem 3.14 we can talk
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of "the" minimal normal extension of a subnormal

operator.

Theorem 3.15

IT A i1s subnormal and if B is its minimal normal

extension, then a(B) a(h),

Proof.

See [f\ , P- 308.

(iii) Hyponormal operators.

IfT A (on H) is subnormal, with normal extension

B(on K) we want to find out the relation between A*
and B*. Consider the projection P from K onto H.

If £ and g are in H, then

Since the operator PB* on K leaves H invariant,

its restriction to H 1is an operator on H and this

restriction is equal to A*. We have A*f = PB*f

for every f in H. IT f eH, then
[IA*F || = |IPB*Ff] | 1 1IB*F 11 = 1IBf| |
(since B is normal)

= 11AflI

i.e. |IA*F111 MAF1l -
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This 1is equivalent to the operator inequality

AA* < A*A,

Properties of hyponormal operators.
Theorem 3.16

Every subnormal operator is hyponormal,

Proof.

See the remarks following theorem 3,15,

Remark.
The converse of theorem 3,16 is false since there
exists a hyponormal operator that is not subnormal

(see \j2 » pPe 309-310),

Theorem 3.17

If A is hyponormal, then }[APIL ® L[aLIn

and so HHAIl = r(A),

Proof.

If feH and n > 1, then

< 1IA*Anft] UAN"1fI[

Hence



Then BAJpn - J1l"]112 < [1An+1 ] 1A ||
1
A" nagg
i+l LLon+l i 0. FeHL
SR Y O - | IEOE o Y|

Since r(A) = 1im 1]JAn |j1/n = |]A]]

Theorem 3.18
If T 1s a hyponormal operator such that a(T] 1is a

set of real numbers, then T 1is self-adjoint.

Proof.

See D & e
Definition.

A complex number A is sard, to be an approximate proper
value for the operator T if there exists a sequence
X, such that x 1] =1 and [](T-M) xp]] - O

The approximate point spectrum of an operator T,
denoted by w(T), 1is the set of approximate proper

values of T.

Theorem 3.19

Let T be a hyponormal operator and let

then

Proofe

Se DA *
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Theorem 3.20
If T 1is hyponormal , a(T*) = w(T*).

Proof.

See 0 3 .

Theorem 3.21
Let N be a hyponormal operator. If for an
arbitrary operator A, for which 01 W(A),

AN = N*A, then N is self-adjoint.
Proof.

Since 0 i W(A), A is invertible. Hence

N = A IN*A and it follows from theorem 3.20 and
the fact that if A and B are similar, then
Jjr(» = w(B), that c(N) = a(N*) = a«(N*) = a(N).

By theorem 3.18, it is sufficient to prove that 0(N)

is real. Suppose on the contrary that there exists a z e a(N) such that

z.Since z e o(N) = »(N), there exists a sequence x of unit

zt
n

vectors such that |] (N*-z Dxp[] < JJ(N-zIDx || + 0

Since 0 i W(A), the relation

[I(N*-zD)xn 1l = TI(ANA 1 --z1)xnm\\= HA(N-zI)A_1xn[] + ©
implies that 1I(N-zI1}A xnll ™~ 0% A
Hence Cxn» A xn) = \AA xn> A ~xn? 0 by

theorem 3.19. Put yn = A xn /]]JA xn]], then

llyn]] = 1 and yn) ~ ° i1-e” 0e

a contradiction.
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Corollary 3.22

Let N be a seminormal operator (i.e. N 1s such that
either N or N* 1is hyponormal), IT for an arbitrary
operator A, for which 0 i WCA), AN = N*A,

then N is self-adjoint.

Proof.

Suppose that N* is hyponormal, By the proof of

theorem 3.21, 0 i W(A) implies 0 I W(AND). Now

. _ -1 -1
AN = N*A implies A N* = NA i,e. BM = M*B where
M = N* is hyponormal and O i W(B) = W(A_1). Hence

M

M* by theorem 3.21 i.e. N = N*.

Theorem 3.23
Let T be hyponormal; then ||Tx|] = [IT*x]] iff

TT*x = T*Tx.

Proof.

See [)C]‘

Theorem 3.24
Let T be hyponormal on H. Then W(T) has at most a

countable number of extreme points.

Proof.
See [Jd -

(iv) M-hyponormal operators
The notion of an M-hyponormal operator 1is due to

Stampfli (unpublished) and is a generalisation of a

hyponormal operator.
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Definition

An operator T on H 1is called an M-hyponormal
operator if there exists a real number M such that
11(T-z1)*xF | < M|] (T-zX)x1] for all X MH and for

all z e |.

Properties of M-hyponormal operators

Theorem 3.25

Every hyponormal operator is M-hyponormal

Proof.

Let T be hyponormal. Then T*T-TT* > 0 or equivalently

11T*x]1 < |ITx]] for all x e H. Note that T 1is

hyponormal iff M = 1 where M 1is the one used in the
definition. Thus T is M-hyponormal.
Remark

The converse of theorem 3.25 1is false since there exists
an example of an M-hyponormal operator which 1iIs not
hyponormal
(See 0 8ID-
Proposition 3.26
i, i 2 Ve
T is an M-hyponormal operator iff M (T-z2)*(T-z)-(T-2)(T-z*%)

>0 forall z e E

Proof.

See EJCI -

Proposition 3.27
If T 1is an M-hyponormal operator, then

/3\ xx = zx implies that T*x = zx
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(t) H(T*-z)_1x|l < ML ICT-z)“]xI I for all z in P(T).

Proof

See 0O 8j.

Proposition 3.28

Let T be an M-hyponormal operator.

(D If (T-z)% = 0 then (J-z)x =0
Giy |If Tx = zix and Ty = z2y, joz2
then <x,y> = 0.

(iii) If there exists a polynomial p(z) such

that P(T) = 0, then T 1is normal.

(iv) If H 1is finite dimensional, then T 1is normal.

\

Proofm

See mjj8] .

Theorem 3.29
Let T be an M-hyponormal operator which 1is similar

to a normal operator and such that the area of o(T) is

Zero. Then T is a normal operator.
Proofm
See 08].

Theorem 3.30

Every M-hyponormal operator is dominant.

Proof.

The proof follows immediately from the definitions

Of M-hyponormal and dominant operators.

Remark

The converse of theorem 3.30 is false since there
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exists a dominant operator which 1is not M-hyponormal.

Theorem 3.31

If T 1is an M-hyponormal operator on H, then at,
AN~O0O and T + Al are also M-hyponormal operators

for every scalar A

Proof.

See UQ -

Theorem 3.32
Let {Tn} be a sequence of M-hyponormal operators

converging uniformly to the M-hyponormal operator T,

so that ||T -T]]| 0O as n @w® . Then z is in
o(T) iff there exists a sequence {zn}, zn are 1in

0(T ), such that > zQ.

Proof.

See 0 2.

Theorem 3.33

Let T be an M-hyponormal on H. Then there exists

operators A, B and S..which satisfy
(i) B>A>0

(1D si|<m M>1.

(iii)  S*AS = B.

In this case, T <can be expressed as

T = 1(a5s + xi) for some complex A



Proof.

See Qf].

Theorem 3.34

If H is fini te-dimensional and T Js an

M-hyponormal operator on H, then T is norma].

Proof.
See 00 -
Extensions of the Putnam-Fuglede theorem

The Putnam-Fuglede theorem states that if a and b

are normal operators and if X is an operator such

that AX = X8 then A*X = XB* (see [7])-,

We will now look at some of the relaxations of

the hypotheses on A and B.

Theorem 3.35

If A and B* are subnormal and if X is an

operator such that AX = XB, then A*X = XB*.

Proof.
See [61 -

The following theorem extends the Putnam-Fuglede

theorem to the case when A and B are M-hyponormal.

Theorem 3.36

If a and B are M-hyponormal and AX = XB*,

then A*X = XB.
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Proof.

See JT].

Duggal QQ extended theorem 3.36 to the case
when A is dominant and B* is M-hyponormal, as

the next theorem shows.

Theorem 3.37

Let A be dominant, B* be M-hyponormal such that

AX = XB. Then A*X = XB*.

Proof.

See [5] -
Definition.
Let H and K be Hilbert spaces, SeB(H) and

T t B(K). The commutator C(S,T) ; B(KtH) + B(K,H)
of S and T is defined by C(S,T)A = SA - AT.

Cn(S,T) will mean n times application of
C(S.T).

Theorem 3.38
Let S and T* be hyponormal and assume
cn(S,T)A = 0 for some natural number n and some

A e B(K,H). Then C(S,T)A = C(S*,T*)A = O.

Proof-

See 03].

Conclusion
In all the three classes of operators that

we have studied, there 1is still a lot of research
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that can be carried out to determine other properties

of these operators.

There 1is still a lot to be done especially in the
extension of the Putnam-Fuglede theorem. One research
problem which can be tackled by those interested in
this field is to try to extend the work done by
Furuta [6] . M°ore et al [sQ Duggal C51 and Radjabal ibour
DO by trying to answer the following question:

Does the Putnam-Fuglede theorem hold if A and B

are both dominant?
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