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ON SOME CLASSES OF OPERATORS ON HILBERT SPACE

Notation

In this project, H will denote a Hilbert space 

with inner projuct denoted by <  - >  and T, A, B, X 

etc. will denote operators (i.e. bounded, linear trans­

formations) on a Hilbert space H into itself or into 

another Hilbert space. Ker T, ran T, ker—  T, ran*" T 

will denote the kernel of T, range of T, orthogonal 

complement of ker T, orthogonal complement of ran T, 

respectively. B (H ) will denote the Banach algebra of 

all operators on H. If A , B e B ( H )  then [A,B] will 

denote AB-BA C and JR will denote the fields of 

complex and real numbers, respectively.

Introduction

The study of normal operators has been very suc­

cessful in the sense that a lot of interesting results 

has been obtained concerning these operators e.g. the 

classical Putnam - Fuglede theorem, which will be 

stated later. Many authors have defined new classes 

of operators by making them satisfy certain known 

properties of normal operators in the hope that some 

of the results which hold for normal operators, will 

also hold for these new classes of operators.
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For example, spectraloid operators have been 

defined using some properties of the sepectrum, spectal 

radius, etc. of normal operators. Others have defined 

other classes of operators by generalising the concept 

of normality e.g. binormal operators [2]. By relaxing 

the condition of normality we can also define other 

classes of operators e.g. dominant operators [17] and 

try to see which properties of normal operators will 

still hold for these larger classes of operators.

In this project, we have studied spectraloid, 

binormal and dominant operators. For each of these 

three classes of operators, we have studied their 

properties, subclasses and the properties of these sub­

classes. We have also looked at extensions of the 

Putnam-Fuglede theorem and finally we have given 

a problem which can lead to further research in this 

area of operator theory.

Preliminary defintions and results.

(i) The spectrum of an operator T, denoted by o(T), 

is defined by o(T) = (Ae (E : XI - T is not 

invertible} where I = identity operator.

(ii) The spectral radius of T, denoted by r(T), is 

defined by r(T) = sup {|X|:A e o(T)}.

(iii) The numerical range of an operator T, denoted 

by W(T), is defined by W(T) = {<\Tf,f/:
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II fIl = I}-

(iv) The numerical radius of an operator T, denoted

by w(T), is defined by w(T) = sup {|X| : Xe W(T)}

(v) A set A is said to be convex if for every

x,y e A, tx + (l-t)y e A, where 0 t 1

(vi) The convex hull of a set M denoted by conv M,

is the intersection of all the convex sets which 

contain M. Note that conv M is itself convex 

since it is the intersection of convex sets and 

it is the smallest convex set which contains M.

(vii) Two operators A and B are said to be similar 

if there exists an invertible P such that

P-1 AP = B.

The following result gives some properties of a 

normal operator ([7]).

Theorem A

Let T be a normal operator. The following are

true:

(a) r(T) = w(T)

(b) the closure of the numerical range of T is the .

convex hull of its spectrum i.e W(T) = conv (o(T)).
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(c) w (T) = | | T II 

Using this result, we can now define spectra

loid operators.



5

CHAPTER ONE 

Spectraloid Operators

Definitions

(i) Let T be any operator. T is said to be 

spectraloid if r(T) = w(T).

(ii) Let T be any operator. T is said to be 

convexoid if the closure of the numerical

range of T is the convex hull of its spectrum
i.e. if W(T) = conv (a(T).

(iii) Let T be any operator. T is said to be 

normaloid if w(T) = || T ||

The following result will be needed to show that 

every normaloid operator is spectraloid.

Lemma 1.1

If w(A) = | | A i | , then r(A) = | | A | |

Proof

By multiplying by a suitable positive constant, 

we can assume without loss of generality that 

|| A|| = 1. Since w(A) = || A | | , there exists a sequence

{f } of unit vectors such that | A f  , f "> | |.

Without loss of generality, by nuiltiplving by a suitable 

constant of modulus 1, we can assume that 

/  Af , f /■ ->- | . Since /  Af , f N  < | | Af | | < | and

/  Afn , fn^^ If it follows that | | Afn | | ->-1.
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2 2 ..
This implies that | | Afn - f n | | = | |Afn | I -2Re <^Afn , fn/'

+ \ -*■ 0

so that 1 is an approximate eigenvalue of A and 

therefore r(A) = 1.

We can now prove that the class of spectraloid 

operators contains both the convexoid and normaloid 

operators.

Theorem 1.2

(a) Every normaloid operator is spectraloid

(b) Every convexoid operator is spectraloid 

Proof

(a) Let T be a normaloid operator. Then w(T) = || T ||.

By lemma 1.1, r(T) = || T || = w(T) i.e

r(T) = w ( T ) . Hence T is spectraloid.

(b) For any operator T, we know that o(T) <= w(T)
(see [7]). Thus we have r(T) £  w(T) for any T.

Now the closed disc with centre 0 and radius r(T) 

includes c(T) and is convex. Hence if T is 

convexoid then that disc contains W(T) => w(T)

< r(T). Hence r(T) = w(T) i.e T is spectraloid.

Remark

Since the class of spectraloid operators contains 

both the convexoid and normaloid operators, it is interestin
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to investigate whether the classes of convexoid and 

normaloid operators are related. In other words, we 

would like to know whether every normaloid operator is 

convexoid or whether every convexoid operator is 

normaloid. However we will show that these clases of 

operators are independent.

Example 1.1

We first give an example of a convexoid operator 

which is not normaloid. Let

Let N be a normal operator whose spectrum is the

then a (A) = {0} O D = D and W (A) = conv (W (M) vJ W(N)) 

= d => A is convexoid.

Since ||A || = 1 (in fact || M|| = 1), A is not

normaloid.

Example 1.2

We now give an example of a normaloid operator 

which is not convexoid. Let M be as in example 1.1. 

Write

A
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Since || A|| = 1  and W(A) = conv(DU{l}) it follows 

that w(A) = 1  and hence that A is normaloid since 

W (A) = || A|| = 1 .  However c(A) ={0}U{1} so that 

conv a(A) = [0,1] + W ( A ) . Hence A is not convexoid.

Other classes of operators

(i) T is said to be hyponormal if T*T £  TT*. This 

means that T*T - TT* > 0 i.e. <(T*T-TT*) x , x >

>_ 0 ^  x e H.

(ii) T is said to be paranormal or an operator of 

class (N) if

| | (T-zI) _ 1 1 | = -----------
d (z , a (T) )

for all z t a (T). Note that we can talk of

(T - zl)_1 since z t o (T) . Also since z t o(T),

d(z, o(T)) is not equal to zero. Equivalently,
2 2

T is said to be paranormal if ||Tx | j £  ||T x||||x||

V  x e H, or T is paranormal if for all unit 

vectors x eH (i.e. || x || = 1 )  we have

||Tx ||2 < ||T x | | .

(iii) T is said to be k-paranormal or an operator of 

class (N;K) if ||Tx ||k < | | Tkx | | , | | x | | k_1 

V  x e H, where k >_ 2 is some integer. Equivalently 

T is k-paranormal if ||Tx ||k£||Tkx || for 

x e H where | | x | |= 1 and k >_ 2 is some integer. 

Note that a 2-paranormal operator is paranormal.
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We now show that the above classes of operators 

are, in fact, sub-classes of spectraloid operators.

Theorem 1.3

(a) Every hypornormal operator is paranormal

(b) Every paranormal operator is k-paranormal

(c) Every k-paranormal operator is normaloid.

Proof

See the references cited in [11]

Remark

Since every normaloid operator is spectraloid it follows 

that the class of spectraloid operators contains the 

hyponormal, paranormal and the k-paranormal operators.

Theorem 1.4

Every paranormal operator is convexoid.

Proof.

To prove this theorem, we will need a result due to

Orland ([10]). He proved that T is convexoid iff

| | (T— zI) — 1 1 | _< ------- ----------  for all Z t conv a(T).
d ( z , conv a(T))

From this it follows that vevery paranormal operator is 

convexoid.

Remark

The converses of the above implications are not true
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since there do exist counter examples, as the following 

result shows.

Theorem 1.5
There exists an invertible paranormal operator 

T such that

1.

2 .

3.

4.

T is not hyponormal 

T 2 is not paranormal. 

II t I I > r(T), and
-1 is not paranormal,

Proof.

Let A = I | Let N be a normal operator such

that a (N) = W W  and let T = A © N. Then T is 

paranormal. We know that a hyponormal operator is 

hyponormal on invariant subspaces. Therefore since A

is not hyponormal, T is not hyponormal. Now W(A) is
1 ' 2~ the closed disc of radius about z = 1 and W (A )

is the closed disc of radius 1 about z — 1. Therefore

0 e W( A 2 ) C = W ( T 2 ) and

2 2 0 i conv (o(T) )= conv a (T )

Therefore conv a(T2 ) # W ( T 2) and so T 2 is not paranormal

Let x = / h 
/ h

/To
Then || x || = | and ||Ax
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Then | | T | | >. | |Ax | | > §  = r(T)

Therefore || T|| > r(T).

If T_1 were paranormal, then

| | T | | =|'| (T"1-oI)"1 | | = -----i----—
d (0, a (T x ) )

= r(T) contradiction. Hence T

is not paranormal.

We now look at some properties of paranormal 

operators.

Paranormal operators

We will use the following notation: If s is a

compact subset of the complex number (E and if e>0,

* then let s + (e) = (z: d(z,s) < e}.

If S and S , n = 1,2,3,... are compact sets in

T, then the sequence {Sn } approaches S, written

S S if for every e>0 there exists a positive 
n f

integer N such that, for n _> N , Sn ^ . S  + (e) and

c d s  + (e). Note that it will always be assumed that 
n

B(H), in this section, has the uniform operator (norm) 

topology.

To prove our next result, we will need the 

following lemma.

Lemma 1.6

If t z B(H) and e > 0, then there exists 6> 0

such that if S e B(E)
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and | |T-S || < 6, then a(s) £  a(T) + (e) .

Proof.

See [7l , problem 103.

Theorem 1/7

If {T } is & sequence of pstrsnonr&l opers^fors sppro3.ch.inor fhe 

operator T in norm, then c O p  -> o(T) as n + ».

Proof

Bjr lerrma 1.6, we know that for each e > 0 there exists a

positive integer N such that, for n > N ,  o(Tn) a  o(T) + (e). 

Therefore, to show that o(Tn)-»o(T), it is enough to sho"

that for each e > 0, there exists a positive integer N such

that o(T) a(Tn) + ( O  , for all n >_ N. If this does

not hold then without loss of generality we may assume that

there exists £ > 0 and a seouence {zr } o(T) such that

d(zn > a(Tn))
> c for all n . Since a(T) is compact, we may

assume that zn " Z
£ o(T). If |z -z | 1 n ' < —  , then 2 ’

d(z, o{Tq)) 1  d^ n , o(Tn»  - |z - zn |

> £ “ £ _
Z

2e
z

Hence

II

i—1 11—i tSJ1 . 1
d(z,0(Tn »

O
< —  “  Z

Now choose n so that

l|CTra-T)CTm-rf)

I - (Tm  ' T) CTm  z V 1

-1 Then

is invertible.
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I*t A = (Tm - s l f 1 CX - (Tm - T) CTm - z i r 1) 

A(T -zl) = (T - zl) A = I so that z e p(T).

Then

contradiction.
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CHAPTER TVD

Pi normal Operators

Before we define what a binormal operator is, we first 

study the polar decomposition of an operator.

Definitions

An isometry is a linear transformation tt ( from a

Eilbert space into itself or from one Hilbert space into another)

I ITTf i| _ || f I I for all f in the Hilbert space, such that | [la 11 ll M l
A necessary and sufficient condition that a linear transformation 

0 be an isoretry is that U*0 = I (see [ 7] p. 60).

It is sometimes convenient to consider linear transformations 

U that act isometrically on a subset of a Hilbert space; this

,  ̂ 11 TTf I I = I I f If f°r all f in that subset,means that ||Uf |1 M Il

A r rtiai isometry is a linear transformation that is

'sometric on the orthogonal corrplement of its kernel. The

orthogonal complement of the kernel of a partial isometry is

•ra-itinl space and the range is called the final called its ---

space.

Theorem 2.1.

boundecj linear transformation TT is a partial isometry 

iff u*U is a Projection.

Proof.
Suppose that E and K are Eilbert spaces and suppose
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that U is a partial isometry from H into K with initial 

space M. If E is the projection from E onto M, and if 

t'U, then <U*Uf, f >  = I I W I I 2 - ll * N* = < “ •*> 

If f -i' M, then

^  u*uf, f y = ° = f y

/ - * \ _ /  Ef f \  f°r aH  f in H.
=> (u*uf, f /  " \  ’ /

=> U*U = E.

, CTmnncp that U is a bounded linear transforma- Conversely, suppose ui a l

„ K such that U*U is a projection with
tion from t into

, ___ M sav. It follows thatdomain H  and range M, sa

n u l |l2 = * >

= [|Ef II2 for a11 f ‘

, , ,1 X II or Uf = 0 according as
Hence 11 «  11 = 11 1 11

f e M or f 1 **•

Theorem 2.2

b unded linear transformation from a Filbert space 

rr then there exists a partial isometry
E to a Hilbert space

to and there exists a positive operator 
U (from H to W

a - ttp The transformations U and P 
PC on H ) such that A Lie.

, , kpr Tj = ker P and this additional 
can be found so that her

• nniauely determines them,condition uniquely



Proof

We first oonstruct P. Since A*A is a positive operator 

on H, it has a unique positive square root, call it p Since

|| Pf ||2 = <^Pf, >Pf) = <(p2f>

= <A*Af, fj> = I lAf II2

for all f in H, the equation UPf = Af unambiguously defines

a linear transformation U from the range R of p into the 

space K and that U is isometric on R. Since U is bound d 

on R it has a unique bounded extension to the closure R and 

a unique extension to a partial isometry from H to K with 

initial space R. The equation A = UP holds by construction 

The kernel of a partial isometry is the orthogonal complement 

of its initial space and the orthogonal complement of the range 

of a Hermitian operator is its kernel. Ibis inplies that 

ker U = ker P and this completes the existence proof

To prove uniqueness, suppose that A = UP; where U is 

a partial isometry P is positive and ker U = ker P jt 

follows that A* = PU* and hence that A*A = PU*UP = PEp where 

E is the projection from H onto the initial space of u 

Since that initial space is equal to ker ̂  U and hence to 

ran p , it follows that EP = P and hence that A*A =

Since the equation UPf = Af uniquely determines u for f 

in ran p and since Uf = 0 when f is in ker p, it 
follows that U also is uniquely determined by the stated

conditions.
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Remark

The representation of A as the product of the unique 

u and p satisfying the stated conditions is called the 

polar deconposition of A or more accurately, the right-handed 

polar decomposition of A.

Definition

the p0iar decomposition of an operator, the operators 

T*T and TT* frequently occur. Wfe want to know for uhich

do T*T and TT* comnute. Canpbell [ _2J called 

an operator T binorml if [T*T, TT* J = 0 i.e

if (T*T)(TT*) = (TT*)(T*T).

The following result gives a simple characterization of 

binormal operators.

Thpnrem 2.3

ker

If T has the polar decomposition 

u = ker P, then,[T*T,TT*l - 0 iff

T = UP where 

[ p , UPU*] 0.

Proof

+ tm i is the projection onto the range of P. Note that u u

Pnus W  - p P -  °' ^  ' °

<=>[p 2 , w 2 “*3 ’

<=> [P, (DP2 U*)4 1 “ °

0
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[p, UPU* ] = °-

Definition

An operator T is said to be quasinomjal if [ t ,T*t ] = 0 

i.e. if T(T*TMT*T)T.

The next result shove that the class of binormal operators 

contains the class of quasinoiml operators.

Theorem 2.4

Every quasinormal operator T is binotmal

since T is quasinormal, T(T*T) = (T»T)T. Taking adjoints

we get (T*T)T* = THT*T>

Now (T*T)(TT*) ■= (T*TT)T*
_ T) T*

_ (Tr*)(T*T).

Hence T is binormal.

nwvparties of bino2jaL°BgratoS

Theorem 2.5_

If T e (BN) - <T: CTtT.TTtJ - 0 ) and 

complex number, then

if a is any

1. a T e (BN) 

rp* e (BN) >2.
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= T*x e ker (T2) = ker T 

= TT* x = 0

- x e ker (TT*) = ker(T*) 

i.e ker (T) C| ker (T*)

Corollary 2.9

If T is binormal and ascents of T and T* 

one, then ker(T) = ker (T*).
are both zero or

Proof

From theorem 2.8, it follows that 

is binoimal and the ascent of T* 

ker (T*) jC. ker (T** = T).

= ker (T*) = ker (T).

Independence of binormal operators.

m  now show that (BN) is independent of several maj

classes of operatos. We know that if T is hyponoimal then

it is noimaloid and hence spectraloid. If Tic? -
AS of these

three classes of operators, then T need not satisfy the 

equation [jT*T,TT*] = 0.

ker(T)c ker(T»). Slflce T, 

is zero or one, *  have that

Exanple 2,1 

If T , then I T w(T) = j

r(T) = 0 and T is binormal. However, T is not
spectralo id
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3. T 1 e (BN) if it exists.

Proof

(ctT)*(aT)(aT)(ctT)* = (aT*)(aT)(aT)(aT*)
= |a|4(T*T)(TT*)

= |a| (TT*)(T*T) (Since T e (BN))

- (aT)(aT)*(aT)*(aT)

Hence aT e (BN).

2. Let T = U. Then

(U*U)(UU*) = (TI*)(T*T)

= (T*T)(TT*)

= (UU*)(U*U)
s

Hence U = T* is binomial.

3 if T is invertible, so is T*. Hence both TF* and T*T

are invertible. Since T e (BN) we have 

(T * T)(im) = (TT*) (T * T) . (a)

Let T-1 = v. Taking the inverse of both sides of (a),

we get

(TT*) 1 (T * T) 1 := (T * T) 1(TT*)

-1 m-lT* T T_1T*_1 rp“l

(T"1)* T-! t-1(T-1)* = T-1(T-1)*(T-1

i.e. (V*V>< W )  - (W*)(V»V)
0> V = T'1 £ (BN).
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Remark

Note that (BN) is not closed under addition even when

the operators'commute.

=> T i (BN).

This example also shows that if T e(BN) then it does not imply 

that pi + T e(BN) for complex numbers u. However, yl + T 

will belong to (BN) if in addition T is normal as the next 

result shows.

Theorem 2.6

Suppose that T £ (BN). The T + Alt (BN) some conplex f o,

For let
T.1 and

iff T is normal.

Proof.

Suppose that T e(BN). let \ f 0  be real. Then 

I T + >11 (T* + >D(T + > D * ]  = 0  is equivalent to(T + AI), (T* + AI)(1

(t *,t I , t  + t*
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Thus if T + AI e (BN) for some real A f 0, then

T + AI e (BN) for all real A. But 0 jzf W(T + AI) for A

sufficiently large so T would be noiroal. The case when
^ A is

complex easily reduces to the one when A is real 

Theorem 2.7

If Tx and T2 are doubly comnutative binormal operators (•v 1 • 0 ,

T1T2 ' T2T1 ” d W ' W  then ^ 2  ls binormal.

Proof

The proof is omitted since it is too lengthy.

Definition

The ascent of an operator T is defined to be the smallest 
positive integer n for which Cdcer (T11) = ker (Tn+li) for 
all positive integers K.

Theorem 2.3

If T is binoimal and ascent of T is zero or one, then 

ker (T) C  ker(T*)

Proof.

x e ker(T) => TI*T*Tx 

_> t*t  TT*x

0

0

=> TT*x e ker(T*T) = ker(T) 

=> T2 T* x = 0.
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i.e

=/> T*x e ker (T^) - ker T 

=> IT* x = 0

=> x e ker (IT*) = ker (T*)

ker (T) G  ker (T*)

Corollary 2.9.
H  T ls binomhl and ascents of T and T* are both zero or 

one, then ker (T) = ker tT»)

Proof.
, y lt follows that ker (T) ker (T»). Since 

From theorem 2„e,
ls binomial and the ascent of T* is zero or one, we have

that ker ( M  £  > «  = T>'

,=> ker (T*) = ker ,T)-

n uhnormal operators.Tndependence_of------a
-------- + ran is independent of several major

We now show that ^  ,
We know that if T is hyponormal, then

rlasses of operators.
it is normaloid and hence spectraloid. if T is any of these 

three classes of operators, then T need not satisfy the

equation [T*T, ^

Example 2.1-

0
If T =

then ITI I ? 1, w(T) = i,

i However, T is not spectraloid
. rn -iS binormai- r(T ) = 0 and T is
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/rp. u wm  Also, T is not nonnaloid since . 
since r(l; 7 y‘

11 T 11 a„d hence X  is not hyponormal. Thus there

are non-speetraloid operators in (LN).

Example 2.2_
. , . . QhHft Then S*S and SS* are bothTjet s be a weignted shut.

diagonal operators and hence conmrte. In partisan, let T

the unilateral weired shift with « i * t  sequence
= W(T) = I I T I I = 1. T is not r, , }. Then r(T) 1 1{1,4,1,1.---J

weigJ.at sequence is not monotomc non-decreasing, 
hyponormal since the w

i hut it is binormal and normaloid.E1US T is not hyponormal but

one of the problem of Hilbert space theory is whether

fTivistl invEiricLrvt- sufosp&CG i.G.not every operator has a non- ,
, tunt tm M. The following theorem ,, of h  such that xm —  subspace M oi

, . nrohlem in the case of binormal operators, 
sheds s o ®  light oh this pr

or

a

Theorem 2.10

If T is hyponormal and 

nas an invariant subspace.

[T*T, TT* ] = 0 then

Proof.

See Campbell [2]

Remark
i we have seen that T* is also binormal. 

T ls binormal, we
, , therefore have assumed that T or T* 

2.10 we could there
In theorem
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that T- was semi-normal.

intersect the classes of binormal
were hyponormal, that

note that if we
we get the class of hyponoiral operatorsFinally, we

and paranonnal operators,

as the next result shows.

Theorem 2.11

Suppose

is hyponormal.

Proof

that T t  (BN).
If t  is also paranormal, then it

See Campbell
[31.
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rHftPTER TH^Si

first introduced
Dominant Open has aUo

a„d Wadhwa LUJ •
by Stampf'1 trying to extend

• .lass of operators

StUdl6d thlS U de theorem for larger classes of"• ;i......operators

,s sa1d t0 be dominant if

A" 0(,erat0r T ? for all X « °(T) *

ran(T-x) £

Remark- which W n i  be stated
f DougT as L4J ’

Using a result o ivalent definition of dominant

ran qet an eq
below, we commonly used.

operators which is

T h e o r e m ^  following statements are

Let ft. 6 £ B(H)'

.equivalent:
, ^  ran B

1. ran A '  , > o; and
2 „* for some _

2. ftft* 5  bou„ded operator C on H so that

3 . there o*l5tS 

A = BC.

joug'as DO- (2)
eouivalence of C )

prom the x is dominant iff
npt that 

a we 9 e z
m A ’ 2 , f

i n

r-x) * < x2 (T-x)*rf-x> ■
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• j.mi riant iff for each X e o{J\, Thus T is dominant in

+. n f M > 0 SUCh t îat 
there exists a con X

iiz T >if | I for all feH.||(T-X)*f|l < Mj l(T'X)fH 

Remark.
have seen that there exists , -.ant we have seen

If T U t ”  such that ICT-X^fll < M X M(T-X)f||
a constant

question which might arise is whether

f°r 311 f'H' „ will suffice for all X's l.e.n
a single constant

i . e . must the
. sinqle constant n »"■ -

9 , be bounded? The answer is negative since
** of a11 ^x's i,e ^ * dominant operator where

. t an example oi
:here eXlS nf the dominant operator are
ihe associated of

l o t  b o u n d e d .  ( s e e

. of d o m i n H t ^ ^ 1211'’ r o p e r i l e s _ o f J H n ^
a1iced Putnam-Fuglede)., i  (General i se

rheoremJjiiJj. ,pt N be normal .
----- be dominant. Let

-Ct ‘ (_ WN where ^  »<” > h8S d M S e  ra"9 6 '

'SSUme ™  ” , and moreover W*W commutes
T. T is normal anu
Then l 15 

/ v i t h  N .

•yjj. , vf T is similar
J L ~ ^  hp hyponormal • ^
i B(H) normal.

t n r  then T i>
-mal operator’

ry 3jJ. I pt TW = WN where
- ' " 7  he dominant.
E 8(H) be
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is normal and 

Then T bas a

w is any non-zero operator in

proper invariant subspace,

B(H).

Proof.

See JJ7_[.

Definition

If A B(H) 

reducing if

and

AM

M is a linear subspace of 

H and AH^ ^

H. M i s

1, emma 3.4 

Let T e B(H)
be dominant.

invariant subspace
„ r (i . e

then M reduces 

subspace of

Let M

If T I M 

M 1 s

d. W be an 

i s normal, 

a reducing

Proof.

See 0 0  • 

Theorem 3 ■ j__ 

Let T e B(H) 

B ;>- 0 a n ̂ ^

be dominant.

is normal .

ker B ®

o
Proof.

ker
where T2

Let TB = 

Then T = Ti 

is normal .

BN where 

® T2 on

DO-
o rem^Jj^jem .__p 

T B(H) be
1 . p then T

some po'y " 01” 3

p(T) ts normal 

i s normal.
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Proof 

See U 7J-

(1) Q u a i i n n i i ! - ^ ^ ^ '

Quasinor»al ope—  were " d

nl He called an operator A such 
studied by Brown LU *

an operator with property
that A(A*A) - A)B

w show that the CUSS of Puasinormal 

We " the class of normal operators,
operators contain

— S L l c Z  is quasinormal.
Every normal operator

n

Proof•

Since T 1s 

= (T*T) T .

normal, TT
T is quasinormal.

Now T(T*T) = (TT*)T

imarjc- . false for let T be
f theorem J •

,e converse necessary and sufficient
„ , We know that

i isometry.  ̂ transformation be an isometry i

indition that a ,ine’'" . TI = (T*T)T *= IT = T
T Then U 1 '

iat T*T = _s j is quasinormal.
+p? with T*T V

■e. T commute T*T = I. t.e. T is

, T is not unitary.

»t normal- character!Zes quasinormal

The following the

aerators.

ieorem__3jj. ivalent conditions on an
. re mutually M 

ie following are
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arbitrary operator A.

1 a is quasi normal .
If A _ up iS the polar decomposition of A, 

then UP = PU•
A = Vp = PV with P « 0 and V isometric.

4 A = VB = BV with B self-adjoint and V

i s ometri c,

Proof•

See DJ •
nPfj ni tion

Let A be a convex set. A point aeA is called an

p a if it does not belong to the 
extreme poi rrt of

nf any segment in the set A. interior of any a

Theorem 3.9

If T

quasinormal

is quasinormal, then T > n e N , is

D €  •

rem_JjJJ.
T .s quasi.normal and satisfies any one of the 

a1 1 ions , then T is normalowing conditions,

ker(T*) £  ker (T)'

+ nf j* is 0 or 1.the ascent of

 ̂ 0 is an extreme point of W(T) .
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Ctv} k e r  ( T * )  = { o }

(v) T* is invertible

(vi) T-AI is quasinormal for all real a 

Proof.

(i) Since H = ker(T*) « T(H), for any

x = u + v, u z k e r ( T * )  and v c T(h T. No k  the 

normality o f  T f o l l o w s  f r o m  t h e  f a c t  that

11 T*X|J ■ 1J T*v J| = J J Tv|| =

( 11 ) x e k e r ( T * )  *  T*x = 0 => f*TTx = o

=> T*T*Tx = 0 => Tx e ker(T*2) = ker(T*) =>

T*Tx = 0 => x e ker(T*T) = ker(T) f.e .

ker(T*) ker T.

The result follows from ft)

( H i )  T being hyponormal (to be proved later) 

and 0 being an e x t r e m e  point o f  W(T), by a re 1 

o f  S t a m p f l  i D£J» ker(T) = ker(T*), which is the 

case (i).

( 1 v )  ker(T*) = ( 0 )  = ker(T*) ^  ker(T)

(v) T * being i n v e r t i b l e ,  ker(T*) = fo}

The result follows from (iv).

(v1) For Aq /  cr(T), S = T - i s  an invertible 

quasinormal. He n c e  S i s  normal and consequently 

T is n o r m a l .

Theorem 3.11

Let r = A + iB be a cartesian decomposition
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, .jf aB commutes
T is quasinormal if

of T. Then T 

with A and

Proof.- e Self-adjoint i'.e.
„ A and o

T = A + iB Whef 

A* - A, B* * B -
■ □ * = A-i B • 2 2

( T * T ) T = ( A +B + b (a b 2 -b a b )

t (t * t ) - ( T * T ) ^ 2 1 LB

(AB)A • A<AB) a"dsince ^

(AB)B * B(AB)
*

=> Q a b )a J
'a (AB)]

a b a = BA
i .e

/t*T)T s 0
t ( t * T )  '

*  *ti . (T*T)T -
, e T(T*T ) '

T is q u » ^ " ° rmal-

Zoro} } ^ ^ 1  AB . C + iD -
Let T » A+iB 8" , if both A and B commutes
U  T iS quasin°rma

The" „ c and
with each

, t is quasinormal if
ôof- ^  above, 1

rom the°renl ' and B i-a - if
ites ^i commute5
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From

-s

_\

U )
(AB)A - A(AB) ut)
( A B ) B  *  b ( a b )

( i ) ,  « e  g e t

( c + i D ) A  = A ( C + i D )

C A + i  D A  = ftC + l St l

CA - AC ■»* DA = “ •

From ( H ) .  we ^

( C + i O ) B  ■ ®<C + t 0 >

*  CB ♦ ^  * BC + iB°

"  CB .  BC a n d  BB -  BD

„  B c o m m u t e s  w i t h  B o t h  C  a n d  0 .

Jv A a n d  B

(ii} th£ hyp0theS6S °f
A n o t h e r  w a y  d e f i n i n g  s u b n o r m a l

r i c t h a t  ot 
n o r m a l  o p e r a t o r s

operators•

^ a H . l b e r t  space «  is s u b n o r m a l  

A n  operator A I n  o t h e r  w o r d s ,  A i s

i f  it h a s  a n o r m a l  «  # n o r B , l  operator B o n  a

subnormal i f  t h > t  „  i s  a subspace o f  K ,

Hilbert s p a c e  *  ^  o n d e r  t h e  operator B

t h e  s u b s p a c e  H 1 $ t0 H c o i n c i d e s  w i t h  A .
+ r i c t i ° n  o t  

a n d  t h e  r e s t n

T h e o r e s J ^11  .  „ o e r a t o r  i s  s u b n o r m a l .
\ „ a s i n o r m a l  op

E v e r y  cl u
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Proof.

Let A be quasinormal. Then ker A reduces A since 

ker A = ker A*A for every operator A and since 

A* commutes with A*A(A being quasinormal) it follows 

that ker A*A is invariant under A*. Thus every 

quasinormal operator is the direct sum of 0 and an 

operator with trivial kernel. Without loss of gene­

rality, we can assume that ker A = 0, If UP is 

the polar decomposition of A, then U is an 

isometry and UP = PU and U*P = Plf*. Since 

U is isometric, then if E is the projection UU*, 

then
(I - E)U = U * ( I -E ) = 0.

We now construct a normal extension for A.

If A acts on H, then a normal extension B 

can be constructed that acts on H © H (if H is 

identified with H © 0, then H is a subspace 

of H © H). An operator on H ffi H is given by a 

two-by-two matrix whose entries are operators on 

H. If in particular

then V is unitary, Q .is positive, V and Q
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B = VQ
VP O E ) P

0 U*P

is a normal extension of A,

Remark

The converse of theorem 3.13 is false for consider 

a non-zero scalar added to the unilateral shift.

This is subnormal just like the unilateral shift but 

if it were also quasinormal, then the unilateral 

shift would be normal,

Definition

A normal extension B (on K) of a subnormal operator 

A (on H) is minimal if there is no reducing subspace 

of B between H and K. In other words, B is 

minimal over A if whenever M reduces B and 

H C L M, it follows that M = K.

Theorem 3.14

If B and B^ (on K.̂ and ) are minimal normal 

extensions of the subnormal operator A on H, then 

there exists an isometry U from onto

that carries B] onto B2 (i.e. UB] = B2 U) 

and is equal to the identity on H,

Proof,

See 00 pp- 306-307.

Remark.

In view of the result of theorem 3.14 we can talk
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of "the" minimal normal extension of a subnormal 

operator.

Theorem 3.15

If A is subnormal and if B is its minimal normal 

extension, then a(B) a(A),

Proof.

See [ f \  , P- 308.

(iii) Hyponormal operators.

If A (on H) is subnormal, with normal extension

B(on K) we want to find out the relation between A* 

and B*. Consider the projection P from K onto H. 

If f and g are in H, then

Since the operator PB* on K leaves H invariant, 

its restriction to H is an operator on H and this 

restriction is equal to A*. We have A*f = PB*f

for every f in H. If f e H ,  then 

| |A*f | | = | |PB*f| | 1  I IB*f l I = I IBf| |

(since B is normal)

= l l A f l l

i . e . | | A*f I l 1  M Af 11 •
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This is equivalent to the operator inequality 

AA* < A*A,

Properties of hyponormal operators.

Theorem 3.16

Every subnormal operator is hyponormal,

Proof.

See the remarks following theorem 3,15,

Remark.

The converse of theorem 3,16 is false since there 

exists a hyponormal operator that is not subnormal 

(see \ j 2 » p P • 309-310),

Theorem 3.17

If A is hyponormal, then |. [ AP l L ■= L [ A L ln 

and so ||A|| = r (A ),

Proof.

If feH and n > 1 , then

< I I A*Anf t| U A n' 1 fl[

Hence
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Then 11 A | p n - | I a " | | 2 < ||An + 1 || ||An''1 ||

- I I A | | I I A | |
n+1

ii i i n + 1 , , . n + 1 | i i i . i ,ft+l
So | |A| | 1  ||A || 1  1 IA||

Since r(A) = lim I|An | j1/n = ||A||

ft̂ l1

Theorem 3.18

If T is a hyponormal operator such that a(T] is a 

set of real numbers, then T is self-adjoint.

Proof.

See D  5J  •

Definition.

A complex number A is sard, to be an approximate proper 

value for the operator T if there exists a sequence

The approximate point spectrum of an operator T, 

denoted by tt(T ) , is the set of approximate proper 

values of T .

Theorem 3.19

Let T be a hyponormal operator and let

xn
such that x 1 | = 1 and ||(T-M) xp | | - 0 .

then

Proof•

See D Cl *
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Theorem 3.20

If T is hyponormal , a(T*) = tt(T*).

Proof.

See 0 3  •

Theorem 3.21

Let N be a hyponormal operator. If for an 

arbitrary operator A, for which 0 l  W(A),

AN = N*A, then N is self-adjoint.

Proof.

Since 0 i W (A ), A is invertible. Hence 

N = A 1N*A and it follows from theorem 3.20 and 

the fact that if A and B are similar, then 

jr(A) = tt(B), that ct(N) = a ( N *) = tt ( N * ) = tt ( N ) .

By theorem 3.18, it is sufficient to prove that 0 (N) 

is real. Suppose on the contrary that there exists a z e a(N) such that

z t  z . Since z e o(N) = »(N), there exists a sequence x of unit
n

vectors such that || (N*-z I)xp [| < ||(N-zI)x || + 0 

Since 0 i W(A), the relation

| | (N*-zI)xn I I = I I (ANA 1 --zl)xn\\= H A ( N - z I ) A _ 1xn [ | + 0

implies that 1 I(N-zI}A xn ll ^ 0 * A

Hence C xn » A xn) = \ A A  xn> A ^xn^ 0 by 

theorem 3.19. Put y n = A xn / ||A xn ||, then

| |yn | | = 1 and y n) ^ ° i -e ’ 0 e

a contradiction.
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Corollary 3.22

Let N be a seminormal operator (i.e. N is such that 

either N or N* is hyponormal), If for an arbitrary 

operator A, for which 0 i  W(A), AN = N*A, 

then N is self-adjoint.

Proof.

Suppose that N* is hyponormal, By the proof of 

theorem 3.21, 0 i  W(A) implies 0 l  W (A^1 ). Now

-1 -1
AN = N*A implies A N* = NA i,e. BM = M*B where 

M = N* is hyponormal and 0 i W(B) = W(A_1). Hence 

M = M* by theorem 3.21 i.e. N = N*.

Theorem 3.23

Let T be hyponormal; then ||Tx|| = ||T*x|| iff 

TT*x = T*Tx.

Proof.

See D Cl •
Theorem 3.24

Let T be hyponormal on H. Then W(T) has at most a 

countable number of extreme points.

Proof. ^

See [J d  •

(i v ) M-hyponormal operators

The notion of an M-hyponormal operator is due to 

Stampfli (unpublished) and is a generalisation of a

hyponormal operator.
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Definition

An operator T on H is called an M-hyponormal 

operator if there exists a real number M such that 

| | (T-zI)*xf | < M || (T-z X) x 1 | for all x ^ H  and for 

all z e l .

Properties of M-hyponormal operators 

Theorem 3.25

Every hyponormal operator is M-hyponormal 

Proof.

Let T be hyponormal. Then T*T-TT* _> 0 or equivalently

||T*x|| < ||Tx|| for all x e H. Note that T is

hyponormal iff M = 1 where M is the one used in the 

definition. Thus T is M-hyponormal.

Remark

The converse of theorem 3.25 is false since there exists

an example of an M-hyponormal operator which is not

hyponormal

(See 0 8ID-

Proposition 3.26
2 v*.

T is an M-hyponormal operator iff M (T-z) * (T-z )-(T-z)(T-z*) 

> 0  f o r a l l  z e (E.

Proof.

See EJCl •

Proposition 3.27

If T is an M-hyponormal operator, then 

/ -j \ xx = zx implies that T*x = zx



42

(it) H ( T * - z ) _ 1 x|I < Ml ICT-z)“]xI I for all z in P(T).

Proof 

See □  8 j .

Proposition 3.28

Let T be an M-hyponormal operator.

( D If ( T - z ) %  = 0 then (J-z)x = 0

(ii) If Tx = zix and Ty = z2y, j  z2

then < x , y >  = 0 .

(iii) If there exists a polynomial p(z) such 

that P (T ) = 0, then T is normal.

(iv) If H is finite dimensional, then T is normal.
\

Proof■

See ■ jj 8 ] .

Theorem 3.29

Let T be an M-hyponormal operator which is similar 

to a normal operator and such that the area of o(T) is 

zero. Then T is a normal operator.

Proof■

See 08].

Theorem 3.30

Every M-hyponormal operator is dominant.

Proof.

The proof follows immediately from the definitions 

0 f M-hyponormal and dominant operators.

Remark

The converse of theorem 3.30 is false since there
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exists a dominant operator which is not M-hyponormal. 

Theorem 3.31

If T is an M-hyponormal operator on H, then a t ,

A  ̂ 0 and T + Al are also M-hyponormal operators 

for every scalar A .

Proof.

See U 2J  •

Theorem 3.32

Let {Tn } be a sequence of M-hyponormal operators 

converging uniformly to the M-hyponormal operator T, 

so that | | T - T | | 0 as n -*■ 00 . Then z is in

o(T) iff there exists a sequence {zn }, zn are in 

0 (T ), such that -> zQ .

Proof.

See 0  2J .

Theorem 3.33

Let T be an M-hyponormal on H. Then there exists 

operators A, B and S..which satisfy

(i ) B > A _> 0

( I D S| | < M, M > 1 .

(iii) S*AS = B.

In this case, T can be expressed as

= 1( a 5s + xi) for some complex A .T
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Proof.

See Qf|.

Theorem 3.34

If H is f ini te-dimensional and T -js an 

M-hyponormal operator on H, then T is norma]. 

Proof.

See 0 0  •

Extensions of the Putnam-Fuglede theorem

The Putnam-Fuglede theorem states that if a and b 

are normal operators and if X is an operator such 

that AX = .XB then A*X = XB* (see [7] ). ,

We will now look at some of the relaxations of 

the hypotheses on A and B.

Theorem 3.35

If A and B* are subnormal and if x is an 

operator such that AX = XB, then A*X = XB*.

Proof.

See [6] .

The following theorem extends the Putnam-Fuglede 

theorem to the case when A and B are M-hyponorma1 .

Theorem 3.36

If a and B are M-hyponormal and AX = XB*,

then A*X = XB.
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Proof.

See JT].

Duggal Q Q  extended theorem 3.36 to the case 

when A is dominant and B* is M-hyponormal, as 

the next theorem shows.

Theorem 3.37

Let A be dominant, B* be M-hyponormal such that 

AX = XB. Then A*X = XB*.

Proof.

See [5j .

Definition.

Let H and K be Hilbert spaces, SeB(H) and

T t B( K ) . The commutator C ( S ,T) ; B(KtH) + B(K,H) 
of S and T is defined by C(S,T)A = SA - AT. 

Cn (S,T) will mean n times application of

C ( S , T ) .

Theorem 3.38

Let S and T* be hyponormal and assume

cn (S,T)A = 0 for some natural number n and some 

A e B (K ,H ). Then C(S,T)A = C(S*,T*)A = 0.

Proof- 

See 03].

Conclusion

In all the three classes of operators that 

we have studied, there is still a lot of research
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that can be carried out to determine other properties 

of these operators.

There is still a lot to be done especially in the 

extension of the Putnam-Fuglede theorem. One research 

problem which can be tackled by those interested in 

this field is to try to extend the work done by 

Furuta [6] . M °ore et al [sQ Duggal C5l and Radjabal i bour 

D O  by trying to answer the following question:

Does the Putnam-Fuglede theorem hold if A and B 

are both dominant?
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